
ibm.com/redbooks

IBM® Rational®

Rational Application Developer
for WebSphere Software V8
Programming Guide

Martin Keen
Rafael Coutinho

Sylvi Lippman
Salvatore Sollami

Sundaragopal Venkatraman
Steve Baber

Henry Cui
Craig Fleming

Venkata Krishna Kumari Gaddam
Brian Hainey

Lara Ziosi

Develop applications using
Java EE 6 and beyond

Test, debug, and profile with
local and remote servers

Deploy applications to
WebSphere servers

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Rational Application Developer for WebSphere
Software V8 Programming Guide

April 2011

International Technical Support Organization

SG24-7835-00

© Copyright International Business Machines Corporation 2011. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (April 2011)

This edition applies to IBM Rational Application Developer for WebSphere Software Version 8.0.1
and to IBM WebSphere Application Server Version 7.0 and WebSphere Application Server V8.0
Beta.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xxxi.

Contents

Notices . xxxi
Trademarks .xxxii

Preface . xxxiii
The team who wrote this book . xxxiii

Residency team in Raleigh . xxxiii
Residency team working remotely . xxxv
Rational Application Developer development team authorsxxxvii
Additional contributors. xxxviii

Now you can become a published author, too! . xl
Comments welcome. xli
Stay connected to IBM Redbooks . xli

Part 1. Introduction to Rational Application Developer. 1

Chapter 1. Introduction . 3
1.1 Concepts . 4

1.1.1 IBM Rational Software Delivery Platform . 4
1.1.2 Eclipse and IBM Rational Software Delivery Platform 8
1.1.3 Challenges in application development. 9

1.2 Rational Application Developer supported platforms and databases 10
1.2.1 Supported operating system platforms . 10
1.2.2 Supported runtime environments . 10

1.3 New features and specifications . 12
1.3.1 New features in Rational Application Developer 12
1.3.2 Specification versions . 13

1.4 Migration . 14
1.5 Sample code . 15
1.6 Summary . 16

Chapter 2. Programming technologies . 17
2.1 Desktop applications . 18

2.1.1 Simple desktop applications . 18
2.1.2 Database access. 22
2.1.3 Graphical user interfaces . 23
2.1.4 Extensible Markup Language (XML). 26

2.2 Web applications . 27
2.2.1 Hypertext Transfer Protocol (HTTP) . 28
2.2.2 Hypertext Markup Language (HTML) . 30
© Copyright IBM Corp. 2011. All rights reserved. iii

2.2.3 Dynamic web applications. 32
2.2.4 JavaServer Faces and persistence using JPA 39
2.2.5 Web 2.0 development . 41
2.2.6 Portal applications. 44

2.3 Enterprise JavaBeans and Java Persistence API 46
2.3.1 EJB 3.1 specification: What is new . 47
2.3.2 Types of EJBs . 48
2.3.3 Java Persistence API . 50
2.3.4 Other EJB and JPA features . 51

2.4 Web services. 52
2.4.1 Interoperatility considerations . 53
2.4.2 Web services in Java EE 6 . 54

2.5 Messaging systems. 59
2.5.1 Java Message Service . 60
2.5.2 Message-driven beans (MDBs). 60
2.5.3 Requirements for the development environment 61

2.6 OSGi applications . 62
2.6.1 OSGi features . 62
2.6.2 Benefits of OSGi . 63

2.7 Other applications . 63
2.7.1 Java EE application clients . 64
2.7.2 Enterprise information system applications. 67
2.7.3 Service Component Architecture applications 67
2.7.4 Session Initiation Protocol applications. 68
2.7.5 Communications Enabled Applications (CEA) 68

Chapter 3. Workbench setup and preferences . 71
3.1 Workbench basics . 72

3.1.1 Workbench basics. 75
3.2 Preferences . 80

3.2.1 Automatic builds . 82
3.2.2 Manual builds . 83
3.2.3 File associations . 83
3.2.4 Content types . 85
3.2.5 Local history . 85
3.2.6 Perspectives preferences . 87
3.2.7 Web browser preferences . 88
3.2.8 Internet preferences . 89

Chapter 4. Perspectives, views, and editors. 91
4.1 Integrated development environment . 92

4.1.1 Perspectives . 92
4.1.2 Views. 92
iv Rational Application Developer for WebSphere Software V8 Programming Guide

4.1.3 Editors . 93
4.1.4 Perspective layout. 94
4.1.5 Switching perspectives . 96
4.1.6 Specifying the default perspective . 97
4.1.7 Organizing and customizing perspectives. 98

4.2 Help system for Rational Application Developer 100
4.2.1 Context-sensitive help. 103

4.3 Available perspectives. 104
4.3.1 CVS Repository Exploring perspective . 106
4.3.2 Data perspective . 107
4.3.3 Database Debug perspective . 110
4.3.4 Database Development perspective . 111
4.3.5 Debug perspective . 112
4.3.6 Java perspective . 114
4.3.7 Java Browsing perspective . 115
4.3.8 Java EE perspective . 117
4.3.9 Java Type Hierarchy perspective . 118
4.3.10 JavaScript perspective . 120
4.3.11 JPA perspective . 121
4.3.12 Modeling perspective . 123
4.3.13 Plug-in Development perspective . 124
4.3.14 Profiling and Logging perspective . 126
4.3.15 Report Design perspective . 127
4.3.16 Resource perspective . 128
4.3.17 Team Synchronizing perspective . 129
4.3.18 Test perspective . 131
4.3.19 Web perspective . 132
4.3.20 XML perspective . 136
4.3.21 Progress view . 138

4.4 Summary . 139

Chapter 5. Projects . 141
5.1 Java Enterprise Edition 6 . 142

5.1.1 Enterprise application modules . 144
5.1.2 Web modules . 145
5.1.3 EJB modules . 145
5.1.4 Application client modules. 146
5.1.5 Resource adapter modules . 146
5.1.6 Java utility libraries . 146

5.2 Project basics . 146
5.2.1 Creating a new project . 147
5.2.2 Project properties . 155
5.2.3 Deleting projects . 156
 Contents v

5.2.4 Transferring projects between workspaces. 156
5.2.5 Closing projects. 157

5.3 Java EE 6 project types. 157
5.3.1 Enterprise application projects . 158
5.3.2 Application client project . 159
5.3.3 Dynamic web project. 159
5.3.4 EJB project . 160
5.3.5 Connector project . 161
5.3.6 Utility project . 161

5.4 Project wizards . 162
5.5 Sample projects. 167

5.5.1 Help system samples . 167
5.5.2 Example projects wizard . 170

5.6 Summary . 171

Chapter 6. Unified Modeling Language . 173
6.1 Overview . 174
6.2 Constructing and visualizing applications with UML 174

6.2.1 UML visualization capabilities . 176
6.2.2 Unified Modeling Language . 177

6.3 Working with UML class diagrams . 180
6.3.1 Creating class diagrams . 181
6.3.2 Creating, editing, and viewing Java elements by using UML class

diagrams . 184
6.3.3 Creating, editing, and viewing EJB components within UML class

diagrams . 188
6.3.4 Creating, editing, and viewing WSDL elements within UML class

diagrams . 194
6.3.5 Class diagram preferences . 205

6.4 Exploring relationships in applications . 206
6.4.1 Browse diagrams . 206
6.4.2 Topic diagrams . 208

6.5 Describing interactions with UML sequence diagrams 212
6.5.1 Creating sequence diagrams . 214
6.5.2 Creating lifelines . 215
6.5.3 Creating messages . 216
6.5.4 Creating combined fragments . 219
6.5.5 Creating references to external diagrams . 221
6.5.6 Exploring Java methods with static method sequence diagrams . . 222
6.5.7 Sequence diagram preferences . 224

6.6 More information about UML. 226

Part 2. Java and XML development . 227
vi Rational Application Developer for WebSphere Software V8 Programming Guide

Chapter 7. Developing Java applications . 229
7.1 Java perspectives, views, and editor overview . 230
7.2 Java perspective . 232

7.2.1 Package Explorer view . 232
7.2.2 Hierarchy view. 233
7.2.3 Outline view. 233
7.2.4 Problems view. 234
7.2.5 Declaration view . 236
7.2.6 Console view. 237
7.2.7 Call Hierarchy view . 238

7.3 Java Browsing perspective . 239
7.4 Java Type Hierarchy perspective . 240
7.5 Developing the ITSO Bank application . 240

7.5.1 ITSO Bank application overview . 240
7.5.2 Packaging structure . 240
7.5.3 Interfaces and classes overview . 241
7.5.4 Interfaces and classes structure . 242
7.5.5 Interface and class fields and getter and setter methods 243
7.5.6 Interface methods . 244
7.5.7 Class constructors and methods. 246
7.5.8 Class diagram . 249

7.6 ITSO Bank application step-by-step development guide 250
7.6.1 Creating a Java project . 250
7.6.2 Creating a UML class diagram . 254
7.6.3 Creating Java packages . 256
7.6.4 Creating Java interfaces . 257
7.6.5 Creating Java classes . 259
7.6.6 Creating Java attributes (fields) and getter and setter methods . . . 262
7.6.7 Adding method declarations to an interface 268
7.6.8 Adding constructors and Java methods to a class 270
7.6.9 Creating relationships between Java types. 271
7.6.10 Implementing the classes and methods . 275
7.6.11 Running the ITSO Bank application . 277
7.6.12 Creating a run configuration . 277
7.6.13 Understanding the sample code . 280
7.6.14 Additional features used for Java applications 284
7.6.15 Using scripting inside the JRE . 284
7.6.16 Analyzing the source code . 286
7.6.17 Debugging a Java application . 290

7.7 Using the Java scrapbook . 290
7.7.1 Pluggable Java Runtime Environment . 292
7.7.2 Exporting Java applications to a JAR file . 293
7.7.3 Running Java applications that are external to Rational Application
 Contents vii

Developer . 296
7.7.4 Importing Java resources from a JAR file into a project 297
7.7.5 Javadoc tooling . 298

7.8 Generating the Javadoc . 299
7.8.1 Generating the Javadoc from an existing project 299
7.8.2 Generating the Javadoc from an Ant script 301
7.8.3 Generating the Javadoc with diagrams from existing tags 302
7.8.4 Generating the Javadoc with diagrams automatically 303

7.9 Java editor and rapid application development . 304
7.9.1 Navigating through the code . 305
7.9.2 Source folding . 307
7.9.3 Type hierarchy . 309
7.9.4 Smart insert . 309
7.9.5 Marking occurrences. 309
7.9.6 Smart compilation . 310
7.9.7 Java and file search . 310
7.9.8 Working sets . 314
7.9.9 Quick fix . 315
7.9.10 Quick assist . 316
7.9.11 Content assist . 317
7.9.12 Import generation . 318
7.9.13 Adding constructors . 319
7.9.14 Using the delegate method generator. 322
7.9.15 Refactoring . 326

7.10 More information . 329

Chapter 8. Developing XML applications . 331
8.1 XML overview and associated technologies . 332

8.1.1 XML processors . 332
8.1.2 DTDs and XML schemas . 333
8.1.3 XSL . 334
8.1.4 XML namespaces . 335
8.1.5 XPath . 335
8.1.6 XML catalog . 336

8.2 Rational Application Developer XML tools . 336
8.2.1 Creating an XML schema . 338
8.2.2 Generating HTML documentation from an XML schema file 350
8.2.3 Generating an XML file from an XML schema file. 351
8.2.4 Editing an XML file . 352
8.2.5 Working with XSL transformation files . 354
8.2.6 Transforming an XML file into an HTML file 358
8.2.7 XML mapping . 360

8.3 Service Data Objects and XML . 370
viii Rational Application Developer for WebSphere Software V8 Programming Guide

8.3.1 Generating SDOs from an XML schema. 371
8.3.2 Marshal SDO objects to XML . 372
8.3.3 Unmarshal XML to an SDO data graph . 375

8.4 JAXB and XML . 378
8.4.1 Generating JAXB classes from an XML schema 379
8.4.2 Marshal JAXB objects to XML. 381
8.4.3 Unmarshal the XML file to JAXB objects . 383
8.4.4 JAXB customization . 385

8.5 Feature Pack for XML . 387
8.6 More information . 388

Part 3. Persistence and enterprise information system integration development 391

Chapter 9. Developing database applications . 393
9.1 Introduction . 394
9.2 Connecting to the ITSOBANK database . 394

9.2.1 Connecting to databases . 395
9.2.2 Creating a connection to the ITSOBANK database 395
9.2.3 Browsing a database with the Data Source Explorer 400

9.3 Creating SQL statements . 401
9.3.1 Creating a Data Development project . 402
9.3.2 Populating the transactions table . 403
9.3.3 Creating a select statement . 404
9.3.4 Running the SQL query. 412

9.4 Developing Java stored procedures . 413
9.4.1 Creating a Java stored procedure. 413
9.4.2 Deploying a Java stored procedure . 417
9.4.3 Running the stored procedure. 418

9.5 Developing SQLJ applications . 419
9.5.1 Creating SQLJ files . 420
9.5.2 Examining the generated SQLJ file. 424
9.5.3 Testing the SQLJ program . 425

9.6 Data modeling . 427
9.6.1 Creating a Data Design project . 428
9.6.2 Creating a physical data model. 429
9.6.3 Modeling with diagrams . 433
9.6.4 Generating DDL from a physical data model and deploying. 436
9.6.5 Analyzing the data model . 439

9.7 More information . 440

Chapter 10. Persistence using the Java Persistence API 443
10.1 Introducing the Java Persistence API . 444

10.1.1 JPA entity object . 445
10.1.2 Object-rational mapping . 446
 Contents ix

10.1.3 Entity inheritance. 453
10.1.4 Persistence units. 454
10.1.5 Entity Manager . 455
10.1.6 JPA Manager Bean . 458
10.1.7 Java Persistence Query Language . 459
10.1.8 Criteria API . 464
10.1.9 Persistence provider . 466
10.1.10 JPA 2.0 enhancements . 467

10.2 Creating a JPA project . 469
10.2.1 Setting up the ITSOBANK database . 469
10.2.2 Create a new JPA project . 470
10.2.3 Adding JPA support to an existing project 474
10.2.4 Converting a Java project to a JPA project 475

10.3 Creating JPA entities. 476
10.3.1 Creating a new JPA entity with the wizard 477
10.3.2 Creating a JPA entity when adding persistence to a POJO 480
10.3.3 Generating database tables from JPA entities 483
10.3.4 Generating JPA entities from database tables 483
10.3.5 Adding business logic . 492
10.3.6 Adding named queries . 494

10.4 Creating a JPA Manager Bean . 495
10.5 Visualizing JPA entities . 498
10.6 Testing JPA entities. 501

10.6.1 Creating the Java project for entity testing 502
10.6.2 Creating a Java class for entity testing . 502
10.6.3 Setting up the build path for OpenJPA . 503
10.6.4 Setting up the persistence.xml file . 508
10.6.5 Creating the test . 510
10.6.6 Running the JPA entity test. 514
10.6.7 Displaying the SQL statements. 518
10.6.8 Adding inheritance . 519

10.7 Preparing the entities for deployment in the server. 526
10.8 More information . 529

Chapter 11. Developing applications to connect to enterprise information
systems . 531

11.1 Introduction to Java EE Connector Architecture 532
11.1.1 System contracts. 532
11.1.2 Resource adapter . 534
11.1.3 Common Client Interface . 535
11.1.4 WebSphere adapters . 535

11.2 Application development for EIS . 536
11.2.1 Importers . 537
x Rational Application Developer for WebSphere Software V8 Programming Guide

11.2.2 J2C wizards. 537
11.3 Sample application overview. 538
11.4 CICS outbound scenario . 538

11.4.1 Prerequisites . 539
11.4.2 Creating the Java data binding class . 539
11.4.3 Creating the J2C bean . 540
11.4.4 Deploying the J2C bean as an EJB 3.0 session bean 544
11.4.5 Generating a JSF client. 546
11.4.6 Running the JSF client . 550

11.5 CICS channel outbound scenario . 550
11.5.1 Creating the Java data binding for the channel and containers . . 551
11.5.2 Creating the J2C bean that accesses the channel 555
11.5.3 Developing a web service to invoke the COBOL program 557
11.5.4 Testing the web service with CICS access 562

11.6 SAP outbound scenario. 564
11.6.1 Required software and configuration . 564
11.6.2 Creating a connector project and J2C beans 565
11.6.3 Generating the sample web application . 570
11.6.4 Testing the web application. 572

11.7 Monitoring inbound events for resource adapters 572
11.7.1 Monitoring inbound events using WebSphere Business Monitor . 572
11.7.2 Monitoring inbound events using WebSphere Business Events. . 573

11.8 More information . 573

Part 4. Enterprise and service-oriented architecture (SOA) application development . 575

Chapter 12. Developing Enterprise JavaBeans (EJB) applications 577
12.1 Introduction to Enterprise JavaBeans . 578

12.1.1 EJB 3.1 specification. 578
12.1.2 EJB component types . 579
12.1.3 EJB services and annotations. 590
12.1.4 EJB 3.1 application packaging . 600
12.1.5 EJB 3.1 Lite. 600
12.1.6 EJB 3.1 features in Rational Application Developer 601

12.2 Developing an EJB module . 601
12.2.1 Sample application overview. 602
12.2.2 Creating an EJB project . 605
12.2.3 Making the JPA entities available to the EJB project 608
12.2.4 Setting up the ITSOBANK database . 609
12.2.5 Implementing the session facade . 612

12.3 Testing the session EJB and the JPA entities. 623
12.3.1 Testing with the Universal Test Client . 624
12.3.2 Creating a web application to test the session bean. 626
 Contents xi

12.3.3 Testing the sample web application . 633
12.3.4 Visualizing the test application . 634

12.4 Invoking EJBs from web applications . 635
12.4.1 Implementing the RAD8EJBWeb application 636
12.4.2 Running the web application . 639
12.4.3 Cleaning up . 645
12.4.4 Adding a remote interface . 646

12.5 More information . 647

Chapter 13. Developing Java Platform, Enterprise Edition (Java EE)
application clients. 649

13.1 Introduction to Java EE application clients . 650
13.2 Overview of the sample application. 652
13.3 Preparing the sample application . 654

13.3.1 Importing the enterprise application sample 654
13.3.2 Setting up the sample database . 656

13.4 Developing the Java EE application client . 659
13.4.1 Creating the Java EE application client projects 660
13.4.2 Configuring the Java EE application client projects 663
13.4.3 Importing the graphical user interface and control classes 666
13.4.4 Creating the BankDesktopController class 668
13.4.5 Completing the BankDesktopController class. 669
13.4.6 Creating an EJB reference and binding . 671
13.4.7 Registering the BankDesktopController class as the main class . 673

13.5 Testing the Java EE application client. 675
13.6 Packaging the Java EE application client . 679

13.6.1 Packaging the application . 679
13.6.2 Running the deployed application client . 680

Chapter 14. Developing web services applications 681
14.1 Introduction to web services . 683

14.1.1 SOA. 683
14.1.2 Web services as an SOA implementation. 684

14.2 New function in Java EE 6 for web services . 686
14.2.1 JSR 224: Java API for XML-Based Web Services (JAX-WS) 2.2. 686
14.2.2 JSR 222: Java Architecture for XML Binding (JAXB) 2.2 688
14.2.3 JSR 109: Implementing Enterprise Web Services 688
14.2.4 Related web services standards . 689

14.3 JAX-WS programming model . 690
14.3.1 Better platform independence for Java applications 690
14.3.2 Annotations . 691
14.3.3 Invoking web services asynchronously . 691
14.3.4 Dynamic and static clients. 693
xii Rational Application Developer for WebSphere Software V8 Programming Guide

14.3.5 Message Transmission Optimization Mechanism support 693
14.3.6 Multiple payload structures . 693
14.3.7 SOAP 1.2 support . 694

14.4 Web services development approaches . 694
14.5 Web services tools in Rational Application Developer 694

14.5.1 Creating a web service from existing resources 695
14.5.2 Creating a skeleton web service . 695
14.5.3 Client development . 695
14.5.4 Testing tools for web services. 696

14.6 Preparing for the JAX-WS samples. 696
14.6.1 Importing the sample. 697
14.6.2 Testing the application . 697

14.7 Creating bottom-up web services from a JavaBean 698
14.7.1 Creating a web service using annotations 698
14.7.2 Creating web services using the Web Service wizard 708
14.7.3 Resources generated by the Web Service wizard 717

14.8 Creating a synchronous web service JSP client 718
14.8.1 Generating and testing the web service client 718

14.9 Creating a web service JavaServer Faces client 726
14.10 Creating a web service thin client . 734
14.11 Creating asynchronous web service clients . 737

14.11.1 Polling client . 738
14.11.2 Callback client . 741
14.11.3 Asynchronous message exchange client 743

14.12 Creating web services from an EJB . 746
14.13 Creating a top-down web service from a WSDL 749

14.13.1 Designing the WSDL by using the WSDL editor 749
14.13.2 Generating the skeleton JavaBean web service 756
14.13.3 Testing the generated web service . 757

14.14 Creating web services with Ant tasks . 758
14.14.1 Creation procedure . 758
14.14.2 Running the web service Ant task. 759

14.15 Sending binary data using MTOM. 760
14.15.1 Creating a web service project and importing the WSDL 761
14.15.2 Generating the web service and client . 762
14.15.3 Implementing the JavaBean skeleton . 765
14.15.4 Testing and monitoring the MTOM-enabled web service 768
14.15.5 How MTOM was enabled on the client . 773

14.16 JAX-RS programming model. 774
14.16.1 Implementation of JAX-RS in WebSphere Application Server . . 776
14.16.2 JAX-RS project setup . 777
14.16.3 Exposing a JPA application as a RESTful service 781

14.17 Web services security . 796
 Contents xiii

14.17.1 Authentication . 796
14.17.2 Message integrity . 796
14.17.3 Message confidentiality . 797
14.17.4 Policy set. 797
14.17.5 Applying WS-Security to a web service and client 798
14.17.6 WS-I Reliable Secure Profile. 807

14.18 WS-Policy . 808
14.18.1 Configuring a service provider to share its policy configuration . 809
14.18.2 Configuring the client policy using a service provider policy 811

14.19 WS-MetadataExchange (WS-MEX) . 814
14.20 Security Assertion Markup Language (SAML) support 817

14.20.1 SAML assertions defined in the SAML Token Profile standard . 818
14.20.2 SAML APIs . 819
14.20.3 SAML Bearer sample: Prerequisites . 819
14.20.4 SAML Bearer sample: Bindings . 821
14.20.5 SAML Bearer sample: Programmatic token generation 829
14.20.6 SAML Bearer sample: Testing . 831

14.21 More information . 834

Chapter 15. Developing Open Services Gateway initiative (OSGi)
applications . 837

15.1 OSGi overview . 838
15.1.1 OSGi architecture . 839

15.2 Introduction to OSGi bundles . 841
15.2.1 OSGi classloading. 841
15.2.2 Bundle manifest file. 842
15.2.3 Life cycle of a bundle . 844
15.2.4 Blueprint Container Specification . 846
15.2.5 Types of bundle archives . 849
15.2.6 Relationships among bundles, application archives, and composite

archives . 850
15.3 Installation of the Feature Pack for OSGi . 850
15.4 Tools for OSGi application development. 852
15.5 Creating OSGi bundle projects . 854

15.5.1 Creating OSGi bundle projects . 854
15.5.2 Creating an OSGi application project . 856
15.5.3 Creating a composite bundle project. 859
15.5.4 Working with the Composite Bundle Manifest. 860

15.6 Developing OSGi applications. 861
15.6.1 API bundle. 862
15.6.2 Persistence bundle . 864
15.6.3 Business logic bundle . 870
15.6.4 Web interface bundle . 874
xiv Rational Application Developer for WebSphere Software V8 Programming Guide

15.6.5 Application OSGi. 877
15.6.6 Deploying the OSGi application . 879

15.7 Further information . 883

Chapter 16. Developing Service Component Architecture (SCA)
applications . 885

16.1 Introduction to SCA . 886
16.1.1 Concepts . 886
16.1.2 Runtime support . 895

16.2 SCA project creation or augmentation . 896
16.3 Developing a Java component from a WSDL interface. 898

16.3.1 Creating a composite . 900
16.3.2 Creating a component. 901
16.3.3 Implementing the Java component . 903

16.4 Creating a contribution to include the deployable composites 904
16.5 Deploying the contribution to WebSphere Application Server. 906
16.6 Testing the services provided by the SCA application 907
16.7 Wiring a component to a service on another component 911

16.7.1 Creating a reference to an external Atom feed provider 912
16.7.2 Exposing a service with an Atom binding 920
16.7.3 Adding a contribution and testing the initial implementation 924
16.7.4 Adding a second component to the composite 926
16.7.5 Wiring the reference on one component to the service on the other

component . 929
16.7.6 Using a property defined in a component and a composite 932
16.7.7 Testing the implementation by exporting the contribution. 935

16.8 Reusing an existing Java EE application to create a component 937
16.8.1 Explore the existing EAR . 938
16.8.2 Creating a new SCA Enhanced EAR file to hold the web project . 939
16.8.3 Creating a new SCA project with a contribution 946
16.8.4 Testing the completed application. 951

16.9 Adding intents and policies . 953
16.10 More information . 953

Chapter 17. Developing Modern Batch jobs on computing grids. 957
17.1 Introduction to Modern Batch . 958
17.2 New Modern Batch job tools in Rational Application Developer 958
17.3 Working with the Compute-Intensive sample . 959

17.3.1 Installing the sample . 959
17.3.2 Understanding the sample . 961
17.3.3 Deploying the sample . 965
17.3.4 Running the sample . 966

17.4 Overview of the Transactional batch capabilities 971
 Contents xv

17.4.1 Sequence diagram for the Transactional batch pattern 972
17.4.2 Available patterns . 975

17.5 Additional information . 978

Part 5. Web application development . 979

Chapter 18. Developing web applications using JavaServer Pages (JSP)
and servlets . 981

18.1 Introduction to Java EE web applications . 983
18.1.1 Java EE applications. 984
18.1.2 Model view controller pattern . 989

18.2 Web development tooling . 990
18.2.1 Web perspective and views . 991
18.2.2 Page Designer . 993
18.2.3 Page templates . 995
18.2.4 CSS Designer . 996
18.2.5 Security Editor . 996
18.2.6 File creation wizards . 998

18.3 Rational Application Developer new features . 999
18.4 RedBank application design . 1001

18.4.1 Model . 1001
18.4.2 View layer . 1002
18.4.3 Controller layer . 1002

18.5 Implementing the RedBank application. 1005
18.5.1 Creating the web project . 1005
18.5.2 Importing the Java RedBank model . 1012
18.5.3 Defining the empty web pages . 1012
18.5.4 Creating frameset pages. 1014
18.5.5 Customizing frameset web page areas. 1017
18.5.6 Customizing a style sheet . 1019
18.5.7 Verifying the site navigation and page templates 1020
18.5.8 Developing the static web resources . 1022
18.5.9 Developing the dynamic web resources 1026
18.5.10 Working with JSP . 1036

18.6 Web application testing . 1050
18.6.1 Prerequisites to run the sample web application. 1050
18.6.2 Running the sample web application . 1050
18.6.3 Verifying the RedBank web application. 1051

18.7 More information . 1055

Chapter 19. Developing web applications using JavaServer Faces. . . 1057
19.1 Introduction to JSF . 1058

19.1.1 JSF 1.x features and benefits . 1058
19.1.2 JSF 2.0 features and benefits . 1059
xvi Rational Application Developer for WebSphere Software V8 Programming Guide

19.1.3 JSF 2.0 application architecture . 1060
19.1.4 JSF features in Rational Application Developer 1063

19.2 Developing a web application using JSF and JPA 1064
19.2.1 Setting up the ITSOBANK database . 1064
19.2.2 Creating the JSF Project . 1065
19.2.3 Creating Facelet templates . 1069
19.2.4 Creating Facelets . 1075
19.2.5 Creating JPA Manager Beans. 1076
19.2.6 Creating JPA page data . 1082
19.2.7 Editing the login page . 1082
19.2.8 Editing the customer details page . 1088
19.2.9 Using Ajax . 1092
19.2.10 Running the JSF application . 1094
19.2.11 Final code . 1096

19.3 More information . 1096

Chapter 20. Developing web applications using Web 2.0 1097
20.1 Introduction to Web 2.0 architecture and development practices 1098

20.1.1 Web 2.0 architecture . 1098
20.1.2 Technologies used in Web 2.0 applications 1100

20.2 Overview of Web 2.0 tooling features . 1104
20.2.1 JavaScript editing . 1104
20.2.2 Dojo development . 1104
20.2.3 Testing and debugging . 1105
20.2.4 JAX-RS services development . 1105
20.2.5 Using other server-side technologies . 1106

20.3 Developing the Web 2.0 sample application . 1106
20.3.1 Setting up the project . 1106
20.3.2 Creating the web page . 1111
20.3.3 Building a custom Dojo widget . 1116
20.3.4 Adding to a page and testing a custom Dojo widget 1121
20.3.5 Adding a Dojo DataGrid to your web page 1125

Chapter 21. Developing portal applications . 1131
21.1 Introduction to portal technology . 1132

21.1.1 Portal concepts and definitions . 1132
21.1.2 IBM WebSphere Portal . 1135
21.1.3 Portal and portlet development features in Rational Application

Developer . 1136
21.1.4 Setting up Rational Application Developer with the Portal test

environment . 1138
21.2 Developing applications for WebSphere Portal 1138

21.2.1 Portal samples and tutorials . 1139
 Contents xvii

21.2.2 Development strategy . 1140
21.2.3 Portal tools for developing portals. 1143

21.3 New WebSphere portal and portlet development tools in Rational
Application Developer. 1150

21.3.1 Support for WebSphere Portal Server V7 1150
21.3.2 Site Designing Portlet . 1150
21.3.3 New portlet project features . 1150
21.3.4 RPC tooling for portlet projects . 1151

21.4 Developing portal solutions using portal tools 1151
21.4.1 Developing event handling portlets . 1151
21.4.2 Creating Ajax and Web 2.0 portlets . 1158
21.4.3 Deploying and running the application . 1162
21.4.4 Creating a portal site with the Site Designing Portlet feature . . . 1163
21.4.5 Developing Dojo-based inter-portlet communication 1167
21.4.6 Consuming RPC adapter services . 1172
21.4.7 Creating iWidget projects . 1173
21.4.8 JPA tooling support for portlet projects . 1175

21.5 More information . 1181

Chapter 22. Developing Lotus iWidgets . 1183
22.1 Introduction to iWidgets. 1184

22.1.1 Content . 1184
22.1.2 Events and event descriptions . 1185
22.1.3 Itemsets and items . 1185
22.1.4 Resources . 1186

22.2 Developing iWidgets in Rational Application Developer 1186
22.2.1 Accessing the tutorials and samples. 1186
22.2.2 Configuring Rational Application Developer for iWidget development

tools . 1187
22.3 Working with the sample iWidget application 1187

22.3.1 Preparing the sample iWidget application. 1187
22.3.2 Developing the sample iWidget application 1189
22.3.3 Testing the sample iWidget application. 1193
22.3.4 Deploying into WebSphere Portal V7 . 1196

22.4 Additional resources . 1198
22.4.1 Further information . 1200

Part 6. Deploying, testing, profiling, and debugging applications 1201

Chapter 23. Cloud environment and server configuration 1203
23.1 Introduction to server configurations . 1204

23.1.1 Application servers that are supported by Rational Application
Developer . 1204

23.1.2 Local and remote test environments . 1207
xviii Rational Application Developer for WebSphere Software V8 Programming Guide

23.2 Cloud extensions: Developing and testing applications on the IBM Smart
Business, Development, and Test Cloud . 1207

23.2.1 Installing IBM Rational Desktop Connection Toolkit for Cloud
Environments . 1208

23.2.2 Working with the IBM Development and Test Cloud 1211
23.2.3 Working with the Cloud Client for Eclipse 1229
23.2.4 Requesting instances from the web client. 1233
23.2.5 Resources for additional information. 1236

23.3 Understanding WebSphere Application Server v8.0 profiles 1237
23.3.1 Types of profiles . 1238
23.3.2 Using the profiles . 1238

23.4 WebSphere Application Server v8.0 Beta installation 1239
23.5 Using WebSphere Application Server profiles 1240

23.5.1 Creating a new profile using the WebSphere Profile wizard 1240
23.5.2 Deleting a WebSphere profile . 1246
23.5.3 Defining the new server in Rational Application Developer 1247
23.5.4 Customizing a server . 1250
23.5.5 Sharing a WebSphere profile between developers. 1253
23.5.6 Defining a server for each workspace. 1255

23.6 Migrating the server resources from Rational Application Developer V7.0 or
V7.5 to V8.0 . 1255

23.7 Adding and removing applications to and from a server 1256
23.7.1 Adding an application to the server. 1256
23.7.2 Removing an application from a server. 1257

23.8 Configuring application and server resources 1258
23.8.1 Creating a data source in the Enhanced EAR editor 1262
23.8.2 Setting the substitution variable . 1267
23.8.3 Configuring server resources . 1268

23.9 Configuring security. 1268
23.9.1 Configuring security in the server . 1268
23.9.2 Configuring security in the workbench . 1270

23.10 AJAX Test Server . 1271
23.10.1 Configuring the AJAX Test Server . 1271
23.10.2 Configuring the AJAX Proxy . 1273

23.11 Developing automation scripts . 1275
23.12 Tips: Enhancing server interaction performance. 1275

23.12.1 Speeding up server start time . 1276
23.12.2 Speeding up application publishing time. 1276

23.13 More information . 1277

Chapter 24. Building applications with Apache Ant 1279
24.1 Introduction to Ant . 1280

24.1.1 Ant build files. 1280
 Contents xix

24.1.2 Ant tasks . 1281
24.2 Ant features in Rational Application Developer 1282

24.2.1 Preparing for the sample. 1282
24.2.2 Creating a build file . 1283
24.2.3 Project definition . 1284
24.2.4 Global properties. 1285
24.2.5 Building targets . 1285
24.2.6 Content assist . 1287
24.2.7 Code snippets . 1288
24.2.8 Formatting an Ant script . 1290
24.2.9 Defining the format of an Ant script . 1290
24.2.10 Problems view. 1292

24.3 New Ant features in Rational Application Developer. 1293
24.3.1 SCA Ant task. 1293
24.3.2 OSGi Ant tasks . 1294
24.3.3 Other new Ant tasks . 1295

24.4 Building a Java EE application . 1296
24.4.1 Java EE application deployment packaging 1297
24.4.2 Preparing for the sample. 1297
24.4.3 Creating the build script . 1298
24.4.4 Running the Ant Java EE application build 1300

24.5 Running Ant outside of Rational Application Developer 1301
24.5.1 Preparing for the headless build . 1301
24.5.2 Running the headless Ant build script . 1302

24.6 Using the Rational Application Developer Build Utility 1303
24.6.1 Overview of the build utility . 1303
24.6.2 Example of using the build utility. 1304

24.7 More information about Ant . 1307

Chapter 25. Deploying enterprise applications 1309
25.1 Introduction to application deployment . 1310

25.1.1 Common deployment considerations . 1310
25.1.2 Java EE application components and deployment modules. . . . 1311
25.1.3 Deployment descriptors . 1311
25.1.4 WebSphere deployment architecture . 1315
25.1.5 Java and WebSphere class loader . 1320

25.2 Preparing for the EJB application deployment 1325
25.2.1 Reviewing the deployment scenarios . 1325
25.2.2 Installing the prerequisite software . 1325
25.2.3 Importing the sample application archive files 1327
25.2.4 Sample database . 1327

25.3 Packaging the application for deployment. 1328
25.3.1 Removing the enhanced EAR data source 1328
xx Rational Application Developer for WebSphere Software V8 Programming Guide

25.3.2 Generating the deployment code . 1329
25.3.3 Exporting the EAR files . 1329

25.4 Manual deployment of enterprise applications 1330
25.4.1 Configuring the data source in the application server 1331
25.4.2 Installing the enterprise applications . 1338
25.4.3 Starting the enterprise applications. 1342
25.4.4 Verifying the application after manual installation 1343
25.4.5 Uninstalling the application . 1345

25.5 Automated deployment using Jython-based wsadmin scripting 1345
25.5.1 Overview of wsadmin . 1346
25.5.2 Overview of Jython . 1347
25.5.3 Developing a Jython script to deploy the ITSO Bank 1348
25.5.4 Executing the Jython script . 1357
25.5.5 Verifying the application after automatic installation 1360
25.5.6 Generating WebSphere admin commands for Jython scripts . . . 1360
25.5.7 Debugging Jython scripts . 1363

25.6 More information . 1364

Chapter 26. Testing using JUnit. 1365
26.1 Introduction to application testing . 1366

26.1.1 Test concepts . 1366
26.1.2 Test phases. 1366
26.1.3 Test environments. 1368
26.1.4 Calibration . 1369
26.1.5 Test case execution and recording results 1369
26.1.6 Benefits of unit and component testing . 1369
26.1.7 Benefits of testing frameworks . 1370

26.2 JUnit testing without TPTP . 1371
26.2.1 JUnit fundamentals . 1371
26.2.2 Test and Performance Tools Platform (TPTP) 1371
26.2.3 New in JUnit 4 . 1372

26.3 Preparing the JUnit sample . 1377
26.3.1 Creating a JUnit test case . 1378
26.3.2 Creating a JUnit test suite . 1384
26.3.3 Running the JUnit test case or JUnit test suite 1385
26.3.4 Launching individual test methods . 1387
26.3.5 Using the JUnit view . 1389

26.4 JUnit testing of JPA entities. 1390
26.4.1 Preparing the JPA unit testing sample . 1390
26.4.2 Setting up the ITSOBANK database . 1390
26.4.3 Configuring the RAD8JUnit project . 1390
26.4.4 Creating a JUnit test case for a JPA entity 1391
26.4.5 Setting up the persistence.xml file . 1393
 Contents xxi

26.4.6 Running the JPA unit test . 1394
26.5 JUnit testing using TPTP. 1396

26.5.1 Running the TPTP JUnit test. 1401
26.5.2 Analyzing the test results . 1402

26.6 Web application testing . 1405
26.6.1 Preparing for the sample. 1406
26.6.2 Recording a test . 1407
26.6.3 Editing the test . 1409
26.6.4 Generating an executable test . 1411
26.6.5 Running the test . 1411
26.6.6 Analyzing the test results . 1412
26.6.7 Generating test reports . 1416

26.7 Cleaning the workspace . 1418

Chapter 27. Profiling applications . 1419
27.1 Introduction to profiling . 1420

27.1.1 Profiling features . 1421
27.1.2 Profiling architecture . 1424
27.1.3 Profiling and Logging perspective . 1426

27.2 Preparing for the profiling sample . 1427
27.2.1 Installing the prerequisite software . 1427
27.2.2 Enabling the Profiling and Logging capability 1428

27.3 Profiling a Java application . 1429
27.3.1 Importing the sample project archive file. 1429
27.3.2 Creating a profiling configuration . 1430
27.3.3 Running the EntityTester application . 1434
27.3.4 Analyzing profiling data . 1435
27.3.5 Execution statistics . 1435
27.3.6 Execution flow . 1440
27.3.7 UML sequence diagrams . 1441
27.3.8 Memory analysis . 1444
27.3.9 Thread analysis. 1445
27.3.10 Reports . 1447
27.3.11 Cleanup. 1447

27.4 Profiling a web application running on the server 1447
27.4.1 Importing the sample project archive file. 1447
27.4.2 Setting up environment variables to profile a server 1447
27.4.3 Publishing and running the sample application. 1448
27.4.4 Starting the server in profiling mode . 1448
27.4.5 Running the sample application to collect profiling data 1450
27.4.6 Statistics views . 1450
27.4.7 Execution statistics . 1451
27.4.8 Execution flow . 1454
xxii Rational Application Developer for WebSphere Software V8 Programming Guide

27.4.9 UML sequence diagrams . 1456
27.4.10 Refreshing the views and resetting data 1459
27.4.11 Ending the profiling session . 1459
27.4.12 Profile on server: Memory and thread analysis. 1459

27.5 More information . 1460

Chapter 28. Debugging local and remote applications 1461
28.1 Introducing Rational Application Developer new features. 1463
28.2 Reviewing Rational Application Developer debugging tools 1463

28.2.1 Supported languages and environments 1463
28.2.2 Java debugging features. 1464
28.2.3 XSLT debugging . 1469
28.2.4 Stored procedure debugging for DB2 V9 1471
28.2.5 Service Component Architecture debugger 1472
28.2.6 Java tracepoints . 1472
28.2.7 Collaborative debugging using Rational Team Concert client . . 1473

28.3 Debugging a web application on a local server. 1474
28.3.1 Importing the sample application . 1474
28.3.2 Running the sample application in debug mode 1475
28.3.3 Setting breakpoints in a Java class. 1476
28.3.4 Using the Debug perspective . 1479
28.3.5 Watching variables . 1480
28.3.6 Evaluating and watching expressions . 1481
28.3.7 Using the Display view . 1482
28.3.8 Working with breakpoints . 1483
28.3.9 Setting breakpoints in JSP . 1484
28.3.10 Debugging JSP . 1485

28.4 Debugging a web application on a remote server 1487
28.4.1 Removing the WebSphere configuration from the workspace . . 1488
28.4.2 Configuring debug mode to start on a remote WebSphere Application

Server V8 Beta . 1488
28.4.3 Attaching to the remote WebSphere Application Server in Rational

Application Developer . 1490
28.4.4 Debugging a remote application . 1492

28.5 Using the Jython debugger . 1492
28.5.1 Considerations for the Jython debugger 1493
28.5.2 Debugging a sample Jython script . 1493

28.6 Using the JavaScript debugger . 1495
28.6.1 Setting the default browser to Firefox . 1496
28.6.2 JavaScript debugging . 1497

28.7 Using Dojo Debug Extension for Firebug . 1502
28.7.1 Launching the Dojo Debugger . 1502
28.7.2 Exploring the All widgets view. 1503
 Contents xxiii

28.7.3 Exploring the All connections view . 1509
28.7.4 Exploring the All Subscriptions view . 1513
28.7.5 Exploring the Info side panel. 1515

28.8 Using the debug extension for the Rational Team Concert client (Team
Debug) . 1516

28.8.1 Supported environments . 1517
28.8.2 Prerequisites . 1518
28.8.3 Sharing a Java application debug session by transferring it to another

user . 1519
28.9 Obtaining more information . 1530

Part 7. Management and team development . 1531

Chapter 29. Concurrent Versions System (CVS) integration 1533
29.1 Introduction to CVS . 1534

29.1.1 CVS features. 1534
29.1.2 CVS support within Rational Application Developer 1535

29.2 Configuring the CVS client for Rational Application Developer. 1537
29.2.1 CVS Server Installation . 1537
29.2.2 Configuring the CVS team capabilities . 1537
29.2.3 Accessing the CVS repository. 1538

29.3 Configuring CVS in Rational Application Developer 1540
29.3.1 Label decorations . 1540
29.3.2 File content . 1541
29.3.3 Ignored resources . 1543
29.3.4 CVS-specific settings . 1545
29.3.5 CVS keyword substitution . 1546

29.4 Development scenario. 1550
29.4.1 Creating and sharing the project (step 1, cvsuser1) 1551
29.4.2 Adding a shared project to the workspace (step 2a, cvsuser2) . 1554
29.4.3 Modifying the servlet (step 2b, cvsuser1) 1559
29.4.4 Synchronizing with the repository (step 3a, cvsuser1) 1560
29.4.5 Synchronizing with the repository (step 3b, cvsuser2) 1562
29.4.6 Parallel development (step 4, cvsuser1 and cvsuser2). 1562
29.4.7 Creating a version (step 5, cvsuser1) . 1568

29.5 CVS resource history . 1569
29.6 Comparisons in CVS . 1571

29.6.1 Comparing a workspace file with the repository 1571
29.6.2 Comparing two revisions in the repository 1572

29.7 Annotations in CVS . 1574
29.8 Branches in CVS . 1575

29.8.1 Branching . 1576
29.8.2 Merging . 1581
xxiv Rational Application Developer for WebSphere Software V8 Programming Guide

29.9 Working with patches . 1585
29.10 Disconnecting a project . 1585
29.11 Team Synchronizing perspective . 1587

29.11.1 Custom configuration of resource synchronization 1588
29.11.2 Schedule synchronization . 1591

29.12 More information . 1592

Chapter 30. IBM Rational Application Developer integration with Rational
Team Concert . 1595

30.1 System architecture. 1596
30.2 Installing Rational Team Concert Client into the Rational Application

Developer workbench. 1597
30.2.1 Installing Rational Team Concert Client 3.0 into the same workbench

as Rational Application Developer . 1597
30.2.2 Installing Rational Team Concert Client 2.0.0.2 into the Rational

Application Developer workbench . 1598
30.3 Collaborative Code Coverage . 1599

30.3.1 Configuring a build definition. 1599
30.3.2 Creating an Ant build script to generate coverage statistics 1601
30.3.3 Viewing coverage statistics in Rational Application Developer . . 1607

30.4 Collaborative Debug . 1611
30.4.1 Installing the Collaborative debug extensions for Rational Team

Concert Client . 1611
30.4.2 Installing Rational Debug Extension for IBM Rational Team Concert

Server . 1612
30.4.3 Using Collaborative Debug . 1614

Chapter 31. IBM Rational ClearCase . 1619
31.1 Rational Application Developer team support 1621

31.1.1 Team preferences . 1621
31.1.2 Team context menu . 1622
31.1.3 Derived files and folders . 1622

31.2 Integrating Rational Application Developer with ClearCase 1623
31.2.1 ClearCase terminology . 1623

31.3 ClearCase SCM Adapter. 1625
31.3.1 Installing ClearCase SCM Adapter . 1625
31.3.2 Connecting to ClearCase with the SCM Adapter 1628
31.3.3 ClearCase SCM Adapter preferences. 1632
31.3.4 Clearcase SCM Adapter and dynamic views 1636

31.4 ClearCase Remote Client . 1637
31.4.1 Connecting to ClearCase with the ClearCase Remote Client . . . 1638
31.4.2 ClearCase Remote Client preferences . 1639
31.4.3 ClearCase Remote Client menus . 1640
 Contents xxv

31.4.4 ClearCase Explorer perspective . 1642
31.4.5 ClearCase Remote Client decorators . 1648

31.5 ClearCase views and Rational Application Developer workspaces . . 1649
31.6 Populating Rational Application Developer workspaces: Using Team Project

Set files. 1650
31.7 Working in Base ClearCase with SCM Adapter and dynamic views. . 1651

31.7.1 Prerequisites . 1652
31.7.2 Project setup . 1653
31.7.3 Making an unreserved checkout to work on the same file 1656
31.7.4 Merging changes. 1660

31.8 Working in ClearCase UCM with ClearCase Remote Client 1666
31.8.1 Prerequisites . 1669
31.8.2 Connecting to the ClearCase Change Management Server and joining

a UCM project . 1669
31.8.3 Initiating work in the development view or stream 1674
31.8.4 Delivering activities to the integration stream 1679
31.8.5 Reviewing the results and creating a new baseline 1683
31.8.6 A new user joins the project . 1686
31.8.7 Another user modifies the same project 1692

31.9 More information . 1696

Chapter 32. Code Coverage . 1697
32.1 Overview . 1698

32.1.1 Instrumentation . 1698
32.1.2 Basic blocks versus executable units . 1698

32.2 Generating coverage statistics in Rational Application Developer . . . 1700
32.2.1 Viewing results in the Package Explorer. 1701
32.2.2 Viewing results in the Java Editor . 1703

32.3 Generating reports . 1704
32.3.1 Workbench reports . 1705
32.3.2 HTML reports . 1706

32.4 Generating statistics outside of the workbench. 1707
32.4.1 Static instrumentation . 1707
32.4.2 Dynamic instrumentation. 1709
32.4.3 Report generation . 1712

32.5 Coverage report comparison. 1714
32.5.1 Generating a coverage comparison report in Rational Application

Developer . 1715
32.5.2 Generating coverage comparison report with Ant. 1716

32.6 Importing the coverage data statistics file . 1718
32.7 Generating statistics for web applications . 1720

32.7.1 Support for WebSphere Application Server 1722
32.7.2 Generic application server support . 1723
xxvi Rational Application Developer for WebSphere Software V8 Programming Guide

32.8 Rational Team Concert integration . 1725

Chapter 33. Developing Session Initiation Protocol applications 1727
33.1 Introduction to SIP. 1728

33.1.1 SIP 1.1 specification . 1728
33.1.2 Converged SIP applications . 1731
33.1.3 SIP 1.1 annotations. 1731
33.1.4 SIP application packaging. 1733

33.2 Developing a SIP application . 1734
33.2.1 SIP tooling overview . 1735
33.2.2 Sample application overview. 1746
33.2.3 Setting up the project . 1750
33.2.4 Implementing the classes . 1758
33.2.5 SIP deployment descriptor . 1769
33.2.6 Preparing for deployment . 1770
33.2.7 Deploying SIP from Rational Application Developer 1773

33.3 Testing the SIP 1.1 application . 1775
33.3.1 Test environment . 1775
33.3.2 Running the application. 1776

33.4 SIP-specific annotations in SIP 1.1 applications 1780
33.5 More information . 1780

Part 8. Appendixes . 1781

Appendix A. Installing the products . 1783
Download locations . 1784
Installation Launchpad . 1784
IBM Installation Manager . 1785
Installing Rational Application Developer . 1788

Installing the license for Rational Application Developer 1803
Updating Rational Application Developer . 1804
Uninstalling Rational Application Developer . 1805
Rational Desktop Connection Toolkit for Cloud Environments 1805

Installing WebSphere Portal V7 . 1806
Installing WebSphere Portal V7 . 1806
Adding WebSphere Portal V7 to Rational Application Developer 1813
Optimizing the WebSphere Portal Server for development 1818
Verifying development mode. 1819
Defining remote servers for testing portals . 1820
Defining page creation settings. 1822
Enabling the debugging service . 1823
Stopping the server . 1823

Installing IBM Rational Team Concert . 1824
Installing Rational Team Concert Standard Edition server 1824
 Contents xxvii

Installing Rational Team Concert Build Engine and Build Toolkit 1834
Installing the client and the debug extensions . 1835

Installing Rational Application Developer Build Utility 1840
Installing IBM Rational ClearCase . 1842

Creating a Storage Location . 1845
Creating a VOB for use in Base ClearCase . 1847
Creating a dynamic view . 1849

Installing IBM Rational ClearCase Remote Client Extension 1855
Verifying the installation . 1858

Configuring ClearCase for UCM development . 1860

Appendix B. Performance tips for Rational Application Developer . . . 1871
Better hardware . 1872
Shared EARs (binary modules) . 1872
Annotations . 1873
Publishing. 1873
Shorter build time by tuning validation . 1874
Only install what you need . 1875
No circular dependencies. 1875
Using a remote test server . 1875
Tuning your anti-virus program . 1876
Defragmenting disks. 1876

Appendix C. Additional material . 1877
Locating the web material . 1878

Accessing the web material . 1878
System requirements for downloading the web material 1878

Using the sample code. 1878
Unpacking the sample code . 1878
Description of the sample code. 1879

Importing sample code from a project archive file . 1880
Setting up the ITSOBANK database . 1880

Derby. 1881
DB2 . 1881

Configuring the data source in WebSphere Application Server 1882
Starting the WebSphere Application Server . 1882
Configuring the environment variables . 1882
Configuring J2C authentication data . 1883
Configuring the JDBC provider . 1884
Creating the data source. 1884

Abbreviations and acronyms . 1887

Related publications . 1891
xxviii Rational Application Developer for WebSphere Software V8 Programming Guide

IBM Redbooks publications . 1891
Other publications . 1892
Online resources . 1892
How to get IBM Redbooks publications . 1897
Help from IBM . 1897
 Contents xxix

xxx Rational Application Developer for WebSphere Software V8 Programming Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2011. All rights reserved. xxxi

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. These and other IBM trademarked
terms are marked on their first occurrence in this information with the appropriate symbol (® or ™),
indicating US registered or common law trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common law trademarks in other countries. A current
list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
Build Forge®
CICS®
ClearCase®
ClearQuest®
DB2 Universal Database™
DB2®
developerWorks®
FileNet®
Global Business Services®

i5/OS®
IBM®
IMS™
Informix®
iSeries®
Jazz™
Lotus®
Maximo®
Passport Advantage®
Rational Rose®

Rational Team Concert™
Rational®
Redbooks®
Redbooks (logo) ®
RequisitePro®
Sametime®
System z®
WebSphere®
z/OS®
zSeries®

The following terms are trademarks of other companies:

Adobe, the Adobe logo, and the PostScript logo are either registered trademarks or trademarks of Adobe
Systems Incorporated in the United States, and/or other countries.

Snapshot, and the NetApp logo are trademarks or registered trademarks of NetApp, Inc. in the U.S. and
other countries.

Java, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
xxxii Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.ibm.com/legal/copytrade.shtml

Preface

IBM® Rational® Application Developer for WebSphere® Software V8 is the
full-function Eclipse 3.6 technology-based development platform for developing
Java™ Platform, Standard Edition Version 6 (Java SE 6) and Java Platform,
Enterprise Edition Version 6 (Java EE 6) applications. Beyond this function,
Rational Application Developer provides development tools for technologies,
such as OSGi, Service Component Architecture (SCA), Web 2.0, and XML. It
has a focus on applications to be deployed to IBM WebSphere Application Server
and IBM WebSphere Portal.

Rational Application Developer provides integrated development tools for all
development roles, including web developers, Java developers, business
analysts, architects, and enterprise programmers.

This IBM Redbooks® publication is a programming guide that highlights the
features and tooling included with Rational Application Developer V8.0.1. Many
of the chapters provide working examples that demonstrate how to use the
tooling to develop applications and achieve the benefits of visual and rapid
application development. This publication is an update of Rational Application
Developer V7.5 Programming Guide, SG24-7672.

The team who wrote this book

This book was produced by a team of specialists from around the world. The
residency team was led by:

Martin Keen is a Consulting IT Specialist at the ITSO, Raleigh Center. He writes
extensively about WebSphere products and service-oriented architecture (SOA).
He also teaches IBM classes worldwide about WebSphere, SOA, and enterprise
service bus (ESB). Before joining the ITSO, Martin worked in the EMEA
WebSphere Lab Services team in Hursley, U.K. Martin holds a Bachelors degree
in Computer Studies from Southampton Institute of Higher Education.

Residency team in Raleigh

The following authors joined the Redbooks residency working at the International
Technical Support Organization, Raleigh Center.
© Copyright IBM Corp. 2011. All rights reserved. xxxiii

Rafael Coutinho is an IBM Advisory Software Engineer working for Software
Group in the Brazil Software Development Lab. His professional expertise covers
many technology areas ranging from embedded to platform-based solutions. He
is currently working on Maximo® Spatial, which is the geographic information
system (GIS) add-on of IBM Maximo Enterprise Asset Management (EAM). He is
a certified Java enterprise architect and Accredited IT Specialist, specialized in
high-performance distributed applications on corporate and financial projects.

Rafael is a computer engineer graduate from the State University of Campinas
(Unicamp), Brazil, and has a degree in Information Technologies from the
Centrale Lyon (ECL), France.

Sylvi Lippmann is a Software IT Specialist in the GBS Financial Solutions team
in Germany. She has over seven years of experience as a Software Engineer,
Technical Team Leader, Architect, and Customer Support representative. She is
experienced in the draft, design, and realization of object-oriented software
systems, in particular, the development of Java EE-based web applications, with
a priority in the surrounding field of the WebSphere product family. She holds a
degree in Business Informatic Engineering.

Salvatore Sollami is a Software IT Specialist in the Rational brand team in Italy.
He has been working at IBM with particular interest in the change and
configuration area and web application security. He also has experience in the
Agile Development Process and Software Engineering. Before joining IBM,
Salvatore worked as a researcher for Process Optimization Algorithmic, Mobile
Agent Communication, and IT Economics impact. He developed the return on
investment (ROI) SOA investment calculation tool. He holds the “Laurea” (M.S.)
degree in Computer Engineering from the University of Palermo. In cooperation
with IBM, he received an M.B.A. from the MIP - School of Management -
polytechnic of Milan.

Sundaragopal Venkatraman is a Technical Consultant at the IBM India
Software Lab. He has over 11 years of experience as an Architect and Lead
working on web technologies, client server, distributed applications, and System
z®. He works on the WebSphere stack on process integration, messaging, and
the SOA space. In addition to handling training on WebSphere, he also gives
back to the technical community by lecturing at WebSphere technical
conferences and other technical forums.
xxxiv Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 1 Raleigh team (left-to-right): Rafael, Sylvi, Salvatore, Sundar, and Martin

Residency team working remotely

The following authors joined the Redbooks residency remotely working from their
home locations:

Steve Baber has been working in the Computer Industry since the late 1980s.
He has over 15 years of experience within IBM, first as a consultant to IBM and
then as an employee. Steve has supported several industries during his time at
IBM, including health care, telephony, and banking and currently supports the
IBM Global Finance account as a Team Lead for the Global Contract
Management project.

Henry Cui works as an independent consultant through his own company, Kaka
Software Solution. He provides consulting services to large financial institutions
in Canada. Before this work, Henry worked with the IBM Rational services and
support team for eight years, where he helped many clients resolve design,
development, and migration issues with Java EE development. His areas of
expertise include developing Java EE applications with Rational Application
Developer tools and administering WebSphere Application Server servers,
security, SOA, and web services. Henry is a frequent contributor of
developerWorks® articles. He also co-authored five IBM Redbooks publications.
Henry holds a degree in Computer Science from York University.

Craig Fleming is a Solution Architect who works for IBM Global Business
Services® in Auckland, New Zealand. He has worked for the last 15 years
leading and delivering software projects for large enterprises as a solution
developer and architect. His area of expertise is in designing and developing
middleware solutions, mainly with WebSphere technologies. He has worked in
several industries, including Airlines, Insurance, Retail, and Local Government.
 Preface xxxv

Craig holds a Bachelor of Science (Honors) in Computer Science from Otago
University in New Zealand.

Venkata Krishna Kumari Gaddam is a Software Test Specialist at ISL, IBM
India. She holds an Engineering Degree in Electronics and Communications
from the JNTU-affiliated Engineering college. She has a total experience of five
years in the IT industry. She started her career with IBM in 2005 and has been
working in the WebSphere Application Server Functional Test team. She has
experience working on various releases of WebSphere Application Server and
was actively involved in testing WebSphere Application Server components. She
is a Certified Software Tester (CSTE) and Certified WebSphere Application
Server V7.0 Administrator. She also performed many mentoring sessions for
CSTE. Her other achievements include submitting an abstract for a Poster
session on Product Collaboration for Innovation, which got selected in the
Academy of Technology in 2008. She is also one of the co-authors of two
forthcoming articles on the IP database. Additionally, she was one of the top
three winners across India for writing an essay on IBM values in 2008.

Brian Hainey is a Senior Lecturer at Glasgow Caledonian University in Scotland,
United Kingdom (U.K.). He currently teaches as part of the undergraduate and
postgraduate programs offered in the School of Engineering and Computing. In
addition, he teaches training courses in enterprise software development and
Java. He holds a Master of Science degree in Electronic Engineering from
Heriot-Watt University, Edinburgh. He has more than 20 years experience in the
field of software development and has worked at companies, such as National
Westminster Bank, Hewlett-Packard, QA Training, and IBM. He holds industry
certifications in Java and enterprise software development. His areas of
expertise include Java enterprise systems, web services, XML, Unified Modeling
Language (UML) modeling, Rational Unified Process, Rational Rose®, Rational
Application Development, Rational Software Architecture, and WebSphere
Application Server.

Lara Ziosi is an Advisory Software Engineer in IBM Netherlands. She holds a
Doctorate in computational methods of Physics from the University of Bologna,
Italy. She has 11 years of experience in Rational client support. Her areas of
expertise include Java Enterprise support in Rational Application Developer,
object-oriented analysis and design with UML, the extensibility of the modeling
features of Rational Software Architect, and the integrations with configuration
management tools, such as Rational ClearCase® and Rational Team Concert™.
Lara is a frequent contributor of Rational Application Developer and Rational
Software Architect Technotes (web docs).
xxxvi Rational Application Developer for WebSphere Software V8 Programming Guide

Rational Application Developer development team authors

The following authors contributed chapters and sections to this IBM Redbooks
publication:

Nitin Dahyabhai is an Advisory Software Engineer for IBM Rational in Research
Triangle Park. He has over a decade of experience in Eclipse-based Web Tools
and holds a Bachelor of Science degree in Computer Engineering from North
Carolina State University.

Chris Jaun is a Staff Software Engineer in Raleigh, NC, U.S. He has six years of
software development experience, including two focused on JavaScript and Dojo
tooling. Chris holds a Bachelors degree in Computer Science from the Rochester
Institute of Technology.

Gary Karasiuk is a Senior Performance Analyst in the IBM Canada Lab. He has
30 years of experience in developing tools for programmers. He holds a degree
in Computer Science from the University of Manitoba. His areas of expertise
include J2EE development, object-oriented programming, and performance
analysis.

Paul Klicnik is a Software Developer at the IBM Toronto lab in Markham,
Ontario. He has four years of experience in the areas of testing and performance
tools, with specific focus on Code Coverage. Paul holds a degree in Computer
Science from the University of Waterloo.

Ernest Mah is a Senior Architect and Development Manager in IBM Rational. He
is currently based out of the IBM Toronto Lab and has been with IBM for 14
years. He has a Bachelor of Science Honors degree in Computing Science from
the University of Alberta. His experience is in a wide range of areas from C/C++,
Java, XML, Java EE, J2C, and Java problem determination tools.

Julio Cesar Chavez Ortiz is a Developer in the Rational Application Developer
team at the IBM Mexico Software Lab. He has five years of experience in Java
technologies (Java SE/EE), frameworks, such as Spring, Struts, and Wicket, and
in the use of application servers (WebSphere, WebLogic, and Apache Tomcat).
He holds a degree in Computer Science Engineering from Bonaterra University
in Aguascalientes, México. His areas of expertise include web applications based
on Java development and Rational Application Developer Session Initiation
Protocol (SIP) tools development.

Ravinder Panwar is an Information Developer at IBM India Software Lab. He
has created technical documentation on web technologies, client server, and
distributed applications, and has 11 years of experience in technical
documentation. He holds a post graduation diploma in Computer Applications
from the National Institute of Information Technology in Hyderabad, India.
 Preface xxxvii

Christine Rice is a Software Engineer in Littleton, Massachusetts. She has
seven years of experience with JavaServer Faces tooling in Rational Application
Developer. She holds a degree in Computer Science from Smith College.
Christine has previously written articles for IBM developerWorks.

Kim Tsao is a Staff Software Developer at the IBM Toronto Lab. She has 12
years of experience in software development and has spent many years
developing for WebSphere Message Broker Toolkit before joining the Rational
team. Her areas of focus in Rational Application Developer include Java EE, SIP,
and Java Visual Editor. She also has co-authored articles on developerWorks.
Kim holds a degree in Computer Science from the University of Toronto.

Sheldon Wosnick is an Advisory Software Developer in the IBM Canada Lab in
Toronto, Ontario. He has 14 years of experience in software development and
holds a degree from York University. His areas of expertise include Rational
Application Developer and WebSphere Application Server with a specific focus
on Cloud Computing, SCA, and server integration and tools.

Jim Zhang is the Senior Architect of the web development tools for Rational
Application Developer at IBM RTP software development lab. He has 11 years of
software development experience with Java. Jim holds a Masters degree in
Computer Sciences from Northern Illinois University.

Additional contributors

Thanks to the following people for their contributions to this project:

� Anita Rass Wan, Product Manager - Rational Application Developer

� Billy Rowe, Manager - Rational Web Development Tools

� Jay Cagle, Manager - Rational Web Page Tools

� Prasad Kashyap, Rational Web Development Tools

� Ian Tewksbury, Rational Web Development Tools

� Kevan Holdaway, Rational Web Development Tools

� Nick Sandonato, Rational Web Development Tools

� Orlando Ezequiel Rincón Ferrera, Rational Web Development Tools

� Justin Berstler, Rational Web Development Tools

� Musa Yassin, Rational Web Development Tools

� Heidi Stadel, Rational Application Developer User Assistance

� Chris Brealey, Rational Application Developer Senior Technical Staff Member

� Tim DeBoer, Rational Application Developer Senior Technical Staff Member
xxxviii Rational Application Developer for WebSphere Software V8 Programming Guide

� Daniel Lee, Rational Requirements Composer Web UI

� Jonathan West, Eclipse Test and Performance Tools Platform

� Elson Yuen, WebSphere Server Tools

� Arun Shivaswamy, Rational Application Developer Analysis, Design, and
Construction

� Zina Mostafia, Rational Tools for OSGi Applications

� Sean Zhou, Rational SCA Tools

� William Smith, Rational Market and Product Manager

� Hollis Chui, Rational Architectural Management Release Team

� Kathy Chan, Test and Profiling Tools

� Mike Reid, Test and Performance Tools

� Joel Cayne, Test and Profiling Tools

� Troy Bishop, Rational Application Developer Level 3 Support

� Rodrigo Dombrowski, Advisory Software Engineer

� Ivy Ho, Senior Development Advisor, Rational

� Neeraj Agrawal, Rational Java EE Tools

� Umberto Ghio, ClearQuest® Support

� Francois Panaget, Rational RCS EMEA

� Fred Bickford, Software Advisory Team

� Kate Price, Information Development for Rational Application Developer

� Frances Overby, WebSphere Application Server Information Development

� Marie Wagner, WebSphere Information Development

� Dusko Misic, Aurora Modeling UML

� Anthony Hunter, Eclipse Open Source Components Development

� Yury Kats, JSF tooling for Rational Application Developer

� Yen Lu, WebSphere Web Services Tools Development

� Valentin Baciu, Rational SCA Tools

� Kim Tsao, SIP Tools/Java Visual Editor

� Andrew Ivory, CEA Widget Development

� Rebecca Nin, Data Beans

� Marichu Scanlon, ODS Team Lead

� Sal Ledezma, Data Studio Common Components Development
 Preface xxxix

� Charles Hart, Team System and Integration Test

� Morris Kwan, Debugger Development

� Heidi Stadel Kan, Rational Application Developer User Assistance

� Pavan Ananth, Rational Analysis, Design and Construction

� John Pitman, Rational Application Developer Release Architect

� Markus Keller, Eclipse JDT UI lead, Text and Platform UI committee

� Rajiv Senthilnathan, Rational Application Developer Tools

� Steven Hung, Rational Application Developer Tools

� Raymond Lai, Rational Application Developer XML Web Services Tools

� Mattia Parigiani, Rational Application Developer - Application Build

� Patricio Reyna Almandos, Technical Sales

� Fernando Gomez, Technical Sales

� Ashutosh Dhiman, Rational Application Developer Portal Toolkit

� Awanish K Singh, Rational Application Developer Portal Toolkit

� Gaurav Bhattacharjee, Rational Application Developer Portal Toolkit

� Jaspreet Singh, Rational Application Developer Portal Toolkit

� Manish Aneja, Rational Application Developer Portal Toolkit

� Puneet Babbar, Rational Application Developer Portal Toolkit

� Brian Pulito, SIP Development

� Asaf Zinger, SIP Container Lead

� Chris Jeffs, Rational Application Developer Information Development

Thanks to the authors of the previous edition of this book:

� Authors of the previous edition, Rational Application Developer V7.5
Programming Guide, SG24-7672, were Ueli Wahli, Miguel Gomes, Brian
Hainey, Ahmed Moharram, Juan Pablo Napoli, Marco Rohr, Henry Cui,
Patrick Gan, Celso Gonzalez, Pinar Ugurlu, and Lara Ziosi

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a
published author—all at the same time! Join an ITSO residency project and help
write a book in your area of expertise, while honing your experience using
leading-edge technologies. Your efforts will help to increase product acceptance
xl Rational Application Developer for WebSphere Software V8 Programming Guide

and customer satisfaction, as you expand your network of technical contacts and
relationships. Residencies run from two to six weeks in length, and you can
participate either in person or as a remote resident working from your home
base.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about
this book or other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the
IBM Redbooks weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
 Preface xli

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
xlii Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.redbooks.ibm.com/rss.html

Part 1 Introduction to
Rational Application
Developer

In this part, we introduce IBM Rational Application Developer for WebSphere
Software. The introduction includes packaging, product features, the Eclipse
base, installation, licensing, migration, and an overview of the tools. We then
discuss setting up the workbench, the perspectives, views, and editors, and the
various types of projects, and introduce Unified Modeling Language (UML).

This part contains the following chapters:

� Chapter 1, “Introduction” on page 3
� Chapter 2, “Programming technologies” on page 17
� Chapter 3, “Workbench setup and preferences” on page 71
� Chapter 4, “Perspectives, views, and editors” on page 91
� Chapter 5, “Projects” on page 141
� Chapter 6, “Unified Modeling Language” on page 173

Part 1
© Copyright IBM Corp. 2011. All rights reserved. 1

2 Rational Application Developer for WebSphere Software V8 Programming Guide

Chapter 1. Introduction

IBM Rational Application Developer for WebSphere Software V8.0.1 is an
integrated development environment (IDE). It is a platform for building Java
Platform, Standard Edition (Java SE) and Java Platform, Enterprise Edition (Java
EE) applications. Beyond this function, Rational Application Developer provides
development tools for technologies, such as OSGi, Service Component
Architecture (SCA), Web 2.0, and XML. Rational Application Developer has a
focus on applications to be deployed to IBM WebSphere Application Server and
IBM WebSphere Portal Server.

In this chapter, we provide an introduction to the concepts, packaging, and
features of the IBM Rational Application Developer product.

The chapter is organized into the following sections:

� Concepts
� Rational Application Developer supported platforms and databases
� New features and specifications
� Migration
� Sample code
� Summary

1

© Copyright IBM Corp. 2011. All rights reserved. 3

1.1 Concepts

This section provides an introduction to the IBM Rational Software Delivery
Platform, Eclipse, and Rational Application Developer.

The Rational product suite helps businesses and organizations manage the
entire software development and delivery process. Software modelers,
architects, developers, and testers can use the same team-unifying Rational
Software Delivery Platform tooling to be more efficient in exchanging assets,
following common processes, managing change and requirements, maintaining
status, and improving quality.

1.1.1 IBM Rational Software Delivery Platform

The Rational Software Delivery Platform offers an array of products, services,
and best practices. It is an open, modular, and proven solution that spans the
entire software and systems delivery life cycle. Its products are composed of five
life-cycle categories. Figure 1-1 on page 5 shows each of the life-cycle
categories with a selection of the embedded Rational tooling.

For more information about the Rational Software Delivery Platform Strategy, see
this website:

http://www.ibm.com/software/rational/strategy
4 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.ibm.com/software/rational/strategy

Figure 1-1 Rational Software Delivery Platform life-cycle categories and products

Here is a brief description of the products included in the IBM Rational Software
Delivery Platform:

� Rational Software Architect

Rational Software Architect is a design and construction tool that uses
model-driven development with UML 2.0 to create well-architected
applications, including those applications that are based on service-oriented
architecture (SOA).

Rational Software Architect unifies modeling, Java structural review, web
services, Java SE, Java EE, database, XML, web development, and process
guidance for architects and senior developers creating applications in Java.
Rational Software Architect provides business process design through
support for BPEL and BPMN, and integrates with WebSphere Integration
Developer and WebSphere Business Monitor.

Governance and Lifecycle Management

Integrated Requirements Management

P
ro

ce
ss

 &
 P

o
rt

fo
lio

 M
a

n
a

g
e

m
e

n
t

R
at

io
n

al
 M

et
h

o
d

 C
o

m
p

o
se

r

R
at

io
n

al
 R

eq
u

is
it

eP
ro

R
at

io
n

al
 S

o
ft

w
ar

e
A

rc
h

it
ec

t

A
rc

h
ite

ct
u

re
 M

a
n

a
g

em
e

nt

R
at

io
n

al
 A

p
p

li
ca

ti
o

n
 D

e
ve

lo
p

er

C
ha

n
ge

 &
 R

el
e

as
e

M
an

a
ge

m
e

nt

R
at

io
n

al
 C

le
ar

Q
u

es
t

R
at

io
n

al
 C

le
ar

C
as

e

Q
u

a
lit

y
M

a
n

a
g

e
m

e
n

t

R
at

io
n

al
 F

u
n

ct
io

n
a

l T
e

st
er

R
at

io
n

al
 P

er
fo

rm
an

c
e

T
e

st
er

R
at

io
n

al
 S

er
vi

c
e

T
e

st
er

 f
o

r
S

O
A

 Q
u

a
lit

y

Rational Quality
Manager

Rational Team Concert

R
at

io
n

al
 R

eq
u

ir
em

e
n

ts
 C

o
m

p
o

s
er

Rational Asset Manager
 Chapter 1. Introduction 5

� Rational Application Developer for WebSphere Software

Rational Application Developer is a full suite of development, analysis and
test, and deployment tools for rapidly implementing Java SE and EE, Portal,
Web and Web 2.0, web services, OSGi, and SOA applications.

Rational Application Developer is available in two editions: Rational
Application Developer for WebSphere Software, and Rational Application
Developer Standard Edition for WebSphere Software. Standard Edition
contains all the features of the full Rational Application Developer except for
WebSphere adapter support, team development, code quality, testing and
deployment, and code visualization. For more information about the two
editions of Rational Application Developer, see this website:

http://www.ibm.com/software/awdtools/developer/application/features/
index.html?S_CMP=wspace

� Rational Asset Manager

Rational Asset Manager helps create, modify, govern, find, and reuse any
type of development assets, including SOA and system development assets.

� Rational Team Concert

Rational Team Concert is a Jazz™ collaborative software delivery
environment that empowers project teams to simplify, automate, and govern
software delivery. Automated data collection and reporting reduces
administrative overhead and provides the real-time insight required to
effectively govern software projects. It extends the capabilities of the team
with integrated work items, release planning, build, software configuration
management (SCM), and the collaborative infrastructure of the Jazz Team
Server.

� Rational Functional Tester

Rational Functional Tester is a tool for automated functional, regression, GUI,
and data-driven testing. It provides the capability to record robust scripts that
can be played back to validate new builds of an application.

Jazz: Jazz is a technology platform for collaborative software delivery from
IBM Rational. It is an extensible framework that dynamically integrates and
synchronizes people, processes, and assets associated with software
development projects. For more information about the Jazz technology
platform, see the following web page:

http://www.ibm.com/software/rational/jazz/
6 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.ibm.com/software/rational/jazz/
http://www.ibm.com/software/awdtools/developer/application/features/index.html?S_CMP=wspace

� Rational Performance Tester

Rational Performance Tester supports the creation, execution, and analysis of
performance tests to measure application scalability and performance.

� Rational Service Tester for SOA Quality

Rational Service Tester for SOA Quality tooling provides the tester with
script-free testing capabilities for functional, regression, and performance
testing of web services.

� Rational Quality Manager

Rational Quality Manager is a Jazz-based and Web-based centralized test
management environment for business, system, and IT decision makers, and
quality professionals who seek a collaborative and customizable solution for
test planning, workflow control, tracking, and metrics reporting capable of
quantifying how project decisions and deliverables impact and align with
business objectives.

� Rational Method Composer

Rational Method Composer is a flexible process management platform. It
includes a rich process library to help companies implement effective
processes for successful software and IT projects.

� Rational RequisitePro®

RequisitePro is a requirements management tool for project teams who want
to manage their requirements, write good use cases, improve traceability,
strengthen collaboration, reduce project risks, and increase quality.

� Rational Requirements Composer

Requirements Composer is a Jazz-based tool that helps teams define and
use requirements effectively across the project life cycle.

� Rational ClearQuest

ClearQuest is a software change management tool. It provides defect, task,
and change request tracking, process automation, reporting, and life-cycle
traceability for better visibility and control of the software development life
cycle.

� Rational ClearCase

ClearCase is a complete software configuration management tool. It provides
sophisticated version control, workspace management, parallel development
support, and build auditing to improve productivity.
 Chapter 1. Introduction 7

1.1.2 Eclipse and IBM Rational Software Delivery Platform

This section provides an overview of the Eclipse Project and illustrates how
Eclipse relates to the IBM Rational Software Delivery Platform and Rational
Application Developer.

Eclipse Project
The Eclipse Project is an open source software development project devoted to
creating a development platform and integrated tooling. Figure 1-2 shows the
high-level Eclipse Project architecture and shows the relationship of the following
subprojects:

� Eclipse Platform
� Eclipse Java development tools
� Eclipse Plug-in Development Environment

Figure 1-2 Eclipse Project overview

With a common public license that provides royalty-free source code and
worldwide redistribution rights, the Eclipse Platform provides tool developers with
great flexibility and control over their software technology.

Industry leaders, such as IBM, Borland, Merant, QNX Software Systems, Red
Hat, SUSE, TogetherSoft, and WebGain, formed the initial eclipse.org board of
directors of the Eclipse open source project.

Eclipse Project

Eclipse Platform

Workbench

JFace

SWT

Workspace

Debug

Team

Help

Their
Tool

Your
Tool

Another
Tool

Java
Development

Tools
(JDT)

Plug-in
Development
Environment

(PDE)
8 Rational Application Developer for WebSphere Software V8 Programming Guide

For more information about Eclipse, see the following website:

http://www.eclipse.org

Eclipse Platform
The Eclipse Platform provides a framework and services that serve as a
foundation for tools developers to integrate and extend the functionality of the
platform. The platform includes a workbench, concept of projects, user interface
libraries (JFace and SWT), built-in help engine, and support for team
development and debug. Various software development tasks can use this
platform, including modeling and architecture, IDE (Java, C/C++, and COBOL),
testing, and so on.

1.1.3 Challenges in application development

To better grasp the business value that Rational Application Developer provides,
it is important to understand the challenges that businesses face in application
development.

Table 1-1 highlights the key application development challenges and desired
development tooling solutions.

Table 1-1 Application development challenges

Eclipse V3.6: IBM Rational Application Developer is based on Eclipse V3.6.

Challenges Solution tooling

Application development is
complex, time consuming,
and error prone.

Raise productivity by automating time-consuming and
error-prone tasks.

Highly skilled developers are
required and in short supply.

Assist less knowledgeable developers where possible
by providing wizards, online context sensitive help, an
integrated environment, and visual tooling.

Learning curves are long. Shorten learning curves by providing rapid application
development tooling (visual layout and design, reusable
components, and code generators) and ensure that
development tools have a consistent way of working.
 Chapter 1. Introduction 9

http://www.eclipse.org

1.2 Rational Application Developer supported platforms
and databases

In this section, we describe the platforms and databases that are supported by
Rational Application Developer.

1.2.1 Supported operating system platforms

Rational Application Developer supports the following operating systems:

� Microsoft® Windows® 7 Professional/Enterprise/Ultimate Editions (x32/x64)
� Microsoft Windows Vista Professional/Enterprise/Ultimate Editions (x32/x64)
� Microsoft Windows XP Professional (x32/x64)
� Microsoft Windows Server 2008 Standard/Enterprise Edition (x32/x64)
� Red Hat Enterprise Linux® Server 5 (x32/x64)
� Red Hat Enterprise Linux Desktop 5 (x32)
� SUSE Linux Enterprise Server Version 10/11 (x32/x64)
� SUSE Linux Enterprise Desktop Version 10/11 (x32/x64)
� Ubuntu Linux 10.4 LTS
� Citrix Presentation Server Version 4/4.5/5

1.2.2 Supported runtime environments

The following IBM application servers are supported by Rational Application
Developer:

� IBM WebSphere Application Server Version 6.0, including the Feature Pack
for Web 2.0

� IBM WebSphere Application Server Version 6.1, including the Feature Pack
for Web Services, Feature Pack for EJB 3.0, and Feature Pack for Web 2.0

� IBM WebSphere Application Server V7.0, including the Feature Pack for
Service Component Architecture, Feature Pack for XML, Feature Pack for
OSGi Applications and Java Persistence API 2.0, and the Feature Pack for
Web 2.0

� IBM WebSphere Application Server Version 8.0 Beta

Note: WebSphere Application Server V6 does not ship with Rational
Application Developer. To use WebSphere Application Server V6 with
Rational Application Developer, install a stand-alone WebSphere
Application Server V6.0 server separately and connect as a local or remote
server.
10 Rational Application Developer for WebSphere Software V8 Programming Guide

� IBM WebSphere Portal Server V6.1 and IBM WebSphere Portal Server 6.1 on
WebSphere Application Server V7

� IBM WebSphere Portal Server Version 7.0

Additional server adapters are supported by the Web Tools Platform 3.0 based
on Eclipse technology, which is included in Rational Application Developer. The
server adapters in the following list are included, by default, in the Web Tools
Platform installed with Rational Application Developer:

� Apache Tomcat versions 3.2, 4.0, 4.1, 5.0, 5.5, 6.0, and 7.0

� JBoss versions 3.2, 3.3, 4.0, 4.2, and 5.0

� ObjectWeb Java Open Application Server (JOnAS) Version 4

� Oracle Containers for J2EE (OC4J) Standalone Server versions 10.1.3 and
10.1.3.n

Supported databases
The following databases are compatible with Rational Application Developer:

� IBM Cloudscape Version 5.1

� IBM DB2® UDB versions 7.2, 8.1, 8.2, 9.1, 9.5, and 9.7

� IBM DB2 UDB iSeries® versions 5R2, 5R3, and 5R4

� IBM DB2 for z/OS® V7 and versions 8 and 9 (compatibility mode and new
function mode)

� Apache Derby versions 10.0, 10.1, 10.2, and 10.3

� Generic Java Database Connectivity (JDBC) Version 1.0

� IBM Informix® Dynamic Server versions 9.2, 9.3, 9.4, 10.0, 11.1, and 11.5

� MySQL versions 4.0 and 4.1

� Oracle versions 8, 9, 10, and 11g

� Microsoft SQL Server Enterprise versions 2000 and 2005

� Sybase Adaptive Server Enterprise versions 12.x and 15

New function mode: In addition to the compatibility mode, the new
function mode includes the generated data model that has all the new
catalog features of DB2 for z/OS V8 and V9. Use the new function mode if
you plan to work with the generated data models available in IBM Rational
Software Delivery Platform products.
 Chapter 1. Introduction 11

1.3 New features and specifications

In this section, we provide a summary of the new features and specifications
supported by Rational Application Developer.

1.3.1 New features in Rational Application Developer

Rational Application Developer has many new features that we highlight in detail
in the remaining chapters of this book.

There have been major advances and additions in product features and
technology since Rational Application Developer V7.5.0 in the following areas:

� Assembly and deployment tools
� Code Coverage analysis
� IBM Rational Desktop Connection Toolkit for Cloud Environments
� Debug tools
� Java EE 6
� Java EE Connector (J2C) Tools
� JSF Tools
� OSGi application development tools
� Page designer
� Portal tools
� Profiling tools
� Rational License Key Server update
� Service Component Architecture (SCA) Tools
� Token licensing
� UML modeling
� Web 2.0
� Web development tools
� Web Services
� XML tools

For detailed information about new features and enhancements introduced in
Rational Application Developer, refer to the following resources:

� Rational Application Developer for WebSphere Software, Version 8.0: New
features and enhancements

http://www.ibm.com/support/docview.wss?uid=swg27018924

� Rational Application Developer Version 8.0: What’s New

http://www.ibm.com/developerworks/wikis/display/rad/Rational+Applica
tion+Developer+Version+8.0+-+What%27s+New
12 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.ibm.com/support/docview.wss?uid=swg27018924
http://www.ibm.com/developerworks/wikis/display/rad/Rational+Application+Developer+Version+8.0+-+What%27s+New
http://www.ibm.com/developerworks/wikis/display/rad/Rational+Application+Developer+Version+8.0+-+What%27s+New

To request new features to be added to future versions on Rational Application
Developer, visit the IBM RFE Community and open your requirements for IBM to
consider:

http://www.ibm.com/developerworks/support/rational/rfe/

1.3.2 Specification versions

In this section, we highlight the specification versions in Rational Application
Developer.

Table 1-2 compares the technology versions supported by Rational Application
Developer V7.5 and V8. Most of the listed technologies are part of the Java EE
specification.

Table 1-2 Technology versions comparison

Specification Rational
Application
Developer V7.5

Rational Application
Developer V8

IBM Java Runtime Environment (JRE) 1.6 1.6

JavaServer Pages (JSP) 2.1 2.2

Java Servlet 2.5 3.0

Enterprise JavaBeans (EJB) 3.0 3.1

Java Message Service (JMS) 1.1 1.1

Java Transaction API (JTA) 1.1 1.1

JavaMail 1.4.1 1.4.1

Java Activation Framework (JAF) 1.1.1
Included in Java SE 6

1.1.1
Included in Java SE 6

Java API for XML Processing (JAXP) 1.4
Included in Java SE 6

1.4
Included in Java SE 6

Java EE Connector 1.5 1.6

Java API for XML-based RPC (JAX-RPC) 1.1 1.1

SOAP with Attachments API for Java (SAAJ) 1.3
Included in Java SE 6

1.3
Included in Java SE 6

Java API for XML Web Services (JAX-WS) 2.0 2.2

Java Architecture for XML Binding (JAXB) 2.0 2.2
 Chapter 1. Introduction 13

http://www.ibm.com/developerworks/support/rational/rfe/

1.4 Migration

Rational Application Developer can migrate workspaces and projects from
Rational Application Developer versions 7.5.x and 7.0.x. Projects from these
versions of Rational Application Developer are migrated with the Workspace
Migration wizard. When projects from Rational Application Developer versions

Java Authentication and Authorization Service (JAAS) Included in Java SE 6 Included in Java SE 6

Java Database Connectivity API (JDBC) 4.0
Included in Java SE 6

4.0
Included in Java SE 6

Java API for XML Registries (JAXR) 1.0 1.0

Java EE Management 1.1 1.1

Java Management Extensions (JMX) 1.2
Included in Java SE 6

1.2
Included in Java SE 6

Java EE Deployment 1.2 1.2

Java Authorization Service Provider Contract for
Containers (JACC)

1.1 1.4

JavaServer Pages Debugging 1.0 1.0

JavaServer Pages Standard Tag Library (JSTL) 1.2 1.2

Web Services Metadata 2.0 2.1

JavaServer Faces 1.2 2.0

Common Annotations 1.0 1.1

Streaming API for XML (StAX) 1.0
Included in Java SE 6

1.0
Included in Java SE 6

Java Persistence API (JPA) 1.0 2.0

Service Data Objects (SDO) 2.0 2.0

Struts 1.3 1.3

OSGi Service Platform Specifications N/A 4.2

Service Component Architecture (SCA) 1.0 1.0

Specification Rational
Application
Developer V7.5

Rational Application
Developer V8
14 Rational Application Developer for WebSphere Software V8 Programming Guide

7.5.x or 7.0.x are detected in the current version, the Workspace Migration
wizard starts automatically and selects the projects to migrate. There are three
general methods to bring projects from Version 7.5.x or Version 7.0.x into the
current version:

� Export and import projects as archive files:

You can export projects from Rational Application Developer versions 7.5.x or
7.0.x with the Project Interchange feature (File Export Other Project
Interchange) and import them into your workspace (File Import
Existing projects into workspace).

� Share projects from a source code management system

You can import Rational Application Developer V7.5.x or V7.0.x projects that
exist in a source code management (SCM) system.

� Open a Rational Application Developer V7.5.x or V7.0.x workspace in the
current version

When a workspace from Rational Application Developer V7.5.x or V7.0.x is
opened in the current version, the projects within that workspace can be
migrated to the current version. The workspace itself is also migrated;
therefore, the workspace can no longer be loaded by previous versions of
Rational Application Developer.

The following application server run times that were available in Rational
Application Developer versions 7.5.x or 7.0.x are not supported in this version:

� WebSphere Application Server V5.1.x
� WebSphere Application Server V5.1.x Express
� WebSphere Portal Server V6.0.x
� WebSphere Portal Server V5.1.x

If you have a project that targets any of these server run times, you can change
the target run time during the migration process.

1.5 Sample code

The chapters in this book are written so that you can follow along and create the
code from the beginning. In places where a significant amount of typing is
involved, we provide snippets of code for you to cut and paste.

Alternatively, you can import the completed sample code from an existing project
file. For details about the sample code, including details for downloading and
unpacking the code, a description of the code, and instructions for importing the
 Chapter 1. Introduction 15

project files and creating databases, see Appendix C, “Additional material” on
page 1877.

1.6 Summary

In this chapter, we have introduced the concepts behind Rational Application
Developer, provided an overview of the features of the various members of the
Rational product suite, and described where Rational Application Developer fits
with the other products. We also provided a summary of the version numbers of
the various features.
16 Rational Application Developer for WebSphere Software V8 Programming Guide

Chapter 2. Programming technologies

This chapter highlights the tools that are provided by Rational Application
Developer to facilitate a series of application development scenarios. Throughout
this chapter, we use a simple banking application to illustrate these scenarios.

This chapter is organized into the following sections:

� Desktop applications
� Web applications
� Enterprise JavaBeans and Java Persistence API
� Web services
� Messaging systems
� OSGi applications
� Other applications

2

© Copyright IBM Corp. 2011. All rights reserved. 17

2.1 Desktop applications

Desktop applications are applications that run on a single machine and the user
interacts directly with the application by using a user interface (UI) on the same
machine. When this idea is extended to include database access, part of the
work might be performed by another process, possibly on another machine.
Although this situation begins to move us into the client/server environment,
often the application uses only the database as a service. The user interface,
business logic, and control of flow are all implemented within the desktop
application. This concept contrasts with full client/server applications in which
these elements are clearly separated and might be provided by separate
technologies running on separate machines.

This type of application is the simplest type that we consider. Many of the
technologies and tools involved in developing desktop applications, such as the
Java editor and the Extensible Markup Language (XML) tooling, are used widely
in Rational Application Developer.

The first scenario deals with a situation in which a bank requires a desktop
application to allow workers in a bank call center to view and update customer
account information. We call this scenario the Call Center Desktop.

2.1.1 Simple desktop applications

A starting point for the Call Center Desktop might be a simple stand-alone
application designed to run on desktop computers without a separate database
process hosted on a server machine.

Java Platform, Standard Edition (Java SE) provides all the elements necessary
to develop such applications. It includes, among other elements, a complete
object-oriented programming language specification, a wide range of useful
classes to speed development, and a runtime environment on which programs
can be executed.

For the complete Java SE specification, see the following web address:

http://www.oracle.com/technetwork/java/javase/overview/index.html

Java language
Java is a general-purpose, object-oriented language. The basic language syntax
is similar to C and C++, although there are significant differences. Java is a
higher-level language than C or C++, in that the developer is presented with a
more abstract view of the underlying computer hardware and is not expected to
take direct control of issues, such as memory management. The compilation
18 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.oracle.com/technetwork/java/javase/overview/index.html
http://www.oracle.com/technetwork/java/javase/overview/index.html

process for Java does not produce directly executable binaries, but rather an
intermediate byte code, which can be executed directly by a virtual machine or
can be further processed by a just-in-time compiler at run time to produce
platform-specific binary output.

New in Java Platform, Standard Edition, Version 6.0
Version 6 of the Java Platform, Standard Edition (Java SE 6) includes many
useful new features:

� Web Services: New support is provided for writing XML web service client
applications. Parsing and XML to Java object APIs, previously only available
in the Java Web Services Pack and Java Platform, Enterprise Edition (Java
EE) platform implementations, have been added to Java SE. The following list
highlights important support for Web Services in Java SE 6:

– Java Specification Request (JSR) 173 Streaming API for XML (StAX):
Java-based API for pull-parsing XML

http://jcp.org/en/jsr/detail?id=173

– JSR 181 Web Services Metadata: An annotated Java format to enable the
easy definition of Java Web Services in a Java EE container

http://jcp.org/en/jsr/detail?id=181

– JSR 222 Java Architecture for XML Binding (JAXB) 2.0: Next generation
of the API that makes it easier to access XML documents from Java
applications

http://jcp.org/en/jsr/detail?id=222

– JSR 224 Java API for XML-based Web Services (JAX-WS) 2.0: Next
generation web services API replacing JAX-RPC 1.0

http://jcp.org/en/jsr/detail?id=224

� Scripting: JavaScript technology source code can now be mixed with normal
Java source code, which might be useful for prototyping purposes:

– JSR 223 Scripting for the Java Platform: Scripting language programs can
access information developed in Java and can use scripting language
pages in Java server-side applications.

http://jcp.org/en/jsr/detail?id=223

� More Desktop APIs: A SwingWorker class has been added that helps
graphical user interface (GUI) developers with implementing tasks in a worker
thread in GUI applications. JTable now includes sorting, filtering, and
highlighting possibilities. In addition, a new facility for quickly presenting
splash screens to users is now available.
 Chapter 2. Programming technologies 19

http://jcp.org/en/jsr/detail?id=173
http://jcp.org/en/jsr/detail?id=173
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=222
http://jcp.org/en/jsr/detail?id=224
http://jcp.org/en/jsr/detail?id=223
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=222
http://jcp.org/en/jsr/detail?id=224
http://jcp.org/en/jsr/detail?id=223

� Database: JDK co-bundles the Java DB, a pure Java Database Connectivity
(JDBC) database, based on Apache Derby. JDBC API support has been
updated to 4.0: It now supports XML as an SQL data type and integrates
better with Binary Large Objects (BLOBs) and Character Large Objects
(CLOBs) types:

– JSR 221 JDBC 4.0: Java application access to SQL stores

http://jcp.org/en/jsr/detail?id=221

� Monitoring and Management: More diagnostic information has been added
and the memory-heap analysis tool jhat for forensic explorations of core
dumps is included.

http://download.oracle.com/javase/6/docs/technotes/tools/share/jhat.
html

� Compiler Access: Java development tool and framework creators get a
programmatic access to javac for in-process compilation of dynamically
generated Java code:

– JSR 199 Java Compiler API: Service provider that allows a Java program
to select and invoke a Java Language Compiler programmatically

http://jcp.org/en/jsr/detail?id=199

� Pluggable Annotations: Pluggable Annotations help you define your own
annotations and give you core support for plug-ins and executing the
annotation processors:

– JSR 269 Pluggable Annotation Processing API: Creating and processing
custom annotations

http://jcp.org/en/jsr/detail?id=269

� Desktop Deployment: Desktop Deployment offers a better platform
look-and-feel in the following areas:

– Swing
– Liquid Crystal Display text rendering
– Higher GUI performance
– Better integration of native platforms
– New access to the system tray and start menu of the platform
– Unification of Java Plug-in technology and Java WebStart engines

� Security: The XML Digital Signature API has been added to allow the creation
and manipulation of digital signatures.
20 Rational Application Developer for WebSphere Software V8 Programming Guide

http://jcp.org/en/jsr/detail?id=221
http://jcp.org/en/jsr/detail?id=199
http://jcp.org/en/jsr/detail?id=269
http://download.oracle.com/javase/6/docs/technotes/tools/share/jhat.html
http://jcp.org/en/jsr/detail?id=199

Also available is simplified access to native security services, such as native
public key infrastructure (PKI), cryptographic services on Microsoft Windows
for secure authentication and communication, Java Generic Security Services
(Java GSS), Kerberos services for authentication, and access to Lightweight
Directory Access Protocol (LDAP) servers:

– JSR 105 XML Digital Signature APIs (XML-DSIG): Implementation of the
W3C specification

http://jcp.org/en/jsr/detail?id=105

� Libraries (quality, compatibility, and stability): Libraries support array
relocation, the new collection type Deque (double-ended queue, a linear
collection that supports element insertion and removal at both ends), sorted
sets and maps with bidirectional navigation, new core IEEE754 (floating point)
functions, a new password prompting feature, and an update of the Java
Class File specification:

– JSR 202 Java Class File Specification Update: Increases class file size
limits and adds split verification support

http://jcp.org/en/jsr/detail?id=202

Java virtual machine
The Java virtual machine (JVM) is a runtime environment designed for executing
compiled Java byte code, contained in Java.class files, which results from the
compilation of Java source code. Several types of JVMs exist, ranging from
simple interpreters to those JVMs including just-in-time compilers that
dynamically translate byte code instructions to platform-specific instructions, as
required.

Requirements for the development environment
The developer of the Call Center Desktop must have access to a development
tool that provides a range of features to enhance developer productivity:

� A specialized code editor, providing syntax highlighting

� Assistance with completing code and correcting syntactical errors

� Facilities for visualizing the relationships between the classes in the
application

� Assistance with documenting code

� Automatic code review functionality to ensure that code is being developed
according to recognized best practices

� A simple way of testing, analyzing, and debugging applications
 Chapter 2. Programming technologies 21

http://jcp.org/en/jsr/detail?id=105
http://jcp.org/en/jsr/detail?id=202
http://jcp.org/en/jsr/detail?id=202

Rational Application Developer provides developers with an integrated
development environment with these features.

2.1.2 Database access

Most likely, the Call Center Desktop accesses data residing in a relational
database, such as IBM DB2 Universal Database™.

Java SE 6.0 includes several integration technologies:

� JDBC is the Java standard technology for accessing data stores.

� Java Remote Method Invocation (RMI) is the standard way of enabling remote
access to objects within Java.

� Java Naming and Directory Interface (JNDI) is the standard Java interface for
naming and directory services.

� Java IDL is the Java implementation of the Interface Definition Language
(IDL) for Common Object Request Broker Architecture (CORBA), allowing
Java programs to access objects hosted on CORBA servers.

We focus on the Java Database Connectivity (JDBC) technology in this section.

JDBC
Java SE 6.0 includes support for JDBC 4.0. You can download the specification
from the following web address:

http://jcp.org/aboutJava/communityprocess/final/jsr221/index.html

Although JDBC supports a wide range of data store types, most often, JDBC
accesses relational databases by using SQL. Classes and interfaces are
provided to simplify database programming:

� java.sql.DriverManager and javax.sql.DataSource can be used to obtain a
connection to a database system.

� java.sql.Connection represents the connection that an application has to a
database system.

� java.sql.Statement, PreparedStatement, and CallableStatement represent
executable statements that can be used to update or query the database.

� java.sql.ResultSet represents the values returned from a statement that
has queried the database.

� Various types, such as java.sql.Date and java.sql.Blob, are Java
representations of SQL data types that do not have a direct equivalent
primitive type in Java.
22 Rational Application Developer for WebSphere Software V8 Programming Guide

http://jcp.org/aboutJava/communityprocess/final/jsr221/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr221/index.html

Requirements for the development environment
The development environment must provide access to all the facilities of JDBC
4.0. However, because JDBC 4.0 is part of Java SE 6.0, we cover this
requirement in 2.1.1, “Simple desktop applications” on page 18. In addition, the
development environment has the following requirements:

� A way of viewing information about the structure of an external database

� A mechanism for viewing sample contents of tables

� Facilities for importing structural information from a database server so that it
can be used as part of the development process

� Wizards and editors allowing databases, tables, columns, relationships, and
constraints to be created or modified

� A feature to allow databases created or modified in this way to be exported to
an external database server

� A wizard to help create and test SQL statements

With these features, developers can develop test databases and work with
production databases as part of the overall development process. Database
administrators can also use them to manage database systems, although they
might prefer to use dedicated tools provided by the vendor of their database
systems.

IBM Rational Application Developer includes these features.

2.1.3 Graphical user interfaces

A further enhancement of the Call Center Desktop is to make the application
easier to use by providing a GUI.

Abstract Window Toolkit
The Abstract Window Toolkit (AWT) is the original GUI toolkit for Java. It has
been enhanced since it was originally introduced, but the basic structure remains
the same. The AWT includes the following items:

� A wide range of user interface components, represented by Java classes
such as [java.awt.] Frame, Button, Label, Menu, and TextArea

� An event-handling model to deal with events, such as button clicks, menu
choices, and mouse operations

� Classes to deal with graphics and image processing

� Layout manager classes to help with the positioning of components in a GUI

� Support for drag-and-drop functionality in GUI applications
 Chapter 2. Programming technologies 23

The AWT is implemented natively for the JVM of each platform. AWT graphical
interfaces typically perform relatively quickly and have the same look-and-feel as
the operating system. However, the range of GUI components that can be used
is limited to the lowest common denominator of operating system components,
and the look-and-feel cannot be changed.

For more information about the AWT, see the following web address:

http://download.oracle.com/javase/6/docs/technotes/guides/awt/

Swing
Swing is a newer GUI component framework for Java. It provides Java
implementations of the components in the AWT and adds a number of more
sophisticated GUI components, such as tree views and list boxes. For the basic
components, Swing implementations have the same name as the AWT
component with a J prefix and a separate package structure, for example,
java.awt.Button becomes javax.swing.JButton in Swing.

Swing GUIs do not normally perform as quickly as AWT GUIs, but they have a
richer set of controls and have a pluggable look-and-feel.

For more information about Swing, see the following web address:

http://download.oracle.com/javase/6/docs/technotes/guides/swing/

Standard Widget Toolkit
The Standard Widget Toolkit (SWT) is the GUI toolkit that is provided as part of
the Eclipse Project and used to build the Eclipse GUI. The SWT is written entirely
in Java and uses the Java Native Interface (JNI) to pass the calls through to the
operating system where possible, which is done to avoid the lowest common
denominator problem. The SWT uses native calls where they are available and
builds the component in Java where they are not.

In many respects, the SWT provides the best of both worlds (AWT and Swing):

� It has a rich, portable component model, such as Swing.

� It has the same look-and-feel as the native operating system, such as the
AWT.

� GUIs that have been built by using the SWT perform well, such as the AWT,
because most of the components pass through to operating system
components.

Widget: In the context of windowing systems, a widget is a reusable interface
component, such as a menu, scroll bar, button, text box, or label.
24 Rational Application Developer for WebSphere Software V8 Programming Guide

http://download.oracle.com/javase/6/docs/technotes/guides/awt/
http://download.oracle.com/javase/6/docs/technotes/guides/swing/

A disadvantage of the SWT is that, unlike the AWT and Swing, it is not a
standard part of Java SE V6.0. Consequently, any application that uses the SWT
has to be installed along with the SWT class libraries. However, the SWT, like the
rest of the components that make up Eclipse, is open source and freely
distributable under the terms of the Common Public License.

For more information about the SWT, see the following web address:

http://www.eclipse.org/swt/

Another technology that is based on SWT and Eclipse is the Eclipse Rich Client
Platform (RCP). The architecture of Eclipse allows its components to be used to
create client applications.

For more information about Eclipse RCP, see the following web address:

http://wiki.eclipse.org/index.php/Rich_Client_Platform

Java implementations providing a GUI
Two types of Java components might provide a GUI:

� Stand-alone Java applications: Started in their own process (JVM). This
category might include Java EE application clients, which we describe later.

� Java applets: Normally, the Java applets are run in a JVM provided by a web
browser or a web browser plug-in.

An applet normally runs in a JVM with a strict security model, by default. The
applet is not allowed to access the file system of the machine on which it is
running. The applet can make network connections only back to the machine
from which it was originally loaded. Consequently, applets are not normally
suitable for applications that require access to databases, because this situation
might require the database to reside on the same machine as the web server. If
the security restrictions are relaxed, as might be possible if the applet was being
used only on a company intranet, this problem is not encountered.

An applet is downloaded on demand from the website that hosts it. This design is
advantageous in that the latest version automatically downloads each time that it
is requested, so distributing new versions is trivial. This design is
disadvantageous in that often the applet is downloaded several times even if it
has not changed, which is a pointless use of bandwidth, and the developer has
little control over the environment on which the applet runs.

Requirements for the development environment
The development environment must provide a specialized editor that allows a
developer to design GUIs by using various component frameworks (such as
AWT, Swing, or SWT). The developer must be able to focus mainly on the visual
 Chapter 2. Programming technologies 25

http://www.eclipse.org/swt/
http://wiki.eclipse.org/index.php/Rich_Client_Platform
http://wiki.eclipse.org/index.php/Rich_Client_Platform

aspects of the layout of the GUI, rather than the coding that lies behind it. Where
necessary, the developer must be able to edit the generated code to add
event-handling code and business logic calls. The editor must be dynamic,
reflecting changes in the visual layout immediately in the generated code and
changes in the code immediately in the visual display. The development
environment must also provide facilities for testing visual components that make
up a GUI and the entire GUI. Rational Application Developer has a visual editor
with this functionality included.

2.1.4 Extensible Markup Language (XML)

Communication between computer systems is often difficult, because separate
systems use separate data formats for storing data. XML has become a common
way to resolve this problem.

It might be desirable for the Call Center Desktop application to exchange data
with other applications. For example, we might want to export tabular data so that
it can be read into a spreadsheet application to produce a chart. Or, we might
want to read information about a group of transactions that can then be carried
out as part of an overnight batch operation.

A convenient technology for exchanging information between applications is
XML, which is a standard, simple, and flexible way of exchanging data. The
structure of the data is described in the XML document itself. Mechanisms are
available for ensuring that the structure conforms to an agreed format. These
mechanisms are known as Document Type Definitions (DTDs) and XML Schema
Definitions (XSDs).

XML is increasingly also being used to store configuration information for
applications. For example, many aspects of Java EE use XML for configuration
files called deployment descriptors, and WebSphere Application Server uses
XML files for storing its configuration settings. OSGi Blueprint files and Service
Component Architecture (SCA) composite files are written in XML.

For more information about XML, see the World Wide Web Consortium (W3C) at
the following address:

http://www.w3.org/XML/

Using XML in Java code
Java SE 6.0 includes the Java API for XML Processing (JAXP). JAXP contains
several elements:

� A parser interface based on the Document Object Model (DOM) from the
W3C, which builds a complete internal representation of the XML document
26 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.w3.org/XML/

� The Simple API for XML (SAX), which allows the document to be parsed
dynamically by using an event-driven approach

� Extensible Stylesheet Language Transformation (XSLT) 1.0, which uses
Extensible Stylesheet Language (XSL) to define how to transform XML
documents from one form into another

� XPath V1.0 for processing XML

� The Streaming API for XML (StAX), which supports an iterative, event-based
approach to reading and writing XML documents

Because JAXP is a standard part of Java SE V6.0, all these features are
available in any Java code running in a JVM.

The IBM WebSphere Application Server Feature Pack for XML also delivers
support for the following versions of the XML processing languages:

� XPath 2.0
� XSLT 2.0
� XQuery 1.0

Requirements for the development environment
In addition to allowing developers to write code to create and parse XML
documents, the development environment must provide features, such as the
following features, to help developers to create and edit XML documents and
related resources:

� An XML editor that checks the XML document for well-formedness
(conformance with the structural requirements of XML) and for consistency
with a DTD or XML schema

� Wizards for these tasks:

– Creating XML documents from DTDs and XML schemas
– Creating DTDs and XML schemas from XML documents
– Converting between DTDs and XML schemas
– Generating JavaBeans to represent data stored in XML documents
– Creating XSL

� An environment to test and debug XSLT

Rational Application Developer includes all these features.

2.2 Web applications

A static website is a website in which the content viewed by users accessing the
site by using a web browser is determined only by the contents of the file system
 Chapter 2. Programming technologies 27

on the web server machine. Because the user experience is determined only by
the content of these files and not by any action of the user or any business logic
running on the server machine, the site is described as static. Nowadays, almost
all websites have a degree of dynamic behavior with Javascript (Ajax) without
having to involve application servers.

In most cases, the communication protocol used for interacting with static
websites is the Hypertext Transfer Protocol (HTTP).

In the context of our sample scenario, the bank might want to publish a static
website to inform customers of bank services, such as branch locations and
opening hours, and to inform potential customers of services provided by the
bank, such as account interest rates. This client/server information can safely be
provided statically, because it is the same for all visitors to the site and it changes
rarely.

2.2.1 Hypertext Transfer Protocol (HTTP)

HTTP follows a request/response model. A client sends an HTTP request to the
server providing information about the request method being used, the requested
Uniform Resource Identifier (URI), the protocol version being used, various other
header information, and often other details, such as details from a form
completed on the web browser. The server responds by returning an HTTP
response consisting of a status line, including a success or error code, and other
header information followed by a Hypertext Markup Language (HTML) code for
the static page requested by the client.

For full details of HTTP, see the following web address:

http://www.w3.org/Protocols/

For information about HTML, see the following web address:

http://www.w3.org/html/

Methods
HTTP 1.1 defines several request methods: GET, HEAD, POST, PUT, DELETE,
OPTIONS, and TRACE. Of these request methods, only GET and POST are
commonly used in web applications:

� GET requests are normally used in situations where the user has entered an
address into the address or location field of a web browser, used a bookmark
or favorite stored by the browser, or followed a hyperlink within an HTML
document.

� POST requests are normally used when the user has completed an HTML
form displayed by the browser and has submitted the form for processing.
28 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.w3.org/Protocols/
http://www.w3.org/html/

This request type is most often used with dynamic web applications, which
include business logic for processing the values entered into the form.

Status codes
The status code returned by the server as the first line of the HTTP response
indicates the outcome of the request. In an error, this information can be used by
the client to inform the user of the problem. In certain situations, such as
redirection to another URI, the browser acts on the response without any
interaction from the user. The status codes have the following classes:

1xx: Informational The request has been received, and processing is
continuing.

2xx: Success The request has been correctly received and processed;
an HTML page accompanies a 2xx status code as the
body of the response.

3xx: Redirection The request did not contain all the information required, or
the browser needs to take the user to another URI.

4xx: Client error The request was incorrectly formed or was not fulfilled.

5xx: Server error Although the request was valid, the server failed to fulfill it.

The most common status code is 200 (OK), although 404 (Not Found) is commonly
encountered. A complete list of status codes can be found at the W3C site
mentioned previously.

Cookies
Cookies are a general mechanism that server-side connections can use to both
store and retrieve information about the client side of the connection. Cookies
can contain any piece of textual information, within an overall size limit per cookie
of 4 KB. Cookies have the following attributes:

Name The name of the cookie.

Value The data that the server wants passed back to it when a
browser requests another page.

Domain The address of the server that sent the cookie and that
receives a copy of this cookie when the browser requests
a file from that server. The domain can be set to equal the
subdomain that contains the server so that multiple
servers in the same subdomain receive the cookie from
the browser.

Path Used to specify the subset of URLs in a domain for which
the cookie is valid.
 Chapter 2. Programming technologies 29

Expires Specifies a date string that defines the valid lifetime of that
cookie.

Secure Specifies that the cookie is only sent if HTTP
communication is taking place over a secure channel
(known as HTTPS).

A cookie life cycle proceeds in this manner:

1. The user gets connected to a server that wants to record a cookie.

2. The server sends the name and the value of the cookie in the HTTP
response.

3. The browser receives the cookie and stores it.

4. Every time that the user sends a request for a URL at the designated domain,
the browser sends any cookies for that domain that have not expired with the
HTTP request.

5. When the expiration date has been passed, the cookie expires.

Non-persistent cookies are created without an expiration date. They only last for
the duration of the user browser session. Persistent cookies are set one time and
remain on the user hard drive until the expiration date of the cookie. Cookies are
widely used in dynamic web applications, which we address later in this chapter,
for associating a user with server-side state information.

For more information about cookies, see the following web address:

http://www.cookiecentral.com/faq

2.2.2 Hypertext Markup Language (HTML)

HTML is a language for publishing hypertext on the Web. HTML uses tags to
structure text into headings, paragraphs, lists, hypertext links, and so forth. It is
distinct from XML by way of having unpaired tags. Table 2-1 lists several common
HTML tags.

Table 2-1 Common HTML tags

Tag Description

<html> Tells the browser that the following text is marked up in HTML. The closing
tag </html> is required and is the last tag in your document.

<head> Defines information for the browser that might or might not be displayed to
the user. Tags that belong in the <head> section are <title>, <meta>,
<script>, and <style>. The closing tag </head> is required.
30 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.cookiecentral.com/faq

Cascading style sheets
Although web developers can use HTML tags to specify styling attributes, the
best practice is to use a cascading style sheet (CSS). A CSS file defines a
hierarchical set of style rules that the creator of an HTML (or XML) file uses to
control how that page is rendered in a browser or viewer, or how it is printed.

CSS enables the separation of the presentation content of documents from the
information content of documents. A CSS file can be referenced by an entire
website to provide continuity to titles, fonts, and colors.

Consider an example CSS rule for setting the H2 elements to the color red. Rules
are made up of two parts: selector and declaration. The selector (H2) is the link
between the HTML document and the style sheet, and all HTML element types
are possible selectors.

The declaration has two parts: property (color) and value (red):

H2 { color: red }

For more information about CSS, see the following web address:

http://www.w3.org/Style/CSS/

Requirements for the development environment
The development environment has the following requirements:

� An editor for HTML pages, providing WYSIWYG (what you see is what you
get), HTML code, and preview (browser) views to assist HTML page
designers

� A CSS editor

� A view showing the overall structure of a site as it is being designed

� A built-in web server and browser to allow websites to be tested

IBM Rational Application Developer provides all of these features.

<title> Shows the title of your web page and is usually displayed by the browser at
the top of the browser pane. The closing tag </title> is required.

<body> Defines the primary portion of the web page. Attributes of the <body> tag
enable setting the background color, the text color, the link color, and the
active and visited link colors. The closing tag </body> is required.

Tag Description
 Chapter 2. Programming technologies 31

http://www.w3.org/Style/CSS/

2.2.3 Dynamic web applications

By web applications, we mean applications that are accessed using HTTP,
typically using a web browser as the client-side user interface to the application.
The flow of control logic and business logic and the generation of the web pages
for the web browser are all handled by software running on a server machine.
Many technologies exist for developing this type of application, but we focus on
the Java technologies that are relevant in this area.

Because the technologies are based on Java, most of the features that we
describe in 2.1, “Desktop applications” on page 18 are also relevant here. (The
GUI features are less significant.) In this section, we focus on the additional
features that are required for developing web applications.

In the context of our example banking application, thus far we have provided
workers in the bank’s call center with a desktop application to allow them to view
and update account information and provided members of the web browsing
public with information about the bank and its services. Next we move into the
Internet banking web application, which is called RedBank in this document. We
want to extend the system to allow bank customers to access their account
information online, such as balances and statements, and to perform certain
transactions, such as transferring money between accounts and paying bills.

The simplest way to provide Web-accessible applications using Java is to use
Java servlets and JavaServer Pages (JSP). These technologies form part of the
Java Enterprise Edition (Java EE), although they can also be implemented in
systems that do not conform to the Java EE specification, such as Apache
Jakarta Tomcat. For more information, see the following web address:

http://jakarta.apache.org/tomcat/

You can find information about these technologies (including specifications) at
the following web addresses:

� Servlets:

http://www.oracle.com/technetwork/java/index-jsp-135475.html

� JSP:

http://java.sun.com/products/jsp/

In this book, we discuss Java EE 6, because this version is supported by
Rational Application Developer V8 and IBM WebSphere Application Server V8.
Java EE 6 supports the Servlet 3.0 and JSP 2.2 specifications. For full details
about Java EE 6, see the following website:

http://www.oracle.com/technetwork/java/javaee/overview/index.html
32 Rational Application Developer for WebSphere Software V8 Programming Guide

http://jakarta.apache.org/tomcat/
http://www.oracle.com/technetwork/java/index-jsp-135475.html
http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://www.oracle.com/technetwork/java/index-jsp-135475.html
http://java.sun.com/products/jsp/
http://www.oracle.com/technetwork/java/javaee/overview/index.html

Servlets
A servlet is a Java class that is managed by server software known as a Web
container (sometimes referred to as a servlets container or servlets engine). The
purpose of a servlet is to read information from an HTTP request, perform
processing, and generate dynamic content to be returned to the client in an
HTTP response.

The Servlet Application Programming Interface includes a class,
javax.servlet.http.HttpServlet, which can be subclassed by a developer.
The developer must override methods, such as the following methods, to handle
various types of HTTP requests (in these cases, POST and GET requests; other
methods are also supported):

public void doPost (HttpServletRequest request, HttpServletResponse
response)
public void doGet (HttpServletRequest request, HttpServletResponse
response)

When an HTTP request is received by the Web container, it consults a
configuration file, known as a deployment descriptor, to establish which servlet
class corresponds to the URL provided. If the class is already loaded in the Web
container and an instance has been created and initialized, the Web container
invokes a standard method on the servlet class:

public void service (HttpServletRequest request, HttpServletResponse
response)

The service method, which is inherited from HttpServlet, examines the HTTP
request type and delegates processing to the doPost or doGet method, as
appropriate. One of the responsibilities of the Web container is to package the
HTTP request received from the client as an HttpServletRequest object and to
create an HttpServletResponse object to represent the HTTP response that will
ultimately be returned to the client.

Within the doPost or doGet method, the servlet developer can use the wide
range of features available within Java, such as database access, messaging
systems, connectors to other systems, or Enterprise JavaBeans (EJBs).

If the servlet has not already been loaded, instantiated, and initialized, the Web
container is responsible for carrying out these tasks. The executing method
performs the initialization step:

public void init ()

A corresponding method is called when the servlet is being unloaded from the
Web container:

public void destroy ()
 Chapter 2. Programming technologies 33

Within the code for the doPost and doGet methods, the following pattern is the
usual processing pattern:

1. Read information from the request. This step often includes reading cookie
information and getting parameters that correspond to fields in an HTML form.

2. Check that the user is in the appropriate state to perform the requested
action.

3. Delegate the processing of the request to the appropriate type of business
object.

4. Update the user’s state information.

5. Dynamically generate the content to be returned to the client.

The last step might be carried out directly in the servlet code by writing HTML to
a PrintWriter object obtained from the HttpServletResponse object:

PrintWriter out = response.getWriter();
out.println("<html><head><title>Page title</title></head>");
out.println("<body>The page content:");
//

Do not use this approach, because the embedding of HTML within the Java code
means that HTML page design tools, such as those provided by Rational
Application Developer, cannot be used. Also, development roles cannot be
separated easily. Java developers are forced to maintain HTML code. The
leading practice is to use a dedicated display technology, such as JSP, which we
cover next.

The Servlet 3.0 specification introduces the following changes by embracing the
Java EE 6 model:

� Annotations

Now available are annotations, such as @WebServlet, @ServletFilter, and
@WebServletContextListener. Annotations reduce web.xml configuration to
the point that it can be eliminated altogether.

� Web fragments

Introduces the idea of web fragments.

� Servlet context

Adds the ability to programmatically add Servlets, Filters, and Listeners
through the ServletContext.

� Deployment descriptors

Follows EJB 3.0 in making deployment descriptors completely optional.
34 Rational Application Developer for WebSphere Software V8 Programming Guide

JavaServer Pages (JSP)
JSP provide a server-side scripting technology that enables Java code to be
embedded within web pages, so JSP have the appearance of HTML or XML
pages with embedded Java code. When the page is executed, the Java code can
generate dynamic content to appear in the resulting web page. JSP are compiled
at run time into servlets that execute to generate the resulting HTML or XML.
Subsequent calls to the same JSP execute the compiled servlet.

JSP scripting elements are used to control the page compilation process, create
and access objects, define methods, and manage the flow of control. For more
information about these elements, see this website:

http://www.sentex.net/~pkomisar/J4/2_ProgrammingTech.html

The JSP scripting elements can be extended, using a technology known as tag
extensions (or custom tags), to allow the developer to make up new tags and
associate them with code that perform a wide range of tasks in Java. Tag
extensions are grouped in tag libraries, which we discuss shortly.

Several of the standard JSP tags are only provided in an XML-compliant version,
such as <jsp:useBean ... />. Others are available in both traditional form (for
example, <%= ... %> for JSP expressions) or XML-compliant form (for example,
<jsp:expression ... />). These XML-compliant versions have been introduced
to allow JSP to be validated using XML validators.

JSP generate HTML output by default. The Multipurpose Internet Mail
Extensions (MIME) type is text/html. It might be desirable to produce XML
(text/xml) instead in certain situations. For example, a developer might want to
produce XML output, which can then be converted to HTML for web browsers,
Wireless Markup Language (WML) for wireless devices, or VoiceXML for
systems with a voice interface. Servlets can also produce XML output in this way.
The content type returned is set by using a method on the HttpServletResponse
object.

The JSP 2.1 specification now defines annotations for dependency injection on
JSP tag handlers and context listeners. Moreover, the Unified Expression
Language (UEL) has the following key additions:

� A pluggable API resolves variable references into Java objects and resolves
the properties applied to these Java objects.

� Support is added for deferred expressions, which can be evaluated by a tag
handler when needed.

� Support for Ivalue expression. A UEL expression used as an Ivalue
represents a reference to a data structure.
 Chapter 2. Programming technologies 35

http://www.sentex.net/~pkomisar/J4/2_ProgrammingTech.html

Tag libraries
Tag libraries are a standard way of packaging tag extensions for applications
using JSP.

Tag extensions address the problem that arises when a developer wants to use
non-trivial processing logic within a JSP. Java code can be embedded directly in
the JSP using the standard tags described before. The mixture of HTML and
Java makes it difficult to separate development responsibilities (the HTML/JSP
designer has to maintain the Java code) and makes it hard to use appropriate
tools for the tasks (a page design tool will not provide the same level of support
for Java development as a Java development tool). This is essentially the reverse
of the problem described when discussing servlets.

To address this problem, developers have documented the View Helper design
pattern, as described in Core J2EE Patterns: Best Practices and Design
Strategies by Crupi, et al. You can find the pattern catalog in this book at the
following web address:

http://java.sun.com/blueprints/corej2eepatterns

Tag extensions are the standard way of implementing View Helpers for JSP.
By using tag extensions, a Java developer can create a class that implements
specific view-related logic. This class can be associated with a particular JSP tag
using a Tag Library Descriptor (TLD). The TLD can be included in a web
application, and the tag extensions defined within it can then be used in a JSP.
The JSP designer can use these tags in exactly the same way as other standard
JSP tags. The JSP specification includes classes that can be used as a basis for
tag extensions and a simplified mechanism for defining tag extensions that does
not require detailed knowledge of Java.

Many convenient tags are provided in the JSP Standard Tag Library (JSTL),
which includes several tag libraries:

� Core tags: Flow control (such as loops and conditional statements) and
various general-purpose actions

� XML tags: Allow XML processing within a JSP

� Formatting tags: Internationalized data formatting

� SQL tags: Database access for querying and updating

� Function tags: Various string handling functions

Tag libraries are also available from other sources, such as those from the
Jakarta Taglibs project at the following address:

http://jakarta.apache.org/taglibs/
36 Rational Application Developer for WebSphere Software V8 Programming Guide

http://jakarta.apache.org/taglibs/
http://java.sun.com/blueprints/corej2eepatterns
http://java.sun.com/blueprints/corej2eepatterns

Additionally, new tag libraries can be developed to suit specific web application
needs.

Expression Language
Expression Language (EL) was originally developed as part of the JSTL, but it is
now a standard part of JSP (from JSP 2.0). EL provides a standard way of writing
expressions within a JSP using implicit variables, objects available in the various
scopes within a JSP and standard operators. In JSP 2.1, EL was updated to
Unified Expression Language (UEL).

Filters
Filters are objects that can transform a request or modify a response. They can
process the request before it reaches a servlet or process the response leaving a
servlet before it is finally returned to the client. A filter can examine a request
before a servlet is called and can modify the request and response headers and
data by providing a customized version of the request or response object that
wraps the real request or response. The deployment descriptor for a web
application, or the @ServletFilter annotation, is used to configure specific filters
for a particular servlet or JSP. Filters can also be linked together in chains.

Life-cycle listeners
Life-cycle events enable listener objects to be notified when servlet contexts and
sessions are initialized and destroyed, as well as when attributes are added or
removed from a context or session.

Any listener interested in observing the ServletContext life cycle can implement
the ServletContextListener interface, which has two methods, contextInitialized
(called when an application is first ready to serve requests) and
contextDestroyed (called when an application is about to shut down).

A listener interested in observing the ServletContext attribute life cycle can
implement the ServletContextAttributesListener interface, which has three
methods, attributeAdded (called when an attribute is added to the
ServletContext), attributeRemoved (called when an attribute is removed from the
ServletContext), and attributeReplaced (called when an attribute is replaced by
another attribute in the ServletContext).

Similar listener interfaces exist for HttpSession and ServletRequest objects:

� javax.servlet.http.HttpSessionListener: HttpSession life-cycle events

� javax.servlet.HttpSessionAttributeListener: Attributes events on an
HttpSession

� javax.servlet.HttpSessionActivationListener: Activation or passivation of
an HttpSession
 Chapter 2. Programming technologies 37

� javax.servlet.HttpSessionBindingListener: Object binding on an
HttpSession

� javax.servlet.ServletRequestListener: Processing of a ServletRequest
has begun

� javax.servlet.ServletRequestAttributeListener: Attribute events on a
ServletRequest

Requirements for the development environment
The development environment has the following requirements:

� Wizards for creating servlets, JSP, listeners, filters, and tag extensions

� An editor for JSP that enables the developer to use all the features of JSP in
an intuitive way, focusing mainly on page design

� An editor for web deployment descriptors allowing these components to be
configured

� Validators to ensure that all the technologies are being used correctly

� A test environment that allows dynamic web applications to be tested and
debugged

� Support in a Java editor for Servlet 3.0 annotations

Rational Application Developer includes all these features. Figure 2-1 shows the
interaction between the web components and a relational database, as well as
the desktop application that is described in 2.1, “Desktop applications” on
page 18.

Figure 2-1 Web application interaction

Web
Browser

Relational
Database

Java
Servlet

JavaServer
Page

JavaBean

Desktop
Application

Web
Application

Java
Application
38 Rational Application Developer for WebSphere Software V8 Programming Guide

Struts
Struts was introduced as a way of providing developers with a model view
controller (MVC) framework for applications using the Java web technologies,
servlets and JSP. Complete information about Struts is available at this website:

http://struts.apache.org/

Also, consult Rational Application Developer V7.5 Programming Guide,
SG24-7672, for information about Struts.

2.2.4 JavaServer Faces and persistence using JPA

When we build a GUI for stand-alone Java applications, we can include
event-handling code, so that when UI events take place, they can be used
immediately to perform business logic processing or update the UI. Users are
familiar with this type of behavior in desktop applications, but the nature of web
applications has made this difficult to achieve using a browser-based interface.
The user interface provided through HTML is limited, and the request-response
style of HTTP does not naturally lead to flexible, event-driven user interfaces.

Many applications require access to data, and there is often a requirement to
represent this data in an object-oriented way within applications. Many tools and
frameworks exist for mapping between data and objects, but often these methods
are proprietary or excessively complex systems.

In the RedBank web application, we want to make the user interface richer, while
using the MVC architecture. In addition, developers want a simple, lightweight,
and object-oriented database access system, which will remove the need for
direct JDBC coding.

JavaServer Faces
JavaServer Faces (JSF) is a framework for developing Java web applications.
The JSF framework aims to unify techniques for solving a number of common
problems in web application design and development, including:

� User interface development: JSF allows direct binding of UI components to
model data. It abstracts request processing into an event-driven model.
Developers can use extensive libraries of prebuilt UI components that provide
both basic and advanced web functionality.

� Navigation: JSF introduces a layer of separation between business logic and
the resulting UI pages; stand-alone flexible rules drive the flow of pages.

� Session and object management: JSF manages designated model data
objects by handling their initialization, persistence over the request cycle, and
cleanup.
 Chapter 2. Programming technologies 39

http://struts.apache.org/

� Validation and error feedback: With JSF, reusable validators can be directly
bound to UI components. The framework also provides a queue mechanism
to simplify error and message feedback to the application user. These
messages can be associated with specific UI components.

� Globalization: JSF provides tools for globalizing web applications, supporting
number, currency, time, and date formatting, and externalizing UI strings.

� Extensibility: JSF is extended easily in a variety of ways to suit the
requirements of your particular application. You can develop custom
components, renderers, validators, and other JSF objects and register them
with the JSF run time.

For more information about JSF framework, see the following web address:

http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.ht
ml

JSF and Java Persistence API
Rational Application Developer provides comprehensive tooling to develop JSF
applications that use Java Persistence API (JPA) for persistence in relational
databases.

See Chapter 10, “Persistence using the Java Persistence API” on page 443, for
information about JPA, and Chapter 19, “Developing web applications using
JavaServer Faces” on page 1057, for an example of a JSF application with JPA.

Figure 2-2 shows how JSF and JPA can be used to create a flexible, powerful
MVC-based web application with simple database access.

Figure 2-2 JSF and JPA

Web
Browser

JSF
Servlet

Relational
Database

JSP
using JSF

JPA
Manager

Bean

JPA
Entity

Entity
Manager
40 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html

2.2.5 Web 2.0 development

Rational Application Developer comes with features to aid the development of
responsive, rich Internet applications. Here, we briefly touch upon a few key
technologies for developing Web 2.0 applications. We describe this information in
more detail in Chapter 20, “Developing web applications using Web 2.0” on
page 1097.

For more information about Web 2.0 development, see the IBM Redbooks
publication Building Dynamic Ajax Applications Using WebSphere Feature Pack
for Web 2.0, SG24-7635.

Ajax
Ajax is an acronym for Asynchronous JavaScript and XML. Ajax is a Web 2.0
development technique used for creating interactive web applications. The intent
is to make web pages feel more responsive by exchanging small amounts of data
with the server in the background without causing the page to reload in the
browser. This is achieved by applying two techniques: sending asynchronous
requests to the server for data or services, and using JavaScript to manipulate
the DOM in order to change portions of the web page that need updates.

Figure 2-3 on page 42 illustrates the overall Ajax interaction between the client
browser and the server.
 Chapter 2. Programming technologies 41

Figure 2-3 Ajax overview

The following example shows a typical user interaction that is implemented with
Ajax:

1. JavaScript functional invocation

In response to a user action, such as clicking a button, certain JavaScript
functions are invoked. The JavaScript code can do many things, which, in
general, fall into two categories: modifying the DOM to change the
presentation of the web page and invoking services via XMLHttpRequest.

2. Submitting XMLHttpRequest

Many user interactions require the involvement of the server. An
XMLHttpRequest is a request sent from the client to the server. The request is
asynchronous; that is, the client does not block waiting for the server
response. For instance, the user might be logging in, which can be handled
with Ajax. The JavaScript code collects the user ID and password from the
login form using the DOM API and then sends an XMLHttpRequest to the
particular URL for authentication service.

3. Server-side processing

From the server’s point of view, XMLHttpRequests are identical to HTTP
requests that are submitted by the browser directly. In this step, the
server-side code processes the requests normally and produces the

HTTP Request

XML Response

Client Server-side

XMLHttpRequest
send()/callback()

JavaScript
function

invocation

DOM
updates

DOM/User Interface Data Stores

Updates

WebSphere
Application Server
42 Rational Application Developer for WebSphere Software V8 Programming Guide

appropriate HTTP response. However, special considerations must be given
to the format (MIME type) of the responses so that the services are
consumable by Ajax clients. JavaScript Object Notation (JSON)
(application/json) is the most widely used data format for such purposes.
Other choices include XML (text/xml), Atom (application/atom+xml), and text
(text/plain).

4. XMLHttpRequest.callback

When the server response is received by the client, the Ajax callback function
is invoked. The callback technique is necessary because of the asynchronous
nature of XMLHttpRequest. As part of processing the response, the
JavaScript function can take the response values and update the page (by
changing or updating the DOM).

For more information about Ajax, see the following web address:

http://www.ibm.com/developerworks/ajax

Representational State Transfer (REST)
REST services are widely regarded as the technology of choice for building the
services layer in Web 2.0 applications. Representational State Transfer (REST) is
a collection of software architecture principles to build services according to a
resource-centered design paradigm.

REST is based on HTTP. This reliance on existing standards makes REST easier
to learn and simpler to use than most other Web-based messaging standards,
because little additional overhead is required to enable effective information
exchange.

The REST principle uses uniform resource identifiers (URIs) to locate and
access a given representation of a resource. The resource representation,
known as representational state, can be created, retrieved, modified, or deleted.

A REST-based conversation operates within stateless conversations, thereby
making it a prime facilitator for subscription-based technologies, such as RSS,
RDF, OWL, and Atom, in which content is delivered to pre-subscribed clients.

For more information about REST, see the following web address:

http://www.ibm.com/developerworks/webservices/library/ws-restful/index.
html

JavaScript Object Notation
JavaScript Object Notation (JSON) is a lightweight data-interchange format. It is
easy to read and write and is supported natively by JavaScript. It is based on a
 Chapter 2. Programming technologies 43

http://www.ibm.com/developerworks/ajax
http://www.ibm.com/developerworks/webservices/library/ws-restful/index.html
http://www.ibm.com/developerworks/webservices/library/ws-restful/index.html

subset of the JavaScript Programming Language and is built on two structures: a
collection of name/value pairs and an ordered list of values.

Because of native support by JavaScript, and compact syntax, JSON is the
primary choice for data format in REST services.

For further information about JSON, see the following web address:

http://www.json.org

Dojo
The Dojo Toolkit is a powerful open-source JavaScript library that can be used to
create rich user interfaces running within a browser. The library requires no
browser-side runtime plug-in and runs natively on all major browsers. This is a
boon for JavaScript developers, because it helps abstract away the eccentricity of
separate browser implementations.

We describe Dojo Toolkit in more detail in Chapter 20, “Developing web
applications using Web 2.0” on page 1097.

For more information about Dojo Toolkit, see the following web address:

http://www.dojotoolkit.org/

2.2.6 Portal applications

Portal applications run on a portal server and consist of portal pages that are
composed of portlets. Portlets can share and exchange resources and
information to provide a seamless web interface.

Portal applications have several important features:

� They can collect content from a variety of sources and present the content to
the user in a single unified format.

� The presentation can be personalized so that each user sees a view based
on that user’s own characteristics or role.

� The presentation can be customized by the user to fulfill the user’s specific
needs.

� They can provide collaboration tools, which allow teams to work in a virtual
office.

� They can provide content to a range of devices, formatting and selecting the
content appropriately according to the capabilities of the device.

In the context of our sample scenario, we can use a portal application to enhance
the user experience. The RedBank web application can be integrated with the
44 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.dojotoolkit.org/
http://www.json.org

static web content providing information about branches and bank services. If the
customer has credit cards, mortgages, personal loans, savings accounts, shares,
insurance, or other products provided by the bank or business partners, they can
also be seamlessly integrated into the same user interface, providing the
customer with a convenient single point of entry to all these services.

The content of these applications can be provided from a variety of sources, with
the portal server application collecting the content and presenting it to the user.
The user can customize the interface to display only the required components,
and the content can be varied to allow the customer to connect using a web
browser, personal digital assistant (PDA), or mobile phone.

Within the bank, the portal can also be used to provide convenient intranet
facilities for employees. Sales staff can use a portal to receive information about
the latest products and special offers, information from human resources, leads
from colleagues, and so on.

IBM WebSphere Portal
WebSphere Portal runs on top of WebSphere Application Server, using the Java
EE standard services and server management capabilities as the basis for portal
services. WebSphere Portal provides its own deployment, configuration,
administration, and communication features.

Java Portlet Specifications
Based on its history, the following portlet specifications are in use:

� IBM Portlet API

The IBM Portlet API is being deprecated for WebSphere Portal V6.0, but it is
still supported. Because no new functionality will be added, use the Standard
Portlet API. See the following web address:

http://publib.boulder.ibm.com/infocenter/wpdoc/v6r0

� JSR 168 Portlet Specification

The JSR 168 Portlet Specification defines a set of APIs for portal computing
addressing the areas of aggregation, personalization, presentation, and
security. See the following web address:

http://www.jcp.org/en/jsr/detail?id=168

� JSR 286 Portlet Specification 2.0

Since its release in 2003, JSR 168 has gone through many real-life tests in
portal development and deployment. Gaps identified by the community take
time to evolve and become available to the public as a standard. Meanwhile,
many portal vendors have been filling those gaps with their own custom
 Chapter 2. Programming technologies 45

http://publib.boulder.ibm.com/infocenter/wpdoc/v6r0
http://www.jcp.org/en/jsr/detail?id=168
http://publib.boulder.ibm.com/infocenter/wpdoc/v6r0

solutions, which unfortunately cause portlets not to be portable. That is the
major reason for a new standard. See the following web address:

http://www.jcp.org/en/jsr/detail?id=286

Requirements for the development environment
The development environment must provide wizards for creating portal
applications and the associated components and configuration files, as well as
editors for all these files. A test environment is required to allow portal
applications to be executed and debugged.

Rational Application Developer includes the required tooling and is compatible
with WebSphere Portal V6.1 and V7.0 unit test environments.

Figure 2-4 shows how portal applications fit in with the other technologies that
are mentioned in this chapter.

Figure 2-4 Portal applications

2.3 Enterprise JavaBeans and Java Persistence API

Now that the RedBank web application is up and running, more issues arise.
Several of these issues relate to the services provided to customers and bank
workers, and other issues relate to the design, configuration, and functionality of
the systems that perform the back-end processing for the application.

WebSphere
Portal

Web
Browser

PDA
Mobile
Phone

Security
Services

Portal Portal Portal Portal

Web
Application

Web
Service

Collaboration
Application

Legacy
Application
46 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.jcp.org/en/jsr/detail?id=286
http://www.jcp.org/en/jsr/detail?id=286

First, we want to provide the same business logic in a new application that will be
used by administration staff working in the bank’s offices. We want the ability to
reuse the code that has already been generated for the RedBank web application
without introducing the overhead of having to maintain several copies of the
same code. Integration of these business objects into a new application must be
made as simple as possible.

Next we want to reduce development time by using an object-relational mapping
system that will provide an in-memory, object-oriented view of data from the
relational database view automatically, and provide convenient mapping tools to
set up the relationships between objects and data. This system must be capable
of dealing with distributed transactions, because the data might be located on
several databases around the bank’s network.

Because we are planning to make business logic available to multiple
applications simultaneously, we want a system that will manage issues, such as
multithreading, resource allocation, and security so that developers can focus on
writing business logic code without having to worry about these infrastructure
matters.

Finally, the bank has existing systems, not written in Java, which we want to
update to use the new functionality provided by these business objects. We want
to use a technology that can allow this type of interoperability between separate
platforms and languages.

We can get all this functionality by using EJB and the JPA to provide our
back-end business logic and access to data. Later, we show how EJB can help
you to integrate messaging systems and web services clients with the application
logic.

2.3.1 EJB 3.1 specification: What is new

EJB 3.x is a major enhancement to the EJB specification, introducing a new plain
old Java object (POJO)-based programming model that greatly simplifies
development of Java EE applications. Java EE 5 provided EJB 3.0 and Java EE 6
EJB 3.1. EJB 3.x offers the following major features:

� EJB components are now POJOs that expose regular business interfaces
(plain old Java interfaces (POJI)), and there is no requirement for home
interfaces.

� The deployment descriptor information is replaced by annotations.

� A completely new persistence model, Java Persistence API (JPA), is
provided, which complements EJB 2.x entity beans.
 Chapter 2. Programming technologies 47

� An Interceptor facility invokes user methods at the invocation of business
services or at life-cycle events.

� EJB 3.x adopts an annotation-based dependency injection pattern to obtain
Java EE resources (JDBC data sources, Java Message Service (JMS)
factories and queues, and EJB references).

� Default values are provided whenever possible (“configuration by exception”
approach).

� The use of checked exceptions is reduced.

� All life-cycle methods are optional now.

In moving from EJB 3.0 to EJB 3.1, the improvements include a No-Interface
View for EJB components, Singleton EJBs, Async session bean invocation,
simplified packaging of EJB components, and a Java EE profile called EJB Lite.
For more information about EJB 3.x and JPA, see these resources:

� Chapter 10, “Persistence using the Java Persistence API” on page 443

� Chapter 12, “Developing Enterprise JavaBeans (EJB) applications” on
page 577

� WebSphere Application Server Version 6.1 Feature Pack for EJB 3.0,
SG24-7611.

� Enterprise JavaBeans Technology

http://www.oracle.com/technetwork/java/index-jsp-140203.html

2.3.2 Types of EJBs

In this section, we describe two types of EJB 3.x: session beans (stateless and
stateful) and message-driven beans (MDBs).

Session beans
Session beans are task-oriented objects, which are invoked by client code. They
are non-persistent and do not survive an EJB container shutdown or crash.

Session beans often act as the external face of the business logic provided by an
EJB. The session facade pattern, described in many pattern catalogs, including
Core J2EE Patterns: Best Practices and Design Strategies by Crupi, et al.,
describes this idea. The client application that needs to access the business logic
provided by an EJB sees only session beans. The low-level details of the
persistence mechanism are hidden behind these session beans (the session

Entity beans: Entity beans as specified in EJB specification 2.x have been
replaced by Java Persistence API entities.
48 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.oracle.com/technetwork/java/index-jsp-140203.html

bean layer is known as the session facade). As a result, the session beans that
make up this layer are often closely associated with a particular application and
might not be reusable between applications.

It is also possible to design reusable session beans, which might represent a
common service that can be used by many applications.

Stateless session beans
Stateless session beans are the preferred type of session bean, because they
generally scale better than stateful session beans. Stateless beans are pooled by
the EJB container to handle multiple requests from multiple clients. To permit this
pooling, stateless beans cannot contain any state information that is specific to a
particular client. Because of this restriction, all instances of a stateless bean are
equivalent, allowing the EJB container to assign an instance to any client.
Stateless session beans are marked with the @Stateless annotation and the
business interface is annotated with the @Local (default) or @Remote
annotation.

Stateful session beans
Stateful session beans are useful when an EJB client needs to call several
methods and store state information in the session bean between calls. Each
stateful bean instance must be associated with exactly one client, so the
container is unable to pool stateful bean instances. Stateful session beans are
annotated with the @Stateful annotation.

Singleton session beans
Singleton session beans follow the Singleton design pattern allowing for only one
instance per JVM. They are similar to stateless session beans, because they
hold no conversation state between clients and can be used by any client. They
differ from both stateless and stateful session beans, because the Singleton
instance is shared between multiple clients and therefore must support
concurrent access.

Message-driven beans (MDBs)
MDBs receive and process messages. They can be accessed only by sending a
message to the messaging server to which the bean is configured to listen.
MDBs are stateless and can be used to allow asynchronous communication
between client EJB logic by using a type of messaging system. MDBs are
normally configured to listen to JMS resources, although since EJB 2.1, other
messaging systems are also supported.

MDBs are normally used as adapters to allow logic provided by session beans to
be invoked by using a messaging system. As such, they can be thought of as an
asynchronous extension of the session facade concept described before, known
 Chapter 2. Programming technologies 49

as the message facade pattern. Message-driven beans can only be invoked in
this way and therefore have no specific client interface. Message-driven EJBs are
annotated with the @MessageDriven annotation.

2.3.3 Java Persistence API

The JPA provides an object-relational mapping facility for managing relational
data in Java applications. Entity beans as specified in the EJB 2.x specification
have been replaced by JPA entity classes. These classes are annotated with the
@Entity annotation. Entities can either use persistent fields (mapping annotation
is applied to an entity’s instance variables) or persistent properties (mapping
annotation is applied to getter methods for JavaBeans-style properties). All fields
of an entity not annotated with the @Transient annotation or not marked with the
transient Java keyword will be persisted to the data store. The object-relational
mapping annotation must be applied to the instance variables. The primary key
field is annotated with the @Id annotation.

Entity relationships have the following types of multiplicities:

� One-to-one (@OneToOne): Each entity instance is related to a single instance of
another entity.

� One-to-many (@OneToMany): An entity instance can be related to multiple
instances of the other entities.

� Many-to-one (@ManyToOne): Multiple instances of entity can be related to a
single instance of another entity.

� Many-to-many (@ManyToMany): The entity instances can be related to multiple
instances of each other.

Entities are managed by the Entity Manager. The Entity Manager is an instance
of javax.persistence.EntityManager and is associated with a persistence
context. A persistence context defines the scope under which particular entity
instances are created, persisted, and removed. The EntityManager API provides
functionality to allow a developer to create and remove persistent entity
instances, find an entity by its primary key, and allow queries to be run on
entities.

The following Entity Managers are available:

� Container-managed Entity Manager

The persistence context is automatically propagated by the container to all
application components that use the EntityManager instance within a single
Java Transaction API (JTA) transaction. To obtain an EntityManager instance,
inject the Entity Manager into the application component:

@PersistenceContext
50 Rational Application Developer for WebSphere Software V8 Programming Guide

EntityManager em;

� Application-managed Entity Manager

This Entity Manager is used when applications need to access a persistence
context that is not propagated with the JTA transaction across EntityManager
instances in a particular persistence unit. In this case, each EntityManager
creates a new, isolated persistence context.

To obtain an EntityManager instance, inject an EntityManagerFactory into the
application component by means of the @PersistenceUnit annotation:

@PersistenceUnit
EntityManagerFactory emf;

Then obtain an EntityManager from the EntityManagerFactory instance:

EntityManager em = emf.createEntityManager();

2.3.4 Other EJB and JPA features

In this section, we describe other EJB features not discussed previously.

Java Persistence Query Language
The Java Persistence API specifies a query language that allows a developer to
define queries over entities and their persistent states. The Java Persistence
Query Language (JPQL) provides a way to specify the semantics of queries in a
portable way, independent of the particular database used in the enterprise
environment.

JPQL is an extension of the EJB query language (EJB QL) and combines the
syntax and simple query semantics of SQL with the expressiveness of an
object-oriented expression language.

For more information about JPQL, see the Java EE 6 Tutorial at the following
address:

http://download.oracle.com/javaee/6/tutorial/doc/bnbtg.html

EJB timer service
The EJB timer service was introduced with EJB 2.1. A bean provider can choose
to implement the javax.ejb.TimedObject interface, which requires the
implementation of a single method, ejbTimeout. The bean creates a Timer object
by using the TimerService object obtained from the bean’s EJBContext. After the
Timer object has been created and configured, the bean will receive messages
from the container according to the specified schedule; the container calls the
ejbTimeout method at the appropriate interval.
 Chapter 2. Programming technologies 51

http://download.oracle.com/javaee/6/tutorial/doc/bnbtg.html

In EJB 3.x, instead of implementing the javax.ejb.TimedObject interface, the
method that gets called by the timer service can be annotated with the @Timeout
annotation only.

Requirements for the development environment
The development environment must provide wizards for creating the various
types of EJBs, tools for mapping JPA entities to relational database systems, and
test facilities.

Rational Application Developer provides all these features.

Figure 2-5 shows how EJB components work with other technologies that we
have already discussed.

Figure 2-5 EJB as part of an enterprise application

2.4 Web services

The bank’s computer system is now quite sophisticated and includes the
following items:

� A database to store the bank’s data

� A Java application that allows bank employees to access the database

JMS
Provider

Message-
Driven
Bean

Java
Servlet

JavaServer
Page

JavaBean
Session

Bean
Web

Browser

JPA
Entity

Entity
Manager

Relational
Database
52 Rational Application Developer for WebSphere Software V8 Programming Guide

� A static website that provides information about the bank’s branches,
products, and services

� A web application that provides Internet banking facilities for customers, with
various technology options available

� An EJB back end that provides the following access:

– Centralized access to the bank’s business logic through session beans

– Transactional, object-oriented access to data in the bank’s database
through JPA entities

� A Java EE application client that can use the business logic in session beans

2.4.1 Interoperatility considerations

So far, everything is quite self-contained. Although clients can connect from the
web to use the Internet banking facilities, the business logic is all contained
within the bank’s systems, and even the Java application and Java EE application
client are expected to be within the bank’s private network.

The next step in developing our service is to enable mortgage agents, who
search many mortgage providers to find the best deal for their customers, to
access business logic provided by the bank to get the latest mortgage rates and
repayment information. While we want to enable this capability, we do not want to
compromise security. We must consider the fact that the mortgage brokers might
not be using systems based on Java at all.

The League of Agents for Mortgage Enquiries has published a description of
services that its members might use to get this type of information. We want to
conform to this description to allow the maximum number of agents to use our
bank’s systems.

We might also want the ability to share information with other banks. For
example, we might want to exchange information about funds transfers between
banks. Standard mechanisms to perform these tasks have been provided by the
relevant government body.

These issues are all related to interoperability, which is the domain addressed by
web services. By using web services, we can enable all these separate types of
communication between systems. We can use our existing business logic where
applicable and develop new web services easily where necessary.
 Chapter 2. Programming technologies 53

2.4.2 Web services in Java EE 6

Web services provide a standard means of communication among separate
software applications. Because of the simple foundation technologies used in
enabling web services, it is easy to call a web service, regardless of the platform,
operating system, language, or technology used to implement it.

A service provider creates a web service and publishes its interface and access
information to a service registry (or service broker). A service requestor locates
entries in the service registry and then binds to the service provider to invoke its
web service.

Web services use the following standards:

SOAP A protocol for exchanging XML-based messages over
computer networks, normally using HTTP or HTTPS

Web Services Description Language (WSDL)
Describes web service interfaces and access information

Universal Description, Discovery, and Integration (UDDI)
A standard interface for service registries, which allows an
application to find organizations and services

The specifications for these technologies are available at the following web
addresses:

� w3/SOAP

http://www.w3.org/TR/soap/

� w3/wsdl

http://www.w3.org/TR/wsdl

� uddi.xml.org

http://uddi.xml.org
54 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.w3.org/TR/soap/
http://www.w3.org/TR/wsdl
http://uddi.xml.org
http://uddi.xml.org

Figure 2-6 shows how these technologies fit together.

Figure 2-6 Web services foundation technologies

Since the release of Java EE 1.4, web services are included in the specification.
Therefore, all Java EE application servers that support Java EE 1.4 or later have
the same standard level of support for web services, and certain Java EE
application servers that support Java EE 1.4 or later also provide enhancements,
as well.

Java EE 6 provides full support for both clients of web services and web services
providers. The following Java technologies work together to provide support for
web services:

� Java API for XML Web Services (JAX-WS) 2.2

JAX-WS is the primary API for web services and is a follow-on to the Java API
for XML-based Remote Procedure Call (JAX-RPC). JAX-WS offers extensive
web services functionality with the help of Java annotations, with support for
multiple bindings/protocols, and RESTful web services. JAX-WS and
JAX-RPC are fully interoperable when using SOAP 1.1 over the HTTP

WebSphere Service Registry and Repository: WebSphere Service
Registry and Repository is the recommended implementation of a Web
Services Registry in place of Universal Description, Discovery, and Integration
(UDDI).

Web Service
Registry

S
e

a
rc

h
R

e
tr

ie
ve

Web
Service
Client

Register
Locate

Web Service

Web
Service

Description

Create

Reference

UDDI
SOAP
WSRR

Communicate

SOAP

Use
 Chapter 2. Programming technologies 55

protocol as constrained by the WS-I basic profile specification. For more
information, see the following web address:

http://www.jcp.org/en/jsr/detail?id=224

� Java Architecture for XML Binding (JAXB) 2.0

JAXB provides a convenient way to bind an XML schema to a representation
in Java code. This support makes it easy to incorporate XML data and
processing functions in Java applications without having to know much about
XML itself. For more information, see the following web address:

http://www.jcp.org/en/jsr/detail?id=222

� SOAP with Attachments API for Java (SAAJ) 1.3

SAAJ describes the standard way to send XML documents as SOAP
documents over the Internet from the Java platform. It supports SOAP 1.2.
For more information, see the following web address:

http://www.jcp.org/en/jsr/detail?id=67

� Streaming API for XML (StAX) 1.0

StAX is a streaming Java-based, event-driven, pull-parsing API for reading
and writing XML documents. StAX enables you to create bidirectional XML
parsers that are fast, relatively easy to program, and have a light memory
footprint. For more information, see the following web address:

http://www.jcp.org/en/jsr/detail?id=173

� Web Services Metadata for the Java Platform

The Web Services Metadata specification defines Java annotations that make
it easier to develop web services. This specification and JAX-WS together
provide a comprehensive set of annotations for Java web service and web
service client implementations. For more information, see the following web
address:

http://www.jcp.org/en/jsr/detail?id=186

� Java API for XML Registries (JAXR) 1.0

JAXR provides client access to XML registry and repository servers. For more
information, see the following web address:

http://www.jcp.org/en/jsr/detail?id=93

� Java API for XML Web Services Addressing (JAX-WSA) 1.0

JAX-WSA is an API and framework for supporting transport-neutral
addressing of web services. For more information, see the following web
address:

http://www.jcp.org/en/jsr/detail?id=261
56 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.jcp.org/en/jsr/detail?id=224
http://www.jcp.org/en/jsr/detail?id=222
http://www.jcp.org/en/jsr/detail?id=67
http://www.jcp.org/en/jsr/detail?id=173
http://www.jcp.org/en/jsr/detail?id=186
http://www.jcp.org/en/jsr/detail?id=93
http://www.jcp.org/en/jsr/detail?id=261
http://www.jcp.org/en/jsr/detail?id=224
http://www.jcp.org/en/jsr/detail?id=222
http://www.jcp.org/en/jsr/detail?id=67
http://www.jcp.org/en/jsr/detail?id=173

� SOAP Message Transmission Optimization Mechanism (MTOM)

MTOM enables SOAP bindings to optimize the transmission or wire format of
a SOAP message by selectively encoding portions of the message, while still
presenting an XML infoset to the SOAP application.

For more information, see the following web address:

http://www.w3.org/TR/soap12-mtom/

� Web Services Reliable Messaging (WS-RM)

WS-RM is a protocol that allows messages to be delivered reliably between
distributed applications in the presence of software component, system, or
network failures. For more information, see the following web address:

http://www.ibm.com/developerworks/library/specification/ws-rm/

� Web Services for Java EE

Web Services for Java EE defines the programming and deployment model
for web services in Java EE. It includes details of the client and server
programming models, handlers (a similar concept to servlet filters),
deployment descriptors, container requirements, and security. For more
information, see the following web addresses:

– JSR 109

http://www.jcp.org/en/jsr/detail?id=109

– JSR 921

http://www.jcp.org/en/jsr/detail?id=921

Because interoperability is a key goal in web services, an open, industry
organization, which is known as the Web Services Interoperability Organization
(WS-I), has been created to allow interested parties to work together to maximize
the interoperability between web services implementations.

WS-I has produced the following set of interoperability profiles:

� WS-I Basic Profile 1.1

http://ws-i.org/Profiles/BasicProfile-1.1.html

� WS-I Simple SOAP Binding Profile 1.0

http://ws-i.org/Profiles/SimpleSoapBindingProfile-1.0.html

� WS-I Basic Security Profile 1.0

WS-I: For more information about WS-I, see the following website:

http://ws-i.org/
 Chapter 2. Programming technologies 57

http://ws-i.org/
http://ws-i.org/Profiles/SimpleSoapBindingProfile-1.0.html
http://www.w3.org/TR/soap12-mtom/
http://www.ibm.com/developerworks/library/specification/ws-rm/
http://www.jcp.org/en/jsr/detail?id=109
http://www.jcp.org/en/jsr/detail?id=921
http://ws-i.org/Profiles/BasicProfile-1.1.html
http://www.w3.org/TR/soap12-mtom/
http://www.jcp.org/en/jsr/detail?id=921
http://ws-i.org/Profiles/SimpleSoapBindingProfile-1.0.html
http://ws-i.org/Profiles/SimpleSoapBindingProfile-1.0.html

http://ws-i.org/Profiles/BasicSecurityProfile-1.0.html

� WS-I Attachments Profile 1.0

http://ws-i.org/Profiles/AttachmentsProfile-1.0.html

Requirements for the development environment
The development environment must provide facilities for creating web services
from existing Java resources, including JAX-WS and JAX-RPC service endpoint
implementations for stateless session EJB components and web components.
As part of the creation process, the tools must also produce the required
deployment descriptors and WSDL files. Editors must be provided for WSDL files
and deployment descriptors. The tooling must support and encourage the
development of WS-I interoperable web services.

The tooling must also allow skeleton web services to be created from WSDL files
and must provide assistance in developing web services clients, based on
information obtained from WSDL files.

A range of test facilities must be provided, so that a developer can test web
services and clients.

Rational Application Developer provides all this functionality.

Figure 2-7 on page 59 shows how the web services technologies fit into the
overall programming model.
58 Rational Application Developer for WebSphere Software V8 Programming Guide

http://ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://ws-i.org/Profiles/AttachmentsProfile-1.0.html

Figure 2-7 Web services

2.5 Messaging systems

The bank has several automatic teller machines (ATMs) with a user interface and
communication support. The ATMs are designed to communicate with the bank’s
central computer systems using a secure, reliable, highly scalable messaging
system. We want to integrate the ATMs with our system so that transactions
carried out at an ATM can be processed using the business logic we have
already implemented. Ideally, we also want the option of using EJB components
to handle the messaging for us.

Many messaging systems exist that provide these features. IBM’s solution in this
area is IBM WebSphere MQ, which is available on many platforms and provides
application programming interfaces in several languages. From the point of view
of our sample scenario, WebSphere MQ provides Java interfaces that we can
use in our applications. In particular, we consider the interface that conforms to
the JMS specification. The idea of JMS is similar to that of JDBC. A standard
interface provides a layer of abstraction for developers who want to use
messaging systems without being tied to a specific implementation.

Web Service
Web Service

Client
Web Service

Java
Servlet

JavaServer
Page

JavaBean
Session

Bean
Web

Browser

JPA
Entity

Entity
Manager

Relational
Database
 Chapter 2. Programming technologies 59

2.5.1 Java Message Service

JMS defines the following messaging, among other things:

� A messaging model

The structure of a JMS message and an API for accessing the information
contained within a message. The JMS interface is javax.jms.Message,
implemented by several concrete classes, such as javax.jms.TextMessage.

� Point-to-point (PTP) messaging

A queue-based messaging architecture, similar to a mailbox system. The
JMS interface is javax.jms.Queue.

� Publish/Subscribe (Pub/Sub) messaging

A topic-based messaging architecture, similar to a mailing list. Clients
subscribe to a topic and then receive any messages that are sent to the topic.
The JMS interface is javax.jms.Topic.

For more information about JMS, see the following web address:

http://www.oracle.com/technetwork/java/index-jsp-142945.html

2.5.2 Message-driven beans (MDBs)

MDBs were introduced into EJB 2.0, extended in EJB 2.1, and simplified in EJB
3.x. MDBs consume incoming messages sent from a destination or endpoint
system to which the MDB is configured to listen. From the point of view of the
message-producing client, it is impossible to tell how the message is being
processed, for example, whether by a stand-alone Java application, an MDB, or a
message-consuming application that is implemented in another language. This is
one of the advantages of using messaging systems. The message-producing
client is well decoupled from the message consumer (similar to web services in
this respect).

From a development point of view, MDBs are the simplest type of EJB, because
they do not have clients in the same sense as session and entity beans. The only
way to invoke an MDB is to send a message to the endpoint or destination to
which the MDB is listening. In EJB 2.0, MDBs only dealt with JMS messages, but
in EJB 2.1, this capability is extended to other messaging systems. The
development of an MDB differs depending on the messaging system being
targeted, but most MDBs are still designed to consume messages through JMS,
which requires the bean class to implement the javax.jms.MessageListener
interface, as well as javax.ejb.MessageDrivenBean.
60 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.oracle.com/technetwork/java/index-jsp-142945.html

A common pattern in this area is the message facade pattern, as described in
EJB Design Patterns: Advanced Patterns, Processes and Idioms by Marinescu.
You can download this book from the following web page:

http://www.theserverside.com/news/1369776/Free-Book-EJB-Design-Patterns

According to this pattern, the MDB acts as an adapter, receiving and parsing the
message, and then invoking the business logic to process the message using the
session bean layer.

2.5.3 Requirements for the development environment

The development environment must provide a wizard to create MDBs and
facilities for configuring the MDBs in a suitable test environment. The test
environment must also include a JMS-compliant server.

Testing MDBs is challenging, because they can only be invoked by sending a
message to the messaging resource to which the bean is configured to listen.
However, WebSphere Application Server V8.0 Beta, which is provided as a test
environment within Rational Application Developer, includes an embedded JMS
that can be used for testing purposes. A JMS client must be developed to create
the test messages.

Figure 2-8 shows how messaging systems and MDBs fit into the application
architecture.

Figure 2-8 Messaging systems

Message
Producer

Application

Messaging
Server

Web Service
Client

Web Service

Message-
Driven
Bean

Session
Bean

JPA
Entity

Entity
Manager

Relational
Database
 Chapter 2. Programming technologies 61

http://www.theserverside.com/news/1369776/Free-Book-EJB-Design-Patterns

2.6 OSGi applications

OSGi is a module system that is compatible with Java-based systems and
implements a dynamic component model. Enterprise systems can use OSGi to
improve the maintainability of runtime infrastructures. Applications, in the form of
bundles, can be remotely installed, started, stopped, updated, and uninstalled
without requiring a reboot.

2.6.1 OSGi features

OSGi tools include the following major features.

Support for OSGi Blueprint components
The OSGi Version 4.2 Blueprint component model defines a standard
dependency injection mechanism for Java components. The implementation is
derived from the Spring Framework and extended for OSGi to declaratively
register component interfaces as services in the OSGi service registry.

Model for assembling bundles
The OSGi tools include a model for assembling an application into a deployable
unit. The unit can consist of multiple bundles and includes the metadata that
describes the version and external location of the constituent bundles of the
application.

Runtime components
The OSGi tools support the development of OSGi applications that run in an
OSGi framework, exploiting enterprise Java technologies common in web
applications and integration scenarios including web application bundles, remote
services integration, and JPA.

Extensions
The OSGi tools include extensions that go beyond the OSGi Enterprise Expert
Group specifications to provide a more complete integration of OSGi modularity
with Java enterprise technologies. In particular, it delivers support that includes
but is not restricted to the following features:

� Isolated enterprise applications composed of multiple, versioned bundles with
dynamic life cycles

� Declarative transactions and security for Blueprint components

� Container-managed JPA for Blueprint components

� Message-driven Blueprint components
62 Rational Application Developer for WebSphere Software V8 Programming Guide

� Configuration of resource references in module Blueprint Services

� Annotation-based Blueprint configuration

� Federation of lookup mechanisms between local JNDI and the OSGi service
registry

� Fully declarative application metadata to enable reflection of an SCA
component type definition

2.6.2 Benefits of OSGi

OSGi modularity provides standard mechanisms to address the issues faced by
Java EE applications. The OSGi framework provides the following benefits:

� Applications are portable, easier to re-engineer, and adaptable to changing
requirements.

� The framework provides the declarative assembly and simplified unit test of
the Spring Framework, but in a standardized form that is provided as part of
the application server run time rather than being a third-party library deployed
as part of the application.

� The framework integrates with the Java EE programming model, giving you
the option of deploying a web application as a set of versioned OSGi bundles
with a dynamic life cycle.

� It supports the administration of application bundle dependencies and
versions, simplifying and standardizing third-party library integration.

� The framework provides isolation for enterprise applications that are
composed of multiple, versioned bundles with dynamic life cycles.

� It has a built-in bundle repository that can host common and versioned
bundles shared between multiple applications, so that each application does
not deploy its own copy of each common library.

� OSGi applications can access external bundle repositories.

� The framework reinforces service-oriented design at the module level.

� OSGi applications can be composed of coarse-grained SCA assemblies.

2.7 Other applications

This section addresses the following applications:

� Java EE application clients
� Enterprise information system applications
� Service Component Architecture applications
 Chapter 2. Programming technologies 63

� Session Initiation Protocol applications
� Communications Enabled Applications (CEA)

2.7.1 Java EE application clients

Java EE application clients are one of the four types of components defined in
the Java EE specification. The others are EJB, web components (servlets and
JSP), and Java applets. They are stand-alone Java applications that use
resources provided by a Java EE application server, such as EJB, data sources,
and JMS resources.

In the context of our banking sample application, we want to provide an
application for bank workers who are responsible for creating accounts and
reporting on the accounts held at the bank. Because a lot of the business logic
for accessing the bank’s database has been developed using EJB, we want to
avoid duplicating this logic in our new application. Using a Java EE application
client for this purpose allows us to develop a convenient interface, possibly a
GUI, while still allowing access to this EJB-based business logic. Even if we do
not want to use EJB components for business logic, with a Java EE application
client, we can access the data sources or JMS resources provided by the
application server and integrate with the security architecture of the server.

Required Java EE Client Container APIs

The Java EE 6 specification requires the following APIs to be provided to Java
EE application clients. Java Platform, Standard Edition 6.0 requires theses APIs:

� Java Interface Definition Language (IDL)
� Java Database Connectivity (JDBC) 4.0
� Java Remote Method Invocation over Internet Inter-Orb Protocol (RMI-IIOP)
� Java Naming and Directory Interface (JNDI)
� Java API for XML Processing (JAXP) 1.4
� Java Authentication and Authorization Service (JAAS)
� Java Management Extension (JMX)

The following additional packages are available:

� Enterprise JavaBeans 3.1 Client API
� Java Message Service 1.1
� JavaMail 1.4

Java EE: Information about Java EE is available from the following web
address:

http://www.oracle.com/technetwork/java/javaee/overview/index.html
64 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://www.oracle.com/technetwork/java/javaee/overview/index.html

� Java Activation Framework (JAF) 1.1
� Web Services 1.2
� Java API for XML-Based RPC (JAX-RPC) 1.1
� Java API for XML Web Services (JAX-WS) 2.2
� Java Architecture for XML Binding (JAXB) 2.2
� SOAP with Attachments API for Java (SAAJ) 1.3
� Java API for XML Registries (JAXR) 1.0
� Java EE Management 1.1
� Java EE Deployment 1.2
� Web Services Metadata 2.0
� Common Annotations 1.0
� Streaming API for XML (StAX) 1.0
� Java Persistence API 2.0

Security
The Java EE specification requires that the same authentication mechanisms be
made available for Java EE application clients as for other types of Java EE
components. The authentication features are provided by the Java EE
application client container, as they are in other containers within Java EE. With a
Java EE platform, the Java EE application client container can communicate with
an application server to use its authentication services. WebSphere Application
Server allows this function.

Naming
The Java EE specification requires that Java EE application clients have exactly
the same naming features available as are provided for web components and
EJB components. Java EE application clients must be able to use the Java
Naming and Directory Interface (JNDI) to look up objects using object references
and real JNDI names. The reference concept allows a deployer to configure
references that can be used as JNDI names in lookup code. The references are
bound to real JNDI names at deployment time, so that if the real JNDI name is
subsequently changed, the code does not have to be modified or recompiled.
Only the binding needs to be updated.

References can be defined for the following items:

� EJB

For Java EE application clients, only remote references, because the client
cannot use local interfaces

� Resource manager connection factories
� Resource environment values
� Message destinations
� User transactions
� ORBs
 Chapter 2. Programming technologies 65

The following simplified example shows code to look up an EJB component:

accountHome = (AccountHome)initialContext
.lookup("java:comp/env/ejb/account");

java:comp/env/ is a standard prefix used to identify references, and ejb/account
is bound at deployment time to the real JNDI name used for the Account bean.

Deployment
The Java EE specification only specifies the packaging format for Java EE
application clients, not how to deploy them. This information is left to the platform
provider. The packaging format is specified, based on the standard Java JAR
format, and it allows the developer to specify which class contains the main
method to be executed at run time.

Java EE application clients for the WebSphere Application Server platform run
inside the Application Client for WebSphere Application Server. This product is
available for download from IBM developerWorks and is available on the
WebSphere Application Server installation CD.

See the WebSphere Application Server Information Center at the following
address for more information about installing and using the application client for
WebSphere Application Server:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp

The application client for WebSphere Application Server provides a
launchClient command, which sets up the correct environment for Java EE
application clients and runs the main class.

Requirements for the development environment
In addition to the standard Java tooling, the development environment must
provide the following tools:

� A wizard for creating Java EE application clients
� Editors for the deployment descriptor for a Java EE application client module
� A mechanism for testing the Java EE application client

Rational Application Developer provides these features.

Figure 2-9 on page 67 shows how Java EE application clients fit into the picture.
Because these applications can access other Java EE resources, we can now
use the business logic in our session EJB from a stand-alone client application.
Java EE application clients run in their own JVM, normally on a separate
machine from the EJB, so they can only communicate using remote interfaces.
66 Rational Application Developer for WebSphere Software V8 Programming Guide

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp

Figure 2-9 Java EE application client

2.7.2 Enterprise information system applications

Java EE Connector Architecture (JCA) plays a key role in the integration of
applications and data using open standards. In developing applications to
connect to enterprise information systems in Chapter 11, “Developing
applications to connect to enterprise information systems” on page 531, we
introduce JCA and demonstrate by example how to access operations and data
on enterprise information systems (EIS), such as CICS®, IMS™, SAP, Siebel,
PeopleSoft, JD Edwards, and Oracle, within the Java EE platform.

2.7.3 Service Component Architecture applications

Service Component Architecture (SCA) is a programming model for the
service-oriented architecture (SOA) style. Rational Application Developer,
WebSphere Application Server 7.0 Feature Pack for Service Component
Architecture, and WebSphere Application Server 8.0 support the Open SCA
assembly model specified by the Open Service Oriented Architecture (OSOA)
Collaboration (http://osoa.org).

Web Service
Web Service

Client
Web Service

Java
Servlet

JavaServer
Page

JavaBean
Session

Bean
Web

Browser

JPA
Entity

Entity
Manager

Relational
Database
 Chapter 2. Programming technologies 67

http://osoa.org

For more information about SCA, refer to Chapter 16, “Developing Service
Component Architecture (SCA) applications” on page 885.

2.7.4 Session Initiation Protocol applications

Session Initiation Protocol (SIP) is a peer-to-peer protocol used to establish,
modify, and terminate multimedia IP sessions between two endpoints, including
telephony and instant messaging.

A SIP application is a Java program that uses at least one SIP servlet where a
SIP servlet is a Java-based application component that is managed by a SIP
Servlet Container (for example, WebSphere Application Server).

SIP Servlet Specifications were developed under the Java Community Process.
See the JSR 289 SIP Servlet 1.1 API at this website:

http://jcp.org/aboutJava/communityprocess/final/jsr289/index.html

The following examples are common usage examples of SIP in
telecommunications-based applications:

� Voice-over-IP (VoIP)
� Instant messaging
� Click to call
� Call notification, forwarding, and blocking

2.7.5 Communications Enabled Applications (CEA)

IBM WebSphere Application Server Feature Pack for CEA V1.0 is a set of
libraries, widgets, and runtime components that provides the ability to add
dynamic web communications to any application or business process. This
functionality includes the ability to establish a call between two users, to
collaboratively browse the same web application, to integrate communications
features in applications with PBX systems, and the additional features required to
support these functions.

The Dojo widgets packaged with the CEA feature pack are pre-packaged
components of JavaScript and HTML code that add interactive features that work
across platforms and browsers. CEA widgets are extensible, allowing developers
to customize them to handle more advanced tasks. These widgets provide
capabilities, such as making and disconnecting calls and receiving incoming call
notifications. The CEA feature pack comes with four core widgets and three
mobile widgets. These widgets have been built using the Dojo Toolkit, and they
are provided in the CEA custom Dojo Toolkit that ships with the feature pack.
68 Rational Application Developer for WebSphere Software V8 Programming Guide

http://jcp.org/aboutJava/communityprocess/final/jsr289/index.html

CEA support is available in WebSphere Application Server V7 through the IBM
WebSphere Application Server Feature Pack for CEA V1.0 and is embedded
directly into WebSphere Application Server V8 Beta.

CEA core widgets
The following list shows the CEA core widgets:

� Call Notification

Allows users to enter their phone number and receive notifications of
incoming calls.

� Click To Call

Allows users to enter their phone number and request an immediate callback
from your company.

� Cobrowse

Allows users to share the same browsing session, with one user controlling
the session.

� Two Way Form

Allows you to create an HTML form in which two people, operating as a
reader and a writer, can collaboratively edit and validate fields. Both parties
can see the same form. The fields in the form change in response to input
provided by either person.

CEA mobile widgets
The following list shows the CEA mobile widgets:

� Mobile Call Notification

Allows users to enter their mobile phone number and receive notifications of
incoming calls

� Mobile Click To Call

Allows users to enter their mobile phone number and request an immediate
callback from your company

� Mobile Cobrowse

Allows a mobile phone number to be used for collaborating and cobrowsing

For more information about using the CEA feature pack, refer to Getting Started
with the WebSphere Application Server Feature Pack for Communications
Enabled Applications V1.0, REDP-4613.
 Chapter 2. Programming technologies 69

70 Rational Application Developer for WebSphere Software V8 Programming Guide

Chapter 3. Workbench setup and
preferences

In this chapter, we describe the most commonly used Rational Application
Developer preferences.

The chapter is organized into the following sections:

� Workbench basics
� Preferences

3

© Copyright IBM Corp. 2011. All rights reserved. 71

3.1 Workbench basics

After starting Rational Application Developer, you see a window with the
Welcome page (Figure 3-1). You can always return to the Welcome page by
selecting Help Welcome from the workbench menu bar. The Welcome page
guides a new user of Rational Application Developer to information about various
aspects of the tool.

Figure 3-1 Rational Application Developer Welcome page

The Welcome page presents seven icons, each including a name that is visible
when hovering over the icon (hover help). Table 3-1 on page 73 provides a
summary of each icon.
72 Rational Application Developer for WebSphere Software V8 Programming Guide

Table 3-1 Welcome page assistance capabilities

You can customize the Welcome page from the Preferences page. You can click
the Customize Page icon () in the upper-right corner of the Welcome page to
open the Customize window (Figure 3-2 on page 74). You can use the Customize
window to select one of the predefined themes that affect the overall look of the
Welcome window. You can also select which pages to show and the visibility,
layout, and priority of the items within each page.

Icon image Name Description

Overview An overview of the key functions in Rational
Application Developer.

Tutorials Tutorial screens to learn how to use the key
features of Rational Application Developer.
Provides a link to Tutorials Gallery.

Samples Sample code for the user to begin working with
“live” examples with minimal assistance. Provides a
link to the Samples Gallery.

What’s New A description of the major new features and
highlights of this release.

First Steps Step-by-step guidance to help first-time users to
perform key tasks.

Web Resources URL links to web pages where you can find relevant
and timely tips, articles, updates, and references to
industry standards.

Migrate Guidance about migrating projects that you created
using Rational Application Developer V7.5.x or
V7.0.x to Rational Application Developer V8.0.

Workbench Minimizes the Welcome page into the workbench
window’s trim, continuing to offer smaller versions
of these seven buttons while allowing the user to
freely explore the workbench.
 Chapter 3. Workbench setup and preferences 73

Figure 3-2 Welcome page preferences

Experienced users of Rational Application Developer, or anyone who knows the
concepts that the product provides, can dismiss the Welcome page by clicking
the X on the page’s folder tab or clicking the workbench icon in the page itself.
Users are then taken to the default perspective in the workbench.

The term workbench refers to the desktop development environment. Each
workbench window of Rational Application Developer contains one or more
perspectives. Perspectives control the initial layout of views and editors and what
is displayed in certain menus and toolbars. Each perspective in Rational
Application Developer contains multiple views, such as the Enterprise Explorer
view and the Outline view. For more information about perspectives and views,
see Chapter 4, “Perspectives, views, and editors” on page 91.

By clicking the shortcut icon in the window’s perspective bar (Figure 3-3 on
page 75), you can open the available perspectives and place them in the shortcut
bar next to it. After the icons are on the shortcut bar, you can navigate between
perspectives that are already open. The name of the active perspective is shown
74 Rational Application Developer for WebSphere Software V8 Programming Guide

in the title of the window, and its icon is in the shortcut bar on the right side as a
push button.

Figure 3-3 The Java EE perspective in Rational Application Developer

3.1.1 Workbench basics

When you start Rational Application Developer, you are prompted to provide a
location for the workspace. The Rational Application Developer workspace is a
private work area created for an individual developer. It holds the following
information:

� Projects that the developer has created, including source code, images,
configuration files, and generated files, such as .class files
 Chapter 3. Workbench setup and preferences 75

� Metadata including information about the workspace’s projects, configuration
information specific to that machine and that workspace, preferences
affecting the entire workspace, and temporary files

Resources that are modified and saved are reflected on the local file system.
Users can have many workspaces on their local file system to contain separate
projects that they are working on, including multiple versions of those projects.
Each of these workspaces can be configured differently, because each
workspace has its own metadata area.

With Rational Application Developer, you can open more than one window at the
same time. New windows open on the same workspace, allowing you to work
quickly in two differing perspectives. Changes to the workspace that are made in
one window are reflected to the other windows. You are not permitted to work in
more than one window at a time; you cannot switch between windows when you
are in the process of using a wizard in one window.

To open an additional workbench window, select Window New Window. A
new workbench window will then open with the same perspective. By default,
new perspectives are opened in the current window. You can, however, choose to
open new perspectives in their own windows. To configure this default behavior,
select Window Preferences. In the Preferences window, expand General
Perspectives (see 3.2.6, “Perspectives preferences” on page 87).

You can set a default workspace on the start-up of Rational Application
Developer by specifying the workspace location on the local machine and
selecting the Use this as the default and do not ask again check box, as
shown in Figure 3-4 on page 77. This action ensures that on the next start-up of
Rational Application Developer, the same workspace location will be used
automatically and Rational Application Developer will not prompt for the
workspace location in the future.

Performance: For optimal performance with Rational Application
Developer, choose a location on a fast, local disk.

Important: Do not copy or attempt to use the metadata from one workspace
with another workspace. Instead, create a new workspace and then configure
it appropriately. To facilitate this task, many workspace preferences can be
imported and exported from the respective wizards or stored directly within
the projects themselves, which can then be shared.
76 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 3-4 Setting the default workspace at start-up

The other way to enforce the use of a particular workspace is to use the -data
<workspace> command-line argument on Rational Application Developer. Here,
<workspace> is a path name on the local machine where the workspace is
located and must be a full path name to remove any ambiguity about the location.

By using the -data argument, you can start a second instance of Rational
Application Developer using a separate workspace. For example, if your second
instance uses the MyWorkspace folder, you can start Rational Application
Developer by entering the following command (assuming that the product has
been installed in the default installation directory):

c:\Program Files\IBM\SDP\eclipse.exe -data c:\MyWorkspace

You can add several arguments when starting Rational Application Developer.

Table 3-2 on page 78 lists useful arguments. For more advanced arguments,
search for Running Eclipse in the Help under Help Contents.

Tip: On a machine where multiple workspaces are used by the developer,
create a dedicated shortcut in setting up the starting workspace location. Use
the following target:

"<RAD Install Dir>\eclipse.exe" -product
com.ibm.rational.rad.product.ide -data <workspace>"
 Chapter 3. Workbench setup and preferences 77

Table 3-2 Start-up parameters

Command Description

-configuration
configurationFileURL

The location for the platform configuration file, expressed as
a URL. The configuration file determines the location of the
platform, the set of available plug-ins, and the primary
feature. Relative URLs are not allowed. The configuration
file is written to this location when Rational Application
Developer is installed or updated.

-consolelog Mirrors the Eclipse platform’s error log to the console used
to run Eclipse. Is convenient when combined with -debug.

-data
<workspace directory>

Starts Rational Application Developer with a specific
workspace located in <workspace directory>.

-debug [optionsFile] Puts the platform in debug mode and loads the debug
options from the file at the given location, if specified. This
file indicates which debug points are available for a plug-in
and whether they are enabled. If a file location is not given,
the platform looks in the directory that eclipse was started
from for a file called .options. Both URLs and file system
paths are allowed as file locations.

-refresh Option for performing a global refresh of the workspace on
start-up to reconcile any changes made on the file system
since the platform was last run.

-showlocation
[workspaceName]

Option for displaying the location of the workspace in the
window title bar. The Workspace preference page also
provides the ability to specify a name for the workspace to
be shown in the window title bar.

-vm vmPath This option allows you to set the location of the Java
Runtime Environment (JRE) to run Rational Application
Developer. Relative paths are interpreted relative to the
directory that Eclipse was started from. The JRE provided
with Rational Application Developer is preferred.

-vmargs -Xmx512M Allows for the passing of additional arguments to the JRE’s
VM executable. For instance, when doing large-scale
development, you might want to make more heap space
available. This example allows the Java heap to grow to 512
MB, although 512 MB might not be enough for even larger
workspaces.
78 Rational Application Developer for WebSphere Software V8 Programming Guide

Use the -vmargs argument to set limits to the memory that is used by Rational
Application Developer. For example, on a system with only 1 GB RAM, you might
achieve better performance by limiting the amount of memory Rational
Application Developer is allowed to use:

-vmargs –Xmx512M

You can also modify VMArgs initialization parameters in the eclipse.ini file
(under the installation directory):

VMArgs=-Xms256M -Xmx512M

These arguments significantly limit the memory utilization. Setting the –Xmx
argument lower than 512M begins to degrade performance. Each option meant
for Eclipse in the eclipse.ini file must be on its own line.

Setting the workspace with a prompt window
The default behavior on installation is that Rational Application Developer
prompts for the workspace on start-up. If you selected the check box on the
start-up window to not ask again (Figure 3-4 on page 77), you can enable this
option again in the following manner:

1. Select Window Preferences.

2. In the Preferences window, select General Startup and Shutdown
Workspaces.

3. Select Prompt for workspace on startup and click OK (Figure 3-5 on
page 80).
 Chapter 3. Workbench setup and preferences 79

Figure 3-5 Setting the prompt message window for workspace selection on start-up

On the next start-up of Rational Application Developer, the workspace selection
dialog is displayed and prompts the user to specify which workspace to use.

3.2 Preferences

You can modify the Rational Application Developer workbench preferences by
selecting Window Preferences. In the left pane of the Preferences window
(Figure 3-6 on page 81), you can search through the preferences pages by
typing keywords into the filter text field, or navigate through the categories of
preference pages yourself.
80 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 3-6 Workspace Preferences

In this section, we describe the most important workspace preferences. Rational
Application Developer contains a complete description of all the options available
in the Preferences window in the help information for Rational Application
Developer.

Tip: Most pages within the Preferences window in Rational Application
Developer have a Restore Defaults button (see Figure 3-6 on page 78).
When you click the button, Rational Application Developer restores the
settings of the current page to their initial values.
 Chapter 3. Workbench setup and preferences 81

3.2.1 Automatic builds

Builds, or a compilation of Java code in Rational Application Developer, are done
automatically whenever a resource has been modified and saved. If you require
more control regarding builds, you can disable the automatic build feature. Builds
must then be explicitly started. This capability might be desirable in cases where
you know that building is of no value until you finish a large set of changes.

To turn off the automatic build feature, select Windows Preferences
General Workspace and clear Build automatically (Figure 3-7). In this same
window, you can specify whether you want to save unsaved resources before
performing a manual build. Select Save automatically before build to enable
this feature.

Figure 3-7 Workspace Preferences: Automatic builds
82 Rational Application Developer for WebSphere Software V8 Programming Guide

3.2.2 Manual builds

Although the automatic build feature might be adequate for many developers,
there are scenarios in which a developer might want to perform a build manually.
First, certain developers do not want to build automatically, because it can slow
down development. In this case, the developer needs a method of building at a
time of the developer’s choosing. Second, there are cases when a complete
rebuild of a project or all projects is needed to resolve build errors and
dependency issues. To address these types of issues, Rational Application
Developer provides the ability to perform a manual build, known as a clean build.

To perform a manual build, follow these steps:

1. Select the desired project in the Enterprise Explorer.

2. Select Project Build Automatically to clear the check mark associated
with that selection. The manual build option is only available when the
automatic build is disabled.

3. Select Project Build Project. Alternatively, select Project Build All to
build all projects in the workspace. Both of these commands search through
the projects and only build the resources that have changed since the last
build.

To build all resources, even those resources that have not changed since the last
build, follow these steps:

1. Select the desired project in the Enterprise Explorer.

2. Select Project Clean.

3. In the Clean window, select one of the following options and click OK:

– Clean all projects. This option performs a build of all projects.
– Clean selected projects.

The project selected in the previous step is chosen by default, or you can select it
from the projects list.

3.2.3 File associations

On the File Associations preferences page, you can add or remove file types
recognized by the workbench. You can also associate editors or external
programs with file types in the file types list. Follow these steps to add a file
association:

1. Open the Preferences window by selecting Window Preferences.

2. In the Preferences window (Figure 3-8 on page 84), expand General
Editors and select File Associations. In the upper-right pane, you can add
 Chapter 3. Workbench setup and preferences 83

and remove the file types. In the lower-right pane, you can add or remove the
associated editors. We add the Microsoft Internet Explorer as an additional
program to open database definition language (.ddl) files.

3. Select *.ddl from the file types list and click Add next to the Associated
editors pane.

4. In the Editor Selection window, select External Programs and click Browse.

5. Locate iexplore.exe in the folder where Internet Explorer is installed (for
example, C:\Program Files\Internet Explorer) and click Open.

6. In the Editor Selection window, click OK and the program is added to the
editors list.

Figure 3-8 File Associations preferences

Optional: You can set this program as the default program for this file type by
clicking Default.
84 Rational Application Developer for WebSphere Software V8 Programming Guide

Now you can open a .ddl file by using the context menu on the file, selecting
Open With, and selecting the appropriate program.

3.2.4 Content types

The Content Types preferences page allows you to modify the default encoding
used with certain content types, as well as specify new filename patterns
containing a known content type (Figure 3-9).

Figure 3-9 Workspace Preferences: Content Types

3.2.5 Local history

A local history of a file is maintained whenever you create or modify a file in the
workspace. By default, a copy is saved each time that you edit and save the file.
This local history allows you to replace the current file with a previous edition or
even restore a deleted file. You can also compare the content of all the local
 Chapter 3. Workbench setup and preferences 85

editions. Each edition in the local history is uniquely represented by the data and
the time that the file was saved.

To configure local history settings, select Window Preferences. Expand
General Workspace and select Local History to open the Preferences page
(Figure 3-10).

Figure 3-10 Local History preferences

Table 3-3 explains the options for the local history preferences.

Table 3-3 Local history settings

Files versus projects and folders: Only a file can have a local history.
Projects and folders do not have local histories beyond whether a file existed
or not. The local history is not meant as a complete substitute for a true
source control system.

Option Description

Limit history size Enabled by default, controls whether the following options
take effect.

Days to keep files Indicates the number of days to maintain changes in the
local history. History states older than this value are lost.

Maximum entries per
file

Indicates the number of history states per resource that you
want to maintain in the local history. History states older than
this value are lost.
86 Rational Application Developer for WebSphere Software V8 Programming Guide

Comparing, replacing, and restoring local history
To compare a file with the local history, follow these steps:

1. Select the file, right-click, and select Compare With Local History. In the
upper pane of the Compare with Local History window, all available editions of
the file in the local history are displayed.

2. Select an edition in the upper pane to view the differences between the
selected edition and the edition in the workspace.

3. When you are finished with the comparison, click OK.

To replace a file with an edition from the local history, follow these steps:

1. Select the file, right-click, and select Replace With Local History.

2. Select the desired file time stamp and then click Replace.

To restore a deleted file from the local history, follow these steps:

1. Select the folder or project from which the file was deleted.

2. Right-click and select Restore from Local History.

3. Select the files that you want to restore and click Restore.

3.2.6 Perspectives preferences

The Perspectives preferences page enables you to manage the various
perspectives that are defined in the workbench. To open the page, select
Window Preferences and expand General Perspectives.

You can change the following options in the Perspectives preferences window:

� Open a new perspective in the same or in a new window.

� Open a new view within the perspective or as a fast view (docked to the side
of the current perspective).

� Always switch, never switch, or prompt when a particular project is created to
switch to the appropriate perspective.

There is also a list with all available perspectives from which you can select the
default perspective. If you have added one or more customized perspectives, you
can delete them from here. See Figure 3-11 on page 88.

Maximum file size (MB) Indicates the maximum size of individual states in the history
store. If a resource is over this size, no local history is kept
for that resource.

Option Description
 Chapter 3. Workbench setup and preferences 87

Figure 3-11 Perspectives preferences

3.2.7 Web browser preferences

With the web browser settings, the user can select which web browser is the
default browser used by Rational Application Developer for showing web
information.
88 Rational Application Developer for WebSphere Software V8 Programming Guide

To change the web browser settings, follow these steps:

1. Select Window Preferences. Expand General Web Browser
(Figure 3-12). The default option is to use an internal web browser.

2. To change, select Use external web browser and select a browser from the
available list. Otherwise, click New to add a new web browser.

Figure 3-12 Web browser preferences

3.2.8 Internet preferences

You can configure the following types of settings in Internet preferences in
Rational Application Developer:

� Cache
� FTP
� Proxy settings

Only proxy settings are covered in this section. For the other two settings, see the
help information for Rational Application Developer.
 Chapter 3. Workbench setup and preferences 89

Proxy settings
To set the preferences for the proxy server within the workbench to allow Internet
access from Rational Application Developer, follow these steps:

1. Select Window Preferences.

2. In the Preferences window (Figure 3-13), in the left pane, expand General
Network Connections.

3. In the Network Connections pane on the right, follow these steps:

a. Based on your environment proxy settings, select HTTP or HTTPS and
click Edit.

b. Enter the proxy host and port. Additional optional settings are available for
the use of SOCKS and to enable proxy authentication.

c. Click Apply and then click OK.

Figure 3-13 Network Connections preferences page
90 Rational Application Developer for WebSphere Software V8 Programming Guide

Chapter 4. Perspectives, views, and
editors

This chapter starts with an introduction to the common structures and features
applicable to all perspectives in Rational Application Developer and then
describes how these mechanisms integrate with the help facility. Then we
provide a brief overview of the major features for each perspective available in
Rational Application Developer. Most of the perspectives described here are
explored in detail in the chapters in this book.

The chapter is organized into the following sections:

� Integrated development environment
� Help system for Rational Application Developer
� Available perspectives
� Summary

4

© Copyright IBM Corp. 2011. All rights reserved. 91

4.1 Integrated development environment

An integrated development environment (IDE) is a set of software development
tools, such as source editors, compilers, and debuggers, that are accessible from
a single user interface.

In Rational Application Developer, the IDE is called the workbench. When using
the workbench, the first step of any user is to choose in which perspective to
work. The Rational Application Developer workbench provides many
customizable perspectives organized around various development duties. This
design provides a common way for all members of a project team to create,
manage, and navigate the same set of resources easily.

4.1.1 Perspectives

In Application Developer terminology, views are the windows that provide various
ways to look at the resources on which you are working, and editors allow you to
create and modify the resources. Each perspective consists of a set of views and
editors that show various aspects of the workspace resources for a particular
developer role or task. For example, a Java developer might work in the Java
perspective, which contains views for Java coding that aid in working with the
Java editor, and a web designer might work in the Web perspective, which
contains views for web page design that are useful with Rational Application
Developer’s Page Designer. Open editors are available from all perspectives in
the same workbench window.

Several default perspectives are provided in Rational Application Developer, and
team members also can customize them according to their current role and
personal preference. More than one perspective can be opened at a time, and
users can switch perspectives while working within Rational Application
Developer. If you find that a particular perspective does not contain the views or
editors that you require, you can add them to the perspective and position them
to suit your requirements. We explain this capability further in 4.1.7, “Organizing
and customizing perspectives” on page 98.

4.1.2 Views

Views provide various presentations of resources or ways of navigating through
the information in your workspace. For example, the Enterprise Explorer view
provides a hierarchical view of the resources in the workbench, arranged in a
way to facilitate Java EE development. From here, you can open files for editing
or select resources for operations, such as exporting a file as an EAR file. The
Outline view shows an outline of a structured file that is currently open in the
92 Rational Application Developer for WebSphere Software V8 Programming Guide

editor area and lists structural elements. Rational Application Developer provides
synchronization between views and editors, so that changing the focus or a value
in an editor or view can automatically update another editor or view. In addition,
certain views display information obtained from other software products, such as
database systems or software configuration management (SCM) systems.

A view can be displayed by itself or stacked with other views in a tabbed
notebook arrangement. To quickly move between views in a given perspective,
you can hold down the Ctrl key and press F7 to see all the open views and move
quickly to the desired view. While continuing to hold the Ctrl key, press F7 until
the desired view is selected and then release the key to move to that view.
Pressing Shift-F7 allows you to move through the list in reverse order.

4.1.3 Editors

When you open a file, Rational Application Developer automatically opens the
editor that is associated with that file type. For example, for .html, .htm, and .jsp
files, the Page Designer opens, and for .java and .jpage files, the Java editor
opens.

Editors that have been associated with specific file types open in the editor area
of the workbench. By default, editors are stacked in a notebook arrangement
inside the editor area. If a resource has no associated editor, Rational Application
Developer opens the file in the default editor, which is a text editor. It is also
possible to open a resource in another editor by selecting the Open With option
from the context menu.

To quickly move between editors open on the workspace, you can hold down the
Ctrl key and press F6 to view all the open editors and move quickly to the desired
editor. Press F6 until the required editor is selected and then release the Ctrl key
or press Shift+F6 to move through the files in reverse order.

The following icons are in the toolbar of a perspective to facilitate navigation and
basic operations in editors:

� Next and Previous accessed files (and)

These icons move the focus around recent cursor positions.

� Last Edit Location ()

This icon shifts the cursor to where the last edit occurred.

Tip: Quick Access, which is invoked by using Ctrl+3, allows you to open and
switch among editors, views, and perspectives, and to trigger commands by
filtering on their names.
 Chapter 4. Perspectives, views, and editors 93

� Next and Previous Annotation (and)

Depending on the options selected in the associated drop-down menu, these
icons move the cursor to the next or previous annotation in the associated list.
For example, if errors are chosen, these buttons move the cursor to the next
or previous source code error in the resource being edited.

� Toggle Breadcrumb ()

In supported editors, this option activates a breadcrumb navigation at the top
of the editor, as shown in Figure 4-1. This is available only in certain editors.

Figure 4-1 Breadcrumb navigation

� Toggle Mark Occurrences ()

If this option is activated, all other instances of a highlighted text will be
marked by gray shading.

� Toggle Block Selection Mode ()

If this option is selected, it is possible to select, cut, copy, and paste
rectangular blocks of text from the active editor.

� Show Whitespace Characters ()

If this option is selected, the whitespace, new-line, and other control
characters will be visible in the active editor.

4.1.4 Perspective layout

Many of Rational Application Developer’s perspectives use a similar layout.
Figure 4-2 on page 95 shows the general layout that is used for most default
perspectives.
94 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 4-2 Perspective layout

On the left side are views for navigating through the workspace. In the middle of
the workbench is a larger pane, where the main editors are shown. The right
pane usually contains Outline or Palette views, views for working with the file
open in the main editor. In certain perspectives, the editor pane is larger and the
outline view is located at the lower-left corner of the perspective. In the
lower-right corner is a tabbed series of views, including the Tasks view, the
Problems view, and the Properties view. This area is where smaller
miscellaneous views, which are not associated with resource navigation, editing,
or outline information, are shown.
 Chapter 4. Perspectives, views, and editors 95

4.1.5 Switching perspectives

There are two ways to open another perspective:

� Click the Open a perspective icon () in the Perspective bar that is located
in upper-right corner of the workbench window and select the appropriate
perspective from the list.

� Select Window Open Perspective and select a perspective from the
drop-down list shown.

In both cases, an Other option is available. When you select Other, the Open
Perspective window (Figure 4-3) opens and shows a list of all perspectives. Here,
you can select the required perspective and click OK.

Figure 4-3 Open Perspective window

In all perspectives, you can see a group of buttons displayed in the upper-right
corner of the workbench (an area known as the shortcut bar). Each button
corresponds to an open perspective, and if clicked, the icon shows a list of all
open perspectives (see Figure 4-4 on page 97). Clicking one of these buttons
switches Rational Application Developer to the associated perspective.
96 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 4-4 Perspective shortcut bar

4.1.6 Specifying the default perspective

The Java EE perspective is Rational Application Developer’s default perspective,
but you can change this default perspective by using the Preferences window:

1. From the workbench, select Window Preferences.

2. In the Preferences window, in the left pane, expand General and select
Perspectives. The Java EE perspective has the word default after it.

3. In the right pane, select the perspective that you want to define as the default
and click Make Default. The selected perspective will become the default and
have the word default after it.

Tips:

� The name of the perspective is shown in the window title area along with
the name of the file that is open in the editor, which is currently active.

� To close a perspective, right-click the perspective’s button on the shortcut
bar (top right) and select Close.

� To display only the icons for the perspectives, right-click somewhere in the
shortcut bar and clear the Show Text option.

� Each perspective requires memory. Therefore, it is a good practice to close
perspectives, which are not used, to improve performance.

Show all open perspectives

Open another perspective
 Chapter 4. Perspectives, views, and editors 97

4.1.7 Organizing and customizing perspectives

With Rational Application Developer, you can open, customize, reset, save, and
close perspectives. You can find these options in the Window menu.

To customize the commands and shortcuts available within a perspective, select
Window Customize Perspective. The Customize Perspective window opens
(see Figure 4-5).

Figure 4-5 Customize Perspective window

The tabs on this window allow users to customize the following commands and
options:

� Tool Bar Visibility tab

Provides the ability to customize which icons will appear on the Rational
Application Developer tool bar.
98 Rational Application Developer for WebSphere Software V8 Programming Guide

� Menu Visibility tab

Provides the ability to customize which options will appear in the Rational
Application Developer menus.

� Command Groups Availability tab

Rational Application Developer comes with a number of command groups to
perform specific tasks. The Command Groups Availability tab allows you to
customize whether a given command group is available in a perspective, and
if so, in which menu option or tool bar it will appear.

� Shortcuts tab

The Shortcuts tab allows you to customize which options will appear when a
menu item, such as File New Project, is selected. The items that you
do not select are still accessible by clicking the Other menu option, which is
always present for these options.

In addition to customizing the commands and options available as shortcuts and
menu items, you can reposition any of the views and editors and add or remove
other editors as desired and save the changes as a customized perspective. The
following features are available to create a customized perspective:

� Add and remove views

It is possible to customize a perspective by adding a new view. To add a view
to a perspective, select Window Show View and choose the view that you
want to add. To remove a view, close it from its title bar.

� Move

You can move a view to another pane by using the drag-and-drop method. To
do this, select its title bar and drag the view to another place on the
workspace. While you drag the view, the mouse cursor changes to a drop
cursor, indicating where the view will be displayed when it is dropped. In each
case, the area that is filled with the dragged view is highlighted with a
rectangular outline.

The drop cursor looks like one of the following icons:

The view docks beneath the view under the cursor.

The view docks to the left of the view under the cursor.

The view docks to the right of the view under the cursor.

The view docks over the view under the cursor.

The view is displayed as a tab in the same pane as the view under the
cursor.

The view docks in the status bar (at the bottom of the Rational
Application Developer window) and becomes a fast view (described
 Chapter 4. Perspectives, views, and editors 99

next). This icon is displayed when a view is dragged to the lower-left
corner of a workspace.

The view becomes a separate child window of the main Rational
Application Developer window. This icon is displayed when you drag a
view to an area outside the workspace. To return the view back into the
workspace, right-click its title bar and clear the Detached menu item.

� Fast view

A fast view is displayed as a button in the status bar of Rational Application
Developer in the lower-left corner of the workspace. Clicking the button
toggles whether the view is displayed on top of the other views in the
perspective.

� Maximize and minimize a view

To maximize a view to fill the whole working area of the workbench, you can
double-click the title bar of the view, press Ctrl+M, or click the Maximize icon
() in the view’s toolbar. To restore the view, double-click the title bar, select
the restore button () or press Ctrl+M again. The Minimize button ()in the
toolbar of a view minimizes the tab group so that only the tabs are visible.
Click the Restore button or one of the view tabs to restore the tab group.

� Save

After you configure the perspective to your preferences, you can save it as
your own perspective by selecting Window Save Perspective As and type
a new name. The new perspective is now displayed as an option in the Open
Perspective window. Unsaved changes to a perspective will be lost if the
perspective is closed.

� Restore

To restore the currently open perspective to its original layout, select
Window Reset Perspective.

4.2 Help system for Rational Application Developer

With the Help system in Rational Application Developer, you can browse, search,
bookmark, and print help documentation. The documentation is organized into
sets of information that are analogous to books. The Help system also supplies a
text search capability for finding the information that you need by search phrase
or keyword, and context-sensitive help for finding information to describe the
particular function with which you are working.
100 Rational Application Developer for WebSphere Software V8 Programming Guide

You can view the Help contents in a separate window by selecting Help Help
Contents from the menu bar (Figure 4-6).

Figure 4-6 Help window

In the Help window, you see the available books in the left pane and the content
in the right pane. When you select a book () in the left pane, the appropriate
table of contents opens and you can select a topic () within the book. When a
page () is selected, the page content is displayed in the right pane.

You can navigate through the help documents by clicking the Go Back icon ()
and Go Forward icon () in the toolbar of the right pane. The Home icon ()
returns the Help window back to the home page.
 Chapter 4. Perspectives, views, and editors 101

The following buttons are also available in the toolbar:

� Show in Table of Contents ()

This button synchronizes the navigation frame with the current topic, which is
helpful when the user follows several links to related topics in several files,
and wants to see where the current topic fits into the navigation path.

� Bookmark Document ()

This button adds a bookmark to the Bookmarks view, which is one of the tabs
on the left pane.

� Print Page ()

This button provides the option to print the page currently displayed in the
right window.

� Maximize ()

This button maximizes the rightmost pane to fill the whole Help window. When
this pane is maximized, the icon changes to the Restore icon (), which
allows the user to return the page back to normal.

Also, the left pane of the Help window can be tabbed between the Contents,
Index, Search Results, and Bookmarks views, which provide separate methods
of accessing information in the help contents.

You can use the Search tab to do a search of all the help contents by default. If
you want to do a refined search, from the Rational Application Developer menus,
select Help Search, then expand the Search Scope link, and select a scope
for your search (Figure 4-7 on page 103). This window shows any previously
defined search scopes and gives the user the opportunity to create a new scope
or even add new sources of Help information.
102 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 4-7 Search dialog

You can click Go to perform the search across the selected scope and display
the results in the Search Results view, and from there, you can open the pages
within the Help facility.

4.2.1 Context-sensitive help

While performing any task within Rational Application Developer, you can press
F1 at any time, and the Help view shows the context help with a list of relevant
topics for the current view, editor, and perspective. For example, Figure 4-8 on
page 104 shows the context help when editing normal Java code.
 Chapter 4. Perspectives, views, and editors 103

Figure 4-8 Context-sensitive help for Java editing

You can see the Help contents as a view within the workspace, by selecting
Window Show View Help Help or Help Dynamic Help.

4.3 Available perspectives

In this section, we briefly describe the perspectives that are available in Rational
Application Developer. We present the perspectives in alphabetical order, which
is how they are displayed in the Open Perspective window. For this section, every
installation option available has been installed. If this is not done, certain
perspectives might not be available.

Rational Application Developer includes the following perspectives:

� CVS Repository Exploring perspective
� Data perspective
� Database Debug perspective
� Database Development perspective
104 Rational Application Developer for WebSphere Software V8 Programming Guide

� Debug perspective
� Java perspective
� Java Browsing perspective
� Java EE perspective
� Java Type Hierarchy perspective
� JavaScript perspective
� JPA perspective
� Modeling perspective
� Plug-in Development perspective
� Profiling and Logging perspective
� Report Design perspective
� Resource perspective
� Team Synchronizing perspective
� Test perspective
� Web perspective
� XML perspective
 Chapter 4. Perspectives, views, and editors 105

4.3.1 CVS Repository Exploring perspective

With the CVS Repository Exploring perspective (Figure 4-9), you can connect to
the Concurrent Versions System (CVS) repositories and inspect the revision
history of resources in those repositories.

Figure 4-9 CVS Repository Exploring perspective

The CVS Repository has the following views:

� CVS Repositories view

This view shows the known CVS repository locations. Expanding a location
reveals the main trunk (HEAD), project versions, and branches in that
repository. You can further expand the project versions and branches to reveal
the folders and files that are contained in them.

The context menu for this view also allows you to specify new repository
locations. The CVS Repositories view can be used to check out resources
106 Rational Application Developer for WebSphere Software V8 Programming Guide

from the repository into the workspace, configure the branches and versions
of a repository, view a resource’s history, and compare resource versions.

� Editor

You can view files that exist in the repositories by double-clicking them in a
branch or version. The version of the file specified opens in the editor pane.
The contents of the editor are read-only.

� History view

This view shows a detailed history of each file, providing a list of all the
revisions of it in the repository. From this view, you can also compare two
revisions or open an editor on a specific revision.

� CVS Annotation view

To see this view, select a resource in the CVS Repositories view, right-click,
and select Show Annotation. The CVS Annotate view comes to the front and
will display a summary of all the changes made to the resource since it came
under the control of the CVS server. The CVS Annotate view links with the
main editor, showing which CVS revisions apply to which source code lines.

For more information about using the CVS Repository Exploring perspective, and
other aspects of CVS functionality in Rational Application Developer, see
Chapter 29, “Concurrent Versions System (CVS) integration” on page 1533.

4.3.2 Data perspective

With the Data perspective (Figure 4-10 on page 108), you can access a set of
relational database tools, where you can create and manipulate the database
definitions for your projects.
 Chapter 4. Perspectives, views, and editors 107

Figure 4-10 Data perspective

The Data perspective has the following views:

� Data Project Explorer

The main navigator view in the Data perspective shows only the data projects
in the workspace. With this view, you can work directly with data definitions
and define relational data objects. This view can hold local copies of imported
data definitions, designs created by running Data Definition Language (DDL)
scripts, or new designs that you have created directly in the workbench.

� Data Source Explorer view

This view provides a list of configured connection profiles. If the Show
Category button () is selected, you can see the list grouped into
categories, for example, Databases and ODA (Open Data Access) Data
108 Rational Application Developer for WebSphere Software V8 Programming Guide

Sources. Use the Data Source Explorer to connect to, navigate to, and
interact with the resources associated with the selected connection profile. It
also provides import () and export () capabilities to share connection
profile definitions with other workbenches.

� SQL Results view

The SQL Results view shows information about actions that are related to
running SQL statements, stored procedures, and user-defined functions
(UDFs), or creating database objects. For example, when you run a stored
procedure on the database server, the SQL Results view shows messages,
parameters, and the results of any SQL statements that are run by the stored
procedure. The SQL Results view also shows results when you sample the
contents of a selected table. The SQL Results view consists of a history pane
and a details pane. The history pane shows the history for past queries. The
details pane shows the status and results of the last run. Use the view’s
pull-down menu to filter history results and set preferences.

� SQL Builder/Editor

This view shows specialized wizards for creating and editing SQL statements.

� Data Diagram Editor

This view shows an Entity Relationship diagram of the selected database.

� Tasks view

The Tasks view shows system-generated tasks associated with a resource,
typically produced by builders. You can manually add tasks and optionally
associate them with a resource in the workspace.

� Navigator view

The optional Navigator view provides a hierarchical view of all the resources
in the workbench. By using this view, you can open files for editing or select
resources for operations, such as exporting. The Navigator view is essentially
a file system view, showing the contents of the workspace and the directory
structures used by any projects that have been created outside the
workspace.

� Console view

The Console view shows the output of a process and allows you to provide
keyboard input to a process. The console shows three kinds of text, each in a
separate color: standard output, standard error, and standard input.

For more details about using the Data perspective, see Chapter 9, “Developing
database applications” on page 393.
 Chapter 4. Perspectives, views, and editors 109

4.3.3 Database Debug perspective

By using the Database Debug perspective (Figure 4-11), you can debug your
database stored procedures, where you can watch the values of the variables
and monitor the breakpoints.

This perspective includes the Debug, Variables, Breakpoints, Outline, and SQL
Results views. We explain the views associated with debugging in 4.3.5, “Debug
perspective” on page 112.

Figure 4-11 Database Debug perspective
110 Rational Application Developer for WebSphere Software V8 Programming Guide

4.3.4 Database Development perspective

The Database Development perspective (Figure 4-12) is a simpler version of the
Data perspective with only one view added, which is the Execution Plan view.
With this view, you can see your current SQL execution plans, which helps you
optimize the execution of your queries. You can also see a history of execution
plans and read SQL execution plans from files. For details about this perspective,
see Chapter 9, “Developing database applications” on page 393.

Figure 4-12 Database Development perspective
 Chapter 4. Perspectives, views, and editors 111

4.3.5 Debug perspective

By default, the Debug perspective (Figure 4-13) contains the following panes,
each of which contains specific views:

� Upper left: Shows Debug and Servers views
� Upper right: Shows Breakpoints and Variables views
� Middle left: Shows the editor for the resource being debugged
� Middle right: Shows the Outline view of the resource being debugged
� Bottom: Shows the Console and the Tasks views

Figure 4-13 Debug perspective
112 Rational Application Developer for WebSphere Software V8 Programming Guide

The Debug perspective includes the following views:

� Debug view

The Debug view shows the stack frame for the suspended threads for each
program that you are debugging. Each thread in your program appears as a
node in the tree. If the thread is suspended, its stack frames are shown as
child elements.

If the resource containing a selected thread is not open or active, the file
opens in the editor and becomes active, focusing on the point in the source
where the thread is currently positioned.

The Debug view contains a number of command buttons that enable users to
perform actions, such as start, terminate, and step-by-step debug actions.

� Variables view

The Variables view shows information about the variables in the currently
selected stack frame.

� Breakpoints view

The Breakpoints view lists all the breakpoints that you have set in the
workspace’s projects. You can double-click a breakpoint to display its location
in the editor. In this view, you can also enable or disable breakpoints, remove
them, change their properties, or add new breakpoints. This view also lists
Java exception breakpoints, which suspend execution at the point where the
exception is thrown.

� Servers view

The Servers view lists all the defined servers and their statuses. The context
menu for a server allows the server to be started or stopped, and to republish
the current applications.

� Outline view

The Outline view shows the elements (for example, imports, class, fields, and
methods) that exist in the source file in the active editor. Clicking an item in
the outline will position you in the editor view at the line where that structure
element is defined.

The Console and Tasks views are also applicable to the Debug perspective. We
discussed these views in previous sections of this chapter.

For more information about the Debug perspective, see Chapter 28, “Debugging
local and remote applications” on page 1461.
 Chapter 4. Perspectives, views, and editors 113

4.3.6 Java perspective

The Java perspective (Figure 4-14) supports developers with the tasks of
creating, editing, and compiling Java code.

Figure 4-14 Java perspective

The Java perspective consists of a main editor area and shows, by default, the
following views:

� Package Explorer view

This view shows the Java element hierarchy of all the Java projects in your
workbench. This is a Java-specific view of the resources shown in the
Navigator view (which is not shown, by default, in the Java perspective). For
each project, its source folders and referenced libraries are shown in the tree
view and from here it is possible to open and browse the contents of both
internal and external JAR files.
114 Rational Application Developer for WebSphere Software V8 Programming Guide

� Hierarchy view

This view can be opened for a selected type to show its superclasses and
subclasses. It offers three separate ways to look at a class hierarchy, by
selecting the icons buttons at the top of the view:

– The Type Hierarchy icon () shows the type hierarchy of the selected
type, including its position in the hierarchy along with all its superclasses
and subclasses.

– The Supertype Hierarchy icon () shows the supertype hierarchy of the
selected type and any interfaces that the type implements.

– The Subtype Hierarchy icon () shows the subtype hierarchy of the
selected type or, for interfaces, shows classes that implement the type.

For more information about the Hierarchy view, see 4.3.9, “Java Type
Hierarchy perspective” on page 118.

� Javadoc view

This view shows the Javadoc comments associated with the element selected
in the editor or outline view.

� Declaration view

This view shows the source code declaration of the element selected in the
editor or outline view.

� Annotations view

This view summarizes all the annotations on the Java class file being editing
and provides menu options to add or delete annotations quickly.

The Outline and Tasks views are also applicable to the Java perspective. We
discussed these views in previous sections of this chapter.

For more information about how to work with the Java, Java Browsing, and Java
Type Hierarchy perspectives, see Chapter 7, “Developing Java applications” on
page 229.

4.3.7 Java Browsing perspective

The Java Browsing perspective is also for Java development (Figure 4-15 on
page 116), but it provides various views from the Java perspective.
 Chapter 4. Perspectives, views, and editors 115

Figure 4-15 Java Browsing perspective

This perspective includes a larger area for the editor and several views to select
the Java programming element that you want to edit:

� Projects view

This view lists all Java projects in the workspace.

� Packages view

This view shows the Java packages within the selected project.

� Types view

This view shows the types defined within the selected package.

� Members view

This view shows the members of the selected type.

These views are synchronized so that changing the selection in one view will
update the available options in other views.
116 Rational Application Developer for WebSphere Software V8 Programming Guide

4.3.8 Java EE perspective

The Java EE perspective (Figure 4-16) includes views that you can use when
developing resources for enterprise applications, Enterprise JavaBeans (EJB)
modules, application client modules, and connector projects or modules.

Figure 4-16 Java EE perspective

The Java EE perspective contains the following views that are typically used
when developing Java EE applications:

� Enterprise Explorer view

This view provides an integrated view of your projects and their artifacts
related to Java EE development. You can show or hide your projects based on
working sets. This view shows navigable models of Java EE deployment
descriptors, Java artifacts (source folders, packages, and classes), navigable
models of the available web services, and specialized views of web modules
to simplify the development of dynamic web applications. In addition, EJB
database mapping and the configuration of projects for a Java EE application
server are made readily available.
 Chapter 4. Perspectives, views, and editors 117

� Snippets view

The Snippets view lets you catalog and organize reusable programming
objects, such as web services, EJB, and JavaServer Pages (JSP) code
snippets. The view can be extended based on additional objects that you
define and include. The available snippets are arranged in drawers. The
drawers can be customized by right-clicking a drawer and selecting
Customize.

� Properties view

This view provides a tabular view of the properties and associated values of
objects in files that you have open in an editor. The format of this view
depends on the active editor or view and its selection.

� Markers view

Similar to the Tasks view, it shows a combination of errors, warnings, and
tasks together with other markers, such as breakpoints.

� Service view

This view lists all the web services in the workspace and categorizes them
according to their underlying implementation (Java API for XML-based
Remote Procedure Call (JAX-RPC), Java API for XML Web Services
(JAX-WS), and RPC Adapter).

The Outline, Servers, Problems, Annotations, and Data Source Explorer views
are also relevant to the Java EE perspective. We discussed these views in
previous sections of this chapter.

For more details about using the Java EE perspective, see Chapter 12,
“Developing Enterprise JavaBeans (EJB) applications” on page 577.

4.3.9 Java Type Hierarchy perspective

The Java Type Hierarchy perspective is for Java developers to explore which
classes inherit from each other. You can open this perspective on types,
compilation units, packages, projects, or source folders. This perspective
consists of the Hierarchy view and an editor.

The Hierarchy view shows only an information message until you select a type.

To display the type hierarchy, select a type (for example, in the Outline view or in
the editor) and select Open Type Hierarchy. Alternatively, you can drag and drop
an element (for example, a project, package, or type) onto this view.
118 Rational Application Developer for WebSphere Software V8 Programming Guide

To open a type in the Hierarchy view, open the context menu for a Java class in
any view or editor (for example, the main source code editor) and select Open
Type Hierarchy. Figure 4-17 shows the Hierarchy view of the Credit class from
Chapter 7, “Developing Java applications” on page 229.

Figure 4-17 Java Type Hierarchy perspective with Hierarchy view

Although the Hierarchy view is also present in the Java perspective and the Java
Type perspective only contains two views, it is useful because it provides a way
for developers to explore and understand complex object hierarchies without the
clutter of other information.
 Chapter 4. Perspectives, views, and editors 119

4.3.10 JavaScript perspective

The JavaScript perspective (Figure 4-18) is mainly used in coding, exploring, and
documenting JavaScript.

Figure 4-18 JavaScript perspective

This perspective has the following key views and editors:

� JavaScript Editor

Rational Application Developer includes this editor for working with
JavaScript. It synchronizes with the Enterprise Explorer and Outline views
and contains a number of context menu options to help navigate between
JavaScript Type definitions.

� Documentation view

This view shows the JavaScript documentation for the selected JavaScript
element in the Editor view or in the Outline view.
120 Rational Application Developer for WebSphere Software V8 Programming Guide

The Enterprise Explorer, Outline, and Declaration views are also displayed in this
perspective. We discussed these views previously in this chapter.

For more details about working with JavaScript, see Chapter 20, “Developing
web applications using Web 2.0” on page 1097.

4.3.11 JPA perspective

With the Java Persistence API (JPA) perspective (Figure 4-19), you can manage
relational data in Java applications by using the Java Persistence API. You can
take advantage of new capabilities, such as defining and editing object-relational
mappings for EJB 3.0 JPA entities and adding JPA support to a plain Java
project.

Figure 4-19 JPA perspective
 Chapter 4. Perspectives, views, and editors 121

The JPA perspective has the following key views:

� JPA Structure view

This view shows an outline of the structure (its attributes and mappings) of the
entity that is currently selected or open in the editor.

� JPA Details view

The JPA Details view (Figure 4-20) shows the persistence information for the
currently selected entity and various tabs, depending on whether the
selection is on entity, attribute, or orm.xml.

You can work with JPA properties in either the JPA Details view or the
Annotations view, so that you do not need to keep both views open at once.
For clarity, the Annotations view distinguishes between implied and explicit
annotation attributes.

Figure 4-20 JPA Details view
122 Rational Application Developer for WebSphere Software V8 Programming Guide

For more details about working with JPA, see Chapter 10, “Persistence using the
Java Persistence API” on page 443.

4.3.12 Modeling perspective

Rational Application Developer provides facilities to allow architects and software
designers to create Unified Modeling Language (UML) diagrams, including class
diagrams, sequence diagrams, and topic diagrams. These diagrams need to be
built in the Modeling perspective, which includes views and commands to make
the design process easier.

Figure 4-21 Modeling perspective
 Chapter 4. Perspectives, views, and editors 123

The Modeling perspective (Figure 4-21 on page 123) contains the Layers view. In
the Layers view, each element in a UML diagram can be assigned to a layer,
which is a grouping of UML elements on the diagram. When viewing a UML layer,
it is possible to filter each layer so that the diagram only shows the pertinent
elements.

The Project Explorer, Outline, Properties, and Palette views are also relevant to
the Modeling perspective. We discussed these views in previous sections of this
chapter.

For more details about working with UML, see Chapter 6, “Unified Modeling
Language” on page 173.

4.3.13 Plug-in Development perspective

The ability to write extra features and plug-ins is an important part of the
philosophy of the Eclipse framework. Using this perspective (Figure 4-22 on
page 125), you can develop your own Rational Application Developer or Eclipse
tools.
124 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 4-22 Plug-in Development perspective

The Plug-in Development perspective (Figure 4-22) includes the following views:

� Plug-ins view

This view shows the combined list of workspace and external plug-ins.

� Error Log view

This view shows the error log for the software development platform, allowing
a plug-in developer to diagnose problems with plug-in code.

This perspective includes the Package Explorer, Outline, Tasks, and Problems
views, which we described earlier in this chapter.
 Chapter 4. Perspectives, views, and editors 125

To learn about plug-in development for Rational Application Developer or Eclipse,
see the IBM Redbooks publication Eclipse Development using the Graphical
Editing Framework and the Eclipse Modeling Framework, SG24-6302, or The
Java Developer’s Guide to Eclipse-Second Edition, by D’Anjou et al., which you
can download from the following website:

http://jdg2e.com

4.3.14 Profiling and Logging perspective

The Profiling and Logging perspective (Figure 4-23) provides several views for
working with logs and for profiling applications. One of the key views is the
Profiling Monitor view. This view shows the process that can be controlled by
the profiling features of Rational Application Developer. Performance and
statistical data can be collected from processes using this feature and displayed
in various specialized views and editors.

Figure 4-23 Profiling perspective
126 Rational Application Developer for WebSphere Software V8 Programming Guide

http://jdg2e.com

In addition, several editors are available for viewing the results of profiling, which
depends on which information was selected for monitoring. For example, the
Execution Statistics view from Figure 4-23 on page 126 shows the number of
calls and amount of time spent in each method of the Debit and Account classes.
For more details about these views and the techniques required to use them, see
Chapter 27, “Profiling applications” on page 1419.

4.3.15 Report Design perspective

The Report Design perspective (Figure 4-24) features the Data Explorer,
Resource Explorer, and Property Editor views.

Figure 4-24 Report Design perspective
 Chapter 4. Perspectives, views, and editors 127

This perspective has the following key views:

� Data Explorer view

The Data Explorer view shows the data sources, query result sets, and other
elements that are used by a report.

� Resource Explorer view

The Resource Explorer view shows reusable objects and shared content that
can be included in reports.

� Property Editor view

The Property Editor view shows commonly used properties in a designed
layout. The standard Properties view, although not shown by default, shows
all available properties.

4.3.16 Resource perspective

The Resource perspective is a simple perspective (Figure 4-25 on page 129). By
default, this perspective contains only the Navigator view, Outline view, Tasks
view, and an editor area. You can use this perspective to view the underlying files
and folders present for a project without any overlaid information or extraneous
views. All views in this perspective are available in other perspectives and are
described in previous sections in this chapter.
128 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 4-25 Resource perspective

4.3.17 Team Synchronizing perspective

The Team Synchronizing perspective enables the user to synchronize the
resources in the workspace with resources held on an SCM repository system.
This perspective is used with CVS and ClearCase repositories, plus any other
source code repository that might run as an additional plug-in to Rational
Application Developer.
 Chapter 4. Perspectives, views, and editors 129

Figure 4-26 shows a typical layout when working in the Team Synchronizing
perspective.

Figure 4-26 Synchronizing resources using the Team Synchronizing perspective

The following views are important when working in this perspective:

� Synchronize view

For any resource that is under source control, you can select Team
Synchronize, which prompts you to move to the Team Synchronizing
perspective and show the Synchronize view. It shows the list of
synchronization items that result from the analysis of the differences between
the local and repository versions of your projects. Double-clicking an item
opens the comparison view to help you in completing the synchronization.

� Comparison editor

This editor is displayed in the main editor area and shows a line-by-line
comparison of two revisions of the same source code.
130 Rational Application Developer for WebSphere Software V8 Programming Guide

Also present in the Team Synchronizing perspective is the History view to show
the revision history of a given resource file and the Tasks and Problems view. For
more details about these views and how to use them, see Chapter 29,
“Concurrent Versions System (CVS) integration” on page 1533.

4.3.18 Test perspective

The Test perspective (Figure 4-27) provides a framework for defining and
executing test cases and test suites. The focus here is on running the tests and
examining the results rather than building the JUnit tests themselves. Building
JUnit tests often involves writing complex Java code and is best done in the Java
perspective.

Figure 4-27 Test perspective
 Chapter 4. Perspectives, views, and editors 131

This perspective has the following key views:

� Test Navigator view

This view is the main navigator view for browsing and editing test suites and
reviewing test results. It has two main options to structure the display of these
resources:

– The Show the resource test navigator () option shows the resources
based on the file system, with the test suites displayed at the bottom.

– The Show the logical test navigator () option shows the resources
arranged by test suites, source code, and test results.

� Test Log view

If the user clicks a test result, this view is shown in the main editor area
showing the date, time, and result of the test.

� Test editor

This editor shows a summary of a test suite and its contained tests.

The Tasks, Properties, and Outline views are also present and useful when
working in the Test perspective. We explain these views in previous sections of
this chapter.

For more information about component testing, see Chapter 26, “Testing using
JUnit” on page 1365.

4.3.19 Web perspective

Web developers can use the web to build and edit web resources, such as Java
servlets, JSP files, HTML pages, style sheets, and images, as well as the
deployment descriptor web.xml. Figure 4-28 on page 133 shows a typical layout
when developing in this perspective.
132 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 4-28 Web perspective

The Web perspective contains the following views and editors:

� Page Designer (editor)

With Page Designer, you can edit HTML files, JSP files, and their embedded
Java and JavaScript sources. It provides four tabs offering separate ways for
you to work with the file that you are editing. This editor is synchronized with
the Outline and Properties views, so that the selected HTML or JSP element
is always displayed in these views.

– Design

The Design page of Page Designer is the “what you see is what you get”
or WYSIWYG mode for editing HTML and JSP files. As you edit in the
Design page, your work reflects the layout and style of the web pages you
build without the added complexity of source tagging syntax, navigation,
and debugging. Although all tasks can also be done in the Source page,
 Chapter 4. Perspectives, views, and editors 133

the Design view allows most operations to be done more efficiently and
without requiring a detailed knowledge of HTML syntax.

– Source

From the Source page, you can view and work with a file’s source code
directly.

– Split

The Split page combines the Source page and either the Design page or
the Preview page in a split view. Changes that you make in one part of the
split page can immediately be seen in the other part of the split page. You
can split the page horizontally or vertically.

– Preview

The Preview page shows how the current page is likely to look when
viewed in a web browser. JSP shown in this view contain only static HTML
output.

� Web Diagram Editor

Use the Web Diagram Editor (Figure 4-29 on page 135) to design and
construct the logic of a web application. From within the Web Diagram Editor,
you can configure your web application by creating a navigation structure,
adding data to pages, and creating actions and connections. You can use the
palette to add visual representations called nodes for web pages, web
projects, connections, and JavaServer Faces (JSF) and Struts resources (if
these facets are added to your web project).
134 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 4-29 Web Diagram Editor

� Page Data view

With this view, you can manage data from a variety of sources, such as
session EJBs, JavaBeans, Service Data Objects, JPA objects, and web
services, which can be configured and dropped onto a JSP page.

� Services view

This view lists all of the services available to all of your projects, including web
services and RPC Adapter services. This view does not require you to open a
web page in the editor to view the services that are specific to that particular
page.

� Styles view

This view provides guided editing for cascading style sheets and individual
style definitions for HTML elements.

� Thumbnails view

This view shows thumbnails of the images in the selected project, folder, or
file. This view is synchronized with the Enterprise Explorer view and will show
thumbnail versions of all the files in the selected directory. There is also a filter
 Chapter 4. Perspectives, views, and editors 135

option so that users can restrict the files shown to images, HTML files, and so
forth.

� Quick Edit view

With this view, you can edit small bits of JavaScript code, including adding
and editing actions assigned to tags. This view is synchronized with the
element selected in the Page Designer. You can also drag items from the
Snippets view to the Quick Edit view.

� Palette view

This view contains expandable drawers of drag-and-drop objects. With this
view, you can drag objects, such as tables or form buttons, to the Design or
Source page of the Page Designer.

The Enterprise Explorer, Outline, Properties, Servers, Console, Problems, and
Snippets views are also present in the Web perspective and have already been
discussed in this chapter.

For more information about developing JSP and other web application
components in the Web perspective, see Chapter 18, “Developing web
applications using JavaServer Pages (JSP) and servlets” on page 981.

4.3.20 XML perspective

Rational Application Developer contains special tools to facilitate the process of
developing XML-based applications. In particular, there are tools to help define
and verify XML schemas. Figure 4-30 on page 137 shows a typical screen
capture of work in the XML perspective.
136 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 4-30 XML perspective

The following views are the main views of this perspective:

� XML Editor

Use this editor to work with XML files. The Design tab includes several menu
options to speed up the process of simple functions, such as adding elements
and editing namespaces. The Source tab allows you to work with the
underlying source code.

� XML Schema Editor

Use this editor to work with XML Schema Definition Language (XSD) or XML
schema definitions. It includes a graphical view of the schema, which you can
zoom into or zoom out of, and the ability to export the schema view as an
image.
 Chapter 4. Perspectives, views, and editors 137

The Enterprise Explorer, Outline, Properties, Problems, Snippets, and Templates
views are also present in the XML perspective and have already been discussed
in this chapter.

For more information about developing applications and using XML and XSD
files, see Chapter 8, “Developing XML applications” on page 331.

4.3.21 Progress view

The Progress view shows the progress of operations running in the background.

As Rational Application Developer performs a task that takes a substantial
amount of time, a prompt might appear during its execution (Figure 4-31).

Figure 4-31 Run in background option

The user can either wait until the dialog is dismissed by the completed operation
or click Run in Background and have the task continue in the background. If the
second option is selected, the operation might take longer to complete overall,
but the user is free to carry out other tasks in the meantime. Examples of tasks
that might be worth running in the background are publishing and launching an
enterprise application, checking a large project in to or out of CVS, or rebuilding a
complex set of projects. If you clicked “Run in Background”, you can use the
Progress view to review the status of the running task by clicking the icon in the
lower right of the workspace. This icon is only displayed when processes are
running in the background.

Certain processes do not prompt the user with a window and instead
automatically run in the background when they are initiated. In these cases, the
Progress view can be accessed in the same way. By default, the progress view
appears minimized and is represented as an icon in the lower right area of the
workbench (Figure 4-32 on page 139).
138 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 4-32 Process information in status bar

Clicking the symbol will show the status of the operations in the Progress view.
Double-clicking the neighboring status text will also open the Progress view.

If the user becomes concerned about the time that the deployment process is
taking, the user can open the Progress view, review the processes that are
running, and if necessary, stop the processes (Figure 4-33).

Figure 4-33 Progress view

4.4 Summary

In this chapter, we described the perspectives available within Rational
Application Developer and the associated main views. In the next parts of this
book, we demonstrate the use of most of these perspectives for various
development scenarios.

Click here to see Progress view
 Chapter 4. Perspectives, views, and editors 139

140 Rational Application Developer for WebSphere Software V8 Programming Guide

Chapter 5. Projects

In this chapter, we provide an overview of the types of projects that can be
created with Rational Application Developer, and the major features of each
project type.

Because many of the available project types are used when constructing Java
Enterprise Edition 6 (Java EE 6) applications, we start with a review of the major
features of the Java EE 6 platform, including the packaging of project code for
deployment to an application server.

We describe techniques for the manipulation of projects, including project
creation and deletion, followed by a section listing the project wizards that are
provided by Rational Application Developer for the creation of new projects.
Finally, we discuss the sample projects that are provided.

The chapter is organized into the following sections:

� Java Enterprise Edition 6
� Java EE 6 project types
� Project basics
� Project wizards
� Sample projects
� Summary

5

© Copyright IBM Corp. 2011. All rights reserved. 141

5.1 Java Enterprise Edition 6

The Java Enterprise Edition (Java EE) platform is used to host enterprise
applications, ensuring that they can be highly available, reliable, scalable, and
secure. Java EE 6 is the latest version of the Java EE platform and is supported
by Rational Application Developer when the target run time selected is
WebSphere Application Server V8 Beta. Previous versions of Java EE, such as
Java EE 5, are also supported by WebSphere Application Server V8 Beta. If
WebSphere Application Server V7 is chosen as the target run time, only support
for the Java EE platforms up to Java EE 5 is available.

The Java EE 6 specification, along with many other resources relating to Java EE
6, are available at the following web address:

http://www.oracle.com/technetwork/java/javaee/overview/index.html

The Java EE architecture consists of a set of containers, each of which is a
runtime environment that hosts specific Java EE components and provides
services to those components. The details of the services provided by each
container are documented in the Java EE 6 specification document available at
the following web address:

http://jcp.org/aboutJava/communityprocess/final/jsr316/index.html

The Java EE architecture includes four containers:

� The Enterprise JavaBeans (EJB) container. This container hosts EJB
components, which are typically used to provide business logic functionality
with full transactional support. This container runs on the application server.

� The Web container. This container hosts web components, such as servlets
and JavaServer Pages (JSP), which are executed in response to HTTP
requests from a web client application, such as a web browser. This container
runs on the application server.

� The Application Client container. This container hosts standard Java
applications, with or without a GUI, and provides the services required for
those applications to access enterprise components in an EJB container. This
container runs on a client machine.

� The Applet container. This container hosts Java applets, which are GUI
applications that are typically presented by a web browser. The applet
container runs on a client machine under the control of a web browser.

Figure 5-1 on page 143 shows the Java EE architecture containers. The diagram
includes a database that is typically used for the persistence of enterprise
application data. It is not necessary to employ all of the containers in a specific
enterprise application. In certain enterprise applications, only the Web container
142 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr316/index.html
http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr316/index.html

is employed. In this case, all business logic and persistence functionality execute
in the Web container along with the code that presents the user interface. In
other enterprise applications, only the Web container and EJB container are
employed. In this case, the user interface is presented by components in the Web
container with all business logic and persistence functionality delegated to the
EJB container and the EJB components that it contains. One new feature of Java
EE, introduced in Java EE 6, is support for EJB components in the Web
container. This feature gives developers a new option for the implementation of
business logic and persistence functionality when an enterprise application with
just a Web container is required.

Figure 5-1 Java EE architecture containers

A Java EE enterprise application is assembled from one or more Java EE
modules, and each Java EE module contains one or more enterprise application
components. An optional deployment descriptor, which describes the module
and the components that it contains, can also be included in the module. The
following sections provide a summary of the purpose that is served by each of
the modules and the types of components typically contained in the module.
Subsequent sections describe the types of projects that are available in Rational
Application Developer and that are used to create each module.

Applet Container

EJB Container

Application
Client Container

Database

Web Container
 Chapter 5. Projects 143

Figure 5-2 shows a high-level view of the module structure of a Java EE
enterprise application.

Figure 5-2 Java EE 5 module structure

5.1.1 Enterprise application modules

Enterprise application modules contain one or more of the other types of Java EE
modules. They act as the highest-level enterprise application packaging unit. The
modules in an enterprise application are deployed as a unit to the WebSphere
Application Server. Enterprise application modules are packaged as enterprise
archive (EAR) files with the .ear extension. EAR files are standard Java archive
files that have a defined directory structure. An optional deployment descriptor
file called application.xml can be included.

Java EE Application
(EAR File)
Includes:
• application.xml (deployment descriptor)
• *.jar (ejb, application client, and utility jar)
• *.war (web applications)
• *.rar (resource adapters)

Resource Adapter Module
(RAR File)
Includes:
• ra.xml (resource deployment descriptor)
• *.class files
• Other application resources applicable to

what is being adapted

Application Client Module
(JAR File)
Includes:
• application-client.xml (application client deployment descriptor)
• *.class files (required to work with the EAR, plus for application itself)

Java Utility Library
(JAR File)
Includes:
• *.class files

Web Application Module
(WAR File)
Includes:
• web.xml (Web deployment descriptor)
• *.class files (including servlets and any other

Java utility class)
• *.jsp files
• *.html, *.jpeg and any other resource available

from the web app

EJB Module
(JAR File)
Includes:
• ejb-jar.xml (EJB deployment descriptor)
• *.class files (including the EJBs and any

other Java utility class)

Contains
0 or more

Contains
0 or more

Contains
0 or more

Contains
0 or more

Contains
0 or more
144 Rational Application Developer for WebSphere Software V8 Programming Guide

An enterprise application module can include zero or more of the following
modules:

Web modules WAR files with the .war extension

EJB modules EJB JAR files with the .jar extension

Application client modules
Application client JAR files with the .jar extension

Resource adapter modules
Resource adapter archive files with the .rar extension

Utility libraries JAR files with the .jar extension, which are shared by all
the other modules that are packaged in the EAR file

5.1.2 Web modules

Web modules contain all the components that are part of a specific web
application. The following items are several of the components that might be
included:

� Hypertext Markup Language (HTML) web page files
� Cascading Style Sheet (CSS) files
� JavaServer Pages (JSP) web page files
� Facelets
� Compiled Java servlet classes
� Other compiled Java classes
� Image files
� Portlets (portal applications)
� iWidgets

Web modules are packaged as WAR files with the .war extension. WAR files
have a defined directory structure and include an optional deployment descriptor
called web.xml, which contains the configuration information for the web module.
Each web module has a defined context root that determines the URL required to
access the components present in the web module. Web modules can be
packaged in an EAR for deployment to an application server or can be deployed
stand-alone. Because Java EE 6 allows EJB components to be packaged in a
web module, the use of a stand-alone web module is now a more versatile
option.

5.1.3 EJB modules

An EJB module contains EJB components. EJB modules are packaged as JAR
files with the .jar extension. EJB JAR files have a defined directory structure
and include an optional deployment descriptor called ejb-jar.xml, which
 Chapter 5. Projects 145

contains configuration information for the EJB module. Alternatively, the
configuration can be defined using annotations in the Java classes and interfaces
of the EJB components.

5.1.4 Application client modules

An application client module contains enterprise application client code.
Application client modules are packaged as JAR files with the .jar extension. An
application client module typically includes the classes and interfaces to allow a
client application to access EJB components in an EJB module. Code in an
application client module can also access components in a web module. The file
has a defined directory structure and includes an optional deployment descriptor
called application-client.xml.

5.1.5 Resource adapter modules

A resource adapter (RA) module contains resource adapters. Resource adapter
modules are packaged as .rar files. Resource adapters provide access to
back-end resources using services provided by the application server. Resource
adapters are often provided by vendors of Enterprise Information Systems, such
as SAP and PeopleSoft, to facilitate access from Java EE 6 applications.

Resource adapter modules can be installed as stand-alone modules within the
application server, so that they can be shared by several enterprise applications.
They can also be included in a specific EAR file, in which case they are only
available to the modules contained within that EAR file. A .rar file has a defined
directory structure and contains an optional deployment descriptor called ra.xml.

5.1.6 Java utility libraries

Java utility libraries can be included in a Java EE enterprise application so that all
the modules included in the application can share the code that they contain.
Java utility libraries are packaged as standard Java JAR files with the .jar
extension.

5.2 Project basics

Within Rational Application Developer, projects are contained in a workspace. A
workspace maintains everything needed by the developer for building and testing
a project. A project must be present in a workspace before it can be accessed
and used. Many types of projects can be created as required for a specific
146 Rational Application Developer for WebSphere Software V8 Programming Guide

application. Projects are typically created or imported using one of the wizards
available in Rational Application Developer. See 5.4, “Project wizards” on
page 162 for a list of available project wizards.

Unless otherwise specified, projects are stored in the Rational Application
Developer workspace directory. A workspace is chosen when Rational
Application Developer is started, although it is also possible to switch
workspaces at a later time by selecting File Switch Workspace.

5.2.1 Creating a new project

Development on a new application is usually started by creating one or more
projects. Plan the required projects in advance and then use the relevant project
wizards to create a skeleton set of projects for the application under construction.
You can also open existing projects if they are to be used as part of the current
application.

To create a new project using the Enterprise Application Project wizard, follow
these steps:

1. Start this wizard by selecting File New Project.

2. In the New Project window (Figure 5-3 on page 148), select Java EE
Enterprise Application Project and click Next.
 Chapter 5. Projects 147

Figure 5-3 New Project: Select a wizard window with Enterprise Application Project
selected
148 Rational Application Developer for WebSphere Software V8 Programming Guide

3. Figure 5-4 shows the New EAR Application Project: EAR Application Project
window, which is the first window of the Enterprise Application Project wizard.

Figure 5-4 New EAR Application Project: EAR Application Project window

In this window, you can specify the following details:

– Project Name. In this field, you enter the project name, which is Example in
this case.

– Project location. By default, projects are stored in a subdirectory that is
created for the project in the workspace directory. By clearing the Use
default location option, you can specify another location.

– Target Runtime. An enterprise application project is targeted to run on an
Application Server. With this option, you can configure the target runtime
 Chapter 5. Projects 149

environment. In this case, WebSphere Application Server V8.0 Beta has
been selected.

– EAR Version. An enterprise application can be created for a specific
version of Java EE, such as 1.4, 5, or 6. In this case, we select EAR
Version 6.0 from the list. The versions that are available depend on the
Target Runtime selected. With WebSphere Application Server V8.0 Beta
as the Target Runtime, versions up to the latest version, 6.0, are available.

– Configuration. This list contains the saved configurations that have been
created for previous enterprise application projects. A configuration
includes a specific set of facets and their specific versions. Make sure that
all similar projects use the same configuration. An existing configuration
can be chosen or <custom> can be selected. When <custom> is selected,
you can specify a configuration. Click Modify to modify a configuration.

If you click Modify, the Project Facets window (Figure 5-5 on page 151)
opens. In this window, you can customize the facets and versions of a
facet that will be available in the new project. The set of facets selected is
a project configuration and determines the capabilities supported by the
project. The validity of facet selections is determined by the target run time
selected, the module version selected, and the currently selected facets.

In this case, the EAR, WebSphere Application (Co-existence), and
WebSphere (Extended) facets are selected by default, and the iWidgets,
JavaScript, SCA, and WebSphere 8.0 Beta SCA facets are available for
selection.

You can save a selected set of facets as a configuration so that it can be
used for subsequent projects. Configurations can be created and saved
that are known to be valid for a specific target run time and Java EE
module version.

You can also use the Project Facets window when creating new Dynamic
Web, EJB, and Connector projects, because they are Java EE project
types, but the facets listed in each case are applicable to the type of
project being created.

Several predefined configurations are available in Rational Application
Developer, many of which are covered in 5.3.3, “Dynamic web project” on
page 159. The configuration of a project can be modified after it has been
created by selecting Project Facets from the project Properties window
and adding and removing facets from the list that is presented.

Click Cancel to return the New EAR Application Project: EAR Application
Project window, Figure 5-4 on page 149.
150 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 5-5 Project Facets window

4. For the Working sets section back on the New EAR Application Project: EAR
Application Project window (Figure 5-4 on page 149), Rational Application
Developer uses working sets to group resources, such as files, for viewing or
filtering operations. Rational Application Developer has many predefined
working sets, including EAR Projects, JPA Projects, and EJB Projects.
Resources in a new enterprise application project are automatically included
in the EAR Project working set and all user-defined working sets that are of
type EAR Project. By default, “Add project to working sets” is not selected. If
“Add project to working sets” is selected, you can click Select to open the
Select Working Sets window, as shown in Figure 5-6 on page 152. Any
existing working sets of type Resource can be selected. The most generic
type of working set is the Resource type. If no working sets of this type are
available, new working sets can be created by clicking New. Working sets of
type Resource are the only type of working set that can be created here. In
this case, one working set of type Resource is available, which is called Brians
Projects, and it has not been selected. You can create working sets of any
required type elsewhere in Rational Application Developer. If you clicked
Select, click Cancel in the Select Working Sets window to return to the New
EAR Application Project: EAR Application Project window, as shown in
Figure 5-4 on page 149.
 Chapter 5. Projects 151

Figure 5-6 Select Working Sets window

5. Clicking Next in the New EAR Application Project: EAR Application Project
window shows the final window in the Enterprise Application Project wizard.
In this window (Figure 5-7), you can select other projects that are to be part of
this new enterprise application. Check boxes are included for all the Java,
EJB, Web, and Application Client projects in the current workspace. If a check
box is selected, the project is added to the project references for the new
enterprise application project.

Figure 5-7 New EAR Application Project: Enterprise Application window
152 Rational Application Developer for WebSphere Software V8 Programming Guide

6. In this Enterprise Application window, as shown in Figure 5-7 on page 152,
you can specify the following information:

– Content Directory. This option specifies the folder within the Enterprise
Application project under which the contents will be stored. You can leave
this box empty, meaning that all contents will be stored under the root
directory.

– New Module. This button provides the ability to automatically create
projects to be referenced by the new Enterprise Application project.
Clicking New Module opens the window in Figure 5-8.

– Java EE module dependencies. Because the current workspace used
here contains three existing projects, three modules are listed in the Java
EE module dependencies list box. The modules listed can be selected or
deselected as required, all can be selected, or all can be deselected by
using the Select All and Deselect All buttons. The selections made
indicate that there is a dependency on the ExampleWebProject and
ExampleUtilityProject1 projects, because both have been selected.
There is no dependency on ExampleUtilityProject2, because it is not
selected.

– Generate Deployment Descriptor. Optionally, check this box to generate
the application.xml deployment descriptor file.

Figure 5-8 Create default Java EE modules window
 Chapter 5. Projects 153

7. The Create default Java EE modules window, Figure 5-8 on page 153, opens
when you click New Module on the New EAR Application Project: Enterprise
Application window. Choose either of the following actions:

– Click Cancel if you decide not to create any default Java EE modules.

– Select the check boxes for the projects that you want to create, change the
names if desired, and click Finish.

8. In the New EAR Application Project wizard, New EAR Application Project:
Enterprise Application window, click Finish, and the new project and any
associated projects are created.

If the project that you created is associated with a particular perspective, in this
case with the Java EE perspective, but you currently have a separate perspective
selected, Rational Application Developer prompts you to decide whether you
want to switch over to the relevant perspective (Figure 5-9).

Figure 5-9 Open Associated Perspective message
154 Rational Application Developer for WebSphere Software V8 Programming Guide

5.2.2 Project properties

To make changes to the properties of a project, right-click the project and select
Properties. Figure 5-10 shows the Properties window for an Enterprise
Application project.

Figure 5-10 Project properties for an Enterprise Application project

In the Properties window, you can edit most project attributes. Each type of
project has separate options available.

The following options are a few of the available options for an Enterprise
Application project:

� Deployment Assembly. This option shows the packaging structure for the
Enterprise Application project.

� Project Facets. You select this option to view the facets that are available for
this project and to have the opportunity to add or remove facets.

� Project References. You use this option to configure project dependencies.

� Server. You use this option to specify the default application server to use
when running this application.

� Validation. You use this option to indicate whether you want to run any
non-default validation tools, and if so, which ones to run after making
changes.
 Chapter 5. Projects 155

5.2.3 Deleting projects

To delete a project from the workspace, right-click the project and select Delete.
When deleting projects from a workspace, Rational Application Developer gives
you the option to also delete the project contents on disk.

Figure 5-11 shows the Delete Resources window that opens when deleting a
project. The default setting only removes the project from the workspace and
leaves the project files on disk intact. Select the “Delete project contents on disk
(cannot be undone)” check box if you want to remove the project completely.

If a project is only removed from the workspace, you can import it later by
selecting File Import General Existing Projects Into Workspace. A
project that has been deleted from the workspace takes up no memory and is not
examined during the build process. Deleting projects from the workspace can
improve the performance of Rational Application Developer.

Figure 5-11 Project Delete Resources window

5.2.4 Transferring projects between workspaces

Projects can be transferred between workspaces as archive files. An archive file
is a compressed file that is used to encapsulate a project. To create an archive
file for any project, select File Export General Archive File, and specify

Deletion: Deleting a project from disk is permanent, and the project cannot be
opened again.

Refactoring: Depending on the projects being deleted, part of the optional
refactoring might result in other projects being modified. These changes can
be previewed by clicking the Preview button that is shown in Figure 5-11.
156 Rational Application Developer for WebSphere Software V8 Programming Guide

which projects to export and to which location. Any number of projects present in
the workspace can be exported to the archive file. Several options are available
when creating the archive, such as archive file type of zip or tar and whether the
file content needs to be compressed. To import projects, which are stored as an
archive file, into another workspace, select File Import General
Existing Projects Into Workspace, and choose Select archive file rather than
“Select root directory”. When exporting and importing a project, the project
interrelationships are transferred, but not the referenced projects. Therefore, it
might be necessary to export all the related projects to ensure that everything is
available in the other workspace.

5.2.5 Closing projects

You can close projects that are in a workspace. Closing a project locks it so that it
cannot be edited or referenced from another project. To close a project, select
either Close Project or Close Unrelated Projects from the Explorer context menu.
Closed projects are still visible in the workspace, but they cannot be expanded.

Closing unnecessary projects can speed up compilation times, because the
underlying application builders only have to check for resources in open projects.
You can reopen a closed project by right-clicking it, and selecting Open Project.

5.3 Java EE 6 project types

Rational Application Developer complies with the Java EE 6 specifications for the
development of enterprise applications.

Module packaging into files, as described in 5.1, “Java Enterprise Edition 6” on
page 142, is only applied by Rational Application Developer when a Java EE
project is exported or deployed.

While working within Rational Application Developer, only the projects present in
the workspace are edited. The relationships between the enterprise application
projects, and the modules that they contain, are managed by Rational
Application Developer, and are applied on export or deployment to produce a
properly packaged EAR file.
 Chapter 5. Projects 157

Figure 5-12 shows the arrangement of projects and their associated outputs.
This figure relates to Figure 5-2 on page 144, where the relationships between
various Java EE modules are reflected in the Rational Application Developer
project references.

Figure 5-12 Java EE projects in Rational Application Developer

The following sections briefly describe the creation of each of the project types
that are shown in Figure 5-12, using the wizard that is available for each project
type.

5.3.1 Enterprise application projects

Enterprise application projects contain the resources needed for enterprise
applications and can contain references to a combination of web projects, EJB
projects, application client projects, resource adapter projects, and utility library
projects. You can specify the relationships when creating a new enterprise
application project through the wizard, as previously shown, or through the
project properties. We have already covered the wizard used to create an

Connector Project

RAR File

Utility Project

JAR File

Dynamic Web Project

WAR File

EJB Project

JAR File

Application Client Project

JAR File

Project
Reference

Project
Reference

Project
Reference

Project
Reference

Project
Reference

Enterprise Application Project

EAR File
158 Rational Application Developer for WebSphere Software V8 Programming Guide

enterprise application project in detail in 5.2.1, “Creating a new project” on
page 147.

5.3.2 Application client project

Application client projects contain the resources needed for application client
modules. An application client module is used to contain a fully functioning client
Java application (non-web-based) that connects to and uses the resources in an
enterprise application and an application server. By holding a reference to the
associated enterprise application, it shares information, such as the Java
Naming and Directory Interface (JNDI) references to EJB components and to
data sources.

The New Application Client Project wizard allows the project location, target run
time, application client module version, project configuration, EAR membership,
and working sets to be specified. Clicking the configuration Modify button allows
the facets for the project to be defined.

By default, the facets Application Client Module, Java, WebSphere Application
Client (Co-existence), and WebSphere Application Client (Extended) are
selected. The iWidgets, JavaScript, JDBC Mediator, JPA, SCA, and WebSphere
8.0 Beta Service Component Architecture (SCA) facets are available for
selection. By default, the wizard also creates a Java Main class for the
Application client project.

For more information about developing application clients, see Chapter 13,
“Developing Java Platform, Enterprise Edition (Java EE) application clients” on
page 649.

5.3.3 Dynamic web project

A dynamic web project contains the resources needed for a Java EE web
application, such as JSP, Java servlets, and HTML pages as well as additional
file types.

The New Dynamic Web Project wizard allows the project location, target run
time, dynamic web module version, project configuration, EAR membership, and
working sets to be specified. Clicking the configuration Modify button allows you
to define the facets for the project.

With the default configuration selected, the dynamic web module, Java,
WebSphere Application Client (Co-existence), and WebSphere Application Client
(Extended) facets are selected. JSP, Struts, or JavaServer Faces capabilities are
not included, by default.
 Chapter 5. Projects 159

Several other configurations are available in addition to the default configuration,
but the list of configurations depends on the target run time and dynamic web
module version selected. With the target run time set to WebSphere Application
Server V8.0 Beta and the Dynamic web module version set to 3.0, the following
additional configurations are available:

� IBM JAX-RS configuration
� JavaServer Faces V2.0 project
� Minimal configuration
� Minimal configuration for WebSphere Application Server

If the JavaServer Faces V2.0 Project configuration is selected, the Dynamic Web
Module, Java, JavaServer faces, WebSphere Application Client (Co-existence),
and WebSphere Application Client (Extended), which ensures that the web
module can be used for JavaServer Faces development, are selected.

A large number of facets are available for Dynamic Web projects, including:

� Struts
� JavaServer Pages Standard Tag Library (JSTL)
� Dojo Toolkit
� Java Persistence API (JPA)
� JAX-RS

For more information about developing dynamic web applications, see
Chapter 18, “Developing web applications using JavaServer Pages (JSP)
and servlets” on page 981.

5.3.4 EJB project

EJB projects contain the resources for EJB applications. These resources
include the classes and interfaces for the EJB components, the deployment
descriptor for the EJB module, IBM extensions, bindings files, and files
describing the mapping between entity beans in the project and relational
database resources.

The New EJB Project wizard allows the project location, target run time, EJB
module version, project configuration, EAR membership, and working sets to be
specified. Clicking the configuration Modify button allows the facets for the project
to be defined.

In the case of a target run time of WebSphere Application Server V8.0 Beta and
an EJB module version of 3.1, two predefined configurations are available in
addition to the default configuration:

� Minimal Configuration
� Minimal Configuration for WebSphere Application Server
160 Rational Application Developer for WebSphere Software V8 Programming Guide

With the default configuration selected, the EJB Module, Java, and WebSphere
EJB (Extended) facets are selected. With the minimal configuration selected
only, the EJB Module and Java facets are selected.

The wizard allows an EJB Client JAR to be created, which includes all the
resources needed by client code to access the EJB module-like interfaces.

For more information about developing EJB, see Chapter 12, “Developing
Enterprise JavaBeans (EJB) applications” on page 577.

5.3.5 Connector project

A connector project contains the resources that are required for a Java EE
resource adapter.

The New Connector Project wizard allows the project location, target run time,
Java EE Connector Architecture (JCA) module version, project configuration,
EAR membership, and working sets to be specified. Clicking the configuration
Modify button allows the facets for the project to be defined.

The default configuration selects the Java and JCA Module facets.

5.3.6 Utility project

A utility project is a Java project that contains Java packages and Java code as
.class files.

The New Java Utility Module wizard allows the project location, target run time,
project configuration, EAR membership, and working sets to be specified.
Clicking the configuration Modify button allows the facets for the project to be
defined.

The default configuration selects the Java and Utility Module facets.

In the case of a target run time of WebSphere Application Server V8.0 Beta, four
predefined configurations are available in addition to the default configuration:

� Minimal configuration
� Minimal JPA 1.0 configuration
� Minimal JPA 2.0 configuration
� Minimal configuration for WebSphere Application Server

If the Minimal JPA 2.0 configuration is chosen, the Java, JPA, WebSphere
Application Client (Co-existence) and Utility Module facets are selected, which
 Chapter 5. Projects 161

ensures that the utility module has the capability of being a container for JPA
entities.

5.4 Project wizards

The following list describes a selection of the project wizards that you can use to
create projects within Rational Application Developer. The project category is
shown in brackets after the project name. To invoke a wizard, select File
New Project and select the appropriate project wizard. A wizard prompts you
for the required information as appropriate for the type of project. To ensure that
all project types are available, select File Preferences to open the
preferences window and then choose General Capabilities. Click Enable All
and then click OK to ensure that all the Rational Application Developer installed
capabilities are enabled and all project types are listed.

Each wizard creates a project of the specified type with the files, folders,
supporting libraries, and references to support the project. However, after the
project has been created, it is still possible to change aspects of a project
through the project properties:

� Project (General). This wizard is used for the simplest projects that only
contain a collection of files and folders. It has no associated project builder
configuration and is useful for creating a project that has no application code,
for example, a project to store XML or XML Schema Definition (XSD) files, or
to store application configuration information.

� Faceted Project (General). This wizard allows a project to be created using a
specific pre-existing configuration or using a selection of facets selected when
the wizard is executed. The desired project configuration can be selected
from a list of currently available project configurations, including those that are
predefined in Rational Application Developer and any custom configurations
created by the user. New configurations can also be created that are specific
to a user’s needs.

� Report Project (Business Intelligence and Reporting Tools). BIRT is an
initiative that provides an open source reporting system in Java. This wizard
creates a report project that can combine database information or content
from XML into report templates.

� ODA Designer Plug-In Project (Business Intelligence and Reporting Tools).
Open Data Access (ODA) is a data access framework that can be used to

BIRT: To learn more about BIRT, visit the following web address:

http://eclipse.org/birt/phoenix/project
162 Rational Application Developer for WebSphere Software V8 Programming Guide

http://eclipse.org/birt/phoenix/project

access both standard data sources, such as those sources accessible using
Java Database Connectivity (JDBC), as well as custom data sources. BIRT
uses ODA. When working with ODA, you can create an ODA driver and
associated GUI. An ODA Designer Plug-in project is used when creating the
GUI for an ODA driver.

� ODA Runtime Driver Plug-in Project (Business Intelligence and Reporting
Tools). This type of project is used to create an ODA driver run time. Together,
an ODA Designer Plug-in project and an ODA Runtime Driver Plug-in project
are used to produce a usable ODA driver.

� Projects from Concurrent Versions System (CVS). This wizard guides you
through the creation of a new project by checking out an existing project
within CVS. With the wizard, you can check out a complete project from CVS
or create a new project as part of the check-out process.

� Data Design Project (Data). This wizard creates a project to store data design
artifacts, including data design models and SQL statements.

� Data Development Project (Data). This wizard creates a project that stores a
connection to a given database. From within this type of project, you can
create resources to interrogate and manipulate the associated database.
Initially, the wizard creates folders to store SQL scripts and stored
procedures.

� Existing Rational Application Developer 6.x Data Definition Project (Data).
The tooling that supports database definitions has changed since Rational
Application Developer V6.0.x and V5.1.2. Therefore, any data project that
contains database definitions or other database objects from previous
versions of Rational Application Developer must be migrated to work with
Rational Application Developer V8.0. This wizard takes a project folder in the
old format and migrates it to Rational Application Developer V8.0.

� EJB Project (EJB). This wizard guides you through the process of creating a
project suitable for containing EJB components. This procedure also creates
an empty EJB deployment descriptor and can associate the EJB project with
a new or existing enterprise application project.

� Java Project (Java). This simple wizard is used to create a Java application
project. The wizard allows the Java Runtime Environment (JRE), project
folder layout, and class path, including project dependencies, to be specified.

� Java Project from Existing Ant Buildfile (Java). It is possible to export the build
settings of a project as an Ant file (select File Export General Ant
Buildfiles). With an Ant build file, this wizard can be used to create a new
project based on the instructions contained within it.

� Application Client Project (Java EE). This wizard guides you through the
creation of a new Application Client project. The wizard allows the project to
 Chapter 5. Projects 163

be associated with a new or existing enterprise application project. You can
also define the desired project configuration and facets.

� Connector Project (Java EE). This wizard guides you through the creation of a
Java EE connector project, which includes specifying the associated
enterprise application project, as well as the configuration and set of facets
applicable to this type of project.

� Enterprise Application Project (Java EE). This wizard creates a new EAR
project. We describe this wizard in detail in 5.2.1, “Creating a new project” on
page 147, because you create a new EAR project for many project types,
such as EJB and JSF projects.

� Utility Project (Java EE). This wizard assists in the construction of a Java
utility library project, which is associated with an Enterprise Application
project. Code present in a Java utility library that is present in a Java EE
application is shared between the modules present in the application.

� JavaScript Project (JavaScript). This wizard allows you to create a project to
contain JavaScript files. The wizard allows JavaScript page support, such as
the ECMA 3 browser library to be defined, as well as the project folder layout.
JavaScript embedded in HTML and JSP is supported in Rational Application
Developer web projects. A JavaScript project allows the creation of
stand-alone JavaScript source files that can be referenced as external
JavaScript by web project files, such as HTML and JSP files. Stand-alone
JavaScript files normally have the extension .js.

� JET Transformation Project (JET Transformations). This wizard allows a Java
Emitter Template (JET) transformation project to be created. JET is the
automatic generation of code, such as Java source code and XML from
predefined templates. The wizard allows JET project settings and
transformation properties to be configured, as well as allowing a new
transformation to be extended from a pre-existing one.

� JET Project with Exemplar Authoring (JET Transformations). Exemplar
authoring is capturing leading practices from previous software designs so
that they can be applied to new designs. This wizard allows the creation of a
JET project used to create exemplar JET templates. Exemplar JET templates
transform elements from an input design to elements in an output design
through the application of a design pattern that encapsulates best practices.

� JPA Project (JPA). This wizard creates a Java Persistence API (JPA) project.
In the past, JPA was defined within the Java EE specification for Enterprise
JavaBeans 3.0. With Java EE 6 and JPA 2.0, the JPA specification is defined
separately from Java EE specification for Enterprise JavaBeans 3.1. JPA is
the Java EE 6 standardized object-relational mapping framework.

� Jython Project (Jython). This wizard creates an empty project for developing
Jython resources. Jython is the latest version of JPython, an implementation
164 Rational Application Developer for WebSphere Software V8 Programming Guide

of the Python language, coded in Java, which can be executed on the Java
virtual machine (JVM). Jython is one of the supported scripting languages
when administering the WebSphere Application Server.

� OSGi Bundle Project (OSGi). OSGi is the packaging of software modules and
applications so that they can be used in a standardized manner as
components over a wide range of network-connected computing devices.
This wizard creates a project used to develop OSGi bundles. OSGi bundles
contain a collection of OSGi components.

� OSGi Composite Bundle Project (OSGi). This wizard creates a project that
can be used to create an OSGi composite bundle. An OSGi composite bundle
is a container for a collection of constituent OSGi bundles.

� OSGi Application Project (OSGi). An OSGi Application project is used to
group OSGi bundles into an application that provides specific business logic
functionality. The application acts as a facade for the services offered by the
bundles with services externally visible only when the application is
configured to export those services. The wizard allows the OSGi bundles, to
be included in the application, to be selected when creating a new application.

� Feature Patch, Feature Project, Fragment Project, Plug-in from Existing JAR
Archives, Plug-in Project, and Update Site Project (Plug-in Development).
These wizards assist in the creation of Eclipse plug-ins, features, and
fragments, which can enhance existing Rational Application Developer
perspectives or create entirely new Rational Application Developer
perspectives. The Rational Application Developer Help system has a section
that describes how to use these wizards, and the Eclipse marketplace home
page at the following address has information about many already built
plug-ins and tutorials about building new plug-ins:

http://marketplace.eclipse.org/

� Portal Project (Portal). This wizard is used to develop a specific type of Java
EE web application called a portal application. The interface presented by a
portal application is an aggregate of other portal applications, as well as
portlets. Portlet applications need a portal server target run time, such as
WebSphere Portal V6.1. The wizard allows the target run time to be chosen,
as well as a default theme that defines the way the portlet looks and its layout.
In addition, you can choose a default skin, which is the border around the
components aggregated by the portlet.

� Portlet Project (Portal). This wizard creates a project that is used to develop
portlets that can be used in a portal project. Portlets are components that
form part of a web user interface. During execution of the wizard, as well as
selecting the target run time, you can request that an initial portlet is created
with a specific configuration and features. Throughout the wizard, many other
settings are available, such as the portlet content type and mode and security
settings concerned with single sign-on.
 Chapter 5. Projects 165

http://marketplace.eclipse.org/

� SCA Project (Service Component Architecture). This wizard allows you to
create a new Service Component Architecture (SCA) project. SCA applies
service-oriented architecture (SOA) concepts to the development of software
components. The wizard allows you to choose the target run time and facet
configuration, as well as the types of implementation that can be used for the
SCA components, such as Java and EJB.

� SIP Project (SIP). The Session Initiation Protocol (SIP) is an extension to the
Java EE servlet API that is intended for telecommunications applications
using technologies, such as Voice over IP (VOIP). This wizard creates a web
project with the appropriate facets selected to allow the construction of SIP
applications.

� Dynamic Web Project (Web). This wizard creates a project for a web
application, which can include JSP, servlets, and other dynamic content. We
describe this type of project in 5.3.3, “Dynamic web project” on page 159.
Notice that you define a dynamic web project to create a JavaServer Faces
2.0 project. To create a JavaServer Faces V1.x project, the project type Faces
1.x Component Library Project is available.

� Faces 1.x Component Library Project (Web). This wizard creates a dynamic
web project that is configured to allow the creation of a JavaServer Faces 1.x
component library.

� iWidget Project (Web). An iWidget is a reusable component that can be used
in web applications. iWidgets adhere to an IBM-defined specification and run
inside an iWidget-compliant container. WebSphere Application Server V8
Beta and other IBM products, provide an iWidget container. When executing
the wizard, you are asked to choose either a Web Technologies (Ajax, HTML,
CSS, and so on) or Web and Java EE technologies (Ajax, HTML, CSS, JSP,
servlets, and so on) iWidget project type. The Web Technologies iWidget
project type is a static web project and the Web and Java EE Technologies
iWidget project type is a dynamic web project.

� Library Definitions Project (Web). This wizard is used to create a library of
components that can be used in web applications. A project of this type can
contain custom JSP and JSF tags, as well as files and other resources. After
the project is created, resources can be added, such as a Faces Library
Definition or a JSP Library Definition, to include the JSF and JSP tags in the
library.

� Static Web Project (Web). This wizard creates a project for a website,
incorporating elements, such as images, HTML, CSS, and JavaScript.

� Web Fragment Project (Web). This wizard is used to create a project that
contains a portion or fragment of a complete web application. Web Fragments
is a new feature included in Java EE 6 and supported by WebSphere
Application Server V8.0 Beta. Web Fragment projects can be included in an
existing web application in a pluggable manner without any changes being
166 Rational Application Developer for WebSphere Software V8 Programming Guide

made to the configuration of the existing web application. They are, in effect,
web application utility libraries containing web application components. A
Web Fragment project is packaged as a JAR file with the necessary
deployment information contained in a file called web-fragment.xml.
An article that looks in detail at Web Fragments is available on the IBM
developerWorks site at the following address:

http://www.ibm.com/developerworks/wikis/download/attachments/1400513
69/Web+fragment_GA.pdf?version=1

5.5 Sample projects

Rational Application Developer provides a wide range of sample applications that
can help you to explore the features provided by the software development
platform and the types of projects that can be created.

You can access the samples in two ways:

� To access samples from the Rational Application Developer Welcome
window, choose Help Welcome. On the Welcome window, you can click
the Samples icon (a circle with an orange ball, blue cube, and green pyramid
(). The Samples icon opens a Samples page that links to the samples that
are present in the Rational Application Developer Help system.

� To access samples directly from the Rational Application Developer Help
System, choose Help Help Contents.

5.5.1 Help system samples

You can select the Help System samples from a hierarchical list in the leftmost
pane of the Help window (Figure 5-13 on page 168).

The samples are arranged in categories starting with EJB and ending with OSGi.
 Chapter 5. Projects 167

http://www.ibm.com/developerworks/wikis/download/attachments/140051369/Web+fragment_GA.pdf?version=1

Figure 5-13 Help System samples

For example, the Stock widget application is one of the iWidget samples. The
starting page for this sample provides an introduction and links to setting up the
sample, getting the sample code, running the sample, and references for further
information.
168 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 5-14 shows the starting page for the Stock widget sample application.

Figure 5-14 Stock widget sample
 Chapter 5. Projects 169

The Import the sample link, as shown on Figure 5-14 on page 169, when
clicked, presents an import window that allows you to select the sample projects
to be imported (Figure 5-15). Clicking Finish imports the sample projects.

Figure 5-15 Import stock widget sample

You can now run, modify, and experiment with the imported code as required.

5.5.2 Example projects wizard

An additional way to access sample projects is through the New Project window.
Rational Application Developer provides several example project wizards that
can be used to add sample projects to a workspace. Select New Project
Examples, and choose a sample project (Figure 5-16 on page 171).

An example project is provided for editing and validating XML files. Running the
wizard adds the example project to the workspace and shows an entry from
Rational Application Developer Help describing the sample.
170 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 5-16 Example project in the New Project window

5.6 Summary

In this chapter, we discussed the major types of projects that can be created with
Rational Application Developer, in particular, those projects that are used in the
development of Java EE applications. We also presented the techniques for
handling projects within a Rational Application Developer workspace, looked at
the range of wizards available for the creation of projects, and provided an
introduction to the samples that are supplied with Rational Application Developer.

In the remaining chapters of this book, we discuss the use of each project type in
Rational Application Developer and describe the specific features that are
available in each project type when building various types of applications.
 Chapter 5. Projects 171

172 Rational Application Developer for WebSphere Software V8 Programming Guide

Chapter 6. Unified Modeling Language

The Unified Modeling Language (UML), an Object Management Group (OMG)
standard, is used by the majority of people involved in modern software
development. UML defines a graphical notation for the visual representation of a
wide range of the artifacts that are created during the software development
process. The visual modeling capabilities of UML range from the functionality
expected of a system to the classes and components from which a system is
constructed to the servers and systems on which the components are deployed.

Rational Application Developer provides visual UML tooling that, although it does
not support the full capabilities of UML, is appropriate for those involved in the
design and coding of software applications and components. If full UML support
is required, it is provided by products, such as Rational Software Architect and
Rational Software Modeler.

The chapter is organized into the following sections:

� Overview
� Constructing and visualizing applications with UML
� Working with UML class diagrams
� Describing interactions with UML sequence diagrams
� More information about UML

6

© Copyright IBM Corp. 2011. All rights reserved. 173

6.1 Overview

Rational Application Developer provides features that developers can use to
visually develop and represent software development artifacts, such as Java
classes, interfaces, Enterprise JavaBean (EJB) components, and web services,
in UML. Rational Application Developer provides a customizable UML 2-based
modeling tool that integrates tightly with the development environment. The
discussion of UML in this chapter focuses on this tool.

6.2 Constructing and visualizing applications with UML

Rational Application Developer provides UML visual editing support to simplify
the development of complex Java applications. Developers can create and
modify Java classes and interfaces visually using class diagrams. Review of the
structure of an application, by viewing the relationships between the various
elements that comprise the application, is facilitated using Rational Application
Developer Browse and Topic diagrams. Model elements, such as classes and
packages, are synchronized automatically with their corresponding source code,
allowing developers the freedom to choose to edit the model or the source code
as required.

The code visualization capabilities of Rational Application Developer provide
diagrams that enable developers to view existing code from various perspectives.
Unlike the diagrams offered in Rational Software Modeler or Rational Software
Architect, these visualizations are of actual code only. This means that full UML 2
modeling is not possible using Rational Application Developer. The UML support
is present only to provide a way to visualize and understand the code or to allow
the editing of code from its visual representation in a model. This is, in fact, a
common way in which UML is typically employed.

Visual editing offers developers the ability to produce code without explicitly
typing the code into a text editor. A palette is used to drag modeling elements,
such as classes and interfaces, to a diagram. In the case of classes, you can edit
them visually, for example, by adding operations and attributes or by defining
their relationships with other classes.

Rational Application Developer supports the following types of UML diagrams:

� Class diagrams

Class diagrams present the static structure of an application. They show
visually the classes and interfaces from which the application is composed,
their internal structure, and the relationships which exist between them. When
visually representing the static view of an application, many class diagrams
174 Rational Application Developer for WebSphere Software V8 Programming Guide

are created by the developer as required, and a single class diagram typically
presents a subset of all the classes and interfaces present in an application.
Class diagrams are created within a project and exist permanently in that
project until deleted.

� Sequence diagrams

Sequence diagrams present the dynamic structure of an application. They
show the interactions between objects present in an executing application.
Objects present in an executing application interact through the exchange of
messages, and the sequencing of this message exchange is an important
aspect of any application. In the case of Java applications, the most basic
type of messaging between objects is the method call. Sequence diagrams
visually represent objects and their lifelines and the messages that they
exchange. They also provide information about the sequencing of messages
in time. Sequence diagrams are created within a project and exist
permanently in that project until deleted.

� Browse diagrams

Browse diagrams are specific to Rational Application Developer. They are not
a new type of diagram, merely a facility provided within Rational Application
Developer for the creation of diagrams. A browse diagram exists temporarily
and is not editable. With this type of diagram, a developer can explore the
details of an application through its underlying elements and relationships.
Browse diagrams are not a permanent part of a model; they are created as
needed to allow the exploration of a model.

A browse diagram provides a view of a chosen context element. Context
element exploration takes place in a similar way to the way in which web
pages are viewed in a web browser when navigating a website. You cannot
add or modify individual diagram elements or save a browse diagram in a
project. However, you can convert a browse diagram to a UML class diagram
or save it as an image file for use elsewhere.

� Topic diagrams

Topic diagrams share many of the features of browse diagrams except that
they are generated through the execution of a query on the application model
and remain permanently in a project when created. You can customize the
underlying query, open multiple topic diagrams at the same time, and save
them away for further use. Each time that a topic diagram is opened, the
query is executed, and the diagram is populated. They are invaluable when
discovering the architecture of an existing application.

� Static method sequence diagrams

Static method sequence diagrams are a form of topic diagrams. They are
non-editable diagrams that visually represent and explore the chronological
sequence of messages between instances of Java elements in an interaction.
 Chapter 6. Unified Modeling Language 175

You can create a static sequence diagram view of a method (operation),
including signatures, in Java classes and interfaces to illustrate the logic
inside that operation.

6.2.1 UML visualization capabilities

All of these diagrams help developers to understand and document code. To
provide further documentation, you can also generate Javadoc HTML
documentation that contains UML diagram images. See 7.8.4, “Generating the
Javadoc with diagrams automatically” on page 303.

The UML visualization tools are applicable not only to Java classes but also to
other types of artifacts, such as web services and EJBs. Rational Application
Developer also supports data visualization using UML or Information
Engineering notation.

Figure 6-1 on page 177 provides an overview of the workspace that you might
see when using the UML visualization capabilities:

� The center area is the UML editor. This editor is used to display and modify
the elements present in the model.

� A palette is built into the editor and is used to drag elements to the editor work
area. The items that are displayed in the palette are specific to the type of
project that is being visualized. The palette is only available when the diagram
is editable. The palette is not displayed for topic and browse diagrams.

� The Outline view enables you to see, in miniature, the whole diagram
currently being viewed with the area of the diagram you have zoomed in on
highlighted. This view can be useful for finding your way around a complex
diagram, because you can left-click the area of the outline view that is
highlighted and drag it around to see a separate zoomed-in area. You can
also change the outline view to show a tree of all the elements that are
present in the current diagram.

� The Properties view enables you to review or change any property that is
related to a selected diagram or a diagram element.

� You can drag project elements from the Package Explorer view directly to the
editor work area to add these items to the diagram. You can, for example,
drag a Java class from the Explorer to the editor work area where it will be
rendered as a UML class in the diagram. If relationships exist between the
Java class you have dragged, such as an association with another class, this
relationship will be rendered as well (only when the related class is already
present on the diagram, or the related class is among the dragged classes).
176 Rational Application Developer for WebSphere Software V8 Programming Guide

The diagram, shown in Figure 6-1, was created by dragging the DepositCommand
class, TransferCommand class, and Command interface to the editor work area. In
this case, the TransferCommand and DepositCommand classes implement the
Command interface, and as you can see, UML implements the relationships that
have also been rendered in the diagram.

Figure 6-1 Example workspace when using the UML visualization capabilities

6.2.2 Unified Modeling Language

A model is a description of a system from a particular perspective, omitting
irrelevant details so that the characteristics of interest are seen more clearly. That
is, a model is a simplification of reality. The more complex a system is, the more
important that it is modeled. Models are useful for problem solving and
understanding, communicating with team members and stakeholders, preparing
documentation, and designing applications. Modeling promotes a better
understanding of requirements, cleaner designs, and more maintainable
applications.
 Chapter 6. Unified Modeling Language 177

UML is a standardized language for modeling the various aspects of an
application. You can use this language to visualize, specify, construct, and
document the artifacts of an application. UML models are constructed using
three kinds of building blocks: elements, relationships, and diagrams.

Elements
Elements are an abstraction of the structural or behavioral features of the system
being modeled. Each element type has specific semantics and gives meaning to
any diagram in which it is included. UML defines the following kinds of elements:

Structural elements This type of element is used to model the static parts of a
system. Examples of this type of element are interfaces,
classes, components, and actors.

Behavioral elements This type of element models the dynamic parts of a
system. They are typically found in UML interaction
diagrams and in other diagram types. Examples of this
type of element are objects, messages, activities, and
decisions.

Grouping or organizational elements
This type of element is used to group together other
elements into a meaningful set. An example of a grouping
element is the package.

Annotational elements
This type of element is used to comment and describe a
model. Examples of this type of element are notes and
constraints.

Relationships
Relationships are used to document the semantic ties that exist between model
elements. UML relationships fall into the following commonly used categories:

� Dependency relationships

This type of relationship is used to indicate that changes to a specific model
element can affect another model element. For example, consider a Bank
class that depends on an Account class. An operation that can be called on
an object of the Bank class might take as a parameter a reference to an object
of the Account class. The Account object has been created elsewhere, but the
Bank object uses it and therefore depends on it. After the Account object has
been used, the Bank object does not retain its reference to it. A dependency
relationship therefore exists between the Account class and the Bank class.

� Association relationships

This type of relationship indicates that instances of a specific model element
are connected to instances of another model element. For example, a
178 Rational Application Developer for WebSphere Software V8 Programming Guide

Customer class might have an association with an Account class. When an
object of the Customer class obtains a reference to an object of the Account
class, it retains it and can interact with the Account object whenever required.
If the classes are implemented in Java, then typically the Customer class
includes an instance variable to hold the reference to an Account object.

Several types of association relationships can be used, depending on how
tightly connected the modeling elements are. For example, consider a
relationship between a Car and Engine class. In this case, the association is
stronger than in the previous Customer and Account example. One of the
stronger types of association, such as aggregation or even composition,
might therefore be used in the model. In the case of composition, the
connection between the classes is so strong that the lifetimes of the objects
are bound together. The object of one class never exists without an object of
the other class, and when one is deleted so is the other.

� Generalization relationships

This type of relationship is used to indicate that a specific model element is a
generalization or specialization of another model element. Generalization
relationships are used to show inheritance between model elements. If Java
is used to implement a UML class element and that element has a
generalization relationship with another class in a model, the Java extends
keyword is used in the source code to establish this relationship. For example,
an Account class might be a generalization of a SavingsAccount class.
Another way to say this is that the SavingsAccount is a specialization of the
Account class, or that the SavingsAccount class inherits from the Account
class.

� Realization relationships

This type of relationship is used to indicate that a specific model element
provides a specification that another model element implements. Realization
relationships are typically used between an interface and the class that
implements it. The interface defines operations, and the class implements the
operations by providing the method behind each operation. In Java, this maps
to the implements keyword. For example, consider a Command interface and a
DepositCommand class. A realization relationship exists in the model between
the DepositCommand class and the Command interface. This means that the
DepositCommand class implements the Command interface.

Diagrams
A UML diagram provides a visual representation of an aspect of a system. A
UML diagram illustrates the aspects of a system that can be described visually,
such as relationships, behavior, structure, and functionality. Depending on the
content of a diagram, it can provide information about the design and
architecture of a system from the lowest level to the highest level. UML provides
 Chapter 6. Unified Modeling Language 179

thirteen types of diagrams with which you can capture, communicate, and
document all aspects of an application.

The individual diagrams can be categorized into the following main types. Each
type represents a separate view of an application.

� Static

Diagrams of this type show the static aspects of a system. This includes the
units from which the application is constructed (classes, for example) and how
the units relate to each other. This type of diagram does not show changes
that occur in the system over time. Examples of this type of diagram are the
component diagram, class diagram, and deployment diagram.

� Dynamic

Diagrams of this type show the dynamic aspects of a system. They document
how an application responds to requests or otherwise evolves over time by
showing the collaborations that take place between objects and the changes
to the internal states of objects. Objects in a system achieve nothing unless
they interact or collaborate. Examples of this type of diagram are the
sequence diagram and communication diagram.

� Functional

Diagrams of this type show the functional requirements of a system.
Examples of this type of diagram are the use case diagram.

You can find additional information about UML at the following web address:

http://www-01.ibm.com/software/rational/uml

6.3 Working with UML class diagrams

A UML class diagram is a diagram that provides a static view of an application.
It shows part or all of the components or elements in an application and the
relationships between them, such as inheritance and association. You can use
class diagrams to visually represent and develop Java applications and Java EE
EJB applications. Rational Application Developer also allows Web Services
Description Language (WSDL) elements, such as WSDL services, port types,
and messages to be shown on class diagrams. In Rational Application
Developer, enhanced support is provided for UML visualization of EJB 3.x
applications.

The content of a class diagram is stored in a file with a .dnx extension. The UML
class diagram editor consists of an editor window that shows the current class
180 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www-01.ibm.com/software/rational/uml

diagram and a palette that contains individual drawers containing the elements
that can be added to a class diagram.

6.3.1 Creating class diagrams

A new class diagram is created using the New Class Diagram wizard. You can
start this wizard directly from the menu in Rational Application Developer.
To create a class diagram from the menu, select File New Other
Modeling Class Diagram. After the wizard starts, you can enter the name for
your class diagram and specify the folder where you want to store the class
diagram file (Figure 6-2).

Figure 6-2 New Class Diagram wizard: Create Class Diagram window

Clicking Finish will create a class diagram with default modeling capabilities for
the current project type, in this case, Java. Clicking Next will show the New Class
Diagram wizard: Specify Class Capabilities window (Figure 6-3 on page 182).
This window allows the capabilities of the class diagram to be selected and
determines what can be used to model. The drawers available in the palette are
also determined by what is selected here. In this case, only the Java palette
drawer will be present, because, as can be seen in Figure 6-3 on page 182, Java
Modeling is the only capability selected. These capabilities can also be
 Chapter 6. Unified Modeling Language 181

configured globally on the preference page at Windows Preferences
General Capabilities.

Figure 6-3 New Class Diagram: Specify Class Capabilities

When you click Finish, the new class diagram is created and opens for editing
with the associated palette on the right side, as shown in Figure 6-4 on
page 183.
182 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 6-4 A new class diagram

Alternatively, you can create a UML class diagram from existing source elements
within a project, including packages, classes, interfaces, and EJB components. In
the Project Explorer, right-click the desired source element or elements and
select Visualize Add to New Diagram File Class Diagram. In a similar
way, you can add elements to an existing class diagram.

You can create as many class diagrams as you want to depict various aspects of
your application.
 Chapter 6. Unified Modeling Language 183

6.3.2 Creating, editing, and viewing Java elements by using UML
class diagrams

When working with class diagrams, developers can create, edit, and delete Java
elements, such as packages, classes, interfaces, and enum types, to allow the
visual development of Java application code.

To draw a class diagram, you select the desired elements from the palette and
drag them to the class diagram editor window. Then the appropriate wizard
opens. For example, the New Java Class wizard opens when you drag a Java
class from the palette, which guides you in the creation of the new element.
Alternatively, elements can be created directly in the Explorer and placed on the
diagram later.

Figure 6-5 shows a class as it is seen when added to a class diagram. The class
is rendered as specified in the UML standard.

Figure 6-5 A Java class with action bar and modeling assistant arrows visible

In this case, three compartments are visible:

� The upper compartment or name compartment contains the class name and,
if required, a stereotype. A stereotype is a string, which is surrounded by
guillemets (angled brackets), that indicates the element more precisely. In this
case, we have a class, but more precisely, it is a Java class.

� The middle compartment is the attribute compartment and contains the
attributes present in the class.

� The lower compartment is the operation compartment and contains the
operations present in the class.

To show or hide individual compartments, right-click the class and select
Filters Show/Hide Compartment. Additionally, if the class is annotated, the
annotations are shown in a separate compartment over the attribute
compartment.

Action bar

Modeling assistant arrows
184 Rational Application Developer for WebSphere Software V8 Programming Guide

Also, when you hover the mouse cursor over a class, the action bar and the
modeling assistant arrows are displayed:

� The action bar is an icon-based context menu that provides quick access to
commands that allow you to edit a diagram element. In the case of a Java
class, you can add fields and methods to the class. The actions, available on
the action bar, are also available when you right-click the class in the diagram
and select the Add Java option.

� With the modeling assistant, you can create and view relationships between
the selected element and other elements, such as packages, classes, or
interfaces. One modeling assistant arrow points towards the element and the
other points away. The arrow pointing toward the element is for incoming
relationships. Thus, when creating a relationship where the selected element
is the target, you use the incoming arrow. Similarly, the arrow pointing away
from the element is for outgoing relationships and is used in a similar way.

To create a relationship from one Java element to another element, follow these
steps:

1. Move the mouse cursor over the source element so that the modeling
assistant is available and click the small box at the end of the outgoing arrow.

2. Drag the connector that is displayed and drop it on the desired element or on
an empty space inside the diagram if you want to create a new element.

3. Select the required relationship type from the context menu that opens when
the connector is dropped (Figure 6-6).

Figure 6-6 Using the modeling assistant to create a relationship

You can create incoming relationships in the same way by using the incoming
arrow. Alternatively, you can select the desired relationship in the tool palette and
place it on the individual elements.

With the modeling assistant, you can also view related elements that are based
on a specific relationship. The elements that can be viewed are those that
already exist in the model but are not currently shown on the class diagram. To
view related elements that are based on a specific relationship, double-click the
small box at the end of the outgoing or incoming arrow and select the desired
 Chapter 6. Unified Modeling Language 185

relationship from the resulting context menu, as shown in Figure 6-7. This action
is equivalent to selecting Filters Show Related Elements from the element’s
context menu.

Figure 6-7 Viewing related Java elements using the modeling assistant

The context menu for a class includes several additional editing options:

� Delete from Diagram. This option removes the visual representation of the
selected element or elements from the diagram. It does not delete the
element from the project. When you delete Java elements from a class
diagram, the underlying associations remain intact.

� Delete from Project. This option removes the visual representation of the
selected element or elements from the diagram and also removes the
element from the project. It is wise to be careful when using this option,
because deleted elements cannot be retrieved. If the element is shown in
diagrams other than the one from which it is being deleted, it is still shown on
these diagrams but is rendered with an X inside a circle to indicate that it is no
longer present in the project and hence cannot be edited. The element can
however be deleted from the diagram. For all the diagram references to be
removed on the deletion of a project element, a preference can be configured
at Windows Preferences Modeling Java.

� Format. This option changes the properties of the selected element that
govern its appearance and location in a diagram. Modifying these properties
only changes the appearance of this specific rendition of the element, it does
not affect how the element is rendered elsewhere on the diagram or in
another diagram. Several of the properties can be configured globally using
the modeling preferences window.

� Filters. By using this option, you can manage the visual representation of
elements in UML class diagrams. This option only affects what is visible on a
diagram when the element is rendered, irrespective of what the element
actually contains. For example, UML allows a class to have operations but
allows the operations to be hidden, if required, when the class is drawn on a
class diagram. With the filters option, you can show or hide attributes and
operations, determine if operation signatures are displayed, or specify if the
fully qualified names of individual classes are shown.
186 Rational Application Developer for WebSphere Software V8 Programming Guide

� Filters Show Related Elements. This option is a particular function of the
Filters option and requires its own explanation, because it is so useful. Show
Related Elements helps developers to query for related elements in a
diagram. As shown in Figure 6-8, in the Show Related Elements in Diagram
window, you can select from a set of predefined queries. By clicking Details,
you can view and change the actual queried relationships, along with other
settings related to the selected query. In Figure 6-8, all of the Java
relationship types have been selected.

� Refactor and Source. These options provide the same functionality to change
and edit the underlying Java code as they do when invoked on the class
directly in the Explorer.

Figure 6-8 Show Related Elements in Diagram window
 Chapter 6. Unified Modeling Language 187

Figure 6-9 shows a class diagram with elements and the relationships between
them.

Figure 6-9 Class diagram showing various UML elements

6.3.3 Creating, editing, and viewing EJB components within UML
class diagrams

By using class diagrams, developers can also visually represent and develop
EJB components in EJB applications. Developers can create class diagrams and
populate them with existing EJB components to allow the business tier
architecture to be documented and understood. They can also use class
diagrams to develop new EJB components, including EJB relationships, such as
inheritance and association, and to configure the security aspects of bean
access, such as security roles and method permissions.

Rational Application Developer supports EJB 3.x, and class diagrams can be
drawn showing EJB 3.0 and EJB 3.1 beans. The support for drawing class
diagrams showing EJB 2.1 and earlier beans is still supported, but we do not
discuss it here. EJB 3.1 is part of Java EE 6 and requires that the target run time
is set to WebSphere Application Server V8 Beta.
188 Rational Application Developer for WebSphere Software V8 Programming Guide

To use the EJB class diagram capabilities, a class diagram must be created
within the context of an EJB project. The palette can then be used to create and
edit as before, but now with the addition of an EJB drawer. Alternatively, you can
create an EJB in the Enterprise Explorer view and place it on a diagram later.

Figure 6-10 shows the graphical representation of an EJB 3.1 Singleton session
bean.

Figure 6-10 Visualization of an EJB 3.1 Singleton session bean

To visualize an EJB, you drag it from the Enterprise Explorer view to the class
diagram editor. EJB components are rendered as a class that is stereotyped as
<<Java Class>> with the appropriate stereotype for the type of bean. In this case,
the other stereotypes are <<Singleton>> and <<Interceptor>>, because we
have an EJB 3.1 Singleton stateless session bean that is also an interceptor. An
EJB exposes its functionality to clients through either a remote interface, a local
interface, or both. With EJB 3.1, a bean can also have no interface and be only
accessible locally. The session bean that is shown in Figure 6-10 provides both a
local interface and a remote interface. The local interface is shown on the class
diagram as a class stereotyped as <<Java Interface>> and <<Local>>. The
remote interface is shown on the class diagram as a class stereotyped as <<Java
Interface>> and <<Remote>>.
 Chapter 6. Unified Modeling Language 189

EJB components in an EJB 3.x project can employ Java Persistence API (JPA)
entities to provide data persistence rather than EJB 2.1 entity beans. Figure 6-11
shows an EJB 3.1 session bean and a JPA entity. The JPA entity is shown in the
diagram as a class with appropriate stereotypes.

Figure 6-11 Class diagram showing an EJB 3.0 session bean and a JPA entity

Relationships between EJB components
You can use a class diagram to create relationships between EJB components.
The palette supports two kinds of relationships:

� EJB inheritance
� EJB reference

EJB inheritance is a standard Java generalization relationship between two EJB
classes. An EJB reference relationship is shown on the class diagram as an
association and is implemented in the source code as an EJB 3.x reference.

Figure 6-12 on page 191 shows the following EJB 3.1 session beans with
relationships:

� An inheritance relationship exists between TestSessionBean1 and
BaseSessionBean, shown in the diagram as a UML generalization arrow.

� The TestSessionBean1 has an EJB reference to the no-interface session bean
TestSessionBean2, shown in the diagram as a directed UML association
190 Rational Application Developer for WebSphere Software V8 Programming Guide

between the two beans. In addition, TestSessionBean1 has an EJB reference
to the remote interface of TestSessionBean3 shown in the diagram as a use
dependency between TestSessionBean1 and TestSessionBean3Remote and
the attribute testSessionBean3Remote in TestSessionBean1.

Figure 6-12 Class diagram showing EJB 3.1 beans with relationships

Previously, we looked at the Filters option, which is available when we right-click
a class in a class diagram. This feature works for EJB 3.x classes. Figure 6-13 on
page 192 shows that a user-defined query has been created with all the EJB
relationship types selected for the currently selected EJB. All of the relationships
for this EJB will be shown on the diagram when OK is clicked.
 Chapter 6. Unified Modeling Language 191

Figure 6-13 Show Related Elements in Diagram window for an EJB session bean

As well as selecting the separate types of relationships to include in the query,
the expansion direction can be selected. If you select Incoming, all elements are
shown that are related to the selected element. If you want to see all the
elements with which the selected element has a relationship, select Outgoing.
Any changes made to the queries can be saved for future use.

From the context menu, several other options are available to edit a selected EJB
or to change its appearance. Most of these features have been described
previously, so the following discussion focuses only on topics that are specific to
EJB. Several of these features are exposed as wizards.

Security roles and method permissions
You can use UML class diagrams to visually manage EJB security. This includes
creating security roles and configuring method permissions. We only discuss the
support for configuring security for EJB 3.x beans using security annotations
here.

An EJB 3.x security configuration involves the creation of required security roles
and the definition of the EJB method security permissions. We do not discuss the
linking of security to roles defined in the container, which is typically done using
annotations as explained in the following steps:

1. To create a security role for a specific EJB, right-click the bean and select
Add EJB 3.0 Security Declare Roles.
192 Rational Application Developer for WebSphere Software V8 Programming Guide

2. In the Declare the Roles window (left in Figure 6-14), perform these steps:

a. Click Add and enter the name of a security role, for example, User, and
click Finish.

b. Click Finish to complete the process.

The annotation @DeclareRoles(value="User") is added to the source code
for the EJB, and the EJB shown in the class diagram is updated with the
stereotype <<DeclareRoles>> to indicate that a security role is now present
(right in Figure 6-14).

Figure 6-14 Declare the Roles window and diagram << DeclareRoles >> stereotype

3. To define method permissions for an EJB 3.x session bean, follow these
steps:

a. Select a bean method in the class diagram, for example, getBook,
right-click, and select Add EJB 3.0 Security Set Allowed Roles.

b. In the Set Allowed Roles window, select the roles permitted to execute the
method.

If the role User is chosen, the annotation @RolesAllowed(value="User") is
added to the getBook method in the source file for the bean and the
method in the class diagram is updated with <<RolesAllowed>>.
Figure 6-15 on page 194 shows an EJB with method permissions set for
the getBook method.
 Chapter 6. Unified Modeling Language 193

Figure 6-15 EJB 3.x session bean with method permissions

6.3.4 Creating, editing, and viewing WSDL elements within UML class
diagrams

With Rational Application Developer, developers can represent and create WSDL
and XML Schema Definition (XSD) elements as well as JAX-WS Web Services
using UML class diagrams.

To use this feature, you must first enable the Web Service Development
capability:

1. Select Window Preferences.

2. In the Preferences window, expand the General node to access the
Capabilities page. In the Capabilities page, click Advanced.

3. In the window that opens, expand the Web Service Developer node and
select Web Service Development.

Figure 6-16 on page 195 shows the graphical representation of a WSDL service.
To visualize a WSDL service, select its WSDL file from the Enterprise Explorer
view and drag it to a class diagram. Alternatively, right-click a WSDL file and
select Visualize Add to New Diagram File Class Diagram.
194 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 6-16 Graphical representation of a web service

By default, the external view of a service is shown. If you want to switch to the
compressed view, right-click the service, select Filter, and clear Show External
View.

Similar to EJB, WSDL services are displayed as UML classes on a class diagram
with appropriate stereotypes:

� The individual ports of a service are depicted as small squares on the side of
the class. The class is stereotyped as <<WSDL Service>>. The functionality
provided by a port is exposed by a port type.

� A port type is displayed as a UML interface that is modeled using the lollipop
notation. In Figure 6-16, you can see the port type explicitly displayed as an
interface being linked to its port. This link is realized as a dependency with
stereotype <<WSDL Binding>>. It describes the binding being used for this port
type. A port type references messages that describe that type of data being
communicated with clients.

� A message consists of one or more parts that are linked to types. Types are
defined by XSD elements. Figure 6-16 shows that messages are displayed as
UML classes with the <<WSDL Message>> stereotype. XSD elements are also
displayed as UML classes, although none are shown in Figure 6-16.
 Chapter 6. Unified Modeling Language 195

In this section, we provide a sample scenario that explains how you can use the
UML class diagram editor to create a new web service from scratch. We use the
tools provided by the tool palette to create the various elements of a web service,
such as services, ports, port types, operations, and messages.

Creation of the service involves the following steps:

1. Creating a WSDL service
2. Adding ports to a WSDL service
3. Creating WSDL port types and operations
4. Creating WSDL messages and parts
5. Creating XSD types and editing WSDL message part types
6. Adding messages to WSDL operations
7. Creating bindings between WSDL ports and port types

Each step is documented in detail in the following sections.

Creating a WSDL service
If you select the WSDL Service element in the tool palette and drop it on an
empty space inside a class diagram, the New WSDL Service wizard starts to
create a new WSDL service along with a port, as shown in Figure 6-17.

Figure 6-17 New WSDL Service wizard

To begin, you must specify the WSDL file that will contain the service. You can
either click Browse to select an existing file or you can click Create New to start
196 Rational Application Developer for WebSphere Software V8 Programming Guide

the New WSDL File wizard. If you create a new WSDL file, on the Options page,
clear Create WSDL Skeleton, because you will create these elements later in
the next tasks. Finally, provide a name for the service and port and click Finish.

Figure 6-18 shows the result of this task. Similar to an EJB, a WSDL service is
displayed as a UML class but with the stereotype <<WSDL Service>>. The port is
depicted as a small square on the side of the class. The external view of the
component is shown. To switch to the compressed view, open the context menu
and clear Show External View from the Filter submenu. In this case, the port is
not visible.

Figure 6-18 Visualization of a WSDL service component

Adding ports to a WSDL service
A WSDL service consists of one or more individual ports. A port describes an
endpoint of a WSDL service that can be accessed by clients. It contains the
properties: name, binding, and address. The name property provides a unique
name across all the ports defined within the enclosing WSDL file. The binding
property references a specific binding. And, the address property contains the
network address of the port. Adding a port is not required for our scenario,
because a port has already been created and added to the service in the
previous task.

To add a port to a WSDL service if one is required:

1. Right-click the service and select Add WSDL Port.

2. In the Port wizard (Figure 6-19 on page 198), enter the name of the port.
Optional: You can specify a binding and protocol.

3. Click Finish.
 Chapter 6. Unified Modeling Language 197

Figure 6-19 Port wizard

After you create a port, you can use the Properties view to review or change any
property of the port:

1. Right-click the square representing the desired port and select Properties.

2. On the top of the Properties view, select General.

3. On the General page (Figure 6-20), enter a new name and address and
select a binding and protocol.

Figure 6-20 Port properties shown in the Properties view
198 Rational Application Developer for WebSphere Software V8 Programming Guide

Creating WSDL port types and operations
A port type describes the behavior of a port. It defines individual operations that
can be performed and the messages that are involved. An operation is an
abstract description of an action supported by a service. It provides a unique
name and the expected inputs and outputs. It might also contain a fault element
that describes any error data that the operation might return.

You can create a new port type together with an operation with the help of the
New WSDL Port Type wizard (Figure 6-21). You can start this wizard either by
dragging a WSDL Port Type from the palette to the class diagram or by
right-clicking in the diagram and selecting Add WSDL Port Type.

First, you must specify the WSDL file to contain the port type. A port type is not
restricted to be in the same WSDL file as the enclosing WSDL service. As
described previously, you can click Browse to select an existing WSDL file or
click Create New to create a new file. Next you must provide the port type name
and operation name and then click Finish.

Figure 6-21 New WSDL Port Type wizard

Figure 6-22 on page 200 shows the result. A port type is visualized in the
diagram by using an interface with the stereotype <<WSDL Port Type>>. You can
add further operations by right-clicking the port type, and selecting Add
WSDL Operation.
 Chapter 6. Unified Modeling Language 199

We have not created a connection between this port type and the port. We do
this in the last task.

Figure 6-22 Class diagram representation of a port type

Creating WSDL messages and parts
Messages are used by operations to describe the data that is being
communicated with clients. An operation can have an input, output, and a fault
message. A message is composed of one or several parts and each part is
linked to a type. The individual parts of a message can be compared to the
parameters of a method call in the Java language.

To create a new message along with a part, follow these steps:

1. Select the WSDL Message tool in the tool palette and drag it to the diagram.

2. In the New WSDL Message window (Figure 6-23), specify the WSDL file to
contain the message. WSDL services or port types and messages are
top-level objects that can be defined in a separate WSDL file. As described
previously, you can either browse to select an existing file or create a new
one. Finally, enter the message name and part name and click Finish.

Figure 6-23 New WSDL Message wizard
200 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 6-24 shows the result. The new message is displayed by using the UML
class notation with the stereotype <<WSDL Message>>. If you want to add any
further parts to this message, right-click the class and select Add WSDL Part.

Figure 6-24 Representation of a WSDL message in a class diagram

The CreateAccount message is associated with the input-element of the
createAccount operation in the next task. Before you proceed, create a second
message CreateAccountResponse along with a part named account. This
message will be associated with the output-element of this operation.

Creating XSD types and editing WSDL message part types
The WSDL standard recommends the use of XSD to define the type of a WSDL
message part. You can use the class diagram to create and edit the required
XSD objects, such as XSD elements, simple types, or complex types. If you
right-click in the class diagram and select Add WSDL, you can select the
required item from the submenu. Alternatively, you can drag the item from the
palette to the class diagram. The wizard allows type definitions to be either
placed inside a WSDL file, if the Inline Schema option is selected or in a
separate schema file if the option is not selected. Choosing a separate schema
file allows the Rational Application Developer schema editor to be used to edit
the XSD types. It is easier to edit XSD types using the schema editor than it is
from a UML class diagram.

If the XSD element added to a class diagram is a complex type, you can add new
elements to it by right-clicking the complex type and selecting Add XSD Add
New Element. A new element is created within the selected complex type with a
type string. You can then set or change the type of an existing XSD element. In
the diagram editor, right-click an XSD element or an element within a complex
type and select Set XSD Type. The window that opens shows a list of available
types that you can select. To change the name of the element, you must edit the
WSDL file directly.

After you create an XSD element, you can as easily delete it from the diagram. If
you want to delete it permanently, you must edit the WSDL file directly.

To review or change a type of a part of a WSDL message, select the part to view
its properties in the Properties view. Then select the General tab (Figure 6-25 on
page 202). In the Type field, you can select the desired type. Select Browse to
choose a type from the full list of available types, including user-defined types.
 Chapter 6. Unified Modeling Language 201

Figure 6-25 Properties view showing the properties of a WSDL message part

To proceed with this exercise, create two XSD complex types, Account and
Customer, and add the elements amount, firstName, and lastName, as shown in
Figure 6-26. It does not matter if these are defined in an external schema file or
in-line in the current WSDL file.

Figure 6-26 XSD complex types with elements

Finally, link these types to the parts of the messages that you have created, as
shown in Figure 6-27.

Figure 6-27 Using XSD complex types as the type for WSDL messages parts

Adding messages to WSDL operations
An operation can reference three types of messages to describe the data that is
communicated with clients. These types of messages are input message, output
message, and fault message.

To add a message to an operation, select either WSDL Input Message, WSDL
Output Message, or WSDL Fault Message in the palette. Click the port type to
which you want to add the message, and drag the cursor from the port type to the
message that you want to add. In the window, select the desired operation and
click Finish (Figure 6-28 on page 203). Alternatively, you can use the modeling
assistant to do this task.
202 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 6-28 WSDL Input Message wizard

To proceed with the exercise, create a WSDL input message from the
createAccount operation to the CreateAccount message.Then create a WSDL
output message from the same operation to the CreateAccountResponse
message (Figure 6-29).

Figure 6-29 Class diagram showing a port type with messages

Creating bindings between WSDL ports and port types
A binding is used to link a port type to a port. The class diagram editor offers you
several ways to do this. For example, you can use the WSDL Binding Creation
tool in the palette:

1. Select the WSDL Binding Creation tool and click the port (shown as a small
square on the side of a service).Then drag the cursor to the port type.
 Chapter 6. Unified Modeling Language 203

A new binding is created between the port and the port type. As shown in
Figure 6-30, this binding is modeled as a dependency with the stereotype
<<WSDL Binding>> between the two elements. The lollipop notation (line with a
circle at the end) represents the interface that is provided by the port.

Figure 6-30 Class diagram showing a binding between a port and its port type

2. Generate the content for this binding:

a. Select the dependency arrow representing the binding and open the
Properties view.

b. On the General page, click Generate Binding Content and complete the
wizard (Figure 6-31).

Figure 6-31 Properties view showing binding properties

After you create the entire web service, you can directly create an
implementation of the web service within the diagram editor. Right-click a WSDL
Service component and select Implement Web Service, which starts the Web
Service wizard that guides you through the process. You can also use the
204 Rational Application Developer for WebSphere Software V8 Programming Guide

diagram editor to create a web service client for a given web service. To do this,
right-click a WSDL Service component and select Consume Web Service.

6.3.5 Class diagram preferences

With Rational Application Developer, you can review and edit default settings or
preferences that affect the appearance and behavior of UML class diagrams and
their content. These preferences are organized under the Modeling node within
the Preferences window (select Window Preferences).

Before you create a new UML class diagram, you can set the default global
preferences for attributes and operations, such as visibility styles, showing or
hiding attributes and operations, showing or hiding operation signatures, and
showing or hiding parent names of classifiers. Most configuration settings are
present under the following Preferences window nodes:

� UML diagrams

With the UML diagrams node and the nodes beneath it, such as Class and
Component, you can specify several preferences regarding the style, fonts, and
colors that are displayed in UML diagrams when they are created. You can
change the default settings for showing or hiding attributes, operations,
operation signatures, or parent names of classifiers. You can also specify
which compartments are shown, by default, when a new UML element is
created.

� Java

You can use this node and the nodes beneath it to specify settings that deal
with Java code when it is used in a UML model. One example is the
configuration of corresponding wizards to use when new fields or methods
are created within a class diagram.

– The settings for the configuration of wizards are under Field and Method
Creation. You can also specify the default values to apply to these
wizards.

– Show Related Elements Filters provides the option to filter out binary Java
types when the Show Related Elements action is executed. Binary Java
types are types that are not defined in the workspace, but that are
available to the workspace through referenced JAR libraries.

� EJB and EJB 3.0

You can use the EJB and EJB 3.0 preferences nodes to specify if newly
generated or created EJB and EJB 3.0 components are visualized in a
selected class diagram. If you select this option and a diagram is not selected
while creating or generating a new bean, this bean is opened in a default
class diagram.
 Chapter 6. Unified Modeling Language 205

� Web Service

With the Web Service node, you can change the default settings for visually
representing existing WSDL elements. You can specify if the external or
compressed view of an existing WSDL element is shown. Furthermore, you
can specify which WSDL components are visually represented in class
diagrams. To show or hide WSDL components, select or clear the
corresponding check boxes on this page.

6.4 Exploring relationships in applications

Rational Application Developer provides browse and topic diagrams that can be
used to explore and navigate through an application and to view the details of its
elements and relationships. They are designed to assist developers in
understanding and documenting existing code by quickly creating UML
representations of an existing application.

6.4.1 Browse diagrams

A browse diagram is a structural diagram that provides a view of a context
element, such as a class, a package, or an EJB. It is a temporary read-only
diagram that provides the capability to explore the structure and relationships of
the given context element. You can view the element details, including attributes,
methods, and relationships to other elements, and you are able to navigate to
those elements. Browse diagrams can be applied to various elements, including
Java classes and EJB components, but excluded are all elements related to web
services.

You can create a browse diagram from any source element or its representation
within a class diagram. To create a browse diagram, right-click the desired
element and select Visualize Explore in Browse Diagram. A browse
diagram is created and shown in the corresponding diagram editor. The diagram
editor consists of a panel displaying the selected element along with its
relationships and a toolbar. Because a browse diagram is not editable, the
palette and the modeling assistant are not available. Depending on the elements
shown, the diagram is displayed either using the radial or generalization tree
layout type. The radial layout type shows the selected element in the center of
the diagram, whereas the generalization tree layout type organizes the general
classes at the top of the diagram and the subclasses at the bottom.

The browse diagram acts in a similar manner to a web browser for your code. It
provides a history and navigation, and you can customize the UML relationships
that you want to see. The toolbar located at the top of the browse diagram shows
206 Rational Application Developer for WebSphere Software V8 Programming Guide

the context element that you are currently browsing. At any one time, there is
only one browse diagram open. When you browse another element, it is
displayed in the same diagram, replacing the previous element.

Figure 6-32 shows an example browse diagram with the Java class
DatabaseManager as the context element. You can see all the attributes and
methods declared by this class. In this case, the dependency filter button is the
only one highlighted, and so elements involved in a dependency relationship with
DatabaseManager are shown as well. You can see that AccountDAO and
CustomerDAO both depend on DatabaseManager.

Figure 6-32 Browse diagram example

The browse diagram retains the history of elements that you have viewed so far.
You can use the two arrow buttons provided in the toolbar to navigate backward
or forward to browse previously viewed elements.

When you click the Home icon (), the first element in the history is displayed.
Furthermore, the toolbar contains a list of filter icons that can be used to filter the
types of relationships that are shown along with the context element. Separate
filters are available, depending on the type of element that you are currently
browsing, for example, Java class or EJB. To enable or disable a filter, click the
appropriate icon and then click Apply.

You can also change the number of levels of relationships that are shown for the
context element. The default value is one. To change this value, specify a number
and click Apply.
 Chapter 6. Unified Modeling Language 207

In Figure 6-32, the Home icon and the two arrow icons are disabled, so the
current element is the first element in the browse diagram history.

If you want to explore the details of a diagram element, double-click it. This
element becomes the new context element. When you right-click a diagram
element, the Navigate submenu provides several options, such as opening the
Java source of a diagram element.

A browse diagram cannot be changed or saved, but Rational Application
Developer lets you save any browse diagram view as a diagram file that is fully
editable. Right-click an empty space inside a browse diagram and select File
Save as Diagram File. If you want to use a browse diagram as part of
permanent documentation, you can save a browse diagram view as an image file
using File Save as Image File.

6.4.2 Topic diagrams

Topic diagrams provide another way to create structural diagrams from the code
in your application. They are used to quickly create a query-based view of
relationships between existing elements in your application. These queries are
called topics and represent commonly required views of your code, such as
showing the super type or subtypes of a given class. Topic diagrams are
applicable to various elements, such as Java classes, EJB components, or
WSDL files. Similar to browse diagrams, topic diagrams are not editable, but you
can save them as editable UML diagrams or as images and share them with
other team members.

A new topic diagram of an application element is created by the Topic Diagram
wizard. To start this wizard, right-click the desired element in the Enterprise
Explorer view and select Visualize Add to New Diagram File Topic
Diagram. After the wizard has started, on the Topic Diagram Location page,
enter or select the parent folder and provide a name for the file, as shown in
Figure 6-33 on page 209.Then click Next.
208 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 6-33 Topic Diagram wizard (part 1 of 3)
 Chapter 6. Unified Modeling Language 209

The Topics page shown in Figure 6-34 provides a list of standard topics Rational
Application Developer can create. Select a predefined query and click Finish. A
new topic diagram is created based on the default values that are associated with
the selected topic.

Figure 6-34 Topic Diagram wizard (part 2 of 3)

If you want to review or change these values, click Next instead. The Related
Elements page (Figure 6-35 on page 211) opens. This page shows the details of
the previous selected topic and allows you to change these values.
210 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 6-35 Topic Diagram wizard (part 3 of 3)

You can select various types of relationships to include in the query along with
the expansion direction:

� You can select Incoming to see all elements that are shown that are related
to the context element.

� You can select Outgoing to see all elements with which the context element
has a relationship.

� You can further specify the number of levels of relationships to query and the
layout type for the diagram. The possible values are Default and Radial.
These values map to the generalization and radial tree layout types described
previously.

After a topic diagram is created, you can review or change the underlying query.
To do this, right-click the empty space inside the topic diagram and select
Customize Query.
 Chapter 6. Unified Modeling Language 211

Similar to browse diagrams, topic diagrams are not editable, so the tool palette
and the modeling assistant are not available. You can save a topic diagram as an
editable diagram or as an image as we did previously with browse diagrams. To
do this, right-click the empty space in a topic diagram and select either File
Save as Diagram File or File Save as Image File.

The query and the context element that you have specified are persisted in the
topic diagram. Every time that you open a topic diagram, the underlying elements
are queried and the diagram is automatically populated with the current results. If
you make changes to the underlying elements when a topic diagram is already
open, the diagram might not represent the current status of the elements until
you refresh the diagram manually. To do this, right-click the empty space in the
topic diagram and select Refresh.

6.5 Describing interactions with UML sequence
diagrams

Rational Application Developer provides the capability to develop and manage
sequence diagrams. A sequence diagram is an interaction diagram that can be
used to describe the dynamic behavior of a system. It depicts the sequence of
messages that are sent between objects in a certain interaction or scenario.

You can use sequence diagrams at various stages during the development
process:

� Within the analysis phase, you can use a sequence diagram to describe the
realization of a use case that is a use case scenario.

� Within the design phase, you can refine sequence diagrams more to show
how a system accomplishes an interaction and, in this case, to show the
objects of actual design classes interacting.

A sequence diagram consists of a group of objects, their associated lifelines, and
the messages that these objects exchange over time during the interaction. In
this context, the term object does not necessarily refer to software objects
instantiated from a class. An object represents any structural component defined
by UML.

Figure 6-36 on page 213 provides a sample sequence diagram. It describes the
scenario where a customer wants to withdraw cash from an automated teller
machine (ATM). A sequence diagram has a two-dimensional nature. The
horizontal axis shows each of the objects that are involved in an interaction. The
vertical axis shows the lifelines, the messages exchanged, and the sequence of
creation and destruction of the objects.
212 Rational Application Developer for WebSphere Software V8 Programming Guide

Most objects that are displayed in a sequence diagram are in existence for the
duration of the entire interaction, so their lifelines are placed at the top of the
diagram. Objects can be created or destroyed during an interaction. In this case,
their lifelines start or end with the receipt of a corresponding message to create
or destroy them.

Figure 6-36 Sample sequence diagram

The major focus of Rational Application Developer when using sequence
diagrams is to document and visualize the dynamic behavior of a system, rather
than to develop source code. The tool enables developers to create, edit, and
 Chapter 6. Unified Modeling Language 213

delete the various elements of a sequence diagram, such as lifelines, messages,
and combined fragments in a visual manner. In contrast to a class diagram, the
elements of a sequence diagram do not need to be related to existing elements,
such as classes or interfaces. Therefore, changes that are made in a sequence
diagram do not affect any code. Rational Application Developer does, however,
allow existing classes, present in source code, to be used as the type of the
lifelines shown on the sequence diagram. In this case, messages between
lifelines can be selected from existing methods on the class or new methods
created as required. Any new methods created when adding a message result in
a new method being added to the class source code.

In Figure 6-36 on page 213, the object identified as atm is of class ATM, and ATM
is a Java class with associated source code. The object identified as customer
does not have an associated Java class. Sequence diagrams can be drawn
showing objects where every object class is defined and the sequence diagram
is a dynamic view of existing code. Diagrams can also be drawn with objects,
none of which has a defined class, and the sequence diagram has been drawn
for a purpose other than visualizing existing code. Diagrams can also contain a
mixture of both as is the case with Figure 6-36 on page 213.

Rational Application Developer has two types of sequence diagrams. The first
type of sequence diagram is the type previously described. The second type of
sequence diagram is referred to as a Static Method Sequence Diagram. This
non-editable diagram is used to visualize the flow of messages between existing
Java objects in an executing application.

6.5.1 Creating sequence diagrams

To create a new sequence diagram, you must use the New Sequence Diagram
wizard. You can start this wizard either by selecting File New Other
Modeling Sequence Diagram directly from the top menu of Rational
Application Developer or from within the Explorer from the context menu of any
resource, such as projects or packages.

You can also create a new sequence diagram populated with existing classes or
interfaces. Any Java class or interface can be used on a sequence diagram,
including servlet classes and EJB classes and interfaces. To do this in the
Explorer, right-click the desired source element and select Visualize Add to
New Diagram File Sequence Diagram.

After the wizard starts, you provide a name for the file that will be created to
contain the content of the diagram, and you specify the parent folder to store this
file. Clicking Finish completes the process and creates a new sequence
diagram.
214 Rational Application Developer for WebSphere Software V8 Programming Guide

A sequence diagram has a corresponding diagram editor and palette on the right
side, offering tools that can be used to add new elements to the diagram, such as
lifelines, messages, or combined fragments. Also, there are two items in the tool
palette where a solid triangle is shown right next to the item. When you click this
triangle, a context menu is displayed that allows you to select another tool from
this category, which, for example, is the case for Synchronous Message.

A sequence diagram is enclosed in a frame. A diagram frame provides a visual
border and enables the diagram to be easily reused in another context. The
frame is depicted as a rectangle with a notched descriptor box in the top left
corner that provides a place for the diagram name. If you want to change the
name, select this box and enter the new name.

6.5.2 Creating lifelines

A lifeline represents the existence of an object involved in an interaction over a
period of time. A lifeline is depicted as a rectangle representing the object
involved in the interaction, which contains the object’s name, type, and
stereotype with a vertical dashed line beneath indicating the progress of time.

Figure 6-37 on page 216 shows several examples of possible lifelines for objects
of a class called Customer.

Also, text in a lifeline object box does not have to be underlined although it can be
rendered that way, if required.

Note the following explanation of Figure 6-37 on page 216:

� The first lifeline represents an instance of the Customer Java class, and the
instance is named customer.

� The second lifeline represents an anonymous instance of the Customer Java
class. The instance has no name. It can also represent an object with a type
but with the name hidden.

� The third lifeline represents an object named customer with a type but the
type is hidden.

� The last lifeline represents an object named customer with no allocated type.

Important: The terminology that is used with sequence diagrams differs in
UML 2 when compared with earlier versions of UML.
 Chapter 6. Unified Modeling Language 215

Figure 6-37 Various representations of lifelines on a sequence diagram

To add a lifeline from an existing Java class or interface to a sequence diagram,
select the desired element in the Explorer view and drag it on an empty place in
the diagram. This action creates a new lifeline and places it at the top of the
diagram, aligned horizontally with the other lifelines. If you drag another class
over the top of an existing lifeline on the sequence diagram, the class of the
lifeline changes to the new class.

You can also use the tool palette to create a new lifeline. Select Lifeline in the
palette and drop it on an empty space inside the diagram, which creates a lifeline
representing an object whose type is not specified but with a default name. After
a lifeline is created, you can change the name and type of the object that it
represents.

If you want to change the name, select the lifeline’s shape and enter the new
name. If you want to change the type and a class or interface is available in the
Explorer, select the desired class or interface in the Explorer and drag it on the
lifeline’s shape. You can also use the Properties view to review or change any
property of a given lifeline.

By default, a lifeline is shown as a rectangle containing the lifeline name, type,
and stereotype. If you right-click a lifeline, the Filters submenu provides several
options to change the lifeline’s appearance.

6.5.3 Creating messages

A message describes the communication that occurs between two lifelines. A
message is sent from a source lifeline to a target lifeline to initiate an action or
behavior, such as invoking an operation on the target, or the creation or
destruction of a lifeline. The target lifeline often responds with a further message
to indicate that it has finished processing.

A message is visualized as a labeled arrow that originates from the source
lifeline and ends at the target lifeline. The message is sent by the source and
received by the target and the arrow points from source to target. The label is
used to identify the message. It contains either a name or an operation signature
if the message is used to call an operation. The label also contains a sequence
number that indicates the ordering of the message within the sequence of
messages.
216 Rational Application Developer for WebSphere Software V8 Programming Guide

To create a message between two lifelines, hover the mouse pointer over the
source lifeline so that the modeling assistant is available. Click the small box at
the end of the outgoing arrow and drag the resulting connector on the desired
target lifeline. In the context menu that is displayed when you drop the connector
on the target, click the desired message type, such as synchronous or
asynchronous, and either enter a name or select an operation from the list. You
can only select an operation if the target already has available operations.

You can also use the tool palette to create a message. Select the desired
message type by clicking the solid triangle next to the Message category. Then
click the source lifeline and drag the cursor to the target lifeline. The following
message types are available:

� By selecting Create Message from the palette, the source lifeline can create
a new lifeline. The new lifeline starts when it receives this message. The
symbol at the head of this lifeline is shown at the same level as the message
that caused the creation (Figure 6-38). The message itself is visualized as a
dashed line with an open arrowhead. This type of message is used to
highlight that a new object is created during an interaction. One of the existing
constructor operations in the CustomerTO class has been chosen for the
message name and the message has been configured to show its signature
to make it clear which constructor is being used.

Figure 6-38 Sending a create message to create a new lifeline

� In contrast, a destroy message enables a lifeline to delete an existing lifeline.
The target lifeline is terminated at that point when it receives the message.
The end of the lifeline is denoted using the stop notation, which is a large X
(Figure 6-39 on page 218). A destroy message is drawn in a similar way to a
create message. You can use this type of message to describe that an object
is destroyed during an interaction. After a lifeline has been destroyed, it
cannot be the target of any messages. In this example, the message has not
been given a name because the CustomerTO class does not contain an
appropriate operation that can be called.
 Chapter 6. Unified Modeling Language 217

Figure 6-39 Destroying a lifeline during an interaction

� A synchronous message enables the source lifeline to invoke an operation
provided by the target lifeline. The source lifeline continues and can send
more messages only after it receives a response from the target lifeline.
When you create a synchronous message, Rational Application Developer
places three elements in the diagram (Figure 6-40):

– A solid line representing a synchronous operation invocation

– A dashed line representing the return message

– A thin rectangle called an activation bar or execution occurrence
representing the behavior performed

Figure 6-40 Synchronous message invocation

By default, only the operation’s name is shown. If you want to see the full
operation signature, right-click the message arrow and select Filters Show
Signature.

� An asynchronous message allows the source lifeline to invoke an operation
provided by the target lifeline. The source lifeline can then continue and send
more messages without waiting. When an asynchronous message is sent,
the source does not have to wait until the target processes it. An
asynchronous message is drawn similarly to a synchronous message, but the
line is drawn with an open arrowhead, and the response is omitted. You can
218 Rational Application Developer for WebSphere Software V8 Programming Guide

also send another asynchronous message, the asynchronous signal message,
which is a special form of a message that is not associated with a particular
operation.

6.5.4 Creating combined fragments

UML 2 introduced the concept of combined fragments to support conditional and
looping constructs, such as if-then-else statements, or to enable parts of an
interaction to be reused.

Combined fragments are frames that encompass portions of a sequence
diagram or provide reference to other diagrams.

A combined fragment is represented by a rectangle that comprises one or more
lifelines. Its behavior is defined by an interaction operator that is drawn as a
notched descriptor box in the upper-left corner of the combined fragment. For
example, the alternative interaction operator (alt) acts like an if-then-else
statement and is shown in Figure 6-41.

Figure 6-41 Sequence diagram with an alternative combined fragment

Guard condition
 Chapter 6. Unified Modeling Language 219

UML 2 provides many other interaction operators for use with combined
fragments. Depending on its type, a combined fragment can have one or more
interaction operands. Each interaction operand represents a fragment of the
interaction with an optional guard condition. The interaction operand is executed
only if the guard condition is true at run time. The absence of a guard condition
means that the combined fragment is always executed. The guard condition is
displayed as plain text enclosed within two square brackets. A combined
fragment separates the contained interaction operands with a horizontal line
between each operand within the frame of the combined fragment. When the
combined fragment contains only one operand, the line is unnecessary.

Figure 6-41 on page 219 shows a fragment being used in a withdraw cash
interaction. The combined fragment is used to model an alternative flow in the
interaction. Because of the guard condition [amount<balance], if the account
balance is greater than the amount of money that the customer wants to
withdraw, the first interaction operand is executed. This means the interaction
debits the account. Otherwise, the [else] guard forces the second interaction
operand to be executed. An insufficient fund fee is added to the account and the
transaction is canceled.

To create a combined fragment, you must first select the desired fragment in the
palette. Click the solid triangle next to the Combined Fragment category and
select the desired fragment from the available fragments. Then click the left
mouse button within an empty place in the diagram and drag the combined
fragment across the lifelines that you want to include in it. When you release the
mouse button, the Add Covered Lifelines window opens, in which you can select
the individual lifelines to be covered by the combined fragment. Each lifeline is
represented by a check box, and each of them is selected, by default. When you
click OK, a new combined fragment along with one or two interaction operands is
created.

Figure 6-42 shows a newly created alternative combined fragment with two
empty interaction operands. If you want to specify a guard condition for an
interaction operand, select the corresponding brackets and enter the text. You
can create messages between the individual lifelines covered by the combined
fragment in the same way as described previously. Notice how the sequence
numbers of the individual messages change within an interaction operand. You
can also nest other combined fragments within an existing combined fragment.
220 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 6-42 Empty combined fragment with two interaction operands

After a combined fragment has been created, it is not possible to change its type,
or more precisely, its interaction operator. But if you right-click a combined
fragment, the context menu allows you to add new interaction operands if you
select Add Interaction Operand or to add and remove lifelines from the selected
element if you select Covered Lifelines.

When you create an interaction operand, it is displayed in an expanded state. By
clicking the small triangle at the top of the interaction operand, you can collapse it
to hide the entire operand and its associated messages. From the context menu
of an operand, several options are available to remove or reposition the selected
operand. Further, you can add a guard condition to the operand or add a new
interaction operand if the enclosing combined fragment allows multiple operands.

6.5.5 Creating references to external diagrams

UML 2 provides the capability to reuse interactions that are defined in another
context. This function provides you the ability to create complex sequence
diagrams from smaller and simpler interactions. A reference to another diagram
is modeled using the Interaction Use element. Like a combined fragment, an
Interaction Use element is represented by a frame. The operator ref is placed
inside the descriptor box in the upper-left corner, and the name of the sequence
diagram being referenced is placed inside the frame’s content area along with
any parameters for the sequence diagram.

An interaction use can encompass a single activation bar or several lifelines.
Follow these steps to create a reference to another sequence diagram:

1. Select Interaction Use in the palette and place the cursor on an empty space
inside the source sequence diagram.

2. When you drop the cursor, at the prompt, choose the current lifelines that will
be covered.
 Chapter 6. Unified Modeling Language 221

3. In the Add Covered Lifelines window that opens, select the lifelines to
encompass by the Interaction Use element and click OK.

In Figure 6-43 on page 222, the Interaction Use element references an
interaction called sequencediagram7, which provides further information about
how the withdrawCash operation is realized.

Figure 6-43 Creating a reference to another diagram

6.5.6 Exploring Java methods with static method sequence diagrams

With the static method sequence diagram feature that is provided by Rational
Application Developer, developers can visualize a Java method. Existing Java
code can quickly be rendered in a sequence diagram to visually examine the
behavior of an application. A static method sequence diagram from a Java
method provides the full view of the entire method call sequence.

To create a static method sequence diagram for a Java method, right-click the
desired method in the Explorer view and select Visualize Add to New
Diagram File Static Method Sequence Diagram. The diagram is created
and shown in the corresponding diagram editor.

A static method sequence diagram is a topic diagram, so the diagram content is
stored in a file with a .tpx extension. Like other topic diagrams, it is read only; the
tool palette, the toolbar, and the modeling assistant are not available.

When you right-click an empty space inside the diagram, the File submenu
provides you the options to either save the diagram as an image using Save as

Diagram in Figure 6-43: At the time of writing, it was not possible to reference
another diagram. It was only possible to provide a simple name.
222 Rational Application Developer for WebSphere Software V8 Programming Guide

Image File or to convert this diagram to an editable UML sequence diagram
using Save as Diagram File, or to print the entire diagram using Print.

Figure 6-44 on page 223 shows a basic example of a static sequence diagram. It
describes the flow of control when the withdrawCash method provided by the ATM
class is called from the main method of this class. The synchronous message
from the diagram frame that invokes the method, in this case main, is called a
found message. The corresponding return message is referred to as a lost
message.

Figure 6-44 Static method sequence diagram example

A static sequence diagram for a Java method has to be created only once.
Similar to other topic diagrams, the query and context that have been specified
when creating the diagram are stored in the diagram itself. Therefore, each time
that a sequence diagram is opened, Rational Application Developer queries the
underlying elements and populates the diagram with the latest updates. If you
want to refresh the contents of a static sequence diagram to reflect the latest
changes in the source code, right-click an empty space inside the diagram and
select Refresh.
 Chapter 6. Unified Modeling Language 223

6.5.7 Sequence diagram preferences

Using the Sequence and Communication node in the Preferences window, you
can change default values that affect the appearance of sequence diagrams
(Figure 6-45 on page 225). For example, you can specify that return messages
are created automatically or to ask for message numbering to be shown.

Important: At the time of writing, Rational Application Developer failed to
update the contents of a static sequence diagram when the source code was
changed. One work-around is to close the diagram and the project containing
the source code of the visualized method, and then reopen the project and
subsequently the diagram.
224 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 6-45 Sequence diagram preferences
 Chapter 6. Unified Modeling Language 225

6.6 More information about UML

For more information about UML, consider the following resources. These
websites provide information about modeling techniques, best practices, and
UML standards:

� IBM developerWorks for Rational

This website provides guidance and information that can help you implement
and deepen your knowledge of Rational tools and leading practices. The site
includes access to white papers, artifacts, source code, discussions, training,
and other documentation:

http://www.ibm.com/developerworks/rational/

In particular, we highlight the following series of high-quality Rational Edge
articles focusing on UML topics:

http://www.ibm.com/developerworks/rational/library/content/RationalE
dge/archives/uml.html

� IBM Rational Software UML Resource Center

IBM Rational Software UML Resource Center is a library of UML information
and resources that IBM continues to build upon and update. In addition to
current news and updates about the UML, you can find UML documentation,
white papers, and learning resources:

http://www-01.ibm.com/software/rational/uml/index.html

� Object Management Group (OMG)

The following websites provide formal specifications for UML that have been
adopted by the OMG and are available in either published or downloadable
form, and technical submissions on UML that have not yet been adopted:

http://www.omg.org
http://www.uml.org

� Craig Larmann’s home page

This website provides articles and related links about topics regarding UML:

http://www.craiglarman.com/
226 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.ibm.com/developerworks/rational/
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/archives/uml.html
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/archives/uml.html
http://www.ibm.com/developerworks/rational/
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/archives/uml.html
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/archives/uml.html
http://www.omg.org
http://www.uml.org
http://www.craiglarman.com/
http://www-01.ibm.com/software/rational/uml/index.html

Part 2 Java and XML
development

In this part, we describe the tooling and technologies provided by Rational
Application Developer to develop applications using Java and XML.

This part includes the following chapters:

� Chapter 7, “Developing Java applications” on page 229
� Chapter 8, “Developing XML applications” on page 331

Part 2

Sample code for download: The sample code for all the applications
developed in this part is available for download at the following address:

ftp://www.redbooks.ibm.com/redbooks/SG247835

See Appendix C, “Additional material” on page 1877, for instructions.
© Copyright IBM Corp. 2011. All rights reserved. 227

ftp://www.redbooks.ibm.com/redbooks/SG247835

228 Rational Application Developer for WebSphere Software V8 Programming Guide

Chapter 7. Developing Java
applications

In this chapter, we introduce the Java development capabilities and tooling
features of IBM Rational Application Developer by developing the ITSO Bank
application.

The chapter is organized into the following sections:

� Java perspectives, views, and editor overview
� Developing the ITSO Bank application
� Understanding the sample code
� Java editor and rapid application development

The sample code for this chapter is in the 7835code\java folder.

7

Java SE and Java Runtime Environment (JRE): Rational Application
Developer fully supports Java Standard Edition (SE) 6.0. However, you can
download, install, and use newer JRE versions in Rational Application
Developer, as described in 7.7.1, “Pluggable Java Runtime Environment” on
page 292.
© Copyright IBM Corp. 2011. All rights reserved. 229

7.1 Java perspectives, views, and editor overview

Within Rational Application Developer, the following predefined perspectives,
which contain the views and the editor, are most commonly used when
developing Java SE applications:

� Java perspective
� Java Browsing perspective
� Java Type Hierarchy perspective

We briefly introduce these perspectives and their major views in Chapter 4,
“Perspectives, views, and editors” on page 91. In this section, we go deeper into
the details and describe several more useful views. The highlighted areas in
Figure 7-1 on page 231 indicate all perspectives and views that we discuss.
230 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 7-1 Views in the Java perspective (customized)

Customizing the perspective: Figure 8-1 shows a customized Java
perspective. It is the predefined Java perspective with more useful views
added. In your environment, customize the perspectives so that they fit your
requirements. You can save a customized perspective by selecting
Window Save Perspective As. To return a modified perspective to a
predefined or saved perspective, select Window Reset Perspective.
 Chapter 7. Developing Java applications 231

7.2 Java perspective

We use the Java perspective to develop Java SE applications or utility Java
projects (utility JAR files) containing code that is shared across multiple modules
within an enterprise application. You can add views by selecting Window
Show View.

7.2.1 Package Explorer view

The Package Explorer view shows all projects, packages, interfaces, classes,
member variables, and member methods in the workspace, as shown in
Figure 7-2. With this view, you can easily navigate through the workspace.

Figure 7-2 Package Explorer view

Viewing files and folders: In this view, you cannot see the generated .class
files. To view the folders and files as they are in the file system, select
Window Show View Navigator to open the Navigator view. Now you
can see the source code in the src directory and the byte code files in the bin
directory.
232 Rational Application Developer for WebSphere Software V8 Programming Guide

7.2.2 Hierarchy view

We use the Hierarchy view to display the type hierarchy of a selected type.

To view the hierarchy of a class type (Figure 7-3), select the class in the Package
Explorer, and press F4 or right-click the class and select Open Type Hierarchy.

Figure 7-3 Hierarchy view for a selected class

The Hierarchy view provides the following hierarchy layouts:

� Type Hierarchy (): All supertypes and subtypes of the selected type are
shown.

� Supertype Hierarchy (): Only all supertypes of the selected type are
shown.

� Subtype Hierarchy (): Only all subtypes of the selected type are shown.

In addition, the Hierarchy view has the following other options:

� This option locks the view and shows the members in the hierarchy. For
example, use this option if you are interested in all types implementing the
toString() method.

� This option shows all inherited members.

� This option sorts members by their defining types. Defining type is
displayed before the member name.

� These options filter the displayed members.

7.2.3 Outline view

The Outline view is useful and is the recommended way to navigate through a
type that is currently opened in the Java editor. It lists all of the elements,
including package, import declarations, type, fields, and methods. You can use
 Chapter 7. Developing Java applications 233

the icons highlighted in Figure 7-4 to sort and filter the elements that are
displayed.

Figure 7-4 Outline view

7.2.4 Problems view

While editing resource files, various builders can automatically log problems,
errors, or warnings in the Problems view. For example, when you save a Java
source file that contains syntax errors, those syntax errors will be logged as
errors, as shown in Figure 7-5 on page 235. When you double-click the problem
icon (), error icon (), or warning icon (), the editor for the associated
resource automatically opens to the relevant line of code.
234 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 7-5 Problems view with warnings notification

Rational Application Developer provides a quick fix for certain problems. To
process a quick fix, see 7.9.9, “Quick fix” on page 315.

In the Problems view, you can filter the problems to show only specific types of
problems by clicking the View Menu icon (), which opens a menu from which
you can sort the content or select the Configure Contents window (Figure 7-6 on
page 236).

Enabling and disabling builders: The Java builder is responsible for all Java
resource files. However, in an enterprise application project, you can use other
builders. Builders can be enabled and disabled for each project. Right-click the
project in the Package Explorer, select Properties and then select Builders.
 Chapter 7. Developing Java applications 235

Figure 7-6 Configure Contents of Problems view

7.2.5 Declaration view

The Declaration view shows the declaration and definition of the currently
selected type or element, as shown in Figure 7-7 on page 237. It is most useful
to see the source code of a referenced type within your code. For example, if you
reference a customer within your code and you want to see the implementation of
the Customer class, select the referenced type Customer, and the source code of
the Customer class is displayed in this view. Clicking the icon directly opens
the source file of the selected type in the Java editor.
236 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 7-7 Declaration view

7.2.6 Console view

In the Console view, Rational Application Developer writes all outputs of a
process. In this view, you can provide keyboard inputs to the Java application
while running it. Uncaught exceptions are also displayed in the console.

Figure 7-8 show you the result of a running test.

Figure 7-8 Console view with standard outputs and an exception
 Chapter 7. Developing Java applications 237

The Console view has the following other options:

� The icon terminates the currently running process. This button is useful for
terminating a process that is running in an endless loop.

� The and icons remove the terminated launches from the console.

� The icon clears the console.

� The icon enables scroll lock in the console.

� The icon pins the current console to remain on the top.

� The icon shows the console when JVM logs are updated.

7.2.7 Call Hierarchy view

The Call Hierarchy view shows all callers and callees of a selected method, as
shown in Figure 7-9. To view the call hierarchy of a method, select it in the
Package Explorer or in the source code, and press Ctrl+Alt+H, or right-click and
select Open Call Hierarchy.

Figure 7-9 Call Hierarchy view (Callee Hierarchy)

The Call Hierarchy view provides the following hierarchy layouts:

� Caller Hierarchy (): All the members calling the selected method are
shown.

� Callee Hierarchy (): All members called by the selected method are
shown.
238 Rational Application Developer for WebSphere Software V8 Programming Guide

7.3 Java Browsing perspective

The Java Browsing perspective is used to browse and manipulate your code. In
contrast to the Package Explorer view, which organizes all Java elements in a
tree, this perspective uses distinct views, which are highlighted in Figure 7-10, to
present the same information.

Figure 7-10 Views in the Java Browsing perspective
 Chapter 7. Developing Java applications 239

7.4 Java Type Hierarchy perspective

The Java Type Hierarchy perspective contains only the Hierarchy view, which we
explain in 7.2.2, “Hierarchy view” on page 233.

7.5 Developing the ITSO Bank application

In this section, we show how you can use Rational Application Developer to
develop a Java SE application. We create a Java project, including several
packages, interfaces, classes, fields, and methods.

7.5.1 ITSO Bank application overview

The example application to work through in this section is called ITSO Bank. The
banking example is deliberately oversimplified, and the exception handling is
ignored to keep the example concise and relevant to our discussion.

7.5.2 Packaging structure

The ITSO Bank application contains several packages. Table 7-1 lists the
packages and describes their purpose.

Table 7-1 ITSO Bank application packages

Sample code: The sample code described in this chapter can be completed
by following the procedures that are documented. Alternatively, you can import
the sample Java code that is provided in the c:\7835code\java directory.

See Appendix C, “Additional material” on page 1877, for instructions about
how to download the sample code.

Package Description

itso.rad80.bank.ifc Contains the interfaces of the application

itso.rad80.bank.impl Contains the bank implementation class

itso.rad80.bank.model Contains all business model classes of the application

itso.rad80.bank.exception Contains the exception classes of the application

itso.rad80.bank.client Contains the application client that we use to run the
application
240 Rational Application Developer for WebSphere Software V8 Programming Guide

7.5.3 Interfaces and classes overview

The application contains the following classes and interfaces:

Bank interface Defines common operations that a bank might perform
and typically includes customer, account, and
transaction-related services.

TransactionType interface
Defines the transactions that the bank allows.

ITSOBank class An implementation of the Bank interface.

Account class The encapsulation of a bank account. It logs all
transactions performed on it for logging and querying
purposes.

Customer class The encapsulation of a client of the bank, an account
holder. A customer can have one or more accounts.

Transaction class An abstract supertype of all transactions. A transaction is
a single operation that will be performed on an account. In
the example, only two transaction types exist: Debit and
Credit.

Debit class One of the two existing concrete subtypes of the
Transaction class. This transaction results in an account
being debited by the amount indicated.

Credit class One of the two existing concrete subtypes of the
Transaction class. It results in an account being credited
by the amount indicated.

BankClient class The executable class of the ITSO Bank application. It
creates instances of ITSOBank, Customer, and Account
classes, and performs transactions on the accounts.

All exception classes in the itso.rad80.bank.exception package
The implemented exceptions that can occur in the ITSO
Bank application. ITSOBankException is the supertype of
all ITSO Bank application exceptions.
 Chapter 7. Developing Java applications 241

7.5.4 Interfaces and classes structure

Table 7-2 describes the ITSO Bank interfaces structure.

Table 7-2 ITSO Bank application interfaces

Table 7-3 describes the ITSO Bank classes structure.

Table 7-3 ITSO Bank application classes

Interface name Package Modifiers

TransactionType itso.rad80.bank.ifc public

Bank itso.rad80.bank.ifc public

Class name Package Superclass Modifiers Interfaces

ITSOBank itso.rad80.bank.impl java.lang.Object public itso.rad80.bank.ifc.
Bank

Account itso.rad80.bank.model java.lang.Object public java.io.Serializable

Customer itso.rad80.bank.model java.lang.Object public java.io.Serializable

Transaction itso.rad80.bank.model java.lang.Object public
abstract

java.io.Serializable

Credit itso.rad80.bank.model Transaction public

Debit itso.rad80.bank.model Transaction public

BankClient itso.rad80.bank.client java.lang.Object public

ITSOBankExcepti
on

itso.rad80.bank.
exception

java.lang.Exception public

AccountAlready
ExistException

itso.rad80.bank.
exception

ITSOBankException public

CustomerAlready
ExistException

itso.rad80.bank.
exception

ITSOBankException public

InvalidAccount
Exception

itso.rad80.bank.
exception

ITSOBankException public

InvalidAmount
Exception

itso.rad80.bank.
exception

ITSOBankException public

InvalidCustomer
Exception

itso.rad80.bank.
exception

ITSOBankException public
242 Rational Application Developer for WebSphere Software V8 Programming Guide

7.5.5 Interface and class fields and getter and setter methods

Table 7-4 describes the fields of the interfaces.

Table 7-4 Fields of the interfaces

Table 7-5 describes the fields of the classes. The shaded fields are the
implementations of UML associations.

Table 7-5 Fields and getter and setter methods of the classes

InvalidTransaction
Exception

itso.rad80.bank.
exception

ITSOBankException public

Class name Package Superclass Modifiers Interfaces

Interface Field Type Initial value Visibility, modifiers

TransactionType CREDIT String "CREDIT" public static final

DEBIT String "DEBIT" public static final

Class Field name Type Initial
value

Visibility,
modifiers

Methods

ITSOBank accounts
customers

Map<String,Account>
Map<String, Customer>

null private getter:
public,
setter:
privatecustomer

Accounts
Map<String,
ArrayList<Account>>

bank ITSOBank new private
static

getter:
public
static
 Chapter 7. Developing Java applications 243

7.5.6 Interface methods

Table 7-6 on page 245 describes the methods of the Bank interface.

Account accountNumber java.lang.String null private getter:
public,
setter:
private

balance java.math.BigDecimal

transactions ArrayList<Transaction>

Customer ssn
title
firstName
lastName

java.lang.String null private

accounts ArrayList<Account>

Transaction timeStamp Timestamp null private

amount java.math.BigDecimal

transactionId int 0

AccountAlready
ExistException

accountNumber java.lang.String null private

CustomerAlready
ExistException

ssn java.lang.String null private getter:
public,
setter:
privateInvalidAccount

Exception
accountNumber java.lang.String null private

InvalidAmount
Exception

amount java.lang.String null private

InvalidCustomer
Exception

ssn java.lang.String null private

Invalid
Transaction
Exception

transactionType java.lang.String null private

amount java.math.BigDecimal

account Account

Class Field name Type Initial
value

Visibility,
modifiers

Methods
244 Rational Application Developer for WebSphere Software V8 Programming Guide

Table 7-6 Method declarations of the Bank interface

Method name Return type Parameters Exceptions

addCustomer void Customer customer CustomerAlreadyExistExcept
ion

closeAccountOfCustomer void Customer customer,
Account account

InvalidAccountException,
InvalidCustomerException

deposit void String
accountNumber,
BigDecimal amount

InvalidAccountException,
InvalidTransactionException

getAccountsForCustomer ArrayList
<Account>

String customerSsn InvalidCustomerException

getCustomers Map<String,
Customer>

getTransactionsForAccount ArrayList
<Transactio
n>

String
accountNumber

InvalidAccountException

openAccountForCustomer void Customer customer,
Account account

InvalidCustomerException,
AccountAlreadyExistExceptio
n

removeCustomer void Customer customer InvalidCustomerException

searchAccountByAccountNu
mber

Account String
accountNumber

InvalidAccountException

searchCustomerBySsn Customer String ssn InvalidCustomerException

transfer void String
debitAccountNumber,
String
creditAccountNumber,
BigDecimal amount

InvalidAccountException,
InvalidTransactionException

updateCustomer void String ssn, String title,
String firstName,
String lastName

InvalidCustomerException

withdraw void String
accountNumber,
BigDecimal amount

InvalidAccountException,
InvalidTransactionException
 Chapter 7. Developing Java applications 245

7.5.7 Class constructors and methods

Table 7-7 describes the constructors and methods of the classes of the
application.

Table 7-7 Constructors and methods of the classes of the ITSO Bank application

Method name Modi-
fiers

Type Parameters Exceptions

ITSOBank class

ITSOBank private constructor

addCustomer public void Customer customer CustomerAlreadyExistExcept
ion

removeCustomer void Customer customer InvalidCustomerException

openAccountFor
Customer

void Customer customer,
Account account

InvalidCustomerException,
AccountAlreadyExistExceptio
n

closeAccountOf
Customer

void Customer customer,
Account account

InvalidAccountException,
InvalidCustomerException

searchAccountBy
AccountNumber

Account String
accountNumber

InvalidAccountException

searchCustomerBy
Ssn

Customer String ssn InvalidCustomerException

processTransactio
n

private void String
accountNumber,
BigDecimal amount,
String
transactionType

InvalidAccountException,
InvalidTransactionException
246 Rational Application Developer for WebSphere Software V8 Programming Guide

getAccountsFor
Customer

public ArrayList
<Account>

String customerSsn InvalidCustomerException

getTransactionsFor
Account

ArrayList
<Transaction
>

String
accountNumber

InvalidAccountException

updateCustomer void String ssn,
String title,
String firstName,
String lastName

InvalidCustomerException

deposit void String
accountNumber,
BigDecimal amount

InvalidAccountException,
InvalidTransactionException

withdraw void String
accountNumber,
BigDecimal amount

InvalidAccountException,
InvalidTransactionException

transfer void String
debitAccountNumber

, String
creditAccountNumbe

r, BigDecimal amount

InvalidAccountException,
InvalidTransactionException

 initializeBank private void

Account class

Account public constructor String
accountNumber,
BigDecimal balance

processTransactio
n

public void BigDecimal amount,
String
transactionType

InvalidTransactionException

toString String

Customer class

Customer public constructor String ssn,
String title,
String firstName,
String lastName

Method name Modi-
fiers

Type Parameters Exceptions
 Chapter 7. Developing Java applications 247

updateCustomer public void String title,
String firstName,
String lastName

addAccount void Account account AccountAlreadyExistExceptio
n

removeAccount void Account account InvalidAccountException

toString String

Transaction class

Transaction public constructor BigDecimal amount

getTransactionTyp
e

public
abstract

String

process BigDecimal BigDecimal
accountBalance

InvalidTransactionException

Credit class

Credit public constructor BigDecimal amount

getTransactionTyp
e

public String

process BigDecimal BigDecimal
accountBalance

InvalidTransactionException

toString String

Debit class

Debit public constructor BigDecimal amount

getTransactionTyp
e

public String

process BigDecimal BigDecimal
accountBalance

InvalidTransactionException

toString String

BankClient class

main public
static

void String[] args

Method name Modi-
fiers

Type Parameters Exceptions
248 Rational Application Developer for WebSphere Software V8 Programming Guide

7.5.8 Class diagram

A UML class diagram helps you to overview the interfaces and classes and their
relationships. In the class diagram in Figure 7-11, we added the packages to get
a complete picture of the ITSO Bank application.

We create this diagram by using Rational Application Developer’s UML modeling
tool in 7.6.2, “Creating a UML class diagram” on page 254.

Figure 7-11 UML class diagram: ITSO Bank application
 Chapter 7. Developing Java applications 249

7.6 ITSO Bank application step-by-step development
guide

In the following sections, we provide a step-by-step guide to develop the ITSO
Bank application in Rational Application Developer.

7.6.1 Creating a Java project

Java projects are not defined in the Java SE specification. They are used as the
lowest unit to organize the workspace and contain all resources needed for a
Java application, such as images, source, class, and properties files.

With Rational Application Developer started, switch to the Java perspective, as
described in 4.1.5, “Switching perspectives” on page 96.

To create a new Java project from the New Java Project wizard, follow these
steps:

1. Follow these steps to start the New Java Project wizard:

a. In the New Project window, select File New Project in the
workbench.

b. In the Select a wizard window (Figure 7-12 on page 251), select Java
Project, or expand Java and select Java Project. Then click Next.
250 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 7-12 New Project window

Another way to start the New Java Project wizard is directly from the
workbench. Either select File New Java Project, or click the New Java
Project icon () in the toolbar.

2. In the New Java Project: Create a Java Project window (shown at left in
Figure 7-13 on page 252), enter the project name and accept the default
settings for each of the other fields:

a. For Project name, type RAD80Java.
b. For Contents, select Use default location.
c. For JRE, select Use default JRE (Currently ‘jdk’).
d. For Project layout, select Create separate source and output folders.
e. Click Next.

3. In the New Java Project: Java Settings window (shown at right in Figure 7-13
on page 252), click Finish to accept the default settings for each of the tabs.
On this window, you can change the build path settings for a Java project. The
build class path is a list of paths visible to the compiler when building the
project.
 Chapter 7. Developing Java applications 251

Figure 7-13 New Java Project: Create a Java Project and Java Settings windows
252 Rational Application Developer for WebSphere Software V8 Programming Guide

Table 7-8 lists the options in the New Java Project wizard window.

Table 7-8 New Java Project: Options to create a Java Project

Option Description

Project
name

Type a name for the new project.

Use
default
location

� Checked: Create the new project as a folder within the workspace.
� Unchecked: Create the project as a folder elsewhere in the file

system. Click Browse to search for an existing folder.

JRE � Use default JRE: Uses the workspace default JRE and compiler
compliance. Click Configure default to configure JREs.

� Use project-specific JRE: Specify the JRE to use for the new Java
project and set the matching JRE compiler compliance.

� Use an execution environment JRE: Specify the execution
environment and compiler to use for the new Java project.

Project
layout

� Use project folder as the root for sources and class files: The project
folder is used both as source folder and as output folder for class files.

� Create separate folders for sources and class files: Creates a source
folder for Java source files and an output folder, which holds the class
files of the project.

Working
sets

� Add project to working sets: The new project is added to the working
sets shown in the Working Sets drop-down field. The drop-down field
shows a list of previously selected working sets. Click Select to select
working sets to which to add the new project.
 Chapter 7. Developing Java applications 253

Table 7-9 explains the capabilities of the New Java Project wizard window.

Table 7-9 New Java Project: Java Settings options

7.6.2 Creating a UML class diagram

Rational Application Developer supports UML class diagrams. You can create a
static visual representation of the packages, interfaces, classes, and their
relationships. Rational Application Developer automatically calls the related
wizard to create the Java code while adding elements to the diagram.

Tab Description

Source Add and remove source folders from the Java project. The compiler
translates all .java files in the source folders to .class files and stores
them to the output folder. The output folder is defined per project, except if
a source folder specifies its own output folder. Each source folder can
define an exclusion filter to specify which resources inside the folder are
not visible to the compiler.

Projects Add another project within the workspace to the build path for this new
project (project dependencies).

Libraries Add libraries to the build path using one of the following options:
� Add JARs: Use to navigate the workspace hierarchy and select JAR

files to add to the build path.
� Add External JARs: Use to navigate the file system (outside the

workspace) and select JAR files to add to the build path.
� Add Variable: Use to add class path variables to the build path. Class

path variables are an indirection to JARs with the benefit of avoiding
local file system paths in a class path. This is needed when projects
are shared in a team. Variables can be created and edited in the
Classpath Variable preference page. Select Window
Preferences Java Build Path Classpath Variables.

� Add Library: Use to add predefined libraries, such as JUnit or
Standard Widget Toolkit (SWT).

� Add Class Folder: Use to navigate the workspace hierarchy and select
a class folder for the build path.

� Add External Class Folder: Use to navigate the file system (outside
the workspace) and select a class folder for the build path.

� Migrate JAR: Use to migrate a JAR file on the build path to a newer
version. If the newer version contains refactoring scripts, the
refactoring stored in the script will be executed.

Order
and
Export

Change the build path order. You specify the search order of the items in
the build path. Select an entry in the list if you want to export it. Exported
entries are visible to other projects that require the new Java project being
created.
254 Rational Application Developer for WebSphere Software V8 Programming Guide

Creating a UML class diagram using the Class Diagram wizard
To create a UML class diagram, for our example, follow these steps:

1. Create a new folder for diagrams:

a. In the RAD80Java project in the Package Explorer, right-click the src
folder and select New Folder or New Other General Folder.

b. In the window that opens, for Folder name, type diagram and click Finish
to create the folder.

2. Create an empty class diagram:

a. In the Enterprise Explorer, right-click the diagram folder and select
New Class Diagram or New Other Modeling Class Diagram.

b. In the window that opens, for the field name, type ITSOBank-ClassDiagram
and click Finish.

c. Click OK to confirm that you have enabled Java Modeling.

The ITSOBank-ClassDiagram.dnx file is displayed in the diagram folder and
opens in the Visualizer Class Diagram editor. Notice that the Java Drawer is open
in the Palette (Figure 7-14). Rational Application Developer automatically opens
the Java Drawer, by default, for a Java project.

Figure 7-14 Visualizer Class Diagram editor with Java Drawer open in the Palette
 Chapter 7. Developing Java applications 255

7.6.3 Creating Java packages

After you create the Java project, you can add the Java packages to the project
by using the New Java Package wizard. You can use either of the following
options to start the New Java package wizard from the Visualizer Class Diagram
editor:

� Select the option in the Java Drawer, as shown in Figure 7-14 on
page 255, and click anywhere in the class diagram editor.

� In the Java project, right-click the src folder and select New Package or
New Other Java Package. Alternatively, click the icon in the
toolbar.

Creating a Java package using the New Java Package wizard
To create a Java package, for our example, follow these steps:

1. In the RAD80Java project, select the src folder and click the icon in the
toolbar.

2. In the New Java Package window (Figure 7-15 on page 257), in the Name
field, type itso.rad80.bank.model for the package name and click Finish to
create the package.

Adding existing elements to a class diagram: You can also add already
existing elements to a class diagram. Drag the element in the Package
Explorer with the left mouse button and drop it in the class diagram by
releasing the button.

Adding a package to the class diagram: To add a package to the class
diagram, drag the package to the class diagram editor, or in the Package
Explorer, right-click the package and select Visualize Add to Current
Diagram.
256 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 7-15 Creating a Java package

ITSOBank example: Packages
Repeat the previous steps to create the following Java packages, which are
described in 7.5.2, “Packaging structure” on page 240:

� itso.rad80.bank.model
� itso.rad80.bank.ifc
� itso.rad80.bank.impl
� itso.rad80.bank.exception
� itso.rad80.bank.client

7.6.4 Creating Java interfaces

After the Java packages are created, you can add Java interfaces to the
packages by using the New Java Interface wizard. You can start the New Java
Interface wizard from the Visualizer Class Diagram editor by choosing one of the
following options:

� Select the option in the Java Drawer and click anywhere in the
class diagram editor field. The New Java Interface wizard opens.

� Right-click the desired package and select Add Java Interface.

� Hover the mouse over a package. When the action box opens (Figure 7-16 on
page 258), click the Add Java Interface icon.
 Chapter 7. Developing Java applications 257

Figure 7-16 Action box: Adding a Java class and interface

Creating a Java interface using the New Java Interface wizard
To create Java interfaces, for our example, follow these steps:

1. Select or mouse over on the package itso.rad80.bank.ifc and click the Add
Java Interface icon. The New Java Interface wizard opens.

2. In the New Java Interface window (Figure 7-17), complete the following steps:

a. For Source folder, type RAD80Java/src (default).
b. For Package, click Browse and select itso.rad80.bank.ifc.
c. For Name, type Bank.
d. Keep the defaults for all other settings.
e. Click Finish to create the Java interface.

Figure 7-17 Creating a Java interface
258 Rational Application Developer for WebSphere Software V8 Programming Guide

Notice that a line is displayed between the package and the Bank interface.

ITSOBank example: Interfaces
Repeat the previous steps to create the following Java interfaces, which are
described in 7.5.3, “Interfaces and classes overview” on page 241:

� Bank interface and itso.rad80.bank.ifc package
� TransactionType interface and itso.rad80.bank.ifc package

7.6.5 Creating Java classes

With Java packages and Java interfaces created, add the Java classes to the
packages using the New Java class wizard. You can start the New Java class
wizard from the Visualizer Class Diagram editor by choosing one of the following
options:

� Select the option in the Java Drawer and click anywhere in the class
diagram editor. The New Java Class wizard opens.

� Right-click the appropriate package and select Add Java Class.

� Mouse over on the package. In the action box (Figure 7-16 on page 258),
click the Add Java Class icon ().

Creating a Java class using the New Java Class wizard
To create a Java class using the New Java Class wizard, follow these steps:

1. Select the itso.rad80.bank.model package and click the Add Java Class
icon in the action box.

2. In the New Java Class window (Figure 7-18 on page 260), complete the
following steps:

a. For Package, click Browse and select the itso.rad80.bank.model
package.

b. For Name, type Transaction.

c. For Modifiers, select public (default) and abstract.

d. For Superclass, type java.lang.Object (default).

If you need to change the superclass, click Browse. In the Superclass
Selection window, in the Choose a type field, type the name of the
superclass and click OK. All matching types are listed while typing.

Adding an interface to the class diagram: To add an interface to the class
diagram, drag the interface to the class diagram editor, or click the interface in
the Package Explorer and select Visualize Add to Current Diagram.
 Chapter 7. Developing Java applications 259

Figure 7-18 Superclass Selection window

e. For Interfaces, click Add.

f. In the Implemented Interfaces Selection window (Figure 7-19 on
page 261), in the Choose interfaces field, type Serializable. All matching
types are listed. Select the required interface Serializable - java io -[jdk]
and click Add. After you add all required interfaces, click OK.
260 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 7-19 Implemented Interfaces Selection window

g. Which method stubs do you want to create:

• public static void main(String[]args): This option adds an empty
main method to the class and makes the class an executable one. In
the example, only the class BankClient must be executable. Clear is
the default setting.

• Constructors from superclass: This option copies the constructors from
the superclass to the new class. Clear is the default setting.

• Inherited abstract methods: This option adds to the new class stubs of
any abstract methods from superclasses or methods of interfaces that
have to be implemented. In the example, it is useful for the classes
ITSOBank, Credit, and Debit. Ensure that this option is clear.

h. Ensure that all check boxes are clear.

i. For Generate comments, ensure that the check box is clear, which is the
default setting.

j. Click Finish.
 Chapter 7. Developing Java applications 261

The Java class is created. Notice that a line is displayed between the package
and the Bank interface.

ITSOBank example: Classes
Repeat the previous steps to create the following Java classes, which are
described in 7.5.4, “Interfaces and classes structure” on page 242:

� Transaction class into the itso.rad80.bank.model package
� Customer class into the itso.rad80.bank.model package
� Account class into the itso.rad80.bank.model package
� ITSOBank into the itso.rad80.bank.impl package
� ITSOBankException into the itso.rad80.bank.exception package
� InvalidCustomerException into the itso.rad80.bank.exception package
� InvalidAccountException into the itso.rad80.bank.exception package
� InvalidTransactionException into the itso.rad80.bank.exception package

7.6.6 Creating Java attributes (fields) and getter and setter methods

After you have the required Java classes and interfaces, add the Java attributes
(fields) to them by using the Create Java Field wizard or writing the field
declaration into the interface or class body in the Java editor directly. The Create
Java Field wizard is only called through the Visualizer Class Diagram editor, by
choosing one of the following options:

� Move the mouse pointer anywhere over the interface or class in the diagram
editor and click the Add Java Field icon () in the pop-up action box that is
displayed, as shown in Figure 7-20.

Figure 7-20 Action box: Adding a Java attribute

� Right-click the interface or class in the diagram editor and select Add Java
Field. The Create Java Field wizard opens (Figure 7-21 on page 263).

Adding a class to the class diagram: You can add a class to the class
diagram by using the drag-and-drop method, or select Visualize Add to
Current Diagram.
262 Rational Application Developer for WebSphere Software V8 Programming Guide

Creating Java fields using the Create Java field wizard
To create Java fields, for our example, follow these steps:

1. Select the Transaction class and click the Add Java Field icon from the
action box.

Figure 7-21 Create Java Field window

2. In the Create Java Field window (Figure 7-21), complete the following actions:

a. For Name, type timeStamp.

The Preview field
shows the source
code that is created
 Chapter 7. Developing Java applications 263

b. For Type, click Browse. To pick a class or interface field, type
java.sql.Timestamp. Click OK. Required import statements are added to
the source code automatically.

c. For Dimensions, keep the default of 0. You change the value of this field
when creating an array of the selected type with the selected dimension.

d. For contained by Java Collection, ensure that the check box is clear
(default).

e. For Initial value, type null.

f. For Visibility, ensure that private (default) is selected.

g. For Modifiers, ensure that all check boxes are clear (default).

h. Click Finish to create the Java field.

The contained by Java Collection check box: Select the contained
by Java Collection check box if the required attribute has a multiplicity
higher than 1. If you select this check box, using the wizard, you can
select the required Java collection class. If you select any Map class, you
can select the type of the key in the Java collection key type field.
Finally, you can create parameterized types by selecting the use
generic collection check box. For more information about generic
types, see the following web address:

http://java.sun.com/developer/technicalArticles/J2SE/generics/

No attributes in the class diagram: There are two reasons why you might
not see the attributes in the class diagram:

� The class diagram attribute compartment is collapsed. Select the
interface or class and click the blue arrow in the compartment in the
middle to expand the attribute compartment.

� The class diagram attribute compartment is filtered out. Right-click the
interface or class and select Filters Show/Hide Compartment
Attribute Compartment.
264 Rational Application Developer for WebSphere Software V8 Programming Guide

http://java.sun.com/developer/technicalArticles/J2SE/generics/
http://java.sun.com/developer/technicalArticles/J2SE/generics/

Creating getter and setter methods using the refactor feature
You can generate getter and setter methods for Java attributes by using the
Refactor feature of Rational Application Developer. To generate getter and setter
methods for a Java attribute using the Refactor feature, for our example, follow
these steps:

1. Select the Transaction class in the Package Explorer view, right-click the
timestamp attribute, and select Refactor Encapsulate Field
(Figure 7-22).

Figure 7-22 Encapsulate Field window

2. In the Encapsulate Field window, complete the following actions:

a. For Getter name, accept the default value getTimeStamp.

b. For Setter name, accept the default value setTimeStamp.

c. For Field access in declaring type, accept the default value of use setter
and getter. Using the getter and setter method internally in the class to
access member variables is following good programming style.

d. For Insert new methods after, accept the default value of As first method.

e. For Access modifier, select public. You can change the access modifier of
the setter method later to private in the source code.

f. For Generate method comments, ensure that the check box is clear
(default).

g. Click OK to generate the getter and setter methods.
 Chapter 7. Developing Java applications 265

Creating getter and setter methods using the source feature
You can generate getter and setter methods for Java attributes by using the
source feature of Rational Application Developer. To generate getter and setter
methods for a Java attribute using the source feature, for our example, follow
these steps:

1. Create a field in the Transaction class:

a. For Name, type transactionId.
b. For Type, enter int.
c. For Initial value, type 0.

2. Right-click the attribute in the diagram editor or in the Outline view and select
Source Generate Getters and Setters.

3. In the Generate Getters and Setters window (Figure 7-23 on page 267),
complete the following actions:

a. For Select getters and setters to create, select the defaults of
getTransactionId and setTransactionId(int).

b. For Insertion point, select Last member (default).

c. For Sort by, select First getters, then setters.

d. For Access modifier, ensure that the default value of public is selected.

You can change the access modifier of the setter method later to private
in the source code.

e. For Generate method comments, ensure that the check box is not
selected (default).

f. Click OK to generate the getter and setter methods.

Tip: If the source code is open in the Java editor, right-click anywhere in
the Java editor and select Source Generate Getters and Setters, or
select Source Generate Getters and Setters in the menu bar.
266 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 7-23 Generate Getters and Setters window

ITSOBank example: Fields and getters and setters
Repeat the previous steps to create the following fields to interfaces and to
generate getters and setters for the ITSO Bank application classes. Table 7-4 on
page 243 lists the fields of the interfaces, and Table 7-5 on page 243 lists the
fields and getter and setter methods for the classes.

� For TransactionType interface, use the CREDIT and DEBIT—java.lang.String
fields.

� For Customer class, use the ssn, firstName, and lastName—java.lang.String
fields.

� Generate getters (public) and setters (private) for the Customer class.
 Chapter 7. Developing Java applications 267

7.6.7 Adding method declarations to an interface

You can add a method to a class or interface by either adding a Java method by
using the Create Java Method wizard or by writing the method declaration into
the interface or class body in the Java editor directly. The Create Java Method
wizard is called only through the Visualizer Class Diagram editor:

1. Right-click the Bank interface in the diagram editor and select Add Java
Method. Alternatively, move the mouse pointer anywhere over the interface in
the diagram editor and click in the action bar that is over the class.

2. In the Create Java Method window (Figure 7-24 on page 269), complete the
following actions:

a. For Name, type searchCustomerBySsn.

b. For Visibility, accept the default of public.

c. For Modifiers, ensure that all check boxes are cleared (default).

d. For Type, select void.

e. For Dimensions, accept the default value of 0.

f. For Throws, click Add to add an exception. To define one or more
exception types to throw, type the exception class name. All matching
types are listed in the Matching types field. Select the required exceptions
and click OK. In our example, we use
itso.rad80.bank.exception.InvalidCustomerException.

The InvalidCustomerException class must be created first under the
itso.rad80.bank.exception package to be selected from the Browse
Types list. Follow the instructions in “Creating a Java class using the New
Java Class wizard” on page 259.

g. For Parameters, click Add. In the Create Parameter window, enter the
name and select the type and dimensions. We add java.lang.String ssn.
Click OK to add the parameter. In this example, we do not pass any array
parameters, and dimensions are always 0 (default).

h. Click Finish to create the Java method.

Restriction: All methods of a Java interface are public abstract. The
abstract modifier can be omitted, because it is, by default, abstract.
Therefore, there is no choice by Visibility and Modifiers when you add a
method declaration to an interface. An interface never has a
constructor. Therefore, the constructor check box is never active.
268 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 7-24 Create Java Method window
 Chapter 7. Developing Java applications 269

ITSOBank example: Interface methods
Repeat the previous steps to create the following method declarations to the Bank
interface of the ITSO Bank application. Table 7-6 on page 245 lists all method
declarations that can be created.

� For searchCustomerBySsn(), use the itso.rad80.bank.model.Customer type.
� For getCustomers(), use the java.util.Map type.
� For transfer(), use the void type.

7.6.8 Adding constructors and Java methods to a class

The method for adding constructors and methods to a class is the same as when
you add a method declaration to an interface. See the steps in 7.6.7, “Adding
method declarations to an interface” on page 268. There are no restrictions as
described for the interfaces.

ITSOBank example: Class methods
Repeat the previous steps to create the following class methods for the ITSO
Bank application. Remember that you must select Constructor when adding a
constructor to a class. Table 7-7 on page 246 lists all method declarations that
can be created.

� For ITSOBank class, use the updateCustomer() and transfer() methods.
� For Customer class, use the Constructor methods.
� For Transaction class, use the getTransactionType() methods.

No methods in the class diagram: There are two reasons why you might
not see the methods in the class diagram:

� The class diagram method compartment is collapsed. Select the
interface or class and click the blue arrow in the compartment in the
bottom to expand the method compartment.

� The class diagram method compartment is filtered out. Right-click the
interface or class and select Filters Show/Hide Compartment
Method Compartment.

Remember:

� Set the correct parameters and exceptions to the methods that you create.

� You can also import the final code later in 7.6.10, “Implementing the
classes and methods” on page 275.
270 Rational Application Developer for WebSphere Software V8 Programming Guide

7.6.9 Creating relationships between Java types

The classes in the ITSO Bank application have the following relationships:

� ITSOBank remembers the customers and accounts.
� A customer knows its accounts.

Reminder: You can import the final code later, as explained in 7.6.10,
“Implementing the classes and methods” on page 275.

Tip: If you want to add a method to a class that implements or overrides an
existing method in an interface or a superclass, there is a much faster way to
add it than by using the Create Java Method wizard. Use the source feature
Override/Implement Methods:

1. Right-click the class in the diagram editor or in the Package Explorer and
select Source Override/Implement Methods.

2. In the Override/Implement Methods window (Figure 7-25), select the
methods that you want to override or implement from the list of all methods
that can be implemented or overridden by this class. For example, you can
implement the toString method in the Transaction class.

Click OK to add the method stubs to the selected class.

Figure 7-25 Window for Override/Implement Methods
 Chapter 7. Developing Java applications 271

� An account logs all the transactions for logging and querying purposes.

In Rational Application Developer, you can model the relationships between Java
types in the Visualizer Class Diagram editor. This section includes the following
topics:

� Extends relationships
� Implements relationships
� Association relationships

Extends relationships
Extends relationships are used inside the Class diagram to represent the
inheritance between Java classes. To create an extends relationship between
existing classes, select the option in the Java Drawer and drag the
mouse with the left mouse button down from any point on the child class to the
parent class.

ITSOBank example: Extends relationship
The only case of inheritance in our application is between the Transaction class
as a superclass of the Credit and Debit classes. Follow these steps to create
those relationships:

1. Create the Credit class, as mentioned in 7.6.5, “Creating Java classes” on
page 259. Select itso.rad80.bank.model.Transaction as the superclass.

2. Create the Debit class as you did with the Credit class, but this time, leave
the default java.lang.Object as the superclass.

3. Select the option in the Java Drawer, hold down the left mouse
button, and drag the mouse from any point on the Debit class to the
Transaction class.

A solid line with a triangular arrow is displayed from the Credit class and the
Debit class to the itso.rad80.bank.model.Transaction class, indicating
that the extends relationships were created successfully.

Implements relationships
Implements relationships are used inside the Class diagram to represent the
usage of one or many Java interfaces by a Java class. To create an implements
relationship between an existing class and an interface, select the
option in the Java Drawer, hold down the left mouse button, and drag from any
point in the implementation class to the interface. The implements relationship is
displayed using a dashed line with a triangular arrow pointing to the interface.

ITSOBank example: Implements relationship
An implements relationship is already in the class diagram. The ITSOBank class
implements the Bank interface.
272 Rational Application Developer for WebSphere Software V8 Programming Guide

Association relationships
Association relationships are used inside the Class diagram to represent the
object-level dependencies between Java classes. To create an association
relationship between two classes, follow these steps:

1. Select the option in the Java drawer.

2. Drag the mouse with the left mouse button down from any point on the
Customer class to the Account class.

3. In the Create Association window, enter the following data (Figure 7-26 on
page 274):

a. For Name, type accounts.
b. For Dimensions, accept the default value of 0.
c. Select contained by Java Collection.
d. For Collection Type, select java.util.ArrayList.
e. Select Use generic collection.
f. For Initial value, type null.
g. For Visibility, accept the default of private.
h. For Modifiers, ensure that all check boxes are cleared (default).
i. Click Finish to create the association.
 Chapter 7. Developing Java applications 273

Figure 7-26 Create Association window

Association: An association can be displayed as an arrow or an attribute:

� Show as attribute: To display the association as an attribute, right-click
the association arrow and select Filters Show As Attribute.

� Show as association arrow: To display the attribute as an association,
right-click the attribute and select Filters Show As Association.
274 Rational Application Developer for WebSphere Software V8 Programming Guide

ITSOBank example: Association relationship
Repeat the previous steps to create the following association relationships of the
ITSO Bank application. The associations are listed in Table 7-5 on page 243.

� For ITSOBank class, use the accounts(Map <String, Account>) field.
� For ITSOBank class, use the customers(Map <String, Customer>) field.
� For Account class, use the transactions(ArrayList<Transaction>) field.

7.6.10 Implementing the classes and methods

In the previous sections of the ITSO Bank application example, we include
step-by-step approaches with the objective of demonstrating the Rational
Application Developer tooling and the logical process of developing a Java
application. In this section, we import all the classes with the method code.

Importing the classes
To import the classes, perform these steps:

1. Right-click the src folder and select Import.

2. Select General File System and click Next.

3. Click Browse and navigate to the C:\7835code\java\import folder.

4. In the Import: File system window (Figure 7-27 on page 276), select the
import folder. Expand the folder to see all classes that will be imported. They
are provided in several packages.

5. Click Finish.
 Chapter 7. Developing Java applications 275

Figure 7-27 Importing the classes

6. Add all the classes to the diagram manually or import the diagram into the
diagram folder from the C:\7835code\java\diagram\ITSOBank-Diagram.dnx
folder.

To change the appearance of the diagram, right-click in the diagram and select
Filters Show/Hide Connector Labels All or No connector Labels.
Alternatively, select Filters Show/Hide Relationships and select the
relationships to be displayed or hidden. For example, you can hide the many
<<use>> relationships.
276 Rational Application Developer for WebSphere Software V8 Programming Guide

7.6.11 Running the ITSO Bank application

After you complete the ITSO Bank application, while importing all classes into
your project RAD80Java, as described in the section before, you are ready to test
the application. To start the application, we use a generic Java Application launch
configuration that derives most of the start parameters from the Java project and
the workbench preferences.

To run the ITSO Bank application, right-click the BankClient class in the
Package Explorer and select Run As Java Application (), or click the
arrow () icon in the toolbar and select Run As Java Application.

You can see the output in the Console view. Figure 7-28 shows part of the output.

Figure 7-28 Console view with output of the ITSO Bank application

7.6.12 Creating a run configuration

In certain cases, you might want to override the derived parameters or specify
additional arguments.

Executable class: The selected class must be executable, containing a
public static void main(String[]args) method. Otherwise, the application
cannot run.
 Chapter 7. Developing Java applications 277

To create a run configuration, follow these steps:

1. Select Run Run Configurations () or click the arrow () icon in the
toolbar and select Run Configurations.

2. In the Run Configurations window (Figure 7-29), select the
option and then click the icon to create a new configuration. Notice that we
already have a configuration from running the BankClient application.

Figure 7-29 Run Configurations window

– On the Main tab, you define the class to start:

i. For Project, select the project containing the class to start.

ii. For Main class, click Search to see a list of all executable main classes
in the project. Select the main class to be started.

iii. For the “Include system libraries when searching for a main class” and
“Include inherited mains when searching for a main class” check boxes,
you can expand the area where Rational Application Developer is
searching for an executable class.

iv. For the Stop in main check box, the program stops in the main method
whenever it is started in debug mode. You do not have to specify a
278 Rational Application Developer for WebSphere Software V8 Programming Guide

project, but by specifying a project, you can choose a default class
path, source lookup path, and JRE.

– On the Arguments tab, you define the arguments to pass to the application
and to the virtual machine. To add a program argument, follow these
steps:

i. Type a value directly into the field or use a variable.

ii. Click Variables under the Program arguments field.

iii. Select one of the predefined variables or create your own variable by
clicking Edit Variables and then by clicking New.

iv. Enter the name and the value for the variable and click OK to add it.

v. Click OK again to return to the Select a variable window. The new
variable is now available in the list. Select it and click OK to return to
the Arguments tab.

In the same way, you can also add VM arguments. You can also specify
the working directory to be used by the started application.

– On the JRE tab, you define the JRE that is used to run or debug the
application. You can select a JRE from the already defined JREs or define
a new JRE.

– On the Classpath tab, you define the location of class files used when
running or debugging an application. By default, the user and bootstrap
class locations are derived from the associated project’s build path. You
can override these settings here.

– On the Source tab, you define the location of source files used to display
source when debugging a Java application. By default, these settings are
derived from the associated project’s build path. You can override these
settings here.

– On the Environment tab, you define the environment variable values to use
when running or debugging a Java application. By default, the
environment is inherited from the Eclipse run time. You can override or
append to the inherited environment.

– On the Common tab, you define general information about the launch
configuration. You can select to store the launch configuration in a specific
file and specify which perspectives become active when the launch
configuration is started.

Click Run to start the class.
 Chapter 7. Developing Java applications 279

7.6.13 Understanding the sample code

In this section, we explain the content of the sample code for the ITSO Bank
solution. You can later study all the sample code imported into the project.

BankClient class
As the starting class for the sample application, the BankClient class creates an
instance of the ITSOBank class and uses the Customer, Account, and Transaction
methods to operate with the bank information. Example 7-1 shows part of the
relevant Java source code in a simplified format for the BankClient class.

Example 7-1 BankClient class (abbreviated)

package itso.rad80.bank.client;
public class BankClient {

public static void main(String[] args) {
Bank iTSOBank = ITSOBank.getBank();
executeCustomerTransactions(iTSOBank);

}

private static void executeCustomerTransactions(Bank bank)
throws ITSOBankException {

......
customer1 = new Customer("xxx-xx-xxxx", "Mr", "Juan","Napoli");
bank.addCustomer(oCustomer);
(...)

}
}

ITSOBank class
The ITSOBank class implements the logic for the interface Bank and contains all
the business logic related to the manipulation of customers, accounts, and
transactions in the ITSOBank application. Example 7-2 shows part of the relevant
Java source code in a simplified format for the ITSOBank class.

Example 7-2 ITSOBank class

public class ITSOBank implements Bank {

public ITSOBank() {
this.setCustomers(new HashMap<String, Customer>());
this.setAccounts(new HashMap<String, Account>());
this.setCustomerAccounts(new HashMap<String,

ArrayList<Account>>());
this.initializeBank();
280 Rational Application Developer for WebSphere Software V8 Programming Guide

}

private void initializeBank() {
Customer customer1 = new Customer("111-11-1111", "MR", "Ueli",

"Wahli");
this.addCustomer(customer1);
(...)

}
public void updateCustomer(String ssn, String title, String

firstName,
String lastName) throws InvalidCustomerException {

this.searchCustomerBySsn(ssn).updateCustomer(title, firstName,
lastName);

}
public void withdraw(String accountNumber, BigDecimal amount)

throws InvalidAccountException, InvalidTransactionException {
this.processTransaction(accountNumber, amount,

itso.rad80.bank.ifc.TransactionType.DEBIT);
}
......

}

Customer class
The Customer class handles the data and processes the logic of the customer
entity in the ITSO Bank application. A customer can have many accounts.
Therefore, it handles the relationship with the Account class. Example 7-3 shows
part of the relevant Java source code in a simplified format for the Customer
class.

Example 7-3 Customer class

package itso.rad80.bank.model;
public class Customer {

public Customer(String ssn, String title, String firstName,
String lastName) {

this.setSsn(ssn);
this.setTitle(title);
this.setFirstName(firstName);
this.setLastName(lastName);
this.setAccounts(new ArrayList<Account>());

}
public void addAccount(Account account) throws

AccountAlreadyExistException
{

 Chapter 7. Developing Java applications 281

if (!this.getAccounts().contains(account)) {
this.getAccounts().add(account);

......
}
......

}

Account class
The Account class handles the data and processes the logic of the account entity
in the ITSO Bank application. On an account, many transactions can be held.
Therefore, it handles the relationship with the Transaction class. Example 7-4
shows part of the relevant Java source code in simplified format for the Account
class.

Example 7-4 Account class

package itso.rad80.bank.model;
public class Account implements Serializable {

public Account(String accountNumber, BigDecimal balance) {
this.setAccountNumber(accountNumber);
this.setBalance(balance);
this.setTransactions(new ArrayList<Transaction>());

}
public void processTransaction(BigDecimal amount, String

transactionType)
throws InvalidTransactionException {

......
if (TransactionType.CREDIT.equals(transactionType)) {

transaction = new Credit(amount);
}
else if (TransactionType.DEBIT.equals(transactionType)) {

transaction = new Debit(amount);
......

}
......

}

282 Rational Application Developer for WebSphere Software V8 Programming Guide

Transaction class
The Transaction class handles the data and processes the logic of a transaction
in the ITSO Bank application. A transaction can be either the credit or debit
type, which is why both inherit the transaction class structure. Example 7-5
shows part of the relevant Java source code in simplified format for the
Transaction class.

Example 7-5 Transaction class

package itso.rad80.bank.model;
public abstract class Transaction implements Serializable {

static int transactionCtr = 1; // to increment transactionId
public Transaction(BigDecimal amount) {

this.setTimeStamp(new Timestamp(System.currentTimeMillis()));
this.setAmount(amount);
this.setTransactionId(transactionCtr++);

}
public abstract String getTransactionType();
public abstract BigDecimal process(BigDecimal accountBalance)

throws InvalidTransactionException;
......

}

Credit class
The Credit class handles the implementation code of a transaction class for
credit operations. Example 7-6 shows part of the relevant Java source code in
simplified format for the Credit class.

Example 7-6 Credit class

package itso.rad80.bank.model;
public class Credit extends Transaction {

public BigDecimal process(BigDecimal accountBalance)
throws InvalidTransactionException {

......
return accountBalance.add(this.getAmount());
......

}
(...)
}

Debit class
The Debit class is similar to the Credit class, but subtracts the amount from the
balance.
 Chapter 7. Developing Java applications 283

7.6.14 Additional features used for Java applications

The Java editor of Rational Application Developer provides a set of useful
features to develop the code. In this section, we highlight key features of Rational
Application Developer when working on a Java project:

� Using scripting inside the JRE
� Analyzing the source code
� Debugging a Java application
� Using the Java scrapbook
� Pluggable Java Runtime Environment
� Exporting Java applications to a JAR file
� Running Java applications that are external to Rational Application Developer
� Importing Java resources from a JAR file into a project

7.6.15 Using scripting inside the JRE

Since the release of JRE Version 1.6, scripting code can be executed inside the
virtual machine environment with the use of the classes in the javax.script.*
native Java package. The classes included in the JRE release contain Java
implementation logic for Mozilla open source Rhino and ECMAScript JavaScript
language engines. However, many others, such as Ruby or Phyton, can be
included, or you can make your own scripting interpreter.

ITSOBank example: Scripting invocation
In our application example, we create a scripting implementation, which you have
already imported in “Importing the classes” on page 275. The scripting module
has two components:

� The BankClientScript.js scripting file in the package
itso.rad80.bank.client, which contains a similar logic as implemented by
the method executeCustomerTransactions(Bank bank) in the BankClient
class

� The executeCustomerTransactionsWithScript(Bank bank) method in the
class BankClient, which invokes the script file and evaluates its logic

To test the scripting functionality, we must modify two lines of code in the
main(String[]args) method of the BankClient class:

1. Look for the following code:

//Here you can switch the logic to be implemented in Java or
Scripting

executeCustomerTransactions(iTSOBank);
//executeCustomerTransactionsWithScript(iTSOBank);
284 Rational Application Developer for WebSphere Software V8 Programming Guide

2. Select the second line, right-click, and select Source Toggle Comment to
comment the line.

3. Select the third line, right-click, and select Source Toggle Comment to
uncomment it.

4. Save the changes (Ctrl+S).

5. Run the ITSOBank application, as described in 7.6.11, “Running the ITSO
Bank application” on page 277.

6. Verify that the output console has no errors and shows the message
<<Using JAVASCRIPT to access bank Java objects!>> (Figure 7-30).

Figure 7-30 Executing the BankClient with scripting

How the scripting example works
Study the code of the executeCustomerTransactionsWithScript method:

private static void executeCustomerTransactionsWithScript(Bank oBank)
throws ScriptException {

//Lookup for the scripting engine
 Chapter 7. Developing Java applications 285

ScriptEngineManager engineMgr = new ScriptEngineManager();
ScriptEngine engine = engineMgr.getEngineByName("ECMAScript");
//Insert the bank object in the Bindings scope
engine.put("bank", oBank);
//Execute the script
try {

InputStream inputStream = Thread.currentThread()
.getContextClassLoader()

.getResourceAsStream("itso/rad80/bank/client/BankClientScript.js");
Reader reader = new InputStreamReader(inputStream);
engine.eval(reader);

} catch (ScriptException e) {
throw e;

}
}

Note the following observations:

� The example uses the ECMAScript scripting engine.
� The bank object from the main method is inserted into the binding scope.
� The script, BankClientScript.js, is loaded and then evaluated by the engine.
� The script itself is similar to the executeCustomerTransactions method.

7.6.16 Analyzing the source code

Rational Software Analyzer is a part of the Test and Performance Tools Platform
(TPTP) analysis framework. With Rational Software Analyzer, you can run a
static analysis of the resources with which you are working to detect violations of
rules and rule categories.

In this section, we explain how to work with the Rational Software Analyzer:

� Creating and editing a static analysis configuration
� Running a static analysis

Creating and editing a static analysis configuration
For each resource, you can create an analysis configuration that specifies the
rules and rule categories that are used when analyzing the resource. A static
analysis code review, for example, detects violations of specific programming
rules and rule categories and generates a report in the Software Analyzer
Results view (Figure 7-31 on page 287).
286 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 7-31 Software Analyzer Results view for a Java project

To create an analysis configuration, you must work in a perspective that supports
analysis capabilities. The Java and the Debug perspectives support analysis
capabilities, by default. In all other perspectives, you can add it. Select
Window Customize Perspective, click the Commands tab, and select
Software Analyzer.

To create an analysis configuration, follow these steps:

1. Click Run Analysis. Alternatively, right-click a project in the Package
Explorer and select Software Analyzer Software Analyzer
Configurations, or click the arrow of the icon in the toolbar and select
Software Analyzer Configurations.

2. In the Software Analyzer Configurations window (Figure 7-32 on page 288),
complete the following steps:

a. Select the option.

b. Click the New icon () to create a configuration.

c. For the name of the analysis configuration, type ITSO Bank Analysis
Configuration.

d. Set the scope of the analysis, which has the following options:

• Analyze entire workspace: The rules that you select on the Rules tab
are applied to all the resources in your workspace.

• Analyze a resource working set: The rules that you select on the Rules
tab are applied to a specific set of projects, folders, or files in your
workspace.

• Analyze selected projects: The rules that you select on the Rules tab
are applied to the resources in the project that you select.
 Chapter 7. Developing Java applications 287

Select Analyze selected projects and select the RAD80Java project.

e. Click Apply.

Figure 7-32 Software Analyzer Configurations: Create, manage, and run configurations

f. Click the Rules tab (Figure 7-33 on page 289) to specify the rule
categories, rules, or rule sets to apply during the analysis:

i. For Rule Sets, select a defined rule set, for example, Java Quick Code
Review, and click Set to configure the domains and rules.

ii. For Analysis Domains and Rules, expand the tree and select domains
and rules. For example, select Java Code review Design
Principles.
288 Rational Application Developer for WebSphere Software V8 Programming Guide

Setting a rule set selects a subset of domains and rules. In our case,
several J2SE Best Practices rules are preselected. Expand that
domain to see the selected rules and select the box for select all tests.

Figure 7-33 Analysis Domains and Rules

iii. Select Performance and Security.

iv. Click Apply.

Running a static analysis
You can analyze your source code using the analysis configurations that you
created. To run a static analysis, select an existing configuration or create a new
configuration, and click Analyze.

While the analysis runs, the Software Analyzer Results view opens. If your
source code does not conform to the rules in the analysis configuration, the view
populates with results. The results are listed in chronological order and are
grouped into the same categories that you specified in the analysis configuration.

If you run the analysis for the RAD80Java project, no problems are reported. If you
run the analysis for the RAD80EJB project (from Chapter 12, “Developing
Enterprise JavaBeans (EJB) applications” on page 577), one problem is reported
(Figure 7-34 on page 290).
 Chapter 7. Developing Java applications 289

Figure 7-34 Software Analyzer Results view

Static analysis results
A static analysis result is a concise explanation of a rule violation. The result is a
line item in the Software Analyzer Results view that shows that the resource
does not comply with the rules that you applied.

A result is not necessarily a problem, mistake, or bug, but you have to evaluate
each result in the list to determine what action, if any, you have to take. If the
result is a problem that has a trivial solution, the author of the rule might have
provided a quick fix that automatically corrects the resource.

To locate a problem, right-click an entry in the Software Analyzer Results view
and select View Result. This action opens the Java source file with the problem
code highlighted.

If a quick fix is provided, right-click an entry and select Quick Fix. The source
code is changed, and the entry disappears from the list.

7.6.17 Debugging a Java application

For details about debugging an application, see Chapter 28, “Debugging local
and remote applications” on page 1461.

7.7 Using the Java scrapbook

You can use the scrapbook feature to quickly run and test Java code without
creating an executable testing class. Snippets of Java code can be entered in a
scrapbook page and evaluated by selecting the code and running it.
290 Rational Application Developer for WebSphere Software V8 Programming Guide

You can add a scrapbook page to any project and package. A scrapbook page
uses the .jpage extension to distinguish it from a normal Java source file. To
create and run a scrapbook page, follow these steps:

1. Right-click a package (itso.rad80.bank.client) in the Package Explorer and
select New Other Java Java Run/Debug Scrapbook Page.

2. Enter a file name (TestScrapBook) and click Finish. We have already
imported this scrapbook.

3. When the scrapbook page opens in the Java editor, enter the snippet Java
code.

Example 7-7 contains two short snippets. The first snippet is related to the
ITSO Bank application and is based on the BankClient class main method.
The second snippet is a simple code snippet to produce a multiplication table.

Example 7-7 Java scrapbook examples

// ITSO Bank Snippet
itso.rad80.bank.ifc.Bank oITSOBank =

itso.rad80.bank.impl.ITSOBank.getBank();
System.out.println("\nITSO Bank is listing all customers status");
System.out.println(oITSOBank.getCustomers() + "\n");
for (itso.rad80.bank.model.Customer

customer:oITSOBank.getCustomers().values())
{

System.out.println("Customer: "+ customer);

System.out.println(oITSOBank.getAccountsForCustomer(customer.getSsn(
)));
}

// Multiplication Table Snippet
String line;
int result;

for (int i = 1; i <= 10; i++) {
line ="row " + i + ": ";

// begin inner for-loop
for (int j = 1; j <= 10; j++) {

result = i*j;
line += result + " ";

} // end inner for-loop
System.out.println(line);

}

 Chapter 7. Developing Java applications 291

4. To execute, display, or inspect a snippet:

a. Select the code of the // Multiplication Table Snippet, right-click, and
select Execute, or press Ctrl+U, or click the icon in the toolbar. All
output is displayed in the Console view.

b. Select the // ITSO Bank Snippet, right-click, and select Display, or click
the icon in the toolbar. Again, all output is displayed in the Console
view.

c. Select the // ITSO Bank Snippet, right-click, and select Inspect, or press
Ctrl+Shift+I, or click the icon in the toolbar. Again, all output is
displayed in the Console view. But, in addition, an expression box opens,
which allows you to inspect the current variables. Pressing Ctrl+Shift+I
again opens the Expression view, which you can find in the Debug
perspective, as described in Chapter 28, “Debugging local and remote
applications” on page 1461.

5. Click the icon in the Console view to end the scrapbook evaluation.

7.7.1 Pluggable Java Runtime Environment

With Rational Application Developer, you can run Java projects under separate
versions of the JRE. New JREs can be added to the workspace, and projects can
be configured to use any of the available JREs. By default, Rational Application
Developer uses and provides projects with support for IBM Java Runtime
Environment V6.0.

Important: All classes that are not from the java.lang package must be
fully qualified, or you have to set import statements:

1. Right-click in the scrapbook page editor and select Set Imports.

2. For the example, add the following types and packages:

itso.rad80.bank.model.*
itso.rad80.bank.ifc.Bank
itso.rad80.bank.impl.ITSOBank

Reminder: You must select the code before you can execute, display, or
inspect a snippet in the scrapbook page.
292 Rational Application Developer for WebSphere Software V8 Programming Guide

To add another JRE to the workspace, follow these steps:

1. Select Window Preferences, and in the Preferences window, select
Java Installed JREs.

2. Click Add to add a new JRE to the workspace.

3. Click Browse and select the home directory of the JRE that you want to use.

4. Click OK. The new added JRE is now available in the list. By default, the
selected JRE is added to the build path of newly created Java projects.

The JRE that is used to run a program can also be selected in the Run
Configurations window (Figure 7-35):

1. Select Run Run Configurations.
2. Select an existing Java application run configuration.
3. Click the JRE tab, select Alternate JRE, and change the JRE.

Figure 7-35 Run Configurations JRE tab

7.7.2 Exporting Java applications to a JAR file

You can export a Java application to a JAR file that can be run outside Rational
Application Developer using a JRE in a Microsoft Windows command prompt.
We explain how to export and run the ITSO Bank application.
 Chapter 7. Developing Java applications 293

To export the ITSO Bank application code to a JAR file, follow these steps:

1. Right-click the RAD80Java project and select Export.

2. In the Export window, select Java JAR file and click Next.

3. In the JAR Export window (Figure 7-36 on page 295), complete the following
actions:

a. Select the RAD80Java project.

b. Select Export generated class files and resources (default).

c. Select Export Java source files and resources.

d. For the JAR file, browse and select C:\ITSOBankApplication.jar.

e. Select Compress the contents of the JAR file (default).

f. Clear all other check boxes.

Exporting the source: We select to export the source to demonstrate
later how to import a JAR file into a project. It is not necessary or
desirable to include Java sources in a JAR file for execution.
294 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 7-36 JAR Export window

4. In the JAR Packaging Options window, accept the default values and click
Next.

5. In the JAR Manifest Specification window, for the Main class, click Browse
and select the BankClient class.

6. Click Finish to export the entire Java project as a JAR file.

7. If a warning message window opens, click OK.
 Chapter 7. Developing Java applications 295

7.7.3 Running Java applications that are external to Rational
Application Developer

After you export the Java application as a JAR file, you can run the Java
application on any installed JRE on your system (at least as long as no version
conflicts exist).

To run a Java application that is external to Rational Application Developer on a
Microsoft Windows system, follow these steps:

1. Open a Command Prompt and navigate to the directory to which you have
exported the JAR file, for example, C:\.

2. Enter the following command to run the ITSO Bank application:

java -jar ITSOBankApplication.jar

The main method of BankClient is run. Figure 7-37 on page 297 shows the
results.

Adding the JRE to the path: Ensure that the JRE is set in the Microsoft
Windows environment variable called PATH. You can add the JRE to the path
by entering the following command in the Microsoft Windows command
prompt:

set path=%path%;{JREInstallDirectory}\bin
set path=%path%;C:\IBM\SDP80Beta\jdk\bin
296 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 7-37 Output from running ITSOBankApplication.jar in Command Prompt

7.7.4 Importing Java resources from a JAR file into a project

You can import Java resources from a JAR file into an existing Java project in the
workspace. We use the ITSOBankApplication.jar file, which we create in 7.7.2,
“Exporting Java applications to a JAR file” on page 293.

To import Java resources from a JAR file into a project, follow these steps:

1. Create a Java project called RAD80JavaImport with the default options.

2. In the Package Explorer, right-click the RAD80JavaImport project and select
Import.

3. In the Import window, select General Archive File and click Next.

4. In the Import - Archive File window, click Browse and locate the JAR file (for
example, c:\ITSOBankApplication.jar).

5. Clear the files .classpath and .project and the folder META-INF. These files
are created when required.

6. For Into folder, select RAD80JavaImport/src and click Finish.

7. Test the imported Java project. Then select and run the BankClient class
from the Package Explorer.
 Chapter 7. Developing Java applications 297

7.7.5 Javadoc tooling

Javadoc is a useful tool in the Java Development Kit that is used to document
Java code. It generates web-based (HTML files) documentation of the packages,
interfaces, classes, methods, and fields.

Rational Application Developer has a Javadoc view, which allows you to browse
formatted Javadoc. In the Java perspective, the Javadoc view is
context-sensitive. It only shows the Javadoc that is associated with the Java
element where the cursor is currently located within the Java editor.

To demonstrate the use of Javadoc, we use the RAD80JavaImport project that we
imported:

1. Open the Javadoc view in the Java perspective if it is not already open.

2. Open the BankClient class in the Java editor. Notice that, when the cursor
selects a type, its Javadoc is shown in the Javadoc view.

3. Select the BigDecimal type and the Javadoc view changes to the
documentation that is associated with BigDecimal (Figure 7-38).

Figure 7-38 Javadoc view: Context sensitive (BigDecimal)
298 Rational Application Developer for WebSphere Software V8 Programming Guide

7.8 Generating the Javadoc

You can generate the Javadoc from an existing Java project. Rational Application
Developer supports the following types of Javadoc generation:

� Generating the Javadoc from an existing project
� Generating the Javadoc from an Ant script
� Generating the Javadoc with diagrams from existing tags
� Generating the Javadoc with diagrams automatically

7.8.1 Generating the Javadoc from an existing project

To generate the Javadoc from an existing Java project, follow these steps:

1. Right-click the RAD80Java project in the Package Explorer and select
Export Java Javadoc, or select Project Generate Javadoc.

2. In the Javadoc Generation window (Figure 7-39 on page 300), complete the
following actions:

a. Accept the predefined value for the Javadoc command.

b. Select Public for Create Javadoc for members with visibility (default).

c. Select Use Standard Doclet. Alternatively, you can specify a custom
doclet with the name of the doclet and the class path to the doclet
implementation.

d. For Destination, accept the default value
{workspaceDirectory}\RAD80Java\doc, which optionally generates the
Javadoc in the doc directory of the current project.
 Chapter 7. Developing Java applications 299

Figure 7-39 Javadoc Generation window

3. In the Configure Javadoc arguments for standard doclets window, accept the
default settings and click Next.

4. In the Configure Javadoc arguments window, enter the following data:

a. For JRE source compatibility, select 1.6, because in the project, we use
generic types that are only supported by Java Development Kit (JDK)
Version 1.6 and later versions.

b. Select Save the settings for this Javadoc export as an Ant script and
accept the destination {workspace}\RAD80Java\javadoc.xml.

5. Click Finish to generate the Javadoc.

6. When prompted to update the Javadoc location, click Yes to all.
300 Rational Application Developer for WebSphere Software V8 Programming Guide

7. When prompted that the Ant file will be created, click OK.

8. Right-click index.html (in RAD80JavaImport/doc) and select Open With
Web Browser to open the Javadoc in a browser (Figure 7-40).

Figure 7-40 Javadoc output generated from the Javadoc wizard

7.8.2 Generating the Javadoc from an Ant script

In 7.8.1, “Generating the Javadoc from an existing project” on page 299, we
selected Save Settings for this Javadoc export as an Ant script. Selecting
this option generated the javadoc.xml Ant script, which can be used to invoke
the Javadoc command.

To generate the Javadoc from an Ant script, right-click javadoc.xml in the
Package Explorer and select Run As Ant Build. The Javadoc generation
process starts. If you cannot see the new generated doc folder in the project,
select the project and press F5 to refresh the view.
 Chapter 7. Developing Java applications 301

7.8.3 Generating the Javadoc with diagrams from existing tags

Rational Application Developer enables you to embed the @viz.diagram tag into
the Javadoc on the class, interface, or package level. The @viz.diagram tag
assumes that the diagram being referenced is placed in the same folder as the
Java file containing the @viz.diagram tag, and the wizard then exports that
diagram into a .gif, .jpg, or .bmp, and embeds it into the generated Javadoc.

Example 7-8 shows the use of the @viz.diagram tag in the BankClient class.

Example 7-8 BankClient class with an @viz.diagram tag

package itso.rad80.bank.client;
...
/**
 * @viz.diagram ITSOBank-ClassDiagram.dnx
 */
public class BankClient {

public static void main(String[] args) {
try {

...

To generate the Javadoc with diagrams from existing tags, follow these steps:

1. Add the @viz.diagram tag to the source code, as shown in Example 7-8, and
copy the ITSOBank-ClassDiagram.dnx file from the diagram folder to the
itso.rad80.bank.client package.

2. Select the project in the Package Explorer and select Project Generate
Javadoc with Diagrams From Existing tags.

3. In the Javadoc Generation window (Figure 7-39 on page 300), complete the
following actions:

Restriction: For web applications, this action results in the class diagrams
being packaged into the WAR file with the compiled Java code. We found
the following work-arounds:

� Manually remove these diagrams from the WAR file after exporting.
� Configure an exclusion filter for the EAR export feature.

Java Modeling: To see this action, you must enable the Java Modeling
capability. Select Window Preferences Advanced Java Java
Modeling.
302 Rational Application Developer for WebSphere Software V8 Programming Guide

a. Accept the predefined value for the Javadoc command.

b. Select Public for Create Javadoc for members with visibility (default).

c. Select Use Standard Doclet. Alternatively, you can specify a custom
doclet with the name of the doclet and the class path to the doclet
implementation.

d. For Destination, accept the default value
{workspaceDirectory}\RAD80Java\doc, which optionally generates the
Javadoc in the doc directory of the current project.

4. In the next window, click Next.

5. In the Configure Javadoc arguments window, for JRE source compatibility,
select 1.6.

6. In the Choose diagram image generation options window, accept the default
settings and click Finish.

7. When prompted to update the Javadoc location, click Yes to all.

8. Open the Javadoc (RAD80JavaImport/doc/index.html) in a browser. Verify
that a diagram has been added to the generated Javadoc for the BankClient
class by selecting the BankClient class in the All Classes pane.

7.8.4 Generating the Javadoc with diagrams automatically

If you do not have diagrams that you want to embed in the generated Javadoc,
you can let Rational Application Developer generate diagrams for you and embed
them in the Javadoc.

To generate the Javadoc with diagrams automatically, follow these steps:

1. Select the project in the Package Explorer and select Project Generate
Javadoc with Diagrams Automatically.

2. In the Generate Javadoc with Diagrams Automatically window (Figure 7-41 on
page 304), complete the following actions:

a. For the Javadoc command, enter the
{JDKInstallDirectory}\bin\javadoc.exe path.

b. For Diagrams, keep the default selections.

c. Optional: Select Contribute diagrams and diagram tags to source if
you want the @viz.diagram tags to be stored in the Java sources and the
generated diagrams to be stored in the packages of the Java sources.

d. Click Finish to generate the Javadoc.
 Chapter 7. Developing Java applications 303

Figure 7-41 Generate Javadoc with Diagrams Automatically window

3. Open the Javadoc and browse the classes with the generated diagrams.

7.9 Java editor and rapid application development

Rational Application Developer contains several features that ease and expedite
the code development process. These features are designed to make life easier
for both experienced and novice Java programmers by simplifying or automating
many common tasks.

This section is organized into the following topics:

� Navigating through the code
� Source folding
� Type hierarchy
� Smart insert
� Marking occurrences
� Smart compilation
� Java and file search
� Working sets
304 Rational Application Developer for WebSphere Software V8 Programming Guide

� Quick fix
� Quick assist
� Content assist
� Import generation
� Adding constructors
� Using the delegate method generator
� Refactoring

7.9.1 Navigating through the code

In this section, we highlight the use of the Outline view, Package Explorer, and
bookmarks to navigate through the code.

Navigating the code by using the Outline view
The Outline view shows an outline of a structured file that is currently open in the
editor area and lists structural elements. The contents of the Outline view are
editor-specific.

For example, in a Java source file, the structural elements are package name,
import declarations, class, fields, and methods. We use the RAD80Java project to
demonstrate the use of the Outline view to navigate through the code:

1. From the Package Explorer, select and expand RAD80Java src
itso.rad80.bank.model.

2. Double-click Account.java to open the class in the Java editor.

By selecting elements in the Outline view, you can navigate to the
corresponding point in your code, which allows you to easily find method and
field definitions without scrolling through the Java editor (Figure 7-42 on
page 306).
 Chapter 7. Developing Java applications 305

Figure 7-42 Java editor: Outline view for navigation

Navigating the code by using the Package Explorer
You can also use the Package Explorer, which is available by default in the Java
perspective, for navigation. The Package Explorer provides you with a
Java-specific view of the resources that are shown in the Enterprise Explorer
view. The element hierarchy is derived from the project’s build paths.

Navigating the code by using bookmarks
Bookmarks are another simple way to navigate to resources that you frequently
use. The Bookmarks view shows all bookmarks in the workspace.

Setting a bookmark
To set a bookmark in the code, right-click in the gray sidebar to the left of the
code in the Java editor and select Add Bookmark, or select Edit Add
Bookmark. In the Add Bookmark window, enter the name of the bookmark and
click OK.

Viewing bookmarks
Bookmarks are indicated by the symbol in the gray sidebar (Figure 7-43 on
page 307) and are listed in the Bookmarks view (Figure 7-44 on page 307).
Double-click the bookmark entry in the Bookmarks view to open the file and
navigate to the line where the bookmark has been set.
306 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 7-43 Java Editor with a bookmark

Showing the Bookmarks view
To see the Bookmarks view (Figure 7-44), select Window Show View
Other General Bookmarks.

Figure 7-44 Bookmarks view

Deleting bookmarks
To remove a bookmark, right-click the bookmark symbol in the gray sidebar
and select Remove Bookmark. Alternatively, right-click the bookmark in the
Bookmarks view and select Delete.

7.9.2 Source folding

Rational Application Developer folds the source of import statements, comments,
types, and methods. Source folding can be configured through the Java editor
preferences.

Bookmarks for a file: Bookmarks can be used in any file to provide a quick
way of navigating to a specific location. They are not specific to Java code.
Select the file in the Enterprise Explorer view and select Edit Add
Bookmark.
 Chapter 7. Developing Java applications 307

To configure the folding feature, select Window Preferences. In the
Preferences window, select Java Editor Folding.

Folded source is marked by a () symbol and expanded source is marked by a
() symbol on the left side of the source code, as shown in Figure 7-45. Click the
symbol to fold or expand the source code.

Figure 7-45 Java Editor with source folding
308 Rational Application Developer for WebSphere Software V8 Programming Guide

7.9.3 Type hierarchy

With the Java editor, you can quickly view the type hierarchy of a selected type.
Select a type with the cursor and press Ctrl+T to display the hierarchy
(Figure 7-46).

Figure 7-46 Java Editor with a quick type hierarchy view

7.9.4 Smart insert

To toggle the editor between smart insert and insert modes, press
Ctrl+Shift+Insert. When the editor is in smart insert mode, it provides extra
features that are specific to Java. For example, in smart insert mode, when you
cut and paste code from a Java source to another Java source, all the needed
imports are automatically added to the target Java file.

To configure the smart insert mode, select Window Preferences. In the
Preferences window, select Java Editor Typing, and study the various
options.

Notice the small text at the bottom of the window as it changes from Smart
Insert to Insert when you press Crtl+Shift+Insert.

7.9.5 Marking occurrences

When enabled, the editor highlights all occurrences of types, methods,
constants, non-constant fields, local variables, expressions throwing a declared
exception, method exits, methods implementing an interface, and targets of
 Chapter 7. Developing Java applications 309

break and continue statements, depending on the current cursor position in the
source code (Figure 7-47). For better orientation in large files, all occurrences
are marked with a white line on the right side of the code.

The feature can be enabled and disabled by pressing Alt+Shift+O, or by clicking
the icon in the toolbar. To configure mark occurrences, select Window
Preferences. In the Preferences window, select Java Editor Mark
Occurrences.

Figure 7-47 Java Editor with mark occurrences (method exits)

7.9.6 Smart compilation

The Java builder in the Rational Application Developer workbench incrementally
compiles the Java code in the background as it is changed and shows any
compilation errors automatically, unless you disable the automatic build feature.
See Chapter 4, “Perspectives, views, and editors” on page 91, for information
about enabling and disabling automatic builds and running workbench tasks in
the background.

7.9.7 Java and file search

Rational Application Developer provides support for various searches. To display
the Search window, click in the toolbar, or press Ctrl+H. The Search window
can be configured to display various searches by clicking Customize. In
310 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 7-48, the Search window has been customized to display only the Java
Search and File Search tabs.

In the Search window, you can perform the following searches:

� Java searches operate on the structure of the code.
� File searches operate on the files by name or text content.
� With text searches, you can find matches inside comments and strings.

Java searches are faster, because there is an underlying indexing structure for
the code.

Figure 7-48 Search window [customized]

Performing a Java search from the workbench (example)
To perform a Java search from the workbench, follow these steps:

1. In the Java perspective, click the icon in the toolbar and select Search
Java, or press Ctrl+H.

2. Click the Java Search tab and complete the following actions (Figure 7-49 on
page 312):

a. For Search string, type processTransaction.
b. Select Method.
 Chapter 7. Developing Java applications 311

c. Select References.
d. Select Workspace.
e. Click Search.

While searching, you can click Cancel at any time to stop the search. Partial
results are shown. The Search view shows the search results.

Figure 7-49 Java Search window

3. Click the down arrow () or up arrow () in the toolbar of the Search view to
navigate to the next or previous match. If the file in which the match was found
is not currently open, it is opened in the Java editor at the position of the
match. Search matches are tagged with a symbol on the left side of the
source code line.

Searching from a Java view or editor
You can also perform Java searches from specific views, including the Outline
view, Hierarchy view, Package Explorer view, or even the Search view, or from
the Java editor.

Right-click the resource for which you are looking in the view or editor and select
References Workspace, or press Ctrl+Shift+G.
312 Rational Application Developer for WebSphere Software V8 Programming Guide

Performing a file search (example)
To perform a file search, follow these steps:

1. In the Java perspective, click in the toolbar, or select Search File, or
press Ctrl+H.

2. Click the File Search tab and complete the following actions (Figure 7-50):

a. For Containing text, enter ROUND_HALF_EVEN.
b. For File name patterns, use *.java (default).
c. Select Workspace.
d. Click Search.

While searching, you can click Cancel at any time to stop the search. Partial
results will be shown. The Search view shows the search results.

Figure 7-50 File Search window

Viewing previous search results
Click the down arrow () on the right side of the icon in the Search view
toolbar and select one of the previous searches. You can clear the list by
selecting Clear History.

Searching for all views of a file name pattern: To find all files of a given
file name pattern, leave the Containing text field empty.
 Chapter 7. Developing Java applications 313

7.9.8 Working sets

Working sets are used to filter resources by only including the specified
resources. They are selected and defined using the view’s filter selection window.
We use an example to demonstrate the creation and use of a working set:

1. To open the Java Search window, click the icon in the toolbar and select
Search Java, or press Ctrl+H.

2. In the Search string field, type itso.rad80.bank.model.Credit. For Scope,
select Working set and then click Choose.

3. In the Select Working Set window, click New to create a new working set.

4. In the New Working Set window, select Java to indicate that the working set
includes only Java resources and then click Next.

5. In the Java Working Set window (Figure 7-51 on page 315), select only
RAD80JavaImport src itso.rad80.bank.model and click Add. In the
Working set name field, type EntityPackage and click Finish.
314 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 7-51 New Working Set: Java Working Set window

6. In the Select Working Sets window, select the new EntityPackage working
set and click OK.

You have now created a working set named EntityPackage containing Java
resources comprised of all the Java files in the itso.rad80.bank.model
package.

7. Click Search to start the search process.

7.9.9 Quick fix

Rational Application Developer offers a quick fix for certain problems that are
detected during the code compilation or static code analysis. You can process
the quick fix to correct the code.
 Chapter 7. Developing Java applications 315

The following symbols indicate that a quick fix is available:

� Static code analysis:

– Quick fix for a result with a severity level of recommendation

– Quick fix for a result with a severity level of warning

– Quick fix for a result with a severity level of severe

� Code compilation:

– Quick fix for a warning

– Quick fix for an error

To process the quick fix, click the symbol. All suggestions to correct the problem
are shown in an overlaid window. As soon as a suggestion is selected, a code
preview is shown, so that you can see what will change (Figure 7-52).
Double-click one of the suggestions to process the quick fix.

Figure 7-52 Java editor with quick fix window

7.9.10 Quick assist

Rational Application Developer supports quick assists in the Java editor to
provide suggestions to complete tasks quickly. Quick assist depends on the
current curser position. When there is a suggestion and quick assist highlighting
is enabled, a green light bulb icon () is displayed on the left side of the code
line.
316 Rational Application Developer for WebSphere Software V8 Programming Guide

Enabling quick assist highlighting
By default, the display of the quick assist light bulb is disabled. To enable it, follow
these steps:

1. Select Window Preferences.
2. In the Preferences window, select Java Editor.
3. Select Light bulb for quick assists.

Invoking quick assist
To use the quick assist feature, double-click the icon or press Ctrl+1 to
provide a list of intelligent suggestions. Select a suggestion to complete the task
(Figure 7-53).

Figure 7-53 Java editor with quick assist feature

7.9.11 Content assist

The content assist feature shows possible code completions that are valid with
the current context.

Content assist preferences
To configure the content assist preferences, follow these steps:

1. Select Window Preferences.
 Chapter 7. Developing Java applications 317

2. In the Preferences window, select Java Editor Content Assist.
3. Modify the settings as desired and click Apply and OK.

Invoking content assist
Press Ctrl+Spacebar at any point in the Java editor to invoke the content assist.
The content assist provides all of the possible code completions that are valid for
the current context in an overlaid window (Figure 7-54). Double-click the desired
completion, or use the arrow keys to select it, and press Enter.

Figure 7-54 Java editor with content assist

7.9.12 Import generation

The Java editor simplifies the task of finding the correct import statements to use
in the Java code.

Right-click the unknown type in the code and select Source Add Import, or
select the type and press Ctrl+Shift+M. If the type is unambiguous, the import
statement is directly added. If the type exists in more than one package, a
window with all the types is displayed and you can select the correct type for the
import statement.

Figure 7-55 on page 319 shows an example where the selected type
(BigDecimal) exists in several packages. After you have determined that the

Tip: If there are still too many possible completions, continue to write the code
yourself and the number of suggestions becomes smaller.

You can also use content assist to insert or complete Javadoc tags.
318 Rational Application Developer for WebSphere Software V8 Programming Guide

java.math package is what you want, double-click the entry in the list or select it
and click OK and the import statement is generated in the code.

Figure 7-55 Java editor with import generation

You can also add the required import statements for the whole compilation unit.
Right-click a project, package, or Java type in the Package Explorer and select
Source Organize Imports. Or select the project, package, or Java type and
press Ctrl+Shift+O. The code in the compilation unit is analyzed and the
appropriate import statements are added.

7.9.13 Adding constructors

By using the constructors feature, you can automatically add constructors to the
open type. The following constructors can be added:

� Constructors from superclass
� Constructor using fields

Constructors from superclass
Add any or all of the constructors defined in the superclass for the currently
opened type. Right-click anywhere in the Java editor and select Source Add
Constructors from Superclass. Select the constructors that you want to add to
the current opened type and click OK (Figure 7-56 on page 320).
 Chapter 7. Developing Java applications 319

Figure 7-56 Generate Constructors from Superclass window

Constructor using fields
The Constructor using Fields option adds a constructor that initializes any or all
of the defined fields of the currently opened type. Right-click anywhere in the
Java editor and select Source Add Constructors using Fields. Select the
fields that you want to initialize with the constructor and click OK (Figure 7-57 on
page 321).
320 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 7-57 Generate Constructor using Fields window

Example 7-9 shows the constructor code that might generate with the settings
that are shown in Figure 7-57.

Example 7-9 Generated constructor code

public Customer(String ssn, String title, String firstName, String
lastName,

ArrayList<Account> accounts) {
this.ssn = ssn;
this.title = title;
this.firstName = firstName;
this.lastName = lastName;
this.accounts = accounts;

}

 Chapter 7. Developing Java applications 321

7.9.14 Using the delegate method generator

Use the delegate method generator feature to delegate methods from one class
to another class for better encapsulation. We use a simple example to explain
this feature. A car has an engine, and a driver wants to start the car. Figure 7-58
shows that the engine is not encapsulated, the PoorDriver has to use the Car
class and the Engine class to start the car.

Figure 7-58 Simple car example class diagram (before method delegation)

Example 7-10 shows how the PoorDriver has to start the car.

Example 7-10 Car, Engine, and PoorDriver classes (compressed)

// Car class
package itso.rad80.example;
import itso.rad80.example.Engine;
public class Car {

private Engine carEngine = null;
public Car(Engine carEgine) {

this.setCarEngine(carEngine);
}
public Engine getCarEngine() {

return carEngine;
}
private void setCarEngine(Engine carEngine) {

if (carEngine != null) {
this.carEngine = carEngine;

} else {
this.carEngine = new Engine();

}
}

}

322 Rational Application Developer for WebSphere Software V8 Programming Guide

// Engine class
package itso.rad80.example;
public class Engine {

public void start() {
// code to start the engine
}

}

// PoorDriver class
package itso.rad80.example;
import itso.rad80.example.Car;
public class PoorDriver {

public static void main(String[] args) {
Car myCar = new Car(null);
/* How can I start my car?
 * Do I really have to touch the engine?
 * - Yes, there is no other way at the moment.
 */
myCar.getCarEngine().start();

}
}

 Chapter 7. Developing Java applications 323

To make the driver happy, we delegate the start method from the Engine class to
the Car class. To delegate a method, follow these steps:

1. In the Car class, right-click the carEngine field and select Source
Generate Delegate Methods.

2. In the Generate Delegate Methods window (Figure 7-59), select only the start
method and click OK.

Figure 7-59 Generate Delegate Method window

The start method is added to the Car class, and code is added in the body of
the method to delegate the method call to the Engine class through the
carEngine attribute. Figure 7-60 on page 325 and Example 7-11 on page 325
show how the HappyDriver can start the car.
324 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 7-60 Simple car example class diagram (after method delegation)

Example 7-11 Car and HappyDriver class

// Car class
package itso.rad80.example;
import itso.rad80.example.Engine;
public class Car {

private Engine carEngine = null;
public Car(Engine carEgine) {

this.setCarEngine(carEngine);
}
public Engine getCarEngine() {

return carEngine;
}
private void setCarEngine(Engine carEngine) {

if (carEngine != null) {
this.carEngine = carEngine;

} else {
this.carEngine = new Engine();

}
}
public void start() {

carEngine.start();
}

}

 Chapter 7. Developing Java applications 325

// HappyDriver class
package itso.rad80.example;
public class HappyDriver {

public static void main(String[] args) {
Car myAdvancedCar = new Car(null);
// Start the car - I don't care about technical details
myAdvancedCar.start();

}
}

7.9.15 Refactoring

During the development of a Java application, you might need to perform tasks,
such as renaming classes, moving classes between packages, and breaking out
code into separate methods. These tasks are both time-consuming and error
prone, because it is up to the programmer to find and update each and every
reference throughout the project code. Rational Application Developer provides a
list of refactor actions to automate this process.

The Java development tools of Rational Application Developer provide
assistance for managing refactoring. In each refactor wizard, you can select an
option:

� Refactor with preview: Click Next in the window to open a second window
where you are notified of potential problems and are given a detailed preview
of what the refactor action will do.

� Refactor without preview: Click Finish in the window and perform the refactor.
If a stop problem is detected, refactor cancels and a list of problems is
displayed.

Table 7-10 summarizes the common refactor actions.

Table 7-10 Refactor actions

Name Function

Rename Starts the Rename Compilation Unit wizard. Renames the selected
element and (if enabled) corrects all references to the elements (also in
other files). It is available on methods, fields, local variables, method
parameters, types, compilation units, packages, source folders,
projects, and on a text selection resolving to one of these element
types.

Right-click the element and select Refactor Rename, or select the
element and press Alt+Shift+R, or select Refactor Rename from the
menu bar.
326 Rational Application Developer for WebSphere Software V8 Programming Guide

Move Starts the Move wizard. Moves the selected elements and (if enabled)
corrects all references to the elements (also in other files). Can be
applied on one or more static methods, static fields, types, compilation
units, packages, source folders, and projects, and on a text selection
resolving to one of these element types.

Right-click the method signature and select Refactor Move, or
select the method signature and press Alt+Shift+V, or select
Refactor Move from the menu bar.

Change
Method
Signature

Starts the Change Method Signature wizard. You can change the
visibility of the method, change parameter names, parameter order,
parameter types, add parameters, and change return types. The wizard
updates all references to the changed method.

Right-click the element and select Refactor Change Method
Signature, or select the element and press Alt+Shift+C, or select
Refactor Change Method Signature from the menu bar.

Extract
Interface

Starts the Extract Interface wizard. You can create an interface from a
set of methods and make the selected class implement the newly
created interface.

Right-click the class and select Refactor Extract Interface, or select
the element and select Refactor Extract Interface from the menu
bar.

Push Down Starts the Push Down wizard. Moves a field or method to its
subclasses. Can be applied to one or more methods from the same
type or on a text selection resolving to a field or method.

Right-click the type and select Refactor Push Down, or select the
element and select Refactor Push Down from the menu bar.

Pull Up Starts the Pull Up wizard. Moves a field or method to its superclass.
Can be applied on one or more methods and fields from the same type
or on a text selection resolving to a field or method.

Right-click the type and select Refactor Push Up, or select the
element and select Refactor Push Up from the menu bar.

Extract
Method

Starts the Extract Method wizard. Creates a new method containing the
statements or expressions currently selected, and replaces the
selection with a reference to the new method.

Right-click the statement or expression and select Refactor Extract
Method, or select it and press Alt+Shift+M, or select Refactor
Extract Method from the menu bar.

Name Function
 Chapter 7. Developing Java applications 327

Refactor example (renaming a class)
In the following example of a refactor operation, we want to rename the class
Transaction to BankTransaction in the RAD80Java project.

To rename the Transaction class to BankTransaction, follow these steps:

1. Right-click the Transaction class in the Package Explorer and select
Refactor Rename.

2. In the Rename Compilation Unit wizard (Figure 7-61 on page 329), enter the
following data:

a. New name: BankTransaction.
b. Select Update references (default).
c. Clear other check boxes.
d. Click Next to see the preview and potential problems.

Extract Local
Variable

Starts the Extract Local Variable wizard. Creates a new variable
assigned to the expression currently selected and replaces the
selection with a reference to the new variable.

Right-click the expression and select Refactor Extract Local
Variable, or select it and press Alt+Shift+L, or select Refactor
Extract Local Variable from the menu bar.

Extract
Constant

Starts the Extract Constant wizard. Creates a static final field from the
selected expression and substitutes a field reference, and optionally
replaces all other places where the same expression occurs.

Right-click the expression and select Refactor Extract Constant, or
select Refactor Extract Constant from the menu bar.

Inline Starts the Inline Method wizard. Inlines local variables, non-abstract
methods, or static final fields.

Right-click the element and select Refactor Inline, or select the
element and press Alt+Shift+I, or select Refactor Inline from the
menu bar.

Encapsulate
Field

Starts the Encapsulate Field wizard. Replaces all references to a field
with getter and setter methods. Is applicable to a selected field or a text
selection resolving to a field.

Right-click the field and select Refactor Encapsulate Field or select
the element and select Refactor Encapsulate Field from the menu
bar.

Name Function
328 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 7-61 Refactor - Rename Compilation Unit wizard

3. Click Finish to process the rename task.

7.10 More information

For more information, use the Help feature provided by Rational Application
Developer. Select Help Help Contents Developing Java applications.

Also, see the Watch and Learn tutorial called Create a Hello World Java
Application, which you can access by selecting Help Welcome
Tutorials Create a Hello World Java application.

The following web resources provide further information about Eclipse and Java
technology:

� Oracle Java SE page contains links to specifications, API Javadoc, and
articles about Java SE:

http://www.oracle.com/technetwork/java/javase/index.html

� IBM developerWorks Java Technology contains Java news, downloads, CDs,
and learning resources:

http://www.ibm.com/developerworks/java/

Important: If problems arise or warning messages are displayed, the Found
Problems window opens. If the problems are severe, the Continue button is
disabled and the refactor must be canceled until the problems have been
corrected.
 Chapter 7. Developing Java applications 329

http://www.oracle.com/technetwork/java/javase/index.html
http://www.ibm.com/developerworks/java/

� Eclipse Open Source Community is the official home page of the Eclipse
open source community:

http://www.eclipse.org/

� What’s new in Eclipse 3.6:

http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.jdt.doc.
user/whatsNew/jdt_whatsnew.html

� Eclipse Tips and Tricks:

http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.jdt.doc.
user/tips/jdt_tips.html
330 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.eclipse.org/
http://www.eclipse.org/
http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.jdt.doc.user/whatsNew/jdt_whatsnew.html
http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.jdt.doc.user/whatsNew/jdt_whatsnew.html
http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.jdt.doc.user/whatsNew/jdt_whatsnew.html
http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.jdt.doc.user/whatsNew/jdt_whatsnew.html
http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.jdt.doc.user/tips/jdt_tips.html
http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.jdt.doc.user/tips/jdt_tips.html
http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.jdt.doc.user/tips/jdt_tips.html
http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.jdt.doc.user/tips/jdt_tips.html

Chapter 8. Developing XML
applications

In this chapter, we provide an overview of the current XML technologies. We
cover the XML capabilities that are provided by Rational Application Developer:

� XML overview and associated technologies
� Rational Application Developer XML tools
� Creating an XML schema
� Generating HTML documentation from an XML schema file
� Generating an XML file from an XML schema file
� Editing an XML file
� Working with XSL transformation files
� Transforming an XML file into an HTML file
� XML mapping
� Service Data Objects and XML
� JAXB and XML

The sample code for this chapter is in the 7835code\xml folder. Refer to
Appendix C, “Additional material” on page 1877.

8

© Copyright IBM Corp. 2011. All rights reserved. 331

8.1 XML overview and associated technologies

Extensible Markup Language (XML) is a subset of Standard Generalized Markup
Language (SGML). Both XML and SGML are meta languages, because they
allow the definition of a chosen set of elements and attributes to meet the
requirements of a specific application area. Markup languages are used to
annotate information so that it is easier to manipulate and understand. Markup is
also used to define how information will be presented for display. One example is
HTML, which is used to mark up document information so that it can be displayed
by a web browser. The elements within an XML document are organized
hierarchically with a single root element at the top of the hierarchy.

XML is a key part of the software infrastructure. It provides a simple and flexible
means of defining, creating, and storing data. XML is used for a variety of
purposes, such as systems configuration, messaging, and data storage.

The rules that define what can be present in any specific XML document are held
in either a document type definition (DTD) or an XML Schema Definition (XSD). If
a DTD or XSD is available, it is possible to check that an XML document is valid.
If an XML document is to be usable, it must first be well-formed, which means
that it must adhere to all the XML syntax rules as defined in the XML
specification document. Only a well-formed XML document can be checked by
using a DTD or XSD to see if it is valid. A valid XML document is guaranteed to
contain only what is allowed.

For detailed information about XML, see the following web address:

http://www.w3.org/XML/

8.1.1 XML processors

XML is tag-based, but without predefined XML tags. Tags are the markup
inserted in an XML document to define the elements from which it is composed.

XML documents follow strict syntax rules. To create, read, and update XML
documents, you require an XML processor or parser. At the heart of an XML
application is an XML processor that parses an XML document, allowing the
document elements to be retrieved and used as required. Parsers are also
responsible for checking the syntax and structure of XML documents.

In previous releases, you had to use one of two standard mechanisms for parsing
your XML data:

� Documents Object Model (DOM)
� Simple application programming interface (API) for XML (SAX)
332 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.w3.org/XML/

Streaming API for XML (StAX) is another, more efficient, alternative to
manipulate XML data.

For detailed information about SAX, DOM, and StAX, see the following web
addresses:

� SAX

http://www.saxproject.org/

� DOM

http://www.w3.org/DOM/

� StAX

http://www.jcp.org/en/jsr/detail?id=173

8.1.2 DTDs and XML schemas

DTDs and XML schemas are both used to describe XML document structure;
however, in recent years, the acceptance of XML schemas has gained
momentum. Both DTDs and XML schemas define the building blocks for XML
documents: the elements, attributes, and entities.

XML schemas are more powerful than DTDs. XML schemas have the following
advantages over DTDs:

� Data type definition: XML schemas can define data types for elements and
attributes, and their default and fixed values. The data types can be string,
decimal, integer, boolean, date, time, or duration.

� Restrictions: XML schemas can apply restrictions to elements, by stating
minimum and maximum values. For example, an age element might be
restricted to hold values from 1 to 90, or a string value can be restricted to
only hold one value from a specific list of values in a defined allowed list, such
as Fixed, Savings, or Loan. Restrictions can also be applied to characters and
patterns of characters. For example, characters can be restricted to only
those characters from “a” to “z” and the length of the character string can be
restricted to only three letters. Another restriction can be that the string can
have a range of lengths, for example, a password must be between 4 and 8
characters in length.

� Complex element: XML schemas can define complex element types.
Complex types can contain simple types or other complex types. Restrictions
can be applied to the sequence and frequency of the occurrence of each type.
Complex types can be used in the definition of other complex types.

� XML schema documents: Unlike DTDs, you use actual XML documents. This
implies that XML schema documents can be automatically checked for
 Chapter 8. Developing XML applications 333

http://www.saxproject.org/
http://www.w3.org/DOM/
http://www.saxproject.org/
http://www.w3.org/DOM/
http://www.jcp.org/en/jsr/detail?id=173

validity, and authoring XML schema documents is simpler for those
individuals already familiar with XML. Also, XML parsers do not have to be
enhanced to provide support for DTDs. Transformation of XML schema
documents can be carried out using Extensible Stylesheet Language
Transformation (XSLT) documents, and they can be manipulated using the
XML DOM.

For detailed information about DTD and XML schema, see the following pages at
the W3C website:

� Extensible Markup Language 1.0 (Fourth Edition)

http://www.w3.org/TR/2006/REC-xml-20060816/

� XML Schema 1.1 status

http://www.w3.org/XML/Schema

8.1.3 XSL

Extensible Stylesheet Language (XSL) is a set of recommendations defined by
the W3C. XSL is composed of the following W3C recommendations:

XSL Transformation An XML markup language that is used for the
transformation of XML documents.

XML Path Language (XPath)
A language that is used to access or refer to parts of an
XML document.

XSL-FO An XML markup language that is used to format
information for the purpose of presentation. It is similar to
the way that HTML marks up information for presentation
by a web browser.

XML document transformations defined using XSLT are XML documents. The
elements present in the XSLT document are defined in the XSLT namespace. We
discuss namespaces later in this chapter.

An XSLT transformation processor is required when transforming a document
using XSLT. The processor takes as input a source XML document and an XSLT
transformation document. The transformations defined in an XSLT document are
used to transform the source file into the output file. XSLT uses pattern matching
and templates to define the required transformation. When a pattern defined in
the XSLT transformation document is found in the source document, the
associated template, also defined in the XSLT transformation document, is
placed in the output file.
334 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/XML/Schema
http://www.w3.org/TR/2006/REC-xml-20060816/

The produced output file is typically another XML document or an HTML
document.

For detailed information about XSLT, see the following web page:

http://www.w3.org/TR/xslt.html

For detailed information about XSLT 2.0, see the following web page:

http://www.w3.org/TR/xslt20/

8.1.4 XML namespaces

Namespaces are used when there is a requirement for elements and attributes of
the same name to take on a separate meaning depending on the context in
which they are used. For example, an element called TITLE has a separate
meaning, depending on whether it is present within a PERSON element or within a
BOOK element. In the case of the PERSON element, it is placed in front of a person’s
name, such as Mr. or Dr. In the case of a BOOK element, it is the title of the book,
such as Programming Guide.

Both elements, PERSON and BOOK, must be defined in the same document, for
example, in a library entry that associates a book with its author, a mechanism is
required to distinguish between the two so that the correct semantics apply when
the TITLE element is used in the document.

Namespaces provide this mechanism by allowing a namespace and an
associated prefix to be defined. Elements that use a specific namespace prefix
are said to be present in that namespace and have the meaning defined for them
in the namespace. The prefix is separated from the element name by a colon
character (:). In our example, TITLE is defined in two separate namespaces. One
namespace pertains to elements relevant to holding information about books,
and the other namespace pertains to elements storing information about people.
Example start tags for the elements might be <book:TITLE> and <people:TITLE>.

For detailed information about XML namespaces, see the following web page:

http://www.w3.org/TR/REC-xml-names/

8.1.5 XPath

XPath is used to address parts of an XML document. The XML document is
considered to be a tree of nodes and an XPath expression selects a specific
node or set of nodes within the tree. You can achieve this outcome by defining
the path to the node or nodes. An XPath expression, in addition, can include
 Chapter 8. Developing XML applications 335

http://www.w3.org/TR/xslt.html
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xslt20/

instructions to manipulate values held at a specific node or set of nodes. XPath is
used with XSLT, discussed previously, and with other XML technologies.

For detailed information about XPath, see the following web page:

http://www.w3.org/TR/xpath

For detailed information about XPath 2.0, see the following web page:

http://www.w3.org/TR/xpath20/

8.1.6 XML catalog

XML catalogs offer a way to manage local copies of public DTDs, schemas, or
indeed any XML resource that exists outside of the referring XML instance
document. An XML catalog entry contains two parts:

� A key, which represents a DTD or XML schema
� A location, which is similar to a Uniform Resource Identifier (URI), which

contains information about a DTD or XML schema’s location

You can place the key in an XML file. When the XML processor encounters it, it
will use the XML catalog entry to find the location of the DTD or XML schema
associated with the key.

8.2 Rational Application Developer XML tools

Rational Application Developer provides a comprehensive visual XML
development environment. The tool set includes components for building DTDs,
XML schemas, XML documents, and XSL files.

Rational Application Developer includes the following XML development tools:

� DTD editor

Used for creating, viewing, and validating Document Type Definitions (DTDs).
Using the DTD editor, you can create DTDs and generate XML schema files.

� XML editor

Used for creating, viewing, and validating XML files. You can use it to create
new, empty XML files, or generate them from existing DTDs or existing XML
schemas. You can also use it to edit XML files, associate them with DTDs or
schemas, and validate them.
336 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath20/

� XML Schema Editor

A tool for creating, viewing, and validating XML schemas. You can use the
XML Schema Editor to perform tasks, such as creating XML schema
components, importing and viewing XML schemas, generating relational table
definitions from XML schemas, and generating Java beans for creating XML
instances of an XML schema.

� XSLT editor

Used to create new XSLT files or to edit or validate existing ones. You can use
content assist and various wizards to help you create or edit the XSLT file.
After you finish editing your file, you can also validate it. Additionally, you can
associate an XML instance file with the XSL source file that you are editing
and use it to provide guided editing when defining constructions, such as an
XPath expression. In Rational Application Developer, the XSLT editor is
enhanced to support XSLT 2.0. The XSLT code templates configured in
preferences are available in the editor when using content assist and in the
New XSLT wizard.

� XPath Expression wizard

Used to create XPath expressions. XPath expressions can be used to search
through XML documents, and to extract information from the nodes, such as
an element or attribute. In Rational Application Developer, it is enhanced to
support XPath 2.0.

� XML Mapping editor

Used to map XML-based documents graphically by connecting elements of a
source document to elements of a target document. You can extend built-in
transformation functions using custom XPath expressions and XSLT
templates. The mapping tool automates XSL code generation and produces a
deployable transformation document based on the mapping information that
you provide.

� XSL compiler

Used for compiling and integrating XSL 1.0 and 2.0 stylesheet documents into
Java projects.

� XML catalog tools

XML catalog can be used for registering grammars, XSDs, and DTDs in the
workspace. Rational Application Developer adds support for the Oasis XML
Catalog 1.1 specification. The XML catalog tools can be found in
Preferences XML XML Catalog.

You can find preferences for all the XML tools, including preferences for source
editors, in Preferences XML.
 Chapter 8. Developing XML applications 337

8.2.1 Creating an XML schema

You can create an XML schema for use in storing bank account information as
explained in this section. The XML document structure defined in the schema is a
collection of accounts. Each account has an account ID, account type, account
balance, interest rate, and related customer information. The account ID is
allowed to be from 6 to 8 digits long and each digit must be in the range 0 to 9.
The value of the interest rate is allowed to be between 0 and 100. The telephone
number is in the format (xxx) xxx-xxxx.

To create a project to hold the schema document and create an empty schema
document, follow these steps:

1. Open the XML perspective and create a project named RAD8XMLBank:

a. Select File New Project General Project. Then click Next.

b. In the Project name field, type RAD8XMLBank. Click Finish and the project is
displayed in the Enterprise Explorer.

c. Right-click the RAD8XMLBank project and select New Folder.

d. Enter xml as the folder name and click Finish.

2. Create an XML schema:

a. Right-click the xml folder and select New Other XML XML
schema. Click Next. In the File name field, type Accounts.xsd. The parent
folder is set to RAD8XMLBank/xml. Click Finish.

b. Make sure that the Properties view is visible. If you cannot see the
Properties view, select Window Show view Properties.

Working with the Design view
With the XML editor, you can edit the XML source for the schema directly or you
can use the Design view. The Design view presents the XML document in a
graphical view.

Shortcuts: Another way to start the XML Schema wizard is to use the
shortcut in the toolbar. Other available shortcuts include the New XML,
New DTD, New XSL, and New XML Mapping shortcuts.
338 Rational Application Developer for WebSphere Software V8 Programming Guide

To create the schema in the Design view, follow these steps:

1. Select the Design view. Notice View: Simplified in the upper-right corner.
The following views are available:

Simplified The Simplified view hides many of the complicated XML
schema capabilities so that you can only create XML
schemas that conform to leading practice authoring patterns.
XML schema elements, such as xsd:choice, xsd:sequence,
xsd:group, and element references, are not displayed in the
Simplified view. Actions in the editor that enable the creation
of these elements are not available.

Detailed The Detailed view exposes the full set of XML schema
capabilities so that you can create XML data structures using
any authoring pattern.

We use the Detailed view for this exercise.
 Chapter 8. Developing XML applications 339

2. From the View drop-down list (Figure 8-1), select Detailed. Close the pop-up
message about switching view modes.

Figure 8-1 XML Schema Editor: Design view, Detailed view

Schema index view: In the Detailed view, the top-level view is called the
schema index view. You can navigate to this view at any time while editing
the schema by clicking the Show schema index view icon in the
upper-left corner of the Design view. In Figure 8-1, this icon is currently
unavailable, because you are already viewing the schema index.
340 Rational Application Developer for WebSphere Software V8 Programming Guide

3. Change the namespace prefix and target namespace:

a. In the Properties view, select the General tab. You can see the current
namespace prefix and target namespace. The values are tns and
http://www.example.org/Accounts.

b. Change the Prefix to itso.

c. Change the Target namespace to http://itso.rad8.xml.com.

The Accounts.xsd file must contain a complex type element where you will
define the account information, including account ID, account type, balance,
interest, and customer information.

4. In the Design view, right-click the Types category and select Add
ComplexType. Overtype the name provided with the value Account.

5. Right-click the Account complex type and select Add Sequence. The Design
view switches from showing the schema index to only showing the Account
complex type:

a. Clicking the Show schema index view icon returns to the schema index.

b. Double-clicking the Account complex type shows only this type in the
detailed view.

6. Right-click the Account complex type and select Add Element.

7. Change the element name to accountID (Figure 8-2 on page 342).

Tip: Alternatively, you can change the type name in the Name field on the
General tab in the Properties view. The Properties view provides many
options for modifying the properties of an XML schema.

Add Sequence option: In a Simplified view, you are unable to see the
Add Sequence option in the context menu, because the Simplified view
hides many of the more complicated XML elements.
 Chapter 8. Developing XML applications 341

Figure 8-2 Account complex type

In our bank, the account ID is 6 - 8 characters long and takes numerical
values in the range 0 - 9:

a. Click the element accountID, and in the Properties view, select the
Constraints tab.

b. In the Specific constraint values section, select Patterns and click Add.
342 Rational Application Developer for WebSphere Software V8 Programming Guide

8. In the Regular Expression Wizard (Figure 8-3), complete these steps:

a. In the current regular expression field, type [0-9]{6,8} and click Next.

Figure 8-3 Regular Expression Wizard

b. In the Sample text area, type 123456. The warning at the top of the dialog
box is no longer displayed.

c. Click Finish.

The type for accountID changes from string to AccountIDType, because you
constrained the string to create a new type.
 Chapter 8. Developing XML applications 343

Figure 8-4 shows the Properties view with the constraint value.

Figure 8-4 Properties view with constraint

9. In the Design view, right-click the sequence icon () and select Add
Element. Change its name to accountType. A bank account has three
account types: Savings, Loan, and Fixed:

a. In the Properties view, select the Constraints tab. Under Specific
constraint values, select Enumerations.

b. Click Add and enter Savings.

c. Click Add and enter Loan.

d. Click Add and enter Fixed.

10.Add the balance element:

a. In the Design view, right-click the sequence icon () and select Add
Element. Change its name to balance.

b. In the Properties view, on the General tab, select the drop-down menu for
Type.

c. Select Browse and then select decimal.

11.Add the interest element:

a. Add an element named interest and set the type to decimal as before.

b. In the Properties view, select the Constraints tab. Set the Minimum value
to 0 and Maximum value to 100.

12.Add the customerInfo element:

a. Add an element named customerInfo.

b. In the Properties view, on the General tab, select the drop-down menu for
Type and select New.
344 Rational Application Developer for WebSphere Software V8 Programming Guide

c. In the New Type window, select Complex Type and the Create as local
anonymous type check box. Click OK (Figure 8-5).

Figure 8-5 New Type window

13.Click the plus sign to the right of customerInfo, and a (CustomerInfoType)
box is displayed to the right of the Account box.

14.Right-click (CustomerInfoType) and select Add Element. Change the name
to firstName.

15.Add another element named lastName.

16.Add another element named phoneNumber, which holds values with a format
such as (408) 555-7890:

a. In the Properties view, on the Constraints tab, select Patterns.

b. Click Add. In the Current regular expression area, type
\([0-9]{3}\) [0-9]{3}-[0-9]{4}. Note the space between the area code
and the local telephone number. Then click Next.

c. For Sample text, type (408) 555-7890 and click Finish.

Figure 8-6 on page 346 shows the Design view.
 Chapter 8. Developing XML applications 345

Figure 8-6 Account type complete

If this XML schema is intended to define the structure of an XML document
that can actually be created, the XML schema must have a global element. All
we have at present is a complex type definition. We have to define at least
one element of this type.

17.Add a global element named accounts:

a. Click the show schema index view icon () in the upper-left corner.

b. In the Design view of the schema, right-click the Elements category and
select Add Element.

c. Change the name to accounts.

d. In the Properties view, on the General tab, select the drop-down menu for
Type and select New.

e. In the New Type window, select Complex Type and the Create as local
anonymous type check box. Then click OK.

f. Double-click accounts to switch to the detailed view for the accounts
element. Right-click accountsType and select Add Element.

g. Change the name to account.

h. Right-click account and select Set Type Browse Account.

i. In the Design view, make sure account is selected.

Tip: You can export the Design view as an image for use elsewhere by
selecting XSD Export Diagram as Image.
346 Rational Application Developer for WebSphere Software V8 Programming Guide

j. In the Properties view, on the General tab, set Minimum Occurrence to 1
and Maximum Occurrence to unbounded.

Working with the Source view
Tidy up the XML source code that you created:

1. Select the Source tab.

2. Right-click anywhere in the source code and select Source Cleanup
Document. The cleanup dialog contains settings to update a document so
that it is well-formed and formatted as Format, which formats either the entire
document or selected elements. Select your desired options and click OK.

3. Save and close the file.

Example 8-1 shows the generated Accounts.xsd file.

Example 8-1 Accounts.xsd file

<?xml version="1.0" encoding="UTF-8"?>
<schema targetNamespace="http://itso.rad8.xml.com"

elementFormDefault="qualified"
xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:itso="http://itso.rad8.xml.com">
 <complexType name="Account">
 <sequence>
 <element name="accountID">
 <simpleType>
 <restriction base="string">
 <pattern value="[0-9]{6,8}"></pattern>
 </restriction>
 </simpleType>
 </element>
 <element name="accountType">
 <simpleType>
 <restriction base="string">
 <enumeration value="Savings"></enumeration>
 <enumeration value="Loan"></enumeration>
 <enumeration value="Fixed"></enumeration>
 </restriction>
 </simpleType>
 </element>
 <element name="balance" type="decimal"></element>
 <element name="interest">
 <simpleType>
 <restriction base="decimal">
 <minExclusive value="0"></minExclusive>
 Chapter 8. Developing XML applications 347

 <maxExclusive value="100"></maxExclusive>
 </restriction>
 </simpleType>
 </element>
 <element name="customerInfo">
 <complexType>
 <sequence>
 <element name="firstName" type="string"></element>
 <element name="lastName" type="string"></element>
 <element name="phoneNumber">
 <simpleType>
 <restriction base="string">
 <pattern
 value="\([0-9]{3}\) [0-9]{3}-[0-9]{4}">
 </pattern>
 </restriction>
 </simpleType>
 </element>
 </sequence>
 </complexType></element>
 </sequence>
 </complexType>
 <element name="accounts">
 <complexType>
 <sequence>
 <element name="account" type="itso:Account" minOccurs="1"
maxOccurs="unbounded"></element>
 </sequence>
 </complexType></element>
</schema>

Validating an XML schema
Use the XML validator:

1. Select Window Preferences.

2. In the Preferences window (Figure 8-7 on page 349), in the left pane, select
Validation. In the right pane, for XML Schema Validator, click the ellipsis (...)
button.

3. In the Validation Filters for XML Schema Validator window (inset in Figure 8-7
on page 349), for Implementation, select IBM XML Schema Validator and
click OK.
348 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 8-7 XML Schema Validator preferences

In certain cases, when you build a large Java Enterprise Edition (Java EE)
project, the XSD validation process can take time. You can disable the validator
at either the project level or the global level:

� Follow these steps to disable the validator at the project level:

a. Right-click the project and select Properties Validation.
 Chapter 8. Developing XML applications 349

b. Select Enable project-specific settings and clear the XML Schema
Validator check box in the Build column.

� Perform these steps to disable the validator at the global level:

a. Select Window Preferences.

b. In the Preferences window (Figure 8-7 on page 349), clear the XML
Schema Validator check box in the Build column.

Running schema validation manually
The validation builder is not added to the simple projects, such as our project. To
validate your XML schema, in the Enterprise Explorer, right-click Account.xsd
and select Validate.

� If validation is successful, a Validation Results window opens. No errors are in
the Problems view.

� If validation is unsuccessful, validation errors are displayed in the Problems
view. You might have to open the view using Window Show View. In
addition, a red X is shown next to the file and in the Source view.

You will not receive any XML schema validation errors for Accounts.xsd, because
we created it in the Design view and did not enter the XML manually.

If you want to make the document invalid so that you can see an error report,
change the type of one of the elements from decimal to deximal, and execute
validation again. After doing this and reading the error message, correct the error
and run validation again to remove the error message.

8.2.2 Generating HTML documentation from an XML schema file

HTML documentation generated from an XML schema file contains information
about the schema, such as its name, location, and namespace, as well as details
about the elements and types in the schema. This information can be useful,
because it provides a summary of the content of a schema in a form that is easily
readable.

To generate HTML documentation based on an XML schema file, follow these
steps:

1. In the Project Explorer, right-click Accounts.xsd and select Generate
HTML.

Tip: When creating a simple project, you can add the validation builder to it to
get automatic validation on resource changes, therefore removing the need for
manual validation.
350 Rational Application Developer for WebSphere Software V8 Programming Guide

2. In the XSD Documentation Generation Options window, select Generate
XSD Documentation with frames. Selecting this option generates schema
documentation that uses HTML frames. If frames are not required, select
Generate XSD Documentation without frames. Click Next.

3. For the folder name, type docs and click Finish.

The HTML files are created in the specified location, and the generated
index.html file opens inside Rational Application Developer. Explore the
generated documentation by selecting the Account type. You can see the
diagram and expand the underlying source code.

8.2.3 Generating an XML file from an XML schema file

Rational Application Developer can generate an XML document from an XML
schema file. With this capability, a developer can gain familiarity with XML
documents that are valid against a specific schema. In practice, a schema is
used to validate XML documents created elsewhere. Also, an XML document
generated from a schema is often called an XML instance document or an
instance document. To generate an XML file from our XML schema file, follow
these steps:

1. In the Enterprise Explorer, right-click Accounts.xsd and select Generate
XML File.

2. Accept the default name Accounts.xml. Click Next.

3. On the Select Root Element page, accept the default values for Create first
choice of required choice and Fill elements and attributes with data. The
XML schema that you created earlier does not have optional attributes or
elements. Click Finish.

4. When the XML file opens in the editor, right-click the generated XML file
Account.xml and select Validate. Notice the validation errors against
AccountID, interest, and phoneNumber. The default values inserted by
Rational Application Developer are not valid against the schema.

a. The XML schema specifies that the account ID is 6 - 8 digits long. Change
the account ID to 123456.

b. Change the interest value to a valid value (5.5).

c. Change the telephone number to a valid (xxx) xxx-xxxx format, for
example, (123) 555-7890.

d. Optional: Change the firstName and lastName to your name.

5. Right-click Account.xml and select Validate. You have no validation errors.
 Chapter 8. Developing XML applications 351

8.2.4 Editing an XML file

The XML editor enables you to directly edit XML files. There are several views
that you can use to edit an XML file (Figure 8-8):

� Source tab: You can manually insert, edit, and delete elements and attributes
in the Source view of the XML editor. To facilitate this effort, you can use
content assist (Ctrl+Spacebar).

� Design tab: You can insert, delete, and edit elements, attributes, comments,
and processing instructions in this view. We used this view previously when
we created our XML schema. When editing an XML file that is not a schema,
the Design view presents the document as a tree of elements with attributes
rather than the format that we saw previously.

� Outline view: You can insert and delete element attributes, comments, and
processing instructions in this view.

Figure 8-8 Design tab, Source tab, and Outline view
352 Rational Application Developer for WebSphere Software V8 Programming Guide

Editing on the Source tab
Working with the XML file that we generated in the previous section, follow these
steps:

1. On the Source tab, place your cursor after the closing tag </itso:account>.

2. Press Ctrl+Spacebar to activate code assist. In the pop-up list (based on the
context), double-click <itso:account>.

3. While the cursor is still between <itso:account> tags, press Ctrl+Spacebar
and double-click <itso:accountID>.

4. Type a number for accountID between the start and end tags.

5. Repeat the same procedure to use the code assist feature to input the rest of
the information, such as accountType, balance, and so forth. All child tags are
required.

6. Define values for accountID, accountType, and interest.

7. After you finish typing, right-click in the XML source area and select
Source Format.

Editing on the Design tab
To edit on the Design tab, follow these steps:

1. In the Design tab, right-click itso:accounts and select Add Child
account.

2. Expand the Account element that you just created. All the child elements are
created with default values. You can now edit the values of the child elements.
In the Source tab, you have to add each child tag individually.

Editing in the Outline view
To edit in the Outline view, follow these steps:

1. In the Outline view, right-click itso:accounts. A context menu similar to the
context menu in the Design view opens.

2. Save and close the file.

Content assist: Content assist works, because the document is
associated with the schema that we created, and the editor can use the
schema to determine what is valid content for specific locations in the
document. The start tag shows how this is association is specified:

<itso:accounts xmlns:itso="http://itso.rad8.xml.com"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://itso.rad8.xml.com Accounts.xsd ">
 Chapter 8. Developing XML applications 353

8.2.5 Working with XSL transformation files

An XSL transformation file is a style sheet that can be used to transform XML
documents into other document types and to format the output. In this section,
you create a simple XSL style sheet to format the XML file data into a table in an
HTML file.

Creating a new XSL transformation file
To create a sample XSL transformation file, follow these steps:

1. Right-click the xml folder and select New Other XML XSL. Click
Next.

2. In the File name field, type Accounts.xsl and click Next.

3. In the Select XML file window, expand RAD8XMLBank/xml and select the
Accounts.xml file to associate the Accounts.xml file with the Accounts.xsl
file. Click Finish.

Example 8-2 shows the generated XSL file.

Example 8-2 Generated Accounts.xsl file

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">
</xsl:stylesheet>

Adding code to the XSL transformation file
The XSL editor provides help with creating content in the style sheet through the
Snippets view. We use the Snippets view to add an HTML header and a table.

Snippets view: If you cannot see the Snippets view, select Window Show
View Other General Snippets.
354 Rational Application Developer for WebSphere Software V8 Programming Guide

To add code snippets to the XSL file, follow these steps:

1. In the XSL editor, position the cursor between the <xsl:stylesheet> tags,
immediately after version="1.0">.

2. Select the Snippets view and select the XSL drawer (Figure 8-9).

Figure 8-9 Snippets view: XSL drawer

3. Double-click Default HTML header to add default HTML header information
to the XSL file.

4. Position the cursor after the end tag </xsl:template>.

5. In the XSL drawer, double-click HTML table in XSL. The XSL Table Wizard
opens. Perform these steps:

a. Select Wrap table in a template.

b. Select Include header to indicate that you want to include a header row in
the table.

c. Select one of the nodes on the left (for example, itso:account) to see the
generated code at the bottom (Figure 8-10 on page 356).

d. Click Next.
 Chapter 8. Developing XML applications 355

Figure 8-10 Adding a table to the XSL file in the XSL Table Wizard

6. In the final window of the wizard, specify the properties for the table. For the
Border field, type 5, and for the Cell spacing field, type 10. Select a
background color (light cyan) and a row color (white). Click Finish, and the
Accounts.xsl file is completed.

7. On the Source tab, complete the following actions:

a. Right-click and select Source Format.

b. Change the <title> to Accounts.

c. Remove the itso: prefix from the values in the table header fields, for
example, <th>itso:AccountID</th>.

d. Save and close the file.
356 Rational Application Developer for WebSphere Software V8 Programming Guide

8. Right-click Accounts.xsl and select Validate. You do not receive any
validation errors or warnings.

Example 8-3 shows the generated Accounts.xsl file.

Example 8-3 Accounts.xsl file

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0" xmlns:xalan="http://xml.apache.org/xslt"
xmlns:itso="http://itso.rad8.xml.com">

<xsl:output method="html" encoding="UTF-8" />
<xsl:template match="/">

<html>
<head>

<title>Accounts</title>
</head>
<body>

<xsl:apply-templates />
</body>

</html>
</xsl:template>
<xsl:template match="itso:accounts">

<table bgcolor="#80ffff" border="5" cellspacing="10">
<tr bgcolor="#ffffff">

<th>accountID</th>
<th>accountType</th>
<th>balance</th>
<th>interest</th>
<th>customerInfo</th>

</tr>
<xsl:for-each select="/itso:accounts/itso:account">

<tr bgcolor="#ffffff">
<td>

<xsl:value-of select="itso:accountID" />
</td>
<td>

<xsl:value-of select="itso:accountType" />
</td>
<td>

<xsl:value-of select="itso:balance" />
</td>
<td>

<xsl:value-of select="itso:interest" />
</td>
<td>
 Chapter 8. Developing XML applications 357

<xsl:value-of select="itso:customerInfo" />
</td>

</tr>
</xsl:for-each>

</table>
</xsl:template>

</xsl:stylesheet>

8.2.6 Transforming an XML file into an HTML file

You can now use the XSL stylesheet file to generate an HTML file from the
sample XML file:

1. In the Enterprise Explorer, hold down the Ctrl key and select both the
Accounts.xml and Accounts.xsl files. Right-click and select Run As XSL
Transformation.

The resulting file name is _Accounts_transform.html. The file automatically
opens in the Page Designer.

2. Select the Split tab (Figure 8-11 on page 359).

Tip: You can use the XSLT debugger to detect and diagnose errors in XSL
transformations. The debugger supports the debugging of both XSLT 1.0 and
2.0 stylesheets using separate XSLT processors. We discuss the XSLT
debugger in Chapter 28, “Debugging local and remote applications” on
page 1461.
358 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 8-11 XSL stylesheet transformation result

Notice the transformation messages in the Console view:

Processing:
XSL file name:

file:///E:\Workspaces\RAD8proguide\RAD8XMLBank\xml\Accounts.xsl
XML input file name:

file:///E:\Workspaces\RAD8proguide\RAD8XMLBank\xml\Accounts.xml
Result file name:

E:/Workspaces/RAD8proguide/RAD8XMLBank/xml/_Accounts_transform.html

Split tab: The Split tab in the Page Designer is a combination of the Design
and Source tabs where you can view both the Design and the Source
simultaneously. You can split the two views by clicking either the vertical or
horizontal icon () in the toolbar. Changing the source code
automatically changes the design.
 Chapter 8. Developing XML applications 359

8.2.7 XML mapping

The XML Mapping editor is a visual data mapping tool that is designed to
transform any combination of XML schema, DTD, or XML documents, and to
produce a deployable transformation document. You can map XML-based
documents graphically by connecting elements from a source document to
elements from a target document. You can extend built-in transformation
functions using custom XPath expressions and XSLT templates. The mapping
tool automates XSL code generation and produces a transformation document
based on the mapping information that you provide.

When mapping between a source XML file and a target XML file, many types of
mapping transformation can be applied. The simplest is Move, where the values
are transferred between source and target. Other mapping transformations, such
as Concat, perform more complex processing on the values. Table 8-1 lists the
types of mapping transformation that are available.

Table 8-1 Available mapping transformations

Option Description

Move This type copies data from a source to a target.

Concat This type creates a string concatenation that allows you to retrieve
data from two or more entities to link them into a single result.

Inline map This type enables the map to call out to other maps, but other maps
cannot call it. It can only be used within the current map. If the inputs
and outputs are arrays, the inline map is implicitly iterated over the
inputs.

Submap This type references another map. It calls or invokes a map from this
or another map file. Choosing this transform type is most effective for
reuse purposes.

Substring This type extracts information as required. For example, the substring
lastname, firstname with a "," delimiter and a substring index of 0
returns the value lastname. If the substring index was changed to 1,
the output is now firstname.

Group This type takes an array or collection of data and groups it into a
collection of a collection. Essentially, it is an array containing an array.
Grouping is done at the field level, meaning that it is done by selecting
a field of the input collection, such as “department.”

Normalize This type normalizes the input string. For example, it can be used to
remove multiple occurrences of white space, such as a space, tab, or
return.
360 Rational Application Developer for WebSphere Software V8 Programming Guide

In this section, we map two XML schemas. We use the mapping transformations
Move, Concat, Inline map, Substring, and Custom.

Preparing for XML mapping and importing the XSD and
XML files
To prepare for the XML mapping, import the provided XSD files and XML file:

Accounts.xsd The same file created previously and the source schema
for the mapping

AccountsList.xsd An alternate representation of accounts and the target
schema for the mapping

Accounts.xml An XML file that contains sample data and that is similar
to the file created previously

To import the files, follow these steps:

1. Create a new folder in the RAD8XMLBank project by right-clicking
RAD8XMLBank and selecting New Folder. For the folder name, type
mapping and click Finish.

2. Right-click the mapping folder and select Import General File System
and click Next. Click Browse to navigate to the c:\7835code\xml folder. Click
OK. Select AccountList.xsd and click Finish.

3. Copy the Accounts.xml and Accounts.xsd files from the xml folder to the
mapping folder.

Starting the XML Mapping editor
Use the XML Mapping editor to create a mapping between the two XML
schemas:

1. To start the XML Mapping editor, right-click the mapping folder, select
New Other XML XML Mapping, and click Next.

The parent folder is set to RAD8XMLBank/mapping.

2. In the File name field, type Accounts.map. Click Next.

Custom With this type, you can enter custom code or call reference code to be
used in the transform. You can extend built-in transformation functions
using custom XPath expressions and XSLT templates.

Option Description
 Chapter 8. Developing XML applications 361

3. For Root inputs, click Add. Follow these steps:

a. In the Select a root window (Figure 8-12), from the Files of type list, select
XML Schema and click Browse. Expand RAD8XMLBank, select
mapping Accounts.xsd, and click OK.

b. Under Global elements and types, select the accounts element.

c. Click OK.

Figure 8-12 Selecting an input root for the mapping

4. For Root outputs, click Add and select the AccountsList.xsd file and the
accounts element (same as for the Root input). Click Next.

5. In the New XML Mapping window (Figure 8-13 on page 363), to select a
sample XML input file, click Add. Select Accounts.xml and click OK. Click
Finish.
362 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 8-13 XML sample input

The XML Mapping editor opens. In the Enterprise Explorer, three new files are
generated:

� Accounts.xsl: An XSL transformation file
� Accounts-out.xml: The transformation output XML file
� Accounts.map: The mapping file

Organizing the XML Mapping editor
One of the advantages of this tool is that you can see the changes that you make
to the resulting output xml file when you work on a mapping.

Before we start editing the mapping, open Accounts-out.xml, and drag the
editor window down to the bottom part of the mapping file (until a down arrow is
displayed), so that it sits under Accounts.map.

In the workbench layout (Figure 8-14 on page 364), the mapping file is at the top.
The resulting xml file is in the middle, and the Properties view is at the bottom.
 Chapter 8. Developing XML applications 363

Figure 8-14 Workbench layout for the XML Mapping editor

Editing the XML mapping
Create the mapping between the two XML schemas:

1. In the XML Mapping editor (Figure 8-15 on page 365), select the account
element from Accounts.xsd on the left side and drag it to the account
element from AccountList.xsd on the right side.
364 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 8-15 Inline map

2. Click the Generate XSLT script icon (highlighted in Figure 8-15). Check the
Accounts-out.xml file, and you can see that it has changed.

Local mapping
To perform inline mapping, follow these steps:

1. Click Edit in the upper-right corner of the “For each” map (highlighted in
Figure 8-15).

2. In the “For each” map details view, perform the following mapping transforms:

a. Map the accountID, accountType, balance, and interest by dragging the
elements from the left to the corresponding elements on the right. We map
the element accountID to the attribute accountId.

b. Click Generate XSLT script and verify how the account information is
generated in the XML output.

Generate XSLT script

 Edit

Alternative: You can save the mapping file, and the changes are
automatically reflected in the resulting XML file.
 Chapter 8. Developing XML applications 365

c. Map the customerInfo element from left to right, which creates a local map
(Figure 8-16).

Figure 8-16 Account mapping

3. Click Generate XSLT script to see the change in the output XML file.

Concatenation mapping
With concatenation mapping, you can define mappings where a set of input
values is concatenated to a single output value. In the following steps, you
concatenate firstName and lastName in the source into one Name element in the
target. Perform the following steps:

1. Click Edit in the upper-right corner of the customerInfo Local map and add
the following transformations:

a. Select the firstName element and drag it to the name element on the
right.

b. Select the lastName element and drag it to the Move transform box
between firstName and name.

When we drag a second element to the transform type box, the transform type
automatically changes to Concat (Figure 8-17 on page 367).
366 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 8-17 Concatenation mapping

2. Concatenate the name in the format lastName, firstName:

a. Select the Concat transformation, and in the Properties view, select the
Order tab.

b. Select lastName and click the Reorder Up icon ().

c. Select the General tab, select lastName, and type a comma and a space
(,) in the Delimiter column.

d. Click the Generate XSLT script icon. The changes are visible in the
Accounts-out.xml file.

Substring mapping
The telephone number is stored as a single data type in the source document. To
separate it into the subelements of area code and local number in the target
document, follow these steps:

1. Select the phoneNumber element on the left and drag it to the areaCode
element on the right. Expand the phoneNumber element in the target to see
the areaCode element.

2. Click the drop-down arrow in the transformation and select Substring from
the list.

3. Right-click the transformation and select Show in Properties.

4. In the Properties view, select the General tab and perform these steps:

a. In the Delimiter field, type a space. Because the telephone number format
is (xxx) xxx-xxxx, the space must be the delimiter between the area code
and local number.
 Chapter 8. Developing XML applications 367

b. In the Substring index field, type 0.

5. Select the phoneNumber element and drag it to the localNumber element.

6. Change the transform type to Substring.

7. In the Properties view, Delimiter field, type a space.

8. In the Substring index field, type 1. Figure 8-18 shows the current mapping.

Figure 8-18 Substring mapping

9. To return to the main map, click the Up a level icon () in the upper-right
corner of the inline map details page. Click the icon twice to return to the main
map.

Calculation
We want to calculate the sum of the balance from all accounts and place it in the
balanceSum attribute of the output document. We use an XPath expression to
calculate this total:

1. Select the accounts element on the left and drag it to the balanceSum
attribute on the right.

2. Click the transform type box and select Custom (Figure 8-19 on page 369).
368 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 8-19 Custom mapping

3. Select the Custom mapping transformation. In the Properties view, select the
General tab. For Code, select XPath, and for the XPath expression, type
sum(./*/io:balance) (Figure 8-20).

Figure 8-20 Custom mapping using XPath

4. Save the mapping file and click Generate XSLT script.

Example 8-4 shows the final output XML file. Notice the balanceSum attribute of
the accounts element, the concatenated name, and the area code and local
number.

Example 8-4 Final output showing the balanceSum attribute

<?xml version="1.0" encoding="UTF-8"?>
<out:accounts xmlns:out="http://itso.rad8.xml.com"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
balanceSum="300">

<out:account accountId="123456" accountType="Savings">
<out:balance>0.0</out:balance>
<out:interest>5.5</out:interest>
<out:customerInfo>
 Chapter 8. Developing XML applications 369

<out:name>Cui, Henry</out:name>
<out:phoneNumber>

<out:areaCode>(123)</out:areaCode>
<out:localNumber>555-7890</out:localNumber>

</out:phoneNumber>
</out:customerInfo>

</out:account>
......

<out:accounts>

8.3 Service Data Objects and XML

Service Data Object (SDO) is a framework for data-oriented application
development, which includes an architecture and API. SDO simplifies the Java
EE programming model and abstracts data in a service-oriented architecture
(SOA).

SDO unifies data application development and supports data held in XML
documents, incorporates Java EE patterns and leading practices, and provides
uniform access to a variety of data sources.

The SDO architecture has the following core concepts:

Data object Holds a set of named properties, each of which is either of
a primitive Java type, such as int or char, or a reference
to another data object. The data object API provides
functionality for the manipulation of these properties.

Data graph Provides an envelope for data objects, and is the normal
unit of transport of objects between components. Data
graphs are also responsible for tracking the changes
made to the graph of data objects, including inserts,
deletes, and the modification of data object properties.

Data graphs are typically constructed from data sources, such as XML files,
EJBs, XML databases, relational databases, or from services, such as web
services, resource adapters, and Java Message Service (JMS) messages.

Components that populate data graphs from data sources and commit changes
to data graphs back to the data source are called Data Mediator Services (DMS).
The DMS architecture and associated APIs are outside the scope of the SDO
specification.
370 Rational Application Developer for WebSphere Software V8 Programming Guide

For developers to build an XML application quickly, the XML Schema Editor
supports the generation of beans from an XML schema. By using these beans,
you can quickly create an instance document or load an instance document that
conforms to the XML schema.

8.3.1 Generating SDOs from an XML schema

To generate beans from an XML schema, follow these steps:

1. Create a Java project to contain the beans:

a. Select File New Project Java Java Project and click Next.

b. In the Project name field, type RAD8XMLBankJava and click Finish.

c. If you are prompted to switch to the Java perspective, click Yes.

2. Generate the JavaBeans:

a. In the Enterprise Explorer, expand the RAD8XMLBank project, right-click
Accounts.xsd, and select Generate Java.

b. In the Generate Java window (Figure 8-21), select the SDO Generator
and click Next.

Figure 8-21 XSD to Java window
 Chapter 8. Developing XML applications 371

3. In the Container field, click Browse, select /RAD8XMLBankJava/src, and
click Finish.

4. Expand the RAD8XMLBankJava project and study the generated packages:

– com.xml.rad8.itso: The interfaces
– com.xml.rad8.itso.impl: The implementation classes
– com.xml.rad8.itso.util: The utility classes

8.3.2 Marshal SDO objects to XML

To test the generated beans, create a test class named AccountsTest. This class
creates an instance of the Accounts object and serializes the instance into XML
format:

1. In the Enterprise Explorer, right-click RAD8XMLBankJava and select New
Class.

2. For the package name, type com.xml.rad8.itso.sdo, and for the class name,
type AccountsTest. Click Finish.

3. Complete the class with the sample code in Example 8-5. You can find the
AccountsTest.java file in the c:\7835code\xml folder.

Study the main method first and then study the helper methods that are called
from the main method, which are marked in bold. The call to the save method
on the class ItsoResourceUtil serializes the Service Data Objects (SDO)
object tree and outputs the string to the supplied file name or output stream
class instance.

Example 8-5 AccountsTest program

package com.xml.rad8.itso.sdo;

import java.math.BigDecimal;
import com.xml.rad8.itso.*;
import com.xml.rad8.itso.util.ItsoResourceUtil;

public class AccountsTest {
private DocumentRoot createDocumentRoot() {

DocumentRoot documentRoot =
ItsoFactory.eINSTANCE.createDocumentRoot();

return documentRoot;
}

private AccountsType createAccountsType() {
AccountsType accountsType =

ItsoFactory.eINSTANCE.createAccountsType();
372 Rational Application Developer for WebSphere Software V8 Programming Guide

return accountsType;
}

private Account createAccount(AccountTypeType accountType,
String accountId, BigDecimal balance, BigDecimal interest,
CustomerInfoType customerInfo) {

Account account = ItsoFactory.eINSTANCE.createAccount();
account.setAccountType(accountType);
account.setAccountID(accountId);
account.setBalance(balance);
account.setInterest(interest);
account.setCustomerInfo(customerInfo);
return account;

}

private CustomerInfoType createCustomerInfo(String firstName,
String lastName, String phoneNumber) {

CustomerInfoType customerInfo =

ItsoFactory.eINSTANCE.createCustomerInfoType();
customerInfo.setFirstName(firstName);
customerInfo.setLastName(lastName);
customerInfo.setPhoneNumber(phoneNumber);
return customerInfo;

}

public static void main(String args[]) throws Exception {
AccountsTest sample = new AccountsTest();
DocumentRoot documentRoot = sample.createDocumentRoot();

AccountsType accountsType = sample.createAccountsType();
CustomerInfoType customerInfo;

customerInfo = sample.createCustomerInfo("Henry", "Cui",
"(123) 456-7891");

Account account =
sample.createAccount(AccountTypeType.SAVINGS,

"123456", new
BigDecimal(20000.00),

new BigDecimal(3.5),
customerInfo);

accountsType.getAccount().add(account);

customerInfo = sample.createCustomerInfo("Brian", "Hainey",
"(408) 345-6780");
 Chapter 8. Developing XML applications 373

account = sample.createAccount(AccountTypeType.FIXED,
"123457",

new BigDecimal(50000.00), new BigDecimal(6.0),
customerInfo);

accountsType.getAccount().add(account);

customerInfo = sample.createCustomerInfo("Craig", "Fleming",
"(408) 345-6789");

account = sample.createAccount(AccountTypeType.LOAN, "123458",
new BigDecimal(60000.00), new BigDecimal(8.0),

customerInfo);
accountsType.getAccount().add(account);

documentRoot.setAccounts(accountsType);

ItsoResourceUtil.getInstance().save(documentRoot, System.out);
ItsoResourceUtil.getInstance().save(documentRoot,

"accounts.xml");
}

}

To execute the Java application, follow these steps:

1. Right-click AccountsTest.java and select Run As Java Application. The
XML result is displayed in the Console view and stored in the accounts.xml
file.

2. In the Package Explorer, right-click the RAD8XMLBankJava project and
select Refresh.

Example 8-6 shows the generated accounts.xml file.

Example 8-6 Generated accounts.xml file

<?xml version="1.0" encoding="UTF-8"?>
<itso:accounts xmlns:itso="http://itso.rad8.xml.com">
 <itso:account>
 <itso:accountID>123456</itso:accountID>
 <itso:accountType>Savings</itso:accountType>
 <itso:balance>20000</itso:balance>
 <itso:interest>3.5</itso:interest>
 <itso:customerInfo>
 <itso:firstName>Henry</itso:firstName>
 <itso:lastName>Cui</itso:lastName>
 <itso:phoneNumber>(123) 456-7891</itso:phoneNumber>
 </itso:customerInfo>
374 Rational Application Developer for WebSphere Software V8 Programming Guide

 </itso:account>
 <itso:account>

</itso:accounts>

8.3.3 Unmarshal XML to an SDO data graph

In this section, we explain how to use SDO to access XML documents. You load
the accounts.xml file into a data graph and display the content of the data graph
on the console:

1. Create a new Java class:

a. In the Enterprise Explorer, right-click the com.xml.rad8.itso.sdo package
and select New Class.

b. For the class name, type SDOSample. Select public static void
main(String[] args) so that a main method is generated.

c. Click Finish.

2. In the Enterprise Explorer, right-click RAD8XMLBankJava and select
Properties.

3. In the Properties window:

a. Select Java Build Path Libraries.

b. Click Add External JARs and add the
org.eclipse.emf.ecore.change_2.5.1.v20100907-1643 file, which is in
the <SDPShared>/plugins installation folder.

c. Click OK to add the new JAR to the project.

4. Add the sample code to the main method, including throws IOException
(Example 8-7).

Example 8-7 Code to load an XML document

public static void main(String[] args) throws IOException {
System.out.println("\n--- Printing XML document to System.out

---");
DocumentRoot documentRoot =

ItsoResourceUtil.getInstance().load("Accounts.xml");
ItsoResourceUtil.getInstance().save(documentRoot, System.out);
System.out.println("\n\n--- Done ---");

}

5. Select Source Organize Imports to add the import statements.
 Chapter 8. Developing XML applications 375

6. Right-click SDOSample and select Run As Java Application. The
accounts.xml file is displayed in the Console.

Navigating the SDO data graph
XPath expressions are used to obtain data from the data objects present in the
data graph after the XML file is loaded. Figure 8-22 shows the data graph for the
accounts.xml file.

Figure 8-22 Accounts data graph

Follow these steps:

1. Add the code that is shown in Example 8-8 to the main method.

Example 8-8 Java code for navigating the SDO data graph

// navigating the SDO data graph
AccountsType accountsType = documentRoot.getAccounts();
DataObject accountsTypeImpl = (AccountsTypeImpl) accountsType;
DataObject account1 = accountsTypeImpl.getDataObject("account.0");
System.out.println("\n\nThe first account is: " + account1 + "\n");
DataObject account2 = accountsTypeImpl.getDataObject

("account[accountID = '123457']");
System.out.println("The second account is: " + account2 + "\n");
DataObject account2CustomerInfo = accountsTypeImpl.getDataObject

("account[accountID = '123457']/customerInfo");
System.out.println("The second account customer information is: " +

account2CustomerInfo + "\n");

accountTypeaccountID balance interest customerInfo

account.1account.0

firstName lastName phoneNumber

...

accounts
376 Rational Application Developer for WebSphere Software V8 Programming Guide

String account1CustomerName =
account1.getString("customerInfo/firstName");
System.out.println("The first account customer first name is " +

account1CustomerName + "\n");

Note the following comments:

– The XPath dot notation is used to index data objects. The first object has
index 0. Therefore account.0 returns the first account data object.

– The XPath expression account[accountID = '123457'] returns the
account data object whose account ID equals 123457.

– account[accountID = '123457']/customerInfo is an XPath expression
that returns a data object multiple levels beneath the root data object.

2. Right-click SDOSample and select Run As Java Application. You can
also select Run Run History SDOSample.

Example 8-9 shows the Console output from the SDO graph navigation code.

Example 8-9 Output from the SDO graph navigation code

The first account is: com.xml.rad8.itso.impl.AccountImpl@27332733
(accountID: 123456, accountType: Savings, balance: 20000, interest:
3.5)

The second account is: com.xml.rad8.itso.impl.AccountImpl@30d030d
(accountID: 123457, accountType: Fixed, balance: 50000, interest: 6)

The second account customer information is:
com.xml.rad8.itso.impl.CustomerInfoTypeImpl@7c207c2 (firstName:
Brian, lastName: Hainey, phoneNumber: (408) 345-6780)

The first account customer first name is Henry

Updating the SDO data graph
An SDO data graph can be modified and the modifications reflected in the source
XML file that was loaded. In this example, you update the interest rate of one
account, add an account, and finally delete an existing account (Example 8-10).

Example 8-10 Updating an SDO data graph

// updating the SDO data graph
account1.setString("interest", "10");
DataObject account3 = accountsTypeImpl.createDataObject("account");
account3.setString("accountID", "333333");
account3.set("accountType", AccountTypeType.LOAN);
 Chapter 8. Developing XML applications 377

account3.setString("balance", "999999");
account3.setString("interest", "2.5");
DataObject newCustomerInfo = account3.createDataObject("customerInfo");
newCustomerInfo.setString("firstName", "Mike");
newCustomerInfo.setString("lastName", "Smith");
newCustomerInfo.setString("phoneNumber", "(201) 654-8754");
account2.delete();
System.out.println("\n--- Printing updated XML document ---");
ItsoResourceUtil.getInstance().save(documentRoot, System.out);

You can find the complete code listing of SDOSample.java in the c:\7835code\xml
folder.

Select Run Run History SDOSample.

You can see that the interest rate for the first account (accountID = '123456')
has been updated, the second account (accountID = '123457') has been
removed, and a new account (accountId = '333333') has been added. Notice
that the accounts.xml file is not updated, because we only saved to the Console.

8.4 JAXB and XML

Java Architecture for XML Binding (JAXB) is a Java technology that provides an
easy and convenient way to map Java classes and XML schema for simplified
development of web services. JAXB uses the flexibility of platform-neutral XML
data in Java applications to bind XML schema to Java applications without
requiring extensive knowledge of XML programming. The tools included in this
workbench implement JAXB 2.0 and 2.1 standards.

JAXB is an XML to Java binding technology that supports transformation
between schema and Java objects and between XML instance documents and
Java object instances. JAXB consists of a runtime application programming
interface (API) and accompanying tools that simplify access to XML documents.
JAXB also helps to build XML documents that both conform to and validate the
XML schema. The application server supports the W3C XML Schema as defined
in the XML Schema 1.0 Recommendation (XSD Part 1 and 2).

JAXB-annotated classes and artifacts contain all the information needed by the
JAXB runtime API to process XML instance documents. The JAXB runtime API
supports marshaling JAXB objects to XML and unmarshaling the XML document
back to JAXB class instances. Optionally, you can use JAXB to provide XML
validation to enforce both incoming and outgoing XML documents to conform to
the XML constraints defined within the XML schema.
378 Rational Application Developer for WebSphere Software V8 Programming Guide

JAXB is the default data binding technology that the Java API for XML Web
Services (JAX-WS) tooling uses and is the default implementation within
Rational Application Developer. You can develop JAXB objects for use within
JAX-WS applications. You can also use JAXB independently of JAX-WS when
you want to use the XML data binding technology to manipulate XML within your
Java applications.

8.4.1 Generating JAXB classes from an XML schema

To enable you to map to and from XML data and Java objects, you can use the
JAXB Schema to JavaBean wizard. The wizard generates Java beans that
correspond to your schema. To generate beans from a JAXB schema, follow
these steps:

1. Create a Java project to contain the beans:

a. Select File New Project Java Java Project and click Next.

b. In the Project name field, type RAD8XMLBankJAXB and click Finish.

c. If you are prompted to switch to the Java perspective, click Yes.

2. Generate the JavaBeans:

a. In the Enterprise Explorer, expand the RAD8XMLBank project, right-click
Accounts.xsd, and select Generate Java.

b. In the Generate Java window (Figure 8-23 on page 380), select Schema
to JAXB Classes and click Next.
 Chapter 8. Developing XML applications 379

Figure 8-23 JAXB generator window

c. In the Target Java Container field, select /RAD8XMLBankJAXB/src.

d. Select Target Package <default-package-mapping>.

e. Select JAX-WS version 2.2.

f. Clear Generate serializable JAXB classes.

g. Click Finish.

3. Expand the RAD8XMLBankJava project and study the generated packages:

– ObjectFactory.java: Contains factory methods for each Java content
interface and Java element interface generated in the com.xml.rad8.itso
package.

– Accounts.java and Account.java: Java object mapped from XML schema
type.

– package-info.java: Package-level annotations are declared inside.
380 Rational Application Developer for WebSphere Software V8 Programming Guide

8.4.2 Marshal JAXB objects to XML

After JAXB bindings exist, you can use the JAXB binding runtime API to convert
XML instance documents to and from Java objects. Data stored in an XML
document is accessible without the need to understand the data structure. JAXB
annotated classes and artifacts contain all the information that the JAXB runtime
API needs to process XML instance documents. The JAXB runtime API enables
the marshaling of JAXB objects to XML and the unmarshaling of the XML
document back to the JAXB object.

In this section, you use the JAXB runtime API to marshal the JAXB object
instances into an XML instance document:

1. In the Enterprise Explorer, right-click RAD8XMLBankJAXB and select
New Class.

2. For the package name, type com.xml.rad8.itso.jaxb, and for the class
name, type Marshal. Click Finish.

3. Complete the class with the sample code in Example 8-11. You can find the
Marshal.java file in the c:\7835code\xml folder.

Example 8-11 Marshal.java

package com.xml.rad8.itso.jaxb;

import java.math.BigDecimal;
import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBException;
import javax.xml.bind.Marshaller;
import com.xml.rad8.itso.Account;
import com.xml.rad8.itso.Account.CustomerInfo;
import com.xml.rad8.itso.Accounts;

public class Marshal {

public static void main(String[] args) {
 try {
 // create a JAXBContext capable of handling classes
generated into the com.xml.rad8.itso package
 JAXBContext jc =
JAXBContext.newInstance("com.xml.rad8.itso");
 // create a Marshaller and marshal to a file
 Marshaller m = jc.createMarshaller();
 Accounts accounts = new Accounts();
 Account account1= new Account();
 account1.setAccountID("1111111");
 Chapter 8. Developing XML applications 381

 account1.setAccountType("Savings");
 account1.setBalance(new BigDecimal(9999999));
 CustomerInfo customerInfo= new CustomerInfo();
 customerInfo.setFirstName("Henry");
 customerInfo.setLastName("Cui");
 customerInfo.setPhoneNumber("123-555-7890");
 account1.setCustomerInfo(customerInfo);
 accounts.getAccount().add(account1);
 m.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT,
Boolean.TRUE);
 m.marshal(accounts, System.out);
 } catch(JAXBException je) {
 je.printStackTrace();
 }

}
}

4. Examine the code. The marshalling process involves two steps:

a. Instantiate your JAXB classes.

b. Invoke the JAXB marshaller.

5. To execute the Java application, follow these steps:

a. Right-click Marshal.java and select Run As Java Application. The
XML result is displayed in the Console view.

b. Example 8-12 shows the Console output from the JAXB code.

Example 8-12 Output from Marshal.java

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<accounts xmlns="http://itso.rad8.xml.com">
 <account>
 <accountID>1111111</accountID>
 <accountType>Savings</accountType>
 <balance>9999999</balance>
 <customerInfo>
 <firstName>Henry</firstName>
 <lastName>Cui</lastName>
 <phoneNumber>123-555-7890</phoneNumber>
 </customerInfo>
 </account>
</accounts>
382 Rational Application Developer for WebSphere Software V8 Programming Guide

8.4.3 Unmarshal the XML file to JAXB objects

In this section, you use the JAXB runtime API to unmarshal the XML into JAXB
objects:

1. In the Enterprise Explorer, right-click RAD8XMLBankJAXB and select
New Class.

2. For the package name, type com.xml.rad8.itso.jaxb, and for the class
name, type Unmarshal. Click Finish.

3. Complete the class with the sample code in Example 8-13. You can find the
Unmarshal.java file in the c:\7835code\xml folder.

Example 8-13 Unmarshal.java

package com.xml.rad8.itso.jaxb;

import java.io.FileInputStream;
import java.io.IOException;
import java.util.List;
import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBException;
import javax.xml.bind.Unmarshaller;
import com.xml.rad8.itso.Account;
import com.xml.rad8.itso.Accounts;

public class Unmarshal {
public static void main(String[] args) {

try {
 // Create a JAXBContext capable of handling classes
generated into the com.xml.rad8.itso package
 JAXBContext jc = JAXBContext.newInstance(
"com.xml.rad8.itso");
 // create an Unmarshaller
 Unmarshaller u = jc.createUnmarshaller();
 // unmarshal the XML document into Java object
 Accounts accounts =(Accounts)u.unmarshal(new
FileInputStream("Accounts.xml"));
 System.out.println("Account information: ");
 // display the account information
 List<Account> accountList = accounts.getAccount();
 for (Account account: accountList){
 System.out.println("------------------------------");
 System.out.println("Account ID: "+
account.getAccountID());
 Chapter 8. Developing XML applications 383

 System.out.println("Customer name: "+
account.getCustomerInfo().getFirstName() + "
"+account.getCustomerInfo().getLastName());
 System.out.println("Account type: "+
account.getAccountType());
 System.out.println("Account balance: "+
account.getBalance());
 System.out.println("Account interest: "+
account.getInterest());
 }
 } catch(JAXBException je) {
 je.printStackTrace();
 } catch(IOException ioe) {
 ioe.printStackTrace();
 }

}
}

4. Examine the code. The unmarshalling process involves two steps:

a. Obtain an existing XML instance document.

b. Invoke the JAXB unmarshaller.

5. To execute the Java application, follow these steps:

a. Right-click Unmarshal.java and select Run As Java Application. The
XML result is displayed in the Console view.

b. Example 8-14 shows the Console output.

Example 8-14 Output from Unmarshal.java

Account information:

Account ID: 123456
Customer name: Henry Cui
Account type: Savings
Account balance: 0.0
Account interest: 5.5

Account ID: 234567
... ...
384 Rational Application Developer for WebSphere Software V8 Programming Guide

8.4.4 JAXB customization

In many cases, the default bindings generated by the JAXB generator will be
sufficient to meet your needs. However, there are certain cases in which you
might want to modify the default bindings. For example, you want to change the
default namespace to package mapping, customize the generated class/attribute
names, and solve naming conflicts.

In this section, we provide an example to customize the default binding between
an XML schema component and its Java representation by adding an external
binding declaration. Example 8-15 shows the external binding file. You can find
the binding.xjb file in the c:\7835code\xml folder.

Example 8-15 binding.xjb

<jxb:bindings xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:jxb="http://java.sun.com/xml/ns/jaxb"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
version="1.0">
<jxb:bindings schemaLocation="Accounts.xsd" node="/xs:schema">

<jxb:schemaBindings>
<jxb:package name="com.ibm.rad8.customization" />

</jxb:schemaBindings>
<jxb:bindings node="//xs:complexType[@name='Account']">

<jxb:class name="ITSOAccount">
<jxb:javadoc>A Account consists of account ID,

account
type, balance, and customer info.</jxb:javadoc>

</jxb:class>
</jxb:bindings>
<jxb:bindings node=".//xs:element[@name='accountID']">

<jxb:property name="ID" />
</jxb:bindings>

</jxb:bindings>
</jxb:bindings>

Examine the binding file:

� <package> specifies the name of the package. This means the generated
code will be put under package com.ibm.rad8.customization.

� <class> declarations are used to customize the name for a schema-derived
Java interface. node="//xs:complexType[@name='Account']" is an XPath
expression to find the Account type in the XML schema. The Account type will
be mapped to ITSOAccount.java.
 Chapter 8. Developing XML applications 385

� The <javadoc> element specifies the Javadoc tool annotations for the
schema-derived Java interface.

� The <property> binding declaration enables you to customize the binding of
an XML schema element to its Java representation as a property. The
accountID will be mapped to the property ID in the generated JavaBean.

Perform these steps to use the external JAXB binding file:

1. Import binding.xjb from the c:\7835code\xml folder into the xml folder of the
RAD8XMLBank project.

2. In the Enterprise Explorer, expand the RAD8XMLBank project, right-click
Accounts.xsd, and select Generate Java.

3. In the Generate Java window, select Schema to JAXB Classes and click
Next.

4. In the Target Java Container field, select /RAD8XMLBankJAXB/src
(Figure 8-24).

5. In the Binding Files section, click Add and select binding.xjb in the xml folder
of your RAD8XMLBank project.

Figure 8-24 JAXB generator window
386 Rational Application Developer for WebSphere Software V8 Programming Guide

6. Click Finish.

7. Expand the RAD8XMLBankJAXB project and study the generated files:

a. The generated code is put into package com.ibm.rad8.customization.

b. ITSOAccount.java is generated, instead of Account.java.

c. Open ITSOAccount.java. You can see a comment is put into this class
(Example 8-16).

Example 8-16 ITSOAccount.java

/**
 * A Account consists of account ID, account
 * type, balance, and customer info.
 *
 *
 *
 */

d. In ITSOAccount.java, the accountID is mapped to a Java property ID:

@XmlElement(name = "accountID", required = true)
 protected String id;

8.5 Feature Pack for XML

The IBM WebSphere Application Server V7 Feature Pack for XML supports the
following new or updated World Wide Web Consortium (W3C) XML standards:

� Extensible Stylesheet Language Transformations (XSLT) 2.0

Programming language that is used to transform XML into a new XML format
or into another presentation-oriented format, such as HTML, XHTML, or
Scalable Vector Graphics (SVG)

� XML Path Language (XPath) 2.0

Programming language that is designed to allow developers to select nodes
from an XML document

� XML Query Language (XQuery) 1.0

Query language that is built with the intent of enabling access to collections of
XML documents in a way that bridges the retrieval of both structured and
unstructured data
 Chapter 8. Developing XML applications 387

The Feature Pack for XML also provides the IBM XML API to support these
standards. This API invokes a runtime engine that is capable of executing XPath
2.0, XSLT 2.0, and XQuery 1.0, as well as manipulating the returned XML data.

The new XML processor (XPath 2.0, XSLT 2.0, and XQuery 1.0), which was first
provided by the WebSphere Application Server V7 Feature Pack for XML, has
become a core component in WebSphere Application Server V8 Beta. To learn
more about the Feature Pack for XML, visit the following resources:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/
com.ibm.websphere.xmlfep.multiplatform.doc/info/ae/ae/welcome_fepxml.ht
ml

8.6 More information

For more information about XML schemas, see the following web address:

http://www.w3.org/XML/Schema

For more information about XML, see the following web address:

http://www.w3.org/XML/

For more information about XML parsers, see the following web addresses:

� Xerces (XML parser - Apache)

http://xml.apache.org/xerces2-j

� Xalan (XSLT processor - Apache)

http://xml.apache.org/xalan-j

� JAXP (XML parser - Sun)

http://java.sun.com/xml/jaxp

� SAX2 (XML API)

http://sax.sourceforge.net

For more information about SDO, see the following web addresses:

� Introduction to Service Data Objects on developerWorks

http://www-128.ibm.com/developerworks/java/library/j-sdo/

� Open service-oriented architecture: SDO Resources

http://www.osoa.org/display/Main/SDO+Resources
388 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.osoa.org/display/Main/SDO+Resources
http://www-128.ibm.com/developerworks/java/library/j-sdo/
http://sax.sourceforge.net
http://www.w3.org/XML/Schema
http://www.w3.org/XML/
http://xml.apache.org/xerces2-j
http://xml.apache.org/xalan-j
http://java.sun.com/xml/jaxp
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.xmlfep.multiplatform.doc/info/ae/ae/welcome_fepxml.html
http://www.w3.org/XML/Schema
http://www.w3.org/XML/
http://xml.apache.org/xalan-j
http://java.sun.com/xml/jaxp
http://www.osoa.org/display/Main/SDO+Resources

For more information about JAXB specification, see the following web address:

http://jcp.org/en/jsr/detail?id=222
 Chapter 8. Developing XML applications 389

http://jcp.org/en/jsr/detail?id=222

390 Rational Application Developer for WebSphere Software V8 Programming Guide

Part 3 Persistence and
enterprise
information system
integration
development

In this part, we describe the tooling and technologies provided by Rational
Application Developer to develop applications using databases and the Java
Persistence API (JPA). We also describe how to work with enterprise information
systems.

This part includes the following chapters:

� Chapter 9, “Developing database applications” on page 393
� Chapter 10, “Persistence using the Java Persistence API” on page 443

Part 3
© Copyright IBM Corp. 2011. All rights reserved. 391

� Chapter 11, “Developing applications to connect to enterprise information
systems” on page 531

Sample code for download: The sample code for all the applications
developed in this part is available for download at the following address:

ftp://www.redbooks.ibm.com/redbooks/SG247835

See Appendix C, “Additional material” on page 1877, for instructions.
392 Rational Application Developer for WebSphere Software V8 Programming Guide

ftp://www.redbooks.ibm.com/redbooks/SG247835

Chapter 9. Developing database
applications

In an enterprise environment, applications that use databases are common. In
this chapter, we explore technologies that are used in developing Java database
applications. In this chapter, we highlight the database tooling that is provided
with IBM Rational Application Developer.

This chapter is organized into the following sections:

� Introduction
� Connecting to the ITSOBANK database
� Connecting to databases
� Creating SQL statements
� Developing Java stored procedures
� Developing SQLJ applications
� Data modeling

The sample code for this chapter is in the 7835code\database folder.

9

© Copyright IBM Corp. 2011. All rights reserved. 393

9.1 Introduction

Rational Application Developer provides rich features to make it easier to work
with tables, views, and filters; create and work with SQL statements; create and
work with database routines (such as stored procedures and user-defined
functions); and create and work with SQLJ files. You can also create, modify, and
generate data models. Depending on the project requirements, you have to take
certain steps to set up your work environment.

Depending on the project requirements, this chapter is written for three types of
users:

� If you want to access databases and discover information about them, you can
use the Data Source Explorer to create a connection to those databases.
After you have set up connection information for a database, you can connect,
refresh a connection, and browse the objects that are in the database.

� If you want to develop database-related activities, such as SQL queries and
stored procedures, you have to create a data development project. The data
development project stores your routines and other data development objects.
Rational Application Developer also provides tooling to assist you to develop
SQLJ applications, and offers a DB beans package to access database
information without directly using the Java Database Connectivity (JDBC)
interface.

� If you want to design your database model, you have to create a data design
project to store your objects. The modeling tool assists you to build a data
model, analyze the model, perform the impact analysis, and so forth.

All examples in this chapter are demonstrated against the open source
embedded Derby database server. The embedded version of Derby is bundled
inside Rational Application Developer, so its availability is guaranteed. These
examples can be easily applied to DB2 databases.

9.2 Connecting to the ITSOBANK database

We provide two implementations of the ITSOBANK database, Derby and DB2.
Follow the instructions in “Setting up the ITSOBANK database” on page 1880 to
set up the database.

The ITSOBANK database has four tables: CUSTOMER, ACCOUNT, ACCOUNT_CUSTOMER,
and TRANSACT. The name TRANSACTION is reserved in the Derby database.
Therefore, we use TRANSACT.
394 Rational Application Developer for WebSphere Software V8 Programming Guide

An account can have multiple transactions, and the ACCOUNT_ID becomes the
foreign key in the TRANSACT table and is related to the primary key of the ACCOUNT
table.

There is a many-to-many association between customers and accounts.
ACCOUNT_CUSTOMER is the junction table to turn this many-to-many relationship into
a one-to-many relationship between CUSTOMER and ACCOUNT_CUSTOMER and a
one-to-many relationship between ACCOUNT and ACCOUNT_CUSTOMER.

9.2.1 Connecting to databases

With Rational Application Developer, you can create a connection to the following
databases:

� Cloudscape
� DB2 for Linux, UNIX®, and Windows
� DB2 UDB for i
� DB2 UDB for z/OS
� Derby
� Generic JDBC
� Informix
� MySQL
� Oracle
� SQL Server
� Sybase

For more information about supported databases, see the following website:

http://www-01.ibm.com/support/docview.wss?rs=2042&uid=swg27019500#DB

9.2.2 Creating a connection to the ITSOBANK database

To connect to the Derby ITSOBANK database using the New Database
Connection wizard, follow these steps:

1. Stop the WebSphere Application Server V8.0 Beta if it is running and if you
have accessed the ITSOBANK database for exercises in other chapters of
this book, because Derby only allows one connection.

2. Select Window Open Perspective Other to open the Data perspective.
In the Open Perspective window, select Data and click OK.

3. In the Data perspective, locate the Data Source Explorer view, which is
typically in the lower left in the Data perspective.

4. In the Data Source Explorer, right-click Database Connections and select
New.
 Chapter 9. Developing database applications 395

http://www-01.ibm.com/support/docview.wss?rs=2042&uid=swg27019500#DB

5. In the New Connection wizard (Figure 9-1 on page 397), follow these steps:

a. Clear Use default naming convention, and for Connection Name, type
ITSOBANKderby.

b. For Select a database manager, select Derby.

c. For JDBC driver, select Derby 10.2 - Embedded JDBC Driver Default.

d. For Database location, click Browse and locate
C:\7835code\database\derby\ITSOBANK.

e. Leave the User name and Password fields empty, because the Derby
database does not require authentication.

f. Select Create database (if required).

g. Click Test Connection. A window opens and shows the “Connection
succeeded” message. Click OK to close the window.

h. Click Next.
396 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 9-1 New Connection: Connection Parameters window

You can use filters to exclude data objects, such as tables, schemas, stored
procedures, and user-defined functions, from the view. Only the data objects
that match the filter condition are shown.

6. To see the objects in the ITSO schema, in the Filter window (Figure 9-2 on
page 398), complete these actions:

a. Clear the Disable filter check box.
b. Select Selection.
c. Select Include selected items.
d. From the schema list, select ITSO.
e. Click Finish.
 Chapter 9. Developing database applications 397

Figure 9-2 New Connection: Filter window

7. When the connection is displayed in the Data Source Explorer, expand
ITSOBANKderby [Apache Derby 10.5.1.1 ...] ITSOBANK. The Schemas
398 Rational Application Developer for WebSphere Software V8 Programming Guide

folder is marked as [Filtered]. Only one schema (ITSO) is listed, and the
others are filtered (Figure 9-3).

Figure 9-3 Connection with schema and tables in Data Source Explorer

With the filter framework, you can filter out the tables at a more granular level.
Suppose we only want to see tables that start with the letter A. Follow these
steps:

1. Expand the schema ITSO, right-click Tables, and select Filter.

2. In the Filter window, follow these steps:

a. Clear the Disable filter check box.
b. Select Expression.
c. In the Name section, select Starts with the characters and type A.
d. Click OK.

Now you can only see two tables in the Data Source Explorer: ACCOUNT and
ACCOUNT_CUSTOMER.

We use the four tables in later sections.

To disable the filter, right-click Tables, select Filters, and select Disable filter.
Click OK.
 Chapter 9. Developing database applications 399

9.2.3 Browsing a database with the Data Source Explorer

The Data Source Explorer view operates similarly to a graphical directory
browsing program. It provides a list of configured connection profiles. Here, you
can create and manage database connections, browse data objects in a
connection, modify data objects, and more.

Follow these steps to explore the Derby ITSOBANK database:

1. Expand ITSOBANKderby (...) ITSOBANK Schemas ITSO
Tables CUSTOMER (Figure 9-4).

a. Expand Columns. All the columns in the CUSTOMER table are listed. The
Social Security number (SSN) is marked as a primary key.

b. Expand Constraints. PK_CUSTOMER is listed as the primary key constraint.

Figure 9-4 Customer table with columns

2. In the Data Source Explorer view, right-click the Customer table and select
Data Sample Contents. The action opens the SQL Results view
(Figure 9-5 on page 401), and the status of the running result is shown as
Succeeded. Highlight the Succeeded run and then select the Results1 tab
to see the list of customers.
400 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 9-5 Sample contents of the Customer table

Editing, extracting, and loading options
When you right-click the CUSTOMER table, you have the following options:

� Data Edit: Directly affects the contents of the target table in a
spreadsheet-like interface

� Data Extract: Extracts data into a file using a delimiter (comma,
semicolon, space, tab, or vertical bar), for example:

"111-11-1111","Mr","Henry","Cui"
"222-22-2222","Ms","Craig","Fleming"
......

� Data Load: Loads data from a file that is similar to the files produced by
the extract option

9.3 Creating SQL statements

You can create an SQL statement by using the SQL Builder or the SQL editor in
the Data perspective.

The SQL editor supports any statements that can be run by the database to
which you are connected. You can create single or multiple SQL statements,
single or multiple XQuery statements, XQuery statements that are nested in SQL
statements, and SQL statements that are nested in XQuery statements. The
SQL editor provides features, such as multiple statement support, syntax
highlighting, content assist, query parsing, validation, and SQL formatting.

The SQL Builder provides a graphical interface for creating and running SQL
statements. Statements that are generated by the SQL Builder are saved in a file
 Chapter 9. Developing database applications 401

with the extension .sql. The SQL Builder supports creating SELECT, INSERT,
UPDATE, DELETE, FULLSELECT, and WITH (DB2 only) statements.

In this section, we create and run an SQL query to retrieve a customer name
based on the Social Security number, and the total amount of money involved in
each transaction type (credit or debit). The SQL select statement includes table
aliases, table joins, a query condition, a column alias, a sort type, a database
function expression, and a grouping clause.

9.3.1 Creating a Data Development project

Before you create routines or other database development objects, you must
create a Data Development project to store your objects. A Data Development
project is linked to one database connection in the Data Source Explorer.

A Data Development project is used to store routines and queries. You can store
and develop the following types of objects in a database development project:

� SQL scripts
� DB2 and Derby stored procedures
� DB2 user-defined functions

You can also test, debug, export, and deploy these objects from a data
development project. The wizards that are available in a Data Development
project use the connection information that is specified for the project to help you
develop objects that are targeted for that specific database.

To create a Data Development project, follow these steps:

1. In the Data perspective, Data Project Explorer, select File New Data
Development Project. Alternatively, you can right-click in the Data Project
Explorer and select New Data Development Project.

2. In the New Data Development Project window, for the project name, type
RAD8DataDevelopment and click Next.

3. In the Select Connection window (Figure 9-6 on page 403), from the
Connections list, select ITSOBANKderby. Click Finish.
402 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 9-6 Data Development Project: Select Connection window

The Data Development project is displayed in the Data Project Explorer view.

9.3.2 Populating the transactions table

Before building the SQL query, populate the TRANSACT table with more data.
Only one customer has transactions already. To load the records into this table,
follow these steps:

1. In the Data Project Explorer, right-click the RAD8DataDevelopment project
and select Import.

2. Expand General and select File System. Click Next.
 Chapter 9. Developing database applications 403

3. Click Browse and locate the C:\7835code\database\samples directory. Select
LoadTransaction.sql and click Finish. The LoadTransaction.sql file is
displayed in the SQL Scripts folder.

4. Right-click LoadTransaction.sql and select Run SQL.

The results are shown in the SQL Results view. The status shows Succeeded.

9.3.3 Creating a select statement

To retrieve a customer name and the total amount of money involved in each
transaction type (credit or debit), create a select statement:

1. In the Data Project Explorer view, in the RAD8DataDevelopment project,
right-click the SQL Scripts folder and select New SQL or XQuery Script.

2. In the Script Name and Editor window (Figure 9-7), for Name, type
CustomerTransactions. For Edit using, select SQL Query Builder. For
Statement type, select SELECT. Click Finish.

Figure 9-7 New SQL or XQuery Script editor window

The SELECT statement template is created and opens in the SQL Builder
(Figure 9-8 on page 405).
404 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 9-8 SQL Builder

Using the SQL Builder
The SQL Builder has the following sections:

� SQL source pane: The SQL Source pane contains the source code of the
SQL statement. You can type the SQL statement in this pane, or use the
features that are provided by the SQL Builder to build the statement. Content
assist is available as you type and also through the pop-up menu in the SQL
source pane. This pane provides content tips through the pop-up menu. A
content tip shows a simple example for the type of statement that you are
creating.

� Tables pane: The Tables pane provides a graphical representation of the table
references that are used in the statement. In this pane, you can add or
remove a table, give a table an alias, and include or exclude columns from the
table. When you build a SELECT statement, you can also define joins
between tables in this pane.

� Design pane: The options in the Design pane vary, depending on the type of
statement that you are creating. When multiple sets of options are available,
the options appear as notebook pages. For example, for a SELECT
statement, the options include selecting columns, creating conditions,
creating groups, and creating group conditions.

SQL
Source

Tables

Design
 Chapter 9. Developing database applications 405

Adding tables to the statement
We add four tables to the SELECT statement for the CustomerTransactions
query, because this query traverses from CUSTOMER through ACCOUNT and
TRANSACT. We also create an alias for each of the tables in the SELECT
statement. An alias is an indirect method of referencing a table so that an SQL
statement can be independent of the qualified name of that table. If the table
name changes, only the alias definition must be changed.

Perform these steps to add tables to the statement:

1. In the Data Source Explorer, expand ITSOBANKderby ITSOBANK
Schemas ITSO Tables. You can see the four tables.

2. Right-click in the Tables pane and then click Add Table.

3. In the Table name list, expand the ITSO schema and select CUSTOMER. In
the Add Table window (Figure 9-9), for the Table alias, type C and click OK.
The CUSTOMER table is shown in the Tables pane, and the source code in the
SQL Source pane shows the addition of the CUSTOMER table in the SELECT
statement (Figure 9-10 on page 407).

Figure 9-9 Add Table window

4. Follow the same procedure to add the ACCOUNT_CUSTOMER (alias AC), ACCOUNT
(alias A), and TRANSACT (alias T) tables to the Tables pane in the SQL Builder.

Table aliases: The aliases for the ACCOUNT, CUSTOMER, TRANSACT, and
ACCOUNT_CUSTOMER tables are A, C, T, and AC respectively.
406 Rational Application Developer for WebSphere Software V8 Programming Guide

5. Select a table and drag the sides to adjust the size of the displayed rectangle
(Figure 9-10).

Figure 9-10 Creating a SELECT statement: Tables

Selecting columns for the result set
Add the following columns to the result set by selecting the columns in the Tables
pane:

1. Select the FIRST_NAME and LAST_NAME columns in the C (CUSTOMER)
table.

2. Select the TRANS_TYPE column in the T (TRANSACT) table.

Joining tables
You can use a join operation to retrieve data from two or more tables based on
matching column values. Three joins are needed for this query:

1. Drag the cursor from the SSN column in the C (CUSTOMER) table to the
CUSTOMER_SSN column in the AC (ACCOUNT_CUSTOMER) table.

2. Drag the cursor from ACCOUNT_ID in the AC (ACCOUNT_CUSTOMER) table to ID
in the A (ACCOUNT) table.

3. Drag the cursor from ID in the A (ACCOUNT) table to ACCOUNT_ID in the
T (TRANSACT) table.
 Chapter 9. Developing database applications 407

Figure 9-11 shows the relationship lines that are drawn between the selected
columns.

Figure 9-11 Creating a SELECT statement: Columns and table joins
408 Rational Application Developer for WebSphere Software V8 Programming Guide

Adding a function expression to the result set
The fourth column for the query result set is the result of a column expression. In
the following steps, you add the total amount of each transaction type, which can
be calculated by using the Expression Builder wizard:

1. In the Columns tab of the Design pane, click the fourth cell (the first empty
cell) in the Column column and select Build Expression from the drop-down
list. Press Enter.

2. In the Expression Builder wizard (Figure 9-12), select Function and click
Next.

Figure 9-12 Creating a SELECT statement: Expression Types window
 Chapter 9. Developing database applications 409

3. In the Function Builder page, complete the following tasks (Figure 9-13):

a. For Select a function category, select Aggregate.

b. For Select a function, select SUM.

c. For Select a function signature, select SUM(expression) expression.

d. In the Value column of the argument table, click the cell and select
T.AMOUNT in the drop-down list. The preview of the function expression is
displayed as SUM(AMOUNT).

e. Click Finish.

Figure 9-13 Creating a SELECT statement: Function Builder window

Adding a column alias and sort type
Add a column alias for the function column expression and sort the results:

1. In the Design pane, click the Columns tab.

2. In the Alias column, click the cell next to the SUM(T.AMOUNT) expression, type
TotalAmount, and press Enter.
410 Rational Application Developer for WebSphere Software V8 Programming Guide

3. In the Sort Type column, click the cell next to the TotalAmount alias, select
Ascending, and press Enter.

Figure 9-14 shows the Columns page.

Figure 9-14 Creating a SELECT statement: Columns page

Creating a query condition
The query needs a condition so that it extracts only result rows with a given
customer Social Security number. Add conditions to the query by using the
Conditions page in the Design pane.

Follow these steps to create a query condition:

1. In the Design pane, select the Group Conditions tab.

2. In the first row, click the cell in the Column column and select
C.LAST_NAME in the list.

3. In the same row, click the cell in the Operator column and select the LIKE
operator.

4. In the same row, click the cell in the Value column and enter %u%.

A colon followed by a variable name is the SQL syntax for a host variable that
will be substituted with a value when you run the query.

Figure 9-15 shows the Conditions page.

Figure 9-15 Creating a SELECT statement: Conditions page
 Chapter 9. Developing database applications 411

Adding a GROUP BY clause
Group the query by the transaction type so that you have one sum of the amount
for each type of transaction (credit or debit):

1. In the Design pane, select the Groups tab.

2. In the Column table, click the first row, select T.TRANS_TYPE in the list, and
press Enter.

3. Repeat these steps for C.FIRST_NAME and C.LAST_NAME.

Figure 9-16 shows the Groups page.

Figure 9-16 Creating a SELECT statement: Groups page

The query is now complete. Save the SELECT statement. Example 9-1 shows
the SQL statement.

Example 9-1 CustomerTransactions.sql

SELECT C.FIRST_NAME, C.LAST_NAME, T.TRANS_TYPE, SUM(T.AMOUNT) AS
"TotalAmount"
 FROM
 ITSO.CUSTOMER AS C JOIN ITSO.ACCOUNT_CUSTOMER AS AC ON C.SSN =

AC.CUSTOMER_SSN JOIN ITSO.ACCOUNT AS A ON AC.ACCOUNT_ID = A.ID
JOIN

ITSO.TRANSACT AS T ON A.ID = T.ACCOUNT_ID
 WHERE C.LAST_NAME LIKE '%u%'"
 GROUP BY T.TRANS_TYPE, C.FIRST_NAME, C.LAST_NAME
 ORDER BY "TotalAmount" ASC

9.3.4 Running the SQL query

To run the SQL query, in the Data Project Explorer, right-click
CustomerTransactions.sql and select Run SQL. Click Finish.
412 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 9-17 shows the result. You can see that the total amount of money for
each transaction type is calculated and the results are ordered by TotalAmount in
ascending order.

Figure 9-17 Query results

9.4 Developing Java stored procedures

A stored procedure is a block of procedural constructs and embedded SQL
statements that are stored in a database and can be called by name. Stored
procedures can improve application performance and reduce database access
traffic. All database access must go across the network, which, in certain cases,
can result in poor performance. For each SQL statement, a database manager
application must initiate a separate communication with the database.

To improve application performance, you can create stored procedures that run
on a database server. A client application can then call the stored procedures to
obtain the results of the SQL statements that are in the procedure. Because the
stored procedure runs the SQL statements on the server for you, database
performance is improved.

Stored procedures can be written as SQL procedures, or as C, COBOL, PL/I, or
Java programs. In this section, we develop a Java stored procedure against the
ITSOBANK Derby database to obtain the account information based on a partial
customer last name. While doing so, we give a credit of $100 to every account
retrieved.

9.4.1 Creating a Java stored procedure

To create a stored procedure using the Stored Procedure wizard, follow these
steps:

1. In the Data Project Explorer view, expand the RAD8DataDevelopment
project, right-click the Stored Procedures folder, and select New Stored
Procedure.
 Chapter 9. Developing database applications 413

2. Perform these steps in the New Stored Procedure wizard, in the Name and
Language window (Figure 9-18):

a. Notice that RAD8DataDevelopment is preselected.

b. Type AddCredit for the Name.

c. Java is shown as the language.

d. For Java package, type itso.bank.data.

e. Select Dynamic SQL using JDBC and click Next.

Figure 9-18 Creating a new stored procedure: Name and Language window

3. On the SQL Statements page, click Create SQL to start the New SQL
Statement wizard that guides you through the creation of an SQL statement.

4. In the first window of the New SQL Statement wizard, keep the defaults to
create a SELECT statement using the wizard and click Next.

5. To create the SQL statement, perform these steps on the New SQL
Statement: Construct an SQL Statement window (Figure 9-19 on page 415):

a. On the Tables page, in the Available Tables list, expand the ITSO schema,
select ITSO.ACCOUNT, ITSO.ACCOUNT_CUSTOMER, and select
414 Rational Application Developer for WebSphere Software V8 Programming Guide

ITSO.CUSTOMER. Click > to move the three tables to the Selected Tables
list.

b. Select the Columns tab. Expand the CUSTOMER table and select
FIRST_NAME and LAST_NAME. Expand the ACCOUNT table and select
BALANCE. Click > to move the columns to the Selected Columns list.

c. Select the Joins tab. Drag the cursor from SSN (CUSTOMER table) to
CUSTOMER_SSN (ACCOUNT_CUSTOMER table) and from ID (ACCOUNT table)
to ACCOUNT_ID (ACCOUNT_CUSTOMER table) to create two joins.

Figure 9-19 Creating a stored procedure: Joins tab

d. Select the Conditions tab (Figure 9-20). In the first row, under Column,
click the cell and select CUSTOMER.LASTNAME. In the same row, for
Operator, select LIKE, and for Value, type PARTIALNAME. Click Next.

Figure 9-20 Creating a stored procedure: Conditions tab
 Chapter 9. Developing database applications 415

6. In the Change the SQL Statement window, review the generated SQL
statement and click Finish to close the New SQL Statement wizard.

7. Back in the New Stored Procedure wizard, for Result set, select One and click
Next.

8. The Parameters window displays an input variable named PARTIALNAME.
Accept the default settings and click Next.

9. In the Deploy Options window, clear Deploy on Finish. We deploy the stored
procedure later. Click Next.

10.In the Code Fragments window, click Next.

11.Review the Summary page and click Finish. The stored procedure opens in
the routine editor.

12.Select the Configuration tab in the routine editor. In the Java section, click
ADDCREDIT.java. The generated file (Example 9-2) opens.

Example 9-2 ADDCREDIT.java

package itso.bank.data;

import java.sql.*; // JDBC classes

public class ADDCREDIT {
public static void aDDCREDIT(java.lang.String PARTIALNAME,

ResultSet[] rs1)
throws SQLException, Exception {

// Get connection to the database
Connection con =

DriverManager.getConnection("jdbc:default:connection");
PreparedStatement stmt = null;
boolean bFlag;
String sql;

sql = "SELECT ITSO.CUSTOMER.FIRST_NAME,
ITSO.CUSTOMER.LAST_NAME, ITSO.ACCOUNT.BALANCE"

+ " FROM"
+ " ITSO.ACCOUNT JOIN ITSO.CUSTOMER JOIN

ITSO.ACCOUNT_CUSTOMER ON ITSO.CUSTOMER.SSN =
ITSO.ACCOUNT_CUSTOMER.CUSTOMER_SSN ON ITSO.ACCOUNT.ID =
ITSO.ACCOUNT_CUSTOMER.ACCOUNT_ID"

+ " WHERE ITSO.CUSTOMER.LAST_NAME LIKE ?";
stmt = con.prepareStatement(sql);
stmt.setString(1, PARTIALNAME);
bFlag = stmt.execute();
rs1[0] = stmt.getResultSet();
416 Rational Application Developer for WebSphere Software V8 Programming Guide

}
}

13.We give a $100 credit to the selected accounts. Add the code in Example 9-3
under the rs1[0] = stmt.getResultSet() statement.

Example 9-3 Snippet to give $100 credit to each account

String sql2 = "UPDATE ITSO.ACCOUNT SET BALANCE = (BALANCE +
100)"

+ " WHERE ID IN " +
"(SELECT ITSO.ACCOUNT.ID FROM ITSO.ACCOUNT"
+ " JOIN ITSO.ACCOUNT_CUSTOMER"
+ " ON ITSO.ACCOUNT.ID =

ITSO.ACCOUNT_CUSTOMER.ACCOUNT_ID"
+ " JOIN ITSO.CUSTOMER ON

ITSO.ACCOUNT_CUSTOMER.CUSTOMER_SSN ="
+ " ITSO.CUSTOMER.SSN"

+ " WHERE ITSO.CUSTOMER.LAST_NAME LIKE ?)";
stmt = con.prepareStatement(sql2);
stmt.setString(1, PARTIALNAME);
stmt.executeUpdate();

You can also find the modified AddCredit.java file in the
C:\7835code\database\samples directory.

9.4.2 Deploying a Java stored procedure

A stored procedure must be deployed to the database where it is stored in the
catalog, ready for execution. Follow these steps to deploy a Java stored
procedure to a database:

1. In the Data Project Explorer, expand RAD8DataDevelopment Stored
Procedures, right-click ADDCREDIT, and select Deploy.

2. In the Deploy Routines wizard (Figure 9-21 on page 418), for Target schema,
type ITSO and click Finish.

You see a “Succeeded” build status in the SQL Results view.

3. In the Data Source Explorer, expand ITSOBANK Schemas ITSO,
right-click Stored Procedures, and select Refresh. You can see that
ADDCREDIT has been added to the Stored Procedures folder.
 Chapter 9. Developing database applications 417

Figure 9-21 Deploy Routines

9.4.3 Running the stored procedure

Rational Application Developer provides a test facility for testing the Java stored
procedures. Perform these steps to run the stored procedure:

1. In the Data Project Explorer, right-click the stored procedure ADDCREDIT
and select Run.

2. In the Specify Parameter Values window, in the Value field, type C% in the cell
and press Enter. PARTIALNAME LIKE 'C%' retrieves only customers with a last
name that starts with C.

3. Click OK.

Figure 9-22 on page 419 shows the result. You now see that $100 has been
added to the related accounts and that the balances are updated.
418 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 9-22 Stored procedure results

9.5 Developing SQLJ applications

With SQLJ, you can embed SQL statements into Java programs. SQLJ is an
ANSI standard developed by a consortium of leading providers of database and
application server software.

The SQLJ translator translates an SQLJ source file into a standard Java source
file plus an SQLJ serialized profile that encapsulates information about static
SQL in the SQLJ source. The translator converts SQLJ clauses to standard Java
statements by replacing the embedded SQL statements with calls to the SQLJ
runtime library. An SQLJ customization script binds the SQLJ profile to the
database, producing one or more database packages. The Java file is compiled
and run (with the packages) on the database. The SQLJ runtime environment
consists of an SQLJ runtime library that is implemented in pure Java. The SQLJ
runtime library calls the JDBC driver for the target database.

SQLJ provides better performance by using static SQL. SQLJ generally requires
fewer lines of code than JDBC to perform the same tasks. The SQLJ translator
checks the syntax of SQL statements during translation. SQLJ uses database
connections to type-check static SQL code. With SQLJ, you can embed Java
variables in SQL statements. SQLJ provides strong typing of query output and
return parameters and allows type-checking on calls. SQLJ provides static
package-level security with compile-time encapsulation of database
authorization.

Using the SQLJ wizard that ships with Rational Application Developer, you can
perform the following actions:

� Name an SQLJ file and specify its package and source folder.
 Chapter 9. Developing database applications 419

� Specify advanced project properties, such as additional JAR files, to add to
the project class path, translation options, and whether to use long package
names.

� Select an existing SQL SELECT statement, or construct and test a new SQL
SELECT statement.

� Specify information for connecting to the database at run time.

In this section, we create an SQLJ application to retrieve the customer and the
associated account information.

9.5.1 Creating SQLJ files

You can create SQLJ files by using the New SQLJ File wizard. The SQLJ support
is automatically added to the project when you use this wizard.
420 Rational Application Developer for WebSphere Software V8 Programming Guide

Create a Java project named RAD8SQLJ and then create the SQLJ file in this
project:

1. Open the Java perspective, select File New Java Project. For the
Project name, type RAD8SQLJ and click Finish.

2. Select File New Other Data SQLJ Applications SQLJ File
and click Next.

3. In the SQLJ File window (Figure 9-23), for Package, enter
itso.bank.data.sqlj. For Name, enter CustomerAccountInfo. Then click
Next.

Figure 9-23 New SQLJ File window
 Chapter 9. Developing database applications 421

4. In the Select an Existing Statement Saved in Your Workspace window, click
Next. We create a new SQL statement.

5. In the Specify SQL Statement Information window, select Be guided through
creating an SQL statement and click Next.

6. In the Select Connection window, select the ITSOBANKderby connection
that you created in the previous section. Click Reconnect to reconnect to the
database if it is disconnected. Click Next.

7. In the Construct an SQL Statement window, follow these steps:

a. On the Tables tab, for Available Tables, expand the ITSO schema and
select the CUSTOMER, ACCOUNT, and ACCOUNT_CUSTOMER tables.
Click > to move these three tables to the Selected Tables list.

b. Select the Columns tab. In the Available columns list, under the CUSTOMER
table, select TITLE, FIRST_NAME, and LAST_NAME. Under the ACCOUNT
table, select ID and BALANCE. Then click > to move these columns to the
selected Columns list (Figure 9-24).

Figure 9-24 Selecting the output columns
422 Rational Application Developer for WebSphere Software V8 Programming Guide

c. Select the Joins tab (Figure 9-19 on page 415). Drag the cursor from
CUSTOMER.SSN to CUSTOMER_SSN and from ACCOUNT.ID to
ACCOUNT_ID.

d. Select the Conditions tab. In the first row, click the cell in the Column and
select ACCOUNT.BALANCE. In the same row, for Operator, select >=,
and for Value, type :BALANCE.

e. Select the Order tab. Under the ACCOUNT table, select BALANCE and click
>. For Sort order, select DESC. The results are listed with the highest
balance first.

f. Click Next.

8. In the Change the SQL Statement window, review the generated SQL
statement:

SELECT ITSO.CUSTOMER.TITLE, ITSO.CUSTOMER.FIRST_NAME,
ITSO.CUSTOMER.LAST_NAME, ITSO.ACCOUNT.ID, ITSO.ACCOUNT.BALANCE
 FROM ITSO.CUSTOMER JOIN ITSO.ACCOUNT_CUSTOMER ON ITSO.CUSTOMER.SSN
=

ITSO.ACCOUNT_CUSTOMER.CUSTOMER_SSN JOIN ITSO.ACCOUNT ON
ITSO.ACCOUNT_CUSTOMER.ACCOUNT_ID = ITSO.ACCOUNT.ID

 WHERE ITSO.ACCOUNT.BALANCE >= :BALANCE
 ORDER BY BALANCE DESC

Click Parse and then click Next.
 Chapter 9. Developing database applications 423

9. In the Specify Runtime Database Connection Information window
(Figure 9-25), select Use DriverManager connection. Derby does not use
authentication. Select Variables inside of method. Leave the user ID as itso
and do not enter a password. Click Finish.

Figure 9-25 Specify Runtime Database Connection Information window

The SQLJ file is generated.

9.5.2 Examining the generated SQLJ file

Before testing the SQLJ program, we examine the generated SQLJ file:

� The establishConnection method creates the database connection.

� The execute method executes the SQL query and stores the result set in a
cache. Example 9-4 on page 425 shows the SQLJ statement that is
embedded in this method.
424 Rational Application Developer for WebSphere Software V8 Programming Guide

Example 9-4 Embedded SQLJ

#sql [ctx] cursor1 = {SELECT ITSO.CUSTOMER.TITLE,
 ITSO.CUSTOMER.FIRST_NAME, ITSO.CUSTOMER.LAST_NAME,

ITSO.ACCOUNT.ID,
 ITSO.ACCOUNT.BALANCE FROM ITSO.CUSTOMER JOIN

ITSO.ACCOUNT_CUSTOMER
 ON ITSO.CUSTOMER.SSN = ITSO.ACCOUNT_CUSTOMER.CUSTOMER_SSN

JOIN
 ITSO.ACCOUNT ON ITSO.ACCOUNT_CUSTOMER.ACCOUNT_ID =

ITSO.ACCOUNT.ID
 WHERE ITSO.ACCOUNT.BALANCE >= :BALANCE ORDER BY BALANCE

DESC};

� The next method moves to the next row of the result set if another row exists.

� The close method commits changes and closes the connection.

� The corresponding setter and getter methods for the table fields in the
database are also generated. You can use the getter methods to retrieve the
columns in a row.

9.5.3 Testing the SQLJ program

To create a test program to invoke the SQLJ program, follow these steps:

1. In the Package Explorer, right-click the package itso.bank.data.sqlj and
select New Class.

2. For Class name, type TestSQLJ. Select public static void main(String[]
args) and click Finish.

3. Copy and paste the code that is shown in Example 9-5 to TestSQLJ. You can
find the TestSQLJ.java code in C:\7835code\database\samples.

Example 9-5 TestSQLJ.java

package itso.bank.data.sqlj;
import java.math.BigDecimal;

public class TestSQLJ {

public static void main(String[] args) {
try {

CustomerAccountInfo info = new CustomerAccountInfo();
info.execute(new BigDecimal(10000)); // minimum balance

displayed
while (info.next()) {
 Chapter 9. Developing database applications 425

System.out.println("Customer name: " +
info.getCUSTOMER_TITLE()

+ " " + info.getCUSTOMER_FIRST_NAME() + " "
+ info.getCUSTOMER_LAST_NAME());

System.out.println("Account ID: " +
info.getACCOUNT_ID() +

" Balance: " +
info.getACCOUNT_BALANCE());

System.out.println("---------------------------------------");
}
info.close();

} catch (Exception e) {
e.printStackTrace();

}
}

}

4. Add the Derby JDBC driver library to the project build path:

a. Right-click project RAD8SQLJ and select Properties.

b. On the Java Build Path, Libraries tab, click Add External JARs and
select derby.jar, which is in <WebSphere Application Server
v8_HOME>\derby\lib. Click OK.

Derby accepts only one database connection at a time.

5. Switch to the Data perspective. In the Data Source Explorer, right-click the
ITSOBANK connection and select Disconnect.

6. In the Java perspective, right-click TestSQLJ.java and select Run As Java
Application.

Example 9-6 shows how the result is displayed in the console.

Example 9-6 Result as displayed in the console

Retrieve some data from the database.
Customer name: Mr Brian Hainey
Account ID: 005-555002 Balance: 72213.41

Customer name: Mr Venkata Kumari
Account ID: 000-000001 Balance: 66666.66

Customer name: Ms Craig Fleming
Account ID: 002-222001 Balance: 65484.23

Customer name: Mr Salvatore Sollami
426 Rational Application Developer for WebSphere Software V8 Programming Guide

Account ID: 004-444003 Balance: 23156.46

Customer name: Mr Henry Cui
Account ID: 001-111001 Balance: 12645.67

Customer name: Mr Rafael Coutinho
Account ID: 003-333001 Balance: 10176.52

Customer name: Mr Steve Baber
Account ID: 006-666003 Balance: 10000.00

9.6 Data modeling

Rational Application Developer provides tools to create, modify, and generate
Data Definition Language (DDL) for data models. At any time when you are
building a data model, you can analyze the model to verify that it is compliant
with the defined constraints. If you make changes to the data model, Rational
Application Developer provides tooling to compare the changed data model with
the original data model. You can also perform an impact analysis to determine
how the changes might affect other objects.

A physical data model is a database-specific model that represents relational
data objects (for example, tables, columns, primary keys, and foreign keys) and
their relationships. A physical data model can be used to generate DDL
statements, which can then be deployed to a database server.

In the workbench, you can create and modify data models by using the Data
Project Explorer, the Properties view, or a diagram of the model. You can also
analyze models and generate DDL.

Error message: The following exception message means that the Derby
database is locked by another connection:

Failed to start database 'C:/7835code/database/derby/ITSOBANK'

In the Data Source Explorer, check whether the ITSOBANK connection is
still active. If it is active, disconnect the connection, or restart the
workbench.
 Chapter 9. Developing database applications 427

In this section, we create the physical model from a template, create tables using
the data diagram, and deploy the physical model to the database. This section
includes the following tasks:

� Creating a Data Design project
� Creating a physical data model
� Modeling with diagrams
� Generating DDL from a physical data model and deploying

9.6.1 Creating a Data Design project

Before you create data models or other data design objects, you must create a
Data Design project to store your objects.

A Data Design project is primarily used to store modeling objects. You can store
the following types of objects in a Data Design project:

� Logical data models
� Physical data models
� Domain models
� Glossary models
� SQL scripts, including DDL scripts

Perform these steps to create a Data Design project:

1. In the Data perspective, select File New Data Design Project.

2. In the New Data Design Project wizard, in the Project Name field, type
RAD8DataDesign and click Finish.

The Data Design project is displayed in the Data Project Explorer view
(Figure 9-26).

Figure 9-26 Data Project Explorer: Data Design project layout
428 Rational Application Developer for WebSphere Software V8 Programming Guide

9.6.2 Creating a physical data model

A physical data model is a database-specific model that represents relational
data objects (for example, tables, columns, and primary and foreign keys) and
their relationships. You can use a physical data model to generate DDL
statements, which can then be deployed to a database server.

Using the data tooling, you can create a physical data model in several ways:

� Create a blank physical model by using a wizard.

� Create a physical model from a template by using a wizard.

� Reverse engineer a physical model from a database or a DDL file by using a
wizard or by dragging data objects from the Data Source Explorer.

� Import a physical data model file from the file system.

In this section, we show you two ways to create the physical data model. First, we
create a physical data model by reverse engineering the model from an existing
database, ITSOBANK. Then we create a new physical data model from a template
and deploy this new model to the database.

Creating a physical data model using reverse engineering
To create a physical data model by reverse engineering an existing database
schema, follow these steps:

1. In the Data Source Explorer, right-click ITSOBANKDerby and select
Connect.

2. In the Data Project Explorer, right-click RAD8DataDesign and select New
Physical Data Model.
 Chapter 9. Developing database applications 429

3. In the New Physical Data Model wizard (Figure 9-27), complete the following
actions:

a. For File name, type ITSOBANK_Reverse.
b. For Database, select Derby, and for Version, select 10.5.
c. Select Create from reverse engineering.
d. Click Next.

Figure 9-27 New Physical Data Model: Create from reverse engineering

4. In the Select connection window, select ITSOBANKderby from the existing
connections list. Click Next.

5. In the Schema window, select ITSO and click Next.

6. In the Database Elements window, select Tables and click Next.
430 Rational Application Developer for WebSphere Software V8 Programming Guide

7. In the Options window (Figure 9-28), under Generate diagrams, select
Overview. Click Finish.

Figure 9-28 New Physical Data Model: Options window

The physical model is created and added to the Data Models folder. The
overview diagram is added to the Data Diagrams folder (Figure 9-29).

Figure 9-29 Data Design Project with physical model and diagram

The Physical Data Model editor is open on the ITSOBANK_Reverse model.
Descriptive information can be added. Do not close the physical model, which
must be open to open the diagram.
 Chapter 9. Developing database applications 431

8. Open the ITSO overview diagram in the Data Diagrams folder. It contains all
the tables that are in the schema. You can move the tables to get a better
diagram (Figure 9-30).

Figure 9-30 Overview diagram

9. Select a table in the diagram and then look at the Properties view to see the
columns and relationships.

10.Select a relationship (line) in the diagram and look at the Properties view to
see the cardinality (Details tab). The cardinality is also displayed visually in
the diagram.

11.Save and close the ITSO diagram and the ITSOBANK_Reverse.dbm model.

Creating a physical data model from a template
To create a physical data model from a template, follow these steps:

1. Right-click RAD8DataDesign and select New Physical Data Model.

2. In the New Physical Data Model wizard (Figure 9-27 on page 430), complete
the following actions:

a. For File name, type Bank_model.
b. For Database, select Derby, and for Version, select 10.5.
c. Select Create from template.
d. Click Finish.

The physical model is created and displayed in the Data Models folder. The data
diagram for the schema opens in the diagram editor.
432 Rational Application Developer for WebSphere Software V8 Programming Guide

9.6.3 Modeling with diagrams

You can use data diagrams to visualize and edit objects that are in data projects.
Data diagrams are a view representation of an underlying data model. You can
create diagrams that contain only a subset of model objects that are of interest.

In this section, we create a schema named RAD8Bank in the physical data model.
Under this schema, we create two tables: ACCOUNT and TRANSACT. We add a
foreign key relationship between the ACCOUNT and TRANSACT tables.

1. In the Data Project Explorer, select RAD8DataDesign Data Models
Bank_model.dbm Database Schema. In the Properties view, change
the schema name from Schema to RAD8Bank.

2. Follow these steps to add a table:

a. In the diagram editor, select the Data drawer in the palette, and in the Data
drawer, select Table.

b. Click the empty area in the data diagram. A new table is added to the
diagram.

c. Overtype the table name with ACCOUNT.

3. Hover the mouse over the ACCOUNT table in the diagram. You see four icons
outside of the table. Click the Add Key icon (highlighted in Figure 9-31).

Figure 9-31 Add key, column, index, and trigger icons

4. Overtype the name with ID (or change the name in the Properties view on the
General tab).
 Chapter 9. Developing database applications 433

5. Select the ID column, and in the Properties view, on the Type tab, change the
Data type to VARCHAR. For Length, enter 16 (Figure 9-32).

Figure 9-32 Editing the key

6. Hover the mouse over the ACCOUNT table and click the Add Column icon.

7. In the Properties view, change Name to BALANCE and the Data type to
DECIMAL. For Precision, type 8, and for Scale, type 2. Select Not Null.

8. Follow the same procedure to create the TRANSACT table:

– Key: ID VARCHAR(250) NOT NULL

– Columns:

TRANS_TYPE VARCHAR(32) NOT NULL
TRANS_TIME TIMESTAMP NOT NULL
AMOUNT DECIMAL(8,2) NOT NULL
ACCOUNT_ID VARCHAR(16)

Figure 9-33 shows the data diagram.

Figure 9-33 Data diagram with two tables

9. Hover the mouse over the ACCOUNT table object in the diagram. You see
two arrows outside the table, pointing in opposite directions.
434 Rational Application Developer for WebSphere Software V8 Programming Guide

Use the arrow that points away from the ACCOUNT table (representing a
relationship from parent to child) to create a relationship between the
ACCOUNT table and the TRANSACT table.

10.Drag the arrow that points away from the ACCOUNT table to the TRANSACT
table. In the menu that opens, select Create Non-Identifying Optional FK
Relationship (Figure 9-34).

Figure 9-34 Adding a relationship between tables

11.In the Migrate Key Option window (Figure 9-35), select Use the existing
child attribute/column and click OK.

Figure 9-35 Key migration window

12.Select the foreign key relationship that you just created. In the Properties
view, select the Details page.

13.Click the ellipsis button () next to the Key Columns field. In the window that
opens, select the ACCOUNT_ID check box and clear the ID check box. Click
OK.

We use an
existing column
(ACCOUNT_ID) as
foreign key.
 Chapter 9. Developing database applications 435

14.Add information to the relationship properties to identify the roles of each
table in the relationship (Figure 9-36):

a. In the Inverse Verb Phrase field, type transaction.
b. In the Verb Phrase field, type account.
c. Set the cardinality as * and 0..1.

Figure 9-36 Relationship Details page

15.Save but do not close the diagram. Figure 9-37 shows the relationship with
the verbs account and transaction in the diagram.

Figure 9-37 Relationship with verbs

9.6.4 Generating DDL from a physical data model and deploying

To generate the DDL and run the generated DDL in the Derby database, follow
these steps:

1. In the Data Project Explorer, expand Data Models Bank_model.dbm
Database and right-click RAD8Bank Generate DDL.
436 Rational Application Developer for WebSphere Software V8 Programming Guide

2. In the Generate DDL: Options window (Figure 9-38), select Fully qualified
name and CREATE statements and click Next.

Figure 9-38 Generate DDL window

3. In the Objects window, accept all the default settings and click Next.

Quoted identifiers are required if
the names contain blanks.
 Chapter 9. Developing database applications 437

4. In the Save and Run DDL window (Figure 9-39), for File name, type
rad8bank.sql, review the DDL, select Run DDL on server, and click Next.

Figure 9-39 Save and Run DDL window

5. In the Select connection window, select ITSOBANKDerby and click Next.

6. In the Summary window, click Finish. The SQL script is created and stored in
the SQL Scripts folder.
438 Rational Application Developer for WebSphere Software V8 Programming Guide

7. Open the rad8bank.sql file to review the DDL.

8. In the Data Source Explorer, right-click the ITSOBank connection and select
Refresh. The RAD8BANK schema is displayed.

9.6.5 Analyzing the data model

The Analyze Model wizard analyzes a data model to ensure that it meets certain
specifications. Model analysis helps to ensure model integrity and helps to
improve model quality by providing design suggestions and best practices.

Perform these steps to analyze the RAD8Bank schema in the physical data model:

1. In the Data Project Explorer, right-click the schema RAD8Bank (by selecting
Data Models Bank_model.dbm Database) and select Analyze
Model.

Tip: If you cannot see the RAD8BANK schema, you can right-click Schemas
and select Properties. Then make sure that both ITSO and RAD8BANK
are selected. The RAD8BANK schema with two tables is now visible.
 Chapter 9. Developing database applications 439

2. In the Analyze Model window (Figure 9-40), select the items in the list to see
the rules that are checked. Click Apply if you made any changes and then
click Finish.

Figure 9-40 Analyze Model window

The following result is displayed in the console:

Validation - 0 error(s), 0 warning(s), 0 informational message(s).

3. Close all the open files.

9.7 More information

For more information about JDBC, see the following pages on the Oracle Sun
Developer Network:

� Documentation

http://java.sun.com/products/jdbc/overview.html
440 Rational Application Developer for WebSphere Software V8 Programming Guide

http://java.sun.com/products/jdbc/overview.html

� Java SE Technologies: Database

http://java.sun.com/javase/technologies/database/

� JDBC Data Access API

http://developers.sun.com/product/jdbc/drivers

For more information about SQLJ, see the following web resources:

� InfoWorld Java World: “SQLJ: The ‘open sesame’ of Java database
applications”

http://www.javaworld.com/javaworld/jw-05-1999/jw-05-sqlj.html

� O’Reilly ON Java

http://www.onjava.com/pub/st/27
 Chapter 9. Developing database applications 441

http://developers.sun.com/product/jdbc/drivers
http://www.onjava.com/pub/st/27
http://java.sun.com/javase/technologies/database/
http://developers.sun.com/product/jdbc/drivers
http://www.onjava.com/pub/st/27
http://www.javaworld.com/javaworld/jw-05-1999/jw-05-sqlj.html
http://www.onjava.com/pub/st/27
http://java.sun.com/javase/technologies/database/

442 Rational Application Developer for WebSphere Software V8 Programming Guide

Chapter 10. Persistence using the Java
Persistence API

In this chapter, we create the Java Persistence API (JPA) entities that coordinate
and mediate access with the ITSOBANK database. We can use either the Derby or
the DB2 database to create the matching JPA entities (Customer, Account, and
Transaction). We have a choice between the bottom-up scenario and the
top-down scenario. To connect the entity model and any of the two databases,
we use a Java Naming and Directory Interface (JNDI) data source in the server.

To illustrate the JPA tooling, we create a JPA project and JPA entities. We use the
Derby database. We add inheritance to the entity model by introducing the
Credit and Debit subclasses of the Transaction entity.

The chapter is organized into the following sections:

� Introducing the Java Persistence API
� Creating a JPA project
� Creating JPA entities
� Creating a JPA Manager Bean
� Visualizing JPA entities
� Testing JPA entities
� Preparing the entities for deployment in the server
� More information

The sample code for this chapter is in the \7835codesolution\jpa folder.

10
© Copyright IBM Corp. 2011. All rights reserved. 443

10.1 Introducing the Java Persistence API

The JPA defines the management of persistence and object-relational mapping
within Java Enterprise Edition (Java EE) and Java Standard Edition (Java SE)
environments. The JPA represents a simplification of the persistence
programming model. In the past, JPA was defined within the Java EE
specification for Enterprise JavaBeans (EJB) 3.0. With JPA 2.0, the JPA
specification is defined separately in Java Specification Request (JSR) 317: Java
Persistence API, Version 2.0.

JPA combines the best features from previous persistence mechanisms, such as
Java Database Connectivity (JDBC) APIs, Object Relational Mapping (ORM)
frameworks, and Java Data Objects (JDO). Creating entities under JPA is as
simple as creating serializable classes. JPA supports the large data sets, data
consistency, concurrent use, and query capabilities of JDBC. Like
object-relational software and object databases, JPA allows the use of advanced
object-oriented concepts, such as inheritance.

The JPA implementation does not mandate that you migrate existing
applications. Existing EJB 2.x Container Manager Persistence applications
continue to execute without changes.

With the JPA tools in Rational Application Developer, you can use wizards to
create and automatically initialize mappings. You can create new database tables
from existing entity classes (top-down mapping). In the other scenario, you
create new entity beans from existing database tables (bottom-up mapping). You
can also use the tools to create mappings between existing database tables and
entity beans (meet-in-the-middle mapping), where names or other attributes
differ. For flexibility in designing your data access application, you can choose
from a range of mapping types. You can create mappings from several types of
Java classes, and you can specify entity inheritance with several options for
database design.

Details of the JPA specification JSR 317 and certain JPA 2.0 enhancements are
described in the following sections:

� JPA entity object
� Object-rational mapping
� Entity inheritance
� Persistence units
� Entity Manager
� JPA Manager Bean
� Java Persistence Query Language
� Criteria API
� Persistence provider
444 Rational Application Developer for WebSphere Software V8 Programming Guide

� JPA 2.0 enhancements

10.1.1 JPA entity object

An entity object is a simple Java class that represents a row in a database table.
Entities can be concrete classes or abstract classes. They maintain states by
using properties or fields.

A JPA entity object is a Java object that must match the following rules:

� It is a plain old Java object (POJO) that does not have to implement any
particular interface or extend a special class.

� The class must not be declared final, and no methods or persistent instance
variables must be declared final.

� The entity class must have a no-argument constructor that is public or
protected. The entity class can have other constructors as well.

� The class must either be annotated with the @Entity annotation or specified
in the orm.xml JPA mapping file. We use annotations in our examples.

� The class must define one or more attributes that are used to identify, in an
unambiguous way, an instance of that class (they correspond to the primary
key in the mapped relational table).

� Both abstract and concrete classes can be entities, and entities can extend
non-entity classes.

A simple entity object example
Example 10-1 shows a simple Customer entity with a few fields.

Example 10-1 Simple entity class with annotations

package itso.bank.entities;

@Entity
public class Customer implements java.io.Serializable {

@Id
private String ssn;

private String title;
private String firstName;
private String lastName;

public String getSsn() { return this.ssn; }
public void setSsn(String ssn) { this.ssn = ssn; }
 Chapter 10. Persistence using the Java Persistence API 445

// more getter and setter methods
}

Within this example, you notice that the class is conforming to the JavaBean
specification. The @Entity annotation identifies this Java class as an entity. The
@Id annotation is used to identify the property that corresponds to the primary
key in the mapped table. In the following section, we show the various types of
@Id annotation.

Using @Id annotation
The @Id annotation offers the simplest mechanism to define the mapping to the
primary key. You can associate the @Id annotation to fields and properties of
these types:

� Primitive Java types and their wrapper classes
� Arrays of primitive or wrapper types
� Strings: java.lang.String
� Large numeric types: java.math.BigDecimal or java.math.BigInteger
� Temporal types: java.util.Date or java.sql.Date

We discourage the use of floating point types, such as float and double, and their
wrapper classes for decimal data, because you can have rounding errors and the
result of using the equals (=) operator is unreliable in these cases. Use
BigDecimal instead.

The @Id annotation fits well in scenarios where a natural primary key is available,
or when database designers use surrogate primary keys (typically, an integer)
that has no descriptive value and is not derived from any application data in the
database.

Composite keys are useful when the primary key of the corresponding database
table consists of more than one column. Composite keys can be defined by the
@IdClass or @EmbeddedId annotation. The @IdClass annotation is used to model a
composite key.

The @EmbeddedId annotation is used in conjunction with the @Embeddable
annotation to move the definition of a composite key inside the entity.
The @Embeddable annotation is used to model persistent objects that have no
identity of their own, because they are nested inside another entity.

10.1.2 Object-rational mapping

Before we explain object-rational mapping in detail and the entity relationships,
we review how the concept of relationships is defined in object-oriented and
446 Rational Application Developer for WebSphere Software V8 Programming Guide

relational database management system (RDBMS) environments, as shown in
Table 10-1.

Table 10-1 Relationship concept in two separate environments

Mapping the table and columns
To specify the mapping of the entity to a database table, we use the @Table and
@Column annotations. Example 10-2 shows the declaration for these annotations,
which are highlighted.

Example 10-2 Entity with mapping to a database table

@Entity
@Table (schema="ITSO", name="CUSTOMER")
public class Customer implements java.io.Serializable {

@Id
@Column (name="SSN")
private String ssn;
@Column (name="LAST_NAME")
private String lastName;
private String title;
private String firstNname;
......

Note the following points:

Java/JPA RDBMS

A relationship is a reference from one
object to another. Relationships are
defined through object references
(pointers) from a source object to the
target object.

Relationships are defined through foreign
keys.

If a relationship involves a collection of
other objects, a collection or array type is
used to hold the contents of the
relationship.

Collections are either defined by the
target objects having a foreign key back to
the source object primary key, or by
having an intermediate join table to store
the relationships.

Relationships are always unidirectional. If
a source object references a target object,
it is not guaranteed that the target object
also has a relationship to the source
object.

Relationships are defined through foreign
keys and queries, so that the inverse
query always exists.
 Chapter 10. Persistence using the Java Persistence API 447

� The @Table annotation provides information related to the table and schema
to which the entity corresponds.

� The @Column annotation provides information related to which column is
mapped by an entity property. By default, properties are mapped to columns
with the same name, and the @Column annotation is used when the property
and column names differ.

Mapping through annotation relationships
JPA defines the following relationships:

� One-to-one
� Many-to-one
� One-to-many
� Many-to-many

One-to-one relationship
In a one-to-one relationship, each entity instance is related to a single instance of
another entity. The @OneToOne annotation is used to define this single value
association, for example, a Customer is related to a CustomerRecord, as shown in
Example 10-3.

Example 10-3 @OneToOne annotation to define a single value association

@Entity
@Table (schema="ITSO", name="CUSTOMER")
public class Customer {

@OneToOne
@JoinColumn(

name="CUSTREC_ID", unique=true, nullable=false, updatable=false)
public CustomerRecord getCustomerRecord() {

return customerRecord;
}

Persistence mechanisms: Entities support two types of persistence
mechanisms:

� Field-based persistence: The entity properties must be declared as public
or protected, and annotations are added on properties.

� Property-based persistence: You must provide getter/setter methods, and
annotations are added on these methods.

See also the annotation @AccessType with possible values AccessType.FIELD
and AccessType.PROPERTY, which are applicable at the level of the entity or
of a specific attribute.
448 Rational Application Developer for WebSphere Software V8 Programming Guide

....
}

In many situations, the target entity of the one-to-one has a relationship back to
the source entity, but this is not required. In our example, CustomerRecord can
have a reference back to the Customer. When this is the case, we call it a
bidirectional one-to-one relationship.

There are two rules for bidirectional one-to-one associations:

� The @JoinColumn annotation must be specified in the entity that is mapped to
the table containing the join column, or the owner of the relationship.

� The mappedBy element must be specified in the @OneToOne annotation in the
entity that does not define a join column, that is, the inverse side of the
relationship.

Many-to-one and one-to-many relationships
The many-to-one mapping is used to represent a single valued reference to a
Java object, allowing multiple source objects to reference the same target object.
In Java, a single pointer stored in an attribute represents the mapping between
the source and target objects. Relational database tables implement these
mappings using foreign keys.

The one-to-many mapping is used to represent the relationship between a single
source object and a collection of target objects. This relationship is usually
represented in Java with a collection of target objects. A new feature in JPA 2.0 is
the ability to map a one-to-many relationship unidirectionally, using the
annotation @JoinColumn. In JPA 1.0, you were only able to achieve a one-to-many
relationship unidirectionally by using @JoinTable. In Open JPA 1.0, you were only
able to use the proprietary annotation
org.apache.openjpa.persistence.jdbc.ElementJoinColumn.

For example, an Account entity object can be associated with many Transact
entity objects using @OneToMany and @ManyToOne annotations, as shown in
Example 10-4.

Example 10-4 @OneToMany and @ManyToOne annotations

@Entity
@Table (schema="ITSO", name="ACCOUNT")
public class Account implements Serializable {

@Id
private String id;
private BigDecimal balance;

@OneToMany(mappedBy="account")
 Chapter 10. Persistence using the Java Persistence API 449

private List<Transaction> transacts;

....
}

==
@Entity
@Table (schema="ITSO", name="TRANSACT")
public class Transaction implements Serializable {

@Id
private String id;
......

@ManyToOne
@JoinColumn(name="ACCOUNT_ID")
private Account account;
....

}

Using the @JoinColumn annotation
In the database, a relationship mapping means that one table has a reference to
another table. The database term for a column that refers to a key (usually the
primary key) in another table is a foreign key column. In JPA, we call them join
columns, and the @JoinColumn annotation is used to configure these types of
columns.

Many-to-many relationship
When entity A references multiple B entities, and other B entities might reference
several of the same As, we call this a many-to-many relationship between A and

No @JoinColumn?: If you do not specify @JoinColumn, a default column
name is assumed. The algorithm that is used to build the name is based on a
combination of both the source and target entities. It is the name of the
relationship attribute in the Transaction source entity (the account attribute),
plus an underscore character (_), plus the name of the primary key column of
the target Account entity (the id attribute).

Therefore, a foreign key named ACCOUNT_ID is expected inside the
TRANSACTION table. If this is not applicable, you must use @JoinColumn to
override this automatic behavior.

The @JoinColumn annotation also applies to one-to-one relationships.
450 Rational Application Developer for WebSphere Software V8 Programming Guide

B. To implement a many-to-many relationship, a distinct join table, which is called
an association table, must map the many-to-many relationship.

For example, a Customer entity object can be associated with many Account
entity objects, and an Account entity object can be associated with many
Customer entity objects, as shown in Example 10-5.

Example 10-5 Associating Customer and Account entity objects

@Entity
@Table (schema="ITSO", name="CUSTOMER")
public class Customer implements Serializable {

......

@ManyToMany(mappedBy="customers")
private List<Account> accounts;
......

}
==
@Entity
@Table (schema="ITSO", name="ACCOUNT")
public class Account implements Serializable {

......

@ManyToMany
@JoinTable(name="ACCOUNT_CUSTOMER", schema="ITSO",

joinColumns=@JoinColumn(name="ACCOUNT_ID"),
inverseJoinColumns=@JoinColumn(name="CUSTOMER_SSN"))

private List<Customer> customers;
....

}

The @JoinTable annotation is used to specify the table and columns in the
database that associate customers with accounts. The entity that specifies the
@JoinTable is the owner of the relationship. Therefore, in this case, the Account
entity is the owner of the relationship with the Customer entity.

The join column pointing to the owning side is described in the joinColumns
element. The join column pointing to the inverse side is specified by the
inverseJoinColumns element.

Foreign keys: Neither the CUSTOMER table nor the ACCOUNT table contains a
foreign key. The foreign keys are in the association table. Therefore, the
Customer or the Account entity can be defined as the owning entity.
 Chapter 10. Persistence using the Java Persistence API 451

Fetch modes
When an Entity Manager retrieves an entity from the underlying database, it can
use two types of fetch strategies:

� Eager mode: When you retrieve an entity from the Entity Manager or by using
a query, you are guaranteed that all of its fields (with relationships, too) are
populated with data store data.

� Lazy mode: This is a hint to the JPA run time that you want to defer the
loading of the field until you access it. Lazy loading is completely transparent;
when you attempt to read the field for the first time, the JPA run time loads the
value from the data store and populates the field automatically.

@OneToMany(mappedBy="accounts", fetch=FetchType.LAZY)
private List<Transaction> transacts;

Lazy mode is the default for 1:m and m:m relationships, so the specification is
optional in those cases.

Object-relational mapping through orm.xml
The object-relational mapping of an entity can be done through the use of
annotations, as described in “Mapping through annotation relationships” on
page 448. As an alternative, you can specify the same information in an external
file, the orm.xml file. This file must be packaged in the META-INF directory of the
persistence module or in a separate file packaged as a resource and defined in
the persistence.xml file with the mapping-file element. Example 10-6 shows
an extract of an orm.xml file that defines the Account entity.

Example 10-6 Extract of an orm.xml file to define an entity mapping

<entity-mappings>
<entity class="itso.bank.entity.Account" metadata-complete="true"

name="Account">
<description>Account of ITSO Bank</description>
<table name="ACCOUNT" schema="ITSO"></table>
<attributes>

<id name="accountNumber">

Performance impact of eager mode: The use of eager mode can greatly
affect the performance of your application, especially if your entities have
many and recursive relationships, because all of the entity will be loaded at
one time.

If the subsequent entity has been read by the Entity Manager and is detached
and sent over the network to another layer, ensure that all the entity attributes
have been read from the underlying data store or that the receiver does not
require related entities.
452 Rational Application Developer for WebSphere Software V8 Programming Guide

<column name="id"/>
</id>
<basic name="balance"></basic>
<one-to-many name="transacts"></one-to-many>

</attributes>
</entity>

</entity-mappings>

To define or edit the object-relational mappings for JPA entity beans in the
orm.xml file, you use the Object Relational Mapping XML Editor. For this
purpose, you right-click the orm.xml file of the JPA project that you want to edit in
the Package Explorer view and select Open with Object Relational Mapping
XML Editor.

All new mapping enhancements can be defined within the orm.xml file as well.

10.1.3 Entity inheritance

The term impedance mismatch describes the difficulties in bridging the object
and relational environments. In regard to inheritance, unfortunately, there is no
natural and efficient way to represent an inheritance relationship in a relational
database.

JPA introduces the following strategies to support inheritance:

� Single table

This strategy maps all classes in the hierarchy to the base class table. This
means that the table contains the superset of all the data in the class
hierarchy. For an example of single table inheritance, see 10.6.8, “Adding
inheritance” on page 519.

� Joined tables

With this strategy, the top-level entry in the entity hierarchy is mapped to a
table that contains columns common to all the entities, and each of the other
entities down the hierarchy is mapped to a table that contain only columns
specific to that entity.

Overrides: The mapping information defined in the orm.xml file automatically
overrides both the default JPA behavior and any mappings that are defined
using annotations.
 Chapter 10. Persistence using the Java Persistence API 453

� Table per class

With this strategy, both the superclass and subclasses are stored in their own
tables, and no relationship exists between any of the tables. Therefore, all the
entity data is stored in its own tables.

10.1.4 Persistence units

A persistence unit defines a set of entity classes that is managed by one
EntityManager instance in an application. This set of entity classes represents
the data contained within a single data store. A persistence unit consists of the
declarative metadata that describes the relationship of entity class objects to a
relational database. The EntityManagerFactory uses this data to create a
persistence context that can be accessed through the EntityManager.

Persistence units are defined in the persistence.xml configuration file. This file
must be packaged in the META-INF directory of the persistence module.

Example 10-7 shows an extract of a persistence.xml file.

Example 10-7 Extract of a persistence.xml file

<persistence version="2.0">
<persistence-unit name="RAD8JPA" transaction-type="JTA">

<jta-data-source>jdbc/itsobank</jta-data-source>
<class>itso.bank.entities.Account</class>
<class>itso.bank.entities.Customer</class>
<class>itso.bank.entities.Transaction</class>

</persistence-unit>
</persistence>

The persistence.xml file describes the details of the persistence units in your
JPA project. A persistence unit contains a list of entity beans. To edit the
persistence.xml file, you use the Persistence XML Editor. Therefore, you
right-click the persistence.xml file of the JPA project that you want to edit in the
Package Explorer view and select Open with Persistence XML Editor.
Table 10-2 on page 455 shows the persistence unit details, which can be
changed.
454 Rational Application Developer for WebSphere Software V8 Programming Guide

Table 10-2 Persistence unit details

JPA 2.0 also provides the service to synchronize persistent classes in the
persistence.xml file. To do this, right-click the persistence.xml file of the JPA
project and select JPA Tools Synchronize classes. As result of this feature,
the persistent classes in your JPA project are automatically discovered and
added to the persistence unit in the persistence.xml file.

10.1.5 Entity Manager

Entities cannot persist themselves on the relational database. Annotations are
used only to declare a POJO as an entity or to define its mapping and
relationships with the corresponding tables on the relational database.

JPA has defined the EntityManager interface for this purpose to let applications
manage and search for entities in the relational database. The EntityManager
primary definition includes the following elements:

� It is an object that manages a set of entities defined by a persistence unit.

� Each EntityManager instance is associated with a persistence context.

� An API manages the life cycle of entity instances. Table 10-3 on page 456
shows the major operations that can be performed by an EntityManager.

Attribute Description

Name The name of the persistence unit. This attribute is required.

Description To represent the description of the persistence unit.

Provider Name of the javax.persistence.spi.PersistenceProvider class
interface for the persistence provider.

Transaction type Choose if it is a Java transaction API (JTA) of a non-JTA data
source.

JTA data source Define the global JNDI name of the JTA data source.

Non-JTA data
source

Define the global JNDI name of a non-JTA data source.

Exclude unlisted
classes

This attribute is False by default. When this is set to True, classes,
which are not listed in the persistence.xml file, will be excluded
from the persistence unit.

JAR file The name of JAR files containing entities for this persistence unit.

Mapping file If you use a custom mapping file, list it here. The orm.xml file for
mapping is read automatically and is not to be added here.
 Chapter 10. Persistence using the Java Persistence API 455

Table 10-3 Entity Manager operations

The EntityManager tracks all entity objects within a persistence context for
changes and updates made, and flushes these changes to the database. After a
persistence context is closed, all managed entity object instances become
detached from the persistence context and its associated EntityManager, and
are no longer managed. An entity object instance is either managed (attached)
by an EntityManager or unmanaged (detached).

Operation Description

persist This operation results in the insertion of a new entity instance
into the database. It saves the persistent state of the entity and
any owned relationship references. The entity instance
becomes managed.

find This operation obtains a managed entity instance with a given
persistent identity, which will be the primary key.
In case the object is not found, null will be returned.

remove This operation deletes a managed entity with the given
persistent identity from the database.

merge The state of a detached entity gets merged into a managed copy
of the entity. The managed entity that is returned has a separate
Java identity than the detached entity.

refresh This operation reloads the entity state from the database.

lock This operation sets the lock mode for an entity object contained
in the persistence context.

flush This operation forces synchronization with the database.

contains This operation determines if an entity is contained by the current
persistence context.

createQuery This operation creates a query instance using dynamic Java
Persistence Query Language (JPQL).

createNamedQuery This operation creates an instance of a predefined query.

createNativeQuery This operation creates an instance of an SQL query.

getCriteriaBuilder The return value is the CriteriaBuilder interface to create a
CriteriaQuery. This operation is new for the JPA Criteria API.
456 Rational Application Developer for WebSphere Software V8 Programming Guide

Container-managed Entity Manager
One way to use an Entity Manager in a Java EE environment is with a
container-managed Entity Manager. In this mode, the container is responsible for
the opening and closing of the Entity Manager and thus the life cycle of the
persistence context. A container-managed Entity Manager is also responsible for
transaction boundaries. A container-managed Entity Manager is obtained in an
application through dependency injection or through JNDI lookup, and the
container manages interactions with the Entity Manager factory transparently to
the application. A container-managed Entity Manager requires the use of a JTA
transaction, because its persistence context will automatically be propagated
with the current JTA transaction, and the Entity Manager references that are
mapped to the same persistence unit will provide access to this same
persistence context within the JTA transaction. This propagation of persistence
context by the Java EE container means that the application does not have to
pass references to the Entity Manager instances from one component to another.

Container-managed persistence contexts can be defined to have one of two
scopes:

� Transaction persistence scope
� Extended persistence scope

Application-managed Entity Manager
Using an application-managed Entity Manager allows you to control the
EntityManager in application code. When using an application-managed Entity
Manager, note the following issues:

� With application-managed Entity Managers, the persistence context is not
propagated to application components, and the life cycle of Entity Manager
instances is managed by the application. This means that the persistence
context is not propagated with the JTA transaction across EntityManager
instances in a particular persistence unit.

� The EntityManager, and its associated persistence context, is created and
destroyed explicitly by the application.

Managed and unmanaged entities: An entity object instance is either
managed (attached) by an EntityManager or unmanaged (detached):

� When an entity is attached to an Entity Manager, the manager monitors
any changes to the entity and synchronizes them with the database
whenever the Entity Manager decides to flush its state.

� When an entity is detached, and therefore is no longer associated with a
persistence context, it is unmanaged, and its state changes are not tracked
by the Entity Manager and synchronized with the database.
 Chapter 10. Persistence using the Java Persistence API 457

You typically use this type of Entity Manager in two scenarios:

� In Java SE environments, where you want to access a persistence context
that is stand-alone, and not propagated along with the JTA transaction across
the EntityManager references for the given persistence unit

� Inside a Java EE container, when you want to gain fine-grained control over
the EntityManager life cycle

10.1.6 JPA Manager Bean

JPA Manager Beans are service beans, which act as facades or controllers over
a particular JPA entity. They encapsulate and abstract all of the data access code
for creating, updating, deleting, and displaying information from your database
using JPA entities. JPA Manager Beans map in a one-to-one relationship to a
JPA entity. For the Account entity, you can create a JPA Manager Bean named
AccountManager, which contains all of the data access logic needed to work with
the Account entity.

JPA Manager Beans are a programming model that is ideal for use in two-tier
web environments. JPA Manager Beans act in a role that is similar to the role of a
session bean in an EJB environment. That means all of the business logic
related to an entity is performed by the JPA Manager Bean.

JPA entities do not need to reside in the same project as the JPA Manager
Beans. For example, your JPA entities can exist in a JPA Utility project, and you
can generate JPA Manager Beans for those entities inside of a web project.

To generate a JPA Manager Bean, you have to perform the following steps:

1. Right-click the JPA project or JPA enabled project and select JPA Tools
Add JPA Manager Beans.

2. The JPA Manager Bean Wizard opens and shows the Available JPA Entities.
Select the entities for which to create manager beans.

a. You have the additional functionality to create or edit a JPA entity by using
Create New JPA Entities or Edit Selected Entities.

b. Select all JPA entities with Select All or select at least one of the listed
JPA entities.

3. Click Next.

4. In the next window, configure the tasks for each entity:

a. Check the task Named Queries. To define or edit a named query, you
have to launch the Entity Configuration Wizard.
458 Rational Application Developer for WebSphere Software V8 Programming Guide

b. In the Other tab, review the possible ways of generating JPA Managers:

i. Select I want to manage the persistence unit myself if you run your
application outside of a managed environment, for example, a plain
JSP or a Java application.

ii. Select I want the container to inject the persistence unit into my
beans to generate JPA Manager Beans with annotations that use the
Web container to inject resources and manage the beans. This option
allows you to run your application in a managed resource, such as a
JavaServer Faces managed bean.

5. Click Finish.

The created JPA Manager Beans are located in the controller package and can
be used for your purposes. We use the generated JPA Manager Beans, for
example, for the development of web services, as shown in Chapter 14,
“Developing web services applications” on page 681.

The JPA Manager Beans can be generated in various ways depending on
whether they need to be used in a Java SE application or in a Java EE container,
and if they have to be exposed as RPC Adapter services or used in JSF
applications. For more information about the meaning of the options in the Other
task, see this website:

http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/co
m.ibm.etools.webtoolscore.doc/topics/tjpaconfigmgrbeanother.html

10.1.7 Java Persistence Query Language

You use the Java Persistence Query Language (JPQL) to define searches
against persistent entities independently of the mechanism used to store those
entities. JPQL is portable and not constrained to any particular data store.

The JPQL is an extension of the EJB query language and is designed to combine
the syntax and simple query semantics of SQL with the expressiveness of an
object-oriented expression language. The following steps show how JQPL is
used in JPA:

1. The application creates an instance of the javax.persistence.EntityManager
interface.

2. The EntityManager creates an instance of the javax.persistence.Query
interface through its public methods, for example, createNamedQuery.

3. The Query instance executes a query to read or update entities.

Example 10-8 on page 460 shows a simple query that retrieves all the Customer
entities from the database.
 Chapter 10. Persistence using the Java Persistence API 459

http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/com.ibm.etools.webtoolscore.doc/topics/tjpaconfigmgrbeanother.html

Example 10-8 Create query getAllCustomers

EntityManager em = ...
Query q = em.createQuery("SELECT c FROM Customer c");
List<Customer> results = (List<Customer>)q.getResultList();

A JPQL query has an internal namespace declared in the from clause of the
query. Arbitrary identifiers are assigned to entities so that they can be referenced
elsewhere in the query. In the query in Example 10-8, the identifier c is assigned
to the Customer entity.

The where condition is used to express a logical condition. Example 10-9 shows
how to define a where condition.

Example 10-9 Create query getCustomerBySSN

EntityManager em = ...
Query q = em.createQuery("SELECT c FROM Customer c

where c.ssn='111-11-1111'");
List<Customer> results = (List<Customer>)q.getResultList();

JPA 2.0 supports new retrieving definitions according to the resultList, which will
be created from the query. These are definitions, such as retrieving the first result
and specifying the maximum size of the resultList.

Query types
Query instances are created using the methods exposed by the EntityManager
interface. Table 10-4 describes the methods and their use.

Table 10-4 Creating a query instance

Method name Description

createQuery(String qlString) Create an instance of Query for executing a JPQL
statement.

createNamedQuery
(String name)

Create an instance of Query for executing a named
query (in the JPQL or in native SQL).

createNativeQuery
(String sqlString)

Create an instance of Query for executing a native
SQL statement, for example, for update or delete.

createNativeQuery
(String sqlString,
 Class resultClass)

Create an instance of Query for executing a native
SQL query that retrieves a single entity type.
460 Rational Application Developer for WebSphere Software V8 Programming Guide

As a result of the new Criteria API, described in 10.1.8, “Criteria API” on
page 464, there are new methods provided by the EntityManager interface.

Table 10-4 on page 460 includes these new methods to have a complete
overview of methods provided by the EntityManager interface. They are
separated in the second part of the table.

Operators
JPQL provides several operators. The following operators are most often used:

� Logical operators: NOT, AND, OR

� Relational operators: =, >, >=, <, <=, <>, [NOT] BETWEEN, [NOT] LIKE,
[NOT] IN, IS [NOT] NULL, IS [NOT] EMPTY, [NOT] MEMBER [OF]

� Arithmetic operators: +, -, /, *

Within JPA 2.0, the JQPL is enhanced with CASE expressions NULLIF and
COALESCE.

createNativeQuery
(String sqlString,
 String resultSetMapping)

Create an instance of Query for executing a native
SQL query statement that retrieves a result set with
multiple entity instances.

New methods as a result of the new Criteria API

createQuery
(CriteriaQuery<T>,
 criteriaQuery)

Create an instance of TypedQuery for executing a
criteria query.

createQuery
 (Class<T> resultClass)

Create a CriteriaQuery object with the specified
result type.

createQuery
(String sqlString,
 Class<T> resultClass)

Create an instance of TypedQuery for executing a
JPQL statement.
The select list of the query must contain only a
single item, which must be assignable to the type
specified by the resultClass argument.

createNamedQuery
(String sqlString,
 Class<T> resultClass)

Create an instance of TypedQuery for executing a
JPQL named query.

Method name Description
 Chapter 10. Persistence using the Java Persistence API 461

Named queries
JPQL defines two types of queries:

� Dynamic queries

These queries are created at run time.

� Named queries

These queries are intended to be used in contexts where the same query is
invoked several times. Their major benefits include the improved reusability of
the code, minor maintenance effort, and finally, better performance because
they are evaluated one time.

Defining a named query
Named queries are defined by using the @NamedQuery annotation. Example 10-10
shows the definition of a named query.

Example 10-10 NamedQuery with positional parameter

@Entity
@Table (schema="ITSO", name="CUSTOMER")
@NamedQuery(name="getCustomerBySSN",

query="select c from Customer c where c.ssn = ?1")
public class Customer implements Serializable {
 ...
}

The name attribute is used to identify the named query uniquely. The query
attribute defines the query. We can see how this syntax resembles the syntax
used in JDBC code with jdbc.sql.PreparedStatement statements.

Instead of a positional parameter (?1), the same named query can be expressed
by using a named parameter, as shown in Example 10-11.

Example 10-11 NamedQuery with named parameter

@NamedQuery(name="getCustomerBySSN",
query="select c from Customer c where c.ssn = :ssn")

Completing a named query
Named queries must have all their parameters specified before being executed.
The javax.persistence.Query interface exposes two methods:

� public void setParameter (int position, Object value)
� public void setParameter (String paramName, Object value)

Example 10-12 on page 463 show a complete example that uses a named query.
462 Rational Application Developer for WebSphere Software V8 Programming Guide

Example 10-12 Use of named query

EntityManager em = ...
Query q = em.createNamedQuery ("getCustomerBySSN");
q.setParameter(1, "111-11-1111");
//q.setParameter("ssn", "111-11-1111"); // for named parameter
List<Customer> results = (List<Customer>)q.getResultList();

Defining multiple named queries
If an entity has more than one named query, the named queries are placed inside
an @NamedQueries annotation, which accepts an array of one or more
@NamedQuery annotations. Example 10-13 shows the definition of queries from
the Customer table.

Example 10-13 Define multiple named queries

@NamedQueries({
@NamedQuery(name="getCustomers",

query="select c from Customer c"),
@NamedQuery(name="getCustomerBySSN",

query="select c from Customer c where c.ssn =:ssn"),
@NamedQuery(name="getAccountsBySSN",

query="select a from Customer c,
in(c.accounts) a

where c.ssn =:ssn order by a.accountNumber")
})

Relationship navigation
Relations between objects can be traversed by using a Java-like syntax. This
syntax is shown in Example 10-14.

Example 10-14 Use relationship

SELECT t FROM Transaction t WHERE t.account.id = '001-111001'

There are other ways to use queries to traverse relationships. For example, if the
Account entity has a property called transacts that is annotated as an
@OneToMany relationship, this query retrieves all the Transaction instances of one
Account. Example 10-15 shows this use.

Example 10-15 Named query for OneToMany relationship

@NamedQuery(name="getTransactionsByID",
 query="select t from Account a,

in(a.transacts) t where a.id =:aid order by t.transTime")
 Chapter 10. Persistence using the Java Persistence API 463

10.1.8 Criteria API

The JPA Criteria API is a new feature in Version 2.0 of JPA. The defined queries
can be verified for syntactical correctness at compile time. Furthermore, the JPA
Criteria API is used to define queries through the construction of object-based
query definition objects. JQPL, which is described in 10.1.7, “Java Persistence
Query Language” on page 459, uses the string-based approach. With this
string-based approach, it is not possible to verify the syntactical correctness at
compile time.

The syntax of the Criteria API is designed to allow the construction of an
object-based query “graph”, whose nodes correspond to the semantic query
elements. The definition in this section corresponds to the “Criteria API” chapter
in the JPA specification JSR 317: Java Persistence API, Version 2.0.

A criteria query is constructed through the creation and modification of a
javax.persistence.criteria.CriteriaQuery object. To construct these
CriteriaQuery objects, you use the CriteriaBuilder interface. The
CriteriaBuilder implementation is accessed through the getCriteriaBuilder
method of the EntityManager or EntityManagerFactory interface. Example 10-16
shows the definition of a CriteriaBuilder.

Example 10-16 Create CriteriaBuilder

EntityManager em = ...;
CriteriaBuilder cb = em.getCriteriaBuilder();

A CriteriaQuery object is created by the method createQuery or the
createTupleQuery method of the CriteriaBuilder interface. A CriteriaQuery
object is typed according to its expected result type when the CriteriaQuery
object is created. The creation of a CriteriaQuery object, with the result type
Customer, is shown in Example 10-17.

Example 10-17 Create CriteriaQuery

CriteriaBuilder cb = ...
CriteriaQuery<Customer> q = cb.createQuery(Customer.class);

A criteria query is executed by passing the CriteriaQuery object to the
createQuery method of the EntityManager interface to create a TypedQuery
object, which can then be passed to one of the query execution methods of the
TypedQuery interface.

The preceding description shows how to create the most important elements of
the Criteria API, which are the CriteriaBuilder and the CriteriaQuery classes. The
CriteriaBuilder provides an entry point into the API and delivers various factory
464 Rational Application Developer for WebSphere Software V8 Programming Guide

methods for constructing queries. The CriteriaQuery class is a container for
holding and assembling query elements.

Example 10-18 shows the creation of the CriteriaQuery for the query to select
one certain customer with ssn = "111-11-1111", as defined before with JPQL in
the example in “Completing a named query” on page 462.

Example 10-18 CriteriaQuery for getCustomerBySSN

//select c from Customer c where c.ssn = "111-11-1111";
CriteriaBuilder criteriaBuilder = entityManager.getCriteriaBuilder();
CriteriaQuery<Account> criteriaQuery =
criteriaBuilder.createQuery(Customer.class);
Root<Customer> root = criteriaQuery.from(Customer.class);
Predicate predicate =

criteriaBuilder.gt(root.get(Customer_.ssn), "111-11-1111");
criteriaQuery.where(predicate);
TypedQuery<Account> typedQuery =

entityManager.createQuery(criteriaQuery);
List<Customer> resultList = typedQuery.getResultList();
assertTrue(resultList.size() == 1);

To specify the parameters, the Predicate object is used to store the parameters
in this object. The Predicate object is the parameter for the method where of the
CriteriaQuery object, as shown with criteriaQuery.where(predicate). The
method createQuery with the parameter CriteriaQuery of the EntityManager
object is used to create the TypedQuery object, which delivers the resultList.

The metamodel class can either be generated by means of an annotation
processor, or they can be accessed dynamically when using the
javax.persistence.metamodel.Metamodel interface. Therefore, the
EntityManager provides the method getMetamodel. For more details of the
metamodel, see 6.2 “Metamodel” in the JPA specification JSR 317: Java
Persistence API, Version 2.0.

Rational Application Developer provides the support for generating the canonical
metamodel. For enabling an automatic generation, you need to set the source
folder in the Canonical metamodel pane of the Java Persistence properties area.

Canonical metamodel classes: For the creation of the Predicate object, the
canonical metamodel class of the Customer class, Customer_ is used. These
canonical metamodel classes are produced for every managed class in your
persistence unit.
 Chapter 10. Persistence using the Java Persistence API 465

To configure the source folder for the metadata of the Criteria API, perform the
following steps (possible after creation of JPA project, defined in 10.2, “Creating a
JPA project” on page 469):

1. Right-click the RAD8JPA project and choose Properties.

2. Choose Java Persistence in the navigation section of the Properties for the
RAD8JPA window.

3. In the Canonical metamodel (JPA 2.0) pane, set .apt_generated as the
Source folder and click Apply.

4. Click OK.

A detailed description of JPA Criteria API examples is given in 8.2.2 “Samples” in
Getting Started with the Feature Pack for OSGi Applications and JPA 2.0,
SG24-7911.

For more information, refer to Chapter 6, “Criteria API”, in JSR 317: Java
Persistence API, Version 2.0 and Chapter 8, “JPA Criteria API”, in Getting
Started with the Feature Pack for OSGi Applications and JPA 2.0, SG24-7911.

10.1.9 Persistence provider

Persistence providers are implementations of the JPA specification and can be
deployed in the Java EE-compliant application server that supports JPA
persistence.

WebSphere Application Server has two built-in JPA persistence providers:

� JPA for WebSphere Application Server persistence provider
� Apache OpenJPA persistence provider

If an explicit provider element is not specified in the persistence unit definitions,
the application server uses the default persistence provider, which is the JPA for
WebSphere Application Server persistence provider.

JPA for WebSphere Application Server persistence provider
While built from the Apache OpenJPA persistence provider, the JPA for
WebSphere Application Server persistence provider contains the following
enhancements:

� Statement batching support
� Version ID generation
� ObjectGrid cache plug-in support
� WebSphere product-specific commands and scripts
� Translated message files
466 Rational Application Developer for WebSphere Software V8 Programming Guide

Apache OpenJPA persistence provider
WebSphere Application Server provides the Apache OpenJPA persistence
provider to support the open source implementation of JPA and allows for easy
migration of existing OpenJPA applications to the application server’s solution for
JPA.

For further information, see the information center documentation:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/
com.ibm.websphere.jpafep.multiplatform.doc/info/ae/ae/tejb_defjpadataso
urce.html

10.1.10 JPA 2.0 enhancements

This section provides a summary of the enhancements that come with Version
2.0 of JPA. Several of these features were already present as provider-specific
extensions in JPA 1.x. With JPA 2.0, they are portable between providers. The
following enhancements are available:

� Bean validation

JPA 2.0 covers the optional integration of Bean Validation. In section 3.6 of
JSR 317: Java Persistence API, Version 2.0, the support of Bean Validation in
JPA 2.0 is defined in detail.

� Criteria API

As discussed in 10.1.8, “Criteria API” on page 464, the base for the Criteria
API is a metamodel generated from the application’s domain entities. The
metamodel is used at development time for defining queries, which later allow
the compiler to perform syntax checks during compile time.

� Access type

With JPA 2.0, the restriction that access types within an entity or even an
entity hierarchy cannot be mixed is removed. The new @Access annotation
allows you to have a combination of both field-based and property-based
access types within the same entity.

� Extended map

With JPA 2.0, the support for the mapping has been enhanced. It is possible
to contain any combination of basic types, embeddables, or entities as keys or

OpenJPA applications: WebSphere Application Server’s JPA 2.0 solution is
built on OpenJPA, but all OpenJPA functions, extensions, and configurations
are unaffected by the WebSphere Application Server extensions, independent
of the chosen provider. You do not need to make changes to OpenJPA
applications to use these applications in WebSphere Application Server.
 Chapter 10. Persistence using the Java Persistence API 467

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.jpafep.multiplatform.doc/info/ae/ae/tejb_defjpadatasource.html

values. Therefore, the new annotations @MapKeyColumn, @MapKeyClass, and
@MapKeyJoinColumn are defined.

� Orphan removal

The persistence provider can optionally manage the relationships between
parent and child entities automatically in one-to-one and one-to-many
relationships. When the orphanRemoval attribute is set to true, there is no
need to specify cascade=REMOVE on the same relation because it is implied by
the orphanRemoval attribute.

� Derived identity

The relationship definitions for the primary key have this new functionality.
This functionality allows the developer to directly define the identity either by
an attribute of another related entity or even as a composition of attributes of
both the source entity and the related entity.

� Nested embedding

The limitation that only basic relationships are allowed in an embeddable,
nested embeddables, or embeddables holding entities has been removed,
and now nested embeddables, as well as relations to other entities, are
supported.

� New collection mappings

The collection is enhanced to hold, in addition to entities, embeddables and
primitives. Therefore, the new annotations @ElementCollection and
@CollectionTable are defined.

� Unidirectional one-to-many mapping

In JPA 1.x, the directly unidirectional one-to-many relationship was not
supported. In JPA 2.0, this problem is resolved and eliminates the limitation
with a new annotation @JoinColumn, as described in “Using the @JoinColumn
annotation” on page 450.

� Ordered list mapping

In one-to-many and many-to-many relationships, as well as on element
collections, the new annotation @OrderColumn is used that the persistence
provider automatically manages the order of the list.

� Pessimistic logging

In JPA 1.x, only optimistic locking is supported. Now the service for
pessimistic locking scenarios is provided. The locking modes
PESSIMISTIC_READ, PESSIMISTIC_WRITE, and
PESSIMISTIC_FORCE_INCREMENT have been added in JPA 2.0.
468 Rational Application Developer for WebSphere Software V8 Programming Guide

� Standard properties

With JPA 1.x, properties related to the persistence.xml configuration file are
vendor-specific. With JPA 2.0, the most common properties have now been
standardized:

– javax.persistence.jdbc.driver
– javax.persistence.jdbc.url
– javax.persistence.jdbc.user
– javax.persistence.jdbc.password

� API enhancements

Various changes are available for the API in several areas, such as
EntityManager, EntityManagerFactory, queries, and cache issues. For
detailed information, see section 3.2.13 “API enhancements” in Getting
Started with the Feature Pack for OSGi Applications and JPA 2.0,
SG24-7911.

� JPQL enhancements

As mentioned in 10.1.7, “Java Persistence Query Language” on page 459,
there is a lot of updated functionality in the JPQL, such as the support for one
or more entity types in a query and new syntax support for the CASE function.

For additional information, see Chapter 3, “Introduction to JPA 2.0”, in Getting
Started with the Feature Pack for OSGi Applications and JPA 2.0, SG24-7911.

10.2 Creating a JPA project

There are multiple ways to create a JPA project:

� Create a new JPA project
� Adding JPA support to an existing project
� Converting a Java project to a JPA project

We discuss these options in this section.

10.2.1 Setting up the ITSOBANK database

The JPA entities are based on the ITSOBANK database. Therefore, we must define
a database connection within Rational Application Developer that the mapping
tools use to extract schema information from the database.

See “Setting up the ITSOBANK database” on page 1880 for instructions about
how to create the ITSOBANK database. For the JPA entities, we can either use the
DB2 or Derby database. For simplicity, we use the built-in Derby database in this
 Chapter 10. Persistence using the Java Persistence API 469

chapter. Additionally, you have to create a connection to the database ITSOBANK,
as described in 9.2.2, “Creating a connection to the ITSOBANK database” on
page 395.

JPA Tools can automatically create a data source in the enhanced EAR. You can
use the context menu that is available on the JPA project (JPA Tools
Configure project for JDBC Deployment) or as described at this website:

http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/co
m.ibm.servertools.doc/topics/tjpaautv7.html

10.2.2 Create a new JPA project

To create a new JPA project, you open the Java EE perspective and perform
these steps:

1. Within the Enterprise Explorer view, right-click and select New Project.

2. In the New Project wizard, select JPA JPA Project and click Next.

3. In the New JPA Project wizard, in the JPA Project window, as shown in
Figure 10-1 on page 471, define the project details:

a. For Project name, type RAD8JPA.

b. Select Use default location (selected by default) for Project location.

c. For Target Runtime, select WebSphere Application Server v8.0 Beta.

d. For Configuration, select Minimal JPA 2.0 Configuration.

e. Clear Add project to an EAR.

In case you plan to use this JPA project later within the EJB project, we
suggest that you add the JPA project to an EAR file by selecting “Add
project to an EAR”.

f. Clear Add project to working sets.

g. Click Next.
470 Rational Application Developer for WebSphere Software V8 Programming Guide

http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/com.ibm.servertools.doc/topics/tjpaautv7.html

Figure 10-1 New JPA Project wizard

4. Define your src folder in the next window:

a. The default folder is src. You can create an additional folder by using Add
Folder.

b. Click Next without adding a new folder.

5. In the New JPA Project wizard in the JPA Facet window, as shown in
Figure 10-2 on page 473, define the database details:

a. For Platform, select RAD JPA 2.0 Platform.

b. For JPA implementation, select Type Library Provided by Target
Runtime.
 Chapter 10. Persistence using the Java Persistence API 471

c. For Connection, select ITSOBANKderby. If the connection is not active,
click Connect.

d. Clear Add driver library to build path.

e. Select Override default schema from connection and select Schema
ITSO.

f. For persistent class management, select Discover annotated classes
automatically.

g. Select Create mapping file (orm.xml).

h. Click Finish.
472 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 10-2 JPA Facet window

6. When prompted to switch to the JPA perspective, click Yes.

The RAD8JPA project is created. The Technology Quickstart page opens with the
title “Help for JPA application development”.
 Chapter 10. Persistence using the Java Persistence API 473

The following files are created in the src/META-INF folder:

� An empty orm.xml file that can be used for explicit mapping of entities to
database tables and to define the schema name

� A persistence.xml file that defines a persistence unit, in our case RAD8JPA, as
shown in Example 10-19

Example 10-19 Persistence-unit name definition

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0"

xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">

<persistence-unit name="RAD8JPA">
</persistence-unit>

</persistence>

This persistence.xml file will hold the persistent entity classes when the files
are created.

10.2.3 Adding JPA support to an existing project

If you have an existing project, you can add JPA support to this faceted project by
adding the Java Persistence project facet. It is necessary to have a faceted
project, because you cannot add JPA support to a plain Java project. In case you
have a Java Project, you must use the functionality to convert a Java project to a
JPA project, which is described in 10.2.4, “Converting a Java project to a JPA
project” on page 475.

A dynamic web project and an EJB project are faceted projects, for example. A
project facet is a specific unit of functionality that you can add to a project when
that functionality is required. When a project facet is added to a project, it can
add natures, builders, class path entries, and resources to a project, depending
on the characteristics of the particular project.

To add JPA support to your existing project, you select this project in the Package
Explorer view and perform the following steps:

1. Click Project Properties in the main menu, and the Properties page
opens.

2. Click the Project Facets property.

3. In the list of project facets, select JPA and Version 2.0 and then click Apply.
The Java Persistence 2.0 facet is added to your project.
474 Rational Application Developer for WebSphere Software V8 Programming Guide

4. Click OK, and the Properties page closes.

Within a web project, the persistence.xml file is created in the newly created
folder for JPA Content. The persistence.xml file describes the definition of the
persistence unit with the name of your selected project, as shown in
Example 10-19 on page 474.

10.2.4 Converting a Java project to a JPA project

You can convert a plain Java project to a JPA project. You enable a Java project
for JPA with the following steps. First, you have to prepare your class that you
want to convert to a JPA entity bean:

1. Open the Java source file with the Java editor.

2. Add one of the following JPA annotations before the class declaration:

– @Entity
– @Embeddable
– @Mappedsuperclass

When you have added one of the annotations, you can see a problem in this line
and a light bulb beside the annotation that you typed. You have to perform the
following steps to resolve this problem:

1. Click the Quick Fix icon or press Ctrl+1 to view the suggestion to resolve this
problem.

2. Select the first suggestion and click Add WebSphere Application Server
JPA support.

3. The Add WebSphere Application Server JPA support page opens, as shown
in Figure 10-3 on page 476, and you have to select the runtime environment
and the version of JPA:

a. To define the Targeted Runtime, select WebSphere Application Server
v8.0 Beta.

b. For Java Persistence Version, select 2.0.

4. Click OK and the JPA support is added to your project.
 Chapter 10. Persistence using the Java Persistence API 475

Figure 10-3 Add WebSphere Application Server JPA support window

The update of your project is complete, and the appropriate import statement for
javax.persistence.Entity is added to the class file. Additionally, the
persistence.xml file is created, and the class file is added to this
persistence.xml file. Your project is converted to a JPA project and needs
further configuration steps.

Your class file still shows a problem from adding the annotation @Entity, because
an entity needs the definition of a primary key attribute. To resolve this problem,
you can add the @Id annotation to one of your existing properties or create a new
property as a definition of the primary key. This behavior and the definition of @Id
annotations are described in “Using @Id annotation” on page 446.

Switch to the JPA Development perspective to finish creating the new JPA entity
bean, and create additional entities as needed. To change the perspective in the
main menu, select Window Open Perspective JPA.

10.3 Creating JPA entities

In this section, we develop the JPA entities in multiple ways:

� Creating a new JPA entity with the wizard
� Creating a JPA entity when adding persistence to a POJO
� Generating JPA entities from database tables

Additionally, we show how to use JPA tools to generate data definition language
(DDL) files for 10.3.3, “Generating database tables from JPA entities” on
page 483.
476 Rational Application Developer for WebSphere Software V8 Programming Guide

10.3.1 Creating a new JPA entity with the wizard

To a create a JPA entity with the wizard, you select the source folder
/RAD8JPA/scr and right-click. Then you perform the following steps:

1. Select New Other.

2. In the New wizard, select JPA Entity and click Next.

3. In the New JPA Entity wizard, in the JPA Project window, as shown in
Figure 10-4 on page 478, define the entity’s details:

a. For Project name, select RAD8JPA.

b. For Source Folder, use default value /RAD8JPA/scr, as already defined.

c. For Java Package, enter itso.bank.entities.

d. For Class name, type Customer.

e. For Inheritance, select Entity.

f. For XML entity mappings, select Add to entity mappings in XML.
The mapping file META-INF/orm.xml is defined.

g. Click Next.
 Chapter 10. Persistence using the Java Persistence API 477

Figure 10-4 New JPA Entity wizard

4. In the New JPA Entity wizard in the Entity Properties window, as shown in
Figure 10-5 on page 479, define the entity’s properties:

a. For Entity name, the value is predefined with Customer, which is the value
of the Class name defined before.

b. For Table name, select Use default. The Table name is same as the Entity
name Customer.

c. For Entity fields, define new fields using Add:

i. Type ssn for the name and Integer as Type.

ii. For at least one field that you define here, you have to select it as Key
in the first row. Select ssn as Key.

iii. You can define as many fields as you want within this step.

d. For Access type, select Field and click Next.
478 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 10-5 JPA Entity Properties window

5. In the New JPA Entity wizard in the Select Class Diagram for Visualization
window, select Add bean to Class Diagram:

– You can select the default classdiagram.dnx file or another already
defined class diagram of your project.

– You can define a new diagram by using New.

6. Click Finish.

If you see problems in your newly created JPA entity, select Project Clean to
start a rebuild from scratch of your project. After this process, your new JPA entity
is available without problems.

The Customer JPA entity is created and has to be mapped with the following
steps:

1. Open the JPA perspective by clicking Window Open Perspective JPA.
 Chapter 10. Persistence using the Java Persistence API 479

2. Double-click the Customer class in the Package Explorer view to show the
Customer class name in the JPA Structure view.

3. In the JPA Details view, click here within the following sentence:

“Type 'Customer' is not mapped, click here to change mapping type.”

4. Select Entity in the list of Mapping items and click OK.

As result of these steps, in the Customer class, the @Entity annotation is defined
over your class definition.

You can use these newly created JPA entities for top-down mapping. Using the
JPA tools, you can generate DDL files for creating database tables from entity
beans. We describe this method in 10.3.3, “Generating database tables from JPA
entities” on page 483.

10.3.2 Creating a JPA entity when adding persistence to a POJO

In this section, we create a JPA entity when adding persistence to a POJO.
Therefore, two scenarios are possible. For the first scenario, we assume that a
Java object Account already exists in your JPA project. You can use the JPA
project, which we created in 10.3.1, “Creating a new JPA entity with the wizard”
on page 477, to define the Customer JPA entity. Perform the following steps to
create an Account JPA entity and to add persistence to the POJO Account:

1. Open the JPA perspective by clicking Window Open Perspective JPA.

2. Right-click the orm.xml file in the JPA project in the Package Explorer view
and select Open with Object Relational Mapping XML Editor.

3. Select Entity Mappings in the Overview pane, as shown in Figure 10-6 on
page 481.
480 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 10-6 Object Relational Mapping XML Editor: Add Class

4. Right-click in the JPA Structure view to get the Add Class option, as shown in
Figure 10-6.

5. Click Add Class.

6. The Add Class window opens, as shown in Figure 10-7, and you have to
define the Account class. You have two options:

– You type Account or use Browse to get a view to select your Account
class.

– For Map as, select Entity.

Click OK.

Figure 10-7 Add Class Account
 Chapter 10. Persistence using the Java Persistence API 481

As a result, you see the Account class in the JPA Structure view. There is one
problem to resolve, because the Account class has no primary key defined so far.
Therefore, perform the following steps:

1. In the JPA Structure view, right-click the property id of your added class
Account, as shown in Figure 10-8.

2. Click Add Attribute to XML and Map. Follow these steps:

a. The Add Attribute window opens. Select Map as ID.

b. Click OK.

Figure 10-8 Object Relational Mapping XML Editor: Add Attribute

The already existing POJO Account is now a JPA entity.

For the second scenario, see the description in 10.2.4, “Converting a Java project
to a JPA project” on page 475, when you add persistence to a plain Java project,
while adding persistence to a plain Java class. If your project is already
JPA-enabled and you perform the first steps, as defined in 10.2.4, “Converting a
Java project to a JPA project” on page 475:

� Open the Java source file, in this case, your Account class with the Java
editor.

� Add the @Entity JPA annotation before the class declaration.

After you have added the annotation, you can see a problem in this line and a
light bulb beside the annotation you typed.
482 Rational Application Developer for WebSphere Software V8 Programming Guide

You have to perform the following steps to resolve this problem:

1. Click the Quick Fix icon or press Ctrl+1 to view the suggestion to resolve this
problem.

2. Select the first suggestion and click Import ‘Entity’ (javax.persistence).

Because you have created an entity with these steps, you have to define a
primary key by adding the @Id annotation to your existing property id. This @Id
annotation needs to be imported, as well. To organize imports, select Source
Organize Imports, or press Ctrl+Shift+O.

10.3.3 Generating database tables from JPA entities

In the top-down mapping approach, you start with entity beans and use them to
create your database tables. You start from nothing with the entity definitions and
the object relational mappings and then you derive database schemas from that
data. If you use this approach, you are most likely concerned with creating the
architecture of your object model and then writing your entity classes. These
entity classes eventually drive the creation of your database model. If you are
using a top-down mapping of the object model to the relational model, develop
the entity classes and then use the JPA tools’ DDL generation capability to create
the database tables that are based on the entity classes.

The process of mapping database tables top down from JPA entity beans
requires several steps. Therefore, we assume that the following prerequisites
exist:

� A JPA project or enabled JPA support in an appropriate project exists.
� Created JPA entities exist. You can use the entities that were created in

10.3.1, “Creating a new JPA entity with the wizard” on page 477 and 10.3.2,
“Creating a JPA entity when adding persistence to a POJO” on page 480 as a
basis to create a DDL file for a JPA project.

To generate the DDL, right-click the JPA project in the Package Explorer view
and select JPA Tools Generate Tables from.

In the META-INF directory of your JPA project, the file named Table.ddl is
created. You can use the Table.ddl file to generate the tables for your entity
beans in the database.

10.3.4 Generating JPA entities from database tables

This bottom-up mapping was provided in Rational Application Developer V7.5
and has been improved in Rational Application Developer V8.0. We generate the
JPA entities from the ITSOBANK database into the plain JPA project. We use these
 Chapter 10. Persistence using the Java Persistence API 483

entities for additional steps, such as 10.3.5, “Adding business logic” on page 492
and 10.3.6, “Adding named queries” on page 494. To create the entities, perform
the following steps:

1. In the Project Explorer, right-click the RAD8JPA project and select JPA
Tools Generate Entities from Tables.

2. In the Generate Custom Entities wizard in the Select Tables window, as
shown in Figure 10-9, define the connection, schema, and tables:

a. For Connection, select ITSOBANKderby.

b. For Schema, select ITSO.

c. To select the four tables, click Select All.

d. Select Update class list in persistence.xml so that the generated
classes are added to the file and click Next.

Figure 10-9 Generate Custom Entities: Select Tables window
484 Rational Application Developer for WebSphere Software V8 Programming Guide

3. In the Generate Custom Entities wizard in the Table Associations window, two
associations are defined, as shown in Figure 10-10. Do not change the
definition. Click Next.

Figure 10-10 Generate Custom Entities: Table Associations window

4. In the Generate Custom Entities wizard in the Customize Default Entity
Generation window, as shown in Figure 10-11 on page 486, we define the
table mapping and the package name:

a. For the Table mapping definition, select Key generator none.

b. For Entity access, select Field.

c. For Associations fetch, select Default.

d. For Collection properties type, select java.util.List.

e. Clear Always generate optional JPA annotations and DDL
parameters.

f. For Source folder, select RAD8JPA/src.

g. For Package type, select itso.bank.entities and click Next.
 Chapter 10. Persistence using the Java Persistence API 485

Figure 10-11 Generate Custom Entities: Customize Default Entity Generation

5. In the Generate Custom Entities wizard in the Customize Individual Entities
window, as shown in Figure 10-12 on page 487, define the class name:

a. Select TRANSACT in the Tables and columns pane.

b. Class name is defined, by default, with TRANSACT. Overwrite the class
name and type Transaction. You only need to change the name of this
class.

c. Key generator is defined by the default, none, because we defined none in
the Default Entity Generation window.
486 Rational Application Developer for WebSphere Software V8 Programming Guide

d. For Entity access, select Field, because we defined Field in the Default
Entity Generation window.

Figure 10-12 Generate Custom Entities: Customize Individual Entities window

6. Click Finish.

The itso.bank.entities package with three classes is generated, and the three
classes are added to the persistence.xml file.

Generated JPA entities
Let us study the generated entities.
 Chapter 10. Persistence using the Java Persistence API 487

Account entity
Example 10-20 shows an extract of the Account class.

Example 10-20 Account entity

package itso.bank.entities;

import java.io.Serializable;
import java.math.BigDecimal;
import java.util.List;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.JoinColumn;
import javax.persistence.JoinTable;
import javax.persistence.ManyToMany;
import javax.persistence.OneToMany;

@Entity
public class Account implements Serializable {

@Id
private String id;

private BigDecimal balance;

@OneToMany(mappedBy="account")
private List<Transaction> transacts;

@ManyToMany
@JoinTable(

joinColumns=@JoinColumn(name="ACCOUNT_ID"),
inverseJoinColumns=@JoinColumn(name="CUSTOMER_SSN"))

private List<Customer> customers;

......
// contructor, getter, setter methods

Note the following points:

� The @Entity annotation defined the class as an entity.

� The @Id annotation defines id as the primary key.

� The @OneToMany annotation defines the 1:m relationship with Transaction.
The mapping is defined in the Transaction entity. A List<Transaction> field
holds the related instances.
488 Rational Application Developer for WebSphere Software V8 Programming Guide

� The @ManyToMany and @JoinTables annotations define the m:m relationship
with Customer, including the two join columns. A List<Customer> field holds
the related instances. We have to add the name of the relationship table
(ITSO.ACCOUNT_CUSTOMER). You will add this name in “Completing the entity
classes” on page 490.

Customer entity
Example 10-21 shows an extract of the Customer class.

Example 10-21 Customer entity

import;

@Entity
public class Customer implements Serializable {

@Id
private String ssn;

private String title;

@Column(name="FIRST_NAME")
private String firstName;

@Column(name="LAST_NAME")
private String lastName;

@ManyToMany(mappedBy="customers")
private List<Account> accounts;

......
// constructor, getter, setter methods

Note the following points:

� The @Entity annotation defined the class as an entity.

� The @Id annotation defines ssn as the primary key.

� The @Column annotation maps the fields to a table column if the names do not
match. By convention, column names with underscores (FIRST_NAME) create
good Java field names (firstName).

� The @ManyToMany annotation defines the m:m relationship with Account. The
mapping is defined in the Account entity.

Transaction entity
Example 10-22 on page 490 shows an extract of the Transaction class.
 Chapter 10. Persistence using the Java Persistence API 489

Example 10-22 Transaction entity

@Entity
@Table(name="TRANSACT")
public class Transaction implements Serializable {

@Id
private String id;
@Column(name="TRANS_TYPE")
private String transType;

@Column(name="TRANS_TIME")
private Timestamp transTime;

private BigDecimal amount;

@ManyToOne
private Account account;
......
// constructor, getter, setter methods

Note the following points:

� The @Entity annotation defined the class as an entity.

� The @Table annotation defines the mapping to the TRANSACT table. The
schema name (ITSO) is missing. The other two classes have no @Table
annotation, because the entity name is identical to the table name.

� The @Id annotation defines id as the primary key.

� The @Column annotation maps the fields to a table column if the names do not
match.

� The @ManyToOne annotation defines the m:1 relationship with Account. The
mapping defaults to account_id as the column name.

Completing the entity classes
The generated entities are missing the table mapping, such as ITSO.CUSTOMER.
Without explicit mapping, default table names are assumed, and these default
names have the current user ID as the schema name. Make these changes:

� For the Account entity, we add the @Table annotation to the entity. Within the
many-to-many relationship, we add the schema to the @JoinTable
annotation, as shown in Example 10-23.

Example 10-23 Complete Account class with @Table annotation

@Entity
@Table (schema="ITSO", name="ACCOUNT")
490 Rational Application Developer for WebSphere Software V8 Programming Guide

public class Account implements Serializable {
......
@ManyToMany
@JoinTable(name="ACCOUNT_CUSTOMER", schema="ITSO",

joinColumns=@JoinColumn(name="ACCOUNT_ID"),
inverseJoinColumns=@JoinColumn(name="CUSTOMER_SSN"))

private List<Customer> customers;

� For the Customer entity, we add the @Table annotation, as shown in
Example 10-24.

Example 10-24 Complete Customer class with @Table annotation

@Entity
@Table (schema="ITSO", name="CUSTOMER")

public class Customer implements Serializable {
...
}

� For the Transaction entity, we add the schema to the @Table annotation, and
we add the @ForeignKey annotation to the relationship with Account, as
shown in Example 10-25.

Example 10-25 Complete Transaction class with schema in @Table annotation

@Entity
@Table(schema="ITSO", name="TRANSACT")
public class Transaction implements Serializable {

......
@ManyToOne
@ForeignKey

private Account account;
...
}

Resolve the missing import statement by selecting Source Organize
Imports.

Verifying the persistence.xml file
Open the persistence.xml file and verify that the three classes have been
added, as shown in Example 10-26.

Example 10-26 persistence.xml with new classes

<persistence version="2.0">
<persistence-unit name="RAD8JPA">
 Chapter 10. Persistence using the Java Persistence API 491

<class>
itso.bank.entities.Account</class>
<class>
itso.bank.entities.Customer</class>
<class>
itso.bank.entities.Transaction</class>

</persistence-unit>
</persistence>

10.3.5 Adding business logic

We want to add business logic, so that an account balance can only be changed
through a deposit or withdrawal of funds. In addition, a deposit or withdrawal
must create a transaction record.

Transaction class
To create transaction records, define the possible values for transaction type
(credit and debit) and add a constructor with parameters:

1. Define two constants in the Transaction class:

public static final String DEBIT = "Debit";
public static final String CREDIT = "Credit";

2. Add a constructor that sets the id to a universally unique identifier (UUID) and
the transTime to the current time stamp, as shown in Example 10-27.

Example 10-27 Transaction constructor

public Transaction(String transType, BigDecimal amount) {
super();
setId(java.util.UUID.randomUUID().toString());
setTransType(transType);
setAmount(amount);
setTransTime(new Timestamp(System.currentTimeMillis()));

}

Key for transaction objects: Transaction objects must have a unique key,
and the time stamp (transTime field) is not unique on fast machines.
Therefore, we create a UUID using a Java utility class.
492 Rational Application Developer for WebSphere Software V8 Programming Guide

Account class
First, we change the constructor to initialize the balance:

1. Open the Account class and change the code of the constructor:

public Account() {
super();
setBalance(new BigDecimal(0.00));

}

2. Make the setBalance method private, so that it cannot be used by clients:

private void setBalance(BigDecimal balance) {
this.balance = balance;

}

3. Add a processTransaction method that performs the credit or debit of funds
and creates a transaction instance, as shown in Example 10-28.

Example 10-28 Processing credit and debit transactions

public Transaction processTransaction
(BigDecimal amount, String transactionType) throws

Exception {
if (Transaction.CREDIT.equals(transactionType)) {

balance = balance.add(amount);
} else if (Transaction.DEBIT.equals(transactionType)) {

if (balance.compareTo(amount) < 0)
throw new Exception("Not enough funds for DEBIT of " +

amount);
balance = balance.subtract(amount);

} else
throw new Exception("Invalid transaction type");

Transaction transaction = new Transaction(transactionType,
amount);

transaction.setAccount(this);
return transaction;

}

Notice that the method verifies that enough funds are available for withdrawal
(debit). After adjusting the balance, a transaction instance is created, and the
account is set into the new transaction.

4. Resolve the missing imports by selecting Source Organize Imports or
pressing Ctrl+Shift+O.
 Chapter 10. Persistence using the Java Persistence API 493

10.3.6 Adding named queries

Named queries provide additional functionality, such as retrieving all the
instances of a class, or retrieving related instances by following a relationship
and sorting the results. When following the relationships through the generated
collection (List), the related instances can be in any order.

Named queries are based on the entity attributes, not on the column names in
the mapped table.

Customer class
For the Customer class, to retrieve all customers, retrieve a customer by Social
Security number (SSN), retrieve a customer by partial last name, and to retrieve
the list of accounts of a customer sorted by the account ID, follow these steps:

1. Open the Customer class.

2. Add an @NamedQueries annotation that defines four named queries for the
Customer, as shown in Example 10-29.

Example 10-29 Named queries for Customer

@Entity
@Table (schema="ITSO", name="CUSTOMER")
@NamedQueries({
 @NamedQuery(name="getCustomers",

query="select c from Customer c"),
 @NamedQuery(name="getCustomerBySSN",

query="select c from Customer c
where c.ssn =:ssn"),

 @NamedQuery(name="getCustomersByPartialName",
query="select c from Customer c

where c.lastName like :name"),
 @NamedQuery(name="getAccountsForSSN",

query="select a from Customer c, in(c.accounts) a
where c.ssn =:ssn order by a.id")

})
public class Customer implements Serializable {
...
}

The four queries enable these functions:

getCustomers Retrieve all customers

getCustomerBySSN Retrieve the customer for a given SSN, as an
alternative to the Entity Manager find method
494 Rational Application Developer for WebSphere Software V8 Programming Guide

getCustomerByPartialName
Retrieve a list of customers by partial last name

getAccountsForSSN Retrieve the accounts of one customer

The last query illustrates how to follow a relationship (accounts) from a
customer to the related accounts and sort them by their ID.

3. Always organize imports. Select Source Organize Imports or press
Ctrl+Shift+O.

Account class
In the Account class, add two named queries to retrieve the accounts for a
customer and to retrieve the transactions for an account. Both queries follow the
relationships defined in the Account class. Follow these steps:

1. Open the Account class.

2. Add two named queries for Account, as shown in Example 10-30.

Example 10-30 Named queries for Account

@Entity
@Table (schema="ITSO", name="ACCOUNT")
@NamedQueries({

@NamedQuery(name="getAccountsBySSN",
query="select a from Account a, in(a.customers) c

where c.ssn =:ssn order by a.id"),
 @NamedQuery(name="getTransactionsByID",

query="select t from Account a, in(a.transacts) t
where a.id =:aid order by t.transTime")

})
public class Account implements Serializable {
...
}

We use either the getAccountsForSSN query defined in the Customer class, or
the getAccountsBySSN query defined in the Account class, to retrieve the
accounts of a customer.

10.4 Creating a JPA Manager Bean

To create the JPA Manager Beans, we use the JPA project, which includes the
entities, created by the bottom-up method described in 10.3.4, “Generating JPA
entities from database tables” on page 483.
 Chapter 10. Persistence using the Java Persistence API 495

Perform the following steps to generate one JPA Manager Bean for each JPA
entity Account, Customer, and Transaction:

1. In the Project Explorer, right-click the RAD8JPA project and select JPA
Tools Add JPA Manager beans.

2. In the JPA Manager Bean Wizard window, as shown in Figure 10-13, the list
of Available JPA Entities is given. Click Select All to define the list of account,
customer, and transaction entities to use for JPA Manager Bean generation.
Click Next.

Figure 10-13 JPA Manager Bean Wizard

3. In the JPA Manager Bean Wizard in the Tasks window, as shown in
Figure 10-14 on page 497, you can define Query methods for each JPA
entity:

a. The previously defined NamedQueries are visible for the Account and
Customer entities.

b. The query methods can be Edit or Remove, or you can Add a new
method.
496 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 10-14 JPA Manager Bean Wizard: Tasks

4. In the Other tab, accept the default choice: I want to manage the
persistence unit myself, as shown in Figure 10-15 on page 498.
 Chapter 10. Persistence using the Java Persistence API 497

Figure 10-15 JPA Manager Tasks: Other

5. Click Finish without any change to the tasks.

The itso.bank.entities.controller package, with three classes
AccountManager, CustomerManager, and TransactionManager, is generated.

Be aware that the return value of method getTransactionsByID in
AccountManager has generated as Account. You have to change this value to
Transaction. The same change is necessary for method getAccountsForSSN in
CustomerManager. You have to change the return value from Customer to Account.

10.5 Visualizing JPA entities

A Unified Modeling Language (UML) diagram can visualize JPA entities and their
relationships. You can create entities from the diagram, or you can use the UML
diagram to visualize existing entities.
498 Rational Application Developer for WebSphere Software V8 Programming Guide

To create a UML class diagram from the generated JPA entities:

1. Right-click the RAD8JPA project and select New Class Diagram.
2. Accept the default name (classdiagram) and click Finish.
3. When prompted to enable modeling capabilities, click OK.
4. When the class diagram opens, expand the Palette and JPA drawer, as shown

in Figure 10-16.

Figure 10-16 Class diagram with JPA Palette

5. Drag the Customer class to the diagram, as shown in Figure 10-17 on
page 500.
 Chapter 10. Persistence using the Java Persistence API 499

Figure 10-17 Customer class visualized

Click the minus to
compress a compartment
500 Rational Application Developer for WebSphere Software V8 Programming Guide

6. Drag the Account and Transaction classes to the diagram. Select and drag
the <<use>> arrows to separate them, as shown in Figure 10-18.

Figure 10-18 JPA class diagram

7. Save and close the diagram.

10.6 Testing JPA entities

One benefit of JPA entities over container-managed persistence (CMP) beans is
that they can be tested outside of a WebSphere Application Server using a Java
class with a main method. JPA entities can also be tested using the JUnit
framework. See Chapter 26, “Testing using JUnit” on page 1365, for more
information about JUnit. Additionally, the Universal Test Client (UTC) can test the
entities. Therefore, the UTC uses the WebSphere Application Server JPA
containers to test the entities. You have to click the JPA Explorer in the UTC and
define the Persistence unit name, such as RAD8JPA for our example, as shown in
Figure 10-19 on page 502.
 Chapter 10. Persistence using the Java Persistence API 501

Figure 10-19 Universal Test Client: JPA Explorer to test JPA entities

In this section, we describe the approach to test the entities outside of a
WebSphere Application Server. Therefore, we create an independent project
called RAD8JPATest that links to the JPA project RAD8JPA. To run JPA outside of
the server, we must use the OpenJPA implementation and not the JPA
implementation of the server. This method requires making modifications to the
persistence.xml file, as defined in 10.6.4, “Setting up the persistence.xml file” on
page 508.

10.6.1 Creating the Java project for entity testing

To test the JPA entities, we use a simple Java project. Therefore, perform the
following steps to create it:

1. In the Java perspective, right-click in the Package Explorer and select New
Java Project.

2. In the Create a Java Project window, for Project name, type RAD8JPATest.
Accept all the defaults and click Next.

3. In the Java Settings window, select the Projects tab and click Add. Select the
RAD8JPA project and click OK.

4. Click Finish.

5. When prompted to switch to the Java perspective, click Yes.

10.6.2 Creating a Java class for entity testing

To create an EntityTester class with a main method, follow these steps:

1. Right-click the RAD8JPATest project and select New Class.
502 Rational Application Developer for WebSphere Software V8 Programming Guide

2. In the Java Class window, follow these steps:

a. For Package, type itso.bank.entities.test.

b. For Name, type EntityTester.

c. For Which method stubs would you like to create, select public static
void main(String[] args).

d. Click Finish.

The EntityTester class opens in the editor.

10.6.3 Setting up the build path for OpenJPA

Because this class runs outside of the server, you must add the required JPA and
server libraries to the build path:

1. Right-click the RAD8JPATest project and select Properties.

2. In the Properties window, in the left navigation pane, select Java Build Path.
In the right pane, select the Source tab. Change the output folder from
RAD8JPATest/bin to RAD8JPATest/src, as shown in Figure 10-20 on page 504.
Without this change, your created persistence.xml file cannot be found.
 Chapter 10. Persistence using the Java Persistence API 503

Figure 10-20 Java Build Path of Java project: Source tab
504 Rational Application Developer for WebSphere Software V8 Programming Guide

3. Select the Libraries tab, as shown in Figure 10-21, and click Add Variable.

Figure 10-21 Java Build Path of Java project: Libraries tab
 Chapter 10. Persistence using the Java Persistence API 505

4. In the New variable Classpath Entry window that is shown in Figure 10-22,
select ECLIPSE_HOME and click Extend.

Figure 10-22 Extending a variable

Relative references through variables
are more flexible than references to
external JAR files.
506 Rational Application Developer for WebSphere Software V8 Programming Guide

5. In the Variable Extension window that is shown in Figure 10-23, expand
runtimes base_v8_stub lib, select j2ee.jar, and click OK.

Figure 10-23 Selecting a runtime JAR file

e. If you have no stand-alone WebSphere Application Server installed, you
have to repeat this sequence by extending the ECLIPSE_HOME variable
and select the following JAR files:

• runtimes/base_v7/derby/lib/derby.jar
• runtimes/base_v8_stub/plugins/com.ibm.ffdc.jar
• runtimes/base_v8_stub/plugins/com.ibm.ws.jpa.jar
• runtimes/base_v8_stub/plugins/com.ibm.ws.prereq.commons-collecti

ons.jar
 Chapter 10. Persistence using the Java Persistence API 507

6. Click Add External JARs in your already selected the Libraries tab. Select
the com.ibm.ws.jpa.thinclient_8.0.0.jar library, which is available in your
WebSphere Application Server installation folder, for example,
C:\Programs\IBM\WebSphere\AppServer\runtimes. Click Open.

Now the Libraries tab shows the additional JAR files, as shown in
Figure 10-24.

Figure 10-24 Library tab with extra JAR files

7. Click OK to close the Properties window and save changes.

10.6.4 Setting up the persistence.xml file

The persistence.xml file is used to configure the OpenJPA implementation.
Because we want to use the RAD8JPA project later in the WebSphere Application

Licensing: Make sure that you check the license condition before
you use these JAR files:

� runtimes/base_v7/derby/lib/derby.jar
� runtimes/base_v8_stub/plugins/com.ibm.ffdc.jar
� runtimes/base_v8_stub/plugins/com.ibm.ws.jpa.jar
� runtimes/base_v8_stub/plugins/com.ibm.ws.prereq.commons-col

lections.jar

If you define these JAR files, you have to skip step 4. Step 4
describes how to add the external
com.ibm.ws.jpa.thinclient_8.0.0.jar, which is included in the
WebSphere Application Server environment.
508 Rational Application Developer for WebSphere Software V8 Programming Guide

Server server, we do not want to change that file. We can create a similar file in
the RAD8JPATest project, so that it overwrites the file in the RAD8JPA project:

1. Right-click the src folder in the RAD8JPATest project and select New
Folder. For Folder name, type META-INF and click Finish.

2. Copy the persistence.xml file from the RAD8JPA project to the META-INF folder
of the RAD8JPATest project.

3. Open the persistence.xml file.

4. In the editor, which is shown in Example 10-31, complete the following
actions:

a. Add transaction-type to the <persistence-unit> tag.

b. Remove the <jta-data-source> tag.

c. Add a <provider> tag.

d. Add four properties to set up the connection to the ITSOBANK database and
for logging.

Example 10-31 Persistence.xml file for OpenJPA

<?xml version="1.0" encoding="UTF-8"?>
<persistence>
<persistence-unit name="RAD8JPA"
transaction-type="RESOURCE_LOCAL">

<provider>org.apache.openjpa.persistence.PersistenceProviderImpl
</provider>
<class>itso.bank.entities.Account</class>
<class>itso.bank.entities.Customer</class>
<class>itso.bank.entities.Transaction</class>
<properties>

<property name="openjpa.ConnectionURL"
 value="jdbc:derby:C:\7835code\database\derby\ITSOBANK"

/>
<property name="openjpa.ConnectionDriverName"
 value="org.apache.derby.jdbc.EmbeddedDriver" />
<property name="openjpa.ConnectionUserName" value="itso"

/>
<property name="openjpa.Log" value="none" />

</properties>
</persistence-unit>

</persistence>

You can copy and paste the code from the 7835code\jpa\test\persistence.xml
file.
 Chapter 10. Persistence using the Java Persistence API 509

10.6.5 Creating the test

To test the JPA entities, complete the main method in the EntityTester class, as
shown in Example 10-32:

1. Copy and paste the code from the 7835code\jpa\test\EntityTester.java
file.

2. Select Source Organize Imports.

3. Resolve the following items:

java.math.BigDecimal
javax.persistence.Query
itso.bank.entities.Transaction
java.util.List

Example 10-32 Testing JPA entities using a Java program

public class EntityTester {

static EntityManager em;

public static void main(String[] args) {
String customerId = "111-11-1111";
if (args.length > 0) customerId = args[0];
System.out.println("Entity Testing");
System.out.println("\nCreating EntityManager");
em = Persistence.createEntityManagerFactory("RAD8JPA")

.createEntityManager();

DB2 for JPA entries: To use DB2 for the JPA entities, add the following JAR
files to the Libraries page:

� <SQLLIB-HOME>/java/db2jcc.jar
� <SQLLIB-HOME>/java/db2jcc_license_cu.jarr

Change the JPA properties in the persistence.xml file:

<property name="openjpa.ConnectionURL"
value="jdbc:db2://localhost:50000/ITSOBANK" />

<property name="openjpa.ConnectionDriverName"
value="com.ibm.db2.jcc.DB2Driver" />

<property name="openjpa.ConnectionUserName" value="db2admin" />
<property name="openjpa.ConnectionPassword" value="<password>"/>
<property name="openjpa.Log" value="none" />
510 Rational Application Developer for WebSphere Software V8 Programming Guide

System.out.println("RAD8JPA EntityManager successfully
created\n");

em.getTransaction().begin();

System.out.println("\nAll customers: ");
Query query1 = em.createNamedQuery("getCustomers");
List<Customer> custList1 = query1.getResultList();
for (Customer cust : custList1) {

System.out.println(cust.getSsn() + " " + cust.getTitle() +
" "

+ cust.getFirstName() + " " +
cust.getLastName());

}
System.out.println("\nCustomers by partial name: a");
Query query2 =

em.createNamedQuery("getCustomersByPartialName");
query2.setParameter(name, "%a%");
List<Customer> custList2 = query2.getResultList();
for (Customer cust : custList2) {

System.out.println(cust.getSsn() + " " + cust.getTitle() +
" "

+ cust.getFirstName() + " " +
cust.getLastName());

}

System.out.println("\nRetrieve one customer: " + customerId);
Customer cust = em.find(Customer.class, customerId);
System.out.println(cust.getSsn() + " " + cust.getTitle() + " "

+ cust.getFirstName() + " " +
cust.getLastName());

List<Account> acctSet = cust.getAccounts();
System.out.println("Customer has " + acctSet.size() + "

accounts");
for (Account account : acctSet) {

System.out.println("Account: " + account.getId() + "
balance "

+ account.getBalance());
}
System.out.println

("\nRetrieve customer accounts sorted using named
query:");

Query query3 = em.createNamedQuery("getAccountsBySSN");
query3.setParameter(ssn, cust.getSsn());
List<Account> acctList = query3.getResultList();
 Chapter 10. Persistence using the Java Persistence API 511

for (Account account : acctList) {
System.out.println("Account: " + account.getId() + "

balance "
+ account.getBalance());

}

System.out.println("\nPerform transactions on one account: "
);

Account account = acctList.get(0);
System.out.println("Account: " + account.getId() + " balance "

+ account.getBalance());
Transaction tx = null;
try {
BigDecimal balance = account.getBalance();
tx = account.processTransaction(new BigDecimal(100.00),

"Credit");
em.persist(tx); // make insert persistent
System.out.println("Tx created: " + tx.getAccount().getId() +

" "
+ tx.getTransType() + " " + tx.getAmount() +

" "
+ tx.getTransTime() + " id " + tx.getId());

tx = account.processTransaction(new BigDecimal(50.00),
"Debit");

em.persist(tx);
System.out.println("Tx created: " + tx.getAccount().getId() +

" "
+ tx.getTransType() + " " + tx.getAmount() +

" "
+ tx.getTransTime() + " id " +

tx.getId());
tx = account.processTransaction(balance.add(new

BigDecimal(200.00)),
"Debit");

em.persist(tx);
} catch (Exception e) {

System.out.println("Transaction failed: " +
e.getMessage());

}

em.flush(); // make inserts persistent in the DB
em.refresh(account);// retrieve account again to access

transactions
512 Rational Application Developer for WebSphere Software V8 Programming Guide

System.out.println("\nAccount: " + account.getId() + " balance
"

+
account.getBalance());

Query query4 = em.createNamedQuery("getTransactionsByID");
query4.setParameter(aid, account.getId());
List<Transaction> transList = query4.getResultList();
System.out.println("Account has " + transList.size()

+" transactions");
for (Transaction tran : transList) {

System.out.println("Transaction: " + tran.getTransType() +
" "

+ tran.getAmount() + " " + tran.getTransTime() + " id "
+ tran.getId());

}
em.getTransaction().commit ();

}
}

Understanding the entity testing code
In the following sequence, we demonstrate how to work with entities:

1. We require an Entity Manager (em) for the RAD8JPA persistence unit:

static EntityManager em;
......
em = Persistence.createEntityManagerFactory("RAD8JPA")

.createEntityManager();

2. We start a transaction (this step is not required for read-only access):

em.getTransaction().begin();

3. We retrieve all the customers with the getCustomers named query. A named
query with multiple results returns a list:

Query query1 = em.createNamedQuery("getCustomers");
List<Customer> custList1 = query1.getResultList();

4. We use the Java EE 5 support for iterating through a list:

for (Customer cust : custList1) { }

5. We use the getCustomersByPartialName named query to retrieve customers
with the letter a in the last name. This query illustrates how to set a parameter
in the query:

Query query2 = em.createNamedQuery("getCustomersByPartialName");
uery2.setParameter(name, "%a%");
 Chapter 10. Persistence using the Java Persistence API 513

6. We use the accounts relationship in the Customer class to list the related
accounts. When we list the accounts, they are in any order:

List<Account> acctSet = cust.getAccounts();

7. We use the getAccountsBySSN named query to retrieve the related accounts
in sorted order:

Query query3 = em.createNamedQuery("getAccountsBySSN");
query3.setParameter(ssn, cust.getSsn());
List<Account> acctList = query3.getResultList();

8. We process the transactions on one account. The last transaction fails,
because the amount is larger than the balance:

tx = account.processTransaction(new BigDecimal(100.00), "Credit");
tx = account.processTransaction(new BigDecimal(50.00), "Debit");
tx = account.processTransaction(balance.add(new

BigDecimal(200.00)),"Debit");

9. We have to persist each new transaction:

em.persist(tx);

10.We want to retrieve the account and see all the transactions. The flush
method writes the updates to the database, and the refresh method
refreshes the account in memory:

em.flush(); // make inserts persistent in the DB
em.refresh(account);// retrieve account again to access transactions

11.We list the transactions of the account in time stamp sequence using the
getTransactionsByID named query. The returned transactions transacts are
in sequence:

Query query4 = em.createNamedQuery("getTransactionsByID");
query4.setParameter(aid, account.getId());
List<Transaction> transList = query4.getResultList();

12.We commit all the changes:

em.getTransaction().commit();

10.6.6 Running the JPA entity test

To run the test, follow these steps:

1. Make sure that the ITSOBANKderby connection is disconnected (with
Embedded Derby, you can only have one active connection to a database).
You can verify that the ITSOBANKderby connection is disconnected in the JPA
perspective, Data Source Explorer. If the connection is active, right-click the
connection and select Disconnect.
514 Rational Application Developer for WebSphere Software V8 Programming Guide

2. Right-click the EntityTester class and select Run As Java Application.

3. You receive error messages in the Console that the Customer class cannot be
found.

4. Select Run Run Configurations. You can find the EntityTester
configuration under Java Application.

5. Select the Arguments tab.

6. For Program arguments, type 333-33-3333 to work with the SSN of an existing
customer.

7. For VM arguments, type (use the installation directory) the following line:

-javaagent:C:/IBM/RAD8/runtimes/base_v8_stub/plugins/com.ibm.ws.jpa.
jar

Figure 10-25 on page 516 shows the run configuration arguments.

Java agents: OpenJPA includes a Java agent for automatically enhancing
persistent classes as they are loaded into the Java virtual machine (JVM).
Java agents are classes that are invoked prior to your application’s main
method. The OpenJPA agent uses JVM hooks to intercept all class loading
to enhance classes that have persistence metadata before the JVM loads
them.
 Chapter 10. Persistence using the Java Persistence API 515

Figure 10-25 Run configuration arguments

8. Click Apply and then click Run. The Console shows the output
(Example 10-33).

Example 10-33 Sample output of entity tester

Entity Testing

Creating EntityManager
RAD8JPA EntityManager successfully created

All customers:
111-11-1111 Mr Henry Cui
222-22-2222 Mr Craig Fleming
516 Rational Application Developer for WebSphere Software V8 Programming Guide

333-33-3333 Mr Rafael Coutinho
444-44-4444 Mr Salvatore Sollami
555-55-5555 Mr Brian Hainey
666-66-6666 Mr Steve Baber
777-77-7777 Mr Sundaragopal Venkatraman
888-88-8888 Mrs Lara Ziosi
999-99-9999 Mrs Sylvi Lippmann
000-00-0000 Mrs Venkata Kumari
000-00-1111 Mr Martin Keen

Customers by partial name: a
444-44-4444 Mr Salvatore Sollami
555-55-5555 Mr Brian Hainey
666-66-6666 Mr Steve Baber
777-77-7777 Mr Sundaragopal Venkatraman
999-99-9999 Mrs Sylvi Lippmann
000-00-0000 Mrs Venkata Kumari

Retrieve one customer: 333-33-3333
333-33-3333 Mr Rafael Coutinho
Customer has 3 accounts
Account: 003-333001 balance 10176.52
Account: 003-333002 balance 568.79
Account: 003-333003 balance 21.56

Retrieve customer accounts sorted using named query:
Account: 003-333001 balance 10176.52
Account: 003-333002 balance 568.79
Account: 003-333003 balance 21.56

Perform transactions on one account:
Account: 003-333001 balance 10176.52
Tx created: 003-333001 Credit 100 2010-10-15 07:22:14.656 id
94edf041-ccbc-4fec-b6e2-99231c5c88bb
Tx created: 003-333001 Debit 50 2010-10-15 07:22:14.671 id
0338af0f-1c27-4da0-b441-a56b91d4bc94
Transaction failed: Not enough funds for DEBIT of 10376.52

Account: 003-333001 balance 10226.52
Account has 14 transactions
Transaction: Debit 50.00 2010-10-12 13:35:55.89 id
55231b9f-facf-42e0-b924-ff685423b104
Transaction: Credit 100.00 2010-10-12 13:35:55.89 id
c0b5ff85-6a47-49bf-8084-9592620e6a47
 Chapter 10. Persistence using the Java Persistence API 517

Transaction: Credit 100.00 2010-10-12 13:36:48.281 id
f8054776-973e-4766-9df0-0d61cfcc7433
Transaction: Debit 50.00 2010-10-12 13:36:48.296 id
9640dad3-55ce-4ac5-a029-61cc2b8d687c
Transaction: Debit 50.00 2010-10-12 13:38:11.171 id
da1ea997-5e48-4f8a-830e-ad7cf68f0892
Transaction: Credit 100.00 2010-10-12 13:38:11.171 id
80762c74-b8a4-44ca-b0a3-cbe346e9af0f
Transaction: Credit 100.00 2010-10-13 08:13:18.359 id
782a4dec-3619-4325-9ee9-27247cb243e8
Transaction: Debit 50.00 2010-10-13 08:13:18.375 id
99385ec6-1134-45b2-92e4-91c2617edf85
Transaction: Debit 50.00 2010-10-13 08:34:17.265 id
c65a3228-879e-46fe-8599-5a16feeb12a9
Transaction: Credit 100.00 2010-10-13 08:34:17.265 id
d7ab6d70-756c-4bfc-a934-ce426f156c2b
Transaction: Debit 50.00 2010-10-13 09:49:43.718 id
c710cdc6-280a-4f9d-97ce-fe5cc9f5a7f6
Transaction: Credit 100.00 2010-10-13 09:49:43.718 id
978fac18-4aaf-4147-ba30-ed5f7c83ea07
Transaction: Credit 100 2010-10-15 07:22:14.656 id
94edf041-ccbc-4fec-b6e2-99231c5c88bb
Transaction: Debit 50 2010-10-15 07:22:14.671 id
0338af0f-1c27-4da0-b441-a56b91d4bc94

10.6.7 Displaying the SQL statements

You can configure the OpenJPA properties so that the SQL statements issued
against the database are displayed:

1. Open the persistence.xml file in project RAD8JPATest.

2. Change the openjpa.Log property to the value SQL=TRACE:

<property name="openjpa.Log" value="SQL=TRACE" />

3. Rerun the test by selecting Run Run History Entity Tester. You can
see the SQL statements:

– All customers:

SELECT t0.ssn, t0.FIRST_NAME, t0.LAST_NAME, t0.title FROM
ITSO.CUSTOMER t0
518 Rational Application Developer for WebSphere Software V8 Programming Guide

– Customers by partial last name:

SELECT t0.ssn, t0.FIRST_NAME, t0.LAST_NAME, t0.title FROM
ITSO.CUSTOMER t0 WHERE (t0.LAST_NAME LIKE ? ESCAPE '\')
[params=(String) %a%]

– Accounts of a customer:

SELECT t1.id, t1.balance FROM ITSO.ACCOUNT_CUSTOMER t0 INNER JOIN
ITSO.ACCOUNT t1 ON t0.ACCOUNT_ID = t1.id WHERE t0.CUSTOMER_SSN =
? [params=(String) 333-33-3333]

– Accounts of a customer sorted:

SELECT t0.id, t0.balance FROM ITSO.ACCOUNT t0 INNER JOIN
ITSO.ACCOUNT_CUSTOMER t1 ON t0.id = t1.ACCOUNT_ID INNER JOIN
ITSO.CUSTOMER t2 ON t1.CUSTOMER_SSN = t2.ssn WHERE
(t1.CUSTOMER_SSN = ?) ORDER BY t0.id ASC [params=(String)
333-33-3333]

– Perform a transaction:

INSERT INTO ITSO.TRANSACT (id, amount, TRANS_TIME, TRANS_TYPE,
ACCOUNT_ID) VALUES (?, ?, ?, ?, ?) [params=(String)
c77b2cb3-a4a6-4db3-bb27-22dec71b8bb2, (BigDecimal) 50,
(Timestamp) 2010-10-14 16:12:49.406, (String) Debit, (String)
003-999000777]

– Update the account balance after the transactions:

UPDATE ITSO.ACCOUNT SET balance = ? WHERE id = ?
[params=(BigDecimal) 10026.52, (String) 003-999000777]

– Transactions of an account:

SELECT t1.id, t1.ACCOUNT_ID, t1.amount, t1.TRANS_TIME,
t1.TRANS_TYPE FROM ITSO.ACCOUNT t0 INNER JOIN ITSO.TRANSACT t1 ON
t0.id = t1.ACCOUNT_ID WHERE (t0.id = ?) ORDER BY t1.TRANS_TIME
ASC [params=(String) 003-999000777]

To deactivate the trace, replace the value "SQL=TRACE" with the value "none".

10.6.8 Adding inheritance

Two types of transactions, credit and debit, are specified in the database table by
the TRANS_TYPE column, which became the transType field in the Transaction
class. In this section, we define two subclasses of Transaction, Credit and
Debit. We use single table inheritance, by mapping all three classes to one table.
The TRANS_TYPE column becomes the discriminator column, and the
transType field is deleted in the Transaction class.
 Chapter 10. Persistence using the Java Persistence API 519

Changing the Transaction class for inheritance
Inheritance is defined through three annotations:

@Inheritance Defines that inheritance is present
@DiscriminatorColumn Defines the discriminator column
@DiscriminatorValue Defines the value for each class

To define inheritance in the Transaction class, follow these steps:

1. Open the Transaction class.

2. Add the annotations @Inheritance and @DiscriminatorColumn and make the
class abstract, because there are no Transaction instances, only Credit and
Debit, as highlighted in Example 10-34.

Example 10-34 Set transaction abstract

@Entity
@Table(schema="ITSO", name="TRANSACT")
@Inheritance
@DiscriminatorColumn(name="TRANS_TYPE",

discriminatorType=DiscriminatorType.STRING, length=32)
public abstract class Transaction implements Serializable { ... }

The transType field is not part of the instances, after the matching column is
used as the discriminator column.

3. Remove or comment the transType field:

//@Column(name="TRANS_TYPE")
//private String transType;

4. Change the getTransType method to abstract (we still want to provide the
transType value to clients) and remove the setter:

public abstract String getTransType();
// public void setTransType(String transType) { }

5. Remove transType from the constructor, as shown in Example 10-35.

Example 10-35 Modify Transaction constructor

public Transaction(String transType, BigDecimal amount) {
super();
setId(java.util.UUID.randomUUID().toString());
setTransType(transType);
setAmount(amount);
setTransTime(new Timestamp(System.currentTimeMillis()));

}

520 Rational Application Developer for WebSphere Software V8 Programming Guide

Because you have changed the Transaction class, there is a problem in your
TransactionManager for the method getNewTransaction(), because it cannot
instantiate the type Transaction anymore. You delete the class
TransactionManager and create manager beans for Credit and Debit. We
describe the creation of these manager beans in “Creating Credit and Debit
manager beans” on page 524. First, you have to create the new classes Credit
and Debit, as described in following sections.

Adding the Credit subclass
The Credit class is a subclass of the Transaction class and is mapped to the
same ITSO.TRANSACT table. To add the Credit subclass, follow these steps:

1. Create a Credit class in the itso.bank.entities package as a subclass of
Transaction, as shown in Figure 10-26 on page 522:

a. Set the superclass to itso.bank.entities.Transaction.
b. Select Constructor from superclass and Inherited abstract methods.
c. Click Finish.
 Chapter 10. Persistence using the Java Persistence API 521

Figure 10-26 Creating the Credit class

2. Complete the code with annotations and implement the getTransType
method, as highlighted in Example 10-36.

Example 10-36 Credit class

@Entity
@Inheritance
@DiscriminatorValue("Credit")
public class Credit extends Transaction {

public Credit() {
super(new BigDecimal(0.00));

}
public Credit(BigDecimal amount) { super(amount); }
@Override
522 Rational Application Developer for WebSphere Software V8 Programming Guide

public String getTransType() {
return Transaction.CREDIT;

}
}

3. To resolve the warning that the class does not implement a serialVersionID,
click the warning marker and select Add default serial version ID.

Adding the Debit subclass
Repeat the sequence, as described in the previous section, and define the Debit
subclass, as shown in Example 10-37.

Example 10-37 Debit class

@Entity
@Inheritance
@DiscriminatorValue("Debit")
public class Debit extends Transaction {

private static final long serialVersionUID = 1L; //generated

public Debit() {
super(new BigDecimal(0.00));

}
public Debit(BigDecimal amount) {

super(amount);
}
@Override
public String getTransType() {

return Transaction.DEBIT;
}

}

Adding the Credit and Debit class to the persistence unit
Both new classes have to be added to the persistence unit, because as result of
adding the Credit and Debit class, you have two problems in your project. The
message is: “The class “Credit” is mapped, but is not included in any
persistence unit.” To resolve these problems, right-click the persistence.xml
file of the JPA project and select JPA Tools Synchronize classes. As result
of this feature, the new persistent classes in your JPA project are automatically
discovered and added to the persistence unit in the persistence.xml file.
 Chapter 10. Persistence using the Java Persistence API 523

Creating Credit and Debit manager beans
Perform the steps that are described in 10.4, “Creating a JPA Manager Bean” on
page 495 and right-click the RAD8JPA project and select JPA Tools Add JPA
Manager beans.

This time, you select the classes Credit and Debit, and the CreditManager and
DebitManager are created in the itso.bank.entities.controller package.

Changing the Account class to process transactions
The processTransaction method in the Account class shows an error, because
we create a Transaction instance. Now we must change the method to create
either a Credit or a Debit instance:

1. Open the Account class.

2. Change the processTransaction method, as shown in Example 10-38.

Example 10-38 Processing credit or debit transactions

public Transaction processTransaction(BigDecimal amount,
String transactionType) throws

Exception {
Transaction transaction = null;
if (Transaction.CREDIT.equals(transactionType)) {

balance = balance.add(amount);
transaction = new Credit(amount);

} else if (Transaction.DEBIT.equals(transactionType)) {
if (balance.compareTo(amount) < 0)

throw new Exception("Not enough funds for DEBIT of " +
amount);

balance = balance.subtract(amount);
transaction = new Debit(amount);

} else throw new Exception("Invalid transaction type");
transaction.setAccount(this);
return transaction;

}

Adding toString methods for printing
To facilitate the output when testing, especially with the Universal Test Client, add
toString methods to the classes:

1. Open the Account class and add the toString method:

public String toString() {
return "Account: " + getId() + " balance " + getBalance();

}

524 Rational Application Developer for WebSphere Software V8 Programming Guide

2. Open the Customer class and add the toString method:

public String toString() {
return "Customer: " + getSsn() + " " + getTitle() + " "

 + getFirstName() + " " + getLastName();
}

3. Open the Transaction class and add the toString method:

public String toString() {
return getTransType() + ": " + getAmount() + " at "

 + getTransTime() + " (" + getAccount().getId() + ")";
}

Testing inheritance
The EntityTester class shows no errors, and we can run the test unchanged by
selecting Run Run History EntityTester. However, if you run the test,
make sure that it works as before.
 Chapter 10. Persistence using the Java Persistence API 525

Adding inheritance to the class diagram
You can add the two subclasses to the class diagram by dragging them to the
diagram. Then rearrange the diagram for better visibility, as shown in
Figure 10-27.

Figure 10-27 Complete class diagram of JPA entities

10.7 Preparing the entities for deployment in the server

Later in this book, we access the JPA entities from EJB 3.1 session beans. To
access the JPA entities, we must configure the server with a data source for the
ITSOBANK database. We must also configure the persistence.xml file to specify
the JNDI name of the data source. The data source of the ITSOBANK database is
defined in “Configuring the data source in WebSphere Application Server” on
page 1882:

� For a user with DB2, we define data sources for both Derby and DB2. The
JNDI names are jdbc/itsobank and jdbc/itsobankdb2.

� We use jdbc/itsobank for the JPA entities. By changing the JNDI names in the
server, we can run with either database without changing the application
code.
526 Rational Application Developer for WebSphere Software V8 Programming Guide

Configuration in persistence.xml
In order for JPA to use the correct database at run time, we have to add the JNDI
name of the data source and the transaction type to the persistence.xml file of
the RAD8JPA project, as shown in Example 10-39.

Example 10-39 Define JNDI name in persistence.xml

<persistence>
<persistence-unit name="RAD8JPA" transaction-type="JTA">

<jta-data-source>jdbc/itsobank</jta-data-source>
<class>

......

Configuration in orm.xml
Additionally, we have to define the ITSO schema in our orm.xml file. Perform the
following steps:

1. Open orm.xml with Object Relational Mapping XML Editor.

2. Select Entity Mappings in the Overview pane and click Add.

3. In the Add Item window, select Persistence Unit Metadata, as shown in
Figure 10-28 on page 528, and click OK.

Alternative: For testing purposes, you can configure the data source in the
WebSphere Enhanced EAR editor of an enterprise application. We
describe this technique in 23.8.1, “Creating a data source in the Enhanced
EAR editor” on page 1262.
 Chapter 10. Persistence using the Java Persistence API 527

Figure 10-28 ORM XML Editor: Add Item

4. Select your added item, Persistence Unit Metadata, under Entity Mappings
in the Overview pane, and click Add.

5. In the Add Item window, select Persistence Unit Defaults and click OK.

6. Select your added item, Persistence Unit Defaults, under Persistence Unit
Metadata in the Overview pane and define the schema in the Details pane.
Type ITSO for Schema, as shown in Figure 10-29 on page 529.
528 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 10-29 Object Relational Mapping XML Editor: Schema ITSO

7. Save and close your orm.xml file.

Now your JPA project is ready to use for deployment in the server.

10.8 More information

� The JPA 2.0 is documented separately from the EJB 3.1 specification and is
available in JSR 317: Java Persistence API, Version 2.0 at the following
address:

http://jcp.org/en/jsr/summary?id=317

� Refer to Getting Started with the Feature Pack for OSGi Applications and JPA
2.0, SG24-7911, for information about the Feature Pack for JPA 2.0.

� Refer to the WebSphere Application Server V8 Beta Information Center for
detailed descriptions about JPA application development:

– http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.j
pa.doc/topics/c_jpa.html

– http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic
=/com.ibm.servertools.doc/topics/tjpaautv7.html

– http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic
=/com.ibm.etools.webtoolscore.doc/topics/tjpaconfigmgrbeanother.h
tml
 Chapter 10. Persistence using the Java Persistence API 529

http://jcp.org/en/jsr/summary?id=317
http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.jpa.doc/topics/c_jpa.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.jpa.doc/topics/c_jpa.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/com.ibm.servertools.doc/topics/tjpaautv7.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/com.ibm.servertools.doc/topics/tjpaautv7.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.jpa.doc/topics/c_jpa.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.jpa.doc/topics/c_jpa.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/com.ibm.etools.webtoolscore.doc/topics/tjpaconfigmgrbeanother.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/com.ibm.etools.webtoolscore.doc/topics/tjpaconfigmgrbeanother.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/com.ibm.etools.webtoolscore.doc/topics/tjpaconfigmgrbeanother.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/com.ibm.servertools.doc/topics/tjpaautv7.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/com.ibm.servertools.doc/topics/tjpaautv7.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/com.ibm.etools.webtoolscore.doc/topics/tjpaconfigmgrbeanother.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/com.ibm.etools.webtoolscore.doc/topics/tjpaconfigmgrbeanother.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/com.ibm.etools.webtoolscore.doc/topics/tjpaconfigmgrbeanother.html

530 Rational Application Developer for WebSphere Software V8 Programming Guide

Chapter 11. Developing applications to
connect to enterprise
information systems

Java EE Connector Architecture (JCA) plays a key role in the integration of
applications and data using open standards. In this chapter, we introduce JCA
and demonstrate by example how to access the operations and data on
enterprise information systems (EIS), such as CICS, IMS, SAP, Siebel,
PeopleSoft, JD Edwards, and Oracle, within the Java EE platform.

In addition, we explain how to develop Java Enterprise Edition (EE) applications
using Java EE Connector tools within Rational Application Developer.

The chapter is organized into the following sections:

� Introduction to Java EE Connector Architecture
� Application development for EIS
� Sample application overview
� CICS outbound scenario
� CICS channel outbound scenario
� SAP outbound scenario
� Monitoring inbound events for resource adapters
� More information

11
© Copyright IBM Corp. 2011. All rights reserved. 531

11.1 Introduction to Java EE Connector Architecture

JCA is a standard architecture for connecting enterprise information systems
(EISs), such as CICS, IMS, SAP, Siebel, PeopleSoft, JD Edwards, and Oracle.
JCA standardizes the way that Java EE application components, Java
EE-compliant application servers, and EIS resources interact with each other.
Resource adapters and application servers implement the contract defined in the
JCA specification. Resource adapters run in the context of the application server
and enable Java 2 Platform, Enterprise Edition (J2EE) application components to
interact with the EIS using a common client interface. JCA-compliant application
servers can support any JCA-compliant resource.

Figure 11-1 shows the Java EE component connected to an EIS through the JCA
resource adapter.

Figure 11-1 Java EE component connecting to EIS through JCA resource adapter

JCA was developed under the Java Community Process as Java Specification
Request (JSR) 16 (JCA 1.0) and JSR 112 (JCA 1.5), which is the current version.

11.1.1 System contracts

In this section, we present the major components of the JCA architecture. JCA
defines a standard set of system-level contracts between the Java EE application
server and a resource adapter. The application server and the resource adapter
connect and interact with each other by using the system contracts.

The JCA specification defines the following types of system contracts:

Connection management contract
Allows the application server to create a physical
connection to the EIS. It also provides a mechanism for
the application server to manage connection pooling.

Application Server

Java EE
Component

JCA Resource
Adapter

Enterprise Information
System
(EIS)
532 Rational Application Developer for WebSphere Software V8 Programming Guide

Transaction management contract
Provides transactional support that allows the EIS to
participate in a transaction. Transactions can be managed
by the application server’s transaction manager with
multiple EISs and other resources as participants.

Security contract Allows application components in an application server to
access the EIS securely. The security contract is an
extension of the connection management contract
implemented by adding Java Authentication and
Authorization Service (JAAS) into connection
management interfaces.

Life-cycle management contract
Allows the application server to manage the life cycle of
the resource adapter. It provides a mechanism for the
application server to start and shut down an instance of
the resource adapter.

Work management contract
Allows the resource adapter to submit work to the
application server for execution. The application server
dispatches a thread to handle the work. This contract is
optional.

Transaction inflow contract
Allows the EIS to propagate a transaction through the
resource adapter to the application server.

Message inflow contract
Allows the resource adapter to pass synchronous or
asynchronous inbound messages to message endpoints
on the application server.

Figure 11-2 on page 534 shows the integration between the EIS, application
server, and application component. These components are bound together by
using JCA contracts.
 Chapter 11. Developing applications to connect to enterprise information systems 533

Figure 11-2 System contract, application server, and resource adapter integration

To learn more about JCA Specification, visit the JCA specification website:

http://java.sun.com/j2ee/connector/download.html

11.1.2 Resource adapter

To achieve a standard system-level pluggability between application servers and
EISs, the JCA architecture defines a standard set of system-level contracts
between an application server and EIS as discussed in 11.1.1, “System
contracts” on page 532. The JCA resource adapter implements the EIS side of
these system-level contracts.

A JCA resource adapter is a system-level software driver used by an application
server or an application client to connect to an EIS. By plugging into an
application server, the resource adapter collaborates with the server to provide
the underlying mechanisms, transactions, security, and connection pooling
mechanisms. A JCA resource adapter is used within the address space of the
application server.

Rational Application Developer includes the following JCA resource adapters
along with JEE 6 adapters:

� CICS ECI adapter 8.0.0.0
� CICS ECI XA adapter 8.0.0.0

Application Server

Enterprise Information
System
(EIS)

Java EE Component

Transaction Manager

Security Manager

Connection Manager

Work Manager

JCA Resource
Adapter

Application Contract

System Contract

Life Cycle Management
Work Management
Connection Management
Transaction Management
Message Inflow Management

EIS Specific
Interface
534 Rational Application Developer for WebSphere Software V8 Programming Guide

http://java.sun.com/j2ee/connector/download.html

� IMS Transaction Manager (TM) resource adapter 10.4
� IMS TM resource adapter 11.2

JCA resource adapters support two-way communication between the Java EE
components and an EIS:

� Outbound communication is initiated by a J2EE component, which acts as a
client to access an EIS.

� Inbound communication is initiated by the EIS to notify a Java EE component,
which subscribed for events from that EIS. Inbound communications are
performed asynchronously using the messaging infrastructure that is
provided by the hosting application server as message providers.

Java EE components that use the resource adapter can co-reside with the
adapter on the same application server or operate remotely.

11.1.3 Common Client Interface

The Common Client Interface (CCI) is a standard API that allows application
components and Enterprise Application Integration (EAI) frameworks to interact
with the resource adapter. It provides a standard way for application components
to invoke functions on an EIS and get the returned results. The CCI is intended
for use by EAI and enterprise tools vendors. Therefore, WebSphere adapters use
CCI for outbound communication with an EIS.

11.1.4 WebSphere adapters

The WebSphere adapter portfolio is a new generation of adapters based on the
Java EE Platform, Enterprise Edition standard. A WebSphere adapter
implements the JCA specification 1.5. Also known as resource adapters or JCA
adapters, WebSphere adapters enable managed, bidirectional connectivity and
data exchange between a number of EIS resources, including PeopleSoft, SAP,
Siebel, JD Edwards, and Oracle.

Rational Application Developer includes the following versions of WebSphere
adapters:

� IBM WebSphere adapter for JD Edwards EnterpriseOne 6.2.0.x_IF01

� IBM WebSphere adapter for JD Edwards EnterpriseOne 7.0.0.0_IF02

� IBM WebSphere adapter for Oracle 6.2.0.x

� IBM WebSphere adapter for Oracle e-business suite 7.0.0.0_IF02

� IBM WebSphere adapter for PeopleSoft Enterprise 6.2.0.x

� IBM WebSphere adapter for PeopleSoft Enterprise 7.0.0.0_IF03
 Chapter 11. Developing applications to connect to enterprise information systems 535

� IBM WebSphere adapter for Sap Software 6.2.0.x

� IBM WebSphere adapter for Sap Software 7.0.0.0_IF04

� IBM WebSphere adapter for Sap Software with transaction support 6.2.0.x

� IBM WebSphere adapter for Sap Software with transaction support
7.0.0.0_IF04

� IBM WebSphere adapter for Siebel Business Applications 6.2.0.x

� IBM WebSphere adapter for Siebel Business Applications 7.0.0.0_IF03

When developing a custom JCA-compliant resource adapter, you can choose to
develop either the WebSphere type of resource adapter or the base JCA type of
resource adapter. WebSphere adapters are fully compliant with the JCA 1.5
specification and contain IBM extensions.

If you choose to develop an IBM WebSphere type of resource adapter, you can
use the services provided by the adapter foundation classes. You can extend the
generically implemented system contract classes to fit the needs of your custom
adapter. Your custom adapter can also use the built-in utility APIs to handle
common adapter tasks. Using adapter foundation classes significantly reduces
your development time and effort to create a custom adapter.

11.2 Application development for EIS

Rational Application Developer simplifies application development for EIS by
providing wizard-based tools and a list of ready to use adapters. This section
introduces these tools and their capabilities.

With the Java EE Connector tools, you can create Java EE applications running
on WebSphere Application Server to access operations and data on EIS. Java
EE Connector (J2C) tools offer the following qualities of service (QoS) that can
be provided by an application server:

� Security credential management
� Connection pooling
� Transaction management

These qualities of service are provided by means of system-level contracts
between a resource adapter provided by the connector (for example, CICS
Transaction Gateway or IMS Connect) and the application server.

More information: For more information about custom adapter development,
see WebSphere Adapter Development, SG24-6387.
536 Rational Application Developer for WebSphere Software V8 Programming Guide

11.2.1 Importers

IMS or CICS external call interface (ECI) transactions are often written in
COBOL, C, or PL/I. For a Java application to access these transactions through
J2C resource adapters, the data must be imported and mapped to Java data
structures. The importers are tools that deliver this data mapping. Three
importers are available for you to use in your application: C Importer, COBOL
Importer, and PL/I Importer. After you import a COBOL, C, or PL/I file into a
project, you can work with this data as you might with any data construct.

11.2.2 J2C wizards

Rational Application Developer provides J2C wizards with which you can create
J2C applications, either as stand-alone programs or as added functions to
existing applications. These wizards offer the following benefits:

� Dynamically import your selected resource adapter
� Help you to set the connection properties to connect to the EIS servers
� Guide you through the file importing and data mapping steps
� Facilitate the creation of Java classes and methods to access the transformed

source data

A typical J2C application consists of a J2C JavaBean with one or more methods
that call EIS functions. For CICS and IMS, the input and outputs to these
functions are data binding classes that are created by the CICS/IMS Java Data
Binding Wizard. When you have created a J2C JavaBean, you then can create
web pages, Enterprise JavaBeans (EJB), or a web service for the JavaBean.

To use the J2C wizard within Rational Application Developer, follow these steps:

1. Switch to the Java EE perspective.

2. Select File New Other J2C and select the J2C wizard that you want
to start (Figure 11-3).

Figure 11-3 J2C wizards
 Chapter 11. Developing applications to connect to enterprise information systems 537

The following wizards are available:

� CICS or IMS Java Data Binding: You can create the data binding classes on
their own. These classes are used in J2C methods that invoke CICS or IMS
functions.

� Command Bean: You can use this wizard (optionally) to expose selected
methods as a command bean.

� J2C Bean: You can use this wizard to create a JavaBean that communicates
with an EIS through JCA.

� Web page, web service, or EJB from J2C JavaBean: You can use this wizard
to create a Java EE resource that wraps the functionality provided by a J2C
JavaBean. For example, you can create JavaServer Pages (JSP) to deploy
the J2C bean on WebSphere Application Server. The Java EE resource types
available with this wizard are Simple JSP, Faces Web Page, EJB, and web
service.

� J2C Service Migration: You can use this wizard to migrate JCA applications
that were created in WebSphere Studio Application Developer Integration
Edition applications into Rational Application Developer projects.

11.3 Sample application overview

In this section, we show three sample applications that connect to separate types
of EISs (CICS and SAP) and illustrate outbound communication. We provide the
following examples:

� CICS outbound scenario
� CICS channel outbound scenario
� SAP outbound scenario

11.4 CICS outbound scenario

In this example, we expose a COBOL program as an EJB 3.1 session bean that
is invoked by a JavaServer Faces (JSF) JSP.

More information: For more information about the J2C wizard, see the
Rational Application Developer Information Center:

http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp
538 Rational Application Developer for WebSphere Software V8 Programming Guide

http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp

The product documentation contains related samples and tutorials that are used
as the starting point for this scenario:

� Tutorials Java Create a J2C application for a CICS transaction with the
same input and output

� Samples Technology Samples Java J2C Samples CICS adapter
samples Same input and outputs

11.4.1 Prerequisites

You must configure the CICS server and the CICS Transaction Gateway for this
example to work. This configuration is beyond the scope of this book. Obtain the
parameters required to connect to the CICS Transaction Gateway from your
CICS administrator. These parameters typically include the following types:

� URL
� Server name
� Port
� User name
� Password

The sample COBOL program, taderc9.cbl, is in the
<RAD_Install-SDPShared>/plugins/com.ibm.j2c.cheatsheet.content_7.0.110.
v20100921-2345/Samples/CICS/taderc99 directory.

This program must be installed on the CICS server. You must be able to query it
from a CICS Terminal (Figure 11-4) using the command:

CEMT INQ PROG(taderc99)

Figure 11-4 CICS Terminal showing the installed COBOL program taderc99.cbl

11.4.2 Creating the Java data binding class

With the CICS/IMS Java Data Binding wizard, you can create a class or set of
classes that map to COBOL, to C, or to PL/I data structures:

1. Select from the menu File New Other.
 Chapter 11. Developing applications to connect to enterprise information systems 539

2. In the Select a wizard window, click J2C CICS/IMS Java Data Binding
and click Next.

3. In the Data Import window, for Choose mapping, select COBOL to Java.
Click Browse and locate the taderc99.cbl file in the
<RAD_Install_SDPShared>\plugins\com.ibm.j2c.cheatsheet.content_7.0.1
10.v20100921-2345/Samples/CICS/taderc99 directory.

Example 11-1 shows the COBOL DFHCOMMAREA structure in taderc99.

Example 11-1 DFHCOMMAREA of COBOL program

01 DFHCOMMAREA.
 02 CustomerNumber PIC X(5).
 02 FirstName PIC A(15).
 02 LastName PIC A(25).
 02 Street PIC X(20).
 02 City PIC A(20).
 02 Country PIC A(10).
 02 Phone PIC X(15).
 02 PostalCode PIC X(7).

Click Next.

4. In the Importer window, set values for the platform, code page, and other
properties. For Data Structures, the default value DFHCOMMAREA is
preselected. Click Next.

5. In the Saving Properties window, complete the following steps:

a. For Project Name, select Taderc99. (Click New and create a new Java
project.)

b. For Package Name, type sample.cics.data.

c. For ClassName, change the default DFHCOMMAREA to CustomerInfo.

d. Click Finish.

Review the generated Java file CustomerInfo class. Notice that it implements
javax.resource.cci.Record. It also exposes getters and setters for all the fields
of DFHCOMMAREA (for example, getFirstName and setFirstName).

11.4.3 Creating the J2C bean

Follow these steps to create the J2C bean:

1. Select from the menu File New Other.

2. In the Select a wizard window, click J2C J2C Bean and click Next.
540 Rational Application Developer for WebSphere Software V8 Programming Guide

3. Select the resource adapter CICS ECIResourceAdapter (IBM: 8.0.0.0)
and click Next (Figure 11-5).

Figure 11-5 Selection of the resource adapter

This action imports the
<RAD_Install>/ResourceAdapters/cics15/cicseci8000.rar file.

4. In the Connector Import window, for Target Server, select WebSphere
Application Server 8.0 and click Next.

5. In Connection Properties (Figure 11-6 on page 542), complete these actions:

a. Clear Managed Connection.

b. Select Non-Managed Connection.

c. Enter the connection details, which are typically the Connection URL,
Server name, Port number, User name, and Password, as provided by
your CICS administrator.

d. Click Next.
 Chapter 11. Developing applications to connect to enterprise information systems 541

Figure 11-6 Connection Properties

6. In the J2C Java Bean Output Properties window, complete the following
steps:

a. For Project Name, enter Taderc99.
b. For Package name, enter sample.cics.
c. For Interface name, type Customer.
d. For Implementation Name, select CustomerImpl (automatically filled).
e. Click Next.

7. In the Java Methods window, click Add.

8. In the Java Method window (Figure 11-7 on page 543), complete the following
steps:

a. For Name, type getCustomer.

b. For Input type, click Browse and type cust to locate the CustomerInfo
class in the sample.cics.data package. The value becomes
/Taderc99/src/sample/cics/data/CustomerInfo.java.
542 Rational Application Developer for WebSphere Software V8 Programming Guide

c. Select Use the input type for output.

d. Click Finish.

Figure 11-7 Adding a new Java method to a J2C JavaBean
 Chapter 11. Developing applications to connect to enterprise information systems 543

9. Back in the Java Methods window (Figure 11-8), in the InteractionSpec
properties section, for Function name, enter taderc99 (this value must match
the name of the CICS program). You can see that the method getCustomer is
listed. Click Next.

Figure 11-8 InteractionSpec properties

10.On the Deployment Information window, click Finish.

A Customer interface and a CustomerImpl class are generated in the Taderc99
project. In addition, the cicseci8000 project is created. This project contains a
plug-in (j2c_plugin.xml) and a CICS resource adapter XML file (ra.xml).

11.4.4 Deploying the J2C bean as an EJB 3.0 session bean

From the J2C bean window, generate a session EJB:

1. Select File New Other.

2. In the Select a wizard window, select J2C Web page, Web Service or
EJB from J2C Java bean and click Next.

3. By default, the J2C bean implementation gets populated in the J2C Java bean
selection window (Figure 11-9 on page 545). If it does not, click Browse and
544 Rational Application Developer for WebSphere Software V8 Programming Guide

type cust to locate the CustomerImpl class
(\Taderc99\src\sample\cics\CustomerImpl.java). Click Next.

Figure 11-9 Generate an EJB from a J2C bean

4. In the Deployment Information window, select EJB. The target project
containing the J2C bean will be transformed into an EJB 3.0 project, and the
J2C bean class will be annotated as a session bean. Click Next.

5. In the Enterprise bean creation window (Figure 11-10), for the EAR project
name, click New and create a new EAR project by typing Taderc99Ear. For
Java Naming and Directory Interface (JNDI) name, type j2c/taderc99.
Accept the other values. Click Finish.

Figure 11-10 Generate an EJB from a J2C bean
 Chapter 11. Developing applications to connect to enterprise information systems 545

6. Open the CustomerImpl class and verify that the @Stateless annotation was
added:

@Stateless(mappedName="j2c/taderc99")
public class CustomerImpl implements sample.cics.Customer {

11.4.5 Generating a JSF client

Now generate a JSF client to test the EJB and the access to the CICS system.

Creating a web project and enterprise application
To create a web project and enterprise application, follow these steps:

1. Create a new dynamic web project:

a. For Project name, type Taderc99Web.
b. For Target Runtime, select WebSphere Application Server v8.0 Beta.
c. For Dynamic Web Module version, select 3.0.
d. For Configuration, modify JavaServer Faces v2.0 Project.
e. For EAR membership, select Taderc99Ear.
f. Click Finish.

2. Add the Taderc99 and cicseci8000 projects to the Java EE Module
dependencies list of the EAR project and of the web project:

a. Right-click Taderc99Ear and select Properties. In the Project references
window, select Taderc99 and cicseci8000 and click OK.

b. Right-click Taderc99Web and select Properties. In the Project references
window, select Taderc99 and cicseci8000 and click OK.

Creating a web page
Add a new web page called CustomerPage:

1. Right-click WebContent (in Taderc99Web) and select New Web Page.

2. For the Name, type CustomerPage. Select Basic Templates Facelet and
click Finish.

Creating a data component
To create a data component, complete these steps:

1. Look at the Page Data view. If you do not see a Services folder, click the
Create a new data component icon (). In the New data component
window, select Services and click OK.
546 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 11-11 New data component window

2. In the Page Data view, right-click Services and select New EJB Session
bean.

3. In the Add Session Bean window:

a. Click Add to open the Add EJB Reference window.

b. In the EJB Reference window (Figure 11-12 on page 548), select
Taderc99EAR Taderc99 CustomerImpl.

The Name becomes ejb/CustomerImpl.

c. For RefType, select Local.

d. Click Finish.
 Chapter 11. Developing applications to connect to enterprise information systems 547

Figure 11-12 Creation of an EJB reference in the web project

4. In the Add Session Bean window, in which the ejb/CustomerImpl service has
been added and the getCustomer method is selected (Figure 11-13), click
Finish.

Figure 11-13 Add Session Bean window
548 Rational Application Developer for WebSphere Software V8 Programming Guide

In the Page Data view (Figure 11-14), you can see the following items:

� A customer_GetCustomer method with an input Param Bean and an output
Result Bean, both of type sample.cics.data.CustomerInfo

� An action customer_GetCustomer.doAction

Figure 11-14 Page Data view with session bean

Creating the web page content
To create the web page content, follow these steps:

1. Expand customer_GetCustomer Param Bean arg.

2. Select customerNumber and drag it to the editor of the CustomerPage web
page.

3. When prompted for Configuring Data Controls, complete the following steps:

a. Select Inputting data.
b. Change the label to Customer number.
c. Click Options and verify that a Submit button is created.
d. Click Finish, and an Input Control and Button are added to the page.

4. Drag the action customer_GetCustomer.doAction from the Page Data view
to the Submit button.

5. Drag the Result Bean from the Page Data view to the editor. Drop it under the
Submit button.

6. When prompted for Configuring Data Controls, complete the following steps:

a. Select the fields that were present in DFHCOMMAREA (starting with
customerNumber).

b. Optional: Tailor the labels and the sequence.
 Chapter 11. Developing applications to connect to enterprise information systems 549

c. Click Finish.

7. Save and close the web page.

11.4.6 Running the JSF client

To run the JSF client, follow these steps:

1. Start WebSphere Application Server V8.0 Beta if it is not already started.

2. Add the Taderc99EAR enterprise application to the server.

3. Right-click CustomerPage.xhtml and select Run As Run on Server.

4. When prompted, select WebSphere Application Server v8.0 Beta.

5. Enter the customer number 44444 and click Submit.

The EIS system is invoked, and the customer information is returned
(Figure 11-15).

Figure 11-15 JSF output from calling a CICS system

11.5 CICS channel outbound scenario

In this example, we show how to create and execute the sample in the product
help under Samples Java J2C Samples CICS adapter samples
Same input and outputs.
550 Rational Application Developer for WebSphere Software V8 Programming Guide

We recreate this sample so that a JAX-WS web service can invoke it.

11.5.1 Creating the Java data binding for the channel and containers

Follow these steps to create the sample:

1. Select New Other.

2. In the Select a wizard window, select J2C CICS/IMS Java Data Binding.

3. In the Data Import window (Figure 11-16), for Choose Mapping, select
COBOL CICS Channel to Java. You see a message: “‘Containers’ cannot
be empty.” Next to the Containers area, click New.

Figure 11-16 Selecting the mapping COBOL CICS Channel to Java

4. In the new Data Import: Specify data import configuration properties window,
for Import File, browse to the sample COBOL file <SDPShared_dir>\plugins\
com.ibm.j2c.cheatsheet.content_7.0.110.v20100921-2345\Samples\CICS32
K\ec03.ccp. Then click Next.

5. In the Importer: Select a communication data structure window (Figure 11-17
on page 552), select DATECONTAINER, TIMECONTAINER,
INPUTCONTAINER, OUTPUTCONTAINER, and LENGTHCONTAINER.
Then click Finish.
 Chapter 11. Developing applications to connect to enterprise information systems 551

Figure 11-17 Discovery of the containers defined in the COBOL file

Other data structures are listed in the window. We made the selection to
create Java beans for the five containers that are defined in the COBOL file
(Example 11-2).

Example 11-2 Definition of containers in the COBOL file ec03.cpp

* Container names
 01 DATECONTAINER PIC X(16) VALUE 'CurrentDate'.
 01 TIMECONTAINER PIC X(16) VALUE 'CurrentTime'.
 01 INPUTCONTAINER PIC X(16) VALUE 'InputData'.
 01 OUTPUTCONTAINER PIC X(16) VALUE 'OutputMessage'.
 01 LENGTHCONTAINER PIC X(16) VALUE 'InputDataLength'.

6. In the Data Import window, which opens again, showing the five containers
listed, click Next.

7. In the Saving Properties window (Figure 11-18 on page 553), complete the
following steps:

a. For Project Name, click New.

b. In the New Source Project window:

i. Select Java project and click Next.
ii. For Name, type CICSChannel and click Finish.
552 Rational Application Developer for WebSphere Software V8 Programming Guide

c. Back in the Saving Properties window, for Package Name, type
sample.cics.data.

d. For Class Name, type EC03ChannelRecord.

e. For Channel Name, type InputRecord.

Figure 11-18 Defining the CICS Channel name and related class name

We can use an arbitrary channel name, because the COBOL file expects
to receive the channel name as input (Example 11-3).

Example 11-3 Channel name is expected in input in ec03.ccp

 * Get name of channel
 EXEC CICS ASSIGN CHANNEL(CHANNELNAME)
 END-EXEC.
 * If no channel passed in, terminate with abend code NOCH
 IF CHANNELNAME = SPACES THEN
 EXEC CICS ABEND ABCODE('NOCH') NODUMP
 END-EXEC
 END-IF.

f. Select the DATECONTAINER (Figure 11-19 on page 554) and enter the
following values:

i. For Package Name, accept sample.cics.data.
ii. For Class Name, type DateContainer.
 Chapter 11. Developing applications to connect to enterprise information systems 553

iii. For Container name, type CURRENTDATE.
iv. For Container type, select CHAR.

Figure 11-19 Defining the DATECONTAINER

g. Repeat this step for all of the other containers:

i. Select TIMECONTAINER. For Class Name, type TimeContainer, for
Container name, type CURRENTTIME, and for Container type, select
CHAR.

ii. Select INPUTCONTAINER. For Class Name, type InputContainer, for
Container name, type INPUTDATA, and for Container type, select CHAR.

iii. Select OUTPUTCONTAINER. For Class Name, type OutputContainer,
for Container name, type OUTPUTMESSAGE, and for Container type, select
CHAR.

iv. Select LENGTHCONTAINER. For Class Name, type LengthContainer,
for Container name, type INPUTDATALENGTH, and for Container type,
select CHAR.

You can choose the class names arbitrarily, but the names of the
containers must match those containers that are defined in the COBOL file
(Example 11-2 on page 552).

The window no longer shows any error messages.

h. Click Finish.

At this point, the CICSChannel connector project is generated with a
EC03ChannelRecord and five container classes in the sample.cics.data
package.

8. Close the editor of the EC03ChannelRecord class.
554 Rational Application Developer for WebSphere Software V8 Programming Guide

11.5.2 Creating the J2C bean that accesses the channel

To create the J2C bean, follow these steps:

1. Select File New Other.

2. In the Select a wizard window, expandJ2C J2C Bean and click Next.

3. Select the resource adapter CICS ECIResourceAdapter (IBM: 8.0.0.0)
cicseci8000 and click Next.

4. In the Connection Properties window (same as Figure 11-6 on page 542),
perform these tasks:

a. Clear Managed Connection.

b. Select Non-Managed Connection.

c. Enter the connection details provided by your CICS administrator, typically,
Connection URL, Server name, Port number, User name, and Password.

d. Click Next.

5. In the J2C Java Bean Output Properties window (Figure 11-20), complete the
following actions:

a. For Project name, accept CICSChannel.
b. For Package name, type sample.cics.
c. For Interface name, type Ec03.

The implementation name is now set to Ec03Impl. Click Next.

Figure 11-20 J2C Java Bean Output Properties for CICSChannel
 Chapter 11. Developing applications to connect to enterprise information systems 555

6. In the Java Methods window, complete the following actions:

a. Click Add.

b. In the Java Method window (Figure 11-21), complete these steps:

i. For Name, type invoke.
ii. For Input type, click Browse and select EC03ChannelRecord.
iii. Click Finish.

Figure 11-21 Adding a Java method with a channel record as input and output

The Java Methods window (Figure 11-22 on page 557) now lists the
invoke method.

c. In the InteractionSpec properties, for Function name, type EC03 (it must
match the name of the CICS program).

d. Click Next.
556 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 11-22 Specifying the function name in the InteractionSpec (COBOL)

7. Select the Create a Web page, Web Service, or EJB from the J2C bean
check box on the New J2C Bean window.

11.5.3 Developing a web service to invoke the COBOL program

In the Deployment Information window (Figure 11-23 on page 558), complete the
following actions:

1. Select the Web Service radio button.

The Learn more link toward the bottom of the window points to a product help
page. This page states that the code generated by the J2C bean tool does not
allow for serialization. Therefore, the bottom-up approach for web service
creation is not readily available.
 Chapter 11. Developing applications to connect to enterprise information systems 557

Figure 11-23 Link to online help in the Web Service wizard

2. Click Next.

3. In the Web Service Creation window, for the web project, click New and
create a web project named CICSChannelWeb, as shown in Figure 11-24 on
page 559.
558 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 11-24

4. Click Finish. The Ec03 interface and the Ec03Impl class are generated into
the CICSChannel project.

Using an alternative approach
In this simple case, create a JavaBean wrapper that encapsulates the more
complex types so that you can run a bottom-up code generation:

1. In the CICSChannel project, add an Ec03Wrapper class with the code shown in
Example 11-4.

Example 11-4 Ec03Wrapper.java

package sample.cics;

import javax.resource.ResourceException;

import sample.cics.data.EC03ChannelRecord;
import sample.cics.data.InputContainer;

public class Ec03Wrapper {

public String invoke(String in) throws ResourceException{
Ec03Impl test = new Ec03Impl();
InputContainer inputContainer = new InputContainer();
inputContainer.setInputContainer_inputcontainer(in);
EC03ChannelRecord inputRecord = new EC03ChannelRecord();
inputRecord.setInputContainer(inputContainer);
EC03ChannelRecord output = test.invoke(inputRecord);
return output.toString();
 Chapter 11. Developing applications to connect to enterprise information systems 559

}

}

2. Create a new dynamic web project called CICSChannelWeb associated with the
EAR CICSChannelEAR. (Use the default module Version 3.0 and the v8.0 target
server.)

3. In the Enterprise Explorer, expand CICSChannelEAR, right-click Modules,
and select Modify.

4. Select CICSChannel (listed as Utility JAR) and cicseci8000 (listed as
Module). Click OK.

5. Start WebSphere Application Server V8.0 Beta if it is not already running.

6. Right-click Ec03Wrapper.java (in CICSChannel) and select Web Services
Create Web service.
560 Rational Application Developer for WebSphere Software V8 Programming Guide

7. In the Web Service wizard (Figure 11-25), accept all the defaults and click
Next.

Figure 11-25 Web Service wizard

8. In the next window, select Generate WSDL file into the project (to see the
generated WSDL) and Generate Web Service Deployment Descriptor.

9. In the next window, accept all the default settings.

10.When you reach the last window in the wizard, click Finish.

In the Enterprise Explorer, CICSChannelWeb project (Figure 11-26 on page 562),
you see the following information:

� The Services node with Ec03WrapperService
 Chapter 11. Developing applications to connect to enterprise information systems 561

� The WSDL file (Ec03WrapperService.wsdl) under WEB-INF/wsdl, with an
associated XML schema (Ec03WrapperService_schema1.xsd)

� The web service deployment descriptor (webservices.xml)

Figure 11-26 Enterprise Explorer view after generating a bottom-up web service

The CICSChannelEAR enterprise application is deployed to the server.

11.5.4 Testing the web service with CICS access

To test the generated code, we use the Web Services Explorer:

1. Right-click Ec03WrapperService.wsdl and select Web Services Test
with Generic Services Client.

2. In the GSC Explorer (Figure 11-27 on page 563), complete the following
steps:

a. Select Edit Data Message Form.
562 Rational Application Developer for WebSphere Software V8 Programming Guide

b. For the arg parameter, select OUTPUTCONTAINER recordName.
c. Type Hello as the value.
d. Click Invoke.

3. The web service is invoked.

Figure 11-27 GSC Explorer

4. Click Source in the Status pane to see the SOAP messages. Example 11-5
shows the SOAP message result.

Example 11-5 Web service response (formatted for readability)

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Body>

<invokeResponse xmlns:ns2="http://cics.sample/">
<return>

sample.cics.data.EC03ChannelRecord@4f474f47
sample.cics.data.OutputContainer@5e905e90 Input data was:

Hello
sample.cics.data.InputContainer@5f005f00 Hello
sample.cics.data.LengthContainer@5f255f25 Buffer Size: 4

bytes
 Chapter 11. Developing applications to connect to enterprise information systems 563

00000010 00000000 00000000 00000000 |................|
</return>

</invokeResponse>
</soapenv:Body>
</soapenv:Envelope>

11.6 SAP outbound scenario

This sample demonstrates how to use the WebSphere SAP resource adapter to
create and retrieve information about an SAP system.

11.6.1 Required software and configuration

To complete the SAP adapter sample in this chapter, you must have the following
software installed:

� IBM Rational Application Developer V8.0 (required)

� J2EE Connector (J2C) tools

To install the J2C tools, follow these steps:

a. Open the Installation Manager. Click Modify and click Next.

b. In the Modify Packages page, select IBM Software Deliver Platform and
click Next.

c. In the Features list, select IBM Rational Application Developer for
WebSphere Software 8.0 and click Next.

d. On the Install Packages page, select Java EE Connector (J2C) Tools
Java EE Connector (J2C) Tools WebSphere Adapters.

e. Click Install.

� The following files:

– The sapjco.jar file
– The librfr32.dll file
– The sapjcorfc.dll file

Obtain these files from your SAP server administrator and add them to the
following directories:

– Copy the sapjco.jar file to the <WAS_DIR>\lib directory.

– Copy the librfr32.dll file to the <WAS_DIR>>\bin and
<WAS_DIR>\java\jre\bin directories.
564 Rational Application Developer for WebSphere Software V8 Programming Guide

– Copy the sapjcorfc.dll file to the <WAS_DIR>\bin and
<WAS_DIR>\java\jre\bin directories.

Note that <WAS_DIR> = <RAD_HOME>\runtimes\base_v8.

11.6.2 Creating a connector project and J2C beans

To create the SAP connector project and related J2C beans for creating and
retrieving information to and from the SAP system, follow these steps:

1. Open the Java EE perspective.

2. In the workbench, select File New Other.

3. In the Select a wizard window, click J2C J2C Bean.

4. In the New J2C Bean window (Figure 11-28), select IBM WebSphere
Adapter for SAP Software and click Next.

Figure 11-28 New J2C Bean: Resource Adapter Selection
 Chapter 11. Developing applications to connect to enterprise information systems 565

5. In the Connector Import window, complete the following actions:

a. In the Connector project field, type CWYAP_SAPAdapter.
b. For the Target server, select WebSphere Application Server v8.0 Beta.
c. Click Next.

6. In the Connector Settings window, for each file that is required to access the
SAP server, click Browse. Navigate to the sapjco.jar, librfc32.dll, and
sapjcorfc.dll files that we copied to the server folders. Click Next.

7. In the Adapter Style window (Figure 11-29), select Outbound and click Next.

Figure 11-29 New J2C Bean: Adapter Style
566 Rational Application Developer for WebSphere Software V8 Programming Guide

8. In the Discovery Configuration window (Figure 11-30), enter your SAP server
connection information. For this sample, for the SAP interface name, select
BAPI. Click Next. The wizard retrieves the objects that were discovered by
the query.

Figure 11-30 New J2C Bean: Discovery Configuration
 Chapter 11. Developing applications to connect to enterprise information systems 567

9. In the Object Discovery and Selection window (the left window in
Figure 11-31), complete the following actions:

a. Under Objects discovered by query, select RFC.

b. Click the Create or edit filter () button.

c. In the Filter Properties for ‘RFC’ window (the right window in
Figure 11-31), in the Find objects with this pattern field, type
BAPI_CUSTOMER_* and click OK.

Figure 11-31 New J2C Bean: Object Discovery and Selection
568 Rational Application Developer for WebSphere Software V8 Programming Guide

10.In the Object Discovery and Selection window (Figure 11-32), complete the
following steps:

a. Expand RFC (filtered), select BAPI_ CUSTOMER
CREATEFROMDATA1 and BAPI CUSTOMER _GETDETAIL.

b. Click the button to add them to the Objects to be imported box. Click
Next.

Figure 11-32 New J2C Bean: Object Discovery and Selection

c. In the Configuration Parameters window, accept the defaults and click OK.
Click Next.

11.In the Configure Composite Properties window, complete the following steps:

a. In the Business objects name for service operations field, type RAD80BAPI.

b. Click Add.

c. In the Add Value window, select Create and click OK.

d. For the RFC function for selected operation, select BAPI_ CUSTOMER
_CREATEFROMDATA1.
 Chapter 11. Developing applications to connect to enterprise information systems 569

e. Repeat the previous steps, but in the Add value window, select Retrieve.
For RFC function for selected operation, select BAPI_ CUSTOMER
_GETDETAIL.

f. Click Next.

12.In the J2C Bean Creation and Deployment Configuration window, in the
Project name field, click New to create a new Java project that contains the
generated J2C beans.

13.In the New Source Project Creation window, select Java project and click
Next.

14.In the Create a Java project window, for Project name, type RAD80SAP, accept
the defaults, and click Finish.

15.In the J2C Bean Creation and Deployment Configuration window, complete
the following actions:

a. For Package Name, type itso.rad80.babi.
b. For Interface Name, type Customer.
c. For Implementation Name, type CustomerImpl.
d. Clear Managed Connection and select Non-managed Connection.
e. Click Finish.

After finishing with the J2C Wizard, the following projects are in the workspace:

� CWYAP_SAPAdapter: SAP Adapter Project
� RAD80SAP: Java Project that holds the generated J2C beans

To test the generated J2C beans, generate a simple web application using J2C
wizards.

11.6.3 Generating the sample web application

To generate the simple web application, follow these steps:

1. In the workbench, select File New Other.

2. In the Select a wizard window, expandJ2C Web Page, Web Service, or
EJB from J2C Java Bean and click Next.

3. In the Java EE Resource from J2C Bean window, for J2C Bean
implementation, click Browse and select CustomerImpl. Click Next.

4. In the Deployment Information window (Figure 11-33 on page 571), for Java
EE Resource Type, select Simple JSP and click Next.
570 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 11-33 Deployment Information

5. In the Simple JSP Creation window, in the Web project field, click New to
create a new web project.

6. In the Dynamic Web Project window, for the Project name, type
RAD80SAPTestWeb, and for the EAR Project Name, type RAD80SAPTestWebEAR.
For the Target Runtime, ensure that WebSphere Application Server v8.0
Beta is selected. Click Finish.

7. In the Simple JSP Creation window, for JSP Folder, type SampleJSP. Click
Finish.

After you complete the steps in the Simple JSP Creation wizard, the following
projects are created in your workspace:

– RAD80SAPTestWeb
– RAD80SAPTestWebEAR

The RAD80SAPTestWebEAR project has to reference the CWYAP_SAPAdapter
project.

8. Configure this dependency by adding the CWYAP_SAPAdapter as a dependency
to the EAR project:

a. In the Enterprise Explorer, right-click RAD80SAPTestWebEAR and select
Properties. Select Java EE Module Dependencies and select
CWYAP_SAPAdapter. Click OK.
 Chapter 11. Developing applications to connect to enterprise information systems 571

b. Right-click RAD80SAPTestWeb and select Properties. Select Java EE
Module Dependencies and select CWYAP_SAPAdapter.rar. Click OK.

11.6.4 Testing the web application

To test the sample web application, follow these steps:

1. Expand RAD80SAPTestWeb WebContent SampleJSP, right-click
TestClient.jsp, and select Run As Run on Server. Select the server
(WebSphere Application Server v8.0 Beta) and click Finish.

The application opens in a web browser.

2. From the Methods Pane, click createSapRAD80BAPIWrapper. Scroll down
the page for Inputs, enter the input values for
sapBapiCustomerCreatefromdata1Input, and click Invoke.

The response from the SAP system is displayed in the Results pane.

3. From the Methods Pane, click retrieveSapRAD80BAPIWrapper. Scroll down
the page for sapBapiCustomerGetdetail, enter an input value for
customerToBeRequired, and click Invoke.

The response from the SAP system is displayed in the Results pane.

11.7 Monitoring inbound events for resource adapters

The adapter supports monitoring inbound events from the Oracle database, in
addition to the other events that you monitor using WebSphere Business Monitor
or WebSphere Business Events.

11.7.1 Monitoring inbound events using WebSphere Business
Monitor

You can use Rational Application Developer V8 for WebSphere Software and
Adapter for Oracle E-Business Suite to send inbound events to WebSphere
Application Server Common Event Infrastructure (CEI), where they are
accessible to WebSphere Business Monitor.

For more information, you can visit this website:

http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.wsada
pters.rad.jca_oracleebiz.doc/shared/csha_mon_inevents_wbm.html
572 Rational Application Developer for WebSphere Software V8 Programming Guide

http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.wsadapters.rad.jca_oracleebiz.doc/shared/csha_mon_inevents_wbm.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.wsadapters.rad.jca_oracleebiz.doc/shared/csha_mon_inevents_wbm.html

11.7.2 Monitoring inbound events using WebSphere Business Events

You can use Rational Application Developer and the Adapter for Oracle
E-Business Suite to send inbound events to the WebSphere Application Server
JMS topic, where they are accessible to WebSphere Business Events.

For more information, you can visit:

http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.wsada
pters.rad.jca_oracleebiz.doc/shared/csha_mon_inevents_wbe.html

11.8 More information

See the following sections in the product help for more information:

� Developing Developing Data Access Applications Connecting to
enterprise information systems

� Tutorials Watch and learn Create a J2C application for a CICS
transaction with the same input and output

� Tutorials Do and learn Create a J2C application for a CICS transaction
containing multiple possible outputs

� Samples Technology Samples Java J2C Samples

� Cheat Sheets J2C Java Bean

In addition, see Revealed! The Next Generation of Distributed CICS,
SG24-7185, and the following sources of information:

� Generating a J2C bean using the J2C Tools in Rational Application Developer
V7.0:

http://www.ibm.com/developerworks/rational/library/06/1212_nigul/

� Create a J2C application for an Information Management System (IMS)
phone book transaction using IMS Resource Adapter:

http://www.ibm.com/developerworks/rational/library/08/dw-r-j2cimsres
ource/

� Working with J2C Ant Scripts in Rational Application Developer V7:

http://www.ibm.com/developerworks/rational/library/06/1205_ho-benede
k/
 Chapter 11. Developing applications to connect to enterprise information systems 573

http://www.ibm.com/developerworks/rational/library/06/1212_nigul/
http://www.ibm.com/developerworks/rational/library/08/dw-r-j2cimsresource/
http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.wsadapters.rad.jca_oracleebiz.doc/shared/csha_mon_inevents_wbe.html
http://www.ibm.com/developerworks/rational/library/06/1205_ho-benedek/
http://www.ibm.com/developerworks/rational/library/06/1205_ho-benedek/
http://www.ibm.com/developerworks/rational/library/06/1212_nigul/
http://www.ibm.com/developerworks/rational/library/06/1212_nigul/
http://www.ibm.com/developerworks/rational/library/06/1205_ho-benedek/
http://www.ibm.com/developerworks/rational/library/06/1205_ho-benedek/

574 Rational Application Developer for WebSphere Software V8 Programming Guide

Part 4 Enterprise and
service-oriented
architecture (SOA)
application
development

In this part, we describe the tooling and technologies provided by Rational
Application Developer to develop enterprise applications.

This part includes the following chapters:

� Chapter 12, “Developing Enterprise JavaBeans (EJB) applications” on
page 577

� Chapter 13, “Developing Java Platform, Enterprise Edition (Java EE)
application clients” on page 649

Part 4
© Copyright IBM Corp. 2011. All rights reserved. 575

� Chapter 14, “Developing web services applications” on page 681
� Chapter 15, “Developing Open Services Gateway initiative (OSGi)

applications” on page 837
� Chapter 16, “Developing Service Component Architecture (SCA)

applications” on page 885
� Chapter 17, “Developing Modern Batch jobs on computing grids” on page 957

Sample code for download: The sample code for all the applications
developed in this part is available for download at the following address:

ftp://www.redbooks.ibm.com/redbooks/SG247835

See Appendix C, “Additional material” on page 1877, for instructions.
576 Rational Application Developer for WebSphere Software V8 Programming Guide

ftp://www.redbooks.ibm.com/redbooks/SG247835

Chapter 12. Developing Enterprise
JavaBeans (EJB)
applications

In this chapter, we introduce Enterprise JavaBeans (EJB) and demonstrate by
example how to create, maintain, and test EJB components. We explain how to
develop session beans and describe the relationships between the session
beans and the Java Persistence API (JPA) entity beans. Then we integrate the
EJB with a front-end web application for the sample application. We include
examples for creating, developing, and testing the EJB using Rational Application
Developer.

The chapter is organized into the following sections:

� Introduction to Enterprise JavaBeans
� Developing an EJB module
� Testing the session EJB and the JPA entities
� Invoking EJBs from web applications
� More information

The sample code for this chapter is in the 7835code\ejb folder.

12
© Copyright IBM Corp. 2011. All rights reserved. 577

12.1 Introduction to Enterprise JavaBeans

EJB is an architecture for server-side component-based distributed applications
written in Java. Details of the EJB 3.1 specification, EJB components and
services, and new features in Rational Application Developer are described in the
following sections:

� EJB 3.1 specification
� EJB component types
� EJB services and annotations
� EJB 3.1 application packaging
� EJB 3.1 Lite
� EJB 3.1 features in Rational Application Developer

12.1.1 EJB 3.1 specification

The EJB 3.1 specification is defined in Java Specification Request (JSR) 318:
Enterprise JavaBeans 3.1. As described in 10.1, “Introducing the Java
Persistence API” on page 444, the JPA 2.0 specification and EJB 3.1
specification are separate. The specification of JPA 1.x was included in the EJB
3.0 specification. We describe the usage of the EJB 3.x specification, with focus
on EJB 3.1 in this chapter.

EJB 3.1 simplified model
Many publications discuss the complexities and differences between the old EJB
2.x programming model and the new EJB 3.x. For this reason, in this book, we
focus on the new programming model. To overcome the limitations of the EJB
2.x, the new specification introduces a new simplified model with the following
features:

� Entity EJBs are now JPA entities, plain old Java objects (POJO) that expose
regular business interfaces, as plain old Java interface (POJI), and there is no
requirement for home interfaces.

� The requirement for specific interfaces and deployment descriptors has been
removed (deployment descriptor information can be replaced by annotations).

� A completely new persistence model, which is based on the JPA standard
(see Chapter 10, “Persistence using the Java Persistence API” on page 443),
replaces EJB 2.x entity beans.

� An interceptor facility is used to invoke user methods at the invocation of
business methods or at life-cycle events.

� Default values are used whenever possible (“configuration by exception”
approach).
578 Rational Application Developer for WebSphere Software V8 Programming Guide

� Requirements for the use of checked exceptions have been reduced.

� EJB 3.1 Lite, as a minimal subset of the full EJB 3.1 API, offers the major
functionality of EJB 3.1 API, as described in detail in 12.1.5, “EJB 3.1 Lite” on
page 600.

Figure 12-1 shows how the model of Java 2 Platform, Enterprise Edition (J2EE)
1.4 has been completely reworked with the introduction of the EJB 3.x
specification. With the EJB 3.1 specification, this model has been updated with
new features, summarized in 12.1.6, “EJB 3.1 features in Rational Application
Developer” on page 601.

Figure 12-1 EJB 3.1 architecture

12.1.2 EJB component types

EJB 3.1 has the following component types of EJBs:

� Session beans: stateless
� Session beans: stateful
� Session beans: Singleton bean
� Message-driven EJB (MDB)

This section defines several EJBs.

SessionBean

Business Logic Tier

Session Beans
Message

Driven Beans
Message

Driven Beans

Persistency Tier

Message
Driven Beans

JPA
Entities

Entity
Manager

EJB Container

JMS

JTA

JNDI

JDBC

RMI-IIOP

Threading

Pooling

Security

JMS
Provider

RDBMS

Remote
Client

Local
Client

Application Server

Web Services

Remote
Client
 Chapter 12. Developing Enterprise JavaBeans (EJB) applications 579

Session beans
There are several kinds of session beans, the stateless and stateful EJB, and as
a new feature, the definition of Singleton session beans. In this section, we
describe these tasks:

� Defining a stateless session bean in EJB 3.1
� Defining a stateful session bean in EJB 3.1
� Defining a Singleton session bean in EJB 3.1

Additionally, we show the life-cycle events and leading practices for developing
session beans.

Defining a stateless session bean in EJB 3.1
Stateless session EJBs have always been used to model a task being performed
for client code that invokes it. They implement the business logic or rules of a
system, and provide the coordination of those activities between beans, such as
a banking service that allows for a transfer between accounts.

A stateless session bean is generally used for business logic that spans a single
request and therefore cannot retain the client-specific state among calls.

Because a stateless session bean does not maintain a conversational state, all
the data exchanged between the client and the EJB has to be passed either as
input parameters, or as a return value, declared on the business method
interface.

To declare a session stateless bean, add the @Stateless annotation to a POJO
as shown in Example 12-1.

Example 12-1 Definition of a stateless session bean

@Stateless
public class MyFirstSessionBean implements MyBusinessInterface {

// business methods according to MyBusinessInterface
.....

}

Note the following points in Example 12-1:

� MyFirstSessionBean is a POJO that exposes a POJI, in this case,
MyBusinessInterface. This interface is available to clients to invoke the EJB
business methods. For EJB 3.1, a business interface is not required.

� The @Stateless annotation indicates to the container that the given bean is a
stateless session bean so that the proper life-cycle and runtime semantics
can be enforced.
580 Rational Application Developer for WebSphere Software V8 Programming Guide

� By default, this session bean is accessed through a local interface.

This is all the information that you need to set up a session EJB. There are no
special classes to extend and no interfaces to implement.

Figure 12-2 shows the simple model of EJB 3.1.

Figure 12-2 EJB is a POJO exposing a POJI

If we want to expose the same bean on the remote interface, we use the @Remote
annotation, as shown in Example 12-2.

Example 12-2 Defining a remote interface for stateless session bean

@Remote(MyRemoteBusinessInterface.class)
@Stateless
public class MyBean implements MyRemoteBusinessInterface {

// ejb methods
.....

}

Defining a stateful session bean in EJB 3.1
Stateful session EJBs are typically used to model a task or business process that
spans multiple client requests. Therefore, a stateful session bean retains its state
on behalf of an individual client. The client has to store the handling of the
stateful EJB, so that it always accesses the same EJB instance. Using the same
approach that we adopted before, to define a stateful session EJB, you have to
declare a POJO with the annotation @Stateful, as shown in Example 12-3.

Example 12-3 Defining a stateful session bean

@Stateful
public class SecondSessionBean implements MyBusinessStatefulInterface {

// ejb methods

Tip: If the session bean implements only one interface, you can use the
@Remote annotation without a class name.

MyFirstSessionBean

MyBusinessInterface

implements
 Chapter 12. Developing Enterprise JavaBeans (EJB) applications 581

.....
}

The @Stateful annotation indicates to the container that the given bean is a
stateful session bean so that the proper life-cycle and runtime semantics can be
enforced.

Defining a Singleton session bean in EJB 3.1
The definition of a Singleton session bean is a new feature of EJB 3.1. The
definition of the Singleton pattern is associated with the defined design pattern in
software engineering. You define a session bean as a Singleton to restrict the
instantiation of this class to only one object. For example, the object, which
coordinates actions across the system, can be defined as a Singleton, because
only this object is responsible for the coordination. Therefore, you define the
annotation @Singleton in front of the class declaration, as shown in
Example 12-4. The new annotation @LocalBean is described in “Business
interfaces” on page 583.

Example 12-4 Defining a Singleton session bean

@Startup
@Singleton
@LocalBean
public class MySingletonBean{

// ejb methods
.....

}

A Singleton session bean offers you the opportunity to initialize objects at
application start-up. This functionality can replace proprietary WebSphere
Application Server start-up beans. Therefore, you define the new annotation
@Startup additionally in front of the class declaration, as shown in Example 12-4.
As result, you have the initialization at the application start-up instead of the first
invocation by the client code.

The concurrency in Singleton session beans is either defined as container-
managed concurrency (CMC) or bean-managed concurrency (BMC). In case no
annotation for the concurrency is specified in front of the class, the default value
is CMC. The further default value for CMC is @Lock(WRITE). If you want to define
a class or method associated with a shared lock, use the annotation
@Lock(READ).

To define BMC, use the annotation @ConcurrencyManagement
(ConcurrencyManagementType.BEAN). After it has been defined as BMC, the
582 Rational Application Developer for WebSphere Software V8 Programming Guide

container allows full concurrent access to the Singleton session bean.
Furthermore, you can define that concurrency is not allowed. Therefore, use the
annotation @ConcurrencyManagement
(ConcurrencyManagementType.CONCURRENCY_NOT_ALLOWED).

For detailed information about Singleton session beans, see section 3.4.7.3
“Singleton Session Beans” in JSR 318: Enterprise JavaBeans 3.1.

Business interfaces
EJBs can expose various business interfaces, because the EJB can be accessed
from either a local or remote client. Therefore, place common behavior to both
local and remote interfaces in a superinterface, as shown in Figure 12-3.

You have to ensure the following aspects:

� A business interface cannot be both a local and a remote business interface
of the bean.

� If a bean class implements a single interface, that interface is assumed to be
the business interface of the bean. This business interface is a local interface,
unless the interface is designated as a remote business interface by use of
the @Remote annotation or by means of the deployment descriptor.

This approach provides flexibility during the design phase, because you can
decide which methods are visible to local and remote clients.

Figure 12-3 How to organize the EJB component interfaces

Using these guidelines, the first EJB is refactored, as shown in Example 12-5.

MyFirstSessionBean

MyLocalBusinessInterface

implements

MyRemoteBusinessInterface

MyAbstractBusinessInterface

extends
 Chapter 12. Developing Enterprise JavaBeans (EJB) applications 583

Example 12-5 Implementing local and remote interface

@Stateless
public class MyFirstSessionBean

implements MyLocalBusinessInterface, MyRemoteBusinessInterface {

// implementation of methods declared in MyLocalBusinessInterface
....

// implementation of methods declared in MyRemoteBusinessInterface
....

}

The MyLocalBusinessInterface is declared as an interface with an @Local
annotation, and the MyRemoteBusinessInterface is declared as an interface with
the @Remote annotation, as shown in Example 12-6.

Example 12-6 Defining local and remote interface

@Local
public interface MyLocalBusinessInterface

extends MyAbstractBusinessInterface {

// methods declared in MyLocalBusinessInterface
......

}

==

@Remote
public interface MyRemoteBusinessInterface

 extends MyAbstractBusinessInterface {

// methods declared in MyRemoteBusinessInterface
......

}

Another technique to define the business interfaces exposed either as local or
remote is to specify @Local or @Remote annotations with the full class name that
implements these interfaces, as shown in Example 12-7.

Example 12-7 Defining full class interfaces

@Stateless
@Local(MyLocalBusinessInterface.class)
@Remote(MyRemoteBusinessInterface.class)
584 Rational Application Developer for WebSphere Software V8 Programming Guide

public class MyFirstSessionBean implements MyLocalBusinessInterface,
 MyRemoteBusinessInterface {

// implementation of methods declared in MyLocalBusinessInterface
....
// implementation of methods declared in MyRemoteBusinessInterface
....
}

You can declare any exceptions on the business interface, but be aware of the
following rules:

� Do not use RemoteException.
� Any runtime exception thrown by the container is wrapped into an

EJBException.

As a new feature of EJB 3.1, you can define a session bean without a local
business interface. Therefore, the local view of a session bean can be accessed
without the definition of a local business interface.

As shown in Figure 12-4 on page 586, there is a new check box available, to
select and define that no interface has to be created.
 Chapter 12. Developing Enterprise JavaBeans (EJB) applications 585

Figure 12-4 Creating a session bean without an interface

If you select No-interface in the Create EJB 3.x Session Bean wizard, the
@LocalBean annotation will be generated for your session bean, as shown in
Example 12-8.

Example 12-8 Session bean with No-interface view

package itso.bank.session;
import javax.ejb.LocalBean;
import javax.ejb.Stateless;

/**
* Session Bean implementation class EJBBankBean
*/
@Stateless
@LocalBean
public class EJBBankBean{
/**
586 Rational Application Developer for WebSphere Software V8 Programming Guide

* Default constructor.
*/

public EJBBankBean() {
// TODO Auto-generated constructor stub
}

...
}

For detailed information, see section 3.4.4 “Session Bean’s No-Interface View” in
the JSR 318: Enterprise JavaBeans 3.1 specification.

Life-cycle events
Another powerful use of annotations is to mark callback methods for session
bean life-cycle events.

EJB 2.1 and prior releases required the implementation of several life-cycle
methods, such as ejbPassivate, ejbActivate, ejbLoad, and ejbStore, for every
EJB, even if you did not need these methods.

The life cycle of a session bean can be categorized into several phases or
events. The most obvious two events of a bean life cycle are the creation and
destruction for stateless session beans.

After the container creates an instance of a session bean, the container performs
any dependency injection (described in the following section) and then invokes
the method annotated with @PostConstruct (if there is one).

The client obtains a reference to a session bean and invokes a business method.

At the end of the life cycle, the EJB container calls the method annotated with
@PreDestroy (if there is one). The bean instance is ready for garbage collection.

Life-cycle methods: As we use POJOs in EJB 3.x, the implementation of
these life-cycle methods is optional. The container invokes any callback
method if you implement it in the EJB.

Life cycle of a stateless session bean: The life cycle of a stateless session
bean is independent of when a client obtains a reference to it. For example,
the container might give a reference to the client, but not create the bean
instance until later, when a method is invoked on the reference. In another
example, the container might create several instances at start-up and match
them with references later.
 Chapter 12. Developing Enterprise JavaBeans (EJB) applications 587

Example 12-9 shows a stateless session bean with the two callback methods.

Example 12-9 Stateless session bean with two callback methods

@Stateless
public class MyStatelessBean implements MyBusinessLogic {
// .. bean business method

 @PostConstruct
 public void initialize() {
 // initialize the resources uses by the bean
 }

 @PreDestroy
 public void cleanup() {
 // deallocates the resources uses by the bean
 }
}

All stateless and stateful session EJBs go through these two phases.

In addition, stateful session beans go through the passivation and activation
cycle. An instance of a stateful bean is bound to a specific client, and therefore, it
cannot be reused among various requests. The EJB container has to manage
the amount of available physical resources, and might decide to deactivate, or
passivate, the bean by moving it from memory to secondary storage.

In correspondence with this more complex life cycle, we have further callback
methods, specific to stateful session beans:

� The EJB container invokes the method annotated with @PrePassivate,
immediately before passivating it.

� If a client invokes a business method on the bean while it is in the passive
stage, the EJB container activates the bean by calling the method annotated
with @PostActivate and then moves it to the ready stage.

At the end of the life cycle, the client explicitly invokes a method annotated with
@Remove, and the EJB container calls the callback method annotated
@PreDestroy. Developers can explicitly invoke only the life-cycle method
annotated with @Remove. The other methods are invoked automatically by the EJB
container.
588 Rational Application Developer for WebSphere Software V8 Programming Guide

Leading practices for developing session EJB
As a leading practice, EJB 3.x developers follow these guidelines:

� Each session bean has to be a POJO, the class must be concrete, and it must
have a no-argument constructor. If the no-argument constructor is not
present, the compiler inserts a default constructor.

� If the business interface is annotated as @Remote, all the values passed
through the interface must implement java.io.Serializable. Typically, the
declared parameters are defined as serializable, but this is not required as
long as the actual values passed are serializable.

� A session EJB can subclass a POJO, but cannot subclass another session
EJB.

Message-driven EJB
MDBs are used for the processing of asynchronous Java Message Service
(JMS) messages within JEE-based applications. MDBs are invoked by the
container on the arrival of a message.

In this way, MDBs can be thought of as another interaction mechanism for
invoking EJB, but unlike session beans, the container is responsible for invoking
them when a message is received, not a client or another bean.

To define an MDB in EJB 3.x, you must declare a POJO with the @MessageDriven
annotation, as shown in Example 12-10.

Example 12-10 Declaring a POJO to define an MDB in EJB

@MessageDriven(activationConfig = {
@ActivationConfigProperty(propertyName="destinationType",

propertyValue="javax.jms.Queue"),
@ActivationConfigProperty(propertyName="destination",

propertyValue="queue/myQueue")

Stateful session beans: Because a stateful bean is bound to a particular
client, it is a leading practice to correctly design stateful session beans to
minimize their footprints inside the EJB container. Also, it is a leading practice
to correctly unallocate it at the end of its life cycle, by invoking the method
annotated with @Remove.

Stateful session beans have a timeout value. If the stateful session bean has
not been used in the timeout period, it is marked inactive and is eligible for
automatic deletion by the EJB container. Of course, it is still a leading practice
for applications to remove the bean when the client is finished with it, rather
than relying on the timeout mechanism.
 Chapter 12. Developing Enterprise JavaBeans (EJB) applications 589

})
public class MyMessageBean implements javax.jms.MessageListener {

public void onMessage(javax.msg.Message inMsg) {
//implement the onMessage method to handle the incoming message
....

}
}

Note the following features of Example 12-10 on page 589:

� In EJB 3.x, the MDB class is annotated with the @MessageDriven annotation,
which specifies a set of activation configuration parameters. These
parameters are unique to the particular Java EE Connector Architecture
(JCA) 1.5 adapter that is used to drive the MDB. Certain adapters have
configuration parameters that let you specify the destination queue of the
MDB. If not, the destination name must be specified using a
<message-destination> entry in the XML binding file.

� The bean class has to implement the javax.jms.MessageListener interface,
which defines only one method, onMessage. When a message arrives in the
queue monitored by this MDB, the container calls the onMessage method of
the bean class and passes the incoming message as the parameter.

� Furthermore, the activationConfig property of the @MessageDriven
annotation provides messaging system-specific configuration information.

12.1.3 EJB services and annotations

The use of annotations is important to define EJB services:

� Interceptors
� Dependency injection
� Asynchronous invocations
� EJB timer service
� Web services

We describe the definitions of these services, while using annotations, in this
section. Additionally, we provide the description of using deployment descriptors
and the description of the new features of Portable JNDI name and Embedded
Container API in this section.

Interceptors
The EJB 3.x specification defines the ability to apply custom-made interceptors
to the business methods of session and MDB beans. Interceptors take the form
590 Rational Application Developer for WebSphere Software V8 Programming Guide

of methods annotated with the @AroundInvoke annotation, as shown in
Example 12-11.

Example 12-11 Applying an interceptor

@Stateless
public class MySessionBean implements MyBusinessInterface {

@Interceptors(LoggerInterceptor.class)
public Customer getCustomer(String ssn) {

 ...
}

 ...
}

public class LoggerInterceptor {
@AroundInvoke
public Object logMethodEntry(InvocationContext invocationContext)

throws Exception {
System.out.println("Entering method: "

+ invocationContext.getMethod().getName());
Object result = invocationContext.proceed();
// could have more logic here
return result;

}
}

Note the following points for Example 12-11:

� The @Interceptors annotation is used to identify the session bean method
where the interceptor will be applied.

� The LoggerInterceptor interceptor class defines a method (logMethodEntry)
annotated with @AroundInvoke.

� The logMethodEntry method contains the advisor logic, in this case, it logs
the invoked method name, and invokes the proceed method on the
InvocationContext interface to advise the container to proceed with the
execution of the business method.

The implementation of the interceptor in EJB 3.x differs from the analogous
implementation of the aspect-oriented programming (AOP) paradigm that you
can find in frameworks, such as Spring or AspectJ, because EJB 3.x does not
support before or after advisors, only around interceptors.

However, around interceptors can act as before interceptors, after interceptors,
or both. Interceptor code before the invocationContext.proceed call is run
 Chapter 12. Developing Enterprise JavaBeans (EJB) applications 591

before the EJB method, and interceptor code after that call is run after the EJB
method.

A common use of interceptors is to provide preliminary checks, such as
validation, security, and so forth, before the invocation of business logic tasks,
and therefore, they can throw exceptions. Because the interceptor is called
together with the session bean code at run time, these potential exceptions are
sent directly to the invoking client.

In Example 12-11 on page 591, we have seen an interceptor applied on a
specific method. Alternatively, the @Interceptors annotation can be applied at
the class level. In this case, the interceptor will be called for every method.

Furthermore, the @Interceptors annotation accepts a list of classes, so that
multiple interceptors can be applied to the same object.

To disable the invocation of a default interceptor or a class interceptor on a
specific method, you can use the @ExcludeDefaultInterceptors and
@ExcludeClassInterceptors annotations, respectively.

Dependency injection
The new specification introduces a powerful mechanism for obtaining Java EE
resources, such as Java Database Connectivity (JDBC) data source, JMS
factories and queues, and EJB references to inject them into EJB, entities, or
EJB clients.

The EJB 3.x specification adopts a dependency injection (DI) pattern, which is
one of the best ways to implement loosely coupled applications. It is much easier
to use and more elegant than older approaches, such as dependency lookup
through Java Naming and Directory Interface (JNDI) or container callbacks.

Default interceptor: To give further flexibility, EJB 3.x introduces the concept
of a default interceptor that can be applied on every session or MDB contained
inside the same EJB module. A default interceptor cannot be specified using
an annotation. Instead, define it inside the deployment descriptor of the EJB
module.

Interceptors run in the following execution order:

� Default interceptor
� Class interceptors
� Method interceptors
592 Rational Application Developer for WebSphere Software V8 Programming Guide

The implementation of dependency injection in the EJB 3.x specification is based
on annotations or XML descriptor entries, which allow you to inject dependencies
on fields or setter methods.

Instead of complicated XML EJB references or resource references, you can use
the @EJB and @Resource annotations to set the value of a field or to call a setter
method within your beans with anything registered within JNDI. With these
annotations, you can inject EJB references and resource references, such as
data sources and JMS factories.

In this section, we show the most common uses of dependency injection in EJB
3.x, such as the @EJB annotation and @Resource annotation.

@EJB annotation
The @EJB annotation is used for injecting session beans into a client. This
injection is only possible within managed environments, such as another EJB, or
a servlet. We cannot inject an EJB into a JavaServer Faces (JSF)-managed bean
or Struts action.

The @EJB annotation has the following optional parameters:

name Specifies the JNDI name that is used to bind the injected EJB
in the environment naming context (java:comp/env).

beanInterface Specifies the business interface to be used to access the EJB.
By default, the business interface to be used is taken from the
Java type of the field into which the EJB is injected. However, if
the field is a supertype of the business interface, or if
method-based injection is used rather than field-based
injection, the beanInterface parameter is typically required,
because the specific interface type to be used might be
ambiguous without the additional information provided by this
parameter.

beanName Specifies a hint to the system of the ejb-name of the target EJB
that must be injected. It is analogous to the <ejb-link> stanza
that can be added to an <ejb-ref> or <ejb-local-ref> stanza
in the XML descriptor.

Example 12-12 shows the code to access a session bean from a Java servlet.

Example 12-12 Injecting an EJB reference inside a servlet

import javax.ejb.EJB;
public class TestServlet extends javax.servlet.http.HttpServlet

implements javax.servlet.Servlet {

// inject the remote business interface
 Chapter 12. Developing Enterprise JavaBeans (EJB) applications 593

@EJB(beanInterface=MyRemoteBusinessInterface.class)
MyAbstractBusinessInterface serviceProvider;

protected void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {
// call ejb method
serviceProvider.myBusinessMethod();
......

}
}

Note the following points regarding Example 12-12 on page 593:

� We specified the beanInterface attribute, because the EJB exposes two
business interfaces (MyRemoteBusinessInterface and
MyLocalBusinessInterface).

� If the EJB exposes only one interface, you are not required to specify this
attribute. However, it can be useful to make the client code more readable.

@Resource annotation
The @Resource annotation is the major annotation that can be used to inject
resources in a managed component. Therefore, two techniques exist: the field
technique and the setter injection technique. In the following section, we show
the most commonly used scenarios of this annotation.

Example 12-13 shows how to inject a typical resource, such as a data source
inside a session bean using the field injection technique. A data source
(jdbc/datasource) is injected inside a property that is used in a business
method.

Example 12-13 Field injection technique for a data source

@Stateless
public class CustomerSessionBean implements CustomerServiceInterface {

@Resource (name="jdbc/dataSource")

Special notes for stateful EJB injection:

� Because a servlet is a multi-thread object, you cannot use dependency
injection, but you must explicitly look up the EJB through the JNDI.

� You can safely inject a stateful EJB inside another session EJB (stateless
or stateful), because a session EJB instance is guaranteed to be executed
by only a single thread at a time.
594 Rational Application Developer for WebSphere Software V8 Programming Guide

private DataSource ds;
public void businessMethod1() {

java.sql.Connection c=null;
try {

 c = ds.getConnection();
 // .. use the connection

} catch (java.sql.SQLException e) {
// ... manage the exception

} finally {
// close the connection
if(c!=null) {

try { c.close(); } catch (SQLException e) { }
}

}
}

}

The @Resource annotation has the following optional parameters:

name Specifies the component-specific internal name, which is
the resource reference name, within the java:comp/env
namespace. It does not specify the global JNDI name of
the resource being injected.

type Specifies the resource manager connection factory type.

authenticationType Specifies whether the container or the bean is to perform
authentication.

shareable Specifies whether resource connections are shareable.

mappedName Specifies a product-specific name to which the resource
must be mapped. WebSphere does not make any use of
mappedName.

description Description.

Another technique is to inject a setter method. The setter injection technique is
based on JavaBean property naming conventions, as shown in Example 12-14.

Example 12-14 Setter injection technique for a data source

@Stateless
public class CustomerSessionBean implements CustomerServiceInterface {

private Datasource ds;

@Resource (name="jdbc/dataSource")
public void setDatasource(DataSource datasource) {
 Chapter 12. Developing Enterprise JavaBeans (EJB) applications 595

this.ds = datasource;
}
...
public void businessMethod1() {
 ...
}

}

Note the following points regarding Example 12-13 on page 594 and
Example 12-14 on page 595:

� We directly used the data source inside the session bean, which is not a good
practice. Instead, place the JDBC code in specific components, such as data
access objects.

� Use the setter injection technique, which gives more flexibility:

– You can put initialization code inside the setter method.

– The session bean is set up to be easily tested as a stand-alone
component.

In addition, note the following use of the @Resource annotation:

� To obtain a reference to the EJB session context, as shown in Example 12-15

Example 12-15 Resource reference to session context

@Stateless
public class CustomerSessionBean implements CustomerServiceInterface
{

....
@Resource javax.ejb.SessionContext ctx;

}

� To obtain the value of an environment variable, which is configured inside the
deployment descriptor with env-entry, as shown in Example 12-16

Example 12-16 Resource reference to environment variable

@Stateless
public class CustomerSessionBean implements CustomerServiceInterface
{

....
@Resource String myEnvironmentVariable;

}

596 Rational Application Developer for WebSphere Software V8 Programming Guide

For detailed information, see section 4.3.2 “Dependency Injection” in JSR 318:
Enterprise JavaBeans 3.1.

Asynchronous invocations
All session bean invocations, regardless of which view, the Remote, Local, or the
no-interface views, are synchronous by default. As a new feature of the EJB 3.1
specification, you can define a bean class or a method as asynchronous, while
using the annotation @Asynchronous. This approach to define a method as
asynchronous avoids the behavior that one request blocks for the duration of the
invocation until the process is completed. This is a result of the synchronous
approach. In case a request invokes an asynchronous method, the container
returns control back to the client immediately and continues processing the
invocation on another thread. Therefore, the asynchronous method has to return
either void or Future<T>.

For detailed information, see section 3.4.8 “Asynchronous Invocations” in JSR
318: Enterprise JavaBeans 3.1.

EJB timer service
The EJB timer service is a container-managed service for scheduled callbacks.
The definition of time-based events with the timer service is a new feature of EJB
3.1. Therefore, the method getTimerService exists, which returns the
javax.ejb.TimerService interface. This method can be used by stateless and
Singleton session beans. Stateful session beans cannot be timed objects.
Time-based events can be calendar-based-scheduled, at a specific time, after a
specific past duration, or for specific circular intervals.

To define timers to be created automatically by the container, use the @Schedule
and @Schedules annotations. Example 12-17 shows how to define a timer
method for every second of every minute of every hour of every day.

Example 12-17 Timer service definition

@Schedule(dayOfWeek="*",hour="*",minute="*",second="*")
public void calledEverySecond(){

System.out.println("Called every second");
}

The definition of the attributes of the @Schedule annotation can be modified as
well using the Attributes view in Rational Application Developer, as shown in
Figure 12-5 on page 598.
 Chapter 12. Developing Enterprise JavaBeans (EJB) applications 597

Figure 12-5 Annotation @Schedule attribute view

For detailed information about the EJB timer service, see Chapter 18, “Timer
Service”, in JSR 318: Enterprise JavaBeans 3.1, or refer to this website:

http://publib.boulder.ibm.com/infocenter/wasinfo/beta/index.jsp?topic=/
com.ibm.websphere.nd.doc/info/ae/ae/tejb_timerserviceejb_enh.html

Web services
Chapter 14, “Developing web services applications” on page 681, explains how
to expose EJB 3.1 beans as web services by using the @WebService annotation.
In that same chapter, we show how to implement a web service from an EJB 3.1
session bean.

Portable JNDI name
As a new feature defined in the Java EE 6 specification, a standardized global
JNDI namespace is defined. These portable JNDI names are defined with the
following syntax:

java:global[/<app-name>]/<module-name>/<bean-name>[!<fully-qualified-in
terface-name>]

The parameters consist of the following content:

<app-name> Name of the application. Because a session
bean is packaged within an EAR file, this
field is an optional value. It defaults to the
name of the EAR file, just without the .ear
file extension.
598 Rational Application Developer for WebSphere Software V8 Programming Guide

http://publib.boulder.ibm.com/infocenter/wasinfo/beta/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/tejb_timerserviceejb_enh.html

<module-name> Name of the module in which the session
bean is packaged. The value of the name
defaults to the base name of the archive
without the file extension. This archive can
be a stand-alone JAR file or a WAR file.

<bean-name> Name of the session bean.

<fully-qualified-interface-name> Fully qualified name of each defined
business interface. Because a session bean
can have no interface, which means it has
only a no-interface view, this field is an
optional value.

For detailed information, see section 4.4 “Global JNDI Access” in JSR 318:
Enterprise JavaBeans 3.1.

Embedded Container API
Defining an embedded container is a new feature in EJB 3.1. An embedded
container provides the same managed environment as the Java EE runtime
container. The services for injection, access to a component environment, and
container-managed transactions (CMTs) are provided as well. This container is
used to execute EJB components within a Java SE environment. Example 12-18
shows how to create an instance of an embeddable container, as a first step.

Example 12-18 Defining embedded container

EJBContainer ec = EJBContainer.createEJBContainer();
Context ctx = ec.getContext();
EJBBank bank = (EJBBank) ctx.lookup("java:global/EJBExample/EJBBank");

In the second step in Example 12-18, we get a JNDI context. In the third step, we
use the lookup method to retrieve an EJB, in this case, the bean EJBBank.

For detailed information about the Embedded Container API, see Chapter
22.2.1, “EJBContainer”, in JSR 318: Enterprise JavaBeans 3.1.

Using deployment descriptors
In the previous sections, we have seen how to define an EJB, how to inject
resources into it, and how to specify annotations. We can get the same result by

Important: In the \7835code\ejb\antScriptEJB.zip directory, we provide an
Ant script to create the jar file of your EJB project. Update the
build.properties file with your settings before using the build.xml file. This
script includes the configuration for the RAD8EJB project as an example.
 Chapter 12. Developing Enterprise JavaBeans (EJB) applications 599

specifying a deployment descriptor (ejb-jar.xml) with the necessary information
in the EJB module.

12.1.4 EJB 3.1 application packaging

Session and message-driven beans are packaged in Java standard JAR files.
We map from the enterprise archive (EAR) project to the EJB project containing
the beans. To do this, we use the Deployment Assembly properties sheet, which
replaces the J2EE Module Dependencies properties sheet used in previous
versions of Rational Application Developer. The integrated development
environment (IDE) will automatically update the application.xml file, if one
exists.

However, in EJB 3.x, you are not required to define the EJB and related
resources in an ejb-jar.xml file, because they are usually defined through the
use of annotations. The major use of the deployment descriptor files is to
override or complete behavior that is specified by annotations.

EJB 3.1 offers the capability to package and deploy EJB components directly in a
WAR file as a new feature for the packaging approach.

12.1.5 EJB 3.1 Lite

Because the full EJB 3.x API consists of a large set of features with the support
for implementing business logic in a wide variety of enterprise applications, EJB
3.1 Lite was defined to provide a minimal subset of the full EJB 3.1 API. This new
defined runtime environment offers a selection of EJB features, as shown in
Table 12-1.

Table 12-1 Overview comparison of EJB 3.1 Lite and full EJB 3.1

Feature EJB 3.1 Lite Full EJB 3.1

Session beans (stateless,
stateful, and Singleton)

Yes Yes

MDB No Yes

Entity beans 1.x/2.x No Yes

No-interface view Yes Yes

Local interface Yes Yes

Remote interface No Yes

2.x interfaces No Yes*
600 Rational Application Developer for WebSphere Software V8 Programming Guide

a = Pruning candidates for future versions of the EJB specification

For detailed information, see Section 21.1, “EJB 3.1 Lite”, in JSR 318: Enterprise
JavaBeans 3.1.

12.1.6 EJB 3.1 features in Rational Application Developer

The following features are supported in Rational Application Developer:

� Singleton bean
� No interface-view for session beans
� Asynchronous invocations
� EJB timer service
� Portable JNDI name
� Embedded Container API
� War deployment, as mentioned in EJB 3.1 application packaging
� EJB 3.1 Lite

12.2 Developing an EJB module

The EJB module consists of a web module with a simple servlet, and an EJB
module with an EJB 3.1 session bean that uses the JPA entities of the RAD8JPA
project to access the database. This section describes the steps for developing
the sample EJB module.

To develop EJB applications, you have to enable the EJB development capability
in Rational Application Developer (the capability might already be enabled):

Web services (JAX-WS,
JAX-RS, and JAX-RPC)

No Yesa

Timer service No Yes

Asynchronous calls No Yes

Interceptors Yes Yes

RMI/IIOP interoperability No Yes

Transaction support Yes Yes

Security Yes Yes

Embeddable API Yes Yes

Feature EJB 3.1 Lite Full EJB 3.1
 Chapter 12. Developing Enterprise JavaBeans (EJB) applications 601

1. Select Window Preferences.
2. Select General Capabilities Enterprise Java Developer and click OK.

An EJB module, with underlying JPA entities, typically contains components that
work together to perform business logic. This logic can be self-contained or
access external data and functions as needed. It needs to consist of a facade
(session bean) and the business entities (JPA entities). The facade is usually
implemented using one or more session beans and MDBs.

In this chapter, we develop a session EJB as a facade for the JPA entities
(Customer, Account, and Transaction), as shown in Figure 12-6 on page 603.
The RAD8JPA project has to be available in your workspace. You can import the
project from the \7835codesolution\jpa directory.

Furthermore, we assume that an instance of the WebSphere Application Server
V8.0 Beta is configured and available in your workspace.

12.2.1 Sample application overview

In this chapter, we reuse the design of the application, which is described in
Chapter 7, “Developing Java applications” on page 229, with minor changes.
However, the content of this chapter does not depend on the Java chapter. You
can complete the sample in this chapter without knowledge of the sample
developed in the Java chapter.

Figure 12-6 on page 603 shows the sample application model layer design.

Sample code: The sample code described in this chapter can be completed
by following the documented procedures. Alternatively, you can import the
sample EJB project and corresponding JPA project provided in the
\7835\codesolution\ejb\RAD8EJB.zip directory. See Appendix B, “Additional
material” on page 1423, for instructions to download the sample code. For
more information about installing the software, see Appendix A, “Installing the
products” on page 1783.
602 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 12-6 EJB module class diagram for the sample application

The EJBBankBean session bean acts as a facade for the EJB model. The business
entities (Customer, Account, Transaction, Credit, and Debit) are implemented as
JPA entity beans, as opposed to regular JavaBeans. By doing so, we
automatically gain persistence, security, distribution, and transaction
management services. This also implies that the control and view layers are not
able to reference these entities directly, because they can be placed in a
separate Java virtual machine (JVM). Only the session bean EJBBankBean can
access the business entities.

Figure 12-7 on page 604 shows the application component model and the flow of
events.

Session Bean
Facade

JPA Entities
 Chapter 12. Developing Enterprise JavaBeans (EJB) applications 603

Figure 12-7 Application component model and workflow

Figure 12-7 shows the following flow of events:

1. The HTTP request is issued by the web client to the server. This request is
answered by a servlet in the control layer, also known as the front controller,
which extracts the parameters from the request. The servlet sends the
request to the appropriate control JavaBean. This bean verifies whether the
request is valid in the current user and application states.

2. If the request is valid, the control layer sends the request through the @EJB
injected interface to the session EJB facade. This involves using JNDI to
locate the session bean’s interface and creating a new instance of the bean.

3. The session EJB executes the appropriate business logic related to the
request. This includes accessing JPA entities in the model layer.

4. The facade returns data transfer objects (DTOs) to the calling controller
servlet with the response data. The DTO returned can be a JPA entity, a
collection of JPA entities, or any Java object. In general, it is not necessary to
create extra DTOs for entity data.

5. The front controller servlet sets the response DTO as a request attribute and
forwards the request to the appropriate JSP in the view layer, which is
responsible for rendering the response back to the client.

6. The view JSP accesses the response DTO to build the user response.

7. The result view, possibly in HTML, is returned to the client.

Application Server

Web Client

Web Container

EJB Container

EJB Module

Web Module

View

Control

JPA
Entities

DTOs

HTTP Injection

Session
Facade

1

5
4

6

7

2

3

604 Rational Application Developer for WebSphere Software V8 Programming Guide

12.2.2 Creating an EJB project

To develop the session EJB, we create an EJB project. It is also typical to create
an EAR project that is the container for deploying the EJB project.

To create the EJB project, perform the following steps:

1. In the Java EE perspective, within the Enterprise Explorer view, right-click and
select New Project.

2. In the New Project wizard, select EJB EJB Project and click Next.

3. In the New EJB Project window, shown in Figure 12-8 on page 606, define the
project details:

a. In the Name field, type RAD8EJB.

b. For Target Runtime, select WebSphere Application Server v8.0 Beta.

c. For EJB module version, select 3.1.

d. For Configuration, select Minimal Configuration. Optional: Click Modify
to see the project facets (EJB Module 3.1, Java 6.0, and WebSphere EJB
(Extended) 8.0).

e. Select Add project to an EAR (default), and in the EAR Project Name
field, type RAD8EJBEAR. By default, the wizard creates a new EAR project,
but you can also select an existing project from the list of options for the
EAR Project Name field. If you want to create a new project and configure
its location, click New. For our example, we use the given default value.

f. Click Next.
 Chapter 12. Developing Enterprise JavaBeans (EJB) applications 605

Figure 12-8 Creating an EJB project: EJB Project window

4. In the New EJB Project wizard, in the Java window, accept the default value
ejbModule for the Source folder.

5. In the New EJB Project wizard, in the EJB Module window, perform the
following steps, as shown in Figure 12-9 on page 607:

a. Clear Create an EJB Client JAR module to hold client interfaces and
classes (default).

b. Select Generate ejb-jar.xml deployment descriptor and click Finish.
606 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 12-9 Creating an EJB project - EJB Module window

6. If the current perspective is not the Java EE perspective when you create the
project, when Rational Application Developer prompts you to switch to the
Java EE perspective, click Yes.

7. The Technology Quickstarts view opens. Close the view.

The Enterprise Explorer view contains the RAD8EJB project and the RAD8EJBEAR
enterprise application. Rational Application Developer indicates that at least one
EJB bean has to be defined within the RAD8EJB project. We create this session
bean in 12.2.5, “Implementing the session facade” on page 612, when we have
enabled the JPA project.

EJB client JAR file: The EJB client JAR file holds the interfaces of the
enterprise beans and other classes on which these interfaces depend. For
example, it holds their superclasses and implemented interfaces, the
classes and interfaces used as method parameters, results, and
exceptions. The EJB client JAR can be deployed together with a client
application that accesses the EJB. This results in a smaller client
application compared to deploying the EJB project with the client
application.
 Chapter 12. Developing Enterprise JavaBeans (EJB) applications 607

12.2.3 Making the JPA entities available to the EJB project

We assume that you imported the JPA project RAD8JPA into your workspace. To
make the JPA entities available to the EJBs, add the RAD8JPA project to the
RAD8EJBEAR enterprise application and create a dependency, while performing
the following steps:

1. Right-click the RAD8EJBEAR project and select Properties.

2. In the Properties window, select Deployment Assembly, and for EAR
Module Assembly, click Add.

3. In the New Assembly directive wizard, in the Select Directive Type window,
select Project. Click Next.

4. In the New Assembly directive wizard, in the Project window, select
RAD8JPA. Click Finish.

The Properties window now looks like Figure 12-10 on page 609.
608 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 12-10 Selecting the RAD8JPA project

12.2.4 Setting up the ITSOBANK database

The JPA entities are based on the ITSOBANK database. Therefore, we must define
a database connection within Rational Application Developer that the mapping
tools use to extract schema information from the database.

See “Setting up the ITSOBANK database” on page 1880 for instructions to
create the ITSOBANK database. We can either use the DB2 or Derby database.
For simplicity, we use the built-in Derby database in this chapter.

Configuring the data source for the ITSOBANK
You can choose from multiple methods to configure the data source, including
using the WebSphere administrative console or using the WebSphere enhanced
 Chapter 12. Developing Enterprise JavaBeans (EJB) applications 609

EAR, which stores the configuration in the deployment descriptor and is deployed
with the application.

For a definition of the data source in the WebSphere administrative console, see
“Configuring the data source in WebSphere Application Server” on page 1882.

In this section, we explain how to configure the data source using the
WebSphere enhanced EAR capabilities. The enhanced EAR is configured in the
Deployment tab of the EAR Deployment Descriptor editor. If you select to import
the complete sample code, you only have to verify that the value of the
databaseName property in the deployment descriptor matches the location of the
database.

Configuring the data source using the enhanced EAR
Before you perform the following steps, you have to start the server. To configure
a new data source using the enhanced EAR capability in the deployment
descriptor, follow these steps:

1. Right-click the RAD8EJBEAR project. Select Java EE Open WebSphere
Application Server Deployment.

2. In the WebSphere Deployment editor, select Derby JDBC Provider (XA)
from the JDBC provider list. This JDBC provider is configured by default.

3. Click Add next to data source.

4. Under the JDBC provider, select Derby JDBC Provider (XA) and Version
5.0 data source. Click Next.

5. In the Create a Data Source window, which is shown in Figure 12-11 on
page 611, define the following details:

a. For Name, type ITSOBANKejb.
b. For JNDI name, type jdbc/itsobank.
c. For Description, type Data Source for ITSOBANK EJBs.
d. Clear Use this data source in container managed persistence (CMP).
610 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 12-11 Data source definition: Name

e. Click Next.

6. In the Create Resource Properties window, select databaseName and enter
the value C:\7835code\database\derby\ITSOBANK, which is the path where
your installed database is located. Clear the description, as shown in
Figure 12-12 on page 612.
 Chapter 12. Developing Enterprise JavaBeans (EJB) applications 611

Figure 12-12 Data source definition: Database definition

7. Click Finish.

8. Save and close the deployment descriptor.

12.2.5 Implementing the session facade

The front-end application communicates with the JPA entity model through a
session facade. This design pattern makes the entities invisible to the EJB client.

In this section, we build the session facade with the session bean EJBBankBean.
Therefore, we describe all necessary steps to implement the session facade and
add the facade methods that are used by clients to perform banking operations,
including:

� Preparing an exception
� Creating the EJBBankBean session bean
� Defining the business interface
� Creating an Entity Manager
612 Rational Application Developer for WebSphere Software V8 Programming Guide

� Generating skeleton methods
� Completing the methods in EJBBankBean
� Deploying the application to the server

Preparing an exception
The business logic of the session bean throws an exception when errors occur.
Create an application exception named ITSOBankException, when performing the
following steps:

1. Right-click the RAD8EJB project and select New Class.

2. In the New Java Class window, define the following details:

a. For Package, type itso.bank.exception.
b. For Name, type ITSOBankException.
c. Set Superclass to java.lang.Exception.

3. Click Finish.

4. Complete the code in the editor, as shown in Example 12-19.

Example 12-19 Class definition ITSOBankException

public class ITSOBankException extends Exception {
private static final long serialVersionUID = 1L;

public ITSOBankException(String message) {
super(message);

}
}

5. Save and close the class.

Creating the EJBBankBean session bean
To create the session bean EJBBankBean, follow these steps:

1. Right-click the RAD8EJB project and select New Session Bean.

2. In the Create EJB 3.x Session Bean window, as shown in Figure 12-13 on
page 614, define the following details:

a. For Java package, type itso.bank.session.

b. For Class name, type EJBBankBean.

c. For State type, select Stateless.

d. For Create business interface, select Local and set the name to
itso.bank.service.EJBBankService.

e. Click Next.
 Chapter 12. Developing Enterprise JavaBeans (EJB) applications 613

Figure 12-13 Creating a session bean (part 1 of 2)

3. In the next window, which is shown in Figure 12-14 on page 615, accept the
default value Container for Transaction type and click Next.
614 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 12-14 Creating a session bean (part 2 of 2)

4. In the Select Class Diagram for Visualization window, select Add bean to
Class Diagram and accept the default name of classdiagram.dnx.

5. Click Finish.

6. When prompted for the enablement of EJB 3.1 Modeling, click OK.

7. Save and close the class diagram.

The EJBBankBean is open in the editor. Notice the @Stateless annotation.

Before you can write the session bean code, complete the business interface,
EJBBankService.

Defining the business interface
EJB 3.1 also provides a business interface mechanism, which is the interface
that clients use to access the session bean. The session bean can implement
multiple interfaces, for example, a local interface and a remote interface. For now,
we keep it simple with one local interface, EJBBankService.
 Chapter 12. Developing Enterprise JavaBeans (EJB) applications 615

The session bean wizard has created the EJBBankService interface. To complete
the code, follow these steps:

1. Open the EJBBankService interface. Notice the @Local annotation.

2. In the Java editor, add the methods to the interface, as shown in
Example 12-20. The code is available in the
\7835code\ejb\source\EJBBankService.txt file.

Example 12-20 Business interface of the session bean

@Local
public interface EJBBankService {

public Customer getCustomer(String ssn) throws ITSOBankException;
public Customer[] getCustomersAll();
public Customer[] getCustomers(String partialName) throws ITSOBankException;
public void updateCustomer(String ssn, String title, String firstName, String

lastName) throws ITSOBankException;
public Account[] getAccounts(String ssn) throws ITSOBankException;
public Account getAccount(String id) throws ITSOBankException;
public Transaction[] getTransactions(String accountID) throws ITSOBankException;
public void deposit(String id, BigDecimal amount) throws ITSOBankException;
public void withdraw(String id, BigDecimal amount) throws ITSOBankException;
public void transfer(String idDebit, String idCredit, BigDecimal amount) throws

ITSOBankException;
public void closeAccount(String ssn, String id) throws ITSOBankException;
public String openAccount(String ssn) throws ITSOBankException;
public void addCustomer(Customer customer) throws ITSOBankException;
public void deleteCustomer(String ssn) throws ITSOBankException;

}

3. To organize the imports, press Ctrl+Shift+O. When prompted, select
java.math.BigDecimal and itso.bank.entities.Transaction. Save and close
the interface.

Creating an Entity Manager
The session bean works with the JPA entities to access the ITSOBANK database.
We require an Entity Manager that is bound to the persistence context. To create
an Entity Manager, follow these steps:

1. Add these definitions to the EJBBankBean class:

@PersistenceContext (unitName="RAD8JPA",
type=PersistenceContextType.TRANSACTION)

private EntityManager entityMgr;
616 Rational Application Developer for WebSphere Software V8 Programming Guide

The @PersistenceContext annotation defines the persistence context unit
with transactional behavior. The unit name matches the name in the
persistence.xml file in the RAD8JPA project:

<persistence-unit name="RAD8JPA">

The EntityManager instance is used to execute JPA methods to retrieve,
insert, update, delete, and query instances.

2. Organize the imports by selecting the javax.persistence package.

Generating skeleton methods
We can generate method skeletons for the methods of the business interface that
must be implemented:

1. Open the EJBBankBean (if you closed it).

2. Select Source Override/Implement Methods.

3. In the Override/Implement Methods window, select all the methods of the
EJBBankService interface. For Insertion point, select After 'EJBBankBean()'.
Click OK. The method skeletons are generated.

4. Delete the default constructor.

Completing the methods in EJBBankBean

We complete the methods of the session bean in a logical sequence, not in the
alphabetical sequence of the generated skeletons.

getCustomer method
The getCustomer method retrieves one customer by Social Security number
(SSN). We use entityMgr.find to retrieve one instance. Alternatively, we might
use the getCustomerBySSN query (code in comments). If no instance is found, null
is returned, as shown in Example 12-21.

Example 12-21 Session bean getCustomer method

public Customer getCustomer(String ssn) throws ITSOBankException {
System.out.println("getCustomer: " + ssn);
//Query query = null;
try {

//query = entityMgr.createNamedQuery("getCustomerBySSN");
//query.setParameter("ssn", ssn);
//return (Customer)query.getSingleResult();

Tip: You can copy the Java code for this section from the
\7835code\ejb\source\EJBBankBean.txt file.
 Chapter 12. Developing Enterprise JavaBeans (EJB) applications 617

return entityMgr.find(Customer.class, ssn);
} catch (Exception e) {

System.out.println("Exception: " + e.getMessage());
throw new ITSOBankException(ssn);

}
}

getCustomers method
The getCustomers method uses a query to retrieve a collection of customers, as
shown in Example 12-22. The query is created and executed. The result list is
converted into an array and returned. Remember the defined query from the
Customer entity:

@NamedQuery(name="getCustomersByPartialName",
query="select c from Customer c where c.lastName like :name")

This query looks similar to SQL but works on entity objects. In our case, the entity
name and the table name are the same, but they do not have to be identical.

Example 12-22 Session bean getCustomers method

public Customer[] getCustomers(String partialName) throws
ITSOBankException {

System.out.println("getCustomer: " + partialName);
Query query = null;
try {

query = entityMgr.createNamedQuery("getCustomersByPartialName");
query.setParameter("name", partialName);
List<Customer> beanlist = query.getResultList();
Customer[] array = new Customer[beanlist.size()];
return beanlist.toArray(array);

} catch (Exception e) {
throw new ITSOBankException(partialName);

}
}

The updateCustomer method
The updateCustomer method is simple, as shown in Example 12-23. No call to
the Entity Manager is necessary. The table is updated automatically when the
method (transaction) ends.

Example 12-23 Session bean updateCustomer method

public void updateCustomer(String ssn, String title, String firstName,
String lastName) throws ITSOBankException {
618 Rational Application Developer for WebSphere Software V8 Programming Guide

System.out.println("updateCustomer: " + ssn);
Customer customer = getCustomer(ssn);
customer.setTitle(title);
customer.setLastName(lastName);
customer.setFirstName(firstName);
System.out.println("updateCustomer: " + customer.getTitle() + " "

+ customer.getFirstName() + " " +
customer.getLastName());
}

The getAccount method
The getAccount method retrieves one account by key. It is similar to the
getCustomer method.

The getAccounts method
The getAccounts method uses a query to retrieve all the accounts of a customer,
as shown in Example 12-24. The Account entity has the following query:

select a from Account a, in(a.customers) c where c.ssn =:ssn
 order by a.id

This query looks for accounts that belong to a customer with a given SSN. You
can also use this alternate query in the Customer class:

select a from Customer c, in(c.accounts) a where c.ssn =:ssn
 order by a.id

Example 12-24 Session bean getAccounts method

public Account[] getAccounts(String ssn) throws ITSOBankException {
System.out.println("getAccounts: " + ssn);
Query query = null;
try {

query = entityMgr.createNamedQuery("getAccountsBySSN");
query.setParameter("ssn", ssn);
List<Account>accountList = query.getResultList();
Account[] array = new Account[accountList.size()];
return accountList.toArray(array);

} catch (Exception e) {
System.out.println("Exception: " + e.getMessage());
throw new ITSOBankException(ssn);

}
}

 Chapter 12. Developing Enterprise JavaBeans (EJB) applications 619

The getTransactions method
The getTransactions method retrieves the transactions of an account, as shown
in Example 12-25. It is similar to the getAccounts method.

Example 12-25 Session bean getTransactions method

public Transaction[] getTransactions(String accountID) throws
ITSOBankException {

System.out.println("getTransactions: " + accountID);
Query query = null;
try {

query = entityMgr.createNamedQuery("getTransactionsByID");
query.setParameter("aid", accountID);
List<Transaction> transactionsList = query.getResultList();
Transaction[] array = new Transaction[transactionsList.size()];
return transactionsList.toArray(array);

} catch (Exception e) {
System.out.println("Exception: " + e.getMessage());
throw new ITSOBankException(accountID);

}
}

The deposit and withdraw methods
The deposit method adds money to an account by retrieving the account and
calling its processTransaction method with the Transaction.CREDIT code. The
new transaction instance is persisted, as shown in Example 12-26. The withdraw
method is similar and uses the Transaction.DEBIT code.

Example 12-26 Session bean deposit method

public void deposit(String id, BigDecimal amount) throws
ITSOBankException {

System.out.println("deposit: " + id + " amount " + amount);
Account account = getAccount(id);
try {

Transaction tx = account.processTransaction(amount,
Transaction.CREDIT);

entityMgr.persist(tx);
} catch (Exception e) {

throw new ITSOBankException(e.getMessage());
};

}

620 Rational Application Developer for WebSphere Software V8 Programming Guide

The transfer method
The transfer method calls withdraw and deposit on two accounts to move funds
from one account to the other account, as shown in Example 12-27.

Example 12-27 Session bean transfer method

public void transfer(String idDebit, String idCredit, BigDecimal
amount)

throws ITSOBankException {
System.out.println("transfer: " + idCredit + " " + idDebit + "

amount "
+ amount);

withdraw(idDebit, amount);
deposit(idCredit, amount);

}

The openAccount method
The openAccount method creates a new account instance with a randomly
constructed account number. The instance is persisted, and the customer is
added to the customers, as shown in Example 12-28.

Example 12-28 Session bean openAccount method

public String openAccount(String ssn) throws ITSOBankException {
System.out.println("openAccount: " + ssn);
Customer customer = getCustomer(ssn);
int acctNumber = (new java.util.Random()).nextInt(899999) + 100000;
String id = "00" + ssn.substring(0, 1) + "-" + acctNumber;
Account account = new Account();
account.setId(id);
entityMgr.persist(account);
List<Customer> custSet = Arrays.asList(customer);
account.setCustomers(custSet);
System.out.println("openAccount: " + id);
return id;

}

Adding the “m:m” relationship: The m:m relationship must be added from
the owning side of the relationship, in our case, from the Account. The code to
add the relationship from the Customer side runs without error, but the
relationship is not added.
 Chapter 12. Developing Enterprise JavaBeans (EJB) applications 621

The closeAccount method
The closeAccount method retrieves an account and all its transactions, then
deletes all instances using the Entity Manager remove method, as shown in
Example 12-29.

Example 12-29 Session bean closeAccount method

public void closeAccount(String ssn, String id) throws
ITSOBankException {

System.out.println("closeAccount: " + id + " of customer " + ssn);
Customer customer = getCustomer(ssn);
Account account = getAccount(id);
Transaction[] trans = getTransactions(id);
for (Transaction tx : trans) {

entityMgr.remove(tx);
}
entityMgr.remove(account);
System.out.println("closed account with " + trans.length

+ " transactions");
}

The addCustomer method
The addCustomer method accepts a fully constructed Customer instance and
makes it persistent, as shown in Example 12-30.

Example 12-30 Session bean addCustomer method

public void addCustomer(Customer customer) throws ITSOBankException {
System.out.println("addCustomer: " + customer.getSsn());
entityMgr.persist(customer);

}

The deleteCustomer method
The deleteCustomer method retrieves a customer and all its accounts and then
closes the accounts and deletes the customer, as shown in Example 12-31.

Example 12-31 Session bean deleteCustomer method

public void deleteCustomer(String ssn) throws ITSOBankException {
System.out.println("deleteCustomer: " + ssn);
Customer customer = getCustomer(ssn);
Account[] accounts = getAccounts(ssn);
for (Account acct : accounts) {

closeAccount(ssn, acct.getId());
}

622 Rational Application Developer for WebSphere Software V8 Programming Guide

entityMgr.remove(customer);
}

Organize the imports (select javax.persistence.Query, and java.util.List).

The EJBBankBean session bean is now complete. In the following sections, we test
the EJB using a servlet and then proceed to integrate the EJB with a web
application.

12.3 Testing the session EJB and the JPA entities

To test the session EJB, we can use the Universal Test Client, as described in
12.3.1, “Testing with the Universal Test Client” on page 624. As a second
approach, we develop a simple servlet that executes all the functions, as
described in 12.3.2, “Creating a web application to test the session bean” on
page 626.

Deploying the application to the server
To deploy the test application, perform these steps:

1. Start WebSphere Application Server V8.0 Beta in the Servers view.

2. Select the server and click Add and Remove Projects. Add the
RAD8EJBEAR enterprise application.

3. Click Finish and wait for the publishing to finish.

Notice the EJB binding messages in the console:

[...] 00000010 ResourceMgrIm I WSVR0049I: Binding ITSOBANKejb as
jdbc/itsobank
[...] 00000015 EJBContainerI I CNTR0167I: The server is binding
the EJBBankService interface of the EJBBankBean enterprise bean in
the RAD8EJB.jar module of the RAD8EJBEAR application. The binding
location is: ejblocal:RAD8EJBEAR/RAD8EJB.jar/EJBBankBean#itso.bank
.service.EJBBankService

JNDI name for data source: Make sure that the data source for the
ITSOBANK database is configured with a JNDI name of jdbc/itsobank either
in the WebSphere Deployment editor (“Configuring the data source for the
ITSOBANK” on page 609) or in the administrative console of the server
(“Configuring the data source in WebSphere Application Server” on
page 1882).
 Chapter 12. Developing Enterprise JavaBeans (EJB) applications 623

[...] 00000015 EJBContainerI I CNTR0167I: The server is binding
the EJBBankService interface of the EJBBankBean enterprise bean in
the RAD8EJB.jar module of the RAD8EJBEAR application. The binding
location is: ejblocal:itso.bank.service.EJBBankService

12.3.1 Testing with the Universal Test Client

Before we integrate the EJB application with the web application, we test the
session bean with the access to the JPA entities. We use the enterprise
application Universal Test Client (UTC), which is included in Rational Application
Developer.

In this section, we describe several operations that you can perform with the
Universal Test Client. We use the test client to retrieve a customer and its
accounts.

To test the session bean, follow these steps:

1. In the Servers view, right-click the server and select Universal Test Client
Run.

2. Accept the certificate and log in as admin/admin (the user ID that you set up
when installing Rational Application Developer).

3. The Universal Test Client opens, as shown in Figure 12-15.

Figure 12-15 Universal Test Client welcome

4. In the Universal Test Client window, which is shown in Figure 12-16 on
page 625, select JNDI Explorer on the left side. On the right side, expand
[Local EJB Beans].

5. Select itso.bank.service.EJBBankService. The EJBBankService is
displayed under EJB Beans, as shown in Figure 12-16 on page 625.
624 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 12-16 UTC: JNDI Explorer

6. Expand EJBBankService (on the left) and select the getCustomer method.
The method with its parameter opens on the right, as shown in Figure 12-17
on page 626.

7. Type 333-33-3333 for the value on the right and click Invoke.
 Chapter 12. Developing Enterprise JavaBeans (EJB) applications 625

A Customer instance is displayed as result, as shown in Figure 12-17 as well.

Figure 12-17 UTC: Retrieve a customer

8. Click Work with Object. The customer instance is displayed under Objects.
You can expand the object and invoke its methods (for example, getLastName)
to see the customer name.

Use the Universal Test Client to make sure that all of the EJB methods work.
When you are done, close the Universal Test Client pane.

12.3.2 Creating a web application to test the session bean

To test the EJB 3.1 session bean and entity model, create a small web
application with one servlet. Therefore, perform the following steps:

1. Within the Enterprise Explorer view, right-click and select New Project.

2. In the New Project wizard, select Web Dynamic Web Project and click
Next.
626 Rational Application Developer for WebSphere Software V8 Programming Guide

3. In the New Dynamic Web Project wizard, define the project details, as shown
in Figure 12-18 on page 628:

a. For Name, type RAD8EJBTestWeb.

b. For Dynamic Web Module version, select 3.0.

c. For Configuration, select Default Configuration for WebSphere
Application Server v8.0 Beta.

d. Select Add the project to an EAR. The value RAD8EJBEAR is set as the
default (the name of the previously defined EAR project for the RAD8EJB
project).

e. Click Finish and close the help window that opens.
 Chapter 12. Developing Enterprise JavaBeans (EJB) applications 627

Figure 12-18 Create RAD8EJBTestWeb project

The Enterprise Explorer view contains the RAD8EJBTestWeb project, which is
added to the RAD8EJBEAR enterprise application. Define the dependency to the
EJB project RAD8EJB with the following steps:

1. Right-click the RAD8EJBTestWeb project and select Properties.

2. In the Properties window, select Project References, and for Project
References, select the RAD8JPA module.

3. Click OK.
628 Rational Application Developer for WebSphere Software V8 Programming Guide

To create a new servlet within this RAD8EJBTestWeb project, perform the following
steps:

1. Right-click the RAD8EJBTestWeb project and select New Servlet.

2. For Package name, type itso.test.servlet, and for Class name, type
BankTest, as shown in Figure 12-19.

Figure 12-19 Creating servlet BankTest: Specifying the class file destination

3. Click Next twice.

4. Select to generate the doPost and doGet methods, as shown in Figure 12-20
on page 630.
 Chapter 12. Developing Enterprise JavaBeans (EJB) applications 629

Figure 12-20 Creating servlet BankTest: Specifying interfaces and method stubs

5. Click Finish.

6. After the class definition BankTest, add an injector for the business interface:

@javax.ejb.EJB EJBBankService bank;

The injection of the business interface into the servlet resolves to the
automatic binding of the session EJB.

7. In the doGet method, enter the code:

doPost(request, response);

8. Complete the doPost method with the code that is shown in Example 12-32,
which is available in the \7835code\ejb\source\BankTest.txt file. This
servlet executes the methods of the session bean, after getting a reference to
the business interface.

Example 12-32 Servlet to test the EJB 3.1 module (abbreviated)

protected void doPost(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {
630 Rational Application Developer for WebSphere Software V8 Programming Guide

try {
PrintWriter out = response.getWriter();
String partialName = request.getParameter("partialName");
out.println("<html><body><h2>Customer Listing</h2>");
if (partialName == null) partialName = "%";
else partialName = "%" + partialName + "%";

out.println("<p>Customers by partial Name: " + partialName + "
");
Customer[] customers = bank.getCustomers(partialName);

for (Customer cust : customers) {
out.println("
" + cust);

}

Customer cust1 = bank.getCustomer("222-22-2222");
out.println("<p>" + cust1);

Account[] accts = bank.getAccounts(cust1.getSsn());
out.println("
Customer: " + cust1.getSsn() + " has " + accts.length + "

accounts");
Account acct = bank.getAccount("002-222002");
out.println("<p>" + acct);

out.println("<p>Transactions of account: " + acct.getId());
Transaction[] trans = bank.getTransactions("002-222002");
out.println("<p><table border=1><tr><th>Type</th><th>Time</th>...");
for (Transaction t : trans) {

out.println("<tr><td>" + t.getTransType() + "</td><td>" + ...);
}
out.println("</table>");

String newssn = "xxx-xx-xxxx";
bank.deleteCustomer(newssn); // for rerun
out.println("<p>Add a customer: " + newssn);
Customer custnew = new Customer();
custnew.setSsn(newssn);
custnew.setTitle("Mrs");
custnew.setFirstName("Lara");
custnew.setLastName("Keen");
bank.addCustomer(custnew);
Customer cust2 = bank.getCustomer(newssn);
out.println("
" + cust2);

out.println("<p>Open two accounts for customer: " + newssn);
String id1 = bank.openAccount(newssn);
 Chapter 12. Developing Enterprise JavaBeans (EJB) applications 631

String id2 = bank.openAccount(newssn);
out.println("
New accounts: " + id1 + " " + id2);
Account[] acctnew = bank.getAccounts(newssn);
out.println("
Customer: " +newssn + " has " +acctnew.length ...);
Account acct1 = bank.getAccount(id1);
out.println("
" + acct1);

out.println("<p>Deposit and withdraw from account: " + id1);
bank.deposit(id1, new java.math.BigDecimal("777.77"));
bank.withdraw(id1, new java.math.BigDecimal("111.11"));
acct1 = bank.getAccount(id1);
out.println("
Account: " +id1+ " balance " + acct1.getBalance());

trans = bank.getTransactions(id1);
out.println("<p><table border=1><tr><th>Type</th><th>Time</th>...");
for (Transaction t : trans) {

out.println("<tr><td>" + t.getTransType() + ...");
}
out.println("</table>");

out.println("<p>Close the account: " + id1);
bank.closeAccount(newssn, id1);

out.println("<p>Update the customer: " + newssn);
bank.updateCustomer(newssn, "Mrs", "Sylvi", "Sollami");
cust2 = bank.getCustomer(newssn);
out.println("
" + cust2);
out.println("<p>Delete the customer: " + newssn);
bank.deleteCustomer(newssn);

out.println("<p>Retrieve non existing customer: ");
Customer cust3 = bank.getCustomer("zzz-zz-zzzz");
out.println("
customer: " + cust3);

out.println("<p>End</body></html>");
} catch (Exception e) {

System.out.println("Exception: " + e.getMessage());
e.printStackTrace();

}
}

632 Rational Application Developer for WebSphere Software V8 Programming Guide

12.3.3 Testing the sample web application

To test the web application, run the servlet:

1. Expand the test web project Deployment Descriptor Servlets. Select the
BankTest servlet, right-click, and select Run As Run on Server.

2. In the Run On Server window, select the WebSphere Application Server
v8.0 Beta server, select Always use this server when running this project,
and click Finish.

3. Accept the security certificate (if security is enabled).

Example 12-33 shows a sample output of the servlet.

Example 12-33 Servlet output (abbreviated)

Customer Listing
Customers by partial Name: %

Customer: 111-11-1111 Mr Henry Cui
Customer: 222-22-2222 Mr Craig Fleming
Customer: 333-33-3333 Mr Rafael Coutinho
Customer: 444-44-4444 Mr Salvatore Sollami
Customer: 555-55-5555 Mr Brian Hainey
Customer: 666-66-6666 Mr Steve Baber
Customer: 777-77-7777 Mr Sundaragopal Venkatraman
Customer: 888-88-8888 Mrs Lara Ziosi
Customer: 999-99-9999 Mrs Sylvi Lippmann
Customer: 000-00-0000 Mrs Venkata Kumari
Customer: 000-00-1111 Mr Martin Keen

Customer: 222-22-2222 Mr Craig Fleming
Customer: 222-22-2222 has 3 accounts

Account: 002-222002 balance 87.96

Transactions of account: 002-222002

Type Time Amount
Debit 2002-06-06 12:12:12.0 3.33
Credit 2003-07-07 14:14:14.0 6666.66
Credit 2004-01-08 23:03:20.0 700.77

Add a customer: xxx-xx-xxxx
Customer: xxx-xx-xxxx Mrs Lara Keen
 Chapter 12. Developing Enterprise JavaBeans (EJB) applications 633

Open two accounts for customer: xxx-xx-xxxx
New accounts: 00x-496969 00x-915357
Customer: xxx-xx-xxxx has 2 accounts
Account: 00x-496969 balance 0.00

Deposit and withdraw from account: 00x-496969
Account: 00x-496969 balance 666.66

Type Time Amount
Credit 2010-10-18 19:37:22.906 777.77
Debit 2010-10-18 19:37:23.0 111.11

Close the account: 00x-496969

Update the customer: xxx-xx-xxxx
Customer: xxx-xx-xxxx Mrs Sylvi Sollami

Delete the customer: xxx-xx-xxxx

Retrieve non existing customer:
customer: null

End

12.3.4 Visualizing the test application

You can improve the generated class diagram by adding the business interface,
the entities, and the servlet to the diagram, as shown in Figure 12-21 on
page 635.
634 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 12-21 Class diagram of the test web application

12.4 Invoking EJBs from web applications

In this section, we describe how to create a web application. The RAD8EJBWeb
application uses the JPA entities that are provided by the RAD8JPA project and
accesses these entities through the EJBBankBean session bean of the RAD8EJB
project.
 Chapter 12. Developing Enterprise JavaBeans (EJB) applications 635

12.4.1 Implementing the RAD8EJBWeb application

The RAD8EJBWeb application use EJB 3.1 APIs to communicate with the
EJBBankBean session bean.

You can import the finished application from the
\7835codesolution\ejb\RAD8EJBWeb.zip file.

Web application navigation
Figure 12-22 shows the navigation between the web pages.

Figure 12-22 Website navigation

Note the following points:

� From the home page (index.jsp), there are three static pages (rates.jsp,
insurance.jsp, and redbank.jsp).

� The redbank.jsp is the login panel for customers.

� After the login, the customer’s details and the list of accounts are displayed
(listAccounts.jsp).

� An account is selected in the list of accounts, and the details of the account
and a form for transaction list, deposit, withdraw, and transfer operations are
displayed (accountDetails.jsp).

Importing projects: If you already have RAD8EJB and RAD8JPA projects in the
workspace, only import RAD8EJBWeb and RAD8EJBWebEAR.
636 Rational Application Developer for WebSphere Software V8 Programming Guide

� From the account details form, banking transactions are executed:

– List transaction shows the list of previous debit and credit transactions
(listTransactions.jsp).

– Deposit, withdraw, and transfer operations are executed, and the updated
account information is displayed in the same page.

� Additional functions are to delete an account, update customer information,
add an account to a customer, and to delete the customer.

� In case of errors, an error page is displayed (showException.jsp).

The JSP are based on the template that provides navigation bars through
headers and footers:

/theme/itso_jsp_template.jtpl, nav_head.jsp, footer.jsp

Servlets and commands
Several servlets provide the processing and switching between the web pages:

ListAccounts Performs the customer login, retrieves the customer and
the accounts, and forwards them to the
accountDetails.jsp.

AccountDetails Retrieves one account and forwards it to the
accountDetails.jsp.

PerformTransaction Validates the form values and calls one of the commands
(ListTransactionsCommand, DepositCommand,
WithdrawCommand, or TransferCommand). The commands
perform the requested banking transaction and forwards it
to the listTransactions.jsp or the accountDetails.jsp.

UpdateCustomer Processes updates of customer information and the
deletion of a customer.

DeleteAccount Deletes an account and forwards it to the
listAccounts.jsp.

NewAccount Creates an account and forwards it to the
listAccounts.jsp.

Logout Logs out and displays the home page.

Java EE dependencies
The enterprise application (RAD8EJBWebEAR) includes the web module
(RAD8EJBWeb), the EJB module (RAD8EJB), and the JPA Utility project (RAD8JPA).

The web module (RAD8EJBWeb) has a dependency on the EJB module (RAD8EJB),
which has a dependency on the JPA project (RAD8JPA).
 Chapter 12. Developing Enterprise JavaBeans (EJB) applications 637

Accessing the session EJB
All database processing is done through the EJBBankBean session bean, using
the business interface EJBBankService.

The servlets use EJB 3.1 injection to access the session bean:

@EJB EJBBankService bank;

After this injection, all the methods of the session bean can be invoked, such as
the following methods that are shown in Example 12-34.

Example 12-34 EJBBankService methods

Customer customer = bank.getCustomer(customerNumber);
Account{} accounts = bank.getAccounts(customerNumber);
bank.deposit(accountId, amount);

Additional functionality
We improved the application and added the following functions:

� On the customer details panel (listAccounts.jsp), we added three buttons:

– New Customer: Enter data into the title, first name, and last name fields,
then click New Customer. A customer is created with a random Social
Security number.

– Add Account: This action adds an account to the customer, with a random
account number and zero balance.

– Delete Customer: Deletes the customer and all related accounts.

The logic for adding and deleting a customer is in the UpdateCustomer servlet.
The logic for a new account is in NewAccount servlet.

� On the account details page (accountDetails.jsp), we added the Delete
Account button. You click this button to delete the account with all its
transactions. The customer with its remaining accounts is displayed next.

The logic for deleting an account is in DeleteAccount servlet.

� For the Login panel, we added logic in the ListAccounts servlet so that the
user can enter a last name instead of the SSN.

If the search by SSN fails, we retrieve all customers with that partial name. If
only one result is found, we accept it and display the customer. This allows
entry of partial names, such as So%, to find the Sollami customer.
638 Rational Application Developer for WebSphere Software V8 Programming Guide

12.4.2 Running the web application

Before running the web application, we must have the data source for the
ITSOBANK database configured. See 12.2.4, “Setting up the ITSOBANK
database” on page 609, for instructions. You can either configure the enhanced
EAR in the RAD8EJBWebEAR application or define the data source in the server. We
suggest that you define the data source in the server, as described in
“Configuring the data source in WebSphere Application Server” on page 1882.

To run the web application, perform these steps:

1. In the Servers view, right-click the server and select Add and Remove
Projects. Remove the RAD8EJBEAR application and add the
RAD8EJBWebEAR application. Then click Finish.

2. Right-click the RAD8EJBWeb project and select Run As Run on Server.

3. When prompted, select WebSphere Application Server v8.0 Beta.

4. Your start page is the redbank.jsp login page, as shown in Figure 12-23.
Because we want to focus on the Redbank application, we set the redbank.jsp
as a welcome-list entry in the web.xml configuration file, as well.

Figure 12-23 RedBank: Login
 Chapter 12. Developing Enterprise JavaBeans (EJB) applications 639

5. Enter a customer number, such as 333-33-3333, and click Submit. The
customer details and the list of accounts are displayed in Figure 12-24.

Figure 12-24 RedBank: Customer with accounts

6. Click an account, such as 003-333001, and the details and possible actions
are displayed, as shown in Figure 12-25 on page 641.
640 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 12-25 RedBank: Account details
 Chapter 12. Developing Enterprise JavaBeans (EJB) applications 641

7. Select List Transactions and click Submit. The transactions are listed, as
shown in Figure 12-26.

Figure 12-26 RedBank: Transactions

8. Click Account Details to return to the account.

9. Select Deposit, enter an amount (58.15), and click Submit. The balance is
updated to 9,100.00.

10.Select Withdraw, enter an amount (100), and click Submit. The balance is
updated to 9,000.00.

11.Select Transfer. Enter an amount (3000) and a target account (003-333002)
and click Submit. The balance is updated to 6,000.00.
642 Rational Application Developer for WebSphere Software V8 Programming Guide

12.Select List Transactions and click Submit. The transactions are listed and
there are three more entries, as shown in Figure 12-27.

Figure 12-27 RedBank: Transactions added

13.Click AccountDetails to return to the account. Click Customer Details to
return to the customer.

14.Click the second account and then click Submit. You can see that the second
account has a transaction from the transfer operation, as shown in
Figure 12-28 on page 644.
 Chapter 12. Developing Enterprise JavaBeans (EJB) applications 643

Figure 12-28 Transfer result to account 003-333002

15.Back in the customer details, change the last name and click Update. The
customer information is updated.

16.Overtype the first and last names with Jonny Lippmann and click New
Customer. Then a new customer with SSN 395-60-9710 is created, as shown
in Figure 12-29 on page 645.
644 Rational Application Developer for WebSphere Software V8 Programming Guide

17.Click Add Account, and an account 003-365234 with balance 0.00 is added
to the customer, as shown in Figure 12-29.

Figure 12-29 RedBank: New customer and new account

18.Perform transactions on the new account.

19.Go back to customer details and click Delete Customer.

20.In the Login panel, enter an incorrect value and click Submit. The customer
details panel is displayed with a “NOT FOUND” last name.

21.Click Logout.

12.4.3 Cleaning up

Remove the RAD8EJBWebEAR application from the server.
 Chapter 12. Developing Enterprise JavaBeans (EJB) applications 645

12.4.4 Adding a remote interface

For testing by using JUnit and for certain web applications, as described in
“Configuring the data source in WebSphere Application Server” on page 1882,
we define a remote interface for the EJBBankBean session bean. Perform the
following steps:

1. In the RAD8EJB project, itso.bank.service package, create an interface
named EJBBankRemote, which extends the business interface,
EJBBankService.

2. Add one method to the interface, getCustomersAll, to retrieve all the
customers.

3. Add an @Remote annotation before your interface class definition.
Example 12-35 shows the defined remote interface.

Example 12-35 Remote interface of the session bean

package itso.bank.service;
import itso.bank.entities.Customer;
import javax.ejb.Remote;
@Remote
public interface EJBBankRemote extends EJBBankService {

public Customer[] getCustomersAll();
}

4. Open the EJBBankBean session bean:

a. Add the EJBBankRemote interface to the implements list.

b. Implement the getCustomersAll method, as shown in Example 12-36.
This method is similar to the getCustomers method, using the
getCustomers named query (without a parameter).

Example 12-36 Extend EJBBankBean with remote interface

public class EJBBankBean implements EJBBankService, EJBBankRemote
{

......
public Customer[] getCustomersAll() {

System.out.println("getCustomers: all");
Query query = null;
try {

query = entityMgr.createNamedQuery("getCustomers");
List<Customer> beanlist = query.getResultList();
Customer[] array = new Customer[beanlist.size()];
return beanlist.toArray(array);

} catch (Exception e) {
646 Rational Application Developer for WebSphere Software V8 Programming Guide

System.out.println("Exception: " + e.getMessage());
return null;

}
}

}

12.5 More information

For more information about EJB 3.1 and EJB 3.0, see the following resources:

� WebSphere Application Server Version 6.1 Feature Pack for EJB 3.0,
SG24-7611

� JSR 318: Enterprise JavaBeans 3.1:

http://jcp.org/en/jsr/summary?id=318

� WebSphere Application Server Information Center:

http://publib.boulder.ibm.com/infocenter/wasinfo/beta/index.jsp?topi
c=/com.ibm.websphere.nd.doc/info/ae/ae/tejb_timerserviceejb_enh.html
 Chapter 12. Developing Enterprise JavaBeans (EJB) applications 647

http://jcp.org/en/jsr/summary?id=318
http://publib.boulder.ibm.com/infocenter/wasinfo/beta/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/tejb_timerserviceejb_enh.html
http://publib.boulder.ibm.com/infocenter/wasinfo/beta/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/tejb_timerserviceejb_enh.html
http://publib.boulder.ibm.com/infocenter/wasinfo/beta/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/tejb_timerserviceejb_enh.html
http://publib.boulder.ibm.com/infocenter/wasinfo/beta/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/tejb_timerserviceejb_enh.html

648 Rational Application Developer for WebSphere Software V8 Programming Guide

Chapter 13. Developing Java Platform,
Enterprise Edition (Java EE)
application clients

In this chapter, we introduce Java Platform, Enterprise Edition (Java EE)
application clients and the facilities supplied by the Java EE application client
container. In addition, we highlight the features provided by Rational Application
Developer for developing and testing Java EE application clients.

The chapter is organized into the following sections:

� Introduction to Java EE application clients
� Overview of the sample application
� Preparing the sample application
� Developing the Java EE application client
� Testing the Java EE application client
� Packaging the Java EE application client

The sample code for this chapter is in the 7835code\j2eeclient folder.

13
© Copyright IBM Corp. 2011. All rights reserved. 649

13.1 Introduction to Java EE application clients

A J2EE application server, similar to WebSphere Application Server, exposes
several types of resources to remote clients:

� Enterprise JavaBeans (EJB)
� Java Database Connectivity (JDBC) data sources
� Java Message Service (JMS) resources (queues and topics)
� Java Naming and Directory Interface (JNDI) services

These resources are most often accessed from a component that is running
within the Java EE application server itself, such as an EJB, servlet, or JSP.
However, these resources can also be used from a stand-alone Java application
(known as a Java EE Application Client) running in its own Java virtual machine
(JVM), possibly on a computer that is separate from the server. Figure 13-1
shows the resource access scenarios described.

Figure 13-1 Java applications using Java EE server resources

Server JVM

JDBC
Data

Source

JMS
Queue

Java EE Application
Client Container

JNDI Service

EJB Container

EJB EJB

Java EE Application
Client Container

Java EE Application
Client Container

EJB
Client

Database
ApplicationJNDI lookup

Access resource

JPA

Messaging
Application
650 Rational Application Developer for WebSphere Software V8 Programming Guide

Because a regular JVM does not support accessing such application server
resources, additional setup for the runtime environment is required for a Java EE
application. There are two methods to achieve this setup:

� Add the required packages to the Java Runtime Environment manually.

� Package the application according to the Java EE application client
specification, and execute the application in a Java EE application client
container.

In this chapter, we focus on the second option. In addition to providing the correct
runtime resources for Java applications accessing Java EE server resources, the
Java EE application client container provides additional features, such as
mapping references to JNDI names and integration with server security features.

IBM WebSphere Application Server v8.0 Beta includes a Java EE application
client container and a facility for starting Java EE application clients. The Java EE
application client container, known as Application Client for WebSphere
Application Server, can be installed separately from the WebSphere Application
Server installation CDs, or downloaded from developerWorks, and runs a
completely separate JVM on the client machine.

When the JVM starts, it loads the necessary runtime support classes to make it
possible to communicate with WebSphere Application Server and to support
Java EE application clients that will use server-side resources.

Rational Application Developer includes tooling to assist with developing and
configuring Java EE application clients, and a test facility that allows Java EE
application clients to be executed in an appropriate container. The focus of this

Clients: The clients shown in Figure 13-1 might conceptually be running on
the same physical node or in the same JVM as the application server.
However, in this chapter, the focus is on clients running in distributed
environments. Throughout this chapter, we develop an EJB client, invoking the
EJB from Chapter 12, “Developing Enterprise JavaBeans (EJB) applications”
on page 577, to provide a simple ITSO Bank client application.

Application Client for WebSphere Application Server: Although the Java
EE specification describes the JAR format as the packaging format for Java
EE application clients, the Application Client for WebSphere Application
Server expects the application to be packaged as a JAR inside an Enterprise
Application Archive (EAR). The Application Client for WebSphere Application
Server does not support the execution of a stand-alone Java client JAR.
 Chapter 13. Developing Java Platform, Enterprise Edition (Java EE) application clients 651

chapter is on the Rational Application Developer tooling for Java EE application
clients. We look only at this facility.

The Java EE programming model simplifies the process of creating Java
applications. Java Enterprise applications (Java EE applications) are applications
that conform to the Java Platform, Enterprise Edition (Java EE) specification.
Prior to Java EE, the specification name was Java 2 Platform, Enterprise Edition
(J2EE). The term Java EE includes Java EE and J2EE specifications.

In the Java EE specifications, programming requirements have been
streamlined, and XML deployment descriptors are optional. Instead, you can
specify many details of assembly and deployment with Java annotations. Java
EE provides default values in many situations so explicit specification of these
values is not required.

Code validation, content assistance, Quick Fixes, and refactoring simplify
working with your code. Code validators check your projects for errors. When an
error is found, you can double-click it in the Problems view in the product
workbench to go to the error location. For certain error types, you can use a
Quick Fix to correct the error automatically. For both Java source and Java
annotations, you can rely on content assistance to simplify your programming
task. When you refactor source code, the tools automatically update the
associated metadata.

For additional information about Java EE, see the official specification:

� Java EE 5: Java Specification Request (JSR) 244: Java Platform, Enterprise
Edition 5 (Java EE 5) Specification

� Java EE 6: JSR 316: Java Platform, Enterprise Edition 6 (Java EE 6)
Specification

13.2 Overview of the sample application

In this chapter, we develop a simple Java EE application client. It invokes the
services of the EJB application that was developed in Chapter 12, “Developing
Enterprise JavaBeans (EJB) applications” on page 577, to look up the customer
information and account overview from a specified customer Social Security
number (SSN).

The application uses a graphical user interface (GUI), implemented with Swing
components, which shows the details for the customer with SSN 444-44-4444
(Figure 13-2 on page 653).
652 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 13-2 Interface for the sample application client

Figure 13-3 on page 654 shows a class diagram of the finished sample
application:

� The classes on the right side of the class diagram are from the EJB enterprise
application. The three classes on the left are part of the application client.

� As the class diagram outlines, the application client controller class,
BankDesktopController, uses the EJBBankBean session EJB to retrieve
Customer and Account object instances, representing the customer and
associated accounts that are retrieved from the ITSOBANK database.
 Chapter 13. Developing Java Platform, Enterprise Edition (Java EE) application clients 653

Figure 13-3 Class diagram for the Bank Java EE application client

13.3 Preparing the sample application

Prior to working on the sample for this chapter, we have to set up the database
for the sample application, import the sample application, and ensure that
everything works.

13.3.1 Importing the enterprise application sample

To import the enterprise application sample that we use as a starting point for
this chapter, follow these steps:

1. From the workbench, select File Import.

2. In the Import window, select General Existing Projects into Workspace
and click Next.

3. In the Import Projects window, select Select archive file and locate the
c:\7835code\j2eeclient\RAD8AppClient.zip file.

4. Select all projects (RAD8EJB, RAD8EJBEAR, RAD8EJBTestWeb, and
RAD8JPA). Click Finish.
654 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 13-4 Import wizard to import the project into the workspace

After the Import wizard (Figure 13-4) has completed the import, four projects are
added to the workspace:

� RAD8EJB: This project contains the EJB that makes up the business logic of
the ITSO Bank. The EJBBankBean session bean acts as a facade for the EJB
application. This project is packaged inside RAD8EJBEAR when exported and
deployed on an application server.

� RAD8EJBEAR: This project is the deployable enterprise application, which
functions as a container for the remaining projects. This enterprise application
must be executed on an application server.

� RAD8EJBTestWeb: This project is the sample web application that is developed
to test the EJB 3.0 session bean and entity model. This project is packaged
inside RAD8EJBEAR when exported and deployed on an application server.

� RAD8JPA: This Java project holds JPA entities that are passed between the
session facade and the client applications.
 Chapter 13. Developing Java Platform, Enterprise Edition (Java EE) application clients 655

13.3.2 Setting up the sample database

The JPA entities used in this sample are based on the ITSOBANK database.
Therefore, we must define a database connection within Rational Application
Developer that the mapping tools use to extract schema information from the
database.

Setting up the ITSOBANK database
See “Setting up the ITSOBANK database” on page 1880 for instructions to
create the ITSOBANK database. We can either use the DB2 or Derby database.
For simplicity, we use the built-in Derby database in this chapter.

Configuring the data source
Use the JPA tools to configure the data source for the ITSOBANK database:

1. In the Enterprise Explorer view of the Java EE perspective, right-click
RAD8JPA and select JPA Tools Configure Project for JDBC
Deployment.

2. In the Set up connections for deployment dialog window, click Add
connections.

3. In the New Connection dialog window, perform the following tasks
(Figure 13-5 on page 657):

a. Select a database manager of Derby.

b. Set the JDBC driver to Derby 10.2 - Embedded JDBC Driver Default.

c. Set the database location to point to the location of the ITSOBANK database
(for example, C:\7835code\database\derby\ITSOBANK).
656 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 13-5 New JDBC connection

4. Click Finish.

5. Back in the Set up connections for deployment dialog window (Figure 13-6 on
page 658), click OK.
 Chapter 13. Developing Java Platform, Enterprise Edition (Java EE) application clients 657

Figure 13-6 Setting up JDBC connections

Testing the sample application
To test the sample application, perform the following steps:

1. Start WebSphere Application Server in the Servers view.

2. In the Enterprise Explorer, expand RAD8EJBTestWeb Java
Resources src itso.test.servlet.

3. Right-click BankTest.java and select Run As Run on Server.

4. In the Run On Server dialog, click Finish.

5. If the sample application is able to connect successfully to the ITSOBANK data
source, you will see the results shown in Figure 13-7 on page 659.
658 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 13-7 Test showing customer information from the ITSOBANK database

13.4 Developing the Java EE application client

In this section, we show how to use Rational Application Developer to create a
project that contains a Java EE application client. This application client will be
associated with its own enterprise application.

To develop the Java EE application client sample, we complete the following
tasks:

� Creating the Java EE application client projects
� Configuring the Java EE application client projects
� Importing the graphical user interface and control classes
� Creating the BankDesktopController class

New client application: Do not use the new client application with the existing
RAD8EJBEAR enterprise application, although this approach is possible. The
EJB project contains other server resources that must not be distributed to the
clients, such as passwords or proprietary business logic.
 Chapter 13. Developing Java Platform, Enterprise Edition (Java EE) application clients 659

� Completing the BankDesktopController class
� Creating an EJB reference and binding
� Registering the BankDesktopController class as the main class

13.4.1 Creating the Java EE application client projects

To create a Java EE application client project, follow these steps:

1. In the Java EE perspective, select File New Project. Expand the Java
EE folder and select Application Client Project. Click Next.

Alternatively, right-click in the Enterprise Explorer view and select New
Application Client Project.

2. In the New Application Client Project window (Figure 13-8 on page 661),
perform these tasks:

a. For Project name, type RAD8AppClient.

b. For EAR Project Name, type RAD8AppClientEAR.

c. For Target Runtime, accept the default of WebSphere Application Server
v8.0 Beta. For Application Client module version, accept the default of 6.0.

d. Click Next.
660 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 13-8 New Application Client Project

3. In the Application Client module window (Figure 13-9 on page 662), verify the
presence of the source folder on the build path named appClientModule and
click Next.
 Chapter 13. Developing Java Platform, Enterprise Edition (Java EE) application clients 661

Figure 13-9 Application Client module

4. In the next window of the Application Client Module (Figure 13-10), clear
Create a default Main class, select Generate application-client.xml
deployment descriptor, and click Finish.

Figure 13-10 Application Client Module (continued)
662 Rational Application Developer for WebSphere Software V8 Programming Guide

When the wizard is complete, the following two projects are created in your
workspace:

� RAD8AppClientEAR: This enterprise application project acts as a container for
the code to be deployed on the application client node.

� RAD8AppClient: This project contains the code for the application client. For
now, it is empty, except for the META-INF/application-client.xml file, which
is the application client deployment descriptor.

13.4.2 Configuring the Java EE application client projects

The application client project has to reference the RAD8EJB and RAD8JPA projects.
In this section, we configure this dependency by adding the RAD8EJBClient as a
dependency to both projects:

1. In the Enterprise Explorer, right-click RAD8AppClientEAR and select
Properties.

2. In the Properties window, select Deployment Assembly. In the right pane,
click Add. In the New Assembly Directive window (Figure 13-11), select
Project and click Next.

Figure 13-11 New Assembly Directive window
 Chapter 13. Developing Java Platform, Enterprise Edition (Java EE) application clients 663

3. In the Projects window (Figure 13-12), select the RAD8EJB project and click
Finish.

Figure 13-12 New Assembly Directive: Projects window (continued)

4. Repeat the same operation to add the RAD8JPA project to the Ear Module
Assembly. The Ear Module Assembly with the RAD8EJB and RAD8JPA projects
is shown in Figure 13-13 on page 665.
664 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 13-13 EAR Module Assembly

5. Click OK.

6. Right-click RAD8AppClient and select Properties.

7. In the Properties window, select Deployment Assembly. In the right pane,
select the Manifest Entries tab. Click Add. In the Add Manifest Entries
dialog, select the RAD8EJB project (Figure 13-14 on page 666). Click Finish.
 Chapter 13. Developing Java Platform, Enterprise Edition (Java EE) application clients 665

Figure 13-14 Add Manifest Entries dialog

8. Click OK.

13.4.3 Importing the graphical user interface and control classes

In this section, we complete the GUI for the Java EE application client. This
sample uses Swing components for the user interface.

Because this chapter focuses on the aspects relating to development of Java EE
application clients, we import the finished user interface and focus on
implementing the code for accessing the EJB.

To import the framework classes for the Java EE application client, follow these
steps:

1. In the Enterprise Explorer, right-click RAD8AppClient and select New
Package. Type itso.rad8.client.ui as Name and click Finish.

2. Right-click itso.rad8.client.ui and select Import.

3. In the Import window, expand General File System and click Next.
666 Rational Application Developer for WebSphere Software V8 Programming Guide

4. In the Import file window, click Browse. Then find and select
c:\7835code\j2eeclient\appclient.

5. In the Import: File system window (Figure 13-15), select
AccountTableModel.java and BankDesktop.java and click Finish.

Figure 13-15 Import existing GUI classes

Two classes are imported to the RAD8AppClient project:

� itso.rad8.client.ui.BankDesktop: This visual class, which extends the
Swing JFrame, contains the view for the Java EE application client.

� itso.rad8.client.ui.AccountTableModel: This implementation of the
interface javax.swing.table.AbstractTableModel provides the relevant
TableModel interface for a JTable, given an array of Account instances.
 Chapter 13. Developing Java Platform, Enterprise Edition (Java EE) application clients 667

13.4.4 Creating the BankDesktopController class

In this section, we create the controller class for the Java EE application client.
This class is also the main class for the application and contains the EJB lookup
code.

To create the BankDesktopController class, follow these steps:

1. In the Enterprise Explorer, expand RAD8AppClient, right-click
appClientModule, and select New Class.

2. In the New Java Class window (Figure 13-16 on page 669), complete the
following steps:

a. In the Package field, type itso.rad8.client.control.

b. In the Name field, type BankDesktopController.

c. For “Which method stubs would you like to create?”, select public static
void main(String[] args) and Constructors from superclass.

d. Click Add next to the Interface section.

e. In the Implemented Interfaces Selection window, in the Choose interfaces
field, type ActionListener, and in the Matching types list, select
ActionListener - java.awt.event. Click OK.

f. Click Finish.
668 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 13-16 Creating the BankDesktopController class

13.4.5 Completing the BankDesktopController class

In this section, we add control logic to the BankDesktopController class and the
code to look up customer and account information from the EJB application.

Code: You can copy the code in this section from the complete
BankDesktopController class that is supplied in the sample code in the
c:\7835code\j2eeclient\appclient\BankDesktopController.java file.
 Chapter 13. Developing Java Platform, Enterprise Edition (Java EE) application clients 669

To complete the BankDesktopController class, follow these steps. To begin,
BankDesktopController.java is open in the Java editor. The client invokes
methods of the EJBBankBean session bean through its remote interface.

1. Inject the remote interface of the session bean:

public class BankDesktopController implements ActionListener {

@EJB(name="ejb/bank",beanInterface=EJBBankRemote.class)
static EJBBankRemote bank;

After every step, select Source Organize Imports (or press Ctrl+Shift+O)
to generate the required import statement.

2. Add two fields to the beginning of the class definition:

private BankDesktop desktop = null;
private AccountTableModel accountTableModel = null;

3. Locate the constructor and add the new code (the new code is in bold):

public BankDesktopController() {
desktop = new BankDesktop();
accountTableModel = new AccountTableModel();
desktop.getTblAccounts().setModel(accountTableModel);
desktop.getBtnSearch().addActionListener(this);
desktop.setVisible(true);

}

4. Locate the main method, add the throws clause, and add three lines:

public static void main(String[] args) throws Exception {
BankDesktopController controller = new BankDesktopController();
// without the next line, app client fails in IDE, works outside
bank.getAccounts("xxx");

}

5. Locate the actionPerformed method stub and complete the method, as
shown in Example 13-1.

Example 13-1 Complete actionPerformed method

public void actionPerformed(ActionEvent e) {
// we know that we are only listening to action events from
// the search button, so...
String ssn = desktop.getTfSSN().getText();
try {

// look up the customer
Customer customer = bank.getCustomer(ssn);
if (customer == null) throw new ITSOBankException
670 Rational Application Developer for WebSphere Software V8 Programming Guide

("Customer not found: " +
ssn);

// look up the accounts
Account[] accounts = bank.getAccounts(ssn);
// update the user interface
desktop.getTfTitle().setText(customer.getTitle());
desktop.getTfFirstName().setText(customer.getFirstName());
desktop.getTfLastName().setText(customer.getLastName());
// store the accounts in the table model and set the model in

the GUI
accountTableModel.setAccounts(accounts);

} catch (ITSOBankException x) {
// unknown customer. Report this using the output fields...
desktop.getTfTitle().setText("(not found)");
desktop.getTfFirstName().setText("(not found)");
desktop.getTfLastName().setText("(not found)");
accountTableModel.setAccounts(new Account[0]);

}
}

6. Save and close BankDesktopController.

13.4.6 Creating an EJB reference and binding

An EJB 3.0 session bean has a short binding and a long binding that can be
used to inject the EJB reference. The EJBBankBean session bean has the
following short and long bindings for the remote interface:

itso.bank.service.EJBBankRemote
ejb/RAD8EJBEAR/RAD8EJB.jar/EJBBankBean#itso.bank.service.
EJBBankRemote

For this example, we use the long binding to invoke the EJBBankRemote interface.
You must define an EJB reference in the deployment descriptor. Follow these
steps to add this EJB reference with the long binding:

1. Expand RAD8AppClient and open (double-click) the RAD8AppClient
descriptor editor.

Alternatively, right-click application-client.xml in appClientModule/META-INF
and select Open With Application Client 6 Descriptor Editor.
 Chapter 13. Developing Java Platform, Enterprise Edition (Java EE) application clients 671

2. On the Design tab (Figure 13-17), follow these steps:

Figure 13-17 Create an EJB reference

a. Click Add to add a new EJB reference.
b. Select EJB Reference and click OK.
c. For EJB Reference Name, type ejb/bank.
d. For EJB Reference Type, select Session.
e. For Remote Interface, type itso.bank.service.EJBBankRemote.

The Source tab shows the XML source of the EJB reference:

<ejb-ref>
<ejb-ref-name>ejb/bank</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<remote>itso.bank.service.EJBBankRemote</remote>

 </ejb-ref>

3. Save and close the application-client.xml file.

4. Right-click RAD8AppClient and select Java EE Generate WebSphere
Bindings Deployment Descriptor to create a stub of the
ibm-application-client-bnd.xml file.
672 Rational Application Developer for WebSphere Software V8 Programming Guide

5. On the Design tab (Figure 13-18), perform these steps:

a. Click Add to add a new EJB reference.
b. Select EJB Reference and click OK.
c. For Name, type ejb/bank.
d. For Binding Name, type:

ejb/RAD8EJBEAR/RAD8EJB.jar/EJBBankBean#itso.bank.service.EJBBankR
emote

Figure 13-18 Creating an EJB binding

The Source tab shows the XML source of the EJB binding:

<ejb-ref name="ejb/bank"
binding-name="ejb/RAD8EJBEAR/RAD8EJB.jar/EJBBankBean#itso.bank.servi
ce.EJBBankRemote" />

6. Save and close the ibm-application-client-bnd.xml file.

The code and configuration for the ITSO Bank Java EE application client is now
complete. Now you need to register the BankDesktopController class as the
main class for the application client.

13.4.7 Registering the BankDesktopController class as the main
class

The BankDesktopController class contains the logic for the Java EE application
client.
 Chapter 13. Developing Java Platform, Enterprise Edition (Java EE) application clients 673

You have to register this class as the main class for the application client, so that
the Java EE application client containers start the application properly:

1. Double-click MANIFEST.MF in RAD8AppClient appClientModule
META-INF.

2. In the Manifest Editor, perform the following steps (Figure 13-19):

a. Click Browse next to the Main-Class entry.

b. In the Type Selection window, for the Select a class using field, start typing
BankDesk. In the Matching types list, select the BankDesktopController
and click OK.

c. In the Dependencies section of the Manifest Editor, click Allow both and
select RAD8EJB.jar (Figure 13-19).

Figure 13-19 Manifest Editor
674 Rational Application Developer for WebSphere Software V8 Programming Guide

d. Save and close the Manifest Editor.

13.5 Testing the Java EE application client

Now that the code has been updated, test the Java EE application client:

1. Make sure that the WebSphere Application Server v8.0 Beta is started.

2. Ensure that the RAD8EJBEAR enterprise application is deployed on the server.
In the Servers view, right-click WebSphere Application Server v8.0 Beta
and select Add and Remove. Add the RAD8EJBEAR project if it is not deployed
to the server already.

Do not add RAD8AppClientEAR to the server. We run the application client
outside of the server.

3. In the Enterprise Explorer, right-click RAD8AppClient and select Run As
Run Configurations.

4. In the Run Configurations window (Figure 13-20 on page 676), in the left
pane, double-click WebSphere Application Server v8.0 Beta Application
Client. A New_configuration entry is added and displayed in the right pane.
 Chapter 13. Developing Java Platform, Enterprise Edition (Java EE) application clients 675

Figure 13-20 Creating a new run configuration for the application client

Follow these steps:

a. In the Name field, type RAD8AppClient.

b. For Enterprise application, select RAD8AppClientEAR, and for
Application Client module, select RAD8AppClient.

c. Select Enable application client to connect to a server and accept
WebSphere Application Server v8.0 Beta as the specific server.

d. Click Apply and then click Run.

5. If prompted with the SSL Signer Exchange Prompt, click Yes.
676 Rational Application Developer for WebSphere Software V8 Programming Guide

6. In the Login at the Target Server window (Figure 13-21), which opens if
security is enabled in the WebSphere Application Server, for both the user ID
and password, type admin (the user ID configured for the server). Then click
OK.

Figure 13-21 Logging in to the secure server

Several messages are displayed in the console:

IBM WebSphere Application Server, Release 8.0
Java EE Application Client Tool
Copyright IBM Corp., 1997-2008
......
WSCL0013I: Initializing the Java EE Application Client Environment.
......
WSCL0035I: Initialization of the Java EE Application Client
Environment

has completed.
WSCL0014I: Invoking the Application Client class

itso.rad8.client.control.BankDesktopController

7. In the Bank Desktop window (Figure 13-22), type a customer SSN, such as
444-44-4444, and click Search.

Figure 13-22 Bank Desktop window
 Chapter 13. Developing Java Platform, Enterprise Edition (Java EE) application clients 677

8. The customer and the accounts are displayed (Figure 13-23).

Figure 13-23 Results shown in the Bank Desktop window

9. Close the client window.

Initial communication with server: In the main method of the
BankDesktopController, we added the following line:

bank.getAccounts("xxx");

Without this initial communication with the server to run the getAccounts
query, the application client fails when run inside Rational Application
Developer:

Exception in thread "AWT-EventQueue-0" java.rmi.MarshalException:
CORBA MARSHAL 0x4942f896 No; nested exception is:

org.omg.CORBA.MARSHAL: Unable to read value from underlying
bridge :

null vmcid: IBM minor code: 896 completed: No
at com.ibm.CORBA.iiop.UtilDelegateImpl.mapSystemException

(UtilDelegateImpl.java:271)
at javax.rmi.CORBA.Util.mapSystemException(Util.java:84)
at itso.bank.service._EJBBankRemote_Stub.getAccounts

(_EJBBankRemote_Stub.java)
at itso.rad8.client.control.BankDesktopController.actionPerformed

(BankDesktopController.java:40)
678 Rational Application Developer for WebSphere Software V8 Programming Guide

13.6 Packaging the Java EE application client

To run the application client outside Rational Application Developer, you must
package the application.

13.6.1 Packaging the application

To package the application client for deployment, follow these steps:

1. In the Enterprise Explorer, right-click RAD8AppClientEAR and select
Export EAR file.

2. In the EAR Export window (Figure 13-24), click Browse to select a
destination, for example, c:\7835code\deployment\RAD8AppClientEAR.ear.
Click Finish to generate the EAR.

Figure 13-24 Application client export

JAR file versus EAR file: Although the Java EE specification names the JAR
format as the principle means for distributing Java EE application clients, the
WebSphere Application Server application client container expects an
enterprise application archive (EAR) file.
 Chapter 13. Developing Java Platform, Enterprise Edition (Java EE) application clients 679

You can now export the EAR file to a client node and run it by using the
Application Client for WebSphere Application Server.

13.6.2 Running the deployed application client

You can use the launchClient command to run the application client outside of
Rational Application Developer. For information about the command, see the
following web address:

http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/index.jsp?topic=/
com.ibm.websphere.base.doc/info/aes/ae/rcli_javacmd.html

To run the application client, follow these steps:

1. Open a command window at the \bin of WebSphere Application Server.

2. Enter the launchclient command:

launchclient c:\7835code\deployment\RAD8AppClientEAR.ear
-CCBootstrapHost=localhost -CCBootstrapPort=28xx

3. After the Bank Desktop window opens, you can run the application client (see
Figure 13-22 on page 677 and Figure 13-23 on page 678).

-CCBootstrap: The -CCBootstrapHost parameter specifies the host
machine where the WebSphere Application Server v8.0 Beta is running
(default is localhost). The -CCBootstrapPort parameter specifies the RMI
port (default 2809).

You can find the RMI port by opening the server configuration (double-click
the server in the Servers view) and look at server connection types.
680 Rational Application Developer for WebSphere Software V8 Programming Guide

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/rcli_javacmd.html

Chapter 14. Developing web services
applications

In this chapter, we introduce the concept of a service-oriented architecture
(SOA). We explain how to realize this type of an architecture by using the Java
Enterprise Edition (Java EE 6) web services specifications: Java Specification
Request (JSR) 224: Java API for XML-Based Web Services (JAX-WS) 2.2 and
JSR 311: Java API for RESTful Web Services 1.1 (JAX-RS).

We explore the features that are provided by Rational Application Developer for
web services development and security. We also demonstrate how Rational
Application Developer can help with testing web services and developing web
services client applications.

The chapter is organized into the following sections:

� Introduction to web services
� New function in Java EE 6 for web services
� JAX-WS programming model
� Web services development approaches
� Web services tools in Rational Application Developer
� Preparing for the JAX-WS samples
� Creating bottom-up web services from a JavaBean
� Creating a synchronous web service JSP client
� Creating a web service JavaServer Faces client

14
© Copyright IBM Corp. 2011. All rights reserved. 681

� Creating a web service thin client
� Creating asynchronous web service clients
� Creating web services from an EJB
� Creating a top-down web service from a WSDL
� Creating web services with Ant tasks
� Sending binary data using MTOM
� JAX-RS programming model
� Web services security
� WS-Policy
� WS-MetadataExchange (WS-MEX)
� Security Assertion Markup Language (SAML) support
� More information

The sample code for this chapter is in the 7835code\webservice folder.
682 Rational Application Developer for WebSphere Software V8 Programming Guide

14.1 Introduction to web services

This section introduces architecture and concepts of the SOA and web services.

14.1.1 SOA

In an SOA, applications are made up of loosely coupled software services, which
interact to provide all the functionality needed by the application. Each service is
generally designed to be self-contained and stateless to simplify the
communication that takes place between them.

There are three major roles involved in an SOA:

� Service provider
� Service broker
� Service requester

Figure 14-1 shows the interactions between these roles.

Figure 14-1 Service-oriented architecture

Service provider
The service provider creates a service and can publish its interface and access
information to a service broker.

A service provider must decide which services to expose and how to expose
them. Often, a trade-off exists between security and interoperability; the service
provider must make technology decisions based on this trade-off. If the service
provider uses a service broker, decisions must be made about how to categorize

Service
Requester

Service
Broker

Service
Provider

look up

bind

register
 Chapter 14. Developing web services applications 683

the service, and the service must be registered with the service broker using
agreed-upon protocols.

Service broker
The service broker, also known as the service registry, is responsible for making
the service interface and implementation access information that is available to
any potential service requester.

The service broker provides mechanisms for registering and finding services. A
particular broker might be public (for example, available on the Internet) or
private, only available to a limited audience (for example, on an intranet). The
type and format of the information stored by a broker and the access
mechanisms used is implementation-dependent.

Service requester
The service requester, also known as a service client, discovers services and
then uses them as part of its operation.

A service requester uses services provided by service providers. Using an
agreed-upon protocol, the requester can find the required information about
services using a broker (or this information can be obtained in another way).
After the service requester has the necessary details of the service, it can bind or
connect to the service and invoke operations on it. The binding is usually static,
but the possibility of dynamically discovering the service details from a service
broker and configuring the client accordingly makes dynamic binding possible.

14.1.2 Web services as an SOA implementation

Web services provides a technology foundation for implementing an SOA. A
major focus of this technology is interoperability. The functional building blocks
must be accessible over standard Internet protocols. Internet protocols are
independent of platforms and programming languages, which ensures that high
levels of interoperability are possible.

Web services are self-contained software services that can be accessed using
simple protocols over a network. They can also be described using standard
mechanisms, and these descriptions can be published and located using
standard registries. Web services can perform a wide variety of tasks, ranging
from simple request-reply tasks to full business process interactions.

By using tools, such as Rational Application Developer, existing resources can
be exposed as web services easily.
684 Rational Application Developer for WebSphere Software V8 Programming Guide

The following core technologies are used for web services:

� Extensible Markup Language (XML)
� SOAP
� Web Services Description Language (WSDL)

XML
XML is the markup language that underlies web services. XML is a generic
language that can be used to describe any content in a structured way, separated
from its presentation to a specific device. All elements of web services use XML
extensively, including XML namespaces and XML schemas.

The specification for XML is available at the following address:

http://www.w3.org/XML/

SOAP
SOAP is a network, transport, and programming language-neutral protocol that
allows a client to call a remote service. The message format is XML. SOAP is
used for all communication between the service requester and the service
provider. The format of the individual SOAP messages depends on the specific
details of the service being used.

The specification for SOAP is available at the following address:

http://www.w3.org/TR/soap/

WSDL
WSDL is an XML-based interface and implementation description language. The
service provider uses a WSDL document to specify the following items:

� The operations that a web service provides
� The parameters and data types of these operations
� The service access information

WSDL is one way to make service interface and implementation information
available in a service registry. A server can use a WSDL document to deploy a
web service. A service requester can use a WSDL document to work out how to
access a web service (or a tool can be used for this purpose).

The specification for WSDL is available at the following address:

http://www.w3.org/TR/wsdl/
 Chapter 14. Developing web services applications 685

http://www.w3.org/XML/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/wsdl/

14.2 New function in Java EE 6 for web services

Java EE 6 includes several API specifications that provide web services support.
Several of these specifications were already included in Java EE 5 and have
been upgraded in Java EE 6. Several of these specifications are entirely new in
Java EE 6. The most notable example is JSR 311: JAX-RS: Java API for RESTful
Web Services 1.1.

The specifications for web services support in Java EE are available at the
following web address:

http://www.oracle.com/technetwork/java/javaee/tech/webservices-139501.h
tml

For information about standards related to web services supported by Rational
Application Developer, see the following address:

http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/co
m.ibm.webservice.doc/topics/core/cwsfpstandards.html

This information center describes which versions of the standards are supported
by WebSphere Application Server v8.0 Beta, V7.0, and V6.1 with or without the
Feature Pack for Web Services.

14.2.1 JSR 224: Java API for XML-Based Web Services (JAX-WS) 2.2

The Java API for XML-Based Web Services (JAX-WS) is a programming model
that simplifies application development through the support of a standard,
annotation-based model to develop web services applications and clients.

The JAX-WS programming standard aligns itself with the document-centric
messaging model and replaces the remote procedure call programming model
defined by the Java API for XML-based RPC (JAX-RPC) specification. Although
Rational Application Developer still supports the JAX-RPC programming model
and applications, JAX-RPC has limitations and does not support many current
document-centric services. JAX-RPC will not be described further in this book.

Table 14-1 on page 687 shows which WebSphere Application Server versions
support JAX-WS 2.0, 2.1, and 2.2.
686 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.oracle.com/technetwork/java/javaee/tech/webservices-139501.html
http://www.ibm.com/developerworks/views/webservices/standards.jsp

Table 14-1 WebSphere Application Server support for JAX-WS versions

JAX-WS 2.1 introduces support for the WS-Addressing in a standardized API.
Using this function, you can create, transmit, and use endpoint references to
target a web service endpoint. You can use this API to specify the action uniform
resource identifiers (URIs) that are associated with the WSDL operations of your
Web service.

JAX-WS 2.1 introduces the concept of features as a way to programmatically
control specific functions and behaviors. Three standard features are available:
the AddressingFeature for WS-Addressing, the MTOMFeature when optimizing
the transmission of binary attachments, and the RespectBindingFeature for
wsdl:binding extensions. JAX-WS 2.1 requires Java Architecture for XML Binding
(JAXB) Version 2.1 for data binding.

For more information about the new features of JAX-WS 2.1, refer to the
WebSphere Application Server 7.0 Information Center:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/
com.ibm.websphere.base.doc/info/aes/ae/cwbs_jaxws.html

WebSphere Application Server Version 8.0 supports the JSR 109: JAX-WS
Version 2.2 and Web Services for Java EE Version 1.3 specifications.

The JAX-WS 2.2 specification supersedes and includes functions within the
JAX-WS 2.1 specification. JAX-WS 2.2 adds client-side support for using
WebServiceFeature-related annotations, such as @MTOM, @Addressing, and the
@RespectBinding annotations. JAX-WS 2.1 had previously added support for
these annotations on the server.

For more information about the new features of JAX-WS 2.2, refer to this website:

http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/co
m.ibm.webservice.doc/topics/core/cjaxws.html

Java EE version JAX-WS version WebSphere Application
Server version

Java EE 5 JAX-WS 2.0 6.1 with Feature Pack for
Web Services
7.0
8.0

Java EE 5 JAX-WS 2.1 7.0
8.0

Java EE 6 JAX-WS 2.2 8.0
 Chapter 14. Developing web services applications 687

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/cwbs_jaxws.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/com.ibm.webservice.doc/topics/core/cjaxws.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/com.ibm.webservice.doc/topics/core/cjaxws.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/com.ibm.webservice.doc/topics/core/cjaxws.html

In Rational Application Developer, you can choose which version of JAX-WS
code to produce when generating web services top-down (from an existing
WSDL file) and when generating web services clients. You can find the
corresponding options by selecting Windows Preferences Web
Services WebSphere JAX-WS Code Generation:

� Top Down Version of JAX-WS code to be generated
� Client Version of JAX-WS code to be generated

These default options can be further overridden in the Web Services code
generation wizard.

14.2.2 JSR 222: Java Architecture for XML Binding (JAXB) 2.2

Java Architecture for XML Binding (JAXB) is a Java technology that provides an
easy and convenient way to map Java classes and XML schema for the
simplified development of web services. JAXB uses the flexibility of
platform-neutral XML data in Java applications to bind XML schema to Java
applications without requiring extensive knowledge of XML programming.

JAXB is the default data binding technology that the JAX-WS tooling uses and is
the default implementation within this product. You can develop JAXB objects for
use within JAX-WS applications.

JAX-WS tooling relies on JAXB tooling for default data binding for two-way
mappings between Java objects and XML documents. JAXB data binding
replaces the data binding described by the JAX-RPC specification.

WebSphere Application Server V7.0 supports the JAXB 2.1 specification.
JAX-WS 2.1 requires JAXB 2.1 for data binding. JAXB 2.1 provides
enhancements, such as improved compilation support and support for the @XML
annotation, and full schema 1.0 support.

WebSphere Application Server v8.0 Beta supports the JAXB 2.2 specification.
JAXB 2.2 provides minor enhancements to its annotations for improved schema
generation and better integration with JAX-WS. JAX-WS 2.2 requires Java
Architecture for XML Binding (JAXB) Version 2.2 for data binding.

14.2.3 JSR 109: Implementing Enterprise Web Services

Implementing Enterprise Web Services: JSR 109 defines the programming
model and runtime architecture to deploy and look up web services in the Java
EE environment, more specifically, in the web, Enterprise JavaBeans (EJB), and
client application containers. One of the major goals of JSR 109 is to ensure that
vendors’ implementations interoperate.
688 Rational Application Developer for WebSphere Software V8 Programming Guide

WebSphere Application Server V8 Beta introduces support for Web Services for
Java EE (JSR 109) Version 1.3 specification. The Web Services for Java EE 1.3
specification introduces support for WebServiceFeature-related annotations, as
well as support for using deployment descriptor elements to configure these
features on both the client and server.

14.2.4 Related web services standards

Next we describe the related web services specifications.

JSR 67: SOAP with Attachments API for Java (SAAJ)
The SOAP with Attachments API for Java (SAAJ) interface is used for SOAP
messaging that provides a standard way to send XML documents over the
Internet from a Java programming model. SAAJ is used to manipulate the SOAP
message to the appropriate context as it traverses through the runtime
environment.

JSR 173: Streaming API for XML (StAX)
Streaming API for XML (StAX) is a streaming Java-based, event-driven,
pull-parsing API for reading and writing XML documents. With StAX, you can
create bidirectional XML parsers that are fast, relatively easy to program, and
have a light memory footprint.

JSR 181: Web Services Metadata for the Java Platform
Web Services Metadata for the Java Platform defines an annotated Java format
that uses JSR 175: Metadata Facility for the Java Programming Language to
enable the easy definition of Java web services in a Java EE container.

Web Services Interoperability Organization
In an effort to improve the interoperability of web services, the Web Services
Interoperability Organization (known as WS-I) was formed. WS-I produces a
specification known as the WS-I Basic Profile. This specification describes the
technology choices that maximize interoperability between web services and
clients running on separate platforms, using separate runtime systems, and
written in multiple languages.

The WS-I Basic Profile is available at the following address:

http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile

Web Services Security
The WS-Security specification describes extensions to SOAP that allow for the
quality of protection of SOAP messages, including message authentication,
 Chapter 14. Developing web services applications 689

http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile

message integrity, and message confidentiality. The specified mechanisms can
be used to accommodate a wide variety of security models and encryption
technologies. It also provides a general-purpose mechanism for associating
security tokens with message content. For additional information, see the
following web address:

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

14.3 JAX-WS programming model

JAX-WS is the strategic programming model for developing web services and is
a required part of the Java EE 5 and Java EE 6 platforms. JAX-WS simplifies
application development through the support of a standard, annotation-based
model to develop web service applications and clients. The JAX-WS
programming standard strategically aligns itself with the current industry trend
toward a more document-centric messaging model.

Implementing the JAX-WS programming standard provides the enhancements
described in the following sections for developing web services and clients.

14.3.1 Better platform independence for Java applications

Using JAX-WS APIs and developing web services and clients are simplified with
better platform independence for Java applications. JAX-WS takes advantage of
dynamic proxies whereas JAX-RPC uses generated stubs. The dynamic proxy
client invokes a web service that is based on a service endpoint interface (SEI)
that is generated or provided. The dynamic proxy client is similar to the stub
client in the JAX-RPC programming model. Although the JAX-WS dynamic proxy
client and the JAX-RPC stub client are both based on the SEI that is generated
from a WSDL file, note the following major differences:

� The dynamic proxy client is dynamically generated at run time using the
Java 5 dynamic proxy functionality. The JAX-RPC-based stub client is a
non-portable Java file that is generated by tooling.

� Unlike the JAX-RPC stub clients, the dynamic proxy client does not require
you to regenerate a stub prior to running the client on an application server for
a separate vendor, because the generated interface does not require the
specific vendor information.
690 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

14.3.2 Annotations

JAX-WS introduces support for annotating Java classes with metadata to
indicate that the Java class is a web service. JAX-WS supports the use of
annotations based on the JSR 175: Metadata Facility for the Java Programming
Language specification, the JSR 181: Web Services Metadata for the Java
Platform specification, and annotations that are defined by the JAX-WS
2.0/2.1/2.2 specification. Using annotations in the Java source and Java class
simplifies the development of web services by defining part of the additional
information that is typically obtained from deployment descriptor files, WSDL
files, or mapping metadata from XML and WSDL files into the source artifacts.

For example, you can embed a simple @WebService annotation in the Java source
to expose the bean as a web service (Example 14-1).

Example 14-1 JAX-WS annotation

@WebService
public class BankBean {

public String getCustomerFullName(String ssn) { ... }
}

The @WebService annotation tells the server runtime environment to expose all
public methods on that bean as a web service. Additional levels of granularity can
be controlled by adding additional annotations on individual methods or
parameters. The use of annotations makes it much easier to expose Java
artifacts as web services. In addition, as artifacts are created from using part of
the top-down mapping tools starting from a WSDL file, annotations are included
within the source and Java classes as a way of capturing the metadata along
with the source files.

14.3.3 Invoking web services asynchronously

With JAX-WS, web services can be called both synchronously and
asynchronously. JAX-WS adds support for both a polling mechanism and
callback mechanism when calling web services asynchronously. By using a
polling model, a client can issue a request and get a response object back, which
is polled to determine whether the server has responded. When the server
responds, the actual response is retrieved. With the polling model, the client can
continue to process other work without waiting for a response to return.

With the callback model, the client provides a callback handler to accept and
process the inbound response object. Both the polling and callback models
enable the client to focus on continuing to process work while providing for a
more dynamic and efficient model to invoke web services.
 Chapter 14. Developing web services applications 691

For example, a web service interface has methods for both synchronous and
asynchronous requests (Example 14-2). Asynchronous requests are identified in
bold.

Example 14-2 Asynchronous methods in the web service interface

@WebService
public interface CreditRatingService {

// sync operation
Score getCreditScore(Customer customer);
// async operation with polling
Response<Score> getCreditScoreAsync(Customer customer);
// async operation with callback
Future<?> getCreditScoreAsync(Customer customer,

AsyncHandler<Score> handler);
}

The asynchronous invocation that uses the callback mechanism requires an
additional input by the client programmer. The callback handler is an object that
contains the application code that is executed when an asynchronous response
is received. Example 14-3 shows an asynchronous callback handler.

Example 14-3 Asynchronous callback handler

CreditRatingService svc = ...;

Future<?> invocation = svc.getCreditScoreAsync(customerFred,
new AsyncHandler<Score>() {

public void handleResponse(Response<Score> response) {
Score score = response.get();
// do work here...

}
}

);

Example 14-4 shows an asynchronous polling client.

Example 14-4 Asynchronous polling

CreditRatingService svc = ...;
Response<Score> response = svc.getCreditScoreAsync(customerFred);

while (!response.isDone()) {
// do something while we wait

}

692 Rational Application Developer for WebSphere Software V8 Programming Guide

// no cast needed, thanks to generics
Score score = response.get();

14.3.4 Dynamic and static clients

The dynamic client programming API for JAX-WS is called the dispatch client
(javax.xml.ws.Dispatch). The dispatch client is an XML messaging-oriented
client. The data is sent in either PAYLOAD or MESSAGE mode:

� PAYLOAD: When using the PAYLOAD mode, the dispatch client is only
responsible for providing the contents of the <soap:Body> element and
JAX-WS adds the <soap:Envelope> and <soap:Header> elements.

� MESSAGE: When using the MESSAGE mode, the dispatch client is responsible
for providing the entire SOAP envelope including the <soap:Envelope>,
<soap:Header>, and <soap:Body> elements and JAX-WS does not add
anything additional to the message. The dispatch client supports
asynchronous invocations using a callback or polling mechanism.

The static client programming model for JAX-WS is called the proxy client. The
proxy client invokes a web service based on an SEI that is generated or provided.

14.3.5 Message Transmission Optimization Mechanism support

With JAX-WS, you can send binary attachments, such as images or files, along
with web services requests. JAX-WS adds support for optimized transmission of
binary data as specified by Message Transmission Optimization Mechanism
(MTOM).

14.3.6 Multiple payload structures

JAX-WS exposes the XML Source, SAAJ 1.3, and JAXB 2.2 binding
technologies to the user.

With XML Source, a user can pass a javax.xml.transform.Source to the run
time, which represents the data in a source object to be passed to the run time.
SAAJ 1.3 now has the ability to pass an entire SOAP document across the
interface, rather than only the payload. This action is done by the client passing
the SAAJ SOAPMessage object across the interface. JAX-WS uses the JAXB 2.2
support as the data binding technology of choice between Java and XML.
 Chapter 14. Developing web services applications 693

14.3.7 SOAP 1.2 support

Support for SOAP 1.2 was added to JAX-WS 2.0. JAX-WS supports both SOAP
1.1 and SOAP 1.2. SOAP 1.2 provides a more specific definition of the SOAP
processing model, which removes many of the ambiguities that sometimes led to
interoperability problems in the absence of the WS-I profiles. SOAP 1.2 reduces
the chances of interoperability issues with SOAP 1.1 implementations between
separate vendors. It is not interoperable with earlier versions.

14.4 Web services development approaches

You can follow two general approaches to web service development:

� In the top-down approach, a web service is based on the web service
interface and XML types, defined in WSDL and XML Schema Definition
(XSD) files. You first design the implementation of the web service by creating
a WSDL file using the WSDL editor. You can then use the Web Service wizard
to create the web service and skeleton Java classes to which you can add the
required code. You then modify the skeleton implementation to interface with
the business logic.

The top-down approach provides more control over the web service interface
and the XML types used. Use this approach for developing new web services.

� In the bottom-up approach, a web service is created based on the existing
business logic in JavaBeans or EJB. A WSDL file is generated to describe the
resulting web service interface.

The bottom-up pattern is often used for exposing existing function as a web
service. It might be faster, and no XSD or WSDL design skills are needed.
However, if complex objects (for example, Java collection types) are used, the
resulting WSDL might be difficult to understand and less interoperable.

14.5 Web services tools in Rational Application
Developer

Rational Application Developer provides tools to create web services from
existing Java and other resources or from WSDL files. Rational Application
Developer also provides tools for web services client development and for testing
web services.
694 Rational Application Developer for WebSphere Software V8 Programming Guide

14.5.1 Creating a web service from existing resources

Rational Application Developer provides wizards for exposing a variety of
resources as web services. You can use the following resources to build a web
service:

� JavaBean: The Web Service wizard assists you in creating a new web service
from a simple Java class, configures it for deployment, and deploys the web
service to a server. The server can be the WebSphere Application Server
V6.1, V7.0, or v8.0 Beta that is included with Rational Application Developer
or another application server.

� EJB: The Web Service wizard assists you in creating a new web service from
a stateless session EJB, configuring it for deployment, and deploying the web
service to a server.

14.5.2 Creating a skeleton web service

Rational Application Developer provides the functionality to create web services
from a description in a WSDL or Web Services Inspection Language (WSIL) file:

� JavaBean from WSDL: The web services tools assist you in creating a
skeleton JavaBean from an existing WSDL document. The skeleton bean
contains a set of methods that correspond to the operations described in the
WSDL document. When the bean is created, each method has a trivial
implementation that you replace by editing the bean.

� EJB from WSDL: The web services tools support the generation of a skeleton
EJB from an existing WSDL file. Apart from the type of component produced,
the process is similar to that for JavaBeans.

14.5.3 Client development

To assist in the development of web service clients, Rational Application
Developer provides the following features:

� Java client proxy from WSDL: The Web Service client wizard assists you in
generating a proxy JavaBean. This proxy can be used within a client
application to greatly simplify the client programming required to access a
web service.

� Sample web application from WSDL: Rational Application Developer can
generate a sample web application, which includes the proxy classes
described before, and sample JavaServer Pages (JSP) that use the proxy
classes.
 Chapter 14. Developing web services applications 695

� Web Service Discovery Dialog: On this window, you can discover a web
service that exists online or in your workspace, create a proxy for the web
service, and then place the methods of the proxy into a Faces JSP file.

14.5.4 Testing tools for web services

To allow developers to test web services, Rational Application Developer
provides a range of features:

� WebSphere Application Server v8.0 Beta, V7.0, and V6.1 test environment:
These servers are included with Rational Application Developer as test
servers and can be used to host web services. This feature provides a range
of web services run times, including an implementation of the J2EE
specification standards.

� Generic service client: The generic service client can invoke calls to any
service that uses an HTTP, a Java Message Service (JMS), or WebSphere
MQ transport and can view the message returned by the service.

� Sample JSP application: The web application mentioned before can be used
to test web services and the generated proxy it uses.

� Web Services Explorer: This simple test environment can be used to test any
web service, based only on the WSDL file for the service. The service can be
running on a local test server or anywhere else in the network. The Web
Services Explorer is a JSP web application that is hosted on the Apache
Tomcat servlet engine in Eclipse. The Web Services Explorer uses the WSDL
to render a SOAP request. It does not involve data marshalling and
unmarshalling. The return parameter is stripped out, and the values are
displayed in a predefined format.

� Universal Test Client: The Universal Test Client (UTC) is a powerful and
flexible test application that is normally used for testing EJB. Its flexibility
makes it possible to test ordinary Java classes, so it can be used to test the
generated proxy classes created to simplify client development.

� TCP/IP Monitor: The TCP/IP Monitor works similarly to a proxy server,
passing TCP/IP requests to another server and directing the returned
responses back to the originating client. The TCP/IP messages that are
exchanged are displayed in a special view within Rational Application
Developer.

14.6 Preparing for the JAX-WS samples

To prepare for this sample, we import sample code, which is a simple web
application that includes Java classes and an EJB.
696 Rational Application Developer for WebSphere Software V8 Programming Guide

14.6.1 Importing the sample

In this section, prepare the environment for the JAX-WS web services application
samples:

1. In the Java EE perspective, select File Import.

2. Select General Existing Projects into Workspace.

3. In the Import Projects window, select Select archive file.

4. Click Browse. Navigate to the c:\7835code\webservices folder and select the
RAD8WebServiceStart.zip file. Click Open.

5. Click Select All and click Finish.

After the build, no warning or error messages are displayed in the workspace.

Sample projects
The sample application that we use for creating the web service consists of the
following projects:

� RAD8WebServiceUtility project: This project is a simple banking model with
BankMemory, Customer, and Account beans. It is a simplified version of the
RAD8Java project that is used in Chapter 7, “Developing Java applications” on
page 229.

� RAD8WebServiceWeb project: This project contains the SimpleBankBean, a
JavaBean with a few methods that retrieve data from the MemoryBank, a
search HTML page, and a resulting JSP. We use annotations to generate web
services for this project.

� RAD8WebServiceWeb2 project: This project contains the same code as the
RAD75WebServiceWeb project. We use the Web Service wizard to generate web
services for this project.

� RAD8WebServiceEJB project: This project contains the SimpleBankFacade
session EJB with a few methods that retrieve data from the MemoryBank.

� RAD8WebServiceEAR project: This project is the enterprise application that
contains the other four projects.

14.6.2 Testing the application

To start and test the application, follow these steps:

1. In the Servers view, start WebSphere Application Server v8.0 Beta.

2. Right-click the server and select Add and remove projects.
 Chapter 14. Developing web services applications 697

3. In the Add and Remove Projects window, select RAD8WebServiceEAR, click
Add, and then click Finish.

4. Expand RAD8WebServiceWeb WebContent, right-click search.html,
and select Run As Run on Server.

5. Select Choose an existing server and select the v8.0 server to run the
application. Then click Finish.

6. When the search page opens in a web browser, in the Social Security number
field, enter an appropriate value, for example, 111-11-1111, and click Search.
If everything works correctly, you can see the customer’s full name, first
account, and its balance, which have been read from the memory data.

7. Test the stateless session EJB, SimpleBankFacade, by using the Universal
Test Client (UTC). See 12.3.1, “Testing with the Universal Test Client” on
page 624, for more information about using the UTC. The following methods
are valid:

– getCustomerFullName(ssn): Retrieves the full name (use 111-11-1111)
– getNumAccounts(ssn): Retrieves the number of accounts
– getAccountId(ssn, int): Retrieves the account ID by index (0,1,2,...)
– getAccountBalance(accountId): Retrieves the balance

We now have resources in preparation for the web services sample, including a
JavaBean in the RAD8WebServiceWeb project and a session EJB in the
RAD8WebServiceEJB project. We use these resources as a base for developing
and testing the web services examples.

14.7 Creating bottom-up web services from a JavaBean

In this section, we create a web service from an existing Java class using the
bottom-up approach. The imported application contains a Java class called
SimpleBankBean, which has various methods to get customer and account
information from the bank. We can either use the Web Service wizard to
generate the web service or use the annotations directly. The Web Service
wizard does not inject annotations to the delegate class derived from the
JavaBean. Therefore, these two approaches are essentially the same.

14.7.1 Creating a web service using annotations

The JAX-WS programming standard relies on the use of annotations to specify
metadata that is associated with web service implementations. The standard
also relies on annotations to simplify the development of web services. The
698 Rational Application Developer for WebSphere Software V8 Programming Guide

JAX-WS standard supports the use of annotations that are based on several
JSRs:

� A Metadata Facility for the Java Programming Language (JSR 175)
� Web Services Metadata for the Java Platform (JSR 181)
� Java API for XML-Based Web Services (JAX-WS) 2.2 (JSR 224)
� Common Annotations for the Java Platform (JSR 250)
� Java Architecture for XML Binding (JAXB) (JSR 222)

Using annotations from the JSR 181 standard, we can annotate a service
implementation class or a service interface. Then we can generate a web service
with a wizard or by publishing the application to a server. Using annotations
within both Java source code and Java classes simplifies web service
development. Using annotations in this way defines additional information that is
typically obtained from deployment descriptor files, WSDL files, or mapping
metadata from XML and WSDL into source artifacts.

In this section, we create a bottom-up web service from a JavaBean by using
annotations. The web services are generated by publishing the application to a
server. No wizard is required in this example.

Annotating a JavaBean
We can annotate types, methods, fields, and parameters in the JavaBean to
specify a web service. To annotate the JavaBean, follow these steps:

1. In the RAD75WebServiceWeb project, open the SimpleBankBean (in
itso.rad8.bank.model.simple).

2. Before the class declaration, type @W and press Ctrl+Spacebar for content
assist. Scroll down to the bottom and select WebService(Web Service
Template) - javax.jws (Figure 14-2).

Figure 14-2 Content assist for WebService annotation
 Chapter 14. Developing web services applications 699

The annotation template is added to the Java class (Example 14-5 on
page 700).

Example 14-5 Web service annotation template

@WebService(name="SimpleBankBean",
targetNamespace="http://simple.model.bank.rad8.itso/",
serviceName="SimpleBankBeanService",

portName="SimpleBankBeanPort")

The @WebService annotation marks a Java class as implementing a web
service:

– The name attribute is used as the name of the wsdl:portType when
mapped to WSDL 1.1.

– The targetNamespace attribute is the XML namespace used for the WSDL
and XML elements generated from this web service.

– The serviceName attribute specifies the service name of the web service:
wsdl:service.

– The portName attribute is the name of the endpoint port.

3. Change the web service name, service name, and port name, as listed in
Example 14-6.

Example 14-6 Annotating a JavaBean web service

@WebService(name="Bank",
targetNamespace="http://simple.model.bank.rad8.itso/",
serviceName="BankService", portName="BankPort")

4. Before the getCustomerFullName method, type @W and press Ctrl+Spacebar
for content assist. Scroll down to the bottom and select WebMethod(Web
Service Template) - javax.jws (Figure 14-3).

Figure 14-3 Annotate method
700 Rational Application Developer for WebSphere Software V8 Programming Guide

The @WebMethod annotation is added to the method (Example 14-7).

Example 14-7 WebMethod template

@WebMethod(operationName="getCustomerFullName", action="")

The @WebMethod annotation identifies the individual methods of the Java class
that are exposed externally as web service operations. In this example, we
expose the getCustomerFullName method as a web service operation. The
operationName is the name of the wsdl:operation matching this method. The
action determines the value of the soap action for this operation.

5. Change the operationName and action (Example 14-8).

Example 14-8 @WebMethod annotation

@WebMethod(operationName="RetrieveCustomerName",
action="urn:getCustomerFullName")

6. Annotate the method input and output (Example 14-9).

Example 14-9 Annotate the method input and output

@WebMethod(operationName="RetrieveCustomerName",
action="urn:getCustomerFullName")

@WebResult(name="CustomerFullName")
public String getCustomerFullName(@WebParam(name="ssn")String ssn)

throws CustomerDoesNotExistException

The @WebParam and @WebResult annotations customize the mapping of the
method parameters and results to message parts and XML elements.

7. Select Source Organize Imports (or press Ctrl+Shift+O) to resolve the
imports.

Validating web service annotations
When developing web services, you can benefit from two levels of validation. The
first level involves validating syntax and Java-based default values. This level of
validation is performed by the Eclipse Java development tools (JDT). The second
level of validation involves the implicit default checking and verification of WSDL
contracts. This second level is performed by a JAX-WS annotation processor.

When you enable the annotation processor, warning and error messages for
annotations are displayed similarly to Java errors. You can work with these
messages in various workbench locations, such as the Problems view.

For instance, after annotating one method as @WebMethod, you see a QuickFix
icon with the warning that is reported in Example 14-10 on page 702.
 Chapter 14. Developing web services applications 701

Example 14-10 Warning after adding @WebMethod in front of one method

JAX-WS 2.1.6, 3.3: The following methods will be implicitly exposed as
web methods: [BigDecimal getAccountBalance(String accountId), String
getAccountId(String customerId, int account), int getNumAccounts(String
customerId)]

If you click the light bulb icon corresponding to this QuickFix, you see two
proposed solutions, as shown in Figure 14-4:

� Hide all implicitly exposed methods
� Rename in file

Select the first proposal: All mentioned methods are annotated with
@WebMethod(exclude=true).

Figure 14-4 QuickFix available after annotating one method with @WebMethod

By using the annotation processor to detect problems at build time, you can
prevent these problems from occurring at run time. For example, if you make the
changes in Example 14-11, you receive validation errors, such as the errors that
are shown in Example 14-12 on page 703.

Example 14-11 Validating web service annotations

Annotation processing: The annotation processing is enabled by default. To
disable annotation processing, right-click the web service project in the
Enterprise Explorer view and select Properties Java Compiler
Annotation Processing. Clear the Enable annotation processing check
box.

Click the light bulb to see the Quick Fix proposals
702 Rational Application Developer for WebSphere Software V8 Programming Guide

@WebService(name="!Bank",
targetNamespace="simple.model.bank.rad8.itso/",
serviceName="BankService", portName="BankPort")
public class SimpleBankBean implements Serializable {

private static final long serialVersionUID = -637536840546155853L;
public SimpleBankBean() {
}

@WebMethod(operationName="!RetrieveCustomerName",
action="urn:getCustomerFullName")
@WebResult(name="CustomerFullName")
@Oneway

public String getCustomerFullName(@WebParam(name="ssn")String ssn)
throws CustomerDoesNotExistException {

Example 14-12 JAX-WS annotation processor validation results

JSR-181, 4.3.1: Oneway methods cannot return a value
JSR-181, 4.3.1: Oneway methods cannot throw checked exceptions
name must be a valid nmToken
operationName must be a valid nmToken
targetNamespace must be a valid URI

Creating a web service from an annotated JavaBean by
publishing to the server

After annotating a JavaBean, you can generate a web service application by
publishing the application project of the bean directly to a server. When the web
service is generated, no WSDL file is created in your project.

Perform these steps to create a web service from an annotated JavaBean:

1. In the Servers view, start WebSphere Application Server v8.0 Beta (if it is not
running).

2. Publish the web service project on the server. Depending on the server
configuration, this step happens either automatically or manually (by
right-clicking the server and selecting Publish).

Testing the JAX-WS web service: The Generic Service Client
To test the web service by using the Generic Service Client, follow these steps:

1. Make sure that the project is already published to the server.

2. Switch to the Services view that is under the Enterprise Explorer.
 Chapter 14. Developing web services applications 703

3. Expand the JAX-WS folder, right-click RAD8WebServiceWeb:
{http://simple.model.bank.rad8bank.itso/}BankService, and select Test
with Generic Service Client (Figure 14-5).

Figure 14-5 Test with Generic Service Client

The Generic Service Client opens, as shown in Figure 14-6 on page 705.
704 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 14-6 Generic Service Client

4. The RetrieveCustomerName operation is already selected.

5. Click the field ssn. In the ssn field, type 111-11-1111 and then click Invoke.
The result (Mr. Henry Cui) is displayed in the Form pane. See Figure 14-7 on
page 706.

Tip: The Generic Service Client creates a WSDL dynamically and places it
inside a hidden project called GSC Store inside the Rational Application
Developer workspace. For this WSDL to have the correct URL (host name
and port) to invoke the service on your WebSphere Application Server Test
Environment, you must publish the project to WebSphere Application
Server before invoking the GSC.
 Chapter 14. Developing web services applications 705

Figure 14-7 Results of invocation of the web service with GSC

6. Click the Source pane to view the SOAP messages as raw XML, as shown in
Example 14-13.

Example 14-13 SOAP message

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"><soapenv:B
ody><ns2:RetrieveCustomerNameResponse
xmlns:ns2="http://simple.model.bank.rad8.itso/"><CustomerFullName>Mr
. Henry
Cui</CustomerFullName></ns2:RetrieveCustomerNameResponse></soapenv:B
ody></soapenv:Envelope>

Viewing the dynamically generated WSDL
In JAX-WS web services, the deployment descriptors are optional, because they
use annotations. The WSDL file can be dynamically generated by the run time
based on information that it gathers from the annotations added to the Java
classes.

View SOAP message View WSDL
706 Rational Application Developer for WebSphere Software V8 Programming Guide

The URL for the dynamically generated WSDL is in the following format:

http://<hostname>:<port>/<Web project context root>/<service name>?wsdl

To view the dynamically generated WSDL, enter the following URL in the browser
(908x is the port number, most probably 9080 or 9081):

http://localhost:908x/RAD8WebServiceWeb/BankService?wsdl

The dynamically generated WSDL file is displayed. We also notice that the URL
for the WSDL is changed:

http://localhost:908x/RAD75WebServiceWeb/BankService/BankService.wsdl

Examine the generated WSDL. We can see that the generated WSDL matches
the web services annotations that we added. Example 14-14 shows an extract of
the generated WSDL snippet.

Example 14-14 Dynamically generated WSDL snippet

<?xml version="1.0" encoding="UTF-8" ?>
<definitions name="BankService"

targetNamespace="http://simple.model.bank.rad8.itso/"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"xmlns:tns=

"http://simple.model.bank.rad8.itso/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">
<types>
<message>
......
<portType name="Bank">

<operation name="RetrieveCustomerName">
<input message="tns:RetrieveCustomerName" />
<output message="tns:RetrieveCustomerNameResponse" />

<fault name="CustomerDoesNotExistException"
message="tns:CustomerDoesNotExistException" />

</operation>
</portType>
<binding name="BankPortBinding" type="tns:bank">

<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />

<operation name="RetrieveCustomerName">
<soap:operation soapAction="urn:getCustomerFullName" />
<input>

Tip: You can also see the WSDL from the Generic Service Client, as shown in
Figure 14-7 on page 706.
 Chapter 14. Developing web services applications 707

http://localhost:908x/RAD75WebServiceWeb/BankService?wsdl

<soap:body use="literal" />
</input>
<output>

<soap:body use="literal" />
</output>
<fault name="CustomerDoesNotExistException">

<soap:fault name="CustomerDoesNotExistException"
use="literal"/>

</fault>
</operation>

</binding>
<service name="BankService">

<port name="BankPort" binding="tns:BankPortBinding">
<soap:address

location="http://localhost:9080/RAD8WebServiceWeb/BankService" />
</port>

 </service>
</definitions>

To see the dynamically generated XML schema, enter the following URL:

http://localhost:908x/RAD8WebServiceWeb/BankService/BankService_schema1
.xsd

For a simple test to verify that the web service is running in the server, enter the
following URL:

http://localhost:908x/RAD8WebServiceWeb/BankService

The following result is displayed in the browser:

{http://simple.model.bank.rad8.itso/}BankService
Hello! This is an Axis2 Web Service!

14.7.2 Creating web services using the Web Service wizard

The Web Service wizard assists you in creating a new web service, configuring it
for deployment, and deploying the web service to a server. To create a web
service from a JavaBean, follow these steps:

1. In the Java EE perspective, expand RAD8WebServiceWeb2 Java
Resources: src itso.rad8.bank.model.simple. Right-click
SimpleBankBean.java and select Web Services Create Web service.
The Web Service wizard starts.
708 Rational Application Developer for WebSphere Software V8 Programming Guide

http://localhost:908x/RAD75WebServiceWeb/BankService
http://localhost:908x/RAD75WebServiceWeb/BankService/BankService_schema1.xsd

2. In the Web Services window, select the following options:

a. For Web service type, ensure that Bottom up Java bean Web Service is
selected (default).

b. Under Service implementation, move the slider to the Test position (top) to
access testing options for the service on subsequent windows.

c. Ensure that the following server-side configurations are selected, as
shown in Figure 14-8 on page 710:

• Server runtime: WebSphere Application Server v8.0 Beta
• Web service run time: IBM WebSphere JAX-WS
• Service project: RAD8WebServiceWeb2
• Service EAR project: RAD8WebServiceEAR

The slider: The slider offers a more granular division of web services
development. By using the slider, you can select from the following
stages of web services development:

Develop Develops the WSDL definition and implementation of the
web service. It includes tasks, such as creating the
modules that will contain the generated code, WSDL files,
deployment descriptors, and Java files when appropriate.

Assemble Ensures that the project that hosts the web service or
client is associated with an EAR when required by the
target application server.

Deploy Creates the deployment code for the service.

Install Installs and configures the web module and EAR files on
the target server. If any changes to the endpoints of the
WSDL file are required, they are made in this stage.

Start Starts the web service after the service is installed on the
server.

Test Provides various options for testing the service, such as
using the Web Services Explorer or sample JSP.
 Chapter 14. Developing web services applications 709

Figure 14-8 Web Services dialog window

• Under Configuration, if you click the Server: WebSphere Application
Server v8.0 Beta link, the Service Deployment Configuration window
(Figure 14-9 on page 711) opens. In this window, you can select the
server and run time. We use the default settings of this window. Click
Cancel to close the window and return to the Web Services window.

Select to test service
710 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 14-9 Web Services wizard: Service Deployment Configuration

d. Clear the Publish the Web service check box (because we do not publish
to a Universal Description, Discovery, and Integration (UDDI) registry).

e. Clear the Monitor the Web service check box (because we select to
monitor the web service later).

f. Click Next.

3. In the WebSphere JAX-WS Bottom Up Web Service Configuration window
(Figure 14-10 on page 713):

a. For Delegate class name, accept the default
(SimpleBankBeanDelegate).

The delegate class is a wrapper that contains all the methods from the
JavaBean and the JAX-WS annotation that the run time recognizes as a
web service.

b. For Java to WSDL mapping style, accept the default.
 Chapter 14. Developing web services applications 711

The style defines the encoding style for messages that are sent to and
from the web service. The recommended WSDL style is Document
Wrapped.

c. Select Generate WSDL file into the project.

Because the annotations in the delegate class are used to indicate to the
run time that the bean is a web service, a static WSDL file is no longer
generated to your project automatically. The run time can dynamically
generate a WSDL file from the information in the bean. Select this option
to generate a static WSDL file for the web service. There are several
reasons to select this option:

• Performance improvements. For a large bean with lots of methods and
complex data types, this option prevents the penalty of the initial
generation by the run time when the service is accessed.

• This option is required for SOAP 1.2.

• To enforce a contract with the bean via @WebService.wsdlLocation.
The JAX-WS annotations processor will validate the WSDL against the
bean.

Change the name of the generated WSDL to BankService.wsdl.

d. Select Generate Web service deployment descriptor.

For JAX-WS web services, deployment information is generated
dynamically by the run time; static deployment descriptors are optional.
Selecting this check box generates the deployment descriptors.

e. Click Next.
712 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 14-10 WebSphere JAX-RS Bottom Up Web Service Configuration

4. In the WebSphere JAX-WS WSDL Configuration window (Figure 14-11 on
page 714), perform these tasks:

a. Select WSDL Target Namespace, and for the WSDL Target Namespace,
enter http://bank.rad8.itso/.

b. Select Configure WSDL Service Name, and for the WSDL Service
Name, enter BankService.

c. Select Configure WSDL Port Name, and for the WSDL Port Name, enter
BankPort.

d. Click Next.
 Chapter 14. Developing web services applications 713

Figure 14-11 WebSphere JAX-WS WSDL Interface Configuration

The web service is generated and deployed to the server.

5. In the Test Web Service window (Figure 14-12 on page 715), which opens
because we moved the slider for the service to the Test position, select the
Generic Service Client and click Launch.
714 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 14-12 Select the Generic Service Client as a test facility

6. The Generic Service Client opens in an external web browser (see
Figure 14-13 on page 716). Complete these tasks:

a. Select the getNumAccounts operation and click Add.

b. Enter a value for the customer ID, such as 111-11-1111, and click Go.

The result 2 is displayed in the status pane. Optional: Try other operations.

7. Close the Web Services Explorer. Click Finish to exit the Web Service
wizard.
 Chapter 14. Developing web services applications 715

Figure 14-13 Test getNumAccounts with Generic Service Client

The web services are available at two endpoints: the HTTP endpoint and the
HTTPS endpoint. If your server is not secured, the endpoint is:

http://localhost:908x/RAD8WebServiceWeb2/BankService

If your server is secured, the web service listed in the Generic Server Client has
the following endpoint:

https://localhost:944x/RAD8WebServiceWeb2/BeanService

You can see the current endpoint by selecting the Add EndPoint Request icon,
as shown in Figure 14-14 on page 717.
716 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 14-14 Add EndPoint request

To test the HTTPS protected web service with the Generic Service Client, you
can configure a new protocol configuration. The signer certificate from the
WebSphere Application Server must be imported into the Eclipse truststore. For
more information about creating a new Secure Sockets Layer (SSL)
configuration, see this website:

http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/co
m.ibm.rational.ttt.common.doc/topics/tgsccreatesssl.html

You have successfully created web services from a JavaBean.

14.7.3 Resources generated by the Web Service wizard

After code generation, examine the generated code.

Select Add EndPoint
 Chapter 14. Developing web services applications 717

http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/com.ibm.rational.ttt.common.doc/topics/tgsccreatesssl.html

You can see that the wizard generates the following artifacts:

� A delegate class named SimpleBankBeanDelegate. The delegate class is a
wrapper that contains all the methods from the JavaBean and the JAX-WS
annotation that the run time recognizes as a web service. The annotation
@javax.jws.WebService in the delegate class tells the server runtime
environment to expose all public methods on that bean as a web service. The
targetNamespace, the serviceName, and the portName are what we specified in
the Web Service wizard.

@javax.jws.WebService (targetNamespace="http://bank.rad8.itso/",
serviceName="BankService", portName="BankPort",
wsdlLocation="WEB-INF/wsdl/BankService.wsdl")

� A webservices.xml file in the WebContent/WEB-INF folder. This file is the
optional web services deployment descriptor. A deployment descriptor can be
used to override or enhance the information provided in the service. For
example, if the <wsdl-service> element is provided in the deployment
descriptor, the namespace used in this element overrides the
targetNamespace member attribute in the annotation.

� A WSDL file (BankService.wsdl) and an XSD file (BankService_schema1.xsd)
in the WEB-INF/wsdl folder. If you plan to create the client at a later time or
publish the WSDL for other users, you can use this WSDL file.

You can locate the projects developed up to this point in the
c:\7835codesolution\webservices folder in the
RAD8WebServiceImplemented.zip file.

14.8 Creating a synchronous web service JSP client

The Web Service Client wizard assists you in generating a JavaBean proxy and a
sample application. The sample web application demonstrates how to invoke the
web services proxy. You can invoke the web services using the JAX-WS
synchronous model, or the asynchronous model. In the section, we generate a
synchronous web service client.

14.8.1 Generating and testing the web service client

To generate a client and test the client proxy, follow these steps:

1. Switch to the Services view, right-click RAD8WebServiceWeb, and select
Generate Client, as shown in Figure 14-15 on page 719.
718 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 14-15 Invoking Generate Client

2. In the Web Services Client window (Figure 14-16 on page 720), perform
these steps:

a. Move the slider up to the Test position. This position provides options for
testing the service using a JSP-based sample application.

b. Select Monitor the Web service.

c. Place the web service and web service client in separate web and EAR
projects. Click Client project.

3. In the Specify Client Project Settings window, complete the following actions
and then click Next:

a. Change the client project name to RAD8WebServiceClient.

b. For Project type, accept Dynamic Web project.

c. For Client EAR project name, accept RAD8WebServiceClientEAR.

d. Click OK. The wizard creates the Web and EAR projects.
 Chapter 14. Developing web services applications 719

Figure 14-16 Generating the web service client

4. Perform these steps in the WebSphere JAX-WS Web Service Client
Configuration window (Figure 14-17 on page 721):

a. Accept the default name and location of the Deployment Descriptor.

b. Accept Generate Portable Client.

c. Clear Enable MTOM.

d. The version of JAX-WS to be generated is 2.2, by default.

e. Click Next.

The client code is generated into the new client project.
720 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 14-17 JAX-WS Web Service Client Configuration

5. In the Web Service Client Test window (Figure 14-18 on page 722), use these
settings:

a. Select Test the generated proxy.

b. For Test facility, select JAX-WS JSPs (default).

c. For Folder, select sampleBankPortProxy (default). You can specify a
separate folder for the generated application if you want.

d. Under Methods, leave all methods selected.

e. Select the Run test on server check box.

f. Click Finish.
 Chapter 14. Developing web services applications 721

The sample application is published to the server, and the sample JSP is
displayed in a Web browser.

Figure 14-18 Web Service Client Test

6. In the Web Services Test Client window (Figure 14-19 on page 723), perform
these steps:

a. Select the retrieveCustomerName method.

b. Enter a valid value in the customer ID field, such as 111-11-1111.

c. Click Invoke.

The results are displayed in the Result pane.

Notice the endpoint in the Quality of Service pane:

http://hostname:12036/RAD8WebServiceWeb/BankService

You might see another port number. It depends on the port number that the
wizard generated for the TCP/IP Monitor.
722 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 14-19 Testing the generated JSP

The TCP/IP Monitor is also started. With the TCP/IP Monitor, you can
intercept and examine the SOAP traffic that comes in and out of a web
service call.

7. If you select Window Preferences and then select Run/Debug TCP/IP
Monitor, you can see that a new monitor has been added. It is configured to
listen to the same local port number (12036).

The TCP/IP Monitor is started and ready to listen to the SOAP request and
direct it to the web service provider (possibly on a separate host and at port
908x).
 Chapter 14. Developing web services applications 723

All requests and responses are routed through the TCP/IP Monitor and are
displayed in the TCP/IP Monitor view. The TCP/IP Monitor view might be
displayed in the same pane as the Servers view.

The TCP/IP Monitor view shows all the intercepted requests in the top pane,
and when a request is selected, the messages passed in each direction are
shown in the bottom panes (the request in the left pane, and the response in
the right pane). The TCP/IP Monitor can be a useful tool in debugging web
services and clients.

8. Select the XML view to see the SOAP request and response in XML format,
as shown in Figure 14-20.

Figure 14-20 TCP/IP Monitor

9. Optional: To ensure that the web service SOAP traffic is WS-I compliant, you
can generate a log file by clicking the icon in the upper-right corner. In the
window that opens, select a name for the log file and specify where you want
to store it (for example, in the client project).

Monitor the Web service: When you select the “Monitor the Web service”
option in the Web Service window, the Web Service Client wizard
dynamically creates the TCP/IP Monitor. It uses an algorithm to locate an
available listening port for the monitor. The sample JSP client window uses
the URL to dynamically set the web service endpoint to match the monitor
port. Using the wizard to create the TCP/IP Monitor is convenient, because
you do not have to spend time determining how to redirect the SOAP
request to the TCP/IP Monitor, especially when monitoring remote web
services.
724 Rational Application Developer for WebSphere Software V8 Programming Guide

The log file is validated for WS-I compliance. You see a confirmation
message, “The WS-I Message Log file is valid.” You can open the log file in
an XML editor to examine its contents.

To stop the TCP/IP Monitor, perform these steps:

1. Select Window Preferences.
2. Select Run/Debug TCP/IP Monitor.
3. Select the TCP/IP Monitor from the list and select Stop.

Resources generated by the Web Service Client wizard
Figure 14-21 on page 726 shows the generated web service client artifacts.

We provide a description of each of the web service client artifacts here:

� Bank.java is the annotated service interface based on the WSDL to Java
mapping.

� BankService.java is generated from the WSDL service. It is a factory class
that returns an instance that implements the service’s interface, which is also
known as a JAX-WS Service class. In JAX-RPC, this implementation class is
called a stub. In JAX-WS, no stub class exists; the stub is a class that is
dynamically generated from WSDL.

� BankPortProxy.java is an IBM-proprietary proxy class. JAX-WS does not
define this class. It is a convenience class that implements the web service’s
interface and hides programming details, such as the service factory and
binding provider calls.

� The rest of the Java classes are the JAXB artifacts that are based on the
schema types used by the WSDL.

� The sampleBankPortProxy folder contains the generated sample JSP, which
demonstrates how to invoke the web services proxy.

� The ibm-webservicesclient-bnd.xmi file is the IBM proprietary Web
Services Client binding file.

� The web.xml is no longer required and was not generated.

Manually starting the TCP/IP Monitor: To start the TCP/IP Monitor manually,
remember that the Local Monitoring port is a randomly chosen free port on
localhost, while the host and port refer to the actual parameters of the server
where your service is running. To test the service through the monitor, you
have to manually change the host and port in the endpoint of the service you
are testing, so that your request is sent to the monitor instead of the actual
server.
 Chapter 14. Developing web services applications 725

You can get the results in this file:
c:\7835codesolution\webservices\RAD8WebServiceJSPClient.zip

Figure 14-21 Generated web service client artifacts

14.9 Creating a web service JavaServer Faces client

With the Web Service Discovery window, you can discover a web service that
exists online or in the workspace, create a proxy to the web service, and then
place the methods of the proxy on a Faces JSP file:

1. Click Add and Remove Projects to remove the RAD8WebServiceClientEAR
from the server. (We add a project to the EAR and automatic publishing

IBM proprietary web service binding f

Sample JSP

Annotated interface
IBM proprietary web service proxy
Factory class

JAXB generated classes
726 Rational Application Developer for WebSphere Software V8 Programming Guide

interferes.) Alternatively, expand the server, right-click the project, and select
Remove.

2. Create a dynamic web project by selecting File New Dynamic Web
Project.

3. In the Dynamic Web Project window (Figure 14-22), complete the following
steps:

a. For Project name, enter RAD8WebServiceJSFClient.

b. In the Configuration section, select JavaServer Faces v2.0 Project to add
the required JSF facets to the project facets list.

c. For EAR Project Name, select RAD8WebServiceClientEAR.

d. Click Finish.

Figure 14-22 Create a new JSF 2.0 project

4. If you are prompted to open the Web perspective, click Yes.
 Chapter 14. Developing web services applications 727

5. In the RAD8WebServiceJSFClient project, right-click WebContent and select
New Web Page.

6. For File name, enter WSJSFClient. For Basic template, select Facelet and
click Finish. The WSJSFClient.jsp opens in an editor.

7. Select the Design or Split tab.

8. In the Palette, select the Data and Services category. Select Web Service
and click the JSF page, as shown in Figure 14-23.

Figure 14-23 Dragging the Web Service to the JSF page

Dragging the Web Service to the
JSF page
728 Rational Application Developer for WebSphere Software V8 Programming Guide

9. In the Add Web Service window, as shown in Figure 14-24, click Add. In the
Web Services Discovery window, select Web services from your
workspace.

Figure 14-24 Adding Web Services from your workspace
 Chapter 14. Developing web services applications 729

10.In the Web Services from your workspace window, which is shown in
Figure 14-25, click BankService with the URL of the RAD8WebServiceWeb
project (not the RAD8WebServiceWeb2 project).

Figure 14-25 Web Service Discovery Dialog: Web Services from your workspace

Select this link
730 Rational Application Developer for WebSphere Software V8 Programming Guide

11.Select Port: BankPort and click Add to Project (Figure 14-26).

Figure 14-26 Web Services Discovery Dialog: Clicking the Add to Project button

The web service that you selected is now listed in the list of web services.
 Chapter 14. Developing web services applications 731

12.In the Web Service window (Figure 14-27), perform these steps:

a. For Service Name, select Bank.
b. For the method, select retrieveCustomerName(String).
c. Select Create input form and results display.
d. Click Next.

Figure 14-27 Selecting a web service and method
732 Rational Application Developer for WebSphere Software V8 Programming Guide

13.In the Input Form window (Figure 14-28), perform these steps:

a. Change the label to Enter Social Security Number:.
b. Click Options and change the label from Submit to Get Full Name.
c. Click OK and click Next.

Figure 14-28 Web service input form

14.In the Results form window (Figure 14-29), change the Label to Customer's
full name is:.

15.Click Finish to generate the input and output parts into the JSF page
(Figure 14-29). Save the file.

Figure 14-29 JSF page with the web service invocation
 Chapter 14. Developing web services applications 733

16.Right-click WSJSFClient.jsp and select Run As Run on Server. The
client application is deployed to the server for testing. Perform this test:

a. In the Enter Social Security Number field, type 111-11-1111.
b. Click Get Full Name.

The result is displayed (Figure 14-30).

Figure 14-30 JSF client run

The projects that have been developed up to this point are available in this folder:

C:\7835codesolution\webservices\RAD8WebServiceJSFClient.zip

14.10 Creating a web service thin client

WebSphere Application Server provides an unmanaged client implementation
that is based on the JAX-WS 2.2 specification. The thin client for JAX-WS with
WebSphere Application Server is an unmanaged and stand-alone Java client
environment. The thin client enables running JAX-WS client applications to
invoke web services that are hosted by WebSphere Application Server. A web
service thin client relies only on a Java developer kit that is compatible with IBM
WebSphere Application Server V8 Beta and a thin client JAR file that is available
in the <WAS_HOME>\runtimes\com.ibm.jaxws.thinclient_8.0.0.jar file where
typically <WAS_HOME>=C:\Program Files\IBM\WebSphere\AppServer.

Creating the thin client project and generating the client code
To create the web service thin client, follow these steps:
734 Rational Application Developer for WebSphere Software V8 Programming Guide

1. Create a Java project by selecting File New Project Java Project.

2. For the Project name, enter RAD8WebServiceThinClient and click Finish.

3. In the Java EE perspective: Services view, expand JAX-WS, right-click
RAD8WebServiceWeb: {http://.../}BankService, and select Generate
Client.

4. Complete the following actions:

a. Keep the slider at the Deploy client level. Click the hyperlink Client
project.

b. In the Specify Client Project Settings window (Figure 14-31), for the Client
project, select RAD8WebServiceThinClient and click OK.

Figure 14-31 Generating a thin client

c. Click Finish to generate the helper classes and WSDL file into the client
project.

5. After the code generation, switch to the Enterprise Explorer view. Right-click
RAD8WebServiceThinClient and select Properties. Select Java Build
Path. Click the Libraries tab (Figure 14-32 on page 736).
 Chapter 14. Developing web services applications 735

Figure 14-32 Web service thin client build path

Notice that the thin client only requires the Java Runtime Environment (JRE)
and a thin client JAR file. The wizard adds a class path variable
WAS_V8JAXWS_WEBSERVICES_THINCLIENT, which points to the
com.ibm.jaxws.thinclient_8.0.0.jar file.

Creating the client class to invoke the web service
To invoke the web service, create a Java class:

1. Right-click RAD8WebServiceThinClient and select New Class.

2. For the Package name, type itso.rad8.bank.test, and for the Class name,
type WSThinClientTest. Select public static void main(String[] args) and
click Finish.

3. Copy and paste the code from WSThinClientTest.java in
C:\7835code\webservices\thinclient (Example 14-15).

Example 14-15 WSThinClientTest

package itso.rad8.bank.test;

import itso.rad8.bank.model.simple.BankPortProxy;
import itso.rad8.bank.model.simple

.CustomerDoesNotExistException_Exception;
import java.util.Scanner;

public class WSThinClientTest {

public static void main(String[] args) {
try {

Scanner scanner = new Scanner(System.in);
BankPortProxy proxy = new BankPortProxy();
736 Rational Application Developer for WebSphere Software V8 Programming Guide

System.out.println
("Please enter customer's social security number: ");

String ssn = scanner.next();
System.out.println("Customer's name is " +

proxy.retrieveCustomerName(ssn));
} catch (CustomerDoesNotExistException_Exception e) {

System.out.println("The customer does not exist!");
}

}
}

Notice how easy it is to invoke the web service. You instantiate the proxy class
(BankPortProxy) and call the method (retrieveCustomerName) in the proxy.

4. Right-click WSThinClientTest.java and select Run As Java Application.

5. When prompted in the console, for the customer’s Social Security number,
type 111-11-1111, and the customer’s name is displayed:

Retrieving document at
'file:/C:/workspaces/WebServices/RAD8WebServiceThinClient/bin/META-I
NF/wsdl/'.
Retrieving schema at 'BankService_schema1.xsd', relative to
'file:/C:/workspaces/WebServices/RAD8WebServiceThinClient/bin/META-I
NF/wsdl/'.
Please enter customer's social security number:
111-11-1111
Customer's name is Mr. Henry Cui

14.11 Creating asynchronous web service clients

An asynchronous invocation of a web service sends a request to the service
endpoint and then immediately returns control to the client program without
waiting for the response to return from the service. JAX-WS asynchronous web
service clients consume web services using either the polling approach or the
callback approach:

� Using a polling model, a client can issue a request and receive a response
object that is polled to determine if the server has responded. When the
server responds, the actual response is retrieved.

� Using the callback model, the client provides a callback handler to accept and
process the inbound response object. The handleResponse method of the
handler is called when the result is available.
 Chapter 14. Developing web services applications 737

Both the polling and callback models enable the client to focus on continuing to
process work without waiting for a response to return, while providing for a more
dynamic and efficient model to invoke web services.

14.11.1 Polling client

Using the polling model, a client can issue a request and receive a response
object that can subsequently be polled to determine if the server has responded.
When the server responds, the actual response can then be retrieved. The
response object returns the response content when the get method is called.
The client receives an object of type javax.xml.ws.Response from the
invokeAsync method. That Response object is used to monitor the status of the
request to the server, determine when the operation has completed, and to
retrieve the response results.

To create an asynchronous web service client using the polling model, follow
these steps:

1. In the Java EE perspective: Services view, expand JAX-WS, right-click
RAD8WebServiceWeb: {http://.../}BankService, and select Generate
Client.

2. Keep the slider at the Deploy client level. Click the hyperlink Client project.
In the Specify Client Project Settings window, select
RAD8WebServiceThinClient and click OK. Click Next.

3. In the WebSphere JAX-WS Web Service Client Configuration window
(Figure 14-33 on page 739), select Enable asynchronous invocation for
generated client and click Finish.
738 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 14-33 Selecting Enable asynchronous invocation for generated client

4. After the code generation, open BankPortProxy.java (Example 14-16). For
each method in the web service, two additional methods are created, the
polling and callback methods, which allow the client to function
asynchronously. The retrieveCustomerNameAsync method that returns a
Response is used for polling. The method that returns Future is used for
callback.

Example 14-16 BankPortProxy asynchronous methods

public Response<RetrieveCustomerNameResponse>
retrieveCustomerNameAsync(String ssn) {

 return
_getDescriptor().getProxy().retrieveCustomerNameAsync(ssn);
}

public Future<?> retrieveCustomerNameAsync(String ssn,
AsyncHandler<RetrieveCustomerNameResponse>

asyncHandler) {
 return _getDescriptor().getProxy().retrieveCustomerNameAsync
 Chapter 14. Developing web services applications 739

(ssn,asyncHandler);
}

5. Create a new class called BankPollingClient in the itso.rad8.bank.test
package. Copy and paste the code from
C:\7835code\webservices\thinclient (Example 14-17).

Example 14-17 BankPollingClient

package itso.rad8.bank.test;

import itso.rad8.bank.model.simple.BankPortProxy;
import itso.rad8.bank.model.simple.RetrieveCustomerNameResponse;
import java.util.concurrent.ExecutionException;
import javax.xml.ws.Response;

public class BankPollingClient {

public static void main(String[] args) {
try {

BankPortProxy proxy = new BankPortProxy();
Response<RetrieveCustomerNameResponse> resp =

proxy.retrieveCustomerNameAsync("111-11-1111");
// Poll for the response.
while (!resp.isDone()) {

// You can do some work that does not depend on the
customer

name being available
// For this example, we just check if the result is

available
every 0.2 seconds.

System.out.println
("retrieveCustomerName async still not complete.");

Thread.sleep(200);
}
RetrieveCustomerNameResponse rcnr = resp.get();
System.out.println

("retrieveCustomerName async invocation
complete.");

System.out.println("Customer's name is " +
rcnr.getCustomerFullName());

} catch (InterruptedException e) {
System.out.println(e.getCause());

} catch (ExecutionException e) {
System.out.println(e.getCause());
740 Rational Application Developer for WebSphere Software V8 Programming Guide

}
}

}

6. Right-click BankPollingClient.java and select Run As Java Application.
The output is written to the console:

Retrieving document at
'file:/C:/workspaces/WebServices/RAD8WebServiceThinClient/bin/META-I
NF/wsdl/'.
Retrieving schema at 'BankService_schema1.xsd', relative to
'file:/C:/workspaces/WebServices/RAD8WebServiceThinClient/bin/META-I
NF/wsdl/'.
retrieveCustomerName async still not complete.
retrieveCustomerName async still not complete.
retrieveCustomerName async still not complete.
retrieveCustomerName async still not complete.
retrieveCustomerName async still not complete.
retrieveCustomerName async invocation complete.
Customer's name is Mr. Henry Cui

From the results, you can see that the asynchronous call allows you to perform
other work while waiting for the response from the server. Eventually, you can
obtain the results of the invocation.

14.11.2 Callback client

To implement an asynchronous invocation that uses the callback model, the
client provides an AsynchHandler callback handler to accept and process the
inbound response object. The client callback handler implements the
javax.xml.ws.AsynchHandler interface, which contains the application code that
is run when an asynchronous response is received from the server.

The AsynchHandler interface contains the handleResponse(Response) method
that is called after the run time has received and processed the asynchronous
response from the server. The response is delivered to the callback handler in
the form of a javax.xml.ws.Response object. The response object returns the
response content when the get method is called.

Additionally, if an error was received, an exception is returned to the client during
that call. The response method is then invoked according to the threading model
used by the executor method, java.util.concurrent.Executor, on the client’s
java.xml.ws.Service instance that was used to create the dynamic proxy or
dispatch client instance. The executor is used to invoke any asynchronous
 Chapter 14. Developing web services applications 741

callbacks registered by the application. Use the setExecutor and getExecutor
methods to modify and retrieve the executor configured for the service.

To create an asynchronous web service client using the callback model, follow
these steps:

1. Create the callback handler class RetrieveCustomerCallbackHandler in the
itso.rad8.bank.test package. Copy and paste the code from
C:\7835code\webservices\thinclient (Example 14-18).

Example 14-18 RetrieveCustomerCallbackHandler

package itso.rad8.bank.test;

import itso.rad8.bank.model.simple.RetrieveCustomerNameResponse;
import java.util.concurrent.ExecutionException;
import javax.xml.ws.AsyncHandler;
import javax.xml.ws.Response;

public class RetrieveCustomerCallbackHandler implements
AsyncHandler<RetrieveCustomerNameResponse> {

private String customerFullName;

public void handleResponse(Response<RetrieveCustomerNameResponse>
resp){

try {
RetrieveCustomerNameResponse rcnr = resp.get();
customerFullName = rcnr.getCustomerFullName();

} catch (ExecutionException e) {
System.out.println(e.getCause());

} catch (InterruptedException e) {
System.out.println(e.getCause());

}
}
public String getResponse() {

return customerFullName;
}

}

2. Create the BankCallbackClient callback client class in the
itso.rad8.bank.test package. Copy and paste the code from
C:\7835code\webservices\thinclient (Example 14-19).

Example 14-19 BankCallbackClient

package itso.rad8.bank.test;
742 Rational Application Developer for WebSphere Software V8 Programming Guide

import itso.rad8.bank.model.simple.BankPortProxy;
import java.util.concurrent.Future;

public class BankCallbackClient {

public static void main(String[] args) throws Exception {
BankPortProxy proxy = new BankPortProxy();
// Set up the callback handler.
RetrieveCustomerCallbackHandler callbackHandler =

new RetrieveCustomerCallbackHandler();
// Make the Web service call.
Future<?> response = proxy.retrieveCustomerNameAsync

("111-11-1111", callbackHandler);
System.out.println("Wait 5 seconds.");
// Give the callback handler a chance to be called.
Thread.sleep(5000);
System.out.println("Customer's full name is "

+ callbackHandler.getResponse() + ".");
System.out.println("RetrieveCustomerName async end.");

}
}

3. Right-click BankCallbackClient.java and select Run As Java
Application. The output is written to the console:

Retrieving document at
'file:/C:/workspaces/WebServices/RAD8WebServiceThinClient/bin/META-I
NF/wsdl/'.
Retrieving schema at 'BankService_schema1.xsd', relative to
'file:/C:/workspaces/WebServices/RAD8WebServiceThinClient/bin/META-I
NF/wsdl/'.
Wait 5 seconds.
Customer's full name is Mr. Henry Cui.
RetrieveCustomerName async end.

14.11.3 Asynchronous message exchange client

By default, asynchronous client invocations do not have asynchronous behavior
of the message exchange pattern on the wire. The programming model is
asynchronous; however, the exchange of request or response messages with the
server is not asynchronous. IBM has provided a feature that goes beyond the
JAX-WS specification to provide the asynchronous message exchange support.

In the asynchronous message exchange case, the client listens on a separate
HTTP channel to receive the response messages from a service-initiated HTTP
 Chapter 14. Developing web services applications 743

channel. The client uses WS-Addressing to provide the ReplyTo endpoint
reference (EPR) value to the service. The service initiates a connection to the
ReplyTo EPR to send a response. To use an asynchronous message exchange,
the com.ibm.websphere.webservices.use.async.mep property must be set on the
client request context with a boolean value of true. When this property is
enabled, the messages exchanged between the client and server differ from
messages exchanged synchronously.

To create an asynchronous message exchange client, follow these steps:

1. Create the BankCallbackMEPClient class in the itso.rad8.bank.test
package. Copy and paste the code from
C:\7835code\webservices\thinclient (Example 14-20).

Example 14-20 BankCallbackMEPClient

package itso.rad8.bank.test;

import itso.rad8.bank.model.simple.BankPortProxy;
import java.util.concurrent.Future;
import javax.xml.ws.BindingProvider;

public class BankCallbackMEPClient {

public static void main(String[] args) throws Exception {
BankPortProxy proxy = new BankPortProxy();
//proxy._getDescriptor().setEndpoint

("http://localhost:11487/RAD75WebServiceWeb/BankService");
// setup the property for asynchronous message exchange
BindingProvider bp = (BindingProvider)

proxy._getDescriptor().getProxy();
bp.getRequestContext().put

("com.ibm.websphere.webservices.use.async.mep",
Boolean.TRUE);

// Set up the callback handler.
RetrieveCustomerCallbackHandler callbackHandler =

new RetrieveCustomerCallbackHandler();
// Make the Web service call.
Future<?> response = proxy.retrieveCustomerNameAsync

("111-11-1111", callbackHandler);
System.out.println("Wait 5 seconds.");
// Give the callback handler a chance to be called.
Thread.sleep(5000);
System.out.println("Customer's full name is "

+ callbackHandler.getResponse() + ".");
744 Rational Application Developer for WebSphere Software V8 Programming Guide

System.out.println("RetrieveCustomerName async end.");
}

}

2. Right-click BankCallbackMEPClient.java and select Run As Java
Application. The output is written to the console:

Retrieving document at
'file:/C:/workspaces/WebServices/RAD8WebServiceThinClient/bin/META-I
NF/wsdl/'.
Retrieving schema at 'BankService_schema1.xsd', relative to
'file:/C:/workspaces/WebServices/RAD8WebServiceThinClient/bin/META-I
NF/wsdl/'.
[WAShttpAsyncResponseListener] listening on port 4553
Wait 5 seconds.
Customer's full name is Mr. Henry Cui.
RetrieveCustomerName async end.

Notice the new line in the WebSphere Application Server Console:

[10/22/10 14:43:56:359 PDT] 00000024 WSChannelFram A CHFW0019I:
The Transport Channel Service has started chain
HttpOutboundChain:wxpsp408.rcsnl.ams.nl.ibm.com:4553.

3. Optional: If you want to see the SOAP request message, activate the
comment line:

proxy._getDescriptor().setEndpoint

("http://wxpsp408:12036/RAD75WebServiceWeb/BankService");

You must supply your host name instead of wxpsp408 and the port 12036 must
match the port of the TCP/IP Monitor.

4. Run the application again. Example 14-21 shows the SOAP request.

Example 14-21 SOAP request for asynchronous message exchange

--MIMEBoundary_3028c58b531c6cb4c683e77e89daa042d5c97cdfa680727e
Content-Type: application/xop+xml; charset=UTF-8; type="text/xml"
Content-Transfer-Encoding: binary
Content-ID:
<0.2028c58b531c6cb4c683e77e89daa042d5c97cdfa680727e@apache.org>

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header xmlns:wsa="http://www.w3.org/2005/08/addressing">
<wsa:To>http://wxpsp408:12036/RAD8WebServiceWeb/BankService</wsa:To>
<wsa:ReplyTo>
 Chapter 14. Developing web services applications 745

<wsa:Address>http://wxpsp408.rcsnl.ams.nl.ibm.com:4991/axis2/service
s/BankService.BankPort</wsa:Address>
</wsa:ReplyTo>
<wsa:MessageID>urn:uuid:d0da36f9-9623-4d6e-8249-d57a118c43e2</wsa:Me
ssageID>
<wsa:Action>urn:getCustomerFullName</wsa:Action>
</soapenv:Header>
<soapenv:Body>
<a:RetrieveCustomerName
xmlns:a="http://simple.model.bank.rad8.itso/">
<ssn>111-11-1111</ssn>
</a:RetrieveCustomerName>
</soapenv:Body>
</soapenv:Envelope>
--MIMEBoundary_3028c58b531c6cb4c683e77e89daa042d5c97cdfa680727e--

Because the client listens on a separate HTTP channel to receive the response
messages from a service-initiated HTTP channel, the TCP/IP Monitor is unable
to capture the SOAP response.

The completed Thin Client project is available in this file:

C:\7835codesolution\webservices\RAD8WebServiceThinClient.zip

14.12 Creating web services from an EJB

You can generate EJB web services by using either the Web Service wizard or
annotations.

In this section, you create a JAX-WS web service from an EJB session bean
using annotations:

1. Expand the EJB project RAD8WebServiceEJB and open the
SimpleBankFacadeBean (in ejbModule/itso.rad8.bank.ejb.facade).

2. Add the @WebService annotation on the line over the @Stateless annotation
(Example 14-22). Press Ctrl+Shift+O to resolve the import.

Example 14-22 Annotating a stateless session EJB

@WebService
@Stateless
public class SimpleBankFacadeBean implements
SimpleBankFacadeBeanLocal {
746 Rational Application Developer for WebSphere Software V8 Programming Guide

......

3. Wait for the RAD8WebServiceEAR application to publish on the server (or force a
manual publish). Notice that a new web service named RAD8WebServiceEJB is
added in the Services view under JAX-WS.

An HTTP router module is required to allow the transport of SOAP messages
over the HTTP protocol.

4. In the Services view (Figure 14-34), right-click the new
RAD8WebServiceEJB and select Create Router Modules
(EndpointEnabler).

Figure 14-34 Selecting Create Router Modules
 Chapter 14. Developing web services applications 747

5. In the Create Router Project window, accept HTTP as the default EJB web
service binding (Figure 14-35). Although two EJB bindings are listed, HTTP
and JMS, for this example, we use SOAP over HTTP. Click Finish.

Figure 14-35 Create Router Project window

6. Open the deployment descriptor of the RAD8WebServiceEJB_HTTPRouter
project to see the generated servlet.

7. In the Services view, right-click RAD8WebServiceEJB and select Test with
Generic Service Client.

8. Select the getAccountBalance operation and select the
SimpleBankFacadeBeanPort under it.

9. In the Edit Data Message Form tab, expand getAccountNumber.

10.Select arg0 (which represents the Account Number input parameter).

11.For the Account number, type 001-999000777.
748 Rational Application Developer for WebSphere Software V8 Programming Guide

12.Click Invoke. You can see the result of the web service call:

getAccountBalanceResponse
12345.67

All of the projects that we have completed so far are available in this file:

C:\7835codesolution\webservices\RAD8WebServiceEJBService.zip

14.13 Creating a top-down web service from a WSDL

When creating a web service using a top-down approach, first you design the
implementation of the web service by creating a WSDL file. You can do this by
using the WSDL editor. You can then use the Web Service wizard to create the
web service and skeleton Java classes to which you can add the required code.
The top-down approach is the recommended way of creating a web service.

14.13.1 Designing the WSDL by using the WSDL editor

In this section, you create a WSDL with two operations: getAccount (using an
account ID to retrieve an account) and getCustomer (using a customer ID to
retrieve a customer).

By using the WSDL editor, you can easily and graphically create, modify, view,
and validate WSDL files. To create a WSDL, follow these steps:

1. Create a dynamic web project to host the new web service:

– Web project: RAD8TopDownBankWS
– EAR project: RAD8TopDownBankEAR

2. Create a WSDL file:

a. Right-click WebContent (in RAD8TopDownBankWS).

b. Select New Other.

c. In the New Wizard, select Web services WSDL.

d. Click Next.

e. Change the File name to BankWS.wsdl and click Next.

f. In the Options window (Figure 14-36 on page 750), ensure that the default
options Create WSDL Skeleton and document literal are selected. Then
click Finish.
 Chapter 14. Developing web services applications 749

Figure 14-36 New WSDL File wizard: Options window

3. When the WSDL editor opens with the new WSDL file, select the Design tab:

a. In the WSDL editor, for View (in the upper-right corner), select Advanced.

b. Select the Properties view. Now you are ready to edit the WSDL file
(Figure 14-37 on page 751).
750 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 14-37 WSDL editor

Editing the WSDL file
Define the operations and parameters of the WSDL:

1. Change the operation name by double-clicking NewOperation and
overtyping the name with getAccount. (You can also select the operation and
change the name in the Properties view.)

As a result, the input parameter changes to getAccount and the output
parameter changes to getAccountResponse.

2. Add a new operation. In the Design view, right-click the port type BankWS,
select Add Operation, and name the operation getCustomer.

As a result, the input parameter is set to getCustomer and the output
parameter changes to getCustomerResponse.

3. To change the input type of the WSDL operation getAccount, click the arrow
to the right of the input parameter to drill down to the schema.

Arrows to drill down to a schema

Service Port Binding Operation Port type

Part

View
 Chapter 14. Developing web services applications 751

4. When the Inline Schema editor opens, select the Design tab and switch to
the Detailed view (Figure 14-38).

Figure 14-38 Schema editor: Start

a. Select the in element, and in the Properties view, change the name to
accountId (leave the type as xsd:string).

b. Click the Show schema index view icon () in the upper-left corner to
see all the directives, elements, types, attributes, and groups in the WSDL
(Figure 14-39).

Figure 14-39 Schema editor: Index view

c. In the Types category, right-click and select Add Complex Type. Change
the name to Account. Follow these steps:

i. Right-click Account and select Add Sequence.

ii. You are taken out of the Index view and back into the Online Schema.
752 Rational Application Developer for WebSphere Software V8 Programming Guide

iii. Right-click Account and select Add Element

iv. Change the Element name to id.

v. Right-click the content model object () and select Add Element.

vi. Change the name to balance.

vii. Click Browse and select the type as decimal (Figure 14-40).

Figure 14-40 Schema editor: Account

d. Click the Show schema index view icon () in the upper-left corner.
Perform these steps:

i. In the Types section, right-click and select Add Complex Type.

ii. Change the name to Customer.

iii. Right-click Customer and select Add Sequence. Add four elements:
ssn, firstName, lastName, and title, all of type string (Figure 14-41).

Figure 14-41 Schema editor: Customer

e. Click the Show schema index view icon () in the upper-left corner.
Add the global elements for the complex types:

i. Right-click the Elements category and click Add Element.

ii. Change the element name to Account.

iii. Right-click Account and select Set Type.

iv. Click Browse and select Account.

v. Add the global element Customer.

vi. Set type to Customer (Figure 14-42 on page 754).
 Chapter 14. Developing web services applications 753

Figure 14-42 Schema editor: Global elements

5. In the WSDL editor, click the arrow to the right of the getAccountResponse
element to drill down to the schema:

a. Right-click the out element and select Set Type

b. Click Browse and select Account (Figure 14-43).

Figure 14-43 Schema editor: Output message

6. In the WSDL editor, click the arrow to the right of the getCustomer element
to drill down to the schema. Change the element name from in to customerId.

7. In the WSDL editor, click the arrow to the right of the
getCustomerResponse element to drill down to the schema:

a. Right-click the out element and select Set Type.

b. Click Browse and select Customer.

8. In the WSDL editor, right-click the binding icon (see Figure 14-37 on
page 751). Select Generate Binding Content.
754 Rational Application Developer for WebSphere Software V8 Programming Guide

9. In the Binding wizard (Figure 14-44), select Overwrite existing binding
information and click Finish.

Figure 14-44 Specify Binding Details wizard

10.Save the schema and WSDL file (Figure 14-45).

Figure 14-45 BankWS.wsdl
 Chapter 14. Developing web services applications 755

11.In the Enterprise Explorer, right-click BankWS.wsdl and select Validate. In
the window that opens showing a message that confirms that there are no
errors or warnings, click OK.

If you have a problem when creating the WSDL file, you can import the
BankWS.wsdl file from the C:\7835code\webservices\topdown directory.

14.13.2 Generating the skeleton JavaBean web service

To generate a skeleton JavaBean web service from a WSDL, follow these steps:

1. Right-click BankWS.wsdl and select Web Services Generate Java bean
skeleton.

2. Keep the slider at the Start service level. Notice that the code is generated
into the RAD8TopDownBankWS project. Click Finish.

After the code generation, the skeleton class BankWSSOAPImpl.java opens in the
Java editor. Notice the annotation of the class:

@javax.jws.WebService (endpointInterface="org.example.bankws.BankWS",
targetNamespace="http://www.example.org/BankWS/", serviceName="BankWS",
portName="BankWSSOAP")

The RAD8TopDownBankEAR is deployed to the server, and the web service is
displayed in the Services view.

Implementing the generated JavaBean skeleton
You must provide the business logic for the generated JavaBean skeleton. Use
the simple implementation that is shown in Example 14-23.

Example 14-23 Implementation of the generated JavaBean skeleton

package org.example.bankws;

import java.math.BigDecimal;

@javax.jws.WebService (endpointInterface="org.example.bankws.BankWS",
targetNamespace="http://www.example.org/BankWS/",

serviceName="BankWS",
portName="BankWSSOAP")

public class BankWSSOAPImpl{

public Account getAccount(String accountId) {
Account account = new Account();
account.setId(accountId);
account.setBalance(new BigDecimal(1000.00));
756 Rational Application Developer for WebSphere Software V8 Programming Guide

return account;
}

public Customer getCustomer(String customerId) {
 Customer customer = new Customer();

customer.setSsn(customerId);
customer.setFirstName("Henry");
customer.setLastName("Cui");
customer.setTitle("Mr.");
return customer;

 }
}

After you save the .java file, wait for the Server to republish or publish manually.

14.13.3 Testing the generated web service

To test the web service, use the Generic Service Client.

Follow these steps:

1. To test the web service, in the Services view, expand JAX-WS, right-click
RAD8TopDownBankWS, and select Test with Generic Service Client.

2. Test the getCustomer and getAccount operations. You see the correct result
in the Generic Service Client.

The Top Down Project is available in this file:

C:\7835codesolution\webservices\RAD8TopDownWebService.zip

BankWS.wsdl file: You cannot use the BankWS.wsdl file in the WebContent
folder to test the web service. The web service endpoint was set to
http://www.example.org/ when we created this WSDL. The dynamic WSDL
loading from the Services view sets the endpoint correctly.
 Chapter 14. Developing web services applications 757

14.14 Creating web services with Ant tasks

If you prefer not to use the Web Service wizard, you can use Apache Ant tasks to
create a web service using the IBM WebSphere JAX-WS runtime environment.
The Ant tasks support creating web services using both the top-down and
bottom-up approaches. After you have created a web service, you can then
deploy it to a server, test it, and publish it as a business entity or business
service. Additionally, you can create web service clients using the Ant tasks.

14.14.1 Creation procedure

In this section, we use Ant tasks to automate the top-down code generation
process that we did in the last section:

1. Remove RAD8WebServiceEAR from the server while we make modifications.

2. Create a dynamic web project to host the web service generated by Ant tasks:
RAD8WebServiceAnt in RAD8WebServiceEAR.

3. Copy the BankWS.wsdl file from the RAD8TopDownBankWS/WebContent folder to
the RAD8WebServiceAnt folder (not under WebContent).

4. Right-click RAD8WebServiceAnt and select New Other. Perform these
steps:

a. In the New wizard, select Web Services Ant Files.

b. Click Next.

5. In the Create Ant Files window (Figure 14-46 on page 759), perform these
steps:

a. For Web service run time, select IBM WebSphere JAX-WS.

Explore: After you create a web service, you might want to make the following
changes to it:

� For example, you might want to add a new WSDL operation
getBalanceByAccountId to the WSDL. After the WSDL is changed, you
have to regenerate the web service code. The existing business logic might
be wiped out.

� To retain your changes while updating the web service, you can use the
skeleton merge feature. With this feature, you can regenerate the web
service while keeping your changes intact. Select Window
Preferences Web Services Resource Management Merge
generated skeleton file.
758 Rational Application Developer for WebSphere Software V8 Programming Guide

b. For Web service type, select Top down Java bean Web Service.

c. Click Finish.

Figure 14-46 Create Web Service Ant files window

A wsgenTemplates folder is created with the was_jaxws_tdjava.xml and
was_jaxws_tdjava.properties files.

6. Open the was_jaxws_tdjava.properties file and perform these steps:

a. Change InitialSelection= to
InitialSelection=/RAD8WebServiceAnt/BankWS.wsdl.

b. Make sure that the Service.ServerId line is equal to
Service.ServerId=com.ibm.ws.ast.st.v8.server.base.

c. Save and close the file.

14.14.2 Running the web service Ant task

Perform these steps to run the Ant task:

1. Right-click was_jaxws_tdjava.xml and select Run As Ant Build.

2. The Configuration Editor opens.

3. In the Edit Configuration window, perform these steps:

a. Select the JRE tab.

b. Select Run in the same JRE as the workspace. This option is required;
otherwise, the ANT tasks present in the was_jaxws_tdjava.xml file cannot
be found at run time.
 Chapter 14. Developing web services applications 759

4. Click Apply and then click Run.

The web service is generated:

� The web service artifacts are generated in the Java Resources folder.
� You can implement the generated skeleton (BankWSSOAPImpl) and test the web

service, as we did in the last section.

All projects developed so far are available in this file:

C:\7835codesolution\webservices\RAD8ANTWebService.zip

14.15 Sending binary data using MTOM

SOAP Message Transmission Optimization Mechanism (MTOM) is a standard
that is developed by the World Wide Web Consortium (W3C). MTOM describes a
mechanism for optimizing the transmission or wire format of a SOAP message by
selectively re-encoding portions of the message while presenting an XML
Information Set (Infoset) to the SOAP application.

MTOM uses the XML-binary Optimized Packaging (XOP) in the context of SOAP
and Multipurpose Internet Mail Extensions (MIME) over HTTP. XOP defines a
serialization mechanism for the XML Infoset with binary content that is not only
applicable to SOAP and MIME packaging, but to any XML Infoset and any
packaging mechanism. It is an alternate serialization of XML that happens to
look like a MIME multipart or related package, with XML documents as the root
part.

That root part is similar to the XML serialization of the document, except that
base64-encoded data is replaced by a reference to one of the MIME parts, which
is not base64 encoded. This reference enables you to avoid the bulk and
overhead in processing that are associated with encoding. Encoding is the only
way that binary data can work directly with XML.

In this section, we use the top-down approach to create a JAX-WS web service
to send binary attachments along with a SOAP request, and to receive binary
attachments along with a SOAP response using MTOM.

The web service client sends three types of documents: Microsoft Word, image,
and PDF file. We describe several ways to send the documents:

� The client uses byte[] to send the Word document.
� The client uses java.awt.Image to send the image file.
� The client uses javax.activation.DataHandler to send the PDF file.
760 Rational Application Developer for WebSphere Software V8 Programming Guide

After the web service receives the binary data from the client, it stores the
received document on the local hard disk and then passes the same document
back to the client. In an actual scenario, the provider or the consumer can send
an acknowledgement message, after it receives the binary data from the other
side. For our example, we want to show how to enable the MTOM on both the
client and the server side in a compact example.

14.15.1 Creating a web service project and importing the WSDL

To create a web service project, follow these steps:

1. Select File New Dynamic Web Project.

2. In the window that opens, complete the following actions:

a. For Project Name, type RAD8WSMTOM.
b. For EAR Project Name, type RAD8WSMTOMEAR.
c. Click Finish.

3. Import the c:\7835code\webservice\mtom\ProcessDocumentService.wsdl file
into the RAD8WSMTOM/WebContent folder.

4. Open the ProcessDocumentService.wsdl file. Look at the source, and you
see the attributes that are highlighted in Example 14-24.

Example 14-24 Extract of the ProcessDocumentService.wsdl file

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xmime="http://www.w3.org/2005/05/xmlmime"
xmlns:tns="http://mtom.rad8.ibm.com/"
targetNamespace="http://mtom.rad8.ibm.com/"

version="1.0">
<xs:complexType name="sendPDFFile">

<xs:sequence>
<xs:element minOccurs="0" name="arg0" type="xs:base64Binary"

xmime:expectedContentTypes="*/*"/>
</xs:sequence>

</xs:complexType>
<xs:complexType name="sendWordFile">

<xs:sequence>
<xs:element minOccurs="0" name="arg0" type="xs:base64Binary"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="sendImage">

<xs:sequence>
<xs:element minOccurs="0" name="arg0" type="xs:base64Binary"
 Chapter 14. Developing web services applications 761

xmime:expectedContentTypes="image/jpeg"/>
</xs:sequence>

</xs:complexType>

Default mapping
The default mapping for xs:base64Binary is byte[] in Java. If you want to use
another mapping, you can add the xmime:expectedContentTypes attribute to the
element containing the binary data. This attribute is defined in the
http://www.w3.org/2005/05/xmlmime namespace and specifies the MIME types
that the element is expected to contain. The setting of this attribute changes how
the code generators create the JAXB class for the data. Depending on the
expectedContentTypes value in the WSDL file, the JAXB artifacts generated are
in the Java type, as described in Table 14-2.

Table 14-2 Mapping between MIME type and Java type

Based on this table, we can make the following predictions:

� sendWordFile will be mapped to byte[] in Java.
� sendPDFFile will be mapped to javax.activation.DataHandler.
� sendImage will be mapped to java.awt.Image.

14.15.2 Generating the web service and client

To create the web service and client using the Web Service wizard, follow these
steps:

1. Right-click ProcessDocumentService.wsdl and select Web Services
Generate Java bean skeleton.

MIME type Java type

image/gif java.awt.Image

image/jpeg java.awt.Image

text/plain java.lang.String

text/xml javax.xml.transform.Source

application/xml javax.xml.transform.Source

/ javax.activation.DataHandler
762 Rational Application Developer for WebSphere Software V8 Programming Guide

2. When the Web Service wizard starts with the Web Services page, complete
the following steps:

a. Select the following options for the web service:

i. For Server, select WebSphere Application Server v8.0 Beta.
ii. For Web service run time, select IBM WebSphere JAX-WS.
iii. For Service project, select RAD8WSMTOM.
iv. For Service EAR project, select RAD8WSMTOMEAR.

b. Select the following options for the web service client:

i. Move the slider to Test client.
ii. For Server, select WebSphere Application Server v8.0 Beta.
iii. For Web service run time, select IBM WebSphere JAX-WS.
iv. For Client project, select RAD8WSMTOMClient.
v. For Client EAR project, select RAD8WSMTOMClientEAR.

Because the web service client project is not yet in the workspace when
you run the Web Service wizard, the wizard creates the project for you.

c. Select Monitor the Web service and then click Next.

3. In the WebSphere JAX-WS Top Down Web Service Configuration window
(Figure 14-47 on page 764), perform these steps:

a. Select Enable MTOM Support.
b. Click Next.
 Chapter 14. Developing web services applications 763

Figure 14-47 Selecting the Enable MTOM Support option

4. In the Warning message window (Figure 14-48 on page 765) that opens, click
Details to view the complete message. Click Ignore to continue the code
generation.
764 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 14-48 WS-I warning against MTOM

5. In the Test Web Service window, select Next (we will not test this way,
because it is difficult to supply the required input types, such as an array of
bytes).

6. In the WebSphere JAX-WS Web Service Client Configuration window, accept
the defaults (Enable MTOM is selected) and click Next.

7. In the Web Service Client Test window, for the Test Facility, select JAX-WS
JSPs and click Finish. The generated JavaBean skeleton and the sample
JSP client open.

14.15.3 Implementing the JavaBean skeleton

Before you test the sample JSP client, you must implement the generated
JavaBean skeleton. The web service stores the received document on the local
hard drive and then passes the same document back to the client. Follow these
steps:

1. Examine the generated skeleton class ProcessDocumentPortBindingImpl. We
can see that sendWordFile is mapped to byte[], sendPDFFile is mapped to
javax.activation.DataHandler, and sendImage is mapped to
java.awt.Image, as we expected.

2. The Wizard has inserted the annotation:

@javax.xml.ws.BindingType
(value=javax.xml.ws.soap.SOAPBinding.SOAP11HTTP_MTOM_BINDING)

You can use the @BindingType (javax.xml.ws.BindingType) annotation on
an endpoint implementation class to specify that the endpoint supports one of
the MTOM binding types so that the response messages are MTOM-enabled.
The javax.xml.ws.SOAPBinding class defines two constants,
 Chapter 14. Developing web services applications 765

SOAP11HTTP_MTOM_BINDING and SOAP12HTTP_MTOM_BINDING, that you can use
for the value of the @BindingType annotation.

To enable MTOM on an endpoint, you can also place the @MTOM
(javax.xml.ws.soap.MTOM) annotation on the endpoint. The @MTOM annotation
has two parameters, enabled and threshold. The enabled parameter has a
boolean value and indicates if MTOM is enabled for the JAX-WS endpoint.
The threshold parameter has an integer value that must be greater than or
equal to zero. When MTOM is enabled, any binary data whose size, in bytes,
exceeds the threshold value is XML-binary Optimized Packaging
(XOP)-encoded or sent as an attachment. When the message size is less
than the threshold value, the message is inlined in the XML document as
either base64 or hexBinary data.

The presence and value of an @MTOM annotation overrides the value of the
@BindingType annotation. For example, if the @BindingType indicates that
MTOM is enabled, but an @MTOM annotation is present with an enabled value of
false, MTOM is not enabled.

3. Copy the code from C:\7835code\webservices\mtom and paste it to
ProcessDocumentPortBindingImpl.java (Example 14-25).

Example 14-25 ProcessDocumentPortBindingImpl.java

package com.ibm.rad8.mtom;

import java.awt.Graphics2D;
import java.awt.Image;
import java.awt.image.BufferedImage;
import java.io.BufferedInputStream;
import java.io.File;
import java.io.FileOutputStream;
import javax.activation.DataHandler;
import javax.imageio.ImageIO;

@javax.jws.WebService
(endpointInterface="com.ibm.rad8.mtom.ProcessDocumentDelegate",
targetNamespace="http://mtom.rad8.ibm.com/",
serviceName="ProcessDocumentService",

portName="ProcessDocumentPort")
@javax.xml.ws.BindingType

(value=javax.xml.ws.soap.SOAPBinding.SOAP11HTTP_MTOM_BINDING)
public class ProcessDocumentPortBindingImpl{

public byte[] sendWordFile(byte[] arg0) {
try {
766 Rational Application Developer for WebSphere Software V8 Programming Guide

FileOutputStream fileOut = new FileOutputStream
(new

File("C:/7835code/webservices/mtomresult/RAD-intro.doc"));
fileOut.write(arg0);

} catch (Exception e) {
e.printStackTrace();

}
return arg0;

}
public Image sendImage(Image arg0) {

try {
File file = new File

("C:/7835code/webservices/mntomresult/BlueHills.jpg");
BufferedImage bi = new BufferedImage(arg0.getWidth(null),

arg0.getHeight(null),
BufferedImage.TYPE_INT_RGB);

Graphics2D g2d = bi.createGraphics();
g2d.drawImage(arg0, 0, 0, null);
ImageIO.write(bi, "jpeg", file);

} catch (Exception e) {
e.printStackTrace();

}
return arg0;

}
public DataHandler sendPDFFile(DataHandler arg0) {

try {
FileOutputStream fileOut = new FileOutputStream(new File(

"C:/7835code/webservices/mtoresult/JAX-WS.pdf"));
BufferedInputStream fileIn = new BufferedInputStream

(arg0.getInputStream());
while (fileIn.available() != 0) {

fileOut.write(fileIn.read());
}

} catch (Exception e) {
e.printStackTrace();

}
return arg0;

}
}

Examine the code in Example 14-25 on page 766, and notice the following
points:

� The sendWordFile method takes byte[] as input and stores the binary data
as C:/7835code/webservices/mtomresult/RAD-intro.doc.
 Chapter 14. Developing web services applications 767

� The sendImage method takes an image as input and stores the binary data as
C:/7835code/WebServices/mtomresult/BlueHills.jpg.

� The sendPDFFile method takes a DataHandler as input and stores the data in
C:/7835code/WebServices/mtomresult/JAX-WS.pdf.

� All the three methods return the received data to the client after storing it on
the local drive.

14.15.4 Testing and monitoring the MTOM-enabled web service

Now it is time to see if MTOM really optimizes the transmission of the data. We
use the C:\7835code\webservices\mtomresult output folder to store the
document received by the web service JavaBean.

1. In the Web Services Test Client view (Figure 14-49 on page 769), complete
the following actions:

a. In the sample JSP client, select the sendImage method.

b. Click Browse and navigate to C:\7835code\webservices\mtom. Select
BlueHills.jpg and click Open.

c. Click Invoke to invoke the sendImage method.

d. In the Result pane, click View image. The image is displayed in the
Results pane.

Tip: The security settings of your external browser might prevent this
sample from being able to access the local files, producing exceptions,
such as FileNotFoundException. If you encounter this issue, try to use
the internal browser (Window Preferences: General Web
Browser Use internal Web Browser).
768 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 14-49 Invoking the MTOM web service sendImage method

2. Examine the C:\7835code\webservices\mtomresult folder. You can see that
the BlueHills.jpg file is stored in this folder. The size differs from the size of
the same file in the mtom folder. Probably, a separate JPEG compression is
used.
 Chapter 14. Developing web services applications 769

3. Select the TCP/IP Monitor tab to view the SOAP traffic. Click the icon and
then select Show Header. Figure 14-50 shows the HTTP header and the
SOAP traffic.

Figure 14-50 SOAP traffic when MTOM is enabled for the web service and client

Look at the SOAP request and response:

� The web service (provider) has MTOM enabled after the code generation.
Therefore, the SOAP response has a smaller payload. The web service sends
the binary data as a MIME attachment outside of the XML document to
realize the optimization.

� The SOAP request also has MTOM enabled and therefore a smaller payload.

Example 14-26 on page 771 shows the SOAP response and its HTTP header
(manually formatted).
770 Rational Application Developer for WebSphere Software V8 Programming Guide

Example 14-26 HTTP header SOAP response message with MTOM enabled

HTTP/1.1 200 OK
X-Powered-By: Servlet/3.0
Content-Type: multipart/related;
boundary="MIMEBoundary_111b9ef756340c437561169bec2d4285933d44b19cd7a882
"; type="application/xop+xml";
start="<0.011b9ef756340c437561169bec2d4285933d44b19cd7a882@apache.org>"
; start-info="text/xml"
Content-Language: en-US
Content-Length: 29681
Date: Mon, 25 Oct 2010 21:08:31 GMT
Server: WebSphere Application Server/8.0
===
===
--MIMEBoundary_111b9ef756340c437561169bec2d4285933d44b19cd7a882
Content-Type: application/xop+xml; charset=UTF-8; type="text/xml"
Content-Transfer-Encoding: binary
Content-ID:
<0.011b9ef756340c437561169bec2d4285933d44b19cd7a882@apache.org>

<?xml version="1.0" encoding="UTF-8"?><soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"><soapenv:Body
><a:sendImageResponse
xmlns:a="http://mtom.rad8.ibm.com/"><return><xop:Include
xmlns:xop="http://www.w3.org/2004/08/xop/include"
href="cid:f01b9ef756340c437561169bec2d4285933d44b19cd7a882@apache.org"/
></return></a:sendImageResponse></soapenv:Body></soapenv:Envelope>
--MIMEBoundary_111b9ef756340c437561169bec2d4285933d44b19cd7a882
Content-Type: image/jpeg
Content-Transfer-Encoding: binary
Content-ID:
<f01b9ef756340c437561169bec2d4285933d44b19cd7a882@apache.org>

The type and content-type attributes have the value application/xop+xml,
which indicates that the message was successfully optimized using XOP when
MTOM was enabled.

To see the difference when MTOM is not enabled, let us test the new @MTOM
annotation on the server.
 Chapter 14. Developing web services applications 771

Open the file ProcessDocumentPortBindingImpl.java and replace the
following line:

@javax.xml.ws.BindingType
(value=javax.xml.ws.soap.SOAPBinding.SOAP11HTTP_MTOM_BINDING)

Replace it with this line:

@MTOM(enabled=true,threshold=200000)

Then use CTRL+SHIFT+O to arrange the import statements. This new line
means that if the attachment is smaller in size than the threshold (in bytes), the
service needs to send binary data as base64 encoded data within the XML
document, instead of optimizing it using XOP.

After you save the file and republish the server, perform the same test as before
and look at the TCP/IP monitor. Figure 14-51 shows that, in this case, the image
is embedded as base64 encoded data in the response.

Figure 14-51 Using @MTOM with a threshold higher than the attachment size
772 Rational Application Developer for WebSphere Software V8 Programming Guide

Example 14-27 shows the HTTP Header and response body in this case, with
the binary data omitted.

Example 14-27 HTTP Header and response when using @MTOM with a high threshold

HTTP/1.1 200 OK
X-Powered-By: Servlet/3.0
Content-Type: multipart/related;
boundary="MIMEBoundary_811b9ef756340c438cf7b59bec2d4285833d44b19cd7a882
"; type="application/xop+xml";
start="<0.711b9ef756340c438cf7b59bec2d4285833d44b19cd7a882@apache.org>"
; start-info="text/xml"
Content-Language: en-US
Transfer-Encoding: chunked
Date: Mon, 25 Oct 2010 21:23:19 GMT
Server: WebSphere Application Server/8.0
==
--MIMEBoundary_811b9ef756340c438cf7b59bec2d4285833d44b19cd7a882
Content-Type: application/xop+xml; charset=UTF-8; type="text/xml"
Content-Transfer-Encoding: binary
Content-ID:
<0.711b9ef756340c438cf7b59bec2d4285833d44b19cd7a882@apache.org>

<?xml version="1.0" encoding="UTF-8"?><soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"><soapenv:Body
><a:sendImageResponse xmlns:a="http://mtom.rad8.ibm.com/"><return>
...omitted encoded binary data....
</return></a:sendImageResponse></soapenv:Body></soapenv:Envelope>
--MIMEBoundary_811b9ef756340c438cf7b59bec2d4285833d44b19cd7a882--

14.15.5 How MTOM was enabled on the client

Let us review how the Web Services wizard has enabled MTOM on the client:

1. In the Enterprise Explorer, expand RAD8MTOMClient Java Resources
src com.ibm.rad8.mtom and open ProcessDocumentPortProxy.java.

2. Review the method setMTOMEnabled that is shown in Example 14-28.

Example 14-28 How MTOM was enabled on the client

public class ProcessDocumentPortProxy{

 protected Descriptor _descriptor;

 public class Descriptor {
 Chapter 14. Developing web services applications 773

.....
public void setMTOMEnabled(boolean enable) {

 SOAPBinding binding = (SOAPBinding) ((BindingProvider)
_proxy).getBinding();

 binding.setMTOMEnabled(enable);
 }
 }//end of class Descriptor

 public ProcessDocumentPortProxy() {
 _descriptor = new Descriptor();
 _descriptor.setMTOMEnabled(true);
 }

 public ProcessDocumentPortProxy(URL wsdlLocation, QName
serviceName) {
 _descriptor = new Descriptor(wsdlLocation, serviceName);
 _descriptor.setMTOMEnabled(true);
 }
...
}

There are now other ways of enabling MTOM on the client. For example, as of
JAX-WS 2.2, you can use @MTOM. As of JAX-WS 2.1, you can use MTOMFeature.
For examples, refer to the WebSphere Application Server Information Center:

http://publib.boulder.ibm.com/infocenter/wasinfo/beta/index.jsp?topic=/
com.ibm.websphere.nd.doc/info/ae/ae/tejb_timerserviceejb_enh.html

The completed MTOM example is available in the file:

C:\7835codesolution\webservices\RAD8WSMTOM.zip

14.16 JAX-RS programming model

The JAX-RS programming model is based on the principles of Representational
State Transfer (REST) architectures, which were introduced by Roy Fielding in
his dissertation Architectural Styles and the Design of Network-based Software
Architectures:

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

Resources
Resources are the key concept in REST. Resources must be addressable, for
example, using Uniform Resource Identifiers (URIs).
774 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://publib.boulder.ibm.com/infocenter/wasinfo/beta/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/tejb_timerserviceejb_enh.html
http://publib.boulder.ibm.com/infocenter/wasinfo/beta/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/tejb_timerserviceejb_enh.html
http://publib.boulder.ibm.com/infocenter/wasinfo/beta/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/tejb_timerserviceejb_enh.html

Resource representations
Resources can have multiple representations that are suitable for being served to
various types of clients. Examples of representations are HTML (to be consumed
by web browsers), XML (to be consumed by Java clients), and JavaScript Object
Notation (JSON) (to be consumed by JavaScript clients). These representations
offered to clients are independent of the way that the actual data referenced by
the resources is stored on the server, which can be in a relational database.

Uniform interface
Contrary to SOAP-based web services, where each service defines its own
interface, introducing the need for WSDLs to expose the specific interface to
clients, in RESTful architectures the set of methods that can be invoked on the
resources is limited and well-known. In particular, JAX-RS is based on the HTTP
protocol and restricts the possible methods to the HTTP methods, as described
in the Hypertext Transfer Protocol -- HTTP/1.1 Request for Comments (RFC):

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

GET
GET is used to read the resource. It does not change the resource (it is safe).
Therefore, it can be called multiple times, and it continues to produce the same
side effects (it is idempotent).

PUT
PUT is used to either insert or update a resource. The client provides the identity
(URI) of the resource to update or create. Because the identity of the resource is
already known, this method is idempotent, although obviously, it is not safe.

DELETE
Delete is used to delete the resource. It is idempotent.

POST
POST is used to create a new resource on the server. The important difference
compared to PUT is that the client of a POST request sends the URI of the
resource that includes the new resource to be created, while the client of PUT
provides the URI of the resources to be created. POST is not idempotent, and it
is not safe.

HEAD
HEAD returns the same information as GET, apart from the actual response
body. The client receives a status code and headers, if any.
 Chapter 14. Developing web services applications 775

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

OPTIONS
OPTIONS is used to retrieve the communication options associated with a
resource, or the capabilities of a server, without actually retrieving the resource.

Statelessness
The requirement for statelessness communication is present to allow
applications to scale, and it is based on the success of the HTTP protocol.

Hypermedia as the Engine of Application State (HATEOAS)
The server response to a request for a given resource must consist of
hypermedia containing links to other resources that the client can access.

14.16.1 Implementation of JAX-RS in WebSphere Application Server

The IBM JAX-RS implementation is based on Apache Wink. Wink is a project
developed within the Apache Software Foundation that provides a lightweight
framework for developing RESTful applications. Wink supports REST services
implemented using JAX-RS to describe the resources on the server. However, a
client API is also provided by Wink. This client API is specific to the Wink runtime
environment, because there is no JAX-RS-defined client API.

The IBM implementation of JAX-RS 1.1 is an extension of the base Wink 1.1.1
runtime environment. IBM JAX-RS includes the following features:

� JAX-RS server run time

� Stand-alone client API with the option to use Apache HttpClient 4.0 as the
underlying client

� Built-in entity provider support for JSON4J

� An Atom JAXB model in addition to Apache Abdera support

� Multipart content support

� A handler system to integrate user handlers into the processing of requests
and responses

JAX-RS is supported by the following run times (Table 14-3).

Table 14-3 Versions of WebSphere Application Server that support JAX-RS

JAX-RS Notes WebSphere Application
Server

1.0 Requires Dynamic Web
Module 2.3 or higher and
Java 1.5 or higher

7.0 with Feature Pack for
Web 2.0
8.0
776 Rational Application Developer for WebSphere Software V8 Programming Guide

14.16.2 JAX-RS project setup

You can set up a JAX-RS enabled project in one of the following two ways,
depending on whether you use a new project or an existing one.

Follow these steps to configure a new Dynamic Web project:

1. Select File New Dynamic Web project.
2. Perform these steps:

a. In the Project Name field, enter RAD8JAX-RSWeb.

b. In the Dynamic Web Module version field, select 3.0.

c. In the Configuration field, select IBM JAX-RS Configuration.

d. In the EAR field, enter the name RAD8JAX-RSEAR.

e. Select Next three times until you reach the window that is shown in
Figure 14-52 on page 778.

1.1 Requires Dynamic Web
Module 2.4 or higher and
Java 1.6 or higher. Based
on Apache Wink 1.1.1

7.0 with Feature Pack for
Web 2.0
8.0

JAX-RS Notes WebSphere Application
Server
 Chapter 14. Developing web services applications 777

Figure 14-52 Adding JAX-RS Capabilities to the web project

3. Following these steps, add the JAX-RS facet. If the target server is V7.0,
these steps add the Ajax Proxy and server-side technology facets. The
JAX-RS facet adds the library, servlet information, and support for JAX-RS
annotations processing and JAX-RS quick fixes.

4. Select Finish.

Follow these steps to configure an existing project:

1. Right-click the project and select Properties.

2. Select Project Facets.

3. In the Configuration field, select IBM JAX-RS Configuration.

4. Select Further configuration required.

5. In the JAX-RS Implementation Library field, select IBM WebSphere JAX-RS
Library for WAS v8.0 (Beta).

6. Select Update Deployment Descriptor and select OK.
778 Rational Application Developer for WebSphere Software V8 Programming Guide

Example 14-29 shows the servlet and servlet mapping that are added to the
Deployment Descriptor (web.xml).

Example 14-29 JAX-RS servlet and servlet mapping in web.xml

<servlet>
<description>
JAX-RS Tools Generated - Do not modify</description>
<servlet-name>JAX-RS Servlet</servlet-name>
<servlet-class>com.ibm.websphere.jaxrs.server.IBMRestServlet

</servlet-class>
<load-on-startup>1</load-on-startup>
<enabled>true</enabled>
<async-supported>false</async-supported>

</servlet>
<servlet-mapping>

<servlet-name>JAX-RS Servlet</servlet-name>
<url-pattern>
/jaxrs/*</url-pattern>

</servlet-mapping>

For more information about the configuration of the IBM JAX-RS servlet
com.ibm.websphere.jaxrs.server.IBMRestServlet, see these websites:

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=matt&pro
duct=was-base-dist&topic=twbs_jaxrs_configwebxml

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=v700web&
product=was-base-dist&topic=twbs_jaxrs_configwebxml

For both a new and an existing project, we must add a class that extends
javax.ws.rs.core.Application. This class indicates which classes with the
@Path and @Provider annotations need to be deployed by the JAX-RS run time.

Rational Application Developer provides a quick fix to help you create this class:

1. Open the Deployment Descriptor (web.xml).

2. In the Design tab, select Servlet (JAX-RS Servlet).

3. Click Add.

4. Select Initialization Parameter.

5. Save the web.xml file.

6. In the Problems view, the following warning appears:
“JSR-311, 2.3.2: The param-name should be javax.ws.rs.Application.”
 Chapter 14. Developing web services applications 779

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=matt&product=was-base-dist&topic=twbs_jaxrs_configwebxml
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=v700web&product=was-base-dist&topic=twbs_jaxrs_configwebxml

7. Right-click the warning and select Quick Fix.

8. In the Quick Fix window, select Create a new JAX-RS Application
sub-class and set the param-value in the web.xml, as shown in
Figure 14-53.

9. In the Class creation wizard, perform these tasks:

a. For Package, type itso.bank.jaxrs.
b. For Name, type BankJAXRSApplication.
c. Accept the javax.ws.rs.core.Application superclass.
d. Select Finish.

10.In the Java editor, right-click and select Source Override/Implement
Methods.

11.Select the getClasses() method from the Application class.

12.Modify the method body of getClasses(), as shown in Example 14-30 on
page 781.

Figure 14-53 Quick fix to create a new JAX-RS Application sub-class
780 Rational Application Developer for WebSphere Software V8 Programming Guide

Example 14-30 Sub-class of javax.ws.rs.core.Application

package itso.bank.jaxrs;

import java.util.HashSet;
import java.util.Set;

import javax.ws.rs.core.Application;

public class BankJAXRSApplication extends Application {

@Override
public Set<Class<?>> getClasses() {

Set<Class<?>> classes = new HashSet<Class<?>>();
return classes;

}

}

We will add classes that represent resources (annotated with @Path) to the
collection returned by getClasses(). Instances of these classes will be created
by the run time with a per-request life cycle.

You can get the project, which we have developed so far, in this file:

C:\7835code\webservices\RAD8JAX-RSStart.zip

14.16.3 Exposing a JPA application as a RESTful service

This section shows how the JPA application, which is described in Chapter 10,
“Persistence using the Java Persistence API” on page 443, can be exposed as a
JAX-RS service. First, we import the JPA project RAD8JPA:

1. Select File Import.

2. Select General Existing project into Workspace.

3. Choose Select archive file and click Browse for
C:\7835codesolution\jpa\RAD8JPA.zip.

4. Import the project RAD8JPA.

Before we can use this project, we must add it to our EAR:

1. Right-click the EAR project RAD8JAX-RSWeb.
2. Select Properties.
3. Select Deployment Assembly.
4. Select Add.
 Chapter 14. Developing web services applications 781

5. Select Project.
6. Select Next.
7. Select RAD8JPA.
8. Select Finish and then click OK.

Now we configure the project for deploying the JPA entities on the server:

1. Make sure that you have the connection called ITSOBANKDerby, which was
created in “Creating a connection to the ITSOBANK database” on page 395.

2. Configure a data source called jdbc/itsobank, either on WebSphere
Application Server or by using the enhanced EAR file (23.8, “Configuring
application and server resources” on page 1258). You can also use JPA Tools
to perform this task:

a. Right-click RAD8JPA.

b. Select JPA Tools Configure project for JDBC Deployment.

c. In Connection, select ITSOBANKDerby.

d. Clear Set Up persistence.xml, because it is already configured.

e. Select Deploy connection information to server.

f. The data source will be called in the same way that the connection is
called, so you need to rename the data source:

i. Right-click RAD8JAX-RSEAR.

ii. Select Java EE Open WebSphere Application Server
Deployment.

iii. Rename jdbc/ITSOBANKDerby to jdbc/itsobank.

We are now ready to start exposing the JPA entities as JAX-RS resources:

1. In project RAD8JAX-RSWeb, create a Java package called itso.bank.resources.

2. Add to this package three Java classes:

– AccountResource
– CustomerResource
– TransactionResource

3. In the class BankJAXRSApplication, add these three classes to the HashSet
that is returned by the method getClasses, as shown inExample 14-31.

Example 14-31 Completed BankJAXRSApplication class

package itso.bank.jaxrs;

import itso.bank.resources.AccountResource;
import itso.bank.resources.CustomerResource;
import itso.bank.resources.TransactionResource;
782 Rational Application Developer for WebSphere Software V8 Programming Guide

import java.util.HashSet;
import java.util.Set;

import javax.ws.rs.core.Application;

public class BankJAXRSApplication extends Application {

@Override
public Set<Class<?>> getClasses() {

Set<Class<?>> classes = new HashSet<Class<?>>();
classes.add(CustomerResource.class);
classes.add(AccountResource.class);
classes.add(TransactionResource.class);
return classes;

}
}

In order to define the URIs for the Resources, we use the @Path annotation.

@Path(@javax.ws.rs.Path)
@Path can be applied to Java classes and methods. It is used to define the URI
(relative to the web project context-root) for an incoming HTTP request that must
be answered by that class/method.

Table 14-4 shows how the values of the @Path annotation map to URIs, based on
the previously chosen project name (RAD8JAX-RSWeb) and on the JAX-RS servlet
mapping already declared in web.xml.

Table 14-4 Mapping of @Path annotations to URIs

In our first implementation of CustomerResource (Example 14-32 on page 784),
we only want to return a JSON representation of an array of Customer entities. To
access the entities, we reuse the JPA Manager Beans (CustomerManager in this
case) and we make use of JSON4J to convert the Java Representation to JSON.

Annotation URL

@Path(“/customers”) http://hostname:portname/RAD8JAX-
RSWeb/jaxrs/customers

@Path(“/accounts”) http://hostname:portname/RAD8JAX-
RSWeb/jaxrs/accounts

@Path(“/transaction”) http://hostname:portname/RAD8JAX-
RSWeb/jaxrs/transaction
 Chapter 14. Developing web services applications 783

Example 14-32 First implementation of CustomerResource.java

package itso.bank.resources;

import itso.bank.entities.Customer;
import itso.bank.entities.controller.CustomerManager;

import java.io.IOException;
import java.util.List;

import javax.persistence.EntityManagerFactory;
import javax.persistence.Persistence;
import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;

import com.ibm.json.java.JSONArray;
import com.ibm.json.java.JSONObject;

@Path("/customers")
public class CustomerResource {

private CustomerManager manager;
private EntityManagerFactory emf;

public CustomerResource() {
super();
emf = Persistence.createEntityManagerFactory("RAD8JPA");
manager = new CustomerManager(emf);

}

@GET
@Produces("application/json")
public JSONArray getAllCustomers() throws IOException {

final List<Customer> allCustomers = manager.getCustomers();
JSONArray jsonArray = jsonCustomerArray(allCustomers);
return jsonArray;

}
private static JSONArray jsonCustomerArray(final List<Customer>

allCustomers) {
JSONArray jsonArray = new JSONArray(allCustomers.size());
for (Customer customer : allCustomers) {

jsonArray.add(jsonCustomer(customer));
784 Rational Application Developer for WebSphere Software V8 Programming Guide

}
return jsonArray;

}
private static JSONObject jsonCustomer(Customer customer) {

JSONObject obj = new JSONObject();
obj.put("title", customer.getTitle());
obj.put("firstName", customer.getFirstName());
obj.put("lastName", customer.getLastName());
obj.put("ssn", customer.getSsn());
return obj;

}

}

We have introduced two additional annotations.

@Get(@javax.ws.rs.Get)
This annotation is used to denote a method that performs the safe, idempotent
HTTP GET operation.

@Produces(@javax.ws.rs.Produces)
This annotation indicates which media type is returned by a method annotated
with @Get.

Testing the first implementation of CustomerResource
To test this code, publish the EAR to the server and then simply open a web
browser and enter the following URL:

http://localhost:9080/RAD8JAX-RSWeb/jaxrs/customers

Typically, web browsers do not know how to handle the type “application/json”,
which is meant to be consumed by JavaScript, and you are likely prompted to
save the file or open it with an application of your choosing. After you open the
file in any text editor, you see the contents, as shown in Example 14-33.

Example 14-33 JSONArray produced by the method getAllCustomers

[{"lastName":"Cui","title":"Mr","firstName":"Henry","ssn":"111-11-1111"
},{"lastName":"Fleming","title":"Ms","firstName":"Craig","ssn":"222-22-
2222"},{"lastName":"Coutinho","title":"Mr","firstName":"Rafael","ssn":"
333-33-3333"},{"lastName":"Sollami","title":"Mr","firstName":"Salvatore
","ssn":"444-44-4444"},{"lastName":"Hainey","title":"Mr","firstName":"B
rian","ssn":"555-55-5555"},{"lastName":"Baber","title":"Mr","firstName"
:"Steve","ssn":"666-66-6666"},{"lastName":"Venkatraman","title":"Mr","f
irstName":"Sundaragopal","ssn":"777-77-7777"},{"lastName":"Ziosi","titl
 Chapter 14. Developing web services applications 785

e":"Mr","firstName":"Lara","ssn":"888-88-8888"},{"lastName":"Lippmann",
"title":"Mr","firstName":"Sylvi","ssn":"999-99-9999"},{"lastName":"Kuma
ri","title":"Mr","firstName":"Venkata","ssn":"000-00-0000"},{"lastName"
:"Keen","title":"Mr","firstName":"Martin","ssn":"000-00-1111"}]

We can also test with a stand-alone Java client:

1. Create a new Java project called RAD8JAX-RSClient.

2. Right-click the project and select Properties Java Build Path.

3. In Libraries, select Add External Jar and browse for
<WAS_HOME>\runtimes\com.ibm.jaxrs.thinclient_8.0.0.jar, which is the
redistributable WebSphere Application Server JAX-RS Thin Client that you
can use in Java stand-alone applications.

4. Add a new class in the itso.bank.jaxrs.client package with the code that is
shown in Example 14-34.

Example 14-34 GetAllCustomersClient stand-alone JAX-RS Client

package itso.bank.jaxrs.client;

import java.io.IOException;
import org.apache.wink.client.ClientResponse;
import com.ibm.json.java.JSONArray;

public class GetAllCustomersClient {

 private org.apache.wink.client.ClientConfig clientConfig = new
org.apache.wink.client.ClientConfig();
 private org.apache.wink.client.RestClient client = new
org.apache.wink.client.RestClient(clientConfig);
 private final String base =
"http://localhost:9080/RAD8JAX-RSWeb/jaxrs";

 public static void main(String args[]) throws IOException {
 GetAllCustomersClient getAllCustomersClient = new
GetAllCustomersClient();
 getAllCustomersClient.getResource(getAllCustomersClient.base +
"/customers");

 }

 public JSONArray getResource(String URI) {
 org.apache.wink.client.Resource resource = client.resource(URI);
 ClientResponse response = resource.get();
786 Rational Application Developer for WebSphere Software V8 Programming Guide

 System.out.println("Getting: " + URI);
 System.out.println("Received Message:\n" + response.getMessage());
 System.out
 .println("Received Entity:\n" +
response.getEntity(JSONArray.class));
 return response.getEntity(JSONArray.class);
 }

}

5. Right-click this class and select Run As Java Application.
6. You obtain similar output to the output that is shown in the browser.

Example 14-35 Java application output

Getting: http://localhost:9080/RAD8JAX-RSWeb/jaxrs/customers
Received Message:
OK
Received Entity:
[{"lastName":"Cui","title":"Mr","firstName":"Henry","ssn":"111-11-11
11"},.......

Finishing the implementation of CustomerResource
We can now implement additional methods for CustomerResource, such as
getCustomerByPartialName, which use a NamedQuery defined in the class
CustomerManager, as shown in Example 14-36.

Example 14-36 Method that invokes a JPA NamedQuery

@Path("pname/{pname}")
 @GET
 @Produces("application/json")
 public JSONArray getCustomersByPartialName(@PathParam(value = "pname")
String pname) {
 final List<Customer> allCustomers =
manager.getCustomersByPartialName(pname);
JSONArray jsonArray = jsonCustomerArray(allCustomers);
 return jsonArray;
 }

We have introduced a new annotation.

@PathParam(@javax.ws.rs.PathParam)
@PathParam is placed in front of an operation parameter. It takes the value
attribute, which is also referenced in the @Path annotation and is enclosed in
 Chapter 14. Developing web services applications 787

braces ({}), which allows the JAX-RS run time to inject the (converted) segment
of the URL into the Java method parameter.

To test the new method, point the browser at this website:

http://localhost:9080/RAD8JAX-RSWeb/jaxrs/customers/pname/Ziosi

The browser will return a file that contains this information:

[{"lastName":"Ziosi","title":"Mr","firstName":"Lara","ssn":"888-88-8888
"}]

Mapping Account and Transaction to JSONObject
The next step is to create methods for other NamedQueries that are exposed by
CustomerManager. These queries can return other types of entities, so we need to
first define how all other entities map to JSONObject. We define static methods in
AccountResource (Example 14-37) and TransactionResource (Example 14-38) to
convert Account and Transaction to JSONObject.

Example 14-37 Code to add to AccountResource

 public static JSONArray jsonAccountArray(final List<Account>
allAccounts) {
 JSONArray jsonArray = new JSONArray(allAccounts.size());
 for (Account account : allAccounts) {
 jsonArray.add(jsonAccount(account));
 }
 return jsonArray;
 }

 public static JSONObject jsonAccount(Account account) {
 JSONObject obj = new JSONObject();
 obj.put("id", account.getId());
 obj.put("balance", account.getBalance());
 return obj;
 }

Example 14-38 Code to add to TransactionResource

public static JSONArray jsonTransactionArray(
 final List<Transaction> allTransactions) {
 JSONArray jsonArray = new JSONArray(allTransactions.size());
 for (Transaction transaction : allTransactions) {
 jsonArray.add(jsonTransaction(transaction));
 }
 return jsonArray;
 }
788 Rational Application Developer for WebSphere Software V8 Programming Guide

 public static JSONObject jsonTransaction(Transaction transaction) {
 JSONObject obj = new JSONObject();
 obj.put("id", transaction.getId());
 obj.put("amount", transaction.getAmount().toPlainString());
 obj.put("transTime", transaction.getTransTime().toString());
 obj.put("transType", transaction.getTransType());
 return obj;
 }

We have chosen to represent Debit and Credit entities with only one type of
resource called TransactionResource, which is mapped to a JSONObject that has
a transaction type (transType).

We can now define the additional method of class CustomerResource.

Example 14-39 getAccountsForSSN in CustomerResource

@Path("accounts/{ssn}")
 @GET
 @Produces("application/json")
 public JSONArray getAccountsForSsn(@PathParam(value = "ssn") String
ssn) {
 final List<Account> allAccounts = manager.getAccountsForSSN(ssn);
JSONArray jsonArray = AccountResource.jsonAccountArray(allAccounts);
 return jsonArray;
 }

To test the new method, point the browser at this website:

http://localhost:9080/RAD8JAX-RSWeb/jaxrs/customers/accounts/111-11-1111

This step returns a JSONArray with the accounts corresponding to the ssn:

[{"id":"001-111001","balance":12645.67},{"id":"001-111002","balance":68
43.21},{"id":"001-111003","balance":398.76}]

The complete implementation of AccountResource conceptually does not differ
from CustomerResource. You can inspect it in the completed project.

Posting data
TransactionResource is more interesting, because you see how to create new
transactions (Example 14-40 on page 790).
 Chapter 14. Developing web services applications 789

Example 14-40 Implementation of createTransaction in TransactionResource

@POST
 @Consumes("application/json")
 @Produces("application/json")
 public JSONObject createTransaction(JSONObject inputObj)
 throws WebApplicationException {
 String transType = (String) inputObj.get("transType");
 Transaction transaction = null;
 EntityManagerFactory emf = Persistence
 .createEntityManagerFactory("RAD8JPA");
 AccountManager accountManager = new AccountManager(emf);
 Account account = accountManager.findAccountById((String) inputObj
 .get("accountId"));
 if(account ==null)
 throw new
WebApplicationException(jSONObjectResponse(Status.BAD_REQUEST,"No
Account Found"));
 Transaction persistedTransaction = null;
 if (transType.equals("Credit")) {
 transaction = new Credit(BigDecimal.valueOf(Double
 .parseDouble(inputObj.get("amount").toString())));
 try {
 transaction.setAccount(account);
 creditManager.createCredit((Credit) transaction);
 persistedTransaction = creditManager
 .findCreditById(transaction.getId());
 } catch (Exception e) {
 throw new
WebApplicationException(jSONObjectResponse(Status.INTERNAL_SERVER_ERROR
,e.getMessage()));
 }
 } else if (transType.equals("Debit")) {
 transaction = new Debit(BigDecimal.valueOf(Double
 .parseDouble(inputObj.get("amount").toString())));
 try {
 transaction.setAccount(account);
 debitManager.createDebit((Debit)transaction);
 persistedTransaction = debitManager
 .findDebitById(transaction.getId());
 } catch (Exception e) {
 throw new
WebApplicationException(jSONObjectResponse(Status.INTERNAL_SERVER_ERROR
,e.getMessage()));
 }
790 Rational Application Developer for WebSphere Software V8 Programming Guide

 } else {
 throw new
WebApplicationException(jSONObjectResponse(Status.BAD_REQUEST,transType
+ " should be Debit or Credit"));
}
 return jsonTransaction(persistedTransaction);
 }

This method takes as input a JSONObject representing a Transaction. It tries first
to find the Account corresponding to the accountId field of the input JSONObject.
Then it tries to determine whether the input corresponds to a Credit or Debit
transaction, based on the value of the transType field of the input JSONObject. If
both pieces of information can be retrieved successfully, it tries to create a new
Credit or Debit object, and finally it tries to persist it.

We have introduced two new annotations.

@Post(@javax.ws.rs.Post)
The JAX-RS run time directs the HTTP POST requests that match the URL of
the enclosing @PATH annotation to the method annotated with @Post. The method
annotated with @Post is typically used to create new elements that will have the
URL of the enclosing @PATH annotation.

@Consumes(@javax.ws.rs.Consumes)
The @Consumes annotation defines what media type the method expects to
receive as input from the HTTP request.

Managing exceptions in JAX-RS
Many possible error conditions can cause the transaction creation to fail, such as
the supplied accountId might not match any existing account or the transType
might be spelled incorrectly, and so on.

The class javax.ws.rs.WebApplicationException can be used to represent
exceptions in JAX-RS. The constructor that we have used takes as input a
javax.ws.rs.core.Response object. Because we want to always return a
JSONObject or a JSONArray, even when an error condition occurs, we have
constructed a special Response object with the help of the following utility class
(Example 14-41).

Example 14-41 Utility class to return Response based on JSONObject or JSONArray

package itso.bank.resources;

import javax.ws.rs.core.Response;
import javax.ws.rs.core.Response.Status;
 Chapter 14. Developing web services applications 791

import com.ibm.json.java.JSONArray;
import com.ibm.json.java.JSONObject;

public class ErrorUtil {
public static JSONObject errorObject(String msg){

JSONObject object = new JSONObject();
object.put("error", msg);
return object;

}
public static JSONArray errorArray(String msg){

JSONObject object = errorObject(msg);
JSONArray array = new JSONArray();
array.add(object);
return array;

}
public static Response jSONObjectResponse(Status status, String

msg){
 return
Response.status(Status.BAD_REQUEST).type("application/json").entity(err
orObject(msg)).build();

}
 public static Response jSONArrayResponse(Status status, String msg){
 return
Response.status(Status.BAD_REQUEST).type("application/json").entity(err
orArray(msg)).build();
 }
}

Testing the completed JAX-RS application
After introducing suitable exceptions in all other methods and implementing a
method to get all transactions in the TransactionResource class, as documented
in the provided completed application sources, we are ready to test the complete
application with the following code, which must be added to the Java Project
RAD8JAX-RSClient.

Example 14-42 Complete application

package itso.bank.jaxrs.client;

import java.io.IOException;
import java.math.BigDecimal;
import org.apache.wink.client.ClientResponse;
import org.apache.wink.client.Resource;
792 Rational Application Developer for WebSphere Software V8 Programming Guide

import com.ibm.json.java.JSONArray;
import com.ibm.json.java.JSONObject;

public class MakeTransactionsClient {

private org.apache.wink.client.ClientConfig clientConfig = new
org.apache.wink.client.ClientConfig();

private org.apache.wink.client.RestClient client = new
org.apache.wink.client.RestClient(clientConfig);

private final String base =
"http://localhost:9080/RAD8JAX-RSWeb/jaxrs";

public static void main(String args[]) throws IOException {
MakeTransactionsClient makeTransactionsClient = new

MakeTransactionsClient();
String[] ssn = makeTransactionsClient.getCustomerSSN("Ziosi");
for (int i = 0; i < ssn.length; i++) {

String[] accountId =
makeTransactionsClient.getAccountId(ssn[i]);

for (int j = 0; j < accountId.length; j++) {
makeTransactionsClient.makeTransaction(new

BigDecimal(100.00),"Debit", accountId[j]);
makeTransactionsClient.makeTransaction(new

BigDecimal(450.00),"Credit", accountId[j]);
//Bad Request, mis-spelled Credit
makeTransactionsClient.makeTransaction(new

BigDecimal(450.00),"credit", accountId[j]);
//Non-existing account
makeTransactionsClient.makeTransaction(new

BigDecimal(450.00),"credit", "NonExistingAccount");

makeTransactionsClient.listTransactionsForAccount(accountId[j]);
}

}
}
private JSONArray getResource(String URI){

 org.apache.wink.client.Resource resource =
client.resource(URI);
 resource.contentType("application/json");
 ClientResponse response =resource.get();
 System.out.printf("\n%20s %s\n","Getting:",URI);
 System.out.printf("%20s %s\n","Received
Message:",response.getMessage());
 System.out.printf("%20s %s\n","Received
Entity:",prettyPrint(response.getEntity(JSONArray.class)));
 Chapter 14. Developing web services applications 793

 return response.getEntity(JSONArray.class);
}
private String[] getCustomerSSN(String pname) throws IOException {

String customerURI = this.base + "/customers/pname/" + pname;
JSONArray jsonArray = getResource(customerURI);
String[] ssn = new String[jsonArray.size()];
for (int i = 0; i < jsonArray.size(); i++) {

JSONObject jsonObject = (JSONObject) jsonArray.get(i);
ssn[i] = (String) jsonObject.get("ssn");
System.out.printf("\n%20s %s\n","Found ssn:",ssn[i]);

}
return ssn;

}
private String[] getAccountId(String ssn) throws IOException {

String accountsURI = base + "/accounts/ssn/" + ssn;
JSONArray jsonArray = getResource(accountsURI);
String accountId[] = new String[jsonArray.size()];
for (int i = 0; i < jsonArray.size(); i++) {

JSONObject jsonObject = (JSONObject) jsonArray.get(i);
accountId[i] = (String) jsonObject.get("id");
System.out.printf("\n%20s %s\n","Found

accountID:",accountId[i]);
}
return accountId;

}
private void makeTransaction(BigDecimal amount, String transType,

String accountId) throws IOException {
String transactionURI=base + "/transaction";
Resource resource = client.resource(transactionURI);
resource.contentType("application/json");
JSONObject jsonObj = new JSONObject();
jsonObj.put("amount", amount);
jsonObj.put("transType", transType);
jsonObj.put("accountId", accountId);
String jsonStr = jsonObj.serialize();
System.out.printf("\n%20s %s\n","Posting To:",transactionURI);
System.out.printf("%20s %s\n","PostedData:",jsonStr);
ClientResponse response = resource.post(jsonObj);
System.out.printf("%20s %s\n","Received

Message:",response.getMessage());
System.out.printf("%20s %s\n","Received Entity:",

response.getEntity(JSONObject.class));
}
private void listTransactionsForAccount(String accountId) {

String transactionsURI = base + "/accounts/" + accountId
794 Rational Application Developer for WebSphere Software V8 Programming Guide

+ "/transactions";
getResource(transactionsURI);

}
private String prettyPrint(JSONArray entity) {
 Object[]objects =entity.toArray();
 String pretty="";
 String spaces=" ";
 for(int i=0;i<objects.length;i++){
 pretty=pretty+objects[i]+"\n"+spaces;
 }
 return pretty;
 }
}

Figure 14-54 shows the results of running this code.

Figure 14-54 Results of invoking MakeTransactionsClient.java
 Chapter 14. Developing web services applications 795

You can locate the completed application in this file:

C:\7835codesolution\webservices\RAD8JAX-RS.zip.

14.17 Web services security

Web services security for WebSphere Application Server v8.0 Beta is based on
standards included in the Organization for the Advancement of Structured
Information Standards (OASIS) Web Services Security (WS-Security) Version
1.0/1.1 specification, the Username Token Profile 1.0/1.1, and the X.509
Certificate Token Profile 1.0/1.1.

WS-Security addresses three major issues involved in securing SOAP message
exchanges: authentication, message integrity, and message confidentiality.

14.17.1 Authentication

Authentication is used to ensure that parties within a business transaction are
really who they claim to be; thus, proof of identity is required. This proof can be
claimed in the following ways:

� Presenting a user identifier and password (referred to as a username token in
the WS-Security domain)

� Using an X.509 certificate issued by a trusted certificate authority

The certificate contains identity credentials and has a pair of private and public
keys associated with it. The proof of identity presented by a party includes the
certificate itself and a separate piece of information that is digitally signed using
the certificate’s private key. By validating the signed information using the public
key associated with the party’s certificate, the receiver can authenticate the
sender as being the owner of the certificate, thereby validating the sender’s
identity.

Two WS-Security specifications, the Username Token Profile 1.0/1.1 and the
X.509 Certificate Token Profile 1.0/1.1, explain how to use these authentication
mechanisms with WS-Security.

14.17.2 Message integrity

To validate that a message has not been tampered with or corrupted during its
transmission over the Internet, the message can be digitally signed by using
security keys. The sender uses the private key of its X.509 certificate to digitally
sign the SOAP request. The receiver uses the sender’s public key to check the
796 Rational Application Developer for WebSphere Software V8 Programming Guide

signature and identity of the signer. The receiver signs the response with its
private key. The sender can validate that the response has not been tampered
with or corrupted by using the receiver’s public key to check the signature and
identity of the responder.

14.17.3 Message confidentiality

To keep the message safe from eavesdropping, encryption technology is used to
scramble the information in web services requests and responses. The
encryption ensures that no one accesses the data in transit, in memory, or after it
has been persisted, unless that person has the private key of the recipient. The
WS-Security: SOAP Message Security 1.0/1.1 specification describes
enhancements to SOAP messaging to provide message confidentiality.

Two options are available to configure WS-Security for JAX-WS web services:

� Policy sets

� Programming API for securing SOAP message with the WS-Security API and
Service Programming Interfaces (SPI) for a service provider

We use policy sets in our examples.

14.17.4 Policy set

You can use policy sets to simplify configuring the qualities of service for web
services and clients. Policy sets are assertions about how web services are
defined. By using policy sets, you can combine configurations for separate
policies. You can use policy sets with JAX-WS applications, but not with
JAX-RPC applications.

A policy set is identified by a unique name. An instance of a policy set consists of
a collection of policy types. An empty policy set has no policy instance defined.

Policies are defined on the basis of a quality of service (QoS). Policy definitions
are typically based on the WS-Policy standards language. For example, the
WS-Security policy is based on the current WS-SecurityPolicy language from the
OASIS standards.

Policy sets omit application or user-specific information, such as keys for signing,
keystore information, or persistent store information. Instead, application and
user-specific information is defined in the bindings. Typically, bindings are
specific to the application or the user, and bindings are not normally shared. On
the server side, if you do not specify a binding for a policy set, a default binding is
 Chapter 14. Developing web services applications 797

used for that policy set. On the client side, you must specify a binding for each
policy set.

A policy set attachment defines which policy set is attached to service resources,
and which bindings are used for the attachment. The bindings define how the
policy set is attached to the resources. An attachment is defined outside of the
policy set, as metadata associated with the application. To enable a policy set to
work with an application, a binding is required.

14.17.5 Applying WS-Security to a web service and client

In this section, we apply the Username WS-Security default policy set to a web
service and client. This policy set provides the following features:

� Message integrity by digital signature (using the Rivest-Shamir-Adleman
(RSA) algorithm public-key cryptography) to sign the body, time stamp, and
WS-Addressing headers using the WS-Security specifications.

� Message confidentiality by encryption (using RSA public-key cryptography) to
encrypt the body, signature, and signature confirmation elements using the
WS-Security specifications.

� A username token included in the request message to authenticate the client
to the service. The username token is encrypted in the request.

Sample bindings for JAX-WS applications
WebSphere Application Server v8.0 Beta includes provider and client sample
bindings for testing purposes. In the bindings, the product provides sample
values for supporting tokens for various token types, such as the X.509 token and
the username token. The bindings also include sample values for message
protection information for token types, such as X.509. Both provider and client
sample bindings can be applied to the applications attached with a policy set.

In a production environment, you must modify the bindings to meet your security
needs before using them in a production environment by making a copy of the
bindings and then modifying the copy. For example, you must change the key
and keystore settings to ensure security, and you must modify the binding
settings to match your environment.

Configuring the username token
When using the Username WS-Security default policy set, you must configure
the user name and password for username token authentication separately from
the security settings defined in the bindings. The sample binding does not
include a user name or password for token authentication, because it is specific
798 Rational Application Developer for WebSphere Software V8 Programming Guide

to the target deployed system. You must specify a valid user name and password
in your environment using the WebSphere administrative console:

1. In the Servers view, right-click WebSphere Application Server v8.0 Beta
and select Administration Run administrative console.

2. Log in with the user ID and password (admin). We assume that your
WebSphere Profile is secured and that the administrator user is called admin.

3. Select Services Policy sets General client policy set bindings
(Figure 14-55).

Figure 14-55 General Client policy set bindings

4. Click Client sample to edit the binding.

5. Click WS-Security.

6. Click Authentication and protection.
 Chapter 14. Developing web services applications 799

7. In the Authentication tokens list, select gen_signunametoken to edit the
username token settings.

8. In the Additional Bindings section (bottom), click Callback handler.

9. For User name, enter admin. For password, enter admin and confirm the
password. Click Apply (Figure 14-56).

10.Click Save and then click Logout.

Figure 14-56 Setting Basic Authentication for gen_signunametoken Callback Handler

Attaching the Username WS-Security policy set
to the web service
To attach the Username WS-Security default policy set to the web service, follow
these steps:

1. In the Java EE perspective, in the Services view (Figure 14-57 on page 801),
expand the JAX-WS node. Right-click
RAD8WebServiceWeb:{...}BankService and select Manage Policy Set
Attachments Server Side.
800 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 14-57 Manage Policy Set Attachments

2. In the Add Policy Set Attachment to Service window, click Add.

3. In the End Point Definition Dialog window (Figure 14-59 on page 802), for
Policy Set, select Username WSSecurity default, and for Binding, ensure
that Provider Sample is selected. This binding is a service-side general
binding packaged with WebSphere Application Server. Click OK.

Figure 14-58 Add Policy Set attachment to service
 Chapter 14. Developing web services applications 801

Figure 14-59 Configure Policy Set and Binding

You can apply a policy set at the service, port, or operation level. Separate
policy sets can be applied to various endpoints and operations within a single
web service. However, the service and client must have the same policy set
settings. For this example, we apply the policy set to the entire service, so the
Endpoint and Operation Name fields are left blank.

4. When the warning message is displayed, click Ignore. WS-Security was
included in the WS-I Basic Security Profile. The WS-I Basic Security Profile
Version 1.0 was in Final Material status.

5. Back in the Add Policy Set Attachment to Service window, click Finish. Notice
that the service application is republished to the server.

Attaching the policy set to the web service client
To attach the Username WS-Security default policy set to the web service client,
follow these steps:

1. In the Services view, expand the JAX-WS Clients. Right-click
RAD8WebServiceClient: service/BankService and select Manage Policy
Set Attachment.

2. In the Configure Policy acquisition for Web Service Client window, click Next
(Figure 14-60 on page 803). In this scenario, we do not want to acquire the
policy from the Provider, so do not select Use Provider Policy.
802 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 14-60 Configure Policy Acquisition for Web Service Client window

3. In the Add Policy Set Attachment to Client window, click Add (Figure 14-61 on
page 804) to attach a policy set to the endpoint and to specify the bindings.
The dialog window initially has no entries, and Figure 14-61 on page 804
shows the result after the addition is complete.
 Chapter 14. Developing web services applications 803

Figure 14-61 Add Policy Set Attachment to Web Service Client window

4. In the End Point Definition Dialog: Configure Policy Set and Binding window
(Figure 14-62 on page 805), accept the settings for Service Name
(BankService), Endpoint (all), Policy Set (Username WSSecurity default),
and Binding (Client sample). This binding is a client-side general binding
packaged with WebSphere Application Server.

5. Click OK.
804 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 14-62 Configure Policy Set and Binding window

6. In the message window that opens, click Ignore.

The policy types contained by the policy set that you selected are listed in the
Bindings Configuration table. The configurations for these policy types are
already complete.

7. Click Finish to complete the wizard.

Testing the secured web service
To test the secured web service, follow these steps:

1. Select Window Preferences: Run/Debug TCP/IP Monitor. Make sure
the TCP/IP Monitor is started. Make a note of the monitor port, because you
need to reuse it in step 4. Let us call the monitor port xxxx for future
reference.

2. In the Enterprise Explorer, expand the RAD8WebServiceClient project,
right-click TestClient.jsp, and select Run As Run on Server.

3. Select the v8.0 Beta server and click Finish.

4. In the sample JSP client, Quality of Service pane, change the endpoint to the
monitor port and click Update:

http://localhost:xxxxx/RAD8WebServiceWeb/BankService

5. Invoke the retrieveCustomerName with a customer number of 111-11-1111.
 Chapter 14. Developing web services applications 805

6. In the TCP/IP Monitor view (Figure 14-63), verify that the message is signed
and encrypted and that the username token in the SOAP header is
encrypted.

Figure 14-63 TCP/IP Monitor showing signed and encrypted message

Figure 14-43 shows a snippet of the Request.

Example 14-43 Request snippet

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Header>
 <wsse:Security soapenv:mustUnderstand="1"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wss
ecurity-secext-1.0.xsd">
 <wsu:Timestamp Id="wssecurity_signature_id_21"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wsse
curity-utility-1.0.xsd">
 <wsu:Created>2010-10-26T00:25:16.453Z</wsu:Created>
 </wsu:Timestamp>
 <wsse:BinarySecurityToken
EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-s
oap-message-security-1.0#Base64Binary"
ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509
-token-profile-1.0#X509v3" Id="x509bst_23"
806 Rational Application Developer for WebSphere Software V8 Programming Guide

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wsse
curity-utility-1.0.xsd">MIICQzCCAaygAwIBA.....
</wsse:BinarySecurityToken>
.....

You can obtain the complete request and response at these locations:

� C:\7835codesolution\webservices\UserNameTokenRequest.txt
� C:\7835codesolution\webservices\UserNameTokenResponse.txt

You can obtain the secured projects archive (where the irrelevant projects have
been removed from the two EARs) in this folder:

C:\7835codesolution\webservices\RAD8WSUsernameToken.zip

14.17.6 WS-I Reliable Secure Profile

Continuing from the Reliable Asynchronous Messaging Profile (RAMP) Version
1.0 specification, the Reliable Secure Profile (RSP) working group of the WS-I
organization has developed Version 1.0 of an interoperability profile that works
with secure and reliable messaging capabilities for web services.

WS-I Reliable Secure Profile 1.0 provides secure reliable session-oriented web
services interactions. WS-I Reliable Secure Profile 1.0 builds on WS-I Basic
Profile 1.2, WS-I Basic Profile 2.0, WS-I Basic Security Profile 1.0, and WS-I
Basic Security Profile 1.1. It adds support for WS-Reliable Messaging 1.1,
WS-Make Connection 1.0, and WS-Secure Conversation 1.3:

� WS-Reliable Messaging 1.1 is a session-based protocol that provides
message-level reliability for web services interactions.

� WS-Make Connection 1.0 was developed by the WS-Reliable Messaging
workgroup to address scenarios in which a web services endpoint is behind a
firewall or the endpoint has no visible endpoint reference. If a web services
endpoint loses connectivity during a reliable session, WS-Make Connection
provides an efficient method to re-establish the reliable session.

� WS-Secure Conversation 1.3 is a session-based security protocol that uses
an efficient symmetric key-based encryption algorithm for message-level
security.

The configuration steps to apply the WS-I RSP policy set are similar to the steps
for the Username WS-Security policy set. Select WS-I RSP for Policy Set when
adding a policy set attachment to the service. We leave it as an exercise for you
to explore this functionality.
 Chapter 14. Developing web services applications 807

14.18 WS-Policy

The Web Services Policy Framework (WS-Policy) specification is an
interoperability standard that is used to describe and communicate the policies of
a web service so that service providers can export policy requirements in a
standard format. Clients can combine the service provider requirements with
their own capabilities to establish the policies that are required for a specific
interaction.

WebSphere Application Server conforms to the Web Services Policy Framework
(WS-Policy) specification. You can use the WS-Policy protocol to exchange
policies in a standard format. A policy represents the capabilities and
requirements of a web service, for example, whether a message is secure and
how to secure it, and whether a message is delivered reliably and how to deliver
a message reliably. You can communicate the policy configuration to any other
client, service registry, or service that supports the WS-Policy specification,
including non-WebSphere Application Server products in a heterogeneous
environment.

For a service provider, the policy configuration can be shared in a published
WSDL that is obtained by a client using an HTTP get request or by using the
Web Services Metadata Exchange (WS-MetadataExchange) protocol. The
WSDL is in the standard WS-PolicyAttachments format.

For a client, the client can obtain the policy of the service provider in the standard
WS-PolicyAttachments format and use this information to establish a
configuration that is acceptable to both the client and the service provider. That
is, the client can be configured dynamically, based on the policies supported by
its service provider. The provider policy can be attached at the application or
service level.

Relationship to policy set: Policy sets are not inherently concerned with the
WS-Policy specification, but work with the configuration of web services and
need to be considered as a front end to WS-Policy. Policy sets provide a
mechanism to specify a policy within a WebSphere environment. They do not
provide a mechanism to communicate this policy to non-WebSphere partners
in a heterogeneous environment. In addition, policy set functionality does not
provide a mechanism for the client to calculate effective policy (that is, a policy
that is acceptable to both client and provider) based the intersection of a list of
client and provider policies.
808 Rational Application Developer for WebSphere Software V8 Programming Guide

14.18.1 Configuring a service provider to share its policy
configuration

Configure a service provider to share its policy configuration:

1. In the Services view, right-click RAD8WebServiceWeb:{...}BankService and
select Manage Policy Set Attachment.

2. In the next window, verify that the username WS-Security default is listed as
the attached policy set from the last section. Click Next.

3. In the Configure Policy Sharing window (left window in Figure 14-64), select
the service and click Configure. In the Configure Policy Sharing for Web
Service window (right window in Figure 14-64), select Share Policy
Information via WSDL and click OK.

Figure 14-64 Configure Policy Sharing windows

4. Click Ignore for the warning and then click Finish.

5. After the server is published, open a browser and enter the following URL in
the browser (908x is the port number, which is likely 9080):

http://localhost:908x/RAD8WebServiceWeb/BankService?wsdl
 Chapter 14. Developing web services applications 809

http://localhost:908x/RAD75WebServiceWeb/BankService?wsdl

The WS-Policy information is embedded in the WSDL document
(Example 14-44). You can see that the policy configured for the input message
includes UsernameToken.

Example 14-44 WS-Policy in WSDL

......
<binding name="BankPortBinding" type="tns:Bank">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsp:PolicyReference URI="#b2670004-122a-4028-ab78-bf5d286647d6"/>
 <operation name="RetrieveCustomerName">
 <soap:operation soapAction="urn:getCustomerFullName"/>
 <input>
 <soap:body use="literal"/>
 <wsp:PolicyReference URI="#402c7f57-35bb-435d-98bb-f9e3575f4d3e"/>
 </input>
 <output>
 <soap:body use="literal"/>
 <wsp:PolicyReference URI="#b7dd0e57-5b38-4ecd-9f67-10d6c32da5b5"/>
 </output>
 <fault name="CustomerDoesNotExistException">
 <soap:fault name="CustomerDoesNotExistException"
use="literal"/>
 </fault>
 </operation>
 </binding>
....
<wsp:Policy wsu:Id="402c7f57-35bb-435d-98bb-f9e3575f4d3e">

<ns2:SignedParts

xmlns:ns2="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">
<ns2:Body />
<ns2:Header

Namespace="http://schemas.xmlsoap.org/ws/2004/08/addressing" />
<ns2:Header Namespace="http://www.w3.org/2005/08/addressing" />

</ns2:SignedParts>
<ns2:EncryptedParts

xmlns:ns2="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">
<ns2:Body />

</ns2:EncryptedParts>
<ns2:SignedEncryptedSupportingTokens

xmlns:ns2="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">
810 Rational Application Developer for WebSphere Software V8 Programming Guide

<wsp:Policy>
<ns2:UsernameToken

ns2:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/20
0702/IncludeToken/AlwaysToRecipient">

<wsp:Policy>
<ns2:WssUsernameToken10 />

</wsp:Policy>
</ns2:UsernameToken>

</wsp:Policy>
</ns2:SignedEncryptedSupportingTokens>

</wsp:Policy>
....
</definitions>

You can see the complete WSDL here:

C:\7835codesolution\webservices\BankServiceWithUserNameTokenPolicy.wsdl

14.18.2 Configuring the client policy using a service provider policy

To configure the client policy using a service provider policy, follow these steps:

1. Remove the policy that you applied in the previous section, because we use
WS-Policy to request the service provider’s policy information:

a. In the Services view, right-click
RAD8WebServiceClient:service/BankService and select Manage
Policy Set Attachment.

b. Click Next.

c. Click Remove and then click Finish.

2. Right-click RAD8WebServiceClient: service/BankService and select
Manage Policy Set Attachment.

3. In the first Configure Policy acquisition for Web Service Client window
(Figure 14-65 on page 812), click Use Provider Policy.
 Chapter 14. Developing web services applications 811

Figure 14-65 Use Provider Policy window

4. In the Configure Policy acquisition for Web Service Client window
(Figure 14-66 on page 813), select HTTP Get request targeted at <default
WSDL URL> and click OK. The Policy Acquisition field for the service
changes to Acquire Provider Policy in Figure 14-65.
812 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 14-66 Configure Policy Acquisition for Web Service Client window

5. In the warning message window that opens, click Ignore and then click
Finish.

6. Test the web service again. In the TCP/IP Monitor, you can see that the client
first acquires the WSDL through the HTTP GET (Figure 14-67 on page 814).
The client policy calculations for a service are performed at the first invocation
on that service. Calculated policies are cached in the client for performance.
 Chapter 14. Developing web services applications 813

Figure 14-67 TCP/IP Monitor showing retrieval of WSDL

14.19 WS-MetadataExchange (WS-MEX)

In WebSphere Application Server V7.0, with JAX-WS, you can enable the Web
Services Metadata Exchange (WS-MetadataExchange) protocol so that the
policy configuration of the service provider is included in the WSDL and is
available to a WS-MetadataExchange GetMetadata request. A service provider
can use a WS-MetadataExchange request to share its policies. A service client
can use a WS-MetadataExchange request to apply the policies of a provider.

One advantage of using the WS-MetadataExchange protocol is that you can
apply transport-level or message-level security to WS-MetadataExchange
GetMetadata requests by using a suitable system policy set. Another advantage
is that the client does not have to match the provider configuration, or have a
policy set attached. The client only needs the binding information. Then the client
can operate based on the provider policy, or based on the intersection of the
client and provider policies.
814 Rational Application Developer for WebSphere Software V8 Programming Guide

To configure a service provider to share its policy configuration using WS-MEX,
follow these steps:

1. In the Services view, right-click RAD8WebServiceWeb:{...}BankService and
select Manage Policy Set Attachment.

2. Verify that the username WSSecurity default is listed as the attached policy
set from the previous section. Click Next.

3. In the Configure Policy Sharing window, select the service and click Configure.

4. In the Configure Policy Sharing for Web Service window (Figure 14-68), select
Share Policy Information using WS-MetadataExchange and click OK.

Figure 14-68 Sharing policy set using WS-MetadataExchange

5. In the warning message window that opens, click Ignore and click Finish.

To configure the client policy configuration using WS-MEX, follow these steps:

1. Right-click RAD8WebServiceClient: service/BankService, select Manage
Policy Set Attachment and click Use Provider Policy.

2. In the Configure Policy acquisition for Web Service Client window, select
WS-MetadataExchange and click OK.

3. In the warning message window that opens, click Ignore and click Finish.

4. Test the web service again. In the TCP/IP Monitor, you can see that the client
first issues a WS-MEX GetMetadata request to the actual web service
endpoint and that the dialect of the request is WSDL (Example 14-45 on
page 816).
 Chapter 14. Developing web services applications 815

Example 14-45 WS-MEX request

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Header xmlns:wsa="http://www.w3.org/2005/08/addressing">

<wsa:To>http://wxpsp408:12000/RAD8WebServiceWeb/BankService</wsa:To>

<wsa:MessageID>urn:uuid:227725c2-1602-400d-9449-50a0e966058b</wsa:Me
ssageID>

<wsa:Action>http://schemas.xmlsoap.org/ws/2004/09/mex/GetMetadata/Re
quest</wsa:Action>
 </soapenv:Header>
 <soapenv:Body>
 <mex:GetMetadata
xmlns:mex="http://schemas.xmlsoap.org/ws/2004/09/mex">
 <mex:Dialect>http://schemas.xmlsoap.org/wsdl/</mex:Dialect>
 </mex:GetMetadata>
 </soapenv:Body>
</soapenv:Envelope>

The GetMetadata response returns the WSDL with the policy information
(Figure 14-69 on page 817). Then you see a second request in the TCP/IP
Monitor with the actual request and response.
816 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 14-69 TCP/IP Monitor showing WS-MEX Request

14.20 Security Assertion Markup Language (SAML)
support

The Security Assertion Markup Language (SAML) is an XML-based OASIS
standard for exchanging user identity and security attributes information.

Using the product SAML function, you can apply policy sets to JAX-WS
applications to use SAML assertions in web services messages and in web
services usage scenarios. You can use SAML assertions to represent user
identity and user security attributes, and optionally, to sign and to encrypt SOAP
message elements. WebSphere Application Server supports SAML assertions
using the bearer subject confirmation method and the holder-of-key subject
confirmation method as defined in the OASIS Web Services Security SAML
Token Profile Version 1.1 specification. Policy sets and general bindings that
support SAML are included with the product SAML function. To use SAML
assertions, you must modify the provided sample general binding.

The SAML function also provides a set of application programming interfaces
(APIs) that can be used to request SAML tokens from a Security Token Service
(STS) using the WS-Trust protocol. APIs are also provided to locally generate
and validate SAML tokens.
 Chapter 14. Developing web services applications 817

14.20.1 SAML assertions defined in the SAML Token Profile standard

The Web Services Security SAML Token Profile OASIS standard specifies how
to use Security Assertion Markup Language (SAML) assertions with the Web
Services Security SOAP Message Security specification.

WebSphere Application Server Version 7.0.0.7 and later supports two versions of
the OASIS SAML standard: Assertions and Protocol for the OASIS Security
Assertion Markup Language (SAML) V1.1, and Assertions and Protocols for the
OASIS Security Assertion Markup Language (SAML) V2.0.

The standard describes the use of SAML assertions as security tokens in the
<wsse:Security> header, as defined by the WSS: SOAP Message Security
specification. An XML signature can be used to bind the subjects and statements
in the SAML assertion to the SOAP message.

Subject confirmation methods
Subject confirmation methods define the mechanism by which an entity provides
evidence (proof) of the relationship between the subject and the claims of the
SAML assertions. The WSS: SAML Token Profile describes the usage of three
subject confirmation methods: bearer, holder-of-key, and sender-vouches.
WebSphere Application Server Version 7.0.0.9 and later versions support all
three confirmation methods.

Bearer
When using the bearer subject confirmation method, proof of the relationship
between the subject and claims is implicit. No specific steps are taken to
establish the relationship.

Because no key material is associated with a bearer token, protection of the
SOAP message, if required, must be performed by using a transport-level
mechanism or another security token, such as an X.509 or Kerberos token, for
message-level protection.

Holder-of-key
When using the holder-of-key subject confirmation method, proof of the
relationship between the subject and claims is established by signing part of the
SOAP message with the key specified in the SAML assertion. Because there is
key material associated with a holder-of-key token, this token can be used to
provide message-level protection (signing and encryption) of the SOAP
message.
818 Rational Application Developer for WebSphere Software V8 Programming Guide

Sender-vouches
The sender-vouches confirmation method is used when a server needs to
propagate the client identity with SOAP messages on behalf of the client. This
method is similar to identity assertion, but it has the added flexibility of using
SAML assertions to propagate not only the client identity, but also propagate
client attributes. The attesting entity must protect the vouched for SAML
assertions and SOAP message content so that the receiver can verify that it has
not been altered by another party.

14.20.2 SAML APIs

The SAMLTokenFactory API is the major SAML token programming interface.
Using this API, you can create SAML tokens, insert SAML attributes, parse and
validate SAML assertions as XML representations for the SAML tokens, and
create Java Authentication and Authorization Service (JAAS) subjects that
represent user identity and attributes as defined in SAML tokens. For more
information, refer to the WebSphere Application Server Information Center and
look for these classes:

� com.ibm.websphere.wssecurity.wssapi.token.SAMLTokenFactory
� com.ibm.websphere.wssecurity.wssapi.token.SAMLToken

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&
product=was-base-dist&topic=cwbs_overviewsamlapis

14.20.3 SAML Bearer sample: Prerequisites

This sample shows how you can bind the SAML11 Bearer WSHTTPS default
policy set, which contains the items listed in Table 14-5.

Table 14-5 SAML11 Bearer WSHTTPS default policy set

The client is configured to generate a SAML Bearer Token, and the service is
configured to consume it. The client makes use of the SAML APIs to create the
SAML Token programmatically.

SAML11 Bearer WSHTTPS default

Policies HTTP transport, SSL transport,
WS-Addressing, and WS-Security

Transport security Using SSL for HTTP

Message authentication Using SAML 1.1 token with bearer
confirmation method
 Chapter 14. Developing web services applications 819

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&product=was-base-dist&topic=cwbs_overviewsamlapis

The following steps are required if you use WebSphere Application Server V8
Beta:

1. Launch the administrative console.

2. Select Services Policy Sets Application Policy Sets.

3. Select SAML11 Bearer WSHTTPS default.

4. Select Import From Default Repository and select OK.

5. Select Save.

6. Optional: Explore the other relevant features that are predefined:

– Verify that in Services General Client Policy Set Bindings, you have
these bindings:

• Saml Bearer Client sample
• Saml HoK Symmetric Client sample

– Verify that Security Global security Java Authentication and
Authorization Service System logins contains these logins:

• wss.consume.saml
• wss.generate.saml

7. Log out of the administrative console.

8. Restart WebSphere Application Server.

If you use WebSphere Application Server V7, additional steps are required as
described here:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/
com.ibm.websphere.base.doc/info/aes/ae/twbs_setupsamlconfig.html

Additionally, you must export the same policy set from WebSphere Application
Server and import it into your Rational Application Developer workspace with the
following steps:

1. Launch the administrative console.

2. Select Services Policy Sets Application Policy Sets.

3. Select SAML11 Bearer WSHTTPS default.

4. Select Export.

5. A new page opens with a hyperlink to the file SAML11 Bearer WSHTTPS
default.zip.

6. Right-click the hyperlink and use your browser menu to save the target locally
(typically, Save target as). Make note of where you save the file.

7. In Rational Application Developer, select File Import.
820 Rational Application Developer for WebSphere Software V8 Programming Guide

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/twbs_setupsamlconfig.html

8. Select WebServices WebSphere Policy Sets and select Next.

9. Browse to the SAML11 Bearer WSHTTPS default.zip file.

10.Select Finish.

You must repeat the import operation in each workspace where you want to be
able to associate this policy set to a service or client.

14.20.4 SAML Bearer sample: Bindings

This sample is based on the sample binding that is contained the product. Select
Help Help Contents: Samples WebServices WebSphere JAX-WS
address book SAML Web service. From here, we reuse the supplied bindings
and the code to generate a SAML token in the client application:

1. Import the WebSphere JAX-WS address book SAML Web service sample,
which creates the following projects:

– SAMLBearer_AddressBook
– SAMLBearer_AddressBookClient
– SAMLBearer_AddressBookEAR

We leave it for you to test this sample. In the remainder of this section, we
show how to reuse the bindings for the RAD8TopDownBankEAR application,
which we developed in 14.13, “Creating a top-down web service from a
WSDL” on page 749.

2. If you no longer have it in your workspace, import the archive:

C:\7835codesolution\webservices\RAD8TopDownWebService.zip

3. Generate a service client for RAD8TopDownWebService:

a. In the Services view, right-click RAD8TopDownBankWS.

b. Select Generate Client.

c. Move the slider to the Test position, because we want to generate a test of
the JAX-WS JSP.

d. Change the client project to RAD8TopDownBankWSClient.

e. Change the EAR project to RAD8TopDownBankWSClientEAR.

f. Select Next.

g. Select Next.

h. On the Web Service Client Test page, make sure that you accept JAX-WS
JSPs for Test Facility and accept all defaults.

i. Select Finish.
 Chapter 14. Developing web services applications 821

4. Expand SAMLBearer_AddressBookEAR in the Enterprise Explorer.

5. Expand the META-INF folder.

6. You see two folders that contain application-specific bindings for the service
provider and for the service client:

– SAMLBearerProviderBinding
– SAMLBearerClientBinding

7. Copy the complete folder SAMLBearerProviderBinding into
RAD8TopDownBankWSEAR\META-INF. (The folder META-INF needs to be added if it
does not exist.)

8. Open the file named
RAD8TopDownBankWSEAR\META-INF\SAMLBearerProvider
Binding\PolicyTypes\WSSecurity\bindings.xml. The WS-Security Policy
Binding Editor (Figure 14-70) shows that the Security Inbound Configuration
is configured with the SAML V1.1 Bearer Token Consumer.

Figure 14-70 WS-Security Policy Binding Editor: Provider WSSecurity Binding

The Callback Handler has the following class name:

com.ibm.websphere.wssecurity.callbackhandler.SAMLConsumerCallbackHan
dler

The SAMLConsumerCallBackHandler uses three properties (Table 14-6 on
page 823).
822 Rational Application Developer for WebSphere Software V8 Programming Guide

Table 14-6 SAMLConsumerCallBack Handler properties

The JAAS Configuration uses the system.wss.consume.saml JAAS Login
Name.

9. Example 14-46 shows the complete binding file.

Example 14-46 Provider WSSecurity Binding

<?xml version="1.0" encoding="UTF-8"?>
<securityBindings
xmlns="http://www.ibm.com/xmlns/prod/websphere/200710/ws-securitybin
ding">
<securityBinding name="application">
 <securityInboundBindingConfig>
 <tokenConsumer name="con_saml11token"
classname="com.ibm.ws.wssecurity.wssapi.token.impl.CommonTokenConsum
er">
 <valueType
localName="http://docs.oasis-open.org/wss/oasis-wss-saml-token-profi
le-1.1#SAMLV1.1" uri="" />
 <callbackHandler
classname="com.ibm.websphere.wssecurity.callbackhandler.SAMLConsumer
CallbackHandler">
 <properties value="Bearer" name="confirmationMethod"/>
 <properties
value="http://docs.oasis-open.org/ws-sx/ws-trust/200512/Bearer"
name="keyType"/>
 <properties name="trustAnySigner" value="true" />
</callbackHandler>
 <jAASConfig configName="system.wss.consume.saml"/>
 <securityTokenReference
reference="request:SAMLToken11Bearer"/>

</tokenConsumer>
 </securityInboundBindingConfig>
 </securityBinding>
</securityBindings>

Name Value

Bearer confirmationMethod

keyType http://docs.oasis-open.org/ws-sx/ws
-trust/200512/Bearer

trustAnySigner true
 Chapter 14. Developing web services applications 823

http://docs.oasis-open.org/ws-sx/ws-trust/200512/Bearer

10.Copy the complete folder SAMLBearerClientBinding into
RAD8TopDownBankWSClientEAR\META-INF.

11.Open the
RAD8TopDownBankWSClientEAR\META-INF\SAMLBearerClientBinding
\PolicyTypes\WSSecurity\bindings.xml file. The WS-Security Policy
Bindings Editor (Figure 14-71) shows that the Security Outbound Binding
Configuration is configured with the SAML V1.1 Bearer Token Generator.

Figure 14-71 WS-Security Policy Bindings Editor for WSSecurity client binding

The JAAS Configuration uses the system.wss.generate.saml JAAS Login
Name.

The CallBack Handler, this time, is
com.ibm.websphere.wssecurity.callbackhandler.SAMLGenerateCallbackHan
dler, and it takes two properties (Table 14-7).

Table 14-7 SAMLGenerateCallbackHandler properties in Client Binding

12.Example 14-47 on page 825 shows the complete source of the client binding.

Name Value

Bearer confirmationMethod

keyType http://docs.oasis-open.org/ws-sx/ws
-trust/200512/Bearer
824 Rational Application Developer for WebSphere Software V8 Programming Guide

http://docs.oasis-open.org/ws-sx/ws-trust/200512/Bearer

Example 14-47 WSSecurity client binding

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<securityBindings
xmlns="http://www.ibm.com/xmlns/prod/websphere/200710/ws-securitybin
ding">
 <securityBinding name="application">
 <securityOutboundBindingConfig wsuNameSpace=""
wsseNameSpace="">
 <tokenGenerator
classname="com.ibm.ws.wssecurity.wssapi.token.impl.CommonTokenGenera
tor" name="CustomToken_719006427">
 <valueType uri=""
localName="http://docs.oasis-open.org/wss/oasis-wss-saml-token-profi
le-1.1#SAMLV1.1"/>
 <securityTokenReference
reference="request:SAMLToken11Bearer"/>
 <jAASConfig configName="system.wss.generate.saml"/>
 <callbackHandler
classname="com.ibm.websphere.wssecurity.callbackhandler.SAMLGenerate
CallbackHandler">
 <properties value="Bearer"
name="confirmationMethod"/>
 <properties
value="http://docs.oasis-open.org/ws-sx/ws-trust/200512/Bearer"
name="keyType"/>
 </callbackHandler>
 </tokenGenerator>
 </securityOutboundBindingConfig>
 <securityInboundBindingConfig/>
 </securityBinding>
</securityBindings>

We have seen how the service provider was configured to consume a SAML
V1.1 Bearer Token and how the service client was configured to generate a
SAML V1.1 Bearer Token.

We now associate these bindings to the corresponding policy set on the service:

1. In the Service view, right-click RAD8TopDownBankWS. Complete these
steps:

a. Select Manage Policy Set Attachments Server Side.

b. Select Add.
 Chapter 14. Developing web services applications 825

2. You see the dialog window that is shown in Figure 14-72. Complete these
steps:

a. For Policy set, select SAML Bearer WSHTTPS default.

b. For Binding, select SAMLBearerProviderBinding.

Figure 14-72 Configure Policy Set and Binding (SAMLBearerProviderBinding)

3. Figure 14-73 on page 827 shows the resulting endpoint policy set and
binding.
826 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 14-73 Add Policy Set Attachment to Service window

4. Select Next.

5. Select Configure.

6. Select Share Policy Information via WSDL.

7. Select OK, click Ignore, and click Finish.

We now configure the policy set and binding on the client:

1. In the Services view, right-click RAD8TopDownBankWSClient. Complete
these steps:

a. Select Manage Policy Set Attachments.

b. Select Add.
 Chapter 14. Developing web services applications 827

2. You see the dialog window that is shown in Figure 14-74. Complete these
steps:

a. For Policy set, select SAML11 Bearer WSHTTPS default.

b. For Binding, select SAMLBearerClientBinding.

Figure 14-74 Configure Policy Set and Binding (SAMLBearerClientBinding)

3. Select OK.

4. The Add Policy Set Attachment to Web Service Client window opens, as
shown in Figure 14-75 on page 829. Select Finish.
828 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 14-75 Add Policy Set Attachment to Web Service Client

We have completed the configuration of the policy sets and bindings on the
client.

14.20.5 SAML Bearer sample: Programmatic token generation

In order for the client to generate the SAML Bearer Token programmatically, add
the Java file SAMLBearerTokenSetup.java, as shown in Example 14-48, to the src
folder of the client project RAD8TopDownBankWSClient, in the package
org.example.bankws.saml.

Example 14-48 SAMLBearerTokenSetup.java

package org.example.bankws.saml;

import com.ibm.websphere.wssecurity.wssapi.token.SAMLToken;
import com.ibm.websphere.wssecurity.wssapi.token.SAMLTokenFactory;
import com.ibm.wsspi.wssecurity.saml.config.CredentialConfig;
import com.ibm.wsspi.wssecurity.saml.config.ProviderConfig;
import com.ibm.wsspi.wssecurity.saml.config.RequesterConfig;

public class SAMLBearerTokenSetup {
 Chapter 14. Developing web services applications 829

/**
 * This method generates an instance of a version 1.1 SAML Bearer

token
 */
public static SAMLToken generateSAMLToken() {

try {

// Create a SAMLTokenFactory instance for a version 1.1 SAML
token

SAMLTokenFactory samlFactory =
SAMLTokenFactory.getInstance(SAMLTokenFactory.WssSamlV11Token11);

// OR: Create a SAMLTokenFactory instance for a version 2.0
SAML token

//SAMLTokenFactory samlFactory =
SAMLTokenFactory.getInstance(SAMLTokenFactory.WssSamlV11Token20);

// Create the RequesterConfig instance for the bearer token
RequesterConfig reqData =

samlFactory.newBearerTokenGenerateConfig();
ProviderConfig samlIssuerCfg =

samlFactory.newDefaultProviderConfig(null);

CredentialConfig cred = samlFactory.newCredentialConfig();

// Create the SAML Token using the SAML Token Factory
SAMLToken samlToken = samlFactory.newSAMLToken(cred, reqData,

samlIssuerCfg);
return samlToken;

}
catch (Exception e) {

e.printStackTrace();
return null;

}
}

}

Edit the file BankWSSoapProxy.java by adding the method
generateAndAttachSAMLBearerToken(), as shown in Example 14-49, and call this
method from both constructors.

Example 14-49 Generating and adding the SAML Token in BankWSSoapProxy.java

public void generateAndAttachSAMLBearerToken(){
// Generate a version 1.1 SAML Bearer Token (self issuance)
830 Rational Application Developer for WebSphere Software V8 Programming Guide

SAMLToken _samlToken = SAMLBearerTokenSetup.generateSAMLToken();

// attaching the SAML Bearer Token to the Request Context.

((BindingProvider)_getDescriptor().getProxy()).getRequestContext().put(
SamlConstants.SAMLTOKEN_IN_MESSAGECONTEXT, _samlToken);

System.out.println("$$ Generated a SAML Token $$");
System.out.println("SAML Token id is : " +

_samlToken.getSamlID());
System.out.println("Attached to the Request Context as property "

+ SamlConstants.SAMLTOKEN_IN_MESSAGECONTEXT);
 }
 public BankWSSOAPProxy() {
 _descriptor = new Descriptor();
 _descriptor.setMTOMEnabled(true);
 generateAndAttachSAMLBearerToken();
 }

 public BankWSSOAPProxy(URL wsdlLocation, QName serviceName) {
 _descriptor = new Descriptor(wsdlLocation, serviceName);
 _descriptor.setMTOMEnabled(true);
 generateAndAttachSAMLBearerToken();
 }

This point terminates the setup of the sample.

14.20.6 SAML Bearer sample: Testing

Perform these steps to test the sample:

1. Add both RAD8TopDownBankWSClientEAR and
RAD8TopDownBankWSEAR to the server.

2. In the Enterprise Explorer view, right-click
RAD8TopDownBankWSClient\WebContent\sampleBankWSSOAPProxy\
TestClient.jsp.

3. Select Run as Run on Server.

4. In the bottom pane of the Test Client that is opened in the browser, change
the Endpoint so that it uses https. If the initial Endpoint was
http://localohost:9080/RAD8TopDownBankWS/BankWS, it becomes
https://localhost:9443/RAD8TopDownBankWS/BankWS. (If you have
generated additional profiles with the recommended ports, both port numbers
are typically increased by the same number of units.)

5. Select Update.
 Chapter 14. Developing web services applications 831

6. Select the method getAccount.

7. Enter any number in the accountId field.

8. Select Invoke.

9. You see the following results:
returnp:

 id: <accountId>

 balance: 1000

In the console, you see output indicating that the client generated the SAML
Bearer Token (Example 14-50).

Example 14-50 Console showing the creation of the SAML Token

00000023 servlet I com.ibm.ws.webcontainer.servlet.ServletWrapper
init SRVE0242I: [RAD8TopDownBankWSClientEAR] [/RAD8TopDownBankWSClient]
[/sampleBankWSSOAPProxy/Input.jsp]: Initialization successful.
00000024 SystemOut O Retrieving document at
'file:/C:/workspaces/WebServices/RAD8TopDownBankWSClient/WebContent/WEB
-INF/wsdl/'.
00000024 SystemOut O Retrieving schema at 'BankWS_schema1.xsd',
relative to
'file:/C:/workspaces/WebServices/RAD8TopDownBankWSClient/WebContent/WEB
-INF/wsdl/'.
00000024 SystemOut O $$ Generated a SAML Token $$
00000024 SystemOut O SAML Token id is :
_ECAE899D4F56A343AC1288118909489
00000024 SystemOut O Attached to the Request Context as property
com.ibm.wsspi.wssecurity.saml.put.SamlToken

If you want to see the actual SOAP message, you cannot use the TCP/IP
Monitor, because the message is transmitted using HTTPS. The Generic Service
Client supports HTTPS, but it does not use the modified proxy client code to
generate the SAML Bearer Token. You can, however, configure tracing in
WebSphere Application Server that allows you to see how the server interprets
the message:

1. Right-click the server in the Server view.

2. Select Administration Run Administrative Console.

3. Select Troubleshooting Logs and Trace.

4. Select server1.

5. Select Diagnostic Trace.

6. Select Change Log level details.
832 Rational Application Developer for WebSphere Software V8 Programming Guide

7. Right-click com.ibm.ws.wssecurity.saml.

8. Select All Messages and traces.

9. Select OK, which results in the following trace string:

=info: com.ibm.ws.wssecurity.saml.=all.

10.Select Save.

11.Log out of the administrative console.

12.Restart WebSphere Application Server for the changes to take effect.

13.Perform the same test as described previously.

14.Open the trace file, which, by default, is located in
<WAS_HOME>\profiles\<profile_name>\logs\server1\trace.log.

15.You see entries, as shown in Example 14-51. These entries were manually
formatted.

Example 14-51 Trace including com.ibm.ws.wssecurity.saml.*=all

00000017 EnvelopedSign 3 ResourceShower logs
verify-#_DD551E9C7189EE6A931288120072735:
00000017 EnvelopedSign 3
<saml:Assertion xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"
AssertionID="_DD551E9C7189EE6A931288120072735"
IssueInstant="2010-10-26T19:07:52.734Z"
Issuer="WebSphere" MajorVersion="1" MinorVersion="1">
 <saml:Conditions NotBefore="2010-10-26T19:07:52.750Z"
 NotOnOrAfter="2010-10-26T20:07:52.750Z">
 </saml:Conditions>
 <saml:AttributeStatement>
 <saml:Subject>
 <saml:NameIdentifier>
 </saml:NameIdentifier>
 <saml:SubjectConfirmation>
 <saml:ConfirmationMethod>urn:oasis:names:tc:SAML:1.0:cm:bearer
 </saml:ConfirmationMethod>
 </saml:SubjectConfirmation>
 </saml:Subject>
 </saml:AttributeStatement>
</saml:Assertion>
00000017 EnvelopedSign 3 ResourceShower logs verify-SignedInfo:
00000017 EnvelopedSign 3
<ds:SignedInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:CanonicalizationMethod
Algorithm="http://www.w3.org/2001/10/xml-excc14n#">
 </ds:CanonicalizationMethod>
 Chapter 14. Developing web services applications 833

 <ds:SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1">
 </ds:SignatureMethod>
 <ds:Reference URI="#_DD551E9C7189EE6A931288120072735">
 <ds:Transforms>
 <ds:Transform
Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature">
 </ds:Transform>
 <ds:Transform
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
 </ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1">
 </ds:DigestMethod>
 <ds:DigestValue>crkHuGw2LI4ZXeniAdyh9ggJ5sA=</ds:DigestValue>
 </ds:Reference>
</ds:SignedInfo>

You can get the complete trace log at this location:

C:\7835codesolution\webservices\SAMLTrace.log

You can get the SAML Secured project in this file:

C:\7835codesolution\webservices\RAD8TopDownWebServiceSAML.zip

14.21 More information

For more information about web services, see the following resources:

� For information about JAX-WS, Reliable Messaging, Secure Conversation,
policy sets, and RSP profiles, see these publications:

– Web Services Feature Pack for WebSphere Application Server V6.1,
SG24-7618

– IBM WebSphere Application Server V7.0 Web Services Guide,
SG24-7758

� For JAX-RPC web services tools that ship with Rational Application
Developer V7.0, see the Rational Application Developer V7 Programming
Guide, SG24-7501.

� IBM developerWorks section about SOA and web services

http://www.ibm.com/developerworks/webservices
834 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.ibm.com/developerworks/webservices
http://www.ibm.com/developerworks/webservices

� List of current and emerging web services standards on developerWorks
(under SOA and Web services Standards)

http://www.ibm.com/developerworks/webservices/standards/

� The JAX-WS specification

http://jcp.org/aboutJava/communityprocess/pfd/jsr224/index.html

� The JAXB specification

http://jcp.org/en/jsr/detail?id=222

� The MTOM specification

http://www.w3.org/TR/soap12-mtom/

� JAX-WS annotations:

– https://jax-ws.dev.java.net/jax-ws-ea3/docs/annotations.html

– http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?top
ic=/com.ibm.websphere.wsfep.multiplatform.doc/info/ae/ae/rwbs_jax
wsannotations.html

� The WS-Policy specification

http://www.w3.org/Submission/WS-Policy/

� The WS-MetadataExchange specification

http://www.ibm.com/developerworks/webservices/library/specification/
ws-mex/

� JAX-RS resources and examples:

– http://www.ibm.com/developerworks/web/library/wa-apachewink1/

– http://www.ibm.com/developerworks/webservices/library/ws-restful/

– http://www.ibm.com/developerworks/web/library/wa-datawebapp/

� SAML resources and examples:

– http://www.ibm.com/developerworks/websphere/techjournal/1004_chao/1
004_chao.html

– https://www.ibm.com/developerworks/wikis/download/attachments/11642
4904/Introduction+to+SAML+and+support+in+7.0.0.7.pdf

– http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?top
ic=/com.ibm.websphere.base.doc/info/aes/ae/cwbs_samloverview.html
 Chapter 14. Developing web services applications 835

http://www.w3.org/Submission/WS-Policy/
http://www.ibm.com/developerworks/webservices/library/specification/ws-mex/
http://www.ibm.com/developerworks/webservices/library/specification/ws-mex/
http://jcp.org/en/jsr/detail?id=222
http://www.ibm.com/developerworks/webservices/standards/
http://jcp.org/aboutJava/communityprocess/pfd/jsr224/index.html
http://www.w3.org/TR/soap12-mtom/
https://jax-ws.dev.java.net/jax-ws-ea3/docs/annotations.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.wsfep.multiplatform.doc/info/ae/ae/rwbs_jaxwsannotations.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.wsfep.multiplatform.doc/info/ae/ae/rwbs_jaxwsannotations.html
https://jax-ws.dev.java.net/jax-ws-ea3/docs/annotations.html
http://www.ibm.com/developerworks/web/library/wa-apachewink1/
http://www.ibm.com/developerworks/webservices/library/ws-restful/
http://www.ibm.com/developerworks/web/library/wa-apachewink1/
http://www.ibm.com/developerworks/webservices/library/ws-restful/
http://www.ibm.com/developerworks/web/library/wa-datawebapp/
http://www.ibm.com/developerworks/websphere/techjournal/1004_chao/1004_chao.html
http://www.ibm.com/developerworks/websphere/techjournal/1004_chao/1004_chao.html
https://www.ibm.com/developerworks/wikis/download/attachments/116424904/Introduction+to+SAML+and+support+in+7.0.0.7.pdf
https://www.ibm.com/developerworks/wikis/download/attachments/116424904/Introduction+to+SAML+and+support+in+7.0.0.7.pdf
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/cwbs_samloverview.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/cwbs_samloverview.html
http://www.ibm.com/developerworks/webservices/standards/
http://jcp.org/aboutJava/communityprocess/pfd/jsr224/index.html
http://jcp.org/en/jsr/detail?id=222
http://www.w3.org/TR/soap12-mtom/
https://jax-ws.dev.java.net/jax-ws-ea3/docs/annotations.html
https://jax-ws.dev.java.net/jax-ws-ea3/docs/annotations.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.wsfep.multiplatform.doc/info/ae/ae/rwbs_jaxwsannotations.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.wsfep.multiplatform.doc/info/ae/ae/rwbs_jaxwsannotations.html
http://www.w3.org/Submission/WS-Policy/
http://www.ibm.com/developerworks/webservices/library/specification/ws-mex/
http://www.ibm.com/developerworks/webservices/library/specification/ws-mex/
http://www.ibm.com/developerworks/web/library/wa-apachewink1/
http://www.ibm.com/developerworks/webservices/library/ws-restful/
http://www.ibm.com/developerworks/web/library/wa-datawebapp/
http://www.ibm.com/developerworks/websphere/techjournal/1004_chao/1004_chao.html
http://www.ibm.com/developerworks/websphere/techjournal/1004_chao/1004_chao.html
https://www.ibm.com/developerworks/wikis/download/attachments/116424904/Introduction+to+SAML+and+support+in+7.0.0.7.pdf
https://www.ibm.com/developerworks/wikis/download/attachments/116424904/Introduction+to+SAML+and+support+in+7.0.0.7.pdf
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/cwbs_samloverview.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/cwbs_samloverview.html

836 Rational Application Developer for WebSphere Software V8 Programming Guide

Chapter 15. Developing Open Services
Gateway initiative (OSGi)
applications

This chapter introduces the new feature, Open Services Gateway initiative
(OSGi), which is built into Rational Application Developer. OSGi is a module
system that is compatible with Java-based systems and implements a dynamic
component model. Enterprise systems can use OSGi to improve the
maintainability of runtime infrastructures. OSGi applications, in the form of
bundles, can be remotely installed, started, stopped, updated, and uninstalled
without requiring a restart.

In this chapter, we discuss the following topics:

� OSGi overview
� Introduction to OSGi bundles
� Installation of the Feature Pack for OSGi
� Tools for OSGi application development
� Creating OSGi bundle projects
� Developing OSGi applications

15
© Copyright IBM Corp. 2011. All rights reserved. 837

15.1 OSGi overview

In this section, we examine the concepts of OSGi, we learn about its
specifications, architecture, features, and benefits.

What is OSGi
OSGi is a dynamic module system service platform for Java and offers an
applications framework for developing, assembling, and deploying applications
using Java Platform, Enterprise Edition (Java EE) and OSGi technologies. The
applications developed using this framework exhibit modularity with loose
coupling within modules. They are dynamic and can collaborate with or depend
on other components.

Why OSGi
The modularity of OSGi provides a good mechanism to address the issues that
are faced by the Java EE applications:

� OSGi applications are easily portable and adaptable.

� OSGi applications can access external bundle repositories.

� OSGi has a built-in bundle repository that can host common and versioned
bundles that can be shared across multiple applications instead of each
application having its own library.

� This framework implements service-oriented architecture (SOA) at the
module level.

� This framework also integrates with the Java 2 Platform, Enterprise Edition
(J2EE) programing model and provides isolation for enterprise applications
that are composed of multiple versioned bundles with dynamic life cycles.

Specifications
The OSGi specifications are defined and maintained by the OSGi Alliance, which
is an open standards organization. The OSGi Service Platform Specifications
V4.2 bring the benefits of OSGi to the Java EE application developer. OSGi
Version 4.2 defines the Blueprint component model. This model defines how you

Bundles: OSGi solves the modularity and versioning problems through the
concept of a bundle. A bundle at the simplest level is a standard, traditional
JAR file with additional metadata in the JAR manifest file. So, enabling an
existing library for OSGi is a non-invasive change. The extra headers in the
JAR manifest are ignored in non-OSGi environments. In an OSGi environment
however, the extra headers allow a bundle to be more than a unit of
packaging. The bundle now defines a unit of modularity.
838 Rational Application Developer for WebSphere Software V8 Programming Guide

can exploit OSGi modularity in your applications, in particular, helping with
third-party library integration and versioning.

Because OSGi is an open, specification-based technology, many
implementations exist. The two most prominent implementations are the Apache
Felix project (http://felix.apache.org) and the Eclipse Equinox project
(http://eclipse.org/equinox), which is used in WebSphere Application Server.

Enterprise OSGi
The OSGi Service Platform Enterprise Specification V4.2 focuses mainly on the
Java enterprise applications. It includes the Blueprint Container Specification,
which defines a component model for OSGi based on the Spring framework in
which an OSGi bundle is augmented by an XML configuration file known as a
module blueprint. The module blueprint wires together separate components in a
bundle and configures the dependency injection framework required for inversion
of control.

15.1.1 OSGi architecture

The core OSGi service platform has a layered structure. OSGi defines the idea of
a bundle as a group of small modules. The service platform architecture is based
on the modules that are deployed.The OSGi architecture has four layers, as
shown in Figure 15-1 on page 840.

For more information: For more information about the OSGi applications
framework in WebSphere Application Server, refer to the Feature Pack for
OSGi Applications and Java Persistence API (JPA) 2.0 documentation in the
WebSphere Application Server library:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topi
c=/com.ibm.websphere.jpafep.multiplatform.doc/info/ae/ae/welcome_fep
jpa.html

For more information about the OSGi specification, refer to the OSGi Alliance
Specifications (http://www.osgi.org).
 Chapter 15. Developing Open Services Gateway initiative (OSGi) applications 839

http://felix.apache.org
http://felix.apache.org
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.jpafep.multiplatform.doc/info/ae/ae/welcome_fepjpa.html
http://www.osgi.org
http://felix.apache.org
http://eclipse.org/equinox
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.jpafep.multiplatform.doc/info/ae/ae/welcome_fepjpa.html

Figure 15-1 Layers of the OSGi framework

We describe the four layers:

� Execution Environment layer

This layer specifies the Java environment (Java EE or Java SE) in which the
bundle runs. For applications running in WebSphere Application Server, there
is no need to specify the environment.

� Module layer

This layer processes the metadata present in the bundle’s manifest file. The
OSGi framework determines the dependencies based on the manifest and
calculates independent, required class paths. The class paths address the
issues faced by a plain Java class loading and make sure that the following
conditions are met:

– Only packages explicitly exported by a particular bundle, through the
metadata, are visible to other bundles for import.

– Each package can be resolved to specific versions.

– Multiple versions of a package can be available concurrently to separate
clients.

This layer is mainly focused on eliminating problems during class loading and
preventing “Class Not Found” exceptions at run time. When a bundle is
deployed into the framework, it tries to resolve all the dependencies before it
starts the application. In this layer, the bundles are dynamic.

� Life Cycle layer

The Life Cycle layer controls installing, uninstalling, starting, stopping,
updating, and monitoring the bundles. Each bundle must implement the
application programming interface (API) in order to define its behavior at
certain stages of deployment.

Bundles

Hardware/OS

Execution Environment

Module

Life Cycle

Service

S
ec

ur
ity
840 Rational Application Developer for WebSphere Software V8 Programming Guide

� Service Registry layer

This is the highest layer and supports the SOA. The services are published to
the Service Registry by the bundles, and the service registry acts as a
medium for collaboration among bundles. An OSGi service is a Plain Old Java
Object (POJO) published to the service registry as implementing one or more
Java interfaces. The Service Registry layer searches other bundles and
provides notification when the registration of a bound bundle changes.

15.2 Introduction to OSGi bundles

Two problems exist that are associated with typical Java applications:

� No concept of modularity exists between the application level and class level.
� No versioning exists and no capability is available to handle multiple versions.

For more information about these problems, see Getting Started with the Feature
Pack for OSGi Applications and JPA 2.0, SG24-7911.

OSGi bundles offer a solution. A bundle is a Java archive file (.jar) that consists of
code, resources, and a manifest file that defines the content and visibility of the
bundle. It is a complete, modular unit of deployment.

15.2.1 OSGi classloading

A bundle defines the packages it depends on as well as the packages it provides,
tagged with versions in both cases. The OSGi run time uses this information to
wire a bundle so that it has access to only the packages declared as
dependencies and so that other bundles can only see those packages that are
explicitly exported. All other packages are hidden inside the bundle.

Instead of a hierarchical classloading structure that is traditional in Java,
particularly JEE, OSGi has a network classloading structure (Figure 15-2 on
page 842). In the hierarchical model, classes are searched for from the bottom
up, through various layers of application modules, runtime libraries, system
classes, and extension libraries. All classes are visible in the same layer and to
any layers beneath. So, a new version of a library in the extension libraries
affects the entire stack, from the extension libraries down to the application
modules.

In contrast, an OSGi bundle resolves dependencies in a network-like manner.
Bundles declare the packages and the version that they can provide. Packages
that are included in the bundle, but not exported, are not visible to other bundles.
They also declare the packages and the version, or range of versions on which
 Chapter 15. Developing Open Services Gateway initiative (OSGi) applications 841

they depend. Packages that are not declared as a dependency are not available
to the bundle. The OSGi framework resolves and manages the dependencies
between bundles in such a manner that a bundle cannot be started until its
dependencies are resolved.

Figure 15-2 JEE hierarchy classloading versus OSGi networked classloading

Therefore, with the addition of dependency metadata, which also allows package
dependencies to be marked as optional, it is possible to check if a bundle will
work at run time or if there are missing dependencies. So, with correctly written
metadata, a bundle will never throw a NoClassDefFoundError at run time.

15.2.2 Bundle manifest file

The bundle manifest file contains the metadata that allows the OSGi framework
to resolve the dependencies of the bundle. The code example that is shown in
Example 15-1 is from the sample bundle manifest file.

Example 15-1 Sample bundle manifest file

Manifest-Version: 1
Bundle-ManifestVersion: 2
Bundle-Name: MyService bundle

JEE Classloading OSGi Classloading

Extension
Libraries

Server
Runtime
Libraries

App1
Modules

App2
Modules
842 Rational Application Developer for WebSphere Software V8 Programming Guide

Bundle-SymbolicName: my.very.useful.library
Bundle-Version: 42.0.0
Bundle-Activator: my.very.useful.library.stringops.Activator
Import-Package: org.osgi.framework;version=”[1.5.0,2.0.0)”
Export-Package:
my.very.useful.library.stringops;version=23.2.1,my.very.useful.library.
interop;version=5.0.0

Note the following entries in the bundle manifest file:

� Bundle-Manifest Version: The version is set to 2 to indicate that the bundle
is written to revision 1.3 or later of the OSGi specification. A version of 1 is
used for older versions.

� Bundle-Name: A human readable, display name that is used to identify the
bundle.

� Bundle-SymbolicName: A unique identifier for the bundle. Usually separate
from the Bundle-Name. It is combined with the Bundle-Version to uniquely
identify the bundle.

� Bundle-Version: Indicates the version of the bundle.

� Bundle-Activator: Indicates the class that processes notifications received
from the framework during bundle life-cycle changes.

� Import-Package: Defines packages required by a bundle. A bundle does not
need to import java.* packages, or packages that are part of the Java
Development Kit (JDK). Any other packages that are needed by the bundle,
which are not defined within the bundle, need to be explicitly imported using
this header. Every package import carries a version range that defines the
accepted versions of the package. This version range is entirely independent
of the bundle version.

Example 15-1 on page 842 only includes one Import-Package declaration,
indicating that the bundle only needs the org.osgi.framework package,
which is in addition to its own classes and the java.* classes that are
available by default. The version tag (version=”[1.5.0,2.0.0)”) requests a
version between 1.5.0 (inclusive, denoted by a square bracket) and 2.0.0
(exclusive, denoted by a round bracket). If no version range is specified,
which is not recommended, any version of the package will satisfy the
dependency. The version tag is a version-range. So, a version=“1.0.0” is a
version range of versions 1.0.0 and later, not that exact version. The correct
syntax for an exact version is version=”[1.0.0,1.0.0]”.

� Export-Package: Defines the packages provided by the bundle that the bundle
exposes to other bundles. Only the specified packages can be used by other
bundles. Every exported package carries a version, which defaults to “0.0.0”
if unspecified.
 Chapter 15. Developing Open Services Gateway initiative (OSGi) applications 843

Importing and exporting the same package
Because of the complexities of the OSGi class loader, special consideration must
be given to importing an exported package. When a package is exported, it is
possible for the package to be used by a separate bundle before the exporting
bundle is even started. This situation can be a problem when Singletons and
static fields are used, because an imported class is loaded by a separate class
loader than the class loader used by the bundle, which creates separate
instances of the service object.

For example, suppose our bundle uses and exports a service object that is
responsible for generating sequential order numbers. Also, suppose that three
other bundles use that service object for generating order numbers. Because
those three other bundles imported the package, they use the “framework class
loader” and share the same instance of the service object. If our bundle also
imports the package, it also uses the same instance. But, if our bundle does not
import the package, the “bundle class loader” will instantiate a new instance of
the service object and possibly produce a duplicate list of order numbers.

Leading practices dictate that you typically must import any packages that you
export to reduce the number of copies of that package in memory and to ensure
that the object instances come from the same class loader.

15.2.3 Life cycle of a bundle

The OSGi framework is responsible for the life-cycle management of a bundle.
After you install and start a bundle, it goes through various states. The life cycle
of a bundle is much closer to the life cycle of a JEE application than that of a plain
JAR file. The jar file is simply loaded at run time and unloaded when the
application terminates. The life cycle of the bundle is more complex. Figure 15-3
on page 845 shows the life-cycle flow.
844 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 15-3 Life cycle of a bundle

Note the following life cycle states and events:

� INSTALLED STATE

The bundle has been installed, but all of the dependencies of the bundle have
not been met. The bundle requires packages that have not been exported by
any currently installed bundle.

� INSTALLED EVENT

Sent after the bundle has entered the Installed state.

� RESOLVED STATE

The bundle is installed and the dependencies of the bundle have been met,
but it is not running. If a bundle is started and all of the dependencies of the
bundle are met, the bundle leaves this state.

� RESOLVED EVENT

Sent after the bundle has entered the Resolved state.

� STARTING EVENT

Sent before the bundle is started.

� STARTING STATE

A temporary state that the bundle goes through while the bundle is starting.

Install Resolve

Start

Stop

Installed Resolved

Starting

Active

Stopping

Uninstalled

Uninstall

Uninstall
 Chapter 15. Developing Open Services Gateway initiative (OSGi) applications 845

� STARTED EVENT

Sent after the bundle has been started to indicate that the bundle is now
active.

� ACTIVE STATE

This state indicates that the bundle is running.

� STOPPING EVENT

Sent to indicate that the bundle is about to be stopped.

� STOPPING STATE

A temporary state that the bundle goes through while the bundle is stopping.

� UNINSTALLED EVENT

Sent to indicate that the bundle has been removed from the framework.

� UNRESOLVED EVENT

Sent when the framework discovers an unresolved dependency caused by a
bundle being uninstalled. The state of the bundle returns to Installed until the
dependency can be resolved.

� UPDATED EVENT

Sent when a bundle has been updated.

15.2.4 Blueprint Container Specification

The OSGi Blueprint Container Specification (Blueprint) defines a dependency
injection framework for OSGi derived from the Spring Dynamic Modules project.
The specification defines a component model for OSGi based on the core Spring
framework in which an OSGi bundle is augmented by an XML module blueprint.
A module blueprint is a configuration file that describes how fine-grained
components are wired together within the bundle.

The Blueprint XML files describe the components of the applications, their
dependencies, and their life cycles. Blueprint XML files are based on the popular
Spring framework. The concepts and syntax are familiar to a wide audience of
developers.

Blueprint Containers provide service damping as the default mode of operation.
When using Blueprint Containers, the developer is shielded from several of the
most complex aspects of service dynamics, which are handled by the Blueprint
Containers. Applications simply wait for a service to become available instead of
failing immediately if the requested service is temporarily unavailable.
846 Rational Application Developer for WebSphere Software V8 Programming Guide

Bundles can exploit the benefits of the Blueprint Container Specification by
including one or more Blueprint descriptors. These descriptors can either be
located inside the OSGI-inf/blueprint directory or be specified via the
Bundle-Blueprint manifest header. A bundle that includes Blueprint descriptors is
often referred to as a Blueprint bundle. Example 15-2 shows a sample Blueprint
descriptor that demonstrates the Spring-like syntax. We use this example to
highlight the key concepts in the Blueprint Container Specification.

Example 15-2 Blueprint sample XML file

1 <blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">
2 <bean id="myBizObject" class="my.sample.impl.BizObject">
3 <property name=”helper” ref=”myHelper” />
4 <property name="service" ref="serv" />
5 </bean>
6
7<bean id=”myHelper” class=”my.sample.util.Helper”>
8 <argument ref=”blueprintBundleContext” />
9 </bean>
10
11 <service interface="my.sample.BizInterface" ref="myBizObject">
12 <service-properties>
13 <entry key=”service.level” value=”gold” />
14 </service-properties>
15 </service>
16
17 <reference id="serv" interface="my.services.SampleService"
18 availability=”mandatory”
19 filter=”(transactional=true)”>
20 </reference>
21 </blueprint>

At the simplest level, Blueprints can create instances of classes that are already
defined inside the bundle (or imported by the bundle), as shown in line 7 of
Example 15-2. That capability alone is not useful without the ability to also inject
dependencies either per constructor (line 8) or via setter methods (line 3 and 4).
Example 15-3 and Example 15-4 on page 848 show the corresponding classes.

Example 15-3 Helper class

public class Helper {
public Helper(BundleContext context) { … }
…}
 Chapter 15. Developing Open Services Gateway initiative (OSGi) applications 847

Example 15-4 BizObject.java

public class BizObject {
public void setHelper(Helper h) { … }
public void setService(SampleService ss) { … }
…}

The injected elements can either explicitly give a primitive value or reference
another Blueprint manager (for example, any of the named top-level elements).
Blueprint also defines default managers, such as the blueprintBundleContext
manager (line 8), which essentially is the BundleContext object of the bundle
containing this blueprint descriptor.

Finally, the sample shows how to integrate with other modules via the service
registry. Lines 17-20 in the Blueprint that is shown in Example 15-3 on page 847
declare a dependency on a service with the SampleService interface, which, in
turn, is then injected normally into the BizObject in line 4. Line 19 highlights
Blueprint’s support for service filters. Line 18 in Example 15-4 is perhaps the
most interesting line.

Blueprint service references can be mandatory or optional. If a reference is
mandatory, the Blueprint extender does not create any beans in the Blueprint
module unless that reference is satisfied by a service. Therefore, the Blueprint
extender does not instantiate beans or publish services for that Blueprint module
until all mandatory references are satisfied. If the mandatory references do not
become satisfied within a given interval (by default, five minutes), Blueprint does
give up and destroy the Blueprint module.

When the Blueprint container is already up and running, a service can still go
away. This situation does not terminate the Blueprint container. Instead, when a
call is made to the service that has gone away, Blueprint waits for a set amount of
time (by default, five minutes) for a new service that satisfies the reference to
appear before throwing an exception.

This behavior, called service damping, ensures that Blueprint beans are
unaffected by a temporary absence of a mandatory service. This behavior also
means that the service to which a reference is bound can change over time
without bringing down the running blueprint. This capability is a powerful facility.

Finally, lines 11-15 in Example 15-3 on page 847 show how easy it is to publish a
service via Blueprint and exemplifies Blueprint’s support for custom service
properties.

The Blueprint specification defines much more than what is covered in the
preceding example. In addition to the support for the primitive values shown here,
848 Rational Application Developer for WebSphere Software V8 Programming Guide

Blueprint allows the creation of an arbitrary collection of primitives and beans as
well as customized conversion between literal values and required class
instances. Furthermore, Blueprint bundles can hook into the service dynamics
via reference and service registration listeners.

For more information, consult the Blueprint Service specification:

http://www.osgi.org/Specifications/HomePage

15.2.5 Types of bundle archives

This section introduces two types of bundle archives.

Enterprise bundle archives (EBA)
An EBA is an archive of more than one bundle that is deployed as a single OSGi
application. They are isolated from the other bundles and services of other OSGi
applications and run under their own instance of the framework. Bundles that
belong to an OSGi application can reference other bundles that are in the shared
bundle repository (not included within the application) as long as these external
bundles export packages that these bundles import. The archive contains this
information:

� Archive content: A set of jars representing bundles within the EBA.

� Application manifest

� Deployment manifest (optional): a file that WebSphere Application Server
generates when resolving an application. This file defines the exact packages
and their versions to which the application is resolved after deployment.
Rational Application Developer allows the user to view this file, and it even
persists it within the application to guarantee that the application will get
resolved to the exact same bundles in a separate environment.

Composite bundle archives (CBA)
The CBA is a group of bundles that are grouped together and that act as a single
bundle as far as the user is concerned. CBAs can be deployed to the WebSphere
internal repository, and they can be used by potentially multiple OSGi
applications. When the run time resolves a package to a bundle within a CBA, it
has the affinity to resolve the rest of the packages within the same CBA if at all
possible. The user creates these archives when the run time is required to pick
particular versions of packages that work together in a predictable way. This CBA
has the .cba extension. The CBA contains this information:

� Composite bundle contents (a set of jars representing the contained bundles)
� Composite bundle manifest
 Chapter 15. Developing Open Services Gateway initiative (OSGi) applications 849

http://www.osgi.org/Specifications/HomePage

We discuss EBAs and CBAs when we create the OSGi bundle projects later in
this chapter.

15.2.6 Relationships among bundles, application archives, and
composite archives

To satisfy the software principles of encapsulation and modularity, break your
applications down into small, reusable components. Encapsulate these
components in the OSGi bundle. OSGi bundles are complete, modular units of
deployment. As you develop a number of bundles under your application suite,
you can combine bundles that fall under a common business area into an EBA.
The EBA greatly simplifies the deployment and maintenance of your application,
because you can deploy the entire archive instead of individual bundles. Next as
your application portfolio expands, you will find that you tend to reuse common
libraries and functionality. For example, your organization might decide to
standardize on a certain set of utility libraries, such as:

� Simple Logging Facade for Java (SLF4J) V1.6.1
� Apache Derby V10.6.10 or V10.6.2.1
� Apache FOP V1.0
� Apache Commons Codec V1.4

These libraries can be combined into bundles in a CBA, which eliminates the
need for each application to maintain separate jar files and ensures consistency
across the applications. Additionally, because the archive can support multiple
versions of the same package, migration at the application level from one version
to another is significantly simplified. You are no longer required to migrate all of
the applications at the same time, which can be difficult to coordinate in times of
tight budgets and short development cycles.

Another candidate for the CBA is a set of utility classes that span multiple
applications. A good example is a set of financial utilities that compute sales tax
in various localities around the world, compute amortization, compute
loan-to-value on a mortgage, or compute the money factor on a lease. Each of
these utilities is a bundle and can be combined into a CBA. Doing so eliminates
the need for each application to develop similar utilities and guarantees that each
application receives the same result for a given algorithm.

15.3 Installation of the Feature Pack for OSGi

Using Rational Application Developer, you can develop and deploy JEE and
OSGi applications to an integrated WebSphere Application Server test
environment. In Rational Application Developer, WebSphere Application Server
850 Rational Application Developer for WebSphere Software V8 Programming Guide

V8 Beta supports OSGi without the need for feature packs. To enable the OSGi
development tools in a WebSphere Application Server V7 test environment, we
have to install IBM WebSphere Application Server Version 7.0 Feature Pack for
OSGi Applications and Java Persistence API 2.0.

For the installation steps, consult Getting Started with the Feature Pack for OSGi
Applications and JPA 2.0, SG24-7911.

To check if your existing Rational Application Developer workspace has the OSGi
development tools feature enabled, use the following steps:

1. In Rational Application Developer, go to Help About Rational Application
Developer for WebSphere Software.

2. Click Installation Details and select the Installed Software tab. You see
Figure 15-4 on page 852. Scroll down the OSGi group to validate that the
OSGi development tools are installed.
 Chapter 15. Developing Open Services Gateway initiative (OSGi) applications 851

Figure 15-4 Installed OSGi features

15.4 Tools for OSGi application development

The Eclipse Plug-in Development tools provide partial support to develop OSGi
bundles. However, IBM Rational Application Developer provides additional
development tools, both licensed and at no charge, that help to create Enterprise
OSGi applications.
852 Rational Application Developer for WebSphere Software V8 Programming Guide

The Rational Application Developer V8 development environment contains a
selection of views, wizards, and editors that are customized to be the most useful
for an OSGi developer.

The Rational Application Developer V8 development tools offer the following
major features:

� Wizards to create OSGi bundles, applications, and composite bundles
projects.

� A model for assembling bundles into an enterprise OSGi application that can
be exported or deployed to WebSphere Application Server.

� A container for the OSGi blueprint component model enabling the standard
dependency injection mechanism.

� Tools to convert existing Java, web JPA, and plug-in projects into an OSGi
bundle.

� Form-based editors for the OSGi Bundle Manifest, Application Manifest, and
Composite Bundle Manifest with content assist.

� Validation of the correctness of the OSGi bundle and application structure.

� The capability to publish OSGi enterprise applications to WebSphere
Application Server.

� The import and export mechanism for OSGi bundles, applications, and
composite bundles.

� OSGi Bundle Explorer visualizes your bundles and the dependencies
between them.

No-charge tools
In addition to the licensed tooling in Rational Application Developer, a version
with marginally reduced features is available at no charge at this website:

http://www.ibm.com/developerworks/rational/downloads/10/rationaldevtool
sforosgiapplications.html

The no-charge tools include support for creating OSGi bundles, applications, and
Composite Bundles. They provide most of the features that are supported by
Rational Application Developer. However, they lack added value features that are
only available in Rational Application Developer:

� Publishing to WebSphere Application Server

� Form-based editor for the Blueprint files

� Graphical Bundle Explorer
 Chapter 15. Developing Open Services Gateway initiative (OSGi) applications 853

http://www.ibm.com/developerworks/rational/downloads/10/rationaldevtoolsforosgiapplications.html
http://www.ibm.com/developerworks/rational/downloads/10/rationaldevtoolsforosgiapplications.html

� Extra support for refactoring bundles that understands the bundle entries in
the application manifest, and class refactoring that understands class entries
in the blueprint files that reference them.

� Extra validations and quick fixes that analyze the OSGi project’s structure to
ensure correctness.

15.5 Creating OSGi bundle projects

This section describes the following topics:

� Creating OSGi bundle projects
� Creating an OSGi application project
� Creating a composite bundle project
� Working with the Composite Bundle Manifest
� Blueprint Container Specification

15.5.1 Creating OSGi bundle projects

To create an OSGi bundle project, follow this procedure:

1. Click File New Other OSGi OSGi Bundle Project to open the
New OSGi Bundle Project wizard. Complete these tasks:

a. In the Project name field, enter ITSOBankOSGi.

b. In the Target Runtime drop-down list, select WebSphere Application
Server v8 Beta.

Installing the no-charge Rational Development Tools for OSGi
Applications: To install the Rational Development Tools for OSGi
Applications, you are required to download and install Eclipse software
3.6.1 and make sure to use a Java software development kit (SDK) equal
to or greater than Version 5.

After installing the Eclipse software, choose Help Install New Software
and use the provided Rational Development Tools for OSGi Applications
update site for Eclipse to install the tools:

http://public.dhe.ibm.com/ibmdl/export/pub/software/rational/OSGi
AppTools

After the tools are installed, you can create new OSGi-based projects.
Additionally, the tools provide help about OSGi-related topics.
854 Rational Application Developer for WebSphere Software V8 Programming Guide

http://public.dhe.ibm.com/ibmdl/export/pub/software/rational/OSGiAppTools
http://public.dhe.ibm.com/ibmdl/export/pub/software/rational/OSGiAppTools
http://public.dhe.ibm.com/ibmdl/export/pub/software/rational/OSGiAppTools

c. In the Configuration section, perform these steps:

i. Optional: Select Add Web Support to create a web-enabled OSGi
bundle, which adds required support for dynamic web projects, web
pages, servlets, and so forth.

ii. Optional: Select Add persistence support to include JPA support.

iii. For other capabilities, you can select Custom to add customized facets
to the new bundle project.

d. Select Add bundle to application, which is selected by default. It adds
the bundle to an OSGi application. If the application does not exist, it will
create one. For deploying an OSGi bundle, it is necessary to add it to the
application.

e. Click Finish, as shown in Figure 15-5 on page 856.
 Chapter 15. Developing Open Services Gateway initiative (OSGi) applications 855

Figure 15-5 OSGi Bundle Project

15.5.2 Creating an OSGi application project

An application project is a group of bundles tied together to provide a modular
application. The OSGi application is the enterprise deployment unit for OSGi
bundles. When publishing an application, all bundles inside it get published
together to the server. The OSGi application is a collection of bundles that make
up the deployment unit. Applications get deployed to the server. Bundles within
856 Rational Application Developer for WebSphere Software V8 Programming Guide

one application can reference each other, but bundles that belong to another
application can only reference each other via OSGi services.

Follow these steps to create an OSGi application bundle project:

1. Click New Other OSGi Application Project to open the New OSGi
Application Project wizard. Complete these steps:

a. In the Project name field, enter ITSOAApplication.

b. In the Target runtime drop-down list, select WebSphere Application
Server v8 Beta and click Next.

2. On the Contained OSGi Bundles page, you can add bundles to the
application project. Complete these steps:

a. Select the ITSOBankOSGi 1.0.0 project that you created previously and
click Finish. The wizard creates the OSGi application that contains an
application manifest file at META-INF/APPLICATION.MF.

3. Double-click the APPLICATION.MF file to open the OSGi Application
Manifest editor. In the Contained Bundles section, you see the ITSOBankOSGi
1.0.0 bundle that you added in the wizard. This section list the OSGi bundles
and Plug-in Development Environment (PDE) plug-ins that are contained
within the application. You can use the Add and Remove buttons to add or
remove bundles from the application (Figure 15-6 on page 858).
 Chapter 15. Developing Open Services Gateway initiative (OSGi) applications 857

Figure 15-6 OSGi application bundle application manifest file

The Imported Services section lists OSGi Services that are defined outside your
OSGi application, that the application will reference. The Exported Services
section lists any OSGi Service that is defined by a bundle in this application that
you want to make available or expose outside the OSGi application. The
Dynamic Web Projects section allows users to use certain Java EE web projects
as is without converting them to an OSGI bundle, which is useful for users when
858 Rational Application Developer for WebSphere Software V8 Programming Guide

they want to try their projects using OSGi applications before committing to
OSGi.

The APPLICATION.MF tab shows the source view of the manifest.

15.5.3 Creating a composite bundle project

The CBA is a group of OSGi bundles that are combined to provide a consistent
behavior to a set of applications. Use the OSGi Composite Bundle wizard to
create a new composite bundle project:

1. Click File New Other OSGi OSGi Composite Bundle Project to
open the New OSGI Composite Bundle Project wizard. Complete these
steps:

a. In the Project name field, enter ITSOBankCBA.

b. In the Target runtime drop-down list, select WebSphere Application
Server v8.0 Beta, as shown in Figure 15-7, and click Next to advance to
the OSGi Bundles Selection Page.

Figure 15-7 New OSGi Composite Bundle Project
 Chapter 15. Developing Open Services Gateway initiative (OSGi) applications 859

2. On the OSGi Bundles Selection Page, select the bundles that you want to add
to the Composite Bundle, as shown in Figure 15-8. For this example, select
the ITSOBankOSGi 1.0.0.qualifier and com.ibm.ws.jpa 7.0.0. If these
bundles are not visible, select Show platform bundles. Click Finish.

Figure 15-8 Composite Bundle wizard

15.5.4 Working with the Composite Bundle Manifest

After the composite bundle project is created, we can see a Composite Bundle
Manifest created at META-INF/COMPOSITEBUNDLE.MF. Double-click the manifest to
open the OSGi Composite Bundle Mainifest editor, as seen in Figure 15-9 on
page 861.
860 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 15-9 OSGi Composite Bundle Manifest file

From here, you can add or remove contained bundles, and import and export
services from the CBA. On the Packages tab, you can import and export
packages. The COMPOSITEBUNDLE.MF tab provides a source view of the
Manifest with content assist.

15.6 Developing OSGi applications

We have given an overview of the procedures for developing an OSGi application
in this chapter. For this example, we have used WebSphere Application Server
V7 installed with the OSGi and JPA2.0 Feature Pack. We can instead use
WebSphere Application Server V8 Beta, which already has OSGi support and
does not need any feature packs installed.

The next step is to build a complete OSGi application. We use the same sample
ITSO bank application. This application is built using a three-tier architecture with
 Chapter 15. Developing Open Services Gateway initiative (OSGi) applications 861

both the front-end interfaces and back-end business logic in an OSGi application.
This OSGi application will be made up of four bundles:

� A business bundle that contains the business logic and acts as an
intermediary between the presentation logic and database

� A persistence bundle that encapsulates the JPA-based database access
pattern

� An interface bundle for servlets, JavaServer Pages (JSP), and static content,
which delegates the actual business functionality to the business bundle

� An API bundle that contains the interfaces that connect the three other
bundles

The sample code is available with the additional material supplied with this book
at 7835code\osgi. Store the contents of this directory on your C: drive.

15.6.1 API bundle

The first step is to define the API that delineates the boundaries between
presentation (web), business logic, and persistence logic. This API will be placed
in a separate OSGi bundle project for the purpose of modularity. Create the API
bundle project using the following procedure:

1. Click New OSGi Bundle Project to open the New OSGi Bundle Project
wizard, as shown in Figure 15-10 on page 863. Complete these steps:

a. In the Project name field, enter itso.bank.app.

b. In the Target runtime drop-down list, select WebSphere Application
Server v7.

c. Clear Add Bundle to application.

d. Click Finish.
862 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 15-10 New ITSO API bundle project

After you create the project, import the sample classes into the itso.bank.api
project from the src folder in the C:\osgi\itso.bank.api\src\itso directory.
The project now contains three packages:

� itso.bank.api: A package for the business API
� itso.bank.api.persistence: A package for the persistence API
� itso.bank.api.exceptions: A package for the exception class
 Chapter 15. Developing Open Services Gateway initiative (OSGi) applications 863

In order for the packages to be available to the other bundles, you must export
them in the bundle manifest file. Edit the manifest file and export the packages in
the Runtime tab, as shown in Figure 15-11. Set the version of each package to
1.0.0 by selecting Properties.

Figure 15-11 ITSO API bundle manifest file

15.6.2 Persistence bundle

The first step, if you have not done so already, is to configure the ITSOBANK
database. The database will be used as part of the configuration in the
persistence bundle. The next step is to build the persistence layer bundle. The
procedure is similar to the steps that were used to create the API bundle:

1. Click New OSGi Bundle Project to open the New OSGi Bundle Project
wizard, as shown in Figure 15-10 on page 863. Complete these tasks:

a. In the Project name field, enter itso.bank.persistence.

b. In the Target runtime drop-down list, select WebSphere Application
Server v7.

c. Clear the check box Add Bundle to application.

d. Select the Add persistence support check box and accept the default
value of JPA 2.0 from the corresponding drop-down list. Click Next.
864 Rational Application Developer for WebSphere Software V8 Programming Guide

2. On the JPA Facet page of the wizard, select the connection ITSOBank (as
shown in Figure 15-12 on page 866). If no connection exists, create a new
one by clicking Add Connection to define the connection to the ITSOBANK
sample Apache Derby database.

3. Click Finish.

Important: See “Setting up the ITSOBANK database” on page 1880 for
instructions to create the ITSOBANK database. For the JPA entities, we
can either use the DB2 or Derby database. For simplicity, we suggest using
the built-in Derby database in this chapter.

The files for creating ITSOBANK for this project are available at
\7835code\osgi\itsobank_db_derby.
 Chapter 15. Developing Open Services Gateway initiative (OSGi) applications 865

Figure 15-12 ITSO persistence bundle project
866 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 15-13 ITSO persistence bundle JPA Facet

Import the sample classes into the itso.bank.persistence project from the src
folder in the C:\osgi\itso.bank.persistence\src\itso directory. The project
now contains two packages:

� itso.bank.persistence: A package for the persistence service
implementation

� itso.bank.persistence.entity: A package for the persistence entities
 Chapter 15. Developing Open Services Gateway initiative (OSGi) applications 867

Configuring the persistence unit
Rational Application Developer has already created a persistence descriptor
containing the itso.bank.persistence persistence unit. To be usable, this
persistence unit needs to specify how to obtain access to the database. In the
sample, we use Java Naming and Directory Interface (JNDI) lookup:

1. In the itso.bank.persistence project, expand the JPA Content tree item.

2. Double-click the persistence.xml file to edit it using the Persistence XML
Editor.

3. In the Design tab, select the Persistence Unit and provide the following
information in the details section:

a. Set the Java Transaction API (JTA) data source JNDI name to jdbc/bank.

b. Set the non-JTA data source JNDI name to jdbc/banknojta.

These settings use traditional JNDI lookups as the data source access
scheme. Two additional alternatives are described in the information center:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.
websphere.osgifep.multiplatform.doc/topics/ca_jpa.html

4. Finally, right-click the Persistence Unit and select Add Class and add the
three persistence entities: Account, Customer, and Transaction.

Setting up the Blueprint descriptor
The Blueprint XML file describes the components of the application, their
dependencies, and their life cycles. To create the blueprint file for the persistence
bundle project, follow these steps:

1. Right-click the persistence bundle project and choose New Blueprint File.

2. Accept the default values and click Next.

3. On the Add Additional Blueprint Namespaces panel, ensure that the check
box for JPA Blueprint Support is selected.

4. Click Finish to create the blueprint file, which opens the new file in the
Blueprint XML Editor.

Compilation errors: After importing the classes, you will get compilation
errors about imports that are not resolved. In the Markers view, select any
of these errors, and check the quick fixes. The first quick fix adds an import
to the bundle manifest. Select the first quick fix, and the compilation errors
are fixed. You probably need to perform this step as many times as there
are packages that you need to import.
868 Rational Application Developer for WebSphere Software V8 Programming Guide

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.osgifep.multiplatform.doc/topics/ca_jpa.html

5. Edit the blueprint xml. Add a bean definition to the blueprint using the Add
button. Select Bean from the list and click OK.

6. Use Browse to find itso.bank.persistence.JpaPersistenceService, as
shown in Figure 15-14. Click OK.

Figure 15-14 Bean definition

7. Next create a service out of the newly created JpaPersistenceServiceBean.
Right-click the Blueprint root node and choose Add Service, as shown in
Figure 15-15.

Figure 15-15 Adding the Blueprint service definition

8. Enter the following information in the New Blueprint Service dialog window:

a. Browse the Service Interface as
itso.bank.api.persistence.PersistenceService.

b. Enter the Service ID as JpaPersistenceServiceBeanService.

c. Browse the Bean Reference as JpaPersistenceServiceBean.

9. Click OK and save the blueprint file.
 Chapter 15. Developing Open Services Gateway initiative (OSGi) applications 869

15.6.3 Business logic bundle

The business logic bundle will contain our domain-specific classes, which contain
the business logic of the application. We start by creating a business bundle
project. The steps used to create the business logic bundle are similar to the
steps used to create the persistence bundle:

1. Click New OSGi Bundle Project to open the New OSGi Bundle Project
wizard, as shown in Figure 15-16 on page 871. Complete these tasks:

a. In the Project name field, enter itso.bank.biz.

b. In the Target runtime drop-down list, select WebSphere Application
Server v7.

c. Clear the check box Add bundle to application and click Finish.
870 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 15-16 ITSO Business bundle project

Import the sample classes into the itso.bank.biz project from the src folder in
the C:\osgi\itso.bank.biz\src\itso directory. The project now contains two
packages:

� itso.bank.biz: A package for the business logic
� itso.bank.biz.proxy: A package for the proxy implementations
 Chapter 15. Developing Open Services Gateway initiative (OSGi) applications 871

Setting up the Blueprint descriptor
The Blueprint XML file defines the wiring for the application. In this example, the
ITSOBankBean implementation (itso.bank.biz.ITSOBank) contains a field called
PersistenceService with the appropriate getter and setter. By configuring the
property in the Blueprint XML file, we allow the OSGi framework, and in
particular, the Blueprint Container specification, to resolve the
itso.bank.api.persistence.PersistenceService and provide an instance of
that class to the ITSOBankBean.

The ITSOBankBean does not need to create the PersistenceService object, and
it does not know who created the object. It simply uses the one that is provided to
it. This method is the fundamental principle of dependency injection and
inversion of control.

To create the blueprint file for the business bundle project, follow these steps:

1. Right-click the business bundle project and choose New Blueprint File.

2. Accept the default values and click Next.

3. On the Add Additional Blueprint Namespaces panel, ensure that the check
box for Blueprint Transaction Support is selected.

4. Click Finish to create the blueprint file, which opens the new file in the
Blueprint XML Editor.

5. Edit the blueprint xml. Add a bean definition to the blueprint using Add.
Select Bean from the list and click OK.

6. The bean class implementation points to itso.bank.biz.ITSOBank, as shown
in Figure 15-17. Click OK.

Figure 15-17 ITSO business bean definition
872 Rational Application Developer for WebSphere Software V8 Programming Guide

7. The next step is to create an OSGi Service out of the newly created
ITSOBankBean. Right-click the Blueprint root node and choose Add
Service.

8. Enter the following information in the New Blueprint Bean: Blueprint Service
Service window (Figure 15-18):

a. For Service Interface, enter itso.bank.api.Bank.

b. For Service ID, enter ITSOBankBeanService.

c. For Bean Reference, enter ITSOBankBean. Click OK.

Figure 15-18 ITSO business bean service

9. Add a reference to the PersistenceService created in step 7 on page 869.
Right-click the Blueprint root node, choose Add Reference, and provide
the following data:

a. Set the Reference Interface to
itso.bank.api.persistence.PersistenceService.

b. Set the Reference ID to service.

c. Omit the Bean Reference value and click OK.

10.Add a property to the ITSOBankBean definition that references the service
(Reference) that was created in step 9. Right-click the ITSOBankBean
(Bean) and choose Add Property.

11.Select the new (Property) item and provide the following values in the Details
section:

a. Enter persistenceService as the property name.

b. Enter service as the reference value.

12.Save the blueprint file.
 Chapter 15. Developing Open Services Gateway initiative (OSGi) applications 873

15.6.4 Web interface bundle

The web interface bundle will contain our web resources used in the presentation
layer of the application. We start by creating a web interface bundle project. The
steps used to create the web interface bundle are similar to the steps that were
used to create the persistence bundle:

1. Click New OSGi Bundle Project to open the New OSGi Bundle Project
wizard, as shown in Figure 15-19 on page 875. Perform these tasks:

a. In the Project name field, enter itso.bank.web.

b. In the Target runtime drop-down list, select WebSphere Application
Server v7.

c. Clear the check box Add bundle to application.

d. Click Add Web support and accept the default value of Web 2.5 from the
associated drop-down list. Click Finish.
874 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 15-19 ITSO web bundle project

Import the sample classes into the itso.bank.web project from the src folder in
the C:\osgi\itso.bank.web\src\itso directory. The project now contains three
packages:

� itso.bank.web.command: Hosts command pattern implementations

� itso.bank.web.servlet: Hosts Java servlet implementations

� itso.bank.web.util: Contains a single utility class to look up the bank
business service implementation
 Chapter 15. Developing Open Services Gateway initiative (OSGi) applications 875

Also, import the complete webcontent folder into the project structure.

The JSP pages imported from the webcontent folder depend on third-party
materials that need to be downloaded and copied to the webcontent folder. The
required JARs must be copied to WEB-INF/lib path, as shown in Figure 15-20.
The required third-party JARs are listed in the 3rd-party-materials.txt file in
the \7835code\osgi sample code directory.

Figure 15-20 Required web content third-party JARs

Connecting to the business services via JNDI
We need to hook up the servlet classes with the Bank implementation, as
provided by the itso.bank.business bundle. This lookup is done in the ITSOBank
utility class via a standard JNDI lookup but using a special OSGi-aware
namespace.

The sample class that is shown in Example 15-5 on page 877 is included in
itso.bank.web.util.
876 Rational Application Developer for WebSphere Software V8 Programming Guide

Example 15-5 ITSOBank class

public class ITSOBank {
public static Bank getBank() {
Bank bank = null;
try {
Context ctx = new InitialContext();
bank = (Bank) ctx.lookup("osgi:service/itso.bank.api.Bank");
} catch (NamingException e) {
// … appropriate error handling
}
return bank;
}
}

15.6.5 Application OSGi

Finally, to complete the ITSO application, you need to create an OSGi application
project. The following steps describe the procedure:

1. Click New OSGi Application Project to open the New OSGi Application
Project wizard, as shown in Figure 15-21 on page 878. Complete these tasks:

a. In the Project name field, enter itso.bank.app.

b. In the Target runtime drop-down list, select WebSphere Application
Server v7. Click Next.
 Chapter 15. Developing Open Services Gateway initiative (OSGi) applications 877

Figure 15-21 ITSO application project

2. On the Contained OSGi Bundles window, select the following bundles, as
shown in Figure 15-22 on page 879:

– itso.bank.api
– itso.bank.biz
– itso.bank.persistence
– itso.bank.web

3. Click Finish.
878 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 15-22 ITSO Bank application bundle

15.6.6 Deploying the OSGi application

Before you start deploying the OSGi application, you must configure the JTA and
non-JTA data sources in WebSphere Application Server. We have configured the
persistence unit during the creation of the persistence bundle in 15.6.2,
“Persistence bundle” on page 864. Follow these steps to configure the JTA and
non-JTA data sources in WebSphere Application Server:

1. Start the WebSphere Application Server v7 runtime server, open the
administrative console, and create the Java Database Connectivity (JDBC)
data sources:

a. Go to Resources JDBC JDBC providers.

b. Select server scope. Click New.

c. Set the database to derby.

d. Set the Provider type to Derby JDBC Provider 40 (Type 4 JDBC driver).
 Chapter 15. Developing Open Services Gateway initiative (OSGi) applications 879

e. Set the implementation type to Connection pool data source.

f. Enter a text string as a JDBC provider name.

g. Click Next and click Finish. Save changes.

2. Now go to Resources JDBC Data sources and create the JTA and
non-JTA data sources:

a. Select the server scope, click New, and enter DS1 for a data source name.

b. Enter a JNDI name, jdbc/bank, for the JTA data source. We have
configured this JNDI name in the persistence.xml descriptor during the
persistence bundle creation step. Click Next.

c. Click Select an existing JDBC provider and select the Apache Derby
JDBC provider that you created. Click Next.

d. Give the Database name as the location pointing to the path where the
database was created, for example:
E:\Progra~1\IBM\SDP\runtimes\base_v7\profiles\WTE_APPSRV7_FEP1\IT
SOBANK or ${USER_INSTALL_ROOT}/ITSOBANK. Click Next.

e. Leave the security aliases as is, click Next, click Finish, and save the
changes.

3. Follow the preceding steps to configure a non-JTA data source with a
separate JNDI name of jdbc/banknojta. Then perform the following steps:

a. Under Additional properties, click WebSphere Application Server data
source properties.

b. Under General Properties, check Non-transactional data source to
indicate that this particular data source does not support transaction
handling.

4. To export the OSGi application as an Enterprise Business Archive (EBA),
select the application project, and from the context menu, select Export
OSGi application (EBA), which generates an archive that you can deploy to
any OSGi-aware server.

5. Deploying the application in Rational Application Developer is simple,
because OSGi applications are fully supported in the WebSphere Application
Server test environment. In the Servers view, right-click the WebSphere
Application Server V7 server instance that has the OSGi feature installed
and select Add and Remove. In the resulting dialog window, select
itso.bank.app and move it to the list of configured applications, as shown in
Figure 15-23 on page 881.
880 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 15-23 Deploying the OSGi application

Testing the application
To test the application, select the redbank.html file within the project. From the
context menu, select Run As Run on server and enter an account number,
for example, 111-11-1111. At this stage, the application provides the capabilities
to update customers, inspect accounts, view transactions, and create
transactions.
 Chapter 15. Developing Open Services Gateway initiative (OSGi) applications 881

Figure 15-24 OSGi application

Graphical Bundle Explorer
You can view the OSGi bundle that we created and the bundles inside it with all
the dependencies among them using the Bundle Explorer. To do that, select the
OSGi application in the workspace, and from the context menu, select Show
In Bundle Explorer. This selection opens a viewer that shows all the bundles
inside the application, and you can view dependencies between them, and
dependencies on JARs that are in the target platform, as well.

Additional scenarios
We have created a simple application that we developed and deployed in this
chapter. More complex scenarios are available:

� Connecting two OSGi applications
� Connecting JEE to OSGi applications
� Connecting OSGi applications to JEE
� Connecting Java Message Service (JMS) to OSGi applications
882 Rational Application Developer for WebSphere Software V8 Programming Guide

Converting non-OSGi projects to OSGi bundles
Many users start with existing Java or Java EE applications that are running.
They want to explore how these applications will function within the OSGi
framework and run time, and they want to benefit from the modularity that OSGi
offers.

Starting with a Java, Dynamic Web, or JPA Utility project, or even a PDE plug-in
project, you can select the project, and from the context menu, select
Configure Convert to OSGi Bundle Project.

This selection simply adds a Manifest to the project and exports any package
within the project that is not marked as internal. It also adds to the Manifest an
import packages header to list packages imported by Java classes within the
project. The header excludes packages that are defined within the project, or
within JARs inside the project.

Java EE web projects
Java EE web projects can be used inside an OSGi application without being
converted to an OSGi bundle. WebSphere Application Server converts these
Java EE web projects to a web bundle after they are deployed to the server.

You can add a Java EE web project to an OSGi application using the application
Manifest Editor, under the Dynamic Web Projects section.

PDE plug-ins can be added to an OSGi application without being converted to an
OSGi bundle, as well. PDE plug-ins are added to the application under the
application contents with the other bundles.

15.7 Further information

For more information about OSGi and OSGi application development, see
Getting Started with the Feature Pack for OSGi Applications and JPA 2.0,
SG24-7911.
 Chapter 15. Developing Open Services Gateway initiative (OSGi) applications 883

884 Rational Application Developer for WebSphere Software V8 Programming Guide

Chapter 16. Developing Service
Component Architecture
(SCA) applications

In this chapter, we describe the Rational Application Developer and WebSphere
Application Server implementation for Service Component Architecture (SCA).
SCA is a specification that was created by a consortium of companies called the
Open Service Oriented Architecture (OSOA) collaboration. We describe
examples that show how SCA helps to produce new services, use existing
services, connect heterogeneous components, and offer a variety of
communication mechanisms to make reuse and interoperability easier.

This chapter discusses the following topics:

� Introduction to SCA
� SCA project creation or augmentation
� Developing a Java component from a WSDL interface
� Creating a contribution to include the deployable composites
� Deploying the contribution to WebSphere Application Server
� Testing the services provided by the SCA application
� Wiring a component to a service on another component
� Reusing an existing Java EE application to create a component
� Adding intents and policies
� More information

16
© Copyright IBM Corp. 2011. All rights reserved. 885

16.1 Introduction to SCA

Service Component Architecture is a programming model for service-oriented
architectures (SOA). It is based on the Open Service-Oriented Architecture
(http://osoa.org) and the deployment of SCA assets to the WebSphere
Application Server V7.0 Feature Pack for Service Component Architecture (SCA)
and WebSphere Application Server V8.0.

Central to SCA is the concept of service, which in this context is much broader
than in the concept of a web service. A web service in SCA is a binding (a
communication mechanism) that a service might offer to its clients. There are
many other bindings, making the concept of service in SCA much more general.
However, SOAP-based web services can be reused or created in SCA, which is
an instance of SCA being an inclusive programming model.

The other central notion is that of a component. SCA is not bound to a specific
type of implementation (in Java, for example), so components can be
implemented with a variety of technologies, including Java Platform, Enterprise
Edition (Java EE), Spring, OSGi, and SCA Composite (recursive composition).
The fundamental idea informing the SCA programming model is not to replace
existing technologies, but to allow applications written in separate languages and
residing on remote systems to coexist and communicate.

From a technological point of view, SCA makes use of descriptors written in XML,
which can be visualized in easily understandable diagrams.

16.1.1 Concepts

In this section, we illustrate the concepts of SCA using images taken while
following the SCA Hello World Tutorial contained in the product. This tutorial uses
a bottom-up approach to generate an SCA service, starting from the Java
implementation of the service, which has a Java interface annotated with
@Remotable. It might be helpful to follow the SCA Hello World Tutorial while going
through this introductory material.

Component
A component is the fundamental building block of every SCA application,
because it performs a unit of business function. The simplest SCA component in
Rational Application Developer is shown in Figure 16-1 on page 887.
886 Rational Application Developer for WebSphere Software V8 Programming Guide

http://osoa.org

Figure 16-1 Component from SCA Hello World Tutorial

Component implementation
You can implement a component using various technologies, such as a Java
class, an SCA composite, a Spring application, or a Java EE application, as
shown in Figure 16-2.

Figure 16-2 Property page showing possible component implementations

Service

Binding

Properties

Implementation
 Chapter 16. Developing Service Component Architecture (SCA) applications 887

Service: Interface and binding
A component provides zero, one, or many services. A service is characterized by
an interface and one or more bindings. The interface can be implemented either
in Java or as a Web Services Description Language (WSDL) document
(Figure 16-3).

Figure 16-3 Service interface can be Java or WSDL

The bindings of a service specify the many possible communication mechanisms
or protocols that a client can use to interact with the service.

Many possible types of bindings are available for the service: Webservice, HTTP,
Enterprise JavaBeans (EJB), Java Message Service (JMS), SCA, and Atom, as
shown in Figure 16-4 and Figure 16-5 on page 889.

Figure 16-4 Adding bindings to a service

Service

Binding
888 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 16-5 Available binding types

Component references
A reference is a declaration of a service on which the component implementation
depends and might need to invoke to do its job. A reference is characterized by
an interface and a set of bindings. The interface of a reference declares a set of
business operations or methods on which the component implementation
depends (Figure 16-6).

Figure 16-6 Component reference with a WSDL interface

Binding

Reference
 Chapter 16. Developing Service Component Architecture (SCA) applications 889

Component properties
Component properties are data values that can be injected into components.
Their reference kind can be type, in which case you can browse for a list of XML
schema types, or element, in which case you can browse for schema global
elements (Figure 16-7)).

Figure 16-7 Adding properties to components

Figure 16-8 on page 891 shows a schematic representation of a component,
summarizing all of the concepts in Figure 16-7.
890 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 16-8 Component, services, interfaces, bindings, references, properties, and
intents

Intent, policy and policy set
An intent is a declaration of an abstract policy or quality of service required of a
component, service, or reference. Intents relieve the developers of the burden of
having to understand complex, concrete policies and delegate this task to the
deployer.

A policy set is a collection of mutually compatible concrete policies that can be
applied to a specific binding type or implementation type. Although policy sets
can be attached to components, services, and references at development time,
SCA recommends a late binding approach in which policy sets and bindings are
selected at deployment time.

A policy is a concrete assertion of a capability, constraint, or other non-functional
requirement to be honored by a component, service, or reference.

Composite
A composite (Figure 16-10 on page 893) is used to assemble components. It is
the smallest unit of deployment in SCA. It contains components, services,

Components

Component

Implementation
Java

Java EE
Spring

Composite
OSGi

Widget

Bindings
SCA

Web Service
EJB
JMS

HTTP(JSON-RPC)
ATOM

Bindings
SCA

Web Service
EJB
JMS

HTTP(JSON-RPC)
ATOM

Interface
Java

WSDL

Interface
Java

WSDL

Property

Intent Policy PolicySet

ReferenceService
 Chapter 16. Developing Service Component Architecture (SCA) applications 891

references, and interconnecting wires. There are two kinds of composites:
deployable and implementation.

Deployable composites
A deployable composite, also known as a runnable composite or top-level
composite, declares itself deployable in its containing contribution. You can see it
in the WebSphere Integrated Solutions Console (administrative console), as
shown in Figure 16-9.

Figure 16-9 Deployable composite as seen in the WebSphere administrative console

Implementation composites
An implementation composite, or inner composite, is used as the implementation
of a component. When used as an implementation, the components, services,
references, and wires inside the composite are invisible and not directly
accessible outside of the composite. Using a composite as the implementation of
a component provides a powerful form of reuse. In order to use a composite as
an implementation, the desired services and references must be promoted from
the components within the composite, and they must satisfy the signature of the
services and references declared on the component being implemented
(Figure 16-10 on page 893).
892 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 16-10 Composite with a component implemented by a composite

Remember the following definitions:

Wire A dependency from one component reference to a
component service

Promoting The act of making a component service or reference
available on the containing composite when the
composite is used to implement a component in another
composite

Contribution
An SCA contribution is a package of artifacts collected for deployment to an SCA
domain (Figure 16-11 on page 894).

Composites

Intent Policy PolicySet

Promote Promote

Wire

Implementation
Java

Java EE
Spring
OSGi

Widget

Implementation
Composite

Component Component
 Chapter 16. Developing Service Component Architecture (SCA) applications 893

Figure 16-11 Contribution manifest editor

A contribution package can contain of multiple resources; however, a typical
contribution package consists of the following resources:

� SCA composites
� Component implementation artifacts, such as Java classes
� Service and reference interface artifacts, such as WSDL documents
� Supporting artifacts, such as XML schema documents
� A single, distinguished contribution metadata document,

/META-INF/sca-contribution.xml

A contribution metadata document is a manifest file within a contribution package
that identifies the deployable composites within the package that have
components that are destined to become domain-level components. Deployable
composites are distinct from implementation composites that can also reside
within the package. A contribution metadata document can export namespace
and Java packages for use by other contributions, or import namespace and Java
packages that have been exported by other contributions.

Domain
An SCA domain is a well-bounded runtime entity that contains a set of service
components wired together to provide a realm of business function that is
meaningful to a business.
894 Rational Application Developer for WebSphere Software V8 Programming Guide

Every domain includes a single, virtual domain-level composite. When an actual
composite is deployed to a domain, the components within the composite are
added to the virtual domain-level composite, and become domain-level
components. It is this mechanism that makes it possible to incrementally build up
the functionality of a domain by contributing loosely related composites from
multiple sources.

In SCA, domain resources, such as components, artifacts, and metadata, are not
directly accessible outside of the domain. However, a domain can communicate
externally through its services, references, and configured protocol bindings,
such as web services.

A domain and the components that it contains can be distributed over many
processes and computing systems. Do not misinterpret as domain as being the
same as a process or an application server. Using the WebSphere Application
Server on a single server, the domain is essentially the scope of the server. On a
multiple server configuration, the domain is essentially the scope of the cell.
Using the administrative console, you can visualize the domain, as shown in
Figure 16-12.

Figure 16-12 Domain as seen in the administrative console

16.1.2 Runtime support

SCA is supported on the following run times, which can all be targeted by
projects developed with Rational Application Developer:

� WebSphere Application Server V7.0 Feature Pack for SCA 1.0
� WebSphere Application Server V7.0 Feature Pack for SCA 1.0.1
� WebSphere Application Server V8.0 Beta
 Chapter 16. Developing Service Component Architecture (SCA) applications 895

16.2 SCA project creation or augmentation

You can create a new SCA project by following these steps:

1. Select File New Other. Complete these tasks:

a. On the New: Select a wizard window, for Wizards, enter sca.

b. Select SCA Project (Figure 16-13) and click Next.

Figure 16-13 New wizard to create new SCA projects

2. In the Create a New SCA Project window, which is shown in Figure 16-14 on
page 897 Complete these tasks:

a. Enter a project Name: RAD8TopDownBankSCA.

b. Select the Target Runtime: WebSphere Application Server v8.0 Beta.

c. Accept the Facet Configuration: WebSphere v8.0 Beta SCA.

d. Accept all available implementation types: Composite, Java, JEE, and
Spring.

e. Observe that there are other possible implementation types, but they are
not available in this context: EJB, OSGi Application, Web, and Widget.

f. Click Finish.
896 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 16-14 Configuration of a new SCA project

You can also augment an existing project with SCA features by using one of the
following two ways:

� Use the Add SCA Support menu:

a. Right-click the existing project.
b. Select Configure Add SCA Support.

� Add the SCA project facet (valid only for faceted projects, that is, not available
for Java projects, for example):

a. Right-click the existing project.
 Chapter 16. Developing Service Component Architecture (SCA) applications 897

b. Select Properties.

c. Select Facets.

d. Select Service Component Architecture (SCA) and select WebSphere
8.0 Beta SCA.

16.3 Developing a Java component from a WSDL
interface

In this section, we show how you can generate a component implemented in
Java and expose a service based on an existing WSDL interface. This top-down
scenario is the recommended approach to generate Java SCA components.

By contrast, the bottom-up scenario corresponds to starting from existing Java
Implementations. This approach has less support from SCA tools than the
top-down approach. For example, SCA tools do not drive the execution of wsgen
to generate a WSDL file from a Java implementation class. If the user adopts the
bottom-up approach, the user must run wsgen and then use the composite editor
to create a component with the implementation class and generated WSDL
interface.

In the top-down scenario, the product uses the Java API for XML Web Services
(JAX-WS) and Java Architecture for XML Binding (JAXB) specifications to map
the WSDL interface to Java types. This process is partly equivalent to using the
WebSphere Application Server command wsimport to generate the Java
representations of your business service interfaces and your business data,
along with XML Schema Definition Language (XSD) schema definitions of your
business data. The result is a Plain Old Java Object (POJO) implementation of
the generated interface using the generated JAXB data types. You can recognize
these generated files, because they have an initial comment of the following
form:

// Generated By:JAX-WS RI IBM 2.1.6 in JDK 6 (JAXB RI IBM JAXB 2.1.10
in JDK 6)

The generated annotated Java classes that correspond to your business data
contain all the necessary information that the JAXB runtime environment
requires to build and parse the XML for marshaling and unmarshaling. You do not
need to write code to convert the data between the XML wire format and the Java
application. When you develop an SCA service by starting with an existing WSDL
file, the interface is considered a remotable interface. The remotable interface
uses pass-by-value semantics, which implies that your data is copied.
898 Rational Application Developer for WebSphere Software V8 Programming Guide

Additionally, Rational Application Developer generates a skeleton implementation
class annotated with org.osoa.sca.annotations.Service for you. This
annotation defines the Java implementation as an SCA service implementation.

Avoid in-out and multiple out parameters: The product does not support
using a WSDL file when the Java mapping requires holder classes. The
product uses the JAX-WS specification to define the mapping between WSDL
files and Java, including the mapping between a WSDL portType object and a
Java interface. When you have WSDL portType objects with operations that
use in-out parameters or operations that use multiple output parameters, the
JAX-WS specification uses instances of the javax.xml.ws.Holder class in the
mapping of the WSDL portType object to a Java interface. When using SCA,
do not use a WSDL file when the Java mapping requires holder classes.
Instead, use a WSDL file that does not map to holder classes.

Remotable interfaces: The product uses XML marshaling as defined by
JAXB to marshal and unmarshal data across a remotable interface. If you start
with a remotable Java interface for your implementation rather than starting
with a WSDL portType interface (bottom-up approach), be careful when
selecting the input and output Java data types and ensure that you understand
which data is preserved across JAXB marshaling and unmarshalling.

If you are using a remotable interface, add the
@org.osoa.sca.annotations.Remotable annotation to the Java interface.

The data marshalling and unmarshalling that is used to instantiate the copying
of data over remotable interfaces is defined by the JAXB specification rather
than by Java serialization or the java.io.Serializable or
java.io.Externalizable interfaces. Because of this behavior, certain existing
Java types are not suitable for use on remotable interfaces, because these
types are not serialized using Java serialization. For data types that are not
annotated, the class is introspected and its Java properties determine the data
that is preserved in the copy. For data types that take advantage of JAXB
annotations, you can customize the mapping of Java classes to XSD types
and of Java instances to XML documents. Custom Java serialization routines,
such as the readObject() or writeObject(), are not applicable in this
scenario. The SCA runtime environment takes an XML-centric view of the
business data and uses the JAXB standards to define the mappings between
the Java programming model and the XML data format on the wire.

However, when authoring an implementation on a local interface, you can use
any Java type, because local interfaces use pass-by-reference semantics,
which implies that no data is copied.
 Chapter 16. Developing Service Component Architecture (SCA) applications 899

Copy the wsdl file in 7835code\webservices\topdown\BankWS.wsdl into
RAD8TopDownBankSCA\WSDL.

16.3.1 Creating a composite

To create a new composite (Figure 16-15 on page 901), follow these steps:

1. In the Enterprise Explorer, inside the project, right-click SCA Content
Composites.

2. Select New SCA Composite.

3. In the New Composite Wizard window, select Conventional Composite (a
distinguished application composite can be only added in an SCA enhanced
EAR).

4. For Composite name, enter ITSOBankComposite.

5. For Target namespace, enter http://com.ibm.itso.bank.

6. Accept the automatically generated composite path and select Finish.
900 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 16-15 Create a new composite window

16.3.2 Creating a component

Create a new component (Figure 16-16 on page 902) with the following steps:

1. In the Enterprise Explorer, inside the project, right-click SCA Content
Composites.

2. Select New SCA Component.

3. In the New Component Wizard window, for Composite, select
ITSOBankComposite.

4. For Component Name, enter ITSOBankComponent.

5. For Interface Type, select WSDL.

6. Select Reuse an existing service interface.

7. For Interface Name, browse to the BankWS portType.

8. For Implementation Type, select Java.
 Chapter 16. Developing Service Component Architecture (SCA) applications 901

9. Select Create a new implementation and select Next.

Figure 16-16 Create a new component window

10.In the Java Implementation Configuration window (Figure 16-17 on
page 903), accept all defaults and click Finish.

The following classes are generated in the org.example.bankws package:

Account Annotated with @javax.xml.bind.annotation.XmlType

BankWS An interface, which is considered remotable, annotated
with @javax.jws.WebService

BankWSImpl Skeleton implementation class, annotated with
@org.osoa.sca.annotations.Service
902 Rational Application Developer for WebSphere Software V8 Programming Guide

Customer Annotated with @javax.xml.bind.annotation.XmlType

GetAccount Annotated with @javax.xml.bind.annotation.XmlType
and @javax.xml.bind.annotation.XmlRootElement

GetAccountResponse
Annotated with @javax.xml.bind.annotation.XmlType
and @javax.xml.bind.annotation.XmlRootElement

GetCustomer Annotated with @javax.xml.bind.annotation.XmlType
and @javax.xml.bind.annotation.XmlRootElement

GetCustomerResponse
Annotated with @javax.xml.bind.annotation.XmlType
and @javax.xml.bind.annotation.XmlRootElement

ObjectFactory Annotated with
@javax.xml.bind.annotation.XmlRegistry

package-info Annotated with @javax.xml.bind.annotation.XmlSchema

Figure 16-17 Java Implementation Configuration window

16.3.3 Implementing the Java component

We can now supply an implementation for the component, by implementing the
methods of the generated class org.example.bankws.BankWSImpl.java, as
shown in Example 16-1 on page 904.
 Chapter 16. Developing Service Component Architecture (SCA) applications 903

Example 16-1 Implementing the methods of the skeleton class BankWSImpl.java

package org.example.bankws;

import java.math.BigDecimal;

import org.osoa.sca.annotations.Service;

@Service (BankWS.class)
public class BankWSImpl implements BankWS {

 public Account getAccount(String accountId) {
 Account account = new Account();
 account.setId(accountId);
 account.setBalance(new BigDecimal(1000.00));
 return account;
 }

 public Customer getCustomer(String customerId) {
 Customer customer = new Customer();
 customer.setFirstName("Lara");
 customer.setLastName("Ziosi");
 customer.setTitle("Mrs");
 customer.setSsn("888-88-8888");
 return customer;
 }
}

Observe that the generated implementation class bears the
org.osoa.sca.annotations.Service annotation, which takes as a parameter the
interface class. Now inspect the interface org.example.bankws.BankWS. This
interface is a JAX-WS annotated interface, annotated with
javax.jws.WebService. All other generated files (Customer, Account, and so on)
are mapped to Java from the WSDL using JAXB 2.0.

16.4 Creating a contribution to include the deployable
composites

Next we create a new contribution to hold the composite:

1. In the Enterprise Explorer, inside the project, right-click SCA Contents
Contributions.

2. Select New SCA Contribution (Figure 16-18 on page 905).
904 Rational Application Developer for WebSphere Software V8 Programming Guide

3. In the New Contribution Wizard window, select the previously created
Composite: ITSOBankComposite and click Finish.

Figure 16-18 Creating a new contribution

The final configuration step consists of adding a binding to the component:

1. In the Enterprise Explorer, double-click ITSOBankComponent, which opens
the ITSOBankComposite.composite_diagram in the editor pane. Complete
these tasks:

a. Select the Component Service icon, which is shown in Figure 16-19 on
page 906.

b. In the Properties view, make sure that you see Component Service -
BankWS.

c. Select the Bindings drawer of the Properties view.

d. Select the Bindings node in the tree and select Add.

e. Select Webservice and click OK.
 Chapter 16. Developing Service Component Architecture (SCA) applications 905

Figure 16-19 Add a Webservice binding to the service

We have completed the creation of the Java component from a WSDL file.

16.5 Deploying the contribution to WebSphere
Application Server

We can now proceed to test the component on WebSphere Application Server
V8 Beta. Even though contributions are separate artifacts from enterprise
archives, Rational Application Developer lets you publish them in exactly the
same way as EAR files.

On the server, contributions are managed as business-level applications. A
business-level application is an administration model that provides the entire
definition of an application as it makes sense to the business. It is a WebSphere
configuration artifact, similar to a server or cluster, that is stored in the product
configuration repository. A business-level application can contain artifacts, such
as Java EE applications or modules, shared libraries, data files, SCA
contributions, and other business-level applications. You might use a
business-level application to group related artifacts or to add capability to an
existing application. Follow these steps:

1. In the Servers view, right-click WebSphere Application Server v8.0 Beta
and select Add and Remove (Figure 16-20 on page 907).

2. Add RAD8TopDownBankSCA and select Finish.

Service
906 Rational Application Developer for WebSphere Software V8 Programming Guide

3. Wait for the server to republish (it moves to the state: Started, Synchronized).
Depending on the publishing settings, you might need to right-click the server
and select Publish.

Figure 16-20 Deploying a contribution to WebSphere Application Server

4. Upon successful publication, you see entries similar to the following entries in
the Console view:

CWSAM2001I: The ITSOBankComposite composite started successfully.
WSVR0191I: Composition unit WebSphere:cuname=ITSOBankComposite in
BLA WebSphere:blaname=RAD8TopDownBankSCA started.
CWWMH0196I: Business-level application
"WebSphere:blaname=RAD8TopDownBankSCA" was started successfully.

16.6 Testing the services provided by the SCA
application

The WSDL file that we used did not contain any binding information for this
specific test server. Before we can test the service, we must obtain the correct
URL for launching a client. Follow these steps:

1. To obtain the deployed WSDL file for use in the Web Services Explorer or the
Generic Service Client, right-click the server and select Administration
Run Administrative Console.
 Chapter 16. Developing Service Component Architecture (SCA) applications 907

2. In the administrative console, select Applications Application Types
Business-level applications.

3. Select RAD8TopDownBankSCA from the list of available resources.

4. Select ITSOBankComposite from the list of deployed assets.

5. Select Export WSDL and XSD documents (Figure 16-21) and save the
.zip file to a temporary location that is external to the workspace.

Figure 16-21 Export WSDL and XSD documents

6. After you extract the files (always outside of the workspace), you see
ITSOBankComponent_BankWS_wsdlgen.wsdl and WSDL\BankWS.wsdl.

7. ITSOBankComponent_BankWS_wsdlgen.wsdl imports the original BankWS.wsdl
and contains the actual binding (Example 16-2).

Example 16-2 Generated WSDL file with binding

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="ITSOBankComponent.BankWS"
targetNamespace="http://www.example.org/ITSOBankComponent/BankWS"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://www.example.org/ITSOBankComponent/BankWS"
xmlns:ns0="http://www.example.org/BankWS/"
xmlns:SOAP11="http://schemas.xmlsoap.org/wsdl/soap/">
 <wsdl:import namespace="http://www.example.org/BankWS/"
location="WSDL/BankWS.wsdl">
 </wsdl:import>
 <wsdl:binding name="BankWSBinding" type="ns0:BankWS">
.....
908 Rational Application Developer for WebSphere Software V8 Programming Guide

</wsdl:binding>
 <wsdl:service name="BankWSService">
 <wsdl:port name="BankWSPort" binding="tns:BankWSBinding">
 <SOAP11:address
location="http://localhost:9080/ITSOBankComponent/BankWS"/>
 </wsdl:port>
</wsdl:service>
</wsdl:definitions>

In general, you use this format of the URI to access the wsdl:

http://<host>:<port>/ComponentName/ServiceName?wsdl

You can now import the WSDL into the workspace for testing by using the
Generic Service Client:

1. Launch the Generic Service Client by selecting this icon in the toolbar of
the Java EE perspective.

2. Select the icon to Add WSDL file (Figure 16-22).

Figure 16-22 Importing a WSDL file with the Generic Service Client

3. Select Import from File.

4. In the WSDL field, browse for
ITSOBankComponent_BankWS_wsdlgen.wsdl and click OK. Both wsdl
files get copied into the root of the project called GSC Store (and the relative
path of the wsdl:import statement gets adjusted accordingly).

5. The Request Library window now contains the entries that correspond to the
binding, as shown in Figure 16-23 on page 910.
 Chapter 16. Developing Service Component Architecture (SCA) applications 909

Figure 16-23 Request Library showing imported WSDL

6. You can now select getAccount BankWSPort or getCustomer
BankWSPort.

7. In the right panel of the Generic Service Client, enter data and then select
Invoke.

8. The results are displayed, as shown in Figure 16-24.

Figure 16-24 Invoking the service from the Generic Service Client

You can also test the generated SCA service with any other web service testing
facility that the product provides. For instance, you can generate a web service
client by right-clicking ITSOBankComponent_BankWS_wsdlgen.wsdl and
selecting WebServices Generate Client. Select to test the Client and
910 Rational Application Developer for WebSphere Software V8 Programming Guide

generate it into new projects: RAD8TopDownBankClient and
RAD8TopDownBankClientEAR. At the end of the wizard, select JAX-WS JSPs for
the test facility. The result of running the JavaServer Pages (JSP) can be seen in
Figure 16-25. The Servers tools view shows separate icons for deployed EAR
files and SCA contributions.

Figure 16-25 Testing a generated JAX-WS JSP client to access an SCA component

16.7 Wiring a component to a service on another
component

We show a more complex example, which demonstrates how to perform the
following activities:

� Creating a reference to an external Atom feed provider
� Exposing a service with an Atom binding
 Chapter 16. Developing Service Component Architecture (SCA) applications 911

� Adding a contribution and testing the initial implementation
� Adding a second component to the composite
� Wiring the reference on one component to the service on the other

component
� Using a property defined in a component and a composite

Atom is a protocol for publishing feeds. The SCA implementation in WebSphere
Application Server and Rational Application Developer offers the Atom binding,
which is based on the implementation that is provided by the Apache Tuscany
project.

16.7.1 Creating a reference to an external Atom feed provider

We build this example around the following Atom feed for Rational Application
Developer support documents:

http://www-947.ibm.com/systems/support/myfeed/xmlfeeder.wss?feeder.requ
id=feeder.create_public_feed&feeder.feedtype=Atom&feeder.maxfeed=25&OC=
SSRTLW&feeder.subdefkey=swgrat

We suggest that you try first to open this feed in your browser. If this feed is
unavailable, reconfigure this sample to use another Atom feed available to you. A
number of Atom feeds are offered at this website:

http://www.ibm.com/developerworks/feeds/index.html

To configure a reference to this external Atom feed provider, follow these steps:

1. Create a new SCA Project (Figure 16-26 on page 913):

a. Select File New Other.

2. In the New window, expand Service Component Architecture, select SCA
Project and click Next. Complete these tasks:

a. Enter a Project name of RAD8AtomFeeds.

b. Set the Target Runtime to WebSphere Application Server v8.0 Beta.

c. For implementation types, leave only Composite and Java selected.

d. Select Finish.
912 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www-947.ibm.com/systems/support/myfeed/xmlfeeder.wss?feeder.requid=feeder.create_public_feed&feeder.feedtype=Atom&feeder.maxfeed=25&OC=SSRTLW&feeder.subdefkey=swgrat
http://www.ibm.com/developerworks/feeds/index.html
http://www.ibm.com/developerworks/feeds/index.html

Figure 16-26 Create a new SCA Project window

3. In the RAD8AtomFeeds project, create a new Java package that is called
com.ibm.itso.support.feeds.

4. Create the Java Interface com.ibm.itso.support.feeds.Fetcher, as shown in
Example 16-3 on page 914. This interface must extend
org.apache.tuscany.sca.data.collection.Collection<String,Item>, where
the String parameter is used as the key of the item in the collection, and
org.apache.tuscany.sca.data.collection.Item represents an individual
 Chapter 16. Developing Service Component Architecture (SCA) applications 913

entry in the feed. This interface will be used to type both the reference with
the Atom binding and the service with the Atom binding.

Example 16-3 Interface com.ibm.itso.support.feeds.Fetcher

package com.ibm.itso.support.feeds;

import org.apache.tuscany.sca.data.collection.Collection;
import org.apache.tuscany.sca.data.collection.Item;

public interface Fetcher extends Collection<String, Item> {
}

5. Create a new conventional composite:

a. In the Enterprise Explorer view, right-click RAD8AtomFeeds SCA
Content Composites and select New SCA Composite
(Figure 16-27).

Figure 16-27 Create a new SCA Composite

6. In the New Composite Wizard window, complete these tasks:

a. Enter a Composite name of SupportFeeds.

b. Select Conventional Composite.

c. Enter a Target namespace of http://itso.rad.feeds.

d. Select Finish (Figure 16-28 on page 915).
914 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 16-28 Creating a new conventional composite

7. Create a new component:

a. In the SupportFeeds.composite_diagram diagram, drag and drop a
Component from the palette onto the canvas (Figure 16-29 on page 916).

b. Name the component AtomFeedFetcher.
 Chapter 16. Developing Service Component Architecture (SCA) applications 915

Figure 16-29 Creating a new component from the palette

8. Create a reference:

a. From the Palette, drag and drop a Reference onto the component.

b. Right-click the reference and select Add Binding Atom (Figure 16-30
on page 917).
916 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 16-30 Adding a binding

c. Right-click the reference and select Show Properties View. The
Properties view appears in the Views section of the workbench.

9. In the Core tab, for Reference Name, enter atomFeeds. Remember this name,
because you must reuse it in the implementation. You will inject this reference
using the @Reference annotation.

Figure 16-31 Adding the Name to the reference

10.In the Properties view that is related to the reference, click the Interface tab
(Figure 16-32 on page 918). Complete these steps:

a. For Interface type, select Java.
 Chapter 16. Developing Service Component Architecture (SCA) applications 917

b. Browse for the interface named com.ibm.itso.support.feeds.Fetcher.

Figure 16-32 Adding the interface to the reference

11.In the Properties view, select the Binding tab (Figure 16-33), and in the URI
field for the Atom Binding, enter this URI:

http://www-947.ibm.com/systems/support/myfeed/xmlfeeder.wss?feeder.r
equid=feeder.create_public_feed&feeder.feedtype=Atom&feeder.maxfeed=
25&OC=SSRTLW&feeder.subdefkey=swgrat

Figure 16-33 Enter the URI for the binding

12.Create the implementation class com.ibm.itso.support.feeds.FetcherImpl
with the code in Example 16-4. The type of the field must be the interface
(Fetcher), and the name of the field must be equal to the name of the
reference (atomFeeds).

Example 16-4 Initial implementation of the component

package com.ibm.itso.support.feeds;

import org.osoa.sca.annotations.Reference;

public class FetcherImpl {
public @Reference Fetcher atomFeeds;

}

918 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www-947.ibm.com/systems/support/myfeed/xmlfeeder.wss?feeder.requid=feeder.create_public_feed&feeder.feedtype=Atom&feeder.maxfeed=25&OC=SSRTLW&feeder.subdefkey=swgrat

13.Right-click the AtomFeedFetcher component and select Set
Implementation Java. Complete these steps:

a. Browse for the implementation class named
com.ibm.itso.support.feeds.FetcherImpl.

b. The J icon appears on the component.

c. Control the settings by right-clicking the component. Select Show
Properties View and look at the Implementation tab (Figure 16-34).

Figure 16-34 Adding a Java implementation to the component

Example 16-5 shows the contents of the SupportFeeds.composite file at this
point.

Example 16-5 SupportFeeds.composite with Reference and Implementation

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
xmlns:tuscany="http://tuscany.apache.org/xmlns/sca/1.0"
autowire="false" name="SupportFeeds"
targetNamespace="http://itso.rad.feeds">
 <component name="AtomFeedFetcher">
 Chapter 16. Developing Service Component Architecture (SCA) applications 919

 <implementation.java
class="com.ibm.itso.support.feeds.FetcherImpl"/>
 <reference name="atomFeeds">
 <interface.java interface="com.ibm.itso.support.feeds.Fetcher"/>
 <tuscany:binding.atom
uri="http://www-947.ibm.com/systems/support/myfeed/xmlfeeder.wss?feeder
.requid=feeder.create_public_feed&feeder.feedtype=Atom&feeder.m
axfeed=25&OC=SSRTLW&feeder.subdefkey=swgrat"/>
 </reference>
 </component>
</composite>

16.7.2 Exposing a service with an Atom binding

We add a service to the component that, in its first implementation, simply offers
in output the same information that we receive from the Atom binding accessed
via the reference. Because we want to expose this service via an Atom binding,
the service must also be typed by an interface that extends
org.apache.tuscany.sca.data.collection.Collection<String,Item>, so that it
can reuse the same interface that we used for the
com.ibm.itso.support.feeds.Fetcher reference.

Therefore, the implementation class FetcherImpl must implement Fetcher, and it
must be annotated with @Service(Fetcher.class). Of the various methods of the
interface Fetcher, we are only interested in providing a non-default
implementation for the method getAll, which returns all of the items that are
supplied by the reference. We modify the implementation (Example 16-6).

Example 16-6 Adding @Service to the implementation class

package com.ibm.itso.support.feeds;

import org.apache.tuscany.sca.data.collection.Entry;
import org.apache.tuscany.sca.data.collection.Item;
import org.apache.tuscany.sca.data.collection.NotFoundException;
import org.osoa.sca.annotations.Reference;
import org.osoa.sca.annotations.Service;

@Service(Fetcher.class)
public class FetcherImpl implements Fetcher{

public @Reference Fetcher atomFeeds;

@Override
public Entry<String, Item>[] getAll() {
920 Rational Application Developer for WebSphere Software V8 Programming Guide

return atomFeeds.getAll();
}

@Override
public void delete(String arg0) throws NotFoundException {
}

@Override
public Item get(String arg0) throws NotFoundException {

return null;
}

@Override
public String post(String arg0, Item arg1) {

return null;
}

@Override
public void put(String arg0, Item arg1) throws NotFoundException {
}

@Override
public Entry<String, Item>[] query(String arg0) {

return null;
}

}

Rational Application Developer offers a quick way to populate the component
from the data that is contained in the implementation class. Follow the steps:

1. Right-click the component AtomFeedFetcher on the diagram and select
Refresh from Implementation (Figure 16-35 on page 922).
 Chapter 16. Developing Service Component Architecture (SCA) applications 921

Figure 16-35 Refresh from implementation

2. Rational Application Developer detects that we have added an @Service
annotation and proposes to add it to the component. It also detects that the
reference atomFeeds already exists in the component, and you might choose
to update it by selecting the check box in front of it. We do not need to update
it. Click OK.

3. The Service icon (arrow) gets added to the component on the diagram.

4. Right-click the Service icon (green arrow) and select Show Properties View.
You see that Service Name in the Core tab is Fetcher. The Service Name
must match the name of the interface, which is the type of the service
(Figure 16-36).

Figure 16-36 The service and its properties

5. Switch to the Interface tab and verify that the Interface is of type Java and
that it has the value com.ibm.itso.support.feeds.Fetcher.

6. Right-click the Service icon (green arrow) representing the service on the
diagram and select Add Binding Atom.
922 Rational Application Developer for WebSphere Software V8 Programming Guide

7. Right-click the Service icon (green arrow) representing the service on the
diagram and select Show Properties View.

8. Select the Binding tab. For the URI, enter /supportFeeds.

Example 16-7 shows the contents of the SupportFeeds.composite file at this
point.

Example 16-7 Adding the service to the component

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
xmlns:ns1="http://tuscany.apache.org/xmlns/sca/1.0"
xmlns:sp_0="http://tuscany.apache.org/xmlns/sca/1.0" autowire="false"
name="SupportFeeds" targetNamespace="http://itso.rad.feeds">
 <component name="AtomFeedFetcher">
 <implementation.java
class="com.ibm.itso.support.feeds.FetcherImpl"/>
 <service name="Fetcher">
 <interface.java interface="com.ibm.itso.support.feeds.Fetcher"/>
 <ns1:binding.atom uri="/supportFeeds"/>
 </service>
 <reference name="atomFeeds">
 <interface.java interface="com.ibm.itso.support.feeds.Fetcher"/>
 <ns1:binding.atom
uri="http://www-947.ibm.com/systems/support/myfeed/xmlfeeder.wss?feeder
.requid=feeder.create_public_feed&feeder.feedtype=Atom&feeder.m
axfeed=25&OC=SSRTLW&feeder.subdefkey=swgrat"/>
 </reference>
 </component>
</composite>

You might see the following validation error:

“The atom binding cannot be used in this service because it is
incompatible with the specified service interface.”

You can relegate this error to a warning by performing these steps:

1. Select Window Preferences Service Component Architecture
Validation Rules.

2. Click the WebSphere tab and expand Feature Pack for SCA 1.0.1 Atom
Binding.

3. Set the Incompatible use of atom bindings to Warning (Figure 16-37 on
page 924) and click OK.
 Chapter 16. Developing Service Component Architecture (SCA) applications 923

Figure 16-37 Setting the incompatible use of atom bindings to Warning

16.7.3 Adding a contribution and testing the initial implementation

In order to deploy to the server to test this initial implementation, we need a new
contribution. Follow these steps:

1. In the Enterprise Explorer, right-click Contributions and select New SCA
Contribution.

2. In the New Contribution Wizard: Create a new contribution window, for
Deployable composites, select SupportFeeds (Figure 16-38 on page 925)
and click Finish.
924 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 16-38 Creating a new contribution to test the new service

3. Deploy RAD8AtomFeeds to WebSphere Application Server V8.0 Beta.

4. You can now test the offered service from a web browser by entering the URL:

http://hostname:port/supportFeeds

Typically, the hostname is localhost and the port has the value 9080, as seen
in Figure 16-39 on page 926.
 Chapter 16. Developing Service Component Architecture (SCA) applications 925

Figure 16-39 Testing the service with Atom binding in the browser

16.7.4 Adding a second component to the composite

Now we can add a second component to the composite. This second component
provides a filter function to retrieve only the feeds that contain a keyword in the
Title or in the Contents. Follow these steps:

1. The service offered by this new component is typed by the interface
com.ibm.itso.support.feeds.Filter, as shown in Example 16-8.

Example 16-8 Interface Filter

package com.ibm.itso.support.feeds;

import org.apache.tuscany.sca.data.collection.Entry;
import org.apache.tuscany.sca.data.collection.Item;

public interface Filter {

public Entry<String,Item>[]
filterByPropertyValue(Entry<String,Item>[]entries);
}

926 Rational Application Developer for WebSphere Software V8 Programming Guide

2. Example 16-9 shows the implementation of the service, which is the
com.ibm.itso.support.feeds.FilterImpl class.

Example 16-9 Class FilterImpl

package com.ibm.itso.support.feeds;

import java.util.ArrayList;
import java.util.List;

import org.apache.tuscany.sca.data.collection.Entry;
import org.apache.tuscany.sca.data.collection.Item;
import org.osoa.sca.annotations.Property;
import org.osoa.sca.annotations.Service;

@Service(Filter.class)
public class FilterImpl implements Filter {

@Property
public String componentFilter;

@Override
public Entry<String, Item>[] filterByPropertyValue(Entry<String,

Item>[] entries) {
//If we have no filter, return the whole list
if (componentFilter==null || componentFilter.length()==0) return

entries;
//Create a local List
List<Entry<String, Item>> filteredEntries = new

ArrayList<Entry<String, Item>>();

//Convert the String to lower case and then to CharSequence for
use in String.contains

CharSequence filterChars =
componentFilter.toLowerCase().subSequence(0, componentFilter.length());

System.out.println(FilterImpl.class.getName()+" : value of
componentFilter Property: "+filterChars);

if (entries != null) {
try {

for (Entry<String, Item> entry : entries) {
if (entry != null){
Item item = entry.getData();
if (item != null) {

String title = item.getTitle();
 Chapter 16. Developing Service Component Architecture (SCA) applications 927

//if filter is found in lowered case title, add entry
to the list

if (title != null &&
title.toLowerCase().contains(filterChars)) {

filteredEntries.add(entry);
continue;//if already found, move on

}
//if filter is found in lowered case contents, add

entry to the list
String contents = item.getContents();
if (contents != null

&&contents.toLowerCase().contains(filterChars)) {
filteredEntries.add(entry);

}
}

}}
} catch (Exception e) {

e.printStackTrace();
}

}

return filteredEntries.toArray(new
Entry[filteredEntries.size()]);

}

}

3. Create a new component called AtomContentFilter.

4. Right-click the component and choose Set implementation Java.

5. Browse to the com.ibm.itso.support.feeds.FilterImpl class.

6. Right-click the AtomContentFilter component and select Refresh from
implementation (Figure 16-40 on page 929), which shows that the product
adds a service called Filter and a property called componentFilter. Click
OK to accept these changes. We explain the role of properties in 16.7.6,
“Using a property defined in a component and a composite” on page 932.
928 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 16-40 Refreshing from implementation

Figure 16-41 shows the aspect of the component now. Note the Service (green
arrow) icon and the Property icon.

Figure 16-41 Component with Service and Property icons

16.7.5 Wiring the reference on one component to the service on the
other component

Before we can use the Filter service from the AtomFeedFetcher component, we
must add a reference to AtomFeedFetcher, typed by the Filter interface. We
must add an @Reference annotation to FetcherImpl to receive the injected Filter
object at run time:

1. Add a public field of type Filter and name atomFilter with the @Reference
annotation to the com.ibm.itso.support.feeds.fetcherImpl class
(Example 16-10). Use the atomFilter reference to invoke the
filterByPropertyValue method of the FilterImpl class in the
implementation of the getAll method.
 Chapter 16. Developing Service Component Architecture (SCA) applications 929

Example 16-10 Adding a public field and name with an annotation to the class

package com.ibm.itso.support.feeds;

import org.apache.tuscany.sca.data.collection.Entry;
import org.apache.tuscany.sca.data.collection.Item;
import org.apache.tuscany.sca.data.collection.NotFoundException;
import org.osoa.sca.annotations.Reference;
import org.osoa.sca.annotations.Service;

@Service(Fetcher.class)
public class FetcherImpl implements Fetcher{

public @Reference Fetcher atomFeeds;

public @Reference Filter atomFilter;

@Override
public Entry<String, Item>[] getAll() {

//return atomFeeds.getAll();
 Entry<String, Item>[]
filteredFeeds=atomFilter.filterByPropertyValue(atomFeeds.getAll());
 return filteredFeeds;

}
....

2. Right-click AtomFeedFetcher on the diagram. Select Refresh from
Implementation (Figure 16-42). The reference atomFilter is added.
930 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 16-42 Refreshing the reference from the implementation

3. From the Palette, select the Wire/Promote tool, select the atomFilter
reference on the AtomFeedFetcher component and draw a line toward the
Filter service on the AtomContentFilter component (Figure 16-43). The
reference and service that you have connected with the wire appear to have
no binding; therefore, the default SCA Binding is used.

Figure 16-43 Add a wire between a service and a reference

The addition of the wire actually sets the target attribute of the atomFilter
reference, as shown in Example 16-11.

Example 16-11 Additional reference

<?xml version="1.0" encoding="UTF-8"?>
 Chapter 16. Developing Service Component Architecture (SCA) applications 931

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
xmlns:ns1="http://tuscany.apache.org/xmlns/sca/1.0"
xmlns:sp_0="http://tuscany.apache.org/xmlns/sca/1.0"
xmlns:sp_1="http://tuscany.apache.org/xmlns/sca/1.0" autowire="false"
name="SupportFeeds" targetNamespace="http://itso.rad.feeds">
 <component name="AtomFeedFetcher">
 <implementation.java
class="com.ibm.itso.support.feeds.FetcherImpl"/>
 <service name="Fetcher">
 <ns1:binding.atom uri="/supportFeeds"/>
 </service>
 <reference name="atomFeeds">
 <interface.java interface="com.ibm.itso.support.feeds.Fetcher"/>
 <ns1:binding.atom
uri="http://www-947.ibm.com/systems/support/myfeed/xmlfeeder.wss?feeder
.requid=feeder.create_public_feed&feeder.feedtype=Atom&feeder.m
axfeed=25&OC=SSRTLW&feeder.subdefkey=swgrat"/>
 </reference>
 <reference name="atomFilter" target="AtomContentFilter/Filter">
 <interface.java interface="com.ibm.itso.support.feeds.Filter"/>
 </reference>
 </component>
 <component name="AtomContentFilter">
 <implementation.java
class="com.ibm.itso.support.feeds.FilterImpl"/>
 <service name="Filter">
 <interface.java interface="com.ibm.itso.support.feeds.Filter"/>
 </service>
 <property many="false" name="componentFilter" mustSupply="true"/>
 </component>
</composite>

16.7.6 Using a property defined in a component and a composite

So far, we have introduced a property called componentFilter on the component
AtomContentFilter. Properties can also be defined on the composites, and they
can be reused by the components included therein. The following procedure
declares the property and its default value in the composite and reuses it in the
component:

1. Right-click the white space on the canvas of
SupportFeed.composite_diagram.

2. Select Show Properties View. In the Property window, select Property.
932 Rational Application Developer for WebSphere Software V8 Programming Guide

3. Enter the property name, type, and default value, as shown in Figure 16-44
on page 933:

a. Select Add.

b. In Property Name field, enter filter.

c. Select Must Supply.

d. For Reference kind, select type.

e. For Type, select xsd:string.

f. For Simple Value, enter debug (or another keyword that you expect to be
part of the returned feed).

Figure 16-44 Setting the properties of the property filter defined on the composite

To reference this property in the component, follow these steps:

1. Right-click the AtomContentFilter component.

2. Select Show Properties View.

3. Select the Properties tab.

4. Select componentFilter.

5. Set the type to xsd:string.

6. Set the Value Type to Source XPath.

7. In Source, enter $filter, which is a special syntax that references the
property value of the filter property defined in the enclosing composite.

8. Save the composite.
 Chapter 16. Developing Service Component Architecture (SCA) applications 933

The SupportFeeds.composite file now contains both properties (Example 16-12).

Example 16-12 Final contents of SupportFeeds.composite file

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
xmlns:ns1="http://tuscany.apache.org/xmlns/sca/1.0"
xmlns:sp_0="http://tuscany.apache.org/xmlns/sca/1.0"
xmlns:sp_1="http://tuscany.apache.org/xmlns/sca/1.0"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" autowire="false"
name="SupportFeeds" targetNamespace="http://itso.rad.feeds">
 <component name="AtomFeedFetcher">
 <implementation.java
class="com.ibm.itso.support.feeds.FetcherImpl"/>
 <service name="Fetcher">
 <ns1:binding.atom uri="/supportFeeds"/>
 </service>
 <reference name="atomFeeds">
 <interface.java interface="com.ibm.itso.support.feeds.Fetcher"/>
 <ns1:binding.atom
uri="http://www-947.ibm.com/systems/support/myfeed/xmlfeeder.wss?feeder
.requid=feeder.create_public_feed&feeder.feedtype=Atom&feeder.m
axfeed=25&OC=SSRTLW&feeder.subdefkey=swgrat"/>
 </reference>
 <reference name="atomFilter" target="AtomContentFilter/Filter">
 <interface.java interface="com.ibm.itso.support.feeds.Filter"/>
 </reference>
 </component>
 <component name="AtomContentFilter">
 <implementation.java
class="com.ibm.itso.support.feeds.FilterImpl"/>
 <service name="Filter">
 <interface.java interface="com.ibm.itso.support.feeds.Filter"/>
 </service>
 <property name="componentFilter" source="$filter" type="xsd:string"
mustSupply="true"/>
 </component>
<property mustSupply="true" name="filter"
type="xsd:string">debug</property>
</composite>
934 Rational Application Developer for WebSphere Software V8 Programming Guide

16.7.7 Testing the implementation by exporting the contribution

The implementation is now complete. You can test it by deploying RAD8AtomFeed
to the server. We show how the contribution can be exported from Rational
Application Developer and deployed using the administrative console by using
the information that is available at this website:

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=matt&pro
duct=was-base-dist&topic=trun_app_bla

Perform these steps:

1. Remove the application from the server using Add/Remove projects if it was
previously deployed to avoid any possible naming conflicts.

2. Select File Export.

3. Select Service Component Architecture SCA Archive File. On
Figure 16-45, follow these steps:

a. Select Export Contributions.

b. Select RAD8AtomFeeds.

c. Select a location for the archive file (select a .jar file).

d. Select Export Composite diagram files.

e. Select Finish.
 Chapter 16. Developing Service Component Architecture (SCA) applications 935

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=matt&product=was-base-dist&topic=trun_app_bla

Figure 16-45 Export contribution from Rational Application Developer

4. Right-click the server in the Servers view and select Administration Run
Administrative Console.

5. Select Applications New Application New Asset.

6. Select Local File System and browse for the jar file that you exported from
Rational Application Developer.

7. Select Next until the end of the wizard, accepting all default options.

8. Select Save.

9. Select Applications New Application New Business-Level
Application.

10.Enter a name for the application.

11.Under Deployed Assets, select Add Add Asset.
936 Rational Application Developer for WebSphere Software V8 Programming Guide

12.Select Next until the end of the wizard, accepting all default options.

13.Select Save.

14.You are now ready to test the application in the web browser, where you see
only the filtered results, as shown in Figure 16-46.

Figure 16-46 Browser showing the output filtered by keyword “debug”

16.8 Reusing an existing Java EE application to create a
component

In this section, we show you how to reuse an existing Java EE application to
implement an SCA component, without enhancing it. We also show how to
create and use a web application, enhancing it to make use of SCA references.
This section is conceptually similar to the tutorial that you access by selecting
Help Help Contents Tutorial SCA SCA Java EE Tutorial.

We use these major steps:

1. Import the projects that are contained in the
7835code\sca\RAD8SimpleBankStart.zip folder. The projects are
RAD8SimpleBankEJB and RAD8SimpleBankEAR.
 Chapter 16. Developing Service Component Architecture (SCA) applications 937

2. Creating a new SCA Enhanced EAR file to hold the web project:

a. The EAR will be called RAD8SCAWebEAR and the web project will be called
RAD8SCAWeb. The web project will contain a servlet and a copy of the EJB
remote interface (so that the servlet compiles).

b. Furthermore, this EAR file will be SCA enhanced, so that the servlet
contained in the web project can reference the remote interface of the EJB
using the @Reference SCA annotation.

c. You will add a distinguished application composite (you can only create a
distinguished composite in an EAR).

d. In the distinguished application composite, define an SCA component and
set its implementation to reuse the existing web project.

e. Set an SCA reference on the component.

f. The SCA reference needs to be promoted so that it can be used outside of
the composite where it was declared.

3. Creating a new SCA project with a contribution:

a. Add a conventional composite, because this project is a regular SCA
project, not an EAR project.

b. Add two components, implemented by the non-SCA enhanced EAR
RAD8SimpleBankEAR and by the SCA enhanced EAR RAD8SCAWebEAR.

c. Add a contribution so that this project can be deployed to the server.

d. Copy the EJB remote interface in this project as well, so that the reference
and service interfaces can be resolved at run time.

16.8.1 Explore the existing EAR

The existing EAR contains the following projects:

� The existing EAR contains an EJB project called RAD8SimpleBankEJB.

� The existing EAR contains an EAR project called RAD8SimpleBankEAR.

� The EJB project contains the EJB SimpleBankFacadeBean and the remote
interface SimpleBankBeanRemote.

� There are additional classes, but the remote interface only exposes primitive
types, java.math.BigDecimal, and arrays of primitive types. This approach
ensures that we can use the default SCA binding, which relies on JAXB
serialization.
938 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 16-47 Setting the wire to the Java object format for the SCA binding

16.8.2 Creating a new SCA Enhanced EAR file to hold the web project

To create a new SCA Enhanced EAR to hold the web project, perform these
steps:

1. Create a new enterprise application project called RAD8SCAWebEAR.
2. For the Target, select WebSphere Application Server 8.
3. For the EAR, select version 6 and select Next.
4. Create a new Web module called RAD8SCAWeb and select Finish.

Next we need to add SCA support to the EAR and web projects:

Setting the wire format to Java object: If you need to expose, on the
interface, additional types that do not conform to the rules for JAXB
serialization, consider changing the Wire format of the SCA binding by
setting it to the Java object value (Figure 16-47 on page 939). For more
information, see these websites:

� http://www14.software.ibm.com/webapp/wsbroker/redirect?version=m
att&product=was-base-dist&topic=tsca_default_binding_serial

� http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?
topic=/com.ibm.websphere.soafep.multiplatform.doc/info/ae/ae/ts
ca_default_binding_serial.html
 Chapter 16. Developing Service Component Architecture (SCA) applications 939

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.soafep.multiplatform.doc/info/ae/ae/tsca_default_binding_serial.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.soafep.multiplatform.doc/info/ae/ae/tsca_default_binding_serial.html
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=matt&product=was-base-dist&topic=tsca_default_binding_serial
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=matt&product=was-base-dist&topic=tsca_default_binding_serial
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=matt&product=was-base-dist&topic=tsca_default_binding_serial
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=matt&product=was-base-dist&topic=tsca_default_binding_serial
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.soafep.multiplatform.doc/info/ae/ae/tsca_default_binding_serial.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.soafep.multiplatform.doc/info/ae/ae/tsca_default_binding_serial.html

1. Right-click the project RAD8SCAWebEAR and select Configure Add
SCA Support.

2. Accept all defaults and select Finish.

3. Right-click the project RAD8SCAWeb and select Configure Add SCA
Support.

4. Accept all defaults and select Finish.

We now create a distinguished application composite in the SCA enhanced EAR:

1. In the Enterprise Explorer, right-click the logical folder SCA Content
Composites of the project RAD8SCAWebEAR.

2. Select New Composite.

3. The New Composite Wizard opens (Figure 16-48 on page 941). Complete
these steps:

a. The New Composite Wizard automatically selects Distinguished
Application Composite.

b. The Composite name has the predetermined name of application. You
cannot change this name in the case of a distinguished application
composite.

c. For Target Namespace, enter http://itso.bank.sca.

d. Select Finish.
940 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 16-48 Create a new distinguished composite

4. Using the Palette, create a New Component called RAD8SCAWebComponent.

5. Right-click the component and select Set Implementation Web
(Figure 16-49 on page 942).
 Chapter 16. Developing Service Component Architecture (SCA) applications 941

Figure 16-49 Creating a new component with web implementation

6. The Web module Selection Dialog box appears and shows the only web
project available, which is RAD8SCAWeb (Figure 16-50).

Figure 16-50 Web module Selection Dialog

7. Select OK.

Before we can add an SCA reference to this component, we must have the EJB
remote interface available in this project:

1. In the Enterprise Explorer, locate the file
RAD8SimpleBankEJB\ejbModule\itso\rad8\bank\ejb\facade\SimpleBankRemo
te.java and copy it to the src folder of the RAD8SCAWeb project. This action
causes a compilation error due to the mismatch between the package
statement and the current folder. Open the copied file and use the provided
quick fix to move the file into the correct package, which has been created
automatically.

2. Import the index.html file that is located in 7835code\sca\index.html into
RAD8SCAWeb\WebContent.

3. In the RAD8SCAWeb project, create a new servlet called ListAccounts in the
itso.rad8.bank.servlets package.
942 Rational Application Developer for WebSphere Software V8 Programming Guide

4. Overwrite the automatically generated code with the code that was imported
from 7835code\sca\ListAccounts.java.

5. Example 16-13 shows itso.bank.test.servlet.ListCustomers.java.
Observe the use of the @Reference annotation to get the EJB proxy injected
by the container into the servlet.

Example 16-13 Servlet code using @Reference annotation

package itso.rad8.bank.servlets;

import itso.rad8.bank.ejb.facade.SimpleBankRemote;

import java.io.IOException;
import java.io.PrintWriter;

import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import org.osoa.sca.annotations.Reference;

/**
 * Servlet implementation class ListAccounts
 */
@WebServlet("/ListAccounts")
public class ListAccounts extends HttpServlet {

private static final long serialVersionUID = 1L;

@Reference SimpleBankRemote simpleBank;

 /**
 * @see HttpServlet#HttpServlet()
 */
 public ListAccounts() {
 super();
 // TODO Auto-generated constructor stub
 }

/**
 * @see HttpServlet#doGet(HttpServletRequest request,

HttpServletResponse response)
 */
 Chapter 16. Developing Service Component Architecture (SCA) applications 943

protected void doGet(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {

String ssn=request.getParameter("ssn");
PrintWriter out=response.getWriter();

String fullName= simpleBank.getCustomerFullName(ssn);
System.out.println(fullName);
out.println("<html><body><h2>Customer Listing</h2>");
out.print("
 Customer Name: "+fullName+"</br>");
String[] accounts= simpleBank.getAccounts(ssn);
for(int i=0;i<accounts.length;i++){

String account = accounts[i];
System.out.println(account);
out.print("
 "+account+"</br>");

}
out.println("</body><html>");

}

/**
 * @see HttpServlet#doPost(HttpServletRequest request,

HttpServletResponse response)
 */
protected void doPost(HttpServletRequest request,

HttpServletResponse response) throws ServletException, IOException {
doGet(request,response);

}

}

Now open application.composite and update the component with the
reference:

1. In the Enterprise Explorer, select
RAD8SCAWebEAR SCA Content Composites
http://itso.bank.sca application and open it (with the SCA Composite
Editor).

2. Right-click the RAD8SCAWebComponent component and select Create
Reference.

3. Open the properties of the reference:

a. In Core, enter the name simpleBank (this name must be equal to the name
of the reference in the Java code).
944 Rational Application Developer for WebSphere Software V8 Programming Guide

b. In Interface, complete these tasks:

i. For the InterfaceType, select Java.
ii. Browse to the Interface itso.bank.service.EJBBankService.

c. In Binding, you can add a Binding of type SCA, but adding this binding
type is unnecessary, because SCA is the default binding. You only add it
explicitly if you need to customize it, for example, by changing the default
wire format to Java object.

We promote this reference so that it can be used in another composite:

1. Right-click the Reference on the diagram and select Promote.

2. Select the promoted interface. Observe that it has the Promote value set to:
RAD8SCAWebComponent/simpleBank (Figure 16-51).

Figure 16-51 Promoted interface core properties

The distinguished composite file, application.composite, now has the contents
that are shown in Example 16-14.

Example 16-14 Content of the application.composite file

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
xmlns:was="http://www.ibm.com/xmlns/prod/websphere/sca/1.0/2007/06"
autowire="false" name="application"
targetNamespace="http://itso.bank.sca">
 <component name="RAD8SCAWebComponent">
 <implementation.web web-uri="RAD8SCAWeb.war"/>
 <reference name="simpleBank">
 Chapter 16. Developing Service Component Architecture (SCA) applications 945

 <interface.java
interface="itso.rad8.bank.ejb.facade.SimpleBankRemote"/>
 </reference>
 </component>
 <reference name="simpleBank"
promote="RAD8SCAWebComponent/simpleBank"/>
</composite>

16.8.3 Creating a new SCA project with a contribution

Next we create an SCA project with a contribution that we can deploy to the
server:

1. Create a new SCA project called RAD8SCAProject, accepting all defaults, and
select Finish.

2. Inside the project, create a new composite with the following parameters
(Figure 16-52 on page 947):

a. For the composite type, select Conventional Composite (because this
project is an SCA project, we can create a deployable composite).

b. For Composite name, enter RAD8SCAComposite.

c. For Target namespace, enter http://itso.bank.sca.

d. Accept the default Composite path.

e. Select Finish.
946 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 16-52 Creating a conventional composite in the SCA project

We create the two components and wire them together:

1. Create a new Component called RAD8EJBComponent:

a. Set the Implementation to JEE. For Project, select
RAD8SimpleBankEAR.

b. Add a service to this component:

i. When we declare a service with the @Service annotation inside a Java
file, we name the service after the interface declared in the annotation.
In this case, we do not use this annotation, because we do not
enhance the Java EE application. So, we must use the default name,
which is obtained by applying the following pattern:

EJBName_EJBInterfaceName

In this case, this pattern resolves to this default name:
 Chapter 16. Developing Service Component Architecture (SCA) applications 947

SimpleBankFacadeBean_SimpleBankRemote

ii. Set the Interface type to Java and the interface to
itso.rad8.bank.ejb.facade.SimpleBankRemote.

2. Create a new component called RAD8SCAWebComponent:

a. Set the Implementation to JEE, and for the Project, select
RAD8SCAWebEAR.

b. Create a reference on this component:

i. For the Name, enter simpleBank.

ii. Set the Interface type to Java and the interface to
itso.rad8.bank.ejb.facade.SimpleBankRemote.

3. Wire the reference to the service, which sets the target of the reference to
RAD8EJBComponent/SimpleBankFacadeBean_SimpleBankRemote.

4. The resulting diagram looks like Figure 16-53.

Figure 16-53 Completed conventional composite

5. Example 16-15 shows the RAD8SCAComposite.composite file contents.

Example 16-15 Completed conventional composite text

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
xmlns:was="http://www.ibm.com/xmlns/prod/websphere/sca/1.0/2007/06"
autowire="false" name="RAD8SCAComposite"
targetNamespace="http://itso.bank.sca">
 <component name="RAD8EJBComponent">
 <implementation.jee archive="RAD8SimpleBankEAR.ear"/>
 <service name="SimpleBankFacadeBean_SimpleBankRemote">
 <interface.java
interface="itso.rad8.bank.ejb.facade.SimpleBankRemote"/>
 </service>
 </component>
 <component name="RAD8SCAWebComponent">
 <implementation.jee archive="RAD8SCAWebEAR.ear"/>
948 Rational Application Developer for WebSphere Software V8 Programming Guide

 <reference name="simpleBank"
target="RAD8EJBComponent/SimpleBankFacadeBean_SimpleBankRemote">
 <interface.java
interface="itso.rad8.bank.ejb.facade.SimpleBankRemote"/>
 </reference>
 </component>
</composite>

6. To allow the SCA project to resolve the EJB remote reference, in the
Enterprise Explorer, locate the file
RAD8SimpleBankEJB\ejbModule\itso\rad8\bank\ejb\facade\SimpleBankRemo
te.java and copy it to the src folder of the project RAD8SCAProject.

7. This task gives a compilation error due to the mismatch between the package
statement and the current folder. Open the copied file and use the provided
quick fix to move the file into the correct package, which has been created
automatically.

8. Finally, create a contribution and add RAD8SCAComposite to it (Figure 16-54 on
page 950).
 Chapter 16. Developing Service Component Architecture (SCA) applications 949

Figure 16-54 Creating a contribution

9. Example 16-16 shows the contents of the sca-contribution file.

Example 16-16 Contents of the sca-contribution file

<?xml version="1.0" encoding="UTF-8"?>
<contribution xmlns="http://www.osoa.org/xmlns/sca/1.0">

<deployable composite="ns1:RAD8SCAComposite"
xmlns:ns1="http://itso.bank.sca"></deployable>
</contribution>
950 Rational Application Developer for WebSphere Software V8 Programming Guide

The application is now complete and ready to test. You can locate the completed
application in this file:

7835codesolution\sca\RAD8SimpleBankSCA.zip

16.8.4 Testing the completed application

To test the application, right-click the server and select Add/Remove Projects.
Make sure to select only the SCA contribution, RAD8SCAProject, which
contains the two EAR files, as shown in Figure 16-55.

Figure 16-55 Adding the SCA contribution to the server

To test the application, open a web browser and enter the following URL
(Figure 16-56 on page 952):

http://localhost:9080/RAD8SCAWeb/index.html

As usual, the port number might differ in your profile.
 Chapter 16. Developing Service Component Architecture (SCA) applications 951

Figure 16-56 Testing index.jsp in the browser

Do not use the Run On Server menu that is available when you right-click
index.html in Rational Application Developer. If you do, the EAR RAD8SCAWebEAR
is also added to the server, outside of the context of the SCA contribution, which
leads to runtime errors.

In the format that is shown in Figure 16-56, enter one of the SSN numbers,
111-11-1111, 222-22-2222, up to 999-99-9999, and click Submit. Figure 16-57
shows the results.

Figure 16-57 Invoking the servlet that contains the @Reference annotation
952 Rational Application Developer for WebSphere Software V8 Programming Guide

16.9 Adding intents and policies

A detailed description of intents and policies is beyond the scope of this book;
however, you can find more information at the following sources:

� Feature Pack for SCA, Version 1.0.1 End-to-end paths EJB
applications Using the transaction service Transaction support in
WebSphere Application Server: SCA transaction intents

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=v701s
ca&product=was-nd-mp&topic=csca_global_trans

� WebSphere Application Server, Version 8.0 End-to-end paths EJB
applications Using the transaction service Transaction support in
WebSphere Application Server: SCA transaction intents

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=matt&
product=was-base-dist&topic=csca_global_trans

� Feature Pack for SCA, Version 1.0.1 Securing applications and their
environment Authorizing access to resources: Using SCA
authorization and security identity policies

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=v701s
ca&product=was-nd-mp&topic=tsec_authsoa_policy

� WebSphere Application Server (Distributed platforms and Windows),
Version 8.0 Administering applications and their environment
Administering web services (generally applicable) Managing web
services policy sets: Mapping abstract intents and managing policy sets

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=matt&
product=was-base-dist&topic=twbs_sca_intent_policyset

16.10 More information

� Open Service Oriented Architecture (OSOA)

http://www.osoa.org

� David Chappell, Introducing SCA

http://www.davidchappell.com/articles/introducing_sca.pdf

� Apache Tuscany

http://tuscany.apache.org/sca-overview.html

� Tutorials in the product:

– SCA Hello World
 Chapter 16. Developing Service Component Architecture (SCA) applications 953

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=v701sca&product=was-nd-mp&topic=csca_global_trans
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=matt&product=was-base-dist&topic=csca_global_trans
http://www.osoa.org
http://www.davidchappell.com/articles/introducing_sca.pdf
http://www.davidchappell.com/articles/introducing_sca.pdf
http://tuscany.apache.org/sca-overview.html
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=v701sca&product=was-nd-mp&topic=csca_global_trans
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=v701sca&product=was-nd-mp&topic=tsec_authsoa_policy
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=matt&product=was-base-dist&topic=twbs_sca_intent_policyset
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=v701sca&product=was-nd-mp&topic=tsec_authsoa_policy
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=v701sca&product=was-nd-mp&topic=csca_global_trans
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=v701sca&product=was-nd-mp&topic=csca_global_trans
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=v701sca&product=was-nd-mp&topic=tsec_authsoa_policy
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=v701sca&product=was-nd-mp&topic=tsec_authsoa_policy
http://www.davidchappell.com/articles/introducing_sca.pdf

– SCA Java EE
– SCA Spring
– SCA Account Services Application

� Samples in the product:

– SCA HelloWorld sample
– SCA Spring sample
– SCA Service Data Object (SDO) sample
– SCA Java EE sample
– SCA JMS sample
– SCA Web 2.0 sample
– SCA AccountServices sample

� Samples in WebSphere Application Server V7:

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=v701s
ca&product=was-nd-mp&topic=csca_samples

� Samples in WebSphere Application Server V8:

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=matt&
product=was-base-dist&topic=csca_samples

� IBM Education Assistant: IBM WebSphere Application Server V7.0 Feature
Pack for Service Component Architecture

http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/index.jsp?t
opic=/com.ibm.iea.wasfpsca/plugin_coverpage.html

� Exploring the WebSphere Application Server Feature Pack for SCA:

– Part 1: An overview of the Service Component Architecture Feature Pack

http://www.ibm.com/developerworks/websphere/library/techarticles/
0812_beck/0812_beck.html

– Part 2: Web services policy sets

http://www.ibm.com/developerworks/websphere/library/techarticles/
0901_coats/0901_coats.html

– Part 3: Intents and policies available in the SCA feature pack

http://www.ibm.com/developerworks/websphere/library/techarticles/
0902_beck/0902_beck.html

– Part 4: SCA Java annotations and component implementation

http://www.ibm.com/developerworks/websphere/library/techarticles/
0902_beck2/0902_beck2.html

– Part 5: Protocol bindings for Service Component Architecture services

http://www.ibm.com/developerworks/websphere/library/techarticles/
0904_beck/0904_beck.html
954 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.ibm.com/developerworks/websphere/library/techarticles/0812_beck/0812_beck.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0812_beck/0812_beck.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0901_coats/0901_coats.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0902_beck/0902_beck.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0902_beck2/0902_beck2.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0904_beck/0904_beck.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0904_beck/0904_beck.html
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=v701sca&product=was-nd-mp&topic=csca_samples
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=v701sca&product=was-nd-mp&topic=csca_samples
http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/index.jsp?topic=/com.ibm.iea.wasfpsca/plugin_coverpage.html
http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/index.jsp?topic=/com.ibm.iea.wasfpsca/plugin_coverpage.html
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=matt&product=was-base-dist&topic=csca_samples
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=matt&product=was-base-dist&topic=csca_samples
http://www.ibm.com/developerworks/websphere/library/techarticles/0812_beck/0812_beck.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0812_beck/0812_beck.html
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=v701sca&product=was-nd-mp&topic=csca_samples
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=v701sca&product=was-nd-mp&topic=csca_samples
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=matt&product=was-base-dist&topic=csca_samples
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=matt&product=was-base-dist&topic=csca_samples
http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/index.jsp?topic=/com.ibm.iea.wasfpsca/plugin_coverpage.html
http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/index.jsp?topic=/com.ibm.iea.wasfpsca/plugin_coverpage.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0812_beck/0812_beck.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0901_coats/0901_coats.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0902_beck2/0902_beck2.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0902_beck2/0902_beck2.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0902_beck2/0902_beck2.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0901_coats/0901_coats.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0901_coats/0901_coats.html

– Part 6: Using Spring with Service Component Architecture

http://www.ibm.com/developerworks/websphere/library/techarticles/
1001_beck6/1001_beck6.html

– Part 7: Using Atom and JavaScript Object Notation (JSON) - Remote
Procedure Call (RPC) for Web 2.0 support

http://www.ibm.com/developerworks/websphere/library/techarticles/
1001_beck7/1001_beck7.html

– Part 8: Java EE support in the Feature Pack for SCA

http://www.ibm.com/developerworks/websphere/techjournal/1010_ponn
iah/1010_ponniah.html

� WebSphere Application Server V7 Feature Pack for SCA 1.0.1 Information
Center

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topi
c=/com.ibm.websphere.soafep.multiplatform.doc/info/ae/ae/welcome_fep
sca.html

� WebSphere Application Server V8 Beta Information Center

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=matt&
product=was-base-dist&topic=welc6tech_sca_dev

� Getting Started with the Feature Pack for OSGi Applications and JPA 2.0,
SG24-7911, which shows how to create SCA components that are
implemented as OGSi bundles
 Chapter 16. Developing Service Component Architecture (SCA) applications 955

http://www.ibm.com/developerworks/websphere/library/techarticles/1001_beck6/1001_beck6.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1001_beck6/1001_beck6.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1001_beck7/1001_beck7.html
http://www.ibm.com/developerworks/websphere/techjournal/1010_ponniah/1010_ponniah.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.soafep.multiplatform.doc/info/ae/ae/welcome_fepsca.html
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=matt&product=was-base-dist&topic=welc6tech_sca_dev
http://www.ibm.com/developerworks/websphere/library/techarticles/1001_beck7/1001_beck7.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1001_beck7/1001_beck7.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1001_beck6/1001_beck6.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1001_beck6/1001_beck6.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1001_beck7/1001_beck7.html
http://www.ibm.com/developerworks/websphere/techjournal/1010_ponniah/1010_ponniah.html
http://www.ibm.com/developerworks/websphere/techjournal/1010_ponniah/1010_ponniah.html
http://www.ibm.com/developerworks/websphere/techjournal/1010_ponniah/1010_ponniah.html

956 Rational Application Developer for WebSphere Software V8 Programming Guide

Chapter 17. Developing Modern Batch
jobs on computing grids

In this chapter, we discuss the concepts of Modern Batch and cover the
Compute-Intensive (CI) sample. We also provide an overview of the transactional
capabilities.

We explore the features that are provided by Rational Application Developer for
batch job development and deployment. We also demonstrate how Rational
Application Developer can help with testing Java batch jobs.

The chapter is organized into the following sections:

� Introduction to Modern Batch
� New Modern Batch job tools in Rational Application Developer
� Working with the Compute-Intensive sample
� Overview of the Transactional batch capabilities
� Additional information

17
© Copyright IBM Corp. 2011. All rights reserved. 957

17.1 Introduction to Modern Batch

Since the invention of the computer, there has been a continual race between
processing power and program complexity. Certain programs perform many
sequential tasks, certain programs process many records, and other programs
perform tasks that are CPU intensive. In any case, these programs have one
thing in common, they take a long time to run and do not require user input.

Batch processing has been available on mainframe systems since the beginning.
Unfortunately, batch processing requires a skill set usually not available outside
the mainframe community. With the addition of Modern Batch to the Java
programming language and to Rational Application Developer, the benefits of
batch processing are now available to the client/server model of computing.

17.2 New Modern Batch job tools in Rational
Application Developer

IBM has used its extensive experience with batch processing on the mainframe
in the Rational Application Developer suite. With Rational Application Developer,
you can now design, develop, and deploy Modern Batch applications into
WebSphere Application Server V7.0.0.13 with the Feature Pack for Modern
Batch.

The Modern Batch tools are now part of the Rational Application Developer
installation program. Simply select the features as part of the Installation
Manager installation process, as indicated in Figure 17-1 on page 959.
958 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 17-1 Installation features required for Modern Batch

This feature pack installs the wizards, project facets, samples, and run times that
are required to develop Modern Batch applications.

17.3 Working with the Compute-Intensive sample

Rational Application Developer contains two samples of Modern Batch
applications. One is Transactional batch-based and the other is
Compute-Intensive (CI) batch-based. Transactional batch is intended for high
volume record processing. Compute-Intensive batch is intended for low volume,
CPU-intensive processing.

In this section, we analyze the CI batch example.

17.3.1 Installing the sample

You can access the CI batch example by following these steps:

1. In Rational Application Developer, select Help Help Contents.
 Chapter 17. Developing Modern Batch jobs on computing grids 959

2. In the Help - Rational Application Developer for WebSphere Software window,
expand Samples Batch Modern Batch samples
Compute-Intensive batch application.

3. Here, you can import the sample into the workspace. Click Import Sample,
as shown in Figure 17-2.

Figure 17-2 Importing the sample application

4. This action opens the Import Project wizard. Accept the default values and
click Finish. (Figure 17-3 on page 961).
960 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 17-3 Importing the Compute-Intensive sample project

17.3.2 Understanding the sample

The Compute-Intensive (CI) sample consists of three projects:

� The application project: SimpleCI
� The EAR project: SimpleCIEAR
� The EJB project: SimpleCIEJB

The SimpleCI project contains the xJCL batch job definition and the classes that
implement the CI pattern and business logic. See Figure 17-4 on page 962.
 Chapter 17. Developing Modern Batch jobs on computing grids 961

Figure 17-4 Sample project contents

To further understand the example, we examine the xJCL batch descriptor in the
XJCL Editor, as seen in Figure 17-5 on page 963.
962 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 17-5 The XJCL Editor

The xJCL file is an XML file that assembles the pieces of the batch job.
Depending on the type of batch job, CI or Transactional, you can configure the
batch job contents by selecting the parent item and clicking Add, as shown in
Figure 17-6 on page 964.
 Chapter 17. Developing Modern Batch jobs on computing grids 963

Figure 17-6 XJCL Editor contents

Before the sample can be executed, you need to update one of the properties,
Property (outfile) and enter a filename for the output. See Figure 17-7 on
page 965. The xJCL file allows for simple substitution of variables, which aids in
readability and maintenance. The properties are passed to the implementation
via the setProperties method for CI batch jobs and the initialize method for
Transactional batch jobs.

Important: Before the sample can be executed, you need to update one of the
properties.
964 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 17-7 Property containing the output filename

The framework for the CI sample is simple. The sample implements the
com.ibm.websphere.ci.CIWork interface. The run method contains the business
logic and gets executed by the batch processing environment. The batch job
uses this method to achieve the requirements.

17.3.3 Deploying the sample

After you have updated the outfile property to a valid file name, you can deploy
the batch job. Batch jobs follow the normal procedure for deploying applications
in Rational Application Developer.

WebSphere Application Server V7.0.0.13 has a Feature Pack for Modern Batch.
See Figure 17-1 on page 959. After the feature pack has been installed, you can
run the sample directly from the WebSphere Application Server Test
Environment. Because the batch job runs on the WebSphere Application Server,
if you want to debug the batch job, you must start the server in debug mode.

To start, right-click the WebSphere Application Server that has been added to
Rational Application Developer and click Add and Remove. This step opens the
Add and Remove window. See Figure 17-8 on page 966.
 Chapter 17. Developing Modern Batch jobs on computing grids 965

Figure 17-8 Adding the project to the WebSphere Application Server

Move the SimpleCIEAR project to the Configured pane and click Finish. The
SimpleCIEAR must be in the [Started, Synchronized] state. If not, make sure
that the WebSphere Application Server is started and click Publish again.

17.3.4 Running the sample

Installing the Compute Grid Tools for Modern Batch adds a new option to the Run
As menu: Modern Batch Job. To execute the batch job, right-click the xJCL file
and select Run As Modern Batch Job. See Figure 17-9 on page 967.
966 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 17-9 Running the sample batch job

This action opens the Run Configurations dialog window (Figure 17-10 on
page 968). From here, you can select the run time to use in the Target server
pull-down list and supply a User ID and Password if the job scheduler has
application security enabled (if security is enabled and a User ID and Password
are not supplied, the user is presented with a dialog box to supply them when the
job is run).
 Chapter 17. Developing Modern Batch jobs on computing grids 967

Figure 17-10 Run Configurations dialog window

Click Run, and the batch job launches on the WebSphere Application Server.
The Modern Batch Job Management Console (JMC) opens. See Figure 17-11 on
page 969.
968 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 17-11 Modern Batch Job Management Console (JMC)

You can use the JMC to manage the batch jobs and check status. See
Figure 17-12 on page 970 and Figure 17-13 on page 971. You can also view the
WebSphere Application Server logs for significant information about the
executing job.
 Chapter 17. Developing Modern Batch jobs on computing grids 969

Figure 17-12 Modern Batch Job Management Console viewing jobs
970 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 17-13 Modern Batch Job Management Console viewing log

For more information about running a batch application, see this website:

http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/co
m.ibm.servertools.doc/topics/batch/t_batch_run_config.html

17.4 Overview of the Transactional batch capabilities

If your batch job handles a large volume of records, it is more suited to the
Transactional batch pattern. The Transactional batch pattern allows for various
 Chapter 17. Developing Modern Batch jobs on computing grids 971

http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/com.ibm.servertools.doc/topics/batch/t_batch_run_config.html

types of input streams for acquiring data and output streams for saving
processed records. Also, multiple types of batch processors exist for controlling
the execution of the batch job.

17.4.1 Sequence diagram for the Transactional batch pattern

We can best describe the interaction between the classes by the following
sequence diagram. See Figure 17-14 on page 973 and Figure 17-15 on
page 974. The overall sequence is simple and consists of three phases:

� Initialization: Sets up the streams and header
� Record processing: Iterates through the input and performs checkpoints
� Cleanup: Completes the checkpoints and closes the streams
972 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 17-14 Transactional batch job sequence diagram (Page 1 of 2)
 Chapter 17. Developing Modern Batch jobs on computing grids 973

Figure 17-15 Transactional batch job sequence diagram (Page 2 of 2)
974 Rational Application Developer for WebSphere Software V8 Programming Guide

17.4.2 Available patterns

Specific patterns are available for batch processors and stream processors when
creating a Transactional batch xJCL. See Figure 17-16 and Figure 17-17 on
page 976.

Figure 17-16 Configuring the Batch Processor Pattern in a Transactional batch job
 Chapter 17. Developing Modern Batch jobs on computing grids 975

Figure 17-17 Pattern selection

The Modern Batch implementation in Rational Application Developer includes
several batch step patterns (Table 17-1) and several input/output stream patterns
(Table 17-2 on page 977 and Table 17-3 on page 977). Additionally, patterns are
available for checkpoint algorithms and results algorithms.

Table 17-1 Batch step patterns

Batch step pattern Description

Generic Batch Step A simple step that uses one input and one output stream.

Error Tolerant Batch Step A simple step that uses one input, one output, and one error stream.
976 Rational Application Developer for WebSphere Software V8 Programming Guide

Table 17-2 Stream processor patterns

Table 17-3 Threshold patterns

Stream processor pattern Description

JDBCReaderPattern Used to retrieve data from a database using a Java Database
Connectivity (JDBC) connection

JDBCWriterPattern Used to write data to a database using a JDBC connection

ByteReaderPattern Used to read byte data from a file

ByteWriterPattern Used to write byte data to a file

FileReaderPattern Used to read a text file

FileWriterPattern Used to write to a text file

RecordOrientedDatasetReaderPattern Used to read a z/OS data set

RecordOrientedDatasetWriterPattern Used to write to a z/OS data set

JPAReaderPattern Used to retrieve data from a database using an OpenJPA
connection

JPAWriterPattern Used to write data to a database using an OpenJPA
connection

Custom Implements the BatchDataStream interface

Threshold pattern Description

RecordBasedThresholdPolicy The record based threshold policy of RecordBasedThresholdPolicy
is applicable only if the threshold batch step of ThresholdBatchStep
is used. It counts the number of error records processed. If the result
is greater than the threshold, it forces the job to go into a restartable
state.

PercentageBasedThresholdPolicy The percentageBasedThresholdPolicy is applicable only if the
ThresholdBatchStep is used. It calculates the percentage of the
number of error records processed to the total number processed. If
the result is greater than the threshold, it forces the job to go into a
restartable state.
 Chapter 17. Developing Modern Batch jobs on computing grids 977

17.5 Additional information

The following resources provide additional information:

� Information Center for the Feature Pack for Modern Batch (all operating
systems)

http://publib.boulder.ibm.com/infocenter/wasinfo/fep/index.jsp?topic
=/com.ibm.websphere.bpfep.multiplatform.doc/info/ae/ae/welcome_fepbp
.html

� Configuring a WebSphere Application Server profile for the Feature Pack for
Modern Batch

http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=
/com.ibm.servertools.doc/topics/batch/r_profiletemplate.html

� Feature Packs by version for WebSphere Application Server

http://www-01.ibm.com/support/docview.wss?uid=swg27008534

� Batch Processing with WebSphere Compute Grid: Delivering Business Value
to the Enterprise, REDP-4566
978 Rational Application Developer for WebSphere Software V8 Programming Guide

http://publib.boulder.ibm.com/infocenter/wasinfo/fep/index.jsp?topic=/com.ibm.websphere.bpfep.multiplatform.doc/info/ae/ae/welcome_fepbp.html
http://publib.boulder.ibm.com/infocenter/wasinfo/fep/index.jsp?topic=/com.ibm.websphere.bpfep.multiplatform.doc/info/ae/ae/welcome_fepbp.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/com.ibm.servertools.doc/topics/batch/r_profiletemplate.html
http://publib.boulder.ibm.com/infocenter/wasinfo/fep/index.jsp?topic=/com.ibm.websphere.bpfep.multiplatform.doc/info/ae/ae/welcome_fepbp.html
http://publib.boulder.ibm.com/infocenter/wasinfo/fep/index.jsp?topic=/com.ibm.websphere.bpfep.multiplatform.doc/info/ae/ae/welcome_fepbp.html
http://www-01.ibm.com/support/docview.wss?uid=swg27008534
http://www-01.ibm.com/support/docview.wss?uid=swg27008534

Part 5 Web application
development

In this part, we describe how to use Rational Application Developer for web
application development.

This part includes the following chapters:

� Chapter 18, “Developing web applications using JavaServer Pages (JSP)
and servlets” on page 981

� Chapter 19, “Developing web applications using JavaServer Faces” on
page 1057

� Chapter 20, “Developing web applications using Web 2.0” on page 1097

� Chapter 21, “Developing portal applications” on page 1131

� Chapter 22, “Developing Lotus iWidgets” on page 1183

Part 5
© Copyright IBM Corp. 2011. All rights reserved. 979

Sample code for download: The sample code for all of the applications that
are developed in this part is available for download at the following address:

ftp://www.redbooks.ibm.com/redbooks/SG247835

See Appendix C, “Additional material” on page 1877, for instructions.
980 Rational Application Developer for WebSphere Software V8 Programming Guide

ftp://www.redbooks.ibm.com/redbooks/SG247835

Chapter 18. Developing web applications
using JavaServer Pages
(JSP) and servlets

In this chapter, we develop web applications using JavaServer Pages (JSP), Java
Platform, Enterprise Edition (Java EE) servlet technology, and static HTML
pages, which are fundamental technologies for building Java EE web
applications. Throughout the RedBank example, we guide you through the
features that are available in Rational Application Developer to work with these
technologies.

First, we describe the major tools that are available for web developers in
Rational Application Developer and introduce the new features that are provided
with Rational Application Developer v8. Next we present the design of the ITSO
RedBank application and then build and test the application using the various
tools available within Rational Application Developer. In the final section, we list
sources of further information about Java EE web components and the Web
Tools within Rational Application Developer.

The chapter is organized into the following sections:

� Introduction to Java EE web applications
� Web development tooling
� Rational Application Developer new features

18
© Copyright IBM Corp. 2011. All rights reserved. 981

� RedBank application design
� Implementing the RedBank application
� Web application testing

The sample code for this chapter is in the \7835code\webapp folder.
982 Rational Application Developer for WebSphere Software V8 Programming Guide

18.1 Introduction to Java EE web applications

Java EE is an application development framework that is the most popular
standard for building and deploying web applications in Java. Two of the key
underlying technologies for building the web components of Java EE applications
are servets and JSP. Servlets are Java classes that provide the entry point to
logic for handling a web request and return a Java representation of the web
response. JSP are a mechanism to combine HTML with logic written in Java.
After they have been compiled and deployed, JSP run as a servlet, where they
also take a web request and return a Java object representing the response
page.

Typically, in a large project, the JSP and servlets are part of the presentation
layer of the application and include logic to invoke the higher level business
methods. The core business functions are usually separated into a clearly
defined set of interfaces, so that these components can be used and changed
independently of the presentation layer (or layers, when using more than one
interface).

Enterprise JavaBeans (EJB) are also a key feature included in the Java EE
framework and are a popular option to implement the business logic of an
application. See Chapter 12, “Developing Enterprise JavaBeans (EJB)
applications” on page 577, for details about EJB. The separation of the
presentation logic, business logic, and the logic to combine them is referred to as
the model view controller (MVC) pattern and is described later.

Technologies, such as Struts, JavaServer Faces (JSF), various JSP tag libraries,
and even newer developments, such as Ajax, have been developed to extend the
JSP and servlets framework to improve various aspects of Java EE web
developments. For example, JSF facilitates the construction of reusable user
interface (UI) components that can be added to JSP pages. We describe several
of these technologies in other chapters of this book. However, the underlying
technologies of these tools are extensions to Java servlets and JSP.

When planning a new project, the choice of technology depends on several
criteria, such as the size of the project, previous implementation patterns,
maturity of technology, and skills of the team. Using JSP with servlets and HTML
is a comparatively simple option for building Java EE web applications.
 Chapter 18. Developing web applications using JavaServer Pages (JSP) and servlets 983

Figure 18-1 shows the relationships among the Java EE, enterprise application,
web applications, EJB, servlets, JSP, and additions, such as Struts and JSF.

Figure 18-1 Java EE-related technologies

In this chapter, the focus is mainly on developing web applications using JSP,
servlets, and static pages using HTML with the tools included with Rational
Application Developer. After you master these concepts, you can more easily
understand the other technologies that are available.

18.1.1 Java EE applications

At the highest level, the Java EE specification describes the construction of two
application types that can be deployed on any Java EE-compliant application
server:

� Web applications, which are represented by a web archive (WAR) file
� Enterprise applications represented by an enterprise archive (EAR) file

Both files are constructed in a compressed file format, with a defined directory
and file structure. Web applications generally contain the web components that
are required to build the information presented to the user and lower-level logic.
The enterprise application contains an entire application, including the

Java EE Specification

Enterprise JavaBeans (EJB)
Specification

Java Servlet Specification

Web Components

JavaServer Pages (JSP)
Specification

JavaServer Faces
(JSF)

Struts

JSP Tag Libraries
Specification

Enterprise Application Components

EJB 2.1

EJB 3.0

JPA
984 Rational Application Developer for WebSphere Software V8 Programming Guide

presentation logic and logic implementing its interactions with an underlying
database or other back-end system.

An EAR file can include one or more WAR files where the logic within the web
applications usually invokes the application logic in the EAR.

Enterprise applications
An enterprise application project contains the collection of resources that are
required to deploy an enterprise (Java EE) application to WebSphere Application
Server. It can contain a combination of web applications (WAR files), EJB
modules, Java libraries, and application client modules (all stored in JAR format).
They also must include a deployment descriptor (an applicaton.xml file in the
META-INF directory), which contains meta information to guide the installation and
execution of the application.

On deployment, the EAR file is unwrapped by the application server and the
individual components (EJB modules, WAR files, and associated JAR files) are
deployed individually. The JAR files within an enterprise application can be used
by the other contained modules, allowing the sharing of code at the application
level by multiple Web or EJB modules.

The use of EJB is not compulsory within an enterprise application. When
developing an enterprise application (or even a web application), the developer
can write whatever Java logic is the most appropriate for the situation. EJB are
the defined standard within Java EE for implementing application logic, but many
factors can determine the decision for implementing this part of a solution. In the
RedBank sample application, the business logic is implemented using standard
Java classes that use HashMaps to store data.

Web applications
A web application server publishes the contents of a WAR file under a defined
URL root (called a context root) and then directs web requests to the correct
resources and returns the appropriate web response to the requestor. Certain
requests can be mapped to a simple static resource, such as HTML files and
images. Other requests, which are referred to as dynamic resources, are mapped
to a specific JSP or servlet class. Through these requests, the Java logic for a
web application is initiated and calls to the main business logic are processed.

When a web request is received, the application server looks at the context root
of the URL to identify for which WAR the request is intended, and the server
reviews the contents after the root to identify to which resource to send the
request. This resource might be a static resource (HTML file), the contents of
which are returned, or a dynamic resource (servlet or JSP), where the
processing of the request is handed over to JSP or servlet code.
 Chapter 18. Developing web applications using JavaServer Pages (JSP) and servlets 985

In every WAR file, descriptive meta information describes this information and
guides the application server in its deployment and execution of the servlets and
JSP within the web application.

The structure of these elements within the WAR file is standardized and
compatible between various web application servers. The Java EE specification
defines the hierarchical structure for the contents of a web application that can be
used for deployment and packaging purposes. All Java EE-compliant servlet
containers, including the test web environment provided by Rational Application
Developer, support this structure.

Figure 18-2 shows the structure of a WAR file, an EAR file, and a JAR file.

Figure 18-2 Structures of EAR, WAR, and JAR files

The Java Specification Requests (JSR) 315: Java Servlet 3.0 Specification (see
http://jcp.org/en/jsr/detail?id=315) includes a series of Java annotations
for declaring the fundamental classes that make up a JEE web application.
These classes are used to define servlets, URL mappings to servlets, security
(definition of which user groups can access a particular set of URLs), filters (a
mechanism to call certain Java code before a request is processed), listeners (a
mechanism to call specific Java code on certain events), and configuration

Enterprise Archive (EAR)
Includes following files:
 /META-INF/application.xml - deployment descriptor
 .jar - Utility Java libraries
 .jar - Enterprise JavaBean (EJB) JARs
 .war - Web Applications (WAR files).

Web Application Archive (WAR)
Includes following files:
 /WEB-INF/web.xml - deployment descriptor
 /WEB-INF/classes/* - Java classes used by application
 /WEB-INF/lib/* - Java libraries used by application
 /*.html, *.css, ... - HTML files, templates, style sheets
 - all other files within WAR are accessible directly as Web
 resources including html, jsps, jsp tag libraries, images,
 sounds, etc.

may contain
one or more

Web Project Fragment (JAR)
Includes following files:
 /META-INF/web-fragment.xml - deployment descriptor
 /<package name>/*.class - Java classes supplied by fragment
 /*.jar - Java libraries supplied by fragment

may reference
one or more
986 Rational Application Developer for WebSphere Software V8 Programming Guide

http://jcp.org/en/jsr/detail?id=315
http://jcp.org/en/jsr/detail?id=315

parameters to be passed to servlets or the application as a whole. In previous
versions, these classes were defined in the web.xml file and the new version
removes this dependency. However, it still can be used if required and Rational
Application Developer includes tooling support for Version 2.5 and Version 3.0 of
the Servlet specification.

A key extension in the latest version of the JEE specification (Version 6) is the
addition of Web Fragment projects. Web Fragment projects are a mechanism to
partition the web components in a WAR file into separate JAR files (called Web
Fragments), which enhance or provide utility/framework logic to the main WAR
file.

There are no requirements for the directory structure of a web application outside
of the WEB-INF directory. All these resources are accessible to clients (general
web browsers) directly from a URL, given the context root. Naturally, you must
structure the web resources in a logical way for easy management. For example,
use an images folder to store graphics.

Java EE web APIs
Figure 18-3 on page 988 shows the main classes that are used within the Java
EE framework and the interactions between them. The application servlet class
is the only class outside of the Java EE framework and contains the application
logic.
 Chapter 18. Developing web applications using JavaServer Pages (JSP) and servlets 987

Figure 18-3 Java EE web component classes

The Java EE framework has the following main classes:

� HttpServlet (extends Servlet): The main entry point for handling a web
request. The doGet, doPost, and other methods invoke the logic for building
the response given the request and the underlying business data and logic. In
the JEE Servlet 3.0 specification, these classes are identified by
the@WebServlet annotation.

� HttpJSPServlet (extends Servlet): The WebSphere Application Server
automatically compiles a JSP page into a class that extends this type. It runs
similarly to a normal servlet, and its only entry point is the _jspService
method.

� HttpRequest (extends Request): This class provides an API to access all
pertinent information in a request.

� HttpResponse (extends Response): This class provides an API to create a
response to a request and the application state.

� HttpSession: This class stores any information required to be stored across a
user session with the application (as opposed to a single request).

ServletRequest
String getParameter(String p)
void set Attribute(String s,
Object o)
Object getAttribute(String s)
ServletInputStream getInputStream()
...

HttpServletRequest
String getParameter(String p)
void setAttribute(String s, Object o)
Object getAttribute(String s)
...

Servlet
void init(..)
void service(ServletRequest, ServletResponse)
void destroy(..)
...

ServletResponse
String getParameter(String p)
void setAttribute(String s, Object o)
Object getAttribute(String s)
ServletInputStream getInputStream()
...

HttpServletResponse
String getParameter(String p)
void setAttribute(String s, Object o)
Object getAttribute(String s)
...

HttpServlet
doGet(..)
doPost(..)
doPut(..)
...

JSPServlet
_jspService(..)

RequestDispatcher
void forward(..)
void include(..)
...

HttpSession
void setAttribute(String s, Object o)
Object getAttribute(String s)
..

 Application Servlet

Application Server calls service(..) for
each web request

get request
properties

build response Forward requests
to other pages

Store session
information
988 Rational Application Developer for WebSphere Software V8 Programming Guide

� RequestDispatcher: Within a web application, redirecting the processing of a
request to another servlet is required. This class provides methods to redirect
the processing of a request to another servlet.

Other classes are available in the Java EE web components framework. For a full
description of the classes that are available, see 18.7, “More information” on
page 1055, which provides a link to the Java EE servlet specifications.

JSP
You can include any valid fragment of Java code in a JSP page and mix it with
HTML. In the JSP file, the Java code is marked by <% and %>, and on deployment
(or sometimes the first page request, depending on the configuration), the JSP is
compiled into a servlet class. This process combines the HTML and the scriptlets
in the JSP file in the _jspService method that populates the HttpResponse
variable. Combining a lot of complex Java code with HTML can result in a
complicated JSP file. Except for simple examples, avoid this practice.

One way around this situation is to use custom JSP tag libraries, which are tags
defined by developers that initiate calls to a Java class within a JSP page. These
classes implement Tag, BodyTag, or IterationTag interfaces from the
javax.servlet.jsp.tagext package, which is part of the Java EE framework.
Each tag library is defined by a .tld file that includes the location and content of
the taglib class file. Although not strictly required, you need to include a
reference to this file in the deployment descriptor.

The most widely available tag library is the JavaServer Pages Standard Tag
Library (JSTL), which provides simple tags to handle simple operations required
in most JSP programming tasks, including looping, globalization, XML
manipulation, and even processing of SQL result sets. The RedBank application
uses JSTL tags to display tables and add URLs to a page. The final section of
this chapter contains references to learn more about JSP and tag libraries.

18.1.2 Model view controller pattern

The model view controller (MVC) concept is a pattern used many times when
describing and building applications with a user interface component, including
Java EE applications.

XML-based tag files: JSP 2.0 introduces XML-based tag files. Tag files no
longer require a .tld file. Tags can now be developed using JSP or XML
syntax.
 Chapter 18. Developing web applications using JavaServer Pages (JSP) and servlets 989

Following the MVC concept, a software application or module must have its
business logic (model) separated from its presentation logic (view). This
separation is desirable, because it is likely that the view will change over time,
and it might not be necessary to change the business logic each time. Also,
many applications might have multiple views of the same business model, and if
the view is not separated, adding an additional view causes considerable
disruptions and increases the component’s complexity.

You can achieve this separation through the layering of the component into a
model layer (responsible for implementing the business logic) and a view layer
(responsible for rendering the user interface to a specific client type). In addition,
the controller layer sits between those two layers, intercepting requests from the
view (or presentation) layer and mapping them to calls to the business model,
then returning the response based on a response page selected by the controller
layer. The key advantage provided by the controller layer is that the presentation
can focus only on the presentation aspects of the application and leave the flow
control and mapping to the controller layer.

You can achieve this separation in Java EE applications in several ways. Various
technologies, such as JSF and Struts, differ in the ways that they apply the MVC
pattern. Our focus in this chapter is on JSP and servlets that fit into the view and
controller layers of the MVC pattern. If only servlets and JSP are used in an
application, the details of how to implement the controller layer are left to
whatever mechanism the development team decides is appropriate and that they
can create using Java classes.

In the example later in this chapter, a command pattern (see Eric Gamma, et al.,
Design Patterns: Elements of Reusable Object-Oriented Software, Addison
Wesley, 1995, ISBN 0-201-63361-2) is applied to encompass the request to the
business logic and interactions made with the business logic through a facade
class. In the other interactions, the request is sent directly to a servlet that makes
method calls through the facade.

18.2 Web development tooling

Rational Application Developer includes many web development tools for building
static and dynamic web applications. Many of these web development tools focus
on technologies, such as Web 2.0 technologies, portals, and JSF, which are
described in other chapters. In this section, we highlight the following tools and
features, which focus on the more fundamental aspects of web development:

� Web perspective and views
� Page Designer
� Page templates
990 Rational Application Developer for WebSphere Software V8 Programming Guide

� CSS Designer
� Security Editor
� File creation wizards

18.2.1 Web perspective and views

The Web perspective helps web developers build and edit web resources, such
as servlets, JSP, HTML pages, style sheets images, and deployment descriptor
files.

To open the Web perspective, from the workbench, select Window Open
Perspective Web. Figure 18-4 shows the default layout of the Web
perspective with a simple index.html that has been published to the local test
service and is being viewed.

Figure 18-4 Web perspective in Rational Application Developer
 Chapter 18. Developing web applications using JavaServer Pages (JSP) and servlets 991

In the Web perspective, many views are accessible (by selecting Window
Show View), several of which are already open in the Web perspective default
setting.

By default, the following views are available in the Web perspective:

� Console view: This view shows output to SystemOut from any running
processes.

� Outline view: This view shows an outline of the file being viewed. For HTML
and JSP, this view shows a hierarchy of tags around the current cursor
position. Selecting a tag in this view moves the cursor in the main view to the
selected element. This view is particularly useful for moving quickly around a
large HTML file.

� Page Data view: When editing JSP files, this view gives a list of any page or
scripting variables available.

� Page Designer view: This view is a “what you see is what you get”
(WYSIWYG) editor for JSP and HTML that consists of four tabs: Design
(where the user can drag components to the page), Source (shows the
HTML), Split (shows the Design in the top half and the Source in the bottom
half), and Preview (shows how the final page looks in either Internet Explorer
or Firefox).

� Palette view: When editing JSP or HTML files, this view provides a list of
HTML items (arranged in drawers) that can be dragged and dropped onto
pages.

� Problems view: This view shows ding errors, warnings, or informational
messages for the current workspace.

� Enterprise Explorer view: This view shows a hierarchy view of all projects,
folders, and files in the workspace. In the Web perspective, it structures the
information within web projects in a way that makes navigation easier.

� Properties view: This view shows the properties for the item currently selected
in the main editor.

� Quick Edit view: When editing HTML or JSP files, this view provides a
mechanism to quickly add Java Script to a given window component on
certain events, for example, onClick.

� Servers view: Use this view if you want to start or stop test servers while
debugging.

� Services view: This view shows a summary of all the web services present in
the projects on the workspace.

� Snippets view: In this view, you can edit small bits of code, including adding
and editing actions assigned to tags. You can drag items from the Snippets
view to the Quick Edit view.
992 Rational Application Developer for WebSphere Software V8 Programming Guide

� Styles view: With this view, you can edit and apply both pre-built and
user-defined styles sheets to HTML elements and files.

� Thumbnails view: Given the selection of a particular folder in the Project
Explorer view, this view shows the contents of the folder.

18.2.2 Page Designer

The Page Designer is the primary editor within Rational Application Developer for
building HTML, XHTML, JSP, and JSF source code. Web designers can drag and
drop web page items from the Palette view to the desired position on the web
page.

It provides the following representations of a page:

� The Design tab provides a WYSIWYG environment to visually design the
contents of the page. A good development technique is to work within the
Design tab of the Page Designer and build up the HTML contents by clicking
and dragging items from the Palette view onto the page and arranging them
with the mouse or editing properties directly from the Properties view. Tags
can be positioned as absolute instead of relative.

� The Source tab provides access to the page source code showing the raw
HTML or JSP contents. You can use the Source tab to change details that are
not immediately obvious in the Design tab.

� The Split tab (Figure 18-5 on page 994) combines the Source tab and either
the Design tab or the Preview tab in a split-screen view. The Split tab is
helpful to see the Design tab and Source tab in one view; the changes are
immediately reflected.

More information: For more information about the Web perspective and
views, see 4.3.19, “Web perspective” on page 132.
 Chapter 18. Developing web applications using JavaServer Pages (JSP) and servlets 993

Figure 18-5 Page Designer Split tab

� The Preview tab shows how the page will look when it is displayed in a web
browser. You can use the Preview tab throughout the process to verify the
look of the final result in either Firefox or Internet Explorer.

Another important feature of Page Designer is the ability to automatically convert
HTML elements to related elements. For example, there are menu options to
convert Text entry fields to Password entry fields, which you can achieve from the
context menu (Convert Widget HTML Form Widgets) of the element in the
design view (see Figure 18-6 on page 995). Rational Application Developer
comments the original element for reference. Rational Application Developer
supports conversions between selected HTML and Dojo widgets.

Split tab

Palette view
994 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 18-6 Convert Widget in Page Designer

Finally, HTML content is often provided to a development team and created from
tools other than Rational Application Developer. These files can be imported by
using the context menu on the target directory, selecting File Import
General File System, browsing to the new file, and clicking Import. When an
imported file is opened in the Page Designer, all the standard editing features are
available.

18.2.3 Page templates

A page template contains common areas that you want to appear on all pages,
and content areas that are intended to be unique on each page. Page templates
are used to provide a common look and feel for a web project.

The Page Template File creation wizard is used to create these files. After being
created, the file can be modified in the Page Designer. The page templates are
stored as *.htpl files for HTML pages and *.jtpl files for JSP pages. Changes
to the page template are reflected in pages that use that template. Templates can
be applied to individual pages, groups of pages, or applied to an entire web
project, and they can be replaced or updated for a given website. Areas can be

More information: For a detailed example of using the Page Designer, see
18.5.8, “Developing the static web resources” on page 1022, and 18.5.10,
“Working with JSP” on page 1036.
 Chapter 18. Developing web applications using JavaServer Pages (JSP) and servlets 995

marked as read-only, meaning that the Page Designer does not allow the
developer to modify those areas, ensuring that certain designated areas are
never changed accidently.

When creating a new page template, you are prompted to choose whether the
template will be a dynamic page template or a design-time template:

� Dynamic page templates use Struts-Tiles technology to generate pages on
the web server.

� Design-time templates allow changes to be made and applied to the template
at design or build time, but after an application is deployed and running, the
page template cannot be changed. Design time templates do not rely on any
technologies other than the standard Java EE servlet libraries.

18.2.4 CSS Designer

Cascading style sheets (CSS) are used with HTML pages to ensure that an
application has consistent colors, fonts, and sizes across all pages. You can
create a default style sheet when creating a new project. Several samples are
included with Rational Application Developer.

At the start of the development effort, decide on the overall theme (color or fonts)
for a web application and create the style sheet. Then as you create the HTML
and JSP files, you can select that style sheet to ensure that web pages have a
consistent look and feel. Style sheets are commonly kept in the
WebContent/theme folder.

The CSS Designer is used to modify cascading style sheet (*.css) files. It
provides two panels. On the right side, it shows all the text types and their
respective fonts, sizes, and colors, which are all editable. On the left side, you
see a sample of how the various settings will look. Any changes that are made
are immediately applied to the design in the Page Designer if the HTML file is
linked to the CSS file.

18.2.5 Security Editor

Rational Application Developer features the Security Editor, which provides a
wizard to specify security groups within a web application and the URLs to which
a group has access. With the Java EE specification, you can define, in the
deployment descriptor, security groups and levels of access to defined sets of

More information: For an example of customizing style sheets used by a
page template, see 18.5.6, “Customizing a style sheet” on page 1019.
996 Rational Application Developer for WebSphere Software V8 Programming Guide

URLs. The Security Editor (Figure 18-7) provides an interface for this
information.

Selecting an entry in the Security Roles pane shows the resources members of
that role in the Resources pane and the constraint rules that are applicable for
the role and resource (if one is selected). Each entry in the Constraints window
has a list of resource collections that specify the resources available to it and
which HTTP methods can be used to access these resources. Using context
menus, it is possible to create new roles and security constraints and to add
resource collections to these constraints.

Figure 18-7 Security Editor

The Java EE security specification defines the mechanism for declaring groups
and the URL sets that each group can access, but it is up to the Web container to
map this information to an external security system. WebSphere’s administrative
 Chapter 18. Developing web applications using JavaServer Pages (JSP) and servlets 997

console provides the mechanism to configure an external Lightweight Directory
Access Protocol (LDAP) directory. See the IBM Redbooks publication
Experience J2EE! Using WebSphere Application Server V6.1, SG24-7297.

18.2.6 File creation wizards

Rational Application Developer provides many web development file creation
wizards. You can access them by selecting File New Other. Then from the
Select a wizard window, expand the Web folder and select the type of file
required. These wizards prompt you for the key features of the new artifact and
can help you to quickly get a skeleton of the component that you need. You can
always manipulate the artifact created by the wizard directly, if necessary.

The following wizards are available in the Web perspective:

� CSS: You can use the CSS file wizard to create a new cascading style sheet
(CSS) in a specified folder.

� Dynamic Web Project: This wizard steps you through the creation of a new
web project, including which features the project uses and any page
templates present.

� Web Fragment Project: This wizard guides you through the steps to make a
web fragment project, including the link to the target dynamic web project.

� Filter: This wizard constructs a skeleton Java class for a Java EE filter, which
provides a mechanism for performing processing on a web request before it
reaches a servlet. The wizard also updates the web.xml file with the filter
details.

� Filter Mapping: This wizard steps you through the creation of a set of URLs
with which to map a Java EE filter. The result of this wizard is stored in the
deployment descriptor.

� HTML: This wizard steps you through the creation an HTML file in a specified
folder, with the option to use HTML Templates.

� JSP: This wizard steps you through the creation of a JSP file in a specified
folder, with the option to use JSP Templates.

� Listener: You can use a listener to monitor and react to events in a servlet’s or
application’s life cycle by defining methods that are invoked when life-cycle
events occur. This wizard guides you through the creation of such a listener
and to select the application life-cycle events to which to listen.

� Security Constraint: You can use this wizard to populate the
<security-constraint> in the deployment descriptor that contains a set of
URLs and a set of http methods, which members of a particular security role
are entitled to access.
998 Rational Application Developer for WebSphere Software V8 Programming Guide

� Security Role: This wizard adds a <security-role> element to the
deployment descriptor.

� Servlet: You can use this wizard to create a skeleton servlet class and add the
servlet with appropriate annotations or add to the deployment descriptor.

� Servlet Mapping: This wizard steps you through the creation of a new URL to
servlet mapping and adds appropriate annotations or information to the
deployment descriptor.

� Static Web Project: This wizard steps you through building a new web project
containing only static pages.

� JSP Tag: This wizard steps you through creating a new Tag library file.

� Web Page: By using this wizard, you can create an HTML or JSP file in a
specified folder, with the option to create from a large number of page
templates.

� Web Page Template: The Page Template File wizard is used to create new
page template files in a specified folder. You can optionally create from a page
template or create as a JSP fragment and define the markup language
(HTML, HTML Frameset, Compact HTML, XHTML, XHTML Frameset, and
Wireless Markup Language (WML) 1.3). You can select from one of the
following models: Template containing Faces Components, Template
containing only HTML, or Template containing JSP.

18.3 Rational Application Developer new features

Significant improvements to the previous version of Rational Application
Developer have been made in the tools that are available for creating artifacts
within a web application:

� Support for JEE Servlet 3.0 specification: The Servlet 3.0 specification
revision is a major revision of the specification and includes the following
changes:

– Use of annotations versus deployment descriptor: Under the servlet 3.0
specification, servlets, servlet mappings, filters, and listeners can be
declared by using annotations rather than being declared in the
deployment descriptor. This feature reduces the amount of configuration
required for each web application. The tooling support in Rational
Application Developer has been changed to cater for declarations made in
annotations or the deployment descriptor.

Dojo, Struts, and JSF: Several wizards are available in the Web perspective
specifically for Dojo, widgets, and JSF, which we discuss in other chapters.
 Chapter 18. Developing web applications using JavaServer Pages (JSP) and servlets 999

– Support for Web Fragment projects: A Web Fragment project is a new
project type that allows logical partitioning of the web application in such a
way that the utility projects or frameworks being used within the web
application can define all the artifacts without requiring you to edit or add
information in web.xml. There is a reference inside the web project to the
Web Fragment project, which contributes to it. You do not need to update
the deployment descriptor to declare the web fragment project used.

– Ability to store an EJB directly in a WAR: New to the Servlet 3.0
specification and Rational Application Developer is the ability to include
EJBs directly in the WAR.

– Ability to programatically add and remove servlets: The Servlet 3.0
specification includes API changes to allow developers to add and remove
servlets while an application executes. However, there are no specific
features to achieve this capability in Rational Application Developer.

� HTML support: Page Designer does not support the new elements and
attributes that are defined in the HTML5 specification. HTML5 is only
supported in our source editors. Page Designer support for earlier versions of
HTML remains. Elements, such as frameset, and the height/width, spacing,
and padding attributes within tables are not recommended in HTML5. If these
elements and attributes are used, Page Designer underlines the attribute or
element and raises a warning.

� Page Designer enhancements:

– The preview tab now includes options for previewing a web page in
Internet Explorer or Mozilla Firefox.

– There is a feature to convert HTML widgets to related widgets through a
context menu.

– Users can show all pages affected by a CSS style rule. When a CSS file is
edited, users can see the affected HTML or JSP files in the search view
and decide whether to keep the modified style rule or not.

– There is support for Scalable Vector Graphics (SVG) images and Flash
widgets in Page Designer.

– JSP fragment files (JSPF) are a mechanism to break up JSP pages into
reusable blocks (fragments) that can be assembled on a standard JSP
page. Page Designer now includes additional tooling to understand how a
fragment will be used when it is included in separate contexts.
1000 Rational Application Developer for WebSphere Software V8 Programming Guide

18.4 RedBank application design

In this section, we describe the design for the ITSO RedBank web application. We
outline the design of the RedBank application and explain how it fits into the Java
EE web framework, particularly with regard to JSP and servlets.

18.4.1 Model

The model for the RedBank project is implemented by using a simple Java project
and exposed to other components through a facade interface (called ITSOBank).
The main ITSOBank object is a Singleton object, accessible by a single static
public method called getBank.

The ITSOBank object is composed of the other business objects that make up the
application, including Customer, Account, and Transaction. The facade into the
bank object includes methods, such as getCustomer, getAccounts, and withdraw,
deposit, and transfer. Figure 18-8 shows a simplified Unified Modeling
Language (UML) class diagram of the model. We describe the model in detail in
Chapter 7, “Developing Java applications” on page 229.

Figure 18-8 Class diagram for RedBank model

The underlying technology to store data that is used by the ITSOBank application
involves Java HashMaps. These Java HashMaps are populated at startup in the
constructor, and obviously, the data is lost every time that the application is

Bank (interface)
searchCustomerBySsn()
getAccountsForCustomer()
SearchAccountByAccountNumber()
getTransactionsForAccount()
addCustomer()
updateCustomer()
deposit()
withdraw()
transfer()
......

Customer
getSsn()
getFirstName()
getLastName()
getTitle()
getAccounts()

Account
getBalance()
getAccountNumber()
getTransactions()
processTransaction()

Transaction (abstract class)
get/setTimeStamp()
get/setAmount()
getTransactionId()
getTransactionType()
process()

ITSOBank
static Bank getBank()
...

stores HashMap of

DebitCredit
 Chapter 18. Developing web applications using JavaServer Pages (JSP) and servlets 1001

restarted. In an actual client example, the data might be stored in a database, but
for the purposes of this example, HashMaps are acceptable. In Chapter 12,
“Developing Enterprise JavaBeans (EJB) applications” on page 577, the
ITSOBank model is modified to run as EJB and Java Persistence API (JPA)
entities, and the application data is stored in a database.

18.4.2 View layer

The view layer of the RedBank application consists of four HTML files and four
JSP files. The application home page is the index.html file that contains a link to
four HTML pages (the welcome.html, rates.html, insurance.html, and
redbank.html pages). The welcome.html, rates.html, and insurance.html
pages are simple static HTML pages that show information without forms or entry
fields.

The redbank.html page contains a single form in which a user can type the
customer ID to access customer services, such as accessing a balance and
performing transactions. Although the account number is verified, we do not
cover security issues (logon and password) in this example.

From the redbank.html page, the user sees the listAccounts.jsp page, which
shows the customer’s details, a list of accounts, and a button to log out.

Selecting an account opens the accountDetails.jsp page, which shows the
balance for the selected account and a form through which a transaction can be
performed. This page also shows the current account number and balance,
which are both dynamic values. A simple JavaScript code controls whether the
amount and destination account fields are available, depending on the option
selected. One of the transaction options on the accountDetails.jsp page is List
Transactions, which invokes the listTransactions.jsp page.

If anything goes wrong in the regular flow of events, the exception page
(showException.jsp) is displayed to inform the user of the error.

The listAccounts.jsp, accountDetails.jsp, listTransactions.jsp, and
showException.jsp JSP pages make up the dynamic pages of the RedBank
application.

18.4.3 Controller layer

The controller layer was implemented using two strategies, one straightforward
strategy and one complex strategy, which is more applicable to an actual client
situation.
1002 Rational Application Developer for WebSphere Software V8 Programming Guide

The application has the following servlets:

ListAccounts Gets the list of accounts for one customer.

AccountDetails Shows the account balance and the selection of
operations: list transactions, deposit, withdraw, and
transfer.

Logout Invalidates the session data.

PerformTransaction Performs the selected operation by calling the appropriate
control action: ListTransactions, Deposit, Withdraw, or
Transfer.

UpdateCustomer Updates the customer information.

The first three servlets use a simple function call from the servlet to the model
classes to implement their controller logic and then use RequestDispatcher to
forward control to another JSP or HTML resource. Figure 18-9 shows the pattern
that is used in the sequence diagram.

Figure 18-9 ListAccounts sequence diagram

User fills out SSN on
RedBank screen and
clicks Submit HttpPost to

ListAccounts
servlet

calls doPost()

searchCustomerBySsn()

getAccountsForCustomer()

Returns page
showing the list
of accounts

forwardRequest()
(through the RequestDispatcher)

User's
Browser

 Application
Server

List
Accounts

Servlet
ITSOBank listAccounts.jsp
 Chapter 18. Developing web applications using JavaServer Pages (JSP) and servlets 1003

PerformTransaction uses a separate implementation pattern. It acts as a front
controller, receiving the HTTP request and passing it to the appropriate control
action object. These objects are responsible for carrying out the control of the
application. Figure 18-10 shows a sequence diagram for the list transaction
operation from the account details page, including the function calls through
PerformTransaction, the ListTransactionsCommand class, onto the model
classes, and forwarding to the appropriate JSP.

Figure 18-10 PerformTransaction sequence diagram

The Struts framework provides a much more detailed implementation of this
strategy and in a standardized way.

User's
Browser

Application
Server

PerformTransaction
Servlet

ListTransactions
Command ITSOBank

User selects List Transactions
from the account details screen

HttpPost to
ListAccounts
servlet.

calls doPost() with
transaction=list calls execute()

Returns page
showing the list
of accounts

listTransactions.jsp

searchAccountByAccountNumber()

getTransactionsForAccount()

forwardRequest()
(through the RequestDispatcher)

getForwardView()

Action objects: Action objects, or commands, are part of the Command
design pattern. For more information, see Eric Gamma, et al., Design
Patterns: Elements of Reusable Object-Oriented Software, Addison Wesley,
1995, ISBN 0-201-63361-2.
1004 Rational Application Developer for WebSphere Software V8 Programming Guide

18.5 Implementing the RedBank application

In this section, we use an example to introduce you to the tools within Rational
Application Developer that facilitate the development of web applications. In the
example, we create separate web artifacts (including page templates, HTML,
JSP, and servlets) and demonstrate how to use the available tools.

The section is organized in the following way:

� Creating the web project
� Importing the Java RedBank model
� Defining the empty web pages
� Creating frameset pages
� Customizing frameset web page areas
� Customizing a style sheet
� Verifying the site navigation and page templates
� Developing the static web resources
� Developing the dynamic web resources
� Working with JSP

At the end of this section, the RedBank application will be ready for testing.

18.5.1 Creating the web project

The first step is to create a web project in the workspace.

Two types of web projects are available in Rational Application Developer: static
and dynamic. Static web projects contain static HTML resources and no Java
code and thus are comparatively simple. To demonstrate as many features of
Rational Application Developer as possible, and because the RedBank application
contains both static and dynamic content, we use a dynamic web project for this
example.

In Rational Application Developer, perform the following steps:

1. Select Window Open Perspective Web to open the Web perspective.

2. To create a new web project, select File New Dynamic Web Project.

Enabling web capabilities: Before you begin, ensure that web capabilities
are enabled. Select Windows Preferences, expand General
Capabilities, and ensure that the Web Developer options (including basic,
typical, and advanced) are selected.
 Chapter 18. Developing web applications using JavaServer Pages (JSP) and servlets 1005

3. In the New Dynamic Web Project window (Figure 18-11 on page 1007), enter
the following items:

a. In the Name field, type RAD8BankBasicWeb.

b. For Project location, select Use Default (default). This setting specifies
where to place the project files on the file system. It is also acceptable to
use the default option of leaving them in the workspace.

c. The Target Runtime option shows the supported test environments that
have been installed. Select WebSphere Application Server v8.0 Beta.

d. For the Dynamic Web Module version, select 3.0.

e. For Configuration, define the configuration as the last item.

f. For the EAR Membership, select Add module to an EAR (default).
Dynamic web projects, such as the one we are creating, run exclusively
within an enterprise application. For this reason, you must either create a
new EAR project or select an existing project.

g. For the EAR Project Name, enter RAD8BankBasicWebEAR (the default).
Because we select Add module to an EAR, the wizard creates a new
EAR project.

Target Server Environment: Although it is possible to re-create the
sample using WebSphere Application Server V7.0 Beta, the sample
code provided in this chapter does not work if WebSphere Application
Server V7 is chosen. It is written in Servlet Version 3.0, which is only
supported by WebSphere Application Server V8 Beta and later.
1006 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 18-11 New Dynamic Web Project window

h. For the Configuration section, click Modify.

4. In the Project Facets window (Figure 18-12 on page 1008), select the
additional features Default Style Sheet and JSTL. Click OK and the
configuration changes to <custom>.
 Chapter 18. Developing web applications using JavaServer Pages (JSP) and servlets 1007

Figure 18-12 Dynamic Web Project facets

5. Click Next. In the Java window for the New Dynamic Web Project
(Figure 18-13 on page 1009), accept the value src.

Tips:

� For the options that have a down arrow, you can alter the underlying
version of the feature that is selected. By default, the latest version that
is available is selected.

� From this window, to save the configuration for future projects, you can
click Save and enter a configuration name and a description.
1008 Rational Application Developer for WebSphere Software V8 Programming Guide

This action specifies the directory where any Java source code used by the
web application is stored. The default value of src is sufficient for most cases.

Figure 18-13 New Dynamic Web Project: Java window

6. In the Web Module window (Figure 18-14 on page 1010), accept the following
default options:

a. For the Context Root, accept the value RAD8BankBasicWeb.

The context root defines the base of the URL for the web application. The
context root is the root part of the URI under which all the application
resources are going to be placed, and by which they are referenced later.
It is also the top-level directory for your web application when it is deployed
to an application server.

b. For the Content Directory, accept the value WebContent.

This value specifies the directory where the files intended for the WAR file
are created. All the contents of the WEB-INF directory, HTML, JSP, images,
and any other files that are deployed with the application are contained
under this directory. Usually, the folder WebContent is sufficient.

c. Select Generate web.xml deployment descriptor to create the web.xml
file and IBM extensions.

d. Click Finish.
 Chapter 18. Developing web applications using JavaServer Pages (JSP) and servlets 1009

Figure 18-14 New Dynamic Web Project: Web Module window

The Technology Quickstart window opens. You can browse the Help topics for
the features. When you finish, close the Technology Quickstart.

Figure 18-15 on page 1011 shows the web project directory structure for the
newly created RAD8BankBasicWeb project and its associated RAD8BankBasicEAR
project (enterprise application).

The following folders are shown under the web project:

� Deployment Descriptor

This folder shows an abstracted view of the contents of the project’s web.xml
file. It includes sub-folders for the major components that make up a web
project configuration, including servlets and servlet mappings, filters and filter
mappings, listeners, security roles, and references.

� Web Site Navigation

Clicking this folder starts the tool for editing the page navigation structure.

� Java Resources: src

This folder contains the Java source code for regular classes, JavaBeans, and
servlets. When resources are added to a web project, they are automatically
compiled, and the generated class files are added to the
WebContent\WEB-INF\classes folder.
1010 Rational Application Developer for WebSphere Software V8 Programming Guide

� WebContent

This folder holds the contents of the WAR file that is deployed to the server. It
contains all the web resources, including compiled Java classes and servlets,
HTML files, JSP, and graphics needed for the application.

Figure 18-15 Web project directory structure

Important: Files that are not under WebContent are not deployed when the
web project is published. Typically, these files include Java source and SQL
files. Make sure that you place everything that is to be published under the
WebContent folder.

Structured view into web
deployment descriptor

Java source code

WebContent folder that is
deployed to the WebSphere
Application Server

Web deployment descriptor
files

Structured view into EAR
deployment descriptor
 Chapter 18. Developing web applications using JavaServer Pages (JSP) and servlets 1011

18.5.2 Importing the Java RedBank model

The ITSOBank web application requires the classes that we created in Chapter 7,
“Developing Java applications” on page 229. In this section, we explain how to
import the project files. If you already have the final project in the workspace, you
can skip this import.

To import the RedBank model, follow these steps:

1. Locate the file c:\7835codesolution\jsp\RAD80Java.zip.

2. From the Import menu option (File Import), select General Existing
Projects into Workspace and click Next.

3. Choose the Select archive file option that is selected and click Browse.
Navigate to RAD80Java.zip and click OK.

4. Click Finish. The Java project is imported into the workspace.

To verify that the model is running, you can run the main method of the
itso.rad80.bank.client.BankClient class, which invokes the bank facade
classes directly, makes simple transactions directly, and prints the results to the
console.

We add a reference to the RAD80Java project in the RAD8BankBasicWeb web
application in “Adding the RAD80Java JAR to the web project” on page 1027.

18.5.3 Defining the empty web pages

In this section, we show how to define the skeleton pages for both the static and
dynamic web pages that make up the RedBank application. We use the New Web
Page wizard. When we finish, we will have a working application that will
demonstrate the page navigation of the application.

We create an HTML or JSP page for each of the rows shown in Table 18-1.

Table 18-1 Web pages of the RedBank application

HTML or JSP file HTML version

welcome.html 5

index.html 4.01

rates.html 5

insurance.html 5

redbank.html 5
1012 Rational Application Developer for WebSphere Software V8 Programming Guide

Importing web resources for the RedBank application
Prior to creating the web pages, we must import resources to provide the correct
look and feel for web pages used in our example, such as images and CSS files.
To import the resources, follow these steps:

1. Expand RAD8BankBasicWeb WebContent,and from the context menu,
select Import.

2. Select General File System and click Next.

3. In the From directory, type c:\7835code\webapp, select the images and
theme folders and click Finish.

The itso_logo.gif and c.gif images and the gray.css file are imported.

Defining the empty HTML pages
To create the welcome.html web page, complete the following steps:

1. From the Menu, select New Web Page.

2. In the New Web Page window, enter the following values:

a. For the File name, type welcome.html.

b. For the Folder, type /RAD8BankBasicWeb/WebContent.

c. For the Template, expand Basic Templates and select HTML/XHTML.

d. Configure the document markup options by clicking Options. Ensure that
the Markup Language is set to HTML. Ensure that the Document Type is
set to HTML 5.

e. Select Style Sheets, enter /theme/gray.css as the style sheet, and
remove the Master.css.

3. Click Close and then click Finish to create the HTML page.

4. If the Split view does not happen automatically, open the new file in the Page
Designer view and move to the Split view.

listAccounts.jsp 5

accountDetails.jsp 5

listTransactions.jsp 5

showException.jsp 5

HTML or JSP file HTML version
 Chapter 18. Developing web applications using JavaServer Pages (JSP) and servlets 1013

5. Locate the title tag and change the value stored inside it to this value:

<title>ITSO Home</title>

The title that is shown in the top half reflects the new title.

6. Locate the body tag and enter text to identify the page:

<body>Welcome to Redbank</body>

6) Save the web page.

Complete the previous steps to create HTML pages for the other HTML pages
(rates.html, insurance.html, and redbank.html).

Defining the empty JSP pages
To create the listAccounts.jsp web page, complete the following steps:

1. From the top Menu, select New Web Page.

2. In the New Web Page window, complete the following actions:

a. For the File name, type listAccounts.jsp.

b. For the Template, expand Basic Templates and select JSP.

c. Click Options. Verify the gray.css cascade style sheet and that the
document type is HTML 5.

d. Click Close.

3. Click Finish to create the page. Close the editor that opens.

Complete the previous steps to create HTML pages for the other JSP pages
(accountDetails.jsp, listTransactions.jsp, and showException.jsp).

18.5.4 Creating frameset pages

The RedBank user interface (view) is made up of a combination of static HTML
pages and dynamic JSP. In this section, we explain how to create an HTML
frameset page (index.html) that will define the layout of the web pages created
in 18.5.3, “Defining the empty web pages” on page 1012.

Important: The spelling and capitalization of the JSP file names must be
typed exactly as shown.

index.html: By default, a web server looks for the index.html (or index.htm)
page when a web project is run. Although you can change this behavior, use
index.html as the top-level page name.
1014 Rational Application Developer for WebSphere Software V8 Programming Guide

Frameset pages provide an efficient method for creating a common layout for the
user interface of the web application. A frameset page has the same structure as
a table, where the rows are defined in a tag element called <frameset> and the
columns are individually defined in a tag element called <frame>. An alternative
approach is to use Page Templates for which Rational Application Developer also
has tooling support.

In our example, we only have three areas and no column separations:

� Header area: With the company logo and the navigation bar to other pages
� Workspace area: Where the rest of the operational pages are displayed
� Footer area: With the option to return to the main menu

Creating an HTML frameset page
To create a new HTML frameset page (index.html) to use for the RedBank layout,
perform the following steps:

1. Right-click WebContent and select New Web Page.

2. In the New Web Page window (Figure 18-16 on page 1016), enter the
following values:

a. For the File name, type index.html.

b. For the Template, select Basic Templates HTML/XHTML.

c. Click Options. In the New Web Page Options window, for the Markup
Language, select XHTML Frameset. For the Document Type, select
HTML 4.01 Frameset. Click Close.

d. Click Finish to create the index.html frameset.

Important: In this example, the index.html page is HTML 4.01, and all
other pages are HTML5. This is to demonstrate the support for both
standards and also because the index.html page uses frameset tags.
Frameset tags are not recommended for HTML5. There is no support
for building these frameset tags in Rational Application Developer.
 Chapter 18. Developing web applications using JavaServer Pages (JSP) and servlets 1015

Figure 18-16 Creating a frameset page

Creating an HTML header for all web pages
Create the static HTML web page for the header area that will show the logo and
heading information:

1. Right-click WebContent and select New Web Page.

2. In the New Web Page window, enter the following values:

a. For the File name, type header.html.

b. For the Template, select Basic Templates HTML/XHTML.

c. Click Options. In the New Web Page Options window, for the Markup
Language, select HTML. For the Document Type, select HTML 5 and click
Close.

d. Click Finish to create the static header.html.
1016 Rational Application Developer for WebSphere Software V8 Programming Guide

3. Import the code for the logo, title, and action bar into the header.html file:

a. Locate the c:\7835code\webapp\html\SnippetForHeaderHTML.txt file and
open it in a simple text editor (for example, Notepad).

b. Open the header.html file in the Page Designer and select the Source
tab.

c. Paste the code from SnippetForHeaderHTML.txt between the <body> and
</body> tags.

d. Save the header.html file. Select the Preview tab to verify that the page
has the ITSO RedBank text and logo as desired.

Creating an HTML footer for all web pages
Create the web page that holds the source of the footer area in the same way as
for the header page:

1. Create a new web page named footer.html under WebContent.

2. Copy and paste the code from SnippetForFooterHTML.txt between the
<body> and </body> tags.

3. Save the footer.html file. Select the Preview tab to see the newly created
link.

18.5.5 Customizing frameset web page areas

Next we add frame references to the pages that are part of the user interface
frame areas. We explain how to customize the following elements of the HTML
page template (index.html, header.html, and footer.html).

Defining the areas in the frameset
To create the mentioned areas/frames in the frameset and link the areas with the
previously created header.html and footer.html web pages, follow these steps:

1. In the Enterprise Explorer, expand RAD8BankBasicWeb WebContent
and open the index.html web page.

2. In the Page Designer, select the Split tab to work simultaneously with the
source code and interface design.

Warnings: The sample provided uses tags that are invalid for HTML5,
and Rational Application Developer generates warnings indicating that
these attributes and tags are obsolete. To be fully HTML5-compliant,
refactor this information. However, these warnings do not affect the
operation of the RedBank application, because HTML5-compliant web
browsers are backward-compatible.
 Chapter 18. Developing web applications using JavaServer Pages (JSP) and servlets 1017

3. To define the frameset areas, add a rows attribute to the frameset tag by
following these steps:

a. In the Outline view, right-click the frameset tag and select Add
Attribute New Attribute.

b. In the New Attribute window, for the Name, type rows. For the value, type
20%,70%,10% and click OK.

c. Verify in the Source tag the value <frameset rows="20%,70%,10%">.

4. Link the header area with the header.html web page by following these steps
on index.html:

a. In the Outline view, expand html frameset and select the frame node.

b. In the Properties view (Figure 18-17), select the following attributes on the
frame tab:

i. For the URL, type header.html. Or, click the Browse icon () and
select File. Then in the File Selection window, select header.html and
click OK.

ii. For the Frame name, type headerArea.

iii. Leave the rest of the values by default, and save the changes.

Figure 18-17 Frameset properties for index.html

c. On the Split tab of the Page Designer, verify that the <frame> code was
replaced by <frame src="header.html" name="headerArea">.

5. To link the workspace area, create a new frame and link it to the welcome.html
web page by using the following steps:

a. In the Outline view, right-click the frame tag and select Add After
frame.

b. In the Properties view, set the URL to welcome.html and the Frame name
to workspaceArea.

6. To link the footer area, create a new frame and link it to the footer.html web
page and frame name footerArea.
1018 Rational Application Developer for WebSphere Software V8 Programming Guide

7. From the Design tab, click the Show frames icon () to see the frames in
position (Figure 18-18).

Figure 18-18 Frame design

18.5.6 Customizing a style sheet

You can create style sheets when a web project is created (by selecting the
Default style sheet (CSS File) option in the Project Facets window), when a
page template is created from a sample, or at any time by starting the CSS File
creation wizard.

In the RedBank example, a style sheet named gray.css was imported as part of
the process of “Importing web resources for the RedBank application” on
page 1013. Both the HTML and the JSP web pages that we created reference
the gray.css style sheet to have a common appearance of fonts and colors.

In the following example, we customize the colors that are used on the navigation
bar links when you hover over a link. By default, the link text in the navigation bar
is orange (#cc6600) when hovering. We customize this color to red (#ff0000).

To customize the gray.css style sheet, follow these steps:

1. Open the theme/gray.css file in the CSS Designer (Figure 18-19 on
page 1020).

Outline view of
the index.html
page
 Chapter 18. Developing web applications using JavaServer Pages (JSP) and servlets 1019

Figure 18-19 CSS Designer: gray.css

By selecting the text style .nav-h-normal A:hover in the right pane (scroll
down to locate the style, or find the style in the Styles view at the bottom left),
the text in the left pane is displayed and highlighted. This makes it easy to
change the settings and see the change immediately.

2. Change the Hex HTML color code for .nav-h-normal A:hover from color:
#cc6600; (orange) to color: #ff0000; (red).

3. Customize the footer highlighted link text. Locate the .nav-f-normal A:hover
style, and change the color from #ff6600 (orange) to #ff0000 (red).

4. Save the file.

Now when you hover over the links in the header and footer, the color changes to
red, which can be demonstrated on the Preview tab of index.html. Obviously,
any number of changes can be applied to the style sheets to change the look and
feel of the application.

18.5.7 Verifying the site navigation and page templates

At this stage, although the pages have no content, verify that the page templates
look as expected and that the navigation links in the header and footer navigation
bars work as required:

1. Add text to identify each of the web pages created in the Web Site Navigation:
1020 Rational Application Developer for WebSphere Software V8 Programming Guide

a. Open the welcome.html page in the Page Designer and go to the Source
tab.

b. Type Welcome Page between the tags <body></body>. The final code is
displayed:

<body>Welcome Page</body>

c. Repeat these steps indicating the names in the body page for rates.html,
redbank.html, and insurance.html.

d. Start the WebSphere Application Server v8.0 Beta server in the Servers
view if it is not running. On the Servers view, from the context menu, select
Start and wait until the status indicator says Started.

2. In the Enterprise Explorer view, right-click index.html in
RAD8BankBasicWeb and select Run As Run on Server.

3. In the Run Server window, select Choose an existing server and choose
WebSphere Application Server v8.0 Beta. Click Finish.

After the application is published to the server, the browser pane shows the
index page. You can click the tabs for rates, redbank, and insurance to move
between these pages (Figure 18-20).

Figure 18-20 ITSO RedBank website

4. To remove the project from the test server, in the Servers view, right-click
WebSphere Application Server v8.0 Beta, select Add Remove Projects,
and remove RAD8BankBasicEAR.

Alternatively, expand WebSphere Application Server v8.0 Beta, right-click
the RAD8BankBasicEAR project and select Remove.

Hover with the
mouse over a link
 Chapter 18. Developing web applications using JavaServer Pages (JSP) and servlets 1021

18.5.8 Developing the static web resources

In this section, we create the content for the four static pages of our sample with
the objective of highlighting several of the features of the Page Designer. The
Page Designer facilitates the building of HTML pages by allowing the user to add
HTML elements from the Pallet view using the drag-and-drop method. HTML
fragments can also be imported directly into the source tab, as we also
demonstrate.

This section covers the following topics:

� Creating the welcome.html page content (text and links)
� Creating the rates.html page content (tables)
� Importing the insurance.html page contents
� Importing the redbank.html page contents

Creating the welcome.html page content (text and links)
The RedBank home page is index.html. The links to the child pages are included
as part of the header and footer of our page template. In the following example,
we add static text to the page and add a link to the page to the Redbooks
website:

1. Open the welcome.html file in Page Designer.

2. Select the Design tab.

3. Insert the welcome message text:

a. Delete the Welcome Page text.

b. Insert two line breaks:

i. In the Context Area, right-click and select Insert Line Break. Leave
Type as Normal (default).

ii. Repeat these steps for the second line break.

c. In the Context Area, right-click and select Insert Paragraph
Heading 1.

d. Enter the text Welcome to the ITSO RedBank! at the current cursor
position, which will place the text between the <h1> tags.

4. Insert a link to the Redbooks website:

a. Add an empty line after the heading.

b. From the menu bar, select Insert Paragraph Normal.

c. In the new area, enter the text For more information on the ITSO and
IBM Redbooks, please visit our Internet site.

d. Highlight the text Internet site, right-click, and select Insert Link.
1022 Rational Application Developer for WebSphere Software V8 Programming Guide

e. In the Insert Link window, select HTTP. In the URL field, type
http://www.ibm.com/redbooks and click OK.

5. Customize the text font face, size, and color. In the Properties view, perform
these steps:

a. Select Red in Redbooks from the text created in the previous step (use the
keyboard Shift and arrow keys).

b. On the Text tab of the Properties view, select the color Red to make this
partial word stand out. The source changes to ...IBM <font
color="red">Redbooks, ...

6. Save the page.

7. Select the Preview tab to view the page (Figure 18-21). Verify that the page
looks correct in both Firefox and Internet Explorer.

Figure 18-21 Preview of the welcome.html page

Creating the rates.html page content (tables)
In this example, you add a static table that contains interest rates by using the
Page Designer:

1. Open the rates.html file in Page Designer and select the Design tab.

2. Delete the Rates Page text.

3. In the Palette, expand HTML Tags.

4. Select and drag a Table from the Palette to the content area.

5. In the Insert Table window, for the Rows, Columns, and Padding inside cells
fields, enter 5.Then click OK.

6. Resize the table as desired.

7. Enter the descriptions and rates (as seen in Figure 18-22 on page 1024) in
the table.

Use to toggle between IE and Firefox views
 Chapter 18. Developing web applications using JavaServer Pages (JSP) and servlets 1023

8. Select each heading text, and in the Properties view, click the Bold icon ().

9. Save the page.

10.Select the Preview tab to view the page (Figure 18-22).

Figure 18-22 Preview of the rates.html page

Importing the insurance.html page contents
Next import the body of the insurance.html file:

1. Locate the c:\7835code\webapp\html\SnippetForInsuranceHTML.txt file and
open it in a simple text editor (for example, Notepad).

2. Open the insurance.html file in Page Designer and select the Source tab.

3. Select the text between the tags: <body></body>.

4. Insert the text from the SnippetForInsuranceHTML.txt file.

5. Save the file and switch to the Preview tab (Figure 18-23 on page 1025).

Table option: You can add additional table rows and columns or delete
rows and columns by using the Table menu option.
1024 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 18-23 Preview of the insurance.html page

Importing the redbank.html page contents
Repeat the import of the body of the redbank.html file:

1. Locate the c:\7835code\webapp\html\SnippetForBankHTML.txt file.

2. Replace the existing content area text with the text from the snippet.

3. Switch to the Preview tab (Figure 18-24).

Figure 18-24 Preview of the redbank.html page

The static HTML pages for the RedBank application are now complete. You can
navigate the site by using the header action bar and the footer itsohome link.
 Chapter 18. Developing web applications using JavaServer Pages (JSP) and servlets 1025

18.5.9 Developing the dynamic web resources

In addition to the tools created for building HTML content and designing the flow
and navigation in a web application, Rational Application Developer provides
several wizards to help you quickly build JavaServer Pages (JSP) and Java
servlets. You can use the products of these wizards as is or modify them to fit
specific needs.

The wizards support the creation of servlets and JSP. They also compile the Java
code and store the class files in the correct folders for publishing to your
application servers. As the wizards generate project resources, the appropriate
annotations are added to the generated classes (Servlet 3.0 and up) or the
deployment descriptor file (web.xml) is updated automatically with the
appropriate configuration information for the servlets that are created (versions
earlier than Servlet 3.0).

In the previous section, we explained how to create each of the static web pages.
In this section, we demonstrate the process of creating and working with servlets.
The example servlets are first built using the wizards. Then the code contents are
imported from the sample solution. In 18.5.10, “Working with JSP” on page 1036,
the JSP pages, which invoke the logic in these servlets, are created.

Working with servlets
As described in 18.1, “Introduction to Java EE web applications” on page 983,
servlets are flexible and scalable server-side Java components based on the
Java Servlet API, as defined in the JEE Servlet Specification. Servlets generate
dynamic content by responding to web client requests. When an HTTP request is
received by the application server, the web server determines, based on the
request URI, which servlet is responsible for answering that request and forwards
the request to that servlet. The servlet then performs its logic and builds the
response HTML that is returned back to the web client, or forwards the control to
a JSP page.

Rational Application Developer supports Version 3.0 of the JEE servlet
specification which means that servlets are defined by the WebServlet annotation
in the servlet class rather than by an entry in the web.xml file.

Rational Application Developer provides the features to make servlets easy to
develop and integrate into your web application. From the workbench, you can
develop, debug, and deploy servlets. You can also set breakpoints within servlets
and step through the code in a debugger. Any changes made are dynamically
folded into the running web application, without restarting the server each time.
1026 Rational Application Developer for WebSphere Software V8 Programming Guide

In the sections that follow, we implement the ListAccounts, UpdateCustomer,
AccountDetails, and Logout servlets. Then the command or action pattern is
applied in Java to implement the PerformTransaction servlet.

Adding the RAD80Java JAR to the web project
Before the implementation of the servlet classes can proceed, we must add a
reference from the RAD8BankBasicWeb project to the RAD80Java project, because
the servlets call the methods from classes in this project. This is achieved in
Rational Application Developer using a feature called Deployment Assembly,
which is available in the Properties window for each web project.

To add RAD80Java to the Deployment Assembly for RAD8BankBasicWeb, complete
the following steps.

To add the JAR file to the class path of the RAD8BankBasicWeb project, follow
these steps:

1. Highlight the RAD8BankBasicWeb project, right-click and select Properties.

2. On the Properties for RAD8BankBasicWeb dialog window, select the
Deployment Assembly link and click Add.

3. From the New Assembly Directive: Select Directive Type window, select
Project and click Next.

4. From the New Assembly Directive: Projects window, highlight the RAD80Java
project and click Finish.

RAD80Java.jar now appears in the project’s Java Build path under Web App
Libraries (see Figure 18-25 on page 1028), which indicates that the Java classes
are available at compile time. RAD80Java.jar also appears in the Web
Deployment Assembly list (see Figure 18-26 on page 1028), which indicates
that the JAR file will be added to a WAR file generated from
RAD8BankBasicWeb. Click OK to close the Properties dialog window.

Creating the reference: In previous versions of Rational Application
Developer, this reference was created in the J2EE Module Dependencies
dialog window. The new Deployment Assembly dialog window can be used to
achieve the same result.
 Chapter 18. Developing web applications using JavaServer Pages (JSP) and servlets 1027

Figure 18-25 Updated Java Build Path for RAD8BankBasicWeb

Figure 18-26 Updated Web Deployment Assembly for RAD8BankBasicWeb

Adding the ListAccounts servlet to the web project
Rational Application Developer provides a servlet wizard to assist you in adding
servlets to your web application:

1. Select File New Other and then select Web Servlet. Click Next.

Tip: You can also access the Create Servlet wizard by right-clicking the
project and selecting New Servlet.
1028 Rational Application Developer for WebSphere Software V8 Programming Guide

2. In the first window of the Create Servlet wizard (Figure 18-27), for the Java
package, type itso.rad8.webapps.servlet. For the Class name, type
ListAccounts. Click Next.

Figure 18-27 New Servlet wizard: Create Servlet window (part 1 of 3)

The second window (Figure 18-28 on page 1030) provides space for the
name and description of the new servlet.
 Chapter 18. Developing web applications using JavaServer Pages (JSP) and servlets 1029

Figure 18-28 New Servlet wizard: Create Servlet window (part 2 of 3)

On this window, you can also add servlet initialization parameters, which are
used to parameterize a servlet. You can change servlet initialization
parameters at run time from within the WebSphere Application Server
administrative console.

The wizard automatically generates the URL mapping /ListAccounts for the
new servlet. If other, or additional, URL mappings are required, you can add
them here. In our sample, we do not require additional URL mappings or
initialization parameters. Click Next.

3. In the third window (Figure 18-29 on page 1031), click Finish. In this window,
you can have the wizard create method stubs for methods that are available
from the HttpServlet interface. The init method is called at start-up, and
destroy is called at shutdown.

The doPost, doGet, doPut, and doDelete methods are called when an HTTP
request is received for this servlet. All of the do methods have two
parameters: an HttpServletRequest and an HttpServletResponse. These
methods are responsible for extracting the pertinent details from the request
and for populating the response object.
1030 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 18-29 New Create Servlet wizard page (part 3 of 3)

For the ListAccounts servlet, ensure that only doGet and doPost are selected.
Usually, HTTP gets are used with direct links, when no information has to be
sent to the server. HTTP posts are typically used when information in a form
has to be sent to the server.

No initialization is required for the new servlet. Therefore, the init method is
not selected.

The servlet is generated and added to the project. You can find the source
code in the Java Resources folder of the project.

4. Expand the deployment descriptor list for the RAD8BankBasicWeb
(immediately under the project in the Enterprise Explorer), and you see that
the ListAccounts servlet is shown.

Implementing the ListAccounts servlet
A skeleton servlet now exists, but it does not perform any actions when it is
invoked. Now add code to the servlet to implement the required behavior. The
ListAccounts.java code of the servlet is already opened.
 Chapter 18. Developing web applications using JavaServer Pages (JSP) and servlets 1031

Follow these steps:

1. Locate the c:\7835code\webapp\servlet\ListAccounts.java file.

2. Replace the contents of ListAccounts.java with the sample file. The file
compiles successfully with no errors.

3. Examine the source code for the ListAccounts.java servlet. Note the
annotation before the class definition:

@WebServlet("/ListAccounts")

This annotation declares the class as a servlet for the web project and
describes the URL mapping.

This class implements the doPost and doGet methods, both of which call the
performTask method.

The performTask method does the following tasks:

a. The method deals with the HTTP request parameters supplied in the
request. This servlet expects to either receive a parameter called
customerNumber or none at all. If the parameter is passed, we store it in the
HTTP session for future use. If it is not passed, we look for it in the HTTP
session, because it might have been stored there earlier.

b. The method implements the control logic. Access to the Bank facade is
obtained through the ITSOBank.getBank method, and it is used to get the
customer object and the array of accounts for that customer.

c. The third section adds the customer and account variables to the
HttpRequest object so that the presentation renderer (listAccounts.jsp)
gets the parameters that it requires to perform its job. The control of
processing the request is then passed through to listAccounts.jsp using
the RequestDispatcher.forward method, which builds the response to be
shown on the browser.

d. The final part of the method is the error handler. If an exception is thrown
in the previous code, the catch block ensures that control is passed to the
showException.jsp page.

Figure 18-9 on page 1003 shows a sequence diagram of the design of this
class.

The ListAccounts servlet is now complete.

4. Save the changes and close the source editor.

Implementing the UpdateCustomer servlet
The UpdateCustomer servlet is used for updating the customer information and is
invoked from the ListAccounts JSP through a push button.
1032 Rational Application Developer for WebSphere Software V8 Programming Guide

The servlet requires that the Social Security number (SSN) of the customer that
is to be updated is already placed on the session (as must be done in the
ListAccounts servlet). It extracts the title, firstName, and lastName parameters
from the HttpRequest object, calls the bank.getCustomer(String
customerNumber) method, and uses the simple setters on the Customer class to
update the details.

Follow the procedures in “Adding the ListAccounts servlet to the web project” on
page 1028 and “Implementing the ListAccounts servlet” on page 1031 to build
the servlet, including the doGet and doPost methods. The code to use for this
class is in the c:\7835code\webapp\servlet\UpdateCustomer.java file.

Implementing the AccountDetails servlet
The AccountDetails servlet retrieves the account details and forwards control to
the accountDetails.jsp page to show these details. The servlet expects the
parameter accountId, which specifies the account for which data must be shown,
in the request. The servlet calls the bank.getAccount(..) method, which returns
an Account object and adds it as a variable to the request. It then uses the
RequestDispatcher to forward the request onto the accountDetails.jsp.

Follow the procedures in “Adding the ListAccounts servlet to the web project” on
page 1028 and “Implementing the ListAccounts servlet” on page 1031 to build
the servlet. The code to use for this class is in the
c:\7835code\webapp\servlet\AccountDetails.java file.

Implementing the Logout servlet
The Logout servlet is used for logging the customer off from the RedBank
application. The servlet requires no parameters. The only logic performed in the
servlet is to remove the SSN from the session, simulating a logoff action. You
remove the SSN by calling the session.removeAttribute and
session.invalidate methods. Finally, the servlet uses the RequestDispatcher
class to forward the browser to the index.html page.

Follow the procedures in “Adding the ListAccounts servlet to the web project” on
page 1028 and “Implementing the ListAccounts servlet” on page 1031 to build
the servlet. The code to use for this class is in the
c:\7835code\webapp\servlet\Logout.java file.

Security and authorization: An actual client implementation performs
security and authorization where the current user has the required access
rights to the requested account. You can implement security and authorization
by using the Security Editor tool, as described in 18.2.5, “Security Editor” on
page 996.
 Chapter 18. Developing web applications using JavaServer Pages (JSP) and servlets 1033

Implementing the PerformTransaction command classes
In the PerformTransaction servlet, a Command design pattern is used to
implement it as a front controller class that forwards control to one of the four
command objects: Deposit, Withdraw, Transfer, and ListTransactions.

You can find this design in 18.4.3, “Controller layer” on page 1002. This
implementation is based on the sequence diagram (Figure 18-10 on page 1004).

Next we import the code for the commands package. The source is in the
C:\7835code\webapp\command folder. Follow these steps:

1. Create the itso.rad8.webapps.command package. In the Enterprise Explorer,
right-click the Java Resources: src folder and select New Package.

2. For the package name, type itso.rad8.webapps.command and click Finish.

3. From the context menu of the new package, click Import and select
General File system. Click Next.

4. Click Browse and navigate to the C:\7835code\webapp\command folder. Click
OK.

5. Select the following Java files and click Finish:

– Command.java
– DepositCommand.java
– ListTransactionsCommand.java
– TransferCommand.java
– WithdrawCommand.java

The command classes perform the operations on the RedBank model classes
(from the RAD80Java project) through the Bank facade. They also return the file
name for the next page to be displayed after the command has executed.

Implementing the PerformTransaction servlet
Now that all the commands for the PerformTransaction framework have been
realized, you can create the PerformTransaction servlet. The servlet uses the
value of the transaction request parameter to determine which command to
execute.

You can use the Create Servlet wizard to create a servlet named
PerformTransaction. The servlet class must be placed in the
itso.rad8.webapps.servlet package.

Follow the procedures in “Implementing the ListAccounts servlet” on page 1031
to prepare the servlet, including the doGet and doPost methods. The code to use
for this class is in the c:\7835code\webapp\servlet\PerformTransaction.java
file.
1034 Rational Application Developer for WebSphere Software V8 Programming Guide

PerformTransaction stores a HashMap of the action strings (deposit, withdraw,
transfer, and list) to instances of Command classes. Both the doGet and doPost
methods call performTask. In the performTask method, the execute method is
called on the appropriate Command class that performs the transaction on the Bank
classes. After the execute method completes, the getForwardView method is
called on the Command class, which returns the next page to display, and
PerformTransaction uses the RequestDispatcher to forward the request to the
next page.

After this step, all the servlets required for the sample application have been built.
The Enterprise Explorer view shows a list of all the servlets in the web project
and the URL mappings to these servlets (Figure 18-30 on page 1036).
 Chapter 18. Developing web applications using JavaServer Pages (JSP) and servlets 1035

Figure 18-30 Servlets and Servlets Mappings in Enterprise Explorer

18.5.10 Working with JSP

JSP files are edited in the Page Designer, which is the same editor that is used to
edit the HTML page. When working with a JSP page in the Page Designer, the
Palette view has a separate drawer for JSP Tags, which includes elements, such
as JavaBean references, JavaServer Pages Standard Tag Library (JSTL) tags,
and scriptlets containing Java code.
1036 Rational Application Developer for WebSphere Software V8 Programming Guide

In this section, we describe the implementation of listAccounts.jsp in detail,
and the other JSP (accountDetails.jsp, listTransactions.jsp, and
showException.jsp) are imported from the solution.

Implementing the List Accounts JSP
Customizing a JSP file by adding static content is done in the Page Designer tool
in the same way that an HTML file can be edited. You can also add the standard
JSP declarations, scriptlets, expressions, tags, or any other custom tag that is
developed or retrieved from the Internet.

In this example, the listAccounts.jsp file is built by using page data variables for
customer and accounts (and an array of Account classes for that customer).
These variables are added to the page by the ListAccounts servlet and are
accessible to the Java code and tags used in the JSP.

To complete the body of the listAccounts.jsp file, perform the following steps:

1. Open the listAccounts.jsp in Page Designer and select the Design tab.

2. Add the customer and accounts variables to the page data meta information in
the Page Data view (by default, one of the views in the upper-left corner).
These variables are added to the request object in the ListAccounts servlet,
as discussed in “Implementing the ListAccounts servlet” on page 1031. Page
Designer must be aware of these variables. Complete these steps:

a. In the Page Data view, expand Scripting Variables, right-click
requestScope, and select New Request Scope Variable.

b. In the Add Request Scope Variable window, complete the following tasks:

i. For the Variable name, select customer.
ii. Type itso.rad80.bank.model.Customer.
iii. Click OK.

c. Repeat this procedure to add the following request scope variable:

i. For the Variable name, select accounts.
ii. Type itso.rad80.bank.model.Account[].

Tip: You can use the browse button (marked with an ellipsis (...)) to
find the class that is using the class browser.

Important: The square brackets indicate that the variable accounts
is an array of accounts.
 Chapter 18. Developing web applications using JavaServer Pages (JSP) and servlets 1037

3. In the Palette view, select Form Tags Form and click anywhere on the JSP
page in the content table. A dashed box appears on the JSP page,
representing the new form.

4. In the Properties view for the new Form element, enter the following items:

a. For the Action, type UpdateCustomer.
b. For the Method, select Post.

5. Add a table with the customer information:

a. In the Page Data view, expand and select Scripting Variables
requestScope customer (itso.rad80.java.model.Customer).

b. Select and drag the customer object to the form that was previously
created.

c. In the Insert JavaBean window (Figure 18-31 on page 1039), follow these
steps:

i. Select Displaying data (read-only).

ii. Use the arrow up and down buttons to arrange the fields in the order
shown and overtype the labels.

iii. Clear the accounts field (we do not display the accounts).

Tip: You can use the Outline view to navigate to the form tag quickly.
1038 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 18-31 Inserting the customer JavaBean

iv. Click Finish to add the Data control for the Customer.

d. Right-click the last row of the newly created table (select the LastName
cell) and select Table Add Row Below.

6. In the Palette view, select Form Tags Submit Button and click in the right
cell of the new row. In the Label field, enter Update and click OK. You can
leave the Name field empty.

7. In the Palette view, select HTML Tags Horizontal Rule and click in the
area immediately beneath the form.

8. In the Page Data view, expand Scripting Variables requestScope
accounts (itso.rad8.java.model.Account[]).

9. Drag the accounts object beneath the Horizontal Rule that was created.

Customer data in table: The newly created table with customer
data is changed in a later stage to use input fields for the title, first
name, and last name fields. Creating an editable version of this
information is not possible with the available wizards.
 Chapter 18. Developing web applications using JavaServer Pages (JSP) and servlets 1039

10.In the Insert JavaBean: Configure Data Controls wizard (Figure 18-32), follow
these steps:

a. Clear transactions. We do not display the transactions.

b. For both fields, in the Control Type column, select Output link.

c. In the Label field for the accountNumber field, enter AccountNumber.

d. Ensure that the order of the fields is accountNumber and balance.

e. Click Finish. The accounts bean is added to the page and is displayed as
a list.

Figure 18-32 Inserting the accounts JavaBean

11.The wizard inserts a JSTL c:forEach tag and an HTML table with headings,
as entered in the Insert JavaBean window. Because we selected Output link
as the Control Type for each column, corresponding c:url tags have been
inserted. We now have to edit the URL for these links to make sure that they
are identical and to pass the accountId variable as a URl parameter:

a. From the Design view, select the first <c:url> tag under the heading
AccountNumber, which has the text ${varAccounts.accountNumber}{}. In
the Properties view (Figure 18-32), in the Value field, enter
AccountDetails.

The tag changes to AccountDetails{}.
1040 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 18-33 Configuring the AccountDetails URL

b. Under the heading Balance, which has the text
${varAccounts.balance}{}, select the second <c:url> tag. In the
Properties view, in the Value field, enter AccountDetails. This value
specifies the target URL for the link, which, in this case, maps to the
AccountDetails servlet.

c. Add a parameter to this URL to ensure that the link goes to the correct
account. In the Palette view, select JSP Tags Parameter () and
click the first <c:url> in the AccountNumber column. This has the text
AccountDetails{} (Figure 18-34 on page 1042).

Click here

Change this value
 Chapter 18. Developing web applications using JavaServer Pages (JSP) and servlets 1041

d. In the Properties view, on the c:param tab, in the Name field, enter
accountId, and in the Value field, enter ${varAccounts.accountNumber}.
This action adds a parameter to the account URL with a name of
accountId and the value of the accountNumber request variable.

Figure 18-34 Adding parameters to c:url tags

e. Repeat the two previous steps to add a parameter to the second <c:url>
tag in the Balance column, showing the text Account Number{}. In the
Name field, type accountId, and in the Value field, type
${varAccounts.accountNumber}.

12.Click anywhere in the Balance column and select the td tag in the Properties
view. In the Horizontal alignment list box, select Right to right-align the
contents of the Balance cells.

13.Select the Source tab and compare the code to display the accounts to the
code that is shown in Example 18-1 on page 1043. This JSP code shows the
accounts as a list, using the <c:forEach> tag to loop through each account,
and the <c:out> tag to reference the current loop variable. The <c:url> tag

Click there to add parameters to the c:url tags
1042 Rational Application Developer for WebSphere Software V8 Programming Guide

builds a URL to AccountDetails and the <c:param> tag adds the accountId
parameter (with the account number value) to that URL.

Example 18-1 JSP code with JSTL tags to display accounts (formatted)

<c:forEach var="varAccounts" items="${requestScope.accounts}">
<tr>

<td>
<c:url value="AccountDetails" var="urlVariable">

<c:param name="accountId"
value="${varAccounts.accountNumber}"></c:param>

</c:url>
<a href="<c:out value='${urlVariable}' />">

<c:out value="${varAccounts.accountNumber}"></c:out>

</td>
<td align="right">

<c:url value="AccountDetails" var="urlVariable">
<c:param name="accountId"

value="${varAccounts.accountNumber}"></c:param>
</c:url>
<a href="<c:out value='${urlVariable}' />">

<c:out value="${varAccounts.balance}" />

</td>
</tr>

</c:forEach>

14.Select the Split tab. From the Palette view, select HTMLTags Horizontal
Rule and click in the area beneath the account details table.

15.Add a logout form:

a. In the Palette view, select Form Tags Form and click beneath the new
horizontal rule. A dashed box is displayed on the JSP page, representing
the new form.

b. In the Properties view for the new form tag, enter the following items:

i. For the Action, type Logout.
ii. For the Method, select Post.

c. In the Palette view, select Form Tags Submit Button and click in the
new form. When you click the Logout button, the doPost method is called
on the Logout servlet.

d. In the Insert Submit Button window, in the Label field, enter Logout and
click OK.
 Chapter 18. Developing web applications using JavaServer Pages (JSP) and servlets 1043

16.Change the title, first name, and last name to entry fields, so that the user can
update the customer’s details. To convert the Title, First name, and Last name
text fields to allow text entry, follow these steps:

a. Select the ${requestScope.customer.title} field.

b. Select the Source tab and you can see the following code:

<td><c:out value="${requestScope.customer.title}" /></td>

c. Change the code to this code:

<td><input type="text" name="title"
value="<c:out value='${requestScope.customer.title}' />"

/></td>

d. Repeat these steps for the first name and last name fields:

<td><input type="text" name="firstName"
value="<c:out value='${requestScope.customer.firstName}' />"

/></td>
......
<td><input type="text" name="lastName"

value="<c:out value='${requestScope.customer.lastName}' />"
/></td>

The customer fields change from display-only fields to editable fields, so that
the details can be changed.

You can change the length of the three input fields in the Properties view. For
example, you can specify 6 columns and 3 as the maximum length for the title,
and 32 columns for the names.

You can also change the width of the content areas in the source code.

17.Format the account balance, which is a BigDecimal. Otherwise, it is displayed
with many digits. Complete these steps:

a. In the Balance column, click the balance field ${varAccounts.balance}.

b. From the context menu, select JSP Insert Custom.

c. In the Insert Custom Tag window (Figure 18-35 on page 1045), click Add
to add another tag library.

d. Locate and select the http://java.sun.com/jsp/jstl/fmt URI and click OK.

e. Select the new tag library and select formatNumber as the custom tag.
Click Insert and click Close.
1044 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 18-35 Inserting a custom tag

f. On the Source tab, select the <fmt:formatNumber> tag. In the Properties
view, set maxFractionDigits and minFractionDigits to 2. For the value, type
${varAccounts.balance}.

g. Remove the <c:cout value=.... > and </c:cout> tags:

<a href="<c:out value='${urlVariable}' />">
<c:out value="${varAccounts.balance}" />
<fmt:formatNumber maxFractionDigits="2" minFractionDigits="2"

value="${varAccounts.balance}"></fmt:formatNumber>
</c:cout>

18.Select any field in the accounts table. In the Properties view, select the table
tab. Set the width to 100 and select %.

19.Select the Account Number heading. In the Properties view, set the
horizontal alignment to Left. Select the Balance heading and set the
horizontal alignment to Right.

20.Save the file.

Figure 18-36 on page 1046 shows the JSP in the Design tab.
 Chapter 18. Developing web applications using JavaServer Pages (JSP) and servlets 1045

Figure 18-36 List AccountsJSP finished

Implementing the other JSP
The other JPS are already created as part of the model solution. We built them
by using a similar process of adding request beans to the JSP and building
HTML and JSP elements around them.

To import the other JSP files and to view them in Page Designer, perform the
following steps:

1. Select the WebContent folder, click Import, and select General File
System. Click Next.

2. Click Browse and navigate to the c:\7835code\webapps\jsp file.

JSP source code for the listAccounts.jsp file: The JSP source code for the
listAccounts.jsp is in the c:\7835code\webapp\jsp\ directory. You can
import the code into the WebContent folder, or copy and paste it directly into
Rational Application Developer.
1046 Rational Application Developer for WebSphere Software V8 Programming Guide

3. Select all the JSP files, except listAccounts.jsp (which has already been
completed). Click Finish.

4. When prompted whether to override the existing files, click Yes to All.

Add the required variables to the appropriate Page Data view by following the
next steps for each JSP file in Table 18-2:

1. Open each JSP file in the Page Designer by double-clicking the file from the
Project Explorer view.

2. In the Page Data view, select Scripting Variables New Request Scope
Variable and add the variables for each JSP, as specified in Table 18-2.

Table 18-2 Request scope variables for each JSP

The following sections describe briefly the logic that is contained within each JSP.

Account Details JSP
The acountDetails.jsp page shows the details for a particular customer account
and gives options to execute a transaction:

� The JSP uses a single request variable called account to populate the top
portion of the body of the page, which shows the account number and
balance.

� The middle section is a simple static form, which provides fields for the details
of a transaction (transaction type, amount, and destination account) and
posts the request to the PerformTransaction servlet for processing.

� The Customer Details button navigates the user to the listAccounts.jsp
page.

Associated request beans of the imported pages: The imported pages
do not have the associated request beans showing in the Page Data view,
because they are maintained in the .jspPersistence file immediately
under the web project directory. You have to specifically add them to the
Page Data view.

JSP file Variable Type

accountDetails.jsp account itso.rad80.bank.model.Account

listTransactions.jsp account itso.rad80.bank.model.Account

listTransactions.jsp transactions itso.rad80.bank.model.Transaction[]

showException.jsp message java.lang.String

showException.jsp forward java.lang.String
 Chapter 18. Developing web applications using JavaServer Pages (JSP) and servlets 1047

Figure 18-37 shows the Page Designer view of this page.

Figure 18-37 Completed accountDetails.jsp in a preview

List Transactions JSP
The listTransactions.jsp page shows a read-only view of the account,
including the account number and balance, plus a list of all transactions:

� The JSP uses two request variables called account and transactions. The
first section of the page uses the account request bean to populate a table
showing the account number and balance.

� The middle section uses the transactions[] request bean to show a list of
transactions. This transaction array bean uses the JSTL tag library to iterate
through the transaction list and build up an HTML representation of the
transaction history.

� The Account Details button returns the browser to the accountDetails.jsp
page.

Figure 18-38 on page 1049 shows the Page Designer view of this page.

Uses the
account
bean

Form to
perform
transactions
1048 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 18-38 Completed listTransactions.jsp in a preview

Show Exception JSP
The showException.jsp page is displayed when an exception occurs in the
processing of a request:

� The JSP shows a simple error message and gives a link to another page
within the RedBank application to allow the user to continue.

� Two request beans are used on this page. The message bean stores the text to
display to the user, and the forward bean stores a URL for the next page to
continue. The URL is hidden behind the text Click here to continue.

Uses the account bean to show number/balance

Uses the transaction array bean to show the transaction history
 Chapter 18. Developing web applications using JavaServer Pages (JSP) and servlets 1049

Figure 18-39 shows this page in the Design view of the Page Designer.

Figure 18-39 Completed showException.jsp in a preview

The RedBank application is finished and ready to be tested.

18.6 Web application testing

In this section, we demonstrate how to run the sample RedBank application that
we built in the previous sections.

18.6.1 Prerequisites to run the sample web application

To run the RedBank application, you must choose one of the following actions:

� Complete the sample following the procedures that are described in 18.5,
“Implementing the RedBank application” on page 1005.

� Import the completed projects from
\7835codesolution\jsp\RAD8Web-JSP.zip.

18.6.2 Running the sample web application

To run the RedBank web application in the test environment, follow these steps:

1. Right-click RAD8BankBasicWeb in the Enterprise Explorer view and select
Run As Run on Server.

2. In the Server Selection window, select Choose an existing server and select
WebSphere Application Server v8.0 Beta. Select the Always use this

Uses the forward page variable

Uses the message
page variable
1050 Rational Application Developer for WebSphere Software V8 Programming Guide

server when running my project option so that this step can be skipped
next time. Click Finish.

The main page of the web application is displayed in a web browser inside
Rational Application Developer.

18.6.3 Verifying the RedBank web application

After you start the application by running it on the test server, verify that the web
application works properly:

1. From the main page, select the redbank menu option.

2. On the RedBank page (Figure 18-40), type a customer’s Social Security
number (SSN), for example, 222-22-2222.

Figure 18-40 ITSO RedBank login page
 Chapter 18. Developing web applications using JavaServer Pages (JSP) and servlets 1051

3. Click Submit. The page now lists the customer and accounts (Figure 18-41).

Figure 18-41 Listing of customer accounts

4. From the list of accounts, choose one of the following actions. In this example,
we click an account to view the account information.

– Change the customer title or name fields. For example, change the title to
Sir. Then click Update to perform the doPost method of the
UpdateCustomer servlet.

– Click Logout to return to the Login page.

– Re-enter the Social Security number (SSN), click Submit, and verify that
the Customer name has changed.

5. Click the link for one of the accounts, and from the account view (Figure 18-42
on page 1053), choose one of the following actions:

– Select List Transactions and click Submit. There are no transactions yet.
1052 Rational Application Developer for WebSphere Software V8 Programming Guide

– Select Deposit or Withdraw, enter an amount, and click Submit to
execute a banking transaction. The page is redisplayed with the updated
balance.

– Select Transfer and enter an amount and a target account. Then click
Submit. The page is redisplayed with the updated balance.

– Click Customer Details to return to the account listing.

In this example, we run a few transactions (deposit, withdraw, and transfer).
Then we select List Transactions and click Submit.

Figure 18-42 Details for a selected account
 Chapter 18. Developing web applications using JavaServer Pages (JSP) and servlets 1053

Figure 18-43 shows the transaction listing.

Figure 18-43 List of transactions for an account

6. Try a withdrawal of an amount greater than the balance. The Show Exception
JSP shows an error message (Figure 18-44 on page 1055).
1054 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 18-44 Withdrawal over the limit error

18.7 More information

The RedBank application can be improved in many ways, for example, by adding
features or using other technologies. We explain these methods in the following
chapters:

� To use a database rather than HashMaps, see Chapter 9, “Developing
database applications” on page 393.

� To use EJB to store the model, see Chapter 12, “Developing Enterprise
JavaBeans (EJB) applications” on page 577.

� To use JSF components rather than JSTL, see Chapter 19, “Developing web
applications using JavaServer Faces” on page 1057.

� To debug the application, see Chapter 28, “Debugging local and remote
applications” on page 1461.

The Help feature provided with Rational Application Developer has a large
section about developing websites and applications. It contains reference
information for all the features presented in this chapter and further information
about topics only covered briefly here, including JSP tag libraries and security.
 Chapter 18. Developing web applications using JavaServer Pages (JSP) and servlets 1055

See the following web addresses for further information about the topics in this
chapter:

� Oracle Java Servlet Technology home page, which contains links to the
specification, API Javadoc, and articles about servlets:

http://www.oracle.com/technetwork/java/javaee/servlet/index.html

� Oracle JavaServer Pages Technology home page for technical information
about JSP:

http://www.oracle.com/technetwork/java/javaee/jsp/index.html

� JavaServer Pages Standard Tag Library (JSTL) home page for technical
information about JSTL:

http://www.oracle.com/technetwork/java/index-jsp-135995.html

� “JSP and Servlets best practices,” article that articulates clearly the various
ways of applying an MVC pattern to JSP and servlets:

http://www.oracle.com/technetwork/articles/javase/servlets-jsp-14044
5.html

� IBM WebSphere Application Server V6.1 Security Handbook, SG24-6316

http://www.redbooks.ibm.com/abstracts/sg246316.html?Open
1056 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.redbooks.ibm.com/abstracts/sg246316.html?Open
http://java.sun.com/products/servlet/docs.html
http://www.oracle.com/technetwork/java/javaee/jsp/index.html
http://www.oracle.com/technetwork/java/index-jsp-135995.html
http://www.oracle.com/technetwork/articles/javase/servlets-jsp-140445.html
http://www.oracle.com/technetwork/articles/javase/servlets-jsp-140445.html
http://java.sun.com/products/servlet/docs.html
http://www.oracle.com/technetwork/java/javaee/jsp/index.html
http://www.oracle.com/technetwork/articles/javase/servlets-jsp-140445.html
http://www.oracle.com/technetwork/articles/javase/servlets-jsp-140445.html
http://www.redbooks.ibm.com/abstracts/sg246316.html?Open

Chapter 19. Developing web applications
using JavaServer Faces

JavaServer Faces (JSF) is a framework that simplifies building user interfaces for
web applications. In this chapter, we introduce the features, benefits, and
architecture of JSF and demonstrate the Rational Application Developer support
and tooling for JSF. The chapter includes an example web application using JSF,
with persistence implemented in the Java Persistence API (JPA). See
Chapter 10, “Persistence using the Java Persistence API” on page 443.

The chapter is organized into the following sections:

� Introduction to JSF
� Developing a web application using JSF and JPA
� More information

The sample code for this chapter is in the C:/7835codesolution/jsf folder.

19
© Copyright IBM Corp. 2011. All rights reserved. 1057

19.1 Introduction to JSF

The JSF framework allows users to make use of pre-built components and easily
create web applications. For example, JSF provides an Input Text, Output Text,
and a Data Table component. You can add these components easily to a JSF
web page and connect them to your project’s data. JSF technology and the JSF
tooling provided by Rational Application Developer enable even inexperienced
developers to quickly develop web applications.

This section provides an overview of the following aspects of JSF:

� JSF 1.x features and benefits
� JSF 2.0 features and benefits
� JSF 2.0 application architecture
� JSF features in Rational Application Developer

19.1.1 JSF 1.x features and benefits

The JSF 1.x specification is defined in Java Specification Request (JSR) 127:
JavaServer Faces.

The following list describes the key features and benefits of using JSF for web
application design and development:

� Standards-based web application framework: JSF technology is the result of
the Java Community process. JSF makes use of the model view controller
(MVC) pattern; it addresses the view or presentation layer though user
interface (UI) components, and addresses the model through managed
beans.

� Event-driven architecture: JSF provides server-side rich UI components that
respond to client events.

� UI development:

– UI components are decoupled from their rendering, which means that they
can be extended to use other technologies, such as Wireless Markup
Language (WML).

– JSF allows direct binding of UI components to model data.

– Developers can use extensive libraries of prebuilt UI components that
provide both basic and advanced web functionality. In addition, custom UI
components can be created and customized for specific uses.

� Session and object management: JSF manages designated model data
objects by handling their initialization, persistence over the request cycle, and
cleanup.
1058 Rational Application Developer for WebSphere Software V8 Programming Guide

� Validation and error feedback: JSF allows direct binding of reusable validators
to UI components. The framework also provides a queue mechanism to
simplify error and message feedback to the application user. These
messages can be associated with specific UI components.

� Globalization: JSF provides tools for the globalization of web applications,
including supporting number, currency, time, and date formatting, and the
externalization of UI strings.

19.1.2 JSF 2.0 features and benefits

The JSF 2.0 specification is defined in JSR 314: JavaServer Faces 2.0. It builds
on and extends the features that are available in JavaServer Faces 1.x.

This section describes the major features of JSF 2.0:

� Facelet usage
� Built-in Ajax support
� Annotation usage
� Creating templates
� New components
� Custom components

Facelet usage
JSF 2.0 uses Facelets, which are XHTML pages instead of JSP pages, as the
view layer. Facelets relieve JSF of the restrictions that are imposed by JSP
technology. For more information, see “Improving JSF by Dumping JSP” by Hans
Bergsten in O’Reilly on Java.com, 9 June 2004:

http://onjava.com/pub/a/onjava/2004/06/09/jsf.html

Built-in Ajax support
In JSF V1.x, it was possible to use Ajax with JSF, but this capability required
additional component libraries. Now with JSF 2.0, a JavaScript library for
performing simple Ajax operations is automatically provided. No additional
libraries are required. The example application in this chapter uses Ajax.

Annotation usage
With JSF 2.0, Java classes can be directly annotated, which eliminates the need
to register these classes in faces-config.xml. For example, @ManagedBean

Facelets: Facelets are the standard view decoration language for JSF
application development in JSF 2.0. We do not recommend combining
Facelets and Faces JSP pages in the same project.
 Chapter 19. Developing web applications using JavaServer Faces 1059

http://onjava.com/pub/a/onjava/2004/06/09/jsf.html
http://onjava.com/pub/a/onjava/2004/06/09/jsf.html

indicates that this class is a Faces Managed Bean. The @ManagedBean annotation
can be used in place of a managed-bean entry in faces-config.xml.

Other annotations, such as @FacesComponent and @FacesRenderer, are also
available.

Creating templates
Facelet pages can be created from templates to allow a more uniform look
across your project and to aid with future maintenance. We describe the creation
of these templates in 19.2.3, “Creating Facelet templates” on page 1069.

New components
JSF provides a variety of components for use in your web pages. In addition to
the components that were already available in JSF 1.x (Input Text, Output Text,
Data Table, and so on), JSF 2.0 includes two new components that simplify GET
navigation: <h:link> and <h:button>.

For more information about components that are available on Facelet pages, see
this website:

http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.etool
s.jsf.doc/topics/tcrtfaceletspgcontent.html

Custom components
Composite components build on Facelets’ templating features so that you can
implement custom components. The advantage to custom components is that
you can implement them without any configuration and without any Java code.

More detailed information and examples are available using the following link:

http://www.ibm.com/developerworks/java/library/j-jsf2fu2/index.html

The steps for creating and customizing custom components with the Rational
Application Developer are described in detail in the information centers:

� http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.etoo
ls.jsf.doc/topics/tjsfover.html

� http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.etoo
ls.jsf.doc/topics/tcrtfaceletcomposite.html

19.1.3 JSF 2.0 application architecture

You can extend the JSF application architecture easily in a variety of ways to suit
the requirements of your particular application. You can develop custom
1060 Rational Application Developer for WebSphere Software V8 Programming Guide

http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.etools.jsf.doc/topics/tcrtfaceletspgcontent.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.etools.jsf.doc/topics/tcrtfaceletspgcontent.html
http://www.ibm.com/developerworks/java/library/j-jsf2fu2/index.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.etools.jsf.doc/topics/tjsfover.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.etools.jsf.doc/topics/tjsfover.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.etools.jsf.doc/topics/tcrtfaceletcomposite.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.etools.jsf.doc/topics/tcrtfaceletcomposite.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.etools.jsf.doc/topics/tcrtfaceletspgcontent.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.etools.jsf.doc/topics/tcrtfaceletspgcontent.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.etools.jsf.doc/topics/tjsfover.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.etools.jsf.doc/topics/tjsfover.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.etools.jsf.doc/topics/tcrtfaceletcomposite.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.etools.jsf.doc/topics/tcrtfaceletcomposite.html

components, renderers, validators, and other JSF objects and register them with
the JSF run time.

This section highlights the JSF 2.0 application architecture, as shown in
Figure 19-1.

Figure 19-1 JSF application architecture

The JSF application architecture includes these components:

� Facelet pages: These pages are built from JSF components, where each
component is represented by a server-side class.

� Faces servlet: One servlet (FacesServlet) controls the execution flow.

� XML/Annotation Configuration: The configuration of validators and Faces
managed beans can be defined either with the XML file faces-config.xml or
by using annotations.

� Tag libraries: The JSF components are implemented in tag libraries.

� Validators: Java classes are used to validate the content of JSF components.
For example, user input can be validated according to specific business logic.

WebSphere Application Server

Java EE Enterprise Application

Other Modules – For example, EJB and JPA

JSF Web Application

JSF Libraries/Tags

Validators

Built-in AJAX support

...

Facelet with JSF

Component
Tree

XML/Annotation
ConfigurationFaces Servlet

Managed JavaBeans

Events

Browser

Business
Logic
 Chapter 19. Developing web applications using JavaServer Faces 1061

� Faces managed beans: JavaBeans are defined in the configuration file to hold
the data of JSF components. Faces managed beans represent the data
model and are passed between the business logic and user interface.

� Events: Java code is executed in the server for events, such as pushing a
button and invoking business logic.

� Ajax: Ajax is supported by JSF 2.0 as a built-in feature.

Figure 19-2 represents the structure of a simple JSF 2.0 application, in this case,
our RAD8JSFWeb project.

Figure 19-2 JSF 2.0 application structure within Rational Application Developer
1062 Rational Application Developer for WebSphere Software V8 Programming Guide

19.1.4 JSF features in Rational Application Developer

Rational Application Developer provides a number of rich features to enhance
your usage of the JSF framework:

� JSF Trace
� Integration of third-party JSF tag libraries
� Customizable data templates

JSF Trace
For help debugging your JSF application or reviewing the phases of the JSF life
cycle, you can use JSF Trace. This feature visually displays information about
your application at run time, including incoming requests, error messages, and
objects in the request, session, and application scopes.

JSF Trace is covered in detail in “Debug and troubleshoot JavaServer Faces
applications by using JSFTrace in Rational Application Developer” by Yury Kats
in IBM developerWorks, 24 September 2009:

http://www.ibm.com/developerworks/rational/library/09/debugjavaserverfa
cestraceapplicationdeveloper/index.html

Integration of third-party JSF tag libraries
JSF has a set of standard components for building web pages. These standard
components can be supplemented with components from JSF tag libraries that
have been created by other companies. Rational Application Developer makes it
easy to integrate these third-party tag libraries, and even to customize the tooling
for these tags.

For more information, see “Faces library definitions for third-party JavaServer
Faces controls” by Scott Paxton in IBM developerWorks, 18 June 2009:

http://www.ibm.com/developerworks/rational/library/09/faceslibrarydefin
itionrationalapplicationdeveloper/index.html

Customizable data templates
Rational Application Developer makes it easy to generate UI components based
on your project’s data structures. Simply by adding a data source, such as a
Faces managed bean, to the Page Data view and then dragging it onto your web
page, you can create controls that are connected to that data source.
 Chapter 19. Developing web applications using JavaServer Faces 1063

http://www.ibm.com/developerworks/rational/library/09/debugjavaserverfacestraceapplicationdeveloper/index.html
http://www.ibm.com/developerworks/rational/library/09/debugjavaserverfacestraceapplicationdeveloper/index.html
http://www.ibm.com/developerworks/rational/library/09/faceslibrarydefinitionrationalapplicationdeveloper/index.html
http://www.ibm.com/developerworks/rational/library/09/faceslibrarydefinitionrationalapplicationdeveloper/index.html
http://www.ibm.com/developerworks/rational/library/09/debugjavaserverfacestraceapplicationdeveloper/index.html
http://www.ibm.com/developerworks/rational/library/09/debugjavaserverfacestraceapplicationdeveloper/index.html
http://www.ibm.com/developerworks/rational/library/09/faceslibrarydefinitionrationalapplicationdeveloper/index.html
http://www.ibm.com/developerworks/rational/library/09/faceslibrarydefinitionrationalapplicationdeveloper/index.html

For even more control over the controls that are generated on your web page,
see “Introduction to JavaServer Faces data templates” by Christie Rice in IBM
developerWorks, 25 September 2009:

http://www.ibm.com/developerworks/rational/library/09/intro_jfs_data_te
mplates_rad/index.html

19.2 Developing a web application using JSF and JPA

In this section, we describe a web application that is implemented with
JavaServer Faces (JSF) and Java Persistence API (JPA). For each Facelet that
we create, a managed bean class is generated. For each action in the Facelet, a
method in the managed bean class is invoked. In those methods, we will use the
JPA Manager Beans to retrieve the necessary data.

Rational Application Developer provides tooling to interact directly with the JPA
entities without using a session bean. A JPA Manager Bean is created for each
JPA entity with methods, such as find and update.

Structure of the JSF web application
The sample application consists of the following pages:

� Login page (login): Validates a customer’s unique ID. If the ID is valid, display
the customer details page.

� Customer details page (customerDetails): Shows details (title, first name, and
last name) of a customer and the associated account balances.

You can find a completed version of the web application in the
c:\7835codesolution\jsf\RAD8JSFWeb.zip project file.

19.2.1 Setting up the ITSOBANK database

The JPA entities are based on the ITSOBANK database. Therefore, we must define
a database connection within Rational Application Developer that the mapping
tools use to extract schema information from the database.

See “Setting up the ITSOBANK database” on page 1880 for instructions to
create the ITSOBANK database. For the JPA entities, we can either use the DB2 or
Derby database. For simplicity, we use the built-in Derby database in this chapter.
In addition, you have to create a connection to the database ITSOBANKderby, as
described in 9.2.2, “Creating a connection to the ITSOBANK database” on
page 395.
1064 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.ibm.com/developerworks/rational/library/09/intro_jfs_data_templates_rad/index.html
http://www.ibm.com/developerworks/rational/library/09/intro_jfs_data_templates_rad/index.html
http://www.ibm.com/developerworks/rational/library/09/intro_jfs_data_templates_rad/index.html

Configuring the data source
You can choose from one of the following methods to configure the data source:

� Use the WebSphere administrative console.

� Use the WebSphere Enhanced EAR, which stores the configuration in the
deployment descriptor and is deployed with the application.

While developing JSF and JPA web applications with Rational Application
Developer, the data source is created automatically when you add JPA-managed
data to a Facelet file. The data source configuration is added to the EAR
deployment descriptor.

However, if you have already defined the ITSOBANKderby data source on the
server (see “Configuring the data source in WebSphere Application Server” on
page 1882), you might experience problems, because you can only have one
active connection to the database. To clear the connection, remove all
applications from the server and then restart the server.

19.2.2 Creating the JSF Project

In this section, we describe how to create a dynamic web JSF project.

This application consists of RAD8JSFWebEAR (the enterprise application) and
RAD8JSFWeb (the web application). Follow these steps:

1. In the Enterprise Explorer view, right-click and select New Project.

2. In the New Project wizard, select Web Dynamic Web Project and click
Next.

3. In the New Dynamic Web Project wizard, define the project details
(Figure 19-3 on page 1066):

a. For the Project name, type RAD8JSFWeb.

b. Leave Use default location checked.

c. For the Target Runtime, select WebSphere Application Server v8.0
Beta.

d. Leave the Dynamic web module version at 3.0.

e. For the Configuration, select JavaServer Faces v2.0 Project and click
Modify.
 Chapter 19. Developing web applications using JavaServer Faces 1065

Figure 19-3 New Dynamic Web Project wizard

f. In the Project Facets window, select the following Project Facets
(Figure 19-4 on page 1067):

• Dynamic Web Module: Preselected
• Java: Preselected
• JavaServer Faces: Preselected
• JPA: Select this facet
• WebSphere Web (Co-existence): Preselected
• WebSphere Web (Extended): Preselected
1066 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 19-4 Web project facets for JSF

g. Click OK. The value of Configuration in the Dynamic Web Project window
changes to <custom>.

h. Click Next.

4. Accept the source folder src and click Next.

5. Select Generate web.xml deployment descriptor and click Next.

6. In the JPA Facet page, complete these steps:

a. Leave RAD JPA 2.0 Platform selected for the Platform.

b. Leave Library Provided Target Runtime selected for the Type.

c. For the connection, select the ITSOBANKderby that was defined before.
Complete these tasks:

• Click Connect if the connection is not active.
 Chapter 19. Developing web applications using JavaServer Faces 1067

• In case you have not created the connection to the ITSOBANK database
yet, click New Connection to define it. See 9.2.2, “Creating a
connection to the ITSOBANK database” on page 395 for details about
creating this connection.

d. Select Override default schema from connection and select ITSO.

e. For Persistence class management, select Discover annotated classes
automatically.

f. Select Create mapping file (orm.xml). See Figure 19-5.

Figure 19-5 JPA Facet settings
1068 Rational Application Developer for WebSphere Software V8 Programming Guide

g. Click Next.

7. In the JSF Capabilities page, leave Default JSF Implementation selected.

8. Click Finish and the project will be created for you.

9. Switch to the Web perspective when prompted.

10.Close the Technology Quickstarts.

19.2.3 Creating Facelet templates

Before we create the Facelet web pages, login and customerDetails, we define
the template that these pages will use. This template helps to provide a
consistent look and feel to the application by creating universal header and footer
sections.

Creating the template
Follow these steps to create the template:

1. In the Enterprise Explorer, expand RAD8JSFWeb and select the folder
WebContent.

2. Right-click folder WebContent. Select New Folder and type layout as the
name.

3. Right-click folder layout and select New Web Page.

4. In the New Web Page window, specify the details for this web page
(Figure 19-6 on page 1070):

a. Type itsoLayout for the File Name.

b. Select Facelet as the type of Template.
 Chapter 19. Developing web applications using JavaServer Faces 1069

Figure 19-6 Create itsoLayout

5. Click Finish and the itsoLayout.xhtml file opens.

Creating the header
First, we create the header for our template:

1. In the Palette view, go to the Standard Faces Components drawer and select
Panel - Grid.

2. Drag and drop this Insert tag to the itsoLayout page (Figure 19-7 on
page 1071):

a. In the Design view, you see a visualization of the new tag with the text:
grid1: Drag and Drop Items to this area to populate this region.

b. Click this text and open the Properties view.
1070 Rational Application Developer for WebSphere Software V8 Programming Guide

c. The h:panelGrid tab is selected in the Properties view. Enter 2 for the
number of Columns.

Figure 19-7 Properties view for h:panelGrid

3. We import the logo that we use in the page header. In the Enterprise Explorer,
right-click WebContent under RAD8JSFWeb and select New Folder.

4. Enter resources for the folder name and click Finish.

5. We create a folder called images inside the resources folder. Right-click the
new resources folder and select New Folder.
 Chapter 19. Developing web applications using JavaServer Faces 1071

6. Enter images for the folder name and click Finish.

7. Now that the folders have been created, we can import the logo. Right-click
images and select Import. Click General File System. Click Next.

8. Locate itso_logo.gif on your file, which is in C:/7835code/jsf. Browse to the
location of this file. Click Finish.

9. The file is imported (Figure 19-8).

Figure 19-8 itso_logo imported into the project

10.Drag an image from the Standard Faces components drawer of the Palette,
dropping it on top of the text grid1.

11.Go to the Properties view. The h:graphicImage tab is selected. Click
Browse next to Name. In the Select an image resource dialog window, select
itso_logo.gif from under images and click OK. The logo is visible on your
page.

12.Switch to the Accessibility tab of the Properties view, which is located under
h:graphicImage. Enter ITSO logo for the Alternate Text.

13.Drag an Output from the Palette and drop it on the right side of the logo.

14.Go to the Properties view. The h:outputText tab is selected. Type ITSO
RedBank for the Value.

15.Look at the source for itsoLayout. Find the title tag. Change the text from
itsoHeader to ITSO RedBank.
1072 Rational Application Developer for WebSphere Software V8 Programming Guide

16.We have now created the header for our page, showing the bank’s logo and a
title. Your page looks like Figure 19-9.

Figure 19-9 itsoLayout with header

17.Save the page.

Creating the content area
Complete these steps to create the content area:

1. We create a content area to hold the content of our login and
customerDetails pages. Expand the HTML Tags drawer in the Palette. Drag
a Horizontal Rule to the page and drop it beneath the Panel Grid.

2. Expand the Facelet Tags drawer. Drag an Insert to the page and drop it
beneath the Horizontal Rule.

3. Go back to the HTML Tags drawer. Drag a second Horizontal Rule and drop
it at the bottom of the page.

4. Click the text Drop controls here for content area “< no name >” and go to
the Properties view. The ui:insert tab is selected. Enter pageContent as the
Name, as shown in Figure 19-10 on page 1074.
 Chapter 19. Developing web applications using JavaServer Faces 1073

Figure 19-10 itsoLayout with content area

Creating the footer
Complete these steps to create the footer:

1. We create a footer for the page, which will consist of a simple text string. Drag
an Output from the Standard Faces Components drawer of the Palette and
drop it at the bottom of the page.

2. Go to the Properties view. Enter Created by ITSO, 2010 for the Value
(Figure 19-11 on page 1075).
1074 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 19-11 itsoLayout with footer

3. Save the page.

19.2.4 Creating Facelets

In this section, we create the login.xhtml and customerDetails.xhtml Facelets
based on our layout template, itsoLayout.xhtml:

1. In the Enterprise Explorer, expand RAD8JSFWeb and select the folder
WebContent.

2. Right-click WebContent and select New Web Page. Complete these
tasks:

a. Type login for the File Name.

b. Select your defined template itsoLayout.xhtml in the folder layout under
MyTemplates.
 Chapter 19. Developing web applications using JavaServer Faces 1075

Figure 19-12 Create login.xhtml based on a template

3. Click Finish, and the login.xhtml file opens.

4. Use the same steps to create the customerDetails.xhtml Facelet.

19.2.5 Creating JPA Manager Beans

In this section, we create JPA Manager Beans and JPA entities for the ITSOBANK
database.

Creating entities
Complete these steps to create the entities:

1. If the server is running and is connected to the ITSOBANK database, stop the
server.

2. Open customerDetails.xhtml and go to the Page Data view.
1076 Rational Application Developer for WebSphere Software V8 Programming Guide

3. Expand JPA. Right-click JPA Manager Beans and select New JPA
Manager Bean (Figure 19-13).

Figure 19-13 Creating a new JPA Manager Bean from the Page Data view

4. In the JPA Manager Bean Wizard, click Create New JPA Entities.

5. In the Generate Custom Entities wizard, define the connection, schema, and
tables (Figure 19-14 on page 1078):

a. For the Connection, select ITSOBANKderby.

b. For the Schema, select ITSO (click Connect if you do not see this schema
listed).

c. Click the Select All icon to select the four tables.

d. Select Update class list in persistence.xml so that the generated
classes are added to the file.

Important: To retrieve records from the relational database, we require a
connection. We use the ITSOBANKderby connection that was created in
19.2.2, “Creating the JSF Project” on page 1065.
 Chapter 19. Developing web applications using JavaServer Faces 1077

Figure 19-14 Select tables

e. Click Next.

6. Click Next on the Table Associations page.

7. In the Customize Default Entity Generation page, define the Table mapping
and the package name (Figure 19-15 on page 1079):

a. For the Table mapping definition, for the Key generator, select none.

b. For the Entity access, select Field.

c. For the Associations fetch, select Default.
1078 Rational Application Developer for WebSphere Software V8 Programming Guide

d. For the Collection properties type, select java.util.List.

e. Clear Always generate optional JPA annotations and DDL
parameters.

f. For the Package, type itso.bank.entities.

Figure 19-15 Customize Default Entity Generation

g. Click Next.
 Chapter 19. Developing web applications using JavaServer Faces 1079

8. In the Generate Custom Entities: Customize Individual Entities window, define
the class names (Figure 19-16):

a. Select TRANSACT in the Tables and columns pane.

b. The default class name is Transact. Change the class name to
Transaction.

Figure 19-16 Customize Individual Entities

9. Click Finish.
1080 Rational Application Developer for WebSphere Software V8 Programming Guide

Editing the Customer entity
Complete these steps to edit the Customer entity:

1. In the JPA Manager Bean Wizard window, the Account, Customer, and
Transaction entities are displayed.

2. Select the Customer entity and click Edit Selected Entities.

3. In the Tasks page, go through the tasks, and make the following selections:

a. For the Primary key, ensure that ssn is selected.

b. For the Relationships, ensure that Account is selected.

c. For Named Queries, click Add.

d. In the Add Named Query dialog box, ensure that getCustomer is the
Named Query Name and then click OK.

e. For Concurrency Control, ensure that No Concurrency Control is
selected.

f. Leave all check boxes unchecked for the Other task.

g. Select Automatically set up initial values for JDBC Deployment.

h. Click Finish to return to the JPA Manager Bean Wizard window.

4. Click Next in the JPA Manager Bean Wizard window.

5. In the Tasks window, click the Other task.

6. Select I want the container to inject the persistence unit into my beans
and check Generate JSF Converter for target entity.

7. Click Finish.

Editing the Account entity
We add additional JPA managers. We create a JPA Manager for Accounts:

1. In the Page Data view on customerDetails.xhtml, right-click JPA Manager
Beans and select Configure JPA Manager Beans.

2. In the JPA Manager Bean wizard, click Create new JPA Manager.

3. Select Account and then click Edit Selected Entities.

4. Click Named Queries.

5. Click Add.

6. On the Add Named Query dialog window, change the name to
getAccountBySSN and change the query statement to select a from Account
a, in(a.customers) c where c.ssn =:ssn order by a.id. This code snippet
is available in C:/7835code/jsf/getAccount.txt.

7. Click OK, Finish, and then Finish again.
 Chapter 19. Developing web applications using JavaServer Faces 1081

8. Click Cancel.

9. The AccountManager bean has now been created for you.

19.2.6 Creating JPA page data

Now we add JPA page data so that the JSF components can interact with the
JPA data. We want a single customer record and a list of accounts.

Customer record
Follow these steps:

1. Open customerDetails.xhtml. In the Page Data view, right-click JPA and
select New JPA Page Data.

2. In the Add JPA data to page dialog window, select CustomerManager and
select Retrieve a single record.

3. Click Next twice.

4. On the Set Filter Values page, change the primary key value to
#{sessionScope.customerId}. Click Finish.

Account list
Follow these steps:

1. In the Page Data view, right-click JPA and select New JPA Page Data.

2. In the Add JPA data to page dialog window, select AccountManager and
select Retrieve a list of data.

3. Click Next twice.

4. On the Set Filter Values page, change the primary key value to
#{sessionScope.customerId}. Click Finish.

5. Save the page.

19.2.7 Editing the login page

Next we complete our login page. We add UI components, simple validation,
and navigation to go from login.xhtml to customerDetails.xhtml.
1082 Rational Application Developer for WebSphere Software V8 Programming Guide

Adding UI components
Instead of adding each UI component individually, we instead define data for the
customer ID and have Rational Application Developer generate the necessary UI
for us:

1. Open login.xhtml. Open the Page Data view. Right-click Scripting
Variables and select New Session scope variable.

2. In the Add Session Scope Variable dialog window, enter customerId for the
Variable name and java.lang.String for the Type (Figure 19-17).

Figure 19-17 Add Session Scope Variable

3. Click OK.

4. In the Page Data view, expand Scripting Variables sessionScope. Click
customerId and drag it to the page, dropping it on top of “Drop controls here”.

5. In the Insert JavaBean wizard, select Inputting data.

6. Change the label from CustomerId to Enter your customer ID: (Figure 19-18
on page 1084).
 Chapter 19. Developing web applications using JavaServer Faces 1083

Figure 19-18 Create a login input field

7. Click Options. Select the Buttons tab of the Options dialog window, and
change the label to Login.

8. Click OK and then click Finish. Figure 19-19 on page 1085 shows the login
page.
1084 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 19-19 Login page with login input text

9. Save the page.

Adding validation
JSF allows you to add simple validation to your web page easily. Here, we ensure
that the user types an 11-digit number for the customerId:

1. Click the customerId Input Text.

2. Go to the Properties view and switch to the Validation tab (under
h:inputText).

3. Check Value is required.

4. Enter 11 for both the Minimum length and the Maximum length (Figure 19-20
on page 1086).
 Chapter 19. Developing web applications using JavaServer Faces 1085

Figure 19-20 Validation tab of the Properties view

5. Save the page.

Verifying the customer ID
We want to ensure that the customerId is valid and that our RedBank application
has a customer with that ID:

1. In the Enterprise Explorer, select RAD8JSFWeb Java Resources
src pagecode Login.java. This is a Faces managed bean that was
created automatically by Rational Application Developer. We add a method
that will run when the button is clicked.

2. Paste in the code that is shown in Example 19-1. This code is available in
C:/7835code/jsf/LoginButton.txt.

Example 19-1 LoginButton

public String doLoginAction() {
try {

String id = (String) getSessionScope().get("customerId");
System.out.println("Logon id: " + id);
CustomerManager customerManager =

(CustomerManager)getManagedBean("CustomerManager");
Customer customer = customerManager.findCustomerBySsn(id);
if (customer == null) {

throw new Exception("Customer " + id + " was not found.");
}
return "login";

} catch (Exception e) {
1086 Rational Application Developer for WebSphere Software V8 Programming Guide

getFacesContext().addMessage("id", new
FacesMessage(e.getMessage()));

return null;
}

}

3. If you get errors for unknown imports, right-click the new text and select
Source Organize Imports. The following import statements are
automatically added for you:

– import itso.bank.entities.Customer;
– import itso.bank.entities.controller.CustomerManager;
– import javax.faces.application.FacesMessage;

4. Save the login.xhtml and Login.java files.

5. Open login.xhtml. Click the button.

6. Go to the Properties view. Click Select or code an action button (next to
Action or outcome) and then choose Select an action.

7. In the Faces Action selection dialog window, click Page Code
doLoginAction and click OK.

8. Save login.xhtml.

Adding navigation
We add navigation so that the customer’s details can be displayed if the
customer ID is valid:

1. Open login.xhtml. Click the button.

2. Go to the Properties view. Click Add Rule.

3. In the Add Navigation Rule dialog window, select customerDetails.xhtml
for the page.

4. Select The outcome is and then type login (Figure 19-21 on page 1088).
 Chapter 19. Developing web applications using JavaServer Faces 1087

Figure 19-21 Login page

5. Click OK.

The login.xhtml page is now complete.

19.2.8 Editing the customer details page

For our customerDetails page, we display the information about a particular
customer and show the associated bank account balances.

Displaying customer information
Follow these steps:

1. Open customerDetails.xhtml. Go to the Page Data view.
1088 Rational Application Developer for WebSphere Software V8 Programming Guide

2. Expand JPA JPA Page Data. Click customer. Drag customer to the page,
and drop it on top of the Drop Controls here text.

3. In the Add JPA data to page wizard, make the following changes
(Figure 19-22):

a. Clear customer.accounts.

b. Move customer.title up so that it is over customer.firstName.

c. Change the label of customer.ssn to “Customer ID:”.

d. Change the label of customer.firstname to “First Name:”.

e. Change the label of customer.lastname to “Last Name:”.

f. Change the control type of customer.ssn to Display Text.

Figure 19-22 Add JPA data to page wizard for customer

4. Click Options.

5. On the Buttons tab, change the label to Update.
 Chapter 19. Developing web applications using JavaServer Faces 1089

6. Click OK and click Finish.

Displaying account information
Follow these steps:

1. In the Page Data view, expand JPA JPA Page Data accountList
accountList. Click the inner accountList and drag it to the page. Drop it after
Error Messages.

2. In the Add JPA data to page wizard, make the following changes
(Figure 19-23):

a. Clear customers and transacts.

b. Change the id label to Account Number.

Figure 19-23 Add JPA data to page wizard for accounts

3. Click Finish.
1090 Rational Application Developer for WebSphere Software V8 Programming Guide

The customerDetails page contains customer and account information
(Figure 19-24).

Figure 19-24 customerDetails page with customer and account information

4. Save customerDetails.xhtml.

5. In the Enterprise Explorer view, open RAD8JSFWeb Java Resources
src pagecode CustomerDetails.java.

6. Find the method getAccountList().

7. Replace the line Object ssn = with Object ssn =
getSessionScope().get("customerId");

This code is available in C:/7835code/jsf/getAccountList.txt. See
Figure 19-25.

Figure 19-25 New getAccountList() method
 Chapter 19. Developing web applications using JavaServer Faces 1091

8. Save CustomerDetails.java.

Updating customer information
Our page has an Update button. We ensure that it can update simple customer
information:

1. In the Enterprise Explorer view, open RAD8JSFWeb Java Resources
src pagecode CustomerDetails.java.

2. Paste in the code that is shown in Example 19-2, which is available in
C:/7835code/jsf/UpdateButton.txt.

Example 19-2 updateButton

public String doUpdateAction() {
CustomerManager customerManager =

(CustomerManager)getManagedBean("CustomerManager");
try {

customerManager.updateCustomer(customer);
} catch (Exception e) {

logException(e);
}
return "update";
}

3. Save CustomerDetails.java.

4. Open customerDetails.xhtml. Click Update and go to the Properties view.

5. Click Select or Code an action and then choose Select an action.

6. In the Faces Action selection dialog window, click Page Code
doUpdateAction and click OK.

7. In the Properties view, click Add Rule.

8. In the Add Navigation Rule dialog window, select CustomerDetails.xhtml for
the Page. Select The outcome is and type update.

9. Click OK.

10.Save the page.

19.2.9 Using Ajax

We already have an Update button on our customerDetails.xhtml page to
update customer information. We decide to add a second update button that
uses Ajax.
1092 Rational Application Developer for WebSphere Software V8 Programming Guide

Follow these steps:

1. Open customerDetails.xhtml. Drag a Button – Command from the
Standard Faces Components drawer of the palette and drop it next to the
existing button.

2. In the source, change the value of the new button to Ajax Update, which
changes the button’s label.

3. Go to the Properties view. The h:commandButton tab is selected.

4. Go to the Ajax tab.

5. Click Support Ajax.

6. We want to allow the user to update the customer’s first name, last name, and
title. Type firstName1 lastName1 title1 into the Execute combination box.

7. Select form1 for Render.

8. Select Click to create/edit custom code.

9. The Quick Edit view automatically opens. Ensure that listener is selected.

10.Paste in the code that is shown in Example 19-3, which is also available at
C:/7835code/jsf/ajaxButton.txt.

Example 19-3 ajaxButton

CustomerManager customerManager =
(CustomerManager)getManagedBean("CustomerManager");
try {

customerManager.updateCustomer(customer);
} catch (Exception e) {

logException(e);
}

The code is shown in Figure 19-26 on page 1094.
 Chapter 19. Developing web applications using JavaServer Faces 1093

Figure 19-26 Button with Ajax

11.Save the page.

19.2.10 Running the JSF application

Now we run our web application and see the results:

1. In the Enterprise Explorer view, right-click login.xhtml and select Run As
Run on server.

2. Select a server and make any other necessary selections.

3. When the login page appears, you can interact with your web application.

4. If you enter a user ID that is too short, such as 1234, or that does not have a
customer associated with it, an error message appears. See Figure 19-27 on
page 1095.
1094 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 19-27 Login page with error

5. If you enter a valid user ID, such as 444-44-4444, the details for that customer
are shown (Figure 19-28).

Figure 19-28 Customer details page

6. On the customer details page, you can make changes to the customer’s first
name, last name, and title. Then click either Update or Ajax Update to save
those changes.
 Chapter 19. Developing web applications using JavaServer Faces 1095

19.2.11 Final code

To run the web application, you must have completed the previous steps or have
imported the sample from C:/7835codesolution/jsf/RAD8JSFWeb.zip.

You also must have set up the ITSOBANK database, as described 19.2.2, “Creating
the JSF Project” on page 1065.

19.3 More information

For more information about JSF 2.0, see the following resources:

� JSR 314: JavaServer Faces 2.0

http://www.jcp.org/en/jsr/detail?id=314

� Rational Application Developer Information Center:

– http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.e
tools.jsf.doc/topics/tjsfover.html

– http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.e
tools.jsf.doc/topics/tcrtfaceletcomposite.html

� IBM developerWorks:

– http://www.ibm.com/developerworks/web/library/wa-aj-gmaps/

– http://www.ibm.com/developerworks/java/library/j-jsf2fu2/index.html

– http://www.ibm.com/developerworks/java/library/j-jsf2fu3/

– http://www.ibm.com/developerworks/java/library/j-facelets2.html

– http://www.ibm.com/developerworks/wikis/download/attachments/140051
369/radjsffacelet_template.swf?version=1

– http://www.ibm.com/developerworks/java/library/j-jsf2fu-0410/index.
html
1096 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.jcp.org/en/jsr/detail?id=314
http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.etools.jsf.doc/topics/tjsfover.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.etools.jsf.doc/topics/tjsfover.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.etools.jsf.doc/topics/tcrtfaceletcomposite.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.etools.jsf.doc/topics/tcrtfaceletcomposite.html
http://www.ibm.com/developerworks/web/library/wa-aj-gmaps/
http://www.ibm.com/developerworks/java/library/j-jsf2fu2/index.html
http://www.ibm.com/developerworks/java/library/j-jsf2fu3/
http://www.ibm.com/developerworks/java/library/j-facelets2.html
http://www.ibm.com/developerworks/wikis/download/attachments/140051369/radjsffacelet_template.swf?version=1
http://www.ibm.com/developerworks/wikis/download/attachments/140051369/radjsffacelet_template.swf?version=1
http://www.ibm.com/developerworks/java/library/j-jsf2fu-0410/index.html
http://www.ibm.com/developerworks/java/library/j-jsf2fu-0410/index.html
http://www.jcp.org/en/jsr/detail?id=314
http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.etools.jsf.doc/topics/tcrtfaceletcomposite.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.etools.jsf.doc/topics/tcrtfaceletcomposite.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.etools.jsf.doc/topics/tjsfover.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.etools.jsf.doc/topics/tjsfover.html
http://www.ibm.com/developerworks/web/library/wa-aj-gmaps/
http://www.ibm.com/developerworks/java/library/j-jsf2fu2/index.html
http://www.ibm.com/developerworks/java/library/j-jsf2fu3/
http://www.ibm.com/developerworks/java/library/j-facelets2.html
http://www.ibm.com/developerworks/wikis/download/attachments/140051369/radjsffacelet_template.swf?version=1
http://www.ibm.com/developerworks/wikis/download/attachments/140051369/radjsffacelet_template.swf?version=1
http://www.ibm.com/developerworks/java/library/j-jsf2fu-0410/index.html
http://www.ibm.com/developerworks/java/library/j-jsf2fu-0410/index.html

Chapter 20. Developing web applications
using Web 2.0

The term Web 2.0 implies a new online application that brings users into the
creation of the application, which is usually referred to as the social aspect of
Web 2.0 applications. Wikis and blogs are examples of users playing a big part in
the overall value of the application.

Web 2.0 is also used to refer to the architecture and technologies that make
these applications possible. In this chapter, we use the term Web 2.0 in this
context.

Web 2.0 represents a shift in designing and developing web applications. In this
chapter, we introduce the features, benefits, and architecture of Web 2.0, with a
focus on demonstrating the Rational Application Developer support for Web 2.0.

The chapter is organized into the following sections:

� Introduction to Web 2.0 architecture and development practices
� Overview of Web 2.0 tooling features
� Developing the Web 2.0 sample application

The sample code for this chapter is in the 7835code\web20 folder.

20
© Copyright IBM Corp. 2011. All rights reserved. 1097

20.1 Introduction to Web 2.0 architecture and
development practices

In this section, we introduce the Web 2.0 architecture, technologies, and
practices.

20.1.1 Web 2.0 architecture

The browser and Representational State Transfer (REST) services are the major
components in Web 2.0 architecture that differentiate it from previous designs.
HTML5 is gaining unprecedented adoption from all browser vendors, mainly
because of the Web 2.0 trend. REST services are widely deployed on the web for
a variety of purposes ranging from performing searches, viewing maps, looking
up dictionaries, managing emails, and making secured commercial transactions.
The interactions between the browser and REST services enable the highly
interactive user experience that is the hallmark of most successful Web 2.0
implementations.

In Web 2.0 architecture, the browser takes over many responsibilities that used
to be placed on the back-end programs that run on the server. The best example
of this shift is how model view controller (MVC) is implemented. In the past, all
components in MVC were implemented with server-based technologies using
model beans, JavaServer Pages (JSP), and servlets. Now all components can
be implemented inside the browser. The server’s major responsibility is to
provide services to the application running inside the browser.

Figure 20-1 on page 1099 shows the server-centered web application
architecture.
1098 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 20-1 Server-centered web applications

Figure 20-2 on page 1100 shows the browser-centered web application
architecture with REST services.

Server

Form
Button Web Page

Assemble Layout
Business
Delegate

Session
Bean

Domain Domain

JSPServlet/
Action

Database

Session Data
 Chapter 20. Developing web applications using Web 2.0 1099

Figure 20-2 Browser-centered web applications with REST services

20.1.2 Technologies used in Web 2.0 applications

As discussed in 2.2.5, “Web 2.0 development” on page 41, the primary
technologies of choice to implement Web 2.0 applications are Ajax, REST
services, and JavaScript Object Notation (JSON). In addition, syndicated feeds in
RSS or Atom formats also can get data into the browser. Certain applications
require the user interface to be refreshed based on events that originated on the
server side, for instance, a stock ticker widget. The Bayeux protocol, which is
often referred to as pub/sub or publish/subscribe, is designed to address these

Server

Session
Bean

Domain Domain

Database

REST
Handler

Layout

ContentPane

Form Button

ContentPane

Widget

Controller

DataStore
1100 Rational Application Developer for WebSphere Software V8 Programming Guide

interaction patterns. In order for the Ajax code to invoke services in other
domains, a server-side proxy is needed to broker the interactions between the
application domain and the service domain. Without the proxy, the Ajax code is
unable to access the services due to the browsers’ same-origin policy for script
execution.

In the following sections, we discuss the content of the Web 2.0 Feature Pack for
WebSphere Application Server that delivers all these technologies in a single
package.

Dojo: IBM Ajax toolkit of choice
Dojo is an open source project to which IBM has contributed significantly. Dojo
has all the necessary features to build web applications with enterprise-strength
UI and scalability. The powerful UI building blocks that are called widgets, which
are fully accessible, are Dojo’s greatest advantage over other Ajax toolkits
Another feature that makes Dojo stand out is the object-oriented heritage found
everywhere in the system, such as its class sub-system that supports
inheritance. Inheritance makes developing with Dojo a much smoother process
than developing with raw JavaScript or many other Ajax toolkits.

Dojo Toolkit is divided into modules, which are used to group classes of similar
functions. The IBM Dojo Toolkit includes the following modules:

dojo A single tiny library, which contains XmlHttpRequest
support, Document Object Model (DOM) manipulation,
event handling, effects, Cascading Style Sheet (CSS)
queries, globalization utilities, and a lot more. For certain
applications, simply using the Dojo base is sufficient.

dijit The widget system, which contains a rich set of
pre-packaged widgets. It offers a convenient and flexible
way to build custom widgets.

dojox A collection of extensions. Each extension is independent
of the other extensions. Certain extensions are mature
and stable, such as the widgets in the grid folder. Other
extensions are experimental.

ibm_soap An IBM extension that can invoke web services via SOAP.
This extension makes it possible to consume web
services completely with JavaScript, without having to
write any server-side Java code.

ibm_atom An IBM extension that supports Atom format for feed
syndication, as well as AtomPub for consuming REST
services.
 Chapter 20. Developing web applications using Web 2.0 1101

ibm_opensearch An IBM extension that includes a data store that can be
initialized with a URL to an open search description
document. The store can then be used to perform
searches against the target server.

ibm_gauge An IBM extension that includes analog gauge widgets.

IBM JAX-RS: Building standard-based REST services
Java application programming interface (API) for RESTful Web Services
(JAX-RS) is part of Java platform, Enterprise Edition (JEE) 6. JAX-RS specifies a
collection of interfaces and annotations that simplifies the development of
RESTful services. The following key features are provided by JAX-RS:

� Collection of annotations for declaring resource classes and the data types
that they support

� Set of interfaces that allow application developers to gain access to the
runtime context

� Extensible framework for integrating custom content handlers

The IBM implementation is based on Apache Wink, which is an open source
project that was developed at the Apache Software Foundation to implement
JAX-RS.

IBM JAX-RS includes the following features:

� JAX-RS server run time

� Stand-alone client API with the option to use Apache HttpClient 4.0 as the
underlying client

� Built-in entity provider support for JSON4J

� Atom Java Architecture for XML Binding (JAXB) model in addition to Apache
Abdera support

� Multipart content support

� Handler system to integrate user handlers into the processing of requests and
responses

JSON4J: Processing JSON with Java
JSON4J is a Java library for processing JSON. Think of this library as the
equivalent of JAXB for processing XML and Java. With JSON4J, you can
produce JSON objects or arrays from Java objects easily, or you can parse JSON
strings into Java objects.

JSON4J is developed by IBM independently.
1102 Rational Application Developer for WebSphere Software V8 Programming Guide

Ajax Proxy: Proxy solution implemented with Java
The Ajax Proxy that is included in the Web 2.0 feature pack is a reverse proxy.
Install it near the server that hosts the Ajax client, where outgoing connections
are forwarded through the proxy to the requested server. From the Ajax client’s
point of view, the requests target services on the same domain, even though the
reverse proxy might forward requests to servers on other domains.

IBM Web Messaging: Connecting the Ajax client to server-side
events
The web messaging service is an implementation of the pub/sub pattern that
pushes server-side events from the WebSphere Application Server service
integration bus (SIB) to the Ajax client in the browser. The implementation is
based on the Bayeux protocol. Any Ajax toolkit that supports the Bayeux
protocol, such as the Dojo Toolkit, can communicate with the IBM web
messaging service.

Figure 20-3 shows the overall architecture of the web messaging service.

Figure 20-3 Overall architecture of IBM web messaging service

In this architecture, because the Ajax clients connect to the server via the SIB,
multiple ways exist for server-side components to publish messages to the Ajax.
These options include standard Enterprise JavaBeans (EJB) publishing to a
topic, a Java Message Service (JMS) client publishing to a topic, a web service,
or the Ajax client publishing to other Ajax clients.

Java EEWeb Browser

Dojo Toolkit

Run time

Client Server

Bayeux
Protocol
(JSON)

HTTP

Web
Messaging

Service

I/O
(cometd)

S
er

vi
ce

 I
n

te
g

ra
tio

n
 B

u
s

D
o

jo
 L

o
ca

l
B

u
s

View
 Chapter 20. Developing web applications using Web 2.0 1103

20.2 Overview of Web 2.0 tooling features

Many technologies are available for building Web 2.0 applications. Rational
Application Developer provides a rich set of tools that help in the development
process.

20.2.1 JavaScript editing

JavaScript is at the center of the Ajax programming model. It is a powerful
language known for its dynamicity and flexibility. However, it also presents a
challenge to developers who are used to programming with a strong-typed
language, such as Java or C#. The following features in Rational Application
Developer make developing in JavaScript a much smoother experience:

� Syntax highlighting makes JavaScript code easy to read in the editor

� Code assist brings APIs to the programmer’s fingertip, eliminating the need to
flip through documentation

� Code formatting enhances code readability

� Syntax validation catches coding mistakes

� Code outline enables fast browsing

� JSON editing with dedicated editor for .json files:

– Syntax highlighting

– Syntax validation

– Code formatting

– Bracket matching

– Code compression removes white spaces and puts the entire content in a
single line to optimize runtime download

20.2.2 Dojo development

The object-oriented style of Dojo’s type system provides opportunities to further
streamline the programming experience. Furthermore, the widget system
enables the visual construction of Dojo web pages. The following features in
Rational Application Developer take advantage of Dojo’s architectural
characteristics to provide a cohesive development environment:

� Project setup to access the Dojo toolkit locally or remotely (using Content
Delivery Networks, from another project, or through a URI)

� Class creation wizard to promote object-oriented design principles
1104 Rational Application Developer for WebSphere Software V8 Programming Guide

� Custom widget creation wizard to develop reusable extensions

� Palette showing Dojo widgets for drag-and-drop to assemble web UI

� Properties view for configuring Dojo widgets

� Visual editor with preview for “what you see is what you get” (WYSIWYG)
experience

� Custom build wizard to author Dojo layers to optimize performance

� Dojo Firebug extension to gain valuable insight into runtime characteristics

20.2.3 Testing and debugging

Speed and accuracy are the main concerns during unit testing and debugging.
Rational Application Developer provides the following features to meet those
requirements:

� Ajax Test Server:

– Lightweight, fast, and ideal for unit testing Ajax applications

– Automatically installed into the Servers view

– Built-in Ajax Proxy for invoking services across network domains

� Firebug:

– Premier JavaScript debugging tools that are widely used by the
development community

– Debugging tools ship as ready to use and are supported by IBM

– Tools automatically installed when you launch the browser type Firefox
with Firebug

– Firebug integrated with the Debug perspective for breakpoints, variables,
and call stack

20.2.4 JAX-RS services development

JAX-RS is a standard specification for building REST services. Rational
Application Developer allows any JAX-RS implementation to be used and, in
particular, provides the IBM JAX-RS library ready to use as the officially
supported option:

� Project setup to easily configure dynamic web projects to use the IBM
JAX-RS library

� Validation and quick fix to configure the JAX-RS servlet

� Annotation support for source code editing
 Chapter 20. Developing web applications using Web 2.0 1105

� Deployment support for WebSphere Application Server to ensure that the
library is available at run time

20.2.5 Using other server-side technologies

The following features assist in developing server-side code that uses other
libraries that are included in the Web 2.0 feature pack:

� Project set up to use the following libraries:

– JSON4J

– Abdera for RSS and Atom feeds support

– IBM Web Messaging

– Remote Procedure Call (RPC) Adapter

� Deployment support on WebSphere Application Server to ensure that the
libraries are available at run time

� RPC Adapter wizard to create HTTP RPC services based on Plain Old Java
Objects (POJOs) and EJBs

20.3 Developing the Web 2.0 sample application

In this section, you develop a Web 2.0 application using the Dojo and Ajax tooling
that is provided in Rational Application Developer. The application displays
account balances and transactions for a bank customer.

20.3.1 Setting up the project

Begin by importing an initial version of the project into your workspace. The
project contains a servlet to simulate a back-end service that provides data for
your web application. The focus of this tutorial is on building the front-end web
page to display the data:

1. Import the project archive file from C:\7835code\web20\RAD8DojoInitial.zip.

2. Select File Import.

3. In the tree, select General Existing Projects into Workspace and click
Next.

4. Click Select archive file and then browse to the compressed file.

5. Select the project named RAD8Dojo and click Finish.
1106 Rational Application Developer for WebSphere Software V8 Programming Guide

6. Select Window Open Perspective Other Web to open the Web
Perspective.

7. Configure the project for Dojo development:

a. Right-click the project and select Properties.

b. Click the Project Facets node in the tree on the left.

c. In the list of facets shown, expand the Web 2.0 node and check the box
next to Dojo Toolkit.

By enabling the Dojo Toolkit facet, your web project is configured to
develop Dojo web applications. The Dojo Toolkit that is included in
Rational Application Developer includes additional IBM extensions to the
base Dojo Toolkit, including libraries for ATOM (ATOM Syndication Format)
data access, analog and bar gauges, and simplified access for SOAP web
services.

d. Click the Further configuration available link at the bottom of the dialog
window (Figure 20-4).

Figure 20-4 The Project Facets page in the Project Properties dialog window
 Chapter 20. Developing web applications using Web 2.0 1107

8. The Dojo Project Setup dialog window that opens provides a summary of how
Dojo will be incorporated into your project (Figure 20-5). By default, the latest
level of Dojo that is supported by IBM is copied into your web project.

If you want more information about the Dojo project setup options, continue
with the following optional steps. Otherwise, you can click OK on both open
dialog windows and move ahead to 20.3.2, “Creating the web page” on
page 1111 of the tutorial.

Figure 20-5 The Dojo Project Setup dialog

9. Optional: To modify the Dojo setup, click Change these setup options, and
follow these steps:

a. The Dojo Project Setup Options dialog box provides you with three options
for configuring Dojo in your web application. Select the third option, Dojo
is remotely deployed or is on a public CDN (Figure 20-6 on
page 1109). Click Next.
1108 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 20-6 This dialog is used to modify the Dojo Project Setup options

You use this third option, Dojo is remotely deployed or is on a public CDN,
if your application uses a remotely hosted public content delivery network
(CDN) or an existing copy of Dojo that is already deployed on your
network. CDNs provide geographically distributed hosting for open source
JavaScript libraries. When a browser resolves the URL in your web
application, the browser automatically downloads the file from the closest
available server. You need to provide the URL or URI to the appropriate
location. If Dojo is not contained in your project, the Dojo tools must
reference a corresponding copy of Dojo to provide content assist and
validation. The wizard gives you the option of selecting a default version or
selecting your own Dojo from disk. This option does not copy Dojo into
your project or workspace. Click Back.

b. Select the second option, Dojo is in a project in the workspace, and will
be deployed from there and click Next. On this page, you can browse to
the root Dojo folder in another project in your workspace. The copy of Dojo
is not copied into your project. It is deployed from the project where it is
currently located. Click Back.

c. Select the first option, Copy Dojo into this project. It will be deployed
from there and click Next. On this page, you can specify the location in
your project where Dojo will be copied. At the bottom of the page, you can
 Chapter 20. Developing web applications using Web 2.0 1109

select one of the default versions of Dojo that ships with Rational
Application Developer or browse for a copy on your disk. Leave the default
values and click Finish.

10.Click OK on the Dojo Project Setup dialog window.

11.Click OK on the Project Properties dialog window. A progress monitor
displays while your project is configured to work with Dojo. After your project
is configured to work with Dojo, you see a sub-folder named dojo under the
WebContent folder (Figure 20-7 on page 1111).

Types: You can visualize the types and methods that are available in your
JavaScript libraries by expanding the JavaScript Resources node in the
Enterprise Explorer. Further expand the Dojo Toolkit node, and see your
types broken down by namespace (Figure 20-7).
1110 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 20-7 Enterprise Explorer view: JavaScript Resources and imported Dojo
files

20.3.2 Creating the web page

In this section, you create the web page for your application. You use the Dojo
Widget Palette, Page Designer, and Property views to add and configure a Dojo
Layout Widget.
 Chapter 20. Developing web applications using Web 2.0 1111

Complete these tasks:

1. In the Enterprise Explorer, right-click the WebContent folder of your project
and select New Web Page.

2. In the New Web Page wizard, enter index as the File Name.

3. For the Template, select HTML/XHTML and click Finish. Your new web page
appears in the Page Designer view.

4. At the bottom of the Page Designer view, click the Design tab. The Design
view provides a visual representation of your web page.

5. In the rightmost column, show the palette by clicking the Palette tab. It might
be hidden behind other tabs (Figure 20-8).

Figure 20-8 Page Designer opened to the Design view and the Palette surfaced

Dojo palette drawers: The palette drawers labeled Dojo are dynamically
generated based on the Dojo files in your project. As new widgets are
added to the project, they are added to the palette.
1112 Rational Application Developer for WebSphere Software V8 Programming Guide

6. Expand the Dojo Layout Widgets palette drawer by clicking it. You see a list
of available Dojo widgets, which can be dropped onto your page.

7. Click BorderContainer, and drag and drop it onto the open editor. Complete
these steps:

a. A dialog window opens, allowing you to perform additional configuration
tasks of the BorderContainer widget. Click the Top, Bottom, and Center
check boxes (Figure 20-9).

Figure 20-9 The Insert Border Container dialog box

b. Click OK.

8. A visualization of the BorderContainer is now displayed in the Design view,
and the appropriate markup has been added to the source. Click the
BorderContainer visualization. Then click the Properties tab in the view
beneath the editor. If not already selected, click the BorderContainer tab
(Figure 20-10 on page 1114).
 Chapter 20. Developing web applications using Web 2.0 1113

Figure 20-10 BorderContainer visualization in Page Designer and Properties tab
selected
1114 Rational Application Developer for WebSphere Software V8 Programming Guide

Follow these steps:

a. Change the height of the BorderContainer in the Property tab from 500px
to 100%. Change the width to 640px.

b. Click in each of the three BorderContainer regions in the Page Designer
editor and type labels in each region: Logon, Accounts, and Transactions.

9. Switch to the Source view by clicking the tab at the bottom of the editor.

10.For each BorderContainer region, add the attribute splitter="true". This
attribute allows the user to change the size of the regions:

<div dojoType="dijit.layout.ContentPane" region="top"
splitter="true">

11.Switch to the Preview view, and verify that you see the BorderContainer
(Figure 20-11).

Figure 20-11 A preview of the BorderContainer

12.Save and close index.html.
 Chapter 20. Developing web applications using Web 2.0 1115

20.3.3 Building a custom Dojo widget

Dojo ships with dozens of standard widgets, including input fields, combination
boxes, radio buttons, and so forth. You can create custom widgets to encapsulate
reusable UI elements or a specific piece of functionality. In this section, you
create a custom Dojo widget using the New Dojo Widget wizard that is provided
in Rational Application Developer.

The new widget allows a user to select a Social Security number and click a
Submit button. We test the widget using the AJAX Test Server and a simple
JSON file. Later, we replace the JSON file with a call to our back-end service.
Follow these steps:

1. Right-click the WebContent/dojo folder and select New Dojo Widget.

2. Enter bank as the Module Name. Enter CustomerLogon as the Widget Name.

3. Leave the defaults for the rest of the fields (Figure 20-12) and click Finish.

Figure 20-12 New Dojo Widget wizard with Module Name and Widget Name fields
entered
1116 Rational Application Developer for WebSphere Software V8 Programming Guide

Three files are created under a folder named dojo/bank:

– templates/CustomerLogon.html file that is the UI template for the widget

– themes/CustomerLogon.css file, which provides the styling for the widget

– CustomerLogon.js file, which provides the JavaScript back end and
business logic portion of the widget

4. Double-click CustomerLogon.js if the file is not already open.

5. Change the widgetsInTemplate field from false to true. This field indicates
that our custom widget will contain other Dojo widgets as part of its UI.

6. Directly beneath the widgetsInTemplate field, add a new field that will be used
to hold the user selection, currentSSN. It needs to have a default value of
null. Be sure to add a comma after the field. See Example 20-1.

Example 20-1 The attribute code in the CustomerLogon.js file

// Set this to true if your widget contains other widgets
widgetsInTemplate : true,
// the currently selected social security number
currentSSN: null,

7. Directly beneath the postCreate function, add a new function named logon.
Leave the function empty for now. See Example 20-2

Example 20-2 The function code in the CustomerLogon.js file

postCreate : function() {
},
// the logon function will store the social security number
// selected by the user when they press the submit button.
logon: function() {
}

8. Double-click the templates/CustomerLogon.html file to open it in the editor.

9. At the bottom of the editor, click the Source tab to display the page in the
Source view.

10.Between the existing div tags, type a label:

Select a Customer SSN:

11.Add Dojo widgets for the input field and submit button:

a. In the rightmost column, display the Palette by clicking the appropriate
tab.

b. Expand the Dojo Form Widgets drawer.
 Chapter 20. Developing web applications using Web 2.0 1117

c. Select the FilteringSelect widget, and drop it to the right of the label that
you typed in the previous step, between the existing div tags. See
Figure 20-13.

d. Click OK on the Insert Filtering Select dialog box that appeared. We will
populate our FilteringSelect widget later with a JSON file.

e. In addition to palette drops, you can add widgets to a page by using
content assist. Directly beneath the closing select tag just added, type
<but and invoke content assist (press Ctrl+Spacebar). You see the button
tag as a choice. Double-click it or press Enter to insert the tag on your
page.

f. Put your cursor inside the opening button tag, where the asterisk (*) is
located in the following example: <button *></button>.

g. Type dojo and invoke content assist. Select the dojoType attribute, and
insert it into your page.

Figure 20-13 Using content assist to add a dojotype attribute to the button tag

h. To set the value of the dojotype attribute, place your cursor inside the
double quotation marks, and invoke content assist again. You see a list of
available dojo widgets. Begin typing dijit.form.B until you see Button.
Insert it onto your page.
1118 Rational Application Developer for WebSphere Software V8 Programming Guide

i. Add the following attributes to the FilteringSelect widget:

i. Put your cursor after the autocomplete attribute. Type invalid and
invoke content assist. Insert the invalidmessage suggestion. Enter
"You must select a valid Customer SSN" as its value.

ii. Add a dojoattachpoint attribute and set its value to ssnSelect.

j. Add the following attributes to the Button widget:

i. label="Logon"

ii.dojoattachevent="onClick: logon"

k. Example 20-3 shows the complete CustomerLogin.html code.

Example 20-3 The finished CustomerLogon.html markup

<div class="CustomerLogon">
Select a Customer SSN:

<select dojoType="dijit.form.FilteringSelect"
name="select2"autocomplete="false" invalidmessage="You must enter
a valid Customer SSN." dojoattachpoint="ssnSelect">

</select>
<button dojotype="dijit.form.Button" label="Logon"
dojoattachevent="onClick: logon"></button>
</div>

12.Save and close CustomerLogon.html.

13.Open the CustomerLogon.js file.

14.Add dojo.require statements for the two widgets that are used in the html
file. The dojo.require statements load the necessary resources to create
those widgets when the page is loaded. Complete these steps:

a. Beneath the existing require statements, type dojo.re and invoke content
assist (press Ctrl+Spacebar).

b. Select dojo.require(moduleName) from the pop-up list.

Attributes: dojoattachpoint and dojoattachevent are attributes that
are specified by all Dojo widgets. The value that is specified for the
dojoattachpoint is the name by which that widget instance can be
referenced from the CustomerLogon.js file.

The dojoattachevent attribute adds event handling to widgets. It
specifies the action to listen for and the function to execute when that
action takes place. In this example, it executes the logon function in
CustomerLogon.js when the button widget is clicked.
 Chapter 20. Developing web applications using Web 2.0 1119

c. Type "dijit.form.FilteringSelect" as the function attribute.

d. Repeat steps b and c for "dijit.form.Button".

15.In the logon function, add the following line of JavaScript code:

this.currentSSN = this.ssnSelect.get("displayedValue");

This line of code uses the dojoattachpoint attribute that is specified in the
CustomerLogon.html page to reference the FilteringSelect widget and return
its selected value. The value is assigned to the widget attribute currentSSN
that you defined in a previous step.

16.Rational Application Developer V8 provides templates for commonly used
Dojo functions. Inside the postCreate function, type dojo.xhr, and invoke
content assist. You see a list of available methods and template proposals.
Select the template proposal for dojo.xhrGet (Figure 20-14).

Figure 20-14 Selecting the dojo.xhrGet template

17.Skip the url field, for now, by pressing the Tab key.

Content assist: Content assist is also available for widget attributes. For
example, you can type this.cur and invoke content assist. You then see
this.currentSSN in the list of available proposals.
1120 Rational Application Developer for WebSphere Software V8 Programming Guide

18.In the content assist pop-up list for handleAs, select json.

19.In the error function, add the following code:

alert("Could not load Customer data.");

20.You need to wrap your load function in a call to dojo.hitch, which allows you
to make calls to the this object from within the function. Copy and paste the
code that is shown in Example 20-4 for the load function.

Example 20-4 The load function code

load : dojo.hitch(this, function(response, ioArgs) {
// Un-comment the following line or re-type it using content assist
// var ssnStore = new dojo.data.ItemFileReadStore({data: response});
this.ssnSelect.searchAttr = "ssn";

this.ssnSelect.set("store", ssnStore);
}),

21.Declared Dojo types are also available in content assist. Beneath the
commented out line of code, type var ssnStore = new dojo. and then invoke
content assist.

22.Filter down the list by continuing to type dojo.data.Item.

23.By now you see dojo.data.ItemFileReadStore in the list of proposals. Insert
it into the function.

24.Add the constructor parameters: {data: response} as is shown in the
commented line of code.

25.At the top of the file, beneath the existing dojo.require statements, add a
new dojo.require statement for "dojo.data.ItemFileReadStore".

26.Save the CustomerLogon.js file.

20.3.4 Adding to a page and testing a custom Dojo widget

In this section, you add your custom widget to a web page and test it on the
AJAX test server. First, you test using a simple JSON file, which you modify using
the JSON editor. Then you change to using a servlet to provide the back-end
data. Complete these tasks:

1. Open index.html and switch to the Design view.

2. Surface the Palette and expand the Other Dojo Widgets drawer.

3. Drag and drop your widget, CustomerLogon, into the Logon section of the
BorderContainer. Add it beneath the label (Figure 20-15 on page 1122).
 Chapter 20. Developing web applications using Web 2.0 1121

Figure 20-15 Adding the CustomerLogon widget to the BorderContainer

4. Test to make sure that your widget shows up correctly in a browser. Click the
Preview tab at the bottom of the Page Designer editor (Figure 20-16). You
can flip between Firefox and Internet Explorer previews by using the buttons
at the top of the editor.

Figure 20-16 Preview of index.html

5. You receive a pop-up alert when loading the page in Preview mode, because
you have not attached any data to the FilteringSelect widget. To add data to
your widget, perform these steps:

a. Open the file WebContent/jsonTestFiles/customers.json. It opens in
the JSON editor.

b. The file is initially compressed, with all of the white space removed. You
can uncompress the file for editing by right-clicking in the editor and
selecting Source Format.

c. Add an additional entry to the JSON file with an ssn of 555-55-5555
(Figure 20-17 on page 1123).
1122 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 20-17 The JSON editor displaying uncompressed contents

d. Recompress the content of the file. Right-click and select Source
Compress.

e. Save and close the JSON file.

6. Next you need to modify your widget to point to this JSON file. Open
CustomerLogon.js and scroll down to the postCreate function.

7. Find the url attribute in the dojo.xhrGet function call and change its value to
the path of the JSON file, which is "jsonTestFiles/customers.json".

8. Now test your widget using the AJAX Test Server:

a. Right-click index.html in the Enterprise Explorer.

b. Select Run As Run on Server. If you see Ajax Test Server listed in
the list of available servers, select it and click Finish. (If you do not see it
listed, click Manually define a new server. Select AJAX Test Server
from the list and click Finish (Figure 20-18 on page 1124).)
 Chapter 20. Developing web applications using Web 2.0 1123

Figure 20-18 Creating a new Ajax Test Server

c. By default, your page launches in the internal web browser (Figure 20-19
on page 1125). You can select another browser by clicking Window
Web Browser. If you want to use the integrated Firebug debugging
support, select the Firefox with Firebug browser.
1124 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 20-19 Web page loaded with sample JSON data displayed in the FilteringSelect widget

9. Now that you have verified that your widget works with the JSON file, connect
the widget to the actual back-end service that will feed data to your
application:

a. Open CustomerLogon.js.

b. Change the url attribute in the postCreate function to
"/RAD8Dojo/BankDataService?type=getCustomers", which is the path to
your back-end servlet.

c. Save and close CustomerLogon.js.

10.Run the page on the server again to verify that your FilteringSelect widget
is still being populated.

20.3.5 Adding a Dojo DataGrid to your web page

In this section, you add two DataGrids to your web page to display customer
accounts and account transactions. After the Logon button is clicked, the
accounts grid loads. After a specific account is selected from the accounts grid,
the transaction grid loads.

You use the DataGrid wizard in this section. Complete these steps:

1. Open index.html and switch to the Design view.

2. Expand the Dojo Data Widgets palette drawer.

3. Drag and drop the DataGrid widget onto the page beneath the Accounts
label. The Dojo DataGrid wizard opens (Figure 20-20 on page 1126).
 Chapter 20. Developing web applications using Web 2.0 1125

Figure 20-20 Dojo DataGrid wizard

4. On the Dojo DataGrid wizard, perform these steps:

a. Enter /RAD8Dojo/BankDataService?type=getAccountsBySsn&id= as the
Service URL. After the code is generated, you will manually add the
necessary URL parameter.

b. Click Generate into .js file.

c. Enter /RAD8Dojo/WebContent/gridCode.js as the path to the .js file.

d. Add two columns:

i. Enter ID into the Heading Label text field.

ii. Enter id into the JavaScript Property text field.

iii. Click Add.
1126 Rational Application Developer for WebSphere Software V8 Programming Guide

e. Repeat the previous steps for the heading Balance and the property
balance.

5. Finish the wizard.

A table has been inserted into your web page, and the JavaScript code that is
necessary to populate a DataGrid has been generated into a file named
gridCode.js. In general, treat this generated code as a template that will be
modified to suit the specific needs of your application. Complete these steps:

1. Switch to the Source view of your web page.

2. Find the script tag - <script src="gridCode.js"></script> - and delete it.

3. In the table that was created, add a style attribute and change the id to
accountGrid:

<table id="accountGrid" dojotype="dojox.grid.DataGrid"
autowidth="true" rowselector="20px" style="height: 400px">

4. In the existing script region on your page, beneath the dojo.require()
statements, type dojo.add, and invoke content assist.

5. Select the template for dojo.addOnLoad, which will be inserted into your
page.

6. The dojo.addOnLoad function is a life-cycle method that runs after the DOM of
a page has finished loading. The dojo.connect event handling method
executes a given function when a specific action takes place. Inside the
dojo.addOnLoad function, you add a call to dojo.connect to populate the
account grid when the Logon button is clicked in the CustomerLogon widget.
Follow these steps:

a. Type dojo.co, and invoke content assist. Here, you can select another of
the default templates for dojo.connect. Insert it into your page.

b. For the domNode attribute, type dijit.byId("CustomerLogon").

c. Change the value of the second attribute to logon, which is the name of
the function in your widget that will process the event.

d. Next you need to write the code to grab the selected SSN from your custom
widget. Inside the function that is generated by the dojo.connect template,
add the code that is shown in Example 20-5.

Example 20-5 Add code to dojo.connect

var ssn = dijit.byId("CustomerLogon").currentSSN;
if(ssn == null || ssn == undefined || ssn == "") {

alert("You must select a SSN.");
}

 Chapter 20. Developing web applications using Web 2.0 1127

e. Now we bring in our generated DataGrid template code. Open the
gridCode.js file.

f. Copy all of the code inside the addOnLoad function in the gridCode.js file,
and paste it into the dojo.connect function, beneath the existing code, in
index.html (Figure 20-21).

Figure 20-21 The selected code to be copied and pasted into index.html

g. Press Ctrl+Shift+F to format the copied code.

h. At the end of the URL string, add + ssn:

url : "/RAD8Dojo/BankDataService?type=getAccountsBySsn&id=" +
ssn,

i. Change the line var grid = dijit.byId("gridId"); to var grid =
dijit.byId("accountGrid");

7. Run on the server, and verify that your page loads. Select an SSN from the
FilteringSelect, click Logon, and verify that account data loads in the
accounts grid.

8. Add a second DataGrid to display account transactions:

a. Switch the index.html editor back to the Design view.

b. Drag and drop the DataGrid widget onto the page beneath the
Transactions label.

c. Clear Generate JavaScript to population the grid.
1128 Rational Application Developer for WebSphere Software V8 Programming Guide

d. Add two columns:

i. Enter ID into the Heading Label text field.

ii. Enter id into the JavaScript Property text field.

iii. Click Add.

e. Repeat for the heading Transaction Type and the property transType.

f. Repeat for the heading Amount and the property amount.

g. Finish the wizard.

9. Switch back to Source view. Complete these steps:

a. In the table that was created, add a style attribute and change the id to
transactionGrid:

<table id="transactionGrid" dojotype="dojox.grid.DataGrid"
autowidth="true" rowselector="20px" style="height: 400px">

b. Inside the existing dojo.addOnLoad function call, add a second call to
dojo.connect using the provided content assist templates.

c. For the domNode attribute, type dijit.byId("accountGrid").

d. Change the second attribute to "onRowClick".

e. Add the parameter row to the function:

dojo.connect(dijit.byId("accountGrid"), "onRowClick",
function(row) {

f. Inside the function, add the line: var accountId =
row.grid.store.getValue(row.grid.getItem(row.rowIndex),"id");

g. Copy all of the code inside the addOnLoad function in the gridCode.js file
and paste it into the dojo.connect function in index.html.

h. Press Ctrl+Shift+F to format the copied code.

i. Change the URL string to:
"/RAD8Dojo/BankDataService?type=getTransactionsById&id=" +
accountId,

j. Change the line var grid = dijit.byId("gridId"); to var grid =
dijit.byId("transactionGrid");

10.Run on the server. You see similar results to Figure 20-22 on page 1130.
 Chapter 20. Developing web applications using Web 2.0 1129

Figure 20-22 Completed Web 2.0 application
1130 Rational Application Developer for WebSphere Software V8 Programming Guide

Chapter 21. Developing portal
applications

In this chapter, we introduce support of the portal development tools that are
included in IBM Rational Application Developer, with special focus on the
features that have been added to Rational Application Developer. We also
highlight how you can use the portal tools in Rational Application Developer to
develop a portal and associated portlet applications for WebSphere Portal. In
addition, we include a development scenario to demonstrate how to use the new
integrated portal tooling to develop a portal, customize the portal, and develop
two portlets.

The chapter includes the following sections:

� Introduction to portal technology

� Developing applications for WebSphere Portal

� New WebSphere portal and portlet development tools in Rational Application
Developer

� Developing portal solutions using portal tools

The sample code for this chapter is in the 7835code\portal folder.

21
© Copyright IBM Corp. 2011. All rights reserved. 1131

21.1 Introduction to portal technology

As Java 2 Platform, Enterprise Edition (J2EE) technology has evolved, much
emphasis has been placed on the challenges of building enterprise applications
and bringing those applications to the web. At the core of the challenges
currently being faced by web developers is the integration of disparate user
content into a seamless web application and well-designed user interface. Portal
technology provides a framework to build these applications for the web.

Because of the increasing popularity of portal technologies, the tooling and
frameworks that are used to support the building of new portals has evolved. The
major job of a portal is to aggregate content and functionality. Portal servers
provide the following advantages:

� A server to aggregate content
� A scalable infrastructure
� A framework to build portal components and extensions

Additionally, many portals offer personalization and customization features.
Personalization enables the portal to deliver user-specific information targeting a
user based on that user’s unique information. Through customization features,
users can organize the look and feel of the portal to suit their individual needs
and preferences.

Portals deliver e-business applications over the web to many types of client
devices from PCs to PDAs. Portals provide site users with a single point of
access to multiple types of information and applications. Regardless of where the
information resides or the format that it is in, a portal aggregates all of the
information in a way that is relevant to the user.

The goal of implementing an enterprise portal is to enable a working environment
that integrates people, their work, personal activities, and supporting processes
and technology.

21.1.1 Portal concepts and definitions

Before beginning development for portals, familiarize yourself with the common
definitions and descriptions of portal-related terminology.

Portal page
A portal page is a single web page that can be used to display content that is
aggregated from multiple sources. The content that is displayed on a portal page
is shown by an arrangement of one or more portlets. For example, a world stock
market portal page might contain two portlets that display stock tickers for
1132 Rational Application Developer for WebSphere Software V8 Programming Guide

popular stock exchanges and a third portlet that shows the current exchange
rates for world currencies.

Portlet
A portlet is an individual application that shows content on a portal page. To a
user, a portlet is a single window on the portal page that provides information or
web application functionality. To a developer, portlets are Java-based pluggable
modules that can access content from a source, such as another website, an
XML feed, or a database, and show this content to the user as part of the portal
page.

Figure 21-1 shows a portal welcome page and its contained portlets.

Figure 21-1 Portlets laid out on the Portal Welcome page

Portlet application
A portlet application is a deployable unit that contains one or more portlets. It
encapsulates all the resources required by the portlets, such as Java classes,
JavaServer Pages (JSP) files, images, deployment descriptors, libraries, and
other resources.
 Chapter 21. Developing portal applications 1133

Portlet states
Portlet states determine how individual portlets look when a user accesses them
on the portal page. These states are similar to minimize, restore, and maximize
window states of applications run on any popular operating system in a
web-based environment.

The state of the portlet is stored in the PortletWindow.State object and can be
queried for changing the way a portlet looks or behaves based on its current
state. The IBM portlet application programming interface (API) defines the
following possible states for a portlet:

� Normal: The portlet is displayed in its initial state, as defined when it was
installed.

� Minimized: Only the portlet title bar is visible on the portal page.

� Maximized: The portlet fills the entire body of the portal page, hiding all other
portlets.

Portlet modes
With portlet modes, the portlet can display a separate face depending on how it is
being used. Separate content can be displayed within the same portlet,
depending on its mode. Modes are most commonly used to allow users and
administrators to configure portlets or to offer help to the users. The IBM Portlet
API has the following modes:

� View: The initial face of the portlet when created. The portlet normally
functions in this mode.

� Edit: In this mode, the user can configure the portlet for that user’s personal
use (for example, specifying a city for a localized weather forecast).

� Help: If the portlet supports the help mode, this mode shows a help page to
the user.

� Configure: If provided, this mode shows a face through with the portal
administrator can configure the portlet for a group of users or a single user.

Portlet events
Certain portlets only display static content in independent windows. To allow
users to interact with portlets and to allow portlets to interact with each other,
portlet events are used. Portlet events contain information to which a portlet
might need to respond. For example, when a user clicks a link or button, an
action event is generated. To receive notification of a given event, the portlet
must also have the appropriate event listener implemented within the portlet
class.
1134 Rational Application Developer for WebSphere Software V8 Programming Guide

There are three commonly used types of portlet events:

� Action: Generated when an HTTP request is received by the portlet that is
associated with an action, such as when a user clicks a link.

� Message: Generated when one portlet within a portlet application sends a
message to another portlet.

� Window: Generated when the user changes the state of the portlet window.

21.1.2 IBM WebSphere Portal

IBM WebSphere Portal provides an extensible framework through which users
can interact with enterprise applications, people, content, and processes. They
can personalize and organize their own view of the portal, manage their own
profiles, and publish and share documents. WebSphere Portal provides
additional services, such as single sign-on (SSO), security, credential vault,
directory services, document management, web content management, and
personalization. Other services provided include search, collaboration, search
and taxonomy, support for mobile devices, accessibility support, globalization,
e-learning, integration to applications, and site analytics. Clients can further
extend the portal solution to provide host integration and e-commerce.

With WebSphere Portal, you can plug in new features or extensions using
portlets. In the same way that a servlet is an application within a web server, a
portlet is an application within WebSphere Portal. Developing portlets is the most
important task when providing a portal that functions as the user’s interface to
information and tasks.

Portlets are an encapsulation of content and functionality. They are reusable
components that combine web-based content, application functionality, and
access to resources. Portlets are assembled into portal pages that, in turn, make
up a portal implementation.

Portal solutions, such as IBM WebSphere Portal, are proven to shorten the
development time. Pre-built adapters and connectors are available so that
developers can use the company’s existing investment by integrating with the
existing systems without re-inventing the wheel.

New features in WebSphere Portal V7.0
With the following new features in WebSphere Portal V7.0, you can develop more
robust enterprise solutions:

� Improved installation, migration, configuration, and security.

� A new task has been added to aid in automated log collection for problem
reports opened with IBM Support.
 Chapter 21. Developing portal applications 1135

� Easily add support for tagging, rating, blogs, blog archives, and wikis.

� Page Builder and Unified Theme Architecture:

– The Page Builder theme is now the default theme.

– A new unified architecture supporting portlets and widgets.

– Both server-side and client-side page aggregation.

� The Unified Task List portlet provides a single point of integration with
workflow management systems.

� Enhanced virtualization through VMware.

For more information about the WebSphere Portal V7.0 new features, see the
IBM WebSphere Portal V7.0 Information Center at the following address:

http://www-10.lotus.com/ldd/portalwiki.nsf/xpViewCategories.xsp?lookupN
ame=IBM%20WebSphere%20Portal%207%20Product%20Documentation

21.1.3 Portal and portlet development features in Rational
Application Developer

Rational Application Developer provides development tools for portal and portlet
applications destined to WebSphere Portal. Several portal tools are bundled with
IBM Rational Application Developer that allow you to create, test, debug, and
deploy portal and portlet applications. Rational Application Developer supports
portlet development using the Standard and IBM portlet APIs.

The following features are provided to support the development of portlet
applications:

� New Portlet Project wizard

� Support for creating and publishing iWidget projects

� Support for iWidgets in portlet projects

� Dojo tools

� Advanced Dojo tools for client side Inter-Portlet Communications (IPC)

� “What you see is what you get” (WYSIWYG) Portlet deployment descriptor
editor

� Java Specification Request (JSR) 286: Event Publish and Subscribe Wizards

Portal projects: The portal projects targeting IBM WebSphere Portal V7.0 are
not supported. You cannot create and work with the portal projects targeting
IBM WebSphere Portal V7.0, or later. Use the web-based Site Designing
Portlet feature to manage portal projects.
1136 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www-10.lotus.com/ldd/portalwiki.nsf/xpViewCategories.xsp?lookupName=IBM%20WebSphere%20Portal%207%20Product%20Documentation
http://www-10.lotus.com/ldd/portalwiki.nsf/xpViewCategories.xsp?lookupName=IBM%20WebSphere%20Portal%207%20Product%20Documentation

� Cooperative portlet wizards

� Ajax proxy tooling

� Remote Procedure Call (RPC) tooling

� Person menu and person menu extension support

� Client-side programming model support

� Client-side click-to-action support

� Client Side Aggregation (CSA 2.0) support

� Personalization wizard

� Person tagging support

� Portlet application samples

� Portal server configuration

� Portal server test environment

� Portal server test, debug, and deploy

� Remote Portal server start-up option

� Hot deployment

� Portal theme support enhancement

� Import and export web archive (WAR) file

� JavaServer Faces (JSF) 1.2 features support

� Java Persistence API (JPA)-enabled portlets

� Static page aggregation

� Friendly URL support

� Business process message access

� Site Designing Portlet

� Visual tooling to insert portlet objects into JSP files, using Page Designer

Portal test environments
Rational Application Developer supports the following versions of integrated test
environments to run and test your portal and portlet projects from within the
Rational Application Developer workbench:

� IBM WebSphere Portal Server V6.1
� IBM WebSphere Portal Server V6.1 on WebSphere Application Server V7
� IBM WebSphere Portal Server V7.0
 Chapter 21. Developing portal applications 1137

In this chapter, we use Version 7.0 of WebSphere Portal running under
WebSphere Application Server V7.0.

Enabling the portal development capability
By default, Rational Application Developer portal development capability is not
enabled. To enable portal development capability, follow these steps:

1. Select Window Preferences.

2. In the Preferences window, expand General Capabilities and click
Advanced.

3. In the Advanced window, expand Web Developer (advanced), select Portal
Development and click OK.

4. Back in the Preferences window, click OK. Portal development is now
enabled.

Follow the instructions in the Help topics about Developing Portal Applications to
ensure that the configuration in the development environment accurately reflects
the configuration of the staging or runtime environment. If you do not do this step,
you might experience compilation errors after the product is imported or
encounter unexpected portal behaviors.

21.1.4 Setting up Rational Application Developer with the Portal test
environment

Setting up a Portal test environment in Rational Application Developer is now a
much easier and more streamlined task. We perform the following high-level
activities to complete the setup of the Portal test environment in Rational
Application Developer, as explained in “Installing WebSphere Portal V7” on
page 1806:

� Installing WebSphere Portal V7
� Adding WebSphere Portal V7 to Rational Application Developer
� Optimizing the WebSphere Portal Server for development

21.2 Developing applications for WebSphere Portal

Rational Application Developer includes many tools to help you quickly develop
portals and individual portlet applications. In this section, we cover simple portlet
development strategies and provide an overview of the tools that are included in
Rational Application Developer to aid with the development of WebSphere Portal
applications.
1138 Rational Application Developer for WebSphere Software V8 Programming Guide

21.2.1 Portal samples and tutorials

Rational Application Developer also comes with several samples and tutorials to
aid you with the development of WebSphere Portal applications. The Samples
Gallery provides example portlet applications to illustrate portlet development.

To access portlet samples, click Help Help Contents Samples. Then
expand Portlet (Figure 21-2). Here, you can select from a number of Portlet
examples.

Figure 21-2 Portal and Portlet development technology samples

The Tutorials Gallery provides detailed tutorials to illustrate portlet development.
To access the tutorials, select Help Help Contents Tutorials. Then expand
Portal. You can select Explore Portal Designer.

Portlet

Contents
 Chapter 21. Developing portal applications 1139

21.2.2 Development strategy

A portlet application consists of Java classes, JSP files, and other resources,
such as deployment descriptors and image files. Before beginning development,
you must make several decisions regarding the development strategy and
technologies that are used to develop a portlet application.

Choosing a portlet API: JSR 168, JSR 286, or IBM
Rational Application Developer supports the development of portlets using the
JSR 168 portlet API, the JSR 286 portlet API, and the IBM Portlet API. All three
portlets can be deployed to WebSphere Portal.

In this section, we provide information to help you decide which API to use when
you develop portlets:

� JSR 168 portlet API is a Java specification from the Java Community Process
that addresses the requirements of aggregation, personalization,
presentation, and security for portlets running in a portal environment.
Portlets that conform to the JSR 168 specification are more portable and
reusable, because they can be deployed to any JSR 168-compliant portal.

Rational tools support portlet development based on the JSR 168
specification. For more information about this API, see the following web
address:

http://www.jcp.org/en/jsr/detail?id=168

� JSR 286 portlet API is a Java specification from the Java Community Process
that has improved upon the JSR 186 portlet API by providing additional
capabilities, such as filters, events, and public render parameters. These
improvements have necessitated changes to the XML Schema Definition
(XSD) for the Portlet Deployment Descriptor (PDD) that adds new elements to
it.

For more information about this API, see the following web address:

http://www.jcp.org/en/jsr/detail?id=286

� IBM Portlet API was initially supported for WebSphere Portal V4.x, and in
subsequent versions of WebSphere Portal V5.x and V6.x. The IBM Portlet
API is deprecated in V6.x, but is still supported. No new functionality will be
added. Use the standard Portlet API.

Deciding which API to use
The IBM Portlet API extends the servlet API and many of the major interfaces
(request, response, and session). JSR 168 API does not extend the servlet API,
but shares many of the same characteristics. JSR 168 uses much of the
functionality that is provided by the servlet specification, such as deployment,
1140 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.jcp.org/en/jsr/detail?id=168
http://www.jcp.org/en/jsr/detail?id=286
http://www.jcp.org/en/jsr/detail?id=286

class loading, web applications, web application life-cycle management, session
management, and request dispatching.

For new portlets, consider using JSR 286 to take advantage of its additional
capabilities. If you cannot use JSR 286, consider using JSR 168 when its
functionality is sufficient for the portlets or when the portlet is expected to be
published as a Web Services for Remote Portlets (WSRP) service. WSRP is
another portal-based standard that is used to integrate the presentation of
remote portlets provided as web services into the local portal page. The
concepts in JSR 168 and WSRP have been aligned to allow JSR 168 portlets to
be published as web services. Several of these concepts include portlet modes
and states, URL and namespace encoding, and the handling of transient and
persistent information.

Choosing markup languages
WebSphere Portal supports multiple client types by generating pages in multiple
markup languages. By using Rational Application Developer tools, you can
develop portlet applications that support these markup languages. The following
markup languages are officially supported:

� cHTML is a markup language for mobile devices in the NTT DoCoMo i-mode
network.

� HTML is a markup language for desktop computers. All portlet applications
must support HTML, at a minimum.

� Wireless Markup Language (WML) is a markup language for Wireless
Application Protocol (WAP) devices, which are typically mobile phones.

To edit WML files and cHTML files, you can use Page Designer, as you do when
editing other web content.

To run or debug a portlet application that supports WML or cHTML, you can use
a device emulator that is provided by a device vendor. To add a device emulator,
follow these steps:

1. Select Window Preferences.

2. In the Preferences window, select General Web browser.

3. Click New to locate and define a web browser type that is appropriate for the
device that you want to test and debug.

For more information about markup languages, see the Markup guidelines topic
in the WebSphere Portal Information Center:

http://infolib.lotus.com/resources/portal/7.0.0/doc/en_us/pt700abd001/h
tml-wrapper.html
 Chapter 21. Developing portal applications 1141

http://infolib.lotus.com/resources/portal/7.0.0/doc/en_us/pt700abd001/html-wrapper.html
http://infolib.lotus.com/resources/portal/7.0.0/doc/en_us/pt700abd001/html-wrapper.html

Choosing other frameworks
JavaServer Faces (JSF), Struts technology, iWidgets, and Dojo can be
incorporated into a portlet development strategy easily. Rational Application
Developer provides extensive tooling support to help in the creation and code
generation for creating a JSF portlet, Struts portlet, iWidget portlet, or Dojo
portlet.

JavaServer Faces
Faces-based application development can be applied to portlets, similar to the
way that Faces development is implemented in web applications. Faces support
in Rational Application Developer simplifies the process of writing Faces portlet
applications and eliminates the need to manage many of the underlying
requirements of portlet applications.

Rational tools provide a set of wizards that help you create Faces portlet-related
artifacts. In many cases, these wizards are identical to the wizards that are used
to create standard Faces artifacts.

See the Rational Application Developer Faces documentation in the information
center for usage details at the following address:

http://publib.boulder.ibm.com/infocenter/radhelp/v7r0m0/topic/com.ibm.e
tools.jsf.doc/topics/cjsfover.html

Also, see Chapter 19, “Developing web applications using JavaServer Faces” on
page 1057, for more detailed information about application development using
the JSF framework.

Struts
Struts-based application development can also be applied to portlets, similar to
the way that Struts development is implemented in web applications. The Struts
Portal Framework (SPF) was developed to merge these two technologies. SPF
support in Rational Application Developer simplifies the process of writing Struts
portlet applications and eliminates the need to manage many of the underlying
requirements of portlet applications.

The Struts portlet tooling supports the development of portlet applications based
on both the JSR 168 API and the IBM Portlet API. There are differences in the
runtime code that is included with projects, tag libraries supported, Java class
references, and configuration architecture. Unless otherwise noted, these
differences are managed by the product tooling.

In addition, multiple wizards are present to help you create Struts portlet-related
artifacts. These wizards are the same wizards that are used in Struts
development. See the Rational Application Developer Struts documentation for
usage details.
1142 Rational Application Developer for WebSphere Software V8 Programming Guide

http://publib.boulder.ibm.com/infocenter/radhelp/v7r0m0/topic/com.ibm.etools.jsf.doc/topics/cjsfover.html
http://publib.boulder.ibm.com/infocenter/radhelp/v7r0m0/topic/com.ibm.etools.jsf.doc/topics/cjsfover.html

You can find more information about Struts at the following web addresses:

� http://struts.apache.org/

� http://publib.boulder.ibm.com/infocenter/radhelp/v7r0m0/topic/com.ibm.
etools.struts.doc/topics/cstrdoc007.html

We explain web development using iWidgets in Chapter 22, “Developing Lotus
iWidgets” on page 1183.

21.2.3 Portal tools for developing portals

A portal is essentially a J2EE web application. It provides an aggregation
framework where developers can associate many portlets and portlet
applications by using one or more portal pages.

Rational Application Developer includes several new portal site creation tools
that enable you to visually customize portal page layout, themes, skins, and
navigation.

Portal Import wizard
One way to create a new Portal project is to import an existing portal site from a
WebSphere Portal server into Rational Application Developer. Importing is also
useful for updating the configuration of a project that already exists in Rational
Application Developer.

The portal site configuration on WebSphere Portal server contains the following
resources: global settings, resource definitions, portal content tree, and page
layout. Importing these resources from WebSphere Portal server to Rational
Application Developer overwrites duplicate resources within the existing portal
project. Non-duplicate resources from the server configuration are copied into
the existing portal project. Resources that exist only in the portal project are not
affected by the import.

Rational Application Developer uses the XML configuration interface to import a
server configuration and optionally retrieves files from the
installedApps/node/wps.ear file of the WebSphere Portal Server installation.
These files include the JSP, Cascading Style Sheet (CSS), and image files for
themes and skins. When creating a new portal project, retrieving files is
mandatory. To retrieve files, Rational Application Developer must have access to
this directory, as specified when you define a new server for this project.

New Portal Project wizard
The New Portal Project wizard guides you through the process of creating a
portal project within Rational Application Developer.
 Chapter 21. Developing portal applications 1143

http://struts.apache.org/
http://publib.boulder.ibm.com/infocenter/radhelp/v7r0m0/topic/com.ibm.etools.struts.doc/topics/cstrdoc007.html
http://publib.boulder.ibm.com/infocenter/radhelp/v7r0m0/topic/com.ibm.etools.struts.doc/topics/cstrdoc007.html
http://struts.apache.org/
http://publib.boulder.ibm.com/infocenter/radhelp/v7r0m0/topic/com.ibm.etools.struts.doc/topics/cstrdoc007.html
http://publib.boulder.ibm.com/infocenter/radhelp/v7r0m0/topic/com.ibm.etools.struts.doc/topics/cstrdoc007.html

During this process, you are able to perform the following actions:

� Specify a project name.
� Select the version of the portal server.
� Select a default theme.
� Select a default skin for the chosen theme.

The project that you create with this wizard does not have any portlet definitions,
labels, or pages. The themes and skins that are available in this wizard are the
same as if you had imported a portal site from a WebSphere Portal server. To
create a new Portal Project, follow these steps:

1. Select File New Project Portal.

2. In the Select a wizard window, expand Portal and select Portal Project. Click
Next.

3. In the New Portal Project window (Figure 21-3 on page 1145), complete these
actions:

a. In the Project Name field, type a name, for example, MyPortal.
b. Select Use default.
c. For Select the portal server version, select 6.1.0.1.
d. For the Target Runtime, select WebSphere Portal v6.1 on WAS 7.
e. For the EAR Project Name, type a name, for example, MyPortalEAR.
f. Click Next.

Important: Do not name your project wps or anything that resembles this
string to avoid internal naming conflicts.
1144 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 21-3 New Portal Project wizard

4. In the Select Theme window, select the default theme (Portal) and click Next.

5. In the Select Skin window, select the default skin (IBM) and click Finish.

The Portal Designer editor opens with the selected theme and skin.

Portal Designer
For portal site layout and appearance, you can think of Portal Designer as a
“what you see is what you get” (WYSIWYG) editor. It renders the graphic
interface of items, such as themes, skins, page layouts, and simple portlets.
 Chapter 21. Developing portal applications 1145

Portal Designer also shows the initial pages of JSF and Struts portlets within
your portal pages. It does not display the content for WSRP. For more information
about how to display simple portlets, see “Viewing portlets in Portal Designer” in
the Rational Application Developer Help.

Use Portal Designer to customize both the graphic design of your portal and the
layout of your portal pages. Use it as you might use any WYSIWYG web editor.
You can perform the following capabilities, among other capabilities, with this
editor:

� Right-clicking a design element. You can select an insert menu item.

� Clicking a design element to edit its properties on the Properties tab.

� Using Page Designer to alter the graphic design of themes, skins, and styles.
These editors are available in the Edit menu.

PortalConfiguration is the name of the layout source file that resides in the root
of the portal project folder (Figure 21-4 on page 1147). To open Portal Designer,
double-click the ibm-portal-topology.xml file under the PortalConfiguration
folder in the Enterprise Explorer.
1146 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 21-4 Portal Designer workbench

Skin and theme: Designing and editing
A skin is the border around each portlet within a portal page. Unlike themes,
which apply to the overall look and feel of the portal, skins are limited to the look
and feel of each portlet that you insert into your portal application.

Rational Application Developer installation includes pre-built themes and skins to
use with portal projects. Also, wizards can create new themes and skins.
Changing themes and skins was previously done through portal administration.
In addition to these wizards for creating new skins and themes, there are tools
that can be used to change or edit skins and themes.

After you create them, the skins and themes are displayed in the Enterprise
Explorer view. Double-click a skin or theme to manually edit it.
 Chapter 21. Developing portal applications 1147

New Skin wizard
In addition to using the pre-defined skins that came with the installation, you can
use the New Skin wizard to create customized skins for your project:

1. Right-click the Portal project in the Enterprise Explorer view and select
New Skin. The New Skin window opens (Figure 21-5).

Figure 21-5 New Skin wizard

2. Type the name of the new skin to be created and click the source skin from
which the new skin will be copied. Using a source skin allows you to take an
existing skin and add customizations while still retaining the original skin.
After you choose the source skin, click Next.

3. In the Select Themes window, select the themes that allow the skin that you
created and click Finish.

4. The new skin is saved in the Skins folder of the portal project. From this point,
you can use the Page Designer to edit the skin and apply the customizations.
1148 Rational Application Developer for WebSphere Software V8 Programming Guide

New Theme wizard
Themes provide the overall look and feel of your portal application. In addition to
using the pre-existing themes, you can use the New Theme wizard to create
customized themes for your project:

1. Right-click the portal project in the Enterprise Explorer view and select
New Theme. The New Theme window opens (Figure 21-6).

Figure 21-6 New Theme wizard

2. Type the name of the new theme to be created and click the source theme
from which the new theme will be copied. Using a source theme allows you to
take an existing theme and add customizations while still retaining the original
theme. After you choose the source skin, click Next.

3. In the Select Skins window, select the allowed skins for the theme and click
Finish.

4. The new theme is saved in the Themes folder of the portal project. From this
point, you can use the Page Designer to edit the theme and apply the
customizations.
 Chapter 21. Developing portal applications 1149

21.3 New WebSphere portal and portlet development
tools in Rational Application Developer

For those who are already familiar with portal and portlet development tools in
the previous version of the Rational Application Developer, we briefly introduce
the new portal and portlet tooling in Rational Application Developer.

21.3.1 Support for WebSphere Portal Server V7

In Rational Application Developer, you can create a portal-based project that is
targeted to WebSphere Portal V7.0 at run time. You can target a local run time if
you have a portal run time installed on your local machine. Otherwise, you can
target server stubs to create the portlet project. To test the project, you can
create the server instance of the desired run time and then publish the portlet
project by using either the Run On Server or the Deploy option.

21.3.2 Site Designing Portlet

The Site Designing Portlet is a web-based user interface that is used to
customize and manage the portal site. You can use this user interface to change
the appearance and layout of your portal site. You can add pages to a portal site,
add portlets to a portal site, and add wire between portlets on a portal page.

21.3.3 New portlet project features

Two new portlet project features have been added into Rational Application
Developer. These new portlet project features include the Dojo-enabled portlets
and the creation of iWidgets inside a portlet project. The Dojo-enabled portlets
run the portal runtime environment, with the option to create custom widgets that
can be reused and enhanced further for WebSphere Portal V6.1 and later. You
can also create and publish iWidget projects or create widgets inside a portlet
project on the WebSphere Portal Version 6.1.5 and later runtime environment.

Important: Tool support for portal projects does not exist for IBM WebSphere
Portal V7.0 run time.
1150 Rational Application Developer for WebSphere Software V8 Programming Guide

21.3.4 RPC tooling for portlet projects

The Remote Procedure Call (RPC) adapter for portlet projects allows JavaScript
or client-side code, such as the Dojo library, to directly invoke and consume
server-side logic.

21.4 Developing portal solutions using portal tools

In this section, we provide an example to develop eventing portlets.

21.4.1 Developing event handling portlets

Events are a powerful and flexible mechanism for communication between JSR
286 portlets. Events can be used to exchange complex data between portlets
and to trigger portlet activity, such as updates to back-end systems. In the portal,
they can also work with other communication mechanisms, such as cooperative
portlets and click-to-action portlets.

Rational Application Developer provides wizards and user friendly editors to
create and configure events. Wizards help portlets publish and receive events.
You specify a unique name for the event that has to be published or processed,
using either the default namespace or a custom namespace. In addition, the alias
address in the namespace indicates that these events are compatible with any
events of another portlet that has the same alias and can, therefore, work with
input or output values of the provided address type.

Events subscribe to a server-side model or to a client-side model (IBM API and
JSR API portlets targeted to WebSphere Portal V6.1) for declaring, publishing,
and sharing information. Events can be distributed between local and remote
portlets.

Server-side model portlets communicate with each other using the WebSphere
Portal property broker. These portlets subscribe to the broker by publishing typed
data items, or properties, that they can share as a provider or as a recipient.

Project setup
We use two projects for this application:

� RAD80PortletEventEAR: Enterprise application
� RAD80PortletEvent: Application with two portlets (based on JSR 286)

Import these projects from the
C:\7835code\portal\RAD80PortletEventStart.zip project archive file.
 Chapter 21. Developing portal applications 1151

Structure of the sample application
The sample application consists of the following portlets that generate a
processAction method:

� CityPortlet contains a list of cities for the user to select.
� CityInfoPortlet shows detailed information about the city that is selected.

Creating an event to connect the portlets
Create an event to connect the CityPortlet and CityInfoPortlet:

1. In the Enterprise Explorer, expand RAD80PortletEvent.

2. From the Palette, expand the Portlet drawer. Drag the Event Source Trigger
palette item onto the portlet JSP file where you define the events for the
portlet application (Figure 21-7).

Figure 21-7 Inserting the event source trigger

3. Click New Event, and the Enable this Portlet to Publish events window opens.

4. Enter cityEvent in the Event name field and click Finish.
1152 Rational Application Developer for WebSphere Software V8 Programming Guide

To enable a portlet to process an event, follow these steps:

1. In the Enterprise Explorer, expand RAD80PortletEvent Portlet
Deployment Descriptor.

2. Right-click CityInfoPortlet and select Events Enable this portlet to
process events.

3. In the Event: Enable this Portlet to Process events window, for the Event
name, select cityEvent and click Finish.

As a result, a processEvent method is added to the CityInfoPortlet class
(Example 21-2).

Example 21-1 CityInfoPortlet processEvent method

public void processEvent(EventRequest request, EventResponse response)
throws PortletException, java.io.IOException {

Event sampleEvent = request.getEvent();
if(sampleEvent.getName().toString().equals("cityEvent")) {

Object sampleProcessObject = sampleEvent.getValue();
}

}

Adding the event logic to the two portlets
You have to put logic into the processAction method of the CityPortlet class
and the processEvent method of the CityInfoPortlet class. When the user
submits the CityPortlet, the processAction method is called. You have to
trigger an event with the value of the selected city to the CityInfoPortlet to
process this event.

To add the event logic to the portlets, follow these steps:

1. Open the CityPortlet class and change the processAction method
(Example 21-2).

Example 21-2 CityPortlet class processAction method (updated)

public void processAction(ActionRequest request, ActionResponse
response)

throws PortletException, java.io.IOException {
//Initialize the fields in the class as per your requirement
java.lang.String sampleObject = new java.lang.String();
response.setEvent("cityEvent", sampleObject);
String city = request.getParameter("cityCombo");
response.setEvent("cityEvent", city);

}

 Chapter 21. Developing portal applications 1153

2. Open the CityInfoPortlet class and change the processEvent method to get
the value of the event received. Delegate this value to the CityDB helper class,
which returns a CityInfoBean object with information about the selected city
(Example 21-3).

Example 21-3 CityInfoPortlet class processEvent method (updated)

public void processEvent(EventRequest request, EventResponse
response)

throws PortletException, IOException {

Event sampleEvent = request.getEvent();
if(sampleEvent.getName().toString().equals("cityEvent")) {

Object sampleProcessObject = sampleEvent.getValue();
String city = (String) sampleEvent.getValue();
cityInfoBean = CityDB.getCityInfo(city);

}
}

The doView method of the CityInfoPortlet class puts the cityInfoBean on
request scope and forwards the processing to a JSP page to display the result
(Example 21-4).

Example 21-4 CityInfoPortlet class doView method

public void doView(RenderRequest request, RenderResponse response)
throws PortletException, IOException {

// Set the MIME type for the render response
response.setContentType(request.getResponseContentType());
request.setAttribute("info",cityInfoBean);
// Invoke the JSP to render
PortletRequestDispatcher rd =

getPortletContext().getRequestDispatcher
(getJspFilePath(request, VIEW_JSP));

rd.include(request,response);
}

The CityInfoPortletView.jsp in the CityInfoPortlet retrieves the
cityInfoBean and shows information about the selected city.

Deploying and running the event handling portlets
In the Enterprise Explorer, right-click RAD80PortletEvent Run As Run on
Server. In the subsequent window, click Finish to complete publishing to the
WebSphere Portal server. After the application is deployed, Rational Application
Developer opens a browser in the workbench (Figure 21-8 on page 1155).
1154 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 21-8 Browser with CityPortlet

Connecting the portlets
You need to use wires to exchange information or actions between portlets. To
access the wiring tool, follow these steps:

1. With the browser opened with the CityPortlet, click the Actions menu
option. When the pop-up menu appears, select Edit Page Properties
(Figure 21-9).

Figure 21-9 Edit Page Properties
 Chapter 21. Developing portal applications 1155

2. In the Page Properties window, for the Unique name, type
rad80.portlet.page and click OK.

3. Again, click the Actions menu option and select Edit Page Layout.

4. In the Page Customizer window, select the Wires tab (Figure 21-10).

Figure 21-10 Edit Page Layout

5. On the Portlet Wiring Tool page, connect the portlets (Figure 21-11 on
page 1157):

a. For the Source Portlet, select CityPortlet.
b. For Sending, select publish.{http://RAD80Portlet/}cityEvent.
c. For the Target Page, select RAD80PortletEvent (rad80.portlet.page).
d. For the Target portlet, select CityInfo.
e. For Receiving, select process.{http://RAD80Portlet/}cityEvent.
f. Click the plus icon () to add the wire.
g. Click Done and then click Home.
1156 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 21-11 Portlet Wiring Tool (compressed)
 Chapter 21. Developing portal applications 1157

Testing the application
To test the event link between the two portlets, select New York in the first portlet
and click Submit. The second portlet shows information about the selected city
(Figure 21-12).

Figure 21-12 Application with event handling between portlets

21.4.2 Creating Ajax and Web 2.0 portlets

The new JSR 286 contains improvements to develop Ajax portlets. One of the
new features is called resource serving.

Ajax using JSR 286 resource serving
With resource serving, portlets can serve resource requests in resource URLs.
With WSRP 2.0, requests for resources, such as PDF documents, are addressed
within the WSRP protocol. Formerly, an out-of-band connection was required for
such resources, for example, HTTP. Resources are now portal context aware,
because the context information is passed directly over the WSRP protocol.

Resource serving allows Ajax support inside the portlets, and the portlets have a
way to return XML, JavaScript Object Notation (JSON), HTML fragments, or
other content. Only the portlet that made the requisition is updated, not the entire
page (Figure 21-13 on page 1159).
1158 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 21-13 Portlet with Ajax support

A resource request is a new callback interface that is triggered by so-called
resource URLs. To make a portlet become a resource serving portlet, you have to
implement the ResourceServingPortlet interface and implement the
serveResource method. The output for the serveResource method must have a
separate content page.

Resource serving example
Here, we adapt the previous portlet events example to add Ajax behavior. The
CityInfoPortlet will have a button to retrieve a list of hotels about the current
city (Figure 21-14).

Figure 21-14 Resource serving portlet to add city hotels

Project setup
We have two projects:

� RAD80PortletEventAjaxEAR: Enterprise application
� RAD80PortletEventAjax: Application with two portlets (based on JSR 286)

Import these projects from the
C:\7835code\portal\RAD80PortletEventAJaxStart.zip project archive file.

To import files before developing the other artifacts, follow these steps:

1. Select File Import.

Browser

XHR +
resource URL

HTML, JSON,
XML, etc.

Portal Server

Portal WAR

A B

C D

A B

C D

Click

S
er

vl
et

WAR

WAR

WAR

Portlet 'A'

WAR

Portlet 'A' Portlet 'B'

Portlet 'C' Portlet 'D'

Server
resource

Portlet

CityInfoPortletView.jsp

hotels.jsp
Dynamic Content serveResource ()

doView ()
 Chapter 21. Developing portal applications 1159

2. In the Import window, select General File System. Click Next.

3. In the File system window, perform these tasks:

a. For From directory, click Browse and locate C:\7835code\portal.

b. In the right frame, select hotel.jsp.

c. For Into folder, click Browse and locate
RAD80PortletEvent/WebContent/_CityInfo/jsp/html.

d. Click Finish.

4. Repeat the import to place HotelInfoBean.java into the
com.ibm.rad80portlet.bean package.

5. Repeat the import to place HotelDB.java into the com.ibm.rad80portlet.db
package.

Developing the Ajax code
Open the CityInfoPortlet class in the editor and perform these steps:

1. Select Source Organize Imports (or press Ctrl+Shift+O) to resolve the
import.

2. Right-click in the editor window and select Source Override/Implement
Methods. Select the serveResource method, and for the Insertion point,
select After processEvent(...). Click OK.

3. When the serveResource method is called, find the hotels of the selected city
and set a parameter with the hotel list to the JSP file. Add the code to the
serveResource method, as shown in Example 21-5.

Example 21-5 CityInfoPortlet serveResource method

public void serveResource(ResourceRequest request,
ResourceResponse response) throws PortletException,
IOException {
String cityId = request.getParameter("cityId");
request.setAttribute("hotels", HotelDB.getHotels(cityId));
PortletRequestDispatcher rd = getPortletContext()
.getRequestDispatcher(JSP_FOLDER +
"/html/hotel.jsp");
rd.include(request, response);
}

Tip: You can also drag a file from a Microsoft Windows Explorer folder
directly to the appropriate folder or package in Rational Application
Developer.
1160 Rational Application Developer for WebSphere Software V8 Programming Guide

4. Select Source Organize Imports (or press Ctrl+Shift+O) to resolve the
import.

5. From the Palette, expand the Portlet drawer. Drag the Serve Resource
palette item onto the portlet JSP file to add the portlet resource URL tag and
serveResource method in portlet class.

6. In the Insert a portlet resource URL window, complete the following fields and
click Finish (Figure 21-15):

a. For the Package prefix, type a prefix to the package.

b. For the Portlet Resource URL attributes, enter the resource ID and URL.

Figure 21-15 Portlet resource URL

7. Locate the C:\7835code\portal\SnippetJavaScriptAjax.txt JavaScript
snippet file and copy its contents.

8. Paste the code into the CityInfoPortletView.jsp after the tags
<portlet-client-model:init>......</<portlet-client-model:init>. This
code has JavaScript functions that call Ajax functions.

9. Create a Hotels button with an event click that targets the resource URL and a
<div> tag where the list of hotels will appear. Add the code to
CityInfoPortletView.jsp after the </table> tag, as shown in Example 21-6
on page 1162.
 Chapter 21. Developing portal applications 1161

Example 21-6 Hotels button and div tag

</table>

 <================== existing tag
<form>
<input type="button"
onclick="<portlet:namespace/>getHotels('${requestScope.resourceUrl}'
,
'hotels','${requestScope.info.cityId}')"
value="Hotels" >
</form>
</c:if> <================== existing tag
<div id="hotels"> </div>

21.4.3 Deploying and running the application

In the Enterprise Explorer, right-click RAD80PortletEvent Run As Run on
Server. In the subsequent window, click Finish to publish the application to the
WebSphere Portal server. After the application is deployed, Rational Application
Developer opens a browser in the workbench.

Testing the application
To test the Ajax functionality, perform these steps:

1. In the first portlet, select New York from the list box and click Submit. The
second portlet shows the information about New York.

2. Click Hotels to call an Ajax function that retrieves a list of hotels (Figure 21-16
on page 1163).

Connecting the portlets: After deploying the application, connect the
portlets. Follow the instructions in “Connecting the portlets” on page 1155.
1162 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 21-16 Portlet application with Ajax

21.4.4 Creating a portal site with the Site Designing Portlet feature

The Site Designing Portlet is a web-based user interface that is used to create
and manage the portal site. You can use this user interface to change the
appearance and layout of your portal site. It is available to use after the product is
installed and started with WebSphere Portal server.

You must first understand the composition of the portal site and how the pages
are aggregated before creating your portal site. Site navigation uses portal’s
hierarchical structure information about various pages, labels, URLs, and so on
to generate a navigation tree that is similar to the site map. The topmost node in
the navigation hierarchy tree is the content root.

After you define a portal site with a content root, you can manage your site by
adding pages and labels in your site navigation tree. You can plan and lay out
your whole portal site and then create pages and fill them with portlets for the
site. You can rename the pages, create easy to remember URLs, wire portlets
inside them, and edit the page metadata. You can also search for a portlet, add it
to a page, and also edit the existing site layout. The home page of the Site
Designing portlet uses the portal theme, by default. This feature is supported
with WebSphere Portal Server V6.1.5, and later. To populate your portal site
structure, add a new page to a portal site:

1. Select a WebSphere Portal Server in the Server view to open the site
navigation.

2. Right-click and select Site Designing portlet.

3. After the Site Designing portlet is launched in the browser, in the site
navigation, select a page and click the drop-down arrow in the tree where you
want to attach the new page (Figure 21-17 on page 1164).
 Chapter 21. Developing portal applications 1163

Figure 21-17 Site Designing portlet launched in a browser

4. Select Create Page and Before, After, or As Child, depending on where you
want to put the new page in relation to the page that you selected.

5. In the Page Metadata window, edit the following metadata for the page and
click Submit (Figure 21-18 on page 1165):

a. Friendly URL: Make sure that your URL for the page is easy to remember
and consistent with the rest of the site.

b. Theme: Select the theme of the page from the drop-down list.

c. Page Cache Options: You can specify a cache scope that indicates
whether cached content is public (shared) or per user. A portlet that
caches its output can change its content immediately to provide additional
output. You can indicate how long, in seconds, to cache portlet output. The
page expiration time enables the portlet developer to inform the container
when to invalidate the current cache entry for the portlet and therefore
when to refresh the portlet’s content.

d. Page Properties:

• This page can be added to the user’s favorites or bookmark list.
1164 Rational Application Developer for WebSphere Software V8 Programming Guide

• Other pages can share the contents of this page.

Figure 21-18 Site Designing portlet: Page Metadata

6. Click Submit.

Adding portlets to the site page
Follow these steps to add each portlet to the site page:

1. Select a page in the site navigation tree where you want to add a portlet.

2. Select the appropriate page layout by clicking one of the predefined page
layouts inside the site layout (Figure 21-19 on page 1166).
 Chapter 21. Developing portal applications 1165

Figure 21-19 Site Designing portlet: Page layout

3. Select the row or column of the page where you want to add a portlet and
click Add Portlet.

4. In the Universal Catalog window, select the Portlet check box to limit the list
of page components.

5. Search for the portlet that you want to add, preview it, and click Add.

6. Click OK to see the page with the portlet that you added.

Creating a wire
Perform these steps to create a wire:

1. Select a WebSphere in the Server view to open the site navigation.

2. Right-click and select Site Designing Portlet.

3. Select a page that you want to wire in the site navigation tree.
1166 Rational Application Developer for WebSphere Software V8 Programming Guide

4. Click the Create Wire icon in the upper-right corner of the window.

5. In the Portlet Wiring Tool wizard, select the Target page, which, by default, is
set to the current page.

6. The wiring tool scans both the current page and the target page to list all of
the source portlets (portlets that can publish events) and target portlets
(portlets that can process events). It also displays the existing wires, if any,
between the source and target events. See Figure 21-20.

Figure 21-20 Site Designing portlet: Portlet Wiring Tool

7. Hover over a source portlet to list all of the events that the portlet publishes.
Select an event and click Add beside it to create possible wires from the
current source to all target portlets that declare to receive the same event.

8. Click the exclamation mark () icon on the wire to remove a wire.

9. Click OK.

21.4.5 Developing Dojo-based inter-portlet communication

The Dojo-based portlet events provide a powerful and flexible publish/subscribe
(pub/sub) mechanism for communication between portlets without a page
refresh. This communication method is based on directed communication links
that pass information from a source portlet to a target portlet. When data is sent
 Chapter 21. Developing portal applications 1167

across a link, the target portlet is invoked to process the received information and
performs arbitrary updates.

You can configure the Dojo capabilities for a project from the Properties view.
The Palette view consists of Dojo drawers from where you can drag Dojo widgets
onto the portlet JSP file. The Dojo Event Publisher and Dojo Event Subscriber
palette items are available in the Portlet drawer. These items are used to add
publisher and subscriber events for a dojo widget to achieve inter-portlet or
intra-portlet communication through JavaScript events.

This task displays the Dojo inter-portlet communication mechanism. With this
task, you can verify that the text entered in one portlet is also displayed on
another portlet without any page refresh. Follow the steps to run a portlet project
that has two portlets interacting with each other:

1. Create a portlet project with Dojo on WebSphere Portal with facet enabled.

2. Drag a Dojo TextBox widget onto the portlet JSP file (Figure 21-21).

Figure 21-21 Dojo settings for portlet project

3. In the Dojo Settings For Portlet Project window, specify the JavaScript
namespace for the Dojo classes as com.amazing.portlet and click Finish.

4. Drag a Button Dojo widget from the Dojo Form Widgets drawer.

5. Drag the Dojo Event Publisher palette item from the portlet drawer onto the
Button Dojo widget.

6. In the Insert Dojo Event Publisher window, complete the following field for an
event publisher (Figure 21-22 on page 1170):
1168 Rational Application Developer for WebSphere Software V8 Programming Guide

a. Object ID: Specify how you want to connect the publish calls. The
dojo.byId function returns the Document Object Model (DOM) node,
whereas the dijit.byId function gives reference to the Dijit widget
node.

b. Event name: Specify the name of the event for the widget. After this event
is completed, the dojo.publish() method is called.

c. Publish function name: Specify the publisher function name. For example,
name the function as F1(). This function is used to construct a message
for publishing and is called before the event is triggered.

d. Topic name: Specify the topic name to which you want this publisher event
to publish the message. A topic acts as a broker to connect a publisher to
various subscribers. Enter the topic name as dojo.ipc. The topic name
must be the same for the event publisher and the subscriber for the event
to take place.
 Chapter 21. Developing portal applications 1169

Figure 21-22 Specifying settings for Dojo event publisher

7. Click Finish.

8. Open the [PortletView1].js file in the portletHelper folder under the
/project/WebContent/js/com/ibm/amazing directory.

9. To the function F1() that was auto-generated, add the logic
this.portlet.byId("textBox").value = args; in the .js file and save the
file.

10.Create another portlet in the same portlet project.

11.Drag a Dojo TextBox widget onto the portlet JSP file of the newly created
portlet.

12.Drag the Dojo Event Subscriber palette item from the portlet drawer onto
the portlet JSP file.
1170 Rational Application Developer for WebSphere Software V8 Programming Guide

13.In the Insert Dojo Event Subscriber window, complete the following fields for
an event subscriber (Figure 21-23):

a. Topic name: Specify the topic name to which you want this portlet to
subscribe. Select the already listed topic dojo.ipc. The topic name
connects separate subscribers to a publisher. This topic name must be the
same topic name as that of the event publishing dojo widget.

b. Subscriber function name: Specify the subscriber function name that will
process all the messages published on the specified topic. This function is
called when the event is received by the target portlet.

c. Number of Arguments: Specify the number of arguments that the
subscriber function has. These arguments are equal to the size of the
message array that is published by the publisher on the specified topic.
Select 0 if this function does not have any arguments. Select 1 for one
argument, 2 for two arguments, and so on.

Figure 21-23 Dojo Event Subscriber

14.Click Finish.
 Chapter 21. Developing portal applications 1171

15.Open the file [PortletView2].js under the portletHelper folder.

16.To the generated function F2() in the .js file, add the logic
this.portlet.byId("textBox").value = args; in the .js file and save the
file. Run the project on a WebSphere Portal server.

17.Enter text in the text box and click the button.

18.Verify that the text that you entered is also displayed on another portlet
without any page refresh.

21.4.6 Consuming RPC adapter services

The Remote Procedure Call (RPC) adapter service for portal provides a
mechanism to consume server-side Java objects, such as EJB session bean
methods or plain old Java object (POJO) services, to AJAX-based user
interfaces.

The portal tools provide support for the RPC adapter service by enabling you to
consume classes and methods as an RPC adapter service. To use the RPC
adapter tooling, you need to ensure that your project has the Web 2.0 server-side
technologies project facet enabled. Complete these steps to consume an RPC
adapter service:

1. Create a portlet project with a V6.1 or later target run time, and with the RPC
adapter and Dojo on WebSphere Portal Facet installed.

2. Open the portlet project JSP file and select the Page Data view.

3. Right-click RPC Adapter services for Portal and select New RPC
Adapter Service.

4. The Expose RPC Adapter Service wizard opens. Select POJO Class and
click Browse.

5. The Select a Java class to expose window opens. In the Select entries field,
type the class name to list matching classes.

6. Select a class and click OK.

7. The selected POJO class lists the class methods.

8. Select the required methods and click Finish.

9. Refresh the Page Data view. The RPC methods created are listed under the
service name in the RPC Adapter Services for Portal node.

10.Expand the service node under the RPC Adapter Services for Portal node.

11.Select a method and drag it on the Design view of the portlet JSP file to
generate Dojo data and JavaScript.
1172 Rational Application Developer for WebSphere Software V8 Programming Guide

12.Under the JavaScript group, select Generate into script element in this
page.

13.Enter the required data, keep the other options as is, and click Finish to
generate the code.

14.Publish the portlet project and verify that the Dojo data is rendered properly.

Complete these steps to generate Dojo data inside the portlet JSP file and its
corresponding JavaScript in an external JavaScript file:

1. Expand the service node under the RPC Adapter Services for Portal node.

2. Select a method and drag it onto the Design view of the portlet JSP file to
generate Dojo data and JavaScript.

3. Under the JavaScript group, select Generate into .js file.

4. Click Browse and select a .js file.

5. Enter the required data, keep the other options as is, and click Finish to
generate the code.

6. Publish the portlet project and verify that the Dojo data is rendered properly.

21.4.7 Creating iWidget projects

An iWidget is an XML file that contains markup that is rendered and can be
supported by JavaScript files for dynamic client-side scripting and CSS files for
styling the markup. JSP, HTML, or HTML fragments can also contain markups,
which can also be written in Ajax.

You can create an iWidget either in a portlet or in an iWidget project. When you
complete this task, you create an iWidget XML file using a template. You can use
the Edit mode to display a markup alternative to the View mode. Follow the steps
to create an iWidget in an iWidget project:

1. Select File New Project Web iWidgets Project.

2. In the New iWidgets Project wizard, select the option Web and Java EE
technologies (Ajax, HTML, CSS, JSP, Servlet etc.). Click Next.

3. Enter a project name and accept the default directory for your iWidget.

4. Select a target run time. WebSphere Portal Server Version 6.1.5 and later are
supported target run times for an iWidget project. This server is the server to
which you will deploy your widget.

5. By default, the wizard associates your project with a project EAR. Click Next.

6. In the New iWidgets Project wizard page, specify a name for the iWidget.
 Chapter 21. Developing portal applications 1173

7. Select the iWidget type from the drop-down list (Figure 21-24). The templates
provide you with a working copy of an iWidget XML file and a JavaScript file
with stubbed functions. The following three templates are available:

– Simple iWidget: Hello World iWidget with no JavaScript
– Event publisher iWidget: iWidget with an event that sends data
– Event subscriber iWidget: iWidget with an event that receives data

Figure 21-24 Types of iWidgets

8. Select the Edit Mode check box to add an Edit mode to the iWidget. A mode
is a section of markup that an iWidget renders at run time. When an iWidget is
running, you can switch between modes to display separate markups.

9. Click Finish to create an iWidget in an iWidget project.

If you want to add more iWidgets to the project, follow these steps:

1. Open the Enterprise Explorer view, right-click the iWidget project created, and
select New iWidget.

2. In the New iWidget wizard, type the widget name.

3. Select the iWidget type from the drop-down list and then click Finish. The
templates provide you with a working copy of an iWidget XML file and a
JavaScript file with stubbed functions. Four templates are available during a
new iWidget creation:

– Simple iWidget: Hello World iWidget with no JavaScript.

– Event publisher iWidget: iWidget with an event that sends data.

Creating an iWidget in a portlet project: To create an iWidget in a portlet
project, right-click the portlet project in your workspace and select New
Other. Select iWidget from the Web folder in the New window.
1174 Rational Application Developer for WebSphere Software V8 Programming Guide

– Event subscriber iWidget: iWidget with an event that receives data.

– iWidget with JSP content: iWidget with its markup defined in an external
JSP file. The JSP file is inserted into the iWidget definition file by the
JavaScript. (This option is available only while creating a new iWidget in
an existing iWidget project.)

21.4.8 JPA tooling support for portlet projects

The JPA API simplifies object relational mapping and data persistence tasks.
Using the JPA tooling support, you can create the database connection and JPA
entities that are object representations of database tables. This toolkit also helps
you to create JPA Manager Beans and to expose methods to manage and persist
JPA entities. The JPA query builder automates the generation of JPA query
methods.

With the JPA tools in the product, you can use wizards to create and
automatically initialize mappings. You can create new database tables from
existing entity classes or new entity beans from existing database tables. You can
also use the tools to create mappings between existing database tables and
entity beans, where names or other attributes differ.

In this example, the JPA-enabled portlet application uses Derby 10.1- Embedded
JDBC Driver Default at the back end and JPA for database connectivity. Using
the Portal Toolkit and JPA tools support, you can create an end-to-end JPA
portlet application quickly. The toolkit simplifies the database management,
query generation, and code generation tasks.

Import these projects from the C:\7835code\portal\HealthCareDataBase.zip
project archive file. The following target run times for JPA portlet projects are
supported:

� IBM WebSphere Portal V6.1 on WebSphere Application Server V6.1 with
EJB3.0 front-end programming interface (FEP)

� IBM WebSphere Portal V6.1 on IBM WebSphere Application Server V7.0

� IBM WebSphere Portal V7.0

Creating a new portlet project
To create a new portlet project, perform the following steps:

1. Select File New Portlet Project.

2. Enter CountryPortlet as the Portlet Project Name.

3. Select WebSphere Portal 6.1 (WebSphere Portal 6.1 on WebSphere
Application Server 6.1 with EJB 3.0 Fep).
 Chapter 21. Developing portal applications 1175

4. Click Modify beside Configuration, select JSR 286 as the API, and select
Faces as the Portlet Type from the Portlet Project Configuration dialog
window. Click OK.

5. Click Finish. When prompted, switch to the Web perspective.

Establishing the database connection
Follow these steps:

1. Copy and extract the attached database file HealthCareDatabase.zip to your
local directory C:\db.

2. Open the Database Development perspective.

3. Right-click Database Connections in the Data Source Explorer view, and
select New.

4. When the New Connection wizard appears, select Derby as the database
manager.

5. Select Derby 10.1- Embedded JDBC Driver Default as the Java Database
Connectivity (JDBC) driver.

6. Browse and select C:\db\HealthCareDatabase in the Database Location
field (Figure 21-25 on page 1177).
1176 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 21-25 Derby database connection

7. Click Finish. Ensure that the connection works.

Creating JPA entities and Manager Beans
Follow these steps:

1. In the Enterprise Explorer view, select the CountryPortlet project.

2. Right-click and select JPA Tools Configure JPA Entities. The Configure
JPA Entities window installs the JPA 1.0 facet if it is not installed.

3. Click Create New JPA Entities to open the Generate Custom Entities wizard.
Complete these tasks:

a. Select the HealthCareDatabase database and the APP schema
(Figure 21-26 on page 1178).
 Chapter 21. Developing portal applications 1177

Figure 21-26 Database entities

b. Select the COUNTRY table and click Finish.

4. On the Configure JPA Entities window, select the Country entity as a primary
key and click Finish to create the country entity.

To configure this entity, select the Country Entity on the Configure JPA Entities
wizard.

Creating JPA Manager Beans
Complete these steps to create the JPA Manager Bean (CountryManager bean)
for the Country Entity:

1. Right-click the Portlet project and select JPA Tools Add JPA Manager
beans.

2. Select the Country entity from the list of available entities.

3. Click Next and click Launch Entity Configuration Wizard.

4. To add the getCountry query to the CountryManager bean on the Configure
JPA Entities window, select the Named Queries task and click Add.
1178 Rational Application Developer for WebSphere Software V8 Programming Guide

5. Accept the default values on the Add Named Query window and click OK
(Figure 21-27).

Figure 21-27 Adding the named query

6. Click Finish.

The Country JPA entity and CountryManager bean are created. Verify that the JPA
entity is created in the src/entities directory and that the manager bean is
created in the src/entities/controller directory.
 Chapter 21. Developing portal applications 1179

JPA data consumption
Follow these steps:

1. Open the CountryPortletView.jsp in the Page Designer view in the Design
view.

2. From the Page Data view, expand JPA JPA Manager Beans
entities.controller.CountryManager and select the getCountry query
(Figure 21-28).

Figure 21-28 Data query consumed by JPA

3. Drag the getCountry query from the Page Data view onto the
CountryPortletView.jsp file.

4. Select Retrieve a list of data on the Add JPA data to page window and click
Next.

5. Set the order of the fields and click Finish (Figure 21-29 on page 1181).
1180 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 21-29 Added JPA data fields

The code to display the Country list is generated in the
CountryPortletView.jsp file.

6. Right-click CountryPortlet and select Run as Run on Server.

7. Select WebSphere Portal 6.1 on WebSphere Application Server v7 with
EJB 3.0 Fep and click Finish. The list of countries is displayed on the
browser.

21.5 More information

For more information about portal technology, see the following resources:

� The following IBM Redbooks publications cover the Portlet Application
Development for the older versions of WebSphere Portal:

– Building Composite Applications, SG24-7367

– IBM Rational Application Developer V6 Portlet Application Development
and Portal Tools, SG24-6681

– IBM WebSphere Portal V5 A Guide for Portlet Application Development,
SG24-6076
 Chapter 21. Developing portal applications 1181

– Portal Application Design and Development Guidelines, REDP-3829

� WebSphere Portal 6.1 Information Center:

http://www.ibm.com/developerworks/websphere/zones/portal/proddoc.htm
l#v61infocenters

� WebSphere Portal zone

http://www.ibm.com/developerworks/websphere/zones/portal/

� WebSphere Portal family wiki

http://www-10.lotus.com/ldd/portalwiki.nsf

� What’s new in the Java Portlet Specification V2.0 (JSR 286)

http://www.ibm.com/developerworks/websphere/library/techarticles/080
3_hepper/0803_hepper.html

� What’s new in WebSphere Portal V6.1: JSR 286 features

http://www.ibm.com/developerworks/websphere/library/techarticles/080
9_hepper/0809_hepper.html

� What’s new in IBM Rational Application Developer V7.5 Portal Toolkit

http://www.ibm.com/developerworks/rational/library/09/rationalapplic
ationdeveloperportaltoolkit1/

� WebSphere Portal Update Installer

http://www-1.ibm.com/support/docview.wss?rs=688&uid=swg24006942

� WebSphere Application Server V6.0.2 Fix Pack 17 (WebSphere Application
Server V6.0.2.17) for Microsoft Windows platforms

http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg24014309

� Update Installer for WebSphere Application Server V6.0 releases

http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg24008401

� Troubleshooting: Rational Application Developer V7.x cannot sense the
proper state of WebSphere Portal Server V6.x

http://www-1.ibm.com/support/docview.wss?rs=2042&context=SSRTLW&cont
ext=SSJM4G&context=SSCGQ7C&dc=DB520&uid=swg21258582&loc=en_US&cs=utf
-8&lang=en
1182 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.ibm.com/developerworks/websphere/zones/portal/proddoc.html#v61infocenters
http://www-1.ibm.com/support/docview.wss?rs=688&uid=swg24006942
http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg24014309
http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg24008401
http://www.ibm.com/developerworks/websphere/zones/portal/
http://www-1.ibm.com/support/docview.wss?rs=2042&context=SSRTLW&context=SSJM4G&context=SSCGQ7C&dc=DB520&uid=swg21258582&loc=en_US&cs=utf-8&lang=en
http://www-1.ibm.com/support/docview.wss?rs=2042&context=SSRTLW&context=SSJM4G&context=SSCGQ7C&dc=DB520&uid=swg21258582&loc=en_US&cs=utf-8&lang=en
http://www-10.lotus.com/ldd/portalwiki.nsf
http://www.ibm.com/developerworks/websphere/library/techarticles/0803_hepper/0803_hepper.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0803_hepper/0803_hepper.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0803_hepper/0803_hepper.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0803_hepper/0803_hepper.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0809_hepper/0809_hepper.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0809_hepper/0809_hepper.html
http://www.ibm.com/developerworks/rational/library/09/rationalapplicationdeveloperportaltoolkit1/
http://www.ibm.com/developerworks/websphere/library/techarticles/0809_hepper/0809_hepper.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0809_hepper/0809_hepper.html
http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg24014309
http://www-1.ibm.com/support/docview.wss?rs=2042&context=SSRTLW&context=SSJM4G&context=SSCGQ7C&dc=DB520&uid=swg21258582&loc=en_US&cs=utf-8&lang=en
http://www-1.ibm.com/support/docview.wss?rs=2042&context=SSRTLW&context=SSJM4G&context=SSCGQ7C&dc=DB520&uid=swg21258582&loc=en_US&cs=utf-8&lang=en

Chapter 22. Developing Lotus iWidgets

In this chapter, we introduce one particular type of widgets supported by Rational
Application Developer: iWidgets. Rational Application Developer uses the IBM
iWidget Specification V2.0 as the basis for its iWidget development.

A sample Stock Quote iWidget is used in this chapter to cover the various topics
relating to iWidget development in Rational Application Developer.

This chapter covers the following topics:

� Introduction to iWidgets
� Developing iWidgets in Rational Application Developer
� Working with the sample iWidget application
� Additional resources

22
© Copyright IBM Corp. 2011. All rights reserved. 1183

22.1 Introduction to iWidgets

A widget is a small, stand-alone application that can be run on the desktop or
within a web page. Widgets are intended to be simple, single purpose
applications that can be combined or “mashed together” to provide added
functionality and content for the users. Widgets are particularly useful when
creating portal sites. Portal web pages are designed to allow users to pick and
choose the content they want to view on a single web page for convenient
access.

Widgets, by definition, are designed to be reusable components. They fit
perfectly within the current information technology objectives of creating
reusable, web-based components that encapsulate and isolate the information
that they provide. The following examples are widgets:

� Stock ticker
� Sports ticker
� Local weather
� Social networking
� World clock
� Games
� Advertising

iWidgets are widgets that are based on the IBM iWidget Specification. The IBM
iWidget Specification is a framework that defines characteristics of HTML
markup, metadata formats, and JavaScript services for enabling the aggregation
of iWidget components into a single Web application. Rational Application
Developer supports the iWidget specification V2.0. There are many other
competing standards for widget development and deployment.

In Rational Application Developer, iWidgets are developed as part of a static web
project, dynamic web project, or portal project depending on the requirements of
your application and the intended web server to which it will be deployed.
Typically, the dynamic web project is used.

iWidgets are configured in an XML file. The XML file contains several parts that
describe the widget, including content, events, event descriptions, itemsets,
items, and resources.

22.1.1 Content

You can configure widgets with four distinct modes:

� View: Contents displayed during the normal running state of a widget
� Edit: Contents displayed during the edit/configure mode of a widget
1184 Rational Application Developer for WebSphere Software V8 Programming Guide

� Help: Contents displayed to provide help to the user by the widget
� Print: Contents displayed when the user wants to print the widget

iWidgets are able to display separate content based on the selected mode, which
allows you to configure various views for your widget. It is also possible to create
custom views if the standard views are insufficient for your requirements. The
content is basically an HTML fragment that is displayed inside the widget display
area (Figure 22-1).

Figure 22-1 iWidget Editor: Content (view) Details

22.1.2 Events and event descriptions

Events are used to exchange information between the separate content views of
the widget, as well as between other widgets. As with other web technologies,
events are useful for providing data to your widget and changing state.

Event descriptions are the payload of the event. They describe the type of data
that is being exchanged and descriptive text that can be displayed to the user.
Events are associated with event descriptions so that when an event is triggered,
the widget knows the data that will be passed with it.

22.1.3 Itemsets and items

An itemset is a simple definition of the data that is used by the widget. It provides
an abstraction of a data store for the data. More complex data stores can be
configured, but the itemset is the simplest implementation available.

Items detail the individual attributes of the itemset. Items can be the stock price,
company symbol, and time last updated. Item descriptions also maintain the data
type of the attribute and descriptive text that can be displayed to the user.
 Chapter 22. Developing Lotus iWidgets 1185

22.1.4 Resources

iWidget resources allow you to include external source files into the iWidget. This
feature allows you to set up Cascading Style Sheet (CSS) files, JavaScript files,
and other file resources that are used by the iWidget. Providing for separate files
supports good coding standards, maintainability, and team development.

22.2 Developing iWidgets in Rational Application
Developer

Rational Application Developer provides several samples and tutorials relating to
widgets.

22.2.1 Accessing the tutorials and samples

You can access the iWidget sample by following these steps:

1. Select Help Help Contents.

2. In the Help: Rational Application Developer window, expand Samples
Web iWidget samples.

3. Select the sample that you want to install:

– Stock widget
– Color switch with button widget
– Color switch with timer widget

A sample for creating an iWidget portlet is also available by following these steps:

1. Select Help Help Contents.

2. In the Help: Rational Application Developer window, expand Samples
Portlet Web 2.0 portlets iWidget.

You can access the iWidget tutorial by following these steps:

1. Select Help Help Contents.

2. In the Help: Rational Application Developer window, expand Tutorials
Web Create an iWidget.

The tutorial takes approximately 60 minutes to finish and explores creating the
project, creating the iWidget, modifying the iWidget xml, configuring test events,
and deploying the iWidget.
1186 Rational Application Developer for WebSphere Software V8 Programming Guide

22.2.2 Configuring Rational Application Developer for iWidget
development tools

Install the iWidget development tools with the IBM Installation Manager if you
have not enabled the functionality before. The iWidget development tools are
included, by default, in Rational Application Developer, and you can enable them
by selecting the feature called Web Development Tools Ajax, Dojo Toolkit
and HTML development tools.

Create an AJAX Test Server if one is not configured yet. An AJAX Test Server is
created, by default, in Rational Application Developer. For more information
about the AJAX Test Server, see 23.10, “AJAX Test Server” on page 1271.

22.3 Working with the sample iWidget application

We use the Stock widget for our example. This widget displays the company
name, stock quote, price change, and the broker name. The Stock widget
demonstrates how you can create an iWidget application that switches modes,
consumes events, and generates events. After the sample is imported into the
workspace, you can run the example on the AJAX Test Server.

22.3.1 Preparing the sample iWidget application

The first step is to load the sample application from the Help feature. To access
the Stock widget sample, click Help Help ContentsClick Samples. Then
expand Web and iWidget and select Stock widget (Figure 22-2 on page 1188).
Here, you can import the sample into the workspace.
 Chapter 22. Developing Lotus iWidgets 1187

Figure 22-2 Loading the iWidget sample: Stock widget

This step opens the Import Project wizard window. Accept the default values and
click Finish (Figure 22-3 on page 1189).
1188 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 22-3 Importing the sample Stock widget project

22.3.2 Developing the sample iWidget application

The Stock iWidget sample is a complete working solution. There are no
necessary modifications to get it to run on the AJAX Test Server. In this example,
we add a new stock quote to the iWidget to demonstrate the functionality of the
new iWidget Editor. We use the iWidget Editor to modify the iWidget definition
file, stock.xml. See Figure 22-4 on page 1190. There are three additional files
that are utilized by the Stock iWidget sample:

� stock.css: Style sheet definitions for the HTML fragments
� stock.js: JavaScript functions supporting the iWidget
� stockData.js: The dojo script that defines the data model that is used by the

iWidget
 Chapter 22. Developing Lotus iWidgets 1189

Figure 22-4 iWidget Editor

You can add new sections of the iWidget by right-clicking the top level of the tree
and clicking Add (Figure 22-5). You can also edit the XML file directly when you
click the Source tab.

Figure 22-5 Adding sections to the iWidget Stock sample
1190 Rational Application Developer for WebSphere Software V8 Programming Guide

The sample provides two itemsets: one itemset is a stock quote from Ameritrade
and the other itemset is a stock quote from E*Trade. Create a third itemset as a
stock quote from TD Waterhouse. Follow these steps:

1. Click iWidget Stock.
2. Select Add Item Set.
3. For the Id, type TDWaterhouse. For the description, type Broker is TD

Waterhouse. See Figure 22-6.

Figure 22-6 Adding the itemset

Items will contain each of the attributes and the values that make up the itemset.
In this example, there are four items that are defined in the itemset: broker,
change, price, and stock. These items correspond to the information that will be
displayed by the iWidget.

Complete these tasks:

1. Select the Item Set TDWaterhouse.
2. Select Add Item.
3. For the Item Id, enter broker.
4. For the Value, enter TDWaterhouse.
5. Repeat the previous steps and add Items with these IDs: change, price, and

stock, and values of +1.00, $52.00, and DELL, respectively.

See Example 22-1.

Example 22-1 Source code snippet for the TD Waterhouse broker

<iw:itemSet id="Ameritrade" description="Broker is Ameritrade">
<iw:item id="stock" value="MSFT"/>
<iw:item id="broker" value="Ameritrade"/>
<iw:item id="price" value="$15"/>
<iw:item id="change" value="-1.23"/>

</iw:itemSet>

<iw:itemSet id="TDWaterhouse" description="Broker is TD Waterhouse">
<iw:item id="broker" value="TD Waterhouse" />
<iw:item id="stock" value="DELL" />
 Chapter 22. Developing Lotus iWidgets 1191

<iw:item id="price" value="$52.00" />
<iw:item id="change" value="+1.00"/>

</iw:itemSet>

When you run the sample, you can switch to the Edit view and the TD
Waterhouse entry appears in the drop-down list (Figure 22-7).

Figure 22-7 Stock Widget with the TD Waterhouse Itemset

Next you need to configure the event so that your View mode will see the event
and display the new values. Because we have done this step for the other two
entries, no changes are required. But, to illustrate how we configured the event
so that View mode will see the event and display the new values, you can open
the stock.xml file in the iWidget Editor again and click the Content (edit) tree
node. You can see the script that is associated with the Edit view of the widget
(Figure 22-8).

Figure 22-8 Edit view

Notice that the Submit button’s onclick event is configured to run the
iContext.iScope().switchBroker() method. The source for the method is in the
stock.js JavaScript file. The function retrieves the current selection from the
drop-down list, assigns the broker for this widget, and fires a new event signaling
the change to the View mode. See Example 22-2.
1192 Rational Application Developer for WebSphere Software V8 Programming Guide

Example 22-2 switchBroker

switchBroker: function() {
var element = this.iContext.getElementById("brokerSelection");
this.broker = element.options[element.selectedIndex].value;

this.iContext.iEvents.fireEvent("onModeChanged", null,
"{newMode:'view'}");

}

22.3.3 Testing the sample iWidget application

You can test the sample application using the AJAX Test Server that is
configured in Rational Application Developer. To launch the iWidget, follow these
steps:

1. Open the StockWidgetSample project.

2. Expand the WebContent folder.

3. Right-click the stock.xml file.

4. Select Run As and Run On Server, as depicted in Figure 22-9 on
page 1194.
 Chapter 22. Developing Lotus iWidgets 1193

Figure 22-9 Launching the StockWidgetSample iWidget application

5. The Run On Server window opens with the list of installed servers. Select the
AJAX Test Server from the list of servers and click Finish.

6. The StockWidgetSample application launches in the Universal Test Client. You
can send events to the iWidget by entering the values in the Send events
area, as shown in Figure 22-10 on page 1195, to your iWidget window.
1194 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 22-10 Sending test events to the StockWidgetSample iWidget

7. You can test your changes to the widget by switching to the Edit mode. See
Figure 22-11.

Figure 22-11 Switching to the Edit mode of an iWidget
 Chapter 22. Developing Lotus iWidgets 1195

8. Simply select the TD Waterhouse itemset from the drop-down list and click
Submit (Figure 22-12). Because the new event is handled by the existing
code, the iWidget switches to the View mode and displays the values that you
entered into the stock.xml file (Figure 22-13).

Figure 22-12 Selecting the TD Waterhouse itemset from the Edit mode

Figure 22-13 View mode updated with the TD Waterhouse selection

22.3.4 Deploying into WebSphere Portal V7

WebSphere Portal V7 has built-in support for running iWidgets. It has never been
easier to publish your iWidget. Follow these steps:

1. To start, right-click the Enterprise Archive Project, select Properties
Targeted Runtimes, and select WebSphere Portal Server 7. Right-click the
WebSphere Portal V7 server that has been added to Rational Application
Developer and click Add and Remove. The Add and Remove window opens.
Move the StockWidgetSampleEAR project to the Configured: pane and
click Finish. The StockWidgetSampleEAR is in the [Started, Synchronized]
state. If not, make sure that the Portal Server is started and click Publish
again.

2. After the iWidget has been deployed, you can simply add it to your portal
page like any other portlet or widget. Log in to your portal page and click
Action Edit Page. Next click Customize (Figure 22-14 on page 1197).
1196 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 22-14 Adding the iWidget to the portal page

3. The portal page switches to the Add Content view. Click All, enter the name
of the iWidget into the search box, and click the magnifying glass icon ().
See Figure 22-15.

Figure 22-15 Searching for the iWidget from the list of available portlets

4. You can drag and drop the stock iWidget onto the preview pane and then
click Save and Exit. Your new StockSampleWidget displays and is ready to
use, as seen on Figure 22-16 on page 1198. You can click the drop-down list
arrow in the upper right of the iWidget and click Edit Shared Settings to
switch the broker, as described in 22.3.3, “Testing the sample iWidget
application” on page 1193.
 Chapter 22. Developing Lotus iWidgets 1197

Figure 22-16 Viewing the iWidget sample on the portal web page

22.4 Additional resources

Rational Application Developer includes several iWidgets as part of the standard
distribution. Several iWidgets are simple samples, and several iWidgets are
specific to vertical markets. Table 22-1 on page 1199 shows a list of these
iWidgets.
1198 Rational Application Developer for WebSphere Software V8 Programming Guide

Table 22-1 iWidgets included in Rational Application Developer

iWidget Description Help topic

Stock widget Simple stock ticker sample
with two stock quote
providers with fictional data

Samples Web
iWidget samples

Color switch with button
widget

Simple colored square
that switches the color
from blue to red when the
button is clicked.
Color switch widgets are
used to show how to write
HTML markup in a
separate HTML or JSP file
and then use AJAX to put
that file into the iWidget’s
CONTENT element.

Samples Web
iWidget samples

Color switch with timer
widget

Simple colored square that
switches the color from
blue to red after receiving
external events a given
interval.

Samples Web
iWidget samples

Dojo widgets Widgets based on the Dojo
JavaScript library.

Tutorials Web
Create a Web 2.0
application with Dojo

Portlet widgets iWidgets designed to run
in the WebSphere Portal
environment.

Samples Portlet
Web 2.0 portlets
iWidget

Communications Enabled
Application widgets

Widgets designed for the
Telephony Vertical Market
that provide interfaces into
automatic call distributor
(ACD) equipment.

Developing Developing
Web applications
Creating Communications
Enabled Applications
Adding communications
widgets to a Web page

IBM Enterprise Content
Management widgets

iWidgets designed for the
Enterprise Content
Management and
Business Process
Management vertical
markets that provide
interfaces into IBM
FileNet® and IBM Content
Manager systems.

http://publib.boulder.i
bm.com/infocenter/p8doc
s/v4r5m1/index.jsp?topi
c=/com.ibm.p8.doc/ecmwi
dgets_help/intro/intro_
overview.htm
 Chapter 22. Developing Lotus iWidgets 1199

http://publib.boulder.ibm.com/infocenter/p8docs/v4r5m1/index.jsp?topic=/com.ibm.p8.doc/ecmwidgets_help/intro/intro_overview.htm

22.4.1 Further information

See these resources for more information:

� Create and test IBM iWidgets using Rational Application Developer

http://www.ibm.com/developerworks/rational/library/10/create-and-tes
t-ibm-iwidgets-using-rational-application-developer/index.html

� iWidget viewlet

http://www.ibm.com/developerworks/wikis/download/attachments/1290089
75/iwidgets.swf?version=1

� IBM iWidget V1.0 Specification: PDF Version

http://www-10.lotus.com/ldd/mashupswiki.nsf/dx/iwidget-spec-v1.0.pdf
/$file/iwidget-spec-v1.0.pdf

� IBM iWidget V2.0 Specification: PDF Version

http://download.boulder.ibm.com/ibmdl/pub/software/dw/lotus/mashups/
developer/iwidget-spec-v2.pdf

� Introduction to creating mashups using IBM Mashup Center 2.0

http://www-10.lotus.com/ldd/mashupswiki.nsf/dx/Tutorial_Introduction
_to_creating_mashups_using_IBM_Mashup_Center_2.0

� Lotus Connections iWidget Development Guide

http://www-10.lotus.com/ldd/lcwiki.nsf/dx/development-guide
1200 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.ibm.com/developerworks/rational/library/10/create-and-test-ibm-iwidgets-using-rational-application-developer/index.html
http://www.ibm.com/developerworks/rational/library/10/create-and-test-ibm-iwidgets-using-rational-application-developer/index.html
http://download.boulder.ibm.com/ibmdl/pub/software/dw/lotus/mashups/developer/iwidget-spec-v2.pdf
http://www-10.lotus.com/ldd/mashupswiki.nsf/dx/iwidget-spec-v1.0.pdf/$file/iwidget-spec-v1.0.pdf
http://www-10.lotus.com/ldd/mashupswiki.nsf/dx/Tutorial_Introduction_to_creating_mashups_using_IBM_Mashup_Center_2.0
http://www-10.lotus.com/ldd/lcwiki.nsf/dx/development-guide
http://www.ibm.com/developerworks/rational/library/10/create-and-test-ibm-iwidgets-using-rational-application-developer/index.html
http://www.ibm.com/developerworks/rational/library/10/create-and-test-ibm-iwidgets-using-rational-application-developer/index.html
http://www-10.lotus.com/ldd/lcwiki.nsf/dx/development-guide
http://www.ibm.com/developerworks/wikis/download/attachments/129008975/iwidgets.swf?version=1

Part 6 Deploying, testing,
profiling, and
debugging
applications

In this part, we describe the tooling and technologies that are provided by
Rational Application Developer for testing, deploying, profiling, and debugging.

This part includes the following chapters:

� Chapter 23, “Cloud environment and server configuration” on page 1203
� Chapter 24, “Building applications with Apache Ant” on page 1279
� Chapter 25, “Deploying enterprise applications” on page 1309
� Chapter 26, “Testing using JUnit” on page 1365
� Chapter 27, “Profiling applications” on page 1419
� Chapter 28, “Debugging local and remote applications” on page 1461

Part 6
© Copyright IBM Corp. 2011. All rights reserved. 1201

Sample code for download: The sample code for all of the applications that
are developed in this part is available for download at the following address:

ftp://www.redbooks.ibm.com/redbooks/SG247835

See Appendix C, “Additional material” on page 1877, for instructions.
1202 Rational Application Developer for WebSphere Software V8 Programming Guide

ftp://www.redbooks.ibm.com/redbooks/SG247835

Chapter 23. Cloud environment and
server configuration

Rational Application Developer provides support for testing, debugging, profiling,
and deploying enterprise applications to local, remote test environments, and
instances in Cloud servers. To run an enterprise application or web application in
Rational Application Developer, the application must be published (deployed) to
the server. We accomplish this task by deploying the EAR project, for the
application, to an application server. With the server started, the application can
be tested by using a web browser or the Universal Test Client (UTC) if it includes
Enterprise JavaBeans (EJB).

In Rational Application Developer, the new IBM Rational Desktop Connection
Toolkit for Cloud Environments is available. It allows you to manage resources
on, and deploy to, the IBM Cloud.

In this chapter, we describe the features and concepts of server configuration.
We also demonstrate how to configure a server to test applications.

23
© Copyright IBM Corp. 2011. All rights reserved. 1203

23.1 Introduction to server configurations

Rational Application Developer includes support for many third-party servers
obtained separately. One of the great features of the server tooling is the ability to
simultaneously run multiple server configurations and test environments on the
same development node where Rational Application Developer is installed.

When using Rational Application Developer, it is common for a developer to have
multiple test environments or server configurations, which are made up of
workspaces, projects, preferences, and supporting test environments (local or
remote).

The server environment configuration includes the following key features, among
others:

� Multiple workspaces with separate projects, preferences, and other
configuration settings defined

� Multiple test environment servers configured for Rational Application
Developer

� When using WebSphere Application Server v8.0 environments, multiple
profiles, each potentially representing a separate server configuration

For example, a developer might want to have a separate server configuration for
WebSphere Application Server v8.0 Beta with a unique set of projects and
preferences in a workspace, and a server configuration pointing to a newly
created and customized WebSphere Application Server v8.0 Beta profile. On the
same system, the developer might create a separate portal server configuration,
with unique portal workspace projects and preferences, and a WebSphere Portal
V6.1 Test Environment. In the following topics, we explain how to create,
configure, and run multiple WebSphere Application Server instances.

23.1.1 Application servers that are supported by Rational Application
Developer

The most commonly used application server with Rational Application Developer
is WebSphere Application Server. WebSphere Application Server is tightly
integrated with Rational Application Developer, which offers tooling to test, run,
and debug applications from the workbench, for example, by using the
run-on-server functionality. You can specify server-specific configurations, such
as extensions and bindings for a WebSphere Application Server, from the
workbench.
1204 Rational Application Developer for WebSphere Software V8 Programming Guide

You can start tooling, such as the WebSphere administrative console and the
Profile Management Tool, for WebSphere Application Server from within the
workbench. In addition, you can develop, run, and debug administrative scripts
against a WebSphere Application Server. You can use these servers:

� IBM WebSphere Application Server versions 6.0, 6.1, 7.0, and 8.0 Beta
� IBM WebSphere Portal Version 6.1.x and 7.0
� J2EE Publishing Server (publish EAR to a server)
� Static Web Publishing Server (HTTP server for static web projects)

You can install the integrated test environments for WebSphere Application
Server V6.1 and V7.0 using the IBM Installation Manager (Figure 23-1).

Figure 23-1 Servers available to install using IBM Installation Manager

Rational Application Developer server tools are based on the Eclipse Web Tools
Platform (WTP) project. WTP provides a facility for publishing an enterprise
application project and all of its modules to a runtime environment for testing
purposes.

Server adapters are tools installed into the workbench that support a particular
server. The server adapters in the following list are included, by default, in the
Web Tools Platform installed with Rational Application Developer:

� Apache Tomcat versions 3.2, 4.0, 4.1, 5.0, 5.5, 6.0, and 7.0
� IBM WebSphere Portal Server versions 6.1 and 7.0
� IBM WebSphere Application Server V7.0 and V8.0 Beta
� JBoss versions 3.2, 3, 4.0, 4.2, and 5.0
� ObjectWeb Java Open Application Server (JOnAS) Version 4
 Chapter 23. Cloud environment and server configuration 1205

� Oracle Containers for J2EE (OC4J) Standalone Server Version 10.1.3 and
10.1.3.x

To obtain additional server’s adapters, follow these steps:

1. Open the New Server window, right-click the Servers window and select
New Server.

2. In the New Server window (Figure 23-2), click Download additional server
adapters.

You can obtain the following additional server adapters at the time of writing
this book:

– Apache Geromino Server versions 1.0, 1.1.x, 2.0, and 2.1
– IBM WebSphere Application Server Community Edition versions 1.1.x,

2.0, and 2.1

Figure 23-2 Downloading additional server adapters
1206 Rational Application Developer for WebSphere Software V8 Programming Guide

23.1.2 Local and remote test environments

When configuring a test environment, the server can be either a local server
(integrated with Rational Application Developer) or a remote server. After the
server is installed and configured, the server definition within Rational Application
Developer is similar for local and remote servers.

In both the local and remote configurations, Remote Method Invocation (RMI) or
SOAP connectors can be used by Rational Application Developer to control the
server using Java Management Extensions (JMX). The RMI (ORB bootstrap)
port is designed to improve performance and communication with the server. The
SOAP connector port is designed to be more firewall compatible and uses HTTP
as the base protocol. In the case of local configurations, the interprocess
communication (IPC) connector is also available and is the recommended
connector.

23.2 Cloud extensions: Developing and testing
applications on the IBM Smart Business, Development,
and Test Cloud

New in Rational Application Developer is support for cloud computing
environments. This new service for cloud computing simplifies the process of
testing and deploying software by providing a flexible hosting environment that
can be configured to the needs of each user. Using the tools in the IBM Rational
Desktop Connection Toolkit for Cloud Environments, which is also referred to as
the Cloud Toolkit, you can manage resources on and deploy them to the IBM
Smart Business Development and Test Cloud, which is also referred to as the
IBM Cloud.

In addition to the IBM Cloud web client, you can install the IBM Rational Desktop
Connection Toolkit for IBM Cloud Environments, which allows you to work with
the IBM Cloud images through your workspace. Using the tools in the IBM
Rational Desktop Connection Toolkit for Cloud Environments, you can manage
resources on, and deploy to, the IBM Cloud.

Clouds rely on virtual systems, which are computer systems that are insulated
from their hosts by a layer of virtualization. Each virtual system is a complete
computer system, typically including an operating system and one or more
applications running on that operating system. The cloud provides a virtual
server, a simulated host, for each virtual system. In this way, many virtual
systems can run simultaneously on a single cloud. These virtual systems can be
 Chapter 23. Cloud environment and server configuration 1207

created and destroyed much more easily than installing and uninstalling software
on physical hosts, providing a flexible system that is responsive to your needs.

The IBM Cloud consists of a Rational Asset Manager repository and a
hypervisor, which hosts virtual systems. The repository contains a library of
virtual images, each of which defines a virtual system, including an operating
system and software, such as application servers, database systems, and other
IBM software products. Each virtual image is available in graduated sizes of
Copper, Bronze, Silver, and Gold, referring to the relative capacity of the virtual
server, its storage capacity, and other resources that are devoted to it.

The server tools for the Cloud Toolkit can directly request and consume a subset
of the library of virtual images. The subset includes support for WebSphere
Application Server V7.0.x servers. Several of the newer features of the Cloud
Toolkit are only available in the Cloud Toolkit V1.0.0.1 or later, for example, cloud
connection sharing. You are encouraged, therefore, that when updating your
Rational Application Developer to Version 8.0.1 that you also update your Cloud
Toolkit, which is a separate optional feature for Rational Application Developer
and needs to be updated separately.

23.2.1 Installing IBM Rational Desktop Connection Toolkit for Cloud
Environments

In addition to the IBM Cloud web client, you can install the IBM Rational Desktop
Connection Toolkit for IBM Cloud Environments, which allows you to work with
the IBM Cloud images through your workspace.

Installing the cloud tooling
There are three installable components to the IBM Rational Desktop Connection
Toolkit for Cloud Environments. Several of these options might not be available
depending on the product that you install.

� Cloud Client for Eclipse

Provides tools for interacting with the IBM Cloud environment from within
Rational Application Developer or Rational Software Architect, such as
browsing the IBM Cloud’s asset catalog, requesting instances, and managing
running instances.

� Server Tools Extension for the Cloud

Provides tools for deploying applications to virtualized WebSphere
Application Server instances on the IBM Cloud. This feature requires the
WebSphere Application Server development feature to be installed if installing
on Rational Application Developer, or the Extension for service-oriented
1208 Rational Application Developer for WebSphere Software V8 Programming Guide

architecture (SOA) and WebSphere feature if installing on Rational Software
Architect v8.0.

� Deployment Modeling Extension for the Cloud

Enables the Rational Software Architect Extension for Deployment Planning
and Automation to interact with IBM Cloud environments, for purposes such
as designing and cataloging virtual assets. This feature requires the
Extension for Deployment Planning and Automation feature in Rational
Software Architect v8.0.

These components can be installed through IBM Installation Manager.

If you did not install the Rational Desktop Connection Toolkit for Cloud
Environments extension at the same time that you installed Rational Application
Developer, follow these instructions to install it:

1. If Installation Manager is running, stop it.

2. Change to the RAD_SETUP subdirectory of the directory where you extracted
the disks for Rational Application Developer.

3. Start the Launchpad program:

– For Microsoft Windows: Run launchpad.exe.

– For Linux: Run launchpad.sh.

4. In the Launchpad dialog box, click Install IBM Rational Application
Developer V8.0. IBM Installation Manager starts.

5. Click Install packages. The Install Packages wizard window opens.

6. On the first page of the Install Packages wizard, select IBM Rational
Desktop Connection Toolkit for Cloud Environments (Figure 23-3 on
page 1210) and then click Next.
 Chapter 23. Cloud environment and server configuration 1209

Figure 23-3 Installing IBM Rational Desktop Connection Toolkit for Cloud Environments

7. On the Licenses page, read the license agreement. If you agree to the terms
of all of the license agreement, click I accept the terms in the license
agreements and click Next.

8. On the Features page, select any additional features that you want to install
and then click Next.

9. On the Summary page, review your choices before starting the installation
process. If you want to change your selections, click Back to return to the
previous pages. When you are satisfied with your installation choices, click
Install.

10.When the installation process completes, click Finish.

11.Close the Installation Manager.
1210 Rational Application Developer for WebSphere Software V8 Programming Guide

23.2.2 Working with the IBM Development and Test Cloud

You can create a server to specify a WebSphere Application Server runtime
environment for testing or publishing your project resources. Example uses of a
runtime environment are compiling an application, connecting to a server, and
publishing applications on a server. Currently, several WebSphere Application
Server V7.0.x images are available on the IBM Cloud. The images differ mostly in
the particular licensing and service agreements that correspond to each image.

Typically, a Rational Application Developer user works with a WebSphere
Application Server on the cloud in one of three ways:

� Creating a new server that points to a supported and active existing
WebSphere Application Server cloud instance (using an existing instance
option)

� Creating a new server that, as part of a Run on Server action, when run will
make a new request for provisioning, prepare an instance, and start it (new
request)

� Requesting a new instance on the web portable whose image type is
consumable later from the server tools, specifically, the supported set of
WebSphere Application Server-based images that the server tools can
consume

The following sections describe each of these ways.

Before you begin
You must perform these tasks:

� You must have registered with the IBM Smart Business Development and
Test Cloud:

https://www.ibm.com/cloud/enterprise/dashboard

� You must have installed the Cloud Client for Eclipse and Server Tools
Extension for the Cloud.

Optionally, you can provision a WebSphere Application Server instance using the
IBM Cloud Web client, or the cloud tooling in the workbench. If you choose to
provision a WebSphere Application Server instance, you must generate a key
pair on the Account page of the IBM Cloud Web client, and download the private
key to a location that the workbench can access. If you do not have a WebSphere
Application Server provisioned, you can do so through the Server Creation
wizard.

Several of the features described require IBM Rational Desktop Connection
Toolkit for IBM Cloud Environments V1.0.0.1, for example, support for connection
 Chapter 23. Cloud environment and server configuration 1211

https://www.ibm.com/cloud/enterprise/dashboard

sharing with the Cloud Client view. Update your offering to this level if you want to
make use of these features.

You will have a set of public and private keys; typically, you can generate a key
set from the Account tab on the web client at this web address
(https://www.ibm.com/cloud/enterprise/dashboard). Save the private key to a
known path where it can be accessed later.

Generating key sets on the IBM Cloud
You must save the private key to your local system, and this point in the process
is the only time that you can. If you misplaced or failed to download the private
key, you can simply generate a new key pair. Note, however, that instances
provisioned with a key pair for which you do not have the matching private key
will not be able to be remotely stopped and started from the server tools. The
path to the correct, matching, private key on the local system is required to
support remote starting and stopping of the WebSphere Application Server.

The public key is required for provisioning new image requests, and the private
key is used for Secure Shell (SSH) connections from a stand-alone client or
when remote start is issued from the server tools.

Figure 23-4 on page 1213 shows a portion of the Web Client wizard to generate
and persist a key pair. Note the location where you save the private key, because
you will need to specify or browse to the path when you create a server from
Rational Application Developer.
1212 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 23-4 Generating a new key pair from the web client

Creating a WebSphere Application Server on the IBM Cloud
Creating a WebSphere Application Server on the IBM Cloud is similar to creating
a standard remote WebSphere Application Server with the addition of certain
cloud-specific information. Follow these steps:

1. In the Servers view of Rational Application Developer, right-click and select
New Server. Follow these steps:

a. On the New Server: Define a New Server page, in the Select the server
type list, under the IBM folder, select the version of the server that you
want to create. Only WebSphere Application Server V7.0 is supported by
the IBM Developer Cloud at the time of writing this book.

b. Select Server to be defined here is for use in a cloud environment.
The server’s host name field becomes read-only and is automatically filled
with Cloud Services (Figure 23-5 on page 1214).
 Chapter 23. Cloud environment and server configuration 1213

Figure 23-5 Defining the server for use in a cloud environment

c. Optional: In the Server name field, type a label to identify this server entry
in the Servers view. By default, this field is completed with the following
naming conventions: server type @ host name, for example, WebSphere
Application Server v7.0 at Cloud Services.

d. If the workbench has a reference to a WebSphere Application Server
runtime environment, a Server runtime environment list is available for you
to select a runtime environment. In addition, you can add additional
runtime environments by clicking the Add link, or you can modify the
runtime environments defined in the workbench by clicking the Configure
runtime environments link.

e. If the workbench does not have a reference to the server runtime
environment, the New Server wizard prompts you for this information in
the WebSphere Application Server Runtime Environment page.
Otherwise, this page does not display in the New Server wizard.
1214 Rational Application Developer for WebSphere Software V8 Programming Guide

2. Optional: In the Name field, type a label to identify this server entry in the
Server Runtime Environments preference page (Window Preferences
Server Runtime Environments):

a. In the Installation directory field, type or browse to the path where the
WebSphere Application Server is installed. This path is the same as the
WAS_ROOT path mappings as defined by the WebSphere Application Server
configuration. For example, if you have installed WebSphere Application
Server in the c:/WebSphere/AppServer directory, specify this path in the
Installation directory field.

b. Click Next to configure WebSphere Application Server settings.

3. You can connect to the cloud in the New Server wizard in a variety of ways:

– Supply the IBM Cloud user name and password, as well as a unique
connection name. Select the Save cloud connection check box
(Figure 23-6 on page 1216). Then the connection information is available
on subsequent invocations of this wizard, and you can opt to use that
existing connection.
 Chapter 23. Cloud environment and server configuration 1215

Figure 23-6 New Server wizard: Server to be used on the cloud

– Supply the IBM Cloud user name and password and do not provide a
connection name. This method is appropriate if you do not want to persist
and reuse the connection credentials later. In this case, you must clear
Save cloud connection. If it is selected, it requires a unique connection
name that has not been used already.

– Choose Use existing cloud connection to use an existing cloud
connection (see Figure 23-7 on page 1217).
1216 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 23-7 Using an existing cloud connection

4. On the Cloud Environment Settings page, enter the user name and password
that you use to access the IBM Cloud, or select to use a pre-existing
connection to the cloud. Optionally, you can choose to perform a more
extensive search, which returns all available images, including user-created
images.

Two-way connection sharing is supported with the Cloud Client. Any
connections that were created from the Cloud Client views are available in the
New Server wizard. In this way, you do not need to enter your credentials
repeatedly if you rerun the wizard multiple times. Similarly, any connections
created (with the option to save them) in the wizard are immediately available
from the Cloud Client.
 Chapter 23. Cloud environment and server configuration 1217

5. You have the option to request a new instance or use an existing, active
instance if an instance is available. If an instance is available and active, it
shows in the list of active instance names.

If you choose to request a new instance (Figure 23-8 on page 1219), enter a
name for the server; select a location, server template, and the size of the
instance. Select a key from the server, or specify a local public key file and
path. You can generate a key pair using the IBM Cloud Web client on the
Account page.
1218 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 23-8 Requesting a new cloud instance with WebSphere Application Server

If you choose to use an existing active instance that has already been
provisioned and is running on the cloud, you can use that instance to point to
the new server, too. In that case, you choose an existing instance from a list
and provide the path to the appropriate private key, whose public key is
 Chapter 23. Cloud environment and server configuration 1219

associated with that cloud instance and optionally a passphrase. See
Figure 23-9.

Figure 23-9 Using a suitable cloud instance that has been provisioned and is active

6. The WebSphere Application Server Settings are displayed (Figure 23-10 on
page 1221). Table 23-1 on page 1221 shows the default settings. Certain
fields cannot be edited and are read-only.
1220 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 23-10 WebSphere Application Server Settings page

Table 23-1 Default setting for WebSphere Application Server Settings

Option Description

Profile name This option is available only when running a local
server and is not available when running a remote
server; this field cannot be edited and is disabled.
 Chapter 23. Cloud environment and server configuration 1221

Server connection type
and administrative port

The administrative ports are used to communicate
requests between the workbench and the server. The
following ports are used for making Java Management
Extensions (JMX) connections with the server:
� The Remote Method Invocation (RMI) port, which

is also known as the Object Request Broker
(ORB) bootstrap, is designed to improve
performance and communication with the server.
The default setting of the RMI port is 2809 and is
not enabled by default for cloud instances.

� The SOAP connector port is designed to be more
firewall compatible. The default setting of the
SOAP port is 8880.

� The interprocess communicaiton (IPC) port is
available only for a local WebSphere Application
Server V7.0 or v8.0 Beta and cannot be edited.

� The “Manually provide connection settings” option
allows you to select which connection types you
want to use. It is the only option available for cloud
server instances. The default is port 8080, but you
can edit it. You must provide the correct port
numbers for each connection type that you
choose.

Run server with
resources within the
workspace

This option is available only when running a local
server and is not available when running a cloud
server instance. It is therefore disabled.

Security is enabled on
this server

Enables the security feature that comes with
WebSphere Application Server. When security is not
enabled, all other security settings are ignored.

Instances of WebSphere Application Server on the
cloud require that security is enabled. The option to
deselect security is therefore disabled.

By default, the User ID will be virtuser, and the
password is the password that you entered when
creating the server. Or, if you are requesting an
instance, you can enter a password of your choice,
provided that
it meets the password requirements.

Option Description
1222 Rational Application Developer for WebSphere Software V8 Programming Guide

The only mandatory, not pre-filled field that requires input from you, if you
choose to use the defaults for the other settings, is the authentication
password. This password field must contain the following information:

– If you use an existing instance, this password must match identically to the
WebSphere administration password that was supplied at the time that the
instance was requested. There is no validation or password rule enforced
so ensure that the password is the correct password.

– For a new cloud instance, this password must meet the required password
rules for instancing this image, which are, at minimum, one uppercase
character, one number, and one lowercase character. If the entered
password does not meet this requirement, it is flagged with an error
message and not accepted until it does meet the rule.

7. On the Remote WebSphere Application Server Settings page, you can select
to enable the server to start remotely (Figure 23-11 on page 1224). Follow
these steps:

– The platform and SSH information must be selected correctly and
read-only. Enter the location of the server profile.

– The private key path is the path that you entered on a previous wizard
page, and the SSH user is always idcuser.

Application server name Specifies a logical name for the application server. For
WebSphere Application Server, the logical name is
unique and assigned to a server that distinguishes it
from all other server instances within the node. This
server name must already be created in the
application server, and its default setting is server1.

Option Description
 Chapter 23. Cloud environment and server configuration 1223

Figure 23-11 Remote server settings page

8. Optional: Click Next to add the projects of your application to the server. On
the Add and Remove Projects page, under the Available projects list, select
the project that you want to test and click Add. The project appears in the
configured projects list.

9. Optional: A Next button might be available to click, depending on what type of
projects you are adding to the server. If the Next button is available and you
select it, the Select Task page appears. In the Select Task page, use the
check boxes to select tasks to be performed on the server, such as create
tables and data source.

10.Click Finish.

 The server cloud server instance will be created.

When the wizard is complete, a new server is visible in the Servers view.
Figure 23-12 on page 1225 shows a server that has been created but that has
not yet been run. The tool tip shows that the instance that it represents has not
1224 Rational Application Developer for WebSphere Software V8 Programming Guide

yet been provisioned. This server requests a new instance when it is first started
as part of its start-up sequence. If it is a server that represents an existing cloud
instance, the tool tip shows the assigned IP address.

Figure 23-12 A server that will use a cloud instance that has not yet been provisioned

Next steps
After you have created a server on the cloud, you can proceed as with any
remote server instance. The server can be managed, started, stopped, and
published using the Servers view.

If the server has been configured to request a new instance in which to start a
WebSphere Application Server, it requests that a new instance is provisioned as
part of starting the server. In that case, the status in the Servers view shows
Provisioning during this time (Figure 23-13) and changes to Starting and then
Started.

Figure 23-13 Managing, starting, stopping, and publishing using the Servers view

When the provisioning is complete, the system assigns an IP address to the
instance. That IP address is used to update the host name for this server. If a
static IP address was selected in the wizard, the system uses that IP address; if
not, a dynamically generated IP address is assigned. Then the system starts the
remote server in the cloud instance.
 Chapter 23. Cloud environment and server configuration 1225

If the server was configured to use an existing instance, it does not need to make
a new request first for provisioning but instead begins to start that server
immediately. In that case, the server status does not show Provisioning but
immediately shows Starting.

After it is configured, the server can be used as any other remote or local server.
You can publish applications to it, run the administrative console, and so forth.
The server provides a high degree of location transparency; you do not need to
know from where the cloud instance is really running.

A server editor page is available to modify most cloud options after a server is
first created by the New Server wizard. From this editor page, you can connect to
the cloud to update your available assets. For example, the editor page lists any
unused static IP addresses that are available and your current list of public keys.
With this information, you can, for example, make a change to use an existing
instance that has become available instead of requesting a new instance, as it is
currently configured to do. When that server is started, it does not request a new
instance to be provisioned, but instead, it uses an existing instance. In this way, it
is possible to alter the configuration at any time after a server was first created,
eliminating the need to create a new server.

The server editor page, like the New Server wizard, supports using a shared
connection as well as creating a new cloud connection (Figure 23-14 on
page 1227). This connection is used to connect to the cloud to get the latest
information about available images that are consumable from Rational
Application Developer, their prices and descriptions, as well as any active
instances that might be used. It also supports the option to perform an extensive
search.
1226 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 23-14 Choice of connection type: A new connection or a shared, existing connection

As with the New Server wizard, the editor page supports choices of image
template, instance type (size), and will provide a description and pricing for each
image and its size (Figure 23-15 on page 1228).
 Chapter 23. Cloud environment and server configuration 1227

Figure 23-15 Image types available in the New Server wizard can also be used from the server editor later

The editor supports toggling between using an existing instance and making a
new request (Figure 23-16 on page 1229). For example, a server that was
originally created in the wizard to use an existing instance can be modified to
instead make a new request when it is run the next time. The editor page
provides the same functionality that the wizard provides, except that the server
page cannot be used to create a new server. To create a new server, you must
use the New Server wizard.
1228 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 23-16 Setting a server created by the wizard to request a new instance to reuse an existing instance

23.2.3 Working with the Cloud Client for Eclipse

Use the Cloud Client to browse the IBM Cloud asset catalog, request instances,
and manage running instances. Connections made from the Cloud Client are
usable from the server wizard and the opposite is true as well; connections made
from the server wizard are available from the connections that are made in the
Cloud Client.
 Chapter 23. Cloud environment and server configuration 1229

Cloud views in the workbench
The cloud management view is available through Windows Show View
Cloud Explorer (Figure 23-17).

Figure 23-17 Launching the Cloud Client Explorer

Requesting resources on the cloud from the Cloud Client
To request resources from the cloud server, you first browse or search through
the virtual images that are available on the server. Then you select one or more
images and specify the quantity and size of each image. The cloud server
creates resources from the images, instantiated virtual systems from the images
according to the quantity and size that you specify.

Before you begin
Ensure that you have completed the following steps:

1. You must have registered with the IBM Smart Business Development and
Test Cloud (https://www-147.ibm.com/cloud/enterprise/dashboard). For
instructions to request a contract to use the IBM cloud, refer to IBM Smart
Business Cloud Development:

http://www.ibm.com/services/us/igs/cloud-development/
1230 Rational Application Developer for WebSphere Software V8 Programming Guide

https://www-147.ibm.com/cloud/enterprise/dashboard
https://www-147.ibm.com/cloud/enterprise/dashboard
https://www-147.ibm.com/cloud/enterprise/dashboard
http://www.ibm.com/services/us/igs/cloud-development/

2. You must have installed the Cloud Client for Eclipse.

There are two ways that you can request resources from the cloud:

� If you have only the Cloud Client installed, you can use the images on the
server as they are.

� If you have the Deployment Modeling Extension for the Cloud installed, you
can import the images into your workspace and construct a custom topology
to request from the cloud.

The following steps show the simpler path: using the images on the server as
they are. Follow these steps to request an image on the cloud:

1. Open the Cloud Explorer view:

a. Click Window Show View Other.

b. In the Show View window, expand the Cloud Management Views folder.

c. Click Cloud Explorer and then click OK.

2. In the Cloud Explorer view, click the Request Instance icon ().

3. If you have not yet created a connection to the cloud, you are prompted for the
user ID and password that you use to sign in to the IBM Cloud.

4. The Select Image window lists all of the available images on the cloud. Select
the image that you want and click Add.

5. On the Create a New Cloud Request window, enter a name for the image that
you request. Depending on the type of image, your options and requirements
in the parameter panel might differ.

6. After you have completed your selections, click Finish and read the license
terms.

What to do next
Now that you have requested an image from the cloud, you can use the software
on that image like any other system. For example, if the image contains a
Rational Asset Manager repository, you can connect to that server in the Asset
Explorer view with the IP address of the image, like you connect to any Rational
Asset Manager repository.

The Client URLs section of the Cloud Management view contains links that
simplify using the image. For example, each image has a link labeled SSH login.
Clicking this link opens a terminal window that is connected to the image. The
first time that you connect to the image over SSH, you see a message asking if
you want to accept the authenticity of the host and continue connecting; type yes,
and press Enter. In the terminal window, you can examine the image, verify that it
is running, and make changes to the image if necessary.
 Chapter 23. Cloud environment and server configuration 1231

If the software in the image contains web-based access controls, such as the
Rational Asset Manager Web client or the Rational Build Forge® console, links to
those pages are listed in the Client URLs section. You can click these links to
open a web browser to those pages.

Figure 23-18 shows the Cloud Explorer view.

Figure 23-18 Cloud Explorer view

The Cloud Client (Figure 23-19) has a number of useful views and can be
especially helpful as an alternative to using the web client when making instance
requests for instances of other types of applications to use with the WebSphere
Application Server. For example, it is convenient to use the Cloud Client to
request that a DB2 instance is provisioned if you are developing applications that
need database connectivity.

Figure 23-19 General Details tab from the Cloud Client

You can search for assets from the Cloud Client Asset Search view (Figure 23-20
on page 1233).
1232 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 23-20 Searching assets from the Cloud Client Asset Search view

23.2.4 Requesting instances from the web client

Instances can be provisioned by the web client and then used from the Cloud
Toolkit server tools, which can be useful when you already have a suitable cloud
instance that might have the applications that you want to test already installed
on it. It is also useful when setting up a server from a captured image that is
available to you that might have been configured a specific way with a given set
of deployed applications running on it.

To request an instance from the web client, select one of the images that
contains the WebSphere Application Server that can be consumed by the Cloud
Toolkit and that matches the specific licensing terms and agreements you are
implementing. For example, Figure 23-21 on page 1234 shows selecting an
image for provisioning that will contain WebSphere Application Server V7.0.0.11
on Red Hat Enterprise Linux (RHEL) with a Bring Your Own License (BYOL),
which expects you to bring your own license entitlement.
 Chapter 23. Cloud environment and server configuration 1233

Figure 23-21 Requesting a WebSphere Application Server V7.0.0.11 on Red Hat Enterprise Linux Server

The pop-up wizard guides you through making this request. If you have a static
IP address that is unbound to any instance, you can elect to use that IP address
at this time. If you do not elect to use a static IP address, a dynamically
generated IP address will be assigned when the provisioning is complete. The
specific format of the fields for which to supply values can differ from one type of
image to another type of image, by data center location and by WebSphere
Application Server version.

Figure 23-22 on page 1235 shows page 2 of 4 of the request for a WebSphere
Application Server RHEL 7.0.0.11 with a BYOL agreement. The user has elected
to use a static IP address that it has been assigned, and the image type is
Bronze 32 bit. The usage price per hour in American dollars is provided. An
instance of this type and this size costs USD.021 per usage hour.
1234 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 23-22 Requesting a new instance for a specific image type

When the request has been successfully submitted, you can view its current
status from the control panel. Figure 23-23 on page 1236 shows two instances
that have been requested and that are at separate stages in the provisioning
process. The first instance, which is set to use a static IP address, is in the
Request stage. The second instance, which is on a separate data center, that
does not use a static IP address, but that will let the system dynamically allocate
an IP address, is in the Provisioning stage.
 Chapter 23. Cloud environment and server configuration 1235

Figure 23-23 Viewing the status of the requests for provisioning from the control panel

Figure 23-24 shows that both requests are completed and that the status for both
is Active. Active implies that the instance is now provisioned and is starting.

Figure 23-24 Status when provisioning is complete

23.2.5 Resources for additional information

The following resources are useful references about cloud computing:

� developerWorks video about developing with Rational Application Developer
and the IBM Cloud

http://www.ibm.com/developerworks/wikis/download/attachments/1290089
75/rational_application_developer_8_with_cloud_toolkit.swf?version=1

� IBM Cloud Computing home page

http://www.ibm.com/ibm/cloud/

� Smart Business Development and Test on the IBM Cloud website

http://www.ibm.com/services/us/igs/cloud-development/

� IBM Smart Business Development and Test Cloud home page

https://www.ibm.com/cloud/enterprise/dashboard

� IBM Smart Business Development and Test Cloud support page

https://www.ibm.com/cloud/enterprise/support

� IBM Smart Business Development and Test on the Cloud (Enterprise):
Support Forum

https://www.ibm.com/developerworks/mydeveloperworks/groups/join/1dba
2e59-05da-4b9a-84e4-2444a6cac251

� developerWorks Cloud Computing home page

http://www.ibm.com/developerworks/cloud/index.html
1236 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.ibm.com/developerworks/wikis/download/attachments/129008975/rational_application_developer_8_with_cloud_toolkit.swf?version=1
http://www.ibm.com/ibm/cloud/
http://www.ibm.com/services/us/igs/cloud-development/
https://www.ibm.com/cloud/enterprise/dashboard
https://www.ibm.com/cloud/enterprise/support
https://www.ibm.com/developerworks/mydeveloperworks/groups/join/1dba2e59-05da-4b9a-84e4-2444a6cac251
http://www.ibm.com/developerworks/cloud/index.html

23.3 Understanding WebSphere Application Server v8.0
profiles

The concept of server profiles was introduced starting with WebSphere
Application Server V6.0. The WebSphere Application Server installation process
lays down a set of core product files required by the runtime processes. After
installation, you have to create one or more profiles that define the runtime
settings for a functional system. The core product files are shared between the
runtime components that are defined by these profiles.

With WebSphere Application Server Base Edition, you can only have
stand-alone application servers (Figure 23-25). Each application server is
defined within a single cell and node. The administrative console is hosted within
the application server and can only connect to that application server. No central
management of multiple application servers is possible. An application server
profile defines this environment.

Figure 23-25 System management topology: Stand-alone server (Base)

You can also create stand-alone application servers with the Network
Deployment package, although you might do so with the intent of federating that
server into a cell for central management at a later point.

With the Network Deployment package, you have the option of defining multiple
application servers with central management capabilities. For more information
about profiles for the IBM WebSphere Application Server V7.0 Network
Deployment Edition, see WebSphere Application Server V7 Administration and
Configuration Guide, SG24-7615.

Cell

Application
Server

"server1"

Node A

Admin
Console

Application
Server Profile
 Chapter 23. Cloud environment and server configuration 1237

23.3.1 Types of profiles

The following types of profiles are used when defining the run time of an
application server:

� Application server profile

� Deployment manager profile

� Custom profile

23.3.2 Using the profiles

Here, we discuss situations where you might use the various types of profiles.

Application server profile
The application server profile defines a single stand-alone application server.
Using a profile gives you an application server that can run stand-alone
(unmanaged) with the following characteristics:

� The profile consists of one cell, one node, and one server. The cell and node
are not relevant in terms of administration, but you will see them when you
administer the server through the administrative console.

� The name of the application server is server1.

� The server has a dedicated administrative console.

The primary use for this type of profile can be any of the following possibilities:

� To build a server in a Base installation, including a test environment within
Rational Application Developer.

� To build a stand-alone server in a Network Deployment installation that is not
managed by the deployment manager, for example, to build a test machine.

� To build a server in a distributed server environment to be federated and
managed by the deployment manager. Choose this option if you are new to
WebSphere Application Server and want a quick way to get an application
server complete with samples. When you federate this node, the default cell
becomes obsolete, and the node is added to the deployment manager cell.
The server name remains as server1, and the administrative console is
removed from the application server.

Server profile: Rational Application Developer uses this application server
profile for WebSphere Application Server v8.0.
1238 Rational Application Developer for WebSphere Software V8 Programming Guide

Deployment manager profile
The deployment manager profile defines a deployment manager in a Network
Deployment installation. Although you can conceivably have the Network
Deployment package and run only stand-alone servers, this approach might
bypass the primary advantages of Network Deployment, which are workload
management, failover, and central administration.

In a Network Deployment environment, create one deployment manager profile,
which gives you the following items:

� A cell for the administrative domain
� A node for the deployment manager
� A deployment manager with an administrative console
� No application servers

After you have the deployment manager, you can federate nodes built either from
existing application server profiles or custom profiles. You can also create new
application servers and clusters on the nodes from the administrative console.

Custom profile
A custom profile is an empty node that is intended for federation to a deployment
manager. This type of profile is used when you build a distributed server
environment. You might use a custom profile in the following ways:

� Create a deployment manager profile.

� Create one custom profile on each node on which you will run application
servers.

� Federate each custom profile of the deployment manager, either during the
custom profile creation process or later using the addNode command.

� Create new application servers and clusters on the nodes from the
administrative console.

23.4 WebSphere Application Server v8.0 Beta
installation

The IBM WebSphere Application Server v8.0 Beta environment is an installation
option that is available in IBM Installation Manager when installing Rational
Application Developer. For details about how to install the WebSphere
Application Server v8.0 Beta Environment, see “Installing Rational Application
Developer” on page 1788.
 Chapter 23. Cloud environment and server configuration 1239

The stub files for the IBM WebSphere Application Server v8.0 Beta environment
are in the directory <rad_home>\runtimes\base_v8_stub.

The stub folder contains minimal sets of compile-time libraries with which you
can build applications for a server when it is not installed locally.

23.5 Using WebSphere Application Server profiles

The Profile Management tool is a WebSphere Application Server tool that
creates the profile for each runtime environment. It is also a graphical user
interface to the WebSphere Application Server command-line tool, wasprofile.
You can use the tools in Rational Application Developer to start the WebSphere
Application Server Profile Management tool.

23.5.1 Creating a new profile using the WebSphere Profile wizard

To create a new WebSphere Application Server v8.0 Beta profile using the
WebSphere Profile Management Tool, follow these steps from within the Rational
Application Developer environment:

1. In the workbench, select Window Preferences.

2. In the Preferences window (Figure 23-26 on page 1241), complete these
actions:

a. Expand Server WebSphere Application Server.

b. Under the WebSphere Application Server local server profile management
list, select WebSphere Application Server v8.0 Beta.

c. Click Run Profile Management Tool (next to the “WebSphere profiles
defined in the runtime selected above” list), which lists all the profiles
defined for the runtime environment that you selected in the previous step.
1240 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 23-26 Server Preferences page

3. The WebSphere Customization Tools 8.0 window opens. Select Profile
Management Tool in the list of provided tools and click Launch Selected
Tool.

4. In the Profile Management Tool window, any existing profiles are listed. Click
Create to start the new profile creation process (Figure 23-27 on page 1242).
 Chapter 23. Cloud environment and server configuration 1241

Figure 23-27 Profile Management Tool window

5. In the Environment selection window, in which Application Server is
preselected, click Next.
1242 Rational Application Developer for WebSphere Software V8 Programming Guide

6. In the Profile Creation Options window (Figure 23-28), select Advanced
profile creation and click Next.

Figure 23-28 Advanced profile creation
 Chapter 23. Cloud environment and server configuration 1243

7. In the Optional Application Deployment window (Figure 23-29), clear Deploy
the default application and click Next.

Figure 23-29 Optional Application Deployment
1244 Rational Application Developer for WebSphere Software V8 Programming Guide

8. In the Profile Name and Location window (Figure 23-30), enter a profile
name. For this example, we used the profile name AppSrv01.

Figure 23-30 Profile Name and Location

9. To increase performance, choose the Development option in the Server
runtime performance tuning setting (Figure 23-30 on page 1232) and click
Next.

10.In the Node and Host Names window, you can use the default settings. Click
Next.

11.In the Administrative Security window, enter a user name and password. Click
Next.

12.In the Security Certificate (part 1) window, you can use the default settings.
Click Next.
 Chapter 23. Cloud environment and server configuration 1245

13.In the Security Certificate (part 2) window, you can use the default settings.
Click Next.

14.In the Port Values Assignment window, you can use the default settings. Click
Next.

15.In the Window Service definition window (or Linux Service definition window
on Linux), clear Run the application server process as a Windows
service. On Linux, Run the application server process as a Linux service
is disabled, by default.

16.In the Web Server Definition window, you can use the default settings. Click
Next.

17.In the Profile Creation Summary window, review the profile settings. Click
Next.

18.In the Profile Creation Complete window, clear Launch the First steps
console and click Finish.

Back in the Profile Management Tool window, you can see that the new profile is
present in the Profiles list with the name AppSrv01.

When you close the Profile Management tool window and return to the
Preferences window, you can also see that the new profile is listed under the
“WebSphere profiles defined in the runtime selected above” list.

23.5.2 Deleting a WebSphere profile

If you need to delete a WebSphere profile, use the following steps.

1. From the menu bar of the workbench, select Window Preferences
Server WebSphere Application Server.

2. Under the WebSphere Application Server local server profile management
list, select the installed runtime environment that contains the profile to be
deleted.

3. Under the “WebSphere profiles defined in the runtime selected above” list,
select the profile to be deleted and click Delete. The registry and
configuration files associated with the profile selected for deletion are
removed from the file system; however, any log files remain on the file system
and can be removed manually.

Important: Do not perform these steps now, because we want to retain the
newly created profile. These steps are provided here only for future reference.
1246 Rational Application Developer for WebSphere Software V8 Programming Guide

23.5.3 Defining the new server in Rational Application Developer

After you create a WebSphere profile, you can define the new server in Rational
Application Developer to use for the deployment of applications. A server
definition points to a server that is defined within the specific selected
WebSphere profile, such as the default profile created during installation or a
profile created using the Profile Management Tool. Remember the following
considerations regarding the definition of a new server in Rational Application
Developer:

� The AppSrv01 profile was created in the previous section.

� A Rational Application Developer server definition is essentially a pointer to a
WebSphere profile.

Creating a server definition in Rational Application Developer
To create a server definition in Rational Application Developer, follow these
steps:

1. Select the Servers view in the Java Platform, Enterprise Edition (Java EE) or
Web perspective.

2. Right-click in the Servers view and select New Server.

3. In the Define a New Server window (Figure 23-31 on page 1248), follow these
steps:

a. Leave the Server’s host name field at its default value of localhost.

b. For the Server runtime environment, select WebSphere Application
Server v8.0 Beta and click Next.

Tip: If you specify a remote host name in the Server’s host name field,
the New Server wizard prompts if you want to enable the server to start
remotely. New for Rational Application Developer is support for starting
a WebSphere Application Server on a remote computer. For more
details, see the Starting a remote WebSphere Application Server topic:

http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?t
opic=/com.ibm.servertools.doc/topics/tremote_start.html
 Chapter 23. Cloud environment and server configuration 1247

http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/com.ibm.servertools.doc/topics/tremote_start.html

Figure 23-31 Define a New Server window

4. In the New Server: WebSphere Server Settings window (Figure 23-32 on
page 1249), follow these steps:

a. For the WebSphere profile name, select the WebSphere profile that we
created previously. The profile to select is AppSrv01.

b. Under Server connection types and administrative ports, select
Automatically determine connection settings.

c. Select Run server with resources within the workspace.

d. Select Security is enabled on this server.

e. Enter the user and password that were configured in the profile creation.

f. For the Application server name, enter server1.

g. Click Next.
1248 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 23-32 New Server: WebSphere Application Server Settings page

5. In the Add and Remove Projects window, click Finish. We do not select a
project at this time.

The server definition is created and displayed in the Servers view. In our
example, we created the server definition WebSphere Application Server v8.0
Beta at localhost.

Tip: Open the new server configuration by double-clicking it so that you can
change the configuration settings. For example, you can change the name of
the server, but we leave the name for now.
 Chapter 23. Cloud environment and server configuration 1249

Starting and stopping the server
Follow these steps to start the server:

1. In the Servers view, right-click WebSphere Application Server v8.0 Beta at
localhost and select Start.

2. The status of the server changes to Started. If the status of the server does
not change to Started, see the Console view for the log output. Verify if the
server connection is correct.

For more details, see the Setting the connection to the WebSphere Application
Server topic:

http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/co
m.ibm.servertools.doc/topics/tsoapv6.html

Follow these steps to stop the server:

1. In the Servers view, right-click WebSphere Application Server v8.0 Beta at
localhost and select Stop.

2. The status of the server changes to Stopped.

23.5.4 Customizing a server

After the server has been defined in Rational Application Developer, you can
easily customize its settings. To do this, in the Servers view, double-click the
server that you want to customize. The server Overview window (Figure 23-33 on
page 1251) opens in which you can modify the server configuration.
1250 Rational Application Developer for WebSphere Software V8 Programming Guide

http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/com.ibm.servertools.doc/topics/tsoapv6.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/com.ibm.servertools.doc/topics/tsoapv6.html

Figure 23-33 Server overview window

The following key settings are worth noting:

� Server:

– WebSphere profile name

Use this field to select the desired WebSphere Application Server profile.

– Server connection types and administrative ports

In this box, you select the method that is used by Rational Application
Developer to communicate with the server. The radio buttons provide
options for choosing the connection settings automatically or manually. If
manual connection settings are chosen, you can select whether to use
IPC, RMI, or SOAP as the communication channel between the
development environment and the server.

By default, the automatic setting radio button is active. When working with
a local server, IPC is the recommended connection setting for WebSphere
Application Server V7.0 and v8.0 Beta, although all settings will work. If
you are working with a remote server, SOAP or RMI can be used.
 Chapter 23. Cloud environment and server configuration 1251

– Terminate server on workbench shutdown

If you want the server to be terminated after the workbench is shut down,
select this option. Otherwise, the server continues to run after you shut
down the development environment. The next time that you start the
integrated development environment (IDE), the server is found again in its
current state.

� Publishing:

– Never publish automatically

Select this option to specify that the workbench must not automatically
publish files to the server. A developer can still publish to the server, but
the developer must publish to the server manually.

– Automatically publish when resources change

Select this option to specify that a change to the files running on the server
must automatically be published to the server. The “Publishing interval (in
seconds)” option specifies how often the publishing takes place. If you set
the publishing interval to 0 seconds, a change to the files running on the
server automatically causes publishing to occur.

� Publishing settings for WebSphere Application Server:

– Run server with resources on Server

This option installs and copies the full application and its server-specific
configuration from the workbench to the directories of the server. The
advantage of selecting this option is that you run your application from the
directories of your server and edit advanced application-specific settings
for your application by using the WebSphere administrative console.
However, when you choose to add your application to the server by using
the Add and Remove Projects wizard, this option takes a longer time to
complete than the “Run server with resources within the workspace”
option, because it involves more files being copied to the server.

– Run server with resources within the workspace

Use this option to request the server to run your application from the
workspace. This setting is useful when developing and testing your
application. It is designed to operate faster than the “Run server with
resources on Server” option, because fewer files are involved when
copying over to the server.

– Minimize application files copied to the server

Use this option to optimize the publishing time on the server by reducing
the files copied to the server. In addition to the application files not being
copied into the installedApps directory of the server, the application is
also not copied into your server configuration directory. As a result, you
1252 Rational Application Developer for WebSphere Software V8 Programming Guide

cannot use the WebSphere administrative console to edit the deployment
descriptor. Clear this option if you must use the WebSphere administrative
console to edit the deployment descriptor.

� Security

We discuss the security settings in 23.9, “Configuring security” on page 1268.

� Remote Server setting

New for Rational Application Developer is support for starting a WebSphere
Application Server on a remote machine. For more details, see the Starting a
remote WebSphere Application Server topic:

http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=
/com.ibm.servertools.doc/topics/tremote_start.html

23.5.5 Sharing a WebSphere profile between developers

The configuration of a server can be time consuming and error-prone. After you
configure the server resources, you might want to let other members of the team
use the same configuration from their local environments, without duplicating the
same effort.

To replicate server configurations across multiple profiles, you can use the
Server Configuration Backup wizard to create a backup of a WebSphere
Application Server v8.0 Beta profile in a configuration archive (CAR) file. This
wizard performs the same functionality as the wsadmin command:

wsadmin -user user -password password -c “$AdminTask exportWasprofile
{-archive configuration_archive_path}”

Be sure to have the server started, and if security was enabled, be sure to enter
the security credentials when prompted. You can also use the Server
Configuration Restore wizard to restore a WebSphere Application Server v8.0
Beta profile from a CAR file. This wizard performs the same functionality as the
wsadmin command:

wsadmin -user user -password password -c “$AdminTask importWasprofile
{-archive configuration_archive_path}”

Backing up the server configuration
To back up the server configuration from WebSphere Application Server v8.0
Beta at the localhost, follow these steps:

1. Configure the data source using WebSphere Application Server v8.0 Beta, as
described in “Configuring the data source in WebSphere Application Server”
on page 1882.
 Chapter 23. Cloud environment and server configuration 1253

http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/com.ibm.servertools.doc/topics/tremote_start.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/com.ibm.servertools.doc/topics/tremote_start.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/com.ibm.servertools.doc/topics/tremote_start.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/com.ibm.servertools.doc/topics/tremote_start.html

2. Create a new project to store the configuration archive file:

– Select File New Project.

– On the New Project dialog window, Select General Project and click
Next.

– For the project name, enter WAS80Car and click Finish.

3. In the Servers view, right-click WebSphere Application Server v8.0 Beta at
localhost and select Server Configuration Backup.

4. In the Server Configuration Backup window (Figure 23-34), for the Parent
folder, enter /WAS80Car. For the File name, enter WAS80AppSrv1. Then click
OK.

Figure 23-34 Server Configuration Backup window

After the server configuration backup process completes, you see the
WAS80AppSrv1.car file under the WAS80Car project.

Restoring the server configuration
To restore the server configuration to a separate server, in this case, WebSphere
Application Server v8.0 Beta at the localhost, follow these steps:

1. Make sure that WebSphere Application Server v8.0 Beta at the localhost is
not running. If it is running, stop it.

2. In the Servers view, right-click WebSphere Application Server v8.0 Beta at
localhost and select Server Configuration Restore.

3. In the Server Configuration Restore window (Figure 23-35 on page 1255), for
the Parent folder, enter /WAS80Car. For the File name, enter
WAS80AppSrv1.car. Then click OK.
1254 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 23-35 Server Configuration Restore window

4. After the server configuration restore process completes, start WebSphere
Application Server v8.0 Beta at localhost.

The server is configured with the CAR file data.

23.5.6 Defining a server for each workspace

To switch workspaces and keep applications deployed on the server, you can
create a new WebSphere profile for each new Rational Application Developer
workspace, as explained in 23.5.1, “Creating a new profile using the WebSphere
Profile wizard” on page 1240. Then define that server in the Servers view, as
explained in “Creating a server definition in Rational Application Developer” on
page 1247.

This approach requires more disk space for each WebSphere profile and server
configuration. It also requires additional memory if the servers run concurrently.

23.6 Migrating the server resources from Rational
Application Developer V7.0 or V7.5 to V8.0

You can migrate server resources that were configured in previous versions of
Rational Application Developer, such as V7.0 or V7.5, to Rational Application
Developer v8.0. Server resources are files with information that is required to set
up and publish artifacts from the workbench to a server.

Refer to the following information center for more help performing this task:

http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.serve
rtools.doc/topics/tmigserverview.html
 Chapter 23. Cloud environment and server configuration 1255

http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.servertools.doc/topics/tmigserverview.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.servertools.doc/topics/tmigserverview.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.servertools.doc/topics/tmigserverview.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.servertools.doc/topics/tmigserverview.html

23.7 Adding and removing applications to and from a
server

After the server is configured, you can configure it further with server resources
and use it to run applications by adding applications to it.

In this section, we explain how to add an enterprise application to a server. You
can only add enterprise application EAR projects, not web or EJB projects, to a
server.

23.7.1 Adding an application to the server

To add an application to the server, follow these steps:

1. Verify that the server has started.

2. In the Servers view, right-click a server and select Add and Remove
Projects.

3. In the Add and Remove Projects window (Figure 23-36 on page 1257), select
one of the listed EAR projects and click Add. After you click Add, the project is
displayed in the Configured projects box. Click Finish.
1256 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 23-36 Add and Remove Projects window

After an application is added to the server, you can run any of the HTML pages or
JavaServer Pages (JSP).

23.7.2 Removing an application from a server

A Rational Application Developer server configuration is essentially a pointer to a
server defined in a WebSphere profile. In this section, we present two scenarios
for removing published projects from the server.

Removing an application using Rational Application Developer
In most cases, you can remove a project from the test server within Rational
Application Developer using either of the following options:

� In the Servers view, right-click the server where the application is published
and select Add and remove projects. In the Add and Remove Projects
 Chapter 23. Cloud environment and server configuration 1257

window, select the project in the Configured projects list, click Remove, and
click Finish.

� Expand the server in the Servers view, right-click the EAR project to be
removed and select Remove.

Either option uninstalls the application from the server.

Removing an application using the administrative console
In certain cases, you might decide to uninstall the application by using the
WebSphere administrative console. For example, if you published a project in
Rational Application Developer to the test server, it is deployed to the server that
is defined in the WebSphere profile. If you then switch workspaces without first
removing the project from the server, you break the association between Rational
Application Developer and the server.

To address this scenario, uninstall the enterprise application from the
WebSphere administrative console:

1. Start the WebSphere administrative console by right-clicking the server and
selecting Administration Run administrative console. If necessary, click
Log in.

2. Select Applications Application Types WebSphere Enterprise
Applications.

3. Select the desired application to uninstall and click Uninstall. When
prompted, click OK.

4. When the uninstallation is complete, save the changes.

23.8 Configuring application and server resources

In Rational Application Developer, you can define application-related properties
and data sources within a WebSphere specific deployment plan called Enhanced
(Figure 23-38 on page 1259). It simplifies the application deployment by defining
the configurations in the enterprise archive that are automatically deployed on
the server when the application is deployed.

Tip: After you uninstall the application using the WebSphere administrative
console, if you start the Add and Remove Projects wizard, you can see that
the project is still displayed in the Configured projects section. Click
Remove to move the project to the Available projects section.
1258 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 23-38 Enhanced EAR file

The enhanced EAR tooling is available in the WebSphere Application Server
Deployment Editor, as shown in Figure 23-39 on page 1261. Deployment
information is saved under the application /META-INF/ibmconfig directory.

This file is not generated by default when creating an EAR project. In order to
generate it, follow the steps:

1. Right-click over your EAR project in the Enterprise Explorer view.
2. Select Java EE Open WebSphere Deployment Descriptor.

Note: In order to have the enhanced EAR available, the project must have the
WebSphere Application Server v8.0 facet enabled. To enable this facet, open
the enterprise project properties and select Project Facets. In the Project
Facets configuration, select the WebSphere Application (Co-existence) and
WebSphere Application (Extended) facets Version 8.0 Beta, as shown in
Figure 23-37.

Figure 23-37 WebSphere facets for a EAR project

Enhanced
EAR

Enhanced EAR

ResourcesResourcesResources

ResourcesResourcesProperties

Java EE App.
EAR
 Chapter 23. Cloud environment and server configuration 1259

Enhanced EAR editor: You use the Enhanced EAR editor to edit several
WebSphere Application Server v8.0 specific configurations, such as data
sources, class loader policies, substitution variables, shared libraries,
virtual hosts, and authentication settings. With this editor, you can
configure these settings with little effort and publish them every time that
you publish the application.

The advantage of using the Enhanced EAR editor is that it makes the
testing process simpler and easily repeatable, because the configurations
are saved to files that are usually shared in the team repository. Thus,
although you cannot configure all the runtime settings, the tool is beneficial
for development purposes, because it eases the process of configuring the
most common settings.

The disadvantage of this editor is that the configuration settings are stored
in the EAR file and are not visible from administrative console. You can use
the console to only edit settings that belong to the cluster, node, and server
contexts. When you change a configuration using the Enhanced EAR
editor, the change is made at the application context. Furthermore, in most
cases, these settings depend on the node in which the application server
will be installed anyway. Therefore, it is not necessary configure them at
the application context for deployment purposes.
1260 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 23-39 Enterprise application deployment descriptor: Enhanced EAR

The server configuration data that you specify in the Enhanced EAR editor is
embedded within the application. The embedded data improves the
administration process of publishing to WebSphere Application Server v8.0 Beta
when installing a new application to an existing local or remote WebSphere
Server by preserving the existing server configuration.

You can add the following resource types to the enhanced EAR file:

� Application class loader settings (Application section)

� Java Authentication and Authorization Service (JAAS) authentication entries

� Java Database Connectivity (JDBC) resources (Data Sources section)

� Resource adapters (Embedded J2EE Connector (J2C) architecture Options
section)

� Shared libraries
 Chapter 23. Cloud environment and server configuration 1261

� Substitution variables

� Virtual hosts

23.8.1 Creating a data source in the Enhanced EAR editor

You must specify the data sources that support EJB entity beans before the
application can be started. You can specify the data sources using one of several
ways, but the easiest way is to use the Enhanced EAR editor.

For an example of configuring the enhanced EAR against the Derby database,
see “Configuring the data source for the ITSOBANK” on page 609. In this
section, we explain how to create a data source for a DB2 database using
enhanced EAR settings:

1. In the Enterprise Explorer, right-click RAD8EJBEAR and select Java EE
Open WebSphere Application Server Deployment.

2. Scroll down the window until you find the Authentication section, in which
you can define a login configuration that is used by JAAS. Click Add to create
a new configuration.

3. In the Add JAAS Authentication Entry window (Figure 23-40), for the Alias,
type dbuser. Enter the user ID and password for your configuration. Click OK
to complete the creation of the configuration.

Figure 23-40 JAAS Authentication Entry

4. In the Enhanced EAR editor, scroll back up to the Data Sources, JDBC
provider list section. By default, the Derby JDBC Provider (XA) is
predefined.

5. Because we use DB2 for this example, click Add (next to the provider list) to
add a DB2 JDBC provider.
1262 Rational Application Developer for WebSphere Software V8 Programming Guide

6. In the Create JDBC Provider window (Figure 23-41 on page 1263), complete
these steps:

a. For the Database type, select IBM DB2.

b. For the JDBC Provider type, select DB2 Universal JDBC Driver Provider
(XA) and click Next.

Figure 23-41 Create JDBC Provider window (part 1 of 2)

DB2 Universal JDBC Driver Provider: For our development purposes,
we can use the DB2 Universal JDBC Driver Provider (non-XA), because
we do not require XA (two-phase commit) capabilities.
 Chapter 23. Cloud environment and server configuration 1263

7. In the next Create JDBC Provider window (Figure 23-42), follow these steps:

a. For the Name, type DB2 XA JDBC Provider.

Notice the variables that are used to locate the JDBC driver:

${DB2UNIVERSAL_JDBC_DRIVER_PATH}
${UNIVERSAL_JDBC_DRIVER_PATH}
${DB2UNIVERSAL_JDBC_DRIVER_NATIVEPATH}

If these variables are not set globally for the WebSphere Application
Server, you can set them under Substitution Variables.

b. Click Finish.

Figure 23-42 Create JDBC Provider window (part 2 of 2)

8. With the new DB2 provider selected, click Add next to the defined data
sources list.
1264 Rational Application Developer for WebSphere Software V8 Programming Guide

9. In the Create Data Source window (Figure 23-43), complete these actions:

a. From the JDBC provider type list, select DB2 Universal JDBC Driver
Provider (XA).

b. Select Version 5.0 data source.

c. Click Next.

Figure 23-43 Create Data Source window (part 1 of 3)

10.In the next Create Data Source window (Figure 23-44 on page 1266),
complete these steps:

a. For the Name (of the data source), type RAD8DS. For the Java Naming and
Directory Interface (JNDI) name, type jdbc/itsobankdb2.

b. For the Component-managed authentication alias, select dbuser.

c. Clear Use this data source in container managed persistence (CMP).
We are using Java Persistence API (JPA) entities, not EJB 2.1 entity
beans.

d. Click Next.
 Chapter 23. Cloud environment and server configuration 1265

Figure 23-44 Create Data Source window (part 2 of 3)
1266 Rational Application Developer for WebSphere Software V8 Programming Guide

11.In the last Create Data Source window (Figure 23-45), set the databaseName
property value to ITSOBANK. Then click Finish to conclude the wizard.

Figure 23-45 Create Data Source window (part 3 of 3)

12.Save the deployment descriptor.

23.8.2 Setting the substitution variable

If the variables to access the DB2 JDBC drivers are not set server-wide (using
the administrative console), you can expand the Substitution Variable section and
define the variables:

1. Click Add.

2. In the Add Variable window, define the name of the variable (for example,
${DB2UNIVERSAL_JDBC_DRIVER_PATH) and set the value to the location where
the DB2 JDBC drivers are installed, for example, c:\SQLLIB\java.
 Chapter 23. Cloud environment and server configuration 1267

23.8.3 Configuring server resources

Within Rational Application Developer, the WebSphere administrative console is
the primary interface for configuring both local and remote servers of WebSphere
Application Server v8.0 Beta. You can only configure complicated resource
configurations, such as messaging resources, by using the WebSphere
administrative console.

Start WebSphere Application Server v8.0 Beta at localhost. And after the test
server starts, right-click the server and select Administration Run
administrative console.

23.9 Configuring security

During the WebSphere Application Server v8.0 Beta at localhost profile creation,
the administrative security was enabled. In order to allow Rational Application
Developer to manage the server, you have to specify that security is enabled in
the runtime environment and provide the user ID and password in the server
editor for the secured server. We have already done this part during the creation
of the server.

However if you are working with a new secured WebSphere Application Server
server or you change the authentication method, you must establish a trust
between the Rational Application Developer development environment and the
server.

In this section, we show how to enable administrative security, using the local
operating system registry for authentication, by using the WebSphere
administrative console. We also show you how to pass the administrative settings
from the development environment to the runtime server.

23.9.1 Configuring security in the server

Follow these steps to configure the security using the server administrative
console:

1. Start the test server called WebSphere Application Server v8.0 Beta at
localhost.

More information: For more information about configuring WebSphere
Application Server security, see IBM WebSphere Application Server V6.1
Security Handbook, SG24-6316.
1268 Rational Application Developer for WebSphere Software V8 Programming Guide

2. Right-click the server and select Administration Run administrative
console.

3. Click Log in.

4. Expand Security Global Security (Figure 23-46):

a. Select Enable administrative security and click Enable application
security.

b. Clear Use Java 2 security to restrict application access to local
resources.

Figure 23-46 Configuring security

5. Click Security Configuration wizard.

6. In the Specify extent of protection window, click Next.

7. In the Select user repository window, select Local operating system.

8. In the Configure user repository window, enter the primary administrative user
name and click Next.
 Chapter 23. Cloud environment and server configuration 1269

9. Click Finish and then click Save.

10.Click Logout to log off from the administrative console.

11.Stop the server.

23.9.2 Configuring security in the workbench

Edit the server configuration to specify that security is enabled:

1. In the Servers view, double-click WebSphere Application Server v8.0 Beta
at localhost.

2. In the server configuration editor (Figure 23-47), complete the following steps:

a. Expand the Security section.

b. Select Security is enabled on this server.

c. Verify that the values in the User ID and Password fields are the same as
those values entered in the Security Configuration wizard window, as
explained in “Configuring security in the server” on page 1268. The User
ID and Password fields specify the administrator user of the WebSphere
administrative console.

d. Select Automatically trust server certificate during SSL handshake.

Figure 23-47 Security settings in the server editor

3. Save and close the server configuration editor.

4. Start the server and run the administrative console.

Required privileges: The specified user must have the required
privileges, such as the permission to log on as a service, in Windows. For
more information, see “Required privileges in Windows” in IBM
WebSphere Application Server V6.1 Security Handbook, SG24-6316.
1270 Rational Application Developer for WebSphere Software V8 Programming Guide

5. In the secured administrative console (Figure 23-48), enter the user ID and
password. Then click Log in.

Figure 23-48 Secured administrative console

23.10 AJAX Test Server

The AJAX Test Server is a lightweight server that is suited for developing and
testing AJAX applications. The server performs module publishing and server
restart and contains an AJAX proxy that creates requests to remote domains.

23.10.1 Configuring the AJAX Test Server

The following steps create and configure a new AJAX Test Server Configuration:

1. Right-click in the Servers view and select New Server.
 Chapter 23. Cloud environment and server configuration 1271

2. In the New Server dialog window, select the AJAX Test Server under the IBM
folder and click Finish (Figure 23-49).

Figure 23-49 New AJAX Test Server

3. The new AJAX Test Server is created. By double-clicking it in the Servers
view, its configuration is available, which is similar to any other servers, as
shown in Figure 23-50 on page 1273.
1272 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 23-50 AJAX Test Server configuration

23.10.2 Configuring the AJAX Proxy

A powerful use of the AJAX servers is to use it as a proxy server for developing
client-side Web 2.0 applications. This development usually only consumes web
services output that is already deployed on an external server. To avoid deploying
the server side on local development machines, it is better to use the AJAX Proxy
to redirect the requests to the remote server.

To configure the AJAX Proxy, open the AJAX Test Server configuration and click
the link Configure Proxy URLs.

The AJAX Proxy Configuration Editor window opens, as shown in Figure 23-51
on page 1274.
 Chapter 23. Cloud environment and server configuration 1273

Figure 23-51 AJAX Proxy Configuration Editor

This editor allows you to add the following proxy rules:

Mapping rules A mapping specifies a local context path, which will be
serviced by an external URL. For example, if you set the
Context Path to br/pt and the URL to
http://www.ibm.com server, all the requests to
http://localhost:8080/proxy/br/pt are going to be
redirected to the www.ibm.com server.

Metadata The metadata elements add proxy configuration
parameters. For example, you can set the following
metadata name retry with the value 3 to configure the
proxy to retry three times when having problems trying to
reach a server.

Access policy You use the policy element to define an access policy for
a specific URL pattern. For example, you can configure a
policy that only allows you to make POST HTTP requests
to a URL, as shown in Figure 23-52 on page 1275. If any
HTTP GET request is issued to that URL mapping, the
response is HTTP 403 error.
1274 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 23-52 Restricting the proxy to only POST HTTP requests

23.11 Developing automation scripts

Scripting is a non-graphical alternative that you can use to configure and
manage WebSphere Application Server. The WebSphere administrative scripting
tool, wsadmin, is a non-graphical command interpreter environment with which
you can run administrative operations on a server in a scripting language.

For more information about how to create automation scripts for an application
and how to execute the scripts, refer to 25.5, “Automated deployment using
Jython-based wsadmin scripting” on page 1345.

23.12 Tips: Enhancing server interaction performance

This section describes tips to speed up server start time and application
publishing time.
 Chapter 23. Cloud environment and server configuration 1275

23.12.1 Speeding up server start time

Use these tips to speed up server start time:

� Customize a server (see 23.5.4, “Customizing a server” on page 1250) to
select Start server with a generated script in the Server section. This action
speeds up the server start time if there are no applications added to the
server.

� Reduce the number of unnecessary applications on the server by removing
unused user applications from the server.

23.12.2 Speeding up application publishing time

Use these tips to speed up application publishing time:

� Customize a server (see 23.5.4, “Customizing a server” on page 1250) to
select Run server with resources within the workspace and Minimize
application files copied to the server in the Publishing settings for
WebSphere Application Server section. This action eliminates the need to
publish for changes in static files, such as HTML and JSP files. This action
also speeds up the application installation and application update.

� Customize a server (see 23.5.4, “Customizing a server” on page 1250) to
select Never publish automatically, and group the application changes in
one manual publish process if the class files are changed frequently. This
action reduces the number of automatic publishes when resources change.

� Start the server in debug mode to eliminate the need to republish for certain
class file changes.

� Select the Development setting if manually creating a new WebSphere
Application Server profile (see 23.5.1, “Creating a new profile using the
WebSphere Profile wizard” on page 1240). The Development profile has
specific tuning that speeds up the server interaction performance. Also, do not
install the default applications, and do not create the profile to start as a
Microsoft Windows service.

� Avoid using non-single-root project structure, because it increases publishing
time significantly. A Project Structure Marker warning message shows up in
the Problems view or Markers view if the project is not single-root: “Broken
single-root rule: A root folder may not contain linked resources”.

� Avoid long start-up operations to speed up application start-up time; for
example, having long running processes in the servlet’s start-up code can
greatly increase the whole application’s start-up time.
1276 Rational Application Developer for WebSphere Software V8 Programming Guide

23.13 More information

For more information, consult the following IBM Redbooks publications:

� WebSphere Application Server V6.1: System Management and
Configuration, SG24-7304

� IBM WebSphere Application Server V6.1 Security Handbook, SG24-6316
 Chapter 23. Cloud environment and server configuration 1277

1278 Rational Application Developer for WebSphere Software V8 Programming Guide

Chapter 24. Building applications with
Apache Ant

Traditionally, you build applications by using UNIX or Linux shell scripts or
Microsoft Windows batch files in combination with tools, such as make. Although
these approaches are still valid, new challenges exist when developing Java
applications, especially in a heterogeneous environment. Traditional tools are
limited in that they are closely coupled with a particular operating system. With
Apache Ant, you can overcome these limitations and perform the build process in
a standardized fashion regardless of the platform.

In this chapter, we describe the existing concepts and new features of Ant in
Rational Application Developer. We demonstrate how to use the Ant tooling to
build applications.

The chapter is organized into the following sections:

� Introduction to Ant
� Ant features in Rational Application Developer
� New Ant features in Rational Application Developer
� Building a Java EE application
� Running Ant outside of Rational Application Developer
� Using the Rational Application Developer Build Utility

The sample code for this chapter is in the 7835code\ant folder.

24
© Copyright IBM Corp. 2011. All rights reserved. 1279

24.1 Introduction to Ant

Ant is a Java-based, platform-independent, open source build tool. It was
formerly a sub-project in the Apache Jakarta project, but in November 2002, it
was migrated to an Apache top-level project. Ant’s function is similar to the make
tool. Because it is Java-based and does not use any operating system-specific
functions, it is platform independent, so that you can build your projects by using
the same build script on any Java-enabled platform.

The Ant build operations are controlled by the contents of the XML-based script
file. This file defines the operations, the order in which to run them, and the
dependencies among them.

Ant comes with several built-in tasks that are sufficient to perform many common
build operations. However, if the tasks that are included are insufficient, you can
extend Ant’s functionality by using Java to develop your own specialized tasks.
These tasks can then be plugged into Ant.

Not only can you use Ant to build your applications, you also can use Ant for
many other operations, such as retrieving source files from a version control
system, storing the result back in the version control system, transferring the
build output to other machines, deploying the applications, generating Javadoc,
and sending messages when a build is finished.

24.1.1 Ant build files

Ant uses XML build files to define the operations that must be performed to build
a project. A build file has the following major components:

Project Task that defines the project name and the default target.
It is an arbitrary name.

Target The tasks that must be performed to satisfy a goal. For
example, compiling source code into class files might be
one target, and packaging the class files into a JAR file
might be another target.

Targets can depend on other targets. For example, the
class files must be up-to-date before you can create the
JAR file. Ant can resolve these dependencies.

Task A single step that must be performed to satisfy a target.
Tasks are implemented as Java classes that are invoked
by Ant, passing parameters defined as attributes in the
XML. Ant provides a set of standard tasks (core tasks), a
1280 Rational Application Developer for WebSphere Software V8 Programming Guide

set of optional tasks, and an API, which allows you to
write your own tasks.

Property Variables that can be passed to tasks through task
attributes. A property has a name and a value pair.
Property values can be set inside a build file, or obtained
externally from a properties file or from the command line.
A property is referenced by enclosing the property name
inside ${}, for example ${basedir}.

Path A set of directories or files. Paths can be defined once and
referred to multiple times, easing the development and
maintenance of build files. For example, a Java
compilation task can use a path reference to determine
the class path to use.

24.1.2 Ant tasks

A comprehensive set of built-in tasks is supplied with the Ant distribution. We use
the following tasks in our example:

delete Deletes files and directories
echo Outputs messages
jar Creates Java archive files
javac Compiles Java source
mkdir Creates directories
tstamp Sets properties containing date and time information

To learn more about Ant, visit the Ant website at the following address:

http://ant.apache.org/

In this chapter, we provide an outline of the features and capabilities of Ant. For
complete information, consult the Ant documentation that is included in the Ant
distribution at the following address:

http://ant.apache.org/manual/index.html

Important: Rational Application Developer ships with Apache Ant V1.7.1.
However at the time of writing this book, but due to the following Eclipse
defect, it uses Apache Ant 1.6.5. You can confirm the version by executing the
runAnt.bat -version command:
https://bugs.eclipse.org/bugs/show_bug.cgi?id=325125. This defect has
been reported via authorized program analysis report (APAR) PM24303.
 Chapter 24. Building applications with Apache Ant 1281

http://ant.apache.org/
http://ant.apache.org/manual/index.html
https://bugs.eclipse.org/bugs/show_bug.cgi?id=325125
https://bugs.eclipse.org/bugs/show_bug.cgi?id=325125

24.2 Ant features in Rational Application Developer

Rational Application Developer includes the following features to aid in the
development and use of Ant scripts:

� Rational Application Developer provides the ability to create and run Ant build
files in the workbench and run the build process in the background, similar to
other tasks.

� The Ant editor offers content assist (including Ant-specific templates) with the
ability to insert snippets and syntax highlighting.

� The Ant editor has a format function with which you can format Ant files based
on your preferences.

� The Ant editor offers annotation support.

� Rational Application Developer provides the ability to add new Ant tasks and
types that will be available for build files.

� The Ant editor offers a Problems view to highlight syntax errors in the Ant
files.

In this section, we highlight the following Ant-related features in Rational
Application Developer:

� Content assist
� Code snippets
� Formatting an Ant script
� Defining the format of an Ant script
� Problems view

24.2.1 Preparing for the sample

To demonstrate the concepts of Ant, we provide a simple Java application named
HelloAnt, which prints a message to the console. We use a simple Java project
(RAD8Ant) and class (HelloAnt) for this example.

To create a new Java project, follow these steps:

1. In the workbench, select File New Project.

2. In the New Project window, select Java Java Project and click Next.

3. When prompted, in the Project name field, enter RAD8Ant and click Finish.

4. If the current perspective is not the Java perspective when you create the
project, click Yes when Rational Application Developer prompts you to switch
to the Java perspective.
1282 Rational Application Developer for WebSphere Software V8 Programming Guide

To import the HelloAnt class into the RAD8Ant Java project, follow these steps:

1. Right-click the RAD8Ant project and select New Package.

2. In the New Package window, for Name, type itso.rad8.ant.hello and click
Finish.

3. Right-click itso.rad8.ant.hello and select Import.

4. In the Import window, select General File System and click Next.

5. In the Import: File system window (Figure 24-1), for the From directory, click
Browse and select c:\7835code\ant\. Select HelloAnt.java and click Finish.

Figure 24-1 Importing a Java class

24.2.2 Creating a build file

To create the simple build file, follow these steps:

1. Right-click the RAD8Ant project and select New File.

2. In the New File window (Figure 24-2 on page 1284), for the File name, type
build.xml and click Finish.
 Chapter 24. Building applications with Apache Ant 1283

Figure 24-2 Creating the build.xml file

3. Double-click the build.xml file to open it in the Ant editor. Copy and paste the
text from c:\7835code\ant\build.txt to the build.xml file.

We now take you through the various sections of this file and explain each
section.

24.2.3 Project definition

The <project> tag in the build.xml file defines the project name and the default
target. The project name is an arbitrary name; it is not related to any project
name in your Rational Application Developer workspace.

<project name="HelloAnt" default="dist" basedir=".">

The project tag also sets the working directory for the Ant script. All references to
directories throughout the script file are based on this directory. A dot (.) means
to use the current directory, which, in Rational Application Developer, is the
directory where the build.xml file resides.

Linking to external files: Rational Application Developer can link to
external files on the file system. When you click Advanced in the New File
window, you can specify the location on the file system to which the new
file is linked.
1284 Rational Application Developer for WebSphere Software V8 Programming Guide

24.2.4 Global properties

Properties that will be referenced throughout the whole script file can be placed
at the beginning of the Ant script. Here, we define the build.compiler property
that specifies the compiler for the javac command to use. We define it to use the
Eclipse compiler.

We also define the names for the source directory, the build directory, and the
distribute directory. The source directory is where the Java source files reside.
The build directory is where the class files end up, and the distribute directory is
where the resulting JAR file is placed:

� We define the source property as ".", which means that it is the same
directory as the base directory that is specified in the project definition.

� The build and distribute directories will be created as the c:\temp\build and
c:\temp\RAD8Ant directories.

Properties can be set as shown in the following example, but Ant can also read
properties from standard Java properties files or use parameters that are passed
as arguments on the command line:

<!-- set global properties for this build -->
<property name="build.compiler"

value="org.eclipse.jdt.core.JDTCompilerAdapter"/>
<property name="source" value="."/>
<property name="build" value="c:\temp\build"/>
<property name="distribute" value="c:\temp\RAD8Ant"/>
<property name="outFile" value="helloant"/>

24.2.5 Building targets

The build file contains four build targets:

� init
� compile
� dist
� clean

Initialization target (init)
As shown in the following example, the first target that we describe is the init
target. All other targets (except clean) in the build file depend on this target. In
the init target, we execute the tstamp task to set up properties that include time
stamp information. These properties are then available throughout the whole
build. We also create a build directory that is defined by the build property.
 Chapter 24. Building applications with Apache Ant 1285

<target name="init">
<!-- Create the time stamp -->
<tstamp/>
<!-- Create the build directory structure used by compile -->
<mkdir dir="${build}"/>

</target>

Compilation target (compile)
The compile target compiles the Java source files in the source directory and
places the resulting class files in the build directory:

<target name="compile" depends="init">
<!-- Compile the java code from ${source} into ${build} -->
<javac srcdir="${source}" destdir="${build}"/>

</target>

With this definition, if the compiled code in the build directory is up-to-date (each
class file has a time stamp that is later than the corresponding Java file in the
source directory), the source is not recompiled.

Distribution target (dist)
The dist target creates a JAR file that contains the compiled class files from the
build directory and places it in the lib directory under the dist directory.
Because the distribution target depends on the compile target, the compile target
must have executed successfully before the distribution target is run.

<target name="dist" depends="compile">
<!-- Create the distribution directory -->
<mkdir dir="${distribute}/lib"/>

<!-- Put everything in ${build} into the output JAR file -->
<!-- We add a time stamp to the filename as well -->
<jar jarfile="${distribute}/lib/${outFile}-${DSTAMP}.jar"

basedir="${build}">
<manifest>

<attribute name="Main-Class"
value="itso.rad8.ant.hello.HelloAnt"/>

</manifest>
</jar>

</target>

Cleanup target (clean)
The last of our standard targets is the clean target, which is shown in the
following example. This target removes the build and distribute directories, which
means that a full recompile is always performed if this target has been executed.
1286 Rational Application Developer for WebSphere Software V8 Programming Guide

<target name="clean">
<!-- Delete the ${build} and ${distribute} directory trees -->
<delete dir="${build}"/>
<delete dir="${distribute}"/>

</target>

The build.xml file does not call for this target to be executed. It has to be
explicitly specified when running Ant.

24.2.6 Content assist

To access the content assist feature in the Ant editor, follow these steps:

1. Open the build.xml file in an editor (if it is not already open).
2. Place the cursor in the file, enter <pro and then press Ctrl+Spacebar.

The content assist window (Figure 24-3) opens, in which you can use the up and
down arrow keys to select the tag that you want.

Figure 24-3 Content assist in the Ant editor
 Chapter 24. Building applications with Apache Ant 1287

24.2.7 Code snippets

Rational Application Developer provides the ability to create code snippets that
contain commonly used code to be inserted into files so that you do not have to
type the code each time.

Creating code snippets
To create code snippets, follow these steps:

1. Open the Snippets view:

a. Select Window Show View Other.

b. In the Show View window, expand the General folder, select the Snippets
view and click OK.

2. Right-click the Snippets view and select Customize (Figure 24-4).

Figure 24-4 Customizing snippets

3. In the Customize Palette window, complete these steps:

a. Select New New Category.

b. In the New Customize Palette window (Figure 24-5 on page 1289), follow
these steps:

i. For the Name, enter Ant.

ii. For the Description, enter Ant Snippets.

iii. For the Show/Hide Drawer, select Custom.

iv. Under Custom, click Browse. For Content Type Selection, select Ant
Buildfile and click OK. You return to the Customize Palette window.
1288 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 24-5 New Customize Palette window

c. Select New New Item.

d. In the Unnamed Template window, enter the following items:

i. For the Name, enter Comment Tag.
ii. In the variables section, click New.
iii. For the Variable Name, enter comment.
iv. For the Template Pattern, enter <!-- ${comment} -->.

e. In the Customize Palette window, click OK.

The Ant category with the Comment Tag entry is added to the Snippets view.

Using code snippets
After you create a code snippet, you can use it in any Ant build file. To use a code
snippet, follow these steps:

1. Open the build.xml file.

2. Add an empty line under the <project> tag, place the cursor there, and
double-click the Comment Tag in the Snippets view.
 Chapter 24. Building applications with Apache Ant 1289

3. In the Insert Template: Comment Tag window (Figure 24-6), in the Variables
table, for the value of the comment variable, type This is a comment. Click
Insert.

Figure 24-6 Insert Template: Comment Tag window

The comment line is inserted:

<project name="HelloAnt" default="dist" basedir=".">
<!-- This is a comment -->
<!-- set global properties for this build -->

4. Save the file.

24.2.8 Formatting an Ant script

Rational Application Developer offers the ability to format Ant scripts in the Ant
editor. To format the Ant script, follow these steps:

1. Open the build.xml file.
2. Right-click the editor and select Format, or press Ctrl+Shift+F.

24.2.9 Defining the format of an Ant script

To define the format of an Ant script, follow these steps:

1. Select Window Preferences.

2. In the Preferences window, select and expand Ant.
1290 Rational Application Developer for WebSphere Software V8 Programming Guide

In the Ant Preferences window (Figure 24-7), you can specify the console
colors.

Figure 24-7 Ant preferences

3. Expand the Ant folder and select Editor.

– Select the Appearance tab to change the layout preferences of your Ant
file.

– Select the Syntax tab to change the syntax highlighting preferences with a
preview of the results. Then on the Problems tab, you can define how to
handle certain problems.
 Chapter 24. Building applications with Apache Ant 1291

– Select the Problems tab to change the severity levels for the build file
problems.

– Select the Folding tab to enable folding when opening a new editor, and
specify which region types to fold.

4. Expand Editor.

– In the Content Assist window, you can define the content assist
preferences.

– In the Formatter window, you can define the preferences for the formatting
tool for the Ant files.

– In the Templates window, you can create, edit, delete, import, and export
templates for Ant files.

5. Select Runtime.

In this window, you can define your preferences, such as class path, tasks,
types, and properties.

24.2.10 Problems view

Rational Application Developer shows the problems of the build file in the
Problems view (Figure 24-8).

Figure 24-8 Problems view displaying Ant errors
1292 Rational Application Developer for WebSphere Software V8 Programming Guide

The editor marks an error by placing a red X to the left of the line with the
problem and a line marker in the file to the right of the window (Figure 24-9).

Figure 24-9 Problems marked in the Ant editor

24.3 New Ant features in Rational Application Developer

In this section, we describe the new features that have been added to Rational
Application Developer and that are supported by WebSphere Application Server
v8.0 Beta.

24.3.1 SCA Ant task

The scaArchiveExport task exports the Service Component Architecture (SCA)
archive file from SCA projects (Table 24-1 on page 1294). This task is similar to
accessing the option Export Service Component Architecture SCA
Archive File for an SCA project. This task was first introduced in Rational
Application Developer V7.5.5.
 Chapter 24. Building applications with Apache Ant 1293

Table 24-1 SCA task parameters

Example 24-1 shows a small sample showing the export of an SCA archive JAR
file.

Example 24-1 Exporting an SCA archive JAR

<scaArchiveExport overwrite="true"
archiveLocation="${basedir}/exportedSCAArchive.jar"
compressContents="true"
isComposites="true">
<fileset dir="${importLocation}" casesensitive="yes">
 <filename name="Hello_World/*.composite"/>
</fileset>
 </scaArchiveExport>

24.3.2 OSGi Ant tasks

You can use the following Ant tasks with OSGi application development tools:

� osgiApplicationExport

Use this task to export an OSGi application.

� osgiApplicationImport

Use this task to import an OSGi application.

� osgiBundleExport

Use this task to export an OSGi Bundle.

� osgiBundleImport

Use this task to import an OSGi Bundle.

� osgiCompositeBundleExport

Use this task to export an OSGi CompositeBundle.

Attribute Description Required

archiveLocation This attribute shows the absolute path of the SCA Archive
file to export.

Yes

overwrite Check to overwrite if the file exists. False (default)

compressContents Check to compress the contents of the archive file. False (default)

isComposites Check if the file is a composite. False (default)

fileset Specify the composite files to be included in the SCA
archive.

False (default)
1294 Rational Application Developer for WebSphere Software V8 Programming Guide

� osgiCompositeBundleImport

Use this task to import an OSGi CompositeBundle.

� osgiConvertProject

This task converts an existing project into an OSGi Bundle project.

Consult the following resources for further information about OSGi Ant tasks:

� To learn more about OSGi, see Chapter 15, “Developing Open Services
Gateway initiative (OSGi) applications” on page 837.

� For more information about the OSGI Ant task attributes, see this website:

http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=
/com.ibm.ant.tasks.doc/topics/ph-antsca.html

� For information about developing OSGI applications, see Getting Started with
the Feature Pack for OSGi Applications and JPA 2.0, SG24-7911.

24.3.3 Other new Ant tasks

The following Ant tasks were first introduced in Rational Application Developer
V7.5.5.1.

prepForDeploy task
This task is equivalent in functionality to the Prepare for Deployment currently
provided in the product user interface. Table 24-2 shows the attributes for the
prepForDeploy task.

Table 24-2 prepForDeploy task parameters

Example 24-2 shows an example of using this task to generate deployment code
for the MyWebProject project.

Example 24-2 Example showing the Ant task

<prepForDeploy projectName="MyWebProject" failOnError="false"/>

Attributes Description Required

projectName The name of the project for which deployment code
needs to be generated

Yes

failOnError Fails on error when set to true No
 Chapter 24. Building applications with Apache Ant 1295

http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/com.ibm.ant.tasks.doc/topics/ph-antsca.html

XML Catalog task
The xmlCatalog task provides equivalent functionality to selecting Window
Preferences XML XML Catalog. For information about the XML Catalog
functionality in the product, see this website:

http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/or
g.eclipse.wst.xmleditor.doc.user/topics/txmlcat.html

Example 24-3 creates a local reference to the URI
http://test.sample.org/dtds/my.dtd. The possible values for the keyType
attribute are 'public', 'system', and 'uri'. If desired, you can also specify an
alternative web address via the webURL attribute.

Example 24-3 XMLcatalog task1

<xmlCatalog keyType="public" uri="/path/to/my.dtd"
key="http://test.sample.org/dtds/my.dtd" />

Example 24-4 appends an existing XML catalog to the XML catalog.

Example 24-4 xmlcatalog task2

<xmlCatalog catalogLocation="/path/to/next_catalog.xml" />

24.4 Building a Java EE application

In this section, we demonstrate how to build a Java Platform, Enterprise Edition
(Java EE) application from existing Java EE-related projects.

This section is organized in the following manner:

� Java EE application deployment packaging
� Preparing for the sample
� Creating the build script
� Running the Ant Java EE application build
1296 Rational Application Developer for WebSphere Software V8 Programming Guide

http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/org.eclipse.wst.xmleditor.doc.user/topics/txmlcat.html

24.4.1 Java EE application deployment packaging

EAR, WAR, and EJB JAR files contain several deployment descriptors that
control how to deploy the artifacts of the application onto an application server.
These deployment descriptors are mostly XML files and are standardized within
the Java EE specification.

While working in Rational Application Developer, part of the information in the
deployment descriptor is stored in XML files. The deployment descriptor files also
contain information in a format that is convenient for interactive testing and
debugging. Therefore, it is quick and easy to test Java EE applications in the
integrated WebSphere Application Server with Rational Application Developer.

The actual EAR that is being tested, and its supporting WAR, EJB, and client
application JARs, is not created as a stand-alone file. Instead, a special EAR file
is used that points to the build contents of the various Java EE projects. Because
these individual projects can be anywhere on the development machine,
absolute path references are used.

When an enterprise application project is exported, a true stand-alone EAR file is
created, including all the module WAR, EJB JAR, Java Persistence API (JPA),
and Java utility JAR files that it contains. Therefore, during the export operation,
all absolute paths are changed into self-contained relative references within that
EAR, and the internally optimized deployment descriptor information is merged
and changed into a standard format. To create a Java EE-compliant WAR or
EAR, we must use the export function in Rational Application Developer.

24.4.2 Preparing for the sample

To demonstrate how to build a Java 2 Platform Enterprise Edition (J2EE)
application using Ant, we use the Java EE applications that were developed in
Chapter 12, “Developing Enterprise JavaBeans (EJB) applications” on page 577.

To import the RAD8EJB.zip file that contains the sample code into Rational
Application Developer, follow these steps:

1. Open the Java EE perspective.

2. Select File Import.

3. Expand the General folder, select Existing Projects into Workspace and
click Next.

4. In the Import Projects window, click Browse next to the compressed file,
navigate to the c:\7835code\ejb, and select the RAD8EJB.zip file. Click
Open.
 Chapter 24. Building applications with Apache Ant 1297

5. Click Select All to select all of the projects and then click Finish.

After importing, you have the following projects in your workspace:

� RAD8EJB
� RAD8EJBEAR
� RAD8EJBTestWeb
� RAD8JPA

24.4.3 Creating the build script

To build the RAD8EJBEAR enterprise application, we created an Ant build script
(build.xml) that uses the Java EE Ant tasks that are provided by Rational
Application Developer.

To add the Ant build script to the project, follow these steps:

1. In the Enterprise Explorer view, expand RAD8EJBEAR and select META-INF.

2. Select File New Other.

3. In the New File window, select General File and click Next.

4. In the File name field, type build.xml and click Finish.

5. Double-click the build.xml file to open it in the editor. Copy and paste the text
from the c:\7835code\ant\j2ee\build.txt file to the build.xml file.

6. Modify the value for the work.dir property to match your desired working
directory (for example, c:/temp/RAD8AntEE), as highlighted in Example 24-5.

Example 24-5 Java EE Ant build.xml script

<?xml version="1.0" encoding="UTF-8"?>
<project name="ITSO RAD Pro Guide Ant" default="Total" basedir=".">

<!-- Set global properties -->
<property name="work.dir" value="c:/temp/RAD8AntEE" />
<property name="dist" value="${work.dir}/dist" />
<property name="project.ear" value="RAD8EJBEAR" />
<property name="project.ejb" value="RAD8EJB" />
<property name="project.war" value="RAD8EJBTestWeb" />
<property name="type" value="incremental" />
<property name="debug" value="true" />
<property name="source" value="true" />
<property name="meta" value="false" />
<property name="noValidate" value="false" />
1298 Rational Application Developer for WebSphere Software V8 Programming Guide

The build.xml script includes the following Ant targets, which correspond to
common Java EE application builds:

deployEjb Generates the deploy code for all EJB in the project

buildEjb Builds the EJB project (compiles resources within the
project)

buildWar Builds the web project (compiles resources within the
project)

buildEar Builds the Enterprise Application project (compiles
resources within the project)

exportEjb Exports the EJB project to a JAR file

exportWar Exports the web project to a WAR file

exportEar Exports the Enterprise Application project to an EAR file

buildAll Invokes the buildEjb, buildWar, and buildEar targets

exportAll Invokes the exportEjb, exportWar, and exportEar targets
to create the RAD8EJBEAR.ear file that is used for
deployment

The following targets are additional:

init Initializes and creates a directory
info Prints the properties
Total Invokes buildAll and exportAll
clean Deletes the output files

EJB specification level
If you have enterprise beans at the 1.1, 2.0, or 2.1 specification-level, you have to
generate deployment code for the enterprise beans. The ejbDeploy command
that is run under the deployEjb target generates deployment code for these
artifacts.

When you install WebSphere Application Server V6.1 with Feature Pack for EJB
3.0 or WebSphere Application Server V7.0, you can use the EJB 3.0
specification at run time. For the EJB 3.0 specification level, you no longer have
to generate the EJB deployment code. The ejbdeploy command does not
generate deployment code for artifacts at the Java EE 5 specification level.

The following list describes the general behavior of the ejbdeploy command
when issued with the presence of Java EE 5 artifacts:

� It tolerates EAR 5.0 files and EJB 3.0 JAR files.

� It tolerates EAR files with J2EE 1.4 deployment descriptors that contain EJB
3.0 JAR files. Deployment code is generated only for EJB at the 1.1, 2.0, or
 Chapter 24. Building applications with Apache Ant 1299

2.1 specification level. However, deployment code is not generated for EJB
beans at the 3.0 specification level.

� If the -complianceLevel option for the ejbdeploy command is not specified,
the default -complianceLevel "5.0" setting is for the Java Developer Kit (JDK)
5.0 in these cases:

– An EAR or JAR file that contains Java EE 5 or EJB 3.0 deployment
descriptor files

– An EAR file without any deployment descriptor files

� For all other cases, the -complianceLevel "1.4" setting defaults to Java
Developer Kit 1.4.

� For JDK 1.6, the -complianceLevel "1.6" settings are applicable.

If you are generating deployment code for J2EE 1.4 EAR or JAR files that contain
source code files that use the new language features in Java Developer Kit 5.0,
you must specify the -complianceLevel "5.0" parameter when running the
ejbdeploy command.

In the global properties for this build script, we define several useful variables,
such as the project names and the target directory. We also define many
properties that we pass on to the Rational Application Developer Ant tasks. With
these properties, we can control whether we want the build process to perform a
full or incremental build, whether to include debug statements in the generated
class files, and whether to include the metadata information for Rational
Application Developer when exporting the project.

When starting this Ant script, we can also override these properties by specifying
other values in the arguments field, so that we can perform separate builds with
the same script.

24.4.4 Running the Ant Java EE application build

When starting the build.xml script, you can select which targets to run and the
execution order.

To run the Ant build.xml to build the Java EE application, follow these steps:

1. Right-click build.xml (in RAD8EJBEAR/META-INF) and select Run As Ant
Build.
1300 Rational Application Developer for WebSphere Software V8 Programming Guide

2. In the Edit configuration and launch window, complete these steps:

a. Select the Main tab:

• To build the Java EE EAR file with debug, source files, and metadata,
enter the following values in the Arguments text area:

-DDebug=true -Dsource=true -Dmeta=true

• To build the Java EE EAR for production deployment (without debug
support, source code, and metadata), enter the following value in the
Arguments text area:

-Dtype=full

b. Select the Targets tab. Ensure that Total is selected (default).

c. Select the JRE tab. Select Run in the same JRE as the workspace.

d. Click Apply and then click Run.

3. Verify in the c:\temp\RAD8AntEE\dist output directory that the
RAD8EJBEAR.ear, RAD8EJB.jar, and RAD8EJBTestWeb.war files were created.

The Console view shows the operations that were performed and their results.

24.5 Running Ant outside of Rational Application
Developer

To automate the build process even further, you might want to run Ant outside of
Rational Application Developer by running Ant in headless mode.

24.5.1 Preparing for the headless build

Rational Application Developer includes a runAnt.bat file, which you can use to
invoke Ant in headless mode, and passes the parameters that you specify. You
must customize this option for your environment.

The runAnt.bat file that is included with Rational Application Developer is in the
<rad_home>\bin directory.

To create a headless Ant build script for a Java EE project, follow these steps:

1. Copy the runAnt.bat file to a new file called itsoRunAnt.bat.

2. Modify the WORKSPACE value in the itsoRunAnt.bat so that it points to your
current workspace (Example 24-6 on page 1302):

set WORKSPACE=C:\workspaces\Test\ANT
 Chapter 24. Building applications with Apache Ant 1301

Example 24-6 Snippet of the itsoRunAnt.bat (modified runAnt.bat)

......
set JAVAEXE="E:\Program Files\IBM\SDP\jdk\jre\bin\java.exe"
......
set INSTALL_DIRECTORY="E:\Program Files\IBM\SDP"
......
set LAUNCHER_JAR="E:\Program
Files\IBM\SDPShared\plugins\org.eclipse.equinox.launcher_1.1.0.v2010
0507.jar"
REM ###
REM ##### you must edit the "WORKSPACE" setting below #####
REM ###
REM *********** The location of your workspace ************
set WORKSPACE=C:\workspaces\Test\ANT

:workspace
if not $%WORKSPACE%$==$$ goto check
......

24.5.2 Running the headless Ant build script

To run the itsoRunAnt.bat command file, follow these steps:

1. Ensure that you have closed Rational Application Developer.
2. Open a Microsoft Windows command prompt.
3. Navigate to the location of the itsoRunAnt.bat file.
4. Run the command file by entering the following command:

itsoRunAnt -buildfile
c:\workspaces\Test\ANT\EJBEAR\META-INF\build.xml clean Total
-DDebug=true -Dsource=true -Dmeta=true

The -buildfile parameter specifies the fully qualified path of the build.xml
script file. We can pass the targets to run as parameters to itsoRunAnt, and
we can pass Java environment variables by using the -D switch.

In this example, we run the clean and Total targets. We include the debug,
Java source, and metadata files in the resulting EAR file.

Important: Prior to running Ant in headless mode, you must close Rational
Application Developer. If you do not close Rational Application Developer, you
receive build errors when you attempt to run an Ant build in headless mode.
1302 Rational Application Developer for WebSphere Software V8 Programming Guide

The following build output files are produced and are in the
c:\temp\RAD8AntEE\dist directory:

� RAD8EJB.jar
� RAD8EJBEAR.ear
� RAD8EJBTestWeb.war

24.6 Using the Rational Application Developer Build
Utility

Rational Application Developer V7.5 introduced a new feature, called build
utility, that can be installed stand-alone on a build server running on Windows,
Linux, or z/OS. The build utility has a smaller footprint than Rational Application
Developer, because it does not contain any user interface code. The inputs to the
build utility are the projects that are developed in Rational Application Developer,
and the outputs are JAR, WAR, and EAR files.

24.6.1 Overview of the build utility

In the following example, we assume that the build utility was installed on
Microsoft Windows in the C:\IBM\BuildUtility folder.

The build utility includes a runAnt.bat file that can be used to invoke Ant in
headless mode in the same way that Rational Application Developer invokes Ant
in headless mode. The runAnt.bat file is in the
C:\IBM\BuildUtility\eclipse\bin directory.

When you invoke a build on a build server, typically you use Ant to create a
workspace that contains the projects before you build them. In the following

Notes: We include itsoRunAnt.bat and output.txt files in the
c:\7835code\ant\j2ee directory. The output.txt file contains the output
from the headless Ant script for review purposes.

Verify that the installation directory (see Example 24-6 on page 1302, the
installation directory is bold) points to the correct directory on your system.

More information: For information about installing the build utility, see
“Installing Rational Application Developer Build Utility” on page 1840. The
Rational Application Developer Build Utility offers support for IBM Installation
Manager on the Microsoft Windows and Linux platforms.
 Chapter 24. Building applications with Apache Ant 1303

example, we modify the Ant build script so that first it imports the projects into a
new workspace and then it builds them.

24.6.2 Example of using the build utility

We use the RAD8EJBWebEAR enterprise application for the build utility example.
This application is similar to the RAD8EJBEAR application that we used for the Ant
headless build.

Extract the C:\7835codesolution\ejb\RAD8EJBWeb.zip file into a C:\sources
directory on the source server.

Creating the build file (BUbuild.xml)
To create the build file, we copy the build file from the headless Ant example and
modify it for the RAD8EJBWebEAR enterprise application:

1. Copy the RAD8EJBEAR\META-INF\build.xml file to the C:\sources\BUbuild.xml
file.

2. Modify the BUBuild.xml file, as highlighted in Example 24-7. We made the
following changes to the original build.xml file:

– The project names differ.
– The projects are imported into the workspace before the build.
– A full build was done instead of an incremental build.

Example 24-7 BUbuild.xml for the build utility

<?xml version="1.0" encoding="UTF-8"?>
<project name="ITSO RAD Pro Guide Ant Build Utility" default="Total"

basedir=".">

<!-- Set global properties -->
<property name="work.dir" value="c:/temp/RAD8BU" />
<property name="dist" value="${work.dir}/dist" />
<property name="project.ear" value="RAD8EJBWebEAR" />
<property name="project.ejb" value="RAD8EJB" />
<property name="project.war" value="RAD8EJBWeb" />
<property name="project.jpa" value="RAD8JPA" />
<property name="type" value="full" />
<property name="debug" value="true" />
<property name="source" value="true" />
<property name="meta" value="false" />
<property name="noValidate" value="false" />

<target name="init">...

<target name="info">
1304 Rational Application Developer for WebSphere Software V8 Programming Guide

<!-- Displays the properties for this run -->
<echo message="debug=${debug}" />
<echo message="type=${type}" />
<echo message="source=${source}" />
<echo message="meta=${meta}" />
<echo message="noValidate=${noValidate}" />
<echo message="Output directory=${dist}" />
<echo message="project.ear=${project.ear}" />
<echo message="project.ejb=${project.ejb}" />
<echo message="project.war=${project.war}" />
<echo message="project.jpa=${project.jpa}" />

</target>

<target name="importJPA">
<projectImport projectname="${project.jpa}" />
<eclipse.refreshLocal resource="${project.jpa}" />

</target>
<target name="importEJB">

<projectImport projectname="${project.ejb}" />
<eclipse.refreshLocal resource="${project.ejb}" />

</target>
<target name="importWAR">

<projectImport projectname="${project.war}" />
<eclipse.refreshLocal resource="${project.war}" />

</target>
<target name="importEAR">

<projectImport projectname="${project.ear}" />
<eclipse.refreshLocal resource="${project.ear}" />

</target>
<target name="importAll"

depends="importJPA,importEJB,importWAR,importEAR">
<!-- Import all projects and exports all files -->
<echo message="Import All projects" />

</target>

<target name="deployEjb">...
<target name="buildEjb" depends="deployEjb">...
<target name="buildJPA">

<!-- Builds the JPA project -->
<projectBuild ProjectName="${project.jpa}" BuildType="${type}"

DebugCompilation="${debug}" />
</target>
<target name="buildWar">...
<target name="buildEar">...
<target name="exportEjb" depends="init">...
<target name="exportWar" depends="init">...
<target name="exportEar" depends="init">...
<target name="buildAll"

depends="buildJPA,buildEjb,buildWar,buildEar">
 Chapter 24. Building applications with Apache Ant 1305

<!-- Builds all projects -->
<echo message="Built all projects" />

</target>

<target name="exportAll" depends="exportEjb,exportWar,exportEar">...
<target name="Total" depends="importAll,buildAll,exportAll">...
<target name="clean">...

</project>

The projects are imported into the Eclipse workspace from the workspace
directory, using targets, such as the following example:

<target name="importEJB">
<projectImport projectname="${project.ejb}"/>
<eclipse.refreshLocal resource="${project.ejb}" />

</target>

Because we do not specify the projectLocation attribute for the projectImport
task, it is assumed that the projects to import are in the workspace directory. The
projectImport task does not make a physical copy of the projects. It only imports
a reference to the projects.

Creating the command file for execution
To run the build utility, create a batch command file:

1. Create a command file as C:\sources\itsoBUBuild.bat with the content that
is shown in Example 24-8.

Example 24-8 Contents of the ITSOBUBuild.bat file

@echo on
setlocal
set WORKSPACE=C:\sources

C:\IBM\BuildUtility\eclipse\bin\runant.bat
-buildfile C:\sources\BUbuild.xml clean Total

2. Execute the build using the following commands:

cd C:\sources
itsoBUbuild.bat >BUoutput.txt

3. Review the BUoutput.txt file. You see the following lines toward the end:

[ejbExport] EJBExport completed to c:/temp/RAD8BU/dist/RAD8EJB.jar
[warExport] WARExport completed to
c:/temp/RAD8BU/dist/RAD8EJBWeb.war
1306 Rational Application Developer for WebSphere Software V8 Programming Guide

[earExport] EARExport completed to
c:/temp/RAD8BU/dist/RAD8EJBWebEAR.ear

4. Verify the files that are created in the c:/temp/RAD8BU/dist folder.

24.7 More information about Ant

For more information about Ant, see the following resources:

� Apache Ant home page

http://ant.apache.org/

� Automatically generate project builds using Ant white paper

http://www.ibm.com/developerworks/library/ar-auototask/

Files: We included the BUbuild.xml, itsoBUBuild.bat, and BUoutput.txt
files in the C:\7835code\ant\buildutility folder.
 Chapter 24. Building applications with Apache Ant 1307

http://www.ibm.com/developerworks/library/ar-auototask/
http://ant.apache.org/
http://ant.apache.org/

1308 Rational Application Developer for WebSphere Software V8 Programming Guide

Chapter 25. Deploying enterprise
applications

The meaning of the term deployment differs depending on the context. In this
chapter, we define the concepts of application deployment. Then we provide a
working example for packaging and deploying the ITSO Bank enterprise
application to a stand-alone IBM WebSphere Application Server v8.0 Beta.

The application deployment concepts and procedures that we describe apply to
WebSphere Application Server V8.0 Base, Express, and Network Deployment
editions. In IBM Rational Application Developer, the configuration of the
integrated WebSphere Application Server v8.0 Beta for deployment, testing, and
administration is the same as for a separately installed WebSphere Application
Server v8.0 Beta. The base server is the same across all the WebSphere
Application Server Base, Express, and Network Deployment editions.

The chapter is organized into the following sections:

� Introduction to application deployment
� Preparing for the EJB application deployment
� Packaging the application for deployment
� Manual deployment of enterprise applications
� Automated deployment using Jython-based wsadmin scripting
� More information

The sample code for this chapter is in the 7835code\jython folder.

25
© Copyright IBM Corp. 2011. All rights reserved. 1309

25.1 Introduction to application deployment

Deployment is a critical part of the Java Platform, Enterprise Edition (Java EE)
application development cycle. Having a solid understanding of the deployment
components, architecture, and process is essential for the successful
deployment of the application.

In this section, we review the following concepts of the Java EE and WebSphere
deployment architecture:

� Common deployment considerations
� Java EE application components and deployment modules
� Preparing for the EJB application deployment
� WebSphere deployment architecture
� Java and WebSphere class loader

25.1.1 Common deployment considerations

The following factors most often affect the deployment of a Java EE application:

� Deployment architecture: How can you create, assemble, and deploy an
application properly if you do not understand the deployment architecture?

� Infrastructure: What are the hardware and software constraints for the
application?

� Security: What security will be imposed on the application and what is the
current security architecture?

� Application requirements: Do the application requirements imply a distributed
architecture?

� Performance: How many users are using the system (frequency, duration,
and concurrency)?

More information: You can find further information about the IBM WebSphere
Application Server deployment in the following sources:

� WebSphere Application Server V6.1: Planning and Design, SG24-7305

� WebSphere Application Server V6.1: Systems Management and
Configuration, SG24-7304

� WebSphere Application Server V6: Scalability and Performance,
SG24-6392

� IBM WebSphere Application Server V8 Beta Information Center:

http://publib.boulder.ibm.com/infocenter/wasinfo/beta/index.jsp
1310 Rational Application Developer for WebSphere Software V8 Programming Guide

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp

25.1.2 Java EE application components and deployment modules

Within the Java EE application development life cycle, the application
components are created, assembled, and deployed. In this section, we explore
the application component types, deployment modules, and packaging formats to
gain a better understanding of what is being packaged (assembled) for
deployment.

Application component types
In Java EE 5 or later, the following application component types are supported by
the runtime environment:

� Application clients: Run in the Application client container

� Applets: Run in a browser (or a stand-alone applet container)

� Web applications (servlets, JavaServer Pages (JSP), and HTML pages): Run
in the Web container

� EJB: Run in the EJB container

Deployment modules
The Java EE deployment components are packaged for deployment as modules:

� Web module
� EJB module
� Resource adapter module
� Application client module

Packaging formats
Each module is packaged on a specific JAR file format:

� Web modules in web archive (WAR) files
� EJB and application client modules in JAR files
� Resource adapter modules in resource adapter archive (RAR) files

You can use enterprise archive (EAR) files to package EJB modules, resource
adapter modules, application client modules, and web modules.

25.1.3 Deployment descriptors

In Java 2 Platform, Enterprise Edition (J2EE) 1.4 and earlier, information
describing a J2EE application and how to deploy it into a J2EE container was
stored in XML files called deployment descriptors. An EAR file normally
contained multiple deployment descriptors, depending on the modules it
 Chapter 25. Deploying enterprise applications 1311

contains. Figure 25-1 shows a schematic overview of a J2EE EAR file. The
various deployment descriptors are designated with DD after their name.

Figure 25-1 J2EE EAR file structure

The deployment descriptor of the EAR file is stored in the META-INF directory in
the root of the enterprise application and is called application.xml. This file
contains information about the modules that make up the application.

The following deployment descriptors describe the modules as indicated and are
in the folders that are listed:

� The web.xml file for web modules is stored in the WEB-INF folder.
� The ejb-jar.xml file for EJB modules is stored in the META-INF folder.
� The ra.xml file for resource adapter modules is stored in the META-INF folder.
� The application-client.xml file for application client modules is stored in

the META-INF folder.

These files describe the contents of a module and allow the Java EE container to
configure servlet mappings, Java Naming and Directory Interface (JNDI) names,
and so forth.

Class path information specifies which other modules and utility JARs are
needed for a particular module to run. This information is stored in the

Web
DD

EJB
Module
JAR file

EJB
Module
JAR file

Web
Module

WAR file

Web
Module

WAR file

Client
Module
JAR file

Client
Module
JAR file

J2EE
Application

EAR file

Installed
RARs

Installed
RARs

IBM Bind

Schema
Map

Schema
Attributes

Table
Creation

was.policy
(Java2 Sec)

IBM
Bind/Ext

HTML,
GIFs,
etc.

HTML,
GIFs,
etc.

Servlet
JSP

Servlet
JSP

Application
DD

Web
Services

DD

Client
Classes
Client

Classes

EJBsEJBs

IBM
Bind/Ext

IBM
Bind/Ext

EJB
DD

WS IBM
Bind/Ext

Web
Services

DD

Client
DD

WS Client
IBM Bind/Ext

WSDL <-> Java
Mapping Files

WSDL <-> Java
Mapping Files

WS Client IBM
Bind/Ext

WS IBM
Bind/Ext

WS Client IBM
Bind/Ext

WSDL <-> Java
Mapping Files
1312 Rational Application Developer for WebSphere Software V8 Programming Guide

manifest.mf file, which is also in the META-INF (or WEB-INF) directory of the
modules.

Deployment descriptors in Java EE 6
With Java EE 6, deployment descriptors become optional. An enterprise
application can be deployed by using annotations to replace the information that
was previously contained in deployment descriptors.

To generate the standard deployment descriptor for a Java EE module, either
select Generate deployment descriptor in the Create Project window, or
right-click an existing project and select Java EE Generate Deployment
Descriptor Stub.

Regardless of whether you use standard Java EE deployment descriptors,
Rational Application Developer can also generate additional WebSphere-specific
information used when deploying applications to WebSphere Application
Servers. This supplemental information is stored in XMI files, also in the
META-INF (or WEB-INF) directory of the respective modules. Examples of
information in the IBM-specific files are IBM extensions, such as servlet reloading
and EJB access intents. To use these extension files, you must first generate
them.

To generate IBM extension files, right-click the project to which you want to add
the WebSphere-specific deployment descriptor. Then select Java EE
Generate WebSphere XXX Deployment Descriptor, depending on the
descriptor that you want to generate. The following deployment descriptors are
available:

� Bindings, which create ibm-web-bnd.xml, ibm-ejb-jar-bnd.xml, or similar
files

� Extensions, which create ibm-web-ext.xml, ibm-ejb-jar-ext.xml, or similar
files

� Programming Model Extensions, which create ibm-web-ext-pme.xml,
ibm-ejb-jar-ext-pme.xml, or similar files

Deployment descriptor editors
Rational Application Developer has easy-to-use editors for working with the
deployment descriptors. The information that goes into the files is accessible
from one page in the integrated development environment (IDE), eliminating the
need to know which information to place into which file. However, if you are
interested, you can click the Source tab of the Deployment Descriptor editor to
see the text version of what is stored in that descriptor.
 Chapter 25. Deploying enterprise applications 1313

For example, if you open the EJB deployment descriptor, you have access to
settings that are stored across multiple deployment descriptors for the EJB
module, including the following files:

� EJB deployment descriptor: ejb-jar.xml
� Bindings file: ibm-ejb-jar-bnd.xml
� Extensions deployment descriptor: ibm-ejb-jar-ext.xml

You can modify the deployment descriptors in Rational Application Developer by
double-clicking the file to open the Deployment Descriptor Editor (Figure 25-2).

Figure 25-2 Deployment Descriptor editor for an EJB project

While the editor provides the ability to modify the content of the ejb-jar.xml, by
using the links under Actions, you can open the IBM bindings and extensions that
are stored in the WebSphere-specific deployment descriptor files (Figure 25-3 on
page 1315). The descriptor files are in the META-INF directory of the module that
you are editing. Click the Source tab to access and modify the XML source of the
deployment descriptor.
1314 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 25-3 Deployment descriptor editor for bindings

25.1.4 WebSphere deployment architecture

In this section, we provide an overview of the deployment architecture for IBM
WebSphere Application Server.

IBM Rational Application Developer includes support for WebSphere Application
Server V6, V6.1, V7, and V8 Beta. You use the WebSphere administrative
console to perform administrative functions for the server and applications. For
example, you can configure the following items:

� J2EE Connector architecture (J2C) authentication aliases
� Data sources
� Service buses
� Java Message Service (JMS) queues and connection factories

Because of the loose coupling between Rational Application Developer and
WebSphere Application Server, applications can deploy in the following ways:

� From a Rational Application Developer project to the integrated WebSphere
Application Server (not applicable for WebSphere Application Server V6.0)

� From a Rational Application Developer project to a separate WebSphere
Application Server runtime environment

� Through an EAR file to an integrated WebSphere Application Server (not
applicable for WebSphere Application Server V6.0)

� Through an EAR file to a separate WebSphere Application Server runtime
environment
 Chapter 25. Deploying enterprise applications 1315

In addition, WebSphere Application Server V8 Beta can obtain an EAR file from
external tools and load it into Rational Application Developer. You can publish the
application directly from Rational Application Developer to the application server
for testing and development purposes. Or, you can use Rational Application
Developer to optimize the EAR file, and a new EAR file is saved to deploy to the
application server.

The Rational Application Developer functions are included on a trial basis and
can be purchased easily through a downloadable license key.

IBM Rational Build Forge and IBM Rational Automation Framework for
WebSphere can be used for repeated builds of the application and for
deployment to the server run time as an automated task.

For details about how to configure the servers in IBM Rational Application
Developer V7, see Chapter 23, “Cloud environment and server configuration” on
page 1203.

WebSphere profiles
WebSphere Application Server V6.0 introduced the concept of WebSphere
profiles. WebSphere profiles have been split into two separate components:

� A set of shared product files, called runtime files
� A set of configuration files, known as WebSphere profiles, that are called

configurable files

A WebSphere profile includes WebSphere Application Server configuration,
applications, and properties files that constitute a new application server. Having
multiple profiles equates to having multiple WebSphere Application Server
instances for use with several applications.

In Rational Application Developer, a developer can configure multiple application
servers (WebSphere profiles) for various applications with which the developer
might be working. These WebSphere profiles can then be set up as test
environments in Rational Application Developer (see Chapter 23, “Cloud
environment and server configuration” on page 1203).

WebSphere enhanced EAR features
WebSphere Application Server v6 also introduced the enhanced EAR feature.
The enhanced EAR information, which includes settings for the resources that

For more information: For more information about Rational Automation
Framework for WebSphere, go to this website:

http://publib.boulder.ibm.com/infocenter/rafwhelp/v7r1/index.jsp
1316 Rational Application Developer for WebSphere Software V8 Programming Guide

http://publib.boulder.ibm.com/infocenter/rafwhelp/v7r1/index.jsp

are required by the application, is stored in an ibmconfig subdirectory of the
enterprise application (EAR file) META-INF directory.

The enhanced EAR feature provides an extension of the Java EE EAR with
additional configuration information for resources that are typically required by
Java EE applications. This information is optional, but it can simplify the
deployment of applications to WebSphere Application Server for selected
scenarios.

You can use the Enhanced EAR editor to edit several WebSphere Application
Server-specific configurations, such as Java Database Connectivity (JDBC)
providers, data sources, class loader policies, substitution variables, shared
libraries, virtual hosts, and authentication settings. You can change the
configuration settings within the editor and publishe them with the EAR at the
time of the deployment.

The advantage of the tool is that it makes the testing process simpler and
repeatable, because the configurations can be saved to files and then shared
within a team’s repository. The Enhanced EAR editor cannot configure all
runtime settings, but it is convenient to configure the most common settings.

The disadvantage of the tool is that the configurations are attached to the EAR
and are not available server-wide or system-wide. In the WebSphere
administrative console, you can navigate to the enhanced EAR deployment
information. (Select Applications Application Types WebSphere
enterprise applications, select the application, and click the Application
scoped resources link). However, you cannot modify the settings. You can only
edit settings that belong to the cluster, node, and server contexts.

When you change a configuration using the Enhanced EAR editor, these
changes are made within the application context. The deployer can still make
changes to the EAR file using the IBM Rational Application Developer Assembly
and Deploy Features for WebSphere 7.0, but it still requires a separate tool.
Furthermore, in most cases, these settings depend on the node in which the
application server is installed. Therefore, it might not make sense to configure
them at the application context for deployment to production.

Table 25-1 on page 1318 lists the supported resources that the Enhanced EAR
editor provides and the scope in which they are created.
 Chapter 25. Deploying enterprise applications 1317

Table 25-1 Supported enhanced EAR resources and their scope

To open the Enhanced EAR, right-click an enterprise application and select Java
EE Open WebSphere Application Server Deployment (Figure 25-4).

Figure 25-4 Enhanced EAR editor: Deployment Descriptor editor

Scope Resources

Application JDBC providers, data sources, substitution variables, and class
loader policies

Server Shared libraries

Cell Java Authentication and Authorization Service (JAAS)
authentication aliases and virtual hosts
1318 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 25-4 on page 1318 shows the JDBC provider (Derby JDBC Provider
(XA)) and a configured data source (ITSOBANKejb) with its resource properties
(databaseName). Select a JDBC provider to see the list of data sources. We
created this example of defining a data source by using the Enhanced EAR
editor was created in 23.8.1, “Creating a data source in the Enhanced EAR
editor” on page 1262.

Figure 25-5 shows the contents of the resources.xml file that is part of the
enhanced EAR information that is stored in the ibmconfig/cells/defaultCell/
applications/defaultApp/deployments/defaultApp directory. The ibmconfig
directory contains the familiar directories for a WebSphere cell configuration. The
XML editor of Rational Application Developer shows the configuration contents
for the Derby JDBC Provider (XA) and the data source.

Figure 25-5 Enhanced EAR: Contents of the resources.xml file
 Chapter 25. Deploying enterprise applications 1319

WebSphere Rapid Deployment
WebSphere Rapid Deployment is a collection of tools and technologies that was
introduced in IBM WebSphere Application Server V6.1 to make application
development and deployment easier than ever before.

WebSphere Rapid Deployment consists of the following elements:

� Rapid deployment tools
� Fine-grained application updates

25.1.5 Java and WebSphere class loader

Class loaders are responsible for loading classes, which can be used by an
application. Understanding how Java and WebSphere class loaders work is an
important element of WebSphere Application Server configuration that is needed
for the application to work properly after deployment. Failure to set up the class
loaders properly often results in class loading exceptions, such as
ClassNotFoundException, when trying to start the application.

Java class loader
Java class loaders enable the Java virtual machine (JVM) to load classes. Given
the name of a class, the class loader locates the definition of this class. Each
Java class must be loaded by a class loader.

More information: For more information and an example of using the
WebSphere enhanced EAR, see the following sources:

� “Packaging applications” chapter in WebSphere Application Server V6.1:
Systems Management and Configuration, SG24-7304

� IBM WebSphere Application Server V7.0 Beta Information Center

http://publib.boulder.ibm.com/infocenter/wasinfo/beta/index.jsp

More information: For more information about WebSphere Rapid
Deployment, see the following sources:

� WebSphere Application Server V6.1: Planning and Design, SG24-7305

� WebSphere Application Server V6.1: Systems Management and
Configuration, SG24-7304

� IBM WebSphere Application Server Beta V8 Information Center

http://publib.boulder.ibm.com/infocenter/wasinfo/beta/index.jsp
1320 Rational Application Developer for WebSphere Software V8 Programming Guide

http://publib.boulder.ibm.com/infocenter/wasinfo/beta/index.jsp
http://publib.boulder.ibm.com/infocenter/wasinfo/beta/index.jsp

When the JVM is started, the following class loaders are used:

� Bootstrap class loader

The bootstrap class loader is responsible for loading the core Java libraries
(that is, core.jar and server.jar) in the <JAVA_HOME>/lib directory. This
class loader, which is part of the core JVM, is written in native code.

� Extensions class loader

The extensions class loader is responsible for loading the code in the
extensions directories (<JAVA_HOME>/lib/ext or any other directory that is
specified by the java.ext.dirs system property). This class loader is
implemented by the sun.misc.Launcher$ExtClassLoader class.

� System class loader

The system class loader is responsible for loading the code that is found on
java.class.path, which ultimately maps to the system CLASSPATH variable.
This class loader is implemented by the sun.misc.Launcher$AppClassLoader
class.

Delegation is a key concept to understand when dealing with class loaders. It
states that a custom class loader (a class loader other than the bootstrap,
extension, or system class loader) delegates class loading to its parent before
trying to load the class itself. The parent class loader can either be another
custom class loader or the bootstrap class loader. Another way to look at this
concept is that a class loaded by a specific class loader can only reference
classes that this class loader or its parents can load, but not its children.

The extensions class loader is the parent for the system class loader. The
bootstrap class loader is the parent for the extensions class loader. Figure 25-6
on page 1322 shows the class loader hierarchy.

Java libraries: Beginning with JDK 1.4, the core Java libraries in the IBM
Java developer kit are no longer packaged in rt.jar, which was previously
the case (and is still the case for the Sun JDKs), but instead split into
multiple JAR files.
 Chapter 25. Deploying enterprise applications 1321

Figure 25-6 Java class loader hierarchy

If the system class loader has to load a class, it first delegates to the extensions
class loader, which in turn delegates to the bootstrap class loader. If the parent
class loader cannot load the class, the child class loader tries to find the class in
its own repository. In this manner, a class loader is only responsible for loading
classes that its ancestors cannot load.

WebSphere class loader

WebSphere provides several custom delegated class loaders, as shown in
Figure 25-7 on page 1323. The top box represents the Java class loaders
(bootstrap, extensions, and system). WebSphere does not load much here, just
enough to get itself bootstrapped and initialize the WebSphere extensions class
loader.

JVM: When reading the following material about WebSphere class loaders,
remember that each JVM has its own setup of class loaders. Therefore, in a
WebSphere environment hosting multiple application servers (JVMs), such as
a Network Deployment configuration, the class loaders for the JVMs are
completely separated even if they are running on the same physical machine.

Extensions Classloader

System Classloader

Bootstrap Classloader
1322 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 25-7 WebSphere class loaders hierarchy

The WebSphere extensions class loader is where WebSphere itself is loaded. It
uses the following directories to load the required WebSphere classes:

<JAVA_HOME>\lib
<WAS_HOME>\classes (Runtime Class Patches directory (RCP))
<WAS_HOME>\lib (Runtime class path directory (RP))
<WAS_HOME>\lib\ext (Runtime Extensions directory (RE))
<WAS_HOME>\installedChannels

The WebSphere run time is loaded by the WebSphere extensions class loader
based on the ws.ext.dirs system property, which is initially derived from the
WS_EXT_DIRS environment variable set in the setupCmdLine.bat file. The following
example shows the default value of ws.ext.dirs:

SET WAS_EXT_DIRS=%JAVA_HOME%\lib;%WAS_HOME%\classes;%WAS_HOME%\lib;
%WAS_HOME%\installedChannels;%WAS_HOME%\lib\ext;%WAS_HOME%\web\help;
%ITP_LOC%\plugins\com.ibm.etools.ejbdeploy\runtime

The RCP directory is intended to be used for fixes and other authorized program
analysis reports (APARs) or problem reports that are applied to the application
server run time. These patches override any copies of the same files that are
lower in the RP and RE directories. The RP directory contains the core application
server runtime files. The bootstrap class loader first finds classes in the RCP

Java class loaders

WebSphere extensions class loader
(Runtime, Library JARs)

Application class loader
(EJBs, RARs, Utility JARs)

Application class loader
(EJBs, RARs, Utility JARs)

WAR
class loader

WAR
class loader

WAR
class loader

WAR
class loader
 Chapter 25. Deploying enterprise applications 1323

directory and then in the RP directory. The RE directory is used for extensions to
the core application server run time.

Each directory that is listed in the ws.ext.dirs environment variable is added to
the WebSphere extensions class loaders class path. In addition, every JAR file or
compressed file in the directory is added to the class path.

You can extend the list of directories and files loaded by the WebSphere
extensions class loaders by setting a ws.ext.dirs custom property to the JVM
settings of an application server.

Application and web module class loaders
Java EE applications consist of five primary elements:

� Web modules
� EJB modules
� Application client modules
� Resource adapters (RAR files)
� Utility JARs

Utility JARs contain code that is used by both EJB and servlets. Utility
frameworks, such as log4j, are a good example of a utility JAR.

EJB modules, utility JARs, resource adapters files, and shared libraries that are
associated with an application are always grouped together into the same class
loader. This class loader is called the application class loader. Depending on the
application class loader policy, this application class loader can be shared by
multiple applications (EAR) or be unique for each application (the default).

By default, web modules receive their own class loader (a WAR class loader) to
load the contents of the WEB-INF/classes and WEB-INF/lib directories. The
default behavior can be modified by changing the application’s WAR class loader
policy (the default is Module). If the WAR class loader policy is set to
Application, the web module contents are loaded by the application class
loader (in addition to the EJB, RARs, utility JARs, and shared libraries). The
application class loader is the parent of the WAR class loader.

The application and the web module class loaders are reloadable class loaders.
They monitor changes in the application code to automatically reload modified
classes. You can alter this behavior at deployment time.

Handling JNI code
Because of a JVM limitation, code that has to access native code through a Java
Native Interface (JNI) must not be placed on a reloadable class path, but on a
static class path. This requirement includes shared libraries for which you can
define a native class path, or the application server class path. Therefore, if you
1324 Rational Application Developer for WebSphere Software V8 Programming Guide

have a class loading native code through JNI, this class must not be placed in the
WAR or application class loaders, but rather on the WebSphere extensions class
loader.

It might make sense to break out the lines of code that actually load the native
library into a class of their own and place this class on a static class loader. This
way, you can have all the other code on a reloadable class loader.

25.2 Preparing for the EJB application deployment

In this section, we explain the required steps to prepare the environment for the
deployment sample. We use the ITSO Bank enterprise application that was
developed in Chapter 12, “Developing Enterprise JavaBeans (EJB) applications”
on page 577, to demonstrate the deployment process.

This section includes the following tasks:

� Reviewing the deployment scenarios
� Installing the prerequisite software
� Importing the sample application archive files
� Sample database

25.2.1 Reviewing the deployment scenarios

Now that the Rational Application Developer integration with the WebSphere
Application Server is managed the same as a stand-alone WebSphere
Application Server, the procedure to deploy the ITSO Bank sample application is
nearly identical to that of a stand-alone WebSphere Application Server.

Several configurations are possible in which our sample can be installed, but in
this chapter, we deploy the ITSO Bank application to a separate production IBM
WebSphere Application Server V7.0. This scenario uses two nodes: the
developer node and the application server node.

25.2.2 Installing the prerequisite software

The application deployment sample requires that you have the software that is
mentioned in this section installed. Within the example, you can choose between
DB2 Universal Database or Derby as your database server. We used Derby for
this chapter and our deployment exercises.

The sample for the working example environment consists of the following nodes
(see Table 25-2 on page 1326 for product mapping):
 Chapter 25. Deploying enterprise applications 1325

� Developer node

The developer node is used by the developer to import the sample code and
package the application in preparation for deployment.

� Application server node

The application server node is used as the target server where the enterprise
application will be deployed.

Table 25-2 Product mapping for deployment

Software Version

Developer node

Microsoft Windows Microsoft Windows XP + Service
Pack 2 + critical fixes and security
patches

IBM Rational Application Developer
Integrated IBM WebSphere Application
Server

V8
V8

Derby (installed by default) V10.2

Application server node

Microsoft Windows Microsoft Windows XP + Service
Pack 2 + critical fixes and security
patches

IBM WebSphere Application Server (Base
stand-alone)

V8

Derby (installed by default) V10.2

More information: For information about installing the required software for
the sample, see Appendix A, “Installing the products” on page 1783.

DB2 Universal Database or Derby tip: You can use DB2 or Derby as the
database server. Because Derby is installed by default as part of the
application server (integrated and stand-alone), we used Derby as the
database for this chapter and the deployment exercises.
1326 Rational Application Developer for WebSphere Software V8 Programming Guide

25.2.3 Importing the sample application archive files

In this section, we explain how to import the project archive files into Rational
Application Developer. The RAD8EJB.zip file contains the following projects for
the ITSO Bank enterprise application that was developed in Chapter 12,
“Developing Enterprise JavaBeans (EJB) applications” on page 577:

RAD8JPA This Java project contains the persistence Java
Persistence API (JPA) classes.

RAD8EJB The EJB project with session beans.

RAD8EJBTestWeb The web project is used to test the EJB beans.

RAD8EJBEAR The EAR project for the enterprise application; it includes
the previous modules.

A second project archive file, RAD8EJBWeb.zip, contains the web application that
uses the EJB:

RAD8EJBWeb A web project (JSP and servlets) for the front-end
application.

RAD8EJBWebEAR The EAR project for the web application. This EAR also
references the RAD8EJB and RAD8JPA projects.

To import the RAD8EJB.zip project interchange file, follow these steps:

1. In the Java EE (or web) perspective, Enterprise Explorer, select File
Import.

2. Select Import expand General, select Existing Projects into Workspace
from the list of import sources, and then click Next.

3. In the Import Projects window, click Browse for the compressed (.zip) file,
navigate to and select the RAD8EJB.zip file in the c:\7835code\jython
folder, and click Open.

4. Click Select All to select all of the projects and then click Finish.

5. Repeat this sequence for the RAD8EJBWeb.zip file and select the
RAD8EJBWeb and RAD8EJBWebEAR projects.

25.2.4 Sample database

The ITSO Bank application is based on the ITSOBANK database. See “Setting up
the ITSOBANK database” on page 1880 for instructions about how to create the
ITSOBANK database. You can use either the DB2 or Derby database. For
simplicity, we use the built-in Derby database in this chapter.
 Chapter 25. Deploying enterprise applications 1327

To make it even simpler, we included the Derby database as part of the file that
you downloaded for this chapter. The ITSOBANK folder under the
C:\7835code\database\derby folder constitutes the Derby database. Therefore,
the complete path or location of the database is
C:\7835code\database\derby\ITSOBANK.

You must configure this value for the databaseName resource property for the data
source that we define in the server (see 25.4.1, “Configuring the data source in
the application server” on page 1331). Therefore, if you configure this location in
the data source, you do not have to set up a sample Derby database, because it
has already been done for you. Make sure that you test the data source
connection.

25.3 Packaging the application for deployment

In this section, we explain how to prepare for packaging and how to export the
enterprise application from Rational Application Developer to an EAR file, which
is deployed on the application server. This section is mainly for users who want to
use Rational Application Developer to deploy their application to the production
server. For developers who are developing the applications, we recommend that
you publish the application directly from Rational Application Developer, which
provides much quicker publishing and debugging support in a development
environment. For further information and an example of publishing applications
directly from Rational Application Developer, see 23.7, “Adding and removing
applications to and from a server” on page 1256.

This section includes the following procedures:

� Removing the enhanced EAR data source
� Generating the deployment code
� Exporting the EAR files

25.3.1 Removing the enhanced EAR data source

The application deployment descriptor contains enhanced EAR information for
the JDBC provider and data source configuration. These settings are useful
when running the application within Rational Application Developer.

Because we are deploying the application to a remote application server system
and because the enhanced EAR data source configuration overrides the
administrative console configuration, you must remove the enhanced EAR data
source settings.
1328 Rational Application Developer for WebSphere Software V8 Programming Guide

To remove the enhanced EAR data source settings, follow these steps:

1. Right-click the RAD8EJBEAR project and select Java EE Open
WebSphere Application Server Deployment.

2. When the WebSphere Deployment editor opens, select Derby JDBC
Provider (XA) from the JDBC provider list and click Remove.

3. Save the deployment descriptor.

25.3.2 Generating the deployment code

Prior to Java EE 5, deployment code had to be generated to deploy the EJB to an
application server. Generating deployment code is not necessary for Java EE 5
applications. Therefore, if your EAR file contains only Java EE 5 applications, you
do not have to generate deployment code. However, if you have a mix of EJB 2.x
and EJB 3.0 in your EAR file, you must generate deployment code for the EJB
2.x projects.

To generate the deployment code, follow these steps:

1. Make sure that you have selected the correct back-end folder in the
deployment descriptor of the EJB 2.x projects, either Derby or DB2.
Deployment code is generated for the selected mapping (back-end folder).

2. Perform the required deployment for EJB 2.x. You can perform it in the
integrated development environment (IDE) now or when you install the
application on the server.

3. In the Enterprise Explorer, right-click the EAR project, select Java EE and
select Prepare for Deployment. For a Java EE 5 EAR project, deployment
code is only generated for the EJB 2.x modules that it contains.

You can also right-click the EJB 2.x projects, select Java EE, and select
Prepare for Deployment (the web modules do not require deployment).

25.3.3 Exporting the EAR files

We have two enterprise applications for the EJB sample in the workspace:
RAD8EJBEAR and RAD8EJBWebEAR. We have to export both of these enterprise
projects as EAR files.

To export the enterprise applications from Rational Application Developer to EAR
files, follow these steps:

1. In the Enterprise Explorer, right-click RAD8EJBEAR and select Export
EAR file.
 Chapter 25. Deploying enterprise applications 1329

2. In the EAR Export window (Figure 25-8), enter the destination path (for
example, C:\7835code\jython\RAD8EJBEAR.ear). Because we are deploying
the application to IBM WebSphere Application Server V7.0, select Optimize
for a specific server runtime and select WebSphere Application Server
v8.0 Beta. Click Finish.

Figure 25-8 Choices for exporting an EAR file

3. Repeat the export for the RAD8EJBWebEAR project.

25.4 Manual deployment of enterprise applications

Both enterprise applications have been packaged as an EAR file and can be
deployed to the application server. In this section, we explain how to configure
the target WebSphere Application Server and install the two enterprise
applications.

EAR files: You can either use the EAR files that we exported in the previous
section for deployment to the target application server, or you can use the
solution EAR files from the C:\7835code\jython directory of the sample code.
1330 Rational Application Developer for WebSphere Software V8 Programming Guide

25.4.1 Configuring the data source in the application server

You can create the data source for the application server in the following ways,
among others:

� Enhanced EAR

This method is the ideal option for deploying the application to the Integrated
Application Server in Rational Application Developer, but because we are
deploying to the stand-alone server, we are not using the Enhanced EAR
functionality.

� Scripting using the wsadmin command-line interface

For details, see the WebSphere Application Server v8.0 Beta Information
Center:

http://publib.boulder.ibm.com/infocenter/wasinfo/beta/index.jsp

We also describe this method in the second part of this chapter, which
explains the automated deployment using Jython-based wsadmin scripting.

� WebSphere administrative console

For our example, we create and configure the data source for the ITSO Bank
application using the administrative console of the target stand-alone
WebSphere Application Server V8 Beta.

Configuration of the data source within WebSphere Application Server for the
ITSO Bank application sample consists of the following high-level tasks:

� Starting the application server
� Starting the administrative console
� Configuring the JDBC provider
� Creating the data source

Starting the application server
Ensure that the application server where you want to deploy the applications is
started. You can use any WebSphere Application Server, stand-alone or
configured, as a profile in Rational Application Developer.

If the server is not running, start the server in one of the following ways:

� Use the Microsoft Windows start menu. For example, select Start
Programs IBM WebSphere Application Server v8.0 Profiles
AppSrv01 Start the server.

� If you followed the instructions in Chapter 23, “Cloud environment and server
configuration” on page 1203, and installed a second WebSphere profile, start
that server from the Servers view of Rational Application Developer.
 Chapter 25. Deploying enterprise applications 1331

http://publib.boulder.ibm.com/infocenter/wasinfo/beta/index.jsp

� Use the startServer server1 command in the bin folder where the server
profile is installed, for example:

C:\Program Files\IBM\WebSphere\AppServer\profiles\default\bin
<RAD_HOME>\runtimes\base_v8\profiles\was80profile1\bin

� If you configured the stand-alone application server as a Microsoft Windows
service, start the server by starting its service.

Starting the administrative console
We use the WebSphere administrative console to define the data source and
install the applications. When using a server from Rational Application
Developer, you can start the administrative console by right-clicking the server
and selecting Administration Run administrative console. However, to
simulate a real deployment environment, perform the server configuration in an
external browser:

1. To start the administrative console, open a web browser (Internet Explorer or
Firefox) and enter the following URL:

http://<hostname>:<port>/ibm/console

In the test environment, we enter the following URL:

http://localhost:9060/ibm/console

Here, we enter the URL with an alternate profile:

http://localhost:9062/ibm/console

2. For a stand-alone server, also select Start Programs IBM
WebSphere Application Server v8.0 Profiles default Start
administrative console.

3. Click Login (without security, so no user ID is required).

Figure 25-9 on page 1333 shows the Welcome page.

Tip: You can also use the WebSphere Application Server V8 Beta test
environment to go through the enterprise application installation windows.
However, make sure that the RAD8EJBEAR and RAD8EJBWebEAR applications
are removed from the server (right-click the server and select Add and
Remove Projects).

Verifying that the server has started: To verify that the server has
started properly, you can look for the message Server server1 open for
e-business in the SystemOut.log file in the
<was_profile_root>\logs\server1 directory.
1332 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 25-9 Welcome page of the administrative console
 Chapter 25. Deploying enterprise applications 1333

Creating the JDBC driver variable
If you are using Derby, verify that the WebSphere variable for the Derby JDBC
driver (DERBY_JDBC_DRIVER_PATH) is defined.

In the left navigation pane, expand Environment, and select WebSphere
Variables. In the right pane, verify that DERBY_JDBC_DRIVER_PATH is defined
(Figure 25-10).

Figure 25-10 WebSphere Variable: DERBY_JDBC_DRIVER _PATH

Configuring the JDBC provider
We now configure the JDBC provider for the selected database type. The
following procedure shows how to configure the JDBC provider for Derby:

1. Select Resources JDBC JDBC providers.

2. Select the server scope Node=<hostname>Node<xx>, Server=server1.

3. Click New.

4. In the Create new JDBC provider page (Figure 25-11 on page 1335), follow
these steps:

a. For the Database type, select Derby.
b. For the Provider type, select Derby JDBC Provider.
c. For the Implementation type, select XA data source.
d. Accept the default name of Derby JDBC Provider (XA).
e. Click Next.
1334 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 25-11 Create a JDBC provider

5. For Derby, Step 2: “Enter database class path information” is skipped (the
class path is set correctly). In the Step 3: “Summary” page, click Finish.

6. Click Save to the master configuration.

Creating the data source
Create the data source for the ITSOBANK database for the selected JDBC
provider:

1. Select Derby JDBC Provider (XA) for Derby or DB2 Universal JDBC Driver
Provider (XA) for DB2.

2. Under Additional Properties (right side), click Data sources.

3. In the Data source panel, click New.

4. Enter the basic configuration for the new data source (Figure 25-12 on
page 1336):

a. For the Data source name, enter a name. We enter RAD8DS for ITSOBANK.

b. For the JNDI name, enter the same JNDI name that was given in the EAR
enhanced deployment descriptor (see Figure 25-4 on page 1318). We
enter jdbc/itsobank.
 Chapter 25. Deploying enterprise applications 1335

If you have already configured a data source with the JNDI name
jdbc/itsobank, use another name, such as jdbc/itsobank1.

Figure 25-12 Basic configuration for the data source

5. In the “Create a data source: Enter database-specific properties for the data
source” panel (Figure 25-13 on page 1337), complete the following steps:

a. Enter the database Name. Make sure that you enter the complete path of
the database file. For example, in our case, this value is
C:\7835code\database\derby\ITSOBANK.

b. Clear Use this data source in container managed persistence (CMP).
This option is for EJB 2.x only.

c. Click Next.
1336 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 25-13 Entering the database path or name

6. On the next panel, because no authentication aliases are required for Derby,
leave the fields blank. Then click Next.

7. In the summary panel, verify the configuration information that you entered for
the data source and click Finish.

8. Click Save to the master configuration.

9. Verify the database connection for the new data source (Figure 25-14 on
page 1338):

a. Select the data source check box.
b. Click Test connection and a message indicates success or failure.
 Chapter 25. Deploying enterprise applications 1337

Figure 25-14 Test connection of the data source

25.4.2 Installing the enterprise applications

To install the two enterprise applications to the target application server, follow
these steps:

1. Copy the RAD8EJBEAR.ear and RAD8EJBWebEAR.ear files from the developer
node (where you exported the files from Rational Application Developer) to
the application server node, typically, into the installableApps directory:

<AppServer_HOME>/installableApps

<RAD_HOME>/runtimes/base_v8/profiles/<profile>/installableApps. In the
WebSphere administrative console, select Applications New
Application.

2. Click New Enterprise Application.

Tip: If the connection fails, ensure that no connection is active from
Rational Application Developer (in the Data perspective, disconnect from
ITSOBANK).
1338 Rational Application Developer for WebSphere Software V8 Programming Guide

3. In the “Preparing for the application installation” panel (Figure 25-15),
complete the following steps:

a. Select Local file system.
b. For Full path, point to ...installableApps\RAD8EJBEAR.ear.
c. Click Next.

Figure 25-15 Enterprise application installation: Specifying the path to the EAR file

4. Ensure that Fast Path is selected and click Next to start the installation
wizard.

5. In the Select installation options panel, accept the default values. Optional:
Select Precompile JavaServer Pages files for applications with a web
module with JSP. Then click Next (Figure 25-16 on page 1340).
 Chapter 25. Deploying enterprise applications 1339

Figure 25-16 Enterprise application installation: Installation options

6. In the Map modules to servers panel, accept the default values and click
Next.

7. In the Metadata for modules panel, accept the default values and click Next.

Select for web applications
1340 Rational Application Developer for WebSphere Software V8 Programming Guide

8. In the Summary page, verify the configuration information for the new
enterprise application and click Finish to confirm (Figure 25-17).

Figure 25-17 Summary page for the Install Application wizard

After several messages, you see that the installation was successful:

Installing...
If there are enterprise beans in the application, the EJB deployment
process can take several minutes. Do not save the configuration
until the process completes.

Check the SystemOut.log on the deployment manager or server where
the application is deployed for specific information about the EJB
deployment process as it occurs.

ADMA5016I: Installation of RAD8EJBEAR started.
......

ADMA5005I: The application RAD8EJBEAR is configured in the WebSphere
Application Server repository.
 Chapter 25. Deploying enterprise applications 1341

......
Application RAD8EJBEAR installed successfully.

9. Click Save directly to the master configuration.

10.Repeat the installation steps to install the RAD8EJBWebEAR.ear enterprise
application. In the Select installation options panel, select Precompile
JavaServer Pages files. The rest of the steps are the same.

25.4.3 Starting the enterprise applications

To start the enterprise applications, follow these steps:

1. In the administrative console, select Applications Application Types
WebSphere enterprise applications.

2. Select the RAD8EJBEAR and RAD8EJBWebEAR applications and click
Start (Figure 25-18).

Figure 25-18 Start the deployed enterprise applications
1342 Rational Application Developer for WebSphere Software V8 Programming Guide

The status for the applications changes to a green arrow, and two messages
about the successful start are displayed at the top (Figure 25-19).

Figure 25-19 Application status messages

25.4.4 Verifying the application after manual installation

To verify that the ITSO Bank sample is deployed and working properly, follow
these steps:

1. Enter the following URL in a browser to access the ITSO Bank application:

For a stand-alone server, enter
http://<hostname>:9080/RAD8EJBWeb/

For a WebSphere profile, enter
http://localhost:9081/RAD8EJBWeb/

2. On the ITSO RedBank home page (Figure 25-20), click RedBank.

Figure 25-20 ITSO RedBank: Home page
 Chapter 25. Deploying enterprise applications 1343

3. In the login page (Figure 25-21), enter a customer ID, for example,
555-55-5555, and click Submit.

Figure 25-21 ITSO RedBank: Login page

The accounts page lists the accounts of the customer with the customer’s
balance in each account (Figure 25-22).

Figure 25-22 ITSO RedBank: Accounts page
1344 Rational Application Developer for WebSphere Software V8 Programming Guide

We have completed our testing, although you can further experiment with the
application by performing these tasks:

1. Update the customer name or title.
2. Click one of the account numbers to get the account maintenance page.
3. Submit banking transactions, such as deposit, withdraw, and transfer.
4. List the transactions.
5. Log out.

25.4.5 Uninstalling the application

We also want to show deployment using automation scripts. After testing, we
uninstall the enterprise applications, which is necessary if you want to use the
same server for the automation scripts.

To uninstall the application, follow these steps:

1. In the WebSphere administrative console, select Applications
Application Types WebSphere enterprise applications.

2. Select the two RAD8EJBxxx applications and click Stop.

3. Select the two RAD8EJBxxx applications and click Uninstall. Click OK when
prompted to remove the applications.

4. Wait for the “Uninstall successful” messages and then click Save.

25.5 Automated deployment using Jython-based
wsadmin scripting

In this section, we explain the WebSphere scripting client, called wsadmin, and
the new scripting language that is used in the client, called Jython.

WebSphere Application Server’s administration model is based on the Java
Management Extensions (JMX) framework. With JMX, you can wrap hardware
and software resources in Java and expose them in a distributed environment.
WebSphere’s administrative services provide functions that use the JMX
interfaces to manipulate the application server configuration, which is stored in
an XML-based repository in the server’s file system.
 Chapter 25. Deploying enterprise applications 1345

WebSphere Application Server provides the following tools that aid in the
administration of its configuration:

� WebSphere administrative console. A web application.

� Command-line commands. These executable commands are in the
<was_install_root>/bin folder and the <was_profile_root>/bin folder.

� wsadmin scripting client. A command-line interface (CLI) in which scripts can
be used to automate the administration of multiple application servers and
nodes.

� Thin client. A lightweight runtime package that enables you to run the wsadmin
tool or a stand-alone administrative Java program remotely.

25.5.1 Overview of wsadmin

The wsadmin tool is a scripting client that has a CLI. It is targeted toward
advanced administrators. It provides extra flexibility that is available through the
web-based administrative console and helps make the administration much
quicker. It is primarily used to automate administrative activities that can consist
of several administrative commands and need to be executed repetitively.

The wsadmin client uses the Bean Scripting Framework (BSF). The BSF supports
a variety of scripting languages. Prior to WebSphere Application Server V6, only
one scripting language was supported, Java Tcl (Jacl). WebSphere Application
Server now supports two languages: Jacl and Jython (or jpython).

Jython is the strategic direction. New tools in WebSphere Application Server v8.0
Beta and Rational Application Developer are available to help create scripts
using Jython. A Jacl-to-Jython migration tool is included with the WebSphere
Application Server.

The following wsadmin objects are available to use in the scripts:

AdminControl Use this object to run operational commands.

AdminConfig Use this object to create or modify WebSphere
Application Server configurational elements.

AdminApp Use this object to administer applications.

AdminTask Use this object to run administrative commands.

Help Use this object to obtain general help.
1346 Rational Application Developer for WebSphere Software V8 Programming Guide

25.5.2 Overview of Jython

Jython is an implementation of the Python language. The wsadmin tool uses
Jython V2.1. The J in Jython represents its Java-like syntax, but Jython also
differs significantly from Java or C++ syntax. Although Jython is like Java, the
name Jython is a typed, case-sensitive, and object-oriented language. Unlike
Java, Jython is an indentation-based language, which means that it does not
have any mandatory statement termination characters (such as a semi-colon in
Java), and code blocks are specified by indentation.

To begin a code block, you indent in, and to end a block, you indent out.
Statements that expect an indentation level end in a colon (:). Functions are
declared with the def keyword. And, comments start with a number sign (#).
Example 25-1 shows a Jython code snippet.

Example 25-1 Jython snippet

def listAllApps # This function lists all application
apps = AdminApp.list()

 if len(apps) == 0:
 print "Inside if block - No enterprise applications"
 else:
 print "Inside the else block"
 appsList = apps.split(lSep)
 for app in appsList:
 print app

This is a comment - Main section starts here
lSep = java.lang.System.getProperty('line.separator')
listAllApps # call the listAllApps function defined above

Structure of a Jython script
A Jython script usually consists of method definitions and a main section. The
outline view of the Rational Application Developer lists the methods of the script
file for easy code navigation. The main section is at the end of the Jython script
and consists of the declaration of global variables, which can be used across all
the methods. The main section then calls functions (Figure 25-23 on page 1348).
 Chapter 25. Deploying enterprise applications 1347

Figure 25-23 Structure of a Jython script

25.5.3 Developing a Jython script to deploy the ITSO Bank

In this section, we guide you through a step-by-step process and complete a
Jython script that deploys the RAD8EJBWebEAR and RAD8EJBEAR files as enterprise
applications to a target WebSphere Application Server V7.0. You must perform
the following steps:

1. Create a JDBC provider.
2. Create and configure a data source.
3. Install the ITSO Bank web application.
4. Install the ITSO Bank EJB application.
5. Start both applications.

Creating a Jython project and script
In this section, you create a Jython project and a Jython script in Rational
Application Developer. The RAD8EJBEAR.ear and RAD8EJBWebEAR.ear files are
available in the C:\7835code\deployment folder (where you exported the files), or
you can use the solution files from C:\7835code\jython.

Function

Function

Main Section

More information: See 23.11, “Developing automation scripts” on page 1275,
about Jython.
1348 Rational Application Developer for WebSphere Software V8 Programming Guide

To create a Jython project and script, follow these steps:

1. Create a Jython project in Rational Application Developer. If you followed the
instructions in Chapter 23, “Cloud environment and server configuration” on
page 1203, you already have this project. Otherwise, create the project:

a. Click File New Project.

b. In the New Project wizard, select Jython Jython Project and click
Next.

c. For the Project name, type RAD8Jython and click Finish.

2. Create a Jython script to deploy the ITSO Bank application:

a. Select File New Other Jython Jython Script File and click
Next.

b. In the Parent folder field, specify /RAD8Python, and for the File name, type
deployITSOBankApp.py.

c. Click Finish to create the Jython script file.

3. In the Servers view, decide which server to use for testing. You can use the
test environment or the server profile that you defined in Chapter 23, “Cloud
environment and server configuration” on page 1203.

Defining the global variables
Define the global variables:

1. Open the Jython script (if you closed it).

2. Add the following global variables:

global AdminConfig
global AdminControl
global AdminApp
global AdminTask

3. Define a global variable for the deployment server node name and the
deployment server:

nodeName = AdminControl.getNode()
srvrInfo=AdminConfig.list('Server')
srvr=AdminConfig.showAttribute(srvrInfo, 'name')

4. Define a global variable for the name of the new JDBC provider, the data
source, and the database:

jdbcProv = "ITSO Derby JDBC Provider (XA)"
dataSourceName = "RAD8JythonDS"
jndiDS = "jdbc/itsobank2"
dbasename="C:/7835code/database/derby/ITSOBANK"
 Chapter 25. Deploying enterprise applications 1349

5. Define a global variable to store the name of the new connection factory that
is used for EJB container-managed persistence:

cfname = "RAD8JythonDS_CF"

6. Define global variables to store the path of the EAR files and the enterprise
application names:

webappEAR = "C:/7835code/jython/RAD8EJBWebEAR.ear"
ejbappEAR = "C:/7835code/jython/RAD8EJBEAR.ear"
webappEARName = "RAD8EJBWebEAR" # display name of the enterprise App
ejbappEARName = "RAD8EJBEAR" # display name of the enterprise App

7. Create function calls for the six deployment steps:

createProvider() # Step 1 - Create the JDBC
provider

createDS() # Step 2 - Create the data
source

installApp(webappEAR, webappEARName) # Step 3 - Install ITSO Bank
Web App

installApp(ejbappEAR,ejbappEARName) # Step 4 - Install ITSO Bank
EJB App

startApp(ejbappEARName) # Step 5 - Start ITSO Bank EJB
startApp(webappEARName) # Step 6 - Start ITSO Bank Web

App

Next we define the six functions.

Creating a JDBC provider
Create a function named createProvider for this purpose:

1. Define the createProvider function, which encapsulates the code for
creating a new JDBC provider:

def createProvider():

2. Enter the following command to check whether the JDBC provider that we
want to create already exists. If it exists, we return. Make sure that the rest of
the code for this method is indented.

prov = AdminControl.completeObjectName("name=" + jdbcProv +
",type=JDBCProvider,Server="+srvr + ",node="+nodeName +

",*")
if len(prov) > 0:

return
#endif

Important: The function code goes before the main section.
1350 Rational Application Developer for WebSphere Software V8 Programming Guide

3. Define local variables for the attributes that are required to create a new
JDBC provider:

provName=['name',jdbcProv]
impClass=['implementationClassName',

'org.apache.derby.jdbc.EmbeddedXADataSource']
jdbcAttrs=[]
jdbcAttrs.append(provName)
jdbcAttrs.append(impClass)

4. Use a template to create the JDBC provider:

tmplName = 'Derby JDBC Provider (XA)'
templates =

AdminConfig.listTemplates("JDBCProvider",tmplName).split(lineSeparat
or)
tmpl = templates[0]
serverId = AdminConfig.getid("/Node:" + nodeName + "/Server:" + srvr
+ "/")

5. Create the JDBC provider by using the template, save the configuration, and
end:

AdminConfig.createUsingTemplate("JDBCProvider",serverId,jdbcAttrs,tm
pl)
AdminConfig.save()
#enddef

Example 25-2 shows the complete code for this function.

Example 25-2 Creating a JDBC provider using the Derby JDBC Provider (XA)

def createProvider():
prov = AdminControl.completeObjectName("name="+jdbcProv + ",

type=JDBCProvider,Server="+srvr + ",node="+nodeName + ",*")
if len(prov) > 0:

return
#endif

provName=['name',jdbcProv]
impClass=['implementationClassName',

'org.apache.derby.jdbc.EmbeddedXADataSource']
jdbcAttrs=[]
jdbcAttrs.append(provName)
jdbcAttrs.append(impClass)
tmplName = 'Derby JDBC Provider (XA)'
templates = AdminConfig.listTemplates("JDBCProvider", tmplName)

.split(lineSeparator)
 Chapter 25. Deploying enterprise applications 1351

tmpl = templates[0]
serverId = AdminConfig.getid("/Node:" + nodeName + "/Server:" + srvr

+ "/")

AdminConfig.createUsingTemplate("JDBCProvider",serverId,jdbcAttrs,tmpl)
AdminConfig.save()

#enddef

Creating a data source
To create a data source, follow these steps:

1. Create a function named createDS for this purpose:

def createDS():

2. Check whether the data source that we want to create already exists. If the
data source already exists, we do not create it. Again, make sure that the rest
of the code for this method is indented.

dsId = AdminConfig.getid("/JDBCProvider:"+jdbcProv + "/DataSource:"+
dataSourceName + "/")

if len(dsId) > 0:
return

#endif

3. Define local variables for the attributes that are required to create a data
source:

dsname=['name',dataSourceName]
jndiName=['jndiName',jndiDS]
description=['description','ITSOBank Data Source']
dsHelperClassname=['datasourceHelperClassname',

'com.ibm.websphere.rsadapter.DerbyDataStoreHelper']
dsAttrs=[]
dsAttrs.append(dsname)
dsAttrs.append(jndiName)
dsAttrs.append(description)
dsAttrs.append(dsHelperClassname)
provId = AdminConfig.getid("/Node:"+nodeName + "/Server:"+srvr +

"/JDBCProvider:"+jdbcProv + "/")

4. Create the data source and save the configuration:

AdminConfig.create('DataSource',provId,dsAttrs)
AdminConfig.save()

5. Configure the data source and add resource property set attributes, such as
database name, password, description, and login timeout. Because this piece
1352 Rational Application Developer for WebSphere Software V8 Programming Guide

of code is more than a few lines, place the code into a separate function. Let
us define a function call:

modifyDS()

6. Enable the use of this data source in container-managed persistence. We use
a separate method as well.

useDSinCMP()

Example 25-3 shows the code for this function.

Example 25-3 Creating a data source

def createDS():
dsId = AdminConfig.getid("/JDBCProvider:"+jdbcProv + "/DataSource:"+

dataSourceName + "/")
if len(dsId) > 0:

return
#endif
dsname=['name',dataSourceName]
jndiName=['jndiName',jndiDS]
description=['description','ITSOBank Data Source']
dsHelperClassname=['datasourceHelperClassname',

'com.ibm.websphere.rsadapter.DerbyDataStoreHelper']
dsAttrs=[]
dsAttrs.append(dsname)
dsAttrs.append(jndiName)
dsAttrs.append(description)
dsAttrs.append(dsHelperClassname)
provId = AdminConfig.getid("/Node:"+nodeName + "/Server:"+srvr +

"/JDBCProvider:"+jdbcProv + "/")
AdminConfig.create('DataSource',provId,dsAttrs)

AdminConfig.save()
modifyDS() # modify DS to add the poperties (databaseName)
useDSinCMP() # enable this DS in Container Managed Persistence (CMP)

#enddef

Modifying the data source with properties
Even though we have already written the code to create the data source, you
must still add a resource property set with attributes, such as the database
name, password, description, and login timeout. The code in Example 25-4 on
page 1354 is the complete code for the modifyDS function.
 Chapter 25. Deploying enterprise applications 1353

Example 25-4 Adding a resource property set to the data source

def modifyDS():
dsId = AdminConfig.getid("/JDBCProvider:"+jdbcProv + "/DataSource:"+

dataSourceName + "/")
dbnameAttrs = [["name", "databaseName"], ["value", dbasename],

["type",
"java.lang.String"], ["description", "This is a required

property"]]
descrAttrs = [["name", "description"], ["value", ""], ["type",

"java.lang.String"]]
passwordAttrs = [["name", "password"], ["value", ""], ["type",

"java.lang.String"]]
loginTimeOutAttrs = [["name", "loginTimeout"], ["value", 0],

["type",
"java.lang.Integer"]]

propset = []
propset.append(dbnameAttrs)
propset.append(descrAttrs)
propset.append(passwordAttrs)
propset.append(loginTimeOutAttrs)
pSet = ["propertySet", [["resourceProperties", propset]]]
attrs = [pSet]
AdminConfig.modify(dsId, attrs)
AdminConfig.save()

#enddef

Using the data source in container-managed persistence
Configure this data source for use in the container-managed persistence (CMP)
of entity EJB. This task is simple and easy when using the administrative console
(Figure 25-24 on page 1355). However, when using a script, this task is a
multiple step process. For EJB 3.0 and JPA, you do not have to perform this step.
1354 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 25-24 Enabling a data source to be used in CMP

The code in Example 25-5 is the complete code for the useDSinCMP function.

Example 25-5 Enabling the data source for container-managed persistence

def useDSinCMP():
dsId = AdminConfig.getid("/JDBCProvider:"+jdbcProv +

"/DataSource:"+dataSourceName + "/")
rra = AdminConfig.getid("/Node:"+nodeName+"/Server:"+srvr

+"/J2CResourceAdapter:WebSphere Relational Resource
Adapter/")

nameAttr = ["name", cfname]
authmechAttr = ["authMechanismPreference", "BASIC_PASSWORD"]
cmpdsAttr = ["cmpDatasource", dsId]
attrs = []
attrs.append(nameAttr)
attrs.append(authmechAttr)
attrs.append(cmpdsAttr)
newcf = AdminConfig.create("CMPConnectorFactory", rra, attrs)
AdminConfig.save()
Modify the CMPConnectionFactory to add the Mapping attributes
mapAuthAttr = ["authDataAlias", ""]
mapConfigaliasAttr = ["mappingConfigAlias", ""]
mapAttrs = []
mapAttrs.append(mapAuthAttr)
mapAttrs.append(mapConfigaliasAttr)
mappingAttr = ["mapping", mapAttrs]
attrs2 = []
 Chapter 25. Deploying enterprise applications 1355

attrs2.append(mappingAttr)
cfId = AdminConfig.getid("/CMPConnectorFactory:"+cfname+"/")
AdminConfig.modify(cfId, attrs2)
AdminConfig.save()
AdminConfig.modify(dsId, attrs2)
AdminConfig.save()

#enddef

Installing the enterprise applications
You have now written the code that is required to create a JDBC provider and a
data source for the ITSO Bank applications. Therefore, you are ready to start
installing the EAR files. The best practice is to create a generic method that
encapsulates the code to install any EAR file when provided with the location of
the EAR file and the display name of the application.

The code in Example 25-6 is the complete code for the installApp function.

Example 25-6 Installing or updating an enterprise application

def installApp(appEAR, appName):
try:

app = AdminApp.view(appName)
except:

options = "-appname " + appName
AdminApp.install(appEAR, options)
AdminConfig.save()

else:
if app > 1:

options = "-operation update -contents " + appEAR
contentType = 'app'
AdminApp.update(appName, contentType, options)
AdminConfig.save()

#enddef

In the main section, we have already defined the variables that contain the
complete paths of the EAR files and their display names. Therefore, we can use
these variables as parameters and use the installApp function to install the
RAD8EJBEAR and RAD8EJBWebEAR applications:

installApp(webappEAR, webappEARName)
installApp(ejbappEAR, ejbappEARName)
1356 Rational Application Developer for WebSphere Software V8 Programming Guide

Starting the enterprise applications
After installing the applications, start both enterprise applications. Again, create a
generic function that can start any enterprise application when provided with the
display name of that application.

The code in Example 25-7 is the complete code for the startApp function.

Example 25-7 Starting an enterprise application

def startApp(appName):
app = AdminControl.completeObjectName

("type=Application,name="+appName+",*")
if len(app) > 1:

return

appMgr = AdminControl.queryNames

("node="+nodeName+",type=ApplicationManager,process="+srvr+",*")

AdminControl.invoke(appMgr,'startApplication',appName)
#enddef

Again, you can use the global variables that contain the display names of both
applications and pass them as parameters to the startApp function:

startApp(ejbappEARName)
startApp(webappEARName)

25.5.4 Executing the Jython script

We plan to execute the Jython script against the application server that is already
configured in Rational Application Developer.

We used a JNDI name of jdbc/itsobank2 for the new data source, so that we do
not have a conflict with an existing data source in the server.

Tip: The complete code of the deployITSOBankApp.py Jython script is
available in the sample code that is located in the file named
C:\7835code\jython\deployITSOBankApp.py. Import this file into the
RAD8Jython project (or copy and paste it from Microsoft Windows Explorer into
Rational Application Developer). In addition to the logic that we have
discussed, the script has many comments and produces test output to the
console (print statements) so that the execution can be followed.
 Chapter 25. Deploying enterprise applications 1357

To execute the Jython script, follow these steps:

1. Make sure that the target server is started.

2. Right-click deployITSOBankApp.py and select Run As Administrative
Script.

3. In the Edit Configuration: Edit configuration and launch window
(Figure 25-25), follow these steps:

a. For the Scripting runtime environment, select WebSphere Application
Server v8.0 Beta.

b. For the WebSphere Profile name, select AppSrv01.

c. Specify the user ID and password if the server runs with security enabled.

d. Click Run to execute the Jython script.

Figure 25-25 Selecting the Scripting runtime environment and the WebSphere Profile name
1358 Rational Application Developer for WebSphere Software V8 Programming Guide

Example 25-8 shows the result of the execution that is displayed in the Console
view.

Example 25-8 Output of the Jython script

WASX7209I: Connected to process "server1" on node UELIT60Node02 using
SOAP connector; The type of process is: UnManagedProcess

***** STEP 1 completed - The ITSO Derby JDBC Provider (XA) has been
created Done creating the DS. Config saved ..
Done modifying the DS. Config Saved ..

***** STEP 2 completed - Done creating the DS. Config saved ..
***** App not found: RAD8EJBWebEAR. Installing it now

ADMA5016I: Installation of RAD8EJBWebEAR started.
ADMA5058I: Application and module versions are validated with versions
of

deployment targets.
ADMA5005I: The application RAD8EJBWebEAR is configured in the WebSphere

Application Server repository.
ADMA5053I: The library references for the installed optional package
are

created.
ADMA5005I: The application RAD8EJBWebEAR is configured in the
WebSphere....
ADMA5001I: The application binaries are saved in C:\<WAS_HOME>\profiles

\AppSrv02\wstemp\Script1144d386b1d\workspace\cells\<cell>
\applications\RAD8EJBWebEAR.ear\RAD8EJBWebEAR.ear

ADMA5005I: The application RAD8EJBWebEAR is configured in the WebSphere
...
SECJ0400I: Successfuly updated the application RAD8EJBWebEAR with the

appContextIDForSecurity information.
ADMA5011I: The cleanup of the temp directory for application
RAD8EJBWebEAR is complete.
ADMA5013I: Application RAD8EJBWebEAR installed successfully.

***** Done installing App: RAD8EJBWebEAR. Config saved ..
***** App not found: RAD8EJBEAR. Installing it now

ADMA5016I: Installation of RAD8EJBEAR started.
......
ADMA5013I: Application RAD8EJBEAR installed successfully.

***** Done installing App: RAD8EJBEAR. Config saved ..
 Chapter 25. Deploying enterprise applications 1359

***** The startApplication operation for RAD8EJBEAR completed.

***** The startApplication operation for RAD8EJBWebEAR completed.

25.5.5 Verifying the application after automatic installation

You can find the ITSO Derby JDBC Provider (XA) and the RAD8Jython data
source by using the WebSphere administrative console.

To verify that the ITSO Bank sample is deployed and working properly, follow the
instructions in 25.4.4, “Verifying the application after manual installation” on
page 1343.

The verification concludes this chapter, because we have successfully deployed
the enterprise applications, both manually by using the WebSphere
administrative console and by using the Jython scripting with the Jython tooling
that is provided by Rational Application Developer V7.5.

25.5.6 Generating WebSphere admin commands for Jython scripts

You can use the WebSphere administration command assist tool to generate
WebSphere administrative wsadmin commands that use the Jython scripting
language as you interact with the WebSphere administrative console. When you
perform server operations in the WebSphere administrative console, the
WebSphere Administration command assist tool captures and shows the
wsadmin commands that are issued. You can transfer the output from the
WebSphere Administration Command view directly to a Jython editor, so that you
can develop Jython scripts based on actual console actions.

To generate wsadmin commands as you interact with the WebSphere
administrative console, follow these steps:

1. Enable the command assistance notification option in the WebSphere
administrative console:

a. Make sure that the server is started.

b. Right-click the server WebSphere Application Server v8.0 Beta at
localhost and select Administration Run administrative console.

c. Specify the User ID and the Password if the server is secured and click
Log in.

d. In the left pane, expand Applications Application Types
WebSphere enterprise applications.
1360 Rational Application Developer for WebSphere Software V8 Programming Guide

e. Scroll to the right of the Enterprise Applications pane and under the
Command Assistance section, click View administrative scripting
command for last action.

f. Expand Preferences and select Enable command assistance
notifications (Figure 25-26). Click Apply and close the window.

Figure 25-26 Administrative Scripting Commands

2. In the Servers view, right-click the server and select Administration
WebSphere administration command assist. The WebSphere
Administration Command window opens. The view might open in the
upper-right section of your window, but you can move it to a better place, such
as where the Servers and Console views are.

3. From the Select Server to Monitor list, select WebSphere Application
Server v8.0 Beta at localhost to ensure that the server is selected.

4. In the WebSphere administrative console, select Applications
Application Types WebSphere enterprise applications in the left pane.
You see that the WebSphere Administration Command view is populated with
a wsadmin command for Jython.

5. In the left pane of the WebSphere administrative console, select
Resources JDBC JDBC Providers. Another command is displayed in
the WebSphere Administration Command window (Figure 25-27).

Delay: You might experience a delay of a few seconds before you see the
Jython command in the WebSphere Administration Command view.
 Chapter 25. Deploying enterprise applications 1361

Figure 25-27 WebSphere Administration Command view

6. Create a Jython script file in the RAD8Jython project and name it
CommandAssist.py.

7. To transfer the wsadmin commands that were generated in the WebSphere
Administration Command view to the Jython script, follow these steps:

a. Make sure that the Jython editor for CommandAssist.py is open.

b. In the Jython editor, place the cursor at the bottom of the editor window.

c. In the WebSphere Administration Command view, press the Shift key and
click to select both commands. Right-click the commands and select
Insert.

In the editor, two commands are added:

AdminApp.list()
AdminConfig.list(\
'JDBCProvider', AdminConfig.getid(\
'/Cell:coutinhoNode01Cell/'))

8. Add the print method in front of each command so that you have the following
steps:

print AdminApp.list()
print AdminConfig.list(\
'JDBCProvider', AdminConfig.getid(\
'/Cell:KLCHL2YNode01Cell/'))

9. Save the file.

10.Right-click CommandAssist.py and select Run As Administrative
Script.

11.On the Script tab of the WebSphere Administrative Script Launcher, select the
following items:

a. For the Scripting runtime environment, select WebSphere Application
Server v8.0 Beta.

b. For the WebSphere Profile name, select AppSrv01.
1362 Rational Application Developer for WebSphere Software V8 Programming Guide

c. In the Security section, if administrative security is enabled, enter the
required User ID and Password.

12.Click Apply and then click Run to execute the script. You see console output
similar to the output that is listed in Example 25-9.

Example 25-9 Console output

WASX7209I: Connected to process "server1" on node coutinhoNode01
using SOAP connector; The type of process is: UnManagedProcess
DefaultApplication

IBMUTC
WebServicesEAR
ivtApp

query
"Derby JDBC Provider
(XA)(cells/coutinhoNode01Cell/applications/commsvc.ear/deployments/c
ommsvc|resources.xml#builtin_jdbcprovider)"

"Derby JDBC Provider
(XA)(cells/coutinhoNode01Cell/nodes/coutinhoNode01/servers/server1|r
esources.xml#builtin_jdbcprovider)"

"Derby JDBC Provider
(XA)(cells/coutinhoNode01Cell|resources.xml#builtin_jdbcprovider)"

"Derby JDBC
Provider(cells/coutinhoNode01Cell/nodes/coutinhoNode01/servers/serve
r1|resources.xml#JDBCProvider_1183122153343)"

The command assist feature is helpful when you are learning Jython. You can
use it to create scripts for future use easily.

25.5.7 Debugging Jython scripts

With the Jython debugger, you can detect and diagnose errors in Jython scripts
that are run on WebSphere Application Server. For an example of debugging the
sample listJDBCProviders script, see 28.5, “Using the Jython debugger” on
page 1492.
 Chapter 25. Deploying enterprise applications 1363

25.6 More information

For more information about application deployment, see the following resources:

� Understanding WebSphere Extended Deployment

http://www.ibm.com/developerworks/autonomic/library/ac-webxd/

� “Learn how to publish an enterprise application with WebSphere Application
Server and Application Server Toolkit, V6.1” developerWorks article

http://www.ibm.com/developerworks/edu/wes-dw-wes-hellowas.html
1364 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.ibm.com/developerworks/autonomic/library/ac-webxd/
http://www.ibm.com/developerworks/edu/wes-dw-wes-hellowas.html
http://www.ibm.com/developerworks/autonomic/library/ac-webxd/
http://www.ibm.com/developerworks/edu/wes-dw-wes-hellowas.html

Chapter 26. Testing using JUnit

The Rational Application Developer test framework is built on the Eclipse Test
and Performance Tools Platform (TPTP), which extends the Eclipse Hyades Tool
Project. It contains tracing, profiling, and testing tools. JUnit is one of the testing
tools and can be used for automated component testing. TPTP also includes
profiling capabilities for memory, performance, and other execution-time code
analysis. We explore profiling in Chapter 27, “Profiling applications” on
page 1419.

In this chapter, we introduce application testing concepts and provide an
overview of TPTP and JUnit. We also explain the features of Rational Application
Developer for testing. In addition, we include working examples to demonstrate
how to create and run component tests using JUnit and demonstrate how to test
web applications.

The chapter is organized into the following sections:

� Introduction to application testing
� JUnit testing without TPTP
� Preparing the JUnit sample
� JUnit testing of JPA entities
� JUnit testing using TPTP
� Web application testing
� Cleaning the workspace

The sample code is available in c:\7835code\junit.

26
© Copyright IBM Corp. 2011. All rights reserved. 1365

26.1 Introduction to application testing

Although the focus of this chapter is on component testing, we have included an
introduction to testing concepts, such as test phases and environments, to put
into context where component testing fits within the development cycle. Next we
provide an overview of the TPTP and JUnit testing frameworks. The remainder of
the chapter provides a working example of using the features of TPTP and JUnit
within Rational Application Developer.

26.1.1 Test concepts

Within a typical development project, there are various types of testing performed
during the phases of the development cycle. Project requirements that are based
on size, complexity, risks, and costs determine the levels of testing to be
performed. The focus of this chapter is on component testing and unit testing.

26.1.2 Test phases

In this section, we outline and categorize the key test phases.

Unit test
Unit tests are informal tests that are generally executed by the developers of the
application code. They are often quite low level in nature and test the behavior of
individual software components, such as individual Java classes, servlets, or
Enterprise JavaBeans (EJB).

Because unit tests are usually written and performed by the application
developer, they tend to be white-box in nature, that is, they are written using
knowledge about the implementation details and test-specific code paths. This is
not to say that all unit tests have to be written this way. One common practice is
to write the unit tests for a component based on the component specification,
before developing the component itself. Both approaches are valid, and you
might want to use both methods when defining your own unit testing policy.

Component test
Component tests are used to verify particular components of the code before they
are integrated into the production code base. Component tests can be performed
on the development environment. Within the context of Rational Application
Developer, a developer configures a test environment and supporting testing
tools, such as JUnit. Using the test environment, you can test customized code
including JavaBeans, EJB, and JavaServer Pages (JSP) without having to deploy
this code to a runtime system.
1366 Rational Application Developer for WebSphere Software V8 Programming Guide

Build verification test
For build verification tests (BVTs), members of the development team check
their source code into the source control tool and mark the components as part
of a build level. The build team is responsible for building the application in a
controlled environment based on the source code that is available in the source
control system repository.

The build team extracts the source code from the source control system,
executes scripts to compile the source code, packages the application, and tests
the application build. The test that is run on the application of the build that is
produced is called a build verification test.

The BVT is a predefined and documented test procedure to ensure that the
major elements of the application work properly before accepting the build and
making it available to the test team for a function verification test (FVT) or system
verification test (SVT).

Function verification test
Function verification tests (FVTs) are used to verify the individual functions of an
application. For example, you can verify if the interest was calculated properly
within a bank application.

System verification test
System verification tests are used to test a group of functions. You use a
dedicated test environment with the same system and application software as
the target production environment.

For the best results from these tests, you have to find the most similar
environment, involve as many components as possible, and verify that all
functions work properly in an integrated environment.

Performance test
Performance tests simulate the volume of traffic that you expect to have for the
application, ensure that the system will support this volume of traffic, and
determine if the system performance is acceptable.

Rational Function Tester: Within the Rational product family, the IBM
Rational Function Tester is an ideal choice for this type of testing.

Rational Manual Tester: Within the Rational product family, the IBM Rational
Manual Tester is an ideal choice for this type of testing.
 Chapter 26. Testing using JUnit 1367

Customer acceptance test
Customer acceptance test is a level of testing in which all aspects of an
application or system are thoroughly and systematically tested to demonstrate
that it meets business and non-functional requirements. The scope of a particular
acceptance test is defined in the acceptance test plan.

26.1.3 Test environments

When sizing a project, it is important to consider the system requirements for the
test environments. We describe several common test environments:

� Component test environment

This environment is often the development system, and it is the focus of this
chapter. In larger projects, development teams must have a dedicated test
environment to integrate the components of the team members before putting
the code into the application build.

� Build verification test environment

This test environment is used to test the application that is produced from a
controlled build. For example, a controlled build might have source control,
build scripts, and packaging scripts for the application. The build verification
team runs a subset of tests, often known as regression tests, to verify the
major functionality of the system that is representative of a wider scale of
testing.

� System test environment

This test environment is used for FVT and SVT to verify the functionality of the
application and integrate it with other components. Many test environments
can exist with teams of people focused on separate aspects of the system.

� Staging environment

The staging environment is critical for all sizes of organizations. Prior to
deploying the application to production, the staging environment is used to
simulate the production environment. This environment can be used to
perform customer acceptance tests.

� Production environment

This environment is the live runtime environment that customers use to
access the e-commerce website. In specific cases, customer acceptance
testing might be performed on the production environment. Ultimately, the

Rational Performance Tester: Within the Rational product family, the IBM
Rational Performance Tester is an ideal choice for this type of testing.
1368 Rational Application Developer for WebSphere Software V8 Programming Guide

customers need to test the application. You must have a process to track
customer problems and to implement fixes to the application within this
environment.

26.1.4 Calibration

By definition, calibration is a set of gradations that shows positions or values.
When testing, it is important to establish a baseline for performance and
functionality for regression testing. For example, when regression testing, you
have to provide a set of tests that have been exercised on previous builds of the
application. These tests must be used to test the performance and functionality
of the new build. These tests are also important when setting entrance and exit
criteria.

26.1.5 Test case execution and recording results

When trying to determine why a piece of functionality of a component within an
application has broken, it is useful to know when the test case last executed
successfully. Recording the successes and failures of test cases for a designated
application build is essential to having an accountable test organization and a
quality application.

26.1.6 Benefits of unit and component testing

It might seem obvious as to why we want to test our code. Unfortunately, many
people do not understand the value of testing. We test our code and applications
to find defects in the code and to verify that the changes that we have made to
existing code do not break that code. In this section, we highlight the key benefits
of unit and component testing.

Perhaps it is more useful to look at the question from the opposite perspective,
that is, why developers do not perform unit tests. In general, the simple answer is
because it is too hard or because nobody forces them to perform unit tests.
Writing an effective set of unit tests for a component is not a trivial undertaking.
Given the pressure to deliver to which many developers find themselves
subjected, the temptation to postpone the creation and execution of unit tests in
favor of delivering code fixes or new functionality is often overwhelming.

In practice, this approach usually turns out to be a false economy. Developers
rarely deliver bug-free code, and the discovery of code defects and the costs
associated with fixing them are pushed further out into the development cycle,
which is inefficient. The best time to fix a code defect is immediately after the
code has been written and the changes are still fresh in the developer’s mind.
 Chapter 26. Testing using JUnit 1369

Furthermore, a defect that is discovered during a formal testing cycle must be
documented, prioritized, and tracked. All of these activities incur cost and might
mean that a fix is deferred indefinitely, or at least until it becomes critical.

Based on our experience, we think that encouraging and supporting the
development and regular execution of unit test cases ultimately leads to
significant improvements in productivity and overall code quality. The creation of
unit test cases does not have to be a burden. If done properly, developers can
find the intellectual challenge quite stimulating and ultimately satisfying. The
thought process involved in creating a test can also highlight shortcomings in a
design, which might not otherwise have been identified when the major focus is
on implementation.

Take the time to define a unit testing strategy for your own development projects.
A simple set of guidelines and a framework that makes it easy to develop and
execute tests pays for itself surprisingly quickly.

26.1.7 Benefits of testing frameworks

After you have decided to implement a unit testing strategy for your project, the
first hurdles to overcome are the factors that dissuade developers from creating
and running unit tests in the first place. A testing framework can help by making it
easier to perform these tasks:

� Write tests
� Run tests
� Rerun a test after a change

Tests are easier to write, because a lot of the infrastructure code that you require
to support every test is already available. A testing framework also provides a
facility that makes it easier to run and rerun tests, perhaps by using a graphical
user interface (GUI). The more often a developer runs tests, the sooner the
problems can be located and fixed, because the difference is smaller between
the code that last passed a unit test and the code that fails the test.

Testing frameworks also provide other benefits:

� Consistency: Every developer uses the same framework. All of your unit tests
work in the same way, can be managed in the same way, and report results in
the same format.

� Maintenance: If a framework has already been developed and is already in
use in a number of projects, you spend less time maintaining your testing
code.
1370 Rational Application Developer for WebSphere Software V8 Programming Guide

� Ramp-up time: If you select a popular testing framework, you might find that
new developers coming into your team are already familiar with the tools and
concepts that are involved.

� Automation: A framework can offer the ability to run tests unattended,
perhaps as part of a daily or nightly build.

26.2 JUnit testing without TPTP

In this section, we explain the fundamentals of JUnit. We also present a working
example of how to create and run a JUnit test within Rational Application
Developer.

You can find the JUnit home page at the following web address:

http://www.junit.org/

26.2.1 JUnit fundamentals

A unit test is a collection of tests designed to verify the behavior of a single unit. A
unit is always the smallest testable part of an application. In object-oriented
programming, the smallest unit is always a class.

JUnit tests your class by scenario. You have to create a testing scenario that
uses the following elements:

� Instantiates an object
� Invokes methods
� Verifies assertions

26.2.2 Test and Performance Tools Platform (TPTP)

Test and Performance Tools Platform (TPTP) provides an open platform that
supplies powerful frameworks and services that allow software developers to
build unique testing and performance tools.

Daily build: A common practice in many development environments is the
use of daily builds. These automatic builds usually are initiated in the early
hours of the morning by a scheduling tool.

Assertion: An assertion is a statement with which you can test the validity of
any assumptions that are made in your code.
 Chapter 26. Testing using JUnit 1371

http://www.junit.org/

TPTP addresses the entire test and performance life cycle, from early testing,
including test editing and execution, to production application profiling and
tracing.

Within the scope of Rational Application Developer, TPTP includes the following
types of testing:

� JUnit testing
� Performance testing of web/HTTP applications

Although each of these areas of testing has its own unique set of tasks and
concepts, two sets of topics are common to all test types:

� Providing tests with variable data
� Creating a test deployment

You can obtain more information about TPTP at the following web address:

http://www.eclipse.org/tptp

26.2.3 New in JUnit 4

JUnit 4 has significant changes from previous releases. It simplifies testing by
using the annotation feature, which was introduced in Java 5 (Java Development
Kit (JDK) 1.5). One helpful feature is that tests no longer rely on subclassing,
reflection, and naming conventions. With JUnit 4, you can mark any method in
any class as an executable test case merely by adding the @Test annotation in
front of the method. Table 26-1 lists the important annotations.

Table 26-1 JUnit 4 annotation overview

Annotation name Description

@Test Marks that this method is a test method

@Test(expected=
ExceptionClassName.class)

Tests if the method throws the named exception

@Test(timeout=100) Fails if execution of a method takes longer than 100
milliseconds

@Ignore Ignores the test method

@BeforeClass Marks the method that must be executed once before
the start of all the tests, for example, to connect to the
database

@AfterClass Marks the method that must be executed once after the
execution of all the tests, for example, to disconnect
from the database
1372 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.eclipse.org/tptp

An Open Source project is available called JUnit 4 Extensions. This project
provides the @Prerequisite(requires="methodName") annotation, which can be
helpful. With this annotation, you can call another method before entering the
test. The test is only executed if this method returns true. Example 26-1 is an
example showing the test case class using these annotations.

For more information about the JUnit 4 Extension project, see the following web
address:

http://www.junitext.org/

Test case class
Example 26-1 shows a test case class using JUnit 4.

Example 26-1 Simple JUnit 4.x test case class

package itso.rad8.bank.test.junit.example;

import static org.junit.Assert.assertEquals;

// Imports for the annotations (other imports omitted)
import org.junit.After;
import org.junit.AfterClass;
import org.junit.Before;
import org.junit.BeforeClass;
import org.junit.Test;
import org.junitext.Prerequisite;

public class ITSOBankTestExample {

private Bank bank = null;
private static final String ACCOUNT_NUMBER = "001-999000777";
private static final String CUSTOMER_SSN = "111-11-1111";

@BeforeClass
public static void runBeforeClass() {}

@AfterClass

@Before Marks the method that must be executed before each
test (setUp)

@After Marks the method that must be executed after each test
(tearDown)

Annotation name Description
 Chapter 26. Testing using JUnit 1373

http://www.junitext.org/

public static void runAfterClass() {}

@Before
public void runBeforeEveryTest() {

if (this.bank == null) {
// Instantiate objects
this.bank = ITSOBank.getBank();

}
}

@After
public void runAfterEveryTest() {}

@Prerequisite(requires="isBankAvailable")
@Test
public final void testSearchAccountByAccountNumber() {

try {
// Invoke a method

Account bankAccount = this.bank

.searchAccountByAccountNumber(ITSOBankTestExample.ACCOUNT_NUMBER);

// Verify an assertion
assertEquals(bankAccount.getAccountNumber(),

ITSOBankTestExample.ACCOUNT_NUMBER);
} catch (InvalidAccountException e) {

e.printStackTrace();
}

}

@Test(expected=InvalidAccountException.class)
public final void testSearchAccountByInvalidAccountNumber()

throws InvalidAccountException {

Account bankAccount = this.bank
.searchAccountByAccountNumber("966-111000999");

}

@Test
public final void testSearchCustomerBySsn() {

// Invoke a method
try {
1374 Rational Application Developer for WebSphere Software V8 Programming Guide

Customer bankCustomer = this.bank
.searchCustomerBySsn(ITSOBankTestExample.CUSTOMER_SSN);

// Verify an assertion
assertEquals(bankCustomer.getSsn(),

ITSOBankTestExample.CUSTOMER_SSN);
} catch (InvalidCustomerException e) {

e.printStackTrace();
}

}

public boolean isBankAvailable() {
if (this.bank != null) {

return true;
} else {

return false;
}

}
}

In JUnit, each test is implemented as a Java method that must be declared as
public void and take no parameters. This method is then invoked from a test
runner. In previous JUnit releases, all the test method names had to begin with
test..., so that the test runner found them automatically and ran them. In JUnit
4, this prefix is no longer required, because we mark the test methods with the
@Test annotation.

Important: The package structure junit.framework that was used in JUnit
3.8.1 has been changed to org.junit in JUnit 4.x.
 Chapter 26. Testing using JUnit 1375

JUnit assert class
JUnit provides a number of static methods in the org.junit.Assert class that
can be used to assert conditions and fail a test if the condition is not met.
Table 26-2 summarizes the provided static methods.

Table 26-2 JUnit assert class: Static methods overview

New annotations added:

� JUnit 4.8 @Categories

From a given set of test classes, the @Categories annotation runs only the
classes and methods that are annotated with either the category given with
the @IncludeCategory annotation, or a subtype of that category. For now,
annotating suites with @Category has no effect. Categories must be
annotated on the direct method or class.

� JUnit 4.7 @Rule

@Rule annotates fields that contain rules. The field must be public, not
static, and have a subtype of MethodRule.

A MethodRule is an alteration in how a test method is run and reported.
Multiple MethodRules can be applied to a test method. The statement that
executes the method is passed to each annotated rule in turn, which can
return a substitute or modified statement, which is passed to the next rule,
if any. For the method rules, go to this website:

http://www.junit.org/

Method name Description

assertEquals Asserts that two objects or primitives are equal. Compares objects
using the equals method and compares primitives using the ==
operator.

assertFalse Asserts that a boolean condition is false.

assertNotNull Asserts that an object is not null.

assertNotSame Asserts that two objects do not refer the same object. Compares
objects using the != operator.

assertNull Asserts that an object is null.

assertSame Asserts that two objects refer to the same object. Compares objects
using the == operator.

assertTrue Asserts that a boolean condition is true.

fail Fails the test.
1376 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.junit.org/

All of these methods include an optional String parameter so that the writer of a
test can provide a brief explanation of why the test failed. This message is
reported along with the failure when the test is executed. You can find the full
JUnit 4 application programming interface (API) documentation at the following
web address:

http://junit.org/junit/javadoc/4.5/

Test suite class
Test cases can be organized into test suites. In JUnit 4.x, the way to build test
suites has been completely replaced and no longer uses subclassing, reflection,
and naming conventions. Example 26-2 shows how to build a test suite class in
JUnit 4.

Example 26-2 Simple JUnit 4 test suite class

package itso.rad8.bank.test.junit;

import org.junit.runner.RunWith;
import org.junit.runners.Suite;
import org.junit.runners.Suite.SuiteClasses;

@RunWith(Suite.class)
@SuiteClasses({ITSOBankTest.class})
public class AllTests {}

The AllTests class is a simple placeholder for the @RunWith and @SuiteClasses
annotations and does not require a static suite method. The @RunWith annotation
signals the JUnit 4 test runner to use the org.junit.runners.Suite class for
running the AllTests class. With the @SuiteClasses annotation, you can define
which test classes to include in this suite and in which order. If you add more than
one test class, you must use the following syntax:

@SuiteClasses({TestClass1.class, TestClass2.class})

26.3 Preparing the JUnit sample

We use the ITSO Bank application that was created in 7.5, “Developing the ITSO
Bank application” on page 240, for the JUnit test working example.
 Chapter 26. Testing using JUnit 1377

http://junit.org/junit/javadoc/4.5/

The JUnit sample is based on the RAD8Java project. Import the completed code
for this section from the c:\7835codesolution\junit\RAD8JUnit.zip project
interchange file.

After you import RAD8JUnit, it is a requirement that you import RAD8JPA and
RAD8JPATest for RAD8JUnit to work correctly.

The JPA files are available at C:\7835codesolution\jpa\RAD8JPA.zip.

26.3.1 Creating a JUnit test case

Rational Application Developer provides wizards to help you build JUnit test
cases and test suites. The following step-by-step guide leads you through the
example, so that you become familiar with the JUnit tooling within Rational
Application Developer:

1. Create a new package called itso.rad8.bank.test.junit in the RAD8JUnit
project (under src).

2. Add the JUnit library to the Java project so that the classes from the JUnit
framework can be resolved:

a. Right-click the RAD8JUnit project and select Properties, or press
Alt+Enter.

b. Select Java Build Path. Select the Libraries tab and click Add Library.

c. In the Add Library window, select JUnit and click Next.

d. In the JUnit library version field, select JUnit 4 and click Finish.

e. Click OK to close the Properties window.

Creating a JUnit test case
To create a test case for the transfer method of the ITSOBank class, follow these
steps:

1. Right-click the itso.rad8.bank.impl.ITSOBank class and select New
JUnit Test Case (which is only available in the Java perspective) or select
New Other Java JUnit JUnit Test Case. Alternatively, click the
arrow in the icon in the toolbar and select .

Important: Use a new workspace for the JUnit example. If you work in your
regular workspace, the Java builder will not function properly any longer for
projects with non-Java files in src/META-INF, such as projects with the Java
Persistence API (JPA). See 26.7, “Cleaning the workspace” on page 1418, for
a circumvention.
1378 Rational Application Developer for WebSphere Software V8 Programming Guide

2. In the JUnit Test Case window (Figure 26-1 on page 1380), complete the
following steps:

a. Select New JUnit 4 test.
b. For the Package, click Browse and select itso.rad8.bank.test.junit.
c. For the Name, accept ITSOBankTest.
d. Select the setUp() and tearDown() methods.
e. Clear Generate comments (default).
f. Verify that Class under test is set to ITSOBank.
g. Click Next.

Figure 26-1 on page 1380 shows the JUnit Test Case window.

Stub: A stub is a skeleton method so that you can add the body of the
method yourself.
 Chapter 26. Testing using JUnit 1379

Figure 26-1 JUnit Test Case wizard

3. In the New JUnit Test Case: Test Methods window, select the transfer
method and click Create final method stubs (as shown in Figure 26-2 on
page 1381). Then click Finish.
1380 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 26-2 Select test methods

The wizard generates the ITSOBankTest class and opens the file in the editor.

Completing the test class
Typically, you run several tests in one test case. To ensure that no side effects
occur between test runs, the JUnit framework provides the setUp and tearDown
methods. Every time that the test case is run, setUp is called at the start of the
run, and tearDown is called at the end of the run.

To complete the test class, follow these steps:

1. Add three variables to ITSOBankTest class:

private Bank bank = null;
private static final String ACCOUNT_NUMBER_1 = "001-999000777";
private static final String ACCOUNT_NUMBER_2 = "002-999000777";
 Chapter 26. Testing using JUnit 1381

Remember that you can add missing imports by selecting Source
Organize Imports, or by pressing Ctrl+Shift+O.

The bank variable is instantiated in the setUp method before starting each test
and is available for use in the test methods.

2. Add the following code to the setUp method:

@Before
public void setUp() throws Exception {

/* Instantiate objects
 * The getBank method returns the initialized (containing

Customers
 * and Accounts) ITSOBank instance.
 */
if (this.bank == null) {

this.bank = ITSOBank.getBank();
}

}

3. Keep the generated code of the tearDown method unchanged.

Completing the test methods
When the ITSOBankTest is generated, the stub of the testTransfer method is
added. In this section, we explain how to implement this test method and how to
add a second method:

1. Complete the testTransfer method, as shown in Example 26-3 on
page 1383.

Flow of the code: The JUnit framework calls the setUp method before
each test method. The ITSOBank class is implemented as a Singleton (only
one object of this class exists). Therefore, you always get the same
ITSOBank object when you call the static getBank method. When the setUp
method is called a second time, you get the same ITSOBank instance as in
the first call.

For example, if you removed all the customers in the first test method, the
ITSOBank object that you get in the second call of the setUp method is
empty, because removing a customer from the bank automatically closes
all of the customer’s accounts. Therefore, it can be useful to call a cleanup
service in the tearDown method to reset the ITSOBank instance. This
cleanup service is not necessary in our example.

Reminder: Make sure that you import java.math.BigDecimal and
org.junit.Assert.
1382 Rational Application Developer for WebSphere Software V8 Programming Guide

Example 26-3 ITSOBankTest class: testTransfer method

@Test
public final void testTransfer() {

try {
BigDecimal account1AmountBeforeTransfer = this.bank

.searchAccountByAccountNumber(
ITSOBankTest.ACCOUNT_NUMBER_1).getBalance();

BigDecimal account2AmountBeforeTransfer = this.bank
.searchAccountByAccountNumber(

ITSOBankTest.ACCOUNT_NUMBER_2).getBalance();
BigDecimal transferAmount = new BigDecimal(20.00D);

// Invoke a method
this.bank.transfer(ITSOBankTest.ACCOUNT_NUMBER_1,

ITSOBankTest.ACCOUNT_NUMBER_2, transferAmount);

// Verify assertions
Assert.assertEquals(this.bank.searchAccountByAccountNumber(

ITSOBankTest.ACCOUNT_NUMBER_1).getBalance().doubleValue(),
account1AmountBeforeTransfer.subtract(transferAmount)

.doubleValue(), 0.00D);
Assert.assertEquals(this.bank.searchAccountByAccountNumber(

ITSOBankTest.ACCOUNT_NUMBER_2).getBalance().doubleValue(),
account2AmountBeforeTransfer.add(transferAmount)

.doubleValue(), 0.00D);
} catch (ITSOBankException e) {

e.printStackTrace();
Assert.fail("Transfer failed: " + e.getMessage());

}
}

This test method transfers an amount from one account to another account.
After the credit and debit transactions have completed, the method verifies
that the balances of the two involved accounts have changed accordingly.

2. If you want to test the method completely, write a test method for each
possible outcome of that method. In our example, we add another test
method called testInvalidTransfer, as shown in Example 26-4 on
page 1384. This method also calls the transfer method, but this time, we
make a transfer where the debit account does not have enough funds. The
method verifies that you receive an InvalidTransactionException.
 Chapter 26. Testing using JUnit 1383

Example 26-4 ITSOBankTest class: testInvalidTransfer

@Test(expected = InvalidTransactionException.class)
public final void testInvalidTransfer() throws Exception {

BigDecimal transferAmount =
this.bank.searchAccountByAccountNumber(

ITSOBankTest.ACCOUNT_NUMBER_1).getBalance().multiply(
new BigDecimal(2.00D));

// Invoke a method
this.bank.transfer(ITSOBankTest.ACCOUNT_NUMBER_1,

ITSOBankTest.ACCOUNT_NUMBER_2, transferAmount);
}

26.3.2 Creating a JUnit test suite

A JUnit test suite is used to run one or more test cases at once. Rational
Application Developer has a simple wizard to create a test suite for JUnit 3.8.1
test cases. However, the wizard does not currently support creating JUnit 4 test
suites.

To create a JUnit 4 test suite manually, follow these steps:

1. Create a new class called AllTests in the same package. The class extends
the default superclass java.lang.Object and does not require any interfaces
or method stubs.

2. Add the import statements and annotations to the AllTests class, as shown
in Example 26-5. The structure of that class is described in “Test suite class”
on page 1377.

Example 26-5 AllTests class: A JUnit 4.x test suite class

package itso.rad8.bank.test.junit;

Important: We found that, with the New JUnit Test Suite wizard, we cannot
select between JUnit 3.8.1 and JUnit 4 test suites. We can only use the wizard
for JUnit 3.8.1 test suites and therefore can add only JUnit 3.8.1 or earlier
JUnit version test cases. This situation is a known Eclipse bug, as explained at
the following web address:

http://bugs.eclipse.org/bugs/show_bug.cgi?id=155828

We created the JUnit test suite for the example manually. Next we provide a
step-by-step guide to create a test suite for JUnit 3.8.1 test cases. This guide
is given for completeness and is not intended for use with the example.
1384 Rational Application Developer for WebSphere Software V8 Programming Guide

http://bugs.eclipse.org/bugs/show_bug.cgi?id=155828

import org.junit.runner.RunWith;
import org.junit.runners.Suite;
import org.junit.runners.Suite.SuiteClasses;

@RunWith(Suite.class)
@SuiteClasses({ITSOBankTest.class})
public class AllTests {}

In our example, we only added a single test class. Therefore, a test suite is
not required. However, as you add more and more test cases, a test suite
quickly becomes a more practical way to manage your unit testing.

To create a JUnit 3.8.1 test suite using the New JUnit Test Suite wizard, follow
these steps:

1. Right-click the JUnit package and select New Other Java JUnit
JUnit Test Suite.

2. In the JUnit Test Suite window, complete the following steps:

a. For the Name, type AllTests.

b. For the Test classes to include in the suite, select all of the test classes
that you want to include in this suite.

c. Click Finish.

26.3.3 Running the JUnit test case or JUnit test suite

To run a JUnit test case or JUnit test suite, follow these steps:

1. Select the ITSOBankTest or AllTests class, click the arrow in the
toolbar, and select Run As JUnit Test. Alternatively, right-click the class
and select Run As JUnit Test.

In our example, Rational Application Developer runs the two test methods that
are defined in the ITSOBankTest class.

2. When the JUnit view opens, move the JUnit view on top of the Console view.

Notice that the two test methods passed the assert verification (Figure 26-3 on
page 1386).
 Chapter 26. Testing using JUnit 1385

Figure 26-3 JUnit view: Both test methods passed the assert verifications

Modifying and running the JUnit test case with assert failures
In our example, we test only for successful execution (although one method
throws an exception, which was what we expected). A test is considered
successful if the test method returns normally. A test fails if one of the methods
does not pass all assert verifications. An error indicates that an unexpected
exception is raised by any test, setUp, or tearDown method. The JUnit view is
more interesting when an error or failure occurs.

To modify and run the JUnit test case with assert failures, follow these steps:

1. Modify the process method of the itso.rad8.bank.model.Credit class:

public BigDecimal process(BigDecimal accountBalance)
throws InvalidTransactionException {

if ((this.getAmount() != null)
&& (this.getAmount().compareTo(new BigDecimal(0.00D)) > 0))

{
return accountBalance.subtract(this.getAmount());

} else {
...... // rest unchanged

}

We change add to subtract, which is obviously an error in the business logic.

2. Run the ITSOBankTest class again as a JUnit Test.

This time, a failure and its trace information are displayed for the
testTransfer method in the JUnit view (Figure 26-4 on page 1387).

Tip: To run the same test again, click the button in the JUnit view toolbar,
as annotated in Figure 26-3 on page 1386.
1386 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 26-4 JUnit view with failure

Double-clicking the entry in the Failure Trace list takes you to the specified line
in the specified Java source file. This line is the line where you set a
breakpoint and start debugging the application. For details about how to
debug an application, see Chapter 28, “Debugging local and remote
applications” on page 1461.

3. Correct the process method of the Credit class, by undoing the change that
we made before.

26.3.4 Launching individual test methods

In Rational Application Developer, you can select a test method to be launched
using the JUnit launch configuration window. Using the previous example of the
ITSOBankTest JUnit test, we show how to launch a single test method:

1. Select RAD8JUnit src itso.rad8.bank.test.junit.

2. Select the ITSOBankTest Java file. Right-click and select Run As Run
Configurations. The Run Configurations window opens, as shown in
Figure 26-5 on page 1388. Follow these steps:

d. Select JUnit ITSOBankTest on the left side.

If you have not run the ITSOBankTest previously, you can create a Run
Configuration by clicking the New launch configuration icon, as
annotated in Figure 26-5 on page 1388.

e. On the right side, select the Test tab and select Run a single test.

f. Click Browse and select the testTransfer method from the
ITSOBankTest class.
 Chapter 26. Testing using JUnit 1387

Figure 26-5 Single test method launch configuration

g. Select Apply and click Run. Figure 26-6 on page 1389 shows the results.

Figure 26-6 on page 1389 shows the selected single test method run. Compare
this single test run result to the test run results of the complete file that is shown
in Figure 26-3 on page 1386.
1388 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 26-6 JUnit view of single test method results

26.3.5 Using the JUnit view

Using the JUnit view, you can view the test run results in a JUnit XML file, as
shown in Figure 26-7. For example, you can open a JUnit XML file that is in the
project itso.rad8.bank.test.junit.ITSOBankTest 20101105-180411.xml, as
shown in Figure 26-7.

Figure 26-7 JUnit view of a JUnit XML file

You can also import a sample JUnit XML file, such as
TEST-com.ibm.events.cluster.DeployCEIForClusterTests.xml, and view it in
the JUnit view, as shown in Figure 26-8 on page 1390.
 Chapter 26. Testing using JUnit 1389

Figure 26-8 JUnit XML import to view in the JUnit view

26.4 JUnit testing of JPA entities

According the JPA specification, JPA entities are not bound to any Java Platform,
Enterprise Edition (Java EE) container. JPA entities can run in a Java Platform,
Standard Edition (Java SE) environment. Therefore, unit testing of JPA entities is
easier to test than it was to test EJB 2.x entity beans.

26.4.1 Preparing the JPA unit testing sample

We use the JPA project that was created in 10.2.2, “Create a new JPA project” on
page 470, for the JPA unit test working example.

The JPA unit test sample is based on the RAD8JPA project. If you do not have that
project in the workspace, import the RAD8JPA project from the
c:\7835codesolution\jpa\RAD8JPA.zip file.

26.4.2 Setting up the ITSOBANK database

The JPA entities are based on the ITSOBANK database. Therefore, we have to
define a database connection within Rational Application Developer.

See “Setting up the ITSOBANK database” on page 1880 for instructions to
create the ITSOBANK database. For the JPA entities, we can either use the DB2 or
Derby database. For simplicity, we use the built-in Derby database in this chapter.

26.4.3 Configuring the RAD8JUnit project

The RAD8JUnit project must be configured, so that it can be used to run JPA
entity unit tests.
1390 Rational Application Developer for WebSphere Software V8 Programming Guide

Follow these steps to configure the RAD8JUnit project properly:

1. In the Package Explorer, right-click the RAD8JUnit project and select
Properties.

2. Select Java Build Path in the tree and select the Libraries tab. Complete
these steps:

a. Click Add Variable, select ECLIPSE_HOME, and click Extend. Select
runtimes/base_v7/derby/lib/derby.jar and click OK.

b. Click Add Variable, select ECLIPSE_HOME, and click Extend. Select
runtimes/base_v7/runtimes/com.ibm.ws.jpa.thinclient_7.0.0.jar and
click OK.

3. Select the Projects tab. Click Add, select the RAD8JPA project, and click
OK.

4. Select the Source tab. In the Default Output Folder field, type RAD8JUnit/src
(overwriting RAD8JUnit/bin).

5. Click OK.

6. In the Setting Build Path window, click Yes to delete the RAD8JUnit\bin folder.

The RAD8JUnit project is now properly configured for JPA unit testing.

26.4.4 Creating a JUnit test case for a JPA entity

To create a JUnit test case for a JPA entity, follow these steps:

1. Create a new package called itso.rad8.bank.test.junit.jpa under
RAD8JUnit/src.

2. Right-click the itso.rad8.bank.test.junit.jpa package and select New
JUnit Test Case (which is only available in the Java perspective) or select
New Other Java JUnit JUnit Test Case. Alternatively, click the
arrow in the icon in the toolbar and select .

3. In the New JUnit Test Case window, select New JUnit 4 test. For the Name,
type AccountJPATest. Select the setUp and tearDown methods and click
Finish (Figure 26-9 on page 1392 shows the dialog window for the JPA
entity).

Required change: This change is necessary so that the persistence.xml
file, which we create later in the RAD8JUnit/src/META-INF folder, is found
while executing the test case.
 Chapter 26. Testing using JUnit 1391

Figure 26-9 JUnit Test Case Wizard for JPA entity

4. Implement the AccountJPATest class, as shown in Example 26-6.

Example 26-6 JUnit test case for JPA

package itso.rad8.bank.test.junit.jpa;

import

public class AccountJPATest {
EntityManager em;

@Before
public void setUp() throws Exception {

if (em == null) {
1392 Rational Application Developer for WebSphere Software V8 Programming Guide

em = Persistence
.createEntityManagerFactory("RAD8JPA")
.createEntityManager();

}
}

@After
public void tearDown() throws Exception {

if (em != null) {
em.close();

}
}

@Test
public void testLoadAccount() {

try {
Account ac = em.find(Account.class, "001-111001");
assertNotNull(ac);

} catch (Exception e) {
fail("Error: Account not found!");
e.printStackTrace();

}
}

}

26.4.5 Setting up the persistence.xml file

You must modify the persistence.xml file, because the JUnit test runs in Java
SE, not on the server. Instead of connecting to the database through a data
source, connect to the database directly through a Java Database Connectivity
(JDBC) driver. You can modify the persistence.xml file in the RAD8JPA project,
but it is better to leave that file configured for the data source in the server and to
place a new file into the RAD8JUnit project, overwriting the file in the RAD8JPA
project. Follow these steps:

1. In the Package Explorer, right-click the RAD8JUnit src folder and select
New Folder. Type META-INF as the folder name and click Finish.

2. Copy the file RAD8JPA/src/META-INF/persistence.xml to
RAD8JUnit/src/META-INF.

3. Open the persistence.xml file (in RAD8JUnit/src/META-INF) and change it,
as shown in Example 26-7 on page 1394.
 Chapter 26. Testing using JUnit 1393

Example 26-7 JPA persistence.xml file configured for Derby using OpenJPA

<?xml version="1.0" encoding="UTF-8"?>
<persistence>

<persistence-unit name="RAD8JPA"
transaction-type="RESOURCE_LOCAL">

<jta-data-source>jdbc/itsobank</jta-data-source>
<provider>

org.apache.openjpa.persistence.PersistenceProviderImpl
</provider>
<class>itso.bank.entities.Account</class>
<class>itso.bank.entities.Customer</class>
<class>itso.bank.entities.Transaction</class>
<class>itso.bank.entities.Debit</class>
<class>itso.bank.entities.Credit</class>
<properties>

<property name="openjpa.ConnectionURL"

value="jdbc:derby:C:\7835code\database\derby\ITSOBANK" />
<property name="openjpa.ConnectionDriverName"

 value="org.apache.derby.jdbc.EmbeddedDriver" />
<property name="openjpa.Log" value="none" />

</properties>
</persistence-unit>

</persistence>

To use the ITSOBANK database in DB2, you use the following properties:

openjpa.ConnectionURL: jdbc:db2://localhost:50000/ITSOBANK
openjpa.ConnectionDriverName: com.ibm.db2.jcc.DB2Driver
openjpa.ConnectionUserName: db2admin (or similar)
openjpa.ConnectionPassword: <xxxxxxxx>

To see the SQL statements that are issued, set the openjpa.Log file to the value
SQL=TRACE.

26.4.6 Running the JPA unit test

Now you can run the JPA JUnit test. To run the AccountJPATest, follow these
steps:

1. Make sure that the ITSOBANKderby connection is disconnected. (With
Embedded Derby, you can only have one active connection to a database.)
You can verify that this connection is disconnected in the Data perspective:
Data Source Explorer. If the ITSOBANKderby connection is available and active,
right-click the connection and select Disconnect.
1394 Rational Application Developer for WebSphere Software V8 Programming Guide

2. In the Package Explorer, right-click the AccountJPATest class and select
Run As Run Configurations. Complete these steps:

a. Double-click JUnit in the tree. A new JUnit run configuration for
AccountJPATest class is created.

b. Select the Arguments tab (Figure 26-10), and in the VM arguments field,
type the value:
-javaagent:E:/Progra~1/IBM/SDP/runtimes/base_v7/plugins/com.ibm.w
s.jpa.jar. Make sure to use the directory where Rational Application
Developer is installed. Without this agent, the JPA entities are not found.

Figure 26-10 Run configuration arguments

c. Click Apply and then click Run.
 Chapter 26. Testing using JUnit 1395

The JUnit view opens, showing that the AccountJPATest test case was successful
(Figure 26-11).

Figure 26-11 JUnit JPA test case was successful

26.5 JUnit testing using TPTP

TPTP JUnit test generates an execution history from which a report can be
generated. In this section, we discuss the following topics:

� Creating the TPTP JUnit sample
� Running the TPTP JUnit test
� Analyzing the test results

Creating the TPTP JUnit sample
In this section, we continue with the RAD8JUnit project.

Creating a new package
Add a new package called itso.rad8.bank.test.tptp to the RAD8JUnit project.

Creating a TPTP JUnit test manually
To create a TPTP JUnit test manually, follow these steps:

1. Right-click the itso.rad8.bank.test.tptp package and select New Other
Test TPTP JUnit Test.

Select Show All Wizards (at the bottom) to see the Test category.

2. If the Confirm Enablement window opens, click OK to enable the Core Testing
Support capability of Rational Application Developer.

Note: TPTP JUnit tests are based on JUnit Version 3.8.1.

The itso.rad8.bank.test.tptp package: If you imported the final RAD8JUnit
project from the sample code and you want to create this example on your
own, delete the package itso.rad8.bank.test.tptp.
1396 Rational Application Developer for WebSphere Software V8 Programming Guide

3. In the New TPTP JUnit Test window (Figure 26-12), complete the following
steps:

a. For the Source folder, click Browse and select RAD8JUnit/src. Click Yes
when prompted to allow Rational Application Developer to add all of the
required libraries to the class path.

b. For the Package, enter itso.rad8.bank.test.tptp.

c. For the Name, enter ITSOBankNew.

d. For “Select how the test behavior is edited”, select In the test editor
(default setting) and click Next.

Figure 26-12 New JUnit Test source code window

4. In the JUnit Test Definition window, accept the parent folder
(RAD8JUnit/src/itso/rad8/bank/test/tptp) and name (ITSOBankNew) and
click Finish.
 Chapter 26. Testing using JUnit 1397

The JUnit Test Suite editor opens. You can create and remove methods on a
JUnit test, and you can control how those methods are invoked. Three tabs
are visible: Overview, Test Methods, and Behavior.

5. In the Test Methods tab, click Add. In the Name field, enter
testSearchCustomerBySsn.

6. In the Behavior tab, click Add and select Loop. Select Loop 1. Click Add
again, select invocation, and select the testSearchCustomerBySsn
method. Then click OK.

Figure 26-13 on page 1399 shows the Behavior tab after making these
changes.

Name and location of source code and TPTP Test: In the previous step,
we entered the name and location of the source code. In this step, we enter
the name and location of the TPTP Test (the model). By default, they are
identical.
1398 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 26-13 TPTP JUnit Test editor (Behavior tab)

7. Save the TPTP JUnit Test editor.

8. In the JUnit Code Update Preview Options window, select Never and click
Always skip to the preview page. Then click Finish.

9. Open the generated itso.rad8.bank.test.tptp.ITSOBankNew class in the
Java editor and add the highlighted code, as shown in Example 26-8.

Example 26-8 ITSOBankTest class

package itso.rad8.bank.test.tptp;

import itso.rad8.bank.exception.InvalidCustomerException;
import itso.rad8.bank.ifc.Bank;
import itso.rad8.bank.impl.ITSOBank;

Overview tab: In the Overview tab, note the following conditions:

� If “Implement Test Behavior as code” is selected, the behavior is purely
code-based, that is, the test methods are run exactly as shown in the
Test Methods view.

� If “Implement Test Behavior as code” is cleared, the Behavior tab
becomes available. Use the behavior feature only for TPTP JUnit tests
that have been created manually.
 Chapter 26. Testing using JUnit 1399

import itso.rad8.bank.model.Customer;

// Keep other imports unchanged
// All documentation is omitted

public class ITSOBankTest extends HyadesTestCase {

private Bank bank = null;
private static final String CUSTOMER_SSN = "111-11-1111";

public ITSOBankTest(String name) {
super(name);

}

public static Test suite() {
// Keep method body unchanged

}

protected void setUp() throws Exception {
if (this.bank == null) {

this.bank = ITSOBank.getBank();
}

}

protected void tearDown() throws Exception {
}

public void testSearchCustomerBySsn() throws Exception {
try {

Customer bankCustomer = this.bank
.searchCustomerBySsn(ITSOBankTest.CUSTOMER_SSN);

assertEquals(bankCustomer.getSsn(),
ITSOBankTest.CUSTOMER_SSN);

} catch (InvalidCustomerException e) {
e.printStackTrace();

}
}

}

1400 Rational Application Developer for WebSphere Software V8 Programming Guide

Importing an existing JUnit test case
To create a TPTP JUnit test by importing an existing JUnit test case, follow these
steps:

1. Import the ITSOBank381Test.java class into the itso.rad8.bank.test.tptp
package from C:\7835code\junit\RAD8JUnit.

2. Right-click the Package Explorer, select Import Test JUnit tests to
TPTP, and click Next.

3. In the Import JUnit tests to TPTP window, select RAD8JUnit
itso.rad8.bank.test.tptp ITSOBank381Test.java and click Finish.

The ITSOBank381Test.testsuite is created in the same package.

4. Open the ITSOBank381Test.testsuite in the TPTP JUnit Test editor. In the
Test Methods tab, verify that two test methods are invoked.

5. Save and close the editor.

26.5.1 Running the TPTP JUnit test

To run a TPTP JUnit test, follow these steps:

1. Right-click ITSOBankNew.testsuite or ITSOBank381Test.testsuite and
click Run As Test to create the run configuration automatically and run the
test.

2. Verify the run configurations by selecting Run Run Configurations. The
configurations are displayed under the Test category.

Import JUnit tests to TPTP window: In the Import JUnit tests to TPTP
window, you cannot select test cases that are JUnit 4.x-based, because
TPTP cannot handle JUnit 4.x.
 Chapter 26. Testing using JUnit 1401

26.5.2 Analyzing the test results

When the test run is finished, the execution results (as noted by the icon) are
generated in the RAD8JUnit project (Figure 26-14).

Figure 26-14 Package Explorer view containing test execution results

To analyze the test results, double-click the ITSOBankNew.execution result
(Figure 26-15 on page 1403).
1402 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 26-15 TPTP JUnit test execution result

In the Test Log Overview tab, you can see the test verdict (pass) and the start
time and stop time of the test run.

The Test Log Events tab lists each step of the test run with additional information.

Viewing the graphic: To view the graphic, you must install the Scalable
Vector Graphics (SVG) browser plug-in. You can download this viewer at no
cost from the Adobe® website:

http://www.adobe.com/svg/viewer/install/auto/
 Chapter 26. Testing using JUnit 1403

http://www.adobe.com/svg/viewer/install/auto/

Generating test reports
Based on a test execution results file, you can generate analysis reports:

� The Test Pass report provides a summary of the latest test execution result
with a graphical representation of the test success.

� The Time Frame Historic report provides a summary of all test execution
results within a certain time frame with a graphical representation of the test
success.

To generate a Test Pass report, follow these steps:

1. Open the Test perspective.

2. Expand RAD8JUnit src itso rad8 bank test tptp.

3. In the Test Navigator, right-click ITSOBankTest and select Report.

4. In the New Report window, select Test Pass Report and click Next.

5. In the Test Pass Report window, for the Name, enter ITSOBankNew_TestPass
(the folder is preselected) and click Next.

6. In the Select a time frame window, enter the start date, end date, start time,
and end time and click Finish:

– The end time is set as the current time.

– For the start time, enter a time before you started testing (by default, this
field is set to the beginning of the day).

A Test Pass report is generated.

7. Right-click ITSOBankNew_TestPass and select Open With Web
Browser.
1404 Rational Application Developer for WebSphere Software V8 Programming Guide

The Test Pass report opens in the web browser (Figure 26-16).

Figure 26-16 Test Pass report

26.6 Web application testing

You can also create test cases that run against one of the web projects:
RAD8BankBasicWeb, RAD8StrutsWeb, or RAD8EJBWeb. However, when testing
anything that runs inside a servlet container, a testing framework, such as
Cactus, can make the testing much easier.
 Chapter 26. Testing using JUnit 1405

In addition to providing a common framework for test tools and support for JUnit
test generation, TPTP enables you to test web applications.

TPTP provides the following web testing tasks:

� Recording a test: The test creation wizard starts the Hyades proxy recorder,
which records your interactions with a browser-based application. When you
stop recording, the wizard starts a test generator, which creates a test from
the recorded session.

� Editing a test: You can inspect and modify a test prior to compiling and
running it.

� Generating an executable test: Follow this procedure to generate an
executable test. Before a test can be run, the Java source code of the test
must be generated and compiled. This process is called code generation.

� Running a test: Run the generated test.

� Analyzing the test results: At the conclusion of a test run, you see an
execution history, including a test verdict, and you can request two graphical
reports showing a page response time and a page hit analysis.

26.6.1 Preparing for the sample

As a prerequisite to the web application testing sample, you must have the
WebSphere Application Server v8.0 Beta test environment installed and running.
We use the RAD8BankBasicWeb application that was created in Chapter 18,
“Developing web applications using JavaServer Pages (JSP) and servlets” on
page 981, for the web application testing sample.

If you do not have the RAD8BankBasicWeb application in the workspace, import the
c:\7835code\junit\RAD8BankBasicWeb project into the workspace (select all
three projects).

Cactus: Cactus is an open source subproject in the Apache Software
Foundation’s Jakarta Project. It is a simple framework for unit testing
server-side Java code, such as servlets, EJB, tag libraries, and filters.

The objective of Cactus is to lower the cost of writing tests for server-side
code. Cactus supports the so-called white box testing of server-side code. It
extends and uses JUnit.

You can find more information at the following web address:

http://jakarta.apache.org/cactus/
1406 Rational Application Developer for WebSphere Software V8 Programming Guide

http://jakarta.apache.org/cactus/

You can also import the completed code for this section from the
C:\7835code\junit\RAD8JUnitWebTest.zip project interchange file.

To verify that the web application runs, follow these steps:

1. Switch to the Web perspective.

2. Right-click the RAD8BankBasicWeb project in the Enterprise Explorer view
and select Run As Run on Server.

3. Verify that the web browser starts and that the ITSO RedBank welcome page
is shown. Close the page.

Creating a Java project
Create a new Java project called RAD8JUnitWebTest.

26.6.2 Recording a test

To create a simple HTTP test, follow these steps:

1. Open the Test perspective.

2. Right-click RAD8JUnitWebTest in the Test Navigator view, select New
Test Element Test From Recording, and click Next.

3. Select Create Test From New Recording and click Next.

4. In the Select Location for Test Suite window, select the RAD8JUnitWebTest
project, accept the test file name of RAD8JUnitWebTest.testsuite, and click
Finish.

A progress window opens while your browser starts. Your browser settings
are updated, and a local proxy is enabled. If you are using a browser other
than Microsoft Internet Explorer, see the online help for detailed instructions
to configure the proxy.

Recording has now started.

5. Start the selected web application by entering the following URL in the
browser:

http://localhost:9080/RAD8BankBasicWeb/

Browser cache: To ensure that your recording accurately captures HTTP
traffic, clear the browser cache.

Tip: You can set the browser that is used for recording by selecting
Window Preferences Test TPTP URL URL Recorder.
 Chapter 26. Testing using JUnit 1407

The port (9080) might differ in your installation.

6. Record a money transfer from a customer’s account to another account, and
verify that the required transactions have been created:

a. On the ITSO RedBank welcome page, select the redbank link. For the
customer ID (SSN), type 333-33-3333. Then click Submit.

b. Click account number 003-999000777.

c. On the next page, select Transfer. In the Amount field, enter 500. In the To
Account field, enter 003-999000888. Then click Submit.

d. Verify that List transactions is selected and click Submit. One Debit
transaction is listed.

e. Click Account Details and then click Customer Details.

f. Click account number 003-999000888, verify that List transactions is
selected, and click Submit. One Credit transaction is listed.

g. Click Account Details, click Customer Details, and click Logout.

7. Close the browser to stop recording or click Stop Recording in the toolbar of
the Recorder Control view (Figure 26-17 on page 1409).

Important: For Internet Explorer 7.0, you must use the IP address to run
the web application:

http://<ip-address>:9080/RAD8BankBasicWeb/

No recording is produced when using the following URL:

http://localhost:9080/...

For Firefox 2.0, you must first configure the network settings. Select
Tools Options Advanced Network. Click Settings and select
Auto-detect proxy settings for the network.
1408 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 26-17 Recorder Control view

8. When prompted to Confirm Open Editor, click Yes.

After closing the browser, the Recorder Control view shows the messages
Recording completed and Test generation completed.

The wizard automatically builds a TPTP URL Test. When the test is successfully
generated, the Recorder Control view shows the Test generation completed
message.

26.6.3 Editing the test

The TPTP URL Test is displayed under the RAD8JUnitWebTest project and is open
in the editor. We can inspect and modify it before compiling and running it. The
test is not Java code yet, but we can check the requests and modify them:

1. On the Overview tab (Figure 26-18 on page 1410), enter the following data:

– For the Source Folder, enter /RAD8JUnitWebTest/src.
– For the Package Name, enter itso.rad8.bank.test.
– For the Class Name, enter RAD8JUnitWebTest.
 Chapter 26. Testing using JUnit 1409

Figure 26-18 TPTP URL Test window: Overview tab
1410 Rational Application Developer for WebSphere Software V8 Programming Guide

2. Select the Behavior tab of the TPTP URL Test editor (Figure 26-19). Change
the behavior of the test. For example, we adjust the number of iterations. Save
and close the Test editor.

Figure 26-19 TPTP URL Test window: Behavior tab

26.6.4 Generating an executable test

Before you can run a test, you must generate and compile the Java source code
for the test. This process is called code generation. The compiled code is stored
in the RAD8JUnitWebTest project. To start the code generation for this project,
follow these steps:

1. Right-click RAD8JUnitWebTest TPTP URL Test in the RAD8JUnitWebTest
project and select Generate.

2. In the TPTP URL Test Definition Code Generation window, accept the project
and source folder and click Finish to start the code generation.

3. To examine the generated Java code, switch to the Java or Web perspective
and open the itso.rad8.bank.test.RAD8JUnitWebTest class.

26.6.5 Running the test

To run the RAD8JUnitWebTest, follow these steps:

1. Switch to the Test perspective.

2. Right-click RAD8JUnitWebTest TPTP URL Test in the RAD8JUnitWebTest
project and select Run As Test.
 Chapter 26. Testing using JUnit 1411

The test executes and creates a result.

26.6.6 Analyzing the test results

When the test run is finished, the execution result () is displayed in the Test
Navigator view. To analyze the test results, follow these steps:

1. Double-click the execution result () RAD8JUnitWebTest[<timestamp>]
file in the Test Navigator view. The Test Log Overview tab is displayed
(Figure 26-20 on page 1413).

The test log gives the test verdict and the start and stop time of the test run.
The verdict can be one of the following possibilities:

fail One or more requests returned an HTTP code of 400 or
greater, or the server was unable to be reached during
playback.

pass No request returned a code of 400 or greater.

inconclusive The test did not run to completion.

error The test itself contains an error.
1412 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 26-20 Test Log Overview tab
 Chapter 26. Testing using JUnit 1413

Error messages: In applications that use session data, you can have error
messages, because the session ID is stored in the generated test case.
When you rerun these test cases, a new session ID is created by the
server, and it does not match the recorded session ID.

The problem is a known Eclipse issue. You can find discussions about the
problem at the following web pages:

� Bug 128613: HTTP-Header toUpperCase() causes wrong Session ID
and wrong webapp path

https://bugs.eclipse.org/bugs/show_bug.cgi?id=128613

� Bug 139699: HttpResponse class does not expose the complete HTTP
response

https://bugs.eclipse.org/bugs/show_bug.cgi?id=139699
1414 Rational Application Developer for WebSphere Software V8 Programming Guide

https://bugs.eclipse.org/bugs/show_bug.cgi?id=128613
https://bugs.eclipse.org/bugs/show_bug.cgi?id=139699

2. Click the Events tab (26.6.7, “Generating test reports” on page 1416) for
detailed information about each HTTP request.

Figure 26-21 Events tab
 Chapter 26. Testing using JUnit 1415

26.6.7 Generating test reports

Based on a test execution results file, you can generate various kinds of analysis
reports:

� The HTTP Page Response Time report is a bar graph that shows the seconds
that are required to process each page in the test and the average response
time for all pages.

� The HTTP Page Hit Rate report is a bar graph that shows the hits per second
to each page and the total hit rate for all pages.

You can also generate the Test Pass report in the same way that you generate it
for the basic JUnit tests.

HTTP Page Response Time report
To generate an HTTP Page Response Time report, follow these steps:

1. In the Test Navigator view, right-click the RAD8JUnitWebTest test suite ()
and select Report.

2. In the New Report window, select HTTP Page Response Time and click
Next.

3. In the New Report window, accept the parent folder (RAD8JUnitWebTest). In
the Name field, enter RAD8JUnitWebTest_HTTPPageResponseTime. Click Finish.

4. If you have multiple test execution results, in the HTTP Report Generator
dialog window, select the test execution result for which the report is
generated and click Finish.

An HTTP Page Response Time report is generated and opens in the browser.
Alternatively, you can click the generated file and select Open With Web
Browser (Figure 26-22 on page 1417).

Viewing the reports: To view the reports, you have to install the Scalable
Vector Graphics (SVG) browser plug-in.
1416 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 26-22 HTTP Page Response Time report

HTTP Page Hit Rate report
To generate a HTTP Page Hit Rate report, follow these steps:

1. In the Test Navigator view, right-click the RAD8JUnitWebTest test suite ()
and select Report.

2. In the New Report window, select HTTP Page Hit Rate and click Next.

3. In the New Report window, accept the parent folder (RAD8JUnitWebTest). In
the Name field, enter RAD8JUnitWebTest_HTTPPageHitRate and click Finish.

4. If you have multiple test execution results, in the HTTP Report Generator
window, select the test execution result for which the report is generated and
click Finish.

An HTTP Page Hit Rate report is generated and opens in the browser.
Alternatively, you can click the generated file and select Open With Web
Browser (Figure 26-23 on page 1418).

Click one of the bars to
display the numbers
 Chapter 26. Testing using JUnit 1417

Figure 26-23 HTTP Page Hit Rate report

26.7 Cleaning the workspace

When enabling the test perspective or Core Testing Support capability, the Java
builder is changed to ignore XML and HTML files. To fix the workspace, select
Window Preferences Java Compiler Building. Under the Output
folder, Filtered resources, remove *.xml and *.html from the text, as shown in this
example:

.launch,.testsuite,*.deploy,*.location,*.execution,*.datapool,*.artif
act,*.testlog,*.xml,*.html,*.svg

Click one of the bars to
display the numbers
1418 Rational Application Developer for WebSphere Software V8 Programming Guide

Chapter 27. Profiling applications

Profiling is a technique that developers use to collect runtime data and detect
application problems, such as memory leaks, performance bottlenecks,
excessive object creation, and exceeding system resource limits during the
development phase. In this chapter, we introduce the features, architecture, and
process for profiling applications using the profiling features of IBM Rational
Application Developer. We also include an example for basic memory analysis,
execution-time analysis, and thread/contention analysis.

The chapter is organized into the following sections:

� Introduction to profiling
� Preparing for the profiling sample
� Profiling a Java application
� Profiling a web application running on the server

27
© Copyright IBM Corp. 2011. All rights reserved. 1419

27.1 Introduction to profiling

Traditionally, performance analysis is performed after an application nears
deployment or after it has already been deployed. By using the profiling tools that
are included with Rational Application Developer, the developer can move the
performance analysis to a much earlier phase in the development cycle. By doing
so, the developer has more time for changes to the application that might affect
the architecture of the application before the changes become critical production
environment issues.

With Rational Application Developer profiling, you can detect the following
problems among others:

� Memory usage problems
� Performance bottlenecks
� Excessive object creation

You can use the profiling tools in the following cases to gather data on
applications that are running in these situations:

� Inside an application server, such as WebSphere Application Server

� As a stand-alone Java application

� On the same system as Rational Application Developer

� In multiple Java virtual machines (JVMs)

� On a remote WebSphere Application Server with the IBM Rational Agent
Controller installed. IBM Rational Agent Controller V8.3 can be used for
remote profilling on any WebSphere Application Server server running the
Java Development Kit (JDK) V1.5 or later.

IBM Rational Agent Controller: IBM Rational Agent Controller V8.3 and
V8.3.1 are available on the following platforms:

� Microsoft Windows 32-bit and 64-bit
� Linux 32-bit and 64-bit
� AIX® 32-bit and 64-bit
� z/OS 31-bit and 64-bit
� Solaris SPARC 32-bit and 64-bit
� Solaris x86 32-bit and 64-bit
� Linux for System z 31-bit and 64-bit

IBM Rational Agent Controller V8.3 or later is required to use profiling
without manually setting up environment variables.
1420 Rational Application Developer for WebSphere Software V8 Programming Guide

27.1.1 Profiling features

Profiling with Rational Application Developer includes several analysis types.
Each analysis type has views with which you can focus on particular problems,
such as memory leaks, performance bottlenecks, and excessive object creation
while profiling an application.

We describe the following analysis types and their associated views in this
section:

� Basic memory analysis
� Execution-time analysis
� Thread/contention analysis

For more details about Code Coverage tooling in IBM Rational Application
Developer, you can visit the link:

http://www.ibm.com/developerworks/rational/library/10/introtocodecovera
getoolinrationalapplicationdeveloper/?ca=drs-

Basic memory analysis
Basic memory analysis shows statistics about the application heap. It is used to
detect memory management problems. Memory analysis can help developers
identify memory leaks and excessive object allocation that might cause
performance problems. Basic memory analysis has been enhanced with the view
that is listed in Table 27-1.

Table 27-1 Basic memory analysis view

Execution-time analysis
Execution-time analysis is used to detect performance problems by highlighting
the most time intensive areas in the code. This type of analysis helps developers
identify and remove unused or inefficient coding algorithms. Execution-time
analysis has been enhanced with the views that are listed in Table 27-2.

Table 27-2 Execution-time analysis views

View name Description

Object allocations Shows statistics about the application heap. It provides detailed
information, such as the number of classes loaded, the number
of instances that are alive, and the memory size that is allocated
by every class.

View name Description

Execution statistics Shows statistics about the application execution time.
 Chapter 27. Profiling applications 1421

http://www.ibm.com/developerworks/rational/library/10/introtocodecoveragetoolinrationalapplicationdeveloper/?ca=drs-

Thread analysis
Thread analysis enables an application developer to find threads that otherwise
run sooner, or more rapidly, if the resource and thread characteristics of the
application are altered. The Thread Analysis view of Rational Application
Developer consists of three tabs, as listed in Table 27-3.

Table 27-3 Thread analysis tabs

Probekit analysis
Probes are reusable Java code fragments that you write to collect detailed
runtime data about a program’s objects, instance variables, arguments, and
exceptions. Probekit provides a framework on the Eclipse platform to help you
create and use probes. One common use of Probekit is to create lightweight
profilers that collect only the data in which developers are interested.

Call tree Shows information about method calls during the profiling
session in a form that lets you easily identify a hot spot.
This view consists of two parts: the execution flow call tree
and the call stack view.

Method invocation Shows a graphical representation of the entire course of a
program’s execution and provides the ability to navigate
through the methods that invoked the selected method.

Method invocation details Shows statistical data on a selected method.

UML2 trace interactions Shows the execution flow of an application according to the
notation that is defined by the Unified Modeling Language
(UML).

Tab name Description

Thread Statistics A table of statistics for every thread that is launched by
the application, both past and present. Listed
information includes the thread state; total running,
waiting, and blocked times; and the number of blocks
and deadlocks per thread.

Monitor Statistics Provides detailed information about monitor class
statistics, including block and wait statistics for individual
monitor classes.

Threads Visualizer Provides a visual representation of all threads that are
profiled in the target application, by status.

View name Description
1422 Rational Application Developer for WebSphere Software V8 Programming Guide

A probekit contains one or more probes, and each probe contains one or more
probe fragments. You can specify when probes are executed, and on which
programs they execute. The probe fragments are a set of Java methods that are
merged with standard boilerplate code with a new Java class generated and
compiled. The functions generated from the probe fragments appear as static
methods of the generated probe class.

The probekit engine, which is also called the byte-code instrumentation (BCI)
engine, is used to apply probe fragments by inserting the calls into the target
programs. The insertion process of the call statements into the target methods is
referred to as instrumentation. The data items that are requested by a probe
fragment are passed as arguments (for example, method name and arguments).
The benefit of this approach is that the probe can be inserted into a large number
of methods with small overhead.

Probe fragments can be executed at the following points:

� At method entry or exit time
� At exception handler time
� Before the original code in the class static initializer
� Before every line of executable code when source code is available
� When specific methods are called, which are not inside the called method

Each of the probe fragments can access the following data:

� Package, class, and method name
� Method signature
� This object
� Arguments
� Return value

Two major types of probes are available to the user (Table 27-4).

Table 27-4 Types of probes available with Probekit

Type of probe Description

Method probe This probe can be inserted anywhere within the body of a method with
the class or JAR files containing the target methods instrumented by
the BCI engine.

Callsite probe This probe is inserted into the body of the method that calls the target
method. The class or JAR files that call the target are instrumented by
the BCI engine.
 Chapter 27. Profiling applications 1423

27.1.2 Profiling architecture

The profiling architecture that exists in Rational Application Developer is based
on the Eclipse Test and Performance Tools Platform (TPTP) project. You can find
more detailed information about the Eclipse TPTP project at the following web
address:

http://www.eclipse.org/tptp/

In the previous TPTP workbench, users required the services of the stand-alone
Agent Controller before they were able to use the function in the Profiling and
Logging perspective and in the Test perspective. Even when the user tried to
profile a Java application locally or to run TPTP tests locally, the Agent Controller
had to be installed on the local machine.

The Integrated Agent Controller is a new feature in the TPTP workbench, with
which users can profile a Java application locally and run a TPTP test locally
without requiring the stand-alone Agent Controller on the local machine. Profiling
on a remote machine or running a TPTP test on a remote machine still requires
the Agent Controller on that remote machine.

This feature is packaged in the TPTP runtime install image; therefore, no
separate install step is required. The Integrated Agent Controller does not require
any configuration at all. Unlike the Agent Controller, which requires the user to
enter information, such as the path for the Java executable, the Integrated Agent
Controller determines the required information from the Eclipse workbench
during start-up.

TPTP provides the Agent Controller daemon with a process for enabling client
applications to start host processes and interact with agents that exist within host
processes. Figure 27-1 on page 1425 shows the profiling architecture.
1424 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.eclipse.org/tptp/

Figure 27-1 Profiling architecture of Rational Application Developer

The profiling architecture consists of the following components:

Application process The process that is executing the application that consists
of the JVM and the profiling agent.

Agent The profiling component installed with the application that
provides services to the host process and more
importantly provides a portal by which application data
can be forwarded to attached clients.

Test Client A local or remote application that is the destination of host
process data that is externalized by an agent. A single
client can be attached to many agents at the same time,
but it does not always have to be attached to an agent.

Agent Controller A daemon process that resides on each deployment host,
providing the mechanism by which client applications can
either start new host processes, or attach to agents
coexisting within existing host processes. The Agent
Controller can only interact with host processes on the
same node.

Rational Application Developer comes with an integrated

Development Hosts

JVMTI
Events

Controls

Eclipse Plug-ins

Test Client

JDK

IBM Agent Controller

ServiceServiceServiceService

Deployment Hosts

Application
Process

AgentAgent

Application
Process

AgentAgent

Profiler
Agent

Java
Virtual

Machine
 Chapter 27. Profiling applications 1425

agent controller. Therefore, a separate install of the agent
controller is not required.

Deployment hosts The host to which an application has been deployed and
is being monitored for the capture of the profiling agent.

Development hosts The host that runs an Eclipse-compatible architecture,
such as Rational Application Developer, to receive
profiling information and data for analysis.

Each application process that is shown in Figure 27-1 on page 1425 represents a
JVM that is executing a Java application that is being profiled. A profile agent is
attached to each application to collect the appropriate runtime data for a
particular type of profiling analysis. This profiling agent is based on the JVM
Tools Interface (JVMTI) architecture. You can obtain more information about the
JVMTI specification at the following web address:

http://download.oracle.com/javase/6/docs/technotes/guides/jvmti/index.h
tml

The data that is collected by the agent is then sent to the Agent Controller, which
then forwards this information to Rational Application Developer for analysis and
visualization.

The following types of profiling agents are available in Rational Application
Developer:

� The Java Profiling Agent is based on the JVMTI architecture and is shown in
Figure 27-1 on page 1425. This agent is used for the collection of both
stand-alone Java applications and applications that are running on an
application server.

� The J2EE Request Profiling Agent resides in an application server process
and collects runtime data for Java 2 Platform, Enterprise Edition (J2EE)
applications by intercepting requests to the EJB or Web containers.

27.1.3 Profiling and Logging perspective

You can access the Profiling and Logging perspective by selecting Window
Open Perspective Other Profiling and Logging and then by clicking OK.
If it is not listed, click Show all.

If the Profiling and Logging capability is not enabled in the workspace, you are
prompted to enable this capability. Click OK.

Active instance: Only one instance of the J2EE Request Profiling agent is
active in a process that hosts the WebSphere Application Server.
1426 Rational Application Developer for WebSphere Software V8 Programming Guide

http://download.oracle.com/javase/6/docs/technotes/guides/jvmti/index.html

The Profiling and Logging perspective has many supporting views. To see the
supporting views, select Window Show View Other under Profiling and
Logging (Figure 27-2).

Figure 27-2 Profiling and Logging views

27.2 Preparing for the profiling sample

In this section, we explain the tasks that you must complete prior to profiling the
sample web application. We use the web application that was developed in
Chapter 12, “Developing Enterprise JavaBeans (EJB) applications” on page 577,
as our sample application for profiling.

Complete the following tasks in preparation for the profiling sample:

� Installing the prerequisite software
� Enabling the Profiling and Logging capability

27.2.1 Installing the prerequisite software

The working example requires that you install the following software:

� IBM Rational Application Developer
� Integrated Agent Controller

This feature is packaged in the installation image of Rational Application
Developer. Therefore, no separate installation step is required.
 Chapter 27. Profiling applications 1427

27.2.2 Enabling the Profiling and Logging capability

The Profiling and Logging capability is enabled by default. In order to check if it is
enabled, follow these steps:

1. Select Window Preferences.

2. In the Preferences window (Figure 27-3), in the left pane, expand General
Capabilities. In the right pane, click Advanced.

Figure 27-3 Preferences window

3. In the Advanced Capabilities Settings window (Figure 27-4 on page 1429),
expand Tester and select Profiling and Logging. Then click OK.
1428 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 27-4 Advanced Capabilities Settings window

27.3 Profiling a Java application

In this section, we profile a Java application. We import the sample code and run
the application in profiling mode.

27.3.1 Importing the sample project archive file

To import the JPA application project archive file, follow these steps:

1. Open the Java EE perspective.

2. Select File Import.

Probekit: If you want to use Probekit, select Probekit in the Advanced
Capabilities Settings window.

Tip: If you have the sample Java Persistence API (JPA) application (RAD8JPA
and RAD8JPATest projects) already in the workspace, skip this step.
 Chapter 27. Profiling applications 1429

3. In the Import window, expand General and select Existing Projects into
Workspace. Click Next.

4. In the Import Projects window, click Browse and locate the
c:\7835codesolution\jpa\RAD8JPA.zip file.

5. Select the RAD8JPA and RAD8JPATest projects and click Finish.

Alternatively you can run the Java application (BankClient) in the RAD8Java
project in profiling mode.

27.3.2 Creating a profiling configuration

We use the EntityTester class (in RAD8JPATest, itso.bank.entities.test) as
the sample application. See 10.6, “Testing JPA entities” on page 501, for a
description of the EntityTester class. To create a profiling configuration, follow
these steps:

1. Right-click EntityTester and select Profile As Profile Configurations.

2. In the Profile Configurations window, double-click Java Application and an
entry named EntityTester is added and opened.

3. On the Arguments tab (Figure 27-5 on page 1431), under the Program
arguments, type 333-33-3333. For the VM arguments, enter this information:

-javaagent:"<RAD_HOME>/runtimes/
base_v8_stub/plugins/com.ibm.ws.jpa.jar" (enter it all on one line).

Important: If you have not already configured the data source settings for the
ITSOBANK database, follow the steps in “Configuring the data source for the
ITSOBANK” on page 609, before publishing and running the sample
application.
1430 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 27-5 Profile Configurations: Arguments
 Chapter 27. Profiling applications 1431

4. On the Profile Settings tab (Figure 27-6), select Execution Time Analysis.
Click Edit Options.

Figure 27-6 Profile settings

One analysis type: You can only select one analysis type. See the
Technote at the following web address:

http://www-01.ibm.com/support/docview.wss?uid=swg21328379
1432 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www-01.ibm.com/support/docview.wss?uid=swg21328379
http://www-01.ibm.com/support/docview.wss?uid=swg21328379

Tip: Users of Rational Application Developer can now use the Profiling Quick
Start button to bring up a wizard that will guide them through selecting the
correct profiling options to fit their usage scenarios. Figure 27-7 shows the first
step of the Profiling Quick Start Wizard.

Figure 27-7 Profiling Quick Start Wizard

The three profiling options filter the application problems based on time,
memory, and throughput. More options are available to refine each of these
options.
 Chapter 27. Profiling applications 1433

5. In the Edit Profiling Options window (Figure 27-8), select Collect method
CPU time information and click Finish.

Figure 27-8 Profiling options for Execution-Time Analysis

6. In the Profile Configurations window, click Apply to save the configuration.

27.3.3 Running the EntityTester application

To run the EntityTester application, follow these steps:

1. In the Profile Configurations window, click Profile to run the application.

2. When prompted, click Yes to switch to the Profiling and Logging perspective.

In the Profiling Monitor view (Figure 27-9 on page 1435), you can see that
execution time is being measured. In the Console view on the right, you can
see the program running through its parts and displaying the output.
1434 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 27-9 EntityTester run in profiling mode

27.3.4 Analyzing profiling data

We have now run the sample application for which we want to collect data. In this
section, we analyze the collected data for execution statistics.

To display the collected data, right-click the process, select Open With , and
specify the desired option:

� Open Thread Analysis
� Open Object Allocation View
� Open Execution Statistics

27.3.5 Execution statistics

The Execution Statistics view shows statistics about the application execution
time. It provides data, such as the number of methods called and the amount of
time that is taken to execute every method. Execution statistics are available at
the package, class, method, and instance level.
 Chapter 27. Profiling applications 1435

To analyze the execution statistics, follow these steps:

1. In the Profiling Monitor view, double-click Execution Time Analysis, click the
 icon, or right-click the entry and select Open With Execution

Statistics. The Session summary tab and the Execution Statistics tab show
the same data, but their filters differ.

2. On the Execution Statistics tab, set the filter. For example, we chose no
filter. You can also choose the Highest 10 base time filter, which is the filter
that was selected for the Session summary that is shown in Figure 27-10. You
can also choose the Highest 10 cumulative time filter or other filters.

Figure 27-10 Execution Statistics: Session summary
1436 Rational Application Developer for WebSphere Software V8 Programming Guide

3. Expand the packages and classes to see the accumulated values per class or
per method (Figure 27-11).

Notice the highlighted icons () in Figure 27-11 that
are available to switch to package, class, method, and instance views; to open
the source; to show data as percentages; and to add delta columns.

Figure 27-11 Execution Statistics: Expanded

Figure 27-11 shows the following statistics for each object type:

� Base Time refers to the time that is taken to execute the invocation (excluding
the time that is spent in the called methods).

� Average Base Time is the base time divided by the number of calls.

� Cumulative Time is the time that is taken to execute the invocation (including
the time that is spent in the called method).

� Calls refers to the number of calls that are made to the package, class, or
method.

JPA entity classes: The JPA entity classes include several generated
methods with the pc prefix that are generated for database access.
 Chapter 27. Profiling applications 1437

In the following sections, we describe the additional views that are available at
the bottom of the Execution Statistics window (Figure 27-11 on page 1437).

Call Tree
Select the Call Tree tab. Expand main main processTransaction
Credit to analyze the call tree and the percent of time that is spent in each
method of the tree (Figure 27-12).

Figure 27-12 Execution Statistics: Call Tree

Method Invocation Details
In the Execution Statistics tab, find and expand the Account class to see the
methods of the Account class. Right-click over processTransaction and select
Show Method Invocation Details (Figure 27-13 on page 1439).

The Method Invocation Details tab provides statistical data on a selected
method.
1438 Rational Application Developer for WebSphere Software V8 Programming Guide

The Show Method Invocation Details tab shows the following data for the
selected method:

� Selected method (Account.processTransaction) shows details, including the
number of times that the selected method is called (Calls), class, package,
and the time that is taken by this method.

� Selected method is invoked by shows the details of each method that calls the
selected method, including the number of calls to the selected method, and
the number of times that the selected method is invoked by the caller. In our
case, the main method invokes the processTransaction method.

� Selected method invokes shows the details of each method that is invoked by
the selected method, for example, Credit and Debit constructors, setAccount
of the Transaction class, and internal JPA methods.

Figure 27-13 Execution Statistics: Method Invocation Details
 Chapter 27. Profiling applications 1439

Method Invocation
Select the Method Invocation tab (Figure 27-14) to see a graphical
representation of the calls.

Figure 27-14 Execution Statistics: Method Invocation

27.3.6 Execution flow

The Execution Flow view and table both show a representation of the entire
program execution. In this view, the threads of the program fit horizontally, and
time is scaled so that the entire execution fits vertically. In the table, the threads
are grouped in the first column and time is recorded in successive rows.

In the Profiling Monitor view, click the Open Execution Flow icon (), or select
Open With Execution Flow (Figure 27-29 on page 1455). The bottom pane
shows the action sequence. Expand main and select the first main method. The
top pane shows the execution stripes (Figure 27-15 on page 1441).
1440 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 27-15 Execution Flow

Select the Zoom In icon () and click into the column to see more details.

27.3.7 UML sequence diagrams

You can also analyze the graphical details of the execution flow by using the data
that is collected with Execution Time Analysis. These graphical details are
displayed by using the Unified Modeling Language (UML) sequence diagram
notation. The representation of time in these diagrams helps in determining
bottlenecks in application performance and network communication. The
following types of diagrams are available:

� The UML2 Class Interactions diagram shows the interactions of classes that
participate in the execution of an application.

� The UML2 Object Interactions diagram shows the interactions of objects that
participate in the execution of an application.

� The UML2 Thread Interactions diagram shows the interactions of methods
that run in separate threads, which participate in the execution of an
application.
 Chapter 27. Profiling applications 1441

To display UML2 interaction diagrams, in the Profiling Monitor view, right-click the
entry and select Open With UML2 Class interactions (Figure 27-16).

Figure 27-16 Selecting UML2 Class Interactions

Figure 27-17 on page 1443 shows the UML2 Trace Interactions diagram. You
have to scroll to find suitable interactions.
1442 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 27-17 UML2 Trace Interactions

The other two UML diagrams are similar: UML2 Object Interactions and UML2
Thread Interactions.

You can drill down into a lifeline with which you can view all the trace interactions
within a particular lifeline (right-click the class and select Drill down into
selected lifeline). This feature helps to trace the root cause of a problem from a
host, to a process, to a thread, and eventually to a class or an object.

You can highlight a call stack to view all of the methods’ invocations in a call stack
by right-clicking a method and selecting Highlight call stack.

You can configure the
appearance by selecting
Window Preferences
Profiling and Logging
Appearance UML2
Sequence Diagram.
 Chapter 27. Profiling applications 1443

27.3.8 Memory analysis

The Object Allocations view shows statistics about the application heap. It
provides detailed information, such as the number of classes loaded, the number
of instances that are alive, and the memory size that is allocated by every class.
Memory statistics are available at the package, class, and instance level.

To analyze the memory consumption, rerun the application with another profiling
option:

1. Select Run Profile Configurations.

2. In the Profile Configurations window, select the EntityTester (preselected).

3. On the Monitor tab, select Memory Analysis.

4. Click Edit Options and select Track object allocation sites. Click Finish.

5. Click Apply and then click Profile.

A new entry opens in the Profiling Monitor view. The Console view shows the
application output while the application runs to completion.

6. Double-click Memory Analysis, or click the Open Object Allocations view
icon ().

The Object Allocations view (Figure 27-18 on page 1445) shows live and total
instances, active and total size, and average age:

– The Total Instances column shows the total number of instances that have
been created of the selected package, class, or method.

– The Live Instances column shows the number of instances of the selected
package, class, or method, where no garbage collection has taken place.

– The Avg age column shows the average number of garbage collections
that objects of the class have survived.

– The Total Size column shows the total size in bytes of the selected
package, class, or method, of all instances that were created for it.

– The Active Size column shows the total size in bytes of all live instances.

Tip: Another option in memory analysis is to collect heap instance data. It
is a new feature in Rational Application Developer that provides the
capability to inspect the composition of objects, including obtaining the live
object values, member names, and instance sizes during the profiling
session. The data that has been collected can be exported and imported
as well.
1444 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 27-18 Object Allocations view

7. Select a class (Credit) and select the Allocation Details tab (Figure 27-19).

Figure 27-19 Object Allocation Details

27.3.9 Thread analysis

To analyze the threads, rerun the application with another profiling option:

1. Select Run Profile Configurations.

2. For the EntityTester class, on the Monitor tab, select Thread Analysis.

3. Click Edit Options and select Contention analysis. Click Finish.

4. Click Apply and then click Profile.

A new entry appears in the Profiling Monitor view (Figure 27-20).

Figure 27-20 Profiling Monitor with three runs
 Chapter 27. Profiling applications 1445

5. Double-click Thread Analysis, or click the Open Thread Analysis view icon.
The Thread Analysis view has the following options:

– The Thread Statistics tab shows the state, running time, and waiting time
of the threads (Figure 27-21).

Figure 27-21 Thread Analysis: Thread Statistics

– The Monitor Statistics tab shows the details of a selected thread, including
the Java classes that are involved.

– The Thread Visualizer tab shows the threads that were active and the time
when they were active (Figure 27-22). We can see two threads for the
Derby database and five threads for the application code.

Figure 27-22 Thread Analysis: Threads Visualizer
1446 Rational Application Developer for WebSphere Software V8 Programming Guide

27.3.10 Reports

For several statistics, you can create a report in comma-separated values (CSV),
HTML, or XML format by clicking the New Report icon ().

27.3.11 Cleanup

You can remove measurements by right-clicking an entry in the Profiling Monitor
view and selecting Delete.

27.4 Profiling a web application running on the server

In this section, we run a web application in WebSphere Application Server v8.0
Beta in profiling mode.

27.4.1 Importing the sample project archive file

To import the ITSO RedBank web application project, follow these steps:

1. Open the Java EE perspective.

2. Select File Import.

3. In the Import window, select General Existing Projects into Workspace
and click Next.

4. In the Import Projects window, click Browse and locate the c:\7835code\
folder. Select the RAD8JPA, RAD8EJB, RAD8EJBWeb, and
RAD8EJBWebEAR projects, and click Finish.

27.4.2 Setting up environment variables to profile a server

In specific cases, you must set up environment variables on the target host
computer before starting the server in profile mode. The environment variables
must be set before you start the server for profiling.

For example, if you connect to a remote WebSphere Application Server by using
a version prior to Rational Agent Controller V8.3, you need to manually set up
environment variables.

Tip: If you have the ITSO RedBank web application (RAD8EJBEAR and
dependent projects) already in the workspace, skip this step.
 Chapter 27. Profiling applications 1447

For more information about when to set up environment variables for profiling,
refer to this website:

http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/co
m.ibm.servertools.doc/topics/rprofilingenvvar.html

27.4.3 Publishing and running the sample application

Start WebSphere Application Server in profile mode and then publish the sample
application to the server. You can pause the monitoring from the Profiling Monitor
view to prevent data from being collected while the application is being published
or the server is being configured.

27.4.4 Starting the server in profiling mode

To profile the sample application on WebSphere Application Server v8.0 Beta in
profiling mode, follow the steps:

1. Right-click over RAD8EJBWeb and select Profile As Profile on server.

2. On the Profile on Server dialog window, select the WebSphere Application
Server v8.0 Beta at localhost server and click Finish.

3. Another dialog is displayed, allowing you to select the type of profiling data
collector that is going to be used in the profiling session. Select Java
Profiling and click Next.

4. After the Profile on Server window opens (Figure 27-23 on page 1449), select
Execution Time Analysis. Click Edit Options.

Important: If you have not already configured the data source settings for the
ITSOBANK database, follow the steps in “Configuring the data source for the
ITSOBANK” on page 609, before publishing and running the sample
application.
1448 Rational Application Developer for WebSphere Software V8 Programming Guide

http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/com.ibm.servertools.doc/topics/rprofilingenvvar.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/com.ibm.servertools.doc/topics/rprofilingenvvar.html

Figure 27-23 Profile on Server window

5. In the Edit Profiling Options window (Figure 27-8 on page 1434), select
Collect method CPU time information and Show execution flow
graphical details. Click Finish.

6. When prompted, switch to the Profiling and Logging perspective.

When the server is started, the Profiling Monitor shows the active monitor
(Figure 27-24).

Figure 27-24 Profiling Monitor

You can only
select one
analysis.
 Chapter 27. Profiling applications 1449

27.4.5 Running the sample application to collect profiling data

To collect data, display the accounts of one customer, run a debit and a credit
transaction, list the transactions, and update the customer name, perform these
steps:

1. In the Java EE perspective, right-click RAD8EJBWeb and select Profile
As Profile on Server. Click Finish to publish the application.

2. On the RedBank home page, click RedBank. If the heading and footing are
not shown, right-click redbank.jsp and select Profile on Server.

3. On the Login page, in the Customer SSN field, enter 333-33-3333 and click
Submit.

4. Select the last account.

5. On the Account Details page, select Withdraw and withdraw an amount of
USD 25.

6. On the Account Details page, select Deposit and deposit USD 33.

7. On the Account Details page, select List Transactions.

8. On the List Transactions page, click Account Details.

9. On the Account Details page, click Customer Details.

10.On the Customer page, change the last name and click Update.

11.On the Customer page, click Logout.

Pause monitoring
In the Profiling Monitor view, pause the monitoring by selecting the profile agent,
and clicking the Pause Monitoring icon (). You can also keep the profiling
running while you analyze the accumulated data.

27.4.6 Statistics views

The statistics views are the same as the statistics views for profiling the Java
application.

Published project: Before you can complete this task, you must have
published the project to the server, as explained in 27.4.3, “Publishing and
running the sample application” on page 1448.
1450 Rational Application Developer for WebSphere Software V8 Programming Guide

27.4.7 Execution statistics

To analyze the execution statistics, in the Profiling Monitor view, select the
<attached> Profiling process and click the icon. Or, select Open With
Execution Statistics (Figure 27-25).

Figure 27-25 Execution Statistics
 Chapter 27. Profiling applications 1451

You can expand a class to see the statistics for each method (Figure 27-26).

Figure 27-26 Execution Statistics by methods of a class

Method invocation details
Expand itso.bank.entities Account to see the methods of the Account class.
Right-click processTransaction and select the Show Method Invocation
Details icon ().
1452 Rational Application Developer for WebSphere Software V8 Programming Guide

The Method Invocation Details view (Figure 27-28 on page 1454) provides
statistical data on a selected method. The following data is displayed for the
selected method:

� Selected method (Account.processTransaction) shows the details, including
the number of times that the selected method is called, the class and package
information, and the time that is taken by this method.

� Selected method invoked by shows the details of each method that calls the
selected method, including the number of calls to the selected method, and
the number of times that the selected method is invoked by the caller. In our
case, the deposit and withdraw methods of the EJBBankBean class invoke the
selected method.

� Selected method invokes shows the details of each method that is invoked by
the selected method, for example, Credit and Debit constructors, setAccount
of Transaction class, and internal JPA methods.

Tip: The Session summary tab only displays the highest 10 base time
packages. It is possible that the itso.bank.entities package is not shown in
the Session summary tab page. To display all packages, change to the
Execution Statistics tab. Be sure that the configured filters for the Execution
Statistics, if any, do not hide the classes for which you are looking. The filter
information shows at the top of the tab, as shown in Figure 27-27.

Figure 27-27 Filters in Execution Statistics
 Chapter 27. Profiling applications 1453

Figure 27-28 Method Invocation Details

27.4.8 Execution flow

The Execution Flow view and table both show a representation of the entire
program execution. In this view, the threads of the program fit horizontally, and
time is scaled so that the entire execution fits vertically. In the table, the threads
are grouped in the first column, and the time is recorded in successive rows.

In the Profiling Monitor view, select the <attached> J2EE Request Profile
process and click the icon or select Open With Execution Flow.

The Execution Flow (Figure 27-29 on page 1455) shows the following
information:

� The bottom pane shows the action sequence. Expand the Web container and
select the first doPost method.
1454 Rational Application Developer for WebSphere Software V8 Programming Guide

� The top pane shows the execution stripes. Select the Zoom In icon () and
click the Web Container column, near the start time of the method, until you
see the graphic diagram.

Figure 27-29 Execution Flow

Zoom into the top pane using the Zoom In icon to see the methods and their
times (Figure 27-30 on page 1456).

must zoom to see
 Chapter 27. Profiling applications 1455

Figure 27-30 Zooming in on Execution Flow

27.4.9 UML sequence diagrams

To display an UML2 interaction diagram, in the Profiling Monitor view, right-click
the <attached> J2EE Request Profiler process and select Open With UML2
Class interactions (Figure 27-31 on page 1457). You have to scroll to find
suitable interactions.
1456 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 27-31 UML2 Class Interactions
 Chapter 27. Profiling applications 1457

Tip: The UML2 Class Interaction diagram contains all classes that are running
on the server. It is easier to find the classes that you want to profile by using a
filter. In the UML diagram in Figure 27-31 on page 1457, a filter was applied to
only show certain classes. In order to create this filter, follow the steps:

1. Click the filter icon and click Manage filters.

2. In the Filters dialog window, click New.

3. Go to the Advanced tab and add the classes that you want to have filtered,
as shown in Figure 27-32.

Figure 27-32 Advanced filtering configuration

4. Click OK. The UML2 Class Interaction diagram is filtered to show only the
classes that you have selected in the filter.
1458 Rational Application Developer for WebSphere Software V8 Programming Guide

You can drill down to a lifeline in which you can view all the trace interactions
within a particular lifeline (right-click the class and select Drill down into
selected lifeline). This feature helps to trace the root cause of a problem from a
host, to a process, to a thread, and eventually to a class or an object.

You can highlight a call stack to view all the methods’ invocations in a call stack.
Right-click a method and select Highlight call stack.

27.4.10 Refreshing the views and resetting data

You can keep the profiling running while you analyze the views. Occasionally, you
might want to refresh the views with the latest data, or reset the data:

1. Click the Refresh Views icon () to refresh the views.

2. Right-click the profiling process and select Reset Data to start a new
collection of data and subsequent analysis.

27.4.11 Ending the profiling session

There are a number of methods to end the profiling session: detach the agent,
restart the server in regular mode, or stop the server. To detach the agent,
right-click the monitor and select Detach from Agent. This option ends profiling
without stopping the entire server process. To terminate the entire server
process, click the Terminate icon (). To remove the profiling agent, right-click
the agent and select Delete. You are prompted if you want to delete the data in
the file system. The connection to the server is removed.

27.4.12 Profile on server: Memory and thread analysis

To profile the application on the server for memory or thread analysis, stop the
server, change the profiling options, and restart the server:

1. Stop the server.

2. Start the server in profiling mode.

3. In the Profile on Server window (Figure 27-23 on page 1449), complete the
following steps:

a. Either select Memory Analysis and click Edit Options. Or, select Thread
Analysis and click Edit Options.

b. In the Profile on server window, click Finish.

4. In the Confirm Perspective switch window, click Yes.
 Chapter 27. Profiling applications 1459

The Profiling and Logging perspective appears, and the agent is displayed in the
Profiling Monitor view.

Running the sample application
In the Java EE perspective, right-click redbank.jsp and select Profile As
Profile on Server. You do not have to republish the application. Run the sample
sequence of operations, as explained in 27.4.5, “Running the sample application
to collect profiling data” on page 1450.

Displaying memory and thread analysis
Open the appropriate views from the Profiling Monitor view to perform the
analysis.

27.5 More information

For more information about profiling, see the Rational Application Developer
Online Help sections:

� Select Developing Profiling, analyzing, and optimizing applications

� Select Developing Testing and publishing on a server Managing
servers Starting a server Starting a server in profiling mode.

For more information about IBM Rational Agent Controller, see these websites:

� Available releases of IBM Rational Agent Controller

http://www.ibm.com/support/docview.wss?uid=swg27013420

� Download IBM Rational Agent Controller V8.3.1

http://www.ibm.com/support/docview.wss?uid=swg24028323
1460 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.ibm.com/support/docview.wss?uid=swg27013420
http://www.ibm.com/support/docview.wss?uid=swg24028323

Chapter 28. Debugging local and remote
applications

Using Rational Application Developer, you can debug a wide range of
applications in several languages, running either on local test environments
(including local web applications) or on remote servers, such as WebSphere
Application Server or WebSphere Portal.

In this chapter, we describe the major debugging features and provide two
examples of debugger usage. We introduce the new debug tooling features, such
as the ability to transfer Java-based debug sessions between Rational Team
Concert team members, in Rational Application Developer. We also provide two
examples of debug session transfer.

The chapter is organized into the following sections:

� Introducing Rational Application Developer new features

� Reviewing Rational Application Developer debugging tools

� Debugging a web application on a local server

� Debugging a web application on a remote server

� Using the Jython debugger

� Using the JavaScript debugger

28
© Copyright IBM Corp. 2011. All rights reserved. 1461

� Using the debug extension for the Rational Team Concert client (Team
Debug)

� Obtaining more information
1462 Rational Application Developer for WebSphere Software V8 Programming Guide

28.1 Introducing Rational Application Developer new
features

The debugging facilities that are available with Rational Application Developer
v8.0 Beta are similar to the debugging features that were available in the
previous version. The following features are the major new features:

� Service Component Architecture (SCA) debugger
� Extensible Stylesheet Language Transformation (XSLT) 2.0 debugger
� Java tracepoint
� Client-side JavaScript debugging support via Firebug integration

28.2 Reviewing Rational Application Developer
debugging tools

In this section, we provide an overview of the major debug tooling features that
are included in Rational Application Developer.

We cover the following topics:

� Supported languages and environments
� Java debugging features
� XSLT debugging
� Stored procedure debugging for DB2 V9
� Service Component Architecture debugger
� Java tracepoints
� Collaborative debugging using Rational Team Concert client

28.2.1 Supported languages and environments

Rational Application Developer includes support for debugging the following
languages and environments:

� DB2 stored procedures (either in Java or SQL)

� Java

� Client-side JavaScript firebugs extension

� Jython scripts for WebSphere Application Server administration

� Mixed language applications (for example, Extensible Stylesheet Language
Transformations (XSLT) called from Java)

� SQLJ
 Chapter 28. Debugging local and remote applications 1463

� WebSphere Application Server (servlets, JavaServer Pages (JSP), Enterprise
JavaBeans (EJB), and web services)

� WebSphere Portal (portlets)

� XSL Transformation (XSLT) V1.0 and V2.0

� Service Component Architecture

You can debug applications in all these languages and environments within
Rational Application Developer. These languages use a similar process of setting
breakpoints, running the application in debug mode, and within the Debug
perspective, stepping through the code to track variables and logic to find and fix
problems.

Furthermore, the interface for debugging within the Debug perspective is
consistent across all these languages and environments.

28.2.2 Java debugging features

In this section, we provide a brief description of the major debugging features
that are available within Rational Application Developer for Java applications and
explain how they typically might be used. Although this description focuses
primarily on the tools available for Java, most of the features are available when
debugging other languages.

Views within the Debug perspective
When you run an application in debug mode and reach a breakpoint, you are
prompted to switch to the Debug perspective. Use the Debug perspective.
Although you can debug in any perspective, the Debug perspective includes the
most helpful views for debugging.

By default, when debugging Java, the Debug perspective has the following views:

Breakpoints view Shows all breakpoints in the current workspace and
provides a facility to activate and deactivate them, remove
them, change their properties, and to import or export a set
of them to other developers.

Console view Shows the output to System.out.

Debug view Shows a list of all active threads and a stack trace of the
thread that is currently being debugged.

Display view Allows the user to execute any Java command or evaluate
an expression in the context of the current stack frame.

Error Log Shows all errors and warnings that are generated by
plug-ins running in the workspace.
1464 Rational Application Developer for WebSphere Software V8 Programming Guide

Expressions view During debugging, the user has the option to inspect or
display the value of expressions from the code or even
evaluate new expressions. The Expressions view contains a
list of expressions and values that the user has evaluated
and then selected to track.

Outline view Contains a list of variables and methods for the code listing
that is shown in the Display view.

Servers view Is useful if the user wants to start or stop test servers while
debugging.

Source view Shows the file of the source code that is being debugged,
highlighting the current line that is being executed.

Tasks view Shows any outstanding source code errors, warnings, or
informational messages for the current workspace.

Variables view Given the selected source code file that is shown in the
Debug view, this view shows all the variables that are
available to that class and their values. The Variables view
is, by default, structured into columns. The use of columns
can be toggled by using the Layout Show Columns
menu in the Variables view. Also, step-by-step debugging
variables that change values are highlighted in a separate
color.

Figure 28-1 on page 1466 shows an application that is stopped at a breakpoint in
the Debug perspective.
 Chapter 28. Debugging local and remote applications 1465

Figure 28-1 Typical application running in the Debug perspective

Debug functions
From the Debug view, you can use the functions that are available from the icon
bar to control the execution of the application. The following icons are available:

Resume (F8) Runs the application to the next breakpoint.

Suspend Suspends a running thread.

 Terminate Terminates a process.

 Disconnect Disconnects from the target when debugging remotely.

 Remove All Terminated Launches
Removes terminated executions from the Debug view.

 Step Into (F5) Steps into the highlighted statement.

 Step Over (F6) Steps over the highlighted statement.

 Step Return (F7) Steps out of the current method.
1466 Rational Application Developer for WebSphere Software V8 Programming Guide

 Drop to Frame Provides the facility to reverse back to the calling method
in the current stack frame.

 Use Step Filters/Step Debug (Shift+F5)
Enables or disables the filtering for the Step Debug
functions.

 Step-By-Step Mode
Toggles the step-by-step debug feature when it is enabled
in the Run or Debug preferences.

 Show Qualified Names (from the drop-down menu)
Toggles to show the full package name.

 or Debug UI demon
Provides a drop-down list for controlling the debug user
interface (UI) daemon’s listening state and port number.

The Show Running Threads filter
When debugging, often many extra threads are shown in the Debug view that are
not useful for finding a fault in an application under development. This situation is
especially true when debugging web applications, where the application server
starts several threads that are unlikely to be the cause of an application problem.
To show only the threads that are suspended, open the context menu of the
debug target that is being debugged in the Debug view, and toggle the Show
Running Threads filter.

Using these buttons, menus, and the information that is shown in the various
views that are available in the Debug perspective, you can debug most problems.

Enabling and disabling Step Filter in the Debug view
The Debug view’s toolbar contains a Use Step Filters command (icon). This
command enables you to filter Java classes that do not have to be stepped into
while debugging. For example, usually it is unnecessary for programmers to step
into code from the classes within the Sun and IBM Java libraries when they are
debugging step-by-step. By default, these classes are in the step filter list. You
have the capability to add any class or package to this list.

To add a new Java package to the Step Filter feature in the Debug view, follow
these steps:

1. Select Window Preferences.

2. Expand Run/Debug Java and Mixed Language Debug Step Filters.

3. Click Add Filter.

4. Enter the new package or class that you want to filter out and click OK.
 Chapter 28. Debugging local and remote applications 1467

You can toggle the Step Filter or Step Debug feature on and off by clicking
Step Filter () in the Debug view.

Prior to Version 7.0, the java.* and javax.* packages were not visible from the
Step Filters preferences and were always filtered. Now these packages are
displayed in the step filter list. You have the capability to deselect them.
Therefore, when debugging, it is possible to step into classes from this package.
The default setting is to filter these classes.

Drop-to-Frame feature
With the Drop-to-Frame feature, you can go back to the calling method. This
feature is available when debugging Java applications and web applications
running on WebSphere Application Server. This feature is useful when you want
to retest a block of code using other values.

For example, if a developer wants to test a method with the minimum and
maximum permitted values for a given parameter, a breakpoint can be added at
the end of the method. The Drop-to-Frame feature can be used to back up the
control of the application to the start of the method, change the parameters, and
run it again.

When running an application in the Debug perspective, the Debug view shows
the stack frame (Figure 28-2). With the Drop-to-Frame feature, you can back up
your application’s execution to previous points in the call stack by selecting the
desired method level from within the Debug view and then clicking Drop To
Frame (). Clicking this icon moves the control of the application to the top of
the method that is selected in the Debug view.

Figure 28-2 Drop-to-Frame icon in the Debug view
1468 Rational Application Developer for WebSphere Software V8 Programming Guide

28.2.3 XSLT debugging

Extensible Stylesheet Language Transformation (XSLT) is a language for
transforming XML documents into XHTML or other XML documents. It is a
declarative language that is expressed in XML. It provides mechanisms to match
tags from the source document to templates (similar to methods), store values in
variables, perform simple looping or code branching, and invoke other templates
to build up the result document.

Rational Application Developer supports debugging XSLT 2.0 in addition to XSLT
1.0. XSLT 2.0 adds new, powerful features to the languages:

� Support for XML schema data types
� Elimination of Result Tree Fragments (RTFs)
� Support for node grouping
� Aggregation functions
� For loops
� Multiple output documents
� XHTML output

The Rational Application Developer debugger includes support for the following
XSLT 2.0-specific functionality:

� Supporting schema validation in the transformation
� Displaying the XPath 2.0 schema type of a variable
� Displaying sequences and their children
� Stepping into stylesheet functions
� Viewing the complete group information for xsl:for-each-group in the XSLT

Context view

XSLT files can use templates that are stored in other files. XSLT files can become
complicated. Rational Application Developer features a full-featured XSL
transformation debugger. You can debug XSLT files using a set of tools that is
similar to the Java tools.

To start a debugging session for an XSLT file and its source XML file, select both
files on the Enterprise Explorer, right-click, and select Debug As XSL
Transformation.

For example, if you have read Chapter 8, “Developing XML applications” on
page 331, select Accounts.xml, select Accounts.xsl, right-click, and select
Debug As XSL Transformation.

This action steps into the first line of the XSL file, and from that point, debugging
can continue. From the Debug Launch Configuration window (from the context
window, use Debug As Debug), you can configure the transformation-related
files, parameters, processor, and other settings to guide the XSLT debugging.
 Chapter 28. Debugging local and remote applications 1469

You can save these configurations to speed up starting the debugging in the
future.

Figure 28-3 shows the Debug perspective when debugging XSLT. From the
Debug perspective, you can step through the XSLT file and the source XML and
watch the result XML that is being built element by element.

Figure 28-3 Debugging XSLT

The following views are useful when debugging XSLT:

Breakpoints view Shows all breakpoints in the workspace, including those
breakpoints that are placed in XSL and XML files. In an
XSL file, you cannot set breakpoints at invalid source
locations, such as blank lines, <xsl:output> lines, and
XML declarations.

Debug view Shows the XSL transformation running as an application
with the stack frame for the current execution point.

Source XML File

XSL File
1470 Rational Application Developer for WebSphere Software V8 Programming Guide

Source view Shows the XSL file on the left side and the input XML file
on the right side. The line that is executing for each file is
highlighted.

Expressions view Shows the value of XSL expressions, including XPath
expressions in the current context.

Variables view Shows currently visible XSLT variables.

XSLT Context view Shows the current context of the XML input for the
selected stack frame.

XSL Transformation Output view
Shows the serialized output of the transformation as it is
produced.

It is also possible to debug an XSLT transformation that is called from a Java
application. The easiest way to debug an XSLT transformation that is called from
a Java application is to add a breakpoint in the Java code before the XSL
transformation is called (typically from the javax.com.transform.Transformer
transform method). Then use the Debug Java And Mixed Language
Application option for the Java class from the context menu. When the debugger
stops at the breakpoint, click the Step Into icon, and the debugger moves to
debugging the XSL file and stops at the first line in the transformation.

It is also possible to debug Java code that is called from the XSL file. To debug
Java code that is called from the XSL file, you must use the launch configuration
window and ensure that the Class path tab includes the projects that contain the
Java code to be debugged. When stepping through the XSLT debugger, it is
possible to step into the call to the Java method.

28.2.4 Stored procedure debugging for DB2 V9

With stored procedure debugging, you can debug Java and DB2 stored
procedures that are running on a local or remote DB2 server. The Debug Launch
configuration editor provides fields to specify a stored procedure on a DB2
database to debug, arguments to pass to the procedure, and the associated
source code. If the database server is configured correctly, the debugger starts,
and the debugging can continue. Rational Application Developer has a detailed
Help chapter on this feature:

http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.debug
.spd.doc/topics/cbsovrv.html
 Chapter 28. Debugging local and remote applications 1471

http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.debug.spd.doc/topics/cbsovrv.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.debug.spd.doc/topics/cbsovrv.html

28.2.5 Service Component Architecture debugger

Rational Application Developer provides the Service Component Architecture
(SCA) debugger that allows you to analyze and diagnose errors in SCA
applications. It allows you to step into SCA services via the SCA binding and the
web services binding, use step-by-step mode to stop at every service, and
examine SCA context variables.

The SCA debugger provides the same usability from general Java Platform,
Enterprise Edition (Java EE) application debugging. The SCA debugger allows
you to set breakpoints at the service entry point, launch the debug session on a
WebSphere Application Server instance, and invoke the service from the Web
Services Explorer.

For more information about the SCA debugger, consult this document:

http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.debug
.sca.doc/topics/cbcovrv.html

28.2.6 Java tracepoints

The Tracepoints feature, which is new in Rational Application Developer, allows
you to trace information at the breakpoints that you have set. When tracing is
enabled for a breakpoint, it outputs the breakpoint information every time that the
breakpoint is reached.

To enable a tracepoint in a breakpoint open the Breakpoints view, and right-click
over any existing breakpoint. Select Trace Enable Tracing. The tracing point
is active in that breakpoint now, and a tracing string is appended to the
breakpoint entry, as shown in Figure 28-4.

Figure 28-4 Tracepoint enabled

Every time that the particular breakpoint is reached, the tracepoint prints the
breakpoint information in logs, as shown in Example 28-1

Example 28-1 Tracepoint information shown in log file

[10/12/10 11:00:17:734 PDT] 0000001e SystemOut O (tracing) [2010-10-12
11:00:17.625] Thread[WebContainer : 0] itso.bank.session.EJBBankBean
getCustomers (EJBBankBean.java:109)
1472 Rational Application Developer for WebSphere Software V8 Programming Guide

http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.debug.sca.doc/topics/cbcovrv.html

You can customize the information that was logged by right-clicking the
breakpoint entry and selecting Trace Edit Trace.

Figure 28-5 Tracepoint configuration

The dialog window that is shown in Figure 28-5 allows you to add or remove
runtime information, such as the thread name or class name. Also, this dialog
window allows you to create an expression, which contains variables from the
breakpoint scope, to add to the tracing output.

For Java code breakpoints that are running in WebSphere Application Server,
you can configure whether the tracing output is sent to the console or a file. To
configure this option, select Window Preferences. In the Preferences dialog
window, select Run/Debug Tracepoint WebSphere Application Server.
From that point, you can set where to write the trace output.

28.2.7 Collaborative debugging using Rational Team Concert client

The debug extension for Rational Team Concert Client (Team Debug) allows you
to execute Java-based debug collaborative sessions between Rational Team
 Chapter 28. Debugging local and remote applications 1473

Concert team members. It is possible to send the session to a selected user or to
park it in a team repository for later retrieval. It is even possible to share the
session by dragging it to a chat window, provided that the messaging service is
enabled.

You can extend Rational Application Developer to support the Team Debug by
installing the Rational Team Concert Client as a shell share with Rational
Application Developer and selecting the Collaborative debug extensions for the
Rational Team Concert Client feature.

For a detailed description of using the Team Debug that is provided by Rational
Team Concert Client, see 28.8, “Using the debug extension for the Rational Team
Concert client (Team Debug)” on page 1516.

28.3 Debugging a web application on a local server

In this section, we take you through a web application scenario in which a sample
application is run on the local Rational Application Developer test server. Then
we use debugging facilities to step through the code and watch the behavior of
the application.

The debug example includes the following tasks to demonstrate the debug
tooling:

� Importing the sample application
� Running the sample application in debug mode
� Setting breakpoints in a Java class
� Watching variables
� Evaluating and watching expressions
� Working with breakpoints
� Setting breakpoints in JSP
� Debugging JSP

28.3.1 Importing the sample application

In the following task, we show how to set up your workspace for the sample
application. We use the ITSO RedBank web application sample that we developed
in Chapter 12, “Developing Enterprise JavaBeans (EJB) applications” on
page 577 to demonstrate the debug facilities.

If you already have the necessary projects (RAD8EJBWebEAR, RAD8EJBWeb, RAD8EJB,
and RAD8JPA) in the workspace, you can skip this step.
1474 Rational Application Developer for WebSphere Software V8 Programming Guide

To import the ITSO RedBank EJB web application, follow these steps:

1. In the Web perspective, select File Import Other Project
Interchange and click Next.

2. In the Import Projects window, click Browse to locate the
C:\7835codesolution\ejb\RAD8EJBWeb.zip file.

3. Select the projects that are not in the workspace and click Finish.

To run this application, you have to configure a database as explained in “Setting
up the ITSOBANK database” on page 1880 and “Configuring the data source in
WebSphere Application Server” on page 1882.

28.3.2 Running the sample application in debug mode

To verify that the sample application was imported properly, run the sample web
application on the WebSphere Application Server v8.0 Beta test server in debug
mode:

1. In the Enterprise Explorer, expand RAD8EJBWeb WebContent.

2. Right-click redbank.jsp and select Debug As Debug on Server.

3. If the Server Selection window opens, select Choose an existing server and
select WebSphere Application Server v8.0 Beta at localhost. Then click
Finish to start the server, publish the application to the server, and open a
browser that shows the ITSO RedBank page.

4. If the server is already running in normal (non-debug) mode, when prompted
to switch mode, click OK. The server restarts in debug mode.

5. When the page is displayed, in the Customer SSN field, enter 333-33-3333.
Then click Submit.
 Chapter 28. Debugging local and remote applications 1475

The list of accounts for that customer shows (Figure 28-6). If you can see these
results, the application is working as expected in debug mode.

Figure 28-6 Customer details for the RedBank application

28.3.3 Setting breakpoints in a Java class

Breakpoints are indicators to the debugger to stop execution at that point in the
code so that the user can inspect the current state and step through the code.
Breakpoints can be set to always trigger when the execution point reaches them
or when a certain condition has been met (conditional).

In the ITSO RedBank sample application, before the balance of an account is
updated after the withdrawal of funds from an account, the new balance is
compared to see if it goes under zero. If the account has adequate funds, the
withdrawal is complete. If the account has insufficient funds, an Exception is
thrown from the Account class, and the showException.jsp is displayed to the
user showing an appropriate message.

In this example, we set a breakpoint where the logic tests that the amount to
withdraw does not exceed the amount that exists in the account:

1. In the Enterprise Explorer, select and expand RAD8JPA src
itso.bank.entities and open Account.java in the Java editor.

2. Locate the processTransaction method.
1476 Rational Application Developer for WebSphere Software V8 Programming Guide

3. Place the cursor in the gray bar (along the left edge of the editor area) on the
following line of code in the processTransaction method:

if (balance.compareTo(amount) < 0)

4. Double-click to set a breakpoint marker (highlighted in Figure 28-7).

Figure 28-7 Setting a breakpoint in Java

5. Right-click the breakpoint and select Breakpoint Properties.

6. In the Breakpoint Properties window (Figure 28-8 on page 1478), change the
details of the breakpoint.

Tip: You can use the Outline view or expand Account.java in the
Enterprise Explorer view to find the processTransaction method quickly in
the source code.

Enabled and installed breakpoints: Enabled breakpoints are indicated
with a blue circle. Installed breakpoints have an additional check mark
overlay. A breakpoint can only be installed when the class in which the
breakpoint is located has been loaded by the virtual machine (VM).
 Chapter 28. Debugging local and remote applications 1477

Figure 28-8 Breakpoint properties

Note the following properties in Figure 28-8:

– The Hit Count property, if set, causes the breakpoint to be triggered only
when the line has been executed as many times as the hit count specified.
After it is triggered, the breakpoint is disabled.

– The Conditional property allows breakpoints to trigger only when the
condition that is specified in the entry field evaluates to true. This
condition is a Java expression. You can use code assist (Ctrl+Spacebar) to
see the fields and methods that you can use in this expression. When this
condition is enabled, the breakpoint is marked with a question mark on the
breakpoint, which indicates that it is a conditional breakpoint.

For example, select Conditional, enter the expression
amount.doubleValue() >= 50.00, and select condition is 'true'. Now the
breakpoint only triggers on transactions of USD 50 or more.

Click OK to close the breakpoint properties.

You can now run the application and trigger the breakpoint. It is not necessary to
restart the application server for the new breakpoint to work.
1478 Rational Application Developer for WebSphere Software V8 Programming Guide

To trigger the breakpoint, perform the following steps:

1. On the home page, click the RedBank tab. For the Customer number, enter
333-33-3333 and click Submit.

2. On the List Accounts page, click the first account (003-333001).

3. On the Account Details page, select Withdraw, and in the Amount field, enter
50.

4. Click Submit. The processTransaction method is executed, and the new
breakpoint is triggered.

28.3.4 Using the Debug perspective

Depending on the preferences that are set in Windows Preferences
Run/Debug Perspectives, you might be prompted to open the Debug
perspective. In most cases, the Debug perspective opens automatically.

If the Debug perspective does not open automatically, select Window Open
Perspective (Other) Debug.

The Debug perspective shows the source code where the execution stopped at
the breakpoint (see Figure 28-1 on page 1466):

� The Debug view shows the threads and is currently stopped in
Account.processTransaction.

� The source code of the Account class shows the current line (at the
breakpoint).

� The Outline view shows the current method (processTransaction).

� The Variables view shows the account (this), the amount (BigDecimal), the
transaction type (Debit), and the transaction (null).

� The Breakpoints view shows the breakpoint (Account [line: 81]).

� The Console view shows the server console. You might see timeout errors,
because we stopped the execution in the middle of an EJB call.

In this perspective, it is possible to step through the code and to watch and edit
variables.
 Chapter 28. Debugging local and remote applications 1479

28.3.5 Watching variables

The Variables view shows the current values of the variables in the selected
stack frame (Figure 28-9):

� When you expand this, you can verify the value of id. You can also expand
the balance and see the value (for example, 98765 with a scale 2 = 987.65).

� When you expand amount, although amount is of type BigDecimal, a string
representation of its value is shown in the bottom pane of the window.

Figure 28-9 Displaying variables

The plus sign (+) next to a variable indicates that it is an object. To display an
object’s instance variables, click the plus sign.

Follow these steps to see how you can track the state of a variable, while
debugging the method:

1. Click Step Over in the Debug view (or press F6) to execute the current
statement.

2. Click Step Over again, and the balance is updated. The color of the balance
changes in the Variables view.

It is possible to test the code with another value for any of these instance
variables. You can change a value by selecting Change Value from its context
menu. A window opens where you can change the value. For objects, such as
BigDecimal, you have to use a constructor to set the value.
1480 Rational Application Developer for WebSphere Software V8 Programming Guide

For example, right-click balance and select Change Value. In the Change
Object Value window, type new java.math.BigDecimal(900.00) and click OK. If
you want to execute again with the new values, use Drop-to-Frame. The
debugger will take you back to the beginning of the method processTransaction.

28.3.6 Evaluating and watching expressions

When debugging, often it is useful to evaluate an expression that is made up of
several variables within the current application context.

To view the value of an expression within the code, perform these steps:

1. Select the expression (for example, balance.compareTo(amount) in the
breakpoint line), right-click, and select Inspect. The result opens in a pop-up
window showing the value (Figure 28-10).

Figure 28-10 Inspect pop-up window

2. To move the results to the Expressions view (Figure 28-11) so that the value
of the expression can continue to be monitored, press Ctrl+Shift+I.

3. To watch an expression, right-click in the Expressions view and select Add
Watch Expression. In the Add Watch Expression window, enter an
expression, such as balance.doubleValue().

Figure 28-11 Inspecting a variable in the Expressions view

Watched expression

Inspected expression
 Chapter 28. Debugging local and remote applications 1481

28.3.7 Using the Display view

To evaluate an expression in the context of the currently suspended thread,
which does not come from the source code, use the Display view:

1. Set a new breakpoint on the line:

transaction.setAccount(this);

2. Click Step Return until you reach that line.

3. From the workbench, select Windows Show View Debug Display.

4. In the Display view, type the expression transaction.getTransTime() and
highlight the expression. Right-click and select Display (Figure 28-12).

Figure 28-12 Expression and evaluated result in Display view

Each expression is executed, and the result is displayed, as shown in
Figure 28-12. This method is a useful way to evaluate Java expressions or even
to call other methods during debugging, without having to make changes in your
code and recompile.

You can also highlight any expression in the source code, right-click, and select
Watch (or Inspect). The result is shown in the Expressions view.

Select Remove from the context menu to remove expressions or variables from
the Expressions views. In the Display view, select the text, and delete it.

Watched versus inspected expressions: The Expressions view contains
a list of watched expressions (marked by a symbol) and a list of
inspected expressions marked by a symbol (Figure 28-11). The
difference between these lists is that the value shown for watched
expressions changes with the underlying value as the user steps through
the code. An inspected expression keeps showing the value it held when it
was first inspected.

Tip: When entering an expression in the Display view, you can use code
assist (Ctrl+Spacebar).
1482 Rational Application Developer for WebSphere Software V8 Programming Guide

28.3.8 Working with breakpoints

To enable a breakpoint in the code, double-click in the gray area of the left frame
(or use the context menu on the left side of the frame) for the line of code for
which the breakpoint is required. To remove it, double-click it again. To disable
the breakpoint, right-click and select Disable Breakpoint.

Alternatively, after you have created the breakpoints, you can enable and disable
them from the Breakpoints view (Figure 28-13). If the breakpoint is cleared in the
Breakpoints view, it is skipped during execution.

To disable or enable all breakpoints, click the Skip All Breakpoints icon, which
is highlighted in Figure 28-13. If this option is selected, all breakpoints are
skipped during execution.

Figure 28-13 Enabling and disabling breakpoints

It is possible to export a set of breakpoints, including the conditions and hit count
properties, so that the breakpoints can be shared across a development team.
From the context menu of the Breakpoints view, select Export Breakpoints, and
the breakpoints are saved as a bkpt file to the selected location.

Before continuing with debugging JSP, follow these steps:

1. Click the Remove All Breakpoints icon () to remove the breakpoints.
2. Click Resume () to continue execution.

You do not see the web page automatically in the Debug perspective. Click the
view with the World icon (in the same pane as the source code) to see the
resulting web page. Alternatively, switch to the Web perspective.

If you wait too long, the thread is terminated in the server, and you have to restart
the application from the index.jsp.

Skip All Breakpoints

Box to activate or deactivate a breakpoint
 Chapter 28. Debugging local and remote applications 1483

28.3.9 Setting breakpoints in JSP

You can also set breakpoints in JSP. Within the source view of a JSP page, you
can set breakpoints inside JSP scriptlets, JSP directives, and lines that use JSP
tag libraries. You cannot set breakpoints in lines with only HTML code.

In the following example, you set a breakpoint in the listAccounts.jsp at the
point where the JSP shows a list of accounts for the customer:

1. In the Web perspective, expand RAD8EJBWeb WebContent and open
listAccounts.jsp in the editor. Select the Source tab.

2. Set a breakpoint by double-clicking in the gray area next to the desired line of
code (Figure 28-14 on page 1485).

The Breakpoint properties are also available for JSP from the context menu.
These properties share the same features as Java breakpoints with the
exception that content assist is not available in the breakpoint condition field.

Tip: Java exception breakpoints are separate from the breakpoints that are
triggered when a particular exception is thrown. You can set Java exception
breakpoints by selecting Run Add Java Exception Breakpoint.
1484 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 28-14 Adding a breakpoint to a JSP page

28.3.10 Debugging JSP

When a breakpoint is added, it is not necessary to redeploy the web application.
To debug a JSP, follow these steps:

1. From the RedBank index page, select the RedBank tab.

2. On the RedBank page, for Customer ID, enter 333-33-3333 and click Submit
to execute the listAccounts.jsp file and hit the new breakpoint.

3. In the Confirm Perspective Switch window, click Yes to switch to the Debug
perspective.

Execution stops at the breakpoint that is set in the listAccounts.jsp,
because clicking Submit in the application attempts to show the accounts by
executing this JSP. The thread is suspended in debug, but other threads might
still be running (Figure 28-15 on page 1486).
 Chapter 28. Debugging local and remote applications 1485

Figure 28-15 Debugging a JSP page

After a breakpoint is hit, you can analyze variables and step through lines of
the JSP code. The same functions that are available for Java classes are
available for JSP debugging. The difference is that the debugger shows the
JSP source code and not the generated Java code.

The JSP variables are shown in the Variables view. The JSP implicit variables
are also visible, and it is possible to look at, for example, request parameters
or session data (Figure 28-16 on page 1487).

Two JSP with the same name: If you have two JSP with the same name
in multiple web applications, the wrong JSP source might be displayed.
Open the correct JSP to see its source code.
1486 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 28-16 JSP implicit variables in the Variables view

Step over the lines within the JSP by pressing the F6 key (Step Over).
Notice that the debugger skips any lines with only HTML code.

4. Observe the change in the Variables view. Expand JSP Implicit Variables
pageContext page_attributes and select varAccounts, which is the
variable in the <c:forEach var="varAccounts"...> loop:

Account: 003-333001 balance 9876.52

The customer and the accounts are visible under JSP Implicit Variables
pageContext request_attributes.

5. Click Resume () to allow the application to continue with the JSP page
generation.

6. Remove the breakpoint.

You have now debugged a local test environment.

28.4 Debugging a web application on a remote server

You can connect to and debug a Java web application that has been started in
debug mode on a remote application server. When debugging a remote program,
the Debug perspective has the same features as when debugging locally. The
difference is that the application is on a remote Java virtual machine (JVM), and
the debugger must attach to the JVM through a configured debug port. The
debugging machine must also map the debug information to its locally stored
 Chapter 28. Debugging local and remote applications 1487

copy of the source code. Therefore, it is important that the source code on the
debugger machine matches what is deployed on the remote server.

The following example scenario uses the existing IBM WebSphere Application
Server v8.0 Beta server as a remote server. To use the existing IBM WebSphere
Application Server v8.0 Beta server as a remote server, we delete the current
server configuration and launch it externally using the command line. Then the
developer node attaches to the application server node and controls it through a
debugger.

28.4.1 Removing the WebSphere configuration from the workspace

To create the remote WebSphere Application Server, we are going to first delete
the current server adapter configuration. For a simple method, follow these steps:

1. Right-click over the WebSphere Application Server v8.0 Beta at localhost
configuration in the Servers view and click Delete.

2. Click OK in the confirmation dialog window.

Now the WebSphere Application server is no longer managed by Rational
Application Developer.

28.4.2 Configuring debug mode to start on a remote WebSphere
Application Server V8 Beta

To configure WebSphere Application Server V8.0 Beta to start in debug mode,
follow these steps:

1. If the application server is not already running, start it:

<was_home>\bin\startServer.bat server1

2. Start the WebSphere administrative console. A secured profile, by default,
uses the following URL:

https://<hostname>:9043/ibm/console/login.do

An unsecured profile, by default, uses the following URL:

http://<hostname>:9060/ibm/console/login.do

Tip: If you do not know the administrative console port number in use in
your profile, launch the administrative console from Rational Application
Developer first, and inspect the values of the ports. Select Application
servers server1 Ports WC_adminhost_secure and select
Application servers server1 Ports WC_adminhost.
1488 Rational Application Developer for WebSphere Software V8 Programming Guide

3. In the left frame, expand Servers Server Types WebSphere
Application Servers.

4. On the Application Servers page, click server1.

5. On the Configuration tab, in the Additional Properties section at the lower
right, select Debugging Service to open the Debugging service configuration
page.

6. In the General Properties section of the Configuration tab, follow these steps:

a. Select Enable service at startup to enable the debugging service when
the server starts, as shown in Figure 28-17.

Figure 28-17 Debugging service page in the administrative console

b. Click OK to make the changes to your local configuration.

c. Save the configuration changes.

JVM debug port value: The value of the JVM debug port is required
when connecting to the application server with the debugger. The
default value is 7777.
 Chapter 28. Debugging local and remote applications 1489

d. Click Logout.

7. Restart the application server for the changes to take effect.

8. Verify that the application works properly by navigating to the following URL:

http://<hostname/IPaddress>:9080/RAD8EJBWeb/

28.4.3 Attaching to the remote WebSphere Application Server in
Rational Application Developer

Assuming that the target server is running in debug mode, complete the following
steps to attach to the remote WebSphere Application Server V8 Beta from within
Rational Application Developer. The workspace that is used must contain the
RAD8EJBWeb project.

1. In the Enterprise Explorer, right-click RAD8EJBWeb and select Debug As
Debug Configurations.

2. Create a new remote debug configuration for WebSphere Application Server
V8 Beta. In the Create, manage, and run configurations window (Figure 28-18
on page 1491), follow these steps:

a. Double-click WebSphere Application Server (or right-click and select
New).

b. Verify the name for this debug configuration (RAD8EJBWeb).

c. On the Connect tab, make sure that the Project is RAD8EJBWeb. For the
IBM WebSphere Server type, select the WebSphere Application Server
v8.0 Beta server. For the Host name, enter the IP address or target
machine name. For the JVM debug port, enter 7777.

d. Click Apply.
1490 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 28-18 Debug configuration for remote debugging

e. On the Source tab, expand the Default folder. About halfway down is the
RAD8EJBWeb project, so that the debugger knows where the source code is
located.

f. Click the Common tab to see the standard options for the debug
configuration, including where to save the configuration and where to
output the SystemOut file.

g. Click Debug to attach the debugger to the remote server.

The Debug perspective now shows the Remote debugger running in the Debug
view, as shown in Figure 28-19 on page 1492. The debugger is waiting for a
breakpoint to be triggered. Clicking the Disconnect icon () stops the
debugging.
 Chapter 28. Debugging local and remote applications 1491

Figure 28-19 Debugging perspective while remote debugging

28.4.4 Debugging a remote application

From a web browser, navigate to the URL where hostname is the IP address or
name of the target machine:

http://<hostname/IPaddress>:9080/RAD8EJBWeb/

You can now debug the remotely running the application in the same way as a
locally deployed application:

1. Set breakpoints (Java or JSP).
2. Step through the code.
3. Watch variables.
4. Execute expressions.

To terminate the debugging session, select the remote debugging instance and
click Disconnect ().

28.5 Using the Jython debugger

With the Jython debugger, you can detect and diagnose errors in the Jython
script (with the .py or .jy extension) that is used for WebSphere Application

Attaching to a local WebSphere instance of Rational Application
Developer: When attaching to a local WebSphere instance of Rational
Application Developer, you must start the application server in debug mode.
Then open the Debug perspective, and disconnect the debug instance that
was started by Rational Application Developer automatically when the server
was started in debug mode.

Next you can start a remote debug instance using localhost as the host name
and port 7777. With these settings, you can attach to the test application
server and perform all the usual debugging facilities.
1492 Rational Application Developer for WebSphere Software V8 Programming Guide

Server administration. You can also control the execution of your code by setting
line breakpoints, suspending execution, stepping through your code, and
examining the contents of variables. (Variable values cannot be changed in
Jython.)

28.5.1 Considerations for the Jython debugger

The Jython debugger only supports the debugging of scripts that are running on
WebSphere Application Server V6.1, V7, and V8 Beta. You can debug a Jython
script that has been developed or imported into a Jython project. When you are
debugging a Jython script, you can set line breakpoints.

When the workbench is running the script and encounters a breakpoint, the
script temporarily stops running. Execution suspends at the breakpoint before
the script is executed, at which point you can check the contents of variables. You
can then step over (execute) and see the effect that the statement has on the
script.

By using the Debug Launch configuration, you can start a debugging session for
a given Jython script on either the local test server or a server running on a
remote machine. If the target environment is on a remote machine, the host and
port numbers must be configured in the wsadmin arguments field. See the
Rational Application Developer Help for details about this feature.

28.5.2 Debugging a sample Jython script

To debug the listJDBCProviders script that we describe in 23.11, “Developing
automation scripts” on page 1275, follow these steps:

1. Open the listJDBCProviders.py Jython script file in the RAD8Jython project.

2. Set a breakpoint in the showJdbcProviders function at the following line:

for provider in providerEntryList

3. Click listJDBCProviders.py and select the following menu from the Rational
Application Developer toolbar at the top of the page (not the context menu on
the selected file): Run Debug As Administrative Script.

4. In the Debug Configurations window (Figure 28-20 on page 1494), complete
the following steps:

a. For the Name, verify that listJDBCProviders.py is entered.

Tip: To debug a Jython script, the server does not have to run in Debug mode.
 Chapter 28. Debugging local and remote applications 1493

b. For the Scripting runtime environment, select WebSphere Application
Server v8 Beta, and for the WebSphere Application Server Profile name,
select AppSrv01.

c. Specify a User ID and password if security is enabled.

d. Click Apply and then click Debug.

Figure 28-20 Jython debugging configuration

Execution of the script starts and when the breakpoint is encountered
execution is suspended.

5. When prompted, switch to the Debug perspective.

The Debug perspective opens and shows the familiar views (Figure 28-21):
1494 Rational Application Developer for WebSphere Software V8 Programming Guide

– The Debug view shows the thread and is used to step through the code.
– The editor shows the source code and the current position in the code.
– The Variables view shows the Jython variables, which cannot be changed.
– The Breakpoints view shows the breakpoints.
– The Outline view shows the outline of the script.
– The Console shows the output of the script.

Figure 28-21 Debug perspective when debugging a Jython script

6. Step through the Jython code, and watch the variables.

The Jython debugger is useful when you encounter errors in your Jython scripts.
Run the script in debug mode, without having to restart the server.

28.6 Using the JavaScript debugger

Rational Application Developer introduces integration with Firebug. Firebug is an
open source extension for Mozilla Firefox that assists in debugging, editing,
 Chapter 28. Debugging local and remote applications 1495

profiling, logging, and monitoring of HTML, Document Object Model (DOM),
Cascading Style Sheet (CSS), and JavaScript.

The JavaScript debugger integration provides the following features:

� The capability to create and remove breakpoints in Rational Application
Developer or Firebug and to have the breakpoint changes synchronize with
the other automatically.

� When a breakpoint is reached in Firebug, Rational Application Developer
opens the file, either a JavaScript file or HTML style file with a JavaScript
region, at the same line that Firebug is currently debugging.

� When Firebug is stopped at a breakpoint, the Threads view and Variables
view of Rational Application Developer are automatically synchronized with
Firebug.

� Errors and warnings that are identified by Firebug are automatically added to
the Problems view in Rational Application Developer.

� Edits to web pages or JavaScript files when pushed to the server, which is
done automatically if using the Ajax Test Server, are automatically updated in
Firefox and Firebug.

28.6.1 Setting the default browser to Firefox

To use the JavaScript debugging tools, Firefox must first be installed. Firefox is
needed to set Rational Application Developer to use Firefox with Firebug to
debug content that runs in the browser. To configure Rational Application
Developer, follow these steps:

1. Click Window Web Browser.
2. Select Firefox with Firebug (Figure 28-22 on page 1497).
1496 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 28-22 Enabling Firefox with Firebug to be the default browser

28.6.2 JavaScript debugging

To demonstrate JavaScript debugging, we use a simple sample web application
that guesses what number the user enters.

Importing the sample application
The following task demonstrates how to debug JavaScript. We use the
JSDebugWeb web application sample to demonstrate the debug capabilities.

To import the JSDebugWeb web application, follow these steps:

1. In the Web perspective, select File Import General Existing Project
into Workspace and click Next.

2. In the Import Projects window, select Select archive file and click Browse to
locate the C:\7835code\js\JSDebugWeb.zip file.

3. Select the JSDebugWeb project and click Finish.

The sample project is now imported.

Running the sample Ajax Test Server
After the project is imported, you must run the project on the Ajax Test Server.
JavaScript debugging works on several server types, such as WebSphere
Application Server, but for this case, we use the Ajax Test Server that comes with
Rational Application Developer.
 Chapter 28. Debugging local and remote applications 1497

Follow these steps to start the web application:

1. In the Enterprise Explorer, expand the JSDebugWeb WebContent
directory.

2. Right-click main.html and select Debug Debug on server.

3. In the servers dialog box, select the Ajax Test Server and click Finish.

The application starts and the Firefox web browser opens. If Rational Application
Developer is launching Firefox for the first time, Rational Application Developer
installs the extra components to Firefox that are needed for enabling the
communication between Firefox and Rational Application Developer.

The main.html page is displayed, as shown in Figure 28-23 on page 1471. We
have highlighted the icons for the Firefox plug-ins that allow communication with
Rational Application Developer (lower-right corner).

Figure 28-23 Main page in Firefox
1498 Rational Application Developer for WebSphere Software V8 Programming Guide

Input any number in the text field and click Try me. After clicking the button, an
error is displayed in Firebug’s Console view and automatically synchronized to
Rational Application Developer’s Problems view (Figure 28-24).

Figure 28-24 Firebug and Rational Application Developer synchronization

Clicking the error in the Problems view of Rational Application Developer opens
and highlights the line of JavaScript with the error. We intentionally caused this
error by using a call to a non-existent method called isNumber instead of the
method named isNaN. To fix the error, perform the following steps:

1. Go into the editor with the main.html file and remove the comment from line
12.

2. Comment line 13.

3. Save main.html.

4. Notice, in the Servers view, that the Ajax Test Server automatically
synchronizes the latest file changes.

5. Switch to the Firefox window after the server synchronization has finished.
 Chapter 28. Debugging local and remote applications 1499

After the server synchronization, Firefox automatically refreshes the page with
the latest changes. After the page finishes loading, enter the same number in the
text box and click Try me. An alert with the resulting message is displayed.

Debugging the JavaScript sample
You can debug JavaScript code by using breakpoints that are set and modified in
either Firebug or Rational Application Developer. The web application must be
running on a server.

Perform these steps to start the web application:

1. In the Enterprise Explorer, expand the JSDebugWeb WebContent
directory.

2. Right-click main.html and select Debug Debug on server.

3. In the servers dialog box, select Ajax Test Server and click Finish.

The application starts, and the Firefox web browser opens, displaying the
main.html page. Follow these steps to start the breakpoint debugging:

1. In Firebug, select the Script tab and select main.html from the drop-down
menu.

2. In Firebug, click in the margin on line 14 of main.html to add a breakpoint.

3. In Firefox, enter a number in the text box and click Try me.

4. When the breakpoint is reached, Firebug highlights it.

5. Open Rational Application Developer. You can see that main.html is opened
and that line 14, which is the line on which Firebug stopped for the breakpoint,
is highlighted. See Figure 28-25 on page 1501 for an example of what this
action looks like.
1500 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 28-25 Breakpoint synchronization

6. In Rational Application Developer, open the Debug perspective.

7. In Rational Application Developer, surface the Threads view. The threads that
are currently running and paused in Firefox are displayed.

8. In Rational Application Developer, surface the Variables view. This view is
synchronized with the Watch view of Firebug. This view lists all of the
variables that are currently visible when Firebug pauses on a breakpoint.

9. In Rational Application Developer, surface the Breakpoints view. This view is
synchronized with the Breakpoints view of Firebug.

10.In Rational Application Developer, double-click in the margin of main.html on
line 14 to remove the breakpoint.

11.Surface Firefox with Firebug, and notice that the breakpoint is removed from
there as well.

12.In Firebug, click the Continue icon to finish loading the page.
 Chapter 28. Debugging local and remote applications 1501

For more information about using the new client-side JavaScript debugging, see
the Rational Application Developer information center:

http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.etool
s.webtoolscore.doc/topics/tdebugfirebug.html

28.7 Using Dojo Debug Extension for Firebug

Debugging Dojo applications presents a unique set of challenges. Fortunately,
Rational Application Developer provides additional debugging support for Dojo
applications that integrates seamlessly with Firebug. This extension appears as a
new Dojo tab under Firebug, and when using the “Firefox with Firebug” browser,
is installed automatically.

The Dojo Debug Extension allows you to see important information about your
Dojo application, including all widgets, their properties, and event handling using
both dojo.connect() and the dojo.subscribe() APIs. Additionally, this extension
allows you to interact with your running application by setting breakpoints and
logging messages in key areas of your code, such as when a callback is
executed in response to a specific event.

28.7.1 Launching the Dojo Debugger

Launching the Dojo Debugger is the same as launching the integrated Firebug
extension. The only requirement is that you have a recent version of Firefox
installed.

From the Web perspective, choose Window Web Browser Firefox with
Firebug. After that, any time that you select either Open With Web Browser
or Run As Run on Server on a web page in the Enterprise Explorer, the page
opens with Firefox with the Firebug and Dojo Debug extensions automatically
installed.

When you launch the Dojo Debugger, you see a Dojo tab appear in Firebug. By
default, this extension is disabled and must be enabled to debug Dojo
applications. To enable the Dojo Debug extension, select the Dojo tab, open the
drop-down menu in the tab’s heading, and choose Enabled (Figure 28-26 on
page 1503).
1502 Rational Application Developer for WebSphere Software V8 Programming Guide

http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.etools.webtoolscore.doc/topics/tdebugfirebug.html

Figure 28-26 The Dojo panel must be enabled to show Dojo-specific information

After enabling the Dojo panel, it is always best to refresh the page to ensure that
all the latest information is loaded by the Dojo Debug extension.

The Dojo panel contains three major subviews: All widgets, All connections, and
All subscriptions. The following sections examine each of these subviews in
detail.

28.7.2 Exploring the All widgets view

The All widgets view provides a tree-based representation of all the Dojo widgets
that are found in the current page. In this simple example page, we see two
widgets: a TextBox and a Button (Figure 28-27).

Figure 28-27 The All widgets view shows all the Dojo widgets in the page, including invisible widgets
 Chapter 28. Debugging local and remote applications 1503

The All widgets tree contains two columns. The left column contains the widget’s
ID, and the second column contains both the ID and the declared type for the
widget (Figure 28-28). Expanding any widget shows that widget’s properties and
the current values of those properties.

Figure 28-28 Expanding a widget shows its properties and their current values

Hovering your mouse over any widget in the Dojo panel highlights that widget on
the page (Figure 28-29 on page 1505).
1504 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 28-29 Hovering over a widget highlights it on the page

Throughout the Dojo panel, widgets have a variety of helpful context menu
actions. In the All widgets view, the context menu actions are Show Connections,
Inspect in HTML Tab, and Inspect in DOM Tab. Although this document does not
describe each available action, you can examine them by right-clicking to
discover all the available actions and how they can help you debug your
application.

For now, we look at the Show Connections action (Figure 28-30 on page 1506).
 Chapter 28. Debugging local and remote applications 1505

Figure 28-30 The Connections tab shows all of the active connections to and from the widget

We can see that the Connections tab shows a tree of information that is related
to the Button widget. The Connections tab shows all callbacks registered using
dojo.connect() that involve the selected widget.

“Listened by” connections are those callbacks that are registered to listen to
events that are generated by the widget. Following the tree deeper, the next level
under “Listened by” is the event name against which the callback is registered.
Under the event are all the callbacks that are shown as {object context} ->
{callback function}. For example, you can see that the onClick event has a
callback registered, which is an anonymous function that will be called with the
widget itself as the context. Clicking the callback function in the Connections tab
takes us to the Script pane exactly where the function is defined (Figure 28-31 on
page 1507).
1506 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 28-31 Clicking a function navigates to that function’s definition in the Script panel

Going back to the Connections tab in the Dojo panel, “Listening to” connections
are those connections that the widget has registered to listen to other events.
Going deeper into the tree, the next level under “Listening to” is the callback
function. Under that level are the object and event to which the callback
responds, which are shown as {object} -> {event}.

In addition to showing useful information about Dojo connections, the
Connections tab allows you to set breakpoints on specific pieces of code that are
related to each connection. For example, by right-clicking the callback function
that is registered against the onClick event of the Button, we see the following
available context menu actions for setting breakpoints: Break on Target, Break on
Event, and Break on connect place:

� Break on Target sets a breakpoint on the first line of the callback function that
is registered to handle this event. This action is particularly handy to ensure
that your callback is being called when you expect it to be called. Invoking this
 Chapter 28. Debugging local and remote applications 1507

action on our example onClick callback results in the following breakpoint
being set (Figure 28-32).

Figure 28-32 The Break on Target breakpoint as it appears in the Script panel

� Break on Event sets a breakpoint inside the function that fires the event. This
action is handy if your callback is not being called as expected. Invoking this
action on our example onClick callback results in the following breakpoint
being set (Figure 28-33).

Figure 28-33 The Break on Event breakpoint as it appears in the Script panel

� Break on connect place sets a breakpoint on the dojo.connect() invocation
that causes the callback to be registered initially. This action is helpful to
ensure that your connection is made at the correct time. Invoking this action
1508 Rational Application Developer for WebSphere Software V8 Programming Guide

on our example onClick callback results in the following breakpoint being set
(Figure 28-34).

Figure 28-34 The Break on connect place breakpoint as it appears in the Script panel

When used together, the All widgets view, along with the Connections tab in the
Dojo Debug Extension can show you valuable information and help you debug
through the complex interactions that can occur when using dojo.connect() to
react to events.

28.7.3 Exploring the All connections view

In addition to the All widgets view, the Dojo Debug Extension also provides the
All connections view, which shows all the active event callbacks in the page in a
concise, sortable, and tabular format. Activating the All connections view shows a
window that is similar to Figure 28-35 on page 1510.
 Chapter 28. Debugging local and remote applications 1509

Figure 28-35 The All connections table showing an example connection that is highlighted in red

The table that is shown is first divided into two major headings: Source and
Target. The source half of the table lists information about objects that generate
events that have callbacks registered to handle. The target half of the table, in
turn, lists information about the functions that are registered to handle events that
are generated by the source objects. For example, in Figure 28-35, reading left to
right, the last connection that is shown in the table (highlighted in red for
emphasis) indicates that the Button whose ID is helloButton (Object column)
has a callback registered against the onClick event (Event column). That
callback is called in the context of the Button itself (Context column) and is an
anonymous function (Method column). This callback is the same example
callback that we examined in detail in the previous section.

You can sort each column in the All connections table by clicking the header text.
This capability is helpful when trying to answer questions, such as “Are there any
callbacks registered against events fired by widget X?” or “Which functions are
registered as callbacks on the onClick event?”
1510 Rational Application Developer for WebSphere Software V8 Programming Guide

Notice that hovering over any widget in the All connections table highlights that
widget on the page. This behavior is consistent throughout the entire Dojo panel.

Additionally, items in this table have helpful context menu actions that are
available. For example, right-clicking the anonymous callback function in the
example connection that is mentioned previously presents the following context
menu actions (Figure 28-36).

Figure 28-36 A variety of context menu actions are available within the All connections table

Although there are a number of interesting actions available (including the Break
on actions discussed in the previous section), we see what happens when we
select the Log calls to “(?)” action. After invoking this action, navigating over to
the Script panel shows this anonymous function listed under the Logged
Functions section of the Breakpoints tab (Figure 28-37 on page 1512).
 Chapter 28. Debugging local and remote applications 1511

Figure 28-37 Logged functions appear in the Breakpoints tab of the Script panel

If we navigate to the Console panel, a message is logged there each time that
the Button is clicked (Figure 28-38 on page 1513).
1512 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 28-38 A call to the anonymous function is logged in the Console panel

28.7.4 Exploring the All Subscriptions view

The third view that the Dojo Debug Extension offers is the All subscriptions view,
which provides a list of all the topic subscriptions that have been registered using
the dojo.subscribe() API. See Figure 28-39 on page 1514.
 Chapter 28. Debugging local and remote applications 1513

Figure 28-39 The All subscriptions view showing one subscription to the “say/hello” topic

This view provides a tree of information that represents the topics that have
active subscriptions. The top-level nodes are the topics themselves. The children
of the topic nodes are the callbacks that are registered to fire in response to
information being published to that topic using the dojo.publish() API. The
callback nodes are in the form {context} -> {callback}. In this example, our
application has one subscription to the “say/hello” topic where the callback is an
anonymous function that is called with a null context. Clicking the callback
function in the All subscriptions view shows that function’s definition in the Script
panel (Figure 28-40 on page 1515).
1514 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 28-40 The "say/hello" topic subscription callback shown in the Script panel

Additionally, callback functions and context objects have a variety of useful
context menu actions to explore.

28.7.5 Exploring the Info side panel

The Dojo Debug Extension also provides an Info side panel that displays
information about the version of Dojo that is loaded on the page along with all the
djConfig loading parameters that are specified (Figure 28-41 on page 1516).
 Chapter 28. Debugging local and remote applications 1515

Figure 28-41 The Info side panel

Take special note of the Connection counter in the Info side panel. This counter
can be useful to help you find potential lingering, unnecessary connections that
can affect performance. As your application runs, you can refresh the connection
count by selecting Refresh in the Info side panel drop-down menu
(Figure 28-42).

Figure 28-42 Use the Refresh action to update the number of connections

28.8 Using the debug extension for the Rational Team
Concert client (Team Debug)

You can extend Rational Application Developer by using IBM Installation
Manager to support the debug extension for Rational Team Concert.
1516 Rational Application Developer for WebSphere Software V8 Programming Guide

While debugging complex applications, any given team member might require
the expertise of a specialist to understand and correct a specific part of the code.
However, recreating a debug session to reproduce a particular scenario can be
time-consuming. Rational Application Developer offers the capability to share the
complete state of an existing debug session with another user, including any
breakpoints that are already set.

If both users are logged on the Rational Team Concert server at the same time,
one user can add a debug session to the team repository and then transfer the
debug session to the other user (Figure 28-43).

Figure 28-43 Workflow for transferring Java Debug session

28.8.1 Supported environments

Team Debug launchers only support Java Version 1.5, and later, as the target
Java Runtime Environment (JRE). The supported versions of WebSphere
Application Server are V6.0, V6.1, V7.0, and v8.0 Beta. The following types of
launch configurations are supported:

� Debug on Server
� Eclipse application
� Java applet
� Java application
� JUnit

Client A

Application Developer

Debug UI Daemon
JVM to Debug

Client B

Application Developer

Debug UI Daemon

Server

Team Concert Server

1. Login to Rational Team Concert
2. Register user IP address
3. Add Debug session to Team Repository
4. Debug

5. Transfer to other user
6. Notify of transfer
7. Accept debug session
8. Debug

123 4,85 6721

Team Debug Service
 Chapter 28. Debugging local and remote applications 1517

� JUnit plug-in test
� Remote Java application

Although the Team Debug Client supports multiple languages, the Team Debug
Server is English only. Therefore, the user can receive error messages from the
server in English.

28.8.2 Prerequisites

You must satisfy the following prerequisites:

� This feature uses Rational Team Concert. It requires an installation of
additional features on the Rational Team Concert server and on Rational
Application Developer (Rational Team Concert client). For installation
instructions, see “Installing IBM Rational Team Concert” on page 1824.

� Two Rational Application Developer users must be logged in to the same
Rational Team Concert server, either at the same time in the case of a direct
transfer, or potentially at separate times if the debug session is parked on the
server.

� The two users must have imported the same versions of the project to be
debugged into the Rational Application Developer workspace. See
Chapter 30, “IBM Rational Application Developer integration with Rational
Team Concert” on page 1595, for details about how to share a project in
Rational Team Concert.

� In Rational Application Developer, the Debug UI daemon (see 28.2.4, “Stored
procedure debugging for DB2 V9” on page 1471) must be active and listening
for inbound connections.

� When the user logs on to the Rational Team Concert server, the user’s IP
address and the debug daemon port are registered with the team debug
service. This information is necessary to identify the users and send them
notifications when they are sent a debug session or when they are requested
to transfer their debug session.

� If users do not receive notifications, check the user IP address and debug
daemon settings. The IP address of the client can be determined in the
Debug view by clicking the Debug UI daemon icon and selecting
Workstation IP.

After verifying the IP address, debug port, and status of the daemon, try to log
out and log in again to Rational Team Concert. This way, the user is
registered again with the team debug service with the correct information. If
the problem persists, park the debug session and use the Team Debug view
to transfer the session.
1518 Rational Application Developer for WebSphere Software V8 Programming Guide

� If you test this functionality using two Rational Application Developer
instances running on the same machine, remember to change the default
value of the Debug UI daemon port (8001) for at least one of the two
instances.

28.8.3 Sharing a Java application debug session by transferring it to
another user

In this example, we show how to share the debug session of a Java application
between three users, Rafael, Rodrigo, and Lara. The example scenario is that
Rodrigo is debugging a part of the Java Persistence API (JPA) code and asks for
help from Rafael. They work on the issue and identify the failing part of the code;
however, they do not know how to fix it. They park the debugging session in the
server so that they can call Lara, who is the specialist on that part of the code, to
continue to debug.

To replace the contents of each user’s workspace with a known baseline, perform
these steps:

1. In the Team Artifacts view, right-click My Repository Workspaces.
2. Select the personal workspace of the user.
3. Right-click Java Prototype Component.
4. Select Replace With Baseline.
5. Select the Baseline Imported prototype.
6. Look at the Pending Changes view.
7. Right-click the Incoming Changes and select Accept.

To initiate the debug session and transfer it to another user, Lara performs the
following steps:

1. Open EntityTester.java in the RAD8JPATest project.

2. Place a breakpoint on the first step of the main method:

String customerId = "111-11-1111";

3. Right-click EntityTester.java and select Debug As Debug
Configurations.

4. Create a new Java application configuration (Figure 28-44 on page 1520):

a. For the Name, enter RAD8 Team Debug Configuration.

b. For the Project, enter RAD8JPATest.

c. For the Main class, enter itso.bank.entities.test.EntityTester.

d. Click the Team tab (Figure 28-45 on page 1521).
 Chapter 28. Debugging local and remote applications 1519

Figure 28-44 Debug configuration for a Java Application

5. On Figure 28-45 on page 1521, Lara performs these steps:

a. Select Add debug session to team repository.

b. For the “Select a team repository to add this debug session to” field, select
a name. Our example uses ITSO RTC REP.

c. Click Debug.
1520 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 28-45 Team tab in Debug Configurations window

The Team Java Launcher starts the JVM to debug with the following parameters:

-agentlib:jdwp=transport=dt_socket,suspend=y,server=y,address=hostname:
debugPort -Dfile.encoding=<codepage> -classpath <path> <MainClass>

You cannot use the Eclipse Java development tools (JDT) Launcher for this
purpose, because it starts the JVM to debug without the server=y parameter.

Observe the Debug perspective (Figure 28-46 on page 1522). The Debug view
shows a line that refers to the virtual machine that is decorated with the following
text:

[Team] VM [hostname:debugPort]

Default Java launcher: The default Java launcher might not be the Team
Java Launcher. In order to select it, click the Select other link, and in the
Preferred Java Launcher dialog, select Team Java Launcher.
 Chapter 28. Debugging local and remote applications 1521

Figure 28-46 Debug perspective during a Team Debug session

To transfer the debug session to Rafael, Rodrigo performs these actions:

1. In the Debug perspective, right-click the line [Team] VM
[hostname:debugPort] and select Transfer to User (Figure 28-47 on
page 1523).
1522 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 28-47 Transfer debug session menu

2. Enter the user name or a space followed by the last name to find Rafael
(Figure 28-48 on page 1524).
 Chapter 28. Debugging local and remote applications 1523

Figure 28-48 Selecting the team member to transfer the debugging session

3. Input any additional information for this transfer request and click OK
(Figure 28-49).

Figure 28-49 Additional information for the transfer request

A dialog box appears on Rafael’s window that shows the attempt to transfer the
debug session (Figure 28-50 on page 1525).
1524 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 28-50 Invitation to accept an incoming debug session from another user

The incoming debug session dialog box allows the receiver to import the
breakpoints from the sender and to overwrite his own breakpoints. Rafael
performs the following steps:

1. Select Import breakpoints.

2. Click Yes.
 Chapter 28. Debugging local and remote applications 1525

Rodrigo’s debug session is suspended at the same line where he left it, and
Rafael can step into the application from the point where Rodrigo transferred it.

If Rafael imported the breakpoints, they are grouped in a Working Set named
after Rodrigo’s user on the Rational Team Concert server. The debug output and
input streams are directed to the console of the user that receives the debug
session.

Rafael can decide to transfer the session back to Rodrigo at a later stage in the
execution. Alternatively, Rodrigo can also request the session back by
performing the following steps:

1. In the Team Artifacts view, expand the Debug node under the Project Area.

Starting the Java program in debug server mode: The presence of
firewalls between the Rational Team Concert server and Rational Application
Developer might prevent this functionality from working. A symptom of this
situation is the following message:

Unable to add debug session to repository
Reason: Cannot connect to IP_address:debugPort

The IP address and port that are shown in the error message are the IP
address and port of the JVM to be debugged (typically, on the Rational Team
Concert client). The port is randomly chosen by the Team Launcher, which
means that you cannot easily open this port on the firewall. One way of fixing
the value of the debug port is to start the Java program in debug server mode
instead of using the Team Launcher. Note, however, that it is currently not
possible to fix the value of the port that is used by the Team Debug Service on
the Rational Team Concert server. This function might be considered an
enhancement for a future release.

To start the Java program in debug server mode, follow these steps:

1. Create a new Java launch configuration and add it in the VM argument:

-agentlib:jdwp=transport=dt_socket,suspend=y,server=y,address=
hostname:debugPort

The host name that is used must be recognizable by the Jazz server. (Do not
specify localhost; use the full host name or IP address.)

2. Start this session in Run mode.

3. Create a Remote Java Application debug configuration and connect to this
running JVM for debug.

4. After being connected, add the debug session to the Jazz server.
1526 Rational Application Developer for WebSphere Software V8 Programming Guide

2. Expand Search Team Debug Session Started by Me.

3. Identify the session that was started by Rodrigo and that is currently being
debugged by Rafael.

4. Right-click the session and select Debug (Figure 28-51).

Figure 28-51 Rodrigo requesting the debug session back

Rafael receives a notification that the debug session is requested by Rodrigo
(Figure 28-52 on page 1528).
 Chapter 28. Debugging local and remote applications 1527

Figure 28-52 Notification

When Rafael accepts, Rodrigo is prompted if he wants to import Rafael’s
breakpoints. A new debug session is displayed in Rodrigo’s Debug view.

Continuing our scenario, we assume that Rodrigo and Rafael were unable to
identify the actual problem, but they were able to reduce the problem to certain
functions during the debug. They now need the help of a specialist for that part of
the code. Lara is the expert on that part of the code, so they need to store that
debug session in Rational Team Concert so that Lara can later restart it and work
on it.

In order to store that debug session in Rational Team Concert, Rodrigo must
park the session in Rational Team Concert. A parked debug session has no
owner and can be retrieved by another user at a later time. Anyone can retrieve a
parked debug session and gain control of it.

To park the debugging session, open the Debug view, right-click over [Team] VM
[hostname:debugPort], and select Park Debug Session.

At a later time, Lara can decide to continue Rodrigo’s debug session. She
performs these actions:

1. In the Team Artifacts view, expand the Debug node under the Project Area.

2. In the Search Team Debug Sessions node, select Parked Debug Sessions.

3. In the Team Debug view, identify the session that was started by Rodrigo,
right-click the session, and select Debug (Figure 28-53 on page 1529).
1528 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 28-53 Team Debug view showing a parked debug session

4. A dialog prompts whether to import breakpoints. Click Yes.

At this point Lara sees, in the Debug perspective, the code that contains the
breakpoint. The Variables view shows the contents as determined by the
workflow that was previously followed by Rodrigo and Rafael. Lara also sees a
copy of the standard output and standard error that is streamed to the console
(the same copy that is being streamed to the console of the previous instance of
Rational Application Developer). While Lara steps through the code, Rodrigo as
the owner of that debug session sees the results in the web browser that is
opened on his machine. Lara can then decide to transfer the session to anyone
on the team or to park it again on the server.
 Chapter 28. Debugging local and remote applications 1529

28.9 Obtaining more information

The online help that is provided with Rational Application Developer has detailed
information about the following topics:

� Java development tools debugger

� Java and mixed language debugger

� Java 2 Platform, Enterprise Edition (J2EE)/web application debugging

� Jython debugger

� Extensible Stylesheet Language Transformation (XSLT) debugger

� Debug extensions for Rational Team Concert Client

� DB2 stored procedure debugger

� Structured Query Language for Java (SQLJ) debugger

See the following websites for Rational Team Concert topics:

� Installing Rational Debug Extensions for Rational Team Concert Server

http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.ra
d.install.doc/topics/t_install_teamdebug.html

� Rational Team Concert Information Center

http://publib.boulder.ibm.com/infocenter/rtc/v2r0m0/index.jsp

� Video: Team collaboration with Rational Team Concert and Rational
Application Developer

https://www.ibm.com/developerworks/wikis/download/attachments/140051
369/rad75rtccollaborationslimwidescreenpart1.swf?version=1

IBM developerWorks has several tutorials and articles to explain debugging for
various situations, including the following topics:

� Debugging and Testing Java Applications

http://www.ibm.com/developerworks/edu/i-dw-r-radcert2556.html

� Getting Started with the New Rational Application Developer XSLT Debugger

http://www-128.ibm.com/developerworks/rational/library/05/614_debug/

� Firebug integration

http://www.ibm.com/developerworks/wikis/download/attachments/1290089
75/crossfire_demo2.swf?version=1
1530 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.ibm.com/developerworks/edu/i-dw-r-radcert2556.html
http://www-128.ibm.com/developerworks/rational/library/05/614_debug/
http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.rad.install.doc/topics/t_install_teamdebug.html
http://publib.boulder.ibm.com/infocenter/rtc/v2r0m0/index.jsp
https://www.ibm.com/developerworks/wikis/download/attachments/140051369/rad75rtccollaborationslimwidescreenpart1.swf?version=1
https://www.ibm.com/developerworks/wikis/download/attachments/140051369/rad75rtccollaborationslimwidescreenpart1.swf?version=1
http://www.ibm.com/developerworks/wikis/download/attachments/129008975/crossfire_demo2.swf?version=1
https://www.ibm.com/developerworks/wikis/download/attachments/140051369/rad75rtccollaborationslimwidescreenpart1.swf?version=1
https://www.ibm.com/developerworks/wikis/download/attachments/140051369/rad75rtccollaborationslimwidescreenpart1.swf?version=1
https://www.ibm.com/developerworks/wikis/download/attachments/140051369/rad75rtccollaborationslimwidescreenpart1.swf?version=1
http://www.ibm.com/developerworks/wikis/download/attachments/129008975/crossfire_demo2.swf?version=1
http://www.ibm.com/developerworks/wikis/download/attachments/129008975/crossfire_demo2.swf?version=1
http://www.ibm.com/developerworks/wikis/download/attachments/129008975/crossfire_demo2.swf?version=1
http://www.ibm.com/developerworks/wikis/download/attachments/129008975/crossfire_demo2.swf?version=1

Part 7 Management and
team development

In this part, we describe the tooling and technologies that are provided by IBM
Rational Application Developer for managing and developing applications in a
team environment.

This part includes the following chapters:

� Chapter 29, “Concurrent Versions System (CVS) integration” on page 1533

� Chapter 30, “IBM Rational Application Developer integration with Rational
Team Concert” on page 1595

� Chapter 31, “IBM Rational ClearCase” on page 1619

� Chapter 32, “Code Coverage” on page 1697

� Chapter 33, “Developing Session Initiation Protocol applications” on
page 1727

Part 7
© Copyright IBM Corp. 2011. All rights reserved. 1531

Sample code for download: The sample code for all the applications that are
developed in this part is available for download at the following address:

ftp://www.redbooks.ibm.com/redbooks/SG247835

See Appendix C, “Additional material” on page 1877, for instructions.
1532 Rational Application Developer for WebSphere Software V8 Programming Guide

ftp://www.redbooks.ibm.com/redbooks/SG247835

Chapter 29. Concurrent Versions System
(CVS) integration

In this chapter, we provide an introduction to the widely adopted open source
version control system that is known as Concurrent Versions System (CVS) and
the tools within Rational Application Developer to integrate with it. Through an
example scenario showing two developers working on a simulated project, we
demonstrate the major features of using CVS within Rational Application
Developer.

The chapter is organized into the following sections:

� Introduction to CVS
� Configuring the CVS client for Rational Application Developer
� Configuring CVS in Rational Application Developer
� Development scenario
� CVS resource history
� Comparisons in CVS
� Annotations in CVS
� Branches in CVS
� Working with patches
� Disconnecting a project
� Team Synchronizing perspective
� More information

29
© Copyright IBM Corp. 2011. All rights reserved. 1533

29.1 Introduction to CVS

CVS is a popular open source software configuration management (SCM)
system for source code version control. Individual developers or large teams can
use it and configure it to run across the web or for any configuration where the
users have TCP/IP access to a CVS server. With CVS, users can work on the
same file simultaneously without locking, and it provides a facility to merge
changes and resolve conflicts when they arise. For these major reasons and the
fact that it is available at no cost and relatively easy to install and configure, CVS
has become popular both for open source and commercial projects.

CVS is a client/server-based SCM system. The CVS Server software is available
from the CVS home page and is released under GNU General Public License.
Several options exist for how to run the CVS client software, including the
Rational Application Developer functionality, which is described in this chapter.

CVS only implements version control and does not handle other aspects of SCM,
such as requirements management, defect tracking, and build management.
Other open source projects are available for performing these functions. The IBM
Rational suite of products has a large set of tools that perform the same functions
in an integrated way.

29.1.1 CVS features

CVS offers the following key features (among others):

� Developers can use multiple client/server protocols over TCP/IP to access the
latest code from a variety of clients with access to the CVS server anywhere.

� All the versions of a file are stored in a single repository file using
forward-delta versioning, which stores only the differences between
sequential versions.

� Developers are insulated from each other. Every developer works in its own
directory, and CVS merges the work in the repository when the developer is
ready to commit. Conflicts can be resolved as development progresses (using
synchronize) and must be resolved before work is committed to the repository.
1534 Rational Application Developer for WebSphere Software V8 Programming Guide

� CVS uses an unreserved checkout approach to version control that helps
avoid the artificial conflicts that are common when using an exclusive
checkout model.

� CVS keeps shared project data in repositories. Each repository has a root
directory on the file system.

� CVS maintains a history of the source code revisions. Each change is
stamped with the time that it was made and the name of the person who
made it. Developers must also provide a description of the change. Given this
information, CVS can help developers find answers to questions, such as who
made the change, when was the change made, why was the change made,
and what specifically was changed.

29.1.2 CVS support within Rational Application Developer

Rational Application Developer provides a fully integrated CVS client, the major
features of which are demonstrated throughout this chapter. At the highest level,
two perspectives in Rational Application Developer are important when working
with CVS:

� The CVS Repository Exploring perspective provides an interface for creating
new links to a repository, browsing the content of the repository, and checking
out content (files, folders, and projects) to the workspace.

� The Team Synchronizing perspective provides an interface for synchronizing
code on the workspace with code in a repository. This perspective is also
used by other version control systems, including IBM Rational Team Concert
and IBM Rational ClearCase.

Important: The CVS and Rational Application Developer interpretations of
what the term conflict means differ slightly:

� In CVS, a conflict refers to two changes that have been made to the
same line or set of lines in the same source code file. In these cases, an
automatic merge is not possible, and manual merging is required.

� For Rational Application Developer, a conflict means that only a locally
modified version exists of a resource for which a more recent revision is
available in a branch in the repository. In these cases, an automatic
merge might resolve the issue. If changes are made to the same set of
lines (which is the case for resolving CVS conflicts), manual merging is
required.
 Chapter 29. Concurrent Versions System (CVS) integration 1535

In addition to these two perspectives, numerous menu options, context menu
options, and other features are available throughout Rational Application
Developer to help users work with a CVS repository.

Rational Application Developer supports the following authentication protocols
when establishing a connection to a CVS server:

� pserver (password server)

This is the simplest but least secure communication method. By using this
mechanism, the user name and password are passed to the CVS server
using a defined protocol. The disadvantage of this method is that the
password is transmitted in clear text over the network, making it vulnerable to
network sniffing tools.

� ext (external)

With this method, the user can specify an external program to connect to the
repository. In the Preferences window, you select Window Preferences
Team CVS Ext Connection Method. Then you can specify the local
application to run, the commands to send to the CVS server, and the
parameters to pass to the server. Each CVS operation that is performed is
then processed through this executable, and passwords are encrypted using
the mechanism that the executable uses. Generally, this mechanism requires
shell accounts on the server machine so that the clients can use the remote
shell applications.

� extssh (external program using Secure Shell (SSH))

This method is similar to the ext method, but it uses a built-in SSH client that
is supplied with Rational Application Developer to perform encryption. In the
Preferences window, you select Window Preferences General
Network Connections SSH2. A set of options is presented for configuring
the SSH security, including the SSH application path and private keys.

� pserverssh2 (password server using Secure Shell)

This method uses the pserver mechanism of storing the user IDs and
passwords within the CVS server as shown before, but it uses SSH
encryption (as configured in the SSH2 Connection Method Preferences
window) to communicate the user and password information to the server.

The pserver option is the easiest to configure and is used in the example in this
chapter. For more information about these configurations, see the CVS home
page (refer to http://www.nongnu.org/cvs/) and Rational Application Developer
Help.
1536 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.nongnu.org/cvs/

29.2 Configuring the CVS client for Rational Application
Developer

In this section, we explain how to create a client connection within Rational
Application Developer to a CVS server. Typically, you perform these activities in
Rational Application Developer from a new workspace.

29.2.1 CVS Server Installation

The following scenarios assume that CVS Server software has been installed
and has two users (cvsuser1 and cvsuser2) configured. Covering the installation
of the CVS Server is outside the scope of this book which is focussed on the
tooling support available in Rational Application Developer. There are versions of
CVS Server software available for Windows, Linux and UNIX some of which are
open source and some have a license fee. The CVS home page
(http://www.nongnu.org/cvs/) is a good starting point for finding links to this
software.

29.2.2 Configuring the CVS team capabilities

Verify that team capabilities CVS support is enabled by performing these steps:

1. Select Windows Preferences.

2. Select and expand General and select Capabilities.

3. Select the Team capability.

4. Click Advanced.
 Chapter 29. Concurrent Versions System (CVS) integration 1537

5. In the Advanced Capabilities Settings window (Figure 29-1), expand the
Team, and verify that CVS Support is selected. Click OK.

Figure 29-1 Verifying that the Team capability CVS Support is enabled

6. In the Preferences window, click Apply and then click OK.

29.2.3 Accessing the CVS repository

To access a repository that has been configured on a server for users to perform
their version management, follow these steps:

1. Select Windows Open Perspective Other CVS Repository
Exploring. Click OK.

2. In the CVS Repositories view, right-click and select New Repository
Location.
1538 Rational Application Developer for WebSphere Software V8 Programming Guide

3. In the Add CVS Repository window (Figure 29-2), add the parameters for the
repository location:

a. In the Host and Repository path fields, enter the names that reflect where
the CVS repository is located.

b. For the User and Password fields, enter the name of the user of the
workspace and the password.

c. For the Connection type, select pserver or whichever connection type is
appropriate (refer to 29.1.2, “CVS support within Rational Application
Developer” on page 1535).

d. Select Validate connection on finish.

e. Select Save Password and click Finish.

Figure 29-2 Add the CVS repository to the workspace
 Chapter 29. Concurrent Versions System (CVS) integration 1539

4. In the Secure Storage window, click No unless you want to establish the
password recovery feature.

If everything worked correctly, you see a repository location in the CVS
Repositories view (Figure 29-3). You can expand the entry to see HEAD,
Branches, Versions, and Dates.

Figure 29-3 CVS Repositories view

29.3 Configuring CVS in Rational Application Developer

Within Rational Application Developer, you can set the following CVS-related
settings to guide the integration of CVS:

� Label decorations
� File content
� Ignored resources
� CVS-specific settings
� CVS keyword substitution

29.3.1 Label decorations

Label decorations are set to be on for CVS by default, which means that the CVS
properties of a particular file are shown on its label or icon. For example, if a file
changes from the version in the repository, it has a greater than symbol (>) next
to its file name.
1540 Rational Application Developer for WebSphere Software V8 Programming Guide

To view or change the label decorations, select Windows Preferences,
expand General Appearance, and select Label Decorations. By default, the
CVS labels are selected (Figure 29-4).

Figure 29-4 CVS Label Decoration preferences

29.3.2 File content

You can configure the file content of resources to be stored as either ASCII or
binary. When working with a file extension that is not defined in the file content
list that is stored in Rational Application Developer, files of this type are saved
into the repository as binary, by default. When a resource is stored as a binary,
CVS cannot show line-by-line comparisons between versions. However, files that
have binary content cannot be stored as ASCII CVS files. After a file is created
as one type, the type cannot be changed. Therefore, it is important to ensure that
each file content type is configured correctly in Rational Application Developer
before adding a new project to the repository.

To verify that a resource in the workspace is stored in the repository correctly,
select Windows Preferences and expand Team File Content
(Figure 29-5 on page 1542). Verify that the file extensions that you are using are
present and stored in the repository as desired.
 Chapter 29. Concurrent Versions System (CVS) integration 1541

Figure 29-5 Team File Content preferences

If a particular file extension is not in the list, you must add this extension, unless
the resource is stored in the default binary format. Rational Application
Developer prompts you for the resource type when performing the first check-in
(see Chapter 29-12, “Adding new file types at check-in” on page 1554) if it
encounters a new type. Or, you can add the new type manually in the
Preferences window.

A common file that is often supplied with a source code distribution is a
Makefile.mak file, which is usually an ASCII file.

To add this file type extension (which is not present in this list), follow these steps:

1. Select Windows Preferences and expand Team File Content.

2. Click Add Extension.

3. Enter the extension name mak and click OK.

4. Find the extension in the list, and in the Content column, select ASCII Text.

5. Click Apply and then click OK.

Tip: You can also change the content by highlighting the extension and
clicking Change. The setting toggles between ASCII Text and Binary.
1542 Rational Application Developer for WebSphere Software V8 Programming Guide

29.3.3 Ignored resources

Usually, developers do not save resources that are created or changed
dynamically through mechanisms, such as the compilation or builds, in the
repository. These resources can include class files, executables, and Enterprise
JavaBeans (EJB) stubs and implementation codes. Rational Application
Developer stores a list of these resources that is ignored when performing CVS
operations. To access this list, select Windows Preferences and expand
Team Ignored Resources.

You can add resources to this list by specifying the pattern that will be ignored.
The two wildcard characters are an asterisk (*), which indicates a match of zero
or many characters, and a question mark (?), which indicates a match of one
character. For example, a pattern of _EJS*.java matches any file that begins with
_EJS, has zero-to-many characters, and ends in .java.

In the following example, we explain how to add the filename pattern *.tmp to the
ignored resources list:

1. Select Windows Preferences.

2. Expand Team and select Ignored Resources.

3. Click Add Pattern. Add the pattern *.tmp and click OK.

4. Ensure that the resource (*.tmp) is selected and added to the Ignored
Resources list (Figure 29-6 on page 1544). All *.tmp resources are now
ignored by CVS in Rational Application Developer.
 Chapter 29. Concurrent Versions System (CVS) integration 1543

Figure 29-6 Resources that will be ignored when saving to the repository

To remove a pattern from the Ignored Resources list, select it and click Remove.
To temporarily disable ignoring a file pattern, clear its check box in the list.

Additionally, you can use the following two facilities to exclude a file from version
control:

� The “Resources marked as derived are automatically not checked into the
CVS repository by Rational Application Developer” field

This field is set by builders in the Eclipse framework, such as the Java builder.
To determine if a resource is derived, right-click the resource and select
Properties, or look in the Properties view. The Derived field is shown under
Info. It is also possible to change the Derived field value in the Properties
window.
1544 Rational Application Developer for WebSphere Software V8 Programming Guide

� Use of a .cvsignore file

This file contains a list of files or directories that must not be placed into the
repository. CVS checks this file and does not add to CVS any files that are in
this list. You can add a file to the list by right-clicking the file in the Enterprise
Explorer view and selecting Team Add to .cvsignore.

For more details about the syntax of .cvsignore, see the following web
address:

http://www.cvsnt.org/manual/html/cvsignore.html

29.3.4 CVS-specific settings

The CVS settings in Rational Application Developer are extensive and therefore
are difficult to cover here in full. Table 29-1 highlights the more important settings
with short descriptions. For a complete description of the remaining settings, see
the Rational Application Developer Help system.

Table 29-1 Categories of available CVS settings

Category Window preferences Description

General
CVS Settings

Team CVS Settings for the behavior in communicating
with CVS, handling the files and projects
received from CVS, and prompting the user
for certain activities.

Annotate Team CVS
Annotate

Switch on or off the annotating of binary
files.

Comment
Templates

Team CVS
Comment Templates

Lets you create, edit, or remove comment
templates that can be used while checking
in a file.

Console Team CVS
Console

Various settings for the CVS console view,
including a flag for whether to display CVS
commands to the console.

Ext
Connection
Method

Team CVS
Ext Connection
Method

Settings to identify the SSH external
program and associated parameters when
using the ext protocol to communicate with
the CVS server.

Label
Decorations

Team CVS
Label Decorations

Settings for how to display the CVS state of
resources in Rational Application
Developer.

Synchronize/
Compare

Team CVS
Synchronize/Compare

Various settings for comparison.
 Chapter 29. Concurrent Versions System (CVS) integration 1545

http://www.cvsnt.org/manual/html/cvsignore.html

29.3.5 CVS keyword substitution

In addition to storing the history of changes to a given source code file in the
CVS repository, you can store meta information (such as the author, date and
time, revision, and change comments) in the contents of the file. Typically, a
standard header template is configured in Rational Application Developer, which
is then applied to each file when CVS operations (usually check-in and checkout)
are performed. The template can include a set of CVS keywords inside a
heading. These keywords are expanded when a file is checked in or out, and this
process is known as keyword expansion.

Keyword expansion is an effective mechanism for developers to quickly identify
the version of a resource in the repository versus the version of a resource that a
user has checked out locally on the user’s workspace.

Rational Application Developer, by default, has the keyword substitution set to
ASCII with keyword expansion (-kkv) under the selection Windows
Preferences Team CVS and the File and Folders tab (Figure 29-7 on
page 1547). This setting expands the keyword substitution that is based on the
interpretation by CVS and is performed wherever the keywords are located in the
file.

Update/
Merge

Team CVS
Update/Merge

Settings for guiding the Rational
Application Developer process when
merging is required during synchronization.

Watch/Edit Team CVS
Watch/Edit

Settings for the CVS watch and edit
functionality, which allows users to be
informed (by email) when a file has been
edited or committed by another user.

Category Window preferences Description
1546 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 29-7 CVS keyword expansion setting

Table 29-2 lists several of the available keywords (which are case-sensitive).

Table 29-2 CVS keywords

Keyword Description

$$Author$ Expands to the name of the author of the change in the file, for example:
$Author: itsodev $

$$Date$ Expands to the date and time of the change in Coordinated Universal
Time (UTC), for example:
$Date: 2008/10/14 18:21:32 $

$$Header$ Contains the CVS file in repository, revision, date (in UTC), author, state,
and locker, for example:
$Header: /rep7835/XMLExample/.project,v 1.1 2008/10/14 18:21:32
itsodev Exp itso $

$$Id$ Like $Header$, except without the full path of the CVS file, for example:
$Id: .project,v 1.1 2008/10/14 18:21:32 itsodev Exp itso $

$$Log$ The log message of this revision. This log message does not get
replaced, but it gets appended to the existing log messages.

$$Name$ Expands to the name of the sticky tag, which is a file that is retrieved by
date or revision tags, for example: $Name: version_1_3 $

$Revision$ Expands to the revision number of the file, for example: $Revision: 1.1 $

$Source$ Expands to the full path of the RCS file in the repository, for example:
$Source: /rep7835/XMLExample/.project,v $
 Chapter 29. Concurrent Versions System (CVS) integration 1547

To ensure consistency between multiple users working on a team, define a
standard header for all Java source files. Example 29-1 shows keywords that are
used in Java.

Example 29-1 CVS keywords that are used in Java

/**
* Class comment goes here.
*
* <pre>
* Date $$Date$$
* Id $$Id$$
* </pre>
* @author $$Author$$
* @version $$Revision$$
*/

To ensure consistency across all of the files that are created, each user needs to
cut and paste this header into the user’s files. Fortunately, Rational Application
Developer offers a means to ensure this consistency.

To set up a standard template, follow these steps:

1. Select Windows Preferences Java Code Style Code
Templates.

2. Expand Comments Files and click Edit.

3. In the Edit Template window (Figure 29-8 on page 1549), cut and paste or
type the comment header that you require. Click OK to complete the editing.
1548 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 29-8 Setting up a common code template for Java files

4. Click Apply and then click OK.

This task sets up a standard CVS template. The next time that a new class is
created, checked in, and then checked out, the header is displayed
(Example 29-2).

Example 29-2 Contents of the Java file after the check-in and checkout from CVS

/**
* class comment goes here.
*
* <pre>
* Date $Date: 2010/10/29 21:17:32 $
* Id $Id: $Id: Example.java,v 1.1 2010/10/29 21:17:32 itsodev Exp itso

$
* </pre>
* @author $Author: itsodev $

Double dollar sign: The double dollar sign ($$) is required, because
Rational Application Developer treats a single dollar sign ($) as one of its
own variables. The double dollar sign ($$) is used as a means of escaping
the single dollar sign so that it can be post-processed by CVS.
 Chapter 29. Concurrent Versions System (CVS) integration 1549

* @version $Revision: 1.1 $
*/

29.4 Development scenario

To show you how to work with CVS in Rational Application Developer, we follow a
simple but typical development scenario in Table 29-3. Two developers, cvsuser1
and cvsuser2, work together to create a servlet ServletA and a view bean View1.

Table 29-3 Sample development scenario

Simulated developer systems: The example in this chapter calls for two
simulated developer systems. For demonstration purposes, you can simulate
having two systems by having two workspaces on the same machine.

Step Developer 1 (cvsuser1) Developer 2 (cvsuser2)

1 Creates a new dynamic web project,
RAD8CVSGuide, and a servlet,
ServletA, in it and adds it to the
version control and the repository.

N/A

2

2b: Updates the servlet ServletA.

2a: Imports the RAD8CVSGuide CVS
module as a workbench project.
Creates a view bean View1, adds it to
the version control, and synchronizes
the project with the repository.

3 3a: Synchronizes the project with the
repository to commit the changes to
the repository (servlet) and receives
changes from the repository (view
bean).

3b: Synchronizes the project with the
workspace to receive the servlet.

4 4a: Continues changing and updating
the servlet. Synchronizes the project
with the repository to commit changes
to the repository and merges
changes.

4c: Synchronizes with the repository
to pick up the merged servlet.

4a: Begins changes to the servlet in
parallel with Developer 1.

4b: Synchronizes the project after
cvsuser1 has committed and must
merge code from the workspace and
the CVS repository.

5 Assigns a version number to the
project.

N/A
1550 Rational Application Developer for WebSphere Software V8 Programming Guide

Steps 1 through 3 are serial development with no parallel work on the same file
being done. In steps 4 and 5, both developers work in parallel, resulting in
conflicts. These conflicts are resolved by using the CVS tools in Rational
Application Developer.

In the following sections, we perform each of the steps and explain the team
actions in detail.

29.4.1 Creating and sharing the project (step 1, cvsuser1)

Rational Application Developer offers a perspective that is specifically designed
for viewing the contents of CVS servers, which is called the CVS Repository
Exploring perspective.

Adding a CVS repository
For this section, ensure that you have installed and implemented the CVSNT
server and completed the steps in 29.2.3, “Accessing the CVS repository” on
page 1538.

The CVS Repositories view now contains the repository location (Figure 29-9).

Figure 29-9 CVS Repositories view

Expanding a location in the CVS Repositories view reveals branches and
versions. A special branch, which is called HEAD, is shown outside the main
Branches folder because of its importance. HEAD is the main integration branch,
holding the project’s current development state.

You can use the CVS Repositories view to check out repository resources as
projects on the workbench. You can also configure branches and versions, view
resource histories, and compare resource versions and revisions.

First, you must create and share a project before full use can be made of the
repository.

Important: Always work in the workspace of the correct user (cvsusern).
 Chapter 29. Concurrent Versions System (CVS) integration 1551

Creating a project and servlet
To create a project and a servlet, follow these steps:

1. Switch to the Web perspective and create a new dynamic web project by
selecting File New Dynamic Web Project.

2. For the project name, type RAD8CVSGuide, keep the default values for all the
other fields and click Finish.

3. In the Enterprise Explorer, right-click RAD8CVSGuide and select New
Servlet.

4. In the Create Servlet window (Figure 29-10), complete the following steps:

a. For the Java package, type itso.rad8.teamcvs.servlet.
b. For the Class name, type ServletA.
c. Click Finish.

Figure 29-10 Create Servlet wizard

Adding the project to the repository
To add the web project source code to the repository, follow these steps:

1. In the Enterprise Explorer, right-click RAD8CVSGuide and select Team
Share Project.

2. In the Share Project window, select CVS and click Next.
1552 Rational Application Developer for WebSphere Software V8 Programming Guide

3. In the Share Project with CVS Repository window, select Use existing
repository location, select the repository, and click Next.

4. In the Enter Module Name window, select Use project name as module
name (default) and click Next. A status window might open as the resources
are added to the repository.

5. After the Share Project Resources window (Figure 29-11) opens, listing the
resources to be added, click Finish.

Figure 29-11 Verifying the resources that are added under CVS revision control

A new window (Figure 29-12 on page 1554) opens, indicating that new file
types are being added, which are not configured as types in the Rational
Application Developer preferences. The files are meta information of the
project and must be ASCII Text.

6. Set these file types to ASCII Text and click Next.
 Chapter 29. Concurrent Versions System (CVS) integration 1553

Figure 29-12 Adding new file types at check-in

7. In the Commit Files window, in the Comment field, type Initial version and
click Finish.

A status window opens, showing the progress as the initial versions of a new
project are checked into the repository. Because RAD8CVSGuide is a relatively
small project, this process only takes a few seconds.

8. For larger projects for which the initial check-in might take more time, click
Run Background to continue working in the workspace while the CVS
check-in process completes.

After completing this task, the RAD8CVSGuide project is checked into the repository
and is available for other developers to use.

29.4.2 Adding a shared project to the workspace (step 2a, cvsuser2)

The purpose of any source code repository is for multiple developers to be able
to work as a team on the same project. The RAD8CVSGuide project has been
created in one developer’s workspace and is shared using CVS. Now the second
developer needs to attach to the CVS repository and check out a copy.
1554 Rational Application Developer for WebSphere Software V8 Programming Guide

Complete the following steps from a second developer’s workspace:

1. Add the CVS repository location to the workspace using the CVS
Repositories view in the CVS Repository Exploring perspective, as explained
in “Adding a CVS repository” on page 1551 (Figure 29-13).

Figure 29-13 CVS Repository view showing the HEAD branch

2. Right-click the RAD8CVSGuide module and select Check Out. The current
project in the HEAD branch is checked out to the workspace.

Developing the view bean
Now that both developers have exactly the same synchronized HEAD branch of
the RAD8CVSGuide project on their workspaces, the second developer must create
the view bean View1:

1. Open the Web perspective.

2. In the Enterprise Explorer, right-click RAD8CVSGuide and select New
Class.

3. In the New Class window (Figure 29-14 on page 1556), complete the
following actions:

a. For the Package, type itso.rad8.teamcvs.bean.
b. For the Name, type View1.
c. Select Generate comments and click Finish.

The difference is that the
HEAD branch in the
repository contains the
RAD8CVSGuide project.
 Chapter 29. Concurrent Versions System (CVS) integration 1555

Figure 29-14 Creating the View1 view bean

4. Add the highlighted two private attributes in the View1 class (Example 29-3).

Example 29-3 Adding two private attributes to the View1 class

package itso.rad8.teamcvs.bean;

public class View1 {
private int count;
private String message;

}

1556 Rational Application Developer for WebSphere Software V8 Programming Guide

5. In the Java Editor, right-click and select Source Generate Getters and
Setters.

6. In the Generate Getters and Setters window (Figure 29-15), click Select All.
For the Access modifier, verify that public is selected. Click OK.

Figure 29-15 Creating setters and getters for class View1

7. Save and close the View1 class.

Tip: In the Enterprise Explorer view, the greater than sign (>) in front of a
resource name means that the particular resource is not synchronized with
the repository. The question mark symbol (?) indicates that the file is not in
the repository. You can use these visual cues to determine when a project
requires synchronization.
 Chapter 29. Concurrent Versions System (CVS) integration 1557

Synchronizing with the repository
To update the repository with these changes, follow these steps:

1. Right-click RAD8CVSGuide and select Team Synchronize with
Repository.

2. When you are prompted to change to the Team Synchronizing perspective,
select Remember my decision and click Yes. The project is compared with
the repository, and the differences are displayed in the Synchronize view
(Figure 29-16). Along the bottom of the workspace is the count of the
number of incoming, outgoing, and conflicting changes.

Figure 29-16 Synchronizing RAD8CVSGuide after creating the viewbean View1

In the Synchronize view, you can update resources in the workbench with
newer content from the repository (incoming), commit resources from the
workbench to the repository (outgoing), and resolve conflicts that might
occur in the process.

The arrow icons with a plus sign () indicate that the files do not exist in the
repository. Because the itso.rad8.teamcvs.bean package and the
View1.java class are new and have not yet been checked in, they show the
plus sign.

3. To add these new resources to version control, in the Synchronize view,
right-click RAD8CVSGuide and select Commit.

4. In the Commit Files window (Figure 29-17 on page 1559), for the commit
comment, type View bean itso.rad8.teamcvs.bean.View1 added. Check the
files that are shown in bottom half of the window to ensure that the changes
are as expected. Click Finish and the changes are committed to the
repository.

This number indicates
that two outgoing
changes are pending.
1558 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 29-17 Verifying committing resources into the repository

29.4.3 Modifying the servlet (step 2b, cvsuser1)

While the actions in “29.4.2, “Adding a shared project to the workspace (step 2a,
cvsuser2)” on page 1554” occur, our original user, cvsuser1, develops the servlet
further.

In the first workspace that is created for cvsuser1, follow these steps:

1. In the Enterprise Explorer, open ServletA.java (in RAD8CVSGuide/Java
Resources/src/itso.rad8.teamcvs.servlet).

2. Create a static attribute called totalCount of type int and initialized to zero,
as highlighted in Example 29-4 on page 1560. Save and close the servlet.

Commit comments: The user can specify common text within commit
comments, and the user can reuse the same format for all commits. To
create commit comments, click Configure Comment Template to create
a comment and then select it from the drop-down list in the window.
 Chapter 29. Concurrent Versions System (CVS) integration 1559

Example 29-4 A static attribute for ServletA

package itso.rad8.teamcvs.servlet;

.....

public class ServletA extends HttpServlet {
private static final long serialVersionUID = 1L;
private static int totalCount = 0;

public ServletA() {
super();

}
.....
}

29.4.4 Synchronizing with the repository (step 3a, cvsuser1)

User cvsuser1 now synchronizes with the repository and receives the changes of
cvsuser2 (adding the View1 bean) and provides the opportunity to check in the
changes that have been made to ServletA. Follow these steps:

1. In the Enterprise Explorer, right-click the RAD8CVSGuide project and select
Team Synchronize with Repository.

2. On the Confirm Open Perspective dialog window, select Remember my
decision and click Yes.

3. In the Synchronize view, expand the RAD8CVSGuide src trees to view the
changes (Figure 29-18).

Figure 29-18 User cvsuser1 merging with CVS repository
1560 Rational Application Developer for WebSphere Software V8 Programming Guide

4. To obtain updated resources from the CVS repository, right-click the
RAD8CVSGuide project and select Update to bring a copy of the View1.java
file into this workspace.

5. Verify that the changes do not cause problems with existing resources in the
local workspace, by checking the Problems view. In this case, no problems
exist. Right-click the RAD8CVSGuide project and select Commit.

6. In the Commit window (Figure 29-19), add the comment Static variable
totalCount added to ServletA and click Finish to check the changes that
have been made to ServletA into the repository.

Figure 29-19 Adding a comment for the changes to ServletA

Symbols: The symbol that is shown in Figure 29-18 indicates that an
existing resource differs from the resource that is in the repository. The
symbol indicates that a new resource is in the repository that does not exist
on the local workspace.
 Chapter 29. Concurrent Versions System (CVS) integration 1561

The repository now has the latest changes to the code from both developers. The
user cvsuser1 is in sync with the repository. However, cvsuser2 has not yet
received the changes to ServletA.

29.4.5 Synchronizing with the repository (step 3b, cvsuser2)

The second workspace that is used by cvsuser2 must also synchronize (update)
with the repository and receive the changes of cvsuser1. Synchronization brings
the changes that have been made to ServletA into the workspace and ensures
that both workspaces are completely up-to-date.

29.4.6 Parallel development (step 4, cvsuser1 and cvsuser2)

The previous steps highlight development and repository synchronization with
two people working on two parts of a project. The steps highlight the need to
synchronize between each phase in development before further work is
performed.

In the following scenario, we demonstrate how two developers work
simultaneously on the same file, starting from the same revision. We explain the
sequence of events for each user in the following sections. The time line in
Figure 29-20 summarizes the events.

Figure 29-20 Parallel concurrent development by multiple developers

cvsuser1

cvsuser2

servletA V1.2
check out

servletA V1.2
check out

servletA V1.3
check in

servletA V1.4
check in and

merge

CVS Repository

Time
1562 Rational Application Developer for WebSphere Software V8 Programming Guide

User cvsuser1 updating and committing changes
In this scenario, user cvsuser1 modifies the doPost method to log information for
an attribute. In the following procedure, we demonstrate how to synchronize the
source code and commit the changes to CVS:

1. In the Enterprise Explorer, open ServletA (in RAD8CVSGuide/Java
Resources/src/itso.rad8.teamcvs.servlet).

2. Generate the Getter and Setter method for the static variable totalCount.

3. Navigate to the doPost method by scrolling down the file and adding the code
to count the number of post requests received:

protected void doPost(HttpServletRequest request,
HttpServletResponse response) throws ServletException,

IOException {
totalCount = totalCount + 1;
System.out.println("The total number of requests is: " +

totalCount);
}

4. Save and close the file.

5. Synchronize the project with the repository by right-clicking and selecting
Team Synchronize with Repository.

6. Fully expand the tree in the Synchronize view. The servlet is the only change.

7. Right-click the project and select Commit. Add the comment doPost method
implemented by cvsuser1 and click Finish to commit.

The developer cvsuser1 has now completed the task of adding code into the
servlet. The other developers in the team can pick up the changes now.

User cvsuser2 updating and committing changes
To complete the scenario, the second developer also makes changes to the
doPost method of ServletA. The developer makes the changes in the workspace
of cvsuser2 and assumes that the workspace was synchronized before this
scenario was started.

To make the changes, follow these steps:

1. In Enterprise Explorer, open ServletA.

2. Generate the Getter and Setter method for the static variable totalCount.

3. Add the highlighted code that is shown in Example 29-5 on page 1564 to
ServletA. An instance variable for the view bean is added and the doPost
method gets implemented. Save and close the file.
 Chapter 29. Concurrent Versions System (CVS) integration 1563

Example 29-5 cvsuser2 completing ServletA

package itso.rad8.teamcvs.servlet;
.....

public class ServletA extends HttpServlet {
private static final long serialVersionUID = 1L;
private static int totalCount = 0;
private View1 myViewBean;
.....

protected void doPost(HttpServletRequest request,
HttpServletResponse response) throws ServletException,

IOException {
this.myViewBean = new View1();
this.myViewBean.setCount(ServletA.getTotalCount());

switch (ServletA.getTotalCount()) {
case (0):

System.out.println("No hits on page");
break;

case (1):
System.out.println("One hit on page");
break;

default:
System.out.println("Hits are greater than one");

}
}

.....
}

4. Synchronize with the repository by right-clicking the RAD8CVSGuide project
and selecting Team Synchronize with Repository.

5. Expand the tree in the Synchronize view to see the changes (Figure 29-21 on
page 1565).
1564 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 29-21 Synchronize view showing conflicting changes

6. Double-click ServletA.java to see the changes (Figure 29-22 on page 1566):

– The left side shows the changes that were made by the current user
cvsuser2, and the right side shows the code in the repository (that was
checked in by user cvsuser1).

– You can use the arrow icons at the top () to move from
change to change.

– Black lines between the panes indicate identical blocks.

– Red lines indicate changes (inserts or conflicts).

– Red bars on the right indicate conflicts.

In this case, merging requires consolidation between the two developers to
determine the best solution. In our example, we assume that the changes in
the repository (right side) must be placed sequentially before the changes
performed by cvsuser2 (left side).

Conflicting changes: The symbol indicates that the file has conflicting
changes that require merging.
 Chapter 29. Concurrent Versions System (CVS) integration 1565

Figure 29-22 The changes between the local and remote repository

7. Double-click the doPost method in the Java Structure Compare view. Follow
these steps:

a. Click the Copy Current Change from Right to Left icon (), which
places the change of the conflicting section in the right panel to the bottom
of the section in the left panel (Figure 29-23 on page 1567).

b. In the left pane, highlight the two lines of code that were added and move
them to the correct location in the method.

These changes cause a conflict

Red portions indicate
conflicting changes.
1566 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 29-23 Merging changes from right to left

8. Verify that the code is exactly as agreed to by the developers and save the
new merged change by selecting File Save.

9. Resynchronize the file by selecting Team Synchronize With Repository.

10.In the Synchronize view, verify that the changes are correct. Right-click
ServletA.java and select Mark as Merged. Then right-click ServletA.java
again and select Commit.

11.In the Commit window, enter the comment ServletA changed and doPost
method merged with cvsuser1.

Step 7a: Code copied
from right to left

Step 7a

Step 7b: Move it to this position
 Chapter 29. Concurrent Versions System (CVS) integration 1567

This operation creates a revision of the file, revision 1.4, which contains the
merged changes from users cvsuser1 and cvsuser2. This is the case even
though both developers originally checked out revision 1.2.

User cvsuser1 synchronizing
The workspace for cvsuser1 must also be synchronized with the repository at
this stage to pick up the merged code of ServletA.

29.4.7 Creating a version (step 5, cvsuser1)

Now that the changes for both users are committed and cvsuser1 has
synchronized with the repository, we want to create a version to milestone our
work. Perform the following steps in the workspace of cvsuser1:

1. Right-click RAD8CVSGuide and select Team Tag as Version.

2. In the Tag Resources window (Figure 29-24), for the tag version, type
SERVLET_BASELINE and click OK.

Figure 29-24 Tagging the project as a version

3. Verify that the tag has been performed by switching to the CVS Repositories
Exploring perspective and expand Versions (Figure 29-25).

Figure 29-25 CVS Repositories view showing a new project revision
1568 Rational Application Developer for WebSphere Software V8 Programming Guide

29.5 CVS resource history

Within Rational Application Developer, a developer can view the resource history
of any file in a shared project in the CVS resource History view. This view shows
a list of all the revisions of a resource in the repository. From this view, you can
also compare two revisions, revert the existing workspace file to a previous
revision, or open an editor to show the contents of a revision.

To understand how this feature works, in the Enterprise Explorer, right-click
ServletA.java and select Team Show History. The History view
(Figure 29-26) opens.

Figure 29-26 CVS History view for ServletA.java

The CVS resource history shows the columns that are listed in Table 29-4.

Table 29-4 CVS resource history terminology

Column Description

Revision This column shows the revision number of each version of the file in
the repository. An asterisk (*) indicates that this version is the current
version in the workspace.

Tags This column shows any tags that have been associated with the
revision.
 Chapter 29. Concurrent Versions System (CVS) integration 1569

The following icons and features are available at the top of the History view:

Refresh () This icon refreshes the history that is shown for the
resource that is currently being shown.

Link Editor with Selection ()

This icon is a toggle switch that automatically shows the
history of the resource currently being shown in the main
editor.

Pin the History View ()
This icon locks the History view into showing only the
currently selected resource’s history. When this option is
toggled on, the “Link Editor with Selection” icon is
automatically switched off.

Group Revisions by date ()
This icon changes the view to show the revisions ordered
by date rather than by logical revision number. It is also
possible to order the items in the History view by clicking
the column headers.

Local Revisions, Local and Remote Revisions, and Remote Revisions
()
These icons provide three options for the type of revisions
to show for the selected resource.

Compare Mode () If this toggle is on, double-clicking a line in the history
view shows a comparison between the selected
repository file and the file in the workspace. If this option
is switched off, double-clicking shows the contents of a file
revision.

Filters This feature filters the History view by author, date, or text
within the check-in comments. This feature is available
from the drop-down menu in the History view.

Revision Time This column shows the date and time when the revision was created
in the repository.

Author This column shows the name of the user who created and checked in
the revision into the repository.

Comment This column shows the comment (if any) that was supplied for this
revision at the time that the revision was committed.

Column Description
1570 Rational Application Developer for WebSphere Software V8 Programming Guide

29.6 Comparisons in CVS

Often, developers have to view the changes that have been made to a file and in
a certain revision. Rational Application Developer provides a mechanism to
graphically display two revisions of a file and their differences. Two types of
comparisons are possible. Users can compare the version in their workspace
with any version in the CVS repository, or any two files in the CVS repository can
be compared with each other.

The History view provides these mechanisms. The following scenario illustrates
how to compare revisions.

29.6.1 Comparing a workspace file with the repository

The user cvsuser1 has Version 1.4 of the ServletA file in the workspace and
wants to compare the differences between the current version and Version 1.1.
Follow these steps:

1. In the Enterprise Explorer, right-click ServletA.java and select Compare
with History.

2. In the History view, double-click revision 1.1.

The Comparison Editor opens (Figure 29-27 on page 1572):

� The Java Structure Compare (top half) shows an outline view of the changes.
This view includes attribute changes and shows the methods that have been
changed.

� The Java Source Compare (bottom two panes) highlights the actual code
differences. The left pane shows the revision in the workspace, and the right
pane shows revision 1.1 from the repository.
 Chapter 29. Concurrent Versions System (CVS) integration 1571

Figure 29-27 Comparison between current ServletA.java and revision 1.1

29.6.2 Comparing two revisions in the repository

In this case, the developer wants to compare the differences between revision
1.1 and 1.3 in the repository of the ServletA file. However, version 1.4 is in the
workspace, and the developer does not want to remove it.

Bars in the bottom pane: The bars in the bottom pane on the right side
indicate the parts of the file that differ. By clicking a bar, Rational Application
Developer positions the panes to highlight the changes, which can assist you
in quickly moving around large files with many changes.
1572 Rational Application Developer for WebSphere Software V8 Programming Guide

To compare these two files, follow these steps:

1. Open the CVS resource history using the procedure in 29.5, “CVS resource
history” on page 1569, which shows the History view in Figure 29-28.

2. Click the icon to only see remote revisions.

3. Select the row of the first revision to compare, for example, revision 1.1. Then
while pressing Ctrl, select the row of the second version, which is 1.3.

4. Right-click, ensuring that the two revisions remain highlighted, and select
Compare With Each Other (Figure 29-28).

Figure 29-28 Highlighting the two versions to compare
 Chapter 29. Concurrent Versions System (CVS) integration 1573

The result is displayed, as shown in Figure 29-29. The higher version is always
displayed in the left pane, and the lower version is always displayed in the right
pane.

Figure 29-29 Comparisons of two revisions from the repository

29.7 Annotations in CVS

With the Annotations view, a user can view all the changes that have been
performed on a particular file in a single combination of workspace views. The
Annotations view shows which lines were changed in particular revisions, the
author that is responsible for the change, when the file was changed, and the
change description that was entered at the time. By viewing this information
across all revisions of a file and in the same set of connected views, developers
quickly can determine the origin of the changes and the explanations behind the
changes.

To demonstrate annotations, we go back to our example of looking at ServletA
and see what information the annotations feature provides. In the Enterprise
Explorer, right-click ServletA.java and select Team Show Annotation. If the
Changing Quick Diff Reference window opens, select OK.

Rational Application Developer opens ServletA in a Java Editor, and a colored
line is displayed in the left bar of the source code. When you hover over the
colored line, a pop-up window shows the CVS revision that was last responsible
1574 Rational Application Developer for WebSphere Software V8 Programming Guide

for changing that line (Figure 29-30). In the History view, the revision, which is
associated with the selected line of source code, is highlighted.

Figure 29-30 CVS Annotation view

29.8 Branches in CVS

Branches are a source control technique to allow development on more than one
baseline in the repository.

In CVS, the HEAD branch refers to the latest or current work that is being
performed in a team environment. This technique is only sufficient for a
development team that works on one release, which contains all of the latest
developments, including major enhancements and bug fixes. In an actual client
situation, usually at least two streams are required:

� One main stream to manage the development
� A maintenance stream for the version that is currently in production
 Chapter 29. Concurrent Versions System (CVS) integration 1575

With two streams, new versions of the production build can be created without
the fear of the production build being affected by the changes that are made to
the main development stream. Branches are useful in this scenario and where
CVS baselines and parallel streams of work need to be created.

At a certain point, the development and maintenance streams have to be merged
to provide a new baseline to be a production version. This process ensures that
any fixes or enhancements that have been made in the maintenance stream
make it into the development stream. This process is known as a merge, and the
CVS tools within Rational Application Developer provide features to facilitate this
process.

Figure 29-31 illustrates the branching technique with two streams.

Figure 29-31 Branching with two streams

29.8.1 Branching

Creating a branch is useful when you want to maintain multiple streams of the
software that is being developed or supported and when the streams are in
separate stages of delivery (usually development and production support).

In this scenario, a particular release has been deployed to the production
environment, and a new project has started to enhance the application. In
addition, the existing production release has to be maintained so that problems
that are identified are fixed quickly. Branching provides the mechanism to
achieve multiple streams of the software, and the following example outlines how
to create a branch.

First release of software

Maintenance Stream

Time

Next major release of software

Merge two
branches

Another bug fixProduction bug fix

Next project adds new functionality

Development Stream
1576 Rational Application Developer for WebSphere Software V8 Programming Guide

Perform the following steps for the first workspace for cvsuser1:

1. In the Enterprise Explorer view of the Web perspective, right-click
RAD8CVSGuide and select Team Tag as Version. In the tag version field,
type BRANCH_ROOT and click OK.

2. Right-click RAD8CVSGuide again and select Team Branch.

3. In the Create a new CVS Branch window (Figure 29-32), complete the
following actions:

a. For the Branch Name, enter Maintenance.

b. For the Version Name, enter BRANCH_ROOT.

c. Verify that Start working on the branch is selected so that the workspace
automatically sets itself up for development on the new branch.

d. Click OK.

Figure 29-32 Creating a new CVS branch

4. Right-click RAD8CVSGuide and select Properties.

5. In the Properties that are listed in the left pane, select CVS.

Version name: Remember the version name that you enter here. This
name identifies the point at which the branch was created and is
required later when the branches are merged.
 Chapter 29. Concurrent Versions System (CVS) integration 1577

In the Enterprise Explorer view, the text Maintenance appears next to the
project name. Also, in the CVS properties pane on the right, the Tag name
displayed as Maintenance (Branch). This name indicates that the project is
now associated with the CVS Maintenance branch, and any changes that are
checked in go to that branch (Figure 29-33).

Figure 29-33 Branch information for a project in the local workspace

6. Open the CVS Repository Explorer window. Click Window Open
Perspective Other and then select CVS Repository Exploring.

7. In the CVS Repositories view (Figure 29-34 on page 1579), expand the tree
to verify that the branch has been created in the repository.
1578 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 29-34 List of branches

Refreshing branching information
The CVS Repositories view does not automatically receive a list of all branches
from the server. If a branch has been created on the CVS server, the user of a
workspace must perform a refresh to receive the name of the new branch. In our
sample case, cvsuser2 must perform a refresh to receive information about the
new maintenance branch.

From the cvsuser2 workspace, follow these steps:

1. To refresh the branches in a repository, open the CVS Repository Exploring
perspective.

2. Select the repository and expand the tree. Select and right-click the
Branches node and then select Refresh Branches.

3. In the Refresh Branches window, click Select All and then click Finish.

The Maintenance branch is shown now under the Branches folder
(Figure 29-35).

Figure 29-35 Refreshed branch list
 Chapter 29. Concurrent Versions System (CVS) integration 1579

Updating branch code
In this section, we assume that changes are required to be made to ServletA
and a new view bean (View2) must to be created. This scenario demonstrates the
merge process with the changes being made in the maintenance branch and
then moved into the main branch.

In the workspace of cvsuser1, follow these steps:

1. From the Enterprise Explorer, open ServletA.java.

2. Navigate to the doPost method. At the top, add the following statement:

System.out.println("Added in some code to demonstrate branching");

3. Save and close the file.

4. Right-click the itso.rad8.teamcvs.beans package and select New Class.

5. For the Name of the class, type View2 and click Finish.

6. Right-click RAD8CVSGuide and select Team Synchronize With
Repository.

7. In the Synchronize view, right-click RAD8CVSGuide and select Commit.

8. In the Commit window, for the Revision comments, type Branching example
and click Finish.

9. In the CVS Repository Explorer perspective (Figure 29-36 on page 1581),
expand the tree under the Maintenance branch.
1580 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 29-36 Code checked into the branch

The changes have now been committed into the Maintenance branch, which now
has content that differs from the main branch. These changes are not seen by
developers working on the HEAD branch, which is the development stream in our
scenario.

29.8.2 Merging

Merging the branches occurs when code from one branch must be incorporated
into another branch. This merging might be required for several reasons, such as

Logical revision: The logical revision for View2.java is 1.1.2.1 and for
ServletA.java is 1.4.2.1. The extra two numbers in the logical revision
are added by CVS when a branch is created. The first two numbers
indicate the logical revision where the branch was created. The third
number indicates to which branch from the logical revision this version of
the file belongs. In this example, it is the second revision if we count the
HEAD branch; hence, the number is 2. The fourth number is the logical
revision within this branch. In this case, both files are the first revision in the
Maintenance branch, and so the last digit is 1.
 Chapter 29. Concurrent Versions System (CVS) integration 1581

when a major integration release is about to be released for testing or bug fixes
are required from the maintenance branch to resolve certain issues.

Our scenario is that we have completed the development on the main CVS
branch. Any production fixes that were made to the Maintenance branch are
required in the main branch before a production build can be released.

Merging the two branches requires the following information:

� The name of the branch or version that contains your changes is required.

� The version from which the branch was created is required. This name is the
version name that you supplied when branching.

In our case, the branch is called Maintenance, and the version from which we
created the branch was called BRANCH_ROOT.

Merging requires that the target or destination branch is loaded into the
workspace before merging in a branch. Because, in our scenario, the changes
are merged to HEAD, the HEAD branch must be loaded in the workspace.

Perform the following steps in the cvsuser1 workspace:

1. In the Web perspective, right-click RAD8CVSGuide and select Replace
With Another Branch or Version.

2. In the window, select HEAD and click OK to load the latest (HEAD) version of
the RAD8CVSGuide project into the workspace.

3. Right-click RAD8CVSGuide and select Team Merge.

4. In the Merge: Select the merge points window (Figure 29-37 on page 1583),
select the start and end points of the merge:

a. For the Common base version (start tag) field, click Browse, expand
Versions, select BRANCH_ROOT, and click OK.

b. For the Branch or version to be merged (end tag) field, click Browse,
expand Branches, select Maintenance, and click OK.

The Select the Merge Points window now shows the start and end tags of
the merge, which will be applied to the version in the workspace.

The “Preview Merge in the synchronize view” option and the “Perform the
merge into the local workspace” option provide the facility to select where
to perform the merge:

• By previewing it in the Synchronize view, the user can review and make
changes to each file as required.

• Performing the merge into the local workspace applies the changes
immediately in the workspace based on preferences that were selected
in the workspace preferences.
1582 Rational Application Developer for WebSphere Software V8 Programming Guide

c. Select Preview Merge in the synchronize view.

d. Clear Merge non-conflicting changes and only preview conflicts.

e. Click Finish to start merging.

Figure 29-37 Selection of the merge start point

5. Expand the tree in the Synchronize view to display the changes. Verify that
there are no conflicts. If there are conflicts, the developer must resolve them.
In our case, the merge is simple, and there are no conflicts (Figure 29-38).

Figure 29-38 Files required to be merged

File to be added as
part of the merge

File to be changed
as part of the merge
 Chapter 29. Concurrent Versions System (CVS) integration 1583

6. Right-click RAD8CVSGuide and select Merge to bring the changes from the
branch into the main stream. Because there are no conflicts, the merge
completes successfully.

7. From the Enterprise Explorer view, right-click RAD8CVSGuide and select
Team Synchronize with Repository.

8. Expand the Synchronize view to display the changed files ServletA.java
and View2.java (Figure 29-39).

Figure 29-39 CVS updates to HEAD from the merge

This view shows that the file View2.java is a new file to be added to the
repository and that the file ServletA.java has been changed. This view is
consistent with the changes that were made in the Maintenance branch and
that now must be added to the main branch.

9. Right-click the project and select Commit.

10.In the Commit window, add the comment Merged changes from Maintenance
branch and click OK.

The changes from the branch have now been merged into the main
development branch.

This scenario, although a simple one, highlights the technique that is required by
users to work with branches. In an actual scenario, there might be conflicts,
which require resolutions between the developers. Be aware that branching and
concurrent development are complex processes and require communication and
planning between the two development teams.

Rational Application Developer provides the tools to assist developers when
merging. However, equally important are the procedures for handling situations,
such as branching and merging code, which must be established among the
team early in a project life cycle.
1584 Rational Application Developer for WebSphere Software V8 Programming Guide

29.9 Working with patches

Rational Application Developer enables developers to share work, even when
they only have read access to a CVS repository. In this situation, the developer
who does not have full access to the repository can create a patch and forward it
to another developer who has write access. The patch can be applied to the
project, and the changes can be committed.

This configuration is useful when access to the source code repository has to be
restricted to a small number of users to prevent uncoordinated changes
corrupting the quality of the code. Any number of users can then contribute
changes and fixes to the repository using patches. However, they can contribute
the changes only through designated code minders who can commit the work
and who have the opportunity to review the changes before applying them to the
repository.

To contribute the changes, you use the Team Create Patch and Team
Apply patch options from a project context menu. A patch can contain a single
file, a project, or any combination of resources on the workspace. The Rational
Application Developer online help has a complete description of how to work with
CVS patches.

29.10 Disconnecting a project

For many reasons, a developer might want to disconnect a project from the
current CVS repository. For example, a developer might want to disassociate a
project from one repository so that it can be added to another repository. To
perform this task, complete the following steps:

1. In the Web perspective, right-click RAD8CVSGuide and select Team
Disconnect.

2. In the Confirm Disconnect from CVS window (Figure 29-40 on page 1586),
select Do not delete the CVS meta information and click OK.
 Chapter 29. Concurrent Versions System (CVS) integration 1585

Figure 29-40 Disconnect confirmation

By not deleting the CVS meta information, we can reconnect the project with the
CVS repository later more easily. If the meta information is removed, CVS cannot
determine with which revision in the repository a particular file is associated.

Reconnect
You can reconnect a project to the repository by selecting Team Share
Project. Reconnecting is easier if the CVS meta information was not deleted.

� If the meta information was deleted, the user is prompted to synchronize the
code with an existing revision in the repository.

� If the meta information is still available, follow these steps:

a. Select Team Share Project.

b. In the Share Project window, select CVS and click Next.

c. In the Share Project: Connect Project to Repository window (Figure 29-41
on page 1587), which shows the original CVS repository information, click
Finish to reconnect.
1586 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 29-41 Reconnect to repository with original CVS meta information

29.11 Team Synchronizing perspective

We have used the Team Synchronizing perspective in Rational Application
Developer in the examples in this chapter, but we have not described this
perspective in detail yet. This perspective provides to the user with a tool to
identify changes in the repository compared with changes on the local
workspace and assists in synchronizing the two.

The Team Synchronize perspective provides the following features:

� A comparison of changes in the workspace (as described in 29.6,
“Comparisons in CVS” on page 1571)

� The commitment of the changes that have been made to the repository (as
described in the previous scenarios)

� The creation of the custom synchronization of a subset of resources in the
workspace

� A scheduled checkout synchronization
 Chapter 29. Concurrent Versions System (CVS) integration 1587

29.11.1 Custom configuration of resource synchronization

The Synchronize view provides the ability to create custom synchronization sets
for the purpose of synchronizing only the identified resources on which a
developer might be working. Using this feature, a developer can focus on
changes that are part of the scope of work and ensure that the developer is
aware of the changes that occur without worrying about changes to other areas.

The developer can make changes to the other areas or someone else might
check in changes to these parts, but only the resources in the defined set are
synchronized.

This Synchronize view is convenient if the changes being made are localized and
if other areas of the code are changing in ways that are not important for the
specific scope of work. Problems can also occur with this mode of operation.
Developers must be careful that important changes to the non-synchronized
parts are not ignored for long periods of time.

The example scenario (again using the RAD8CVSGuide project) demonstrates
custom synchronization, through two configurations:

� Full synchronization of the RAD8CVSGuide project
� Partial synchronization of the ServletA.java

To perform the example scenario, complete the following steps for the cvsuser1
workspace:

1. Open the Team Synchronizing perspective.

2. At the top the Synchronize view, click the Synchronize icon () and click
Synchronize to add a new synchronization definition.

3. In the Synchronize window, select CVS and click Next.

Important: Custom synchronization is most effective when an application is
designed with defined interfaces, where the partitioning of work is clear.
However, even in this scenario, use custom synchronization carefully, because
it can introduce additional work in the development cycle for final product
integration. You must document and enforce procedures to ensure that
integration is incorporated as part of the work pattern for this scenario.
1588 Rational Application Developer for WebSphere Software V8 Programming Guide

4. In the Synchronize CVS window, expand the Java Workspace tree to view
the contents. All resources in the workspace are selected. Accept the defaults
and click Finish.

If there are no changes, a dialog box opens with the message Synchronizing
CVS: No changes found. In the Synchronize view, you see the message No
changes in 'CVS (Workspace)'. Click OK in the dialog box.

5. To preserve this synchronization, click the Pin Current Synchronization icon
().

6. Add a new synchronization by clicking the Synchronize icon () at the top
of the Synchronize view.

7. In the Synchronize window, select CVS and click Next.

8. In the Synchronize CVS window, expand the project tree under JavaSource
to view the contents. Click Deselect All to clear all the resources, select only
ServletA.java (Figure 29-42 on page 1590), and click Finish.
 Chapter 29. Concurrent Versions System (CVS) integration 1589

Figure 29-42 Selecting ServletA.java for synchronization

9. If there are no changes, a dialog box opens with the message
Synchronizing: No changes found. In the Synchronize view, you see the
message No changes in 'CVS (Workspace)'. Click OK in the dialog box.

10.To preserve this synchronization, click the Pin Current Synchronization icon
().

11.At the top of the Synchronize view, click the Synchronize icon (). Now two
CVS synchronizations are in the list (Figure 29-43 on page 1591).
1590 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 29-43 List of synchronizations that were created

29.11.2 Schedule synchronization

Rational Application Developer can schedule the synchronization of the
workspace. This feature follows 29.11.1, “Custom configuration of resource
synchronization” on page 1588, in which a user wants to schedule the
synchronization that has been defined. You can only schedule a synchronization
for synchronizations that have been pinned.

To demonstrate this feature, assume that the RAD8CVSGuide project is loaded in
the workspace and that a synchronization has been defined for this project and
pinned. Then use the following steps to schedule this project for synchronization:

1. In the Synchronize view (Figure 29-44), select Schedule from the drop-down
list.

Figure 29-44 Drop-down selection for scheduling synchronization

2. In the Configure Synchronize Schedule - CVS window (Figure 29-45 on
page 1592), select Synchronize automatically and the time period that you
want to synchronize. Click OK.
 Chapter 29. Concurrent Versions System (CVS) integration 1591

Figure 29-45 Setting the synchronization schedule

3. If the current CVS synchronization is not already pinned, and you are
prompted to pin it, click Yes.

Assuming that one hour is chosen, the RAD8CVSGuide project is synchronized
every hour to ensure that the latest updates are available. This action performs
the synchronize operation and shows any available changes in the Synchronize
view, where the user can accept or postpone integrating the changes as
appropriate.

29.12 More information

The Help feature provided with Rational Application Developer has a large
section that describes using the Team Synchronizing and the CVS Repository
Exploring perspectives and describes all the features that have been covered in
this chapter. In addition, the following websites provide further information for the
topics in this chapter:

� CVS home page

This web page is the major source of information for CVS.

http://www.nongnu.org/cvs/

� Eclipse CVS information

The CVS features that are available in Rational Application Developer come
from Eclipse 3.4. The following link is the major information page for this
project. It contains documentation, downloads, and the source code.

http://wiki.eclipse.org/CVS
1592 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.nongnu.org/cvs/
http://wiki.eclipse.org/CVS

� Tortoise CVS home page

Tortoise is another CVS client that helps users perform CVS operations from
Microsoft Windows Explorer. It provides most of the features of Rational
Application Developer and is available under the GNU public license. Tortoise
is a convenient client to use when CVS operations are required outside
Rational Application Developer.

http://www.tortoisecvs.org
 Chapter 29. Concurrent Versions System (CVS) integration 1593

http://www.tortoisecvs.org

1594 Rational Application Developer for WebSphere Software V8 Programming Guide

Chapter 30. IBM Rational Application
Developer integration with
Rational Team Concert

Rational Application Developer includes integration with Rational Team Concert
to provide a collaborative development environment for IBM middleware.You can
extend the Rational Application Developer environment with the Rational Team
Concert Client to provide embedded access to Rational Team Concert artifacts.

Rational Application Developer also provides an extension to the Rational Team
Concert Build System for integrated Code Coverage execution and reporting for
builds. Rational Application Developer also provides another extension to the
Rational Team Concert Server to add powerful team-based debugging.

This chapter contains the following sections:

� System architecture
� Installing Rational Team Concert Client into the Rational Application

Developer workbench
� Collaborative Code Coverage
� Collaborative Debug

30
© Copyright IBM Corp. 2011. All rights reserved. 1595

30.1 System architecture

In Figure 30-1, you see two developer machines configured with Rational
Application Developer and the Rational Team Concert client extensions. They
can be connected to a shared WebSphere Application Server that is used as a
test staging server.

Through the Rational Team Concert client extensions, the two developer
machines also connect to the Rational Team Concert Server. The server
provides the basis for collaboration among developers for Rational Application
Developer capabilities, such as Code Coverage and Team Debug, in addition to
the capabilities provided by Rational Team Concert, such as milestone plans,
work items, and source.

The Rational Team Concert views are also seamlessly integrated into the
Rational Application Developer perspectives to allow a rich, integrated workflow
for Rational Application Developer developers using Rational Team Concert.

Figure 30-1 Architecture overview for Rational Application Developer working with Rational Team Concert
and WebSphere Application Server
1596 Rational Application Developer for WebSphere Software V8 Programming Guide

30.2 Installing Rational Team Concert Client into the
Rational Application Developer workbench

Installing Rational Team Concert Client into Rational Application Developer gives
you a powerful collaborative development environment for your WebSphere
applications. This section covers the installation of Rational Team Concert Client
V3.0 and V2.0.0.2.

30.2.1 Installing Rational Team Concert Client 3.0 into the same
workbench as Rational Application Developer

If you want to install Rational Team Concert Client 3.0 into the same workbench
as Rational Application Developer V8, you must first download from the
https://jazz.net website installation files for Rational Team Concert Client 3.0.
Perform these steps:

1. From https://jazz.net, download Rational Team Concert 3.0, which is a file,
such as RTC-Web-Installer-Win-3.0.zip.

2. Extract the contents of the compressed file that you downloaded. For
example, extract the contents to C:\RTC30. Ensure that you preserve the
directories of the extracted contents.

3. Execute C:\RTC30\launchpad.exe.

4. Choose Rational Team Concert – Client for Eclipse IDE.

5. IBM Installation Manager starts. Ensure that Version 3.0 is selected under
the Rational Team Concert – Client for Eclipse IDE selection. Click Next.

6. If you agree to the terms of all of the license agreements, select I accept the
terms of the license agreements and then click Next.

7. Choose Use the existing package group and select the package group in
which Rational Application Developer is installed, for example, C:\Program
Files\IBM\SDP. Click Next.

8. Optional: If you use Sametime® for collaboration, check the Sametime
Integration Update Site.

9. Click Next.

10.Choose your desired help system configuration and click Next.

11.Review the summary page and click Install.
 Chapter 30. IBM Rational Application Developer integration with Rational Team Concert 1597

http://www.eclipse.org/birt
https://jazz.net
https://jazz.net
https://jazz.net

30.2.2 Installing Rational Team Concert Client 2.0.0.2 into the
Rational Application Developer workbench

If you want to install Rational Team Concert Client 2.0.0.2 into the same
workbench as Rational Application Developer V8, you must download from the
https://jazz.net website installation files for Rational Team Concert Client
2.0.0.2 that are formatted for p2 Install. Perform these steps:

1. From https://jazz.net, download a p2 Install edition of a version of Client
for Eclipse that is compatible with Rational Application Developer V8. For
example, download Version 2.0.0.2 interim fix 4.

2. Extract the contents of the compressed file that you downloaded. For
example, extract the contents to C:\RTC. Ensure that you preserve the
directories of the extracted contents.

3. Start Rational Application Developer.

4. Click Help Install New Software.

5. Under Available Software, click Add. The Add Repository dialog box opens.

6. Beside the Name field, click Local and then go to the rtc-p2-repository
subdirectory of the directory where you previously extracted the compressed
file, for example, C:\RTC\rtc-p2-repository. Click OK.

7. Follow these steps on the Available Software page:

a. In the Name section, select Rational Team Concert and optionally one or
both global language categories to install language packs.

b. In the details section, ensure that Group items by category and Contact
all update sites are selected. Click Next.

8. On the Install Details page, click Next.

9. On the Review Licenses page, read the text of the license agreements. If you
agree to the terms of all of the license agreements, select I accept the terms
of the license agreements and then click Finish.

10.During the installation, a security warning dialog box might open because the
Rational Team Concert client bundles and features are not signed. If you see
this warning, click OK to complete the installation.

11.When you are prompted to restart at the end of the installation, click Yes.

When the workbench restarts, the Rational Team Concert Welcome page opens.
1598 Rational Application Developer for WebSphere Software V8 Programming Guide

https://jazz.net
https://jazz.net
https://jazz.net
https://jazz.net

30.3 Collaborative Code Coverage

The Code Coverage tool is a great way to determine how much of your Java code
is being executed during a test run. Through the Rational Code Coverage
Extension for Rational Team Concert Build Toolkit from Rational Application
Developer, you can create Code Coverage statistics as part of your Rational
Team Concert builds. You can publish the statistics and HTML reports as part of
the Rational Team Concert build results and view them directly from the Build
Results from the Rational Team Concert client in Rational Application Developer
or from the Rational Team Concert web page. This function allows project
leaders and all members of the project to monitor the coverage results of their
JUnit tests from these builds as well as perform comparisons from previous
builds to see where coverage might have changed.

The following sections describe how to set up a Rational Team Concert build to
achieve this capability.

30.3.1 Configuring a build definition

Before Code Coverage statistics can be generated from a Rational Team
Concert build, you must configure a Build Definition to support Code Coverage.
The instructions provided in this section assume that a new build is being created
from the beginning, but you can use the instructions to adapt an existing build
easily.

This section also assumes that the Rational Code Coverage Extension for
Rational Team Concert Build Toolkit has already been installed. See Appendix A,
“Installing the products” on page 1783 for instructions to install this extension.
The installation location path is required to complete the configuration. It is also
assumed that a Rational Team Concert client has been installed into Rational
Application Developer.

Follow these instructions to configure a new build definition for Code Coverage:

1. Switch to the Work Items perspective.

2. Create a Repository Connection and connect to a project area.

3. In the Team Artifacts view, expand the node for the project area. Then expand
the Builds node, followed by the Build Engines node.

4. Right-click the Build Engines node and select New Build Engine. In the
General Information section, populate the ID and Project or Team Area text
fields.

5. Right-click the Builds node and select New Build Definition.
 Chapter 30. IBM Rational Application Developer integration with Rational Team Concert 1599

6. The New Build Definition window opens. If not already populated, populate
the Project or team area in which to create the new build text field by
selecting your project area. Click Next.

7. Supply an ID and Description for your build. In the Available build templates
section, select Ant – Jazz Build Engine. See Figure 30-2.

Figure 30-2 Defining a new build definition

8. On the Pre-Build page, select the Jazz Source Control.

9. On the Post-Build page, select the item types that will be used for publishing
in your script.

10.Click Finish.

11.The build editor appears and will be populated based on your selections. In
the Supporting Build Engines section on the Overview tab, select the build
engine that was created in step 4.

12.Switch to the Jazz Source Control tab. In the Build Workspace section,
populate the Workspace text field using either Select or Create. The
1600 Rational Application Developer for WebSphere Software V8 Programming Guide

workspace chosen here must be accessible by the user account that was used
to start the Jazz Build Engine.

13.In the Load Options section, populate the Load directory text box. The
directory that is specified will be used to store code that has been extracted
from the jazz source control. The specified path needs to be relative to the
Jazz Build Engine execution directory. Optionally, select Delete directory
before loading to clear the directory every time that the build is executed.

14.Switch to the Ant tab. Specify a build.xml script in the Build file text field. This
path must be relative to the location of the Jazz Build Engine and it depends
on the load directory that was specified in the previous step.

15.In the Ant Configuration section, select the Include the Jazz build toolkit
tasks on the Ant library path check box. In the Ant arguments text field,
enter -lib <Code-Coverage-RTC-extension-directory>, for example, -lib
/opt/IBM/TeamConcertBuild/buildsystem/codecoverage.

16.Save the new Build Definition.

After the Build Definition has been configured, you need to start a Jazz Build
Engine for the defined Build Engine.

30.3.2 Creating an Ant build script to generate coverage statistics

The configured Build Definition targets a user-defined build.xml script to handle
generating statistics. This section contains information about setting up the build
file to generate coverage statistics.

Setting up the Ant build script
Open your Ant build file and import the CodeCoverageProperties.xml file from the
Code Coverage Extension directory (see Example 30-1).

Example 30-1 Generating a baseline and probescript file

<import
file="<Code-Coverage-RTC-extension-directory>\CodeCoverageProperties.xm
l"/>

In Example 30-1, the <Code-Coverage-RTC-extension-directory> directory is
the installation path of the Code Coverage Extension for Rational Team Concert
Build Toolkit.

This file contains several predefined properties that can be reused in your build
script. This file is provided as a convenience so that multiple file paths do not
have to be defined.
 Chapter 30. IBM Rational Application Developer integration with Rational Team Concert 1601

Generating baseline and probescript files
The probescript and baseline files are requirements of the execution. The
probescript file contains a filter set that is used to define the set of classes for
which statistics will be collected. The baseline file is used to store additional
metadata about the project. Additional details about the probescript and baseline
files are available in Chapter 32, “Code Coverage” on page 1697.

The probescript and baseline files must be generated for the particular
application before statistics can be generated for the project. The Code
Coverage Extension provides an Ant task that can be used by the build.xml script
to generate these files. Example 30-2 provides an overview of how to use the Ant
task.

Example 30-2 Generating a baseline and probescript file

<target name="application-analysis">
 <code-coverage-app-analyzer

projectDir="${basedir}"
probescript="${probescriptFile}"
baseline="${baselineFile}"/>

 </target>

Table 30-1 explains the parameters that are expected as input by the Ant task.

Table 30-1 Ant task parameters

Because the probescript file is required for execution, it must be generated to a
location that is easily accessible.

Running the application and generating statistics
You must execute the application as part of the build to generate coverage
statistics. You must configure the Ant task so that data collection will occur when
the program is executed. The three Java virtual machine (JVM) arguments that
need to be added to the execution call are defined below:

� <jvmarg
value=""${llc-jvm-arg-output}${coverageOutputFile}"" />

Parameter Description

projectDir The directory containing the Java project

probescript The output location for the generated probescript

baseline Optional: The output location of the baseline project index
file
1602 Rational Application Developer for WebSphere Software V8 Programming Guide

� <jvmarg value=""${llc-jvm-arg-engine}"" />

� <jvmarg value=""${llc-jvm-arg-jvmti}${probescriptFile}""
/>

Table 30-2 explains the JVM arguments.

Table 30-2 JVM arguments

Example 30-3 provides an overview of how to run Code Coverage using the Java
Ant task to execute an application.

Example 30-3 Generating statistics on a regular Java application

<property name="coverageOutputFile" value="stats.coveragedata"/>
<property name="probescriptFile" value="myproject.probescript"/>
<java classname="com.ibm.storeapp.models.Store" fork="true"
newenvironment="true">
 <jvmarg
value=""${llc-jvm-arg-output}${coverageOutputFile}"" />
 <jvmarg value=""${llc-jvm-arg-engine}"" />
 <jvmarg
value=""${llc-jvm-arg-jvmti}${probescriptFile}"" />
 </java>

Property name Description

llc-jvm-arg-output This property is automatically defined in the
CodeCoverageProperties.xml file and can be reused
after the file is imported.

llc-jvm-arg-engine This property is automatically defined in the
CodeCoverageProperties.xml file and can be reused
after the file is imported.

llc-jvm-arg-jvmti This property is automatically defined in the
CodeCoverageProperties.xml file and can be reused
after the file is imported.

coverageOutputFile This property is the output location of the coverage
statistics file. It must be set as a property by the user
before running. This property must specify a file and must
have the .coveragedata extension.

probescriptFile This property is the path to the probescript file that was
generated in the previous step. This property is used as
input into the instrumentation engine to control data
collection.
 Chapter 30. IBM Rational Application Developer integration with Rational Team Concert 1603

Example 30-4 provides an overview of how to run Code Coverage using the
JUnit Ant task to execute a test.

Example 30-4 Using he JUnit Ant task to execute a test

<property name="coverageOutputFile" value="stats.coveragedata"/>
<property name="probescriptFile" value="myproject.probescript"/>
 <junit showoutput="true" fork="yes" newenvironment="true">
 <jvmarg
value=""${llc-jvm-arg-output}${coverageOutputFile}"" />
 <jvmarg value=""${llc-jvm-arg-engine}"" />
 <jvmarg
value=""${llc-jvm-arg-jvmti}${probescriptFile}"" />

 <formatter type="xml" />
 <test name="com.ibm.storeapp.models.test.TestCustomer"
outfile="TestCustomer" />
 <classpath>

 <pathelement path="${junitJar}" />
 </classpath>
 </junit>

After the execution completes, a coveragedata file is generated. This file contains
the coverage statistics for the executed application, and it is posted to the
Rational Team Concert server for storage.

Generating HTML reports
Code Coverage provides another Ant task, which can be used to generate HTML
reports for your statistics. Then you can post the HTML reports to the Rational
Team Concert server for storage. The reports can be downloaded from the
server using a Rational Team Concert client (either the Web-based client or full
client in Rational Application Developer).

Generating HTML reports for your build is an optional step. To configure your
build to generate HTML reports, follow the steps:

1. Configure the build for BIRT report generation:

a. In a web browser, open http://www.eclipse.org/birt and select the
latest released version. Download the only the Report Engine offering.

b. Extract the contents the Report Engine compressed file that you
downloaded in the previous step.

c. In the Rational Team Concert Eclipse Client, open the Build Definition and
change to the Ant Configuration tab.
1604 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.eclipse.org/birt
http://www.eclipse.org/birt

d. In the Ant Arguments field, add the argument -lib
<BIRT_runtime_install_directory>\ReportEngine\lib, where
<BIRT_runtime_install_directory> is the installation directory of the
BIRT Report Engine.

2. Generate reports using the code-coverage-report Ant task. Example 30-5
shows the general form of the Ant task.

Example 30-5 Generating an HTML report

<code-coverage-report outputDir="${reportDir}"
coverageDataFile="${coverageOutputFile}"
baseLineFiles="${baselineFile}"
reportFileDirectory="${code-coverage-report-dir}"
birtHome="${birt-report-engine}" />

Table 30-3 describes the task parameters.

Table 30-3 Expected parameters for HTML report generation

3. Publish the HTML report to the Rational Team Concert server. You can use
the following example (Example 30-6 on page 1606). Using the
artifactFilePublisher Ant task publishes the HTML reports.

Property Description

outputDir [Output] This property is a path to a directory that is used
to store the output of the report generation step.

coverageDataFile [Input] This property is the coveragedata statistics file that
is generated in the execution step.

coverageDataFile [Input] This property is the baseline file that is generated
for
the application in the analysis step.

reportFileDirectory [Input] This property is the directory containing the report
design files. The path to the correct directory is defined in
the ${code-coverage-report-dir} property (from the
CodeCoverageProperties.xml import file).

birtHome [Input] This property is the location of the BIRT Report
Engine and the location of the ReportEngine directory
(for example,
D:\Jazz\jazz\buildsystem\codecoverage\extra\birt-
runtime-2_5_2\ReportEngine).
 Chapter 30. IBM Rational Application Developer integration with Rational Team Concert 1605

Example 30-6 Compressing and publishing an HTML report

<zip destfile="${zippedReportFile}" basedir="${reportDir}"
includes="*"/>
<artifactFilePublisher buildResultUUID="${buildResultUUID}"

repositoryAddress="${repositoryAddress}"
userId="${userId}" password="${password}"
verbose="true" filePath="${zippedReportFile}"
label="The HTML file" />

<buildResultPublisher buildResultUUID="${buildResultUUID}"
repositoryAddress="${repositoryAddress}" userId="${userId}"

password="${password}" />

Publishing results to the Rational Team Concert server
In Rational Application Developer, the Code Coverage tool checks for files that
are published with specific contribution types. If files with these contribution types
are found, they are included in the build result. If no files that match the required
contribution type are found, the statistics are absent from the user interface.

 The Code Coverage tool checks for files with the following contribution IDs:

� com.ibm.rational.llc.build.coverage is the coveragedata file (generated in
the execution step). It must be a .zip file containing the coveragedata file.

� com.ibm.rational.llc.build.baseline is the baseline file (generated in the
application analysis step). It must be a .zip file containing the baseline file.

You can configure your Ant build script to publish the Code Coverage results to
the Rational Team Concert server with the correct contribution types. Use the
filePublisher Ant task that is provided by the Rational Team Concert Build Toolkit.

Example 30-7 shows an example usage.

Example 30-7 Publishing statistics back to the Rational Team Concert server

<filePublisher buildResultUUID="${buildResultUUID}"
repositoryAddress="${repositoryAddress}"

 userId="${userId}"
 password="${password}"
contributionTypeId="com.ibm.rational.llc.build.coverage"

verbose="true"
filePath="${zippedCoveragedataFile}"
label="Coveragedata File"
failOnError="true" />

<filePublisher buildResultUUID="${buildResultUUID}"
1606 Rational Application Developer for WebSphere Software V8 Programming Guide

repositoryAddress="${repositoryAddress}"
userId="${userId}"
password="${password}"

contributionTypeId="com.ibm.rational.llc.build.baseline"
verbose="true"
filePath="${zippedBaselineFile}"
label="Baseline file"
failOnError="true" />

30.3.3 Viewing coverage statistics in Rational Application Developer

You can view Code Coverage statistics that were generated in a Rational Team
Concert build environment from within Rational Application Developer. To open
the coverage statistics in a build, right-click a build definition and select Show
Build Results. The Builds view appears (see Figure 30-3).

Figure 30-3 The Builds view displaying the build results

You can open a build result in the build result viewer by selecting a build,
right-clicking, and selecting Open. The Build viewer for the selected build
appears, and the Overview page is selected. The Coverage section (under the
Contribution Summary section) presents the aggregated statistics for the build
(see Figure 30-4 on page 1608).
 Chapter 30. IBM Rational Application Developer integration with Rational Team Concert 1607

Figure 30-4 Build result viewer with the Overview page selected

To view the statistics in a higher level of detail, you can switch to the Coverage
tab (see Figure 30-5 on page 1609). The report on the Coverage tab allows you
to view the coverage statistics at all levels of granularity.
1608 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 30-5 Coverage statistics in a coverage build result viewer

After making a selection in the report, you can use several actions from the
context menu:

� Download to Workspace: This action triggers the following actions:

– Decorate the project locally (if available) with the statistics that were
generated from the build.

– Make the statistics available as an imported launch, which allows users to
generate a report (using the existing Run Code Coverage Generate
Report UI) at a later time.

� Open in Report Viewer: This action opens the report outside of the build
result view. This view provides the added advantage of being able to view an
overview of the statistics.

� Open in Java Editor: This action opens the current selection (class or
method) in a Java Editor.
 Chapter 30. IBM Rational Application Developer integration with Rational Team Concert 1609

� Show in Package Explorer: This action opens the current selection
(package, class, or method) in the Package Explorer of the Java perspective.

� Find Related Tasks: This action attempts to identify existing work items to
improve the coverage of the selected Java item.

� Create Task: This action creates a new work item for the selection. Ideally the
selection is a package, class, or method that has low coverage. The created
coverage task is pre-populated with the appropriate text based on the user’s
selection (see Figure 30-6).

Figure 30-6 A pre-populated work item created that is based on a coverage report selection
1610 Rational Application Developer for WebSphere Software V8 Programming Guide

30.4 Collaborative Debug

Reproducing defects is not always an easy task. Configurations can differ
between testers and developers. Even getting the exact sequence of steps
recorded can be a challenge. If the application is multithreaded, the timing of the
steps or the speed of the machine is a factor. With Team Debug, you have the
capability to efficiently and effectively eliminate the time that is wasted in
resolving these types of issues.

Collaborative Debug allows Java-based debug sessions to be transferred
between users of Rational Application Developer with Rational Team Concert.
During a debug session, a team member can transfer the session to another
team member. The current state and full control of the session is passed on to
the receiving team member, who can then inspect the session’s threads, stacks,
and variables as if that team member had initiated the debugging. Another team
member can also continue debugging the execution of the session. This
capability speeds up the resolution of issues. Another team member can
investigate an issue without having to establish the same environment and try to
get the debug session to behave in the same way.

The following sections describe how to install the Collaborative Debug client
extensions in Rational Application Developer, configure the Debug extension for
Rational Team Concert Server, and park or transfer debug sessions between
users.

30.4.1 Installing the Collaborative debug extensions for Rational
Team Concert Client

In Rational Application Developer, ensure that the Collaborative debug
extensions for Rational Team Concert Client software has been installed through
the IBM Installation Manager.

Follow these steps to verify and install the extension:

1. Launch the Installation Manager and choose Modify Packages.

2. Choose the package group containing Rational Application Developer 8.0.1
and click Next.

3. Click Next on the Translations page.

4. Check the option for Collaborative debug extensions for Rational Team
Concert Client if it has not been selected under the IBM Rational
Application Developer for WebSphere Software 8.0.1 group (see
Figure 30-7 on page 1612) and click Next. If it is already selected, no further
steps are required.
 Chapter 30. IBM Rational Application Developer integration with Rational Team Concert 1611

5. Review the Summary page and click Modify.

6. Close Installation Manager on success.

Figure 30-7 Selection for Collaborative debug extension installation in Installation
Manager

30.4.2 Installing Rational Debug Extension for IBM Rational Team
Concert Server

Rational Application Developer also provides an extension for the Rational Team
Concert Server to enable the Collaborative Debug capability. You can install the
extension using Installation Manager if you installed Rational Team Concert with
Installation Manager.

Follow these steps to install the extension on the server:

1. Ensure that the Rational Debug Extension for Rational Team Concert CD or
electronic disk image is available on the computer where you installed
Rational Team Concert Server.

2. On the computer where you installed Rational Team Concert Server, change
to the InstallerImage_platform subdirectory on the Rational Debug
Extension for Rational Team Concert Server disk.

Rational Team Concert Server V2.x: These steps are only necessary for
Rational Team Concert Server V2.x because Rational Team Concert Server
V3 enables the Collaborative Debug capability by default.
1612 Rational Application Developer for WebSphere Software V8 Programming Guide

3. Enter one of the following commands:

a. To install as an Admin: install

b. To install as a non-Admin: userinst

4. On the first page of the Install Packages wizard, ensure that you select IBM
Rational Debug Extension for Rational Team Concert Server. If IBM
Installation Manager, Version 1.2 is not already installed, also select it. Click
Check for Other Versions and Extensions to install the latest available
version of the selected packages. If a newer version is available, it is
automatically selected for installation. Click Next.

5. On the Licenses page, read the license agreements for the selected
packages. On the leftmost side of the License page, click each package
version to display its license agreement.

6. If you agree to the terms of all the license agreements, click I accept the
terms of the license agreements.

7. Click Next to continue.

8. Select the package group where you installed Rational Team Concert Server.

9. Click Install.

10.When the installation process is complete, a message confirms the success
of the process.

11.Close Installation Manager.

12.If Rational Team Concert Server is not using the default Tomcat that comes
with the install image, you must update the
<install_dir>/server/provision_profiles/teamdebugservice_profile.ini
and
<install_dir>/server/provision_profiles/teamdebugcommon_profile.ini
files:

Under the web address, instead of using a relative path, change it to an
absolute path, for example, change
url=file:../ext/rad-teamdebug-update-site to url=file:C:/Program
Files/IBM/RTC/ext/rad-teamdebug-update-site.

If you did not install Rational Team Concert with Installation Manager, you can
install the extension on the server manually. Refer to the Rational Application
Developer 8.0.1 Information Center at Installing and upgrading Installing
supporting software Installing Rational Debug Extension for Rational
Team Concert Server Installing Rational Debug Extension for Rational
Team Concert Server manually.
 Chapter 30. IBM Rational Application Developer integration with Rational Team Concert 1613

30.4.3 Using Collaborative Debug

Before beginning a team debug session, each user must have an ID on the same
Rational Team Concert Server. For the debug sessions to be identified as Team
debug sessions, use the Team Java Launcher for your selected launch
configuration type. You can verify that it is being used by displaying the launch
configuration dialog window and looking at the bottom of the Main tab
(Figure 30-8). To switch it to another launcher, select the hyperlink beside the
Launcher type display.

Figure 30-8 Java Application Launch Configuration using Team Java Launcher

To enable the launcher to register the debug session to the appropriate
repository, click the Team tab and select the desired team repository.
1614 Rational Application Developer for WebSphere Software V8 Programming Guide

Transferring the debug session to another online user
The first user can launch the debug session. When the appropriate point in the
debug session is reached and transfer to a second user is desired, the first user
can right-click the debug target in the Debug view and choose Transfer to User.
In the dialog box that appears, specify the second user.

Parking the debug session
The first user can choose to park the debug session, which can be useful for
several reasons:

� The user is disconnected from the remote debug session for a time and wants
to park and resume debugging later.

� The user to whom the session is to be transferred is not online currently.

� The parked session is useful for the next person who is continuing the
debugging, but the user to whom to transfer the session is not known yet. The
first user can note the details of where the session is parked in a defect.

The first user can right-click the debug target in the Debug view and choose Park
Debug Session (see Figure 30-9 on page 1616).
 Chapter 30. IBM Rational Application Developer integration with Rational Team Concert 1615

Figure 30-9 Parking a debug session from the debug view

Taking control of a team debug session
A second user can obtain control of a team debug session in two ways. The first
way is via a transfer request when the second user is online. The user currently
in control of the debug session can initiate a transfer request directly to the
second user. The second user receives a notification that someone wants to
transfer a debug session. The second user chooses Yes to accept the session.

Another way in which a second user can obtain control of a team debug session
is by searching for the debug session using the following steps:

1. Open the Team Artifacts view.

2. Ensure that you are logged in to the team repository from which you are
searching for the team debug sessions.

3. Expand the Debug node.
1616 Rational Application Developer for WebSphere Software V8 Programming Guide

4. Expand the Search team debug sessions node.

5. Select one of the queries that you want to run.

6. To run the query, double-click it or select the Search context menu action (see
Figure 30-10).

Figure 30-10 Execute query to find debug sessions

7. When the search completes, the Team Debug view opens. Select the parked
session, right-click, and choose Debug (see Figure 30-11).

Figure 30-11 Debugging a parked session

Loading a team debug session
Whether the session is obtained by a transfer or through selection via the Team
Debug view, the sequence of loading the debug session into the second user’s
workspace is the same. The second user is first asked if breakpoints are to be
imported from the original user. If Yes is selected, the second user can also
choose to overwrite the current breakpoints (see Figure 30-12).

Figure 30-12 Dialog box for importing breakpoints from the previous user’s debug
session

The Debug view opens, and the second user can see how the debug session
was left by the previous user. All information, such as variable values, threads,
 Chapter 30. IBM Rational Application Developer integration with Rational Team Concert 1617

and breakpoints are available (see Figure 30-13). The second user can then
continue the debugging and can even park or transfer the session back to the
first user or other users in the same team.

Figure 30-13 Debug perspective for a recently loaded debug session
1618 Rational Application Developer for WebSphere Software V8 Programming Guide

Chapter 31. IBM Rational ClearCase

This chapter describes the integration of IBM Rational Application Developer and
IBM Rational ClearCase, using the ClearCase SCM Adapter that is included in
Rational Application Developer and the optionally installable ClearCase Remote
Client Extension.

In this chapter, we describe the general team infrastructure of Rational
Application Developer, the specific features that are related to ClearCase and the
two available integration plug-ins. We introduce the leading practices for
managing workspaces in relation to ClearCase views and cover usage of team
project sets. We describe two typical workflows: a single branch development
scenario in Base ClearCase with dynamic views using the software configuration
management (SCM) Adapter and a traditional parallel development Unified
Change Management (UCM) scenario with web views using the ClearCase
Remote Client.

This chapter contains the following topics:

� Rational Application Developer team support

� Integrating Rational Application Developer with ClearCase

� ClearCase SCM Adapter

� ClearCase Remote Client

� ClearCase views and Rational Application Developer workspaces

31
© Copyright IBM Corp. 2011. All rights reserved. 1619

� Populating Rational Application Developer workspaces: Using Team Project
Set files

� Working in Base ClearCase with SCM Adapter and dynamic views

� Working in ClearCase UCM with ClearCase Remote Client
1620 Rational Application Developer for WebSphere Software V8 Programming Guide

31.1 Rational Application Developer team support

Rational Application Developer supports multiple team providers, which allow the
users to version artifacts from inside the product. The generic team support
infrastructure offers the following preferences, which influence the behavior of the
ClearCase integration:

� Window Preferences:
– Team
– Team File Content
– Team Ignored Resources
– Team Model

The generic team support infrastructure offers the following context menu:
Team Share Project.

Finally, you can set individual files and folders to be Derived, which excludes
them from source control. In the following sections, we describe these options
and menus in more detail.

31.1.1 Team preferences

You can get detailed information about the general preferences that are found in
the team:

http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/or
g.eclipse.platform.doc.user/reference/ref-19.htm

The Preferences options in Team File Content indicate which types of files to
handle as Binary and which types of files to handle as ASCII Text. ClearCase
associates file types to type managers, as described at this website:

https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic
=/com.ibm.rational.clearcase.cc_proj.doc/c_bcc_eltypprustypmgr.htm

Among the files that are marked as ASCII text, ClearCase creates separate
element types, such as text or xml, depending on the actual file content.

The Preferences options in Team Ignored Resources influence the choice of
which files are added to source control, although there are other mechanisms for
this purpose (see also 31.1.3, “Derived files and folders” on page 1622). If you
want to exclude a folder called target from being added to source control, you
can add the pattern target to the Ignored Resources list.

The Preferences options in Team Model refer to the support for handling
related artifacts as a logical unit in regard to synchronization operations. For
 Chapter 31. IBM Rational ClearCase 1621

http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/org.eclipse.platform.doc.user/reference/ref-19.htm
https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic=/com.ibm.rational.clearcase.cc_proj.doc/c_bcc_eltypprustypmgr.htm
http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/org.eclipse.platform.doc.user/reference/ref-19.htm

example, you can think of a file move as two separate operations: one file
deletion from the original location and one file addition in the target location. With
Logical Model support, a source control provider can handle these related
operations as a single logical unit, which avoids accidentally recording only the
deletion but not the addition. Logical Model support is present in the ClearCase
Remote Client but not in the ClearCase SCM Adapter.

For more information, click For Logical Model integrations, perform merges
automatically, if possible. If set, all files in the Logical Model are merged
automatically if possible. If manual merges are required, you must resolve each
conflict using the merge tool. This option is only available if the ClearCase
Remote Client is integrated with a product that supports Logical Models. For
more information, see:

https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic
=/com.ibm.rational.clearcase.ccrc.help.doc/topics/u_prefs_compare_merge
.htm

31.1.2 Team context menu

The Team context menu is available on all projects, files, and folders in all the
explorer views (Navigator, Package Explorer, Project Explorer, and Enterprise
Explorer). The menu entry Share project is available on projects only. This
option is used to share projects in a configuration management tool. In the case
of ClearCase, sharing a project that is located inside the workspace physically
moves it into the selected ClearCase view. Every source control provider offers
additional menu entries inside the Team menu.

31.1.3 Derived files and folders

If you want to exclude specific files or folders from source control and it is not
feasible to add a naming pattern to the Ignored Resources list, you can use the
Derived property, which can be applied in the following way:

1. Right-click a file or folder in the Project Explorer or Enterprise Explorer.
2. Select Properties Resources Derived.

If you apply this property to a folder, it applies to all files and folders that are
contained in the folder. If you apply this property to a file, it applies to the file only.

Derived resources are typically not kept in a team repository, because they
clutter the repository, change regularly, and can be recreated from their source
files. It is impractical for team providers to make decisions about which files are
derived. The resource application programming interface (API) provides a
common mechanism for plug-ins to indicate the derived resources that the
1622 Rational Application Developer for WebSphere Software V8 Programming Guide

https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic=/com.ibm.rational.clearcase.ccrc.help.doc/topics/u_prefs_compare_merge.htm

plug-ins create. Rational Application Developer takes advantage of this API and
automatically creates certain types of files as Derived.

31.2 Integrating Rational Application Developer with
ClearCase

This product integrates with ClearCase V7.1.1.x and V7.1.2. For more
information regarding the supported ClearCase versions, refer to the following
information centers:

� https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m0/index.jsp?topi
c=/com.ibm.rational.clearcase.help.ic.doc/helpindex_clearcase.htm

� https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topi
c=/com.ibm.rational.clearcase.help.ic.doc/helpindex_clearcase.htm

All the examples in this chapter are based on ClearCase V7.1.2. For the
installation of ClearCase Server and Client components, refer to “Installing IBM
Rational ClearCase” on page 1842.

You can set up the integration using two technologies: ClearCase SCM Adapter
and ClearCase Remote Client.

ClearCase SCM Adapter is an Eclipse Plug-in that is delivered by Rational
Application Developer. Currently, the SCM Adapter is the only form of integration
that supports ClearCase dynamic views. We demonstrate a scenario that uses
dynamic views with the SCM Adapter.

The ClearCase Remote Client offers broader functionality than the SCM Adapter,
including a ClearCase perspective in Rational Application Developer. In this
perspective, it is possible to browse ClearCase web views. With the SCM
Adapter, you must browse views using an external tool. ClearCase Remote
Client also has integrated tooling for other functions that require launching
external executables with the SCM Adapter (Tree view and Find Checkouts). In
the next two sections, we describe the major features of these plug-ins.

31.2.1 ClearCase terminology

This chapter does not aim to thoroughly introduce ClearCase, but a review of the
terminology is necessary to ensure the readability of the following sections.
 Chapter 31. IBM Rational ClearCase 1623

https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic=/com.ibm.rational.clearcase.help.ic.doc/helpindex_clearcase.htm
https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic=/com.ibm.rational.clearcase.help.ic.doc/helpindex_clearcase.htm
https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m0/index.jsp?topic=/com.ibm.rational.clearcase.help.ic.doc/helpindex_clearcase.htm
https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m0/index.jsp?topic=/com.ibm.rational.clearcase.help.ic.doc/helpindex_clearcase.htm
https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m0/index.jsp?topic=/com.ibm.rational.clearcase.help.ic.doc/helpindex_clearcase.htm
https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m0/index.jsp?topic=/com.ibm.rational.clearcase.help.ic.doc/helpindex_clearcase.htm
https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic=/com.ibm.rational.clearcase.help.ic.doc/helpindex_clearcase.htm
https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic=/com.ibm.rational.clearcase.help.ic.doc/helpindex_clearcase.htm

We use these terms in this chapter:

VOB A versioned object base (VOB) is the permanent data
repository in which you store files, directories, and
metadata.

View A typical view contains a combination of versioned
artifacts (versions of VOB elements) and unversioned
artifacts (view-private files that do not exist in any VOB).

Dynamic view A dynamic view provides transparent access to versions
of elements in the VOB and to view-private objects. A
dynamic view can access any version of an element that
is selected by the view’s configuration specifications as
soon as the version is checked in.

Snapshot view A snapshot view contains copies of versions of specified
VOB elements, along with view-private objects. You must
update snapshot views manually to access new versions
that have been checked in to the VOB from other views.

Web view The web view is similar to the snapshot view, but it is
accessed from the Rational ClearCase Remote Client.

Storage location A server storage location is a shared directory on a
Rational ClearCase server that is displayed in a list of
recommended storage locations when a user creates a
VOB or a view from a graphical user interface (GUI). You
can create storage locations for VOBs or views during
server setup or by using the cleartool mkstgloc
command or the Rational ClearCase administrative
console.

Config spec When you create views for your project, you must prepare
one or more configuration specifications (config specs).
The rules in a view’s config spec determine which
versions are visible in the view, and for snapshot views,
which elements are loaded in the view.

Element Items that are under ClearCase source control (version
control) generally are referred to as elements. An element
can be a Java source file, an .xml file, a diagram file, and
so on.

View-private A view-private item is present in a ClearCase view but not
in any VOB (it has not been added to source control).

Check in The Check in action commits resource modifications to
the repository (VOB).
1624 Rational Application Developer for WebSphere Software V8 Programming Guide

Check out Checking out makes file or directory versions writable in
your view.

Branch ClearCase uses branches to organize the versions of
files, directories, and objects that are placed under
version control. A branch is an object that specifies a
linear sequence of the versions of an element. The entire
set of an element’s versions is called a version tree. By
default, ClearCase provides for every single element in a
VOB one principal branch, which is called the main
branch. This main branch also can have subbranches.

We introduce the terminology that is related to Unified Change Management
(UCM) in 31.8, “Working in ClearCase UCM with ClearCase Remote Client” on
page 1666.

31.3 ClearCase SCM Adapter

The ClearCase SCM Adapter is not a stand-alone client. It requires the presence
of the Rational ClearCase Client components on the same computer, and it
offers menus that invoke a number of native tools that are part of the Rational
ClearCase Client.

You can obtain more information in the installed product help, which contains a
top-level node called Rational ClearCase SCM Adapter.

This node of product help is not available in the Rational Application Developer
v8.0 Information Center.

31.3.1 Installing ClearCase SCM Adapter

You can install the SCM Adapter by selecting Rational Lifecycle Integrations
Rational ClearCase SCM Adapter in the IBM Installation Manager (Figure 31-1
on page 1626).
 Chapter 31. IBM Rational ClearCase 1625

Figure 31-1 Installing Rational ClearCase SCM Adapter in Rational Application Developer

Select this feature

Important: Rational Application Developer, because it is a Java application, is
case-sensitive. On the Microsoft Windows operating systems, the default
installation options for ClearCase multiversion file system (MVFS) are Not
Case-sensitive (selected) or Case Preserving (not selected).

You must change these default options. Either select both of them or clear
both of them. Otherwise, ClearCase changes the file names and directory
names to lowercase, which makes it impossible for Rational Application
Developer to recognize the files and directories.
1626 Rational Application Developer for WebSphere Software V8 Programming Guide

You can make the selection during the installation, as shown in Figure 31-2.

Figure 31-2 Selecting Case Preserving for MVFS during the ClearCase installation

If ClearCase has already been installed, you can change this setting by clicking
the ClearCase icon in the Microsoft Windows Control panel. Select the MVFS
tab. Select Case Preserving, as shown in Figure 31-3 on page 1628.

Select this option
 Chapter 31. IBM Rational ClearCase 1627

Figure 31-3 Changing MVFS to Case Preserving after the ClearCase installation

31.3.2 Connecting to ClearCase with the SCM Adapter

The first step to utilize the SCM Adapter requires enabling the corresponding
capability:

1. Click Windows Preferences.
2. Click General Capabilities Team.
3. Select Advanced.
4. Select ClearCase SCM Adapter, as shown in Figure 31-4 on page 1629.

After you enable this capability, in the Java Platform, Enterprise Edition (Java EE)
perspective, you see a new top-level menu called ClearCase.

Select this option
1628 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 31-4 Enabling ClearCase SCM Adapter capability

ClearCase menu: The ClearCase menu is enabled in other common
perspectives as well. If for any reason you do not see this menu in the
perspective you are currently using, you can add it by performing these
actions:

1. Click Window Customize Perspective.
2. Select the tab Commands group availability.
3. Select ClearCase.

Select this option
 Chapter 31. IBM Rational ClearCase 1629

To test that the integration is functional, perform the following steps:

1. Click ClearCase Connect to Rational ClearCase, as shown in
Figure 31-5.

Figure 31-5 SCM Adapter ClearCase menu before connection

2. If the connection is successful, you see icons that become enabled in the
toolbar and additional menu entries become accessible, as shown in
Figure 31-6 on page 1631.

Tip: If the connection is not successful, check if the ClearCase bin
directory is added to the PATH environment variable. On the Microsoft
Windows operating system, the default location of this directory is:
C:\Program Files\IBM\RationalSDLC\ClearCase\bin

This directory is required so that the ClearCase SCM Adapter can locate
the native code in the ClearCase Client installation. An easy way to check if
this directory is on the system PATH consists of typing the following
command from the command prompt: cleartool -ver. If the cleartool
command cannot be found, you must update the PATH variable, and then
you must restart Rational Application Developer.
1630 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 31-6 SCM Adapter ClearCase menu after a successful connection

To connect automatically to ClearCase on start-up, perform the following steps:

1. Click Windows Preferences.
2. Click Team ClearCase SCM Adapter.
3. Select Automatically connect to ClearCase on startup.

Table 31-1 shows the available ClearCase icons.

Table 31-1 ClearCase SCM Adapter icons

Icon Name Notes

Add to Source Control Moves the currently selected element into a view and
adds it to source control

ClearCase Build Starts a software build using omake or clearmake

Check In Creates a new version of a file or folder element that
you previously checked out

Check Out Creates an editable copy of the artifact

Compare with Previous Version Compares with the previous version that is stored in
the ClearCase VOB
 Chapter 31. IBM Rational ClearCase 1631

31.3.3 ClearCase SCM Adapter preferences

To set ClearCase SCM Adapter preferences, select Window Preferences
Team ClearCase SCM Adapter.

The complete description of these preferences is available in the product help.
The preferences that are listed in Table 31-2 are important for the proper use of
Rational Application Developer (the default values are in bold).

Table 31-2 Preferences related to automatic checkout

Connect to ClearCase There is a preference to connect automatically on
start-up

Deliver Stream UCM only: Delivers changes from the current stream
to the integration stream

Rebase Stream UCM only: Merges changes from the integration
stream to the current stream

Refresh Status Refreshes the ClearCase status (checked
in/checked out and so on)

Run ClearCase Explorer Opens the ClearCase Explorer as an external tool

Set Current Activity UCM only: Associates a UCM activity with the
current ClearCase view

Show Properties Shows the ClearCase properties of the element

Show Version Tree Opens the Version Tree as an external tool

 Undo Checkout Discards the checkout

Update Updates the currently selected elements in a
snapshot view, based on the configuration
specification of the view

Update View Synchronizes the selected files and directories in a
snapshot view with the contents of the VOB

Help Launches the ClearCase help

Icon Name Notes

Preference name Possible values

When checked in files are edited by an
internal, interactive editor

Prompt to Checkout
Automatically Checkout
Do nothing
1632 Rational Application Developer for WebSphere Software V8 Programming Guide

Rational ClearCase is a pessimistic source control provider, which means that it
is necessary to check out artifacts before editing them. Typically, checkouts are
reserved, which means that only one view can check out an artifact at any given
time (this characteristic is important only in case multiple views access the same
branch or stream). The user can always check out files manually before trying to
edit them. However, Rational Application Developer editors need to be able to
request checkouts from ClearCase, in case the user forgets to check out the file
manually. In many cases, Rational Application Developer needs to edit metadata
files that are contained inside the projects, of which the user is not aware (for
example, inside the .settings folder in faceted projects).

It is therefore important that you do not select the values “Do nothing” values in
the preferences that are listed in Table 31-2 on page 1632. For example, if you
select “Do nothing” in these preferences, and you try to update a checked in web
page using the Page Designer (for example, dropping an icon from the Palette
onto the Design pane), Rational Application Developer produces an error dialog
window. See Figure 31-7 on page 1634.

When checked in files are edited by an
internal, non-interactive editor

Automatically Checkout
Do nothing

When checked in files are saved by an
internal editor

Automatically Checkout
Do nothing

For all above preferences, if checkout is
allowed.

Do not hijack in snapshot views

Always hijack in snapshot views

Hijack in snapshot views when
disconnected

Preference name Possible values
 Chapter 31. IBM Rational ClearCase 1633

Figure 31-7 Failure to edit a .jsp file due to preferences for automatic checkout

If you use snapshot views, you can choose to hijack resources when a checkout
is possible. A hijacked file is a modified file that was not previously checked out.
After you have hijacked a file, you can take a number of actions to either merge
the latest version in the VOB with the contents of the hijacked file or replace the
hijacked file with the version in the VOB. The following website describes all of
the available options, which are summarized in Table 31-3:

https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic
=/com.ibm.rational.clearcase.dev.doc/topics/cc_dev/about_hijacked_files
.htm

Table 31-3 Miscellaneous SCM Adapter preferences

Preference name Preference value

When workspace is closed Prompt to checkin
Automatically checkin
Do nothing

When new resources are added Prompt to add to source control
Automatically add to source control
Do nothing

ClearCase decorations Enable Icon Decorations
Enable Text Decorations
Enable Icon and Text Decorations

When a parent directory is automatically
checked out to move, rename, or delete
an element

Do Nothing
Automatically check in parent directory
1634 Rational Application Developer for WebSphere Software V8 Programming Guide

https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic=/com.ibm.rational.clearcase.dev.doc/topics/cc_dev/about_hijacked_files.htm

In ClearCase, directories are versioned. Every time that a new file must be
renamed, added to, or removed from a directory, the directory must be checked
out. Before other views can see the change (renamed, added to, or deleted file),
the directory must be checked in, to register the file modification, addition, or
deletion.

Among the Advanced Options that are shown in Figure 31-8 on page 1636, you
can customize the way that checkout and check-in are performed. By default,
checkouts are reserved, meaning that only one view at a time can check out the
same file on the same branch or stream. You can specify what action to take
when the file that you intend to check out is already checked out or reserved by
another view. In this case, you can choose to check it out unreserved. After you
perform an unreserved checkout, a merge session must occur to reconcile the
changes that have been made in parallel by the two users.

Save dirty editors before ClearCase
operations

Prompt to save all editors
Automatically save all editors
Do nothing

Build command omake -s -f
"${ProjPath}${ProjName}.mak"
clearmake -f
"${ProjPath}${ProjName}.mak"

Automatically connect to ClearCase at
start-up

(default: not selected)

[Windows only indicator]
Set default to check out files after adding
them to source control

(default: not selected)

Perform Refresh Status operations
recursively

(default: selected)

Decorate project names with viewtags (default: selected)

Request status information on demand
only

(default: selected)

[Windows only indicator]
Advanced Options

 Figure 31-8 on page 1636

Preference name Preference value
 Chapter 31. IBM Rational ClearCase 1635

Figure 31-8 Advanced options for ClearCase SCM Adapter

To set the ClearCase SCM Adapter Diff Merge preferences, select Window
Preferences: Team ClearCase SCM Adapter Diff Merge Patterns.

The file name patterns that you add to this list are compared and merged using
the ClearCase Diff Merge tool for that particular file type, instead of the
corresponding Eclipse tool.

Unified Modeling Language (UML) diagrams that are created by Rational
Application Developer always are compared and merged with a specific Rational
Application Developer Compare and Merge tool, in order to protect the referential
integrity of these complex artifacts.

31.3.4 Clearcase SCM Adapter and dynamic views

A ClearCase dynamic view receives automatic updates if newer elements or
versions are added to the VOBs that are loaded by the view. This capability is
possible due to a particular type of file system called a multiversion file system
(MVFS).
1636 Rational Application Developer for WebSphere Software V8 Programming Guide

See this website for more information:

https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic
=/com.ibm.rational.clearcase.cc_admin.doc/topics/c_viewadm_dynamic_mvfs
.htm

Rational Application Developer does not work directly with the files and folders
from the file system. It builds an in-memory structure of these artifacts by using
the Eclipse Resources plug-in. Therefore, the in-memory resources need to be
updated with the changes that the dynamic view makes available.

Follow these steps to activate file system support for ClearCase dynamic views:

1. Enable the ClearCase MVFS Support preference by selecting Window
Preferences: Workbench Refresh workspace automatically.

2. Select Window Preferences: Team ClearCase MVFS Support.

3. Select Enable ClearCase Dynamic View filesystem support.

4. Optional: Change the Refresh polling interval (the default is 20 seconds).

After you set these options, your workspace shows new elements or a newer
version of the existing elements shortly after these elements are added to the
VOB, even if adding the elements to the VOB occurs externally to Rational
Application Developer. These resource changes can trigger automatic build and
automatic publish operations.

31.4 ClearCase Remote Client

The ClearCase Remote Client is available in two versions: Stand-alone and
Extension. You can download the Extension from the following location:

http://www-01.ibm.com/support/docview.wss?rs=984&uid=swg24028116

We describe the steps to install the Extension on Rational Application Developer
in “Installing IBM Rational ClearCase Remote Client Extension” on page 1855.

ClearCase Remote Client does not require the installation of any other
ClearCase Client on the same computer hosting Rational Application Developer,
because it connects to the ClearCase Change Management server (CMS) via
HTTP. ClearCase Remote Client uses web views, which are similar to snapshot
views, because web views do not propagate changes automatically (dynamic
views propagate changes automatically).

After you have installed the ClearCase Remote Client, you see a new
perspective called ClearCase Explorer and various preferences and menus.
 Chapter 31. IBM Rational ClearCase 1637

http://www-01.ibm.com/support/docview.wss?rs=984&uid=swg24028116
https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic=/com.ibm.rational.clearcase.cc_admin.doc/topics/c_viewadm_dynamic_mvfs.htm
http://www-01.ibm.com/support/docview.wss?rs=984&uid=swg24028116

You can obtain extensive information about developing software with ClearCase
Remote Client in the information center:

https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic
=/com.ibm.rational.clearcase.ccrc.help.doc/topics/c_ccrc_dev_container.
htm

31.4.1 Connecting to ClearCase with the ClearCase Remote Client

You can connect to ClearCase with the ClearCase Remote Client by clicking the
ClearCase menu in the toolbar at the top of the Rational Application Developer
Java EE perspective and selecting Connect (Figure 31-9).

Figure 31-9 Connecting to ClearCase Remote Client

The login window opens (Figure 31-10 on page 1639). You need to enter the
Server URL in the form http://server:port/TeamWeb/services/Team, as
directed by the tooltip. The default port value is 12080.
1638 Rational Application Developer for WebSphere Software V8 Programming Guide

https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic=/com.ibm.rational.clearcase.ccrc.help.doc/topics/c_ccrc_dev_container.htm

Figure 31-10 Login to the Change Management Server window

31.4.2 ClearCase Remote Client preferences

You can modify ClearCase Remote Client Preferences by selecting Window
Preferences Team ClearCase Remote Client.

In the ClearCase Common Dialog Box preferences, you can specify how the
dialog boxes for check-in, checkout, and add to source control behave by default.

For example, you can choose the default actions when attempting to check in a
version that is identical to a predecessor:

� Check in even if the version is identical to its predecessor
� Undo the checkout if the version is identical to its predecessor
� Leave the version checked out if it is identical to its predecessor

For checkout, you can choose to show the options:

� Reserved checkout
� Prefer reserved, unreserved if necessary
� Unreserved checkout

You can choose the default behavior:

� Always reserved
� Prefer reserved, unreserved if necessary
� Always unreserved
 Chapter 31. IBM Rational ClearCase 1639

You can also choose what to do when there are newer versions in the VOB than
the version that is currently loaded in your view:

� Check out the version that is loaded even if it is not the latest
� Check out the view-selected version if the version loaded is not the latest

You can restrict the checkout in case logical model integrations are used. This
capability is important, for instance, in the case of Unified Modeling Language
(UML) models that are split in multiple fragments, and Logical Model integration
dictates that the entire model with all its fragments is checked out at one time,
instead of in selected models or fragments. You can select for Logical Model
integrations, to only include the physical files selected for checkout.

You can use the ClearCase Compare/Merge preferences dialog box to specify
styles, behaviors, and tool preferences for comparing and merging files.

You can use the ClearCase Pending Changes preferences dialog box to specify
how to handle changes in base ClearCase and in UCM.

You can use the ClearCase Rebase and Deliver preferences dialog box to
customize the manner in which ClearCase handles rebase and deliver
operations. For example, you can select to check in all checkouts before starting
the operation , which automatically checks in all checkouts in your relevant
activities before the default deliver operation begins.

For a detailed description of all available preferences, see this website:

https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic
=/com.ibm.rational.clearcase.ccrc.help.doc/topics/u_prefs.htm

31.4.3 ClearCase Remote Client menus

ClearCase Remote Client offers a ClearCase menu on the toolbar of Rational
Application Developer, with the contents that are shown in Figure 31-11 on
page 1641 (the menu looks like this example only after you have successfully
connected to ClearCase by selecting the Connect menu entry).
1640 Rational Application Developer for WebSphere Software V8 Programming Guide

https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic=/com.ibm.rational.clearcase.ccrc.help.doc/topics/u_prefs.htm
https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic=/com.ibm.rational.clearcase.ccrc.help.doc/topics/u_prefs.htm

Figure 31-11 ClearCase Remote Client Toolbar menu

This menu offers functionality that is independent of the selection of a specific
resource, such as the ability to connect and disconnect from the Change
Management Server, the ability to join a UCM project or to create a view, and the
ability to deliver and rebase.

ClearCase Remote Client offers a second-level context menu that is available
from the Team first-level menu in the Enterprise Explorer, Project Explorer,
Package Explorer, and Navigator, as shown in Figure 31-12 on page 1642.
Similar functionality is also available as a first-level menu in the ClearCase
Navigator view.

This menu is context-sensitive: it enables only those functions that are applicable
based on the current ClearCase state of the selected resource. For example, for
a resource that is currently checked in, it shows the options to Check Out and
Hijack, and Check In and Undo Check Out are disabled.
 Chapter 31. IBM Rational ClearCase 1641

Figure 31-12 ClearCase Remote Client Team context menu

31.4.4 ClearCase Explorer perspective

The major distinguishing feature of ClearCase Remote Client compared to the
SCM Adapter for a Rational Application Developer user is the addition of a
dedicated perspective, which is called ClearCase Explorer. The ClearCase
Explorer perspective includes toolbars, views, wizards, and dialog boxes that
provide access to ClearCase functionality.

To access the ClearCase Explorer perspective, click Window Open
Perspective Other and then select ClearCase Explorer.
1642 Rational Application Developer for WebSphere Software V8 Programming Guide

Toolbars
The following page describes all the available icons in the Toolbars:

https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic
=/com.ibm.rational.clearcase.ccrc.help.doc/topics/u_cctoolbars.htm

The icons that are shown in Table 31-4 refer to the most common actions that we
will perform in the next sections.

Table 31-4 Most used ClearCase Remote Client toolbar icons

ClearCase Explorer views
The default configuration of the ClearCase Explorer perspective includes two
views: ClearCase Navigator and ClearCase Details.

ClearCase Navigator
To access the ClearCase Navigator from any perspective, select Window
Show View ClearCase Navigator. If ClearCase Navigator does not appear in
the list, click Other ClearCase and then select ClearCase Navigator.

The ClearCase Navigator view displays a list of all Rational ClearCase views on
the local host as well as a list of ClearCase servers to which you have been

Icon Name Notes

Add to source control Moves the artifact into a location inside a
view and creates an element.

Check out Makes a reserved or unreserved checkout
so that you can write to the resource.

Check in Commits changes to the repository by
creating a new version of the element in the
VOB.

Join a UCM project and
Create UCM views

Selects a UCM project to join.Creates a
development stream, a development view
and an integration view.

Import Eclipse project or
Project Set into workspace

References the projects or project sets in
the current workspace (without copying
them into the workspace directory).

Rebase Stream Rebases a UCM stream to the parent
stream’s recommended baseline or to a
separate baseline.

Deliver From Stream Delivers your work from a UCM
development view to an integration stream.
 Chapter 31. IBM Rational ClearCase 1643

https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic=/com.ibm.rational.clearcase.ccrc.help.doc/topics/u_cctoolbars.htm

connected previously. You can use the ClearCase Navigator to explore the
contents of the objects in each of the lists. You can also use the view to explore
the contents of remote Rational ClearCase repositories (VOBs) and select
resources to load into a local Rational ClearCase view.

If no Rational ClearCase views appear in the list, use one of the ClearCase view
creation wizards to create a view. If your computer already hosts views that were
created with the ClearCase web interface, you can use the ClearCase
Navigator’s Add Existing Web View option (View Menu Add Existing Web
View) to make them visible in the Navigator, as shown in Figure 31-13.

Figure 31-13 Add Existing Web View to ClearCase Navigator

You must browse to the web view copy area path, as shown in Figure 31-14 on
page 1645. The copy area is the location where files and directories from the
ClearCase repository are stored while you work on them. This folder contains the
file named .copyarea.db. Typically, the file is located under the user’s home
directory, but you can choose a separate location when you create the view.
1644 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 31-14 Browse to the web view copy area path

In the ClearCase Navigator and ClearCase Details views, you can right-click a
file or folder, and you get access to a context menu that is similar to the context
menu that is shown in Figure 31-15 on page 1646.
 Chapter 31. IBM Rational ClearCase 1645

Figure 31-15 ClearCase Navigator and ClearCase Details context menu

This menu only enables those actions that are applicable based on the current
ClearCase state of the selected resource. The Import option allows you to
import a project into the workspace.

ClearCase Details
The details about objects that are selected in the ClearCase Navigator view
appear in the ClearCase Details view.

ClearCase Pending Changes view
The Pending Changes view enables you to preview and accept all changes to
your view, to resolve conflicts, and to synchronize changes in both the Base
ClearCase and UCM environments. The first time that you open the view, you
see the contents that are shown in Figure 31-16 on page 1647. You are
prompted to configure the view with a dialog box, as shown in Figure 31-17.
1646 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 31-16 ClearCase Pending Changes view

Figure 31-17 Configuring the pending changes view for a UCM multi-stream project

The configuration differs based on whether you use Base ClearCase or UCM and
whether you use a single stream or multiple stream development project.

After you complete the configuration, the ClearCase Pending Changes view
shows any activities containing changes for the view.
 Chapter 31. IBM Rational ClearCase 1647

In Figure 31-18, you can see an example of the Pending Changes view with one
activity (AddCustomer) that has multiple outgoing changes. You can use options
on the Toolbar view to select Integrate all outgoing changes or Synchronize
all changes.

Figure 31-18 Example of activity with pending outgoing changes

31.4.5 ClearCase Remote Client decorators

ClearCase Remote Client adds decorators to the icons of files and folders, as
seen in the Rational Application Developer Explorer views (Enterprise Explorer,
Project Explorer, Package Explorer, Navigator, and ClearCase Navigator). These
decorators allow you to know the current ClearCase status of the resource
(checked in, checked out, view-private, hijacked, and so on). You can obtain the
complete list of decorators at this link:

https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic
=/com.ibm.rational.clearcase.ccrc.help.doc/topics/r_decor.htm

Label decorations can influence the performance of Rational Application
Developer. You can enable or disable them by selecting Window
Preferences General Appearance Label Decorations.
1648 Rational Application Developer for WebSphere Software V8 Programming Guide

https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic=/com.ibm.rational.clearcase.ccrc.help.doc/topics/r_decor.htm

31.5 ClearCase views and Rational Application
Developer workspaces

For the integration between Rational Application Developer and ClearCase to
function properly, you are required to create a separate workspace for each
ClearCase view that you use.

Because the contents of a ClearCase view are determined by its configuration
specification and load rules, only one version of a resource is valid in any
ClearCase view at a time. A ClearCase view selects a consistent set of versions.
If you import projects from multiple ClearCase views into a single workspace, the
workspace might reference an inconsistent, incompatible combination of
resources. Note, however, that this product does not enforce this constraint, it is
up to the users to maintain the logical relationship between workspaces and
views.

In particular, when using ClearCase UCM, a developer might want to work in
both the Development view and the Integration view. It is fundamental that the
developer has two separate workspaces that are associated with these two
views.

You can create a workspace to associate with a ClearCase view in one of three
ways:

� You can create the ClearCase view. Then click File Switch Workspace
Other to create a new workspace and switch to it.

� You can create the workspace first, by starting Rational Application Developer
with the additional command-line argument:

-data workspace-path

In this command, workspace-path is the path to the workspace that you want
to associate with a ClearCase view that you plan to create.

� You can verify that the following option is selected:

a. Click General Startup and Shutdown Workspaces.

b. Click Prompt for workspace at startup.

c. At the next start-up, Rational Application Developer prompts you to select
a workspace directory, and you can provide the name of a new, empty
directory.

Regardless of the way in which you choose to create the Eclipse workspace,
consider creating the workspace in a folder whose name is based on the
ClearCase view tag of the view with which the workspace is associated.
 Chapter 31. IBM Rational ClearCase 1649

If you create new projects in this workspace, perform the following steps:

1. Click Team Share project.
2. Select the desired ClearCase plug-in.
3. Select a path inside the view that you associate with this workspace.

This action moves the project into the ClearCase view. Repeat this step for each
new project that you create in this workspace, moving them all inside the same
ClearCase view.

If you already have a ClearCase view that contains a number of projects for
which you want to create a new workspace, you can populate the workspace in
the following way:

1. Click File Import.

2. In the Import dialog, select General Existing Projects into Workspace.
Click Next. Click Select root directory and browse to the location of the
project parent directory in the chosen ClearCase view. Clear the option Copy
Projects into Workspace.

3. Repeat the same operation for each project root directory in the same
ClearCase view (this menu allows you to import multiple projects at a time).
The imported projects will be referenced by this workspace, without being
copied locally inside the workspace. All changes that are made to the project
files will update the files that are stored in the ClearCase view.

ClearCase Remote Client allows you to import multiple projects at one time from
the ClearCase Navigator view (31.4.4, “ClearCase Explorer perspective” on
page 1642 and Figure 31-23 on page 1657). To further automate this process,
you can use Team Project Sets.

31.6 Populating Rational Application Developer
workspaces: Using Team Project Set files

Team Project Sets are an Eclipse feature that allows you to automate the creation
of new workspaces based on the projects that are contained in a ClearCase
VOB. To take advantage of this feature, you must export a Team Project Set file
from a workspace where the projects have been shared. You can then share the
Team Project File itself in ClearCase for later reuse.

When you want to populate a new workspace, you simply import this Team
Project Set file. Importing a Team Project Set file achieves two objectives:

� It loads the projects from the VOB into the ClearCase view that was selected
when importing the Team Project Set file.
1650 Rational Application Developer for WebSphere Software V8 Programming Guide

� It loads the projects into the current Rational Application Developer
workspace.

Follow these steps to import an Eclipse Team Project Set from Rational
ClearCase:

1. Complete these steps if using ClearCase Remote Client:

a. In the ClearCase Navigator or ClearCase Details view, select a project set
file (.psf) to import.

b. From the ClearCase context menu, click Import Import Project Set
into Workspace.

c. Enter or select the project set file (.psf) and click Finish.

2. Complete these steps if using the ClearCase SCM Adapter:

a. From the menu bar, select File Import Team Project Set.

b. Enter or select the project set file (.psf) and click Finish.

3. If the project set is not in a ClearCase VOB, the ClearCase view dialog box
appears.

4. The ClearCase views that are currently running on your system appear in the
ClearCase view dialog. Select the view that you want to use to import the
project set. If the ClearCase SCM Adapter is also installed on your machine,
your ClearCase SCM Adapter dynamic and snapshot views also are displayed
in the ClearCase view dialog window. If you select a ClearCase SCM Adapter
dynamic or snapshot view, any future ClearCase operations that you perform
on the project set in Rational Application developer are accomplished through
the ClearCase SCM Adapter.

5. Click OK to import the project set using the ClearCase view that you selected.

31.7 Working in Base ClearCase with SCM Adapter and
dynamic views

In this section, we describe a typical scenario using dynamic views in Base
ClearCase. You can see the power of dynamic views best when multiple
developers work on the same branch and update the same files. This
environment leads to the automatic loading of new versions of the files in the
dynamic view, triggering the automatic refresh of the resources in the Rational
Application Developer workspace (see 31.3.4, “Clearcase SCM Adapter and
dynamic views” on page 1636). In case developers attempt to check out the
same files at the same time, this scenario also shows how to use reserved and
 Chapter 31. IBM Rational ClearCase 1651

unreserved checkouts to make changes in parallel, leading to the need to merge
the results when the second user tries to check in.

31.7.1 Prerequisites

The prerequisites for this scenario are minimal:

1. The ClearCase Administrator must have created one VOB, as described in
“Creating a VOB for use in Base ClearCase” on page 1847. We assume the
existence of a VOB called RAD8RedbookBase to remind us that this VOB is
used in Base ClearCase and does not contain UCM components.

2. In “Creating a dynamic view” on page 1849, we show you how to create a
dynamic view called lziosi_base_view for a sample developer in our
scenario, Lara Ziosi, by using the View Creation Wizard from the Rational
ClearCase Explorer.

3. You also can create new views from inside Rational Application Developer by
performing the following steps:

a. Click ClearCase Connect to ClearCase.
b. Click ClearCase Create View. This menu invokes the same View

Creation Wizard as already shown.

4. If the view that is created from inside Rational Application Developer is not
visible in the Rational ClearCase Explorer, you can add the View Shortcut by
following these steps:

a. Right-click the space in the Views tab in Rational ClearCase Explorer.
b. Select Add View Shortcut, as shown in Figure 31-19 on page 1653.
c. For the View type, select Dynamic.
d. For the View Tag, select lziosi_base_view.
e. For the Page, select General.
f. For the Drive Letter, select Y.
1652 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 31-19 How to add a View Shortcut to Rational ClearCase Explorer

31.7.2 Project setup

Lara proceeds to populate her workspace and start working in Base ClearCase:

1. Start Rational Application Developer on a new workspace:

C:\workspaces\lziosi_base

2. Select ClearCase Connect to ClearCase.

3. Import the existing projects into the workspace:

a. Click File Import.
b. Click General Existing projects into Workspace.
c. Select Next.
d. Select Archive File.
e. Browse for C:\7835code\webservices\RAD8WebServiceStart.zip.

4. Perform the steps for each project that is now present in the workspace:

a. Right-click the project in the Enterprise Explorer.

b. Select Team Share Project (Figure 31-20 on page 1654).
 Chapter 31. IBM Rational ClearCase 1653

Figure 31-20 Share project dialog window

c. For the repository type, select ClearCase SCM Adapter and select Next.

d. Select Browse.

e. You must browse to a directory inside a ClearCase VOB (Figure 31-21 on
page 1655). Complete these tasks:

i. You must first navigate to the location of your view. Because we use
dynamic views, you can locate them either from the M: drive or from Y:,
which is their dedicated drive letter, in this case.

ii. After you have selected the view, you must browse to the VOB
RAD8RedbookBase (there might be multiple VOBs visible from your view).

iii. Inside the VOB, it is best to create at least one subdirectory
(RAD8WebServicesProjects) to be the root for all your Rational
Application Developer projects. You can use the subdirectory to avoid
having to check out the entire VOB root when you need to add or
remove projects. Remember that directories are versioned elements in
ClearCase, that a directory must be checked out to add new files and
folders to it, and that the directory must be checked back in to record
the changes. If you keep the VOB root checked out, no one else can
add or remove files from it.

iv. Select either the Y:\RAD8RedbookBase\RAD8WebServicesprojects
folder or the
M:\lziosi_view_base\RAD8RedbookBase\RAD8WebServicesProjects
folder.

v. Select Finish.
1654 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 31-21 Specify a directory in a ClearCase VOB in the Share Project dialog
box

f. You see the dialog Add Elements to Source Control. Perform these steps:

i. Review the files to add to ClearCase. Typically, you accept all of the
default proposals.

ii. Optional: Add a comment.

iii. Select OK.

5. After you repeat the previous steps for each project, right-click the file:

RAD8WebServiceEJB ejbModule itso.rad8.ejb.facade
SimpleBankFacadeBean.java

6. Select Team Check Out.

7. The Enterprise Explorer view now looks similar to Figure 31-22 on
page 1656. Complete these steps:

a. The Project folders and files appear with a light blue background indicating
that they are checked in. We created this preference by selecting
Window Preferences: Team ClearCase SCM Adapter
ClearCase Decorations: Enable Icon Decorations.

b. The Projects are decorated with the lziosi_base_view view tag. We
created this preference by selecting Window Preferences: Team
ClearCase SCM Adapter Decorate project root names with
viewtags.

c. The file SimpleBankFacadeBean.java has a light blue background with a
green check mark, indicating that it is checked out. We enabled this
background by using the same preference that controls the check-in
decorator.
 Chapter 31. IBM Rational ClearCase 1655

Figure 31-22 Enterprise Explorer view after adding projects to source control with the SCM Adapter

31.7.3 Making an unreserved checkout to work on the same file

At this point, our developer in this scenario, Salvatore, also needs to start
working on the same projects. Salvatore performs the following actions:

1. Start Rational Application Developer on a new workspace:

C:\workspaces\ssollami_base

2. Connect to ClearCase by selecting ClearCase Connect to ClearCase.

3. Create a new dynamic view that is called ssollami_base_view.

4. Import the projects from the dynamic view (Figure 31-23 on page 1657), for
example, by using the drive M:

M:\ssollami_view_base\RAD8RedbookBase\RAD8WebServicesProjects

Do not select the option “Copy Projects into the workspace” because the
projects need to remain inside the view.

View Tag Decorator

Check out Decorator

Check in Decorator for Files/Folders
1656 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 31-23 Importing projects from the root directory inside the VOB

The view decorator differs, and all of the files appear to be checked in to this view
(Figure 31-24 on page 1658).

ClearCase connection: If the view decorator does not appear, check whether
you have actually connected to ClearCase (ClearCase Connect to
ClearCase) and make sure that you have selected the preference: Window
Preferences: Team ClearCase SCM Adapter Decorate project root
names with viewtags.
 Chapter 31. IBM Rational ClearCase 1657

Figure 31-24 Projects after importing them into the new workspace from the new view

Now Salvatore wants to start working on the same file that Lara currently has
checked out. Salvatore performs these steps:

1. Right-click RAD8WebServiceEJB ejbModule itso.rad8.ejb.facade
SimpleBankFacadeBean.java.

2. Select Team Check Out.

3. The Confirm Version to Check Out dialog window opens (Figure 31-25 on
page 1659) and indicates that the selected version is \main\1. However, the
branch \main version is reserved by the lziosi_base_view view. Therefore,
the only option is to check out the version \main\1 unreserved.

4. Select Yes.

5. Examine the results in the Enterprise Explorer. The decorator for an
unreserved checkout is the same as the decorator for a reserved checkout.
1658 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 31-25 Confirm Version to Check Out (for unreserved checkout)

6. Right-click the SimpleBankFacadeBean.java file in the Enterprise Explorer
view and select Team Show Version Tree. This action launches an
external executable that shows the hierarchy of versions for this element
(Figure 31-26). You can see that the element is located on the \main branch
and that the current view has an UNRESERVED checkout of version 1 (red
icon). The lziosi_base_view view has a RESERVED checkout.

Figure 31-26 ClearCase Version Tree Browser

Branch

Version

Current View
 Chapter 31. IBM Rational ClearCase 1659

31.7.4 Merging changes

Lara now wants to transform the Enterprise JavaBeans (EJB) into a Java API for
XML Web Services (JAX-WS) web service and edits the checked out file
SimpleBankFacadeBean.java:

1. Add the annotation @WebService on the line over the class name. Perform
these steps:

a. Press Ctrl+Shift+O to add the import:

import javax.jws.WebService;

b. Save the file.

c. Notice the QuickFix icon on the line with @WebService annotation, with the
text:

This EJB Web Service does not have a router module. Invocation of
this web service would fail.

2. Right-click the project and select WebServices Create Router Module
(EndPointEnabler). Complete these tasks:

a. For EJB WebService Binding, select HTTP.

b. For Project Name, select RAD8WebServiceEJB_HTTPRouter.

c. Select Finish.

Figure 31-27 shows that the file org.eclipse.wst.common.component in
the EAR project needs to be checked out (to add the new web module to
the EAR).

Figure 31-27 Prompt to check out the org.eclipse.wst.common.component file
1660 Rational Application Developer for WebSphere Software V8 Programming Guide

3. Figure 31-28 shows that the .project file in the EAR project needs to be
checked out (to add a reference to the new web module to the EAR).

4. At this point, check in all checked out files by right-clicking each file and
selecting Team Check In. Perform these steps:

a. Certain files are hidden in the Enterprise Explorer. You can see them by
selecting Window Show View Other: General Navigator.

Figure 31-28 Prompt to check out the .project file inside the EAR

b. Alternatively, you can use ClearCase Find Checkouts and select the
root directory (RAD8WebServicesProjects) where all of the projects are
contained, as shown in Figure 31-29 on page 1662.

c. Select OK.
 Chapter 31. IBM Rational ClearCase 1661

Figure 31-29 Find Criteria dialog box

d. The Find Checkouts dialog window shows the three files that have been
checked out (Figure 31-30).

e. Select Edit Select All.

f. Select Tools Check In.

g. Verify that the status of the checked out files has changed to checked in
the Navigator view. If the status did not change, select Team Refresh
Status.

Figure 31-30 The Find Checkouts dialog window allows you to check in multiple files

h. To finish, right-click the newly created project
RAD8WebServiceEJB_HTTPRouter.

i. Select Team Share project and complete the wizard.

Salvatore, in the meantime, wants to add a new method to the EJB:

1. Add the code that is shown in Example 31-1 on page 1663 into the
SimpleBankFacadeBean.java class.
1662 Rational Application Developer for WebSphere Software V8 Programming Guide

Example 31-1 New method for SimpleBankFacadeBean.java class

public BigDecimal deposit(String accountId, BigDecimal amount)
throws AccountDoesNotExistException {

AccountFactory factory = new AccountFactory();
Account account = factory.findById(accountId);
account.setBalance(account.getBalance().add(amount));
BigDecimal result = account.getBalance();
return result;

}

2. Save the file.

3. Select Team Check in. This selection results in the Merge Latest Changes
dialog box (Figure 31-31), which indicates that there are later versions of
SimpleBankFacadeBean.java on this branch. Complete these steps:

a. Select Merge the file graphically. This option is not required in this case
because there are no conflicts and the merge can complete automatically.
However, this option is useful to inspect the incoming changes.

b. Select Yes.

Figure 31-31 Merge Latest Changes dialog window

4. You see a Diff Merge Window that is similar to Figure 31-32 on page 1664.

Select to merge graphically
 Chapter 31. IBM Rational ClearCase 1663

Figure 31-32 Diff Merge Window

5. The top pane in Figure 31-33 on page 1665 shows the merge result.

a. The three lower panes show this information (left to right):

[1:Base] The common ancestor

[2] The later version that was found on the main
branch, which was checked in by another view

[3:“To-version”] The version that the merge result will replace

b. Review the changes. If you do not want one of the automated choices, you
can choose another contributor by choosing one of Select contributor
buttons across the top toolbar (1, 2, or 3). In this case, all the default
choices are acceptable.

c. Select Save.

d. Select Exit.

e. The following message appears: The Merge Completed successfully. Do
you want to check the file in now? Select OK.

6. Select the file again and select Team Version Tree. Follow these steps:

a. In the version Tree, select Tools Options.

Merge result

Ancestor Latest version on branch

Select contributor 1,2,3

Version that will be
replaced by merge
1664 Rational Application Developer for WebSphere Software V8 Programming Guide

b. In the Meta Data Filter tab, select Creation info. This option results in a
display that is similar to Figure 31-33. Note the red arrow that indicates the
merge. You can rearrange the icons for better readability.

Figure 31-33 Version Tree with merge arrow

The merge completed as expected; however, a validation error appears in the
Problems view:

CHKW6045E: The routerModule name RAD8WebServiceEJB_HTTPRouter.war in
ibm-webservices-bnd.xmi references a module that does not exist in the
application RAD8WebServiceEAR.

This problem relates to the /RAD8WebServiceEJB/ejbModule/META-INF
/ibm-webservices-bnd.xmi file. The dynamic view has automatically brought this
file into the EJB project, but the dynamic view cannot bring a new project into the
workspace.

To resolve this problem, Salvatore performs these steps:

1. Inspects the dynamic view contents from the Rational ClearCase Explorer.
2. Finds the new project that Lara has added.
3. Imports the new project into the workspace.
4. Selects Project Clean Build.
5. No more validation errors are present in the Problems view.
 Chapter 31. IBM Rational ClearCase 1665

Lara will simply find the new method in her file, without any prompting or error.
Lara’s dynamic view was notified automatically of the new version of the file, and
her workspace was configured to refresh automatically.

We have seen how working with dynamic views simplifies the task of receiving
incoming changes, because no user action is required to accept new files or new
versions of the files when working on a shared branch. However, we have also
seen how the changes that are produced by other users can lead to validation
errors and the actions that need to be taken to resolve these errors.

Users, who want to have more control over when they accept changes from the
rest of the team working on the same branch, might prefer to use snapshot
views.

Additionally, administrators can set up multiple branches to allow for parallel work
and establish policies for when to merge these branches back into the main
integration branch.

A method to streamline the previous approach and isolate the work of each
developer consists of setting up a UCM project with traditional parallel strategy.

31.8 Working in ClearCase UCM with ClearCase Remote
Client

In this section, we describe a typical workflow scenario using Unified Change
Management (UCM). Describing UCM is beyond the scope of this book, but we
introduce the terminology that a developer must know to be able to work in a
UCM project. For more information on UCM, see this website:

https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/topic/com.ibm.r
ational.clearcase.cc_proj.doc/c_u_ovw_ch.htm

Figure 31-34 on page 1667 displays the logical representation of this workflow.
1666 Rational Application Developer for WebSphere Software V8 Programming Guide

https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/topic/com.ibm.rational.clearcase.cc_proj.doc/c_u_ovw_ch.htm

Figure 31-34 UCM scenario

The following descriptions explain the UCM terms that are shown in
Figure 31-34:

Project VOB A versioned object base (VOB) that stores UCM objects,
such as projects, streams, activities, and change sets.

Component VOB A VOB that stores one or more components. If there is
only one component, the component matches the VOB
root directory. If there are multiple components, each
component matches a directory inside the VOB.

Component A ClearCase object that is used to group a set of related
directory and file elements within a UCM project. Typically,
the elements that make up a component are developed,
integrated, and released together. A project must contain
at least one component, and it can contain multiple
components. Projects can share components.

Checkin CheckoutCheckin Checkout

PVOB

ComponentVOB

ClearCase Server
CM Server

UCM Project

Development Workspace
User1

Deliver DeliverRebase

Make baseline

Activity A

Activity C

Integration Workspace
User1

Integration Workspace
User2

Development Workspace
User2

Integration View User1 Integration View User2

Initiate and complete
delivery, make baseline

in integration
view/workspace

Rebase development
stream in development

view/workspace

Activity B

Development View User1 Development View User2

Integration Stream

Development Stream User2Development Stream User1
 Chapter 31. IBM Rational ClearCase 1667

Project A project is the object that contains the configuration
necessary information to manage a significant
development effort, such as a product release. A project
contains one main shared work area and typically multiple
private work areas. Private work areas allow developers
to work on activities in isolation.

Stream A stream is an object that maintains a list of activities and
baselines and determines which versions of elements
appear in your view.

Integration stream A project contains one integration stream, which records
the project baselines and enables access to shared
versions of the project elements. The integration stream
and a corresponding integration view represent the
project main shared work area.

Integration view View associated with the integration stream.

Development stream In a typical project, each developer has a private work
area, which consists of a development stream and a
corresponding development view. The development
stream maintains a list of the developer’s activities and
determines which versions of elements appear in the
developer’s view.

Development view This view is associated with the development stream.

Delivery A ClearCase operation in which developers merge the
work from their own development streams to the project’s
integration stream or to a feature-specific development
stream. If required, the delivery operation invokes the
Merge Manager to merge versions.

Rebase Rebase is a ClearCase operation that makes a
development work area current with the set of versions
represented by a more recent baseline in another stream,
usually the project’s integration stream or a
feature-specific development stream.

Activity An object that tracks the work that is required to complete
a development task. An activity includes a text headline,
which describes the task, and a change set, which
identifies all versions that developers create or modify
while working on the activity.

Baseline An object that represents a stable configuration for one or
more components. A baseline identifies activities and one
version of every element that is visible in one or more
components.
1668 Rational Application Developer for WebSphere Software V8 Programming Guide

31.8.1 Prerequisites

The development scenario that is described in this section requires the existence
of the following artifacts, which are created by the ClearCase administrator:

� A project VOB (PVOB), which is called RedbookPVOB

� A VOB, which is called RAD8RedbookUCM, to store components

� At least one modifiable component, which is called WebDev, in this VOB

� A UCM project that is called RAD8Redbook

� An integration stream, which is configured for traditional parallel development,
that is called RAD8Redbook_integration

UCM projects are created on a ClearCase server. You cannot create a UCM
project from the ClearCase Remote Client. We describe the setup of all of these
artifacts in “Configuring ClearCase for UCM development” on page 1860.

31.8.2 Connecting to the ClearCase Change Management Server and
joining a UCM project

Each developer must perform these steps to connect to the ClearCase Change
Management Server (CMS) and join a UCM project:

1. Configure the Rational Application Workspace for use with the development
view.

2. Connect to the ClearCase Change Management Server.

3. Join the project:

a. Create a development stream.

b. Create a development view.

c. Create an integration view.

d. Load the VOB in the development view.

We list these required steps in detail:

1. Start Rational Application Developer with a new workspace that is called
C:\workspaces\lziosi_UCM.

2. If the ClearCase Remote Client Capability has been enabled, you see the
top-level menu called ClearCase in the Java EE perspective, as shown in
Figure 31-35 on page 1670. Complete these steps:

a. Select ClearCase Connect.
 Chapter 31. IBM Rational ClearCase 1669

Figure 31-35 Connect to the ClearCase CM server using ClearCase Remote
Client

b. Enter the URL of the ClearCase Change Management Server, which by
default is http://hostname:12080/TeamWeb/services/Team.

c. Enter the User name and Password, as shown in Figure 31-36 and click
OK.

Figure 31-36 Login to the Change Management Server
1670 Rational Application Developer for WebSphere Software V8 Programming Guide

3. Select ClearCase Join Project. You see the existing UCM project, as
shown in Figure 31-37. Click Next.

Figure 31-37 Available UCM projects that you can join

4. On the “Set up a ClearCase UCM development environment” page, as shown
in Figure 31-38 on page 1672. Complete these steps:

a. Click Setup a Development Stream.

b. For Stream name, type lziosi_RAD8Redbook.

c. Click Create a Development View.

d. For the view tag, type lziosi_RAD8Redbook.

e. Enter a Copy area path name: C:\Documents and
Settings\lziosi\lziosi_RAD8Redbook
(this path represents the local storage for the web view).

f. Click Next.
 Chapter 31. IBM Rational ClearCase 1671

Figure 31-38 Setting up a development stream and development view

5. On the “Create a ClearCase UCM Integration View” page, as shown in
Figure 31-39 on page 1673, complete these steps:

a. Click Create an Integration View.

b. For View tag, type lziosi_RAD8Redbook_int.

c. For Copy area path name, type C:\Documents and
Settings\lziosi\lziosi_RAD8Redbook_int
(this path represents the local storage for the web view).

d. Optional: Select Configure the integration view with the development
view, and load both views after configuration. If this option is selected
when joining a UCM project, any operations performed in the Copy Rules
tab of the Edit configuration dialog window apply to both the development
and integration views. The UCM Custom Rules tab of the Edit
configuration dialog window contains two text boxes for entering rules: an
upper text box for the development view and a lower text box for the
1672 Rational Application Developer for WebSphere Software V8 Programming Guide

integration view. We recommend that you select this option. If you do not,
you must manually configure the load rules for the integration view at a
later time.

e. Click Finish.

Figure 31-39 Create a ClearCase UCM integration view

6. In the Load Rules tab, select the VOB for the development view to load:
RAD8RedbookUCM. In this example, it is a private VOB, but typically you
work with public VOBs. You can also limit the view to load a component inside
the VOB, such as WebDev. See Figure 31-40 on page 1674. Select OK.

At this point, you are ready to start working in the development view.
 Chapter 31. IBM Rational ClearCase 1673

Figure 31-40 Edit configuration for development view: Load Rules tab

31.8.3 Initiating work in the development view or stream

Before you start working in the development view or stream, inspect the contents
of the ClearCase Explorer perspective (Window Open Perspective
Other ClearCase Explorer), as shown in Figure 31-41 on page 1675.

In the ClearCase Navigator, you see a node for the development view and a node
for the ClearCase Change Management Server, showing the structure of the
UCM project under the PVOB.

For any item that you select in the ClearCase Navigator, the ClearCase Details
view shows all the items contained within that item. You can right-click an item in
the ClearCase Navigator or in the ClearCase Details view and select Show
1674 Rational Application Developer for WebSphere Software V8 Programming Guide

properties. This option displays all the ClearCase properties that are applicable
to that type of element.

Figure 31-41 ClearCase Explorer perspective showing the development view and UCM project

Now we open the Web perspective. We create a new EJB Project called RAD8EJB
that is associated with the Enterprise Project RAD8EJBEAR. This action also
creates an EJB Client project called RAD8EJBClient.

It is a good practice to start by creating a UCM activity first. We call this activity
CreateEJBProject.
 Chapter 31. IBM Rational ClearCase 1675

Perform these steps to create and set this activity as the default:

1. Open the ClearCase Explorer perspective.

2. Right-click the Development view.

3. Click New Activity.

4. Enter the name CreateEJBProject, as shown in Figure 31-42.

5. Click OK.

Figure 31-42 Create new Activity

For each project, perform the following steps to add the projects to ClearCase:

1. Right-click the project in the Enterprise Explorer.

2. Select Team Share project. Follow these steps:

a. For the repository type, select ClearCase Remote Client. Click Next.

b. In the “Move selected Eclipse project into a ClearCase VOB” window,
select a ClearCase view to browse the VOBs, as shown in Figure 31-43 on
page 1677. Follow these steps:

i. For ClearCase view, select lziosi_RAD8Redbook (development view).

ii. Select Next.
1676 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 31-43 Move project into the development view

c. In the “Move selected Eclipse project into a ClearCase VOB” window,
select a folder to hold the project root of the Eclipse project, as shown in
Figure 31-44 on page 1678. Complete these steps:

i. Click Move project to a new project folder in the selected directory.
This selection creates a sub-directory with the project’s name.

ii. Select RAD8RedbookUCN\WebDev.

iii. Select Finish.
 Chapter 31. IBM Rational ClearCase 1677

Figure 31-44 Select to move the project into the modifiable component

3. The “Add selected files to source control” window opens. Perform these
steps:

a. Select Show Details, and the dialog window opens, as shown in
Figure 31-45 on page 1679.

You can see that .apt_generated is not selected, because it is flagged as
Derived. This behavior is correct. The activity that was previously added is
selected, by default.
1678 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 31-45 Adding the EJB project to Source Control

31.8.4 Delivering activities to the integration stream

Now that you have the project created and shared in your development stream,
you can deliver the activity CreateEJBProject to the integration stream, so that
the projects can become available for other users.

In this particular case, we know that the integration stream does not contain any
files or folders yet. In general, however, a user does not know whether the
integration stream contains any files or folders.

The general recommended workflow consists of these steps:

1. Update the integration view so that it has the most up-to-date information.
 Chapter 31. IBM Rational ClearCase 1679

2. Rebase the development stream, which merges changes from the integration
stream into the development stream.

3. Resolve any conflicts locally.

4. Deliver the activities.

5. Mark the delivery as complete. This action helps you to avoid files remaining
checked out on the integration stream. If you do not mark the files as
complete, all other users are prevented from delivering changes to the same
files.

In this example, we skip the update and rebase steps, because we know that no
changes have been made to the integration stream since when we joined the
project.

To deliver the activity, perform the following steps:

1. Select ClearCase Deliver Advanced Deliver. Advanced Deliver gives
you fine-grained control over which activities you want to deliver. You can also
use Deliver if you do not need to verify the available activities.

2. You see a dialog window that lists all of the activities that can be delivered, as
shown in Figure 31-46 on page 1681.

3. If you have not yet checked in all of the files that have been modified so far,
you can check them in from the Checkouts/Hijacks tab of this dialog window,
before you deliver.

4. The Target stream is RAD8Redbook_Integration by default.

5. The delivery uses the integration view lziosi_RAD8Redbook_int. Files to be
reviewed are left checked out in this view if you do not immediately complete
the delivery. We recommend that the ClearCase Remote Client users initiate
the delivery from the workspace that is associated with the integration view.

6. Select OK.
1680 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 31-46 Deliver from Stream dialog window

You next see the dialog that is shown in Figure 31-47 on page 1682.

7. Select Complete the delivery. You might want to leave the delivery in the
current state to check the results in the integration view and workspace. The
disadvantage of this approach is that you leave files and folders checked out
on the integration stream, which prevents other users from delivering the
same files and folders.
 Chapter 31. IBM Rational ClearCase 1681

Figure 31-47 Ready to Complete Delivery dialog window

After you complete this delivery, you can select any files in the Project Explorer
and select Team Show Version Tree. You see a result similar to the window
that is shown in Figure 31-48 on page 1683.
1682 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 31-48 ClearCase Version Tree tab showing MANIFEST.MF

Figure 31-48 shows that the current view (lziosi_RAD8Redbook) has selected
version 1 from stream lziosi_RAD8Redbook (you can tell by the view icon that is
placed on this version), which has been merged onto the stream
RAD8Redbook_Integration (you can see the merge arrow). You can also see two
activities: the activity that was delivered and the delivery activity.

31.8.5 Reviewing the results and creating a new baseline

Perform the following activities, which take place in the integration workspace:

1. Start Rational Application Developer in a new workspace that is logically
associated with the integration view, such as C:\workspaces\lziosi_UCM_int.

2. Connect to ClearCase by selecting ClearCase Connect.

3. Open the ClearCase Explorer perspective by selecting Window Open
Perspective Other ClearCase Explorer.

4. In the ClearCase Navigator, you see both the development view and the
integration view.

Current view

Activity

Activity

Version selected by the view

Streams

Merge arrow
 Chapter 31. IBM Rational ClearCase 1683

5. If you have not yet configured the load rules for the Integration view, perform
these steps:

a. Right-click the Integration view and select Show ClearCase View
Configuration.

b. Right-click the white space in the ClearCase View Configuration panel and
select Edit Configuration. Add the rule: load \RAD8RedbookUCM.

Now you can import the projects into the integration workspace to review them:

1. Right-click each project under the integration view.
2. Select Import Import project into Workspace.
3. Open the Web perspective and review the projects.

After you are satisfied with the projects, you can create a new baseline so that
everyone else will be able to start working on these projects.

A baseline is a snapshot of a component at a particular time. It consists of the set
of versions selected in the stream at the time that the baseline was made. When
a new stream is configured, baselines are used to specify which versions are to
be selected in that stream. Baselines are immutable so that a particular
configuration can be reproduced as needed and streams that use the same set
of baselines are guaranteed to have the same configuration. Therefore, the set of
versions included in a baseline cannot be modified. For more information about
baselines and their uses, see this website:

https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic
=/com.ibm.rational.clearcase.cc_proj.doc/c_u_ovw_bl_uses.htm

To make the new baseline, perform these steps:

1. In the ClearCase Navigator view, right-click the integration stream
RAD8Redbook_integration, as shown in Figure 31-49 on page 1685.

2. Select Make Baseline.
1684 Rational Application Developer for WebSphere Software V8 Programming Guide

https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic=/com.ibm.rational.clearcase.cc_proj.doc/c_u_ovw_bl_uses.htm

Figure 31-49 Make Baseline

3. Review the default name, as shown in Figure 31-50 on page 1686, and
change it if required. You can compare this new baseline to the initial
baseline, and you see which activities and which change sets constitute the
delta between these two baselines.
 Chapter 31. IBM Rational ClearCase 1685

Figure 31-50 Make Baseline for Stream

4. You can now recommend this baseline. Recommended baselines are the set of
baselines that project team members use to update, or rebase, their
development streams. When developers join a UCM project, their
development work areas are initialized with the recommended baselines. To
recommend the baseline, right-click the integration stream and select
Recommend Baseline.

Recommending a baseline is typically done by a Project Integrator. In this
case, it was possible because this user was also the creator of the PVOB and
UCM project. Access requirements, which are documented at this website,
exist for all users to be able to recommend a baseline:

https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?to
pic=/com.ibm.rational.clearcase.cc_proj.doc/c_u_pol_strm_bl_allw.htm

31.8.6 A new user joins the project

A new user, Salvatore Sollami, starts working on the same project. Salvatore first
launches Rational Application Developer on a new workspace, which is logically
associated with his development stream, C:\workspaces\ssollami_UCM.
1686 Rational Application Developer for WebSphere Software V8 Programming Guide

https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic=/com.ibm.rational.clearcase.cc_proj.doc/c_u_pol_strm_bl_allw.htm
https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic=/com.ibm.rational.clearcase.cc_proj.doc/c_u_pol_strm_bl_allw.htm
https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic=/com.ibm.rational.clearcase.cc_proj.doc/c_u_pol_strm_bl_allw.htm
https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic=/com.ibm.rational.clearcase.cc_proj.doc/c_u_pol_strm_bl_allw.htm

After connecting to the ClearCase Change Management Server, Salvatore sees
no views in the ClearCase Navigator, but he sees the contents of the existing
project, as shown in Figure 31-51.

Salvatore now joins the project, following the same steps that are detailed in
31.8.2, “Connecting to the ClearCase Change Management Server and joining a
UCM project” on page 1669. Following these steps creates two new views and
one new development stream for Salvatore:

� Development view: ssollami_RAD8Redbook
� Development stream: ssollami_RAD8Redbook
� Integration view: ssollami_RAD8Redbook_int

At this point, from the development view that is shown in the ClearCase
Navigator, Salvatore right-clicks the projects and selects Import Import
project into Workspace to populate his development workspace. It is possible
to select multiple projects by holding down Shift or Ctrl.

Figure 31-51 ClearCase Navigator contents for a new user

Salvatore starts by setting a new UCM Activity called AddCounterBean:

1. In the ClearCase Navigator view, right-click the development view.

2. Select New Activity.

3. For name, type AddCounterBean.
 Chapter 31. IBM Rational ClearCase 1687

The default activity now appears set in the toolbar, even when you change to the
Java EE perspective.

Within this activity, Salvatore adds a new EJB 3.1 Singleton by performing these
steps:

1. In the Java EE perspective, select File New EJB.

2. For Java package, type com.ibm.itso.

3. For Class name, type CounterBean.

4. For type, select Singleton.

5. For Create business interface, accept to create a No-interface bean.

6. Select Finish. See Figure 31-52.

Figure 31-52 Creating a Singleton EJB

ClearCase Remote Client detects all artifacts that Rational Application Developer
creates and prompts the user to add the source control. Allow ClearCase to
1688 Rational Application Developer for WebSphere Software V8 Programming Guide

complete this operation. The additions are performed in the context of the UCM
Activity that has been chosen.

The following file is added to source control and checked in:

ejbModule\com\ibm\itso\CounterBean.java

The following files are added to source control and checked out:

� classdiagram.dnx
� ejbModule\META-INF\ejb-jar.xml

Salvatore implements the EJB with code, as shown in Example 31-2.

Example 31-2 EJB implementation

package com.ibm.itso;

import javax.annotation.PostConstruct;
import javax.annotation.PreDestroy;
import javax.ejb.LocalBean;
import javax.ejb.Singleton;
import javax.ejb.Startup;

@Singleton
@LocalBean
@Startup
public class CounterBean {

private int counter;

public void increment() {
counter++;
System.out.println("Singleton, with counter = " + counter);

}
@PostConstruct
public void init() {

System.out.println("Singleton, initialization");
};
@PreDestroy
public void destroy() {

System.out.println("Singleton, destruction");
}

}

As soon as he starts editing the code, Salvatore is prompted to check it out, as
shown in Figure 31-53 on page 1690.
 Chapter 31. IBM Rational ClearCase 1689

Figure 31-53 Prompt to check out the EJB code

To test the EJB, Salvatore adds a new dynamic web project called RAD8Servlet,
which is associated to the same EAR. Before adding this new project to source
control, Salvatore creates a new activity called AddCounterServlet.

Salvatore creates a new servlet with code, as shown in Example 31-3, to test the
EJB.

Example 31-3 Servlet to test the CounterBean

package com.ibm.itso.servlets;

import java.io.IOException;

import javax.ejb.EJB;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
1690 Rational Application Developer for WebSphere Software V8 Programming Guide

import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import com.ibm.itso.CounterBean;

@WebServlet("/CounterServlet")
public class CounterServlet extends HttpServlet {

private static final long serialVersionUID = 1L;

public CounterServlet() {
super();

}

@EJB
CounterBean counterBean;

protected void doGet(HttpServletRequest request,
HttpServletResponse response) throws ServletException,

IOException {
counterBean.increment();

}
}

After testing the servlet on WebSphere Application Server V8 Beta, Salvatore
performs these tasks:

1. Opens the ClearCase Explorer.

2. Right-clicks ssollami_RAD8Redbook_int on the Integration view.

3. Selects Refresh Update from Repository.

4. Rebases the development stream and finds that there is no new baseline.

5. Right-clicks ssollami_RAD8Redbook on the Development view.

6. Selects Deliver Advanced.

7. Selects to deliver the two activities, AddCounterBean and AddCounterServlet,
to the default stream.

8. Checks in any files that are still checked out by selecting the
Checkouts/Hijacks tab in the Advanced Delivery dialog window.

9. Completes the delivery when prompted.
 Chapter 31. IBM Rational ClearCase 1691

31.8.7 Another user modifies the same project

Lara has the task to add a new EJB to the project, a SchedulerBean. In her
development workspace, she creates a new activity: AddSchedulerBean.

Lara adds a new EJB with the code, as shown in Example 31-4, using the New
EJB Wizard.

Example 31-4 SchedulerBean code

package com.ibm.itso;

import javax.ejb.LocalBean;
import javax.ejb.Schedule;
import javax.ejb.Singleton;
import javax.ejb.Startup;

@Startup
@Singleton
@LocalBean
public class SchedulerBean {

 public SchedulerBean() {

 }
 @Schedule(second="*", minute="*", hour="*",dayOfWeek="*",
persistent=false)
 public void calledEverySecond(){
 System.out.println("Called every second");
 }

}

After testing the code on WebSphere Application Server V8 Beta, Lara is ready
to deliver this activity. In her change set, Lara must merge the file
classdiagram.dnx that shows views of both EJBs. For that merge to work
correctly, Lara needs to configure Rational Software Architect as the merge
provider for files with the extension *.dnx. On the preference page, Lara selects
Team ClearCase Remote Client Compare/Merge, as shown in
Figure 31-54 on page 1693 and performs the following steps:

1. Select Add near “Override the default tool for the following types”.

2. For Resource type, enter *.dnx.
1692 Rational Application Developer for WebSphere Software V8 Programming Guide

3. Select Rational Software Architect from the drop-down list for both
Compare Provider and Merge Provider.

4. Select OK.

Figure 31-54 Adding Rational Software Architect as the Compare and Merge Provider for .dnx files

Finally, Lara can perform the following steps:

1. Update the integration stream. This step shows Lara that a new project,
RAD8Servlet, has been added in the meantime and that a new EJB had been
added to the EJB project, as shown in Figure 31-55 on page 1694.
 Chapter 31. IBM Rational ClearCase 1693

Figure 31-55 RAD8Servlet and ITSO have been added

2. Lara selects the Development view and launches Deliver Advanced
Deliver, as shown as in Figure 31-56 on page 1695.

3. Lara selects the activity to deliver.

4. Lara selects Check in or Undo Checkout (for ejb-jar.xml) for the checked out
files.

5. All merges are trivial, including the merger of the diagram, so no user
intervention is required.
1694 Rational Application Developer for WebSphere Software V8 Programming Guide

6. Lara completes the delivery when prompted.

7. At this point, if desired, it is possible to create a new baseline to include all
EJBs and the servlet for future use by other team members who rebase their
development streams.

Figure 31-56 Advanced delivery dialog window showing the files that are checked out

In this section, we have explored the integrated functionality that is offered by the
ClearCase Remote Client Extension. In particular, we have seen how two
developers can work in parallel and in isolation on the same Rational Application
Developer projects after joining one UCM project. The developers perform most
of their work using their development streams and views. We have seen how they
can then deliver their changes to the integration stream and create new
baselines for the entire team to use. We have seen how mergers are handled
 Chapter 31. IBM Rational ClearCase 1695

during deliver and we have configured a specific compare and merge provider
that is required for properly merging UML diagrams.

31.9 More information

For more information about Rational ClearCase and the integration with Rational
Application Developer, refer to these resources:

� The “Rational ClearCase SCM Adapter” chapter of the Rational Application
Developer Help

� Information center for ClearCase 7.1:

https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m0/index.jsp?to
pic=/com.ibm.rational.clearcase.help.ic.doc/helpindex_clearcase.htm

� Information center for ClearCase 7.1.2:

https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?to
pic=/com.ibm.rational.clearcase.help.ic.doc/helpindex_clearcase.htm

� Integration document:

http://www-01.ibm.com/support/docview.wss?rs=0&uid=swg27019539

� Comparing and Merging UML Models with Rational ClearCase:

http://www.ibm.com/developerworks/rational/library/07/0703_letkeman/
http://www.ibm.com/developerworks/rational/library/10/comparing-and-
merging-uml-models-in-ibm-rational-software-architect/index.html
1696 Rational Application Developer for WebSphere Software V8 Programming Guide

https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m0/index.jsp?topic=/com.ibm.rational.clearcase.help.ic.doc/helpindex_clearcase.htm
https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic=/com.ibm.rational.clearcase.help.ic.doc/helpindex_clearcase.htm
http://www-01.ibm.com/support/docview.wss?rs=0&uid=swg27019539
http://www.ibm.com/developerworks/rational/library/07/0703_letkeman/
http://www.ibm.com/developerworks/rational/library/10/comparing-and-merging-uml-models-in-ibm-rational-software-architect/index.html
http://www.ibm.com/developerworks/rational/library/10/comparing-and-merging-uml-models-in-ibm-rational-software-architect/index.html

Chapter 32. Code Coverage

Code Coverage is an important aspect of software testing and can be considered
fundamental to the overall system testing of a component. The motivation behind
coverage tooling is to give developers and testers more insight into the areas of
code that are being exercised by a set of test cases. This information is useful to
developers and testers who can then use it to devise new test cases so that
adequate coverage can be achieved.

This chapter uses an example project, which is included in the sample code
archive that accompanies the book. Import the code in \7835code\codecoverage
into your workspace if you want to follow our steps.

32
© Copyright IBM Corp. 2011. All rights reserved. 1697

32.1 Overview

This section introduces the instrumentation engine that is used by Code
Coverage and compares basic blocks to executable units.

32.1.1 Instrumentation

To properly analyze the coverage statistics, it is important to understand the
technology that is used in the background.

Code Coverage uses an instrumentation engine to manipulate the bytecode of a
class and inject custom calls to the coverage data collection engine. Figure 32-1
provides a high-level overview of the process.

Figure 32-1 Overview of the Code Coverage execution environment

32.1.2 Basic blocks versus executable units

The instrumentation engine operates on units of bytecode that are called
executable units. The definition of an executable unit differs slightly from the
traditional definition of a basic block, but the differences are important to consider
when the results are analyzed.

Instrumentation
engine

InputClass
file

Output

Execution

Callback

Instrumented
class

Code coverage
data collection

engine
1698 Rational Application Developer for WebSphere Software V8 Programming Guide

By definition, a basic block is a set of instructions that cannot be branched into or
out of. The key idea is that when the first instruction runs, all of the subsequent
instructions in that block are guaranteed to be executed without interruption. It
follows that a basic block can be conceptually considered as a single group or
block of instructions. In general, basic blocks end on branch, call, throw, or return
statements.

An executable unit begins at the start of every basic block and at any instruction
that corresponds to a line of source code that differs from the previous
instruction. What differentiates an executable unit from a basic block is the
condition that triggers the end of the executable unit. For example, the divide
instruction is not considered to be the end of an executable unit despite the fact
that it can throw an exception.

The instrumentation engine in Code Coverage is used to inject custom code at
the start of every executable unit. Consequently, you can customize the Code
Coverage feature to report statistics down to the executable unit level of
granularity (or block coverage). Figure 32-2 provides an overview of how the
instrumentation engine modifies the bytecode to support Code Coverage.

Figure 32-2 Overview of the bytecode instrumentation

iconst_2
invokestatic #48;

Compiled from "Part.java"
Code:

0: aload_0
1: invokespecial #15
4: iload_1
5: bipush
7: if_icmple

10: aload_0
11: iload_1
12: invokespecial #18;
15: goto 23
18: aload_0
19: iload_1
20: putfield #21;
23: return

Compiled from "Part.java"
Code:

0: iconst_0
1: invokestatic #48;
4: aload_0
5: invokespecial #15

11: iconst_1
12: invokestatic #48;
15: iload_1
14: bipush 10
18: if_icmple 46
24: iconst_2
25: invokestatic #48;
28: aload_0
29: iload_1
30: invokespecial #1
36: iconst_3
37: invokestatic #48
40: goto 58
46: iconst_4
47: invokestatic #48
50: aload_0
51: iload_1
52: putfield #21;
58: iconst_5
59: invokestatic #48;
62: return

public Part(int price) {
if (price > DISCOUNT_PRICE) {

setDiscountedPrice(price);
}
else {

this.price = price;
}

}

Java source

Compiled bytecode

Instrumented Class

Injected bytecode
 Chapter 32. Code Coverage 1699

32.2 Generating coverage statistics in Rational
Application Developer

One of the major advantages of Code Coverage is that you can enable it on any
Java project in Rational Application Developer by navigating to the Code
Coverage panel in the project Properties pane, as shown in Figure 32-3.

Figure 32-3 Code Coverage panel in the project Properties pane

Select the Enable code coverage check box in Figure 32-3 to enable Code
Coverage for the project. You can also use this panel to customize acceptable
coverage levels for each step of granularity. Code Coverage supports the
following levels of granularity:

� Type coverage: The percentage of types that are covered in a class
� Method coverage: The percentage of methods that are covered in a class
1700 Rational Application Developer for WebSphere Software V8 Programming Guide

� Line coverage: The percentage of lines that are covered in the class file
� Block coverage: The percentage of blocks that are covered in a class file. A

block refers to an executable unit.

You can also specify custom filters, which are used to control what gets
instrumented in your project. By default, all of the classes in your project are
instrumented, but you can create custom filters to exclude target packages or
specific types, if you need to restrict the results.

32.2.1 Viewing results in the Package Explorer

After you enable Code Coverage on a project, coverage statistics are generated
the next time that the application is launched. Statistics are not generated for all
types of launch configurations automatically. The following launch types are
supported from within Rational Application Developer:

� Java Applet
� OSGi Framework
� JUnit
� JUnit Plug-in Test
� Java Application
� Eclipse Application
� Standard Widget Toolkit (SWT) Application

The provided sample application is a simple representation of various vehicles
(car, van, motorcycle, and transport truck) and the various parts that are
associated with each vehicle. Figure 32-4 shows a Unified Modeling Language
(UML) diagram outlining the structure of this application.

Figure 32-4 UML diagram for the sample application

Handlebars

Chassis

Door

Engine

Trailer

Wheel

PartVehicle

Transport
truck

MotorcycleAbstractFourWheelVehicle

Car Van
 Chapter 32. Code Coverage 1701

There are two JUnit tests that are already defined in the project: TestCar.java
and Test-CarImproved.java. These tests target the Car.java class. While in the
Java perspective in Rational Application Developer, you can start the
Test-Car.java test by right-clicking TestCar.java and selecting Run As JUnit
test. The results of the JUnit test appear in the JUnit view. The coverage results
are integrated into the Rational Application Developer user interface (UI), and
you can analyze them by switching back to the Package Explorer view.
Figure 32-5 displays a sample result set for the TestCar.java test.

Figure 32-5 Coverage results for TestCar.java displayed in the Package Explorer

By default, the UI is annotated with only the line coverage information; however,
you can change this annotation in the workbench preferences and optionally
choose to include coverage for packages, types, and blocks. The percentage
beside each Java item is a breakdown of the line coverage for the last execution.
You can drill down into the various Java artifacts (for example, classes, types,
and methods) in the Package Explorer to get coverage statistics at a lower level
of granularity.

The results are color-coded depending on the success rate: by default, red
indicates that the acceptable coverage level has not been met and green
indicates that the appropriate coverage level was achieved. Naturally, the goal of
the test is to reach an acceptable coverage level on the classes of interest.
1702 Rational Application Developer for WebSphere Software V8 Programming Guide

Based on the results that are shown in Figure 32-5 on page 1702, the first test
was inadequate: the Car class (and abstract parents AbstractFourWheelVehicle
and Vehicle) did not reach the appropriate coverage level. Luckily, you have a
second attempt to execute: TestCarImproved.java. Again, you can execute the
test as a normal JUnit, and the results are automatically updated in the Package
Explorer (Figure 32-6).

Figure 32-6 Code Coverage results for TestCarImproved.java displayed in the Package
Explorer

32.2.2 Viewing results in the Java Editor

Line coverage results are also displayed and marked in the Java editor, and you
can use it to give a precise report of which lines are covered in each class. After
coverage statistics have been generated, you can open any class in your project
with the Java editor, and the left ruler bar in the editor shows the coverage
information. Figure 32-7 on page 1704 displays the results for Vehicle.java.
 Chapter 32. Code Coverage 1703

Figure 32-7 Coverage results displayed in the Java editor

The color indicators are the same as the color indicators in the Package Explorer
view. That is, by default, a green line was covered and a red line was not covered.
There is a slight advantage in viewing the results in the Java Editor because it
also indicates the partially covered lines. Partially covered lines can occur when
multiple executable units are on a line of source code but only one executable
unit has been executed. As an example, look at the first line of code in the
setTargetSpeed(int speed) method that is shown in Figure 32-7. The first
executable unit is the if statement, and the second executable unit is the return
statement. By default, a partial line is colored in yellow.

32.3 Generating reports

You can compile the Code Coverage results into reports and view them in
Rational Application Developer, or you can save them to the file system for future
analysis. You can generate two types of reports: workbench reports
(Eclipse-based) and HTML reports. To generate a report, select Run Code
Coverage Generate Report. Figure 32-8 on page 1705 shows the report
generation dialog window.
1704 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 32-8 Report generation dialog window

You can create and view a report in Rational Application Developer using the
View Report option on the dialog or save the report to the file system using the
View and save report option.

32.3.1 Workbench reports

The workbench reports provide a consolidated view of all of the coverage
statistics for your project and contain coverage information for all of the classes in
your project at execution time. Figure 32-9 on page 1706 shows a populated
workbench report.
 Chapter 32. Code Coverage 1705

Figure 32-9 Coverage results in an Eclipse-based report

Workbench reports have the added advantage of being integrated in Rational
Application Developer, so that you can use them as quick tools to provide insight
into the parts of your code that require improved test coverage. As Figure 32-9
shows, the statistics in a workbench report contain coverage information for all
levels of granularity: from a package to a method. Right-clicking any of the Java
artifacts displays a pop-up menu with two additional actions: Show in Package
Explorer and Open in Java Editor. These useful tools can help you identify and
investigate the areas of code with low coverage, because the tools highlight the
selected area of code by opening it in the appropriate viewer or editor.

32.3.2 HTML reports

HTML reports display the same type of information that is provided in the
workbench report, but in HTML format. These reports are particularly useful
when saved to the file system, because they provide a way for the coverage
results to be analyzed independently of Rational Application Developer, shared
with team members, or published to a website for viewing.
1706 Rational Application Developer for WebSphere Software V8 Programming Guide

32.4 Generating statistics outside of the workbench

One of the major features of the Code Coverage tool is its ability to generate
statistics outside of Rational Application Developer. This capability provides extra
flexibility and enables you to customize your environment to take advantage of
Code Coverage in your systems. For example, one natural combination is to set
up a nightly build environment and generate statistics with JUnit tests on the
nightly driver.

You can integrate Code Coverage into your environment by performing the
following three steps: instrumentation, execution, and report generation. Code
Coverage starting in Rational Application Developer v8.0 and later supports both
static and dynamic approaches to instrumentation. Users can decide which
instrumentation style to use, depending on their needs.

Both approaches to instrumentation output a baseline file. A baseline file is a
concept that is specific to the Code Coverage feature. The baseline file contains
an index of all of the classes in your project, and it maintains additional metadata
about each class. This file is used at the reporting step (32.4.3, “Report
generation” on page 1712) to determine which classes in your application were
not covered. This step is necessary because the Code Coverage data collection
engine is only notified of a class when it is loaded by Java virtual machine (JVM),
and so, a list of the classes that were not executed cannot be determined without
additional metadata. If the baseline file is not present at reporting time, the
classes that were not loaded are absent from the report.

32.4.1 Static instrumentation

With the static approach, instrumentation is performed before the code is
executed by modifying the bytecode of a class and saving the results back to the
file system as a .class file. This approach has the advantage that the overhead
of instrumentation only has to be dealt with one time. The disadvantage is clear
when you consider a class that changes frequently and therefore requires
instrumentation for every update.

Instrumentation
There are two approaches that you can use to instrument your application. The
first approach is to use the instrumentation Ant task that is provided by Code
Coverage. Example 32-1 shows an example usage of the instrument task
configured to target the sample application in this article.

Example 32-1 Example usage of instrument Ant tasks on the sample application

<target name="instrument">
 Chapter 32. Code Coverage 1707

<path id="lib.path">
<pathelement location="<Rational Application Developer

home>\plugins\com.ibm.rational.llc.engine _<date>"/>
<pathelement location="<Rational Application Developer

home>\plugins\org.eclipse.hyades.probekit_<date>\os\<platform>\x86\prob
ekit.jar"/>

</path>
<taskdef name="instrument"

classname="com.ibm.rational.llc.engine.instrumentation.anttask.Instrume
ntationTask" classpathref="lib.path"/>
<instrument saveBackups="true"
 baseLineFile="VehicleProjectStatistics.baseline"
 buildPath="VehicleProject"
 outputDir="VehicleProjectInstr"/>
</target>

To use this Ant task, you must add the <Rational Application Developer
home>\plugins\org.eclipse.hyades.probekit_<date>\os\<platform>\x86 path
to the systems PATH environment variable.

Table 32-1 outlines a quick overview of the expected parameters.

Table 32-1 Input parameters for instrumentation tasks

The second approach is to use the instrument.bat/sh script provided in the
<RAD_HOME>/plugins/com.ibm.rational.llc.engine_<date>/scripts/static
directory. Table 32-1 outlines the script input parameters.

Execution
To execute the instrumented classes, you must configure the Java environment
correctly at launch.

Parameter Description

buildPath The path to the project on the file system.

outputDir Optional: The output directory of the instrumented project. If not
specified, the classes in the buildPath will be instrumented in place.

baseLineFile Optional: The output location of the baseline project index file.

saveBackups Optional: Set to true if the original class files must be backed up before
instrumenting.
1708 Rational Application Developer for WebSphere Software V8 Programming Guide

The following two specific parameters are necessary for execution:

� Dcoverage.out.file=<absolute path to output file>: The file that is
specified by this JVM argument is the output location of the coverage
statistics.

� Add the <Rational Application Developer
HOME>/plugins/com.ibm.rational.llc.engine_<date>/RLC.jar to the class
path. Because the code has been instrumented with callbacks to the Code
Coverage data collection engine, the RLC.jar file needs to be on the class
path at run time.

These parameters can be supplied to a JUnit Ant task. Example 32-2 provides
example usage.

Example 32-2 How to specify the Code Coverage feature arguments in an Ant launch

<target name="run">
 <junit showoutput="true" fork="yes">
 <jvmarg value="-Dcoverage.out.file={absolute path to the output
file}"/>
 <classpath>
 <pathelement location="{absolute path to the
 <Rational Application Developer
HOME>\plugins\com.ibm.rational.llc.engine_<date>
 \RLC.jar file}"/>
 <pathelement location="{path to the project classes}"/>
 <pathelement path="{absolute path to the junit.jar}" />
 </classpath>
 <test name="com.ibm.vehicles.tests.TestCar" outfile="TestCar" />
 </junit>
</target>

32.4.2 Dynamic instrumentation

With dynamic instrumentation, the instrumentation step is performed by
modifying the bytecode of a class in memory at run time when the classes are
loaded. It is easier to work with this approach, because there is no explicit
instrumentation step and only the classes that are loaded by the JVM are
instrumented. If a large number of classes are being executed, the
instrumentation overhead might affect the performance of your application.

Generating the probescript and baseline files
The probescript file is important in a dynamic instrumentation environment and is
a requirement for execution. Code Coverage uses the probescript file at run time
 Chapter 32. Code Coverage 1709

to determine which classes are instrumented and for which classes data is
collected.

Code Coverage provides a command-line script and Ant support, which can be
used to generate the probescript and baseline files. Example 32-3 shows an
example of using the Ant support.

Example 32-3 Ant task to generate probescript and baseline files for a project

<target name="application-analysis" description="Define the code
coverage application analysis task">

<path id="lib.path">
<pathelement location="<Rational Application Developer
home>\plugins\org.eclipse.jdt.core_<date>.jar"/>
<pathelement location="<Rational Application Developer
home>\plugins\com.ibm.rational.llc.engine_<date>"/>
<pathelement location="<Rational Application Developer
home>\plugins\org.eclipse.equinox.common_<date>.jar"/></path>

<taskdef name="code-coverage-app-analyzer"
classname="com.ibm.rational.llc.engine.instrumentation.anttask.Coverage
ApplicationAnalyzerTask" classpathref="lib.path"/>

<code-coverage-app-analyzer projectDir="VehicleProject\bin"
probescript="VehicleProjectStatistics.probescript"
baseline="VehicleProjectStatistics.baseline"/>
</target>

Table 32-2 shows the parameters that are taken as input.

Table 32-2 Input parameters for instrumentation tasks

The command-line script to generate probescript and baseline files is in
<Rational Application Developer
home>/plugins/com.ibm.rational.llc.engine_<date>/scripts/dynamic.
Executing the appinfo.bat/sh script with the expected parameters generates the
probescript and baseline files.

Generate the probescript file to an easily accessible location on the file system.
The probescript file needs to be provided as input for the execution step. You can

Parameter Description

projectDir The directory containing the Java project

probescript The output location for the generated probescript file

baseline Optional: The output location of the baseline project index file
1710 Rational Application Developer for WebSphere Software V8 Programming Guide

reuse a probescript file multiple times, but you must regenerate it if classes are
added or removed from the project.

We provide a default probescript file <Rational Application Developer
home>/plugins/com.ibm.rational.llc.engine_<date>/scripts/dynamic/defaul
t.probescript. You can use this probescript file to avoid generating a custom
probescript, but this default probescript file might not be ideal for all applications.
This probescript provides a good default instrumentation filter set, but it might
exclude or include extra classes (depending on the structure of the project).

Execution
To execute the instrumented classes, you must configure the Java environment
correctly at launch. The following three specific parameters are necessary for
execution:

� Dcoverage.out.file=<absolute path to output file>: The file specified by
this JVM argument is the output location of the coverage statistics.

� Add the <Rational Application Developer
HOME>/plugins/com.ibm.rational.llc.engine_<date>/RLC.jar to the class
path. Because the code has been instrumented with callbacks to the Code
Coverage data collection engine, the RLC.jar file needs to be on the class
path at run time.

� Add the -agentpath:<path to
JPIBootLoader>=JPIAgent:server=standalone,file=;ProbekitAgent:ext-pk
-BCILibraryName=BCIEngProbe,ext-pk-probescript=<path to probescript>
JVM argument. This argument registers the instrumentation engine with the
JVM so that Code Coverage can instrument the classes when loaded.

The <path to probescript> parameter is the path to the probescript file to be
used for execution. This file can be either the default probescript file or the
probescript file that was generated in the previous step.

Example 32-4 on page 1712 provides an example of an Ant call to run an
application and generate coverage statistics.

The <path to JPIBootLoader> parameter: On Windows, the <path to
JPIBootLoader> parameter is <Rational Application Developer
HOME>\plugins\org.eclipse.tptp.platform.jvmti.runtime_<date>\agen
t_files\win_ia32\JPIBootLoader.

On Linux, the <path to JPIBootLoader> parameter is <Rational
Application Developer
HOME>/plugins/org.eclipse.tptp.platform.jvmti.runtime_<date>/agen
t_files/linux_ia32/libJPIBootLoader.so.
 Chapter 32. Code Coverage 1711

Example 32-4 Ant call to run an application and generate statistics

<target name="execute">
<jar basedir="VehicleProject\bin" destfile="VehicleProject.jar" />

<java classname="com.ibm.vehicles.tests.MainTest" fork="true"
newenvironment="true">

<jvmarg
value="-Dcoverage.out.file=VehicleProject.coveragedata" />

<jvmarg value="-Xbootclasspath/a:<Rational Application
Developer home>/plugins/com.ibm.rational.llc.engine_<date>/RLC.jar" />

<jvmarg value="-agentpath:<path to
JPIBootLoader>=JPIAgent:server=standalone,file=;ProbekitAgent:ext-pk-BC
ILibraryName=BCIEngProbe,ext-pk-probescript=<path to probescript
file>"/>

<classpath>
<pathelement path="VehicleProject.jar" />

</classpath>
</java>

</target>

32.4.3 Report generation

You can generate reports using another Ant task that is provided by the Code
Coverage feature. This task uses the reporting functionality that is provided by
the Business Intelligence and Reporting Tools (BIRT) Eclipse.org project and
requires that you download the latest BIRT Reporting Engine stand-alone
offering. Navigate to http://www.eclipse.org/birt/download, select the latest
release, and download the Report Engine offering. After downloading, extract
the archive to a location on the file system.

Example 32-5 provides sample usage of the reporting Ant task. As input, it
requires the generated coveragedata file, which was generated in the execution
step, and optionally the generated baseline file.

Example 32-5 Usage of the report generation Ant task on the sample application

<target name="generate-report">
 <path id="lib.path">
<pathelement location<Rational Application Developer
home>\plugins\com.ibm.rational.llc.common_<date>.jar"/>
<pathelement location="<Rational Application Developer
home>\plugins\com.ibm.rational.llc.report_<date>"/>
<pathelement location="<Rational Application Developer
home>\plugins\org.eclipse.equinox.common_<date>.jar"/>
<fileset dir="<BIRT Report Engine home>/lib" includes="*.jar"/>
1712 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.eclipse.org/birt/download
http://www.eclipse.org/birt/download
http://www.eclipse.org/birt/download

</path>
 <taskdef name="code-coverage-report"

classname="com.ibm.rational.llc.report.birt.adapters.ant.ReportGenerati
onTask"
 classpathref="lib.path"/>
 <code-coverage-report
 outputDir="VechicleProjectReport"
 coverageDataFile="VehicleProjectStatistics.coveragedata"
 baseLineFiles="VehicleProjectStatistics.baseline"/>
</target>

Table 32-3 shows the parameters for the report generation Ant task.

Table 32-3 Input parameters for instrumentation tasks

Figure 32-10 on page 1714 shows an example HTML report. Generating HTML
reports using the Ant task provides a means by which users can view the
statistics that are generated in an Ant environment independently of Rational
Application Developer.

Parameter Description

outputDir The output directory of the generated HTML report.

coverageDataFile The input coveragedata files. Multiple coveragedata files can be supplied
by using the correct path separator character for the platform (a
semicolon (;) on Microsoft Windows or a colon (:) on Linux).

baseLineFiles Optional: The input baseline files. Multiple baseline files can be supplied
by using the correct path separator character for the platform (a
semicolon (;) on Microsoft Windows or a colon (:) on Linux).
 Chapter 32. Code Coverage 1713

Figure 32-10 Coverage results in an HTML report

32.5 Coverage report comparison

You can compare Code Coverage result sets within Rational Application
Developer. Comparing coverage results gives a precise value of how much the
coverage has changed while your application or tests are updated. You can
generate comparison reports either within Rational Application Developer or in
an Ant environment.
1714 Rational Application Developer for WebSphere Software V8 Programming Guide

32.5.1 Generating a coverage comparison report in Rational
Application Developer

You can generate comparison reports from the report generation dialog window
(see Figure 32-11). You can open the Code Coverage Report window by
selecting Run Code Coverage Generate Report.

Figure 32-11 Report generation dialog window with comparison options selected

To generate a comparison report, select the Comparison Report option from
the Report format and location section of the report generation dialog window.
You must select two launches for comparison. You can create both workbench
and HTML reports, and you can save both types of reports to the file system or
open them locally.
 Chapter 32. Code Coverage 1715

The comparison algorithm in Code Coverage uses the older report for the
baseline value and uses the newer report to calculate the difference between the
two reports. Figure 32-12 is an example of a Code Coverage Comparison
Report.

Figure 32-12 Example comparison report

The Code Coverage Comparison Report is an extension of the existing coverage
report, and all of the same tools are available. For example, the actions in the
context menu of the report still work as designed. However, in a comparison
report, all nodes in the tree include information about the change in coverage
information (if any). The major value for each node is the value for the oldest
report. The value in parentheses represents the change in value when compared
against the newer report. An icon represents the type of change (increase,
decrease, new item, or removed item).

32.5.2 Generating coverage comparison report with Ant

You can generate coverage comparison reports in an Ant environment by using
the Ant task that is provided by Code Coverage. This task uses the reporting
functionality that is provided by the BIRT Eclipse.org project and thus requires
that you download the latest Report Engine stand-alone offering. Navigate to
http://www.eclipse.org/birt/download, select the latest release, and
download the Report Engine offering. After downloading, extract the archive to a
location on the file system.
1716 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.eclipse.org/birt/download
http://www.eclipse.org/birt/download

Example 32-6 shows how comparison reports can be generated using Ant. This
Ant task can only produce comparison HTML reports.

Example 32-6 Usage of the report generation Ant task on the sample application

<target name="define-report-task" description="Define the code coverage
comparison report generation task">
<path id="lib.path">
<pathelement location="<Rational Application Developer
home>\plugins\com.ibm.rational.llc.common_<date>.jar"/>
<pathelement location="<Rational Application Developer
home>\plugins\com.ibm.rational.llc.report_<date>"/>
<pathelement location="<Rational Application Developer
home>\plugins\org.eclipse.equinox.common_<date>.jar"/>
<fileset dir="<BIRT Report Engine home>/lib" includes="*.jar"/>
</path>
<taskdef name="code-coverage-comparison"
classname="com.ibm.rational.llc.report.birt.adapters.ant.ReportComparis
onTask" classpathref="lib.path"/>

<code-coverage-comparison
outputDir="VehicleProjectComparisonReport"
reportFiles="
VehicleProjectStatisticsOld.coveragedata;VehicleProjectStatisticsNew.co
veragedata"
baselineFiles="VehicleProjectBaselineNew.baseline;
VehicleProjectBaselineOld.baseline"/>
</target>

Example 32-7 on page 1718 shows the parameters for the comparison report
generation Ant task.
 Chapter 32. Code Coverage 1717

Example 32-7 Input parameters for instrumentation tasks

32.6 Importing the coverage data statistics file

Code Coverage includes an import wizard, which allows users to import
coveragedata files into a Rational Application Developer workspace. This feature
is particularly useful for users who generate statistics outside of the Rational
Application Developer environment, because this feature enables them to import
their statistics and analyze the results by using all of the available tooling in
Rational Application Developer.

You invoke the import wizard by right-clicking in a Source Explorer view, selecting
Import, and then selecting the Code Coverage Code Coverage Data File
option. The import wizard window opens and asks which type of import to
perform. Figure 32-13 on page 1719 shows the data import type selection type.
Use the “Data File is located on the file system” option to import coveragedata
files that are generated outside of the Rational Application Developer
environment. The “Recent application launched in the workspace” option imports
a coveragedata file from a recent workspace launch.

Parameter Description

outputDir The output directory of the generated HTML comparison report.

reportFiles The input coveragedata files. Two coveragedata files must be supplied.
Separate the two paths by using the correct path separator character for
the platform (a semicolon (;) on Microsoft Windows and a colon (:) on
Linux)

baselineFiles Optional: The input baseline files. Two coveragedata files can be
supplied. Separate the two paths by using the correct path separator
character for the platform (a semicolon (;) on Microsoft Windows and a
colon (:) on Linux).
1718 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 32-13 Code Coverage data file import wizard selection page

After the coveragedata files have been imported into the workspace, you can
select the coveragedata files in the source view and analyze them using the
Code Coverage actions from the context menu. Figure 32-14 on page 1720
shows the Code Coverage actions in the context menu.
 Chapter 32. Code Coverage 1719

Figure 32-14 Code Coverage actions from the context menu of the coverageadata files

These three actions are available in the context menu of the coveragedata files:

� Use the “Generate Report” action to generate a coverage report from the
selected coveragedata files.

� Use the “Show Code Coverage Indicators” action to decorate the local Java
items with the statistics that are provided by the selected coveragedata file.

� Use the “Compare Coverage Results” action to generate a comparison report
from the two selected coveragedata files. This action is only enabled when
exactly two files are selected.

32.7 Generating statistics for web applications

You can generate Code Coverage statistics for any web application in Rational
Application Developer. The tooling provides support for multiple application
servers. You can view the generated Code Coverage statistics in near real time.
1720 Rational Application Developer for WebSphere Software V8 Programming Guide

As the application executes on the server, the statistics are updated to reflect the
new changes.

When a Code Coverage-enabled application executes on a server, the server
refresh interval controls how often the data is refreshed in the workbench. The
default refresh interval is set to 30 seconds, but you can update this interval by
modifying the Refresh Interval value on the Java Code Coverage Server
workbench Preferences page (see Figure 32-15).

Figure 32-15 The Code Coverage Server Preferences page

You also can refresh the statistics manually by selecting the project folder in the
source viewer and selecting the Refresh option from the context menu. Statistics
for the project are updated only if the selected projected is actively executing on a
server.
 Chapter 32. Code Coverage 1721

Also on the Code Coverage Server Preferences page (Figure 32-15 on
page 1721), you can use the Server Filter Set option to control the
instrumentation of classes on the server. If data for a class that is not contained
in your project is being collected, You can add exclude filter rules to this filter set.
Likewise, if statistics for classes that are not in your project need to be collected,
you can change this filter set to include the appropriate classes.

32.7.1 Support for WebSphere Application Server

To generate Code Coverage statistics for web applications running on an
instance of WebSphere Application Server, follow these steps:

1. Enable Code Coverage on your web application (see 32.2, “Generating
coverage statistics in Rational Application Developer” on page 1700).

2. Add the web application to the correct server. Right-click the server in the
Servers view, select Add and Remove, and select the web application on the
resulting wizard page.

3. Select Run, Debug, or Profile in the Servers view to start the server.

If the server instance was started in Profile mode, an additional wizard appears.
You use this wizard to select the correct profiling data collector for the server. To
collect Code Coverage statistics, select Code Coverage Analysis (see
Figure 32-16 on page 1723).
1722 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 32-16 Additional Profile on Server wizard page to select the correct data collector

32.7.2 Generic application server support

Code Coverage also provides support for all other servers that are supported by
Rational Application Developer (Tomcat, JBoss, and so on).

Before Code Coverage statistics can be generated, you must select the Code
Coverage Analysis profiler on the Profilers page in the workbench Preferences.
To open this page, select Window Preferences, open the Server Profilers
page, and ensure that the Code Coverage Analysis profiler type is selected
(see Figure 32-17 on page 1724).
 Chapter 32. Code Coverage 1723

Figure 32-17 Server Profilers selection page for generic servers

To generate Code Coverage statistics for web applications on servers other than
WebSphere Application Server, follow these instructions:

1. Enable Code Coverage on your web application (see 32.2, “Generating
coverage statistics in Rational Application Developer” on page 1700).

2. Add the web application to the correct server. Right-click the server in the
Servers view, select Add and Remove, and select the web application on the
resulting wizard page.

3. Select Profile from the Servers view to start the server.
1724 Rational Application Developer for WebSphere Software V8 Programming Guide

Code Coverage statistics can only be generated in Profile mode for servers other
than WebSphere Application Server.

32.8 Rational Team Concert integration

Code Coverage provides integration with the Rational Team Concert Build Toolkit
to allow users to generate Code Coverage statistics from within their Rational
Team Concert build. Users can then view and analyze the results within Rational
Application Developer. See Chapter 30, “IBM Rational Application Developer
integration with Rational Team Concert” on page 1595 for additional details.
 Chapter 32. Code Coverage 1725

1726 Rational Application Developer for WebSphere Software V8 Programming Guide

Chapter 33. Developing Session
Initiation Protocol
applications

Session Initiation Protocol (SIP) is an application-layer protocol that you can use
to initiate, modify, or terminate communication and collaborative sessions over
Internet Protocol (IP) networks.

This chapter contains the following sections:

� Introduction to SIP
� Developing a SIP application
� Testing the SIP 1.1 application
� SIP-specific annotations in SIP 1.1 applications
� More information

33
© Copyright IBM Corp. 2011. All rights reserved. 1727

33.1 Introduction to SIP

SIP sessions consist of various objects:

� IP telephony calls
� Multiuser conferences (incorporating voice, video, and data)
� Instant messaging chats
� Multiple player online games

You can use SIP to invite participants (persons, automated services, or physical
devices) to a scheduled or existing session and to add media to or remove media
from a session.

33.1.1 SIP 1.1 specification

The SIP 1.1 specification is defined in Java Specification Request (JSR) 289:
SIP Servlet Specification, Version 1.1. It has the following objectives:

� Clarify the intentions of JSR 116: SIP Servlet application programming
interface (API), Version 1.0

� Standardize many industry practices that have matured around SIP servlet
applications.

� Enable more and better interconnected SIP servlet-based applications, such
as applications that incorporate SIP and other Java Platform, Enterprise
Edition (Java EE) components (for example, HTTP servlets and Enterprise
JavaBeans (EJB)).

� Provide an application routing mechanism for composing SIP services into
application groups.

Both the SIP 1.1 and SIP 1.0 specifications are based on the Java servlet API.
SIP servlets are Java-based component applications that typically run in servlet
containers on network servers. The SIP servlet and container hide SIP protocol
complexities by providing an environment where services cannot violate the
protocol or perform restricted operations.

The SIP container performs many functions that simplify creating SIP
applications. The servlet container manages the life cycle of a servlet and
supports interaction between servlets and SIP clients (User Agents (UA)) by
exchanging SIP request and response messages. For instance, a servlet
container can perform message queuing, dispatching, and state management.

As with HTTP servlets, SIP servlets extend the base
javax.servlet.GenericServlet class. The SipServletRequest and
1728 Rational Application Developer for WebSphere Software V8 Programming Guide

http://jcp.org/en/jsr/summary?id=289
http://jcp.org/en/jsr/summary?id=289

SipServletResponse classes are similar to the HttpServletRequest and
HttpServletResponse classes. However, there are important differences:

� SIP applications can perform intelligent request routing, act as proxy
requests, and initiate requests.

� SIP is asynchronous and there can be multiple responses to the same
request.

All messages come in through the service method, which calls doRequest for
incoming requests or doResponse for incoming responses. Depending on the
request method (Table 33-1) or status code (Table 33-2), the call is dispatched.

Table 33-1 SIP servlet request methods

Table 33-2 SIP servlet response methods

Servlet method SIP request attended

doInvite INVITE

doAck ACK

doOptions OPTIONS

doBye BYE

doCancel CANCEL

doRegister REGISTER

doSubscribe SUBSCRIBE

doNotify NOTIFY

doMessage MESSAGE

doInfo INFO

doPrack PRACK

doUpdate UPDATE

doRefer REFER

doPublish PUBLISH

Servlet methods SIP responses Meaning

doProvisionalResponse 1xx Provisional messages

doSuccessResponse 2xx Success answers

doRedirectResponse 3xx Redirection answers
 Chapter 33. Developing Session Initiation Protocol applications 1729

Table 33-3 lists the servlet classes and interfaces in the SIP Servlet Specification
1.1. These objects provide high-level abstraction of many of the SIP concepts.

Table 33-3 SIP servlet classes and interfaces

doErrorResponse 4xx Method failures

5xx Server failures

6xx Global failures

Servlet methods SIP responses Meaning

Class/Interface Description

SipServlet The base servlet object, it receives incoming messages through the
service method, which calls doRequest or doResponse.

ServletConfig Used by the servlet container to pass configuration information to a
servlet during initialization.

ServletContext Used by a servlet to communicate with its container.

SipServletMessage Defines common aspects of SIP requests and responses.

SipServletRequest Provides high-level access to SIP request messages. Created and
passed to the handling servlet when the container processes incoming
requests.

SipServletResponse Provides high-level access to a SIP response message. Instances of
SipServletResponse are passed to servlets when the container
receives incoming SIP responses.

SipFactory Factory interface for a variety of servlet API abstractions.

SipAddress Represents the SIP From and To header.

SipSession Represents SIP point-to-point relationships and maintains dialog state
for UAs.

SipApplicationSession Represents application instances, acts as a store for application data,
and provides access to contained protocol sessions.

Proxy Represents the operation of proxying a SIP request and provides
control over how that proxying is carried out.

SipApplicationRouter Application router interface.

SipSessionsUtil Utility class that provides additional support for session management
for converged applications.

ConvergedHttpSession Extension to HttpSession for converged applications.
1730 Rational Application Developer for WebSphere Software V8 Programming Guide

33.1.2 Converged SIP applications

A converged SIP application is an application that uses both HTTP Servlet API
and Java EE components. Depending on the components used, a converged SIP
application can be either of the following combinations:

� SIP and HTTP converged applications, hosting SIP and HTTP servlets

� SIP and Java EE converged applications, hosting SIP, HTTP, and Java EE
(such as EJB, web services, messaging, and so on) components

Several classes are provided to facilitate the development of converged
applications, including these classes:

� Use the SipFactory class to create requests, address objects, or application
sessions. You can access it through ServletContext or dependency injection
(@Resource).

� Use the SipApplicationSession class to store application data to correlate a
number of protocol sessions. You can create it through ConvergedHttpSession
(recommended) or SipFactory. You also can access it through
SipSessionsUtil or SipSession.

� Use the SipSessionsUtil class to provide a way to access
SipApplicationSession by ID.

33.1.3 SIP 1.1 annotations

With SIP 1.1, you can use annotations for SIP servlet applications, which is a
convenient way to develop applications.

B2buaHelper Utility class with support for Back-to-Back User Agent (B2BUA)
applications. B2BUA is a logical entity that receives a request as a User
Agent Server and processes the request as a User Agent Client,
handling the signaling between both endpoints.

SipURI Interface that represents SIP and SIPS URIs as defined in Request for
Comments (RFC) 2396.

TelURL Interface that represents telephone numbers.

TimerService Interface that allows SIP servlet applications to set timers to receive
timer expiration notifications.

Class/Interface Description
 Chapter 33. Developing Session Initiation Protocol applications 1731

You can use the annotations to perform these tasks:

� Embed data directly into an application instead of using the deployment
descriptor

� Inject resources, such as EJB or SIP utility classes, into an application

The following annotations are the @Sip annotations and properties (see
Table 33-4):

� The @SipApplication annotation maintains the application-level configuration
that used to be part of the deployment descriptor. It is a package-level
annotation (must be located in a package-info.java file), and all servlets
within the package belong to the same application.

� The @SipServlet annotation indicates that a class is a SIP servlet.

� The @SipListener annotation indicates that a class is a SIP listener.

� The @SipApplicationKey annotation marks the method that associates an
incoming request and SipSession with a specific SipApplicationSession.
You use this annotation with session key-based targeting.

Table 33-4 Annotation properties

Important: Only one SIP application can be registered with the container
for each .war or .sar archive, regardless of whether you use a deployment
descriptor or annotations.

Annotation
property

Data definition (DD)
replaced element

Description Default value

@SipApplication

Name <app-name> Define the SIP
application name

N/A (It is mandatory to
fill this filed)

displayName <display-name> Displayed name of the
application

Application name value

smallIcon <small-icon> Path with the location of
the small icon

Empty string

largeIcon <large-icon> Path with the location of
the large icon

Empty string

description <description> Explains the application
and its function

Empty string
1732 Rational Application Developer for WebSphere Software V8 Programming Guide

33.1.4 SIP application packaging

A SIP project has the same directory structure as a web project. The project has
a WEB-INF subdirectory that contains these objects:

� The deployment descriptor files sip.xml and web.xml

distributable <distributable> Indicates if the
application can function
in a distributed
environment (true) or
not (false)

false (Boolean value)

proxyTimeout <proxy-timeout> Default timeout for all
proxy operations

3 minutes

sessionTimeout <session-timeout> Default timeout (in
whole minutes) for all
application session
operations

3 minutes

mainServlet <main-servlet> Indicates the SIP servlet
that is designed as the
Main Servlet

Empty string

@SipServlet

Name <servlet-name> ID used to reference the
servlet in the context

Short name of the
annotated class

applicationName N/A Application name with
which the annotated
servlet is associated

Application Name
(checks in DD and
package annotation)

description <description> Declarative data about
the servlet

Empty string

displayName <display-name> Displayed name of the
application

Application name value

smallIcon <small-icon> Path with the location of
the small icon

Empty string

largeIcon <large-icon> Path with the location of
the large icon

Empty string

description <description> Explains the application
and its function

Empty string

Annotation
property

Data definition (DD)
replaced element

Description Default value
 Chapter 33. Developing Session Initiation Protocol applications 1733

� Utility classes and jar files in their respective classes and lib directories

A converged SIP application that is created for the purpose of deployment from
the integrated development environment (IDE) is, by default, packaged as a WAR
in an EAR file.

You also can import or export converged SIP/HTTP applications as stand-alone
SARs or WARs for exchange between developers and deployment directly on the
WebSphere Application Server administrative console.

33.2 Developing a SIP application

In this section, we describe the wizards and editors in Rational Application
Developer that you can use to develop converged SIP applications, including
wizards and editors to facilitate the creation and editing of SIP applications. We
start with an overview of the tools followed by an example that demonstrates
creating, editing, and deploying a SIP 1.1 application.

This section describes the following topics:

� SIP tooling overview
� Sample application overview
� Setting up the project
� Implementing the classes
� SIP deployment descriptor
� Preparing for deployment
� Deploying SIP from Rational Application Developer

Packaging of WARs: The SIP tooling only supports the packaging of WARs
in EARs. The packaging of SARs in EARs is not available even though it is
supported in the SIP specification.

Version level: The IDE supports developing both SIP 1.0 and SIP 1.1
applications. In this chapter, if the version is not specified, assume that the
content applies to both SIP versions.
1734 Rational Application Developer for WebSphere Software V8 Programming Guide

33.2.1 SIP tooling overview

Rational Application Developer provides wizards and editors that you can use to
develop SIP applications easily. Using these tools provides the following benefits:

� Class path configuration of the SIP project is automatic so that the correct SIP
API jar is set.

� You can generate deployment configuration from the new SIP servlet wizard.

� You can generate template code when creating new SIP servlets.

� Content assist support for SIP annotations is available in the Java editor.

� You can use graphical or source-based editing of the deployment information
with the SIP Deployment Descriptor Editor.

� Automatic or manual merging options for SIP and web deployment
descriptors are available to ensure consistent content for the deployment.

� Validators that identify an incorrect deployment configuration exist.

Supported run times
Table 33-5 show the supported run times for developing SIP applications in
Rational Application Developer.

Table 33-5 Supported run times for SIP development in Rational Application Developer

New SIP project wizard
To create a new SIP project, perform the following steps:

1. In Rational Application Developer, click File New Other SIP Project.
Figure 33-1 on page 1736 shows the first page of the wizard when creating a
SIP 1.1 project.

Run time SIP 1.1 SIP 1.0

WebSphere Application
Server V7.0.0.13 Base

No Yes

WebSphere Application
Server V7.0.0.13 with
Communications Enabled
Applications (CEA)
Feature Pack V1.0.0.7

Yes Yes

WebSphere Application
Server v8.0 Beta Base

Yes Yes
 Chapter 33. Developing Session Initiation Protocol applications 1735

Figure 33-1 New SIP Project wizard

2. In the Configuration field, select either SIP 1.1 Project or SIP 1.0 Project.
The configuration sets the facets for the project. Table 33-6 shows the project
facets that are set.

Table 33-6 SIP project facets and versions

Facets SIP 1.1 SIP 1.0

Dynamic Web Module 2.5 2.3
1736 Rational Application Developer for WebSphere Software V8 Programming Guide

http://jcp.org/en/jsr/summary?id=289

SIP servlet wizard
To create a new SIP servlet, run the SIP Servlet wizard by clicking File
New Other SIP Servlet. The SIP project version that you select determines
the pages that are displayed in the wizard. For example, if you select a SIP 1.1
project, the wizard displays SIP 1.1-specific configurations in the second and
third pages of the wizard.

Figure 33-2 on page 1738 shows the second page of this wizard, which has
options that are specific to creating a SIP 1.1 servlet. The second page of the
SIP servlet wizard is used to configure the initialization parameters and servlet
selection. When you complete the wizard, the sip.xml file is updated with these
settings. The red highlights show configurations that are specific to SIP 1.1 that
do not appear when creating a new servlet on a SIP 1.0 project.

Java 1.5 1.5

JavaScript 1.0 1.0

SIP Module 1.1 1.0

WebSphere Web
(Coexistence)

7.0 6.1

WebSphere Web
(Extended)

7.0 6.1

Important: Rational Application Developer does not support the migration
of SIP 1.0 projects to SIP 1.1. If you want to migrate, you must create a
new SIP 1.1 project, copy over the files, and update their contents.

Facets SIP 1.1 SIP 1.0
 Chapter 33. Developing Session Initiation Protocol applications 1737

Figure 33-2 Second page of the new SIP project wizard

On page three of the wizard (see Figure 33-3 on page 1739), you select the
method stubs to generate in your SIP servlet. The method options that are
highlighted in red are specific to SIP 1.1 servlets and are disabled when creating
a SIP 1.0-based servlet.

SIP 1.1 specific configuration
1738 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 33-3 Third page of the new SIP project wizard

SIP 1.1 deployment descriptor editor
You can use the SIP 1.1 deployment descriptor editor to edit the SIP deployment
information in either a graphical-based view or an XML source view. To open this
editor, double-click either the SIP Deployment Descriptor node or the
WEB-INF/sip.xml file (Figure 33-4 on page 1740).

SIP 1.1 specific methods
 Chapter 33. Developing Session Initiation Protocol applications 1739

Figure 33-4 SIP 1.1 Deployment Descriptor access points

The layout and functionality of the editor are similar to the other Java EE 5
deployment descriptor editors. Figure 33-5 on page 1741 shows an example of
the SIP 1.1 deployment descriptor.
1740 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 33-5 SIP 1.1 Deployment Descriptor

Editing SIP 1.1 annotations
SIP annotation support is available through content assist (Ctrl+Spacebar) when
you edit in the Java Editor. Figure 33-6 shows an example of content assist
support for the @SipServlet annotation.

Figure 33-6 Content assist support for SIP annotations
 Chapter 33. Developing Session Initiation Protocol applications 1741

Merging SIP and web deployment descriptor contents
To deploy a converged SIP application from Rational Application Developer, you
must merge the contents of the sip.xml file into the web.xml file. The contents
are merged so that components, such as SIP servlets, are recognized and
processed in the context of a web application. By default, every time that you
modify the sip.xml file, you are prompted to automatically merge the content. To
change the merge preferences, click Windows Preferences SIP
(Figure 33-7).

Figure 33-7 SIP merge Preferences page

You can choose to bypass automatic merging of the deployment descriptor if you
are actively modifying the sip.xml and do not want constant updates to the
web.xml. In this case, a manual merge option is available in the context menu SIP
Operations update web.xml (Figure 33-8 on page 1743).
1742 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 33-8 Invoking the manual SIP merge operation

Validation support
SIP applications must constantly check the consistency of deployment
information because the deployment configurations can appear in many places:
the sip.xml, web.xml, and for SIP 1.1, annotations. Inconsistent or incorrect
deployment information can cause errors when you deploy or run the application.

Validation support checks the following information:

� Verification of sip.xml and web.xml according to section 19.2 of the Java
Specification Request (JSR) 289: SIP Servlet Specification, Version 1.1. This
validation is common to SIP 1.0 applications as well and involves verifying the
consistent usage between the two deployment descriptors for the following
elements:

– Distributable: This setting must be identical if present in both sip.xml
and web.xml.

– Context-param: If parameters are configured in both deployment
descriptors, they must have the same values.

– Display-name and icons: These values must be identical if they are
present in both sip.xml and web.xml.

� For SIP 1.1 applications, validation support checks that either a main servlet
or servlet mapping is used, but not both.

� For SIP 1.1 applications, validation support checks that valid servlet names
are used in referenced configurations.

To view the list of SIP validators, click Windows Preferences Validators
(Figure 33-9 on page 1744).
 Chapter 33. Developing Session Initiation Protocol applications 1743

http://jcp.org/en/jsr/summary?id=289
http://jcp.org/en/jsr/summary?id=289

Figure 33-9 SIP validators

These validators are enabled by default but you can disable them for automatic or
manual builds.

The SIP 1.0 and SIP 1.1 Converged Project Validators verify that the
distributable, context-param, display-name, and icon elements are used in
their respective SIP project versions. Applications that fail this type of validation
have error markers in the Problems view, as shown in Figure 33-10.

Figure 33-10 Example of a context-param error
1744 Rational Application Developer for WebSphere Software V8 Programming Guide

The SIP 1.1 Servlet Selection Validator checks that only one type of servlet
selection is used within a SIP application. Errors are flagged if these conditions
occur:

� Multiple Main Servlets are specified in the sip.xml.

� A Main Servlet and a Servlet Mapping are specified in the sip.xml.

� A Main Servlet is specified in the @SipApplication annotation and in the
sip.xml.

� A Main Servlet is specified in the @SipApplication annotation and a Servlet
Mapping is configured in the sip.xml.

Figure 33-11 and Figure 33-12 show the error markers in the SIP 1.1 deployment
descriptor editor and Problems view.

Figure 33-11 Example of multiple servlet selection errors in the SIP 1.1 deployment
descriptor editor

Figure 33-12 Example of multiple servlet selection errors in the Problems view

The SIP 1.1 Semantic Validator identifies errors when configurations that
reference invalid servlet names are specified in the deployment descriptor.
 Chapter 33. Developing Session Initiation Protocol applications 1745

The following servlet names cause errors if invalid:

� <servlet-selection>/<main-servlet>

� <servlet-selection>/<servlet-mapping>/<servlet-name>

� <security-constraint>/<resource-collection>/<servlet-name>

 Figure 33-13 shows an example of an invalid server name error.

Figure 33-13 Example of an invalid servlet name error

33.2.2 Sample application overview

In this section, we create a HTTP/SIP converged application that is targeted for
deployment on IBM WebSphere Application Server v8.0 Beta.

This sample demonstrates an implementation of a common feature that is found
in public switched telephone networks, which is called the call forwarding
functionality. This application has two components:

� HTTP client: The HTTP client is a user interface to input call forwarding
information, which is then set in an access control list.

� SIP servlet: This servlet is responsible for looking up the forwarding address
in the access control list (ACL) and forwarding the call to this address.

The sample also shows how to use these functions:

� Resource injection through the annotation @Resource for the SipFactory
utility class

� The MainServlet selection, which dispatches the request

Figure 33-14 on page 1747 shows the classes in the elements.
1746 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 33-14 Call forwarding sample class diagram

The following elements are in the class diagram that is shown in Figure 33-14:

� AppConfigHTTP, HTTPServlet provides a user interface (UI) to configure the
forwarded call address mapping.

� AccessControlList stores the addresses mapping serializing the Map
instance in a file located in the server.

� MyMainServlet is a SIP servlet that receives the requests and dispatches
them to the CallForwardSiplet if it is marked initial and the method is
INVITE.

� CallForwardSiplet is a SIP servlet that looks up the forwarding SIP address
in the AccessControlList by using the public SIP address as the key. If the
key is found, the request is then redirected to the associated forwarding
address.

We deployed the sample by using the following configuration of computers
(Figure 33-15 on page 1748).
 Chapter 33. Developing Session Initiation Protocol applications 1747

Figure 33-15 Deployment environment

We used these systems:

� A computer with a Linux operating system and the following software:

– Firefox web browser (although you can use any browser)

– SIPp 3.1 installed

– XML files for the test scenarios:

• UAC: call_forwarding_uac.xml

• UAS: call_forwarding_uas.xml

� A computer with the Microsoft Windows Server 2008 operating system and
WebSphere Application Server v8.0 Beta installed

Figure 33-16 on page 1749 shows the call flow for the CallForwarding sample.
1748 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 33-16 Call forwarding sample class diagram

The call flow process consists of these steps:

1. Receives an INVITE request to the UAS public SIP address.

2. Redirects the INVITE request to the forwarding SIP address for the sipp-UAS
that is associated with the public SIP address.

3. Sends a Trying (100) response status to sipp-UAC to avoid retransmission
for the INVITE request.

4. Receives the Ringing (180) response from sipp-UAS.

5. Resends the Ringing (180) response to the sipp-UAC.

6. Receives the OK (200) response from sipp-UAS.

7. Resends the OK (200) response to the sipp-UAC.

8. At this point, the subsequent requests and responses are between sipp-UAC
and sipp-UAS directly. In detail, sipp-UAC sends an ACK request for the
OK(200) response to sipp-UAS.

9. At this point, the call takes place:

a. sipp-UAC sends a BYE request to the sipp-UAS.

b. sipp-UAS sends an OK (200) response for the BYE request to sipp-UAC.
 Chapter 33. Developing Session Initiation Protocol applications 1749

33.2.3 Setting up the project

This section describes the following actions:

� Creating a new SIP 1.1 project
� Creating the HTTPServlet
� Creating the MyMainServlet Sip Servlet
� Creating the CallForwardSiplet Sip Servlet

Creating a new SIP 1.1 project
Follow these steps:

1. Click File New Other SIP Project.

2. Click Next.

3. Type the project names (Figure 33-17 on page 1751):

a. For Project name, type CallForwardingSample.

b. For EAR project name, type CallForwardingSampleEAR.

c. Click Finish.
1750 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 33-17 SIP 1.1 project creation

Creating the HTTPServlet
Follow these steps:

1. Click File New Other Web Servlet.

2. Click Next.

3. Complete the fields in the wizard (Figure 33-18 on page 1752):

a. For Java package, type com.ibm.siptools.samples.
 Chapter 33. Developing Session Initiation Protocol applications 1751

b. For Class name, type AppConfigHTTP.

Figure 33-18 AppConfigHTTP servlet creation wizard (page 1)

4. Click Next.

5. Click Next.

6. Select the required methods (Figure 33-19 on page 1753):

– init

– doGet

– doPost
1752 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 33-19 AppConfigHTTP servlet creation wizard (page 3)

7. Click Finish.

Creating the MyMainServlet Sip Servlet
Follow these steps:

1. Click File New Other SIP SIP Servlet.

2. Click Next.

3. Complete the fields in the wizard:

a. For Java package, type com.ibm.siptools.samples.

b. For Class name, type MyMainServlet.
 Chapter 33. Developing Session Initiation Protocol applications 1753

Figure 33-20 Main servlet creation wizard (page 1)

4. Click Next.

5. Select Use this Servlet as the Main Servlet (Figure 33-21 on page 1755).
1754 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 33-21 Main servlet creation wizard (page 2)

6. Click Next.

7. Select the following methods (Figure 33-22 on page 1756):

– doRequest
– doResponse
 Chapter 33. Developing Session Initiation Protocol applications 1755

Figure 33-22 Main servlet creation wizard (page 3)

8. Click Finish.

9. When you see the Update web deployment descriptor dialog box
(Figure 33-23), click Yes.

Figure 33-23 Update web deployment descriptor dialog
1756 Rational Application Developer for WebSphere Software V8 Programming Guide

Creating the CallForwardSiplet Sip Servlet
Follow these steps:

1. Click File New Other SIP SIP Servlet.

2. Click Next.

3. Complete the following fields in the wizard (Figure 33-24):

a. For Java package, type com.ibm.siptools.samples.

b. For Class name, type CallForwardSiplet.

Figure 33-24 Forwarding servlet creation wizard (page 1)

4. Click Next.

5. Click Next.

6. Select the doInvite method (Figure 33-25 on page 1758).
 Chapter 33. Developing Session Initiation Protocol applications 1757

Figure 33-25 Forwarding servlet creation wizard (page 3)

7. Click Finish.

33.2.4 Implementing the classes

In this section, we describe the following topics:

� Creating the AccessControlList class
� Defining the AppConfigHTTP behavior
� Defining MyMainServlet behavior

Configuration: These steps assume that the default configuration for the
sip.xml and web.xml merge is set. If it is turned off, it is necessary to call the
merge process manually by using SIP Operations update web.xml on the
sip.xml context menu after adding the last SIP servlet.
1758 Rational Application Developer for WebSphere Software V8 Programming Guide

� Defining CallForwardSiplet behavior

Creating the AccessControlList class
This class serializes and de-serializes the mapping between the public and
forwarding addresses in an access control list that is stored in a local file. Follow
these steps:

1. Click File New Other Java Class.

2. Click Next.

3. Set the class data:

a. For Java package, type com.ibm.siptools.samples.

b. For Class name, type AccessControlList.

4. Click Finish.

5. In the Java Editor, add the contents to the class, as shown in Example 33-1.

Example 33-1 AccessControlList class method contents

public String getForwardAddress(
String address, InputStream fileStream) {

System.out.println("AccessControlList-> Address to lookup "
+ address);

if (fileStream == null){
System.out.println(

"AccessControlList->Cannot load contact files");
return "";

}
Object forwardAddress = null;
Map<String,String> contactMap =

readSerializedMap(fileStream);
if (contactMap != null){

forwardAddress = contactMap.get(address);
} else {

System.out.println(
"AccessControlList->Contact Map loading error");

}

if (forwardAddress != null){
System.out.println(

"AccessControlList -->Forward address : "
+ (String) forwardAddress);

} else {
System.out.println(

"AccessControlList -->Forward address is null");
 Chapter 33. Developing Session Initiation Protocol applications 1759

forwardAddress ="";
}

return (String)forwardAddress;
}
@SuppressWarnings("unchecked")
public static HashMap<String, String>

readSerializedMap(InputStream iStream) {
System.out.println(

"AccessControlList -->Read serialized file");
ObjectInputStream oin = null;
HashMap<String, String> map = null;
if (iStream != null) {

try {
oin = new ObjectInputStream(iStream);
map = (HashMap<String, String>)oin.readObject();
oin.close();
oin = null;

} catch (FileNotFoundException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

} catch (ClassNotFoundException e) {
e.printStackTrace();

} catch (ClassCastException e) {
e.printStackTrace();

} finally {
if (oin != null) {

try {
oin.close();

} catch (IOException e1) {
e1.printStackTrace();

}
}

}
} else {

System.out.println("File empty");
}
return map;

}
public static void writeSerializedMap(

HashMap<String, String> map, String file) {
System.out.println(

"AccessControlList -->Write serialized File");
ObjectOutputStream oops = null;
1760 Rational Application Developer for WebSphere Software V8 Programming Guide

try {
oops = new ObjectOutputStream(

new FileOutputStream(file));
oops.writeObject(map);
oops.flush();
oops.close();
oops = null;

} catch (FileNotFoundException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

} finally {
if (oops != null) {

try {
oops.close();

} catch (IOException e1) {
e1.printStackTrace();

}
}

}
}

6. Press Ctrl+Shift+O. To fix the imports, select these classes:

– java.io.FileNotFoundException
– java.io.InputStream
– java.util.Map

Defining the AppConfigHTTP behavior
AppConfigHTTP is an HTTP servlet that provides a graphical interface that the
user can use to add and remove new forwarding mappings. Follow these steps to
define its behavior:

1. Open the AppConfigHTTP.java file.

2. In the Java Editor, add the contents to the class, as shown in Example 33-2.

Example 33-2 AppConfigHTTP class

private static final long serialVersionUID = 1L;
private static String fileName;
public void init() throws ServletException {

fileName = new StringBuilder(
getServletContext().getRealPath("/"))

.append(File.separator).append("WEB-INF")

.append(File.separator).append("contacts").toString();
 Chapter 33. Developing Session Initiation Protocol applications 1761

super.init();
}
protected void doGet(

HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

File file = new File(fileName);
if (file.exists()) {

HashMap<String, String> map =
AccessControlList.readSerializedMap(new

FileInputStream(fileName));
printMap(map, res);

} else {
printMap(null, res);

}
}
protected void doPost(

HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
// Get the publicURI and forwardURI
String publicURI = req.getParameter("publicSIPAddress");
String forwardURI =

req.getParameter("forwardingSIPAddress");
// what action to take
String clear = req.getParameter("Clear");
if (clear != null) {

System.out.println("Clear the file list");
// delete the file

File fileObj = new File(fileName);
if (fileObj.exists()) {

if (!fileObj.delete()) {
System.out.println(

"Cannot clear the file");
}

}
// print content
printMap(null, res);

} else {
HashMap<String, String> map = null;
File fileObj = new File(fileName);
if (fileObj.exists()) {

// read file content
map = AccessControlList.readSerializedMap(

new FileInputStream(fileName));
// insert new entry
map.put(publicURI, forwardURI);
1762 Rational Application Developer for WebSphere Software V8 Programming Guide

// write the map to a file
AccessControlList.writeSerializedMap(

map, fileName);
} else {

map = new HashMap<String, String>();
map.put(publicURI, forwardURI);
// write the map to a file
AccessControlList.writeSerializedMap(

map, fileName);
}
// print content
printMap(map, res);

}
}
private void printMap(

HashMap<String, String> map, HttpServletResponse res)
throws IOException {

StringBuilder htmlContents = new StringBuilder()
.append("<BODY><H1>")
.append("Call Forwarding Sample configuration
")
.append("
</H1>")
.append("<FORM method='post' action='AppConfigHTTP'>")
.append("<TABLE border='0'><TBODY><TR>")
.append("<TD>Enter Public SIP address (e.g.

sip:bob@someIP.com:5060)</TD><TD>")
.append("<INPUT type='text' name='publicSIPAddress'

size='20'>")
.append("</TD></TR><TR>")
.append("<TD>Enter Forwarding SIP address (e.g.

sip:bob@otherIP:5060)</TD>")
.append("<TD><INPUT type='text' name='forwardingSIPAddress'

size='20'></TD>")
.append("</TR><TR>")
.append("<TD><INPUT type='submit' name='Submit'

value='Submit'></TD>")
.append("<TD><INPUT type='submit' name='Clear'

value='Clear'></TD>")
.append("</TR></TBODY></TABLE></FORM>")
.append("<HR width='400' align='left'>")
.append("<P><U>Existing mappings:</U>");

if (map != null) {
Iterator<String> iterator = map.keySet().iterator();
while (iterator.hasNext()) {

Object key = iterator.next();
Object value = map.get(key);
 Chapter 33. Developing Session Initiation Protocol applications 1763

if (value != null) {
htmlContents.append("
").append(key).

append(" <==> ").append(value);
}

}
} else {

htmlContents.append("
Empty");
}
htmlContents.append("</BODY>");
res.getWriter().write(htmlContents.toString());

}

In Example 33-2 on page 1761, the following methods perform these tasks:

– The init()method initializes the path to use to store the file where the
forwarding Map is serialized.

– The doGet() method prints the UI to add or remove forwarding mappings
and the already stored mappings, if any stored mappings exist.

– The doPost() method processes the request to add or remove forwarding
mappings, printing the page at the end.

– The printMap() method prints the HMTL that provides the user interface.

3. Press Ctrl+Shift+O. To fix the imports, select these classes:

– javax.servlet.Servlet
– java.io.File
– java.util.Iterator

Figure 33-26 on page 1765 shows the UI that is displayed by the servlet. The
following functional elements are part of the UI:

� Public SIP address field: The requests are directed to this SIP URI.

� Forwarding SIP address field: This field is the SIP URI to which the requests
are forwarded.

� Submit button: Adds a new mapping.

� Clear button: Removes all the stored mappings.

� Existing mapping list: Provides a list of all the stored mappings, if any stored
mappings exist.
1764 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 33-26 HTML page provided by the AppConfigHTTP servlet

Defining MyMainServlet behavior
This SIP servlet shows how to use a Main servlet to dispatch the requests and
responses to the proper SIP servlet.

1. Open the MyMainServlet.java file.

2. In the Java Editor, add the contents to the class to the doRequest method, as
shown in Example 33-3.

Example 33-3 MyMainServlet.doRequest method contents

protected void doRequest(SipServletRequest request)
throws ServletException, IOException {

//Checks the Request, if it is initial and the method is
//INVITE, then it is redirected to the
//proper Servlet, in this case CallForwardSiplet
if (request.getMethod().equalsIgnoreCase("INVITE")

&& request.isInitial()) {
SipSession session = request.getSession();
session.setHandler("CallForwardSiplet");
RequestDispatcher dispatcher = getServletContext().

getNamedDispatcher("CallForwardSiplet");
System.out.println("Dispatching request to: "

+ "CallForwardSiplet");

Main servlet mechanism: The Main servlet mechanism to dispatch requests
and responses is only present in SIP 1.1. SIP 1.0 projects cannot make use of
this feature and must use Servlet Mappings instead.
 Chapter 33. Developing Session Initiation Protocol applications 1765

dispatcher.forward(request, null);
} else {

request.createResponse(
SipServletResponse.SC_SERVER_INTERNAL_ERROR,
"Servlet dispatching error : main servlet received subsequent

request")
.send();

}
}

After the SipSession is received, the CallForwardSiplet is set as the handler
for this request and further requests or responses that are associated with
this call. The request dispatcher is obtained by using the name and the
request that were forwarded through it.

3. Press Ctrl+Shift+O to fix the imports.

Defining CallForwardSiplet behavior
This SIP servlet redirects the INVITE request to the proper SIP URI, according to
the stored mapping. When an incoming request is directed to a SIP URI that
matches an existent mapping, a separate SIP URI is obtained and used instead.
Follow these steps:

1. Open the CallForwardSiplet.java file.

2. In the Java Editor, add the contents to the class, as shown in Example 33-4.

Example 33-4 CallForwardSiplet class contents

private static final long serialVersionUID = 1L;
/** i) - sipFactory injected using Annotations*/
@Resource
private SipFactory sipFactory;
/**A simple access control implementation. Could be replaced with
* database lookup or other sophisticated lookup.*/
private AccessControlList list;
/**Path where the contacts list object will be saved*/
private String contactsPath =

new StringBuilder("/").append(File.separator)
.append("WEB-INF").append(File.separator)
.append("contacts").toString();

/**init()- get and save the Factory, instantiate accesscontrol
object*/
public void init() throws ServletException {

list = new AccessControlList();
super.init();

}

1766 Rational Application Developer for WebSphere Software V8 Programming Guide

/**doInvite() - doInvite message handler. Check if user exists then
send Trying and proxy to address else send Not Found */
public void doInvite(SipServletRequest request)

throws ServletException, IOException {
InputStream iStream =

getServletContext().getResourceAsStream(contactsPath);
// ii) Extract the public address and obtain the forwarding

//address
String requestTo=request.getTo().getURI().toString();
String uas = list.getForwardAddress(requestTo, iStream);
if (uas.equals("")) {

// Generate the Not Found response
SipServletResponse notFoundResponse =

request.createResponse(
SipServletResponse.SC_NOT_FOUND);

notFoundResponse.send();
return;

}
System.out.println("UAS :" + uas);
if (iStream != null) {

iStream.close();
}
// iii) Generate the forwarding SIP URI
SipURI uri = (SipURI) sipFactory.createURI(uas);

if (uri.getHost().equals("")) {
// Generate the Not Found response
SipServletResponse notFoundResponse = request

.createResponse(SipServletResponse.SC_NOT_FOUND);
notFoundResponse.send();

} else {
//iv) Create a RequestURI Object and set the data
SipURI suri = (SipURI)request.getRequestURI().clone();
// v) check if contact found
if (uri.getUser() != null) {

suri.setUser(uri.getUser());
}
if (uri.getHost() != null) {

suri.setHost(uri.getHost());
}
if (uri.getTransportParam() != null) {

suri.setTransportParam(uri.getTransportParam());
}

suri.setPort(uri.getPort());
StringBuilder sb = new StringBuilder("User =").
 Chapter 33. Developing Session Initiation Protocol applications 1767

append(uri.getUser()).
append(" Host=").append(uri.getHost()).
append(" Port = ").append(uri.getPort());

System.out.println(sb);
// Create a proxy object
Proxy p = request.getProxy();

//v) Generates the header for the SIP message that
//used by the UAC and UAS continue with the
//communication after the proxy action
SipURI from = (SipURI) request.getFrom().getURI();
request.setHeader("forwarded-to-ip", uri.getHost());
request.setHeader("forwarded-to-port",

Integer.toString(uri.getPort()));
request.setHeader("forwarded-from-ip", from.getHost());
request.setHeader("forwarded-from-port",

Integer.toString(from.getPort()));

p.setRecordRoute(false);
p.setRecurse(true);
p.setSupervised(false);
// vi) proxy it now
p.proxyTo(suri);

}
}

3. Press Ctrl+Shift+O. To fix the imports, select these classes:

– java.io.InputStream
– java.io.File
– javax.servlet.sip.Proxy
– javax.servlet.sip.SipFactory

Consider these additional notes and clarifications regarding the functionality that
is implemented in this SIP servlet:

� The sipFactory is injected through the @Resource annotation.

� The public SIP address is obtained from the incoming request, by using the
forwarding SIP address that is retrieved from the Map instance.

� Using the forwarding SIP Address (a String instance), the SIP URI is
generated.

� The destination SIP URI is generated with the data from forwarding the SIP
address.
1768 Rational Application Developer for WebSphere Software V8 Programming Guide

� Additional information is set to ease the direct communication between the
User Agent Client and User Agent Server after the forwarding has finished.

� The request is then proxied to the forwarding SIP address.

33.2.5 SIP deployment descriptor

If you use the SIP servlet wizard to create the MyMainServlet and
CallForwardSiplet classes, the related metadata is added to the SIP
deployment descriptor (Figure 33-27). If the classes were created by using the
generic Class wizard, you can configure the application by using the deployment
descriptor.

Figure 33-27 SIP deployment descriptor after adding all of the related servlets

After the merge process, the web deployment descriptor looks similar to
Figure 33-28 on page 1770.
 Chapter 33. Developing Session Initiation Protocol applications 1769

Figure 33-28 Web deployment descriptor after the merge process finished

33.2.6 Preparing for deployment

After the files are merged, to deploy the application to Rational Application
Developer, you must first verify that the WebSphere Application Server v8.0 Beta
profile is configured and working in the workspace.

If the workspace does not have a server profile, create a server profile:

1. Click File New Other Server Server.

2. Click Next.

3. Select WebSphere Application Server v8.0 Beta.

4. For the Server’s host name field, type the IP of the remote server or keep
localhost if the Server is installed in the same computer (Figure 33-29 on
page 1771).
1770 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 33-29 New server creation wizard

5. In the case of a remote server, follow these steps:

a. Provide the Server connection types and administrative ports
(Figure 33-30 on page 1772).
 Chapter 33. Developing Session Initiation Protocol applications 1771

Figure 33-30 New server creation wizard (page 2)

b. Provide the specific details of the remote server (Figure 33-31 on
page 1773).
1772 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 33-31 New server creation wizard (page 3)

c. Click Finish.

6. Verify that there are no errors in the Problems tab.

33.2.7 Deploying SIP from Rational Application Developer

Complete these steps:

1. Open the Server tab.

2. Select the server to host the SIP application.

3. Open the context menu on the server and click Add and Remove.

4. Select CallForwardingSampleEAR (Figure 33-32 on page 1774).
 Chapter 33. Developing Session Initiation Protocol applications 1773

Figure 33-32 Add and Remove wizard

5. Click Add and then click Finish.

6. Verify that the application was added and started without any problems or
errors (Figure 33-33).

Figure 33-33 Add and Remove wizard
1774 Rational Application Developer for WebSphere Software V8 Programming Guide

33.3 Testing the SIP 1.1 application

To run a SIP application from Rational Application Developer, you must set up the
SIP user agents to act as endpoints to generate, receive, or terminate calls.
Third-party tools supply these user agents. One tool is called SIPp, which is
available from this website:

http://sipp.sourceforge.net/

We used SIPp to test the CallForwarding sample.

Additional, freeware-based softphones exist that can be used, such as Xlite,
sipXphone, and SJPhone. For more information about these tools, refer to
Developing SIP and IP Multimedia Subsystem (IMS) Applications, SG24-7255.

33.3.1 Test environment

We tested the CallForwarding sample in an environment with SIPp running as
the SIP user agents. We tested the CallForwarding sample on the Microsoft
Windows XP and Ubuntu Linux operating system platforms. We used the
following specific SIPp V3.1 packages.

Microsoft Windows XP with Service Pack (SP) 3
We downloaded sipp-win32-2008-07-18.exe downloaded from this website:

http://www.sipp.sourceforge.net/snapshots

Ubuntu Linux
We downloaded sip-tester 3.1.r590-1, which is available from this website:

http://www.packages.ubuntu.com/lucid/sip-tester

To set up the user agents, you need the SIPp call flow files,
call_forwarding_uas.xml and call_forwarding_uac.xml, which we supply in
Appendix C, “Additional material” on page 1877.

Prerequisites: Installation of this binary executable might require prerequisite
software, such as winpcap, which is available from this website:

http://www.winpcap.org/install/default.htm
 Chapter 33. Developing Session Initiation Protocol applications 1775

http://www.winpcap.org/install/default.htm
http://sipp.sourceforge.net/
http://sipp.sourceforge.net/
http://sipp.sourceforge.net/
http://www.sipp.sourceforge.net/snapshots
http://sipp.sourceforge.net/snapshots
http://packages.ubuntu.com/lucid/sip-tester
http://www.winpcap.org/install/default.htm
http://www.packages.ubuntu.com/lucid/sip-tester

33.3.2 Running the application

Follow these steps:

1. Download the call_forwarding_uas.xml and call_forwarding_uac.xml files
from \7835code\sip in the Appendix C, “Additional material” on page 1877
and copy them to a directory, such as c:\temp.

2. Ensure that the application is published to the server, as described in 33.2.7,
“Deploying SIP from Rational Application Developer” on page 1773.

3. Run the web client by expanding the CallForwardingSample11 project and
right-clicking the AppConfigHTTP.java file.

4. Click Run as Run on Server. The web client starts (Figure 33-34).

Figure 33-34 CallForwarding web client

5. Set the mapping by entering the public and forwarding address in the web
client. The addresses have the following general form:

sip:[service]@[ip]:[port]

6. The parameters have these values:

– [service]: sipp-uas
1776 Rational Application Developer for WebSphere Software V8 Programming Guide

– [ip]: The public IP is the machine where WebSphere Application Server
is installed. The forwarding IP is the machine where the User Agent Server
agent is launched.

– [port]: The public port number is the SIP listener (either secure or
unsecure) and the forwarding port number is the port number on which the
User Agent Server is listening.

7. After a mapping is specified, it is listed in the Existing mappings section of the
web client (Figure 33-35).

Figure 33-35 Existing mappings in the web client

8. Start the SIP user agents. For example, on Microsoft Windows, click Start
All Programs Sipp_3.1 Start sipp.

9. In one sipp terminal, enter the command to start the User Agent Server
session on port 5060:

sipp [UAC_host_ip]:[UAC_port] -s sipp-uac -p 5060 -sf
./call_forwarding_uas.xml -m 2

In the preceding command, –s indicates the name of the service called
sipp-uac, -sf is the location of the User Agent Server scenario file, and –m
limits the number of calls to 2.
 Chapter 33. Developing Session Initiation Protocol applications 1777

The User Agent Server session looks similar to Figure 33-36.

Figure 33-36 SIPp CallForwarding UAS session

10.In the second sipp terminal, issue the command to start the User Agent Client
session on port 5061:

sipp [WAS_host_ip]:[SIP_listener_port] -i [local_ip] -s sipp-uas -p
5061 -d 100000 -l 256 -sf ./call_forwarding_uac.xml -m 2

In the preceding command, –s is the service called sipp-uas, -sf is the
location of the User Agent Client scenario file, and –m limits the number of
calls to 2.

11.After the User Agent Client session starts, the test runs and the results in the
SIPp terminals look like Figure 33-37 on page 1779 and Figure 33-38 on
page 1779.

SIP_listener_port number: You can determine the SIP_listener_port
number through the WebSphere Application Server administrative console
by navigating to Application servers server1 ports.
1778 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure 33-37 User Agent Server session results

Figure 33-38 User Agent Client session results
 Chapter 33. Developing Session Initiation Protocol applications 1779

33.4 SIP-specific annotations in SIP 1.1 applications

The WebSphere Application Server V7.0 Communications Enabled Applications
(CEA) Feature Pack or WebSphere Application Server v8.0 Beta run times
cannot process SIP-specific annotations in SIP 1.1 applications deployed from
Rational Application Developer. For more information about this situation and the
work-around, refer to this web doc (technote):

http://www-01.ibm.com/support/docview.wss?rs=0&q1=1443583&uid=swg214435
83&loc=en_US&cs=utf-8&cc=us&lang=en

33.5 More information

For more information about SIP 1.1, see the following resources:

� JSR 289: SIP Servlet Specification, Version 1.1

http://jcp.org/en/jsr/summary?id=289

� IBM Education Assistant

http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/index.jsp?t
opic=/com.ibm.iea.wasfpcea/plugin_types.html

� Rational Application Developer Information Center

http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=
/com.ibm.siptools.doc/topics/developSIP.html

� Developing SIP and IP Multimedia Subsystem (IMS) Applications,
SG24-7255

� Introduction to the SIP Modeling Toolkit

http://www.ibm.com/developerworks/rational/library/07/0807_conallen/
1780 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www-01.ibm.com/support/docview.wss?rs=0&q1=1443583&uid=swg21443583&loc=en_US&cs=utf-8&cc=us&lang=en
http://jcp.org/en/jsr/summary?id=289
http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/index.jsp?topic=/com.ibm.iea.wasfpcea/plugin_types.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/com.ibm.siptools.doc/topics/developSIP.html
http://www.ibm.com/developerworks/rational/library/07/0807_conallen/
http://www.ibm.com/developerworks/rational/library/07/0807_conallen/

Part 8 Appendixes

This part includes the following appendixes:

� Appendix A, “Installing the products” on page 1783

� Appendix B, “Performance tips for Rational Application Developer” on
page 1871

� Appendix C, “Additional material” on page 1877

Part 8
© Copyright IBM Corp. 2011. All rights reserved. 1781

1782 Rational Application Developer for WebSphere Software V8 Programming Guide

Appendix A. Installing the products

In this appendix, we highlight the key installation considerations and options,
identify components that were installed while writing this book, and provide a
general awareness regarding the use of IBM Installation Manager to install IBM
Rational Application Developer.

We organized this appendix into the following sections:

� Download locations
� Installation Launchpad
� IBM Installation Manager
� Installing Rational Application Developer
� Installing WebSphere Portal V7
� Installing IBM Rational Team Concert
� Installing Rational Application Developer Build Utility
� Installing IBM Rational ClearCase
� Installing IBM Rational ClearCase Remote Client Extension
� Configuring ClearCase for UCM development

A

© Copyright IBM Corp. 2011. All rights reserved. 1783

Download locations

You can download the software from the following locations:

� You can download IBM Rational Application Developer V7 from this website:

http://www-01.ibm.com/support/docview.wss?uid=swg24027295

� You can download the trial from this website:

http://www.ibm.com/developerworks/downloads/r/rad/

� You can download IBM Rational Application Developer Standard Edition V8
from this website:

http://www-01.ibm.com/support/docview.wss?uid=swg24027296

� The trial is available from this website:

http://www.ibm.com/developerworks/downloads/r/radse/index.html

� For other versions of IBM Rational Application Developer, go to this website:

http://www-947.ibm.com/support/entry/portal/All_download_links/Softw
are/Rational/Rational_brand_support_%28general%29

Installation Launchpad

You can install Rational Application Developer by using any of the following
methods:

� Installing from the CDs
� Installing from a downloaded electronic image on your workstation
� Installing from an electronic image on a shared drive
� Installing from a repository on an HTTP or HTTPS server

In the following steps, we describe how to install from a downloaded electronic
image on your workstation:

1. After you download all the components of Rational Application Developer,
extract the files into an installation folder. From that folder, start the
Launchpad by executing RAD_SETUP\launchpad.exe.

2. On the first page, select the language, for example, English, and click OK.

3. On the Launchpad that opens (Figure A-1 on page 1785), click Install IBM
Rational Application Developer for WebSphere Software.
1784 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www-01.ibm.com/support/docview.wss?uid=swg24027295
http://www.ibm.com/developerworks/downloads/r/rad/
http://www-01.ibm.com/support/docview.wss?uid=swg24027295
http://www.ibm.com/developerworks/downloads/r/rad/
http://www-01.ibm.com/support/docview.wss?uid=swg24027296
http://www.ibm.com/developerworks/downloads/r/radse/index.html
http://www-947.ibm.com/support/entry/portal/All_download_links/Software/Rational/Rational_brand_support_%28general%29
http://www-947.ibm.com/support/entry/portal/All_download_links/Software/Rational/Rational_brand_support_%28general%29
http://www-01.ibm.com/support/docview.wss?uid=swg24027296
http://www.ibm.com/developerworks/downloads/r/radse/index.html
http://www-947.ibm.com/support/entry/portal/All_download_links/Software/Rational/Rational_brand_support_%28general%29
http://www-947.ibm.com/support/entry/portal/All_download_links/Software/Rational/Rational_brand_support_%28general%29

Figure A-1 Launchpad

IBM Installation Manager

We used IBM Installation Manager to install Rational Application Developer. IBM
Installation Manager is a program that helps you install the Rational desktop
product packages on your workstation. It also helps you update, modify, and
uninstall this package and other packages that you install. A package can be a
product, a group of components, or a single component that is designed to be
installed by Installation Manager.

If you use the Launchpad to install Rational Application Developer, it first installs
IBM Installation Manager. Then it configures the repository for the product and
installs the product. You can also install IBM Installation Manager separately (or
you might have it installed already due to other product installations).

To install Version 1.4.1 of Installation Manager from the Launchpad, select IBM
Installation Manager Version 1.4.1, as shown in Figure A-2 on page 1786,
and click Next.
 Appendix A. Installing the products 1785

Figure A-2 Installing IBM Installation Manager from the Launchpad

To install Version 1.4.1 of Installation Manager separately, select
RAD_SETUP\InstallerImage_win32\install.exe.

In all cases, continue the installation with the following steps:

1. Accept the license agreement.

2. Select the C:\Program Files\IBM\Installation Manager\eclipse installation
directory.

3. Click Install, wait for the installation to finish, and click Restart Installation
Manager.

Six wizards in the Installation Manager make it easy to maintain your package
through its life cycle (Figure A-3 on page 1787):

� The Install wizard guides you through the installation process.
1786 Rational Application Developer for WebSphere Software V8 Programming Guide

� The Update wizard searches for available updates to packages that you have
installed.

� With the Modify wizard, you can modify certain elements of a package that
you have installed already.

� The Manage Licenses wizard helps you set up the licenses for your packages.

� With the Roll Back wizard, you can revert back to a previous version of a
package.

� The Uninstall wizard removes a package from your computer.

Figure A-3 Installation Manager

For more information about IBM Installation Manager 1.4.1, go to this website:

http://publib.boulder.ibm.com/infocenter/install/v1r4/index.jsp
 Appendix A. Installing the products 1787

http://publib.boulder.ibm.com/infocenter/install/v1r4/index.jsp

Installing Rational Application Developer

Perform these steps to install Rational Application Developer:

If you installed Installation Manager separately or had it pre-installed, perform
these preliminary steps:

1. Select File Preferences Repositories.
2. Add the following repository location:

<path to extracted files>\RAD\disk1\disk\diskTag.inf

Continue with the following steps, which are required for the users of the
Launchpad.

If you used the Launchpad, perform these steps:

1. From the Installation Manager, click Install to install Rational Application
Developer.

2. On the Install Packages page (Figure A-4), select Rational Application
Developer for WebSphere Software Version 8.0.1. Complete these tasks:

a. Optional: Click Check for Other Versions or Extension to see if newer
versions are available.

b. Click Next.

Figure A-4 Install Packages page that is shown when selecting Rational Application Developer

3. On the next page, validate the prerequisites, which include stopping any
antivirus programs, and click Next.

4. Select I accept the terms in the license agreements and then click Next.

5. On the “Select a location for the shared resources directory” page (Figure A-5
on page 1789), accept the Shared Resource Directory from C:\Program
Files\IBM\SDPShared. Depending on whether you have already used
1788 Rational Application Developer for WebSphere Software V8 Programming Guide

Installation Manager to install software, you might have to select the shared
resources directory on the Location page. Type the path in the Shared
Resources Directory field or accept the default path. Then click Next to
continue. The shared resources directory contains resources that can be
shared by one or more package groups. You can specify the shared
resources directory only at the time that you install Installation Manager. Use
your disk with the most available space for the shared resources to help
ensure that you have adequate space for the shared resources of future
packages. You cannot change the directory location unless you uninstall all
packages. Click Next.

Figure A-5 Shared Resources Directory selection page

6. On the Install Packages page (Figure A-6), select Create a new package
group. Set the installation directory for the package group to C:\Program
Files\IBM\SDP and click Next.

Figure A-6 installation location for the package group
 Appendix A. Installing the products 1789

7. On the Extend an existing Eclipse page, leave the default settings. In this
example, we do not want to extend an existing Eclipse. Click Next.

8. On the “Select the translations you want to install” page, select your desired
languages and click Next.

9. On the “Select the features you want to install” page, select the package
features that you want to install (Figure A-7). We explain the relevant features
in each chapter of this book. We highly recommend that you do not select all
features because selecting all features increases the size of this installation
unnecessarily. At any time, you can return to Installation Manager, select the
Modify option, and return to this page, where you can select additional
features, provided that you still have the original source files available.

Figure A-7 Available features for installation (page 1)

On Figure A-8 on page 1791, you can see that now the development tools for
each server are separate from the required tools when there is no local server
installation. If you install WebSphere Application Server V8 Beta locally, you
do not need to install the corresponding tool for developing without a local
server installation.
1790 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure A-8 Available features for installation (page 2)

On Figure A-9, you can see the J2EE Connector architecture (J2C) tools,
which are needed only if you connect to enterprise systems. You also can see
the life-cycle integrations, where you can find the Rational ClearCase
software configuration management (SCM) Adapter.

Figure A-9 Available features for installation (page 3)

On Figure A-10 on page 1792, you can see the Collaborative Debug
Extension for Rational Team Concert, which allows you to share debug
sessions among users.
 Appendix A. Installing the products 1791

Figure A-10 Available features for installation (page 4)

10.On the Common Configurations page (Figure A-11), select how you want to
access the Help system (web, download for local access, or intranet server).

Figure A-11 Configuring the Help system

11.You see a summary page where you can review all parameters. Click Install.

12.At the end of the installation, you are prompted to start Rational Application
Developer.
1792 Rational Application Developer for WebSphere Software V8 Programming Guide

Installing IBM WebSphere Application Server V7
Perform these steps to install IBM WebSphere Application Server.

1. Change to the RAD_SETUP subdirectory of the directory where you extracted
the binaries for Rational Application Developer for WebSphere Software.

2. Start the Launchpad program: Run launchpad.exe (Figure A-1 on
page 1785).

3. On the Launchpad dialog box, click Install IBM Rational Application
Developer V8.0. IBM Installation Manager starts.

4. On the first page of the Install Packages wizard, select WebSphere
Application Server version 7.0 Test Environment and Version 7.0.0.13
(Figure A-4 on page 1788) and then click Next.

5. To search for updates to the packages, click Check for Other Versions and
Extensions. Installation Manager searches for updates at the predefined IBM
update repository for the product package. It also searches any repository
locations that you have set. Click Next.

6. On the Licenses page, read the license agreements for the selected
packages. On the left side of the License page, click each package version to
display its license agreement. If you agree to the terms of all of the license
agreements, click I accept the terms of the license agreements. Click Next
to continue.

7. On the Location page, accept Use existing package group, which is the
default selection of installing the test environment in the same package group
as Rational Application Developer. Then click Next (Figure A-12 on
page 1794).
 Appendix A. Installing the products 1793

Figure A-12 Installing the test environment in the existing package group

8. On the Features Page, select all the desired feature packs (Figure A-13).
Select Next.

Figure A-13 Selecting WebSphere Application Server 7 feature packs
1794 Rational Application Developer for WebSphere Software V8 Programming Guide

9. On the configuration page, enter the information to create a profile and select
Next (Figure A-14).

Figure A-14 Creating a profile for WebSphere Application Server 7

10.On the Summary page, review your choices before installing the product
package. If you want to change the choices that you made on previous pages,
click Back, and make your changes. When you are satisfied with your
installation choices, click Install to install the package. A progress indicator
shows the percentage of the installation completed.

11.When the installation process is complete, a message confirms the success
of the process.

12.Close Installation Manager.

Installing WebSphere Application Server V8 Beta
Perform these steps:

1. Change to the RAD_SETUP subdirectory of the directory where you extracted
the “disks” for Rational Application Developer for WebSphere Software.

2. Start the Launchpad program: Run launchpad.exe (Figure A-1 on
page 1785).

3. On the Launchpad dialog box, click Install IBM Rational Application
Developer V8.0. IBM Installation Manager starts.
 Appendix A. Installing the products 1795

4. On the first page of the Install Packages wizard, select Application Server
8.0.0.0 (Figure A-4 on page 1788) and then click Next.

5. You can install updates at the same time that you install the base product
package. To search for updates to the packages, click Check for Other
Versions and Extensions. Installation Manager searches for updates at the
predefined IBM update repository for the product package. It also searches
any repository locations that you have set. Click Next.

6. On the Licenses page, read the license agreements for the selected
packages. On the left side of the License page, click each package version to
display its license agreement. If you agree to the terms of all of the license
agreements, click I accept the terms of the license agreements. Click Next
to continue.

7. Depending on whether you have already used Installation Manager to install
software, you might have to select the shared resources directory on the
Location page. Type the path in the Shared Resources Directory field or
accept the default path. Then click Next to continue.

8. On the Location page, type the path for the installation directory for the
package group and then click Next. The name for the package group is
created automatically. You must install WebSphere Application Server V8 Beta
in a separate package group (Figure A-15).

Figure A-15 Installing WebSphere Application Server 8 in a separate package

9. On the features page, select the features that you want to install. Click the
feature to see more information about it in the Details section of the page. You
1796 Rational Application Developer for WebSphere Software V8 Programming Guide

might need the Stand-alone thin clients for certain examples in this book.
When you are finished, click Next (Figure A-16).
.

Figure A-16 Features for WebSphere Application Server 8

10.On the summary page, review your choices before installing the product
package. If you want to change the choices that you made on previous pages,
click Back, and make your changes. When you are satisfied with your
installation choices, click Install to install the package. A progress indicator
shows the percentage of the installation that has been completed.

11.When the installation process completes, select Profile Management Tool to
create a profile (Figure A-17) and then click Finish.

Figure A-17 Launching Profile Management Tool

Creating a Profile for WebSphere Application Server V8 Beta
Perform these steps:

1. On the Welcome page of WebSphere Customization Tools 8.0, click Launch
Selected Tool to select the Profile Management Tool (Figure A-18 on
page 1798).
 Appendix A. Installing the products 1797

Figure A-18 Profile Management Tool

2. On the Profiles page, click Create (Figure A-19).

Figure A-19 Creating the profile

3. On the Environment Selection page, select Application server and then click
Next (Figure A-20 on page 1799).
1798 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure A-20 Creating an Application server profile

4. On the Profile Creation Options page, select Advanced profile creation and
then click Next (Figure A-21 on page 1800).
 Appendix A. Installing the products 1799

Figure A-21 Selecting Advanced profile creation

5. On the Optional Application Deployment page, select both Deploy the
administrative console and Deploy the default application and then click
Next.

6. Complete these tasks on the Profile Name and Location page:

a. For Server runtime performance tuning setting, select Development.

b. Type a Profile name and Profile directory or keep the default values.

c. Click Next (Figure A-22 on page 1801).
1800 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure A-22 Selecting Development for the Server runtime performance tuning setting

7. On the Node and Host names page, follow the instructions to enter the Node
name, Server name, and Host name. Then click Next.

8. To enable security, select Enable administrative security on the profile.
Enter the user ID and password in the corresponding fields and then click
Next.

9. On the Security Certificate (part 1) page, select Create a new default
personal certificate and select Create a new root signing certificate and
then click Next.

10.On the Security Certificate (part 2) page, modify the certificate values or
accept the default values.

11.On the Port Values Assignment page, click Recommended port values. The
tool returns values for the ports that it does not detect are in use (Figure A-23
on page 1802). Click Next.
 Appendix A. Installing the products 1801

Figure A-23 Recommended port values

12.On the Windows Service Definition page, if you use Microsoft Windows, clear
the selection “Run the application server process as a Windows service”
(Figure A-24 on page 1803) and then click Next.
1802 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure A-24 Clear the option to run as a Windows service

13.Click Next on the Web Server Definition page.

14.Review the information on the Profile Creation summary page and then click
Create.

15.When the profile creation process ends, click Finish.

Installing the license for Rational Application Developer

You have the following options for enabling licensing for Rational Application
Developer:

� Importing a product activation kit

� Enabling Rational Common Licensing to obtain access to floating license
keys

In this section, we show you how to import a product activation kit:

1. Start IBM Installation Manager.

2. In the main window, click Manage Licenses.

3. In the Manage Licenses window, select Application Developer Version 8
and Import product Activation Kit. Click Next.
 Appendix A. Installing the products 1803

4. In the Import Activation Kit window (Figure A-25), browse to the path of the
download location for the kit, select the appropriate Java archive (JAR) file,
and click Open. Click Next.

Figure A-25 Import Activation Kit

5. In the Licenses window, select I accept the terms in the license
agreements. Click Next.

6. In the summary window, click Finish.

The product activation kit with its permanent license key is imported to Rational
Application Developer. The Manage Licenses wizard indicates whether the
import is successful.

Updating Rational Application Developer

After you install Rational Application Developer, the Installation Manager
provides an interface to update the product. Perform these steps:

1. In the Installation Manager overview window, select Update Packages.

Upgrading the Floating License server is mandatory: If you intend to use
floating licenses, you must upgrade to IBM Rational License Key Server
V8.1.1, which is described at this website:

http://www-01.ibm.com/support/docview.wss?uid=swg24027295
1804 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www-01.ibm.com/support/docview.wss?uid=swg24027295

2. In the Update Packages window, select Update all to update all of the
installed products, or select a specific product. Click Next to search for the
updates to the selected products. Internet access is required unless your
repository preferences point to a local update site. Each installed package
has the location embedded for its default IBM update repository. For
Installation Manager to search the IBM update repository locations for the
installed packages, the preference Search service repositories during
installation and updates on the Repositories preference page must be
selected. This preference is selected by default.

3. Click Update to download and install the updates. A progress indicator shows
the percentage of the installation that is completed.

4. Optional: When the update process completes, a message that confirms the
success of the process is displayed near the top of the page. Click View log
file to open the log file for the current session in a new window. You must
close the Installation Log window to continue.

5. Click Finish to close the wizard.

Uninstalling Rational Application Developer

You can uninstall Rational Application Developer interactively through the IBM
Installation Manager. Perform these steps:

1. Before the uninstallation of any products, terminate the programs that you
installed by using Installation Manager.

2. In the Installation Manager overview window, select Uninstall.

3. In the Uninstall Packages window, select the Rational Application Developer
product package that you want to uninstall. Click Next.

4. In the Summary window, review the list of packages that will be uninstalled
and click Uninstall.

5. In the Complete window that opens after the uninstallation finishes, click
Finish to exit the wizard.

Rational Desktop Connection Toolkit for Cloud Environments

To install Rational Desktop Connection Toolkit for Cloud Environments, complete
these tasks:

1. Change to the RAD_SETUP subdirectory of the directory where you extracted
the “disks” for Rational Application Developer for WebSphere Software.

2. Start the Launchpad program: Run launchpad.exe (Figure A-1 on
page 1785).
 Appendix A. Installing the products 1805

3. In the Launchpad dialog box window, click Install IBM Rational Application
Developer V8.0. IBM Installation Manager starts.

4. On the first page of the Install Packages wizard, select IBM Rational
Desktop Connection Toolkit for Cloud Environments and then click Next.

5. On the Licenses page, read the license agreement. If you agree to the terms
of all of the license agreements, click I accept the terms in the license
agreements and then click Next.

6. On the Features page, select any additional features that you want to install
and then click Next.

7. On the summary page, review your choices before starting the installation
process. If you want to change your selections, click Back to return to the
previous pages. When you are satisfied with your installation choices, click
Install.

8. When the installation process completes, click Finish.

9. Close Installation Manager.

Installing WebSphere Portal V7

In this section, we explain how to install WebSphere Portal V7, add it to Rational
Application Developer, and configure the portal test environment for
performance.

Installing WebSphere Portal V7

If you have already installed WebSphere Portal V7 on the same machine where
you are about to install Rational Application Developer, the installation wizard of
Rational Application Developer automatically integrates the installed WebSphere
Portal Server as a target run time.

Many clients install the WebSphere Portal server after installing Rational
Application Developer. However, as of this release, the Launchpad for Rational
Application Developer no longer offers the capability to install WebSphere Portal
server. You must therefore download WebSphere Portal Server separately from
IBM Passport Advantage®. The information at the following website describes
which files you need to download:

http://www-01.ibm.com/support/docview.wss?uid=swg21446742
1806 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www-01.ibm.com/support/docview.wss?uid=swg21446742

Also, you can find more information about the options for the installation
procedure in the Lotus® Wiki for Portal Server 7:

http://www-10.lotus.com/ldd/portalwiki.nsf/dx/Setting_up_a_standalone_s
erver_on_Windows_wp7

Next you must extract all of these compressed files to the same directory to avoid
the decompression utility creating subfolders that are named after the
compressed files, such as CZLM1ML.

Perform these steps:

1. Open a command prompt and execute install.bat.

2. You see the installation wizard that is shown in Figure A-26. Click Next.

Figure A-26 Installation wizard (install.bat)

3. In the Software license agreement window, if you agree to the terms, click
Next.

4. For installation type, select Base (Figure A-27 on page 1808).
 Appendix A. Installing the products 1807

http://www-10.lotus.com/ldd/portalwiki.nsf/dx/Setting_up_a_standalone_server_on_Windows_wp7

Figure A-27 Selecting the Base installation type

5. In the next window, specify the WebSphere Portal installation directory.
Accept the default (C:\IBM\WebSphere) and click Next. See Figure A-28 on
page 1809.
1808 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure A-28 Selecting the installation directory

6. In the next window, the installation wizard determines the node name based
on the host name and detects the fully qualified host name. There are
restrictions on the possible values for the host name, as shown in Figure A-29
on page 1810.
 Appendix A. Installing the products 1809

Figure A-29 The installation wizard detects the node name and the fully qualified host name

7. Select Install on top of an existing instance and click Next.

8. In the next window, enter the administrative user and password, which are the
same for WebSphere Portal Server and for the underlying WebSphere
Application Server (in this example, we chose wpsadmin/wpsadmin), and click
Next. See Figure A-30 on page 1811.
1810 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure A-30 Entering the administrative user ID and password

9. In the next window, decide whether you want to create Windows services to
start and stop WebSphere Portal Server and additional actions (Figure A-31)
and click Next.

Figure A-31 Decide whether to create Windows services

10.In the next window, you see the summary of the installation configuration
(Figure A-32 on page 1812). Read and verify the details. If the details are as
you want them, click Next to start the installation process. This process can
take a long time (up to two hours), depending on the machine resources.
 Appendix A. Installing the products 1811

Figure A-32 Summary of the installation configuration

11.In the next window, you see a message stating the location of the installation
log file. It is a good idea to document the installation log file location for future
reference. In our example, it was C:\Documents and
Settings\Administrator\Local settings\Temp\1\wpinstalllog.txt
(Figure A-33).

Figure A-33 Location of installation log file

12.If you see a message similar to the following message, you have not
downloaded all the required parts. Determine the missing part and download
it from Passport Advantage (Figure A-34 on page 1813).
1812 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure A-34 Message indicating that one part is missing

13.In a successful installation, you see a window, as shown in Figure A-35. If you
click Open, you see a window where the log streams.

Figure A-35 Progress bar for installation

14.When the wizard completes the product installation and you see the final
summary window, click Finish.

Adding WebSphere Portal V7 to Rational Application Developer

To execute the portal and portlet applications, you must create a new server in
Rational Application Developer for the installed WebSphere Portal Server as the
target run time. You need to create this new server in each new workspace from
which you want to access WebSphere Portal Server. However, upon start-up,
Rational Application Developer detects the presence of the installed WebSphere
Portal Server and preconfigures it in Windows Preferences, Server
WebSphere Application Server, as shown in Figure A-36 on page 1814.
 Appendix A. Installing the products 1813

Figure A-36 Detecting the presence of the installed WebSphere Portal Server

Complete these steps to configure a new server:

1. Start Rational Application Developer.

2. In the Servers view window, right-click and select New Server.

3. In the New Server window (Figure A-37 on page 1815), for server type, select
WebSphere Portal v7.0 Server and click Configure runtime environments
to verify if the installation wizard has configured the newly installed
WebSphere Portal Server correctly.
1814 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure A-37 Defining the new server window

4. In the New Server window, click Next.
 Appendix A. Installing the products 1815

5. In the WebSphere Settings window (Figure A-38), accept the selection for
connection settings, retype the password wpsadmin, and click Next.

Figure A-38 Entering the password again in the WebSphere settings window

6. In the WebSphere Portal Settings window (Figure A-39 on page 1817),
perform these steps:

a. Verify the portal settings, such as context root, default home, and
personalized home, and the installation location of WebSphere Portal
Server.

b. Enter the user ID and password for the WebSphere Portal Server
administrator, for example, wpsadmin/wpsadmin (even if you think that they
are already entered).

c. Decide if you want to enable the automatic login of a particular user when
the WebSphere Portal test environment starts.

d. Click Next.
1816 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure A-39 WebSphere Portal settings

7. To ensure that the correct passwords are used in Rational Application
Developer at all times, change the default passwords in the file
wkplc.properties by changing the default values of the properties
WasPassword and PortalAdminPwd, as described at this website:

http://www-10.lotus.com/ldd/portalwiki.nsf/dx/wkplc.properties_file_
reference_wp7

8. In the Properties Publishing Settings window (Figure A-40 on page 1818),
select the default value of Local Copy for the transfer method. Click Next.
 Appendix A. Installing the products 1817

http://www-10.lotus.com/ldd/portalwiki.nsf/dx/wkplc.properties_file_reference_wp7
http://www-10.lotus.com/ldd/portalwiki.nsf/dx/wkplc.properties_file_reference_wp7
http://www-10.lotus.com/ldd/portalwiki.nsf/dx/wkplc.properties_file_reference_wp7
http://www-10.lotus.com/ldd/portalwiki.nsf/dx/wkplc.properties_file_reference_wp7

Figure A-40 Properties Publishing Settings

9. In the Add and Remove Projects window, click Next. You do not have any
portal or portlet projects to add to this server.

10.In the Tasks window, click Finish to install a new test server.

Optimizing the WebSphere Portal Server for development

To optimize the WebSphere Portal Server for development and to improve the
start-up performance, run the task that is described in the Rational Application
Developer Information Center at the following Web address:

http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/co
m.ibm.portal.doc/topics/tenabledevmode.html

The new context menu Enable Dev Mode in the Server view in Rational
Application Developer is equivalent to running the ConfigEngine command in
<Portal_Profile-HOME>/ConfigEngine:

ConfigEngine.bat enable-develop-mode-startup-performance

If you do not see the Enable Dev Mode context menu, enable the following
capability:

1. Select Windows Preferences.
2. Select General Capabilities.
3. Select Advanced.
4. Select Web Developer (advanced) Portal development.
1818 Rational Application Developer for WebSphere Software V8 Programming Guide

http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/com.ibm.portal.doc/topics/tenabledevmode.html

In the console, you can see that the script ends with entries similar to
Example A-1.

Example: A-1 End of execution of Enable Dev Mode

BUILD SUCCESSFUL
Total time: 1 minute 55 seconds
isIseries currently set to: null
uploading registry
CELL: rad8redbook
NODE: rad8redbook
Websphere:_Websphere_Config_Data_Type=Registry,_Websphere_Config_Data_I
d=cells/rad8redbook|registry.xml#Registry_1288357406007,_WEBSPHERE_CONF
IG_SESSION=anonymous1288373787851
update-registry-sync-property:
Fri Oct 29 13:36:28 EDT 2010
 [echo] updated RegistrySynchronized in file wkplc.properties with
value: true
Return Value: 0
[wplc-modify-ear-lazy-load-impl] 47 PA_Clients_Manager
Target Server: WebSphere_Portal, MappEnable Old: true, New: false

For potential issues related to enabling development mode, see the following
technote (web doc):

http://www-01.ibm.com/support/docview.wss?uid=swg21316233

Verifying development mode

In Rational Application Developer, follow these steps:

1. Right-click the WebSphere Portal Server and select Start (or click the Start
icon) to start the server. It takes a while to start the WebSphere Portal Server.
Wait until it changes its status to Started and its state to Synchronized.

2. Right-click the portal server entry in the Servers view and select
Administration Run administrative console.

3. In the browser session window that opens with the administrative console of
the WebSphere Portal Server, enter the user ID and password of wpsadmin.

4. Navigate to Server Server Types WebSphere Application Servers
WebSphere_Portal.

5. Verify that Run in development mode is selected (Figure A-41 on
page 1820). If you make changes, click Apply and then click Save to apply
the changes to the master configuration.
 Appendix A. Installing the products 1819

http://www-01.ibm.com/support/docview.wss?uid=swg21316233

Figure A-41 Verifying that Run in development mode is selected

Defining remote servers for testing portals

Whether you plan to use the local machine or a remote server for testing and
debugging, you can use the WebSphere Portal server node in the New Servers
wizard to set up connections to either of the test environments. Perform these
steps to create and configure a remote portal server:

1. Switch to the Servers view by selecting Window Show View Servers.

2. In the Servers view window, right-click and select New Server.

3. Select the appropriate WebSphere Portal server from the server-type list.

4. Provide the host name of the remote WebSphere Portal server. Click Next.

5. On the WebSphere Settings page, define the following options:

a. Set the RMI Port if you want to use this connection type. Clear the check
box if you do not need it.

b. Set the SOAP Port if you want to use this connection type. Clear the check
box if you do not need it.

c. Select Security is enabled on this server and specify the administrator
ID and password for the Portal server.

6. Define the following settings and click Next:

a. Define the Context Root. The default is /wps.

b. Define the Default Home. The default is /portal.

c. Define the Personalized Home. The default is /myportal.
1820 Rational Application Developer for WebSphere Software V8 Programming Guide

d. Define the Install location, which is the WebSphere Portal installation root.
For example, the directory on the target server might be C:\Program
Files\WebSphere\PortalServer; however, if the <portal home> directory
on the target server has been mapped as a network drive, the path to the
<portal home> directory might be E:\Portalserver. Consult your systems
administrator for the exact path, and specify this information only when
you use the deploy action on portal or portlet projects.

e. Specify the WebSphere Portal Administrator User ID and password.

f. If you select to enable automatic login, provide a user ID and password for
a WebSphere Portal user. You must create the user on the Portal
Administration page on the remote server before testing or debugging.
Edit permission is automatically assigned to the user and the user ID is
used as part of the label. To use a single WebSphere Portal server for
multiple users, use a separate user ID for each person.

7. Select Enable the server to start remotely if you want to start and stop the
server. If you select Enable the server to start remotely, all the input options
on the page are enabled. Define the following options:

a. Define the server platform as Microsoft Windows or Linux.

b. Specify the server profile path, for Microsoft Windows, the path is \\<host
name>\<drive>$\<PathToProfile>. For Linux, the path is
/opt/IBM/wp_profile.

c. Select one of the following system logon methods:

• Operating system logon: Specify the username and the password.

• Secure shell (SSH): Specify the private key file, user ID, and the
passphrase.

All the input options stay disabled if you do not select “Enable the server to
start remotely”.

8. Click Next to open the Properties Publishing Settings page and define the
following options:

a. Select the Local Copy or FTP file transfer option.

b. Provide the Library directory, which maps to the shared/app directory of
the WebSphere Portal server on the remote system. For example,
C:\WebSphere\PortalServer\shared\app might be the directory on the
target server. However, if the shared/app directory on the target server
has been mapped as a network drive, the path to the shared/app directory
might be similar to E:\sharedApp. Or, if you use FTP access and the FTP
root for the user that you specify is the C:\WebSphere directory, the path
might be similar to PortalServer/shared/app. Consult your Systems
Administrator for the exact path.
 Appendix A. Installing the products 1821

c. If you select the FTP option, provide the following information:

i. A user ID and password combination that has FTP access to the target
system.

ii. The connection timeout value if the default of 10000 milliseconds is not
adequate.

iii. If the target server is beyond a firewall, select Use PASV mode or Use
firewall. You can set additional firewall settings by clicking Firewall
settings.

9. Click Next. On the Add and Remove Projects page, select one or more
projects and select Add o select Remove to associate or disassociate the
project with the server. During publishing, all projects that are associated with
the publishing server are deployed.

10.Click Finish.

11.The server instance for the remote server is defined. Right-click the instance
and select Start.

Defining page creation settings

You can define your page creation settings and the page creation aggregation
mode by using a server editor. The default mode for a portlet is Server Side
Aggregation (SSA), and for an iWidget, the mode is Client Side Aggregation
(CSA). The default mode for portlet and iWidget together is CSA mode. Perform
these steps to define page creation settings:

1. Create an instance of WebSphere Portal V7.0.

2. Double-click the server instance to open server editor.

3. Select the Portal tab and expand the Page Creation Settings tab.

4. Select the artifact type and render mode for that artifact.

5. Select CSA Mode for client-side aggregation and SSA Mode for server-side
aggregation.

6. Save the settings and publish the project to the server.

A page is created and the server home page opens after publishing completes.
Go to Administration Manage Pages and navigate to the page that got
created for your portlet. Click Page Properties to view the render mode of the
page.
1822 Rational Application Developer for WebSphere Software V8 Programming Guide

Enabling the debugging service

If you use a remote WebSphere Portal Server without using the Rational tools,
and if you intend to use this WebSphere Portal Server for debugging purposes,
you might want to enable the debugging service for this server during its start-up
process. Perform these steps:

1. Select Server Server Types WebSphere Application Servers
WebSphere_Portal Debugging Service (under Additional properties).

2. Select Enable service at server startup.

3. Click Apply and then click Save to apply changes to the master configuration
(Figure A-42).

Figure A-42 Enabling Debugging Service on Portal server

Stopping the server

You have completed the installation and configuration. Now you can stop the
server.
 Appendix A. Installing the products 1823

In addition to these changes, see 21.5, “More information” on page 1181, for
more tips to help you increase the performance of the WebSphere Portal Server
during the development mode or to reduce its start-up time.

Installing IBM Rational Team Concert

You can find the complete instructions for installing any of the three editions of
Rational Team Concert in the product help under Installing and upgrading
Installing Rational Team Concert.

Installing Rational Team Concert Standard Edition server

In this section, we show how you can get started with the installation of Rational
Team Concert Standard Edition on Microsoft Windows 32-bit systems. For other
editions and platforms, see the product help. You can obtain IBM Rational Team
Concert from the following website:

For this chapter, we installed the following version:

https://jazz.net/downloads/rational-team-concert/releases/2.0.0.2iFix4

You are required to register to access the download page.

If you want to install Rational Team Concert Standard Edition on a computer that
already has IBM Installation Manager installed, perform these steps:

1. Select Other Download Options Installation Manager Server and
Optional Features (Local Install) to initiate the download of the file called
RTC-Standard-Full-2.0.0.2iFix4-Win32-Local.zip.

2. After you download the file, extract the archive to a directory on your file
system, such as C:\RTC-Standard-Full-2.0.0.2iFix4.

3. From a command prompt, launch the
C:\RTC-Standard-Full-2.0.0.2iFix4\launchpad.exe executable, which is
shown in Figure A-43 on page 1825.

4. Select the Jazz Team Server Standard Edition link. You can choose to
install as Administrator or not. In this example, the installation was performed
as Administrator. The Launchpad detects that Installation Manager is already
installed and launches Installation Manager.

No charge for small teams: For a small team of up to 10 developers, you can
download Rational Team Concert Express-C at no charge.
1824 Rational Application Developer for WebSphere Software V8 Programming Guide

http://jazz.net
https://jazz.net/downloads/rational-team-concert/releases/2.0.0.2iFix4

Figure A-43 Rational Team Concert Standard Edition Launchpad

5. Installation Manager shows the package to install (Figure A-44). Select Next.

Figure A-44 Selecting the package to install

6. On the next page, you are prompted to accept the License Agreement. If you
agree, select I agree and Next.

7. On the next page, you are prompted to create a New Package Group, which is
required. If you have previously installed Rational Application Developer, the
two products must be in separate package groups. However, if you have
 Appendix A. Installing the products 1825

already installed any other products, the shared resources directory is already
set and cannot be changed. If this is the first product that you install, you also
are prompted to choose the Shared Resources Directory (Figure A-45).
Accept the default and select Next.

Figure A-45 Creating a new package group

8. On the next page, select the translations to install and click Next.

9. On the next page, you can select the features to install. Accept the default,
and select Next (Figure A-46).

Figure A-46 Selecting the features to install

10.On the next page, review the summary and select Install.
1826 Rational Application Developer for WebSphere Software V8 Programming Guide

11.The installation completes, except to start the Standard Edition Setup Guide,
which is an HTML page describing how to set up the server. Select Finish,
which stops Installation Manager and launches the Standard Edition Setup
Guide (Figure A-47).

Figure A-47 Launching the Standard Edition Setup Guide

12.Start the provided Apache Tomcat server. For instructions to change the
default server ports and the default launch directory, see the product help.
Select All Programs Jazz Team Server Start Jazz Team Server to
start the server.

Running the setup wizard
To configure the team server, perform these steps:

1. Point a web browser to the following web address:

https://localhost:9443/jazz/setup
 Appendix A. Installing the products 1827

2. After entering ADMIN as the default for both the Username and Password, the
window that is shown in Figure A-48 opens.

Figure A-48 Running the setup after starting Tomcat
1828 Rational Application Developer for WebSphere Software V8 Programming Guide

3. To select a setup path, click Fast Path Setup, which skips the configuration of
the mail server for email notification and uses the built-in Derby database
(Figure A-49). See the product help for information about using the Custom
Setup option.

Figure A-49 Selecting Fast Path Setup
 Appendix A. Installing the products 1829

4. On the Setup User Registry page (Step 1), select Tomcat User Database
(Figure A-50).

Figure A-50 Setting up the user registry
1830 Rational Application Developer for WebSphere Software V8 Programming Guide

5. On the Setup User Registry page (Step 2), enter the user ID, Name,
Password, and E-mail Address of the user (Figure A-51).

Figure A-51 Creating the first user account
 Appendix A. Installing the products 1831

6. On the Setup User Registry page (Step 3), you can disable the default ADMIN
user that was used to log on to the setup wizard (Figure A-52).

7. On the Setup User Registry page (Step 4), you can see three available
Developer licenses. Assign one license to the user that you have created
(Figure A-52). Click Next.

Figure A-52 Assigning developer licenses
1832 Rational Application Developer for WebSphere Software V8 Programming Guide

You see a summary page from which you can terminate the Setup wizard
(Figure A-53).

Figure A-53 Summary

8. Verify that the setup is correct by launching the Team Server Admin Web user
interface (UI) by opening the following web address:

https://localhost:9443/jazz/admin

9. If you do not want to have passwords in any files on the file system, inspect
the contents and then remove the backup property files in the C:\Program
Files\IBM\JazzTeamserver\server\conf\jazz\teamserver-<digits>backup.
properties directory.

10.Connect to the server with the Rational Team Concert client or a web
browser.

11.Stop the server from a command window by selecting Start All
Programs Jazz team Server Stop Jazz Team server.

The server was started as an application. You can make it become a service so
that it starts automatically at boot time. See the following Jazz technote (web
doc) for instructions:

http://jazz.net/library/article/72
 Appendix A. Installing the products 1833

http://jazz.net/library/article/72

Installing Rational Team Concert Build Engine and Build Toolkit

You can install the Rational Team Concert Build Engine and Build Toolkit from the
Launchpad. Follow these steps:

1. Change to the RAD_SETUP subdirectory of the directory where you extracted
the “disks” for Rational Application Developer for WebSphere Software.

2. Start the Rational Team Concert Launchpad program (Figure A-43 on
page 1825) and select the Rational Team Concert Build System Toolkit
link.

3. This action launches Installation Manager, which is preconfigured for
installing the following package, as shown in Figure A-54. Select Next.

Figure A-54 Installation Package for Rational Team Concert Build System Toolkit

4. On the next page, accept the License Agreement and select Next.
1834 Rational Application Developer for WebSphere Software V8 Programming Guide

5. On the next page, you are prompted to create a new package group
(Figure A-55). Accept the defaults and select Next.

Figure A-55 Creating a new package group

6. On the next page, select the translations and select Next.

7. On the next page, select the features (there are no optional features) and
select Next.

8. On the next page, you see a summary. Select Install.

9. After the installation completes, select Finish.

Installing the client and the debug extensions

In addition to the Rational Team Concert server, install the following required
components:

� Rational Team Concert client
� Debug Extension for Rational Team Concert client
� Team Debug Service Extension for Rational Team Concert server

Rational Team Concert client
Rational Team Concert client is not packaged as an optional feature of Rational
Application Developer. It must be installed separately. As of the time of writing,
you can install it by using the Eclipse P2 installer.
 Appendix A. Installing the products 1835

Follow these instructions:

http://www-01.ibm.com/support/docview.wss?uid=swg21444449

Rational Team Concert Server Debug Extension
The Rational Team Concert Debug Extension is an optional feature of Rational
Application Developer that can be installed using IBM Installation Manager. You
can modify an existing installation to include this feature, as shown in the
following steps:

1. Change to the RAD_SETUP subdirectory of the directory where you extracted
the “disks” for Rational Application Developer for WebSphere Software.

2. Launch the Rational Application Developer Launchpad (Figure A-1 on
page 1785).

3. Select IBM Rational debug Extension for IBM Rational Team Concert
Server, which starts IBM Installation Manager and initiates the installation of
the package. Select Next.

4. On the next page, you see the License agreement. If you accept it, select I
Agree and Next.

5. On the next page, you are prompted to install Rational Team Concert Debug
Extension inside the same package group as the Team Concert Server.
Accept the default and select Next (Figure A-56 on page 1837).

Using Installation Manager: Starting with Rational Team Concert 2.0.0.2
iFix5, you can install the Rational Team Concert client in Rational Application
Developer by using IBM Installation Manager, with the implementation of the
following Request For Enhancement:

https://jazz.net/jazz/web/projects/Rational%20Team%20Concert#action=
com.ibm.team.workitem.viewWorkItem&id=132988
1836 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www-01.ibm.com/support/docview.wss?uid=swg21444449
http://www-01.ibm.com/support/docview.wss?uid=swg21444449
https://jazz.net/jazz/web/projects/Rational%20Team%20Concert#action=com.ibm.team.workitem.viewWorkItem&id=132988
https://jazz.net/jazz/web/projects/Rational%20Team%20Concert#action=com.ibm.team.workitem.viewWorkItem&id=132988
http://www-01.ibm.com/support/docview.wss?uid=swg21444449

Figure A-56 Installing the Debug Extension in the same package group as the Team Concert Server

6. On the next page, accept the defaults for the features. There are no optional
features. Select Next.

7. You see the following installation instruction:

After installing/uninstalling IBM Rational Debug Extension for IBM
Rational Team Concert Server, you will need to restart the Team
Concert Server for the change to be picked up. If the Team Concert
Server is not running using the web server included with the
installer, you will need to reset the server through this URL
(https://localhost:9443/jazz/admin?internal#action=com.ibm.team.repo
sitory.admin.serverReset).

8. On the Summary Page, select Install.

For more information, see the product help under Developing Debugging
Applications Debug Extensions for Rational Team Concert Client
Overview.

Important: In order to use this support, on each client installation, ensure that
you select the Collaborative Debug Extensions for Rational Team Concert
Client feature.

You can verify it by launching IBM Installation Manager, selecting Modify, and
reviewing the features page of the wizard.
 Appendix A. Installing the products 1837

For more information, see the information center:

http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.debug
.team.client.ui.doc/topics/cbtovrvw.html

Verifying the installation of the server debug extensions
To verify that the installation is correct, connect to the Rational Team Concert
server with a web browser and verify that the following service is active
(Figure A-57):

com.ibm.debug.team.common.service.ITeamDebugService

Figure A-57 Verifying that the debug extension is active on the Rational Team Concert server

Rational Team Concert Server Code Coverage extension
The Rational Team Concert Server Code Coverage extension is an optional
component that can be installed on the Rational Team Concert Server from the
Rational Application Developer Launchpad. Complete these steps:

1. Change to the RAD_SETUP subdirectory of the directory where you extracted
the “disks” for Rational Application Developer for WebSphere Software.

2. Launch the Rational Application Developer Launchpad (Figure A-1 on
page 1785).

3. Select IBM Rational Application Developer Code Coverage tools for IBM
Rational Team Concert Builds, which starts IBM Installation Manager and
initiates the installation of the package. Select Next (Figure A-58 on
page 1839).
1838 Rational Application Developer for WebSphere Software V8 Programming Guide

http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.debug.team.client.ui.doc/topics/cbtovrvw.html

Figure A-58 Installing Code Coverage Tools for Team Concert builds

4. O the next page, you see the License agreement. If you accept it, select I
Agree and Next.

5. On the next page, you are prompted to select the existing package group that
contains the IBM Rational Team Concert Build System Toolkit. Accept Use
the existing package group (default) and select Next (Figure A-59).

Figure A-59 Use the existing package group for Code Coverage tools

6. Accept all defaults until you reach the end of the wizard, select Install, and
then click Finish.

To configure the Code Coverage Extension, see this website:

http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/co
m.ibm.rad.install.doc/topics/t_cc_rtc_ext_config.html
 Appendix A. Installing the products 1839

http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/com.ibm.rad.install.doc/topics/t_cc_rtc_ext_config.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/com.ibm.rad.install.doc/topics/t_cc_rtc_ext_config.html

Installing Rational Application Developer Build Utility

You can use the build utility to execute builds on a build server without having
Rational Application Developer, WebSphere Application Server, or WebSphere
Portal Server installed. The build utility does not contain any user interface code.
By using the build utility, you can create Apache ANT scripts for running the
available Ant tasks in headless mode.

In this section, we show you how to install only the core files and the WebSphere
Application Server and WebSphere Portal Server stub files on Microsoft
Windows. These files are required for executing Java Platform, Enterprise Edition
(Java EE)-specific ANT tasks, such as ejbDeploy, targeting one of these servers.

For a complete description of the other platforms, see the product help under
Installing and Upgrading Installing Supporting Software Installing
Rational Application Developer for WebSphere Software build utility, which
is also available at this website:

http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/co
m.ibm.rad.install.doc/topics/t_install_build_utility_8.html

You can start the installation of the build utility from the corresponding link on
launchpad.exe, or in IBM Installation Manager, you can configure the repository
that is located in BuildUtility\disk1\diskTag.inf. Perform these steps:

1. On the Install Packages page, select IBM Rational Application Developer
for WebSphere Software Build Utility, as shown in Figure A-60. Typically,
you install the build utility on a computer that does not have Rational
Application Developer installed, although there is no reason to avoid the
coexistence of both packages on the same computer, if desired). Select Next.

Figure A-60 Install Packages window

2. On the next page, review the License Agreement. If you agree, select I
Accept and Next.
1840 Rational Application Developer for WebSphere Software V8 Programming Guide

http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/com.ibm.rad.install.doc/topics/t_install_build_utility_8.html

3. On the next page, select the Package Group Name. Enter the package group
Installation Directory, which must be new, such as C:\Program
Files\IBM\BuildUtility (Figure A-61). Select Next.

Figure A-61 Selecting a new package group installation directory for installing the build utility

4. On the next page, accept all of the defaults because we do not extend an
Existing Eclipse. Select Next.

5. On the next page, select the translations to install. Select Next.

6. On the next page, select the desired WebSphere Application Server and
WebSphere Portal Server stubs to install (Figure A-62). Select Next.

Figure A-62 Selecting features to install
 Appendix A. Installing the products 1841

7. On the summary page, review your selections and select Install.

8. On the last page, select Finish.

Installing IBM Rational ClearCase

Rational Application Developer integrates with Rational ClearCase V7.1.1 and
V7.1.2.

Installing Rational ClearCase requires planning. See the following information in
the ClearCase Information Center:

� https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m0/index.jsp?topi
c=/com.ibm.rational.clearcase.help.ic.doc/helpindex_clearcase.htm

� https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topi
c=/com.ibm.rational.clearcase.help.ic.doc/helpindex_clearcase.htm

In the following sections, we describe the minimal number of required steps to
run the example scenarios that are covered in this book. We ran these scenarios
on a single machine that acted as both server and client. In this example, we
installed Rational ClearCase V7.1.2 on Microsoft Windows.

For the download location, refer to this website:

http://www-01.ibm.com/support/docview.wss?rs=984&uid=swg24028116

The package name of Rational ClearCase V7.1.2 Windows is CZJG5ML.

Before installing, review the following planning information:

https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic
=/com.ibm.rational.clearcase.cc_ms_install.doc/topics/c_inst_planning_c
c.htm

The following list is an overview of the installation steps:

1. Extract CZJG5ML.zip to a temporary directory.

2. If you have not installed IBM Installation Manager yet, perform these steps:

a. Inside the folder called disk1, execute launchpad.exe.

b. Select Install IBM Rational ClearCase v7.1.2, which installs IBM
Installation Manager 1.4.1 and preconfigures the installation of Rational
ClearCase and the installation of the license key administrator.

c. Figure A-63 on page 1843 shows the features that we chose.
1842 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www-01.ibm.com/support/docview.wss?rs=984&uid=swg24028116
https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic=/com.ibm.rational.clearcase.help.ic.doc/helpindex_clearcase.htm
https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic=/com.ibm.rational.clearcase.help.ic.doc/helpindex_clearcase.htm
https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m0/index.jsp?topic=/com.ibm.rational.clearcase.help.ic.doc/helpindex_clearcase.htm
https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m0/index.jsp?topic=/com.ibm.rational.clearcase.help.ic.doc/helpindex_clearcase.htm
https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic=/com.ibm.rational.clearcase.cc_ms_install.doc/topics/c_inst_planning_cc.htm
https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m0/index.jsp?topic=/com.ibm.rational.clearcase.help.ic.doc/helpindex_clearcase.htm
https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m0/index.jsp?topic=/com.ibm.rational.clearcase.help.ic.doc/helpindex_clearcase.htm
https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic=/com.ibm.rational.clearcase.help.ic.doc/helpindex_clearcase.htm
https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic=/com.ibm.rational.clearcase.help.ic.doc/helpindex_clearcase.htm

Figure A-63 Choosing features during ClearCase installation

d. For more information about this scenario, see this website:

https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/topic/com
.ibm.rational.clearcase.cc_ms_install.doc/topics/t_start_install_
launchpad.htm

3. If you have installed IBM Installation Manager 1.4.1 already, perform these
steps:

a. Launch IBM Installation Manager.

b. Select File Preferences Repositories.

c. Configure a new Repository by browsing to the disk1/diskTag.inf file.

If you want to use ClearCase Remote Client,

If you want to use ClearCase SCM Adapter,
install these features on each client

install this feature on the server
 Appendix A. Installing the products 1843

https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/topic/com.ibm.rational.clearcase.cc_ms_install.doc/topics/t_start_install_launchpad.htm

d. Select OK.

e. In the major Installation Manager page, select Install.

f. For more information about this scenario, see this website:

https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp
?topic=/com.ibm.rational.clearcase.cc_ms_install.doc/topics/t_sta
rt_install_launchpad.htm

4. During the installation, the wizard asks for various parameters, for which you
can refer to the ClearCase documentation. The one parameter that you must
set, especially for working with Rational Application Developer, is related to
MVFS case sensitivity. You must select the Case Preserving option, as
shown in Figure A-64.

Figure A-64 Selecting the Case Preserving option in the MVFS Case Sensitivity window

After you complete the installation wizard, review the following information:

https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic
=/com.ibm.rational.clearcase.cc_ms_install.doc/topics/c_post_inst_confi
g.htm

Important: If you plan to use the ClearCase SCM Adapter, you must
install the ClearCase Client Components (Figure A-63 on page 1843)
on each client machine.

If you plan to use the ClearCase Remote Client, you must install the CM
Server for ClearCase Remote Clients (Figure A-63 on page 1843) on a
server machine.

Select this option
1844 Rational Application Developer for WebSphere Software V8 Programming Guide

https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic=/com.ibm.rational.clearcase.cc_ms_install.doc/topics/c_post_inst_config.htm
https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic=/com.ibm.rational.clearcase.cc_ms_install.doc/topics/c_post_inst_config.htm
https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic=/com.ibm.rational.clearcase.cc_ms_install.doc/topics/t_start_install_launchpad.htm
https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic=/com.ibm.rational.clearcase.cc_ms_install.doc/topics/t_start_install_launchpad.htm
https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic=/com.ibm.rational.clearcase.cc_ms_install.doc/topics/t_start_install_launchpad.htm
https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic=/com.ibm.rational.clearcase.cc_ms_install.doc/topics/t_start_install_launchpad.htm

Creating a Storage Location

Before you can create a versioned object base (VOB) and a view, you must
create a minimal storage location. For more information about storage locations,
see this website:

https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic
=/com.ibm.rational.clearcase.cc_admin.doc/topics/c_rgy_data_other_stglo
c.htm

1. Create a folder, such as C:\Views, and share it. For required permissions, see
this website:

https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/topic/com.ib
m.rational.clearcase.cc_admin.doc/topics/c_access_fs_shares.htm

2. Select Start All programs IBM Rational ClearCase
Administration Server Storage Wizard.

3. In the ClearCase Server Storage Configuration Wizard, select Yes, start
storage configuration now.

4. Select Let me select local drives and let the Storage Configuration
Wizard configure the locations for VOB and view storage automatically,
as shown in Figure A-65.

Figure A-65 Select to configure storage automatically in the Storage Location Wizard

5. Select Next.
 Appendix A. Installing the products 1845

https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic=/com.ibm.rational.clearcase.cc_admin.doc/topics/c_rgy_data_other_stgloc.htm
https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/topic/com.ibm.rational.clearcase.cc_admin.doc/topics/c_access_fs_shares.htm
https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/topic/com.ibm.rational.clearcase.cc_admin.doc/topics/c_access_fs_shares.htm
https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/topic/com.ibm.rational.clearcase.cc_admin.doc/topics/c_access_fs_shares.htm
https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/topic/com.ibm.rational.clearcase.cc_admin.doc/topics/c_access_fs_shares.htm

6. Accept all of the defaults, as shown in Figure A-66.

7. Select Next.

Figure A-66 Select Drives for ClearCase Storage page

8. Review the results in the summary page, as shown in Figure A-67.

Figure A-67 Server Storage Configuration summary page
1846 Rational Application Developer for WebSphere Software V8 Programming Guide

For guidelines for locating dynamic view storage directories, see this website:

https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic
=/com.ibm.rational.clearcase.dev.doc/topics/cc_mvfs/glines_locate_stora
ge_dirs.htm

Creating a VOB for use in Base ClearCase

To create a VOB for use in Base ClearCase, perform these steps:

1. Select Start All programs IBM Rational ClearCase
Administration Create VOB.

2. On the VOB Creation Wizard - Name and Major Parameters page (See
Figure A-68), perform these steps:

a. For the new VOB name, enter RAD8RedbookBase.

b. Clear This VOB will contain UCM Components.

c. Clear Create as a UCM project VOB and select Next.

Figure A-68 Vob Creation Wizard - Name and Major Parameters page

3. On the Vob Creation Wizard - Storage page, select Use Explicit Path, as
shown in Figure A-69 on page 1848.
 Appendix A. Installing the products 1847

https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic=/com.ibm.rational.clearcase.dev.doc/topics/cc_mvfs/glines_locate_storage_dirs.htm
https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic=/com.ibm.rational.clearcase.dev.doc/topics/cc_mvfs/glines_locate_storage_dirs.htm

Figure A-69 VOB Creation Wizard - Storage page

4. On the Vob Creation Wizard - Options page, you can select Make this a
public VOB, provided that you have set a password for the ClearCase
registry host. See Figure A-70 on page 1849.

For more information, see these websites:

– For more information about setting the ClearCase registry password, see
this website:

https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp
?topic=/com.ibm.rational.clearcase.cc_admin.doc/topics/t_rgy_pass
wd.htm

– For more information about public and private VOBs, see this website:

https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp
?topic=/com.ibm.rational.clearcase.cc_admin.doc/topics/t_rgy_pass
wd.htm
1848 Rational Application Developer for WebSphere Software V8 Programming Guide

https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic=/com.ibm.rational.clearcase.cc_admin.doc/topics/t_rgy_passwd.htm
https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic=/com.ibm.rational.clearcase.cc_admin.doc/topics/t_rgy_passwd.htm
https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic=/com.ibm.rational.clearcase.cc_admin.doc/topics/t_rgy_passwd.htm
https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic=/com.ibm.rational.clearcase.cc_admin.doc/topics/t_rgy_passwd.htm
https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic=/com.ibm.rational.clearcase.cc_admin.doc/topics/t_rgy_passwd.htm
https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic=/com.ibm.rational.clearcase.cc_admin.doc/topics/t_rgy_passwd.htm
https://publib.boulder.ibm.com/infocenter/cchelp/v7r1m2/index.jsp?topic=/com.ibm.rational.clearcase.cc_admin.doc/topics/t_rgy_passwd.htm

Figure A-70 VOB Creation Wizard - Options page

Creating a dynamic view

To create a dynamic view for working in Base ClearCase, follow these steps:

1. Launch Rational ClearCase Explorer, as shown in Figure A-71 on page 1850.
 Appendix A. Installing the products 1849

Figure A-71 Creating a view from the Rational ClearCase Explorer

2. From the drop-down list, select Base ClearCase.

3. Select Create View.

4. On the View Creation Wizard-Choose a Project page, select No because this
view is a view for working in Base ClearCase. Projects are only used in
Unified Change Management (UCM).

5. Select Next.

6. On the View Creation Wizard - Choose Snapshot View or Dynamic View
page, select Dynamic View, as shown in Figure A-72 on page 1851.
1850 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure A-72 View Creation Wizard - Choose Snapshot View or Dynamic View

7. On the View Creation Wizard - Choose Name and Drive for a Dynamic View
page, complete these steps:

a. For the new view name, enter lziosi_base_view, as shown in Figure A-73
on page 1852.

b. Select the Y: drive to use to access this view. Dynamic views are
accessible collectively from the M: drive, also.

c. Select Advanced Options.
 Appendix A. Installing the products 1851

Figure A-73 View Creation Wizard - Choose Name and Drive for a Dynamic View

8. On the Advanced View Options page, select Use Explicit Path. Browse to
the network share storage location that was created in step 7.a, as shown in
Figure A-74 on page 1853.
1852 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure A-74 Advanced View Options

9. You see a Confirm window, as shown in Figure A-75 on page 1854. Complete
these tasks:

a. Select Inspect Config Spec to show the default Config Spec, which
contains the rules:

• element * CHECKOUT
• element * /main/LATEST

By default, this view shows all of the versions that are checked out, and for
those versions that are checked in, this view shows the latest version from
the main branch. See Figure A-76 on page 1854.
 Appendix A. Installing the products 1853

Figure A-75 Selecting Inspect Config Spec in the view creation Confirm window

Figure A-76 ClearCase Config Spec Editor rules

10.You now see a confirmation dialog window indicating that the view was
created successfully.
1854 Rational Application Developer for WebSphere Software V8 Programming Guide

Installing IBM Rational ClearCase Remote Client
Extension

There are two builds of Rational ClearCase Remote Client:

� You can download the build for stand-alone use from Passport Advantage, but
that build is unsuitable for shell-sharing with Rational Application Developer.

� Rational ClearCase Remote Client Extension is a plug-in installable from IBM
Installation Manager. You can install it in the same package group as Rational
Application developer, which is called shell-sharing.

You can download Rational ClearCase Remote Client Extension 7.1.1 or 7.1.2
from this website:

http://www-01.ibm.com/support/docview.wss?uid=swg21431506

The following steps illustrate how to install Rational ClearCase Remote
Extension 7.1.2 in the same package group as Rational Application Developer:

1. Download the 7.1.2.0-RATL-RCCRC-EXT-FP00.zip file.

2. Extract the file to a temporary location, such as
C:\download\7.1.2.0-RATL-RCCRC-EXT-FP00.

3. Launch IBM Installation Manager.

4. Select File Preferences Repositories.

5. Enter a new repository by browsing to the repository.config file inside the
extracted package, for example:

C:\download\7.1.2.0-RATL-RCCRC-EXT-FP00\repository.config

6. Select OK.

7. On the main Installation Manager page, select Install.

8. Select IBM Rational ClearCase Remote Client Extension, as shown
in Figure A-77 on page 1856.
 Appendix A. Installing the products 1855

http://www-01.ibm.com/support/docview.wss?uid=swg21431506
http://www-01.ibm.com/support/docview.wss?uid=swg21431506

Figure A-77 Installing Rational ClearCase Remote Client Extension

9. If you see a prompt to stop the VOB server and view server processes, accept
the option to stop these processes (Figure A-78 on page 1857).

Select this option
1856 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure A-78 Prompt to stop the VOB server and view server processes

10.Select Next.

11.On the License tab, you see a page instructing you to stop antivirus software.
Complete these steps:

a. Review the information that is provided in the supplied link.

b. Take appropriate action as required and select Next.

12.Read and accept the license agreement. Select Next.

13.On the Location tab, you see a page with a list of available package groups.
This list varies, depending on the products that you have installed. Select the
package group that contains Rational Application Developer:

a. Select Use existing Package Group.

b. Installation Manager selects a compatible package group, typically, IBM
Software Delivery Platform, as shown in Figure A-79 on page 1858.

Select Yes
 Appendix A. Installing the products 1857

Figure A-79 Selecting to install the extension in the package group with Rational Application Developer

14.On the Features tab, accept the default, because there are no optional
features. Select Next.

15.On the Summary tab, select Install.

Verifying the installation

After you have installed Rational ClearCase Remote Client Extension, launch
Rational Application Developer on a new workspace to verify the installation.
1858 Rational Application Developer for WebSphere Software V8 Programming Guide

You see a Welcome page that contains links to the ClearCase Remote Client
documentation. You also see, in the Java EE perspective, a ClearCase menu
with contents provided by the Rational ClearCase SCM Adapter, as shown in
Figure A-80.

Figure A-80 ClearCase Remote Client main menu and updated Welcome page

You can also verify that the enabled capability corresponds to ClearCase Remote
Client by accessing the following menu:

1. Click Window Preferences.

2. On the Preferences page, navigate to General Capabilities Team.

3. Select Advanced.

4. The following options are preselected, as shown in Figure A-31 on page
1428:

– Core Team Support
 Appendix A. Installing the products 1859

– ClearCase Remote Client

5. Clear all other options (CVS Support and ClearCase SCM Adapter),
because you typically work with one team provider at a time.

Figure A-81 Required Capabilities: Core Team Support and ClearCase Remote
Client

Configuring ClearCase for UCM development

The following list shows the minimum requirements to set up a Unified Change
Management (UCM) configuration:

� Create a Project VOB (PVOB)
� Create a VOB, which is associated with the PVOB, to hold UCM components
� Create a UCM project
� As a developer, join the project (possibly creating a development stream and

integration and development views)
1860 Rational Application Developer for WebSphere Software V8 Programming Guide

In the following paragraphs, we show an example of performing the previous
tasks by using the Project Explorer, the ClearCase Remote Client, and web
views.

Follow these steps to create a PVOB:

1. Select Start All programs IBM Rational ClearCase
Administration Create VOB.

2. On the VOB Creation Wizard - Name and Major Parameters page, complete
these steps:

a. For the new VOB name, enter RedbookPVOB.

b. Clear This VOB will contain UCM Components.

c. Select Create as a UCM project VOB (See Figure A-82).

Figure A-82 Creating a UCM project VOB

d. Select Next.

3. On the Vob Creation Wizard - Storage page, select Use explicit path. Select
Next.

4. Optional: On the Vob Creation Wizard - Options page, select Make this a
public VOB and enter the registry password.

5. On the confirmation dialog window, select OK.
 Appendix A. Installing the products 1861

Follow these steps to create a VOB, which is associated with the PVOB, to hold
UCM components:

1. Select Start All programs IBM Rational ClearCase
Administration Create VOB.

2. On the VOB Creation Wizard - Name and Major Parameters page, complete
these steps:

a. For the new VOB name, enter RAD8RedbookUCM.

b. Select This VOB will contain UCM Components.

c. Clear Create as a UCM project VOB.

d. See Figure A-83.

Figure A-83 Create a VOB to store UCM components

e. Select Next.

3. On the VOB Creation Wizard - Components page, complete these tasks:

a. Select Allow this VOB to contain multiple components.

b. Add a new component called WebDev with a root directory called WebDev.

c. Select an existing view, such as lziosi_base_view.

d. See Figure A-84 on page 1863.
1862 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure A-84 Creating components for the UCM VOB

e. Select Next.

4. On the VOB Creation Wizard - Storage page, select Use explicit path. Select
Next.

5. On the VOB Creation Wizard - Options page, complete these steps:

a. For “What is the project VOB?”, select RedbookPVOB.

b. Optional: Select Make this a public VOB and enter the registry password.

6. On the confirmation window, select OK.

To create a UCM project, follow these steps:

1. Select Start All Programs IBM Rational ClearCase Project
Explorer. You see the PVOB RedbookPVOB and the component WebDev, as
shown in Figure A-85 on page 1864.
 Appendix A. Installing the products 1863

Figure A-85 ClearCase Project Explorer showing PVOB and component

2. Right-click the RedbookPVOB PVOB and select New Project, as shown
in Figure A-86 on page 1865.
1864 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure A-86 Creating a new project in the ClearCase Project Explorer

3. On the New Project - Step 1 page, complete these steps:

a. For Project Name, enter RAD8Redbook.

b. For Integration Stream Name, enter RAD8Redbook_integration.

c. For Project Type, select Traditional parallel development, as shown in
Figure A-87 on page 1866.

d. Select Next.
 Appendix A. Installing the products 1865

Figure A-87 Configuring the project for parallel development

4. On the New Project - Step 2 page, complete these steps:

a. For the question, “Would you like to seed this project with the
recommended baselines?”, select No. There are no recommended
baselines yet.

b. Select Next.

5. On the New Project - Step 3 page, complete these steps:

a. Add the component baselines to use in this project and select Add, as
shown in Figure A-88 on page 1867.
1866 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure A-88 Adding the component baselines to use in the UCM project

b. Select the component WebDev.

c. For From stream, select all streams.

d. Select the Baseline Name WebDev_INITIAL, as shown in Figure A-89.

Figure A-89 Adding the Baseline WebDev_INITIAL
 Appendix A. Installing the products 1867

e. Select OK to close the Add Baseline window.

f. Select Next.

1. On the New project - Step 4 page, perform these tasks:

a. For “Make the following components modifiable”, select WebDev.

b. Figure A-90 shows the multiple default promotion levels for recommending
new baselines. Accept INITIAL.

c. Select Next.

Figure A-90 Making components modifiable

2. On the New Project - Step 5 page, complete these tasks:

a. For “Should this project be ClearQuest-enabled?”, select No.

b. Select Finish.

3. On the New project - Confirmation page, select OK.

In the Project Explorer, you now see the PVOB, RedbookPVOB, the UCM Project
RAD8Redbook, the integration stream, RAD8Redbook_Integration, as shown in
Figure A-91 on page 1869.
1868 Rational Application Developer for WebSphere Software V8 Programming Guide

Figure A-91 ClearCase Project Explorer after completion of project creation
 Appendix A. Installing the products 1869

1870 Rational Application Developer for WebSphere Software V8 Programming Guide

Appendix B. Performance tips for
Rational Application
Developer

This appendix describes ten performance tips for improving your development
experience while using Rational Application Developer. You can obtain additional
performance information in the Rational Application Developer help text, in the
topic Troubleshooting and Support Improving Performance.

B

© Copyright IBM Corp. 2011. All rights reserved. 1871

Better hardware

Rational Application Developer was built to make the best possible use of today’s
hardware, so using modern hardware runs everything faster. Rational Application
Developer is multithreaded, so having a multiple core machine (dual core or quad
core) allows certain operations to run in parallel and provides improved user
interface (UI) responsiveness.

Rational Application Developer is a large application and our clients tend to build
large applications. Installing more memory improves performance. When
planning how much memory you need, you also need to consider what is running
in addition to Rational Application Developer, and adjust accordingly.

If you need more than 3.5 GB of memory, we recommend using a 64-bit
operating system. A 32-bit Microsoft Windows operating system typically cannot
exploit more than 3.5 GB because of the way that device drivers reserve memory
addresses.

Performance is not merely about the CPU; everything helps: faster bus, faster
memory, and faster disks. You do not need the fastest, most expensive system
that is currently available, but usually about two models down from that system is
optimum in terms of price and performance.

Improving your hardware makes everything faster.

Shared EARs (binary modules)

With large development projects, not every team member needs to change every
project, every day. You can achieve a large performance win by following this
guideline and using shared Enterprise Application Archives (EARs).

Keep code that you need to change in source form and keep everything else in
binary form. Rational Application Developer automatically attaches source to the
binary modules so that you can debug and view all the code, almost as if all of
the code was in source form.

Build and validation are much quicker because only the source projects are built
and validated. For more information, see the following paper Using binary
modules to optimize Rational Application Developer in a team environment:

http://www-128.ibm.com/developerworks/rational/library/07/0619_karasiuk
_sholl/
1872 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www-128.ibm.com/developerworks/rational/library/07/0619_karasiuk_sholl/
http://www-128.ibm.com/developerworks/rational/library/07/0619_karasiuk_sholl/

The effect of this tip is faster builds, publishing, refactoring, and less memory
usage. The more modules that you use in their binary form, the bigger the
performance benefit.

Annotations

Annotations are expensive to process. You can reduce this time greatly by
providing instructions about what does not need to be processed. The effect of
this tip is faster publishing.

For more information, see the Rational Application Developer Help text by
selecting Troubleshooting and Support Improving Performance
Performance Tips Publishing and annotations.

Publishing

There are many ways to improve the amount of time that it takes to publish your
application:

� Ensure that your projects are single-rooted. Projects that are single-rooted
can be directly consumed by WebSphere Application Server. If the project is
not single-rooted, it needs to be copied as part of the publishing operation. If a
project is not single-rooted, you see a warning message in the Marker’s view.

� Minimize the number of Java archives (JARs) in the WEB-INF/lib directories.
If the JAR is no longer needed, remove it. If you see that the same jar is
repeated in many lib directories, see if it can be moved to a shared directory
on the server.

� Start the test server in debug mode. This approach, which allows you to
change the code by using the “hot method replace” and directly inserting the
code into the running server, eliminates the need to perform a publish. There
are cases where the Java virtual machine (JVM) cannot replace a method. In
those cases, you get a warning message and then you need to publish the
application.

� Use Remote Method Invocation (RMI) as the connection type, because no
polling is involved.

� Remove unused applications. Removing unused applications shortens up
your server start-up time.

� Turn off your server’s security, which improves the start-up time for your
server as well as improving your publish times.
 Appendix B. Performance tips for Rational Application Developer 1873

� Periodically clean out the server’s wstemp and temp directories.

� Publish is an expensive operation because of all of the Rational Application
Developer code, WebSphere Application Server code, and application code,
for example, servlet destruction code, that must be processed. The best
publish is no publish. It is best if you are in control of when publishes occur, so
we recommend turning off automatic publishes (Figure B-1).

Figure B-1 Turning off automatic publishing

Shorter build time by tuning validation

Many customization options exist for validation. You can set when to perform
validation, turn individual validators on or off, and control the types of resources
that are validated. Explore the Validation preference page Windows
Preferences Validation to see the customization options.

Many clients use a strategy to turn off build-time validation and to perform
periodic manual validations instead. The most expensive validators are the
JavaServer Faces (JSF), JavaServer Pages (JSP), and HTML validators.

By tuning validation, you see the largest improvement in the full builds and clean
builds.
1874 Rational Application Developer for WebSphere Software V8 Programming Guide

Only install what you need

Install only the components that you use. Plug-ins, which are not activated, still
have a memory cost. It is better to add components when you need them, rather
than adding them in anticipation of needing them in the future. This approach
saves memory, time, and disk space.

Also, download the install and update images one time only and share them
among your team members.

No circular dependencies

Ensure that your build paths are clean. Projects must not have dependency
cycles. For example, if project A depends on project B, project B must not
depend on project A. Having cycles forces the builds to iterate. Rational
Application Developer warns you if you have circular dependencies. Circular
dependencies are a sign of poor coding practice and an indication that your
projects are structured improperly.

Use Code Coverage to identify “dead” code and use refactoring to eliminate dead
code.

Implementing this tip improves the speed of your builds and gives you code that
is easier to maintain.

Using a remote test server

If you realize that you do not have enough memory, that you cannot add more
memory, and that your system is thrashing, consider using a remote test server
instead of running a local test server.

Your test server is often the largest or second largest process on your system. By
running your test server on another system, you free up more resources for
Rational Application Developer.

The Setting up a Remote WebSphere Test Server for Multiple Developers paper
explains this concept in more detail. Although this paper applies to a much earlier
version of Rational Application Developer, the concepts still apply today:

http://www-128.ibm.com/developerworks/websphere/library/techarticles/03
03_karasiuk/karasiuk.html
 Appendix B. Performance tips for Rational Application Developer 1875

http://www-128.ibm.com/developerworks/websphere/library/techarticles/0303_karasiuk/karasiuk.html

Before moving your test server, consider moving several of your other large
processes first. For example, if you run a database server on your local machine,
move it before you move your test server.

One advantage in keeping your test server on your local machine is that your
publishing process can be faster.

Tuning your anti-virus program

Try to store Rational Application Developer in a directory that does not need
continuous anti-virus scans. Also, try to store your workspace in a directory that
does not need continuous anti-virus scans

If you run an anti-virus program, try to use the current version of it. The anti-virus
program that you use can make a big difference.

For example, one user described this experience:

� First-time user opens a JSP file in Rational Application Developer:

– Anti-virus program on: 90 seconds
– Anti-virus program off: 10 seconds

� Cold start-up of Rational Application Developer:

– Anti-virus program on: 3 minutes
– Anti-virus program off: 1 minute

Defragmenting disks

Reducing the amount of fragmentation means that your files can be read quicker.
The disk arm does not have to move as much if the pieces of the file are not
scattered in various disk locations. Defragmenting your disks weekly is a good
idea. Set it up and forget it.

This tip affects operations that need to read many files, such as Rational
Application Developer. We measured a 7% improvement in Rational Application
Developer’s cold start-up time by defragmenting the disk.
1876 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www-128.ibm.com/developerworks/websphere/library/techarticles/0303_karasiuk/karasiuk.html

Appendix C. Additional material

The additional material is a web download of the sample code for this book. This
appendix describes how to download, unpack, and describe the contents, and
import the project interchange file.

This appendix is organized in the following sections:

� Locating the web material
� Unpacking the sample code
� Description of the sample code
� Setting up the ITSOBANK database
� Configuring the data source in WebSphere Application Server
� Importing sample code from a project archive file

C

© Copyright IBM Corp. 2011. All rights reserved. 1877

Locating the web material

The web material that is associated with this book is available in softcopy on the
Internet from the IBM Redbooks web server. Enter the following URL in a web
browser and then download the two ZIP files:

ftp://www.redbooks.ibm.com/redbooks/SG247835

Alternatively, you can go to the IBM Redbooks website:

http://www.ibm.com/redbooks

Accessing the web material

Select Additional materials and open the directory that corresponds with the
IBM Redbooks publication form number, SG24-7835.

The additional web material that accompanies this IBM Redbooks publication
includes the following files:

File name Description
7835code.zip Compressed file that contains sample code
7835codesolution.zip Compressed file that contains solution interchange files

System requirements for downloading the web material

We recommend the following system configuration:

Hard disk space: 20 GB minimum
Operating system: Microsoft Windows or Linux
Processor: 2 GHz
Memory: 2 GB

Using the sample code

In this section, we provide a description of the sample code and how to use it.

Unpacking the sample code

After you have downloaded the two compressed files, extract the files to your
local file system using 7Zip, or similar software. For example, we extract the
7835code.zip and 7835codesolution.zip files to the C:\ drive, which creates
1878 Rational Application Developer for WebSphere Software V8 Programming Guide

ftp://www.redbooks.ibm.com/redbooks/SG247835
http://www.ibm.com/redbooks

C:\7835code. Throughout the samples, we reference the sample code as though
you have unpacked the files to the C drive.

Description of the sample code

Table C-1 lists the contents of the sample code after unpacking. The 7835code
folder has the following major sections:

� Code sample to follow the instructions in a chapter
� Interchange files with the solution for each chapter

Table C-1 Sample code description

Directory Specific chapter for this code

c:\7835code Root directory after unpacking the sample code

..\java Chapter 7, “Developing Java applications” on page 229

..\xml Chapter 8, “Developing XML applications” on page 331

..\database Chapter 9, “Developing database applications” on page 393. Also, this directory
includes the code to set up the ITSOBANK database in either Derby or DB2.

..\jpa Chapter 10, “Persistence using the Java Persistence API” on page 443

..\ejb Chapter 12, “Developing Enterprise JavaBeans (EJB) applications” on
page 577

..\j2eeclient Chapter 13, “Developing Java Platform, Enterprise Edition (Java EE) application
clients” on page 649

..\webservice Chapter 14, “Developing web services applications” on page 681

..\osgi Chapter 15, “Developing Open Services Gateway initiative (OSGi) applications”
on page 837

..\sca Chapter 16, “Developing Service Component Architecture (SCA) applications”
on page 885

..\webapp Chapter 18, “Developing web applications using JavaServer Pages (JSP)
and servlets” on page 981

..\jsf Chapter 19, “Developing web applications using JavaServer Faces” on
page 1057

..\web20 Chapter 20, “Developing web applications using Web 2.0” on page 1097

..\portal Chapter 21, “Developing portal applications” on page 1131

..\ant Chapter 24, “Building applications with Apache Ant” on page 1279
 Appendix C. Additional material 1879

Importing sample code from a project archive file

In this section, we explain how to import the sample code (for this book) from the
compressed project archive files into Rational Application Developer. This
section applies to each of the chapters that contain sample code, which has
been packaged as a compressed project interchange file.

To import an existing project into a Rational Application Developer workspace,
perform the following steps:

1. In the Java EE (or web) perspective, Enterprise Explorer, select File
Import.

2. Select Import, expand General, and select Existing Projects into
Workspace from the list of import sources. Then click Next.

3. In the Import Projects window, select Select archive file and click Browse.
Locate the appropriate compressed file in the c:\7835code\ or
c:\7835codesolution\ folder and click Open.

4. Click Select All to select all projects and then click Finish.

Setting up the ITSOBANK database

We provide two implementations of the ITSOBANK database: Derby and DB2
Universal Database. You can choose to implement either or both databases and
then set up the enterprise applications to use one of the databases. The Derby
database system ships with WebSphere Application Server.

..\jython Chapter 25, “Deploying enterprise applications” on page 1309

..\junit Chapter 26, “Testing using JUnit” on page 1365

..\js Chapter 28, “Debugging local and remote applications” on page 1461

..\codecoverage Chapter 32, “Code Coverage” on page 1697

..\sip Chapter 33, “Developing Session Initiation Protocol applications” on page 1727

c:\7835codesolution Solution files for multiple chapters

Directory Specific chapter for this code
1880 Rational Application Developer for WebSphere Software V8 Programming Guide

Derby

The C:\7835code\database\derby directory provides command files to define
and load the ITSOBANK database in Derby. For the DerbyCreate.bat,
DerbyLoad.bat, and DerbyList.bat files, you must have installed WebSphere
Application Server in the C:\IBM\WebSphere\AppServer folder. You must edit
these files to point to your WebSphere Application Server installation directory if
you installed the product in a separate folder.

In the C:\7835code\database\derby directory, you can perform the following
actions:

� Execute the DerbyCreate.bat file to create the database and table.
� Execute the DerbyLoad.bat file to delete the existing data and add records.
� Execute the DerbyList.bat file to list the contents of the database.

These command files use the SQL statements and helper files that are provided
in the following files:

� itsobank.ddl: Database and table definition
� itsobank.sql: SQL statements to load sample data
� itsobanklist.sql: SQL statement to list the sample data
� tables.bat: Command file to execute itsobank.ddl statements
� load.bat: Command file to execute itsobank.sql statements
� list.bat: Command file to execute itsobanklist.sql statements

The Derby ITSOBANK database is created in the
C:\7835code\database\derby\ITSOBANK directory.

DB2

The C:\7835code\database\db2 folder provides the DB2 command files to define
and load the ITSOBANK database. You can perform the following actions:

� Execute the createbank.bat file to define the database and table.
� Execute the loadbank.bat file to delete the existing data and add records.
� Execute the listbank.bat file to list the contents of the database.

These command files use the SQL statements that are provided in the following
files:

� itsobank.ddl: Database and table definition
� itsobank.sql: SQL statements to load sample data
� itsobanklist.sql: SQL statement to list the sample data
 Appendix C. Additional material 1881

Configuring the data source in WebSphere Application
Server

In this section, we explain how to configure the data source in the WebSphere
administrative console. We configure the data source against the WebSphere
Application Server v8.0 Beta test environment that ships with Rational
Application Developer.

We followed these high-level configuration steps to configure the data source
within WebSphere Application Server for the ITSOBANK database:

1. Starting the WebSphere Application Server
2. Configuring the environment variables
3. Configuring J2C authentication data
4. Configuring the JDBC provider
5. Creating the data source

Starting the WebSphere Application Server

If you use a stand-alone WebSphere Application Server v8.0 Beta, enter the
following commands in a command window:

cd \IBM\WebSphere\AppServer\profiles\AppSrv01\bin
startServer.bat server1

If you use the WebSphere Application Server V8 Beta test environment that
ships with Rational Application Developer, in the Servers view, right-click
WebSphere Application Server v8.0 Beta at localhost and select Start.

Configuring the environment variables

Prior to configuring the data source, ensure that the environment variables are
defined for the desired database server type. This step does not apply to Derby
because we use the embedded Derby, which already has the variables defined.
For example, if you choose to use DB2 Universal Database, you must verify the
path of the driver for DB2 Universal Database. Perform these steps:

1. Start the WebSphere administrative console:

– If you use the WebSphere Application Server V7.0 test environment that
ships with Application Developer, right-click WebSphere Application
Server v8.0 Beta and select Administration Run administrative
console.

– For a stand-alone server, type the following URL in a web browser:
1882 Rational Application Developer for WebSphere Software V8 Programming Guide

http://localhost:9062/ibm/console

You might need to specify a port other than 9062. The administrative
console port was chosen during the installation of the server profile.

2. Click Log in. If you installed WebSphere with administrative security enabled,
use the user ID and password that were chosen at installation time (for
example, admin/admin).

3. Expand Environment WebSphere variables.

4. Scroll down the page, click the desired variable, and update the path
accordingly for your installation:

– For Derby, use DERBY_JDBC_DRIVER_PATH.

By default, this variable is already configured because Derby is installed
with WebSphere Application Server:

${WAS_INSTALL_ROOT}/derby/lib

– For DB2, use DB2UNIVERSAL_JDBC_DRIVER_PATH.

Edit the value and provide the DB2 installation directory, for example,
C:\IBM\SQLLIB\java or C:\SQLLIB\java.

5. Click Save (at the top).

Configuring J2C authentication data

In this section, we explain how to configure the J2EE Connector architecture
(J2C) authentication data (database login and password) for WebSphere
Application Server from the WebSphere administrative console. This step is
required for DB2 Universal Database, but it is optional for Derby.

If you use DB2 Universal Database, configure the J2C authentication data
(database login and password) for WebSphere Application Server from the
administrative console:

1. Select Security Global security.

2. Under the Authentication properties, expand Java Authentication and
Authorization Service and select J2C authentication data.

3. Click New.

4. Enter the Alias, User ID, and Password in the Java Authentication and
Authorization Service (JAAS) J2C Authentication data page. For example,
create an alias called db2user with the user ID and password that were used
when installing DB2.

5. Click Save.
 Appendix C. Additional material 1883

http://localhost:9062/ibm/console
http://localhost:9062/ibm/console

Configuring the JDBC provider

In this section, we explain how to configure the Java Database Connectivity
(JDBC) provider for the selected database type. In the following procedure, we
demonstrate how you can configure the JDBC provider for Derby. We provide
notes about how to perform the equivalent steps in DB2 Universal Database.

To configure the JDBC provider from the WebSphere administrative console,
follow these steps:

1. Select Resources JDBC JDBC providers.

2. Select the scope settings.

Select the server scope from the drop-down menu. In our case, we select
Node=<machine>NodeXX, Server=server1.

3. Click New.

4. On the New JDBC Providers page, follow these steps:

a. For the Database Type, select Derby.
b. For the JDBC Provider, select Derby JDBC Provider.
c. For the Implementation type, select XA data source.
d. Click Next.

For DB2 Universal Database, follow these steps on the New JDBC Providers
page:

a. For the Database Type, select DB2.
b. For the JDBC Provider, select DB2 Universal JDBC Driver Provider.
c. For the Implementation type, select XA data source.
d. Click Next.

5. Click Finish.

Creating the data source

To create the data source for Derby, follow these steps:

1. Select the Derby JDBC Provider (XA).

2. Under Additional Properties, select Data sources.

3. Click New.

4. For the Data source name, type ITSOBANKderby, and for Java Naming and
Directory Interface (JNDI) name, type jdbc/itsobank. Click Next.

5. For the Database name, type C:\7835code\database\derby\ITSOBANK. Clear
Use this data source in container managed persistence (CMP), because
Java Persistence API (JPA) does not use CMP. Click Next.
1884 Rational Application Developer for WebSphere Software V8 Programming Guide

6. Skip the Set up security aliases page. Click Next.

7. Click Finish and then click Save.

8. Verify the connection by selecting ITSOBANKderby (the check box) and then
click Test connection. You see the following message:

The test connection operation for data source ITSOBANKderby on
server server1 at node xxxxxNodexx was successful.

If you use DB2, create a data source for JDBC Providers DB2 Universal
JDBC Provider Driver (XA):

1. Select Data sources and click New.

2. For Data source name, type ITSOBANKdb2, and for JNDI name, type
jdbc/itsobankdb2.

3. For Database name, type ITSOBANK, and for Server name, type localhost. For
Driver type, leave 4 as the value, and for Port number, leave 50000 as the
value. Clear Use this data source in container managed persistence
(CMP).

4. Select the db2user alias for Authentication alias for XA recovery and for
Component-managed authentication alias. Click Next.

5. Click Finish and then click Save.

6. Verify the connection by selecting ITSOBANKdb2 (the check box) and then
click Test connection. You see a message indicating that the connection is
successful.

DB2 for the ITSOBANK database: If you always want to use DB2 for the
ITSOBANK database, set the JNDI name to jdbc/itsobank for the DB2 data
source and to jdbc/itsobankderby for Derby. The sample application uses
jdbc/itsobank to access the database, which can be Derby or DB2.
 Appendix C. Additional material 1885

1886 Rational Application Developer for WebSphere Software V8 Programming Guide

acronyms
AOP aspect-oriented programming

API application programming
interface

ATM automatic teller machine

AWT Abstract Window Toolkit

B2BUA Back-to-Back User Agent

BCI byte-code instrumentation

BIRT Business Intelligence and
Reporting Tools

BLOBs Binary Large Objects

BMC bean-managed concurrency

BSF Bean Scripting Framework

BVT build verification test

CAR configuration archive

CBA Composite bundle archives

CCI Common Client Interface

CEA Communications Enabled
Applications

CEI Common Event Infrastructure

CI Compute-Intensive

CLI command-line interface

CLOB Character Large Object

CMC container-managed
concurrency

CMP Container Managed
Persistence

CMTs container-managed
transactions

CORBA Common Object Request
Broker Architecture

CSS Cascading Style Sheet

CSTE Certified Software Tester

CSV comma-separated values

Abbreviations and
© Copyright IBM Corp. 2011. All rights reserved.
CVS Concurrent Versioning
System

DI dependency injection

DMS Data Mediator Services

DOM Document Object Model

DTD document type definition

EAI Enterprise Application
Integration

EAM Enterprise Asset
Management

EAR Enterprise Application
Archive

EBA Enterprise bundle archives

EIS enterprise information
systems

EJB Enterprise JavaBean

EL Expression Language

EPR endpoint reference

FVT function verification test

GIS geographic information
system

GUI graphical user interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IDE integrated development
environment

IDL Interface Definition Language

IMS Information Management
System

IP Internet Protocol

IPC Inter Process Communication

J2C Java EE Connector

J2EE Java 2 Platform Enterprise
Edition
 1887

JAAS Java Authentication and
Authorization Service

JAF Java Activation Framework

JAR Java archive

JAXB Java Architecture for XML
Binding

JAXP Java API for XML Processing

JAXR Java API for XML Registries

JCA Java EE Connector
Architecture

JDBC Java Database Connectivity

JDO Java Data Objects

JDT Java development tools

JET Java Emitter Templates

JMC Job Management Console

JMS Java Message Service

JMX Java Management Extension

JNDI Java Naming and Directory
Interface

JNI Java Native Interface

JOnAS Java Open Application Server

JPA Java Persistence API

JPQL Java Persistence Query
Language

JRE Java Runtime Environment

JSF JavaServer Faces

JSON JavaScript Object Notation

JSP JavaServer Pages

JSTL JavaServer Pages Standard
Tag Library

JTA Java Transaction API

JVM Java Virtual Machine

JVMTI JVM Tools Interface

MDB Message-driven bean

MIME Multipurpose Internet Mail
Extensions

MTOM Message Transmission
Optimization Mechanism

MVC model view controller

MVFS multiversion file system

OC4J Oracle Containers for J2EE

ODA Open Data Access

OMG Object Management Group

ORM Object Relational Mapping

OSGi Open Services Gateway
initiative

OSOA Open Service Oriented
Architecture

PDA personal digital assistant

PDD Portlet Deployment Descriptor

PKI public key infrastructure

POJI plain old Java interface

POJO Plain Old Java Object

PTP Point-to-point

RA resource adapter

RAMP Reliable Asynchronous
Messaging Profile

RAR resource adapter archive

RCP Rich Client Platform

REST Representational State
Transfer

RMI Remote Method Invocation

RPC Remote Procedure Call

RTF Result Tree Fragment

SAML Security Assertion Markup
Language

SAX Simple API for XML

SCA Service Component
Architecture

SDO Service Data Object

SEI service endpoint interface

SGML Standard Generalized Markup
Language

SIB service integration bus

SIP Session Initiation Protocol
1888 Rational Application Developer for WebSphere Software V8 Programming Guide

SLF4J Simple Logging Facade for
Java

SOA service-oriented architecture

SPF Struts Portal Framework

SPI Service Programming
Interfaces

SSH Secure Shell

SSN Social Security number

SSO single sign-on

STS Security Token Service

SVG Scalable Vector Graphics

SVT system verification test

SWT Standard Widget Toolkit

StAX Streaming API for XML

TPTP Test and Performance Tools
Platform

UCM Unified Change Management

UDDI Universal Description,
Discovery, and Integration

UDF user-defined function

UEL Unified Expression Language

UI User interface

UML Unified Modeling Language

URI Uniform Resource Identifier

UTC Universal Test Client

UUID universally unique identifier

VOIP Voice over IP

W3C World Wide Web Consortium

WAP Wireless Application Protocol

WAR web archive

WML Wireless Markup Language

WSDL Web Services Description
Language

WSRP Web Services for Remote
Portlets

WTP Web Tools Platform

XOP XML-binary Optimized
Packaging

XPath XML Path Language

XQuery XML Query Language

XSD XML Schema Definition

XSLT XSL Transformation
 Abbreviations and acronyms 1889

1890 Rational Application Developer for WebSphere Software V8 Programming Guide

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics that are covered in this book.

IBM Redbooks publications

For information about ordering these publications, see “How to get IBM
Redbooks publications” on page 1897. Note that several of the documents
referenced here might be available in softcopy only.

� Building Composite Applications, SG24-7367

� Building Dynamic Ajax Applications Using WebSphere Feature Pack for Web
2.0, SG24-7635

� Building SOA Solutions Using the Rational SDP, SG24-7356

� Experience Java EE! Using WebSphere Application Server Community
Edition 2.1, SG24-7639

� Getting Started with WebSphere Enterprise Service Bus V6, SG24-7212

� IBM Rational Application Developer V6 Portlet Application Development and
Portal Tools, SG24-6681

� IBM WebSphere Application Server V6.1 Security Handbook, SG24-6316

� IBM WebSphere Portal V5 A Guide for Portlet Application Development,
SG24-6076

� Patterns: Extended Enterprise SOA and Web Services, SG24-7135

� Portal Application Design and Development Guidelines, REDP-3829

� Rational Application Developer V7 Programming Guide, SG24-7501

� Topics on Version 7 of IBM Rational Developer for System z and IBM
WebSphere Developer for System z, SG24-7482

� Using Rational Performance Tester Version 7, SG24-7391

� Web Services Feature Pack for WebSphere Application Server V6.1,
SG24-7618

� Web Services Handbook for WebSphere Application Server 6.1, SG24-7257

� WebSphere Application Server V6.1: Planning and Design, SG24-7305
© Copyright IBM Corp. 2011. All rights reserved. 1891

� WebSphere Application Server V6.1: System Management and
Configuration, SG24-7304

� WebSphere Application Server V7.0: Technical Overview, REDP-4482

� WebSphere Application Server Version 6.1 Feature Pack for EJB 3.0,
SG24-7611

� WebSphere Studio 5.1.2 JavaServer Faces and Service Data Objects,
SG24-6361

� Rational Application Developer V7.5 Programming Guide, SG24-7672

� Getting Started with the WebSphere Application Server Feature Pack for
Communications Enabled Applications V1.0, REDP-4613

� Eclipse Development using the Graphical Editing Framework and the Eclipse
Modeling Framework, SG24-6302

Other publications

These publications are also relevant as further information sources:

� Eric Gamma, et al., Design Patterns: Elements of Reusable Object-Oriented
Software, Addison Wesley, 1995, ISBN 0-201-63361-2

� D’Anjou, et al., The Java Developer’s Guide to Eclipse-Second Edition,
Addison Wesley, 2004, ISBN 0-321-30502-7

Online resources

These websites are also relevant as further information sources:

� IBM WebSphere software

http://www.ibm.com/software/websphere

� IBM Rational software

http://www.ibm.com/software/rational

� WebSphere Information Center

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp

� Rational Application Developer Information Center

http://publib.boulder.ibm.com/infocenter/radhelp/v7r5/index.jsp

� IBM Education Assistant

http://www.ibm.com/software/info/education/assistant
1892 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.ibm.com/software/websphere
http://www.ibm.com/software/rational
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp
http://www.ibm.com/software/info/education/assistant
http://publib.boulder.ibm.com/infocenter/radhelp/v7r5/index.jsp

� developerWorks

http://www.ibm.com/developerworks

� alphaWorks

http://www.ibm.com/alphaworks

� Eclipse

http://www.eclipse.org

� Sun Java

http://java.sun.com

� Java Community Process

http://www.jcp.org

� Apache Derby database

http://db.apache.org/derby

� OASIS

http://www.oasis-open.org

� Jython

http://www.jython.org

� Web Services Interoperability Organization

http://www.ws-i.org

� Core J2EE Patterns: Best Practices and Design Strategies by Crupi, et al.

http://java.sun.com/blueprints/corej2eepatterns

� EJB Design Patterns: Advanced Patterns, Processes and Idioms by
Marinescu

http://www.theserverside.com/news/1369776/Free-Book-EJB-Design-Patte
rns

� The Java Developer’s Guide to Eclipse-Second Edition, by D’Anjou et al.

http://jdg2e.com

� IBM developerWorks for Rational

http://www.ibm.com/developerworks/rational/

� Rational Edge articles focusing on UML topics

http://www.ibm.com/developerworks/rational/library/content/RationalE
dge/archives/uml.html

� IBM Rational Software UML Resource Center

http://www-01.ibm.com/software/rational/uml/index.html
 Related publications 1893

http://java.sun.com/blueprints/corej2eepatterns
http://www.theserverside.com/news/1369776/Free-Book-EJB-Design-Patterns
http://www.ibm.com/developerworks
http://www.ibm.com/alphaworks
http://www.eclipse.org
http://www.jcp.org
http://java.sun.com
http://db.apache.org/derby
http://www.oasis-open.org
http://www.jython.org
http://www.ws-i.org
http://jdg2e.com
http://www.ibm.com/developerworks/rational/
http://www.ibm.com/developerworks/rational/
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/archives/uml.html
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/archives/uml.html
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/archives/uml.html
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/archives/uml.html
http://www-01.ibm.com/software/rational/uml/index.html

� Object Management Group (OMG):

– http://www.omg.org
– http://www.uml.org

� Craig Larmann’s home page

http://www.craiglarman.com/

� Oracle Java SE

http://www.oracle.com/technetwork/java/javase/index.html

� IBM developerWorks Java Technology

http://www.ibm.com/developerworks/java/

� What’s new in Eclipse 3.6

http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.jdt.doc.
user/whatsNew/jdt_whatsnew.html

� Eclipse tips and tricks

http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.jdt.doc.
user/tips/jdt_tips.html

� SAX

http://www.saxproject.org/

� DOM

http://www.w3.org/DOM/

� StAX

http://www.jcp.org/en/jsr/detail?id=173

� Extensible Markup Language 1.0 (Fourth Edition)

http://www.w3.org/TR/2006/REC-xml-20060816/

� XML Schema 1.1 status

http://www.w3.org/XML/Schema

� XSLT

http://www.w3.org/TR/xslt.html

� XSLT 2.0

http://www.w3.org/TR/xslt20/

� XPath

http://www.w3.org/TR/xpath

� XPath 2.0

http://www.w3.org/TR/xpath20/
1894 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.w3.org/TR/xslt.html
http://www.w3.org/TR/xslt20/
http://www.omg.org
http://www.uml.org
http://www.craiglarman.com/
http://www.oracle.com/technetwork/java/javase/index.html
http://www.ibm.com/developerworks/java/
http://www.saxproject.org/
http://www.saxproject.org/
http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.jdt.doc.user/whatsNew/jdt_whatsnew.html
http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.jdt.doc.user/whatsNew/jdt_whatsnew.html
http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.jdt.doc.user/whatsNew/jdt_whatsnew.html
http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.jdt.doc.user/whatsNew/jdt_whatsnew.html
http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.jdt.doc.user/tips/jdt_tips.html
http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.jdt.doc.user/tips/jdt_tips.html
http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.jdt.doc.user/tips/jdt_tips.html
http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.jdt.doc.user/tips/jdt_tips.html
http://www.w3.org/DOM/
http://www.w3.org/DOM/
http://www.jcp.org/en/jsr/detail?id=173
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/XML/Schema
http://www.w3.org/TR/xslt.html
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath
http://www.omg.org
http://www.uml.org

� WebSphere Application Server V7 Feature Pack for XML

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topi
c=/com.ibm.websphere.xmlfep.multiplatform.doc/info/ae/ae/welcome_fep
xml.html

� XML schemas

http://www.w3.org/XML/Schema

� XML

http://www.w3.org/XML/

� Xerces (XML parser - Apache)

http://xml.apache.org/xerces2-j

� Xalan (XSLT processor - Apache)

http://xml.apache.org/xalan-j

� JAXP (XML parser - Sun)

http://java.sun.com/xml/jaxp

� SAX2 (XML API)

http://sax.sourceforge.net

� Introduction to Service Data Objects on developerWorks

http://www-128.ibm.com/developerworks/java/library/j-sdo/

� Open service-oriented architecture: SDO Resources

http://www.osoa.org/display/Main/SDO+Resources

� JAXB specification

http://jcp.org/en/jsr/detail?id=222

� Oracle Sun Developer Network JDBC Documentation

http://java.sun.com/products/jdbc/overview.html

� Oracle Sun Developer Network Java SE Technologies: Database

http://java.sun.com/javase/technologies/database/

� Oracle Sun Developer Network JDBC Data Access API

http://developers.sun.com/product/jdbc/drivers

� “SQLJ: The “open sesame” of Java database applications” by Shirley Ann
Stern, InfoWorld Java World: JavaWorld.com, May 1, 1999

http://www.javaworld.com/javaworld/jw-05-1999/jw-05-sqlj.html

� Java Specification Request (JSR) 317: Java Persistence API, Version 2.0

http://jcp.org/en/jsr/summary?id=317
 Related publications 1895

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.xmlfep.multiplatform.doc/info/ae/ae/welcome_fepxml.html
http://www.w3.org/XML/Schema
http://www.w3.org/XML/
http://jcp.org/en/jsr/detail?id=222
http://www.w3.org/XML/Schema
http://www.w3.org/XML/Schema
http://jcp.org/en/jsr/detail?id=222
http://xml.apache.org/xerces2-j
http://xml.apache.org/xalan-j
http://xml.apache.org/xalan-j
http://java.sun.com/xml/jaxp
http://java.sun.com/xml/jaxp
http://sax.sourceforge.net
http://www-128.ibm.com/developerworks/java/library/j-sdo/
http://www.osoa.org/display/Main/SDO+Resources
http://www.osoa.org/display/Main/SDO+Resources
http://java.sun.com/products/jdbc/overview.html
http://java.sun.com/javase/technologies/database/
http://java.sun.com/javase/technologies/database/
http://developers.sun.com/product/jdbc/drivers
http://developers.sun.com/product/jdbc/drivers
http://www.javaworld.com/javaworld/jw-05-1999/jw-05-sqlj.html
http://jcp.org/en/jsr/summary?id=317

� Refer to the WebSphere Application Server V8 Beta Information Center for
detailed descriptions about JPA application development:

– http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.j
pa.doc/topics/c_jpa.html

– http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic
=/com.ibm.servertools.doc/topics/tjpaautv7.html

– http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic
=/com.ibm.etools.webtoolscore.doc/topics/tjpaconfigmgrbeanother.h
tml

� Generating a J2C bean using the J2C Tools in Rational Application Developer
V7.0

http://www.ibm.com/developerworks/rational/library/06/1212_nigul/

� Create a J2C application for an Information Management System (IMS)
phone book transaction using IMS Resource Adapter

http://www.ibm.com/developerworks/rational/library/08/dw-r-j2cimsres
ource/

� Working with J2C Ant Scripts in Rational Application Developer V7

http://www.ibm.com/developerworks/rational/library/06/1205_ho-benede
k/

� JSR 318: Enterprise JavaBeans 3.1

http://jcp.org/en/jsr/summary?id=318

� WebSphere Application Server Information Center

http://publib.boulder.ibm.com/infocenter/wasinfo/beta/index.jsp?topi
c=/com.ibm.websphere.nd.doc/info/ae/ae/tejb_timerserviceejb_enh.html

� Roy Fielding in his dissertation “Architectural Styles and the Design of
Network-based Software Architectures”

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
1896 Rational Application Developer for WebSphere Software V8 Programming Guide

http://www.ibm.com/developerworks/rational/library/06/1212_nigul/
http://www.ibm.com/developerworks/rational/library/08/dw-r-j2cimsresource/
http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.jpa.doc/topics/c_jpa.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.jpa.doc/topics/c_jpa.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.jpa.doc/topics/c_jpa.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/topic/com.ibm.jpa.doc/topics/c_jpa.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/com.ibm.servertools.doc/topics/tjpaautv7.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/com.ibm.servertools.doc/topics/tjpaautv7.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/com.ibm.servertools.doc/topics/tjpaautv7.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/com.ibm.servertools.doc/topics/tjpaautv7.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/com.ibm.etools.webtoolscore.doc/topics/tjpaconfigmgrbeanother.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/com.ibm.etools.webtoolscore.doc/topics/tjpaconfigmgrbeanother.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/com.ibm.etools.webtoolscore.doc/topics/tjpaconfigmgrbeanother.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8/index.jsp?topic=/com.ibm.etools.webtoolscore.doc/topics/tjpaconfigmgrbeanother.html
http://www.ibm.com/developerworks/rational/library/06/1205_ho-benedek/
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://jcp.org/en/jsr/summary?id=318
http://publib.boulder.ibm.com/infocenter/wasinfo/beta/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/tejb_timerserviceejb_enh.html
http://publib.boulder.ibm.com/infocenter/wasinfo/beta/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/tejb_timerserviceejb_enh.html
http://publib.boulder.ibm.com/infocenter/wasinfo/beta/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/tejb_timerserviceejb_enh.html
http://publib.boulder.ibm.com/infocenter/wasinfo/beta/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/tejb_timerserviceejb_enh.html
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

How to get IBM Redbooks publications

You can search for, view, or download IBM Redbooks publications, IBM
Redpaper publications, web docs, draft publications, and Additional materials, as
well as order hardcopy Redbooks publications, at this website:

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
 Related publications 1897

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

1898 Rational Application Developer for WebSphere Software V8 Programming Guide

(2.5” spine)
2.5”<

->
nnn.n”

1315<
->

 nnnn pages

Rational Application Developer
for W

ebSphere Softw
are V8

Program
m

ing Guide

®

SG24-7835-00 ISBN 0738435597

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

®

Rational Application Developer
for WebSphere Software V8
Programming Guide

Develop applications
using Java EE 6 and
beyond

Test, debug, and
profile with local and
remote servers

Deploy applications
to WebSphere
servers

IBM Rational Application Developer for WebSphere Software V8 is
the full-function Eclipse 3.6 technology-based development platform
for developing Java Standard Edition Version 6 (Java SE 6) and Java
Enterprise Edition Version 6 (Java EE 6) applications. In addition,
Rational Application Developer provides development tools for
technologies, such as OSGi, Service Component Architecture (SCA),
Web 2.0, and XML. Rational Application Developer focuses on
applications to be deployed to IBM WebSphere Application Server
and IBM WebSphere Portal.

Rational Application Developer provides integrated development
tools for all development roles, including web developers, Java
developers, business analysts, architects, and enterprise
programmers.

This IBM Redbooks publication is a programming guide that
highlights the features and tooling included with Rational Application
Developer V8.0.1. Many of the chapters provide working examples
that demonstrate how to use the tooling to develop applications, as
well as achieve the benefits of visual and rapid application
development. This publication is an update of Rational Application
Developer V7.5 Programming Guide, SG24-7672.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team who wrote this book
	Residency team in Raleigh
	Residency team working remotely
	Rational Application Developer development team authors
	Additional contributors

	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Part 1 Introduction to Rational Application Developer
	Chapter 1. Introduction
	1.1 Concepts
	1.1.1 IBM Rational Software Delivery Platform
	1.1.2 Eclipse and IBM Rational Software Delivery Platform
	Eclipse Project
	Eclipse Platform

	1.1.3 Challenges in application development

	1.2 Rational Application Developer supported platforms and databases
	1.2.1 Supported operating system platforms
	1.2.2 Supported runtime environments
	Supported databases

	1.3 New features and specifications
	1.3.1 New features in Rational Application Developer
	1.3.2 Specification versions

	1.4 Migration
	1.5 Sample code
	1.6 Summary

	Chapter 2. Programming technologies
	2.1 Desktop applications
	2.1.1 Simple desktop applications
	Java language
	New in Java Platform, Standard Edition, Version 6.0
	Java virtual machine
	Requirements for the development environment

	2.1.2 Database access
	JDBC
	Requirements for the development environment

	2.1.3 Graphical user interfaces
	Abstract Window Toolkit
	Swing
	Standard Widget Toolkit
	Java implementations providing a GUI
	Requirements for the development environment

	2.1.4 Extensible Markup Language (XML)
	Using XML in Java code
	Requirements for the development environment

	2.2 Web applications
	2.2.1 Hypertext Transfer Protocol (HTTP)
	Methods
	Status codes
	Cookies

	2.2.2 Hypertext Markup Language (HTML)
	Cascading style sheets
	Requirements for the development environment

	2.2.3 Dynamic web applications
	Servlets
	JavaServer Pages (JSP)
	Tag libraries
	Expression Language
	Filters
	Life-cycle listeners
	Requirements for the development environment
	Struts

	2.2.4 JavaServer Faces and persistence using JPA
	JavaServer Faces
	JSF and Java Persistence API

	2.2.5 Web 2.0 development
	Ajax
	Representational State Transfer (REST)
	JavaScript Object Notation
	Dojo

	2.2.6 Portal applications
	IBM WebSphere Portal
	Java Portlet Specifications
	Requirements for the development environment

	2.3 Enterprise JavaBeans and Java Persistence API
	2.3.1 EJB 3.1 specification: What is new
	2.3.2 Types of EJBs
	Session beans
	Message-driven beans (MDBs)

	2.3.3 Java Persistence API
	2.3.4 Other EJB and JPA features
	Java Persistence Query Language
	EJB timer service
	Requirements for the development environment

	2.4 Web services
	2.4.1 Interoperatility considerations
	2.4.2 Web services in Java EE 6
	Requirements for the development environment

	2.5 Messaging systems
	2.5.1 Java Message Service
	2.5.2 Message-driven beans (MDBs)
	2.5.3 Requirements for the development environment

	2.6 OSGi applications
	2.6.1 OSGi features
	Support for OSGi Blueprint components
	Model for assembling bundles
	Runtime components
	Extensions

	2.6.2 Benefits of OSGi

	2.7 Other applications
	2.7.1 Java EE application clients
	Required Java EE Client Container APIs
	Security
	Naming
	Deployment
	Requirements for the development environment

	2.7.2 Enterprise information system applications
	2.7.3 Service Component Architecture applications
	2.7.4 Session Initiation Protocol applications
	2.7.5 Communications Enabled Applications (CEA)
	CEA core widgets
	CEA mobile widgets

	Chapter 3. Workbench setup and preferences
	3.1 Workbench basics
	3.1.1 Workbench basics
	Setting the workspace with a prompt window

	3.2 Preferences
	3.2.1 Automatic builds
	3.2.2 Manual builds
	3.2.3 File associations
	3.2.4 Content types
	3.2.5 Local history
	Comparing, replacing, and restoring local history

	3.2.6 Perspectives preferences
	3.2.7 Web browser preferences
	3.2.8 Internet preferences
	Proxy settings

	Chapter 4. Perspectives, views, and editors
	4.1 Integrated development environment
	4.1.1 Perspectives
	4.1.2 Views
	4.1.3 Editors
	4.1.4 Perspective layout
	4.1.5 Switching perspectives
	4.1.6 Specifying the default perspective
	4.1.7 Organizing and customizing perspectives

	4.2 Help system for Rational Application Developer
	4.2.1 Context-sensitive help

	4.3 Available perspectives
	4.3.1 CVS Repository Exploring perspective
	4.3.2 Data perspective
	4.3.3 Database Debug perspective
	4.3.4 Database Development perspective
	4.3.5 Debug perspective
	4.3.6 Java perspective
	4.3.7 Java Browsing perspective
	4.3.8 Java EE perspective
	4.3.9 Java Type Hierarchy perspective
	4.3.10 JavaScript perspective
	4.3.11 JPA perspective
	4.3.12 Modeling perspective
	4.3.13 Plug-in Development perspective
	4.3.14 Profiling and Logging perspective
	4.3.15 Report Design perspective
	4.3.16 Resource perspective
	4.3.17 Team Synchronizing perspective
	4.3.18 Test perspective
	4.3.19 Web perspective
	4.3.20 XML perspective
	4.3.21 Progress view

	4.4 Summary

	Chapter 5. Projects
	5.1 Java Enterprise Edition 6
	5.1.1 Enterprise application modules
	5.1.2 Web modules
	5.1.3 EJB modules
	5.1.4 Application client modules
	5.1.5 Resource adapter modules
	5.1.6 Java utility libraries

	5.2 Project basics
	5.2.1 Creating a new project
	5.2.2 Project properties
	5.2.3 Deleting projects
	5.2.4 Transferring projects between workspaces
	5.2.5 Closing projects

	5.3 Java EE 6 project types
	5.3.1 Enterprise application projects
	5.3.2 Application client project
	5.3.3 Dynamic web project
	5.3.4 EJB project
	5.3.5 Connector project
	5.3.6 Utility project

	5.4 Project wizards
	5.5 Sample projects
	5.5.1 Help system samples
	5.5.2 Example projects wizard

	5.6 Summary

	Chapter 6. Unified Modeling Language
	6.1 Overview
	6.2 Constructing and visualizing applications with UML
	6.2.1 UML visualization capabilities
	6.2.2 Unified Modeling Language
	Elements
	Relationships
	Diagrams

	6.3 Working with UML class diagrams
	6.3.1 Creating class diagrams
	6.3.2 Creating, editing, and viewing Java elements by using UML class diagrams
	6.3.3 Creating, editing, and viewing EJB components within UML class diagrams
	Relationships between EJB components
	Security roles and method permissions

	6.3.4 Creating, editing, and viewing WSDL elements within UML class diagrams
	Creating a WSDL service
	Adding ports to a WSDL service
	Creating WSDL port types and operations
	Creating WSDL messages and parts
	Creating XSD types and editing WSDL message part types
	Adding messages to WSDL operations
	Creating bindings between WSDL ports and port types

	6.3.5 Class diagram preferences

	6.4 Exploring relationships in applications
	6.4.1 Browse diagrams
	6.4.2 Topic diagrams

	6.5 Describing interactions with UML sequence diagrams
	6.5.1 Creating sequence diagrams
	6.5.2 Creating lifelines
	6.5.3 Creating messages
	6.5.4 Creating combined fragments
	6.5.5 Creating references to external diagrams
	6.5.6 Exploring Java methods with static method sequence diagrams
	6.5.7 Sequence diagram preferences

	6.6 More information about UML

	Part 2 Java and XML development
	Chapter 7. Developing Java applications
	7.1 Java perspectives, views, and editor overview
	7.2 Java perspective
	7.2.1 Package Explorer view
	7.2.2 Hierarchy view
	7.2.3 Outline view
	7.2.4 Problems view
	7.2.5 Declaration view
	7.2.6 Console view
	7.2.7 Call Hierarchy view

	7.3 Java Browsing perspective
	7.4 Java Type Hierarchy perspective
	7.5 Developing the ITSO Bank application
	7.5.1 ITSO Bank application overview
	7.5.2 Packaging structure
	7.5.3 Interfaces and classes overview
	7.5.4 Interfaces and classes structure
	7.5.5 Interface and class fields and getter and setter methods
	7.5.6 Interface methods
	7.5.7 Class constructors and methods
	7.5.8 Class diagram

	7.6 ITSO Bank application step-by-step development guide
	7.6.1 Creating a Java project
	7.6.2 Creating a UML class diagram
	Creating a UML class diagram using the Class Diagram wizard

	7.6.3 Creating Java packages
	Creating a Java package using the New Java Package wizard

	7.6.4 Creating Java interfaces
	Creating a Java interface using the New Java Interface wizard

	7.6.5 Creating Java classes
	Creating a Java class using the New Java Class wizard

	7.6.6 Creating Java attributes (fields) and getter and setter methods
	Creating Java fields using the Create Java field wizard
	Creating getter and setter methods using the refactor feature
	Creating getter and setter methods using the source feature

	7.6.7 Adding method declarations to an interface
	ITSOBank example: Interface methods

	7.6.8 Adding constructors and Java methods to a class
	ITSOBank example: Class methods

	7.6.9 Creating relationships between Java types
	Extends relationships
	Implements relationships
	Association relationships

	7.6.10 Implementing the classes and methods
	Importing the classes

	7.6.11 Running the ITSO Bank application
	7.6.12 Creating a run configuration
	7.6.13 Understanding the sample code
	BankClient class
	ITSOBank class
	Customer class
	Account class
	Transaction class
	Credit class
	Debit class

	7.6.14 Additional features used for Java applications
	7.6.15 Using scripting inside the JRE
	ITSOBank example: Scripting invocation
	How the scripting example works

	7.6.16 Analyzing the source code
	Creating and editing a static analysis configuration
	Running a static analysis
	Static analysis results

	7.6.17 Debugging a Java application

	7.7 Using the Java scrapbook
	7.7.1 Pluggable Java Runtime Environment
	7.7.2 Exporting Java applications to a JAR file
	7.7.3 Running Java applications that are external to Rational Application Developer
	7.7.4 Importing Java resources from a JAR file into a project
	7.7.5 Javadoc tooling

	7.8 Generating the Javadoc
	7.8.1 Generating the Javadoc from an existing project
	7.8.2 Generating the Javadoc from an Ant script
	7.8.3 Generating the Javadoc with diagrams from existing tags
	7.8.4 Generating the Javadoc with diagrams automatically

	7.9 Java editor and rapid application development
	7.9.1 Navigating through the code
	Navigating the code by using the Outline view
	Navigating the code by using the Package Explorer
	Navigating the code by using bookmarks

	7.9.2 Source folding
	7.9.3 Type hierarchy
	7.9.4 Smart insert
	7.9.5 Marking occurrences
	7.9.6 Smart compilation
	7.9.7 Java and file search
	Performing a Java search from the workbench (example)
	Searching from a Java view or editor
	Performing a file search (example)
	Viewing previous search results

	7.9.8 Working sets
	7.9.9 Quick fix
	7.9.10 Quick assist
	Enabling quick assist highlighting
	Invoking quick assist

	7.9.11 Content assist
	Content assist preferences
	Invoking content assist

	7.9.12 Import generation
	7.9.13 Adding constructors
	Constructors from superclass
	Constructor using fields

	7.9.14 Using the delegate method generator
	7.9.15 Refactoring
	Refactor example (renaming a class)

	7.10 More information

	Chapter 8. Developing XML applications
	8.1 XML overview and associated technologies
	8.1.1 XML processors
	8.1.2 DTDs and XML schemas
	8.1.3 XSL
	8.1.4 XML namespaces
	8.1.5 XPath
	8.1.6 XML catalog

	8.2 Rational Application Developer XML tools
	8.2.1 Creating an XML schema
	Working with the Design view
	Working with the Source view
	Validating an XML schema
	Running schema validation manually

	8.2.2 Generating HTML documentation from an XML schema file
	8.2.3 Generating an XML file from an XML schema file
	8.2.4 Editing an XML file
	Editing on the Source tab
	Editing on the Design tab
	Editing in the Outline view

	8.2.5 Working with XSL transformation files
	Creating a new XSL transformation file
	Adding code to the XSL transformation file

	8.2.6 Transforming an XML file into an HTML file
	8.2.7 XML mapping
	Preparing for XML mapping and importing the XSD and XML files
	Starting the XML Mapping editor
	Organizing the XML Mapping editor
	Editing the XML mapping

	8.3 Service Data Objects and XML
	8.3.1 Generating SDOs from an XML schema
	8.3.2 Marshal SDO objects to XML
	8.3.3 Unmarshal XML to an SDO data graph
	Navigating the SDO data graph
	Updating the SDO data graph

	8.4 JAXB and XML
	8.4.1 Generating JAXB classes from an XML schema
	8.4.2 Marshal JAXB objects to XML
	8.4.3 Unmarshal the XML file to JAXB objects
	8.4.4 JAXB customization

	8.5 Feature Pack for XML
	8.6 More information

	Part 3 Persistence and enterprise information system integration development
	Chapter 9. Developing database applications
	9.1 Introduction
	9.2 Connecting to the ITSOBANK database
	9.2.1 Connecting to databases
	9.2.2 Creating a connection to the ITSOBANK database
	9.2.3 Browsing a database with the Data Source Explorer
	Editing, extracting, and loading options

	9.3 Creating SQL statements
	9.3.1 Creating a Data Development project
	9.3.2 Populating the transactions table
	9.3.3 Creating a select statement
	Using the SQL Builder
	Adding tables to the statement
	Selecting columns for the result set
	Joining tables
	Adding a function expression to the result set
	Adding a column alias and sort type
	Creating a query condition
	Adding a GROUP BY clause

	9.3.4 Running the SQL query

	9.4 Developing Java stored procedures
	9.4.1 Creating a Java stored procedure
	9.4.2 Deploying a Java stored procedure
	9.4.3 Running the stored procedure

	9.5 Developing SQLJ applications
	9.5.1 Creating SQLJ files
	9.5.2 Examining the generated SQLJ file
	9.5.3 Testing the SQLJ program

	9.6 Data modeling
	9.6.1 Creating a Data Design project
	9.6.2 Creating a physical data model
	Creating a physical data model using reverse engineering
	Creating a physical data model from a template

	9.6.3 Modeling with diagrams
	9.6.4 Generating DDL from a physical data model and deploying
	9.6.5 Analyzing the data model

	9.7 More information

	Chapter 10. Persistence using the Java Persistence API
	10.1 Introducing the Java Persistence API
	10.1.1 JPA entity object
	A simple entity object example

	10.1.2 Object-rational mapping
	Mapping the table and columns
	Mapping through annotation relationships
	Object-relational mapping through orm.xml

	10.1.3 Entity inheritance
	10.1.4 Persistence units
	10.1.5 Entity Manager
	Container-managed Entity Manager
	Application-managed Entity Manager

	10.1.6 JPA Manager Bean
	10.1.7 Java Persistence Query Language
	Query types
	Operators
	Named queries
	Relationship navigation

	10.1.8 Criteria API
	10.1.9 Persistence provider
	JPA for WebSphere Application Server persistence provider
	Apache OpenJPA persistence provider

	10.1.10 JPA 2.0 enhancements

	10.2 Creating a JPA project
	10.2.1 Setting up the ITSOBANK database
	10.2.2 Create a new JPA project
	10.2.3 Adding JPA support to an existing project
	10.2.4 Converting a Java project to a JPA project

	10.3 Creating JPA entities
	10.3.1 Creating a new JPA entity with the wizard
	10.3.2 Creating a JPA entity when adding persistence to a POJO
	10.3.3 Generating database tables from JPA entities
	10.3.4 Generating JPA entities from database tables
	Generated JPA entities

	10.3.5 Adding business logic
	Transaction class
	Account class

	10.3.6 Adding named queries
	Customer class
	Account class

	10.4 Creating a JPA Manager Bean
	10.5 Visualizing JPA entities
	10.6 Testing JPA entities
	10.6.1 Creating the Java project for entity testing
	10.6.2 Creating a Java class for entity testing
	10.6.3 Setting up the build path for OpenJPA
	10.6.4 Setting up the persistence.xml file
	10.6.5 Creating the test
	Understanding the entity testing code

	10.6.6 Running the JPA entity test
	10.6.7 Displaying the SQL statements
	10.6.8 Adding inheritance
	Changing the Transaction class for inheritance
	Adding the Credit subclass
	Adding the Debit subclass
	Adding the Credit and Debit class to the persistence unit
	Creating Credit and Debit manager beans
	Changing the Account class to process transactions
	Adding toString methods for printing
	Testing inheritance
	Adding inheritance to the class diagram

	10.7 Preparing the entities for deployment in the server
	Configuration in persistence.xml
	Configuration in orm.xml

	10.8 More information

	Chapter 11. Developing applications to connect to enterprise information systems
	11.1 Introduction to Java EE Connector Architecture
	11.1.1 System contracts
	11.1.2 Resource adapter
	11.1.3 Common Client Interface
	11.1.4 WebSphere adapters

	11.2 Application development for EIS
	11.2.1 Importers
	11.2.2 J2C wizards

	11.3 Sample application overview
	11.4 CICS outbound scenario
	11.4.1 Prerequisites
	11.4.2 Creating the Java data binding class
	11.4.3 Creating the J2C bean
	11.4.4 Deploying the J2C bean as an EJB 3.0 session bean
	11.4.5 Generating a JSF client
	Creating a web project and enterprise application

	11.4.6 Running the JSF client

	11.5 CICS channel outbound scenario
	11.5.1 Creating the Java data binding for the channel and containers
	11.5.2 Creating the J2C bean that accesses the channel
	11.5.3 Developing a web service to invoke the COBOL program
	Using an alternative approach

	11.5.4 Testing the web service with CICS access

	11.6 SAP outbound scenario
	11.6.1 Required software and configuration
	11.6.2 Creating a connector project and J2C beans
	11.6.3 Generating the sample web application
	11.6.4 Testing the web application

	11.7 Monitoring inbound events for resource adapters
	11.7.1 Monitoring inbound events using WebSphere Business Monitor
	11.7.2 Monitoring inbound events using WebSphere Business Events

	11.8 More information

	Part 4 Enterprise and service-oriented architecture (SOA) application development
	Chapter 12. Developing Enterprise JavaBeans (EJB) applications
	12.1 Introduction to Enterprise JavaBeans
	12.1.1 EJB 3.1 specification
	EJB 3.1 simplified model

	12.1.2 EJB component types
	Session beans
	Message-driven EJB

	12.1.3 EJB services and annotations
	Interceptors
	Dependency injection
	Asynchronous invocations
	EJB timer service
	Web services
	Portable JNDI name
	Embedded Container API
	Using deployment descriptors

	12.1.4 EJB 3.1 application packaging
	12.1.5 EJB 3.1 Lite
	12.1.6 EJB 3.1 features in Rational Application Developer

	12.2 Developing an EJB module
	12.2.1 Sample application overview
	12.2.2 Creating an EJB project
	12.2.3 Making the JPA entities available to the EJB project
	12.2.4 Setting up the ITSOBANK database
	Configuring the data source for the ITSOBANK
	Configuring the data source using the enhanced EAR

	12.2.5 Implementing the session facade
	Preparing an exception
	Creating the EJBBankBean session bean
	Defining the business interface
	Creating an Entity Manager
	Generating skeleton methods
	Completing the methods in EJBBankBean

	12.3 Testing the session EJB and the JPA entities
	Deploying the application to the server
	12.3.1 Testing with the Universal Test Client
	12.3.2 Creating a web application to test the session bean
	12.3.3 Testing the sample web application
	12.3.4 Visualizing the test application

	12.4 Invoking EJBs from web applications
	12.4.1 Implementing the RAD8EJBWeb application
	Web application navigation
	Servlets and commands
	Java EE dependencies
	Accessing the session EJB
	Additional functionality

	12.4.2 Running the web application
	12.4.3 Cleaning up
	12.4.4 Adding a remote interface

	12.5 More information

	Chapter 13. Developing Java Platform, Enterprise Edition (Java EE) application clients
	13.1 Introduction to Java EE application clients
	13.2 Overview of the sample application
	13.3 Preparing the sample application
	13.3.1 Importing the enterprise application sample
	13.3.2 Setting up the sample database
	Setting up the ITSOBANK database
	Configuring the data source
	Testing the sample application

	13.4 Developing the Java EE application client
	13.4.1 Creating the Java EE application client projects
	13.4.2 Configuring the Java EE application client projects
	13.4.3 Importing the graphical user interface and control classes
	13.4.4 Creating the BankDesktopController class
	13.4.5 Completing the BankDesktopController class
	13.4.6 Creating an EJB reference and binding
	13.4.7 Registering the BankDesktopController class as the main class

	13.5 Testing the Java EE application client
	13.6 Packaging the Java EE application client
	13.6.1 Packaging the application
	13.6.2 Running the deployed application client

	Chapter 14. Developing web services applications
	14.1 Introduction to web services
	14.1.1 SOA
	Service provider
	Service broker
	Service requester

	14.1.2 Web services as an SOA implementation
	XML
	SOAP
	WSDL

	14.2 New function in Java EE 6 for web services
	14.2.1 JSR 224: Java API for XML-Based Web Services (JAX-WS) 2.2
	14.2.2 JSR 222: Java Architecture for XML Binding (JAXB) 2.2
	14.2.3 JSR 109: Implementing Enterprise Web Services
	14.2.4 Related web services standards
	Web Services Interoperability Organization
	Web Services Security

	14.3 JAX-WS programming model
	14.3.1 Better platform independence for Java applications
	14.3.2 Annotations
	14.3.3 Invoking web services asynchronously
	14.3.4 Dynamic and static clients
	14.3.5 Message Transmission Optimization Mechanism support
	14.3.6 Multiple payload structures
	14.3.7 SOAP 1.2 support

	14.4 Web services development approaches
	14.5 Web services tools in Rational Application Developer
	14.5.1 Creating a web service from existing resources
	14.5.2 Creating a skeleton web service
	14.5.3 Client development
	14.5.4 Testing tools for web services

	14.6 Preparing for the JAX-WS samples
	14.6.1 Importing the sample
	Sample projects

	14.6.2 Testing the application

	14.7 Creating bottom-up web services from a JavaBean
	14.7.1 Creating a web service using annotations
	Annotating a JavaBean
	Validating web service annotations
	Creating a web service from an annotated JavaBean by publishing to the server
	Testing the JAX-WS web service: The Generic Service Client
	Viewing the dynamically generated WSDL

	14.7.2 Creating web services using the Web Service wizard
	14.7.3 Resources generated by the Web Service wizard

	14.8 Creating a synchronous web service JSP client
	14.8.1 Generating and testing the web service client

	14.9 Creating a web service JavaServer Faces client
	14.10 Creating a web service thin client
	Creating the thin client project and generating the client code
	Creating the client class to invoke the web service

	14.11 Creating asynchronous web service clients
	14.11.1 Polling client
	14.11.2 Callback client
	14.11.3 Asynchronous message exchange client

	14.12 Creating web services from an EJB
	14.13 Creating a top-down web service from a WSDL
	14.13.1 Designing the WSDL by using the WSDL editor
	Editing the WSDL file

	14.13.2 Generating the skeleton JavaBean web service
	Implementing the generated JavaBean skeleton

	14.13.3 Testing the generated web service

	14.14 Creating web services with Ant tasks
	14.14.1 Creation procedure
	14.14.2 Running the web service Ant task

	14.15 Sending binary data using MTOM
	14.15.1 Creating a web service project and importing the WSDL
	Default mapping

	14.15.2 Generating the web service and client
	14.15.3 Implementing the JavaBean skeleton
	14.15.4 Testing and monitoring the MTOM-enabled web service
	14.15.5 How MTOM was enabled on the client

	14.16 JAX-RS programming model
	Resources
	Resource representations
	Uniform interface
	Statelessness
	Hypermedia as the Engine of Application State (HATEOAS)
	14.16.1 Implementation of JAX-RS in WebSphere Application Server
	14.16.2 JAX-RS project setup
	14.16.3 Exposing a JPA application as a RESTful service
	Testing the first implementation of CustomerResource
	Finishing the implementation of CustomerResource
	Mapping Account and Transaction to JSONObject
	Posting data
	Managing exceptions in JAX-RS
	Testing the completed JAX-RS application

	14.17 Web services security
	14.17.1 Authentication
	14.17.2 Message integrity
	14.17.3 Message confidentiality
	14.17.4 Policy set
	14.17.5 Applying WS-Security to a web service and client
	Sample bindings for JAX-WS applications
	Configuring the username token
	Attaching the Username WS-Security policy set to the web service
	Attaching the policy set to the web service client
	Testing the secured web service

	14.17.6 WS-I Reliable Secure Profile

	14.18 WS-Policy
	14.18.1 Configuring a service provider to share its policy configuration
	14.18.2 Configuring the client policy using a service provider policy

	14.19 WS-MetadataExchange (WS-MEX)
	14.20 Security Assertion Markup Language (SAML) support
	14.20.1 SAML assertions defined in the SAML Token Profile standard
	Subject confirmation methods

	14.20.2 SAML APIs
	14.20.3 SAML Bearer sample: Prerequisites
	14.20.4 SAML Bearer sample: Bindings
	14.20.5 SAML Bearer sample: Programmatic token generation
	14.20.6 SAML Bearer sample: Testing

	14.21 More information

	Chapter 15. Developing Open Services Gateway initiative (OSGi) applications
	15.1 OSGi overview
	15.1.1 OSGi architecture

	15.2 Introduction to OSGi bundles
	15.2.1 OSGi classloading
	15.2.2 Bundle manifest file
	15.2.3 Life cycle of a bundle
	15.2.4 Blueprint Container Specification
	15.2.5 Types of bundle archives
	15.2.6 Relationships among bundles, application archives, and composite archives

	15.3 Installation of the Feature Pack for OSGi
	15.4 Tools for OSGi application development
	15.5 Creating OSGi bundle projects
	15.5.1 Creating OSGi bundle projects
	15.5.2 Creating an OSGi application project
	15.5.3 Creating a composite bundle project
	15.5.4 Working with the Composite Bundle Manifest

	15.6 Developing OSGi applications
	15.6.1 API bundle
	15.6.2 Persistence bundle
	15.6.3 Business logic bundle
	15.6.4 Web interface bundle
	15.6.5 Application OSGi
	15.6.6 Deploying the OSGi application

	15.7 Further information

	Chapter 16. Developing Service Component Architecture (SCA) applications
	16.1 Introduction to SCA
	16.1.1 Concepts
	16.1.2 Runtime support

	16.2 SCA project creation or augmentation
	16.3 Developing a Java component from a WSDL interface
	16.3.1 Creating a composite
	16.3.2 Creating a component
	16.3.3 Implementing the Java component

	16.4 Creating a contribution to include the deployable composites
	16.5 Deploying the contribution to WebSphere Application Server
	16.6 Testing the services provided by the SCA application
	16.7 Wiring a component to a service on another component
	16.7.1 Creating a reference to an external Atom feed provider
	16.7.2 Exposing a service with an Atom binding
	16.7.3 Adding a contribution and testing the initial implementation
	16.7.4 Adding a second component to the composite
	16.7.5 Wiring the reference on one component to the service on the other component
	16.7.6 Using a property defined in a component and a composite
	16.7.7 Testing the implementation by exporting the contribution

	16.8 Reusing an existing Java EE application to create a component
	16.8.1 Explore the existing EAR
	16.8.2 Creating a new SCA Enhanced EAR file to hold the web project
	16.8.3 Creating a new SCA project with a contribution
	16.8.4 Testing the completed application

	16.9 Adding intents and policies
	16.10 More information

	Chapter 17. Developing Modern Batch jobs on computing grids
	17.1 Introduction to Modern Batch
	17.2 New Modern Batch job tools in Rational Application Developer
	17.3 Working with the Compute-Intensive sample
	17.3.1 Installing the sample
	17.3.2 Understanding the sample
	17.3.3 Deploying the sample
	17.3.4 Running the sample

	17.4 Overview of the Transactional batch capabilities
	17.4.1 Sequence diagram for the Transactional batch pattern
	17.4.2 Available patterns

	17.5 Additional information

	Part 5 Web application development
	Chapter 18. Developing web applications using JavaServer Pages (JSP) and servlets
	18.1 Introduction to Java EE web applications
	18.1.1 Java EE applications
	Enterprise applications
	Web applications
	Java EE web APIs
	JSP

	18.1.2 Model view controller pattern

	18.2 Web development tooling
	18.2.1 Web perspective and views
	18.2.2 Page Designer
	18.2.3 Page templates
	18.2.4 CSS Designer
	18.2.5 Security Editor
	18.2.6 File creation wizards

	18.3 Rational Application Developer new features
	18.4 RedBank application design
	18.4.1 Model
	18.4.2 View layer
	18.4.3 Controller layer

	18.5 Implementing the RedBank application
	18.5.1 Creating the web project
	18.5.2 Importing the Java RedBank model
	18.5.3 Defining the empty web pages
	Importing web resources for the RedBank application
	Defining the empty HTML pages
	Defining the empty JSP pages

	18.5.4 Creating frameset pages
	Creating an HTML frameset page
	Creating an HTML header for all web pages
	Creating an HTML footer for all web pages

	18.5.5 Customizing frameset web page areas
	Defining the areas in the frameset

	18.5.6 Customizing a style sheet
	18.5.7 Verifying the site navigation and page templates
	18.5.8 Developing the static web resources
	Creating the welcome.html page content (text and links)
	Creating the rates.html page content (tables)
	Importing the insurance.html page contents
	Importing the redbank.html page contents

	18.5.9 Developing the dynamic web resources
	Working with servlets
	Adding the RAD80Java JAR to the web project
	Adding the ListAccounts servlet to the web project
	Implementing the ListAccounts servlet
	Implementing the UpdateCustomer servlet
	Implementing the AccountDetails servlet
	Implementing the Logout servlet
	Implementing the PerformTransaction command classes
	Implementing the PerformTransaction servlet

	18.5.10 Working with JSP
	Implementing the List Accounts JSP
	Implementing the other JSP

	18.6 Web application testing
	18.6.1 Prerequisites to run the sample web application
	18.6.2 Running the sample web application
	18.6.3 Verifying the RedBank web application

	18.7 More information

	Chapter 19. Developing web applications using JavaServer Faces
	19.1 Introduction to JSF
	19.1.1 JSF 1.x features and benefits
	19.1.2 JSF 2.0 features and benefits
	Facelet usage
	Built-in Ajax support
	Annotation usage
	Creating templates
	New components
	Custom components

	19.1.3 JSF 2.0 application architecture
	19.1.4 JSF features in Rational Application Developer
	JSF Trace
	Integration of third-party JSF tag libraries
	Customizable data templates

	19.2 Developing a web application using JSF and JPA
	Structure of the JSF web application
	19.2.1 Setting up the ITSOBANK database
	Configuring the data source

	19.2.2 Creating the JSF Project
	19.2.3 Creating Facelet templates
	Creating the template
	Creating the header
	Creating the content area
	Creating the footer

	19.2.4 Creating Facelets
	19.2.5 Creating JPA Manager Beans
	Creating entities
	Editing the Customer entity
	Editing the Account entity

	19.2.6 Creating JPA page data
	Customer record
	Account list

	19.2.7 Editing the login page
	Adding UI components
	Adding validation
	Verifying the customer ID
	Adding navigation

	19.2.8 Editing the customer details page
	Displaying customer information
	Displaying account information
	Updating customer information

	19.2.9 Using Ajax
	19.2.10 Running the JSF application
	19.2.11 Final code

	19.3 More information

	Chapter 20. Developing web applications using Web 2.0
	20.1 Introduction to Web 2.0 architecture and development practices
	20.1.1 Web 2.0 architecture
	20.1.2 Technologies used in Web 2.0 applications
	Dojo: IBM Ajax toolkit of choice
	IBM JAX-RS: Building standard-based REST services
	JSON4J: Processing JSON with Java
	Ajax Proxy: Proxy solution implemented with Java
	IBM Web Messaging: Connecting the Ajax client to server-side events

	20.2 Overview of Web 2.0 tooling features
	20.2.1 JavaScript editing
	20.2.2 Dojo development
	20.2.3 Testing and debugging
	20.2.4 JAX-RS services development
	20.2.5 Using other server-side technologies

	20.3 Developing the Web 2.0 sample application
	20.3.1 Setting up the project
	20.3.2 Creating the web page
	20.3.3 Building a custom Dojo widget
	20.3.4 Adding to a page and testing a custom Dojo widget
	20.3.5 Adding a Dojo DataGrid to your web page

	Chapter 21. Developing portal applications
	21.1 Introduction to portal technology
	21.1.1 Portal concepts and definitions
	Portal page
	Portlet
	Portlet application
	Portlet states
	Portlet modes
	Portlet events

	21.1.2 IBM WebSphere Portal
	New features in WebSphere Portal V7.0

	21.1.3 Portal and portlet development features in Rational Application Developer
	Portal test environments
	Enabling the portal development capability

	21.1.4 Setting up Rational Application Developer with the Portal test environment

	21.2 Developing applications for WebSphere Portal
	21.2.1 Portal samples and tutorials
	21.2.2 Development strategy
	Choosing a portlet API: JSR 168, JSR 286, or IBM
	Deciding which API to use
	Choosing markup languages
	Choosing other frameworks

	21.2.3 Portal tools for developing portals
	Portal Import wizard
	New Portal Project wizard
	Portal Designer
	Skin and theme: Designing and editing

	21.3 New WebSphere portal and portlet development tools in Rational Application Developer
	21.3.1 Support for WebSphere Portal Server V7
	21.3.2 Site Designing Portlet
	21.3.3 New portlet project features
	21.3.4 RPC tooling for portlet projects

	21.4 Developing portal solutions using portal tools
	21.4.1 Developing event handling portlets
	Project setup
	Structure of the sample application
	Creating an event to connect the portlets
	Adding the event logic to the two portlets
	Deploying and running the event handling portlets
	Connecting the portlets
	Testing the application

	21.4.2 Creating Ajax and Web 2.0 portlets
	Ajax using JSR 286 resource serving
	Resource serving example
	Project setup
	Developing the Ajax code

	21.4.3 Deploying and running the application
	Testing the application

	21.4.4 Creating a portal site with the Site Designing Portlet feature
	Adding portlets to the site page
	Creating a wire

	21.4.5 Developing Dojo-based inter-portlet communication
	21.4.6 Consuming RPC adapter services
	21.4.7 Creating iWidget projects
	21.4.8 JPA tooling support for portlet projects
	Creating a new portlet project
	Establishing the database connection
	Creating JPA entities and Manager Beans
	Creating JPA Manager Beans
	JPA data consumption

	21.5 More information

	Chapter 22. Developing Lotus iWidgets
	22.1 Introduction to iWidgets
	22.1.1 Content
	22.1.2 Events and event descriptions
	22.1.3 Itemsets and items
	22.1.4 Resources

	22.2 Developing iWidgets in Rational Application Developer
	22.2.1 Accessing the tutorials and samples
	22.2.2 Configuring Rational Application Developer for iWidget development tools

	22.3 Working with the sample iWidget application
	22.3.1 Preparing the sample iWidget application
	22.3.2 Developing the sample iWidget application
	22.3.3 Testing the sample iWidget application
	22.3.4 Deploying into WebSphere Portal V7

	22.4 Additional resources
	22.4.1 Further information

	Part 6 Deploying, testing, profiling, and debugging applications
	Chapter 23. Cloud environment and server configuration
	23.1 Introduction to server configurations
	23.1.1 Application servers that are supported by Rational Application Developer
	23.1.2 Local and remote test environments

	23.2 Cloud extensions: Developing and testing applications on the IBM Smart Business, Development, and Test Cloud
	23.2.1 Installing IBM Rational Desktop Connection Toolkit for Cloud Environments
	Installing the cloud tooling

	23.2.2 Working with the IBM Development and Test Cloud
	Before you begin
	Generating key sets on the IBM Cloud
	Creating a WebSphere Application Server on the IBM Cloud
	Next steps

	23.2.3 Working with the Cloud Client for Eclipse
	Cloud views in the workbench
	Requesting resources on the cloud from the Cloud Client
	Before you begin
	What to do next

	23.2.4 Requesting instances from the web client
	23.2.5 Resources for additional information

	23.3 Understanding WebSphere Application Server v8.0 profiles
	23.3.1 Types of profiles
	23.3.2 Using the profiles
	Application server profile
	Deployment manager profile
	Custom profile

	23.4 WebSphere Application Server v8.0 Beta installation
	23.5 Using WebSphere Application Server profiles
	23.5.1 Creating a new profile using the WebSphere Profile wizard
	23.5.2 Deleting a WebSphere profile
	23.5.3 Defining the new server in Rational Application Developer
	Creating a server definition in Rational Application Developer
	Starting and stopping the server

	23.5.4 Customizing a server
	23.5.5 Sharing a WebSphere profile between developers
	Backing up the server configuration
	Restoring the server configuration

	23.5.6 Defining a server for each workspace

	23.6 Migrating the server resources from Rational Application Developer V7.0 or V7.5 to V8.0
	23.7 Adding and removing applications to and from a server
	23.7.1 Adding an application to the server
	23.7.2 Removing an application from a server
	Removing an application using Rational Application Developer
	Removing an application using the administrative console

	23.8 Configuring application and server resources
	23.8.1 Creating a data source in the Enhanced EAR editor
	23.8.2 Setting the substitution variable
	23.8.3 Configuring server resources

	23.9 Configuring security
	23.9.1 Configuring security in the server
	23.9.2 Configuring security in the workbench

	23.10 AJAX Test Server
	23.10.1 Configuring the AJAX Test Server
	23.10.2 Configuring the AJAX Proxy

	23.11 Developing automation scripts
	23.12 Tips: Enhancing server interaction performance
	23.12.1 Speeding up server start time
	23.12.2 Speeding up application publishing time

	23.13 More information

	Chapter 24. Building applications with Apache Ant
	24.1 Introduction to Ant
	24.1.1 Ant build files
	24.1.2 Ant tasks

	24.2 Ant features in Rational Application Developer
	24.2.1 Preparing for the sample
	24.2.2 Creating a build file
	24.2.3 Project definition
	24.2.4 Global properties
	24.2.5 Building targets
	Initialization target (init)
	Compilation target (compile)
	Distribution target (dist)
	Cleanup target (clean)

	24.2.6 Content assist
	24.2.7 Code snippets
	Creating code snippets
	Using code snippets

	24.2.8 Formatting an Ant script
	24.2.9 Defining the format of an Ant script
	24.2.10 Problems view

	24.3 New Ant features in Rational Application Developer
	24.3.1 SCA Ant task
	24.3.2 OSGi Ant tasks
	24.3.3 Other new Ant tasks
	prepForDeploy task
	XML Catalog task

	24.4 Building a Java EE application
	24.4.1 Java EE application deployment packaging
	24.4.2 Preparing for the sample
	24.4.3 Creating the build script
	EJB specification level

	24.4.4 Running the Ant Java EE application build

	24.5 Running Ant outside of Rational Application Developer
	24.5.1 Preparing for the headless build
	24.5.2 Running the headless Ant build script

	24.6 Using the Rational Application Developer Build Utility
	24.6.1 Overview of the build utility
	24.6.2 Example of using the build utility
	Creating the build file (BUbuild.xml)
	Creating the command file for execution

	24.7 More information about Ant

	Chapter 25. Deploying enterprise applications
	25.1 Introduction to application deployment
	25.1.1 Common deployment considerations
	25.1.2 Java EE application components and deployment modules
	Application component types
	Deployment modules
	Packaging formats

	25.1.3 Deployment descriptors
	Deployment descriptors in Java EE 6
	Deployment descriptor editors

	25.1.4 WebSphere deployment architecture
	WebSphere profiles
	WebSphere enhanced EAR features
	WebSphere Rapid Deployment

	25.1.5 Java and WebSphere class loader
	Java class loader
	WebSphere class loader

	25.2 Preparing for the EJB application deployment
	25.2.1 Reviewing the deployment scenarios
	25.2.2 Installing the prerequisite software
	25.2.3 Importing the sample application archive files
	25.2.4 Sample database

	25.3 Packaging the application for deployment
	25.3.1 Removing the enhanced EAR data source
	25.3.2 Generating the deployment code
	25.3.3 Exporting the EAR files

	25.4 Manual deployment of enterprise applications
	25.4.1 Configuring the data source in the application server
	Starting the application server
	Starting the administrative console
	Creating the JDBC driver variable
	Configuring the JDBC provider
	Creating the data source

	25.4.2 Installing the enterprise applications
	25.4.3 Starting the enterprise applications
	25.4.4 Verifying the application after manual installation
	25.4.5 Uninstalling the application

	25.5 Automated deployment using Jython-based wsadmin scripting
	25.5.1 Overview of wsadmin
	25.5.2 Overview of Jython
	Structure of a Jython script

	25.5.3 Developing a Jython script to deploy the ITSO Bank
	Creating a Jython project and script
	Defining the global variables
	Creating a JDBC provider
	Creating a data source
	Modifying the data source with properties
	Using the data source in container-managed persistence
	Installing the enterprise applications
	Starting the enterprise applications

	25.5.4 Executing the Jython script
	25.5.5 Verifying the application after automatic installation
	25.5.6 Generating WebSphere admin commands for Jython scripts
	25.5.7 Debugging Jython scripts

	25.6 More information

	Chapter 26. Testing using JUnit
	26.1 Introduction to application testing
	26.1.1 Test concepts
	26.1.2 Test phases
	Unit test
	Component test
	Build verification test
	Function verification test
	System verification test
	Performance test
	Customer acceptance test

	26.1.3 Test environments
	26.1.4 Calibration
	26.1.5 Test case execution and recording results
	26.1.6 Benefits of unit and component testing
	26.1.7 Benefits of testing frameworks

	26.2 JUnit testing without TPTP
	26.2.1 JUnit fundamentals
	26.2.2 Test and Performance Tools Platform (TPTP)
	26.2.3 New in JUnit 4
	Test case class
	JUnit assert class
	Test suite class

	26.3 Preparing the JUnit sample
	26.3.1 Creating a JUnit test case
	Creating a JUnit test case
	Completing the test class
	Completing the test methods

	26.3.2 Creating a JUnit test suite
	26.3.3 Running the JUnit test case or JUnit test suite
	Modifying and running the JUnit test case with assert failures

	26.3.4 Launching individual test methods
	26.3.5 Using the JUnit view

	26.4 JUnit testing of JPA entities
	26.4.1 Preparing the JPA unit testing sample
	26.4.2 Setting up the ITSOBANK database
	26.4.3 Configuring the RAD8JUnit project
	26.4.4 Creating a JUnit test case for a JPA entity
	26.4.5 Setting up the persistence.xml file
	26.4.6 Running the JPA unit test

	26.5 JUnit testing using TPTP
	Creating the TPTP JUnit sample
	Creating a new package
	Creating a TPTP JUnit test manually
	Importing an existing JUnit test case
	26.5.1 Running the TPTP JUnit test
	26.5.2 Analyzing the test results
	Generating test reports

	26.6 Web application testing
	26.6.1 Preparing for the sample
	Creating a Java project

	26.6.2 Recording a test
	26.6.3 Editing the test
	26.6.4 Generating an executable test
	26.6.5 Running the test
	26.6.6 Analyzing the test results
	26.6.7 Generating test reports
	HTTP Page Response Time report
	HTTP Page Hit Rate report

	26.7 Cleaning the workspace

	Chapter 27. Profiling applications
	27.1 Introduction to profiling
	27.1.1 Profiling features
	Basic memory analysis
	Execution-time analysis
	Thread analysis
	Probekit analysis

	27.1.2 Profiling architecture
	27.1.3 Profiling and Logging perspective

	27.2 Preparing for the profiling sample
	27.2.1 Installing the prerequisite software
	27.2.2 Enabling the Profiling and Logging capability

	27.3 Profiling a Java application
	27.3.1 Importing the sample project archive file
	27.3.2 Creating a profiling configuration
	27.3.3 Running the EntityTester application
	27.3.4 Analyzing profiling data
	27.3.5 Execution statistics
	Call Tree
	Method Invocation Details
	Method Invocation

	27.3.6 Execution flow
	27.3.7 UML sequence diagrams
	27.3.8 Memory analysis
	27.3.9 Thread analysis
	27.3.10 Reports
	27.3.11 Cleanup

	27.4 Profiling a web application running on the server
	27.4.1 Importing the sample project archive file
	27.4.2 Setting up environment variables to profile a server
	27.4.3 Publishing and running the sample application
	27.4.4 Starting the server in profiling mode
	27.4.5 Running the sample application to collect profiling data
	Pause monitoring

	27.4.6 Statistics views
	27.4.7 Execution statistics
	Method invocation details

	27.4.8 Execution flow
	27.4.9 UML sequence diagrams
	27.4.10 Refreshing the views and resetting data
	27.4.11 Ending the profiling session
	27.4.12 Profile on server: Memory and thread analysis
	Running the sample application
	Displaying memory and thread analysis

	27.5 More information

	Chapter 28. Debugging local and remote applications
	28.1 Introducing Rational Application Developer new features
	28.2 Reviewing Rational Application Developer debugging tools
	28.2.1 Supported languages and environments
	28.2.2 Java debugging features
	Views within the Debug perspective
	Debug functions
	The Show Running Threads filter
	Enabling and disabling Step Filter in the Debug view
	Drop-to-Frame feature

	28.2.3 XSLT debugging
	28.2.4 Stored procedure debugging for DB2 V9
	28.2.5 Service Component Architecture debugger
	28.2.6 Java tracepoints
	28.2.7 Collaborative debugging using Rational Team Concert client

	28.3 Debugging a web application on a local server
	28.3.1 Importing the sample application
	28.3.2 Running the sample application in debug mode
	28.3.3 Setting breakpoints in a Java class
	28.3.4 Using the Debug perspective
	28.3.5 Watching variables
	28.3.6 Evaluating and watching expressions
	28.3.7 Using the Display view
	28.3.8 Working with breakpoints
	28.3.9 Setting breakpoints in JSP
	28.3.10 Debugging JSP

	28.4 Debugging a web application on a remote server
	28.4.1 Removing the WebSphere configuration from the workspace
	28.4.2 Configuring debug mode to start on a remote WebSphere Application Server V8 Beta
	28.4.3 Attaching to the remote WebSphere Application Server in Rational Application Developer
	28.4.4 Debugging a remote application

	28.5 Using the Jython debugger
	28.5.1 Considerations for the Jython debugger
	28.5.2 Debugging a sample Jython script

	28.6 Using the JavaScript debugger
	28.6.1 Setting the default browser to Firefox
	28.6.2 JavaScript debugging
	Importing the sample application
	Running the sample Ajax Test Server
	Debugging the JavaScript sample

	28.7 Using Dojo Debug Extension for Firebug
	28.7.1 Launching the Dojo Debugger
	28.7.2 Exploring the All widgets view
	28.7.3 Exploring the All connections view
	28.7.4 Exploring the All Subscriptions view
	28.7.5 Exploring the Info side panel

	28.8 Using the debug extension for the Rational Team Concert client (Team Debug)
	28.8.1 Supported environments
	28.8.2 Prerequisites
	28.8.3 Sharing a Java application debug session by transferring it to another user

	28.9 Obtaining more information

	Part 7 Management and team development
	Chapter 29. Concurrent Versions System (CVS) integration
	29.1 Introduction to CVS
	29.1.1 CVS features
	29.1.2 CVS support within Rational Application Developer

	29.2 Configuring the CVS client for Rational Application Developer
	29.2.1 CVS Server Installation
	29.2.2 Configuring the CVS team capabilities
	29.2.3 Accessing the CVS repository

	29.3 Configuring CVS in Rational Application Developer
	29.3.1 Label decorations
	29.3.2 File content
	29.3.3 Ignored resources
	29.3.4 CVS-specific settings
	29.3.5 CVS keyword substitution

	29.4 Development scenario
	29.4.1 Creating and sharing the project (step 1, cvsuser1)
	Adding a CVS repository
	Creating a project and servlet
	Adding the project to the repository

	29.4.2 Adding a shared project to the workspace (step 2a, cvsuser2)
	Developing the view bean
	Synchronizing with the repository

	29.4.3 Modifying the servlet (step 2b, cvsuser1)
	29.4.4 Synchronizing with the repository (step 3a, cvsuser1)
	29.4.5 Synchronizing with the repository (step 3b, cvsuser2)
	29.4.6 Parallel development (step 4, cvsuser1 and cvsuser2)
	User cvsuser1 updating and committing changes
	User cvsuser2 updating and committing changes
	User cvsuser1 synchronizing

	29.4.7 Creating a version (step 5, cvsuser1)

	29.5 CVS resource history
	29.6 Comparisons in CVS
	29.6.1 Comparing a workspace file with the repository
	29.6.2 Comparing two revisions in the repository

	29.7 Annotations in CVS
	29.8 Branches in CVS
	29.8.1 Branching
	Refreshing branching information
	Updating branch code

	29.8.2 Merging

	29.9 Working with patches
	29.10 Disconnecting a project
	Reconnect

	29.11 Team Synchronizing perspective
	29.11.1 Custom configuration of resource synchronization
	29.11.2 Schedule synchronization

	29.12 More information

	Chapter 30. IBM Rational Application Developer integration with Rational Team Concert
	30.1 System architecture
	30.2 Installing Rational Team Concert Client into the Rational Application Developer workbench
	30.2.1 Installing Rational Team Concert Client 3.0 into the same workbench as Rational Application Developer
	30.2.2 Installing Rational Team Concert Client 2.0.0.2 into the Rational Application Developer workbench

	30.3 Collaborative Code Coverage
	30.3.1 Configuring a build definition
	30.3.2 Creating an Ant build script to generate coverage statistics
	Setting up the Ant build script
	Generating baseline and probescript files
	Running the application and generating statistics
	Generating HTML reports
	Publishing results to the Rational Team Concert server

	30.3.3 Viewing coverage statistics in Rational Application Developer

	30.4 Collaborative Debug
	30.4.1 Installing the Collaborative debug extensions for Rational Team Concert Client
	30.4.2 Installing Rational Debug Extension for IBM Rational Team Concert Server
	30.4.3 Using Collaborative Debug
	Transferring the debug session to another online user
	Parking the debug session
	Taking control of a team debug session
	Loading a team debug session

	Chapter 31. IBM Rational ClearCase
	31.1 Rational Application Developer team support
	31.1.1 Team preferences
	31.1.2 Team context menu
	31.1.3 Derived files and folders

	31.2 Integrating Rational Application Developer with ClearCase
	31.2.1 ClearCase terminology

	31.3 ClearCase SCM Adapter
	31.3.1 Installing ClearCase SCM Adapter
	31.3.2 Connecting to ClearCase with the SCM Adapter
	31.3.3 ClearCase SCM Adapter preferences
	31.3.4 Clearcase SCM Adapter and dynamic views

	31.4 ClearCase Remote Client
	31.4.1 Connecting to ClearCase with the ClearCase Remote Client
	31.4.2 ClearCase Remote Client preferences
	31.4.3 ClearCase Remote Client menus
	31.4.4 ClearCase Explorer perspective
	31.4.5 ClearCase Remote Client decorators

	31.5 ClearCase views and Rational Application Developer workspaces
	31.6 Populating Rational Application Developer workspaces: Using Team Project Set files
	31.7 Working in Base ClearCase with SCM Adapter and dynamic views
	31.7.1 Prerequisites
	31.7.2 Project setup
	31.7.3 Making an unreserved checkout to work on the same file
	31.7.4 Merging changes

	31.8 Working in ClearCase UCM with ClearCase Remote Client
	31.8.1 Prerequisites
	31.8.2 Connecting to the ClearCase Change Management Server and joining a UCM project
	31.8.3 Initiating work in the development view or stream
	31.8.4 Delivering activities to the integration stream
	31.8.5 Reviewing the results and creating a new baseline
	31.8.6 A new user joins the project
	31.8.7 Another user modifies the same project

	31.9 More information

	Chapter 32. Code Coverage
	32.1 Overview
	32.1.1 Instrumentation
	32.1.2 Basic blocks versus executable units

	32.2 Generating coverage statistics in Rational Application Developer
	32.2.1 Viewing results in the Package Explorer
	32.2.2 Viewing results in the Java Editor

	32.3 Generating reports
	32.3.1 Workbench reports
	32.3.2 HTML reports

	32.4 Generating statistics outside of the workbench
	32.4.1 Static instrumentation
	Instrumentation
	Execution

	32.4.2 Dynamic instrumentation
	Generating the probescript and baseline files
	Execution

	32.4.3 Report generation

	32.5 Coverage report comparison
	32.5.1 Generating a coverage comparison report in Rational Application Developer
	32.5.2 Generating coverage comparison report with Ant

	32.6 Importing the coverage data statistics file
	32.7 Generating statistics for web applications
	32.7.1 Support for WebSphere Application Server
	32.7.2 Generic application server support

	32.8 Rational Team Concert integration

	Chapter 33. Developing Session Initiation Protocol applications
	33.1 Introduction to SIP
	33.1.1 SIP 1.1 specification
	33.1.2 Converged SIP applications
	33.1.3 SIP 1.1 annotations
	33.1.4 SIP application packaging

	33.2 Developing a SIP application
	33.2.1 SIP tooling overview
	33.2.2 Sample application overview
	33.2.3 Setting up the project
	33.2.4 Implementing the classes
	33.2.5 SIP deployment descriptor
	33.2.6 Preparing for deployment
	33.2.7 Deploying SIP from Rational Application Developer

	33.3 Testing the SIP 1.1 application
	33.3.1 Test environment
	33.3.2 Running the application

	33.4 SIP-specific annotations in SIP 1.1 applications
	33.5 More information

	Part 8 Appendixes
	Appendix A. Installing the products
	Download locations
	Installation Launchpad
	IBM Installation Manager
	Installing Rational Application Developer
	Installing IBM WebSphere Application Server V7
	Installing WebSphere Application Server V8 Beta
	Creating a Profile for WebSphere Application Server V8 Beta
	Installing the license for Rational Application Developer
	Updating Rational Application Developer
	Uninstalling Rational Application Developer
	Rational Desktop Connection Toolkit for Cloud Environments

	Installing WebSphere Portal V7
	Installing WebSphere Portal V7
	Adding WebSphere Portal V7 to Rational Application Developer
	Optimizing the WebSphere Portal Server for development
	Verifying development mode
	Defining remote servers for testing portals
	Defining page creation settings
	Enabling the debugging service
	Stopping the server

	Installing IBM Rational Team Concert
	Installing Rational Team Concert Standard Edition server
	Running the setup wizard

	Installing Rational Team Concert Build Engine and Build Toolkit
	Installing the client and the debug extensions
	Rational Team Concert client
	Rational Team Concert Server Debug Extension
	Verifying the installation of the server debug extensions
	Rational Team Concert Server Code Coverage extension

	Installing Rational Application Developer Build Utility
	Installing IBM Rational ClearCase
	Creating a Storage Location
	Creating a VOB for use in Base ClearCase
	Creating a dynamic view

	Installing IBM Rational ClearCase Remote Client Extension
	Verifying the installation

	Configuring ClearCase for UCM development

	Appendix B. Performance tips for Rational Application Developer
	Better hardware
	Shared EARs (binary modules)
	Annotations
	Publishing
	Shorter build time by tuning validation
	Only install what you need
	No circular dependencies
	Using a remote test server
	Tuning your anti-virus program
	Defragmenting disks

	Appendix C. Additional material
	Locating the web material
	Accessing the web material
	System requirements for downloading the web material

	Using the sample code
	Unpacking the sample code
	Description of the sample code

	Importing sample code from a project archive file
	Setting up the ITSOBANK database
	Derby
	DB2

	Configuring the data source in WebSphere Application Server
	Starting the WebSphere Application Server
	Configuring the environment variables
	Configuring J2C authentication data
	Configuring the JDBC provider
	Creating the data source

	Abbreviations and acronyms
	Related publications
	IBM Redbooks publications
	Other publications
	Online resources
	How to get IBM Redbooks publications
	Help from IBM

	Back cover

