
ibm.com/redbooks

Front cover

IBM System z
Personal Development Tool
Volume 1 Introduction and Reference

Bill Ogden

System z Development Tool

Full z/OS usage

Linux base

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

IBM System z Personal Development Tool: Volume 1
Introduction and Reference

June 2013

SG24-7721-05

© Copyright International Business Machines Corporation 2009, 2013. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Sixth Edition (June 2013)

This edition applies to the IBM 1090 system (known as zPDT) that is available at the time of publication,
corresponding to Version 1 Release 4 fixpack 1.

Note: Before using this information and the product it supports, read the information in “Notices” on
page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
The author . ix
Now you can become a published author, too! . ix
Comments welcome. .x
Stay connected to IBM Redbooks .x

Chapter 1. Introduction. 1
1.1 1090 and 1091 differences . 2
1.2 What is new (Version 1 Release 4 plus fixpack 1) . 4
1.3 What is new (Version 1 Release 3) . 5

1.3.1 Version 1 Release 2 . 6
1.4 Terminology . 7
1.5 1090 hardware token . 8

1.5.1 Concurrent PC workloads . 9
1.6 zPDT functions . 9

1.6.1 Emulated I/O . 10
1.7 Operational overview . 12

1.7.1 Linux userids. 12
1.7.2 zPDT instances. 12
1.7.3 Small system example . 13
1.7.4 1090 console. 14
1.7.5 Performance . 14

Chapter 2. Base configurations . 17
2.1 zPDT base configurations . 18
2.2 Hardware and software levels . 18
2.3 zPDT releases summary. 20
2.4 Using older System z architectures. 23
2.5 SCSI adapters. 23

Chapter 3. zPDT components . 25
3.1 zPDT elements . 26

3.1.1 Memory . 26
3.1.2 Disk space . 27
3.1.3 LAN adapters . 27

3.2 Device managers . 28
3.3 Device maps . 29
3.4 Directory structure. 29
3.5 1090 control structure . 31

Chapter 4. Reference . 33
4.1 Device maps . 34
4.2 System stanza. 34

4.2.1 Adjunct-processor stanza . 38
4.3 Manager stanzas. 38

4.3.1 The awsckd device manager . 40
© Copyright IBM Corp. 2009, 2013. All rights reserved. iii

4.3.2 The awsfba device manager . 40
4.3.3 The aws3274 device manager . 40
4.3.4 The awstape device manager. 42
4.3.5 The awsosa device manager . 43
4.3.6 The awsrdr device manager . 44
4.3.7 The awsprt device manager . 45
4.3.8 The awscmd device manager . 46
4.3.9 The awsscsi device manager . 47
4.3.10 The aws3215 device manager . 47
4.3.11 The awsoma device manager . 47
4.3.12 The awsctc device manager . 48

4.4 zPDT commands. 49
4.4.1 adstop . 49
4.4.2 The alcckd command . 50
4.4.3 The alcfba command . 51
4.4.4 The ap_create command . 52
4.4.5 The ap_query command . 52
4.4.6 The ap_von and ap_voff commands. 53
4.4.7 The ap_vpd command . 53
4.4.8 The ap_zeroize command . 53
4.4.9 The attn command . 54
4.4.10 The aws_bashrc and aws_sysctl commands . 54
4.4.11 The awsckmap command . 54
4.4.12 The awsin command. 55
4.4.13 The awsmount command . 55
4.4.14 The awsstart command. 57
4.4.15 The awsstat command . 57
4.4.16 The awsstop command. 58
4.4.17 The card2tape command . 58
4.4.18 The card2txt command . 59
4.4.19 The ckdPrint command . 59
4.4.20 The clientconfig command . 60
4.4.21 The clientconfig_authority command . 60
4.4.22 The cpu command . 60
4.4.23 The d command . 61
4.4.24 The fbaPrint command . 62
4.4.25 The find_io command . 62
4.4.26 The hckd2ckd, hfba2fba, and htape2tape commands . 63
4.4.27 The interrupt command. 64
4.4.28 The ipl command . 64
4.4.29 The ipl_dvd command. 65
4.4.30 The listVtoc command . 65
4.4.31 The loadparm command . 66
4.4.32 The managelogs command . 66
4.4.33 The memld command . 67
4.4.34 The mount_dvd command . 67
4.4.35 The msgInfo command . 67
4.4.36 The oprmsg command . 68
4.4.37 The pdsUtil command . 68
4.4.38 The query command . 70
4.4.39 The rassummary command . 70
4.4.40 The ready command . 71
4.4.41 The restart command . 71
iv IBM System z Personal Development Tool: Volume 1 Introduction and Reference

4.4.42 The scsi2tape command. 71
4.4.43 The SecureUpdateUtility command . 72
4.4.44 The SecureUpdate_authority command . 73
4.4.45 The senderrdata command. 73
4.4.46 The settod command . 74
4.4.47 The snapdump command . 75
4.4.48 The st command . 75
4.4.49 The start command . 76
4.4.50 The stop command . 76
4.4.51 The storestatus command . 77
4.4.52 The storestop command . 77
4.4.53 The sys_reset command. 78
4.4.54 The tape2file command . 78
4.4.55 The tape2scsi command. 78
4.4.56 The tape2tape command . 79
4.4.57 The tapeCheck command. 80
4.4.58 The tapePrint command . 80
4.4.59 The token command . 81
4.4.60 The txt2card command . 81
4.4.61 The uimcheck command. 81
4.4.62 The uimreset command . 81
4.4.63 The uimserverstart command . 82
4.4.64 The uimserverstop command . 82
4.4.65 The z1090instcheck command . 82
4.4.66 The z1090term command . 83
4.4.67 The z1090ver and z1091ver command. 83
4.4.68 The zpdtSecureUpdate command . 83
4.4.69 Command summary . 84

Chapter 5. Frequently asked questions . 85

Related publications . 91
IBM Redbooks . 91
Other publications . 91
How to get Redbooks. 91
Help from IBM . 91

Index . 93
 Contents v

vi IBM System z Personal Development Tool: Volume 1 Introduction and Reference

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2009, 2013. All rights reserved. vii

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. These and other IBM trademarked terms are
marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

CICS®
DB2®
ESCON®
IBM®
IMS™
MVS™
PartnerWorld®

Redbooks®
Redbooks (logo) ®
Resource Link™
S/390®
System x®
System z®
VTAM®

xSeries®
z/Architecture®
z/OS®
z/VM®
z/VSE™
z10™

The following terms are trademarks of other companies:

Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

LTO, the LTO Logo and the Ultrium logo are trademarks of HP, IBM Corp. and Quantum in the U.S. and other
countries.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

AMD, the AMD Arrow logo, and combinations thereof, are trademarks of Advanced Micro Devices, Inc.

Red Hat, and the Shadowman logo are trademarks or registered trademarks of Red Hat, Inc. in the U.S. and
other countries.

Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
viii IBM System z Personal Development Tool: Volume 1 Introduction and Reference

http://www.ibm.com/legal/copytrade.shtml

Preface

This IBM® Redbooks® publication introduces the IBM System z® Personal Development
Tool (zPDT), which runs on an underlying Linux system based on an Intel processor. zPDT
provides a System z system on a PC capable of running current System z operating systems,
including emulation of selected System z I/O devices and control units. It is intended as a
development, demonstration, and learning platform and is not designed as a production
system.

This book, providing an introduction, is the first of three volumes. The second volume
describes the installation of zPDT (including the underlying Linux, and a particular z/OS®
distribution) and basic usage patterns. The third volume discusses more advanced topics that
may not interest all zPDT users. The IBM order numbers for the three volumes are
SG24-7721, SG24-7722, and SG24-7723. An additional volume (SG24-7859) describes the
use of zPDT in a Parallel Sysplex configuration.

The systems discussed in these volumes are complex, with elements of Linux (for the
underlying PC machine), z/Architecture® (for the core zPDT elements), System z I/O
functions (for emulated I/O devices), and z/OS (providing the System z application interface),
and possibly with other System z operating systems. We assume the reader is familiar with
general concepts and terminology of System z hardware and software elements and with
basic PC Linux characteristics.

The author
This series of IBM Redbooks publications was produced by the zPDT development team, with
assistance from many other people.

Bill Ogden is a retired Senior Technical Staff Member at the International Technical Support
Organization, Poughkeepsie. He enjoys working with new mainframe users and entry-level
systems.

The following people have contributed substantially to this project:

Keith VanBenschoten, IBM Poughkeepsie, was very helpful in establishing installation and
startup processes for the 1090 and in providing test systems.

Theodore Bohizic, IBM Poughkeepsie, helped us understand command, design, and
internal details.

Now you can become a published author, too!

Join us for a two- to six-week residency program! Help write a book dealing with specific
products or solutions, while getting hands-on experience with leading-edge technologies. You
will have the opportunity to team with IBM technical professionals, Business Partners, and
Clients.

Your efforts will help increase product acceptance and customer satisfaction. As a bonus, you
will develop a network of contacts in IBM development labs, and increase your productivity
and marketability.
© Copyright IBM Corp. 2009, 2013. All rights reserved. ix

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
x IBM System z Personal Development Tool: Volume 1 Introduction and Reference

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

Chapter 1. Introduction

The IBM System z Personal Development Tool provides one or more System z processors
(with several emulated I/O device types), based on a personal computer Linux environment.
As the name implies, it is intended for development and related purposes, such as education
and demonstrations. It lacks the RAS1 and flexibility of a larger System z machine and is not
intended or licensed for production use.

The IBM machine type identified with the System z Personal Development Tool is 1090.2
System z operating systems detect machine type 1090, which is used for various ordering
purposes. The IBM System z Personal Development Tool is often referenced as zPDT or a
1090 system. We use zPDT and 1090 as synonyms throughout this documentation.

IBM has long encouraged the use of several very small S/390®3 environments for use by the
IBM development community4, and these have proven extremely useful. The zPDT offering
provides a number of functions that extend the usefulness of very small System z
development machines; these include the following:

� Large System z memory
� Full 64-bit System z operation
� QDIO channel operation for OSA-Express2 functions
� The more recent instructions that have been added to System z processors
� SCSI-attached tape drives, plus conversion utilities
� zAAP, zIIP, and IFL processors
� Simple installation and operation
� Cryptographic adapter functions
� Channel-to-channel (CTC) operations
� Coupling Facility functions
� Provision for HMC-like consoles

1

1 Reliability, Availability, Support
2 The version used with the RDzUT and RD&Tproducts is machine type 1091. There is no significant technical

difference between the 1090 and 1091. This series of documents discusses the 1090, but the details apply to both
versions.

3 The reference to S/390 is for the historical context of this paragraph.
4 In this context we primarily refer to the IBM PartnerWorld® for Developers organization (previously known as

Partners in Development).
© Copyright IBM Corp. 2009, 2013. All rights reserved. 1

Providing these functions does not produce an environment equal to a larger System z, of
course. Some aspects of a larger system are unlikely to be met in any very small
environment; these include the ability to verify and enhance the scalability of a program under
development, run application programs that require many hundreds of MIPS, exploit
cross-LPAR functions, or use unique HMC/SE-related interfaces. A larger System z is needed
for these areas of development. Likewise, a zPDT system is not advised for very fine-level
performance tuning that is sensitive to memory location, cache functions, and pipeline
optimization; larger System z machines have different characteristics than zPDT at this level.

The basic zPDT function consists of the zPDT software (processor functions, device
emulators, utilities) and a hardware key device (“token”) that is accessed in a USB port.5 The
hardware key determines the zPDT model that is used. The hardware key must be present (in
a USB port) when zPDT is being used, but may be removed at other times. The System z
architecture levels involved are indicated in Table 1-1.

Table 1-1 System z architecture levels

Three standard1090 models are available: L01, L02, and L03.6 The model number indicates
the number of System z CPs that may be defined and used by the 1090.7 In most cases, the
underlying Linux PC (that is used to install and run the 1090 system) should have at least one
more PC core than the number of zPDT CPs used in the largest zPDT instance. At the time of
writing, the standard 1091 token is equivalent to an L03 model.

The base Linux machine used for the zPDT must have sufficient memory. No specific size is
required, but 8 GB should be regarded as a practical minimum and most zPDT systems have
considerably more memory than this. Disk space is needed for emulated 3390 (or 3380 or
FBA) volumes and a typical zPDT base machine will have at least 100 GB of disk space.

1.1 1090 and 1091 differences

The zPDT package available to Independent Software Vendors (ISVs) and for IBM internal
use requires a 1090 token. It will not function with a 1091 token. All zPDT functionality is
enabled with a 1090 token except that tokens larger than an L03 (three licenses) may not be
used.8

The zPDT package available through RD&T, RDzUT, and other channels, requires a 1091
token and will not function with a 1090 token. Certain zPDT functionality is not available in a
base 1091 system, but may be enabled through additional license features. These selected
functions include Coupling Facility functions, the use of z/VM, and the use of 1091 tokens with

5 It is possible to use a license server located in a remote Linux system instead of a 1090 or 1091 token in a local
USB port. This is described in detail in the third document in this series (SG24-7723).

Release date zPDT release zPDT build level z Architecture

2009, 2010 V1R1 “GA1” 39.xx z800, z900

2011 V1R2 “GA2” 41.xx z10

2012 V1R3 “GA3” 43.xx z192

2013
fixpack May 2013

V1R4 “GA4.1”
GA4+fixpack”

45.xx EC 12

6 The L03 version is standard for many RDzUT and RD&T customers.
7 For this purpose, zAAPs, zIIPs, and IFLs are considered to be CPs. A 1090-L03, for example, can provide a

maximum of three CPs+zIIPs+zAAPs+IFLs. Coupling Facilities (available only under z/VM) are not included in this
count.

8 However, more than one L03 1090 token may be used to provide more than three zPDT licenses.
2 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

more than three licenses. In addition, the more generalized IBM Rational License manager
may be used in conjunction with a 1091 token. In all zPDT technical aspects the resulting
zPDT usage is the same as it would be if using a 1091 token.

The license terms and conditions for the two packages are quite different (Table 1-2). License
terms and conditions are not addressed in this series of publications. You must talk with an
IBM marketing representative for details.

Table 1-2 1090 and 1091 comparisons

The differences, at the time of writing, between a 1090 and a 1091 system are summarized in
Table 1-2.

The two packages (for 1090 and for 1091) are distributed separately. Each of the packages
contains the following:

� Two support modules for the USB key. These are the same modules for both 1090 and
1091 tokens.

� Two zPDT builds: one for a Red Hat base and one for a SUSE base. (Specific Linux
release levels are discussed in “Base configurations” on page 17.) The correct build is
automatically selected when zPDT is installed.

The different versions for SUSE and Red Hat are due to slightly different libraries on the two
distribution bases. Both are 64-bit programs and must run in a complete 64-bit environment.

1090 (ISV usage) 1091 (RD&T, RDzUT usage)

1090 token only; 1091 token not usable 1091 token only; 1090 token not usable

Maximum of 8 CPs (with multiple tokens) Standard maximum of 3 CPs; up to 8 with
additional license feature

Coupling Facility usage (under z/VM) Coupling Facility usage (under z/VM) only with
additional license feature

1, 2, or 3 licenses in token. No way to order larger
tokens.

3 license token standard; larger tokens available
with special orders

Installed rpm name is z1090 Installed rpm name is z1091

z1090 rpm and z1091 rpm cannot be installed on the same machine

z1090ver command z1091ver command

“standard” z/OS AD-CD system slightly modified z/OS AD-CD system

Other than the z1090ver and z1091ver commands, all other zPDT commands and functions are
identical and may contain “1090” as part of the name. Documentation referencing 1090 also applies
to 1091 except as noted here.

Generalized RDz license manager may not be
used

Generalized RDz license manager may be used
(details from RDz)

A remote zPDT license manager and identity manager may be used. This is not the same as the
generalized RDz license manager.

Functional modules are installed in /usr/z1090/bin with additional materials in /usr/z1090/man and
/usr/z1090/uim. zPDT instance files are created in a subdirectory named z1090 in the Linux userid
home directory. There is no /usr/z1091 or ~/z1091 usage.

z/VSE available (with proper license) z/VSE not available
Chapter 1. Introduction 3

Other than the limitations mentioned here, the zPDT functionality is the same for 1090 and
1091 tokens. This series of documentation usually addresses 1090 tokens, but the details
also apply to 1091 tokens.

1.2 What is new (Version 1 Release 4 plus fixpack 1)

The current release, at the time of writing, is Version 1 Release 4 plus a “fixpack” released in
May 2013 and is sometimes referenced as the GA4.1 release. This release includes the
following changes:

� The relevant instruction set for the System z EC 12 processor is included. This is a major
change for the base zPDT element. This includes significant new EC 12 functions:

– Transaction Execution Facility
– Runtime Instrumentation Facility
– Decimal Format Conversion
– 2 GB Page Frames
– The flash memory function of EC 12 systems is not provided by zPDT at this time.

� 1090 and 1091 tokens may no longer be used interchangeably. A 1090 token works only
with the zPDT package intended for 1090 tokens, and a 1091 token works only with the
zPDT package intended for 1091 tokens. The IBM Rational license manager may be used
in place of a 1091 token.

� Tokens with more than 3 zPDT licenses may be used with 1091 systems that are enabled
for such usage.

� Two general virtualized environments may be used with zPDT. These are discussed in the
third document in this series (SG24-7723-5 or later).

� While z/OS 2.1 had not been released at the time of writing, this zPDT release is expected
to be compatible with it.

� Additional command scripts (aws_bashrc and aws_sysctl) are available to simplify zPDT
installation. Also, there is now a 1091ver command to match the older 1090ver.

� The integrated consoles (3270 and ASCII) that are available with an HMC may be
emulated with zPDT.

� A new command, z1090term, provides an ASCII console that can be connected to the
integrated ASCII console interface.

� 3390 (and 3990) emulation has been upgraded to the level required for z/OS 2.1
(expected to be released in 2H2013).

� The remote license server that allows the USB keys to be installed in a central location
has been improved.

� This release of zPDT has been built on RHEL 6.0, 6.1, and openSUSE 11.3 libraries. It is
not usable with RHEL 5.x bases and is probably not usable with openSUSE 10.x bases.

� The cryptographic adapter functions provided by zPDT are now at the Crypto Express 4
(EC 12) level (CEX4C).

� A new level of the Coupling Facility code is included: level CFCC Level 18.

� zPDT includes a migration utility that may be used to copy 3390 volumes from a remote
z/OS or z/VM system. This has been updated to function with older DASD on the “real”
System z.

� A number of minor fixes are included in the GA4 release and fixpack level.

� Various performance improvements are included.
4 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

1.3 What is new (Version 1 Release 3)

The current release, at the time of writing, is Version 1 Release 3 (commonly known as GA3)
and is dated March 2012. This release includes the following changes:

� The relevant instruction set for the System z 196 processor is included. This is a major
change for the base zPDT element.

� A remote license server allows the USB keys to be installed in a central location. Multiple
standard USB keys may be used (each with a maximum of three CP licenses) or
nonstandard keys containing more licenses. Associated with this function is a Unique
Identity Manager (UIM) that provides the same consistent serial number for the System z
CPs in a given Linux machine. Details are included in the third volume of this series
(SG24-7723-04). Several new commands are provided to manage these functions.

� This release of zPDT has been built on RHEL 6.0, 6.1, and openSUSE 11.3 libraries. It is
not usable with RHEL 5.x bases and is probably not usable with openSUSE 10.x bases.

– Various LSB warnings (Linux Standard Base) no longer appear during installation.

� The device map (devmap) used to define an instance of zPDT operation may now include
Linux commands, with a method to control the timing of these commands. This function
may be used to automate zPDT startup among other uses. In addition, environmental
variables, include statements, and message statements are permitted in the devmap.

� The cryptographic adapter functions provided by zPDT are now at the Crypto Express 3
level.

– z/OS releases earlier than 1.12 might require the fixes for APAR OA29839 to be
applied.

� Performance enhancements are included. These are most noticeable for processor-bound
programs, including the startup of the z/OS WebSphere Application Server.

� The license server function associated with token processing has been expanded to add
significant security options. This is described in detail in the third volume of this series
(SG24-7723-04).

� A new level of the Coupling Facility code is included: level CFCC D93G R17 SL4.8. This
CFCC level is considerably larger than the CFCC included in the previous zPDT release
and a larger z/VM guest is needed to use it. (We now recommend a z/VM guest size of at
least 512 MB for a CFCC guest.)

� The Linux /etc/profile.local and /etc/profile files no longer require modification.

� The handling of LAN interfaces has been expanded to handle the new LAN interface
names being used in later Linux releases. This involves changes to the output from the
find_io command and changes to parameters for the awsosa device manager. These
changes may require alternations in prior devmaps to match new path assignments.

� The zPDT stop and start commands have been extended to include stop all and start
all.

� New RAS functions improve access to the USB key in rare cases where problems have
been reported. The methods for starting the token interfaces during Linux booting have
been enhanced.

� The maximum number of CPs (or the total of CPs, zIIPs, zAAPs, and IFLs) for a zPDT
instance is now specified as eight. This does not indicate that an 8-way SMP is practical
for zPDT, but indicates the maximum size of underlying zPDT control functions.

� A stricter statement of underlying PC processors (“cores”) now exists. There must be at
least one more core than the number of zPDT CPs in the largest zPDT instance running.9
Chapter 1. Introduction 5

– An exception exists for a single core, which may be used with reduced zPDT
performance.

� The use of USB 3 ports (for the USB key) is now supported.

� The 32-bit version of zPDT, previously available only within IBM, is no longer available.

� The SecureUpdateUtility must be run from the /usr/z1090/bin directory and must be run
as root.

� Emulated DASD (3380, 3390) may be shared between instances of zPDT on the same
PC. The performance of the zPDT locking involved in this sharing has been enhanced.
(Note that this does not affect the need for sharing z/OS systems to provide serialization
for access to the DASD.)

� zPDT includes a migration utility that may be used to copy 3390 volumes from a remote
z/OS or z/VM system. The z/OS version of this utility previously included an automatic
restart function that attempted to restart at the point of failure if a migration transfer was
interrupted. This automatic restart function has been removed. If a volume migration is
disrupted, it must be started again.

� When zIIPs or zAAPs are defined in a device map, at least one “cp” definition must
precede the zIIP and/or zAAP in the processors statement.

� The output of the token command has been expanded to provide both zPDT license
information and CP serial number information.

� Linux environmental variables may be used in device map specifications.

� Several minor commands have been added to permit an installation to administer zPDT
tokens and license server configurations without switching to the Linux root userid.

� RDzUT customers may use more than three zPDT CPs, assuming sufficient zPDT
licenses are available.

� The specification of ulimit -c unlimited for the zPDT operational environment may be
reconsidered. This might be relevant for very large zPDT instances with, for example,
32 GB and larger System z storage specified.

1.3.1 Version 1 Release 2

Version 1 Release 2 (June 2011), known as the “GA 2.2 release,” included the following
updates. They are listed here as background information:

� zPDT has been adapted to later C libraries. (The earlier libraries created problems for
recent Linux releases, such as Fedora 14.)

� Installation instructions are included to narrow the usage of an OSA emulation module that
runs SUID to root. (This helps resolve a security concern.)

� A new pdsUtil command is included for all editing of certain z/OS partitioned data sets
(PDSs) while running only under the base Linux.

� Additional information is included about installation and usage options for emulated OSA
functions.

� The alcckd command has been changed such that it does not create Linux sparse files.

� The token command has been changed to display a token identifier of 1090 or 1091. The
1091 identifier indicates a token used for RDzUT.

9 Previous zPDT releases could be used with the number of cores equal to the number of CPs in the largest
instance. Changes to Linux kernel operation have dictated this change for zPDT. It may still be possible to run with
the number of cores equal to the number of CPs in the largest instance, but this may not always be successful. In
particular, running a two-CP instance on a PC with two cores may produce major performance problems.
6 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

� The Message Security Assist (“crypto instructions”) has been enhanced to match the
current z10™ level, including 256-bit key operations. This enhancement includes MSA
levels 3 and 4.

� The serial number handling for a zPDT instance has been changed slightly. The change
affects what happens if more than one token is involved. This function involves a new
Linux-level service, uimd, provided by zPDT. (Note: This function was completely
redesigned for Version 1 Release 3.)

� The installation instructions now specify that Linux 32-bit support functions are required.
(This is so, even if you are using a 64-bit Linux.)

� Notes have been added about the use of the Customized Offerings Driver (COD) system.

� The log file permissions (for zPDT logs) have been tightened.

� A new listVtoc command has been added.

� New directions are included for updating the /etc/sysctl.conf file during zPDT
installation.

� The z1090instcheck command has been updated.

1.4 Terminology

Terminology can be confusing in the computer business and especially when dealing with
systems such as zPDT. In this documentation series, we use the following terminology:

� System z Personal Development Tool (usually known as a 1090 or 1091 system or zPDT)
is the name for the offering that includes the System z CP functionality and the USB
hardware key. This does not include any System z software, such as operating systems.

� The base machine or underlying host, or underlying Linux is the Intel-compatible PC
running Linux.

� Machine type 1090 is the IBM processor type assigned. It is also the specific identifier for
the USB hardware key needed to use the 1090. z1090 is used as a directory level for
various libraries used by the 1090. (The token used for RDzUT and RD&T operation is
known as a 1091. Unless noted otherwise, any discussion of 1090 usage also applies to
the 1091. When used with a 1091 token, a System z CP still identifies itself as machine
type 1090.)

� z/OS is used to refer to any recent release of the z/OS operating system. Likewise for
z/VM®, and so forth.

� A device map, or devmap, is used to specify operational characteristics of zPDT. It is a
simple Linux flat file.

� Processor or core normally refers to the Intel or AMD processors (cores) in the base
machine. A two-core machine has two processors in this terminology, although both are in
one hardware “processor” module. There is always some confusion in this terminology.

� CP refers to a general System z processor and is the major functional element of zPDT.
By default, zPDT provides System z CPs. You may optionally convert a CP to a zIIP, zAAP,
or IFL processor.10

� Open Systems Adapter (OSA) refers to an adapter on older S/390 machines but is
sometimes used as shorthand for OSA-Express, OSA-Express2, and so forth. The

10 Using more general System z terminology, the 1090 provides up to three PUs. By default, the PUs are
characterized as CPs, but may be characterized as zIIPs, zAAPs, or IFLs instead. Throughout this document we
generally refer only to CPs and this reference should be understood to include zIIPs, zAAPs, and IFLs when these
are used.
Chapter 1. Introduction 7

operation of the original OSA adapters was often referenced as LCS mode. The zPDT
system provides OSA-Express2 emulation (which can provide LCS mode and QDIO mode
operation).

� Many Linux commands are shown throughout this series of documents. If the command is
preceded with # (a hash or pound symbol) the command is entered in root mode; if the
command is preceded with $ (dollar sign), it is not entered in root mode.

� The USB hardware key needed to enable zPDT operation is also referenced as a 1090 or
1091 hardware key, a zPDT token, a hardware token, and so forth.

The primary operational characteristic of zPDT, in which the instruction set of one computer
platform (System z) is implemented through another platform (Intel or AMD) has a long
history in the computer business. This design has been described with many terms, including
microcode, millicode, simulation, emulation, translation, interception, assisted instructions,
machine interface (MI) architecture, machine level code, and so forth. We attempt to avoid all
this terminology and simply refer to the zPDT product.

1.5 1090 hardware token

A zPDT system is not functional without a 1090 or 1091 hardware token or key that typically
connects to a USB port in your system.11 The USB hardware keys are shown in Figure 1-1. A
1090 key is at the top of the illustration and should always have a tag attached to it. A 1091
key is at the bottom of the illustration and usually has a blue color code. The serial number of
the 1090 key is printed on the tag. The serial number of the 1091 key is engraved on the back
of the key.

Figure 1-1 The 1090 and 1091 hardware keys

If the hardware key is removed while zPDT is operational, the operation will pause with a
series of messages, ending with these:

AWSEMI318I zPDTA Heartbeat Missing for CPU 0
AWSEMI315I zPDTA License Unavailable for CPU 0

11 Other arrangements involving license servers are also possible and are described in the third document in this
series (SG24-7723).
8 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

Provided that the intervening time interval does not disrupt the operating system or
application programs, zPDT operation may be resumed by connecting the hardware key
again.

A USB hardware key is normally valid for one year after it has been initialized or activated. It
may be re-initialized at any time, which normally extends the validity for a year beyond the
date of the most recent re-initialization.12 The procedure for initializing the key (or
re-initializing it) depends on the channel you used to obtain your zPDT system. This may be
through an IBM Business Partner or some other supplier.

More than one token may be used with a zPDT system.13 For example, using two 1090-L03
tokens provides up to 6 CPs (or combinations of CPs, zIIPs, zAAPs, and IFLs). Coupling
Facilities (available only under z/VM) are not counted for license purposes. The maximum
number of CPs (including the specialized processors) for a 1090 zPDT instance is eight.

In general, we do not suggest zPDT usage with more than three or four CPs. The I/O
capability of the underlying PC is a limitation, and various “SMP effects” substantially reduce
the effectiveness of additional CPs above three or four. However, this performance
determination is left to you.

1.5.1 Concurrent PC workloads

A System z processor, especially when running z/OS, must provide sufficient processing
power to meet basic requirements. z/OS has various timers running to detect error situations.
Sufficient processing power (for each CP, if multiple System z CPs are used) must be
available to prevent these timers from expiring. Insufficient processing power can result in
SPINLOOP, MIH14 actions, OSA communication drops, or other apparent I/O device error
problems.

A dedicated PC system (that is, not running any other significant workload) should not
experience problems with typical developmental System z workloads. A “significant” workload
is anything that consumes substantial processor cycles or ties up the disk drives over long
time periods. This might be a Linux utility or an overcommitted virtual environment. A situation
that creates unusually heavy PC disk I/O can create similar problems.

Reasonable care must be exercised even when extra base processor cores are available. For
example, performing large Linux disk copies while the System z function is operational can
effectively lock out normal System z work and create timeout situations.

It is possible to create “pathological” jobs that create I/O bottlenecks resulting in excessive
MIH and other problems. We have not seen such situations in realistic development
workloads, but the possibility exists.

1.6 zPDT functions

The zPDT functions include System z processor (CP) operation and the emulation of a variety
of I/O devices. As a general statement, all the functions (instructions and I/O) needed to run
current System z operating systems are provided.

12 The extension period may differ depending on the IBM channel used to obtain the zPDT system.
13 However, more than three CPs cannot be used with a 1091 system unless an additional license feature is

obtained.
14 Missing Interrupt Handler
Chapter 1. Introduction 9

System z character data is typically in EBCDIC, just as for any System z processor. Emulated
disks and tapes typically contain EBCDIC data, although they logically contain whatever mix
of EBCDIC, binary, ASCII, Unicode, or other formats that are produced by the System z
operating system and applications. The key point is that there is no routine translation to the
ASCII of the underlying host Linux system. The same binary data representation that is used
on System z is also used on zPDT systems. This extends to fixed point, packed decimal, and
all floating point formats. All zPDT data is in System z representation.

There are exceptions for emulated card readers and printers, where the character set
involved is relevant and conversions between ASCII and EBCDIC are needed and are
automatically provided.

Not all System z instructions and functions are available with zPDT. Instructions related to
specific hardware facilities or optionally used by specialized programs might not be present.
This excluded list includes:

BCPii functions
List-directed IPL
The accelerator function of cryptographic coprocessors
ETR
TOD steering
zBX functions
BCPii functions
CPU Measurement Facility
Asynchronous data movers
MIDAWs
Logical channel subsystems
Hipersockets
LPARs
Transport channel command functions
Flash storage
Multiple I/O paths

Parallel access to volumes (PAV) is not supported.

1.6.1 Emulated I/O

A zPDT system includes a number of device managers, each of which provides emulation for
a related group of devices. A device manager can emulate multiple instances of its devices.
The device managers are:

� awsckd - Provides emulation of 3380 and 3390 CKD disk devices. Each emulated device,
such as a 3390-3, is contained in a single Linux file.

� awstape - Provides emulation of selected tape devices. Each tape volume is a single Linux
file.

� aws3274 - Provides emulation of local, channel-attached 3270 terminals. Each terminal
appears (to the System z operating system) as operating through a channel-attached
non-SNA DFT IBM 3274 control unit.

� awsfba - Provides emulation for FBA disk devices (as used by z/VM and VSE).

� aws3215 - Provides emulation of a 3215 console.

� awsrdr - Provides emulation of a 2540 card reader, with functions to process both EBCDIC
and ASCII data.

� awsprt - Provides emulation of a 1403-N1 or 3211 printer, including FCB emulation for
3211 functions. Automatic ASCII translation is provided.
10 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

� awsscsi - Emulates a mainframe tape drive using a SCSI tape drive. The only tested and
supported drives are Fujitsu M2488E units (compatible with IBM 3490 and 3490E
cartridges), IBM LTO3 and LTO units, and IBM 3592 (Fibre Channel interface) units.

� awsosa - Emulates an OSA-Express2 adapter, in either QDIO or non-QDIO mode. The
hardware involved is an Ethernet adapter on the underlying PC.15 This device manager
can support TCP/IP operation. SNA operation is not supported at this time.16 It can also
support OSA/SF usage.

� awsoma - Is used to read CDs written in a special format known as OMA. In earlier days,
VM was available in this format.

� awscmd - Provides a method to pass commands to the underlying Linux system and
receive the command responses.

� awsctc - Provides emulated channel-to-channel operation via TCP/IP. The connection may
be the same zPDT instance, another instance in the same PC, or an instance in a
LAN-connected machine.

The emulated I/O support is summarized in Table 1-3.

Table 1-3 Emulated I/O summary

The design of zPDT allows for a large number of emulated I/O devices. The number is
restricted, in practice, to better manage the memory and processing needed for emulated I/O.
The current zPDT design allows a maximum of 1024 emulated I/O devices. This is often
described as 1024 subchannels.

15 Wireless can be considered an Ethernet adapter.
16 It may be possible to initiate SNA operations (in non-QDIO mode) but this usage has not been tested and is not

supported by IBM at this time.

Manager Control unit Emulated device Model

aws3274 3274 3270

awsrdr 2821 2540 card reader

awsprt 2821, 3811 1403, 3211 printers

awsckd 3990 3380, 3390 1, 2, 3, 9a

a. Model 9 refers to 3390s. Actually, a 3390 with any valid number of cylinders may be de-
fined and used, including EAV units.

awstape 3803, 3480, 3490 3420, 3422, 3480, 3490, 3490E, 3590

awsfba 3990 9336 1, 2b

b. The model emulated depends on the number of blocks defined, although z/VSE™ can
force a model selection.

awsoma 3803 3422 OMA

awsscsi 3480, 3490 3490 (also 3480)

awsosa OSA OSA

aws3215 3215 3215

awsctc 3088 3088
Chapter 1. Introduction 11

1.7 Operational overview

This section provides a brief introduction to the zPDT definition and operational structure.

1.7.1 Linux userids

In principle, any Linux userid may be used to install17 or operate zPDT, with the exception that
the zPDT operational Linux userid cannot be longer than eight characters. All our examples
assume userid ibmsys1 is used. The zPDT system uses several default path names that are
related to the current Linux userid. Control commands for zPDT, such as the ipl command,
must be issued from the same Linux userid that started the zPDT instance.

In principle, a different userid could be used to create a completely different zPDT operational
environment, with different control files, and so forth. Also, multiple Linux userids must be
used when running multiple zPDT instances concurrently. We use ibmsys2 and ibmsys3 as
examples of these additional userids.

Our Linux operating systems automatically create home directories for userids in the format
/home/<userid>. For example, the home directory for userid ibmsys1 is /home/ibmsys1. It is
possible to specify a different home directory for a userid. Throughout this document we use
/home/<userid> or /home/ibmsys1 to indicate the home directory for the userid.

1.7.2 zPDT instances

Logging into Linux and starting a zPDT operation creates an instance of zPDT usage. This
instance might have one, two, or three System z CPs associated with it,18 depending on the
1090/1091 model expressed in the 1090/1091 token and the parameters in the devmap. If you
then log into Linux with a second Linux userid, and start another zPDT operation, this creates
a second instance. Multiple instances means that multiple, independent zPDT environments
are run in parallel. The total number of CPs in all concurrent instances cannot exceed the
number allowed by the token model number.19

A 1090 model L03 can have up to three System z CPs (or mixtures of CPs, zIIPs, zAAPs, and
IFLs). These could be used for three zPDT instances, each with a single CP and separate
System z memory20, and a separate System z operating system. Alternatively, a single zPDT
instance could be used with one, two, or three CPs; this is the more likely usage for most
zPDT users. The use of multiple CPs is subject to the following restrictions and
considerations:

� The number of defined CPs (including zIIPs, zAAPs, or IFLs) in one zPDT instance must
be one less than the number of processor cores on the base Linux system. For example, a
W500 mobile computer with a dual core cannot have more than one CP defined in an
instance.

� Full zPDT operation can use more processor cores in the base system than there are
System z CPs defined in any one instance. The additional processors are used for I/O, to
help prepare System z instructions for use, and for non-zPDT Linux processes.

It is important to understand that the zPDT license controls are on the number of System z
CPs (or zIIPs, zAAPs, or IFLs) that are in concurrent use, and not on the number of base PC

17 Part of the installation process must be done as root, but the initial login should be with the userid that will be used
to operate zPDT.

18 Or more, if multiple standard tokens are used or larger nonstandard tokens. We ignore these exceptions in the
following discussion.

19 Or by the total number of licenses from multiple tokens, with a design limit of eight for any given zPDT instance.
20 The combined System z memory is subject to the later discussion about memory.
12 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

system processor cores that are being used. With a 1090-L03 token, there is an absolute
maximum of three instances (each with a single CP) with each running, for example, a
different release of z/OS.

Table 1-4 may help make this clearer. It indicates the number of zPDT instances (in
concurrent operation) and the possible CP arrangement for each 1090 model type. A CP can
be converted to a zIIP, zAAP or IFL, but this does not change the maximum. For example, a
1090-L03 could have a single instance with one CP plus one zIIP plus one zAAP; this would
exhaust the number of CPs available with a 1090-L03 and additional concurrent instances
would not be possible. The same limitations apply to 1091 tokens.

Table 1-4 Possible CP configurations

It is possible to use more than one 1090 token. For example, a machine with two model L03
tokens would have a maximum of six CPs. However, IBM has not extensively tested the
usage of multiple tokens. There is a clear “multiprocessor effect” present and the advantages
of more than four or five CPs may be marginal, depending on the nature of the workload.
Also, the I/O limitations of the underlying PC become very relevant when using more than
three CPs.

In basic usage, emulated I/O devices are unique to a zPDT instance. However, there are
advanced zPDT options that permit sharing emulated I/O devices among multiple instances.
The minimum number of base processor cores, as stated earlier, is one more than the
maximum number of CPs in any instance. Other than this, there is no association of particular
base processor cores to CPs.

The remainder of this document, and all the discussions in Volume 2 of this series, focus on
single instance operation. A chapter in Volume 3 of this series provides setup and usage
instructions for multiple zPDT instances.

1.7.3 Small system example

The environment for a zPDT instance is defined by a device map, commonly known as a
devmap. The following devmap describes a simple System z:

[system]
memory 5000m # emulated System z to have 5000 MB memory
3270port 3270 # tn3270e connections will specify this port
processors 1

[manager]
name awsckd 0001 # define two 3390 units
device 0a80 3390 3990 /z/SARES1
device 0a81 3390 3990 /z/WORK02

[manager]
name awstape 0020
device 0580 3480 3480 /z/SAINIT #tape drive with premounted tape volume

Model One instance Two instances Three instances

1090-L01 1 CP Not possible Not possible

1090-L02 1 or 2 CPs 1 CP each Not possible

1090-L03 1, 2, or 3 CPs 1 CP each, or
1 CP in one and 2
CPs in the other

1 CP each
Chapter 1. Introduction 13

device 0581 3480 3480 #tape drive with no premounted volume

[manager]
name aws3274 0300 # define two local 3270s
device 0700 3279 3274
device 0701 3279 3274

Device managers (such as awsckd, awstape, and aws3274 in the example) are the zPDT
programs that emulate various device types. The number after the device manager name is
an arbitrary hexadecimal number (up to four digits) that must be different for each name
statement.

Device statements in the devmap specify details such as a device number (“address”), device
type, the Linux file used for volume emulation, and various other parameters. The volume
mounted at an address can be specified or changed with the awsmount command while the
1090 is running. In this example, the emulated tape volume in Linux file /z/SAINIT is already
mounted when zPDT is started. We could change the volume (while zPDT is running) with an
awsmount command that specifies a different Linux file. (The files must be in the proper
emulated format, of course.) This corresponds to changing a tape volume on a tape drive.

1.7.4 1090 console

A zPDT system is operated from Linux command lines. This operation could be done
remotely through telnet or ssh connections. A graphics connection is not needed.

There is no dedicated console program for sending commands to an operational zPDT
environment.21 All zPDT commands are Linux executable files that are entered from a Linux
shell prompt. The commands require that the zPDT instance be started by the same Linux
userid that issues the subsequent zPDT commands for that instance. For example, if Linux
userid ibmsys1 starts zPDT then only Linux userid ibmsys1 can issue an ipl command. The
ipl command is a Linux executable file, supplied with the other executables that constitute
the zPDT package.

1.7.5 Performance

Discussing performance for zPDT is difficult for several reasons, including the following:

� The performance depends on the power of the underlying hardware and this changes
frequently. Performance is not only related to the clock speed of the underlying processor
(such as 2.4 GHz for an Intel processor) but is related to the memory design and the
pipelining, caching, and translation design of the underlying processor. For example,
substantial performance changes may be observed by simply reordering program
instructions in an optimum way for the underlying processor.

� Linux performance (including applications such as zPDT) can be greatly influenced by
how the Linux disk cache (and swap file) is performing.

� The number of CPs used by zPDT has an obvious effect, as do the number of cores in the
PC processor.

� Every new release or update of zPDT can change performance.

� The System z instruction mix and memory reference pattern has a profound impact on
performance—probably a greater impact than is observed on a larger System z.

� MIPS (million instructions per second) is a rather discredited metric, although it is still
informally used with small System z machines. Any MIPS number is very dependent on

21 Do not confuse zPDT commands with z/OS operator commands.
14 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

the nature of the workload and the Linux configuration. MSU numbers are less variable,
but again depend on the nature of the workload.

� I/O performance must be considered. For example, all emulated disk and tape operations
for a 1090 on a mobile computer are from the single (relatively slow) mobile computer disk
drive. Workloads with modest I/O loads (when run on a larger System z machine) might be
completely I/O-bound on a mobile computer-based 1090 system.

As an example, zPDT on a Lenovo W520 mobile computer provides reasonable performance
for IPLing and running z/OS, with typical TSO and batch usage, small DB2® usage, and so
forth. Using emulated local 3270 connections, reasonable performance might be maintained
for a number of such users. The general look-and-feel for such usage generally provides
subsecond response typical of smaller System z installations.

The zPDT design goals are based on the assumption that it is the only significant application
running on the host machine. The impact of additional applications (even trivial functions,
such as a game) is most significant for Linux memory management. This can be considerably
more important than the extra CPU cycles taken by another application.

z/VM may be used with zPDT. The performance of guest operating systems under z/VM
(such as z/OS running under z/VM) is greatly influenced by the use of the SIE instruction. On
a larger System z machine, this instruction provides a “microcode assist”22 for many of the
virtualization functions performed by z/VM. Most SIE functions are provided by the 1090, but
there is no direct equivalent of a “microcode assist” level and the virtualization performance
boost provided by SIE is modest. Informal measurements indicate that traditional z/OS
workloads, with z/OS running under z/VM on the zPDT, perform at about .75 (or better) of
their performance when run natively (without z/VM) on zPDT. As usual, the exact
performance ratio depends on the nature of the workload.

22 This is the common terminology for SIE operations, although the actual implementation may be much more
complex than implied by this statement.
Chapter 1. Introduction 15

16 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

Chapter 2. Base configurations

There is a range of personal computer systems and Linux distributions that might be used for
zPDT. These configurations change over time, due to frequent personal computer hardware
advances and new Linux releases. As a general statement, zPDT should work with any
modern Intel-compatible processor that is fully supported by the recommended Linux
distributions.

The combination of the base Linux, zPDT operation, and z/OS operation (for example), with
associated LAN usage and emulated I/O devices, produces a very complex environment. IBM
has tested zPDT functions extensively, but with a limited number of PC hardware
configurations.

2

© Copyright IBM Corp. 2009, 2013. All rights reserved. 17

2.1 zPDT base configurations

The 1090 formal IBM license statement regarding base systems is as follows:

“The Program may be used on the following systems which are running versions of Linux
as specified in the Program's read-me file: IBM System x® 3500 M1, 3500 M2, 3500 M3,
3650 M1, 3650 MM2, or 3650 M3; Lenovo Thinkpad W Series; or systems otherwise
approved by IBM.

The license agreements may contain reporting requirements that must be understood by the
user. These are not covered in this document and may be reviewed with your IBM
representative.

2.2 Hardware and software levels

Both PC hardware and base Linux software change frequently. zPDT changes are needed to
maintain a reasonable level of compatibility. zPDT is not intended to be compatible with all
levels of Linux or with all available PC hardware. An informal guideline for both hardware and
software might be “not too old and not too new.”

Base Linux
zPDT Version 1 Release 4 (December 2012) has been built on openSUSE 11.3, SLES 11
Service Pack 2, and RHEL 6.0 and 6.1. These are the “supported” base Linux releases.

Informally, the SUSE version has been used on all releases of openSUSE 11, and with
openSUSE 12.1 and 12.2. This zPDT release cannot be used with openSUSE 10.x releases.

The RHEL version of this release cannot be used with RHEL 5.x releases. It must be used
with RHEL 6.0, 6.1, 6.2, 6.3, or possibly later releases. It has been used informally with
Fedora 17.

SLES releases and Fedora releases corresponding to the openSUSE and RHEL releases
mentioned here have been informally used but not in any formal test.

Later Linux distributions may require you to make administrative adjustments. For example, at
the time of writing some Linux distributions require additional commands to provide optimum
OSA performance.

See Chapter 15 in the third document in this series (SG24-7723-05, or later) for information
about zPDT usage in a virtual environment.

A suitable 3270 emulator is needed. Many current Linux distributions may not include the
x3270 package,1 but it can be downloaded from various sites. Other 3270 emulators might be
used, but their operation with zPDT must be verified by you. IBM developers have also used
recent releases of the IBM PCOMM package (on Microsoft Windows systems).

Important: A useful System z installation, even as small as a zPDT system, can represent
a major investment for the owner. The zPDT development team assumes serious users will
select one of the supported Linux bases (RHEL or SLES) that have been extensively
tested with zPDT. Over time zPDT will follow general Linux developments and changes, but
constantly chasing the latest Linux distributions is not a primary zPDT goal.

1 We were pleased to note that SLES 11 does include x3270.
18 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

Do not confuse the levels of the base PC Linux discussed here with the levels of Linux for
System z that might be run under zPDT.

Base PC hardware
zPDT Version 1 Release 4 has been tested on the following PC hardware:

� Laptops: Lenovo W500 dual core, Lenovo W700 dual core, W510, W520, W530 quad
core.

� Servers: IBM xSeries 3500 model 3, IBM xSeries 3650 model 3 and model 4.

� In all cases, a minimum of 8 GB PC memory was available. More general usage is with 8 -
16 GB (or more) memory. Systems with up to 96 GB have been used.

� A CD/DVD drive was present on all test systems, and a USB port used for the zPDT token.
(Unpowered USB port extenders should not be used for the zPDT token.)

� Various USB devices, such as disks and flash drives were used to the extent supported by
Linux.

� The use of hiperthreading in the base machine is not acceptable; hiperthreading (if
available on the machine) must be disabled at the BIOS level. Also, at the time of writing,
the use of “bonded Ethernet interfaces” is not supported.

These are the only tested machines for the 1090. Other machines might work correctly with
zPDT, but they have not been tested. In rare cases, IBM might address zPDT problems only
when reported on one of the tested machines.2 The zPDT system has no specific coded
requirements for these particular base machines and operating systems, but the almost
infinite number of possible combinations of other hardware and other Linux versions have not
been tested.

Functional requirements for a base system
The base machine requirements for the Linux version for zPDT are discussed throughout this
book. A summary of the hardware requirements is as follows:

� We suggest PC memory of at least 1 GB larger than the intended size of the emulated
System z memory.

� Disk space of at least 12 GB for Linux (and work space) plus about 2.8 GB for every
3390-3 volume to be emulated. A rather basic z/OS, with few additional products, could be
used on a 60-GB disk drive. The tested mobile computers typically had 100+ GB disk
drives or larger.

� A suitable USB port must be available for the 1090 or 1091hardware key.3 Do not use an
unpowered USB port expander when using zPDT. In particular, do not install the zPDT
token in an unpowered USB port expander. (The license server function, described in
SG24-7723-05, provides an alternative way to manage the token.)

� A CD/DVD reader usually is needed for loading software.

� Multiple LAN interfaces may be needed in larger configurations, although this is rare.

� Hiperthreading (if available) should be disabled at the BIOS level. Hiperthreading can
produce extreme slowdowns when z/OS is executing spinloops. If many PC cores are
available the slowdowns may be resolved before z/OS console messages are produced,
meaning there is no indication of a problem other than reduced performance.

� The Linux distribution must operate correctly on the base PC. New adapters, various
power management options, new USB chips, unusual display parameters, new disk

2 As of the time of writing, this situation had not been encountered.
3 The use of a remote license server is possible. In this case a USB port is not needed.
Chapter 2. Base configurations 19

technology, and other technology-related items may not work correctly with all Linux
distributions or may require additional Linux device drivers or Linux updates.

� The Linux distribution must support installation via the rpm command. Other software
installation management designs do not work with zPDT.

� The basic zPDT offering does not include any System z software. Although System z
software may be part of an offering that includes zPDT, the base zPDT product itself does
not include any System z software. System z software must be obtained in a media format
suitable for a zPDT machine.

System z operating systems
zPDT Version 1 Release 4 has been tested with the following System z operating system
levels:

� z/OS 1.11, 1.12, 1.13

� z/VM 5.3, 5.4, 6.1, and 6.2 (There are some limitations to the z/VM 6.2 testing.)

� z/VSE 4.2, 4.3, 5.1

� Linux for System z: SLES 11, RHEL 5.2, RHEL 5.4

Other levels may operate correctly but have not been tested.

2.3 zPDT releases summary

Table 2-1, Table 2-2 on page 21, Table 2-3 on page 21, Table 2-4 on page 22, and Table 2-5
on page 22 indicate key characteristics of zPDT releases. The information under “Required
minimum Linux levels” indicates the Linux library levels used to compile and link the zPDT
modules. Lower level Linux systems should not be used when running the associated zPDT
release. Other Linux distributions with libraries at an equivalent level (or later) may be used,
although only the other listed distributions were tried by the developers.

Table 2-1 Version 1 Release 4

Characteristic Version 1 Release 4

Date released December 2012, fixpack May
2013

Initial driver level 45.18

System z level EC 12
(includes upgrades for z/OS 2.1)

Required minimum Linux level
(Earlier levels should not be
used)

RHEL 6.1
openSUSE 11.3

Other Linux levels used during
development

(openSUSE 11.3, 12.1, 12.2)
SLES 11 SP2
(Fedora 15, 17)

Tested z/OS levels 1.13, 1.12

z/VM used during development 6.1, (partial use of 6.2)

Tested z/VSE levels

Tested Linux for System z level
20 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

Table 2-2 Version 1 Release 3

Table 2-3 Version 1 Release 2

Machines used for testing Lenovo W520, W530; IBM
xSeries 3500-M3, 3650-M3

Virtual environments tested
(as of June 2013)

VMWare
zBX

Characteristic Version 1 Release 3

Date released March 2012

Initial driver level 43.20

System z level z196
(not usable for z/OS 2.1)

Required Linux level
(Earlier levels should not be
used)

RHEL 5.4
openSUSE 11.2
SLES 11

Informal Linux levels used during
development

openSUSE 11.3, 11.4
Fedora 12

Tested z/OS levels 1.13, 1.12, 1.11

z/VM used during development 6.1, 5.4, 5.3

Tested z/VSE levels 5.1, 4.3, 4.2

Tested Linux for System z level SLES 10, SLES 11, RHEL 5.2,
RHEL 5.4

Machines used for testing Lenovo W520, W530; IBM
xSeries 3500-M3, 3650-M3

Virtual environments tested None

Characteristic Version 1 Release 2

Date released December 2010

Initial driver level 41.21

System z level z10, ALS3

Required minimum Linux level
(Earlier levels should not be
used)

RHEL 5.3
openSUSE 10.3

Informal Linux levels used during
development

openSUSE 11.1
Fedora

Tested z/OS levels 1.10, 1.11

z/VM used during development

Tested z/VSE levels

Tested Linux for System z level

Characteristic Version 1 Release 4
Chapter 2. Base configurations 21

Table 2-4 Version 1 Release 1

Table 2-5 IBM Internal version

Machines used for testing Lenovo W500, W510; IBM
xSeries 3500-M2, 3650-M2

Virtual environments tested None

Characteristic Version 1 Release 1

Date released October 2009

Initial driver level 39.11

System z level z900, ALS3

Required minimum Linux level
(Earlier levels should not be
used)

RHEL 5.2
openSUSE 10.3

Informal Linux levels used during
development

openSUSE 110.3
Fedora

Tested z/OS levels 1.9, 1.10

z/VM used during development

Tested z/VSE levels

Tested Linux for System z level

Machines used for testing Lenovo W500, W700, T61p; IBM
xSeries 3850

Virtual environments tested None

Characteristic Internal version

Date released July 2007

Initial driver level 45.18

System z level z800, ALS3

Required Linux level
(Earlier levels should not be
used)

RHEL 4.4
SuSE 10.1 Remastered

Informal Linux levels used during
development

SuSE 10.1 Remastered
Fedora

Tested z/OS levels 1.8, 1.9

z/VM used during development

Tested z/VSE levels

Tested Linux for System z level

Machines used for testing Lenovo T60, T61;

Virtual environments tested None

Characteristic Version 1 Release 2
22 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

2.4 Using older System z architectures

zPDT does not have a facility to emulate older System z architectures. For example, the
current release (zPDT Version 1 Release 4) is at the System z EC 12 level. It cannot be set to
a System z 196 level or a z10 level. Providing a switchable architectural level facility would
result in reduced performance and the product developers are unwilling to make this tradeoff.

If you need to test software under older System z architectures (and older z/OS releases) you
must retain older versions of zPDT. Older zPDT releases may or may not work correctly with
the latest Linux distributions and IBM cannot provide assistance in this area. In the general
case, you must retain older PC hardware, older Linux releases, older z/OS releases, and
older zPDT releases if you want to consistently run your software in older operating
environments. IBM does not have a way for providing older zPDT releases or older AD-CD
releases.

2.5 SCSI adapters

The newest IBM System x servers (at the time of writing) do not list any parallel SCSI
adapters for their standard configurations. We understand this to mean the following:

� IBM did not formally test any of the existing SCSI adapters with the newest servers.

� There is no known reason why they should not work.

� We have informally used the UltraSCSI 320 series of adapters with xServer 3650 M2 and
3500 M2 machines without problems with our older SCSI tape drives.

For some of our systems, we needed to use openSUSE 11.2 or later for this operation.
Other and earlier distributions, with Linux kernels below the level used in openSUSE 11.2,
did not work with these SCSI adapters on some of our systems. This condition is likely to
change with future Linux distributions. If parallel SCSI operation is important to you, we
strongly advise that you discuss your zPDT configuration with your zPDT provider.

� There is no defined IBM support for these configurations.

� Parallel SCSI adapters, cables, and devices can be complex. There are different data path
widths, single-ended and differential circuits, low-voltage and high-voltage versions, and a
variety of terminators. If you are not familiar with this area, we strongly suggest you obtain
expert help in configuring your system.

� The newest SCSI devices use fiber connections instead of parallel (wire) connections.

SCSI tape drives
Some SCSI tape drives may be used with zPDT. They can be used via Linux utility functions
or used directly by the System z operating system (where they appear to be IBM 34904
drives). Not all SCSI tape drives are usable by zPDT. The usability depends on the exact
model, the exact firmware level, the exact SCSI adapter used, and the firmware options that
are set in the drive. IBM has used a variety of different SCSI drives for testing, but IBM cannot
predict whether your SCSI drive will work with zPDT. If this is important to you, we strongly
suggest that you discuss your requirements with your zPDT provider.

More information about the SCSI drives tested by IBM is provided in the third book in this
series (SG24-7723-02 and later).

4 This also means they are limited by IBM 3490 architecture controls.
Chapter 2. Base configurations 23

24 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

Chapter 3. zPDT components

At the highest level, zPDT has or needs the following components:

� A base Linux system.

This is not provided with zPDT. The user must acquire this directly.

� A suitable 3270 emulator (which is usually run on the same personal computer that is
hosting zPDT, although this is not required).

At least one 3270 emulator (x3270) is provided with some Linux distributions, but not with
others. Other modern 3270 emulators might be used, but verification of their operation
with zPDT is up to the user. The zPDT package does not provide a 3270 emulator.

� The 1090 or 1091 hardware USB token, which is required for zPDT operation.1

� The zPDT program file.2 Within this file are the following:

– Two prerequisite programs for communicating with the 1090 or 1091 token. These two
packages are provided with zPDT and only these provided versions may be used;
other versions available from the web should not be used. (A remote license server may
be used instead of the local token.)

– The Red Hat (RHEL, Fedora) version of zPDT.

– The Novell (SLES, openSUSE) version of zPDT.

– An installer program that displays a license, installs the prerequisite programs (if not
already present), and then selects and installs the correct zPDT version.

– Components that provide remote license and identity management functions.

� System z software, such as z/OS, is not part of zPDT. It must be licensed and acquired
separately.

The remainder of this chapter discusses the components in the zPDT rpm3 (after it is
installed). The discussion is the same whether the Red Hat or Novell versions are used and
whether the 1090 or 1091 package is used.

3

1 The general RDz license manager may be used in addition to1091 keys.
2 There are two program file packages, one for 1090 systems and one for 1091 systems.
3 zPDT is installed via the rpm function, but cannot be installed directly with the rpm command. The zPDT installer

program must be used. This is discussed in the second document in this series (SG24-7722).
© Copyright IBM Corp. 2009, 2013. All rights reserved. 25

3.1 zPDT elements

The executable elements of the zPDT package (normally placed in /usr/z1090/bin on the
underlying Linux system) are in three general categories:

� System z operation, which is provided by a primary zPDT program module and a number
of associated DLL modules.

� Several device emulation modules, known as device managers.

� Multiple command modules to configure, start, stop, and manage zPDT operation. These
are executed as simple Linux commands, working from a Linux terminal window.

zPDT installation and use also creates /usr/z1090/man and /usr/z1090/uim directories. The
uim directory may contain two small files that are used to provide a consistent serial number
for System z. The man directory contains normal Linux man pages.

The installation and use of the z1090 rpm,4 in addition to loading executable modules in
/usr/z1090/bin, creates a number of subdirectories (placed in the z1090 subdirectory) in the
user’s home directory.5 Briefly, these subdirectories are:

� cards, lists - May be used to provide input files to an emulated card reader or output from
an emulated printer. If not used, they are empty.

� disks, tapes - May be used to hold emulated disk or tape volumes, but these
subdirectories are typically not used for anything. The emulated volumes are usually
placed elsewhere, in other Linux file systems.

� logs - Used by zPDT to hold various dumps, logs, and traces. zPDT partly manages the
contents of this subdirectory. The contents of this directory are important if it becomes
necessary to investigate a zPDT failure.

� configs, pipes, srdis - Used for zPDT internal processing; do not erase or alter the
contents of these small subdirectories.

Finally, a device map (devmap) is needed for zPDT operation. This element is not provided by
zPDT, but must be created by the user.

The System z operational modules are not further described. They are not directly used or
referenced by the zPDT user. The device managers are described in 4.3, “Manager stanzas”
on page 38. The syntax of the zPDT commands is described in 4.4, “zPDT commands” on
page 49. Practical uses of zPDT commands, device managers, and devmaps are explained,
at length, in Volume 2: Installation and Basic Use, and Volume 3: Additional Topics of this
documentation series.

3.1.1 Memory

The complete zPDT environment exists in Linux virtual memory. Linux is aggressive in
allocating real memory frames to virtual memory pages and disk file data using its own
(Linux) judgment about what is the best use of real memory. Starting another application
(especially a graphics application) can consume much virtual memory in the new process.6
This can cause page stealing from other processes to supply real memory frames. The
situation is more complex when Linux caching of disk I/O is considered, and disk caching is a
very important element of Linux operation and performance.

4 The z1091 rpm also installs in /usr/z1090/bin.
5 When zPDT is started, a z1090 subdirectory is created in the home directory of the user (if it does not already

exist). The subdirectories discussed here are under the z1090 subdirectory.
6 This might not be in shared storage and may not affect the maximum size of emulated z/OS memory.
26 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

We consider 4 GB of memory (in a PC) to be the absolute minimum for zPDT usage. A 4 GB
machine is usable for a modest z/OS system. Memory may be much larger. For example, one
of the zPDT test environments uses a 96 GB PC and runs multiple 16-64 GB z/OS images.

It is important to understand that zPDT simply exists in Linux virtual memory. We might
informally say something like, “With a 4 GB machine we can allocate 1 GB to Linux and 3 GB
to zPDT,” but such statements must not be taken literally. zPDT does not physically partition
PC memory in any way. If we inspected the machine in this example at a random time, we
might find 1.2 GB owned by the primary zPDT module, 0.2 GB owned by recognizable core
Linux functions, 1.8 GB used for disk data cache, 0.2 used by various other processes (such
as zPDT device managers and so forth) and the rest unassigned. A few seconds later, the
usage statistics might be different.

We suggest that the PC memory size be at least 1 GB larger than the sum of all concurrent
zPDT-defined System z memory. More is better because it allows the Linux disk cache to
perform better.

The primary goals are to (1) avoid Linux paging that stalls zPDT operation, and (2) to allow
Linux to have an effective disk cache. There is no easy way to directly manage either of these
goals. They are indirectly managed by providing ample PC memory.

3.1.2 Disk space

The disk space for the 1090 executable programs and control files is relatively small.7 The
disk space for emulated System z volumes is not small and therefore some planning is
needed. The space for emulated disk volumes may be calculated accurately, while the space
for emulated tape volumes depends completely on the amount of data on the emulated tape
volumes.

For practical purposes, we consider only 3390 emulated disk volumes. For the standard 3390
models the approximate required space is as follows:

3390 model Approximate space required Exact space required
 3390-1 .95 GB 948,810,752 bytes
 3390-2 1.9 GB 1,897,620,992 bytes
 3390-3 2.8 GB 2,846,431,232 bytes
 3390-9 8.5 GB 8,539,292,672 bytes

1 3390 cylinder 852,4808

The per cylinder space may be used to calculate the disk space needed for nonstandard 3390
sizes.

Tape sizes reflect the size of the data written on the tape with a very small additional space
(less than 1%) needed for awstape control blocks.9 (Optionally, the awstape device manager
can compress these files, often greatly reducing the amount of space used.)

3.1.3 LAN adapters

We consider only Ethernet adapters in this discussion.10 A Linux-based zPDT system can
use more than one LAN adapter, although this is unusual. We must consider several “users”
of LAN adapters in the base machine:

7 It is typically less than 30 MB.
8 Each volume has an additional 512 bytes overhead.
9 The actual overhead is 6 bytes for each block written (including a tape mark, which counts as a block).
10 Wireless adapters are also Ethernet adapters.
Chapter 3. zPDT components 27

� Linux itself is normally a LAN user. Remember that the emulated local 3270 connections
(via the aws3274 device manager) are connected through Linux TCP/IP.11

� z/OS (or z/VM, or z/VSE) TCP/IP, if used, needs a LAN adapter. This usage may be in one
of two different modes:
– Non-QDIO mode, in which an older IBM 3172 control unit (or LAN Channel Station,

LCS) is emulated.
– In QDIO mode, which is recommended.

� z/OS (or another operating system) might use a LAN for SNA connections, although this is
not tested or supported by IBM. This requires non-QDIO mode.

A LAN adapter may be shared between zPDT OSA and the base Linux system with the
following rules and restrictions:

� A given LAN adapter may be used for OSA Express emulation in either QDIO or
non-QDIO mode, but not both. The selection of QDIO or non-QDIO is made in the devmap
definitions; the awsosa device manager is used in both cases.

� Adapter sharing between OSA and the base Linux system is independent of whether
QDIO or non-QDIO mode is used for OSA.

� A given adapter may be used by both OSA (either mode) and base Linux connections. For
example you can use Linux telnet, ftp, Web browser (or server), the aws3270 device
manager, and so forth at the same time that OSA is using the same Ethernet adapter.

� A logical connection between Linux TCP/IP and OSA TCP/IP can be made only by using
an intermediate virtual interface (which we describe as a tunnel).

� Remember that the aws3274 device manager (which accepts TN3270e clients and
emulates local, channel-attached 3270 devices) does not use OSA.

Wireless LAN
Wireless LAN connections may be used with the 1090, but there are considerations involved:

� Wireless usage almost always involves DHCP. Standard z/OS is not a DHCP client. This
means the wireless functions are between a remote client and Linux. In practice, this
means they are used with 3270 emulators connected to the aws3274 device manager.
The MVS console and up to 31 TSO users may be connected this way.

� Temporarily dropping a link is common with wireless connections and usually has minor
effects for typical mobile computer users. Dropping a link that runs the MVS™ console, for
example, produces more than a minor effect. Some Linux wireless environments allow
considerable time (many seconds) for a dropped wireless connection to reconnect. This
can create unexpected timeouts for z/OS functions, depending on the exact state of the
system when the connection drop happened.

Informally, we have found wireless connections practical when used in the same room (such
as a classroom) where dropped connections are very unlikely.

3.2 Device managers

zPDT provides 12 device managers:

� aws3215 - Emulates a 3215 console device (seldom used today), using a Linux terminal
window for the interface.

11 If local x3270 windows are the only TCP/IP functions used under the base Linux, then the localhost connection
(127.0.0.1) can be used and this does not tie up a hardware LAN adapter.
28 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

� aws3274 - Emulates a local, channel-attached 3274 control unit. This device manager is
almost always used to provide the MVS console, for example, and 3270 application
sessions. TN3270 sessions are used, via the base Linux TCP/IP interface.

� awsckd - Emulates 3390 (and 3380) disk units, using a Linux file for each 3390/3380
device.

� awscmd - Emulates a 3480 tape drive, but routes output records to the base Linux system
where they are executed as commands, and returns Linux output to the emulated tape
drive.

� awsfba - Emulates FBA devices, which are supported by z/VSE and z/VM. A Linux file is
used for each emulated device.

� awsoma - Emulates the Optical Media Attach interface, working with Linux files in this
format. (This is mostly of historical interest, and is seldom used today.)

� awsosa - Emulates most functions of an OSA-Express2 Ethernet interface, and is used by
TCP/IP (in either OSE or OSD modes) and by SNA12 (in OSE mode).

� awsprt - Emulates a 1403 or 3211 printer, using a Linux file for output.
� awsrdr - Emulates a 2540 card reader, using Linux files as input. (The 2540 card punch

functions are not emulated.)
� awsscsi - Uses a SCSI-attached tape drive to emulate a 3490 tape drive, providing a way

to read/write “real” mainframe tape volumes.
� awstape - Emulates a 3420/3480/3490/3590 tape drive, using a Linux file as the tape

media.
� awsctc - Emulates an IBM 3088channel-to-channel adapter using TCP/IP as the

communication mechanism.

A typical zPDT user, running z/OS, would normally use aws3274, awsckd, awsosa (if
connectivity other than local 3270s is needed), and perhaps awstape. The other device
managers are less often used.

3.3 Device maps

A device map, commonly known as a devmap, is a simple Linux text file. You may have many
devmaps, each a separate Linux file. One devmap is specified when zPDT is started; you can
use a different devmap each time a zPDT instance is started. A devmap specifies the System
z characteristics to be used and the device managers (with their parameters) to be used for
an instance of zPDT operation.

3.4 Directory structure

The 1090 has the following default directory13 structure in Linux:

Directory path Purpose
/home/<userid>/z1090/logs/ various traces are placed here
/home/<userid>/z1090/configs/ (internal 1090 functions)
/home/<userid>/z1090/disks/ emulated disk volumes
/home/<userid>/z1090/tapes/ emulated tape volumes
/home/<userid>/z1090/cards/ input to the emulated card reader
/home/<userid>/z1090/lists/ emulated printer output

12 SNA usage is not supported by IBM at this time.
13 These names are subject to the discussion about the home directory. You should substitute the appropriate home

directory name for the /home/<userid> portions of these names. A home directory could be almost anywhere in the
root file system or in another file system. Our examples are based on the default form used by current Linux
distributions.
Chapter 3. zPDT components 29

/home/<userid>/z1090/pipes/ (internal 1090 functions)
/home/<userid>/z1090/srdis/ (internal 1090 functions)

/usr/z1090/bin executable 1090 code, scripts
/usr/z1090/man minor documentation
/usr/z1090/uim identity manager files

Notice that different userids would have different default 1090 directories and files. 1090
operation is sensitive to the Linux userid being used. The use of the default logs, lists, and
configs directories is mandatory for some operations, but is optional for other files such as
emulated disk and tape volumes. Emulated devices have default file names, based on the
assigned device number, but may use specified file names instead of the default file names.
(We always use specified file names in our examples. None of our examples use the default
disk and tape subdirectories and these are typically empty.)

These subdirectories are created in the current home directory (if they do not already exist)
when zPDT operation is first started.

Using the default directory paths and file names (for emulated volumes) provides a simplified
startup process because less information needs to be provided in the control files and the
starting command. It also makes the emulated volumes potentially private to a particular
userid.

However, using the default directory paths and file names for emulated disk and tape volumes
has several disadvantages:

� The /home directory is typically part of one of the base Linux file systems. If Linux is
reinstalled, for example, the /home file system might be lost. Accidental loss is minimized if
a separate file system is maintained for emulated volumes. An installation may have much
effort invested in System z work on their emulated disk volumes and want to protect these
as much as possible.

� The default 1090 naming convention ties emulated volume file names to emulated
addresses. This can produce conflicting names if multiple versions of an operating system
are installed, especially when the operating system uses well-known addresses for
various functions.

� We may not want access to emulated disk and tape volumes to be sensitive to a particular
Linux userid.

� Sharing devices (“shared DASD”) between multiple zPDT instances does not work when
using default directory and file names for emulated volumes.

The remainder of this document ignores the use of default file names for emulated I/O
devices. We recommend using a separate (and large) Linux file system for emulated volumes.
This insulates them from Linux reinstallations and also insulates both the emulated volume
file system and the base Linux file system(s) from unplanned growth in each other.

For these reasons most of the examples in this book assume that all emulated I/O files are
placed in the /z directory.14 In our case, when we installed Linux, we created a separate
partition (with a large amount of disk space) that is mounted at /z. We use this to hold all the
emulated volumes. The cards and lists directories, in the default directory path, are seldom
used in typical operation and we elected to use the default paths to these files.

14 The mount point name, /z in our examples, is completely arbitrary.
30 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

3.5 1090 control structure

The general structure of 1090 control files is shown in Figure 3-1.

Figure 3-1 Control files - general structure

A 1090 System z machine is started with the awsstart command, issued from a Linux
terminal window. A parameter of this command points to a device map or devmap. This is a
simple Linux text file containing specifications for the System z machine.

files containing
emulated devices

operational
1090

memory size

device file names
device file names

awsstart xxxx devmap

text file
Chapter 3. zPDT components 31

32 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

Chapter 4. Reference

In this chapter we provide reference information for zPDT device map entries (for device
managers) and for zPDT commands. Information and guidance for using these device
managers and commands is found throughout the zPDT set of IBM Redbooks publications.

4

© Copyright IBM Corp. 2009, 2013. All rights reserved. 33

4.1 Device maps

A device map (devmap) consists of a system stanza, an optional adjunct processor stanza,
and a variable number of device manager stanzas. The descriptions in this chapter are
intended to provide syntax and format information, but are not intended to represent typical
usage. Usage information is provided in other volumes of this series of books.

A device map is a simple Linux text file with an arbitrary file name. Many devmaps may exist,
but only one can be in use for an instance of zPDT. It is possible to have multiple zPDT
instances running, each under a different Linux userid. Each instance has its own devmap.
The use of multiple zPDT instances is discussed in Volume 3 of this series of books. The
remainder of this chapter assumes a single instance of zPDT is being used.

Devmap files should be entered in lower case,1 except for parameters that specify Linux file
names. Devmap statements begin in the first column of each statement. Stanzas are
separated by blank lines. A hash or pound sign (#) signals the beginning of comments. The
square brackets shown in the descriptions below are part of the syntax and must be entered
as shown.

zPDT reads the specified device map when various components of zPDT are started. It does
not process updates to the devmap while zPDT is running. To alter the operational device
map, zPDT must be stopped and then started again with the new or revised devmap.
However, the Linux file associated with some devices (such as emulated tape drives or
emulated disk drives) can be dynamically changed while zPDT is operational by using the
awsmount command.

4.2 System stanza

A [system] stanza might look like this:

[system]
memory 2500m # define 2.5 GB memory for System z
processors 1 # this defaults to 1; maximum is 3 for an L03 model
3270port 3270 # specify unique IP port number for aws3274
expand 0m # no expanded storage
int3270port 3271 # HMC integrated 3270 function
ipl 0A80 “0A8200” # automatic ipl control (optional; not recommended)
cpuopt alr=on # optional function (defaults to on)
command 2 x3270 localhost:3270

The memory statement specifies the size of the System z memory to be used for zPDT
operation. For performance reasons the real memory size of the PC should be at least
1000 MB greater than the memory parameter.2 The number specified must be smaller than the
maximum shared memory value specified for Linux; this is set by the kernel.shmmax
parameter in Linux.3

The processors statement specifies the number of System z CPs to be used in this instance.
The default is one. This number must not be more than the zPDT token model allows, and

1 This is not required by some elements of a devmap, which ignore upper/lower case differences. Not all devmap
elements do this. To avoid problems, we recommend using lower case for everything (except for Linux file names,
which are case sensitive).

2 This statement assumes a simple, dedicated environment. Other environments may require more planning for
effective memory use.

3 This kernel variable is specified by the instructions in Volume 2 of this series of books.
34 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

should be less than the number of real processors in the base computer. The processors
statement is also used to indicate the use of speciality PUs, as in the following examples
(where “cp” indicates a normal, general-purpose CP):

processors 3 # three CPs. Assumed “cp” type
processors 3 cp cp ziip # two CPs and one zIIP
processors 2 cp cp zaap # invalid. Two processors, but three definitions
processors 1 ziip # invalid. Must have at least one cp
processors 3 cp zaap ifl # one of each
processors 3 zaap cp cp # invalid; cp must be first in the list

The operands for the processors statement are the number of processors (typically 1, 2, or
3)4, which cannot exceed the number allowed by the zPDT token model number. The
processors default to CPs; if speciality processors are wanted, these should be listed after the
number as shown in the examples. The processor types are cp, ziip, zaap, and ifl. If zIIPs or
zAAPs are specified in the processors statement, at least one cp must be listed first.5

Note that z/VM can simulate zIIP and zAAP processors, using normal CPs for the simulation.
Using z/VM for this function can reduce the number of zPDT licenses needed by the total
system.

The expand statement specifies the size of expanded storage for the System z machine. This
is optional. z/OS no longer uses expanded storage. However, z/VM still uses it. There is no
particular upper limit when working under 64-bit Linux systems, although the size should
usually be less than the physical memory size of the base machine.

The 3270port statement specifies a port number to be used by Linux TCP/IP for the aws3274
device manager. This must be an unused port and is typically a number greater than 1024.
We arbitrarily use port 3270 because it is easy to remember. A TN3270e connection to this
Linux port appears as a local, channel-attached 3270 to the System z.

The ipl statement is optional and indicates that the ipl command is to be executed
automatically when the zPDT operation is started. However, using this option might prevent
you from connecting 3270 emulator sessions at an appropriate time. We suggest not using
this option.

The cpuopt statement specifies optional parameters for the CPs. The only valid parameters at
this time are these:

cpuopt asn_lx_reuse=on (no blanks in operand)
cpuopt asn_lx_reuse=off (no blanks in operand)
cpuopt zVM_CouplingFacility (no blanks in operand)
cpuopt alr=on,zVM_Coupling (abbreviations)

The asn_lx_reuse operand may be abbreviated as alr. The zVM_CouplingFacility operand
may be abbreviated as zVM_CouplingFac or zVM_Coupling.

The asn_lx_reuse parameter (which may be abbreviated as alr) defaults to “on” and this is the
normal mode of operation for zPDT. This mode matches the relevant architecture of IBM z10
and later machines. When this parameter is set to “off” zPDT indicates that the LX and ASN
REUSE facility is not present. This mode may be useful for running early z/OS releases. The
use of “alr=off” produces an environment that is not supported or tested by IBM. While it may
be useful for working with earlier z/OS releases, the user must assume all responsibility for
correctness of operation and the correctness of results. Note that there are no blanks in these
operands; there must not be a blank before or after the equal sign.
4 The number of processors for an instance has a maximum value of 8. This is usable only if multiple tokens are used

or nonstandard “large” tokens are used, and may be limited to zPDT license terms and conditions.
5 The first processor type listed becomes the IPL processor; zIIPs and zAAPs cannot handle an IPL.
Chapter 4. Reference 35

The zVM_CouplingFacility operand is significant only for 1091 systems, which must have the
proper license feature to enable it. In effect, the zVM_CouplingFacility function is always
present for 1090 systems.

The command statement specifies Linux commands that may be automatically executed as
part of the zPDT operation. The syntax is:

command phase-number [synchronous] command-string

The phase number is a digit from 1 to 4:

� Phase 1 means the command is to be executed before zPDT is started.
� Phase 2 means the command is to be executed after zPDT is initialized.
� Phase 3 means the command is to be executed just before zPDT is shut down.
� Phase 4 means the command is to be executed after zPDT is shut down.

By default, commands are executed asynchronously but may be forced to synchronous
operation. (This should seldom be used, since it forces other zPDT operations to wait until the
command is completed. For example, do not use it for x3270 startup.) The word command may
be abbreviated to cmd and synchronous may be abbreviated to sync. If asynchronous
commands terminate while zPDT is still running, they are not restarted. If they are still running
when zPDT is shut down they are sent a SIGTERM signal and should terminate.

Additional system stanza options include the following:

[system]
...
rdtserver 27000@our.server.acme.com # RDz license server and port
int3270port 3271 # HMC-style integrated port
intASCIIport 3300 # HMC-style ASCII port

The rdtserver statement is used only with a 1091 system. It points6 to an RDz license server
used to supplement the 1091 token.7 Note that an RDz license server is not the same as a
zPDT remote license server. The operand may be a normal URL domain name or an absolute
IP numeric address.

The int3270port and intASCIIport statements provide emulation for HMC-style integrated
terminal functions. The operand for each statement is a port number on the local Linux
system. After starting zPDT with one (or both) of these operands you would start a 3270
emulator connected to the indicated port number or start z1090term8 connected to the
indicated ASCII terminal port number. These emulated terminals need not be on the base
Linux system.

A reasonable example of a system stanza could be as follows:

[system]
memory 6000m
processors 2
3270port 3270
command 2 x3270 -model 4 -geometry +100+100 localhost:3270
command 2 x3270 -model 4 -geometry +2100+100 localhost:3270
command 2 sync ipl a80 parm 0a8200
command 4 echo 'zPDT operation has completed'

An ampersand (&) is not needed after the x3270 commands in a [system] stanza. The
geometry parameters are optional, of course. Simply place the x3270 panels at convenient

6 Note the syntax: port@ipaddress. There is nothing special about the port number (27000) used in the example.
7 Contact your IBM marketing representative for more information about RDz general licenses.
8 See the command descriptions in Chapter 4.
36 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

places on the Linux desktop. Also, the x3270 sessions are automatically closed when zPDT is
shut down.

A devmap has several additional features.9 These are:

� The use of Linux environmental variables
� The include function
� The message function

An example of each of these functions is included in the following devmap:

[system]
memory $(SIZE)
3270port 3270

[manager]
name aws3274 1234
device 0700 3279 3274
device 0701 3279 3274

include dasd.def

[manager]
name awsosa 4567
device 0400 osa osa
...
message Remember to start or connect the x3270 sessions before you IPL
message
message For normal startup ipl A80 parm 0a8200

This devmap references a second file, dasd.def (in the same directory), which might contain:

[manager]
name awsckd ABCD
device A80 3390 3990 /z/SBRES1
etc

The SIZE parameter in this example is a Linux environmental variable. The variable name
must be enclosed in parenthesis, as shown. The value of the variable must be set before the
devmap is used. It can be set by the Linux shell command, for example:

$ export SIZE=3500m

This command can be issued prior to an awsstart command (in the same Linux terminal
window), but then it will not be effective in other Linux terminal windows. zPDT commands
that reference the active devmap (such as awsstat) could not be used in other terminal
windows. Alternatively, the export command can be added to the .bashrc file, where it will be
effective for any terminal window subsequently opened. For practical purposes, we suggest
adding any devmap environmental variables to the .bashrc file.10 If the specified
environmental variable is not set, a null string is placed in the devmap.

The include function in the example operates as might be expected. The file specified is
logically inserted into the devmap at the point shown. The operand of the include function
can specify a full Linux path name; if a simple name is specified, it is assumed to be in the
current directory. The file name specified cannot contain blanks. The name could be an

9 These features were added for special purposes. We have not seen much usage by typical zPDT users.
10 Other required changes to the .bashrc file are described in the second volume in this series, SG24-7722.
Chapter 4. Reference 37

environmental variable instead of a file name, for example include $(fileVAR). If the
specified environmental variable is not defined, the include function is skipped.

The message function simply displays its text when the devmap is processed by the awsstart
command. The message function name can be abbreviated to msg.

It is very unlikely that all the [system] stanza options would be used at one time, but here is a
full example for reference:

[system]
memory 6000m
processors 3 cp cp ziip
3270port 3270
int3270port 3271
intASCIIport 4000
rdtserver 6700@192.168.1.200
expand 1000m
#ipl 0A80 “0A8200” (This statement is not recommended)
cpuopt alr=on,zVM_Coupling
message This devmap is excessive
command 2 x3270 localhost:3270
command 2 x3270 -geometry +1100+100 localhost:3270
command 2 x3270 -geomentry +1100+600 localhost:3271
command 2 sync ipl a80 parm a08200
message Remember to start more 3270 sessions
include devmap2

4.2.1 Adjunct-processor stanza

The zPDT system provides emulation of the System z cryptographic adapter.11 The basic
devmap format is as follows:

[adjunct-processors]
crypto 0
crypto 1

This defines two cryptographic processors, numbered 0 and 1. If multiple zPDT instances and
shared cryptographic processors are used, the sharing instances may have a definition such
as the following:

[adjunct-processors]
domain 0 2
domain 1 2

This indicates that the instance is using domain 2 in cryptographic coprocessors 0 and 1. See
the third document in this series (SG24-7723) for more details.

4.3 Manager stanzas

A device manager stanza has the following general format:

[manager]
name awsckd C700
device 0a80 3390 3990 /z/SBRES1

11 Do not confuse this with the cryptographic instructions, which to do not require any special devmap statements.
38 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

device 0a81 3390 3990 /z/SBRES2
etc

The stanza begins with [manager], including the square brackets. In this example the device
manager name is awsckd, but this could be any of the supported device managers. The
device manager name is followed by an arbitrary hex number (up to four digits, different for
each name statement)12. The name statement is followed by as many device statements as
needed. The general format is:

� For name statements:

– The constant “name” starting in the first column.
– The device manager name, such as awsckd.
– A hex control unit number; each name statement must have a different number.
– Additional optional parameters, such as:

• --path=xx to specify an emulated CHPID number.
• --pathtype=xxx to specify an emulated CHPID type (usually EIO).
• --compress to specify compressed awstape generation.
• various optional tunnel parameters for OSA operation.

� For device statements:

– The constant “device” starting in the first column.
– The device number (“address”) to be used, expressed in hexadecimal. This may be

three or four digits.
– The device type, such as 3390. This must specify a correct device type for the device

manager.
– The control unit type associated with the device. (This parameter is not used for

anything at this time, but it would be unwise to not use an appropriate control unit
number.)

– Parameter(s) unique to the device:
• A fully qualified file name.
• --unitadd=x, to specify a unit address (as it would appear in an IOCDS) for some

device types (such as OSA). If this parameter is not used, the two low-order digits of
the device number are used as the default unit address for OSA devices. The
default is appropriate in almost all cases.

• Additional parameters for OSA operation.

The --path, --pathtype, and --unitadd parameters are typically used only for OSA definitions.

Except for OSA devices, the path for emulated devices defaults to 01 and the pathtype
defaults to EIO.13 In very rare cases it may be desirable to change these values. This can be
done with the --path and --pathtype operands on a name statement:

[manager]
name awsckd 20 --path=30 --pathtype=eio
device A90 3390 3990 /z/specialvolume

The path value is expressed as a hex number. Multiple stanzas for the same device manager
may be used. A maximum of 255 devices may be listed in a stanza, where multiple devices
are not limited by limitations of the emulated control unit. The device numbers (addresses)
assigned to each device need not be sequential or in any particular order.

12 This parameter originally matched a number in a separate IOCDS file. This separate IOCDS is no longer used, but
the positional parameter in the name statement remains.

13 EIO is a special CHPID type for Emulated I/O. zPDT users do not normally need to specify this anywhere.
Chapter 4. Reference 39

4.3.1 The awsckd device manager

The awsckd device manager emulates 3380 or 3390 disk drives. The definitions for awsckd
are simple, as this example illustrates:

[manager]
name awsckd 4321
device a80 3390 3990 /z/SYSRES
device a85 3390 3990 /tmp/my3390vol
device aa7 3390 3990 /z/SARES1
etc

The device type can be 3390 or 3380; in either case, the Linux file named by the fourth
parameter of device statements must be in the appropriate emulated format for that device
type. The Linux file containing the emulated volume must have been created with the alcckd
command, or copied from media that originated on a system where the file was initially
created with alcckd. Each emulated volume is a single, separate Linux file.

The most common CKD devices are 3390 units. Standard 3390s (models -1, -2, -3, and -9)
can be used, or a variable number of cylinders can be used. The maximum size for a normal
3390 is 64K-1 cylinders; however, zPDT can provide Extended Address Volume (EAV) 3390s,
as well.14

The “extra” cylinders of a 3390 are not emulated; these are the cylinders reserved as spares
or for diagnostic use. For example, a 3390-3 contains 3339 usable cylinders, and this is what
is emulated. Parallel access to volumes (PAV) is not supported.

4.3.2 The awsfba device manager

The awsfba device manager provides emulation for FBA disk devices (as used by z/VM and
VSE).

[manager]
name awsfba 6543
device 100 9336 9336 /z/DOSRES
device 101 9336 9336 /z/DOSWRK

awsfba devices (volumes) must be created before they can be used. This is done with the
alcfba utility.

4.3.3 The aws3274 device manager

The aws3274 device manager emulates local, channel-attached, non-SNA 3270 sessions.
These are used for MVS consoles, simple VTAM® sessions (TSO, CICS®, and so forth),
z/VM terminals, and similar purposes. The actual 3270 emulators (x3270, PCOMM, or other
3270 emulators) might be local (on the underlying Linux system running zPDT) or remotely
connected via a TCP/IP connection to the underlying Linux. In either case they use the Linux
TCP/IP port number that is assigned in the [system] section of the devmap and they appear to
be local, channel-attached 3270s to the System z software. The same Ethernet interface can
be used for Linux functions, such as telnet, aws3274, ftp, and so forth and also for OSA
connections.

There is a maximum of 32 emulated local 3270 device sessions, regardless of the number of
aws3274 stanzas.

14 A “large volume” 3390 has more than 64 K cylinders. Usage is being introduced with z/OS 1.11.
40 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

The devmap parameters for emulated local 3270s offer a number of options. These are best
explained by an example.

[manager]
name aws3274 C700 # C700 is an arbitrary CUNUMBR
device 0701 3279 3274 L701
device 0702 3279 3274 L702
device 0703 3279 3274 TSO
device 0704 3279 3274 TSO
device 0705 3279 3274 TSO
device 0706 3279 3274
device 0707 3279 3274
device 0708 3279 3274 IMS
device 0709 3279 3274 IMS
device 070A 3279 3274 IMS
device 070B 3279 3274 IMS
device 070C 3279 3274 L70C
device 070D 3279 3274
device 070E 3279 3274

The three operands after the device keyword are the address (device number), the device
type, and the control unit type. The remaining operand controls potential TN3270e client
connections to the device. This operand is known as an LUname, although it is not used as a
real SNA LU name. (TN3270e clients can pass an LUname, intended for SNA protocols,
during startup. We use this LU name passing facility here, without actually passing it to
VTAM.)

In this example, LUnames L701, L702, TSO, IMS™, and L70C are used. The connection
rules are:

� The LUname is not case sensitive.
� If an LUname is specified by the TN3270e client, then a free device with the matching

LUname will be used.
� If no LUname is specified by the TN3270E client, the next free device in the list is used.
� If there is no free device to match the specified LUname, the connection is rejected.
� A device is freed when a previous TN3270E client connection is terminated.
� If no LUname is specified in the devmap, the default LUname Dev-nnn is generated,

where nnnn is the device address.
� Up to 32 TN3270e clients may be connected to this device manager.

The aws3274 device manager listens on a port in the base Linux TCP/IP system. Assume the
Linux TCP/IP address is 192.168.0.40 in the following examples. Also assume that our
devmap specifies 3270 as the aws3270 port number. A user could enter one of the following
commands to establish an x3270 session:

$ x3270 -port 3270 192.168.0.40 & case one
$ x3270 -port 3270 TSO@192.168.0.40 & case two
$ x3270 -port 3270 L702@192.168.0.40 & case three
$ x3270 -port 3270 IMS@localhost & use local system

Assume our x3270 client is on a remote machine connected to a private LAN that includes
the zPDT system. In case 1, the user is connected to the next available 3270 session (in the
devmap list). In case 2, the client is connected to the next free device with LUname TSO. In
case 3, the client is connected to the single device with LUname L702, provided that device is
free at this time. The fourth example illustrates that the same LUname rules apply to
connections from the Linux desktop.
Chapter 4. Reference 41

In this example both TSO and L702 are LUnames. TSO happens to be used multiple times
but L702 is used only once. There is no requirement to have this arrangement and no
requirement to have the LUname reflect the device address (device number).

The devmap for an AD-CD z/OS system might be defined like this:

[manager]
name aws3274 C700
device 0700 3279 3174
device 0701 3279 3174
device 0702 3279 3174
device 0703 3279 3174
.....
device 070A 3279 3174

Connections take the next free terminal in the devmap list if no LU conditions are specified.
This can be useful if the first terminal in the devmap is the MVS console15 and the next
terminal is a suitable TSO address. In this case, without specifying any LU names, the first
x3270 session will be the MVS console and the second will be a TSO session (or CICS or
some other VTAM application).

From the user’s perspective, each 3270 terminal is a TN3270e session. The IBM Personal
Communications product and the x3270 emulator provided with many Linux distributions have
been tested for this usage.16 The TN3270e client might operate on the machine running the
zPDT processes (on the local Linux graphic panel, for example), or it might operate through a
remote TCP/IP connection. In either case, the TN3270E terminal appears as a local,
non-SNA, channel-attached 3270 to the System z operating system.

The use of TN3270e (instead of TN3270) is required because the LU name (which is
supported by TN3270e, but not TN3270) is needed. Most modern, supported 3270 emulators
provide TN3270e functions.

4.3.4 The awstape device manager

Definitions for awstape appear as follows:

[manager]
name awstape AB00 --maxlength=1000m
device 560 3490 3490
device 561 3490 3490 /local/my.tape.vol.111111

The emulated device type may be 3420, 3480, 3490, or 3590. (The third operand, the control
unit type, is not meaningful.) A file name may be specified as the last operand; if a file name is
specified, the file must be in awstape format (if it is for input). This situation is similar to a
premounted tape on a larger System z. Typically, no file is specified for emulated tape
devices. Instead, the awsmount command is used to emulate the mounting of a tape volume.

The maxlength parameter is optional. If a maxlength value is specified, the device manager
signals end-of-tape after the specified amount has been written. (z/OS would then probably
write trailer labels and call for another tape mount.) If maxlength is not specified, then the
maximum tape length is limited by one or more of the following conditions:

15 The AD-CD z/OS systems have always defined the MVS console at address 700.
16 The aws3274 device manager sends an attention signal to the host when a session is first connected. In some

cases, such as when connected to the VTAM unformatted system services function, this may prompt a full buffer
read by the host software. If the TN3270e session buffer is not formatted for this buffer read, the host may display
an “Unsupported Function” message. Simply clearing the TN3270 screen should resolve the situation. Some
TN3270e emulators encounter this situation and others do not.
42 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

� The amount of free disk space in the Linux file system.

� An architectural limit of approximately four million tape blocks for 3480 and 3490 device
types. The device signals end-of-tape just before this limit is reached. This limit exists for
both reading and writing tapes.

� Device types 3420 and 3590 do not have specific limits.

Emulated tape volumes created through this device manager are in awstape format and may
be exchanged with other systems that can process this format. Note that all awstape files are
compatible with all zPDT emulated tape devices. An awstape file written by an emulated 3590
can be read by an emulated 3420, for example.

The proper responses for hardware compaction (IDRC) are emulated, although tape data is
not actually compacted by this method. The awstape data may be optionally compacted by
the awstape device manager. This is controlled through a devmap or an awsmount
parameter. The compaction format is unique to zPDT awstape. The default uncompacted
form should be used for data interchange with other systems that use awstape data.

The awstape volumes are created when they are written to; that is, it is not necessary to
create or initialize the volume before writing to it.

4.3.5 The awsosa device manager

The awsosa device manager emulates various OSA-Express17 functions, as used by System
z TCP/IP or SNA.18 Two manager formats are used:

[manager]
name awsosa 8888 --path=F0 --pathtype=OSD [--interface=xxxx]
device 400 osa osa --unitadd=0
device 401 osa osa --unitadd=1
device 402 osa osa --unitadd=2

[manager]
name awsosa 2345 --path=A0 --pathtype=OSD [--interface] --tunnel_intf=y
[--tunnel_ip=10.1.1.1] [--tunnel_mask=255.0.0.0]
device 404 osa osa --unitadd=0
device 405 osa osa --unitadd=1
device 406 osa osa --unitadd=2

The first example would be used with a typical PC Ethernet adapter. The second format is
used for a tunnel interface between the emulated OSA adapter and the underlying Linux
TCP/IP system. The awsosa device manager can concurrently use the same Ethernet
adapter that is used by Linux for normal Linux TCP/IP functions, but the OSA user and Linux
cannot communicate through it. That is, both OSA and Linux can share the adapter for
connection to external TCP/IP systems, but they cannot communicate with each other. A
tunnel interface (which is similar to another Ethernet adapter) is needed for direct
communication between the underlying Linux system and the System z OSA operation.

The --path operand specifies a CHPID number. The correct number is determined with the
find_io command. For these examples we assume the CHPID for Ethernet is F0 and the
CHPID for a tunnel interface is A0. The --pathtype is OSD (for QDIO) or OSE (for LCS or

17 Larger systems have OSA-Express, OSA-Express2, and OSA-Express3 channels. The awsosa device manager
provides a subset of these channel functions.

18 SNA usage has not been tested by IBM and is not supported for zPDT usage.
Chapter 4. Reference 43

non-QDIO). In some cases the find_io command does not provide a CHPID (path name) for
a LAN interface. The --interface=xxxx parameter may be used to name a specific LAN
interface. The interaction of the --path and --interface parameters is explained in detail in
Chapter 10 in the most recent editions of the third book in this series (SG24-7723). An
example of using the --interface parameter might be:

name awsosa AAAA --path=B0 --pathtype=OSD --interface=em1

The --unitadd operands specify the internal OSA interface number; normally these are not
needed for QDIO operation. They may be needed for non-QDIO operation if more than one
TCP/IP interface is used. z/OS TCP/IP requires three OSA addresses for QDIO operation.

SNA usage would require CHPID type OSE, although SNA usage with zPDT is not
supported. The z/OS device type should be OSA, as seen in the z/OS IODF (and when
displaying devices on the MVS console).19 When used in OSE mode, the OSA interfaces are
associated with OAT20 definitions that specify how each interface is to be used.

Examples of OSA setup are in Volumes 2 and 3 of this documentation series. The limits in
Table 4-1 apply to OSA-Express emulation.

Table 4-1 OSA-Express limits, per port

4.3.6 The awsrdr device manager

The awsrdr device manager emulates a 2540 card reader. Only one awsrdr device may be
configured for an instance of zPDT operation. Typically, the emulated card reader is used to
submit jobs to the operating system.21 If we assume this to be z/OS, then JES2 or JES3
should be configured with a “hot” reader.22 The traditional address for a 2540 is 00C, and we
use this in our examples.

19 Older z/OS systems may use CTC device definitions for these interfaces, especially when they are used for
TCP/IP. These definitions should be replaced with device type OSA.

20 An OAT is an OSA Address Table.

Maximum OSAs (and maximum OSA CHPIDs) 4

Maximum home addresses (IPv4 + IPv6 + DVIPA) per OSA port 64

Maximum IPV6 addresses 32

Maximum multicast addresses (IPv4 + IPv6) 64

ARP table size 256

IP stacks per port (OSD or OSE) 16

SNA PUs per OSA-Express port (SNA is not supported for zPDT) 512

OSE subchannels per stack 2

OSE or OSD maximum devices 48

OSE IP stacks per OSA port/CHPID 16

OSD subchannels per stack 3

OSD subchannels per OSA/CHPID 48

21 In principle, we could directly allocate the card reader to a job using the appropriate DD statement. We did not try
this.

22 The term “hot reader” means there is always a read outstanding for the card reader. As soon as an operator
places cards in the reader, JES begins reading them.
44 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

The awsrdr device manager monitors the directory specified in the devmap. When a file is
found in the directory it is read (assuming a System z program has a read outstanding for the
card reader, as would be the case with a JES hot reader). After the file (“card deck”) is read it
is moved to the old subdirectory. In this way there is never a file in the directory assigned to
the reader, other than a file someone has just moved there to be read. As soon as it is read, it
is moved out of the reader directory. If awsrdr is not active, or if there is no System z program
trying to read cards, then files sit in the reader directory indefinitely.

The devmap entry for the card reader could appear like this:

[manager]
name awsrdr 010C
device 00C 2540 2821 /home/ibmsys1/cards/*

When a file is moved into the /home/ibmsys1/cards/ directory (using a Linux utility to move the
file) it is then ready to be read by the emulated card reader. After the file is read by the card
reader, it is moved to the /home/ibmsys1/cards/old/ directory. The /home/ibmsys1/cards/
directory we mention is just an example, of course. We can specify any path name (but the
path must exist). The default path is /home/<userid>/z1090/cards/ and this is used if no path
is specified in the devmap.

ASCII and EBCDIC
Linux text files are normally in ASCII. z/OS cards are normally in EBCDIC, but may contain
binary information. A card reader uses fixed-length records (80 bytes) but a Linux text file has
variable length records terminated with an NL character.

The conversion rules are as follows:

� If the input file name (in the directory used by awsrdr) contains the suffix .ebc or .bin, then
the file is assumed to already be in EBCDIC and no translation is done.

� If the input file contains the suffix .txt or .asc, then the file is assumed to be in ASCII and
is converted to EBCDIC.

� If the input file contains the ASCII characters // or ID or $$ or USERID in the first bytes, the
file is assumed to be in ASCII and is converted to EBCDIC.

� If none of these conditions are true (suffix .ebc, or .bin, or .asc, or .txt, or recognizable first
characters in ASCII), then the file is assumed to be EBCDIC (or binary as used for System
z) and is not converted.

� If a file is converted from ASCII, the record length is padded with blanks to 80 bytes and
the terminating NL bytes are removed.

� If the file is not converted from ASCII, for one of the reasons listed here, then awsrdr reads
it in 80-byte chunks and passes the data (unchanged) to the emulated card reader.

Another way to translate ASCII text files to EBCDIC card files is with the txt2card command.

The ASCII/EBCDIC translation table is fixed in all cases.

4.3.7 The awsprt device manager

The awsprt device manager emulates a 1403 or 3211 printer. FCB functions are supported
(for 3211 emulation), but UCS functions (for a 1403) are not supported. A fixed translation
table is used to convert EBCDIC to ASCII. The device manager automatically inserts NL
characters between output records. Unprintable characters are translated to blanks and no
unit check is generated for these.
Chapter 4. Reference 45

awsprt cannot recognize divisions between System z jobs. It simply concatenates all output
(potentially from multiple jobs) into the output file. The devmap specifies the output file to be
used:

[manager]
name awsprt 0003 [--windows]
device 00E 1403 2821 /home/ibmsys1/print

If a file name is not provided with the device statement, then the default file name
(/home/<userid>/z1090/listings/dev-nnnn.lst) is used. The --windows option causes the
output lines to be terminated with CR/LF characters instead of NL characters.

The awsmount command may be used to close the existing output file and open a new output
file. The previous output file is closed properly, and is then available for display or printing
under Linux.

4.3.8 The awscmd device manager

This device manager provides a “device” that appears to System z software as a tape drive.
Its function is to send commands (and data) to the underlying Linux and then receive the
output from the Linux command. Any Linux command may be sent, including those that could
destroy the Linux system.23 Obviously, this device manager should be used with care and
may not be appropriate for a zPDT environment that can be accessed by untrusted users.

Configuration is similar to other device managers:

[manager]
name awscmd 20
device 580 3480 3480

The device type can be 3420, 3422, 3480, 3490, or 3590; these are the tape device types
emulated by zPDT. The device number (580) should match a corresponding device type in
your z/OS IODF. (Any device number may be used with z/VM.)

The intended operation (by a System z application program) is as follows:

1. A rewind is issued to the device.

2. The desired Linux command (expressed in EBCDIC) is written to the device.

3. Any stdin data to be used by the Linux command is written to the device.

4. EBCDIC to ASCII translation is done automatically, with a fixed translation table.

5. A tape mark is written to the device.

6. At this point, the awscmd device manager submits the command (and data) to Linux
through a shell that does not appear on the Linux screen. The current Linux directory for
the command is the directory that was used to start zPDT.

7. When the awscmd function completes there are four files on the pseudo-tape device:

– The command file that was submitted to Linux (with redirection operands that were
automatically added by awscmd)

– The stdout data from the Linux command
– The stderr data from the Linux command
– The return code (converted to characters) from the Linux command

8. The output (on the pseudo-tape) has been converted to EBCDIC.

9. Two tape marks are at the end of the pseudo-tape.

23 The Linux commands are executed with the authority of the userid that started zPDT operation.
46 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

Restrictions
The command you send to Linux cannot include any redirection (< or > characters),
asynchronous indicator (& character), or pipe (“|” or vertical bar character). The pseudo-tape
device will appear to be busy while Linux is executing the command. Any Linux command that
creates substantial delays (of many seconds) may cause I/O timeout errors to be generated in
z/OS.

At the time of writing, some characters did not survive the EBCDIC to ASCII conversion when
included in SYSIN data. These were the tilde (~), caret (^), colon (:), double quote (“),
less-than (<), greater-than (>), and question mark (?). This restriction may change in later
versions of awscmd.

An extended example of awscmd usage is in the third document in this series (SG24-7723).

4.3.9 The awsscsi device manager

The awsscsi device manager emulates a mainframe tape drive using a SCSI tape drive. The
only tested and supported drives are Fujitsu M2488E units (compatible with IBM 3490 and
3490E cartridges), IBM LTO3 and LTO units, IBM TS112024, and IBM 3592 (Fibre Channel
interface) units.

[manager]
name awsscsi 700
device 581 3490 3490 /dev/sg5

The last operand of the device statement denotes the SCSI device to be used. This must be
given as a /dev/sgx name, and not as a /dev/stx name. The differences are complex;
Volume 3 describes methods for determining the correct /dev/sgx name. The SCSI tape drive
appears as an IBM 3490 to the System z software.25 Note that proper IBM 3490
characteristics, such as a maximum block count, are emulated and may produce unexpected
results.

The awsmount command may be used with SCSI tape devices.

4.3.10 The aws3215 device manager

The aws3215 device manager provides emulation of a 3215 console.

[manager]
name aws3215 AC00
device 009 3215 3215

It is possible, but very unusual, to have multiple 3215 devices. Input to the 3215 console is via
the awsin command, entered in a Linux command window. Output appears in the Linux
window used for the awsstart command.

4.3.11 The awsoma device manager

The awsoma device manager is used to read CDs or DVDs26 written in a special format
known as OMA. This is for input only; it is not possible to write to an awsoma device. In earlier

24 The IBM TS1120 might not handle blocks larger than 32K. This is a restriction of some adapter cards, and not of
the TS1120 drive itself. The user must determine if these limitations exist for his adapter.

25 Remember that IBM 3490 tape units have their own characteristics. One of these is a maximum block count of
approximately 4 million (a 22-bit number).

26 It is possible to have OMA files on other media, but a CD or DVD is usually where they are found.
Chapter 4. Reference 47

days, VM and VSE were available in OMA format; some Linux distributions for System z may
use this format.

[manager]
name awsoma D000
device F00 oma oma /media/ROM/;xyz.tdf

The variable portion of the device statement (after the second oma) must be in a specific
format, with two names separated by a comma or semicolon. There must be no blanks
between the operands. The first name is a path name and the second name is a particular file
name. That is, the second name is relative to the path specified by the first name.27

In a Linux-based zPDT system, the net effect is that the two names are concatenated; in the
example above, the effective file name used for input to awsoma would be
/media/ROM/xyz.tdf. The slash (/) after ROM could be omitted and a slash inserted before
xyz.tdf; this would result in the same effective file name.

Releases of zPDT code later than 39.14 have expanded the possible formats to include the
following:

device 123 oma oma /tmp/;my.tdf results in /tmp/my.tdf
device 123 oma oma /tmp/my.tdf single fully qualified name
device 123 oma oma my.tdf results in /home/ibmsys1/my.tdf

(assuming zPDT was started from /home/ibmsys1)
device 123 oma oma /media/myCD/TAPES/my.tdf

(data is assumed to be in /media/myCD/xxxxx)

The first example here follows the original requirements. The second example uses a single
fully-qualified name. The third example causes the specified file name (my.tdf) to be relative to
the directory used to start zPDT operation. The last example depends on the keyword TAPES
to indicate that data files are relative to the directory above TAPES.28

The variable portion of the device statement may be omitted. In this case, awsmount
commands are used to associate the TDF file with the awsoma device. The two-operand
format, as used in the initial description above, is not valid for awsmount.

4.3.12 The awsctc device manager

The awsctc device manager emulates a 3088 channel-to-channel control unit. A typical
definition is as follows:

[manager]
name awsckd 5432
device E40 3088 3088 ctc://192.168.0.81:3088/E42
 | | |
 | | + remote device number
 | + remote port number
 + remote IP address

Multiple devices may be defined for this device manager. A separate chapter in the third book
in this series (SG24-7723) describes the setup and usage of this device manager.

27 This operand convention was evolved for early OS2-based machines, where it helped deal with drive letters that
might be needed before a file name.

28 This convention was used in the original OMA support and is documented in IBM publication SC53-1200.
48 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

4.4 zPDT commands

zPDT commands are entered as normal Linux line commands in a Linux terminal window. If
zPDT is running (that is, the System z function is operating) then zPDT commands directed to
the System z must be entered in a Linux window that is owned by the Linux userid that started
the System z function.29 This is not normally an issue unless multiple zPDT instances are
running, each under a separate Linux userid.

The term devmap is used throughout these documents to indicate a zPDT device map, which
is a simple Linux text file that specifies System z characteristics and emulated I/O devices for
an instance of System z operation.

The return values listed for many of the commands are normally not relevant, but might be
used if the commands are embedded in a shell script, for example.

Note that most of the commands have a help option, usually invoked by an -h operand.30 This
operand is not shown in the following descriptions because it is the same for all commands
and would add needless bulk to the command descriptions. The same help information may
be obtained with a Linux man command using the zPDT command name as the operand. For
example:

$ man awsstart (request MAN pages for awsstart command)
$ awsstart -h (displays the same MAN pages)

The $ in this example (and in many examples throughout these documents) represents the
Linux prompt.

4.4.1 adstop

The adstop command sets an address stop point for the default processor. When the
instruction address in the PSW equals the specified address, the CP enters a stopped state.
The PSW check is effective for both virtual or real addresses. Only one stop address may be
in effect for each CP. To be most effective, only one CP should be in use or the same address
stop should be set for all active CPs. (The default CP is changed with the cpu command.)
zPDT must be operational when using this command.

adstop hex-address [on | off]
 [q]

Where:

q - query the current settings for the command.

The return values are:

0 The address stop was set.
16 Unable to initialize the manual operations interface.
69 Unusable hex address.
101 The address stop was not set.

Command examples are:

$ adstop 4FCC
$ adstop off

29 This means the same Linux user who issued the awsstart command must enter any additional zPDT commands
that affect that instance of System z operation.

30 In some cases, a ? operand (question mark) can be used in addition to the -h operand.
Chapter 4. Reference 49

4.4.2 The alcckd command

The alcckd command creates (and formats) a Linux file that may be used as an emulated
3380 or 3390 DASD unit. The file is formatted to correspond to 3380 or 3390 tracks and
cylinders in CKD format, but is otherwise not initialized. A utility program (such as ICKDSF)
must later be used to create a volume label, VTOC, and so forth. A standard model (3380-1,
3380-2, 3380-3 or 3390-1, 3390-2, 3390-3, 3390-9) may be specified to establish the size of
the emulated device, or a specific number of cylinders may be specified to create a
nonstandard size. zPDT need not be operational when using this command. (zPDT would
need to be restarted, with an updated devmap, to use the newly created CKD device.)

alcckd file-name { -ddevice-type [-snumber-of-cylinders] [-q] }
 { -r }
 { -rs }
 { -rf }
 { -ve | -vr | -vc | -vi | -vd }

Where:

file-name is a Linux file name.

-ddevice-type is a device type, optionally with a model number.

-d3380 - device type 3380 (size specified by the -s parameter)
-d3380-1 - device type 3380 with 885 cylinders
-d3380-2 - device type 3380 with 1770 cylinders
-d3380-3 - device type 3380 with 2655 cylinders
-d3390 - device type 3390 (size specified by the -s parameter)
-d3390-1 - device type 3390 with 1113 cylinders
-d3390-2 - device type 3390 with 2226 cylinders
-d3390-3 - device type 3390 with 3339 cylinders
-d3390-9 - device type 3390 with 10017 cylinders

-snumber-of-cylinders (used when a standard model is not specified) determines the
number of cylinders to be created. The maximum size is 65520 cylinders for a “normal”
3390, or 268,435,456 cylinders for a “large” 3390.

-r displays the CKD device attributes for an existing emulated CKD file. The alcckd
command with no operands produces the same information.

-rs displays the CKD device attributes for an existing emulated CKD file and scans the file
to verify that the emulated CKD formatting is correct.

-rf performs the -rs function and reinitializes any emulated tracks with incorrect formats;
the contents of that track are lost.

-q invokes quiet mode, with no output messages to the Linux terminal.

-ve, -vr, -vc, -vi, and -vd are related to versioning and are described in Volume 3 of this
documentation series.

Earlier releases of zPDT did not allow a space between the -d or -s flag and the associated
parameter. This restriction no longer exists, but examples are still in the no space format.

Earlier releases of this command had a -z option that caused all emulated tracks to be
written; the default action was to write a Linux sparse file. This is now changed and alcckd
always writes the full tracks for the emulated volume.

If more than 65520 cylinders (for a 3390) are specified, an extended address volume (EAV) is
produced. The number of cylinders in an EAV should be an even multiple of 1113.

The return values are:
50 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

0 Successful operation.
11 Insufficient Linux disk space to create the file.
12 Linux path not found.
13 Linux write protection (permissions) error.
14 General error.
15 Specified file already exists.
16 File not found or file name is invalid.
17 Drive not ready.
19 Disk not valid.
20 Not an emulated CKD volume.
21 Emulated CKD format is not valid

Examples of command usage:

$ alcckd /z/WORK01 -d3390-3 (create new emulated 3390-3 volume)
$ alcckd /tmp/222222 -d3390 -s100 (create small 3390 volume, 100 cylinders)
$ alcckd /z/WORK01 -rs (verify format of CKD volume)

4.4.3 The alcfba command

The alcfba command creates (and formats) a Linux file that may be used as an emulated
9336 DASD unit. The file is formatted to correspond to the fixed blocks of a 9336 device and a
volume name may be assigned. A standard model (9336-1, 9336-2) may be specified to
establish the size of the emulated device, or a specific number of blocks may be specified to
create a nonstandard size. (Fixed-block devices compatible with 9336 drives may also used
these emulated volumes.) zPDT need not be operational when using this command. (zPDT
would need to be restarted, with an updated devmap, to use the newly created FBA device.)

alcfba file-name {-ddevice-type [-ssize{B|K|M}][-vvolser][-q] }
 {-c -vvolser [-q] }
 {-r }

Where:

file-name is the Linux file name for the emulated volume.

-ddevice-type:
-d9336 - device type, size is set by the -s parameter.
-d9336-1 - device type, size is 920,115 blocks.
-d9336-2 - device type, size is 1,672,881 blocks.

-ssize is the size (in decimal) of the emulated volume.

-snnnB specifies the number of 512K blocks for the device.
-snnnK specifies the total volume size in kilobytes.
-snnnM specifies the total volume size in megabytes.

-vvolser sets the volume serial to the indicated name (6 characters). The volser is six
characters and automatically converted to upper case.

-c change the volser of an existing FBA volume.

-q sets quiet mode with no output messages sent to the Linux terminal.

-r display the attributes of an existing FBA volume.

Earlier releases of zPDT did not allow a space between the -d, -s, or -v flag and the
associated parameter. This restriction no longer exists, but examples are still in the no space
format.

Return values are:
Chapter 4. Reference 51

0 Command completed successfully.
1 Help information was displayed.
11 Insufficient Linux disk space to create the FBA volume.
12 Path not found.
13 Write protection (permissions) error.
14 General error.
15 Specified file already exists.
16 File not found or the file name is not valid.
17 Drive not ready.
19, 20 Disk not valid.

Command examples are:

$ alcfba /z/TEMP01 -d9336-1 -vSCRTCH
$ alcfba /tmp/444444 -d9336 -s2000B -vMYVOL1
$ alcckd /z/TEMP01 -c -vWORK99

4.4.4 The ap_create command

The ap_create command dynamically creates an emulated cryptographic processor. zPDT
must have been started when this command is used.

ap_create -a n

Where:

n is the number of the coprocessor and is in the range 0 - 15.

Emulated cryptographic coprocessors are normally specified in the devmap, in the
[adjunct-processors] stanza and are created automatically when zPDT is started. This
command would be used only in unusual situations.

The ap_destroy command
The ap_destroy command removes an emulated cryptographic coprocessor if it is not
connected to a CP process. zPDT must have been started when this command is used.

ap_destroy -a n

Where:

n is the number of a defined cryptographic coprocessor.

Emulated cryptographic coprocessors are automatically removed when zPDT is stopped.
This command would be used only in unusual circumstances.

4.4.5 The ap_query command

The ap_query command displays the status of emulated cryptographic coprocessors. zPDT
must have been started when this command is used.

ap_query
ap_query -a n

Where:

n is the number of a defined cryptographic coprocessor.
52 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

This command queries basic status and domain information. With no operand, it lists the
coprocessors available to System z. With an operand, it lists which domains are used by the
indicated coprocessor.

4.4.6 The ap_von and ap_voff commands

The ap_von and ap_voff commands vary emulated cryptographic coprocessors (or domains)
online or offline. zPDT must have been started when this command is used.

ap_von -a n
ap_von -a n -d y
ap_voff -a n
ap_voff -a n -d y

Where:

n is the number of a cryptographic coprocessor.

y is the number of a domain within the specified coprocessor.

Emulated cryptographic coprocessors defined in the devmap are automatically made online
when zPDT is started. The ap_von and ap_voff commands are not normally used, although
they become relevant when ap_create or ap_destroy commands are used.

4.4.7 The ap_vpd command

The ap_vpd command displays Vital Product Data (VPD) data for an emulated cryptographic
coprocessor. zPDT must have been started when this command is used.

ap_vpd -a n

Where:

n is the number of a defined cryptographic coprocessor.

This command might be useful to verify that the specified coprocessor is, indeed, active. The
data displayed is not relevant to normal zPDT operation.

4.4.8 The ap_zeroize command

The ap_zeroize command erases (zeros) the content of a specified emulated cryptographic
coprocessor, or a subset of a coprocessor. zPDT must have been started when this
command is used.

ap_zeroize -a n -d y
ap_zeroize -a n -i

Where:

n is the number (0-15) of an emulated cryptographic coprocessor.

y is a domain (0-15) in the specified coprocessor.

This command reinitializes (zeros) all the data, such as keys, that is retained by the
coprocessor. The first version of the command (with the -d operand) affects only the specified
domain in the specified coprocessor. The second version (with the -i operand) zeros the
whole adapter. Either -i or -d must be specified (with an appropriate domain number for y).
Chapter 4. Reference 53

When a new cryptographic coprocessor is used (or when one is zeroized) it must be
reinitialized. This is normally done with the ICSF utility, as explained in the third book in this
documentation series.

4.4.9 The attn command

The attn command creates a simulated unsolicited device end interrupt from a device.

attn device-number

Where:

device-number is the address (device number) of a device in the current devmap.

An unsolicited device end is also known as an asynchronous attention interrupt. The meaning
of an attention interrupt varies depending on the device type. In typical zPDT operation this
command is probably not used.

A command example is:

$ attn 590

4.4.10 The aws_bashrc and aws_sysctl commands

These commands may be used during zPDT installation to bypass making tedious manual
changes to Linux files. These two command scripts are located in /usr/z1090/bin, along with
all the other zPDT command files. However, at the time these two commands are typically
used, /usr/z1090/bin is not yet in the Linux PATH. For that reason, these commands are
typically called by their full path name:

/usr/z1090/bin/aws_sysctl (change to root before using this command)
$ /usr/z1090/bin/aws_bashrc (do not use this command as root)

The aws_sysctl command makes required modifications to /etc/sysctl.conf and then
executes /sbin/sysctl. The aws_sysctl command must be executed with root authority. The
statements this command adds to /etc/sysctl.conf are appropriate for many zPDT users,
but may need to be manually modified for especially large zPDT instances. This is discussed
further in the second document in this series (SG24-7722).

The aws_bashrc command modifies the .bashrc file in the current directory. You should
normally be in your home directory (and not as root) when executing this command. The
command adds the appropriate zPDT PATH statements to .bashrc.

4.4.11 The awsckmap command

The awsckmap command validates the content and format of a device map, reporting any
errors found. zPDT need not be operational when using this command.

awsckmap devmap-name [--list]
 [--sys]
 [--sum]
 [--mgr]
 [--dev]

Where:

devmap-name is a Linux file name (fully qualified, if necessary).
54 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

--list causes the command to output a listing of the complete configuration.

--sys provides information about the systems section of the devmap.

--sum provides information about the subchannel/devices in the devmap.

--mgr lists the device managers required by this devmap.

--dev lists detailed device information from the devmap.

The return code is always zero. Examples of the command are:

$ awsckmap aprof1
$ awsckmap /z2/VM/devmap2.txt --list

4.4.12 The awsin command

The awsin command provides input to an emulated 3215 console. The address (device
number) of the 3215 must be provided if more than one 3215 is defined. (Note that 3215
device usage is rare today, and this command is seldom used.) zPDT must be operational
when using this command.

awsin { [dev-address] 'text' }
 { [dev-address] -a }

Where:

dev-address is the address (device number) from the devmap.

'text' is the message to be sent to the 3215.

-a indicates that an attention interrupt should be sent, but no text.

The text operand is normally included in single quotes to prevent the Linux shell from altering
it. Return values are:

0 Input text queued for input or attention interrupt sent.
-1 Errors. (Devmap problem; -a and text both included; text too long)
-2 No 3215 device found in the devmap.
-3 No dev-address specified and multiple 3215s exist in devmap.

A typical example of command usage is:

$ awsin 'sta,id=ifdasd'

4.4.13 The awsmount command

The awsmount command associates a Linux file with an emulated I/O device. It can also be
used to perform various operations on emulated tapes, query device status, and make a
device read-only or read-write. zPDT must be operational when using this command.

awsmount dev-address {-b | --bsf [n] }
 {-c | --compress }
 {-f | --fsf [n] }
 {-s | --rew }
 {-t | --wtm [n] }
 {-x | --run }
 {-u | --unmount }
 {-r | --ro | --readonly }
 {-w | --rw | --readwrite }
 {-q | --query }
 {{-o | --replace} file-name [-r|--ro|-w|--rw] }
Chapter 4. Reference 55

 {{-m | --mount } file-name [-r|--ro|-w|--rw] }
 {-d | --disc | --disconnect }

Where:

dev-address is the device address from the devmap.

-b or --bsf backspaces over one tape mark on an emulate tape drive.

-c or --compress causes output to an emulated tape drive to be compressed.

-f or --fsf forward spaces over one tape mark on an emulated tape drive.

-s or --rew rewinds an emulated tape drive.

-t or --wtm writes a tape mark on an emulated tape drive.

-x or --run produces a rewind and unload on an emulated tape drive.

-u or --unmount produces an unmount operation on the device. This removes any previous
Linux file association with the device.

-r or --ro or --readonly makes the emulated device read-only.

-w or --rw or --readwrite makes the emulated device read-write.

-o or --replace replaces the existing file association with a new file association (similar to
replacing a tape on a tape drive) and the new file has the indicated read-only or read-write
characteristics.

-m or --mount associates a new file with the emulated device, when no file was associated
with it at the time of the command.

n is the number of operations to perform. (This option is not available yet.)

-d or --disc or --disconnect is used to force disconnection of a 3270 session.

Tape operations (bsf, fsf, rew, wtm, and run) for emulated tape drives also may be used with
SCSI-attached tape drives. Appropriate awsmount functions may be used for the awsckd,
awsfba, awstape, awsscsi, awsprt, and awsoma device managers. The awsmount command
should never be directed at an awsosa device.

Examples of extended use of awsmount (using 580 as a typical device number) are:

For tape drives (emulated or SCSI)
awsmount 580 -q query currently mounted file
awsmount 580 -m /tmp/tapevol/123456 mount emulated volume
awsmount 580 -o /z/654321 replace mounted volume
awsmount 580 -u unmount current volume
awsmount 580 -x (or --run) unmount current volume
awsmount 580 -b backspace over tape mark
awsmount 580 -f forward space over tape mark
awsmount 580 -s rewind tape volume
awsmount 580 -t write tape mark
awsmount 580 -c /tmp/mytape1 mount and use compression

For OMA tapes (using device number 180 as an example)
awsmount 180 -q query currently mounted file
awsmount 180 -m /tmp/oma/11111 mount emulated volume
awsmount 180 -o /z/oma/dosvol replace mounted volume
awsmount 180 -u unmount current volume
awsmount 180 -x (or --run) unmount current volume
awsmount 180 -b backspace over tape mark
awsmount 180 -f forward space over tape mark
awsmount 180 -s rewind tape volume
56 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

Disks and printers (using 300 and 00E device numbers)
awsmount 300 -q query mounted file name
awsmount 300 -m /z/LOCAL1 mount emulated volume
awsmount 00E -m /tmp/print1 printer output file
awsmount 300 -o /z/LOCAL2 replace mounted volume
awsmount 300 -u unmount current volume

aws3270 (local 3270 sessions; device number 702 for example)
 awsmount 702 -q query tn3270 client

awsmount 702 -d force a disconnect
awsscsi (connect SCSI tape drives, using device number 580 for example)

awsmount 580 -m /dev/sg3 connect SCSI tape drive

4.4.14 The awsstart command

The awsstart command starts zPDT operation by creating a System z environment.

awsstart [--noosa][--map] file-name [--clean] [--localtoken]

Where:

--noosa creates a zPDT environment without any OSA components.

--map is optional before the file name.

file-name is the name of a device map file.

--clean causes all previous logs and traces to be deleted.

--localtoken causes a local USB token to be used while retaining a previous serial number.

Use of the --noosa parameter would be unusual and should be done only at IBM direction.
zPDT maintains a variety of logs and traces in the ~/z1090/logs directory. Note that this is a
subdirectory of the userid that installed and now starts zPDT. The contents of the logs
directory can grow over time. If no zPDT problems are under investigation, using the --clean
parameter will ensure that only currently relevant logs and traces (from the zPDT instance just
being started) will appear in the directory.

A zPDT system may be configured to use a remote license manager. If the owner wants to
temporarily use a local token without changing the remote license manager configuration
details, the --localtoken option may be used. The details may be found in the third book in this
series (SG24-7723).

The only defined return value is zero. An example of the command is:

$ awsstart devmap3 --clean

4.4.15 The awsstat command

The awsstat command queries the status of emulated I/O devices.

awsstat [-i [n-seconds]] [device-list]

Where:

-i n-seconds indicates the list should be repeated every n-seconds. If the n-seconds
parameter is not provided, the default is 400 seconds.

device-list is list of device numbers. If no device-list is provided, all defined emulated
devices are listed. A range of device numbers may be specified, or the name of a device
manager.
Chapter 4. Reference 57

The device-list may use three- or four-digit hexadecimal operands. These are the device
numbers (“addresses”) defined in the current devmap. The output display for emulated disk
devices includes the current head position (cylinder, track) on the device.

If the interval option (-i) is used, there is a help panel (accessed by entering h or ?) that allows
the output to be sorted. Entering q during an interval will terminate the command.

The defined return values are:

0 Command complete.
-2 Unable to locate or open devmap.
-3 Unable to access shared device status memory.
-4 Insufficient memory to initialize the command.
-5 Unable to collect device status.

An example of the command and resulting output is:

$ awsstat 700,a80
Config file: /home/ibmsys1/aprof9 IOCDS:none, 3270port:3270
DvNbr S/Ch --Mgr--- Actv Busy --PID-- ------Device information-------------
0700 0 AWS3274 Yes No 4315 IP-127.0.0.1 Term-mstcon, Avail-No
0a80 5 AWSCKD Yes No 4449 Cyl-2036, Head-3 /z/Z9RES1

The S/Ch column lists the subchannel number (internal to zPDT). Each device is represented
by a Linux process and the process IDs are listed. The IOCDS note in the header should be
ignored.

$ awsstat a80-a85 (a range of device numbers)
$ awsstat awsckd (all devices owned by this device manager)

4.4.16 The awsstop command

The awsstop command ends zPDT operation. This operation ends abruptly, with no warning
to the System z operating system.

awsstop

There is no return value. An example of the command is:

$ awsstop

4.4.17 The card2tape command

The card2tape command copies a Linux text file to an emulated tape volume, in card image
format. zPDT need not be running to use this command.

card2tape [-c] [-a] inputfile outputfile
 [--compress] [--ascii]

Where:

-c or --compress causes the output awstape file to be compressed.

-a or --ascii indicates the input file is ascii and causes the output to be translated to
EBCDIC.

The compression option saves space in the emulated output file, but is not compatible with
other platforms that may use awstape files. It does not indicate the use of hardware tape
compression, such as IDRC. The output is in 80-byte records, blanks appended to input
records if necessary.
58 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

The default conditions for ASCII to EBCDIC translation are the same as used for the awsrdr
device manager, and are described in 4.3.6, “The awsrdr device manager” on page 44. The
-a or --ascii parameters must be used to force translation. The EBCDIC/ASCII translation
table used cannot be changed.

No return values are defined. An example of the command is:

$ card2tape --ascii myfile.txt myfile.awstape

4.4.18 The card2txt command

The card2txt command creates an ASCII text file from an EBCDIC input file in card format.
zPDT need not be running when this command is used.

card2txt input-file output-file

Where:

input-file is an EBCDIC file that must be an exact multiple of 80 bytes long.

output-file is the name of the Linux text file.

The input file is read in 80-byte blocks and each block is assumed to be a card record. Trailing
blanks are then removed from each 80-byte block and a NL (NewLine) character added, as
used for a Linux text file. The EBCDIC/ASCII translation table used cannot be changed.

No return values are defined. An example of the command is:

$ card2txt carddeck.ebc file23.txt

4.4.19 The ckdPrint command

The ckdPrint command dumps (prints) the contents of an emulated disk drive (such as a
3390) to Linux stdout. zPDT need not be running when this command is used.

ckdPrint emulation-file-name

Where:

emulation-file-name is the name of the Linux file that contains the emulated disk.

The program prompts for the range of tracks to dump. These are entered as four decimal
numbers separated by blanks. The numbers are:

� The starting cylinder number
� The starting head number
� The ending cylinder number
� The ending head number

After dumping the specified tracks, the prompt is repeated. Entering a null line ends the
program. Cntl-C may be used to terminate the program. Count, key, and data fields are shown
for each block on the track(s) that are dumped.

No return values are defined for this command. An example that dumps the contents of the
first two tracks (track 0 and track 1) of the first cylinder (cylinder 0) is:

$ ckdPrint /z/Z9DIS1
DeviceType-3390, Cylinders-3339, Tracks/Cyl-15, TrkSize-56832
Input extent in decimal -- CC-low HH-low CC-high HH-high
0 0 0 1
Chapter 4. Reference 59

4.4.20 The clientconfig command

The clientconfig command provides a menu function to assist in configuring a remote
license server and Unique Identity Manager (UIM) that provides consistent System z serial
numbers. This command must be run as root.

clientconfig [directory]

This command always operates on a file named sntlconfig.xml. By default, this file is in
/usr/z1090/bin but a different directory name may be specified as an operand.

A description of these functions is lengthy and is found in Volume 3 of this documentation
series, in the chapter titled “License & serial number servers.”

4.4.21 The clientconfig_authority command

The clientconfig_authority command adds a Linux userid or removes a Linux userid from
a list of userids that may issue the clientconfig command. Normal usage of clientconfig
requires the user to operate as root. The clientconfig_authority command allows the
installation to avoid usage of root when changing license server configurations. The
clientconfig_authority command must be run as root, but it is used only once for a given
userid.

clientconfig_authority [-a | -d] userid

-a adds the indicated userid to the list of userids that are allowed to issue
 the clientconfig command.
-d removes the indicated userid from this list.

A command example is:

clientconfig_authority -a ibmsys1

4.4.22 The cpu command

The cpu command selects the default CP that is the target for subsequent commands. zIIPs,
zAAPs, and IFLs are considered CPs for this function. zPDT must be operational to use this
command.

cpu cp-address

Where:

cp-address is the number of the CP that becomes the default target.

CPs are numbered starting with 0 and increasing by one for every CP (or zIIP or zAAP or IFL)
that is defined in the processors statement of the devmap. The default target CP is CP
number zero. Each CP has its own registers, active address space, and so forth. This
command would be used in order to examine registers and memory in a particular CP.

The defined return codes are:

0 The default CP was changed.
12 The specified CP address is not valid.
16 Unable to initialize the manual operations interface.

An example of using the command is:

$ cpu 1 (select second CP, which is CP number 1)
60 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

$ stop (place default CP in stopped state)
$ d psw (display PSW of the default CP)
$ start (start the default CP again)

4.4.23 The d command

The d (display) command displays CP information, including registers, memory, and
architecture mode. This information is displayed from the default CP, as set by the cpu
command. CP 0 is the initial default CP. zPDT must be operational to use this command.

d {r }
 {p | psw }
 {pfx }
 {g | gn }
 {y | yn }
 {x | xn }
 {z | zn }
 {vphex-addr [t] [.hex-len | decimal-len] }
 {vshex-addr [t] [.hex-len | decimal-len] }
 {vhhex-addr [t] [.hex-len | decimal-len] }
 {vahex-addr [t] [.hex-len | decimal-len] access-reg }
 {hex-addr [t] [.hex-len | decimal-len] }

Where:

r displays the current architecture mode.

p or psw displays the current PSW.

pfx displays the prefix register.

g or gn displays the contents of the general purpose registers. If a particular register is not
specified (by the n parameter) then all are displayed.

y or yn displays floating point registers.

x or xn displays control registers.

z or zn displays access registers.

hex-addr is an address in memory.

.hex-len is the amount of memory to be displayed (in hexadecimal).

decimal-len is the amount of memory to be displayed (in decimal).

vp displays primary virtual memory.

vs displays secondary virtual memory.

vh displays the home address space virtual memory

va displays virtual memory via an access register, which must be specified

access-reg is the number of an access register

t (just after an address) indicates both hex and character displays are wanted.

A memory address not prefixed with vp, vs, vh, or va displays data at the real memory
address. Memory is displayed on 32-byte boundaries. If the specified address is not on a
32-byte boundary, the next lowest 32-byte boundary is used. Each memory line displayed
ends with the protect key for that memory. As a general statement, the CP should be in a
stopped state before any of these display functions are used.
Chapter 4. Reference 61

The vp prefix can be shortened to v. Note that a hexadecimal length is separated from the
address with a period; a decimal length is separated with a blank.

A virtual address is meaningful only if an address space is active at the instant of the display.
When z/OS is in a wait state there may be no active address space. As a general statement,
these commands are not useful for application programming debugging unless there is a way
to stop the CP while the application is actively being executed.

The d psw command is most useful for examining disabled-wait-state codes.

The return values are:

0 Command complete.
30 No arguments specified.

Examples of use are:

$ d psw (display PSW)
$ d g2 (display contents of general purpose register 2)
$ d 461244 32 (display 32 bytes at real address x’461244’)
$ d 461244.C0 (display x’c0’ bytes at indicated address)
$ d v458332 100 (display 100 bytes at indicated virtual address)

4.4.24 The fbaPrint command

The fbaPrint command dumps (prints) the contents of one or more sectors on an FBA
emulated disk drive. zPDT need not be active to use this command.

fbaPrint emulation-file-name

Where:

emulation-file-name is the name of the Linux file containing the FBA volume.

The command will prompt for the range of block numbers to be dumped. These are entered
as two decimal numbers, separated by spaces. When the dump is complete, the prompt is
issued again. A null input line will terminate the command.

No return values are provided. An example of the command is:

$ fbaPrint /z/VSE123

0 1

4.4.25 The find_io command

The find_io command is used to identify potential OSA ports.

find_io
 Interface Current MAC IPv4 IPv6
 Path Name State Address Address Address
------ ----- ---------------- ----------------- -------------- --------------
 F0 eth0 UP, RUNNING 00:26:2d:f7:3b:4e 9.56.64.36 fe80::226:2dff:fef7:3b4e%eth0
 F1 eth1 UP, RUNNING 00:12:0e:4b:eb:0d 9.56.64.18 fe80::212:eff:fe4b:eb0d%eth1
 F8 wlan0 UP, NOT-RUNNING 00:23:15:17:1f:24 * *
 F9 pan0 DOWN 36:e6:26:4e:1c:b4 * *
 * br0 UP, RUNNING a2:ac:36:48:19:d2 * fe80::a0ac:36ff:fe48:19d2%br0

 A0 tap0 DOWN 02:a0:a0:a0:a0:a0 * *
 A1 tap1 DOWN 02:a1:a1:a1:a1:a1 * *
 A2 tap2 DOWN 02:a2:a2:a2:a2:a2 * *
62 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

A path (or CHPID) name is shown for most (but not necessarily all) LAN interfaces; these
have names such as F0, F1, A0, and so forth. Interface names are shown, for example eth0,
tap0, wlan0. A path name is normally specified for the awsosa device manager; in some
cases the interface name may be needed if no path name is shown by the find_io
command.. Note that all Linux LAN interfaces, whether enabled or not, are detected. This
may cause default path assignments to differ from previous zPDT releases.

The other data shown (State, MAC address, IPV4, and IPv6 addresses) are informational
only. The IP addresses apply only to Linux; z/OS (or another System z operating system) may
also address the interfaces with completely different IP addresses. All LAN interfaces known
to Linux are shown; some of these may not be relevant or tested for zPDT usage. The MAC
addresses for tap devices are artificial.

The use of path and interface parameters is explained in detail in Chapter 10 in the most
recent editions of the third book in this series (SG24-7723-04).

4.4.26 The hckd2ckd, hfba2fba, and htape2tape commands

These are three client commands used with the migration utilities.

hckd2ckd - Used with both z/OS and z/VM to migrate a CKD DASD volume.

hfba2fba - Used only with z/VM to migrate an FBA DASD volume.

htape2tape - Used only with z/VM to migrate a tape volume to a zPDT awstape volume.

The general syntax of the client commands (entered on the Linux client machine, using a
normal Linux command window) is:

hxxx2xxx host[:port] outfile [-n][-v xxxxxx][-u aaaa]
 [--norestart][--volser xxxxxx][--unit aaaa]

 [-e eof-count] [-n]
 [--eof eof-count]

Where:

host - is the TCP/IP name of the system with the matching server program. This may be a
dotted-decimal address or a domain name that can be resolved by Linux TCP/IP.

:port - is a TCP/IP port number to be used by both the client and server program. It
defaults to 3990.

outfile - is a file name (on the current Linux) system where the migrated volume is placed
(in awsckd, awsfba, or awstape format).

-n (when used with htape2tape) indicates the output awstape file is not to be compressed.
(Compression is the default.)

-v or --volser indicates the 3380/3390 volume (on the remote z/OS system) that is to be
copied (migrated).

-u or --unit indicates the address (device number) of the volume that is to be copied
(migrated).

-e or --eof indicates the number of consecutive tape marks that will indicate the end of
the input tape. This is used only with z/VM tapes. The default is two tape marks.

Either the -u or -v parameter must be supplied for DASD, but not both; the -u parameter
would normally be used for tapes. These commands are described in more detail in the
chapter about the migration utility in the third book in this series (SG24-7723).
Chapter 4. Reference 63

Examples of commands that could be used to run the client are:

$ hckd2ckd 192.168.0.99 /z/VOL123 -v VOL123
$ hckd2ckd BIG.ZOS.ADDR:4990 /z/VOL678 -u A8F
$ hckd2ckd 192.168.0.99:4990 /z/host.WORK23 -v WORK23

4.4.27 The interrupt command

The interrupt command creates an external interruption for a CP.

interrupt [cp-number]

Where:

cp-number is the number of the CP (or zIIP or zAAP or IFL). If not specified, the CP
number set by the cpu command is used.

The effect of an external interrupt depends on the System z operating system being used.
The return values are:

0 External interrupt was generated.
12 CP address was not valid.
16 Unable to initialize the manual operations interface.

Examples of use are:

$ interrupt (interrupt the default CP)
$ interrupt 1 (interrupt CP number 1)

4.4.28 The ipl command

The ipl command starts the process of loading an operating system (or a stand-alone utility
program).

ipl device-number [parm parm-value] [clear]

Where:

device-number refers to a device number (“address”) in the devmap that contains the
initial load program for the operating system.

parm-value is a string of up to eight characters that provides additional information for the
operating system being loaded.

clear causes System z memory to be zeroed before loading the operating system.

The ipl function is started on the default CP, which may be set by the cpu command. The use
of a parm-value completely depends on the operating system being used, and how that
operating system has been configured. As a general statement, it is not necessary to clear
memory before loading an operating system.

The device indicated by the device-number must have IPL text as the first record(s). This is
normally provided by an operating system utility function. There is a fixed 20 second timeout
period for the IPL function to complete, after which a device error message is issued;
however, the IPL function continues after the message is issued.

Command return values are:

0 IPL function started.
16 Unable to initialize the manual operations interface.
99 The device number is not valid.
64 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

Examples of command usage are:

$ ipl 580
$ ipl 0a80 parm 0a82cs clear

4.4.29 The ipl_dvd command

The ipl_dvd command emulates IPLing a DVD from the Hardware Management Console
(HMC) on a larger System z. The DVD contain files in a unique format for this function to be
used. At the time of writing, the only known uses are with an optional form of IBM z/VM
system distribution, some Linux for System z distributions, and an older form of z/VSE
distribution. zPDT must be operational for this command to be used.

ipl_dvd file-name [-q] [-c aaaa]
 [--console aaaa]

Where:

file-name is the fully qualified name of the .ins file on the DVD.

-q causes the command to run in quiet mode.

-c (or --console) specifies the address (device number) of a local 3270 (in the active
devmap). This 3270 is then used as an HMC 3270 session. (At the time of writing this
function was not working with z/VM 6.2. Instead, the int3270port function in the [system]
stanza of the devmap may be used.) The use of the -c or --console is deprecated. These
options may not be present in future releases.

If -q is not specified, the first line of the .ins file is displayed and the user is prompted for a
continuation signal. The HMC 3270 session has a unique interface that can be used when
installing a z/VM system from the standard z/VM distribution DVD.

The return values are:

0 Command completed.
8 The .ins file is invalid.
12 The .ins file was not specified.
16 Initialization for manual operation failed, or unable to open .ins file.

An example of use is:

$ ipl_dvd /media/530_GA_3390_DASD_DVD/cpdvd/530vm.ins

4.4.30 The listVtoc command

The listVtoc command provides a highly-detailed listing of the VTOC of a CKD volume. It
assumes the emulated CKD volume has been initialized with a label and VTOC. This
command may be used while zPDT is operational, but it would normally be used when zPDT
is not operational. The syntax is:

listVtoc ckd-file-name [ckd-file-name] ..

Where:

ckd-file-name is the Linux name of a file containing an emulated 3390 or 3380
volume.

If all you want are the data set names on the volume, you can pipe the output of listVtoc to
grep to find records containing DSNAME.
Chapter 4. Reference 65

Examples of use are:

$ listVtoc /z/ZCRES1
$ listVtoc /z/WORK02 | grep -i DSNAME

4.4.31 The loadparm command

The loadparm command sets an eight-character IPL parameter value that can be read by a
special System z instruction. This is also known as a load parameter; IPL and load are used
as synonyms in this context.

loadparm {value }
 {-d | display} (note: there are no minus signs before ‘display’)

Where:

value is the character string to be set (up to eight characters).

-d or display displays the current value.

This value set by this command is available to the operating system during the next IPL. If an
IPL parameter is provided as part of an ipl command, it overrides any existing loadparm
value and is stored as the current value. A parameter set this way is maintained only during
zPDT operation; it is not retained across multiple zPDT startups.

Return values are:

0 The IPL parameter was set or displayed.
16 Unable to initialize the manual operations interface.

Examples of command usage are:

$ loadparm 0A8200P
$ loadparm -d

4.4.32 The managelogs command

The managelogs command assists in maintaining summary, trace, and log files in the zPDT
logs directory. As a general rule, zPDT maintains these files without assistance, and the
--clean option of the awsstart command can be used to erase all these files. The managelogs
command is most useful when working with IBM (or a business partner) while investigating a
potential zPDT problem. zPDT must not be operational when this command is used.

managelogs {file-name }
 {-s snap-id }
 {-t date }

Where:

file-name removes the summary record and associated file.

snap-id removes all summary records and files associated with the specified snap ID.

date removes all summary records and files older than the indicated date. The date format
is yyy/mm/dd.

The rassummary command may be used to determine existing snap ID numbers. There are no
return values for this command.
66 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

4.4.33 The memld command

The memld command is used to write the contents of a Linux file into System z memory,
starting at a specified address.

memld file-name [address]

Where:

file-name is a fully qualified Linux file name.

address is a System z hexadecimal address. The default is address zero.

Some Linux for System z distributions can be installed by loading various files into System z
memory and then executing a System z restart command.

Return values are:

0 Command complete.
12 File name was not specified.
16 Manual operations initialization failed.
69 The file was not found.

An example of the command is:

$ memld /tmp/initrd.bin 100000 (meaning address x’100000)

4.4.34 The mount_dvd command

The mount_dvd command identifies the Linux mount point for a DVD (or CD) that is to be
processed as if it were mounted in the DVD drive of a mainframe HMC.

mount_dvd complete-path

Where:

complete-path is the path name to the DVD, but without specifying a particular file name.

This command has a very limited purpose. It is normally used when installing an RSU volume
(DVD) associated with z/VM.

An example of the command is:

$ mount_dvd /media/zVM_RSU_name/

4.4.35 The msgInfo command

The msgInfo command provides more information about zPDT messages.

msgInfo message-number

Where:

message-number is the number of a zPDT message.

No return codes are defined for this command. An example of usage is:

$ msgInfo AWSCHK208I
AWSINF010I Format:
AWSINF013I AWSCHK208I Check complete, %d error%s, %d warnings detected.
AWSINF013I
AWSINF011I Description:
Chapter 4. Reference 67

AWSINF013I The DEVMAP check is complete.
AWSINF013I
AWSINF012I Action:
AWSINF013I Informational message only. No corrective action needed but
AWSINF013I if errors are present the DEVMAP cannot be used to start system.

 All message number are in the form of AWScccnnns where:

ccc is the component code issuing the message.
nnn is the message number within the component.
s is the message severity (Debug, Information, Warning, Error, Severe,
Terminal)

The message code specified on the msgInfo command can omit the AWS prefix and the
severity code. For example, msgInfo chk082 is sufficient. There is also an environment
variable named Z1090_MSG to control message formatting.31 It may be set to FULL (the
default), CODE (which will only print the message number and no text), TEXT (which prints
the message text and no code) and SHORT (which drops the AWS prefix on the message
number).

4.4.36 The oprmsg command

The oprmsg command provides input to the System z via the SCLP operator message
interface. (This interface is also known as the HMC console or the hardware console.)

oprmsg {text}

Where:

text is the message to be sent to the System z operating system. If it contains any special
characters (such as parentheses), the message should be inclosed in single quotes.

The hardware console is used by z/OS if all other consoles fail. It can be used by z/VM, and
may be used by Linux for System z. In some cases, the operating system may automatically
direct output to the hardware console. In this case, the output will appear in the Linux window
where the awsstart command was issued. Using an oprmsg command from another Linux
window may produce confusing results because the response to the command may appear in
the original awsstart Linux window.

The return values are:

0 The message was sent to the SCLP operator interface.
12 No input text was found.
16 Unable to initialize the manual operation interface.
32 Unable to initialize the SCLP message interface.

Examples of use are:

$ oprmsg 'V CN(*),ACTIVATE'
$ oprmsg 'V 700,CONSOLE'
$ oprmsg 'D A,L'

4.4.37 The pdsUtil command

The pdsUtil command is a Linux command that reads (or rewrites) members of a z/OS
partitioned data set. z/OS is normally not operational when this command is used. The target
data set must be a PDS (not PDSE) with FB records. This command cannot change the

31 This environmental variable could be set with an export statement in the Linux shell.
68 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

length or number of records in the PDS member. Record length is not limited to 80 bytes. The
general operation is to extract the PDS member (to Linux), edit the Linux file, and then
overlay the original PDS member with the changed data. Automatic ASCII/EBCDIC
translation is provided.

The syntax is:

pdsUtil ckd-file-name PDS-name [(mem-name)|/mem-name] [Linux-file-name]

 [-e|-x|--extract] |
 [-o|--overlay|-r|-replace] | [-t|--trans|--translate <code>]
 [-l|--list] |

 [-m|--mbr|--member <mem-name>]

Where:

ckd-file-name is the Linux name of the file containing the emulated volume.

PDS-name is the z/OS name of the partitioned data set.

mem-name is a member name in the partitioned data set.

Linux-file-name specifies a Linux file to be created (for extract) or written
to the PDS member (for overlay or replace). The default is mem-name.txt.

code is 037/437 or 1047/437 for the code tables to be used for EBCDIC/ASCII
conversion. 037/437 is the default; 1047/437 may work better for international
characters.

The PDS member name may be specified in any one of three ways. Using parenthesis
around the member name requires that the parenthesis be escaped (so that the Linux shell
will not try to process it). If a Linux file name for the member is not specified, the default name
is the member name with a .txt suffix. The default name is uppercase or lowercase,
depending on how the member name is specified in the command. (The same PDS member
is accessed, regardless of case.)

Note that the PDS record length and the number of records in the member cannot change.
Only F or FB records may be used. As is implied in the syntax, writing the member back to the
PDS performs an update-in-place function.

Examples of usage are:

$ pdsUtil /z/WORK02 rb.admin.lib --list (list the member names)
$ pdsUtil /z/WORK02 rb.admin.lib/ICKDSF --extract (creates ICKDSF.txt)
$ pdsUtil /z/WORK02 rb.admin.lib/ickdsf --extract (creates ickdsf.txt)
$ gedit ickdsf.text (use Linux editor)
$ pdsUtil /z/WORK02 rb.admin.lib/ickdsf --overlay
 (Since no Linux file was named, pdsUtil used ickdsf.txt)
$ pdsUtil /z/WORK02 rb.admin.lib/ickdsf --overlay /tmp/myickdsf
 (This is valid, but a dangerous example. The specified Linux file,
 /tmp/myickdsf must be a valid overlay for the target member.)
$ pdsUtil /z/rb.admin.lib\(ickdsf\) --extract (must “escape” parenthesis)
$ pdsUtil /z/rb/admin/lib --extract --mbr ickdsf (another way to specify)
Chapter 4. Reference 69

4.4.38 The query command

The query command displays the state of the CPs.

query {cp-number }
 {all }

Where:

cp-number is the number of the target CP. The default is the CP number that was set with
the cpu command.

all indicates that the state of all CPs should be displayed.

The return values are:

0 Query complete.
12 CP address is not valid.
16 Unable to initialize the manual operation interface.

An example of usage is:

$ query all
Status for CPU 0 (GP ,Primary, Operational): Running

The GP in the response indicates a normal CP, as opposed to a zIIP, zAAP, or IFL.

4.4.39 The rassummary command

The rassummary command displays information about log and trace files in the ~/z1090/logs
directory of the Linux user that started this instance of zPDT. As a general statement, this
command is used when working with IBM (or a business partner) while investigating a
potential zPDT problem. zPDT need not be running when this command is used.

rassummary [-s] [-t] [-d directory-name] [-c comp-name] [-u subcomp-name]

 [-b begin-time] [-e end-time] [-r rec-type]

Where:

-s indicates only snap records are to be displayed.

-t indicates records are to be displayed in chronological order.

-d directory-name overrides the normal logs directory name.

-c comp-name indicates only records about the indicated component are to be displayed.
Component names include the device manager names (in upper case), such as
AWSRDR, AWSTAPE, and so forth.

-u subcomp-name indicates only records about the indicated subcomponent are to be
displayed.

-b begin-time indicates only records after the indicated date/time are to be displayed.
The format is “yyyy-mm-dd” or “yyyy-mm-dd hh:mm:ss”; these parameters must be
enclosed in quotation marks.

-e end-time indicates only records before the indicated date/time are to be displayed. The
format is the same as for begin-time.

-r rec-type indicates that only the specified record type is to be displayed. Valid types are
TRACE, LOG, LOG_REGBUF, QD_DUMP, LOG_EVENT, LOG_APPEND, and
QUICK_DUMP. Multiple operands may be separated with a comma.
70 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

Several options may used to limit the amount of output. IBM service (or a business partner
providing zPDT service) will supply component and subcomponent names needed to
investigate a problem.

The only documented return value is zero. Examples of command usage are:

$ rassummary (This provides the most general summary)
$ rassummary -r LOG
$ rassummary -r LOG -b”2009-03-03 12:00:00: -e”2009-03-04 23:59:59”

4.4.40 The ready command

The ready command creates an unsolicited device end interrupt32 for the indicated device. It
is most commonly used with a emulated tape drive to indicate that a new tape volume (which
is actually a Linux file) has been mounted or made ready. In some cases ready may be useful
with an emulated card reader or emulated local 3270 terminal. zPDT must be running in order
to use this command.

ready device-number

Where:

device-number is the “address” assigned to the emulated device in the devmap.

The return value is always zero. An example of the command is:

$ ready 580 (Device 580 might be an emulated tape drive)

4.4.41 The restart command

The restart command causes a PSW restart operation on the specified CP.

restart [CP-number]

Where:

CP-number specifies the CP. If this operand is not specified, then the CP number set with
the cpu command is used.

This command is seldom used. In some cases it may be used to assist an operating system
that is stuck in an unusual situation. It is also used to dump a z/VM system and to
communicate with some stand-alone utilities.

The return values are:

0 The operation is complete.
12 The CP number is not valid.
16 Unable to initialize the manual operation interface

Examples of usage are:

$ restart (restart default CP, as set by the cpu command)
$ restart 2

4.4.42 The scsi2tape command

The scsi2tape command copies a tape volume (mounted on a SCSI tape drive) to a Linux file
in awstape format. Linux files in awstape format may be managed and read (by the awstape

32 Sometimes incorrectly referenced as an attention interrupt.
Chapter 4. Reference 71

device manager) as though they were tape volumes on a real tape drive. zPDT does not need
to be running to use this command.

scsi2tape [-c][-i][-e nn][-s] input-dev out-file
 [--compress][--info][--eof nn][--scan]
 [-n]
 [--noinfo]

Where:

-c or --compress causes the output awstape file to be written in a compressed format.
This is not equivalent to hardware tape compression, such as IDRC.

-i or --info displays information about each tape file as it is processed. This is the default
operation.

-n or --noinfo suppresses tape file information.

-e nn or --eof nn specifies the number of consecutive tape marks that indicate the logical
end of the tape. The default is two.

-s or --scan causes the input tape to be scanned, with information displayed (unless -n or
-noinfo is specified). No output file is written.

input-dev is the Linux name for the tape drive, such as /dev/st0.

out-file is a Linux file name where the awstape formatted file will be written.

In principle, a System z application requiring tape input does not know whether a “real” tape
volume (on a SCSI tape drive) or an emulated tape volume (awstape file on an emulated tape
drive) is being used. In practice, where repeated mounting and access to the tape may be
needed, it may be more convenient to convert the “real” tape volume to an emulated tape
volume. Mounting on an emulated tape drive is often much faster than mounting a real tape
on a SCSI tape drive.

The optional compression format is unique to zPDT operation. It is not compatible with
awstape formats on other platforms and is not related to any type of hardware tape
compression. The Linux name of the SCSI tape drive for this command is usually in the
/dev/stn group and not in the /dev/sgn group.

Return values are:

0 Function completed without errors.
1 Unable to allocate I/O buffers.
2 Input device not specified, or unable to open input device.
3 Output file not specified, or unable to open output file, or output

file is write protected.
4 Operation terminated due to an I/O error.

Examples of command usage are:

$ scsi2tape -n /dev/st0 tape01.awstape
$ scsi2tape -e 4 -s /dev/st0

4.4.43 The SecureUpdateUtility command

The SecureUpdateUtility command is used to manage lease dates in the 1090 token.33
zPDT should not be running when this command is used. (Note that Linux warning messages
are issued a month before the lease date in the token expires.) You must have root authority
and be in the /usr/z1090/bin directory before issuing this command.

33 Different techniques may be used for updating 1091 tokens.
72 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

SecureUpdateUtility -r filename
SecureUpdateUtility -u filename

The first version (-r) writes a request file for the token currently connected to the computer.
This request file is unique to the token currently connected.

The second version (-u) applies the update file named in the command to the currently
connected token. This update file typically extends the lease date in the token. The token
should be unplugged for at least 10 seconds after an update is applied.

The request file must be sent to a processing facility that can use it to create the update file.
The update file is then sent to the user who applies it with the SecureUpdateUtility command.
An update file is unique to a token number and may be used only once.

Examples of usage are:

$ cd /usr/z1090/bin (you must be in this directory)
$ su (you must change to root)
SecureUpdateUtility -r myreq (creates myreq.req file in Linux)
 (Send the req file for processing; receive an upw file in return)
SecureUpdateUtility -u myreq.upw (apply the update file)
exit

4.4.44 The SecureUpdate_authority command

The SecureUpdate_authority command adds a Linux userid or removes a Linux userid from
a list of userids that may issue the zpdtSecureUpdate command, which executes the
SecureUpdateUtility command internally, without requiring the user to operate as root and
be positioned in the /usr/z1090/bin directory. The SecureUpdate_authority and
zpdtSecureUpdate commands allow the installation to avoid usage of root when updating
token licenses. The SecureUpdate_authority command must be run as root, but it is used
only once for a given userid.

SecureUpdate_authority [-a | -d] userid

-a adds the indicated userid to the list of userids that are allowed to issue
 the SecureUpdateUtiluty command.
-d removes the indicated userid from this list.

A command example is:

SecureUpdate_authority -a ibmsys1 (issued by root)

$ zpdtSecureUpdate -r myreq (issued by userid ibmsys1)

Once a userid is authorized to use zpdtSecureUpdate, it is no longer required to change to the
/usr/z1090/bin directory. The availability of these commands does not preclude direct usage
of SecureUpdateUtility by a root user.

4.4.45 The senderrdata command

The senderrdata command packages zPDT diagnostic information and, optionally, sends the
package to IBM. zPDT need not be running when this command is used.

senderrdata

There are no operands. The command produces menus and prompts; the initial menu is:
Chapter 4. Reference 73

z1090 Error Data Processing Script
Options:

1 rassummary execute the rassummary command
2 rassummary -s execute rassummary -s
3 FTP/dump snapdata data
4 FTP/dump PE directed data
5 Create configuration information file
6 Logs directory maintenance
7 FTP/dump rassummary created files
8 FTP/dump all files in log directory
9 snapdump

The FTP/dump function provided in several of the options means that information can be sent
(via FTP) to the IBM test case site or it can be retained in a local Linux dump file (which is a
zipped tar file). Data should not be sent to IBM unless a problem record has been opened by
the business partner who provided the zPDT system. The business partner can provide
assistance in using the various senderrdata options and parameters.

There are no defined return values for this command.

4.4.46 The settod command

The settod command sets the specified time/date in the System z Time Of Day (TOD) clock
during the next IPL of an active zPDT system. The TOD change is not carried across restarts
of zPDT. When used, this command would normally be issued after the awsstart command
and before an ipl command. zPDT normally sets the emulated System z TOD clock to match
the underlying PC TOD clock; this command alters that normal action. A settod command
issued while a System z operating system is active has no immediate effect; it takes effect
only during a subsequent ipl command.

The full syntax is:

settod YYYY/MM/DD-HH:MM:SS
settod YYYY/MM/DD
settod HH:MM:SS (the :SS portion may be omitted)

If both date and time are present, they must be separated with a dash without blanks between
the elements. A time value is expressed in 24-hour notation. The output of the command
shows the adjustment that is made to the default TOD value. The minimum YYYY value is
1900.

This command does not change the Linux hardware clock value in any way and does not
affect the time stamps that are stored in the zPDT token. This command provides a way to
test System z software operation at future times (or past times). After the subsequent ipl, the
System z TOD clock is incremented in the normal way, starting at the time/date specified in
the settod command.

Assume the current date and time (in the PC hardware clock) is July 20, 2013 at 1 PM:

$ settod 16:40 (July 20, 2013, 4:40 PM)
$ settod 2012/7/20 (July 20, 2012, 1 PM)
$ settod 2005/1/1-00:00 (January 1, 2005, midnight)

In principle, any portion of the parameter that is omitted is assumed to be the same as the
TOD value in the base Linux system. The date field is processed right to left and the time field
is processed left to right. If a single number with no delimiters is used as the parameter it is
74 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

assumed to be a day number. However, we suggest you always enter a full date or time or
both.

4.4.47 The snapdump command

The snapdump command causes various diagnostic data and logs to be collected and written
in the ~/z1090/logs directory. zPDT must be running when this command is used. This
command may be used when a zPDT problem situation exists while zPDT is running.

snapdump [-c comp-name[subcomp-name]][-d “desc-text”]

Where:

comp-name is a component name; only information related to this component is obtained.
Component names include device manager names (in upper case).

subcomp-name is a subcomponent name; only information related to this subcomponent is
obtained. The component name must also be specified.

desc-text is descriptive text (in quotes).

If no options are specified, then information about all active components and subcomponents
is collected.

zPDT automatically collects diagnostic information when a zPDT failure occurs. The snapdump
command is intended only for situations where the user observes a zPDT failure or problem
that is not detected by zPDT itself. This command is not useful for System z operating system
problems or problems with the underlying Linux system.

No return values are defined. An example of the command is:

$ snapdump -d “This is a test”

4.4.48 The st command

The st (store) command is used to alter registers or memory in a CP (or zIIP or zAAP or IFL).
The syntax is similar to that for the d command.

st {p xxx xxx xxx xxx (expressed as 4 words) }
 {pfx xxx }
 {gn xxx (32 bit register usage) }
 {gxn xxx (64 bit register usage) }
 {yn xxx }
 {xn xxx (32-bit usage) }
 {xxn xxx (64-bit usage) }
 {zn xxx }
 {hex-addr xxx }

Where:

xxx is a hexadecimal value to be stored.

p alters the current PSW.

pfx alters the prefix register.

gn alters the contents of a general purpose register. A maximum of a 32-bit operand can
be specified.

gxn alters the contents of a general purpose register. Up to 64 bits may be specified.

yn alters the contents of a floating point register.
Chapter 4. Reference 75

xn or xxn alters a control register. The first format uses a 32-bit operand and the second
format uses a 64-bit operand.

zn alters an access register.

hex-addr is an absolute address in memory.

Only real memory (as opposed to virtual memory) can be addressed by this command.
Memory is altered byte-by-byte, to match the operand. It is possible to display a virtual
address (with the d command), note the real address of the page that is displayed, and then
use the st command to modify memory in the real page. The CP should be in a stopped state
before any of these alter functions are used.

The return values are:

0 Command complete.
-2 No arguments specified.

Examples of use are:

$ st p FF007AB0 0 0 123456 (set 64-bit PSW)
$ st g2 123 (change low-order 32 bits of GPR2 to x’00000123’)
$ st gx2 123 (change 64 bits of GPR2 to x’0000000000000123’)
$ st 461244 32 (change byte at real address x’461244’ to x’32’)

4.4.49 The start command

The start command starts a CP that was in the stopped state (due to a prior stop command).

start [CP-number]

Where:

CP-number is the target CP number. If this operand is not specified, the CP number set by
the cpu command is used. The constant all may be used instead of a cpu number.

The return values are:

0 Operation complete.
12 CP number is invalid.
16 Unable to initialize the manual operation interface.

Command examples are:

$ start
$ start 1
$ start all

4.4.50 The stop command

The stop command places a CP in the stopped state. It may be restarted with a start
command or a reset function.

stop [CP-number]
 [all]

Where:

CP-number is the target CP number. If this operand is not specified, the CP number set by
the cpu command is used. The constant all may be used instead of a cpu number.
76 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

Generally, a CP is stopped in order to display register or memory contents. In rare cases, it
might be stopped to halt the process of an application or operating system function.

The return values are:

0 Operation complete.
12 CP number is invalid.
16 Unable to initialize the manual operation interface.

Command examples are:

$ stop
$ stop 1
$ stop all

4.4.51 The storestatus command

The storestatus command causes certain CP registers to be stored in fixed memory
locations, as defined in z/Architecture. This command is typically used before taking a
standalone dump.34

storestatus [CP-number]

Where:

CP-number specifies the target CP. If this operand is not specified, then the CP indicated by
the cpu command is used.

The CP must be in the stopped state (via a stop command) when storestatus is issued.

There is no defined return code for this command. An example of the command is:

$ stop all
$ storestatus

4.4.52 The storestop command

The storestop command places the CP in a stopped state if memory at the indicated address
is altered. A start command may be used to resume execution; the storage operation will be
completed

storestop hex-address [off | OFF]

Where:

hex-address is a memory address.

off or OFF removes an existing storestop function.

The target address is the effective address, which is typically a virtual address but could be a
real address when in DAT-off mode. Only one storestop address can be in use. A subsequent
storestop changes the address being monitored. The memory alteration is completed before
stop state is entered. A start command may be used to resume program execution.

The target address could be in any address space. This command is not intended for routine
application debugging. Note that if multiple CPs are in use, the storestop may need to be set
for each CP.

34 Recent z/OS and System z usage have removed the need for this command. The System z (including zPDT) is
primed by z/OS to perform a store status command before the next IPL.
Chapter 4. Reference 77

Return values are:

0 The address stop was set.
16 Unable to initialize the manual command interface.
69 The hex address is not valid.
101 No storestop address is set.

An example of usage is:

$ storestop 4FCC

4.4.53 The sys_reset command

The sys_reset command performs a system reset (or system reset clear) function as defined
by z/Architecture.

sys_reset [normal | clear]

Where:

normal is the default operation.

clear performs the additional architected clear function.

No return values are defined for this command. An example of usage is:

$ sys_reset

4.4.54 The tape2file command

The tape2file command reads a file from an emulated tape volume (awstape format) and
writes a simple Linux file. The various awstape control bytes (in the input file) are removed
before writing the output file. The result is a simple string of bytes in the output file, with no
indication of the separation of blocks that existed on the input tape. zPDT need not be
operational to use this command.

tape2file [-f file-num] input-file output-file

Where:

-f file-num specifies the logical file number in the input file. The default is file 0 (the first
file). A logical tape mark separates files.

input-file is the name of a Linux file that is in awstape format.

output-file is the name of a Linux file for output.

The output file is a binary file; it is possible that the System z application included NL
separators that would indicate a Linux text file, but this is up to the System z application.
System z tape labels (in the input file) are not recognized and are treated simply as data files.

No return values are defined. An example of the command is:

$ tape2file -f 2 /z/111111.awstape /tmp/mine/testfile

4.4.55 The tape2scsi command

The tape2scsi command copies a logical tape volume (in awstape format) to a SCSI tape
drive. The output tape is blocked as indicated by the control bytes within the awstape format.
zPDT does not need to be running to use this command.
78 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

tape2scsi [-i] [-e nn] [-s] input-file out-dev
 [--info] [--eof nn] [--scan]
 [-n]
 [--noinfo]

Where:

-i or --info displays information about each tape file as it is processed. This is the default
operation.

-n or --noinfo suppresses tape file information.

-e nn or --eof nn specifies the number of consecutive tape marks that indicate the logical
end of the input tape. The default is two.

-s or --scan causes the input file to be scanned, with information displayed (unless -n or
-noinfo is specified). No output tape is written.

input-file is a Linux file name with data in awstape format.

out-dev is the Linux name for the tape drive, such as /dev/st0.

This command converts a logical tape volume to a real tape volume. The optional
compression format used by zPDT awstape functions is recognized and processed, if
present. The Linux name of the SCSI tape drive for this command is usually in the /dev/stn
group and not in the /dev/sgn group.

Return values are:

0 Function completed without errors.
1 Unable to allocate I/O buffers.
2 Input file not specified, or unable to open input file.
3 Output device not specified, or unable to open output file, or output

device is write protected.
4 Operation terminated due to an I/O error.

An example of command usage is:

$ tape2scsi -n tape01.awstape /dev/st0

4.4.56 The tape2tape command

The tape2tape command copies a logical tape volume (in awstape format) to another logical
tape volume (also in awstape format). Several optional operations may take place during the
copy, including compressing or uncompressing the data. The primary purpose of the
command is to compress and uncompressed awstape file (or vice versa), or to summarize a
file. zPDT does not need to be running to use this command.

tape2tape [-c][-d][-e nn][-i]
 [--compress][--dynainfo][--eof nn][--info]
 [-n]
 [--noinfo]

 [-s] in-file out-file
 [--scan]

Where:

-c or --compress causes the output tape to be compressed.

-d or --dynainfo displays tape content when each record is read. Otherwise, information
is displayed only when a tape mark is encountered.
Chapter 4. Reference 79

-e nn or --eof nn specifies the number of consecutive tape marks that indicate the logical
end of the input file. The default is two tape marks.

-i or --info provides a summary of the tape volume. This is the default.

-n or --noinfo indicates no summary is to be displayed.

-s or --scan scans the tape, but no output is produced.

in-file is the name of a Linux file in awstape format.

out-file is the name of a Linux file that will be in awstape format.

The input file may be in the zPDT compressed format; this is handled automatically. The
output file is compressed only if that option is selected. Both input and output files are in
awstape format. This command cannot convert other Linux files to awstape format.

No return values are defined for this command. An example of the command is:

$ tape2tape -e 1 /tmp/111111 /z/222222.awstape

4.4.57 The tapeCheck command

The tapeCheck command verifies the internal format of a logical tape volume in awstape
format. That is, it verifies that the awstape control bytes within the file are logically correct.
zPDT does not need to be running to use this command.

tapeCheck file-name

Where:

file-name is a Linux file in awstape format.

This command is used to inspect awstape files that may have been corrupted. It could be
used to check awstape files generated on another platform, to ensure they are compatible
with zPDT. Please note that some older platforms do not create correct awstape bytes at the
end of a logical tape volume.

The return value is equal to the number of errors found in the awstape format. An example of
the command is:

$ tapeCheck /tmp/222222.awstape

4.4.58 The tapePrint command

The tapePrint command writes the content of an emulated tape volume (awstape format) to
Linux stdout. zPDT does not need to be running to use this command.

tapePrint [-a][-e] in-file
 [--ascii][--ebcdic]

Where:

-a or --ascii specifies that the emulated tape volume has ASCII characters.

-e or --ebcdic specifies that the emulated tape volume has EBCDIC characters. This is
the default format.

in-file specifies a Linux file that is in awstape format.

Output is displayed block by block, in both hexadecimal and character format.

No return values are defined for this command. An example of the command is:
80 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

$ tapePrint /z/222222.awstape

4.4.59 The token command

The token command displays the characteristics of the zPDT token currently in use. This
command should be used when zPDT is running.

token

There are no operands. Only the number of token licenses currently in use are displayed.
That is, if the token allows three CPs, but only one CP is currently in use, then information for
only one CP is displayed. The only return value defined is zero. An example of command use
is:

$ token
CPU 0, zPDTA ... Serial 6186(0x182A) Lic=88570(0x159FA) EXP=4/15/2013 1090

The serial number is the effective System z serial number and may differ from the token serial
number. The license serial number reflects the token serial number used to provide the zPDT
license. The final output indicator is 1090 or 1091 where 1090 indicates the original zPDT
version and 1091 indicates the RDz version.

4.4.60 The txt2card command

The txt2card command reads a Linux text file and creates a card image file (in EBCDIC).

txt2card in-file out-file

Where:

in-file is the name of a Linux text file (in ASCII). Each record must be 80 bytes or
shorter.

out-file is the name of a Linux binary file that is written by this command.

Input records are extended (with blanks) to 80 bytes and then converted to EBCDIC. The
ASCII/EBCDIC conversion table is fixed and cannot be customized.

There are no defined return values for this command. A command example is:

$ txt2card /tmp/work2/config.txt /z/cards/deck1

4.4.61 The uimcheck command

The uimcheck command displays the state of the Unique Identity Manager (UIM) serial
number (which is the System z serial number). zPDT need not be running when this
command is issued; any user may issue the command.

uimcheck

There are no operands.

4.4.62 The uimreset command

The uimreset command is used to reset (remove) the UIM serial number from either the local
UIM database or both the local and remote UIM databases. This command must be run as
root, and zPDT is normally not running when this command is used.
Chapter 4. Reference 81

uimreset [-l] [-r]

-l indicates that the UIM serial number in the local UIM database should be
 erased.
-r indicates that the UIM serial number in both the local UIM database and
 the remote UIM server should be erased.

The Unique Identity Manager (UIM) function and its usage are explained in detail in the
Chapter titled “License & serial number servers” in the third volume of this documentation
series.

4.4.63 The uimserverstart command

The uimserverstart command is used to start a remote UIM server. This command should
always be issued by the same Linux userid because it saves a database in the home directory
of that Linux user. It must not be started by root.

uimserverstart

This command also adds the UIM server to the cron lists of the Linux system. This causes the
UIM server to be restarted (if it fails) and to be automatically started when that Linux system
is rebooted.

A UIM server is normally used only as part of a remote zPDT license server environment. It is
not used when running a simple zPDT environment with a token connected to the local zPDT
system.

The Unique Identity Manager (UIM) function and its usage are explained in detail in the
Chapter titled “License & serial number servers” in the third volume of this documentation
series.

4.4.64 The uimserverstop command

The uimserverstop command causes a running UIM server to be stopped. The cron entries
that automatically start the UIM server are also removed. This command is not used as root.

uimserverstop

4.4.65 The z1090instcheck command

The z1090instcheck command checks a number of installation criteria. In may be used
whether or not zPDT is running.

z1090instcheck

There are no operands. This command is sensitive to the Linux distribution being used and to
the level of that distribution. The output may vary with a new release of zPDT. The
z1090instcheck command is used with both 1090 and 1091 systems.

Return values are:

0 Command completed.
8 An unrecognized Linux system is being used.
9 Only root can use this command.

An example of usage is:
82 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

$ su (change to root)
$ z1090instcheck
1. SUSE at version 10.3 which is OK
2. SUSE kernel.shmmax is 2415919104 which is OK
3. SUSE kernel.msgmni is 512 which is OK
4. SUSE kernel.core_uses_pid is 1 which is OK
5. SUSE kernel.core_pattern is Core-%e-%p-%t which is OK
6. SUSE unlimited ic is set to unlimited which is OK
and so forth

Remember that the specific report changes with new zPDT releases and with the underlying
Linux distribution. Some of the checks may produce warnings that you must evaluate for
yourself.

4.4.66 The z1090term command

The z1090term command provides an ASCII terminal function that may be used to connect to
the HMC-like ASCII terminal defined by the intASCIIport statement in a zPDT devmap. The
syntax is:

z1090term IPaddress:port

where the IPaddress points to the zPDT Linux base and the port number is defined in the
intASCIIport statement of the zPDT device map. Examples are:

z1090term my.remote.zpdt.com:7100
z1090term 192.168.1.101:7100
z1090term localhost:7100

There is no standard port number for this function; the 7100 number in the examples is
arbitrary. This command is included in the zPDT libraries.

4.4.67 The z1090ver and z1091ver command

The z1090ver or z1091ver command displays the current zPDT version, with the date it was
build. This information may be necessary when investigating a zPDT problem.

z1090ver

There are no operands. The return value is zero. An example of the command is:

$ z1090ver
z1090, version z1090_v1r0_E39, build date - 10/17/08 SUSE 32 bit

The exact output messages vary with the zPDT release.

4.4.68 The zpdtSecureUpdate command

The zpdtSecureUpdate command allows token license update functions without being
required to operate as root. Before a userid can issue this command, that userid must be
added to a list of userids that are authorized to use the zpdtSecureUpdate command. This list
is managed by the SecureUpdate_authority command.

zpdtSecureUpdate [-r | -u] Linux-file-name

The operands (-r, -u, and file-name) are the same operands used with the
SecureUpdateUtility command. See that command for details.
Chapter 4. Reference 83

4.4.69 Command summary

Some zPDT commands must be used when zPDT is active, some cannot be used when
zPDT is active, and some do not care whether zPDT is active. In Table 4-2, the following are
shown:

� Y indicates that zPDT must be operational to use the command.
� N indicates that zPDT cannot or should not be operational when the command is used.
� E indicates that zPDT can be either operational or not operational when the command is

used.

Table 4-2 Command environments

Command Us
e

Command Us
e

Command Us
e

adstop Y ipl Y stop Y

alcckd E ipl_dvd Y storestatus Y

alcfba E loadparm Y storestop Y

awsckmap E managelogs N sys_reset Y

awsin Y memld Y tape2file E

awsmount Y msgInfo E tape2scsi E

awsstart N oprmsg Y tape2tape E

awsstop Y query Y tapeCheck E

card2tape E rassummary E tapePrint E

card2txt E ready Y token E

ckdPrint E restart Y txt2card E

cpu Y scsi2tape E z1090instcheck E

d Y senderrdata E hckd2ckd E

fbaPrint E snapdump Y SecureUpdateUtility N

find_io Ea

a. In the case of tunnel OSA connections, the find_io command might indicate different
results before zPDT is first started.

st Y ap_ (several commands) Y

interrupt Y start Y settod Y

mount_dvd Y hfba2fba E htape2tape E

pdsUtil Eb

b. In general, we suggest that these commands not be used when zPDT is active, although
there is not an absolute rule for this.

listVtoc Eb clientconfig N

uimreset N uimserverstart N uimserverstop N

SecureUpdate_authorit
y

E clientconfig_authority E zpdtSecureUpdate N

aws_sysctl N aws_bashrc N z1090term
84 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

Chapter 5. Frequently asked questions

The following FAQs are typically asked when first studying zPDT. Volume 2 of this book series
contains additional FAQs that are more specific to installation and detailed usage.

Q: Is this a multi-user system?
A: Yes. Multiple TSO users can connect, in several ways, and use the system in the normal
manner. The same applies to z/VM users, CICS users, and so forth.

Q: How many users can the system support?
A: There is no definitive answer to this. The aws3274 device manager supports 32
connections (which emulate local 3270 devices). There is no specific maximum for TCP/IP
(awsosa) connections to z/OS or for SNA connections1. Practical performance is the primary
limitation, not the theoretical connectivity for terminal connections. A given system might do
well for one very heavy DB2 user, or 10-30 typical TSO users, or 100 web users each having
a low transaction rate to HTTPD. The answer to the question depends completely on the
nature of the workloads involved.

Q: Do the int3290port or intASCIIport interfaces provide the same functions as the “HMC
console” in a larger System z?
A: No. An HMC (on a larger System z) provides the HMC console function and also provides
a 3270 terminal and an ASCII terminal. These are three separate interfaces. Output sent to
the “HMC console” (on a zPDT system) appears in the Linux window that issued the awsstart
command. Input to the HMC console is through the zPDToprmsg command.

Q: The new --interface parameter for awsosa is confusing. How should I use it?
A: Read Chapter 10 in the third book (SG24-7723-04 or later). The --interface parameter was
introduced because recent Linux distributions have changed the way LAN interfaces are
named and a more general method of specifying a LAN interface to awsosa was needed.

Q: Will my devmap from a previous zPDT release work with the new release?
A: Maybe. An important issue is with path names for OSA interfaces. Previous zPDT releases
considered only LAN interfaces that were not down when assigning path names. The current
release considers all detected LAN interfaces and this may result in a different path name for
OSA.

5

1 SNA usage is not supported on the 1090 a this time.
© Copyright IBM Corp. 2009, 2013. All rights reserved. 85

Q: Most of the documentation is about large ThinkPads or servers. I have a typical desktop
PC. Can I use zPDT with it?
A: Probably, assuming Linux works properly with the display, DVD drive, power, and LAN
interfaces on your desktop. You should have at least 4 GB of memory (more is better).
However, the only formal support is for the machines described in this document. IBM simply
cannot undertake the extensive testing that would be needed to qualify the vast variety of PCs
that exist. Note that hiperthreading must be disabled.

Q: Can I move a zPDT token between two PCs?
A: Technically, yes,2 but there is an important issue involved. The latest time-of-day value
seen by the underlying PC hardware is stored in the token. If the token then encounters an
earlier time, it will fail the operation with a time cheat message. If your two PCs have a
significant time spread between their hardware time-of-day clocks, you may have problems.

Q: What are the maximum numbers of CPs, zPDT instances, and I/O devices?
A: A maximum of 8 CPs (or combinations of CPs, zIIPs, zAAPs, and IFLs) may be used in a
zPDT instance, although your license terms may have a lower limit. A maximum of 15 zPDT
instances may exist in a Linux system. A maximum of 1024 I/O devices may be defined in an
instance. Do not take these program maximum values as being practical environments. There
are other factors (such as available memory, SMP effects, and I/O capability) that limit
practical usage.

Q: Does zPDT reserve PC core(s) for System z execution? Does it partition PC memory in
some way to create System z memory?
A: The answer is No to both questions. A running zPDT system consists of many processes
and threads under Linux; these are dispatched in the normal Linux manner and reference
Linux virtual memory in the normal way.

Q: Some of the ThinkPads that you discuss have two or four processors. Are all used for
zPDT operation?
A: Partly. For a 1090 L01 model, only one PC processor is used for System z instruction
execution, which is a single Linux process. However, the other processor may be used to help
prepare instructions for the primary 1090 processor. The other processor may also be used
for other processes, including I/O activity by the 1090. Exactly which processor is used for
which purpose at any instant depends on normal Linux dispatching. Only one zPDT CP
should be used with a two-core PC.

Q: Are two or more processor cores needed? Can I use a PC with a single core?
A: Two processor cores are not required for an L01 system. Working with a single core simply
results in a slower system because the single processor must handle all System z CP
operations plus all the other processes for I/O and other Linux details. We recommend using
a system with at least two PC processors (“cores”). (The one-core machine is an exception to
the rule that there must be at least one more core than the number of CPs.)

Q: Can I use a USB disk drive for emulated System z data?
A: Yes, assuming the base Linux recognizes and supports the drive in the normal manner. It
may offer slightly less performance than the internal PC disk drives, but this may be
acceptable in many cases.

Q: Can I use another hard disk in the Ultrabay slot of my laptop?
A: Yes, assuming the base Linux recognizes and supports it. However, remember that you
may need a CD/DVD drive to install System z software and you probably have only one
Ultrabay slot. You might consider using a docking station to obtain another Ultrabay slot.
Another option is to use a USB-attached CD/DVD drive.

2 You should, of course, observe the terms and conditions of your zPDT license agreement.
86 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

Q: Can I use a USB-attached CD/DVD drive?
A: Yes, assuming Linux recognizes it correctly. In some cases we noticed that these were
much slower than the internal CD/DVD drive, which is relevant when loading a complete z/OS
system.

Q: Should I use AHCI or compatibility mode for the laptop disk?
A: Linux seems to install correctly either way. However, we have reports that setting AHCI (in
BIOS) instead of Compatibility mode greatly improves performance of Ultrabay disks, but we
do not have more exact information about specific configurations. zPDT does not care about
these settings; it simply uses Linux I/O functions.

Q: Does more PC memory improve performance?
A: Yes. Linux can effectively use memory as a disk cache and this enhances performance.

Q: Is there an adapter for parallel channels?
A: There are currently no hardware channel adapters for zPDT systems.

Q: I already have existing ESCON® adapters for my Intel base PC. Can I use these?
A: No.

Q: Can I use VMWare or another virtual manager to place Windows and Linux on the same
machine?
A: See the third document in this series (SG24-7723) for a discussion of supported virtual
environments.

Q: Can I use a dual boot method to place Windows and Linux on the same machine?
A: Yes, provided you have sufficient disk space. The primary challenge may be to prevent
Linux or Windows updates from overwriting the dual boot functions.

Q: I want to evaluate a System z configuration with a zIIP using my two-core laptop. How do I
configure this?
A: You could accomplish your goal by using z/VM to provide simulated zIIPs and zAAPs. You
should not directly configure both a zPDT CP and a zIIP on your two-core machine.

Q: I am short on USB ports. Can I use a USB extender for the token connection?
A: Do not use an unpowered USB port extender; it may render your zPDT token unusable. A
powered USB port extender should work correctly.

Q: Are the new System z instructions (as provided with recent new System z machines)
present?
A: Yes, up through the EC 12 level. A few instructions dealing with functions not present in a
zPDT environment are not available.

Q: Can awstape files from P/390 or R/390 systems be used with the zPDT offering?
A: In general, yes. There is a restriction that the P/390 or R/390 awstape file cannot be read
beyond the last valid logical data record. The older awstape files do not contain the proper
indicators after the last logical data record. (However, awstape files created by zPDT work
correctly in this situation.) This situation is typically encountered when using “tape map”
programs that attempt to read everything on a tape, without obeying the normal EOV/EOF
records or double tape marks normally used to indicate the logical end of data on a tape.

Q: Can awstape files from Multiprise 3000 systems and FLEX-ES systems be processed?
Can awstape from zPDT be sent to these systems?
A: Yes, and yes.

Q: Can emulated CKD files (for 3390s, for example) be copied from P/390, R/390, Multiprise
3000, or FLEX-ES systems?
Chapter 5. Frequently asked questions 87

A: In general, no; the internal formats are slightly different. These are typically transferred by
dumping the drive (with ADRDSSU, DDR, or something similar) to an awstape file, moving
the awstape file, and restoring it on the target system. The awstape files provide the
mechanism that is compatible among these systems.

Q: Can I use my “brand X” TN3270e client?
A: Maybe, but do not base any error reports to IBM on it. Not all TN3270e clients are the
same and there can be significant differences in the handling of error and recovery situations.
(This is especially relevant to the z/OS console, which uses unusual CCW sequences to
provide something like full duplex operation.)

Q: Is Flashcube supported for emulated disks?
A: No.

Q: Why do you support only limited Linux releases?
A: IBM performs very extensive testing for zPDT. We use Linux releases that are current at
the time this testing starts. There are many practical reasons for not changing the Linux level
midway in the testing cycles.

Q: Will using a zIIP or zAAP increase the performance of my 1090?
A: No, assuming you are replacing a CP with the zIIP or zAAP. These speciality processors
operate at the same speed as a “normal” 1090 CP. They are provided to allow developers to
verify that their applications use a zIIP/zAAP in the intended manner. Of course, the use of a
zIIP or zAAP might allow more parallel operation in your workload, which could increase the
performance under zPDT.

Q: Is the OSA function for ICC provided?
A: No. However, the AWS3274 device manager provides approximately the same service.

Q: I sometimes want to change Linux TCP/IP between DHCP and a static IP address. Can I
do this while the 1090 is running? I am changing only Linux parameters, not OSA parameters.
A: This is not supported, not tested, and probably will not work correctly. We suggest you do
not change Linux LAN definitions while the 1090 is running if you are using OSA functions.

Q: Is Token Ring supported for emulated OSA usage?
A: No.

Q: Can I use the emulated OSA QDIO with IPv6?
A: Yes. You can also use it for aws3274 clients if you find a client (and Linux host) that
supports IPV6.

Q: Do I need to change any z/OS parameters to operate with zPDT?
A: In principle, no. In practice, you may need to adjust a few parameters. These are primarily
related to performance. For example, the CICS transaction timeout value might need to be
increased for very “heavy” transactions.

Q: I have zPDT and a hardware key. Where can I download z/OS?
A: z/OS (or any other IBM System z software) is not part of the base zPDT product. You need
to discuss this question with your zPDT source.

Q: Can I use MVS 3.8?
A: No. The 1090 does not support architectures prior to XA and 3380/3390s.

Q: All your examples have three-digit emulated device addresses. Is this required?
A: No, you may use three- or four-digit addresses. The use of only three-digit addresses with
the AD-CD z/OS system is a historical accident.
88 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

Q: Do I need the hardware token to install zPDT?
A: No, you need it only to run zPDT.

Q: Can zPDT support older CKD drives, such as 3350s?
A: No.

Q: Can I use ICKDSF with the ANALYZE function for emulated CKD volumes?
A: No, in most cases. Emulated CKD devices (such as 3390s) do not contain spare cylinders
and diagnostic cylinders that may be required for ANALYZE operation.

Q: How many emulated devices can I have?
A: The architected maximum for zPDT is about 64 K, but lower limits are set in each 1090
release. Each device is seen as a subchannel. Allocated subchannels take memory space in
1090 control blocks; an excessively large number of these control blocks can impact
performance through memory usage and list search times. The current zPDT release for
Linux has a limit of 1024 subchannels.

Q: Is there an IBM program number associated with the core zPDT software?
A: Yes, it is 5799-ADE, which is a PRPQ. In the normal course of events, zPDT users do not
need to deal with this number.

Q: How accurate are the System z TOD and timer functions?
A: To a large extent, these are approximately as accurate as the timer in the underlying PC.
Some interval measurements may have a granularity of about 500 microseconds (plus the
System z operating system time needed to manage time-related activities).

Q: I need to have multiple levels (often more then 3) of z/OS available for testing, although
each z/OS is usually idle at any given time. A 1090-L03 seems to be overkill for my modest
processing needs and, in any case, is limited to three instances. How can I address this
problem?
A: The easiest solution is to use z/VM with multiple z/OS guests. This requires some z/VM
skills, but these are relatively modest. It probably requires more System z memory than other
potential solutions, to avoid excessive z/VM and z/OS paging. See the note in “System
stanza” on page 34 about older z/OS releases.

Q: Are the zIIP, zAAP, or IFL processors faster than the default CP? Why would these be
used?
A: They are not faster. They can be used to verify that you code is using the speciality
processors. Also, a zIIP and zAAP runs in parallel with the CP function that dispatched it and
may offer improved performance in this way. An IFL might be used simply to verify that code
(such as Linux for System z, or a basic z/VM) does run correctly in an IFL.
Chapter 5. Frequently asked questions 89

90 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks

For information about ordering these publications, see “How to get Redbooks” on page 91.
Note that some of the documents referenced here may be available in softcopy only.

� IBM System z Personal Development Tool Volume 2 Installation and Use, SG24-7722

� IBM System z Personal Development Tool Volume 3 Additional Topics, SG24-7723

� IBM System z Personal Development Tool Volume 4 Coupling and Parallel Sysplex,
SG24-7859

Other publications

These publications are also relevant as further information sources:

� z/Architecture Principles of Operation, SA22-7832

� System z Personal Development Tool User’s Guide and Reference, G229-1101

How to get Redbooks

You can search for, view, or download Redbooks, Redpapers, Technotes, draft publications
and Additional materials, as well as order hardcopy Redbooks, at this website:

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
© Copyright IBM Corp. 2009, 2013. All rights reserved. 91

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

92 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

Index

Symbols
/etc/profile.local file 5
/home directory 30

Numerics
1090 2
1090 models 2
1090 token 81
1091 token 81
3270 emulator 18
3270port statement 35
32-bit version of zPDT 6
3350 drives 89
3390, emulated, ANALYZE 89
5799-ADE, PRPQ number 89

A
Adjunct-processor stanza 38
adstop command 49
AHCI disk mode 87
alcckd command 6, 40, 50
alcfba command 51
alr parameter 35
ap_create command 52
ap_destroy command 52
ap_query command 52
ap_von and ap_voff commands 53
ap_vpd command 53
ap_zeroize command 53
ASCII and EBCDIC, awsrdr 45
asn_lx_reuse parameter 35
asynchronous data movers 10
attn command 54
aws_bashrc command 54
aws_sysctl command 54
aws3215 device manager 10, 47
aws3270 device manager 28
aws3274 device manager 10, 28, 40–41
awsckd device manager 10, 40
awsckmap command 54
awscmd 11
awscmd device manager 46
awsctc device manager 11, 48
awsfba device manager 10, 40
awsmount command 14, 34, 42, 46
awsmount commnand 47
awsmount, with awsoma 48
awsoma device manager 11, 47
awsosa device manager 11, 43
awsprt device manager 10, 45
awsrdr device manager 10, 44
awsscsi device manager 11, 47
awsstart command 31, 57
© Copyright IBM Corp. 2009, 2013. All rights reserved.
awsstop command 58
awstape device manager 10, 42
awstape, compaction 43
awstape, Multiprise 3000 87
awstape, P390 87

B
base machine 7
BCPii functions 10
bonded Ethernet interfaces 19

C
card2tape command 58
card2txt command 59
CEX4C level 4
CFCC level 5
CFCC Level 18 4
Channel-to-channel (CTC) 1
CKD files, from other systems 87
ckdPrint command 59
clientconfig_authority command 60
command

adstop 49
alcckd 50
alcfba 51
awsckmap 54
awsmount 34
awsstart 31, 57
awsstop 58
card2tape 58
card2txt 59
ckdPrint 59
cpu 60
fbaPrint 62
find_io 43
interrupt 64
ipl 64
ipl_dvd 65
loadparm 66
managelogs 66
memld 67
msgInfo 67
oprmsg 68
query 70
rassummary 70
ready 71
restart 71
scsi2tape 71
senderrdata 73
snapdump 75
st (store) 75
start 76
stop 76
storestatus 77
 93

storestop 77
sys_reset 78
tape2file 78
tape2scsi 78
tape2tape 79
tapeCheck 80
tapePrint 80
token 81
txt2card 81
z1090instcheck 82
z1090ver 83

command statement (in devmap) 36
compatibility mode, disk 87
console, emulation operation 14
Coupling Facility 1
Coupling Facility code 4–5
CP, definition 7
CPs, maximum number 9
cpu command 60
CPU Measurement Facility 10
cpuopt statement 35
crypto instructions 7
Cryptographic adapter 1
cryptographic adapter 38
cryptographic adapter functions 4–5

D
desktop PC 86
device manager

aws3215 47
aws3274 40
awsckd 10
awscmd 46
awsfba 40
awsoma 11
awsosa 11
awsprt 45
awsrdr 44
awsscsi 47
awstape 10

device map (devmap) 34
device map, definition 13
device statements 39
devmap 7, 31
devmap, environmental variable 37
devmap, example 13
directory structure 29
disk space, planning 27
docking station 86
domain statement 38
dual boot 87

E
EAV allocation 50
EBCDIC and ASCII, awsrdr 45
EBCDIC, usage 10
EIO, CHPID type. 39
emulated devices, maximum 89
emulated volumes, file system 30

environmental variable, devmap 37
ESCON adapters, other 87
Ethernet adapters 27
ETR 10
expand statement 35

F
fbaPrint command 62
FCB functions 45
find_io command 5, 43, 62
flash storage 10
four-digit addresses 88
Fujitsu M2488E 11, 47

H
hardware key 8, 89
hckd2ckd command 63–64
hfba2fba command 63
hipersockets 10
hiperthreading 19
HMC console function 85
hot reader, JES2 44
htape2tape command 63

I
ibmsys1, userid 12, 14
ibmsys2 and ibmsys3, userids 12
ICKDSF ANALYZE 89
IFL processor 1, 35, 89
include function 37
include statements 5
instances, zPDT 12
instruction set 87
int3270port statement 36
int3290port 85
intASCIIport 85
intasciiport statement 36
interface parameter 85
Interfaces, LAN 63
interrupt command 64
IP address, changing 88
ipl command 12, 14, 35, 64
ipl statement 35
ipl_dvd command 65
IPV6 usage 88

L
LAN adapter 27
LAN interfaces 63
lease date 73
license server 4–5
Linux LAN definitions 88
list-directed IPL 10
listVtoc command 7, 65
loadparm command 66
logical channel subsystems 10
LPARs 10
LUname, aws3274 device manager 41
94 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

LX and ASN REUSE facility 35

M
MAC address 63
machine type 1090 7
managelogs command 66
 39
manager stanzas, general 38
maxlength parameter, awstape 42
Measurement Facility, CPU 10
memld command 67
memory statement 34
memory, PC, size 87
message function 37
Message Security Assist 7, 10
message security assist enhancements 10
message statements 5
MIDAWs 10
MIH problems 9
MIPS (million instructions per second) 14
mount_dvd command 67
msgInfo command 67
multiple CPs 12
Multiprise 3000, AWSTAPE 87
multi-user system 85
MVS 3.8 88

N
name statements 39
naming convention 30

O
OAT defaults 44
openSUSE 11.3 4–5
oprmsg command 68
OSA (Open Systems Adapter) 7
OSA interfaces 85
OSA QDIO with IP6 88
OSA-Express functions 43
OSA-Express, limits 44
OSA-Express2 functions 1
OSA-ICC 88
OSE CHPID type 44

P
P/390, AWSTAPE 87
parallel channel 87
path assignments 63
PATH for emulated devices 39
path parameter 39
pathtype parameter 39
PAV (parallel acces to volumes) 40
PAV (parallel access to volumes) 10
pdsUtil command 6, 68
performance, considerations 14
performance, z/VM 15
processors statement 35
PRPQ 5799-ADE 89

Q
QDIO channel operation 1
query command 70

R
RAS, comments 1
rassummary command 70
rdtserver statement 36
RDzUT operation 7
ready command 71
Redbooks Web site 91

Contact us x
restart command 71
RHEL 6.0, 6.1 4–5
root mode 8

S
SCSI adapters 23
SCSI tape drives 23
scsi2tape command 71
SecureUpdate_authority command 73
SecureUpdateUtility 6
SecureUpdateUtility command 72
senderrdata command 73
settod command 74
SNA operation 11
snapdump command 75
SPINLOOPs, cause 9
st (store) command 75
stanza 34, 39
start command 76
stop and start commands 5
stop command 76
storestatus command 77
storestop command 77
subchannels, maximum 11
sys_reset command 78
 34
system stanza, devmap 34
System z 196 processor 5
System z Personal Development Tool 7

T
tape2file command 78
tape2scsi command 78
tape2tape command 79
tapeCheck command 80
tapePrint command 80
TCP/IP, Linux 88
ThinkPad, processors 86
ThinkPad, selection 86
time cheat 86
timer functions, accuracy 89
TN3270E client, other 88
TOD steering 10
token command 6, 81
Token Ring 88
token, moving 86
 Index 95

tunnel device 28
tunnel environment, setup 43
txt2card command 81

U
UCS functions 45
uimcheck command 81
uimd service 7
uimreset command 81
uimserverstart command 82
Ultrabay slot, HDD 86
underlying host 7
unitadd parameter 39
Unsupported Function, 3270 42
USB 3 ports 6
USB disk drive 86
USB extender 87
USB port expander 19
USB-attached CD/DVD 87
userids 12
users, maximum 85

V
VMWare 87

W
wireless LAN 28
workloads, concurrent PC 9

X
x3270 command 36

Z
z/OS, download 88
z/OS, older releases 35
z/VM, performance 15
z1090instcheck command 7, 82
z1090term command 4
z1090ver command 83
z1091ver command 83
z196 processor 5
zAAP and zIIP processors 1
zAAP and zIIP, creation 34
zBX functions 10
zIIP 87
zIIP and zAAP, simulation with z/VM 35
zIIP or zAAP, performance 88
zIIP, zAAP, or IFL processors 89
zpdtSecureUpdate command 73, 83
96 IBM System z Personal Development Tool: Volume 1 Introduction and Reference

(0.2”spine)
0.17”<

->
0.473”

90<
->

249 pages

IBM
 System

 z Personal Developm
ent Tool: Volum

e 1 Introduction and Reference

®

SG24-7721-05 ISBN 0738438294

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

®

IBM System z
Personal Development Tool
Volume 1 Introduction and Reference

System z
Development Tool

Full z/OS usage

Linux base

This IBM Redbooks publication introduces the IBM System z
Personal Development Tool (zPDT), which runs on an underlying
Linux system based on an Intel processor. zPDT provides a
System z system on a PC capable of running current System z
operating systems, including emulation of selected System z I/O
devices and control units. It is intended as a development,
demonstration, and learning platform and is not designed as a
production system.

This book, providing an introduction, is the first of three volumes. The
second volume describes the installation of zPDT (including the
underlying Linux, and a particular z/OS® distribution) and basic usage
patterns. The third volume discusses more advanced topics that may
not interest all zPDT users. The IBM order numbers for the three
volumes are SG24-7721, SG24-7722, and SG24-7723. An additional
volume (SG24-7859) describes the use of zPDT in a Parallel Sysplex
configuration.

The systems discussed in these volumes are complex, with
elements of Linux (for the underlying PC machine), z/Architecture
(for the core zPDT elements), System z I/O functions (for
emulated I/O devices), and z/OS (providing the System z
application interface), and possibly with other System z operating
systems. We assume the reader is familiar with general concepts
and terminology of System z hardware and software elements
and with basic PC Linux characteristics.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The author
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Introduction
	1.1 1090 and 1091 differences
	1.2 What is new (Version 1 Release 4 plus fixpack 1)
	1.3 What is new (Version 1 Release 3)
	1.3.1 Version 1 Release 2

	1.4 Terminology
	1.5 1090 hardware token
	1.5.1 Concurrent PC workloads

	1.6 zPDT functions
	1.6.1 Emulated I/O

	1.7 Operational overview
	1.7.1 Linux userids
	1.7.2 zPDT instances
	1.7.3 Small system example
	1.7.4 1090 console
	1.7.5 Performance

	Chapter 2. Base configurations
	2.1 zPDT base configurations
	2.2 Hardware and software levels
	2.3 zPDT releases summary
	2.4 Using older System z architectures
	2.5 SCSI adapters

	Chapter 3. zPDT components
	3.1 zPDT elements
	3.1.1 Memory
	3.1.2 Disk space
	3.1.3 LAN adapters

	3.2 Device managers
	3.3 Device maps
	3.4 Directory structure
	3.5 1090 control structure

	Chapter 4. Reference
	4.1 Device maps
	4.2 System stanza
	4.2.1 Adjunct-processor stanza

	4.3 Manager stanzas
	4.3.1 The awsckd device manager
	4.3.2 The awsfba device manager
	4.3.3 The aws3274 device manager
	4.3.4 The awstape device manager
	4.3.5 The awsosa device manager
	4.3.6 The awsrdr device manager
	4.3.7 The awsprt device manager
	4.3.8 The awscmd device manager
	4.3.9 The awsscsi device manager
	4.3.10 The aws3215 device manager
	4.3.11 The awsoma device manager
	4.3.12 The awsctc device manager

	4.4 zPDT commands
	4.4.1 adstop
	4.4.2 The alcckd command
	4.4.3 The alcfba command
	4.4.4 The ap_create command
	4.4.5 The ap_query command
	4.4.6 The ap_von and ap_voff commands
	4.4.7 The ap_vpd command
	4.4.8 The ap_zeroize command
	4.4.9 The attn command
	4.4.10 The aws_bashrc and aws_sysctl commands
	4.4.11 The awsckmap command
	4.4.12 The awsin command
	4.4.13 The awsmount command
	4.4.14 The awsstart command
	4.4.15 The awsstat command
	4.4.16 The awsstop command
	4.4.17 The card2tape command
	4.4.18 The card2txt command
	4.4.19 The ckdPrint command
	4.4.20 The clientconfig command
	4.4.21 The clientconfig_authority command
	4.4.22 The cpu command
	4.4.23 The d command
	4.4.24 The fbaPrint command
	4.4.25 The find_io command
	4.4.26 The hckd2ckd, hfba2fba, and htape2tape commands
	4.4.27 The interrupt command
	4.4.28 The ipl command
	4.4.29 The ipl_dvd command
	4.4.30 The listVtoc command
	4.4.31 The loadparm command
	4.4.32 The managelogs command
	4.4.33 The memld command
	4.4.34 The mount_dvd command
	4.4.35 The msgInfo command
	4.4.36 The oprmsg command
	4.4.37 The pdsUtil command
	4.4.38 The query command
	4.4.39 The rassummary command
	4.4.40 The ready command
	4.4.41 The restart command
	4.4.42 The scsi2tape command
	4.4.43 The SecureUpdateUtility command
	4.4.44 The SecureUpdate_authority command
	4.4.45 The senderrdata command
	4.4.46 The settod command
	4.4.47 The snapdump command
	4.4.48 The st command
	4.4.49 The start command
	4.4.50 The stop command
	4.4.51 The storestatus command
	4.4.52 The storestop command
	4.4.53 The sys_reset command
	4.4.54 The tape2file command
	4.4.55 The tape2scsi command
	4.4.56 The tape2tape command
	4.4.57 The tapeCheck command
	4.4.58 The tapePrint command
	4.4.59 The token command
	4.4.60 The txt2card command
	4.4.61 The uimcheck command
	4.4.62 The uimreset command
	4.4.63 The uimserverstart command
	4.4.64 The uimserverstop command
	4.4.65 The z1090instcheck command
	4.4.66 The z1090term command
	4.4.67 The z1090ver and z1091ver command
	4.4.68 The zpdtSecureUpdate command
	4.4.69 Command summary

	Chapter 5. Frequently asked questions
	Related publications
	IBM Redbooks
	Other publications
	How to get Redbooks
	Help from IBM

	Index
	Back cover

