

ibm.com/redbooks

WebSphere Commerce
Best Practices in Web
2.0 Store

Rufus Credle
Sankar Ganesh Kalla

Yi LY Luo
Carmen Raileanu

Mark Barbara
Marco Deluca

Mark Kershaw

Understanding the technologies behind
Web 2.0

Applying Web 2.0 to an
e-commerce site

Implementing a Web 2.0
Store

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

WebSphere Commerce Best Practices in Web 2.0
Store

April 2009

International Technical Support Organization

SG24-7647-00

© Copyright International Business Machines Corporation 2009. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (April 2009)

This edition applies to WebSphere Commerce 6.1, Web 2.0, and Web 2.0 store.

Note: Before using this information and the product it supports, read the information in
“Notices” on page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
The team that wrote this book . ix
Become a published author . xi
Comments welcome. xii

Chapter 1. WebSphere Commerce Web 2.0 Store solution 1
1.1 Introduction to Web 2.0 . 2

1.1.1 The key concepts of Web 2.0 . 3
1.1.2 Technologies behind Web 2.0. 4
1.1.3 Web 2.0 and service-oriented architecture . 6
1.1.4 Rich Internet applications . 8

1.2 Applying Web 2.0 to an e-commerce site . 10
1.3 :WebSphere Commerce Web 2.0 Store solution 10

1.3.1 Introduction to the Madisons Store . 10
1.3.2 Simplifying customization . 12

1.4 Applying Dojo and Ajax to the Madisons Store . 12
1.4.1 Architectural overview . 13
1.4.2 Common interaction . 14

1.5 Madisons Store Feature Pack 5 features . 16

Chapter 2. WebSphere Commerce Web 2.0 Store features and benefits . 17
2.1 Interactivity for user and benefits to clients . 18

2.1.1 Rich shopping experience. 18
2.1.2 Accessibility. 24
2.1.3 Reducing the total cost of implementation . 27

2.2 Model View Controller design pattern in Web 2.0 30
2.2.1 Model View Controller design pattern . 30
2.2.2 How MVC applies for Web 2.0 . 32

2.3 Web 2.0 Store (FEP2) features and benefits . 37
2.3.1 Single store supporting Web 1.0 and Web 2.0 38
2.3.2 Madisons Store Change Flow function options. 38
2.3.3 Accessibility issues . 40
2.3.4 Browser backward and forward buttons . 40
2.3.5 Tooltips . 40
2.3.6 The drag feature . 41
2.3.7 Mini Shop cart . 42

© Copyright IBM Corp. 2009. All rights reserved. iii

2.3.8 Quick Info panel . 45
2.3.9 Scrollability widget. 46
2.3.10 Fast Finder . 46

2.4 Web 2.0 application concepts . 49
2.4.1 Overview of the Dojo toolkit . 50
2.4.2 Including the Dojo library. 51
2.4.3 Dojo core library . 52
2.4.4 XHR. 70
2.4.5 The Dojo Widget Library . 79

Chapter 3. Design and implement your Web 2.0 Store 93
3.1 WebSphere Commerce Web 2.0 Store structure 94

3.1.1 WebSphere Commerce package structure for Web 2.0 Store 94
3.1.2 File content structure. 95
3.1.3 Page layout structure . 102

3.2 WebSphere Commerce Ajax framework for Dojo 105
3.2.1 Getting familiar with the Ajax Framework extension 106
3.2.2 The four scenarios . 118

3.3 WebSphere Commerce Framework for Dojo widgets 134
3.3.1 The Dojo widgets used for Web 2.0 Store 135
3.3.2 Implementing your own Dojo widgets . 171
3.3.3 How to customize the Dojo widgets . 174

3.4 Introduce Web 2.0 features into your Web 1.0 Store 183
3.4.1 Adding a Web 2.0 feature in your Web 1.0 Store 183

Chapter 4. Testing and debugging your Web 2.0 Store 195
4.1 Testing your Web 2.0 Store. 196

4.1.1 Functional testing . 196
4.1.2 Usability testing . 200
4.1.3 Performance testing . 203

4.2 Debugging your Web 2.0 Store . 210
4.2.1 Web 2.0 interactions . 210
4.2.2 Breaking down the possible problem areas 211
4.2.3 Tools to debug and isolate problems . 212
4.2.4 Identifying and isolating the problem area 215
4.2.5 The divide and conquer method . 217
4.2.6 Debugging a sample problem . 218

4.3 Optimizing Web 2.0 Store . 223
4.3.1 Page weight review and performance tips 224
4.3.2 General performance tips . 230
4.3.3 Advanced UI performance tips . 232
4.3.4 Efficiently handling requests on client side 234

Appendix A. Additional material . 237

iv WebSphere Commerce Best Practices in Web 2.0 Store

Locating the Web material . 237
Using the Web material . 238

How to use the Web material . 238

Related publications . 239
IBM Redbooks . 239
Online resources . 239
How to get Redbooks . 241
Help from IBM . 242

Index . 243

 Contents v

vi WebSphere Commerce Best Practices in Web 2.0 Store

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

© Copyright IBM Corp. 2009. All rights reserved. vii

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. These and other IBM trademarked
terms are marked on their first occurrence in this information with the appropriate symbol (® or ™),
indicating US registered or common law trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common law trademarks in other countries. A current
list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

BladeCenter®
DB2®
developerWorks®

IBM®
Redbooks®
Redbooks (logo) ®

System x®
WebSphere®

The following terms are trademarks of other companies:

Enterprise JavaBeans, J2EE, Java, JavaBeans, JavaScript, JavaServer, JSP, JVM, Sun, and all Java-based
trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Internet Explorer, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United
States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

viii WebSphere Commerce Best Practices in Web 2.0 Store

http://www.ibm.com/legal/copytrade.shtml

Preface

This IBM® Redbooks® publication positions Web 2.0 Store (FEP2) and
demonstrates how Web 2.0 is applied to an e-commerce site. In addition, you will
gain an understanding of how Dojo and Ajax are applied to the Madisons Store
(FEP5).

This book emphasizes some of the client benefits and describes the features of
the new Web 2.0 Store solution of WebSphere® Commerce. This book
discusses the Model View Controller (MVC) design pattern for Web 2.0 and
provide guidance to developers who are building and customizing Ajax-based
applications.

This book explains how to implement your own Web 2.0 Store using Ajax and
Dojo and on the basis of the Madisons store. Developers can build their own Web
2.0 Store more efficiently (for example, quickly designing, developing, testing,
analyzing, and deploying high-quality Web 2.0 Stores).

This book describes the best practices for testing and debugging your Web 2.0
Store functionality, and also presents the Web 2.0 Store optimization best
practice. This book is targeted at WebSphere Commerce developers,
WebSphere Commerce architects, and technical sales specialists.

Throughout this Redbooks publication, Web 2.0 Store pertains to the use of
FEP2 and Madisons Store pertains to FEP5.

The team that wrote this book

This book was produced by a team of specialists from around the world working
at the International Technical Support Organization, Raleigh Center.

Rufus Credle is a Certified Consulting IT Specialist at the ITSO, Raleigh Center.
In his role as Project Leader, he conducts residencies and develops IBM
Redbooks about network operating systems, ERP solutions, voice technology,
high availability and clustering solutions, Web application servers, pervasive
computing, IBM and OEM e-business applications, IBM System x®, IBM
x-Series, and IBM BladeCenter®. Rufus’ various positions during his IBM career
have included assignments in administration and asset management, systems
engineering, sales and marketing, and IT services. He holds a BS degree in
business management from Saint Augustine's College. Rufus has been
employed at IBM for 28 years.

© Copyright IBM Corp. 2009. All rights reserved. ix

Sankar Ganesh Kalla is a WebSphere Commerce Developer in India. He has
four years of experience in e-Commerce field. His areas of expertise include
Java™, J2EE™, AJAX, Dojo, and flex. He has written extensively on WebSphere
Commerce store model related articles. He holds a degree in B.Tech Computer
Science from JNTU Hyderabad, India.

Yi LY Luo is a technical lead of WebSphere Commerce development team in
China Development Lab. He has 3 years of experience in e-Commerce field. He
has worked at IBM for 3 years.His areas of expertise include e-Commerce
solutions, J2EE development, and Web 2.0 technology and development. He got
his master of science degree from Wuhan University, China.

Carmen Raileanu is an application developer working for Bestware Solution in
Romania. She has seven years of experience in J2EE technologies programming
field. She has professional certifications in Sun™ Certified Programmer, IBM
Solution Developer and IBM Enterprise Application Developer and has
completed the following IBM training: IBM DB2® Content Manager, WebSphere
MQ, and WebSphere Application Server. Her areas of expertise include
consulting and implementing of e-commerce solutions on IBM WebSphere
Commerce, enterprise Web applications on J2EE platforms, Internet banking on
J2EE platforms, and document management solutions on the IBM DB2 Content
Manager platform. She holds a master degree in Computer Science at University
of Constanta, Romania

Mark Barbara is the team lead of the WebSphere Commerce Level 2 support
team at the IBM Toronto Lab. He has been working with WebSphere Commerce
since starting at IBM in 2004. He has a wide depth of knowledge when it comes
to debugging and troubleshooting problems for WebSphere Commerce, and the
related IBM stack of products. His areas of expertise include Commerce Portal
integrations as well as debugging site performance and stability problems for
WebSphere Commerce. He graduated with distinction from the University of
Toronto, earning his Bachelor of Science degree in Computer Science,
specializing in Software Engineering, and majoring in Economics.

Marco Deluca is a Business Solution Architect team lead with the WebSphere
Commerce Solution Enablement team at the IBM Toronto lab. He brings over ten
years of progressive experience to the enterprise software domain with technical
specialties including Web 2.0 solutions, Search Engine Optimization (SEO) and
J2EE-related software development. He also has a considerable listing of
e-Commerce published material in his area of expertise.

x WebSphere Commerce Best Practices in Web 2.0 Store

Mark Kershaw is a member of the Performance Delivery team of IBM Software
Services for WebSphere. His areas of expertise center around load testing and
performance tuning of large-scale WebSphere Commerce applications. He has
experience with both of these activities on Web 2.0 implementations. Prior to this
book, he co-authored works specific to the WebSphere Commerce Web 2.0
Store model. Before joining IBM, he obtained a BSc in Computer Science from
the University of Calgary, Canada.

Thanks to the following people for their contributions to this project:

Tamikia Barrow, Margaret Ticknor
International Technical Support Organization, Raleigh Center

Jacob T. Vandergoot, WebSphere Commerce Architect, WebSphere Commerce
Development
IBM Canada

Karson Ng, WebSphere Commerce Development (B2B Solutions)
IBM Canada

Woodward Aichner, Managing Consultant - SWG Team Supporting GBS
eCommerce Solutions Delivery
IBM Research Triangle Park, NC

Become a published author

Join us for a two- to six-week residency program! Help write a book dealing with
specific products or solutions, while getting hands-on experience with
leading-edge technologies. You will have the opportunity to team with IBM
technical professionals, Business Partners, and Clients.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you will develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

 Preface xi

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about
this book or other IBM Redbooks in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

xii WebSphere Commerce Best Practices in Web 2.0 Store

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Chapter 1. WebSphere Commerce Web
2.0 Store solution

This chapter introduces you to Web 2.0 and demonstrates how Web 2.0 is
applied to an e-commerce site. In addition, you will gain an understanding how
Dojo and Ajax are applied to the Web 2.0 Starter Store.

1

© Copyright IBM Corp. 2009. All rights reserved. 1

1.1 Introduction to Web 2.0

Web 2.0 represents a new wave in business innovation concerning how
enterprises are trying to exploit the current generation of Internet technologies.
The IBM developerWorks® article Enterprise Web 2.0, Part 1: Web 2.0 --
Catching a wave of business innovation defines Web 2.0 components in the
following manner:

A set of patterns through which technology is currently being used to create and
support business models using Internet technologies.

You can download this article from the following Web page:

http://www.ibm.com/developerworks/webservices/library/ws-enterprise1/

Web 2.0 represents an evolution of Web development through the creation of a
rich UI. The current interest in Web 2.0 technology has arisen due to a
culmination of economic and technology directions that make it a source of
business innovation.

The following list explains a few of the paths that led to Web 2.0:

� Global participation in collaborative, richly featured communication
technologies

Users need to communicate and exchange information with each other
without leaving their own Web-based applications.

� A global trend of participation in collaborative communication technologies

Studies show that from the more than one billion people that are now online,
the percentage of people interacting with each other socially and
economically in expanding networks, rather than using the Web simply to
shop or access information, is growing every day.

� Increasing capabilities and falling costs for the manufacturers of personalized
or customized products

Anything from clothes to devices to automobiles can be customized or
personalized with minimum addition to its normal price point, rather than
requiring expensive costs and customizations.

� A continuous trend in business optimization

Exposure of business enterprise services through service-oriented
architecture (SOA) are all the way out to the browser.

� Optimization of UI and interaction with products

Dynamic and easy-to-use UIs allow users to interact with Web page content.

2 WebSphere Commerce Best Practices in Web 2.0 Store

http://en.wikipedia.org/wiki/Web_2.0
http://en.wikipedia.org/wiki/Web_2.0
http://www.ibm.com/developerworks/webservices/library/ws-enterprise1/

� Simple and easy-to-use Web sites and rich user experiences on the Internet

Users need to find themselves interacting with features provided by the
designer and getting exactly what they want. We need to remove
unnecessary components that might confuse users.

This section introduces the following topics:

� The key concepts of Web 2.0
� Technologies behind Web 2.0
� Web 2.0 and SOA
� Rich Internet Applications (RIA)

1.1.1 The key concepts of Web 2.0

The following terms are key concepts in Web 2.0 technology.

Collaboration
The idea of the Internet today is to provide a communication medium in which
users from all around the world can participate and interact. Users want Web
sites with which they can interact.

Personal profiles, blogs, and wikis allow people to communicate without
understanding underlying Web and browser technologies. Using these
technologies, people can share their interests and expertise and create
collaborative content.

Syndication feeds and widgets
Syndicated feeds, simple streams of stories, and information formatted in
Extensible Markup Language (XML) according to the Really Simple Syndication
(RSS) or Atom protocols enable sites to carry a vast array of content and let
users create their own content. Feeds are services created according to
Representational state transfer (REST) principles (a set of services scalable and
easy to use).

Many Web sites make their content and functionality available as RESTful
services so that they can be incorporated into other Web applications. At the
same time, open standards and SOA advancements have made many services
and information sources available through robust, secure Web services.

 Chapter 1. WebSphere Commerce Web 2.0 Store solution 3

http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/RSS_(file_format)
http://en.wikipedia.org/wiki/RSS_(file_format)
http://en.wikipedia.org/wiki/Service-oriented_architecture
http://en.wikipedia.org/wiki/Rich_Internet_application
http://en.wikipedia.org/wiki/REST

Mashups
Mashup applications let users easily mix function and content from many sources
into new applications. Users use mashup applications to combine external
information such as news, events, or weather to mix with their own data, putting
all information in one place.

1.1.2 Technologies behind Web 2.0

This section discusses technologies found in Web 2.0. See Figure 1-1 for a
graphic representation of these technologies.

� Ajax as the model for a rich client
� Ajax libraries (for example, Dojo)
� JSON and XML as the data interchange format
� REST and Atom, used to form the basis of the service invocation model
� Dojo toolkit that provides an API for developers of Ajax applications

Figure 1-1 Web 2.0 technologies

Ajax
Asynchronous JavaScript™ and XML (Ajax) is a development technique for
creating interactive Web applications. Data, content, and design are merged into
a seamless whole. These techniques give the user of an Ajax-based Web
application increased interactivity with the Web page content. This is achieved by
exchanging small amounts of data with the server asynchronously using

Enterprise
MASHUPS

Enterprise SOAWeb SOA

RSS

SOA

ATOM
JSON

REST

XML

PHP

.NET

J2EE
WSDL

CICS

WS-*

MOM

SOAP

J2SE

JDBC

JMS

FEEDS

FEEDS

FEEDS

AJAX

Ruby

Open Rico

4 WebSphere Commerce Best Practices in Web 2.0 Store

http://en.wikipedia.org/wiki/Ajax_(programming)
http://en.wikipedia.org/wiki/Ajax_(programming)

JavaScript to communicate with a server. This means the entire Web page is not
reloaded in a request or response fashion. This is intended to increase the Web
page's interactivity, speed, functionality, and usability.

Ajax is asynchronous in that extra data is requested from the server and loaded
in the background without interfering with the display and behavior of the existing
page. JavaScript is the scripting language in which Ajax function calls are usually
made. Data is retrieved using the XMLHttpRequest object that is available to
scripting languages run in most current browsers, or, alternatively, through the
use of remote scripting in browsers that do not support XMLHttpRequest. In any
case, it is not required that the asynchronous content be formatted in XML. The
XMLHttpRequest object supports any text-based format, including XML. It is
used for transferring data between client and server over both HTTP and HTTPS
protocols.

Ajax is a cross-platform technique usable on many different operating systems,
computer architectures, and Web browsers as it is based on open standards
such as JavaScript and the Document Object Model (DOM).

Atom feeds and JSON
Atom feeds and JavaScript Object Notation (JSON) are technologies used to
transport information from the services to the browser.

The Atom feed technology allows a user to create, update, and subscribe to
resources. The Atom Syndication Format is an XML language used for Web
feeds, while the Atom Publishing Protocol (also known as AtomPub or APP) is a
simple HTTP-based protocol for creating and updating Web-based applications.
Web feeds allow software programs to check for updates published on a Web
site. To provide a Web feed, a site owner may use specialized software (such as
a content management system) that publishes a list (or feed) of recent articles or
content in a standardized, machine-readable format. The feed can then be
downloaded by Web sites that syndicate content from the feed, or by feed reader
programs that allow Internet users to subscribe to feeds and view their content. A
feed contains entries, which may be headlines, full-text articles, summaries, or
links to content on a Web site, along with various metadata.

JSON is a text-based human-readable format for representing simple data
structures and associative arrays (called objects). The JSON format is often
used for transmitting structured data over a network connection in a process
called serialization. It is primarily used in Ajax Web application programming,
where it serves as an alternative to the traditional use of the XML format.

 Chapter 1. WebSphere Commerce Web 2.0 Store solution 5

http://en.wikipedia.org/wiki/Ajax_(programming)
http://en.wikipedia.org/wiki/Atom_(standard)
http://www.json.org/
http://www.json.org/

REST and REStful
One of the characteristics of a Web 2.0 application is that it represents a set of
services that can be asynchronously invoked and merged with other services
into a dynamic combination.

Ajax is one of the technologies that offers this kind of behavior for a Web
application. An Ajax Web page separates presentation (list, trees, and so forth)
from content (XML documents asynchronously fetched using JavaScript) and
populates the presentation based on user actions on the page.

SOA containing the Representational State Transfer (REST) component, referred
to RESTful SOA, is another technology that offers the possibility to extend some
services out to the browser. RESTful SOA refers to delivering simple XML Web
services delivered over HTTP using the REST approach. REST is a key
component in an implementation of a RESTful SOA, and enables the creation of
Web services that are simple to implement, build for reuse, and are scalable. We
can build on the RESTful service model and add new metaphors like feeds.

The benefits of this technology are as follows:

� Allows building interactive Web pages
� Allows creating mashups from your published services and those of others
� Allows contacting customers in new ways, such as blogs and wikis
� Reduces the costs of implementation in terms of money and time

Dojo
Dojo is an open source JavaScript toolkit that provides an API that makes
developing Ajax applications easy. It contains an API for client/server
communication and a set of widgets ready to be used in Web pages. Section 2.4,
“Web 2.0 application concepts” on page 49 provides more information on the
components and widgets of Dojo Toolkit.

1.1.3 Web 2.0 and service-oriented architecture

SOA technologies in the form of Web services and WSDL are focused on
supporting computer-to-computer integration. They support a wide variety of
capabilities that make these the right solutions for enterprise integration within an
Enterprise Service Bus architecture. One of the reasons that SOAP and WSDL
are not more widely adopted is that Web browsers do not natively support these
two specifications. Enterprises must focus on how they can release their assets
on the Internet.

We can now view the Web as a set of services that can be asynchronously
invoked, merged with other services, and rewoven into new, dynamic
combinations. This approach is one of the defining characteristics of Web 2.0.

6 WebSphere Commerce Best Practices in Web 2.0 Store

http://dojotoolkit.org/about
http://dojotoolkit.org/about

Ajax separates presentation and content into a basic page that contains the
presentation (lists, trees, and so forth) and a set of XML documents that are
asynchronously fetched (using JavaScript) and used to populate the presentation
based upon user actions. Meanwhile, RESTful SOA is taking care of the services
extended out to the browser. RESTful services and feeds based on protocols like
RSS and Atom serve as good examples of well-defined SOA services.

Web 2.0
Web 2.0 applications are a combination of services, feeds, and widgets enabled
through SOA. Web 2.0 has gained such a wide adoption because it allows
developers to focus on solutions using easy-to-use concepts and technologies.
Enabling feeds of data to be accessed in a RESTful way, enables business
enterprise solutions to integrate with others.

A good example of this is Google Maps, used by millions of Web sites and
developers. Google has managed to thread this service into the Internet and
allow it to be consumed into a wide variety of Web 2.0 solutions.

The advantages of a Web 2.0 solution are as follows:

� It focuses on how a business enterprise can release their assets on the
Internet.

� It uses established standards included in leading browsers already on
consumers desktops, laptops, and mobile devices.

� It deploys data and logic into the Internet as services that can be easily
invoked, upgraded, and deployed, which offers a high reuse.

� Software is being developed as a collaboration medium for the community. It
uses a variety of social networking tools to enable quick feedback and
comments.

� Simple programming models, languages, runtimes, and specifications are
bases for Web 2.0 applications. REST and JSON are perfect examples of
patterns and standards that provide enough of what most service developers
need.

SOA provides easy access to the reusable business tasks in your enterprise. It
allows combinations of different information from inside and outside business
enterprises into services. REST and Web 2.0 provide a layer on top of this,
making these services available to customers and users on the Internet. Mashup
is one of the Web design patterns used to combine data from more than one
source into a single integrated tool based on ready and easily accessible SOA
services. In addition, you can allow customers to provide content in a way that is
consistent with your business application by controlling the access to your
services.

 Chapter 1. WebSphere Commerce Web 2.0 Store solution 7

1.1.4 Rich Internet applications

Rich Internet applications (RIA) are Web applications that offer functionality and
features similar to a desktop application. RIAs typically transfer the processing
necessary for the UI to the Web client, but keep the bulk of the data on the
application server. They can adapt to network connectivity and store data locally
if needed. They also use the latest UI technologies to present a competing easy
to use interface. Traditional Web applications are based on a client-server
architecture using a thin client. In this design, most processing is performed on
the server. The client is only used to display static (in this case HTML) content.
The biggest drawback with this approach is that all interactions with the
application must involve the server, which requires data to be sent to the server,
the server to respond, and the page containing the response to be reloaded on
the client. Internet standards have evolved over time to accommodate these
techniques, so it is difficult to draw a strict line between what constitutes an RIA
and what does not. All RIAs, however, introduce an intermediate layer of code,
often called a client engine, between the user and the server. This client engine
is usually downloaded at the start of the application, and may be supplemented
by further code downloads as the application progresses. The client engine acts
as an extension of the browser, and usually takes responsibility for rendering the
application's UI, and for handling server communication.

Although developing applications to run in a Web browser is more difficult than
developing traditional desktop applications, the extra effort is usually justified
because of the following advantages:

� Local installation is not required. The application resides on the server.

� Updates and upgrades are automatic.

� Users can access the application from any computer with an Internet
connection, and in most cases regardless of what operating system that
computer is running.

Because RIAs employ a client engine to interact with the user they provide the
following advantages:

� Greater control

RIAs move some elements of the Model View Controller (MVC) design
pattern from the server to the client runtime. This enables a far greater level of
control for the user interaction and the data that is requested from the server.
It allows for intelligent decisions to be made on when and how much data to
retrieve and what to cache and when to make a decision to get more. This
pattern is common in RIAs that use a wide variety of data volumes. For more
information on MVC, see 2.2.1, “Model View Controller design pattern” on
page 30.

8 WebSphere Commerce Best Practices in Web 2.0 Store

� Richer functionality

RIAs offer UI behaviors not normally available using the HTML widgets
available to standard browser-based Web applications. This richer
functionality may include anything that can be implemented in the technology
being used on the client side, including the following examples:

– Drag and drop (DnD)
– Using a slider to change data
– Calculations performed only by the client, which do not need to be sent

back to the server

� Client/Server balance

The demand for client and server computing resources is better balanced, so
that the Web application server does not need to be the workhorse that it is
with a traditional Web application.

� Asynchronous communication

The client engine can interact with the server without waiting for the user to
perform an action (such as clicking on a button or link). This allows the user to
view and interact with the page independent of the client engine's
communication with the server. This allows RIA designers to move data
between the client and the server without making the user wait. Perhaps the
most common use of this capability is prefetching, in which an application
anticipates a future requirement for certain data, and downloads it to the client
before the user requires it, thereby speeding up a subsequent response.
Google Maps uses this technique to move adjacent map segments to the
client in anticipation of the user scrolling them into view.

� Network efficiency

The network traffic may also be significantly reduced because an
application-specific client engine can be more intelligent than a standard Web
browser when deciding what data needs to be exchanged with servers. This
can speed up individual requests or responses because less data is being
transferred for each interaction, and overall network load is reduced.
However, use of asynchronous prefetching techniques can neutralize or even
reverse this potential benefit. Because the code cannot anticipate exactly
what every user will do next, it is common for such techniques to download
extra data, not all of which is used.

 Chapter 1. WebSphere Commerce Web 2.0 Store solution 9

1.2 Applying Web 2.0 to an e-commerce site

Today, Web 2.0 e-commerce sites are using RIA technology to create a more
usable and more efficient shopping experience for users, one that cannot be
achieved with Web 1.0.

Retailers are incorporating social computing into e-marketing strategies to bring
shoppers together by giving them a forum to exchange ideas and interact with
the retailer on a personal level. For most retailers, their starting point for a social
computing strategy is on merchandising. It begins with incorporating the product
reviews in the e-commerce sites. Retailers like BassPro, Home Depot, and
Discovery have expanded to the next level of product discussion by incorporating
blogs and forums into their e-commerce sites to give both the business and
shoppers a personality or voice to connect with others.

1.3 :WebSphere Commerce Web 2.0 Store solution

WebSphere Commerce provides a starter store, known as Madisons Store, that
illustrates the best of breed online shopping experience as described by Web
2.0. RIA is used to create a more usable and more efficient shopping experience
than can be achieved with Web 1.0.

The starter store can be used as a basis for your own customized store solution
or you can use it as a learning tool.

1.3.1 Introduction to the Madisons Store

Madisons uses common Web 2.0 features and capabilities such as Ajax and
Dojo widgets to provide customers with an interactive and rich shopping
experience. With a properly implemented Web 2.0 solution, this improves order
conversion rates, because the Web 2.0 store is more customer-centric. The store
can be used as a standalone store in the B2C business model or as an asset
store in Extended Sites or Demand Chain business models.

The Madisons Store includes all of the features and capabilities of the Consumer
Direct starter store. However, in this solution, the starter store features are
enhanced from the Web 1.0 stores and provide a more interactive UI for
customers. The shopping experience mimics using a Windows® desktop

Note: In the following chapters, we refer to the WebSphere Commerce Web
2.0 Starter Store as Madisons.

10 WebSphere Commerce Best Practices in Web 2.0 Store

application rather than the traditional static Web pages. The new capabilities of
this Madisons Store are the Fast Finder page (which narrows product selection
based on customer-selected attributes) and the convenient checkout (driving
efficient checkout and decreased shopping cart abandonment).

The Madisons Store addresses many common Web customization issues, using
CSS and DIV tags for page layout, design, and styling, instead of the current
practice of overusing table elements throughout the page.

By taking advantage of Ajax and Dojo widget technologies, the Madisons Store
delivers feature-rich and interactive Web applications that are compatible across
platforms and browsers. Ajax technologies enable Web applications to retrieve
data from the server asynchronously, while the browsing session remains intact.
That is, refresh areas are present in pages for areas where content can be
changed on the page, such as a shopping cart. Dojo widgets enable the users to
interact dynamically with the pages (adding the ability to quickly view product
information, rather than navigating to the specific product page, for example).

The store uses WebSphere Commerce services exclusively, while traditional
data beans, that were used by the Web Sphere Commerce Web 1.0 Store, are
used only in exceptional cases where corresponding services are not yet
available (catalog, wishlists, content spots, and promotions, for example). For
e-marketing spots, members, and orders, the store uses services to interact with
the Commerce server.

The following list summarizes the capabilities of the Madisons Store:

� It is supported for both traditional Web 1.0 and current Web 2.0 shopping
paradigms.

� It provides the ability to drag items into the shopping cart or a compare zone
(for comparing same attributes among items).

� It contains e-marketing spots with an automatic scroll of items, products,
categories, and merchandising associations.

� It provides product detail pop-up windows when customers hover over items.

� It has a Fast Finder, which narrows product selection based on
customer-selected attributes (such as brand or price range).

� It provides the ability to change product attributes directly on the shopping
cart (such as the color of fabric).

� It contains enhanced error-handling with a Web 2.0 error display, where the
field with the error is highlighted with a useful message beside it.

� It provides an easier and more streamlined checkout experience.

� It provides greater accessibility functionality, enabling those with disabilities to
interact with Web content through the use of assistive technologies.

 Chapter 1. WebSphere Commerce Web 2.0 Store solution 11

1.3.2 Simplifying customization

The Madisons Store is up-to-date with current Web storefront designs that
include typical Web 2.0 capabilities. The store uses full CSS and DIV elements
for page design, page layout, and styling. This makes it easy to make simple
changes to the look and feel in quick demo scenarios.

The customer is able to make simple cosmetic changes to the store by modifying
the CSS instead of digging through the HTML code hidden within JSTL, script
and Java code inside Java Server Pages (JSP™), and JSP fragments.

Some additional approaches for simplifying customization have been followed in
this Madisons Store:

� Keep code modular. Use snippets when it makes sense.
� Add lots of comments to the page.
� Add debug statements in the JSP.
� Strictly follow JavaScript guidelines.

1.4 Applying Dojo and Ajax to the Madisons Store

In section 1.3.1, “Introduction to the Madisons Store” on page 10, we discussed
the Madisons Store’s use of a new programming model that includes the use of
Dojo widgets and Ajax. Ajax and Dojo widget technologies provide interactive
Web applications that are compatible across many platforms and browsers.

In this section, we discuss the architecture of the Madisons Store and how Ajax
and Dojo widgets are applied.

12 WebSphere Commerce Best Practices in Web 2.0 Store

1.4.1 Architectural overview

The Madisons Store uses WebSphere Commerce services when interacting with
WebSphere Commerce Server. Figure 1-2 illustrates what happens when the
Madisons Store interacts with WebSphere Commerce Server.

Figure 1-2 Interaction between Madisons Store and WebSphere Commerce server

The interaction shown in Figure 1-2 can be explained with the following process:

1. An Ajax update request using WebSphere Commerce services must be
defined as a Struts action of type AjaxComponentServiceAction.

2. The system looks up what service to call by looking at the path to which this
particular AjaxComponentServiceAction maps. Each service that is used as
an AjaxComponentServiceAction must be registered in the
struts-config-ext.xml file.

Action Forward

Web Application
Component
Services

1

3-a

3-b

3-c

JSON

HTML OR JSON

Refresh JSP
JSP

Service
Response JSPJSP

Page

Browser

WebSphere Commerce Server

Get
Request

2

User interface
action

Legend
getData tag

AJAX Component
Service Action

Update
Request

 Chapter 1. WebSphere Commerce Web 2.0 Store solution 13

3. After the completion of the command, the Struts action forwards a JSP file
that generates a JSON object containing either success or failure messages
with all the contents in the response property. When the scenario is
successful, the following events occur:

a. The client makes subsequent Ajax GET requests to the server to retrieve
the data that should be updated on the Web page, as a result of the
update request.

b. The JSP file uses the new wcf:getData tag to access information from the
WebSphere Commerce database.

c. The JSP file builds the response as HTML or JSON code, which is then
added to the page using JavaScript.

1.4.2 Common interaction

The common interaction in the Madisons Store works in the Publish/Subscribe
model. Because the Madisons Store page will asynchronously display the
up-to-date information of interaction with the server side without the whole page
refreshed, some refresh area are defined to display the refreshed information.
This is where the refresh area register themselves to listen to certain events. The
events of interests are the ones that may cause its content to refresh.

Considering a shopping cart page that has several logical sections (such as
shopping cart content, e-marketing spot content, mini shopping cart total in the
header and a payment accordion that displays the total amount due), the UI
makes use of the events system provided by Dojo to coordinate the common
interaction of the store (Figure 1-3 on page 15).

14 WebSphere Commerce Best Practices in Web 2.0 Store

Figure 1-3 An example: Interaction in the Madisons Store

The interaction shown in Figure 1-3 can be explained with the following process:

1. At page initiation, all the page widgets or contents register themselves as
interested on the “shopcart updated” event.

2. The shopper deletes an item from the shopping cart by dragging the item
from the shopping cart contents into a trashcan icon.

This starts an Ajax update call to the deleteOrderItems service. After the logic
in the server side executes, the JSP response will return a successful
message.

3. The Ajax callback function triggers a “shopcart updated” event in step 3.

4. Each widget or page content that subscribes to listen to this event is notified.
They can then execute their code to update their own contents.

This approach shows that widgets or sections within the page are modular and
that they do not need to know about other parts in the page. Only the name of the
events must be agreed upon within the widgets or code sections.

Payment accordion

1. Listen to
"Shopcart
updated" event

4. AJAX call to get
updated HTML

Mini shopping cart total
1. Listen to

"Shopcart
updated"
event

4. AJAX call to
get updated
HTML

Shopping cart details section

2. Delete item from shopping cart -
AJAX calls.
OrderItemDelete command

3. "Shopcart updated" event is triggered.

E-Marketing spot

1. Listen to "Shopcart updated" event

2. AJAX call to get updated HTML

 Chapter 1. WebSphere Commerce Web 2.0 Store solution 15

1.5 Madisons Store Feature Pack 5 features

The first version of Madisons Store was delivered in WebSphere Commerce V6.0
Feature Pack 2 as a reference application. In WebSphere Commerce V6 Feature
Pack 5, the new Madisons Store is delivered in the base product.

The following features of the Madisons Store are new in Commerce V6 Feature
Pack 5.

� Addresses total cost of implementation

� Support of traditional Web 1.0 and current Web 2.0 shopping paradigms, with
an option for the store administrator to configure these paradigms using the
Change Flow in Accelerator

� Accessibility improvements

16 WebSphere Commerce Best Practices in Web 2.0 Store

Chapter 2. WebSphere Commerce Web
2.0 Store features and
benefits

This chapter details some of the Web 2.0 Store solution’s benefits for the client,
describes some of the most important Web 2.0 features of the new Web 2.0
Store solution of WebSphere Commerce, and introduces the Model View
Controller (MVC) design pattern for Web 2.0. At the end of the chapter, we
provide guidance to developers who are building and customizing Ajax-based
applications, in preparation for the design and implementation guidance in
Chapter 3, “Design and implement your Web 2.0 Store” on page 93.

2

© Copyright IBM Corp. 2009. All rights reserved. 17

2.1 Interactivity for user and benefits to clients

This chapter details ergonomic features for making users more comfortable with
the Web 2.0 Store application interface.

2.1.1 Rich shopping experience

Web 2.0 is all about making your e-commerce Web site more appealing,
interactive, and easy for your customers to use intuitively. The richer and easier
the shopping experience, the more likely your customer is to make a purchase
and return for repeat purchases. Making your products easy for customers to find
is imperative, and Web 2.0 e-commerce technologies help with that.

The following features of the Web 2.0 Store improve conversion rates:

� Ajax technologies deliver Web pages, allowing richer product details to be
downloaded quickly

� Visually richer pages that display products options, allowing customer
interactivity without reloading or refreshing the Web page

� Dragging the products to a compare zone (Figure 2-1 on page 19) allows
shoppers to look at more products side by side, and make a decision about
purchase

18 WebSphere Commerce Best Practices in Web 2.0 Store

Figure 2-1 Compare Products page

� E-mailing products in a wishlist allows shoppers to send products to friends,
who can make a purchase

� Fast Finder, which narrows product selection based on customer-selected
attributes (such as brand or price range)

� Tagging, enhanced e-mail-a-friend, RSS feeds let you keep your customers
informed about new and changing products, while getting your products in
front of a wider audience

� Dynamic delivery of personalized page templates, layouts, and functionality
based on customer preferences.

 Chapter 2. WebSphere Commerce Web 2.0 Store features and benefits 19

Madisons Store features that streamline the checkout process

The following features found in the Madisons Store streamline the checkout
process:

� If Ajax checkout is enabled, shoppers can update their shopping cart without
refreshing the whole page, only the changed areas

� Clicking Add to cart next to the recommended products on the shopping cart
page adds the product to the shopping cart. The shopping cart area is then
refreshed. The mini shopping cart details are updated with the current
number of items in the cart, and the total price.

� Clicking Remove below the item removes it from the cart. The shopping cart
area is refreshed to show the updated list of items and the updated price. The
mini shopping cart details are updated with the current number of items in the
cart, and the total price.

� Update the quantity of one of the items and the shopping cart is updated. The
shopping cart area is refreshed to show the updated list of items and the
updated price. The mini shopping cart details are updated with the current
number of items in the cart, and the total price.

� Clicking Add to wish list below the item moves it to the wishlist. The
shopping cart and mini shopping cart details are updated with the current
number of items in the cart, and the total price.

20 WebSphere Commerce Best Practices in Web 2.0 Store

Figure 2-2 shows the Shopping Cart Page after adding a product to the cart.

Figure 2-2 Shopping Cart page with one item

 Chapter 2. WebSphere Commerce Web 2.0 Store features and benefits 21

Figure 2-3 shows the Shopping Cart Page after adding another product to the
cart. Only the shopping cart area is refreshed, and the mini shopping cart is
updated with the new product.

Figure 2-3 Shopping Cart page with two items

Web 2.0 Store features that offer a smooth e-commerce
checkout process

Making the order and payment process as quick and simple as possible will
dramatically improve conversion rates and boost sales. Web 2.0 e-commerce
tools enhance the buying experience by making the process quick and simple for
customers.

The following features offer a smooth checkout process:

� Dynamically linking to customer accounts with the Quick Checkout profile
feature speeds up the checkout process, reduces the need for the customer
to re-enter data, and allows quick selection from multiple delivery addresses

22 WebSphere Commerce Best Practices in Web 2.0 Store

Figure 2-4 Quick Checkout page

� Fewer page refreshes reduce the chance of data and customers being lost in
transit

� Repeat purchases can be completed rapidly, often with just one click, while
retaining the ability to change delivery and payment details.

 Chapter 2. WebSphere Commerce Web 2.0 Store features and benefits 23

2.1.2 Accessibility

In this chapter, we detail how RIA’s technology addresses accessibility.

Definition of accessibility
Web accessibility defines how to make Web content usable by people with
disabilities. People with some types of disabilities use assistive technology (AT)
to interact with content. AT transforms the presentation of content into a format
more suitable to the user, and allows the user to interact in ways different than
the author designed. To accomplish this, the AT must understand the semantics
of the content. Semantics are the knowledge of roles, states, and properties, as a
person would understand them, that apply to elements in the content.

Accessibility problems
AT depends on extracting semantics from the document to represent it to the
user. The HTML specification defines a limited number of semantic elements and
attributes (for example, data tables within the page, or check boxes and radio
buttons with a Web form). Web authors who want to create richer interfaces
generally use generic HTML elements (<div> and) to build custom
controls. These custom controls tend to have poor accessibility, because an AT
cannot determine how to represent the generic HTML elements to the user.
Unfortunately, HTML and other languages does not provide adequate markup to
support accessible dynamic content.

Aspects of traditional HTML that make accessible support of dynamic content
difficult are as follows:

� Accessibility relies on abstracting semantics from both content and
presentation information. Extracting semantic cues from current HTML
content is typically unreliable. Today, semantics are limited to tag element
names.

� HTML allows content to be repurposed for presentation formatting without
providing a way to convey semantic information. An example of this is using
tables to format content instead of style sheets, or using <div> and CSS to
define a custom widget.

� When combined with script and CSS, HTML can be repurposed to create
dynamic custom components without providing a means to convey semantic
information to native accessibility architectures designed to support dynamic
GUI content.

� HTML lacks the ability to attach meaningful metadata about document
structure.

� HTML elements commonly used for repurposing produce custom
components that are not keyboard accessible.

24 WebSphere Commerce Best Practices in Web 2.0 Store

Also, authors of JavaScript generated content do not want to limit themselves to
using standard tag elements that define actual UI element such as tables,
ordered lists, and so forth. Rather, they make extensive use of tag elements
(such as <div>) in which they dynamically apply a UI through the use of style
sheets and dynamic content changes. HTML <div> tags provide no semantic
information.

Therefore, the developer of a Web application does not have the ability to provide
the appropriate accessibility information in the markup to support the
accessibility application programming interfaces (APIs) on the target platform.

As most of the Web sites today are rich Internet application (RIA) applications
and contains JavaScript, they dramatically affect the ability for persons with
disabilities to access Web content. New RIAs render custom widgets, modeling
rich desktop components to perform UI updates without having to reload the
entire page, much like a graphical user interface (GUI). Legacy GUI accessibility
frameworks address these issues through a comprehensive accessibility API and
infrastructure to foster interoperability with assistive technologies. These APIs
constitute a contract between applications and assistive technologies (such as
screen readers) to enable them to access rich dynamic content with the
appropriate semantics needed to produce a usable alternative. No such contract
exists between modern RIAs and assistive technologies, thus creating an
accessibility gap for persons with disabilities.

Solving the accessibility problem
The Accessible Rich Internet Applications (ARIA) specification, given by the W3C
- Web Accessibility Initiative's (WAI) Protocols and Formats working group
(PFWG), tries to address these accessibility problems. The ARIA specification
addresses the accessibility deficiencies in today’s markup related to enabling
RIAs by providing an extension to XHTML1.1, and a technique to support W3C
ARIA in HTML 4.01. For this, ARIA defines two specifications:

� ARIA States and Properties

The ARIA States and Properties specification defines changeable states and
properties of elements.

� ARIA Roles

The ARIA Roles specification helps identify element types that do not change
with time or user actions.

For example, RIA developers can create a tree control in HTML using CSS and
JavaScript even though HTML lacks a semantic element for that. A different
element must be used, possibly a list element with display instructions, to make it
look and behave like a tree control. AT, however, must present the element in a
different modality and the display instructions may not be applicable. The AT will

 Chapter 2. WebSphere Commerce Web 2.0 Store features and benefits 25

present it as a list, which has display and interaction behaviors different than a
tree control, and the user may be unsuccessful at understanding and operating
the control.

The ARIA Roles specification provides a way for an author to provide proper
semantics on custom widgets (like tree control, in the paragraph above) so that
these custom widgets are accessible, usable, and interoperable with assistive
technologies. This specification identifies the types of widgets and structures that
are recognized by accessibility products by providing an ontology of
corresponding roles that can be attached to content. This allows elements with a
given role to be understood as a particular widget or structural type regardless of
any semantics inherited from the implementing technology.

The ARIA States and Properties specification is used to declare important
properties of an element that affect and describe interaction. These properties
enable the user agent or operating system to handle the element properly, even
when these properties are altered dynamically by scripts.

Accessibility for Dojo widgets
The widget set of the Dojo 1.0 release has been made accessible using ARIA. It
provides keyboard support (widgets work with both keyboard and mouse) for all
the core widgets. The ARIA States and Properties specification is applied to the
Dojo widgets to allow for full access using screen readers. Developers using the
Dojo 1.0 widgets do not need to be aware of the details of ARIA support.
Developers creating new widgets or customizing existing widgets need to be
aware of the dijit APIs for supporting ARIA. These APIs are found in
dijit.util.wai.js, in the dijit branch of the Dojo source tree.

Accessibility implementation
W3C defines an extensible framework for Web authors to declare the role of each
element on the page. The WAI Working Group is using this extensible framework
to create taxonomy of roles [WAIROLE] and states [WAISTATE] to describe
common UI controls that are not represented in XHTML. Web authors can
declare these roles and states on any element within an XHTML document, to
indicate that the element represents a custom interface control. User agents can
retrieve this accessibility metadata from the DOM and expose it to assistive
technologies through the accessibility architecture of the underlying operating
system. However, the methods described in [ROLEMOD], [WAIROLE], and
[WAISTATE] cannot be used directly in HTML4 documents, because they rely on

Note: More information about ARIA, ARIA-Roles, ARIA States and Properties,
and ARIA best practices can be found at the following Web page:

http://esw.w3.org/topic/PF/ARIA

26 WebSphere Commerce Best Practices in Web 2.0 Store

http://esw.w3.org/topic/PF/ARIA

namespace features of XHTML that HTML documents do not support. The
PFWG has come up with a technique to define the roles and states in the HTML4
documents. It allows the role and state information to be embedded into the class
attribute so it becomes part of the DOM when the document is loaded.

Accessibility for RefreshArea widget
One of the important things that should be addressed during development is the
RefreshArea widget. RefreshArea’s should be treated as Live Regions. Live
Regions, according to ARIA specification, are parts of Web page that the Web
author expects to change dynamically. Live Regions enable assistive
technologies, such as screen readers, to be informed of updates without losing
the users' place in the content. Live Region settings provide hints to assistive
technologies about how to process updates. Live Regions allow text to be spoken
to the user without getting misinterpreted. The ARIA State and Properties
module defines a set of attributes which are related to Live Regions.

More information can be found on the following Web pages:

http://developer.mozilla.org/en/docs/AJAX:WAI_ARIA_Live_Regions
http://esw.w3.org/topic/PF/ARIA/BestPractices/LiveRegion
http://juicystudio.com/article/wai-aria-live-regions.php

2.1.3 Reducing the total cost of implementation

The new Madisons Store is up to date with current Web storefront designs that
include Web 2.0 capabilities. It is uses CSS for styling and DIV elements and
layers for designing, and for ease of implementation and change. You can easily
make changes to the CSS files instead of searching through the HTML code,
which is hidden in JSTL files, or through Java code inside Java Server Pages
(JSP) and JSP fragments.

The following list details a few design principles of Web 2.0 that can reduce total
cost of implementation (TCI):

� Keep code modular. Use snippets when it makes sense.

Not all pages need to be broken down into JSP snippets. Use snippets only
when it is necessary, when there is reusable code fragments, or when it is a
piece of code that shows a particular feature.

Note: More information about ARIA roles and properties for commonly used
elements like buttons, menus, combo boxes, and select boxes can be found at
the following Web page:

http://esw.w3.org/topic/PF/ARIA/BestPractices/SimpleExamples

 Chapter 2. WebSphere Commerce Web 2.0 Store features and benefits 27

http://esw.w3.org/topic/PF/ARIA/BestPractices/SimpleExamples
http://developer.mozilla.org/en/docs/AJAX:WAI_ARIA_Live_Regions
http://esw.w3.org/topic/PF/ARIA/BestPractices/LiveRegion
http://juicystudio.com/article/wai-aria-live-regions.php
http://esw.w3.org/topic/PF/ARIA/BestPractices/SimpleExamples

Keep the code modular by having the bean initialization next to where it is
used. Do not have a section at the top of the page to do all the initialization
and then use them in different places in the page. Try to keep common code
in blocks to make it much easier for developers to move code around to a
different page or to delete functions that are not required.

� Add lots of comments to the page

Each JSP page must explain what it does, what it displays, and any other
important information. For reusable snippets, clearly document the usage and
the accepted parameters. At different blocks of code, add some comments to
explain what is being done.

Example 2-1 shows how comments should be added in a main JSP page.

Example 2-1 JSP comments

<%--
* A brief summary description of the page and what is being
displayed.
* List all JSP and JSPF that are being included by the page.
--%>
Sample for a JSP snippet or fragment:
<%--
* A brief summary description of the snippet or fragment.
* List all required and optional input parameters, clearly
explaining the default
 values for the optional parameters.
* (Optional) Sample usage of the snippet.
* List all the JavaScript files that must be included by the main
page if this snippet
 or fragment is used.
--%>

� Add debug statements in the JSP

Use the Dojo debug utility to create traces in JavaScript code. For any other
tracing requirement it is suggested to use the server side utility (Java Logging
API).

� JavaScript guidelines

Every JavaScript function and global variable must be defined within some
namespace so that it does not collide with other code. The convention is to
create a namespace for each page by creating a new object.

Example 2-2 on page 29 shows some namespace for a JavaScript function.

28 WebSphere Commerce Best Practices in Web 2.0 Store

Example 2-2 JavaScript function namespace

// first, declare the namespace if it does not already exist
if (FF == null || typeof(FF) != "object") { var FF = new Object();}
// all the functions in the FF namespace will go in this block
FF = {
filterProducts: function (oSelf, oOther) {
// contents of the filterProducts function
 },
 createResults: function () {
 // contents of the createResults function
 },
 thirdFunction: function () {
 // function contents
 }
} // end of the FF namespace

� Make all JavaScript functions independent of JSTL so that they can be moved
to separate JavaScript-only files. If required, accept parameters or objects
with the values required. Declare a constructor for the object that is created.

� All JavaScript functions must have Java Doc explaining what its function is,
with input and output parameters. List any dependant forms or input values in
forms that it expects and uses. Also, clearly define any assumptions for which
callers need to be made aware.

Example 2-3 shows how we can comment a JavaScript function.

Example 2-3 Java Doc

//
// A short description of what type of functions are defined in the
page.
// State if dojo is a requirement when including this JavaScript file.
// List all dojo API (i.e. dojo.require) that needs to be added in the
page including this file.
//
sampleFunction:function() {

// summary : initialize the Sample page
// description : Executed onLoad of Sample page. This

function
//sends the addressId/shipModeId of the first sample block in

this
//page to the quick cart, so that when items are moved to quick

cart,

 Chapter 2. WebSphere Commerce Web 2.0 Store features and benefits 29

//they are added with this info by default. Then define the drop
//targets. Each shipment block will be on drop area. Also hides the
//default input date field that comes with Dojo's date picker

// assumptions : Any assumptions made.
// dojo API : Dojo API’s used.
// Params : Input Params
// returns : returned value

}

2.2 Model View Controller design pattern in Web 2.0

This chapter will make an overview of the Model View Controller (MVC) design
pattern and how this pattern applies to the Web 2.0 Store solution.

2.2.1 Model View Controller design pattern

The MVC pattern can separate business logic from UIs, meaning the underlying
business logic, or the application’s presentation may be altered without affecting
the other.

Most developers of Web-based applications are familiar with the J2EE/JEE
Model 2 design model, which uses the MVC pattern to separate the data content
from the presentation. Figure 2-5 on page 31 shows how MVC works.

30 WebSphere Commerce Best Practices in Web 2.0 Store

Figure 2-5 Model View Controller

MVC framework with Struts
Struts is a open source framework for building Web applications according to the
MVC principles. It provides the following components to develop applications
using MVC. See Figure 2-6 on page 32 for a graphic representation of these
components.

� Model

Struts does not provide model classes. The business logic must be provided
by the Web application developer using Enterprise JavaBeans™ (EJBs).

� View

Struts provides action forms to create form beans that are used to pass data
between the controller and the view. In addition, Struts custom tag libraries
assist developers in creating interactive form-based applications using JSPs.
An application resource file holds text constants and error messages that are
used in JSPs.

� Controller

Struts provide an action servlet (controller servlet) that populates action forms
from JSP input fields, and then calls an action class where the developer
provides the logic to interface with the model.

Model

Data/
Business Logic

Controller

2. Get the Input

4. Get the
selected view

JSP
(Form)

Browser

JSP
(Form)

3. Issue call to
business logic
and get data

1. HTTP
Request

5. HTTP
Response
with results

 Chapter 2. WebSphere Commerce Web 2.0 Store features and benefits 31

Figure 2-6 Struts Components in the MVC architecture

A typical Struts Web application is made up of the following components:

� A single servlet (org.apache.struts.action.ActionServlet), which uses an XML
configuration file. The action servlet invokes actions based on the JSP’s
action specification, and it invokes JSPs based on the actions forwarding
information.

� Multiple JSPs that provide the user view. Struts tag libraries make JSP coding
easier.

� An application resources file, which holds text constants and error messages
and makes internationalization easy.

� Multiple action classes (extending org.apache.struts.action.Action) to
interface to the model.

� Multiple action forms (extending org.apache.struts.action.ActionForm) to hold
the data from the JSPs. The action forms are initialized by the action servlet
and passed to the action classes. Action forms can be used to validate the
data entered by users.

2.2.2 How MVC applies for Web 2.0

In the Web 2.0 model, the rendering (view) and controlling logic can be moved to
reside in the browser. In this scenario the initial view is rendered in the traditional
manner by the server, but the client can then begin to take over the UI controlling
logic. To further reduce unnecessary costly interaction with the server, the client
can maintain a local data store for UI responsiveness. Certain UI functions will
trigger persisting local data to the server.

View Controller Model

Action

Action

Action

ActionConfiguration
file

ActionServlet

Model

Tag libraries

Application
Resources

: ActionForm

: JSP

32 WebSphere Commerce Best Practices in Web 2.0 Store

The Web 2.0 Store solution uses RIA technologies such as Ajax and Dojo
widgets to provide customers with an interactive and rich shopping experience.

Web 2.0 Store solution
WebSphere Commerce is based on Struts Framework. All browser requests are
sent to the Struts Action Servlet, which forwards the request to the corresponding
action based on URls and the mappings from the configuration XML file. The
Struts Action will perform a service and return a Struts Action Forward, which is
used to render the new page to return to the browser.

The new component model requires that components define a set of services
that accept Open Application Group Integration Specifications (OAGIS) Business
Object Document (BOD) messages. This BOD messages architecture is passed
to the component façades in the form of Java objects that are consistent with the
structure of the request BOD message. The component façade methods will
return OAGIS BOD responses. Web developers will need to access these
component services through regular Web 1.0 page load requests, through Ajax
style requests, as part of render requests, and on the server while a JSP is being
rendered.

In WebSphere Commerce, the action services are handled by controller
commands. This allows Struts actions to be configured using a new action
implementation that will invoke the new component services. JSP authors will
require component data to render the page. The Java Client API provides
methods for Java programmers that allow them to retrieve static business objects
with the required component data. JSP developers have access to tag libraries
that allow them to call Get services methods and retrieve a list of business
objects that match a specified XPath search expression. The populated business
objects can be used by the JSP developers like regular data beans. To include
Ajax-style requests in a JSP to render HTML pages for updating parts of a Web
page, these requests have to call existing controller commands as well as new
component services.

Figure 2-7 on page 34 illustrates an Ajax invocation pattern for an action that
invokes a component service and then updates the page as required to reflect
the new state.

 Chapter 2. WebSphere Commerce Web 2.0 Store features and benefits 33

Figure 2-7 Ajax pattern using component service

An Ajax-style request requires an invocation of a service that will do some update
of the request, followed by an update of some parts of the Web page to reflect
the updated information. For example, a user drags an item to the shopping cart.
This triggers an Ajax request to add the item to the shopping cart. When the item
is added to the shopping cart, parts of the page will need to be refreshed to
reflect the new state of the shopping cart.

The updated request will invoke a service that will perform the request. If the new
component services are being used, then the request uses a new Ajax
component service implementation that invokes the component service. The
Ajax component service action is configured to invoke a Web-friendly method on
the component client façade that will accept a Map of name value pairs. The
method will construct the BOD from the Map and invoke the appropriate
component service. When the service completes, the method will convert the
response BOD into a response Map and return the response Map to the action
implementation. The action implementation will return an Action Forward that
invokes a JSP responsible for creating the service response. The service
response is a JSON object that contains all of the values found in the response
Map. This response can then be interpreted by the JavaScript response handler

Page

Browser

Action Forward

Service
Response

JSP

AJAX
Refresh

JSP

Commerce Server

Web App Component
Services

JSON

Get
Request

JSON
or

HTML getData
tag

AJAX
Component

Service
Action

Update
Request

34 WebSphere Commerce Best Practices in Web 2.0 Store

on the page that submitted the request. The response will contain standard
name/value pairs that indicate if the request was successful or not. In the case of
an unsuccessful request, a message is displayed to the user and the page is left
otherwise unaffected. In the case of a successful update request, parts of the
page may need to be refreshed to reflect the updated state.

When the update completes successfully, the affected parts of the page will
launch Ajax requests that allow the page fragments to be refreshed. The Get
Ajax request calls the Struts Servlet which will delegate the request to a JSP. The
JSP is able to retrieve the appropriate data from the component service using the
wcf:getData tag and render either HTML or JSON. The response format should
be in the form that is easiest for the JavaScript code that is updating the page
with the new data. Experience shows that we want to avoid delegating the
complicated logic of parsing and formatting the new data to JavaScript running in
the browser. It is much more efficient to handle this on the server side.

Figure 2-8 illustrates the typical Ajax invocation pattern for an action that invokes
a controller command to perform a service, and then updates the page as
required to reflect the outcome of the service.

Figure 2-8 Ajax Pattern using controller commands

Page

Browser

Action Forward

Service
Response

JSP

AJAX
Refresh

JSP

Commerce Server

Web App

JSON

Get
Request

JSON
or

HTML
Data
bean

AJAX
Controller
Command

Action

Controller
Command

Update
Request

 Chapter 2. WebSphere Commerce Web 2.0 Store features and benefits 35

The invocation pattern is the same as the pattern used when component
services are used to perform the service.

When to use Ajax invocation pattern
The Ajax invocation pattern was derived from two design principles:

� To ensure that the well-defined component services can be effectively used
by the Web developer

Component developers are required to provide Web-friendly methods that
can be used to invoke the services by passing name/value pairs rather than
constructing the OAGIS BOD message.

� To limit the complexity of the JavaScript required to update the page

Experience with JavaScript in the tools framework has taught us that
JavaScript does not scale when it is required to format and parse large
amounts of data. By performing the complicated parsing and formatting using
JSP technology (designed for that purpose), new page fragments can be
returned to the browser in a preformatted response that is ready to be
inserted into the page with a minimal amount of JavaScript.

In addition to the Ajax considerations, care has been taken to ensure that
exploiting these new component services does not prevent Web developers from
using the existing Struts actions and data beans. It is conceivable that a Web
application may make use of both the new techniques for invoking new
component services and the existing techniques for invoking Struts controller
commands and data beans. It is possible that a single JSP may use the new get
data tag library to get data from a new component service, and also use a data
bean to retrieve from an existing Commerce component.

If the Web application is being rendered outside of the Commerce application,
the Commerce Struts actions and data beans will not be available. For example,
if the Web applications are part of a portal application, the developer will only be
able to exploit Commerce through the component services.

Note: For implementation of the Ajax invocation pattern in the Web 2.0 Store
solution, see “Scenario 3: Updating business objects in WebSphere
Commerce using Ajax, and returning all relevant update information through
JSON” on page 133.

36 WebSphere Commerce Best Practices in Web 2.0 Store

2.3 Web 2.0 Store (FEP2) features and benefits

The Madisons Store includes all of the features and capabilities of the consumer
direct starter store. However, in this solution, the starter store features are
enhanced from the Web 1.0 stores and provide a more interactive UI for
customers. The shopping experience mimics using a Windows desktop
application rather than the traditional static Web pages. The major attraction of
Madisons are the Fast Finder page (which narrows product selection based on
customer-selected attributes) and a single page checkout (which drives efficient
checkout and decreased shopping cart abandonment).

The following list details features included in the Web 2.0 Store solution:

� The ability to drag items into the shopping cart, wishlist, and compare zone.

� e-marketing spots with automatic scroll of items, products, categories, and
merchandising associations.

� Product detail pop-up windows when customers hover over items.

� A Fast Finder page which narrows product selection based on
customer-selected attributes such as brand or price range.

� The ability to change product attributes (such as color or fabric changes) on
the shopping cart.

� Single page checkout.

� WebSphere Commerce Feature Pack 2 Coremetrics analytics integrated into
the RIA technologies.

As you deploy the Web 2.0 Store, follow the recommendations we describe in
Chapter 4, “Testing and debugging your Web 2.0 Store” on page 195. The
installation and deployment instructions result in Dojo making Ajax-style requests
to get its source code at runtime for every page and every function used.
Chapter 3, “Design and implement your Web 2.0 Store” on page 93, has
information about how to create the custom Dojo source file for the application,
so Dojo will not have to send any Ajax requests to retrieve source code. This
significantly improves performance. Another important recommendation involves
Dojo parsing. Follow those techniques in every new and modified page that you
develop or change. Without those techniques, the client-side browser processing
when a page is loaded is impacted.

 Chapter 2. WebSphere Commerce Web 2.0 Store features and benefits 37

2.3.1 Single store supporting Web 1.0 and Web 2.0

In Commerce V6, feature pack 2, we introduced a reference application store to
show Web 2.0 shopping paradigms. The Consumer Direct is a traditional Web
1.0 store with full page refreshes. Although both stores were based on B2C
business models, and both implemented the same set of basic functionality, they
differed in the presentation and the interaction features provided to the shopper.
Both these stores are merged into Madisons, making the selection much easier
for the customer. This feature is implemented using the current Change Flow
functionality available in WebSphere Commerce. The store administrator will
have an option to select either a Web 1.0 or Web 2.0 path using Change Flow
features at any point of time. These Change Flow options allow the store
administrator to choose individual Web 2.0 features instead of an all-or-nothing
scenario.

2.3.2 Madisons Store Change Flow function options

The Madisons Store has the following options in the Change Flow function from
Commerce Accelerator. The store administrator can enable any of the features
as required.

Registration page options
The following list details the Registration page options.

� Enable preferred currency selection
� Enable preferred language selection
� Collect age information during registration
� Collect gender information during registration
� Enable promotional E-mail option during registration
� Enable remember me selection

Personal information management page options
The following list details the Personal information management page options.

� Enable order status tracking
� Show shipment tracking URL
� Enable Ajax in the my account page (If enabled, all the tasks within the “my

account” page is done in a single page using Ajax.)

38 WebSphere Commerce Best Practices in Web 2.0 Store

Catalog options
The following list details the catalog options.

� Enable search in the store

� Enable quantity field selection

� Display product only (If enabled, only products are displayed in product
display page. Otherwise, the product display page will contain products as
well as items.)

� Enable wish list

� Enable interactive scrolling e-marketing spot

� Enable product comparison

� Enable drag and drop to compare

Order options
The following list details the order options.

� Enable quick order

� Display mini shopping cart on header

� Enable drag and drop to mini shopping cart

� Enable interactive mini shopping cart display on item added to cart (If
enabled, the contents of the shopping cart are briefly shown when an item is
added to the order.)

� Enable Ajax add to shopping cart (If enabled, clicking the add to shopping
cart button is done using Ajax, so the shopper will stay in the current page
after a successful add. Otherwise, the add to shopping cart button redirects
the user to the shopping cart page.)

Checkout options
The following list details the checkout options.

� Enable quick checkout
� Enable multiple shipments
� Enable requested shipping date
� Enable shipping instructions
� Enable promotion code entry field
� Enable Ajax checkout (If enabled, all the tasks within the checkout page are

done in a single page using Ajax. With Ajax checkout there are no page
refreshes and the information in the checkout page is updated
asynchronously.)

 Chapter 2. WebSphere Commerce Web 2.0 Store features and benefits 39

2.3.3 Accessibility issues

Web accessibility defines how to make Web content usable by people with
disabilities. People with some types of disabilities use Assistive Technology (AT)
to interact with content. AT can transform the presentation of content into a
format more suitable to the user, and can allow the user to interact in ways
different than the author designed.

The Madisons Store is coded with accessibility support. Implementation of this
feature adheres to the Accessibility Rich Internet Applications (ARIA)
specification given by the W3C Web Accessibility Initiative’s (WAI) Protocols and
Formats working group (PFWG), making the store fully accessible.

2.3.4 Browser backward and forward buttons

The Madisons Store makes use of the dojo.undo.browser API for handling
backward and forward browser actions. The idea is to save some state objects
that contain functions to handle backward and forward. It uses Dojo APIs to
register these different state objects to the browser’s history as required. When
the browser’s back button is pressed, the back function of the saved state is
called (likewise when the forward button is clicked). Visit the following Web page
for more details:

http://manual.dojotoolkit.org/WikiHome/DojoDotBook/Book0

2.3.5 Tooltips

In the User Registration form, when a shopper clicks on the Submit button
and no valid data is filled in, a tooltip with fill-in details displays on the right
side of the invalid field, as shown in Figure 2-9 on page 41.

40 WebSphere Commerce Best Practices in Web 2.0 Store

http://manual.dojotoolkit.org/WikiHome/DojoDotBook/Book0

Figure 2-9 Tooltip for the input fields

2.3.6 The drag feature

Shoppers use the drag feature to move items or products to mini shopping cart
accordion drop zones. Items are added to the cart and the page is updated to
display the changes.

Important: The store administrator must enable dragging to mini shops and
compare zones. This is done through the Change Flow menu in the
Commerce Accelerator.

 Chapter 2. WebSphere Commerce Web 2.0 Store features and benefits 41

Figure 2-10 shows an example of dragging an item into a compare zone.

Figure 2-10 Dragging a product into a compare zone

The item can only be dropped in to a permitted area, denoted by the green +
(plus sign) mark. If the item is dropped when the + (plus sign) mark is red or is
not drop in a drop zone, the item is returned to its original position.

Shoppers can drag items displayed from the browser navigation flow, Fast
Finder, or a marketing area to the following areas:

� Mini shop cart
� Compare zone
� Wishlist

2.3.7 Mini Shop cart

Note: Products that require customers to specify additional defining attributes
(such as color, dimensions, or finish), cannot be dragged into the quick cart or
the wishlist. They can only be dragged into a compare zone. You can,
however, drag products not requiring additional customer preferences into all
three zones.

Important: The store administrator must enable the “Display minishop cart in
the header” and “Drag & Drop to minishop” features from the Store/Change
Flow menu in the Commerce Accelerator.

42 WebSphere Commerce Best Practices in Web 2.0 Store

Shoppers can see the total shopping cart in the header of each page. To add a
item to the mini shop cart, drag and drop the item to a position where the + (plus
sign) mark turns green. Figure 2-11 shows an example of dragging an item into
the mini shop cart.

Figure 2-11 Dragging and dropping an item into the minshop cart

Dropping the item when the + (plus sign) mark is red, or in a non-droppable area,
will return the item to its original position.

Hovering the mouse displays a tooltip with the name of the products in the cart
and the corresponding price for each of them. See Figure 2-12 on page 44.
Shoppers can access the Product Details page from this tooltip, or they can
access the shopping cart page by clicking on the mini shop cart link.

 Chapter 2. WebSphere Commerce Web 2.0 Store features and benefits 43

Figure 2-12 Mini Shop Cart

Clicking an item name will close the tooltip and display its detail page. If the
shopper clicks the Checkout button, the tool tip will close and the shopping cart
page is displayed. The shopping cart will contain items previously dragged into
the mini shop cart, as shown in Figure 2-13.

Figure 2-13 Shopping cart after dragging an item into the Mini Shop Cart

44 WebSphere Commerce Best Practices in Web 2.0 Store

2.3.8 Quick Info panel

While hovering the mouse over a product image in the catalog navigation flow,
compare zone, Fast Finder, or e-marketing spot, shoppers can click the Quick
Info button below the item. This opens the Quick Info panel (Figure 2-14), a
window with more details about the item. Shoppers can add the item to shopping
cart, wishlist, or compare zone.

Figure 2-14 Quick Info

When the shopper clicks close (x), the window will close. Moving the mouse over
a different item will close the existing window and will open a new one for the
current item. When the shopper moves the mouse over a different area on the
page, the window closes, and all details about the item disappear.

When shoppers click the more info button, the window closes, and the product
detail page displays details about that item.

 Chapter 2. WebSphere Commerce Web 2.0 Store features and benefits 45

2.3.9 Scrollability widget

When enabled, the Scrollable widget is displayed on the home page of the site in
an e-marketing spot, as shown in Figure 2-15.

Figure 2-15 Scrollability widget

Hover the mouse over the e-marketing spot to stop the automatic scrolling. Click
the right navigation icon and the next set of items to the right are displayed. Click
the left navigation icon and the next set of items to the left are displayed. Hover
over product image and the Quick Info button displays. This button opens a
tooltip with more information about the item and options to add to shopping cart,
wishlist and compare zone.

Shoppers can drag items from the scrollable area into the shopping cart,
compare zone, or wishlist.

Shoppers can add an item that is displayed in this scrollable area to the shopping
cart with the Add to Cart button.

2.3.10 Fast Finder

Shoppers have the ability to narrow the product list by using Fast Finder filtering
options, which are displayed in the left side of the product list page. As the
shopper makes selections, the result set is updated on the page.

Figure 2-16 on page 47 shows an example of a page with Fast Finder feature.

Important: The store administrator must enable interactive scrolling. This is
done in the Store/Change Flow menu in the Commerce Accelerator.

46 WebSphere Commerce Best Practices in Web 2.0 Store

Figure 2-16 Fast Finder page

The left navigation column contains different attributes, which the shopper uses
to narrow down the products list (for example, brand, features). It also contains a
price range slider widget.

When the shopper selects an option, the resulting products narrow. An option is
given to change the display details and the layout of the products displayed.

When the shopper moves the price range slider widget (shown in Figure 2-17 on
page 48), the resulting products narrow to display only the items in the selected
price range. An option to given to change the display details and the layout of the
products displayed.

 Chapter 2. WebSphere Commerce Web 2.0 Store features and benefits 47

Figure 2-17 Fast Finder after narrowing by price range and features

The Fast Finder page is built using client side-based filtering, which means that
when the page is loaded, the items are saved in a JavaScript local object and all
filtering options are determined while rendering the items. Items in a category are
sorted by brand and price are extracted using the CatEntrySearchListDataBean.
When a price, brand, or other feature filter is used to narrow the products,
JavaScript methods are called to generate the corresponding result set and
change the display area in the page.

Optimization
The Fast Finder page uses full page caching from dynacache, which means that
the page is cached to the Fast Finder at the first visit, and all subsequent hits on
the same category display a cached page.

The Fast Finder page can be found in the following directory:

StoreName“/Madisons/AJAXUserInterface/ShoppingArea/CatalogSection/Searc
hSubsection/FastFinderDisplay.jsp

48 WebSphere Commerce Best Practices in Web 2.0 Store

The Fast Finder page uses the wc.widget.RangeSlider and the
wc.widget.ProductQuickView dojo widgets. The item pop-up window and the
drag and drop features are properties of the wc.widhet.ProductQuickView
widget, which means the Fast Finder page does not need to code those
properties.

2.4 Web 2.0 application concepts

This section details some of the basic concepts of designing a Web 2.0
application. It describes how can to include the Dojo toolkit in your Web
application and what components you might use.

Web 2.0 refers to a new generation of the World Wide Web, which lets people
collaborate and share information online. It gives the user a perspective that is
closer to desktop applications than static online Web applications. Web 2.0 is a
platform that incorporates the principles and practices shown in Figure 2-18.

Figure 2-18 Web 2.0 platform

AJAX, Dojo,
RIA, JSON

Standards:REST,
XHTML

Techniques: Mash-up,
wiki, tagging, blogging

Rich user experiences

Small pieces loosely
joined, or "re-mixed"

Light-weight
programming models

Services that get better
as more people

use them

Architectural
participation

Web 2.0 as
a platform

 Chapter 2. WebSphere Commerce Web 2.0 Store features and benefits 49

The concepts behind a Web 2.0 application are discussed in 1.1, “Introduction to
Web 2.0” on page 2 and about the technologies used by developers of Web 2.0
applications. See below references from 1.1.2, “Technologies behind Web 2.0”
on page 4, and also 1.1.4, “Rich Internet applications” on page 8

� “Ajax” on page 4
� “Atom feeds and JSON” on page 5
� “Dojo” on page 6

2.4.1 Overview of the Dojo toolkit

The Dojo toolkit is a multiplatform, open source JavaScript toolkit backed by IBM,
Sun Microsystems, SitePen, AOL, and other companies. It is not tied to any
specific server-side toolkit, so it can be used in conjunction with PHP, Java
Servlet, Java Server Pages, active server pages (ASP), and even with mobile
devices.

The Dojo toolkit has a modular design, consisting of the following components:

� Base

The Base is the kernel of the toolkit. It includes the following elements:

– Module loader
– Language utilities (For example, array functions, functions for declaring

classes and inheritance, and so forth)
– Query, node, and CSS utilities
– Functions for cross-browser communication (For example, XHR)
– JSON serialization/deserialization
– A cross-browser event and a publish/subscribe system
– Color functions
– Browser type detection
– URL functions
– Document load/unload hooks
– Effect functions for fading, sliding, and animating an element

The standard Dojo profile (dojo.js) automatically loads the functionality above.

Dojo-related Web pages: Check the Dojo Web site for the latest information
regarding the Dojo toolkit:

http://www.dojotoolkit.org

This chapter describes the main concepts of Dojo. It does not provide an API
description of the toolkit. The Dojo toolkit APIs can be found at the following
Web page:

http://api.dojotoolkit.org

50 WebSphere Commerce Best Practices in Web 2.0 Store

http://www.dojotoolkit.org
http://api.dojotoolkit.org
http://api.dojotoolkit.org

� Core

The Core provides additional facilities on top of the Dojo Base. This includes
the following facilities:

– Drag and drop support
– Back-button support
– String manipulation functions
– RPC, IFrame communication
– Internationalization (i18n)
– Date
– Number
– Currency
– Colors
– Strings
– Math
– Data access
– Regular expressions
– Debug facilities (through Firebug lite)
– Build system
– Markup parser
– OpenAjax hub 1

� Dijit

Dijit is set of interaction-rich widgets and themes for use when developing
Ajax applications. Dijit has the following features:

– Accessible (Keyboard support, support for high contrast mode, screen
reader support)

– High quality, neutral default theme (replaceable)
– Extensive layout and form capabilities
– Data bound widgets
– Grid and charts
– Fully internationalized for many languages
– Bidirectional (BiDi) support

2.4.2 Including the Dojo library

To extend your Web application with Dojo functionality, the first step is to
download the latest build from the following Web page:

http://dojotoolkit.org/downloads

Extract the file in the WebContent directory and rename the root directory with
dojo. Include the main dojo.js file in the dojo folder. For instance, this could be
done in a index.jsp file, which is used to access the application with the browser.

 Chapter 2. WebSphere Commerce Web 2.0 Store features and benefits 51

http://dojotoolkit.org/downloads
http://dojotoolkit.org/downloads

Example 2-4 Including dojo.js

<html>
<head>

<script type="text/javascript" src="dojo/dojo.js"></script>
</head>
<body>
</body>

</html>

2.4.3 Dojo core library

This section describes some of the functionality provided by the Dojo core library
that is used by the WebSphere Commerce Dojo Toolkit, and how it can be used
to facilitate cross-browser JavaScript programming.

The Dojo packaging system
JavaScript does not possess a packaging scheme. When the client-side code
grows, it becomes difficult for the developer to maintain unique names for the
functions and variables. Dojo however provides a packaging scheme that allows
for the creation of modules with specific functionality. This scheme resembles
module organizations used in Java application packages. Unlike Java, a module
can contain both function and class definitions. The root Dojo namespace after
including the dojo.js file in your application is “dojo”. Any function of the Dojo core
libraries is preceded by “dojo”, for example, dojo.byId().

dojo.require and dojo.provide
The two important functions of the Dojo packaging system are as follows:

� dojo.provide(String moduleName)

The dojo.provide function should be the first line of each JavaScript file you
include in the application. It defines the module name of your JavaScript file
and can be compared to Java’s package command. The function takes one
parameter that is a unique name across the entire application. The name is
the relative path from the directory to the file, including the file name. For
instance, suppose you have a directory called “myPackage” with a
myModule.js inside. Further, suppose “myPackage” is located under the Dojo
root directory (in this case, it is WebContent) at the same level as the dojo
folder. You would add dojo.provide(“myPackage.myModule)“as the first line in
myModule.js. A dot is used as the separator and no .js extension is added.

52 WebSphere Commerce Best Practices in Web 2.0 Store

� dojo.require(String moduleName)

The dojo.require function is used to include the functionality of other
JavaScript files and can be compared to Java’s import command. This means
you do not need to use script tags to include those files if other JavaScript
files contain a dojo.provide statement.

The benefit of using the dojo.require function is that before loading the
module the function first checks if the module is already loaded. If it is, it does
not attempt to load it again. If there are other dojo.require statements
contained in a JavaScript file that was previously loaded through a
dojo.require statement, all dependent JavaScript files are also loaded. A
typical JavaScript file using dojo.require is shown in Example 2-5.

Example 2-5 Typical JavaScript file using dojo.require

<html>
<script type="text/javascript" src="dojo/dojo.js"></script>
<script type=text/javascript>
dojo.require("dojo.back"); //path is dojo/back
dojo.require("dojo.date.locale"); //path is dojo/date/locale
</script>

<body>
</body>
</html>

Dojo configuration with djConfig
You can set the global object djConfig to enable or disable specific Dojo features.
The djConfig statement must be defined before the dojo.js file is included. Do this
in a separate script tag, or set the djConfig attribute in the script tag that includes
the dojo.js. See Example 2-6.

Example 2-6 djConfig in the same script tag with dojo.js

<html>
<script type="text/javascript" src="dojo/dojo.js"
djConfig="parseOnLoad:true, isDebug: true"></script>

<body>
</body>
</html>

 Chapter 2. WebSphere Commerce Web 2.0 Store features and benefits 53

The following list details important djConfig parameters that can be set.

� baseUrl

If you rename dojo.js, set baseUrl to the folder that contains the renamed file.
For example, dojo/. Usually you do not need to set baseUrl. Dojo
auto-populates baseUrl.

� cacheBust

If cacheBust is set, Dojo adds the value of cacheBust to the URL that loads a
resource (such as a JavaScript module). For instance, if you set cacheBust to
(new Date()).getTime(), the first time you start the application a module could
be loaded with http://server:port/path/module.js?1210337274094. The
second time, it could be loaded with
http://server:port/path/module.js?2310837536723. Both load the same
resource, but because the parameter list is different, the browser is forced to
load from the server and does not take it from the cache. This can be useful
during module development.

� debugAtAllCosts

The default is false. If set to true, it can be used to debug JavaScript modules
at the cost of performance. Because it slows down the client and has some
unpredictable side-effects you should only use debugAtAllCosts during the
development stage and not in the production code.

� isDebug, debugContainerId, debugHeight, noFirebugLite, popup

Firebug is the tool for debugging in the Firefox browser. It provides console.*
functions (such as console.debug) to log messages in the Firebug window
installed as a plug-in for the Firefox browser. FirebugLite () provides similar
debugging facilities as Firebug for other browsers like Internet Explorer®,
Opera, and so forth. You can download FirebugLite at the following Web
page:

http://www.getfirebug.com/lite.html

The Dojo Toolkit includes the FirebugLite library, which can be used with the
isDebug, debugContainerId, debugHeight, noFirebugLite, and pop-up menu
parameters.

In Firefox, if the Firebug plug-in is enabled, console.* function calls are
displayed in the Firebug console window. It does not matter if any of the
djConfig debugging parameters are set. If the Firebug plug-in is disabled or
not installed, the following statements for other browsers apply.

In other browsers, when using Dojo, console.* functions can be called from all
browsers without causing an error.

54 WebSphere Commerce Best Practices in Web 2.0 Store

http://www.getfirebug.com/lite.html

Depending on whether the following parameters are active, you may or may
not be able to view the log messages.

– isDebug

The default setting is false. If set to true, Dojo adds a console window after
the last HTML element on the page. Calls to console.* output to that
window.

– debugContainerId

If set to an ID of an HTML element on the page (for example, a <div> with
specific size and position on the page), the console window is inserted into
that element instead of adding it after the last HTML element on the page.

– debugHeight

The height of the console window.

– popup

The default setting is false. If set to true, the console opens in a new
window, ignoring debugContainerId and debugHeight.

� dojoBlankHtmlUrl, dojoIframeHistoryUrl, useXDomain

When using a cross-domain Dojo build, set the useXDomain value to true.
Save the dojo/resources/blank.html and dojo/resources/iframe_history.html
files to your domain. Set the dojoBlankHtmlUrl and the dojoIframeHistoryUrl
to the path where you saved the files in your domain.

� locale, extraLocale

This parameter is needed for the internationalization (i18n) of displayed
strings numbers, date, currencies, and so forth. If it is not set, the default
value is navigator.userLanguage or navigator.language.

� modulePaths

This parameter is a map for setting module paths relative to djConfig.baseUrl.
It can be used as an alternative to dojo.registerModulePath. Pass a map with
the module path like modulePaths:

{"ibmDijit":"../../ibmDijit", "ibmDijit2": "../../ibmDijit2"}

� parseOnLoad

If set to true, Dojo automatically parses the HTMLdocument when the
application is started, and replaces Dojo-specific code in the markup with the
normal HTML markup. The default is false, which means that if you use
widgets in your markup you have to parse the document manually.

� preventBackButtonFix

Set this parameter to false when using the Dojo back button module.

 Chapter 2. WebSphere Commerce Web 2.0 Store features and benefits 55

� require

Instead of using dojo.require in a script tag and loading modules separately,
you can pass all module names in an array to djConfig.require and Dojo will
load them automatically. For instance:

[dojo.back, dojo.date, dijit.form.Button]

� usePlainJson

If you use the value json or json-comment-optional as the handleAs property
in a dojo.xhr call, then Dojo outputs Consider using
mimetype:text/json-comment-filtered to avoid potential security
issues... in the Firebug/Lite window. If you wish to avoid the message, set
usePlainJson to true. The default value is false. The dojo.xhr functions are
discussed in 2.4.4, “XHR” on page 70.

In most situations, you only need to use isDebug, parseOnLoad, and locale, and
allow Dojo to assign default values for the others.

Useful Dojo core functions
This section gives an overview of convenient functions available when
programming with Dojo.

� dojo.require

This function is used to load a module and can be compared to Java’s import
command. A module is always loaded once only, even if there are several
dojo.require calls for the same module. If the module does not exist, an error
like Could not load “module name” is returned. Example 2-7 shows the
usage.

Example 2-7 Usage of dojo.require

<html>
<script type="text/javascript" src="dojo/dojo.js"></script>
<script type=text/javascript>

dojo.require("dijit.form.Button");
dojo.require("dojo.parser");
dojo.require("yourmodule.modulename");

</script>
<body>
</body>

</html>

A good position to place the dojo.require calls is directly following the dojo.js
statement.

56 WebSphere Commerce Best Practices in Web 2.0 Store

� dojo.byId, dijit.byId

The function dojo.byId(String id) returns a reference to the HTML node of an
element, dijit.byId(String id) a reference to a widget. dojo.byId is a shorter
version of document.getElementById. Example 2-8 shows the usage.

Example 2-8 Usage of dojo.byId and djit.byId

<script type="text/javascript" src="dojo/dojo.js"
djConfig="parseOnLoad: true"></script>
<script type=text/javascript>

dojo.require("dijit.form.Button");
dojo.require("dojo.parser");

</script>
<script type=text/javascript>

dojo.addOnLoad(function() {
var ref = null;
// ref = reference to the div with id 'htmlNode'
ref = dojo.byId("htmlNode");
// call any function you can call on an Html node
ref.style.background = "yellow";
// ref = reference to the domNode of the widget with id 'btn'
ref = dojo.byId("btn");
// call any function you can call on an Html node
ref.style.background = "red";
// ref = reference to the dijit with id 'btn'
ref = dijit.byId("btn");
// call any function that is defined in the widget class
ref.setLabel("dijitById");
});

</script>
<body>

<div dojoType="dijit.form.Button" id="btn">Button</div>
<div id="htmlNode">This is an Html node</div>

</body>
</html>

� dojo.forEach, dojo.indexOf, dojo.lastIndexOf, dojo.every, dojo.some, dojo.filter,
dojo.map

Dojo provides cross-browser versions of these array functions because some
browsers, like Internet Explorer, do not support them. Example 2-9 on
page 58 shows how to use each of the functions.

 Chapter 2. WebSphere Commerce Web 2.0 Store features and benefits 57

Example 2-9 Dojo array functions

<html>
<script type="text/javascript" src="dojo/dojo.js"
djConfig="isDebug: true"></script>
<script type=text/javascript>

var arr = [1, 2, 3, 4];
// runs the function for each element in the array
// if the index is not needed, use only element as parameter
dojo.forEach(arr, function(element, index) {

console.debug("index: " + index + ", val: " + element);
// index: 0, val: 1
// index: 1, val: 2
// index: 2, val: 3
// index: 3, val: 4

});
// returns true if the passed function returns true for each of the
// elements
bool = dojo.every(arr, function(element) {

// check if element is not a number
return element > 2;

});
// bool = false
// returns true if the passed function returns true for at least one
// element
bool = dojo.some(arr, function(element) {

return element > 2;
});
// bool = true
// return index of element, start searching at index 0, returns -1
// when not found
index = dojo.indexOf([1, 2, 3, 2], 2);
// index = 1
// return index of element, start searching at end of array
index = dojo.lastIndexOf([1, 2, 3, 2], 2);
// index = 3
// apply passed function to each element and return an array with
// the returned values of that function
res = dojo.map(arr, function(element) {return element * element;
});
// res = [1, 4, 9, 16]
// filters array elements depending on the return value of the
// passed function
res = dojo.filter(arr, function(element) {

return element < 3;

58 WebSphere Commerce Best Practices in Web 2.0 Store

});
// res = [1, 2]

</script>
<body>
</body>
</html>

� dojo.addOnLoad

This function runs commands after the HTML body is loaded and Dojo
initialization has completed. If you use the onload attribute in the body tag as
in the following snippet, it is it is not guaranteed the Dojo initialization has
completed:

<body onload=”someFunc”>

Use dojo.addOnLoad instead. Example 2-10 shows the usage of this
function.

Example 2-10 dojo.addOnLoad

<html>
<script type="text/javascript" src="dojo/dojo.js"></script>
<script type=text/javascript>

dojo.addOnLoad(function() {
// body loaded and Dojo initialized
});

</script>
<body>
</body>
</html>

� dojo.toJson, dojo.fromJson

The function dojo.ToJson is used to serialize a JSON object into a string. The
dojo.fromJson function is used to deserialize a string into a JSON object.
These functions are shown in Example 2-11 on page 60.

 Chapter 2. WebSphere Commerce Web 2.0 Store features and benefits 59

Example 2-11 Serializing from and deserializing to a JSON object

<html>
<script type="text/javascript" src="dojo/dojo.js"></script>
<script type=text/javascript>

var jsonString = "{key1: 'val1', key2: [1,'two']}";
res = dojo.fromJson(jsonString).key1;
// res = val1
res = dojo.toJson({key1: "val1", key2: [1,"two"]});
// res = {"key1": "val1", "key2": [1, "two"]}

</script>
<body>
</body>
</html>

� dojo.connect

This function is used to connect DOM events to function calls, or function calls
to other function calls.

� dojo.subscribe, dojo.publish

This function is used to publish events and subscribe to events.

� dojo.trim, dojo.string.substitute

dojo.trim(String string) removes left and right paddings in a string. The
function dojo.string.substitute is used to substitute placeholders in a string.

� dojo.isFunction, dojo.isArray, dojo.isObject

These functions return true if the passed argument is of the type for which the
function is checking. For example, dojo.isObject({}) returns true.

� dojo.xhrGet, dojo.xhrPost

These functions are a cross-browser abstraction of the XMLHttpRequest
object of the browser, and are used for asynchronous communication with the
server.

� dojo.query

This function invokes the powerful Dojo query engine.

The Dojo event system
Dojo comes with its own cross-browser event system, which not only allows for
event-handlers to be attached to DOM elements (such as button-clicks), but also
allows a function call to be connected to other function calls.

60 WebSphere Commerce Best Practices in Web 2.0 Store

Attaching event-handlers with dojo.connect
The dojo.connect function (Example 2-12) is provided by the Dojo base
functionality. When you include the dojo.js file, you can start using the event
system. You do not want to omit this in your Web application.

Example 2-12 Dojo connect function

dojo.connect(/*Object*/ obj, /*String*/ event, /*Object|null*/ context,
/*String|Function*/ method, /*Boolean*/
dontFix)

This function has the following parameters.

� obj: This is the source object that fires the event. If it is null, Dojo takes
dojo.global as the source. dojo.global is a reference to the global scope in the
browser. This parameter can be a DOM node or another normal object
reference.

� event: The event that is fired on the source obj. This can be a normal DOM
event or a function that is called “on obj”.

� context: The context in which the method is invoked. Can be a reference to an
object or dojo.global, if set to null.

� method: The method that is called when an event is fired. It receives the
arguments that are passed to the event.

� dontFix: If dontFix is set to true and obj is a DOM node, the delegation of this
connection to the DOM event manager is prevented.

This function has the following connecting events.:

Example 2-13 shows how to use the dojo.connect function to connect DOM
events to function calls or connect one function call to another.

Example 2-13 dojo.connect function

<html>
<script type="text/javascript" src="dojo/dojo.js"
djConfig="isDebug:true"></script>
<script type=text/javascript>
function fireEvent() {

// do something
};
function testEvent() {

console.debug("dojo.connect global");
};
// instead of a normal object, you can use a reference to a

 Chapter 2. WebSphere Commerce Web 2.0 Store features and benefits 61

// class instance or widget instance in the same way as for object
var object = {

fireEvent: function() { /*do something*/ },
testEvent: function() { console.debug("dojo.connect object"); }

};
// dojo.connect calls in the same block have the same result
// connect DOM-node to object function
dojo.connect(dojo.byId("btn"), "onclick", object, "testEvent");
dojo.connect(dojo.byId("btn"), "onclick", object, object.testEvent);
// when button clicked, prints 2 times 'dojo.connect object
// connect DOM-node to global function
dojo.connect(dojo.byId("btn"), "onclick", null, testEvent);
dojo.connect(dojo.byId("btn"), "onclick", null, "testEvent");
dojo.connect(dojo.byId("btn"), "onclick", "testEvent");
dojo.connect(dojo.byId("btn"), "onclick", testEvent);
// when button clicked, prints 4 times 'dojo.connect global'
// connect global function to global function
dojo.connect(null, "fireEvent", null, "testEvent");
dojo.connect(null, "fireEvent", null, testEvent);
dojo.connect(null, "fireEvent", "testEvent");
dojo.connect("fireEvent", testEvent);
dojo.connect("fireEvent", "testEvent");
fireEvent();//prints 5 times 'dojo.connect global'
// connect object function to object function
dojo.connect(object, "fireEvent", object, "testEvent");
dojo.connect(object, "fireEvent", object, object.testEvent);
object.fireEvent();//prints 2 times 'dojo.connect object'
// connect global function to object function
dojo.connect(null, "fireEvent", object, "testEvent");
dojo.connect("fireEvent", object, "testEvent");
dojo.connect("fireEvent", object, object.testEvent);
fireEvent();//prints 3 times 'dojo.connect object'
// connect object function to global function
dojo.connect(object, "fireEvent", null, "testEvent");
dojo.connect(object, "fireEvent", null, testEvent);
dojo.connect(object, "fireEvent", testEvent);
dojo.connect(object, "fireEvent", "testEvent");
object.fireEvent();//prints 4 times 'dojo.connect global'
// for the following dojo.connect call you can replace the obj and
// event parameter with the ones from the previous examples
dojo.connect(object, "fireEvent", function() {

console.debug("dojo.connect anonymous function");
});
object.fireEvent();//dojo.connect anonymous function
</script>

62 WebSphere Commerce Best Practices in Web 2.0 Store

<body>
<button id="btn">Test dojo.connect</button>

</body>
</html>'

If you choose a DOM node as the object parameter, the events that can be
fired and passed as the second parameter are the common JavaScript-events
you would be connecting to without Dojo (For example, onclick, onblur,
onfocus, onkeydown, onkeypressed, and so forth).

� Disconnecting events

The dojo.connect function returns a connect-handle that can be used to
delete a connection between a DOM event and a function, or delete a
connection between two functions (Example 2-14).

Example 2-14 dojo.disconnect

var handle = dojo.connect(...);
dojo.disconnect(handle);

� Passing and accessing parameters

If a DOM-event is fired then the browser passes the event-object to the
handler function. If you connect two functions, then the arguments you pass
to the source function are also passed to the handler function. See
Example 2-15.

Example 2-15 Passing and accessing parameters

<html>
<script type="text/javascript" src="dojo/dojo.js"
djConfig="isDebug:true"></script>
<script type=text/javascript>
var object = {

fireFunctionEvent: function(param1, param2) {},
testFunctionEvent: function(param1, param2) {

console.debug(param1 + ":" + param2);
},
testDomEvent: function(event) {

//you can access all event properties
//following prints 'click' when you click on the button
console.debug(event.type);}

};
// when clicked on the button, the JavaScript event object is passed
// to testDomEvent
var handle = dojo.connect(dojo.byId("btn"), "onclick", object,

 Chapter 2. WebSphere Commerce Web 2.0 Store features and benefits 63

"testDomEvent");
dojo.connect(object, "fireFunctionEvent", object,

"testFunctionEvent");
// following prints 'param1:param2
object.fireFunctionEvent("param1", "param2");
</script>
<body>

<button id="btn">Test dojo.connect</button>
</body>
</html>'

� The event object

If you use a DOM node as the event source, the following cross-browser
properties are added to the event object:

– event.target

This is the DOM element that generated the event.

– event.preventDefault()

This call on the event prevents the browser default behavior. For instance,
if you have a onkeydown event-handler attached to a text box with
event.preventDefault() as the first line, pressing a key will not cause the
appropriate character to appear in the text box.

– event.stopPropagation()

This call prevents the firing of an event to the parent node of the event
source. The function dojo.stopEvent(e) combines both the preventDefault
and the stopPropagation functions. If used, it should be the first line in the
event handler.

Dojo provides a map for keyboard key codes that improve the readability of
the code. This is shown in Example 2-16.

Example 2-16 Keypress event

dojo.connect(dojo.byId("inp"), "onkeypress", function(e) {
if(e.keyCode == dojo.keys.ENTER) {

console.debug("Enter was pressed!");
}

});

Note: All keys can be found at the following Web page:

http://api.dojotoolkit.org/jsdoc/dojo/HEAD/dojo.keys

64 WebSphere Commerce Best Practices in Web 2.0 Store

http://api.dojotoolkit.org/jsdoc/dojo/HEAD/dojo.keys
http://api.dojotoolkit.org/jsdoc/dojo/HEAD/dojo.keys

Drag and Drop
With Dojo, you can extend your browser application with Drag and Drop (DnD)
functionality. The dojo/dnd directory contains all the classes needed for handling
DnD operations. In this section, we cover only the basics of DnD programming
with Dojo.

To drag an element on the screen, mark its DOM node as a drag source. To drop
an element (for instance, into a shopping cart), mark the area in which you want
to drop as the drop target. Example 2-17 shows a basic example using two lists.
Move names from the first list to the second by dragging a name into the second
list.

Example 2-17 Drag and Drop

<html>
<script type="text/javascript" src="dojo/dojo.js"
djConfig="parseOnLoad: true"></script>
<script type="text/javascript">
dojo.require("dojo.dnd.Source");
dojo.require("dojo.parser");

</script>
<body>

<div dojoType="dojo.dnd.Source">
<div class="dojoDndItem" dndType="mySource">

<div>
here it can be any element you want to drag

</div>
</div>

</div>

<div dojoType="dojo.dnd.Target" accept="mySource">

<div>drag target</div>
</div>

</body>
</html>

Add the attribute dojoType to the element and assign either dojo.dnd.Source or
dojo.dnd.Target to it. For a drag source, add the dndType attribute and assign it
an arbitrary string to define a type for the source. If you want to drop that type of

Note: The full Dojo DnD documentation can be found at the following Web
page:

http://docs.google.com/View?docid=d764479_11fcs7s397

 Chapter 2. WebSphere Commerce Web 2.0 Store features and benefits 65

http://docs.google.com/View?docid=d764479_11fcs7s397

source onto the target, add the accept attribute to the target element and assign
it the type of source you want to drop.

Handling the Back button problem
Using XMLHttpRequest for asynchronous client/server communication and
dynamically updating parts of the browser screen has the drawback that the
Back or Forward buttons no longer function properly. Asynchronous changes
are not added to the browser history. Furthermore, the page contents cannot be
bookmarked, as the address bar does not change. With some effort you can
include the dojo.back module to add Back button functionality to your application.
The idea is to set a state object with a back and forward callback function called
when the user clicks either the Back or Forward button of the browser.
Example 2-18 shows the state object.

Example 2-18 Back button state object in Dojo

var state = {
back: function() {
// handle back button
},
forward: function() {
//handle forward button
},
// if a string, then taken as the fragment identifier
// if true, then Dojo generates an identifier
changeUrl: "anIdentifier"

};

To allow for bookmarking of the current page, use the changeUrl property to
append a fragment identifier to the URL in the browser address bar. Setting a
fragment identifier does not force the browser to reload the Web page. It can be
used to create bookmarks for different states of the application. Setting
changeUrl to true causes Dojo to generate an identifier each time you set a new
state. If you set it to a value that does not evaluate to false (0, null, empty string,
undefined), then that value is taken. If it evaluates to false or you do not set the
changeUrl property of the state object, then no fragment identifier is set.

To enable Back button functionality, set the preventBackButtonFix property of the
djConfig variable to false. At application start, define an initial state object with
dojo.back.setInitialState(state). Later, add a state object to Dojo’s Back button
history with dojo.back.addToHistory(newState). Each addToHistory call causes
the passed state object to be added to a Dojo internal stack. Pressing Back or
Forward switches between the states, calls the respective back or forward
function, and changes the fragment identifier of the URL if needed.

66 WebSphere Commerce Best Practices in Web 2.0 Store

Example 2-19 gives you an idea of how to implement Back button functionality in
an application, and how to handle bookmarks used to access the application.

Example 2-19 Back button implementation

<html>
<script type="text/javascript" src="dojo/dojo.js"
djConfig="preventBackButtonFix: false"></script>
<script type="text/javascript">

dojo.require("dojo.back");
dojo.require("dojo.parser");

</script>
<script type=text/javascript>

// this is the function that restores a specific state of the
// application
// in this case it is populating the two textboxes
function handleParams(param) {

var params = decodeURIComponent(param).split(":");
dojo.byId("inp1").value = params[0];
dojo.byId("inp2").value = params[1];

};
// in this example the two strings that are typed into the both
// textboxes are taken as the fragment identifier
// milliseconds are appended to create a unique identifier
function createState(param1, param2) {

return {
changeUrl: encodeURIComponent(param1 + ":" + param2 + ":" + n

new Date().getMilliseconds()),
back: function(){

handleParams(this.changeUrl);
},
forward: function() {
handleParams(this.changeUrl);
}

}
};

dojo.addOnLoad(function() {
// get the fragment identifier of the URL the user typed in if
// existsvar hash = window.location.hash;
// some browsers include the hash sign, remove it
hash = hash.charAt(0) == "#" ? hash.substring(1) : hash;
// IE does not decode the encoded identifier automatically like
// FF does
hash = decodeURIComponent(hash);
// if no fragment identifier appended, hash = ":", so

 Chapter 2. WebSphere Commerce Web 2.0 Store features and benefits 67

// handleParams does not break
// if the fragment identifier is appended, then the first access
// to the application is done with a bookmark and the application
// auto populates the textboxes with the strings that are passed
// in the fragment identifier
hash = (hash == "") ? ":" : hash;
handleParams(hash);
var args = hash.split(":");
//this is the initial state
dojo.back.setInitialState(createState(args[0], args[1]));
// each time the button is clicked the content of the textboxes
// are saved in the browser history
dojo.connect(dojo.byId("btn"), "onclick", function() {

dojo.back.addToHistory(createState(dojo.byId("inp1").value,
dojo.byId("inp2").value));
});

});
</script>
<body>
<!-- this hack is needed for IE to initialize the undo stack -->
<script>

dojo.back.init();
</script>

Input1: <input id="inp1" />
Input2: <input id="inp2" />
<button id="btn">Add to browser history</button>

</body>
</html>

The application presents two text input elements and a button. You can enter
values into the boxes. Pressing the button adds the values to the history. Use the
Back and Forward buttons to undo or redo changes you made to the text boxes.
Use bookmarks to jump to a specific state of the application. For instance, you
can append the fragment identifier #Hi:there! and the first text box is populated
with Hi and the second with there! When you press the button to save the
entries into the history, the fragment identifier in the address bar changes and
you can copy that link as a bookmark. When you open another browser, insert
the bookmark into the address bar and the application will jump to the previously
bookmarked state. The application was successfully tested with Firefox 2.0+ and
IE6.

68 WebSphere Commerce Best Practices in Web 2.0 Store

Bookmarks
The Madisons Store makes use of the dojo.undo.browser API for handling
bookmarking. The idea is to add some type of unique identifier in the URL as
actions are being performed on the page. Then, when loading the page, read that
unique identifier in the bookmarked URL and figure out the state of the page.

Visit the following Web page for more details:

http://manual.dojotoolkit.org/WikiHome/DojoDotBook/Book0

Selecting DOM nodes with Dojo’s query engine
Dojo provides a powerful, high performance query engine that can be used to
search for DOM nodes with specific CSS selectors.

Example 2-20 is an example of the usage of the dojo.query function. A rich set of
CSS3 selectors are supported.

Example 2-20 Query DOM elements with dojo.query

// all nodes with a class 'aClass'
dojo.query(".aClass")
// all nodes with the id 'anId'
dojo.query("#anId")
// all nodes with a div tag
dojo.query("div")
// all div nodes with a class 'aClass'
dojo.query("div.aClass")
// all nodes whose 'attribute' attribute value is 'anAttribute'
dojo.query("[attribute=anAttribute]")

Note: The dojo.back module does not always work properly for all browsers.
Notes on browser compatibility can be found in the dojo/back.js file, or at the
following Web page:

http://dojotoolkit.org/book/dojo-book-0-9/part-3-programmatic-dijit-
and-dojo/back-button/browser-compatibility

Note: The list of supported selector types can be found at the following Web
page:

http://api-staging.dojotoolkit.org/jsdoc/dojo/HEAD/dojo.query

The list of supported f CSS3 selectors can be found at the following Web
page:

http://www.w3.org/TR/css3-selectors

 Chapter 2. WebSphere Commerce Web 2.0 Store features and benefits 69

http://dojotoolkit.org/book/dojo-book-0-9/part-3-programmatic-dijit-and-dojo/back-button/browser-compatibility
http://dojotoolkit.org/book/dojo-book-0-9/part-3-programmatic-dijit-and-dojo/back-button/browser-compatibility
http://api-staging.dojotoolkit.org/jsdoc/dojo/HEAD/dojo.query
http://www.w3.org/TR/css3-selectors
http://manual.dojotoolkit.org/WikiHome/DojoDotBook/Book0
http://dojotoolkit.org/book/dojo-book-0-9/part-3-programmatic-dijit-and-dojo/back-button/browser-compatibility
http://dojotoolkit.org/book/dojo-book-0-9/part-3-programmatic-dijit-and-dojo/back-button/browser-compatibility

// all nodes with an attribute named 'attribute'
dojo.query("[attribute]")
// the first div node found
dojo.query("div:first-child")
// the second div node found
dojo.query("div:nth-child(2)")
// a div node with the id 'anId'
dojo.query("div#anId")
// a span node that is child of a div node
dojo.query("div > span")// a div node whose 'attribute' attribute value
contains 'anAttr'
dojo.query("div[attribute*=anAttr]")

The result type of dojo.query is a JavaScript array containing the nodes found.

2.4.4 XHR

This section describes the Dojo functions that enable a client-server connection
using XMLHttpRequest (XHR).

XMLHttpRequest
Dojo provides a cross-browser abstraction of the XMLHttpRequest object used
for synchronous or asynchronous communication between the client and the
server. With Dojo you do not need to concern yourself with the different browser
implementations of that object.

Dojo provides the following four functions:

� dojo.xhrGet(args) for GET-requests
� dojo.xhrPost(args) for POST-requests
� dojo.xhrPut(args) for PUT-requests
� dojo.xhrDelete(args) for DELETE-requests

Note: You can find a performance evaluation of the dojo.query function at the
following Web page:

http://dojotoolkit.org/node/336

70 WebSphere Commerce Best Practices in Web 2.0 Store

http://dojotoolkit.org/node/336
http://dojotoolkit.org/node/336

Parameters for dojo.xhr functions
The argument args is an object with key-value mappings that can contain the
following properties:

� url (String)

This property is the path name of the requested resource on the server. You
can use any server-side technology that can receive a request and send back
a response to the client (such as a Java Servlet, Java Server Page, PHP, Perl
CGI, ASP, and so forth). Furthermore, the url key can be used to read out
static files on the server like normal text files.

� content (Object)

This property contains the properties that are passed as arguments to the
request. If it is passed a JSON-object in the format {key1:value1,key2:value2},
Dojo serializes the object to key1=value1&key2=vaue2 and appends it to the
request URL for a GET. For a POST, the parameters are added to the request
body.

� timeout (Integer)

This property is the time to wait for the response in milliseconds. If the
specified time passes, the error/handle callback is invoked.

� form (DOM node)

This property passes the node of a form on your Web page, or the ID of the
form. Dojo extracts the values and sends them to the server.

� preventCache (Boolean)

Some browsers, like IE6 or IE7, cache the response content for GET
requests. This means if a request is the same as a previous request, the
browser does not send that request to the server. It instead passes the
cached response back to the caller. In certain situations this behavior can
produce undesirable results. To prevent the browser from caching the
response, set preventCache to true. The default value is false.

� handleAs (String)

Dojo can parse the server response and pass the resulting data object to the
callback function. The supported formats are as follows:

– text (default)

The response from the server is passed to the callback as normal text.

– json

The server response is parsed and the resulting JSON object is passed to
the callback.

 Chapter 2. WebSphere Commerce Web 2.0 Store features and benefits 71

– json-comment-optional

One technique to prevent JavaScript Hijacking is to enclose the server
response in comment characters, for example,. /*[{‘key’:’val’}]*/. If
handleAs is set to json-comment-optional, the response may be enclosed
with comment characters, which are later removed before the response is
evaluated.

– json-comment-filtered

Similar to json-comment-optional, but stricter. The response must be
enclosed in comment characters. Otherwise Dojo does not evaluate the
response and generates the error: JSON was not comment filtered.

– javascript

The response is evaluated as JavaScript.

– xml

The response is parsed as XML and the object is passed to the callback.

� load (Function)

This property is the callback function for a successful request. The callback is
passed two arguments in the format function:

– response

The server response in the format specified for the handleAs property.

– ioArgs

An object that contains information about the XHR call. It has the following
properties:

• args

This property of ioArgs is the object that is passed to the dojo.xhr
function.

• xhr

This property of ioArgs is the xhr object that is used for the request. It
contains the properties responseText, responseXML, status, and
statusText. If the response is valid XML, responseText is the response
as a string and responseXML a reference to the parsed XML
document. If the response is not XML, only the responseText is
populated and responseXML is null. The property status is the HTTP
status code, and statusText is the HTTP status text. A full list of HTTP
statuses and texts can be found at the following Web page:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

72 WebSphere Commerce Best Practices in Web 2.0 Store

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

• url

This property of ioArgs is the URL that is used for the request.

• query

This property of ioArgs is the parameter that is passed in the request
body. Only populated for POST and PUT.

• handleAs

This property of ioArgs is the data format used for parsing the server
response.

� error (Function)

This property is the callback function for an unsuccessful request. The
callback is passed two arguments in the format function:

– error

This argument is the Error object that contains the error message, for
example, Error: bad http response code: 403. If an xhr-call was
canceled or timed out, then the error.dojoType is set to cancel or timeout.

– ioArgs

This argument is an object that contains information about the XHR call. It
has the following properties:

• args

This property of ioArgs is the object that is passed to the dojo.xhr
function.

• xhr

This property of ioArgs is the xhr object that is used for the request. It
contains the properties responseText, responseXML, status, and
statusText. If the response is valid XML, responseText is the response
as a string and responseXML a reference to the parsed XML
document. If the response is not XML, only the responseText is
populated and responseXML is null. The property status is the HTTP
status code, and statusText the HTTP status text. A full list of HTTP
statuses and texts can be found at the following Web page:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

• url

This property of ioArgs is the URL that is used for the request.

• query

This property of ioArgs is the parameter that is passed in the request
body. Only populated for POST and PUT.

 Chapter 2. WebSphere Commerce Web 2.0 Store features and benefits 73

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

• handleAs

This property of ioArgs is the data format used for parsing the server
response.

� handle (Function)

The handle callback is invoked for both a successful and unsuccessful
request. Use this callback if you do not want to use either the load or error
method. This callback is passed two arguments in the format function:

– data

If the request is successful, it contains the response in the format specified
for handleAs. If the request was unsuccessful it contains the error
message.

– ioArgs

An object that contains information about the XHR call. It has the following
properties:

• args

This ioArgs property is the object that is passed to the dojo.xhr
function.

• xhr

This ioArgs property is the xhr object that is used for the request. It
contains the properties responseText, responseXML, status, and
statusText. If the response is valid XML, responseText is the response
as a string and responseXML a reference to the parsed XML
document. If the response is not XML, then only the responseText is
populated and responseXML is null. The property status is the HTTP
status code, and statusText the HTTP status text. A full list of HTTP
statuses and texts can be found at the following Web page:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

• url

This ioArgs property is the URL that is used for the request.

• query

This ioArgs property is the parameter passed in the request body. Only
populated for POST and PUT.

• handleAs

This ioArgs property is the data format used for parsing the server
response.

74 WebSphere Commerce Best Practices in Web 2.0 Store

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

� synch (Boolean)

Set this property to true if you want the request to block. The default setting is
false, which allows asynchronous communication with the server.

� headers (Object)

Use the headers property if you want to send additional HTTP header
information. The format of the value is an object with key-value mappings.

� contentType

This property sets the content type if you do not want to use the headers
property for setting it.

xhrGet
Example 2-21 shows how to use the properties previously described with the
xhrGet.

Example 2-21 xhrGet usage

dojo.provide("ibmDijit.Test");
dojo.declare("ibmDijit.Test", null, {
doGet: function(){

var deferred = dojo.xhrGet ({
url: "/xhr/JsonServlet",
handleAs: "json",
synch: false,
load: this.handleResponse,
error: dojo.hitch(this, function(error, ioArgs) {

if(error.dojoType == "cancel") {
console.debug("XHR cancelled!");

} else if(error.dojoType == "timeout") {
console.debug("XHR timed out!");

} else {
console.debug("Request error! Code: "
+ ioArgs.xhr.status
+ ", Text: " + ioArgs.xhr.statusText);
}

return error;
}),

timeout: 5000,

Note: A list of all possible header definitions can be found at the following
Web page:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

 Chapter 2. WebSphere Commerce Web 2.0 Store features and benefits 75

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

content: {"forename": "Mehmet", "surname" : "Akin"}
});

},
handleResponse: function(response) {

console.debug("Successful request!");
// do something with the response
return response;
}

});

To have access to xhrGet inside the callback context, you have to use dojo.hitch.
It is good practice always to return from a callback method. If you do not return
from the callback handler for a successful request, and an error occurs while
handling the response in that function, the error callback is also called and
passed the JavaScript error.

Example 2-22 shows how to use the handle callback if you do not want to use
load and error.

Example 2-22 Handle responses with handle property

handle: dojo.hitch(this, function(data, ioArgs) {
if(data instanceof Error) {

// handle error params
} else {

// handle success params
}

})

xhrPost
The dojo.xhrGet function automatically appends the content property as
key-value pairs to the url property. When using dojo.xhrPost, the content
property is added to the request body as key-value pairs. If your url property
contains parameters, they are sent as part of the URL request and not in the
POST body. Use dojo.xhrPost if you want to send large amounts of data, or
prefer sending the parameters within the request body.

Example 2-23 on page 77 shows how to transfer all of the form parameters to the
server.

76 WebSphere Commerce Best Practices in Web 2.0 Store

Example 2-23 xPost

<html>
<head>
<script type="text/javascript" src="dojo/dojo.js"></script>
<script type=text/javascript>
function sendForm() {

dojo.xhrPost({
url: "/xhr1/JsonServlet",
handleAs: "json",
load: function(response) {

// handle response
return response;},

error: function(error, ioArgs){
// handle the error
return error;

},
form: "myForm",
// some additional params
content: {"key1": "val1", "key2" : "val2"}
});

}
</script>
</head>
<body>
<form id="theForm">

First name: <input type="text" name="firstname">

Last name: <input type="text" name="lastname">

Profession: <input type="text" name="lastname">

<input type="button" onclick="sendForm()" value="Send via
xhrPost!">

</form>
</body>
</html>

xhrPut and xhrDelete
Use dojo.xhrPut for PUT-requests and dojo.xhrDelete for DELETE-requests in
the same way as you do for dojo.xhrGet and dojo.xhrPost.

 Chapter 2. WebSphere Commerce Web 2.0 Store features and benefits 77

Adding multiple callbacks to the request
The dojo.xhr functions return a dojo.Deferred object that allows for dynamically
adding new callbacks or canceling a request.

Example 2-24 gives an example of how callbacks can be added dynamically and
how a request can be cancelled. Callbacks are called in the order of connection
to the dojo.Deferred object.

Example 2-24 dojo.Deferred object

var deferred = dojo.xhrPost({
url: "/xhr/JsonServlet",
handleAs: "json",
content: {"forename": "Mehmet", "surname" : "Akin"}
});
// add a callback for successful request
deferred.addCallback(function(response){/*...*/});
// addCallback returns dojo.Deferred object, possible to add several
// callback at once

deferred.addCallback(function(response){/*...*/}).addCallback(function(
response) {/*...*/});
// add an error callback
deferred.addErrback(function(error) {alert(error.dojoType)});
// callback for both an error and successful request
deferred.addBoth(function(data) {alert("both")});
// cancel the request -> error callback called with
// error.dojoType="cancel"
deferred.cancel();

Note: For a detailed description of the dojo.Deferred object, check the API
description at the following Web page:

http://redesign.dojotoolkit.org/jsdoc/dojo/HEAD/dojo.Deferred

78 WebSphere Commerce Best Practices in Web 2.0 Store

http://redesign.dojotoolkit.org/jsdoc/dojo/HEAD/dojo.Deferred
http://redesign.dojotoolkit.org/jsdoc/dojo/HEAD/dojo.Deferred

2.4.5 The Dojo Widget Library

Dijit is the Dojo widget system layered on top of the core modules. This section
describes the widget modules. It explains how to use and customize the look and
feel of widgets provided by Dijit.

Widget basics
A widget is constructed from JavaScript. Optional parts are an HTML template,
CSS definitions, and images.

� JavaScript (*.js) file

A JavaScript class that contains the logic of the widget. It can access the
elements of the HTML template if the widget uses one.

� HTML template (*.htm, *.html)

A widget can have a graphical representation with an HTML template or can
be used without a template to extend passed HTML elements with
functionality. If the HTML template is simple, it can be used as a string in the
JavaScript file.

� CSS definitions (*.css)

A widget can have visual style definitions that are used by the HTML template
or the JavaScript file.

� images (*.jpg, *.gif, *.png, and so forth)

Images can be used by the JavaScript file, in the HTML template, or in CSS
style definitions. Imagine a widget as an HTML element that is already
extended with functionality by Dojo (For example, a normal table enhanced by
a sorting function or a text box that supports input validation).

Dojo widgets
This section provides an overview of the widgets that are available with the dijit
module and which are used as a base for the WebSphere Commerce widgets
described in 3.3, “WebSphere Commerce Framework for Dojo widgets” on
page 134. The concepts of how to use widgets, both in a declarative and
programmatic way are also presented.

Note: For a declarative or programmatic usage for all of the widgets, check the
dijit/tests directory, the Dojo API at the following Web page:

http://dojotoolkit.org/api

 Chapter 2. WebSphere Commerce Web 2.0 Store features and benefits 79

http://dojotoolkit.org/api

To include a widget declaratively in your HTML markup, add an HTML tag with at
least the dojo-proprietary attribute dojoType to your HTML code, load the widget
class with dojo.require, and set djConfig.parseOnLoad to true or parse the widget
manually. See Example 2-25.

Example 2-25 Declaration of Dojo widgets

<html>
<head>
<LINK href="theme/Master.css" rel="stylesheet" type="text/css">
<script type="text/javascript" src="../dojo/dojo.js"

djConfig="parseOnLoad: true, isDebug: true">
</script>
<script type="text/javascript">

dojo.require("dojo.dnd.Source");
dojo.require("dojo.parser");

</script>
</head>
<body class=tundra>

<div dojoType="dojo.dnd.Source" class="source">
SOURCE

</div>
</body>
</html>

The type of HTML tag needed to include a widget can differ depending on the
widget type. For most widgets a simple <div> tag is enough. The dojoType
attribute is set to the widget type you want to use. In Example 2-25 it is a Dojo
DnD source. The class attribute is an argument that is passed to the dnd.Source
widget when it is created, and represents the style used for this source.
Depending on the widget type it may be necessary to pass additional arguments.

Tooltip widget
Example 2-26 shows a simple way of using Tooltip widget.

Example 2-26 Usage of a Tooltip widget

<html>
<head>

<title>Dojo Tooltip Widget Test</title>
<script type="text/javascript">
var djConfig = {isDebug: true};

</script>
<script type="text/javascript" src="dojo/dojo.js"></script>
<script type="text/javascript">

80 WebSphere Commerce Best Practices in Web 2.0 Store

dojo.require("dojo.widget.Tooltip");
</script>
<LINK href="theme/Master.css" rel="stylesheet" type="text/css">

</head>
<body>
<h1>Tooltip test</h1>
<p>Mouse-over the items below to test tooltips:</p>
<div style="overflow: auto; height: 100px; position: relative; border:
solid blue 3px;">

this is a html element for which we will display a
tooltip on mouse over

</div>
<span dojoType="tooltip" connectId="s1" delay="100"
toggle="explode">tooltip information
</body>
</html>

HorizontalSlider widget
Example 2-27 shows a simple way to use SliderHorizontal widget.

Example 2-27 Usage of a horizontal slider

<HTML>
<HEAD>
<LINK href="theme/Master.css" rel="stylesheet" type="text/css">
<TITLE>Simple Slider Example</TITLE>
<script type="text/javascript" src="dojo/dojo.js"
djConfig="parseOnLoad: true"></script>
<script type="text/javascript">

dojo.require("dojo.widget.*");
dojo.require("dojo.event.*");
dojo.require("dojo.widget.Slider");

</script>
</HEAD>
<BODY >
Slider:
<div id="horizontalSlider" dojoType="SliderHorizontal" initialValue="5"

minimum="-10" maximum="50" snapValues="5"
activeDrag="true"
onValueChanged="dojo.byId('horizontalSliderValue').value
=arguments[0];"
buttonStyle="top:1px;"
backgroundStyle="padding:8px 4px 8px 4px;border:1px solid red;"
backgroundSize="width:500px;height:5px;"

 Chapter 2. WebSphere Commerce Web 2.0 Store features and benefits 81

backgroundSrc="src/widget/templates/images/blank.gif"
progressBackgroundSrc="src/widget/templates/images/slider-bg.gif"
handleStyle="top:0px;width:13px;height:18px;"
handleSrc="src/widget/templates/images/slider.gif
"style="border:solid blue;
border-width:16px 12px 8px 4px;padding:4px 8px 12px
16px;margin:9px;">

</div>

Horizontal Slider Value:
<input id="horizontalSliderValue" name="horizontalSliderValue"
value="0"/>
<button onclick="dojo.widget.byId ('horizontalSlider').setValue

(dojo.byId('horizontalSliderValue').value)">set
</button>
<i>(updates when slider handle is moved)</i>

<input
 id="horizontalSliderValue" name="horizontalSliderValue" value="0"/>
 <button onclick="dojo.widget.byId ('horizontalSlider').setValue
(dojo.byId('horizontalSliderValue').value)">set</button> <i>(updates
when slider handle is moved)</i>
<br/
</BODY>
</HTML>

The <div> tag creates a horizontal slider, setting all its properties. Although
moving the slider from left to right, the value of the horizontalSliderValue element
changes with the current value. The slider values can be changed by clicking the
SET button, which will take the value from the horizontalSliderValue element.

Button widget
Dijit has a few button widgets like a simple click button dijit.form.Button, a
DropDownButton, and much more. Example 2-28 shows how can we use
dijit.form.Button widget.

Example 2-28 Usage of a dijit.form.Button

<html>
<head>
<LINK href="theme/Master.css" rel="stylesheet" type="text/css">
<script type="text/javascript" src="../dojo/dojo.js"

djConfig="parseOnLoad: true, isDebug: true">
</script>

82 WebSphere Commerce Best Practices in Web 2.0 Store

<script type="text/javascript">
dojo.require("dijit.form.Button");
dojo.require("dojo.parser");

function myClick()
{

 alert('My First Button');
}

</script>
</head>
<body>

<div>
<button dojoType="dijit.form.Button"

onClick="myClick();">click</button>
</div>

</body>
</html>

Button widget attributes
The following list details the button widget attributes:

� label

You can set text on a button.

� iconClass

You can display an image on the button and set up a CSS class which uses
that icon as a background-image.

Button widget methods
The button widget method is onClick. The function is called when a button is
clicked. The user can override this function for adding extra functionality before
submitting a form.

DropDownButton widget
Dijit offers the DropDownButton widget to provide a drop-down menu when
clicked.

Example 2-29 on page 84 shows a way to use dijit.form.DropDownButton,
dijit.Menu and dijit.MenuItem to create the drop-down menu in Figure 2-19 on
page 85.

 Chapter 2. WebSphere Commerce Web 2.0 Store features and benefits 83

Example 2-29 DropDownButton

<html>
<head>
<style type="text/css">
 @import
"http://o.aolcdn.com/dojo/1.0.0/dijit/themes/tundra/tundra.css";
 @import
"http://o.aolcdn.com/dojo/1.0.0/dojo/resources/dojo.css"
</style>

<script type="text/javascript"
src="http://o.aolcdn.com/dojo/1.0.0/dojo/dojo.xd.js"
 djConfig="parseOnLoad: true">
</script>
<script type="text/javascript">

dojo.require("dojo.parser");
dojo.require("dijit.form.Button");
dojo.require("dijit.Menu");
function copyFunction() {

alert(“Copy action starts!!“);
}
function pasteFunction() {

alert(“Paste action starts!!“);
}

</script>
</head>
<body class="tundra">
 <div dojoType="dijit.form.DropDownButton">
 Edit
 <div dojoType="dijit.Menu" id="Edit">
 <div dojoType="dijit.MenuItem" label="Copy"
 onclick="copyFunction();"></div>

<div dojoType="dijit.MenuItem" label="Paste"
 onclick="pasteFunction();"></div>
 </div>
 </div>
</body>
</html>

84 WebSphere Commerce Best Practices in Web 2.0 Store

Figure 2-19 DropDownButton widget in use

DropDownButton, for example, may be used in Web applications for creating a
menu for a rich text editor.

DropDownButton widget attributes
The following list details the DropDownButton widget attributes:

� iconClass

This attribute describes the class to apply to a <div> in a button to make it
display a style.

� label

This attribute describes the text to display in button.

� optionsTitle

This attribute describes the text that describes the options menu.

� showLabel

If the showLabel attribute is set to true, it will display the text label in a button.

DropDownButton widget methods
The following list details the DropDownButton widget methods:

� addChild

This method inserts a given DOM node as a child of the current DOM node.

� getChildren

This method returns an array of children widgets.

� setLabel

This method sets the label of the button with the given value.

� hasChildren

This method returns true if widget has children.

� removeChild

This method removes the given widget instance from the current widget but
does not destroy it.

Edit

Paste

dijit.form.DropDownButton

Copy

 Chapter 2. WebSphere Commerce Web 2.0 Store features and benefits 85

� onClick

This method is called when button is clicked. A user can override this function
for adding some extra functionality before submitting a form.

Dialog and TooltipDialog widgets
Example 2-30 show a usage of the dijit.Dialog widget to display forms overlaying
the current page.

Example 2-30 Dialog widget

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Dialog demo</title>
<style type="text/css">
@import "http://o.aolcdn.com/dojo/1.0/dijit/themes/tundra/tundra.css";
@import "http://o.aolcdn.com/dojo/1.0/dojo/resources/dojo.css"
</style>
<script type="text/javascript"
src="http://o.aolcdn.com/dojo/1.0/dojo/dojo.xd.js"
djConfig="parseOnLoad: true">
</script>
<script type="text/javascript">

dojo.require("dojo.parser");
dojo.require("dijit.form.Button");
dojo.require("dijit.Dialog");
dojo.require("dijit.form.TextBox");

</script>
</head>
<body class="tundra">
<button dojoType="dijit.form.Button"
onclick="dijit.byId('dialog1').show()">show dialog</button>
<div dojoType="dijit.Dialog" id="dialog1" title="First Dialog" >
<table>

<tr>
<td><label for="name">First Name: </label></td>
<td><input dojoType="dijit.form.TextBox" type="text"

name="firstName"></td>
</tr>
<tr>

<td><label for="loc">Last Name: </label></td>
<td><input dojoType="dijit.form.TextBox" type="text"

name="lastName"></td>
</tr>

</tr>

86 WebSphere Commerce Best Practices in Web 2.0 Store

<tr>
<td colspan="2">
<button dojoType=dijit.form.Button type="submit">OK</button></td>

</tr>
</table>
</div>
</body>
</html>

Example 2-31 show a simple usage of dijit.TooltipDialog widget to display forms
in a tooltip.

Example 2-31 TooltipDialog widget

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>TooltipDialog demo</title>
<style type="text/css">
@import "http://o.aolcdn.com/dojo/1.0/dijit/themes/tundra/tundra.css";
@import "http://o.aolcdn.com/dojo/1.0/dojo/resources/dojo.css"
</style>
<script type="text/javascript"
src="http://o.aolcdn.com/dojo/1.0/dojo/dojo.xd.js"
djConfig="parseOnLoad: true"></script>
<script type="text/javascript">

dojo.require("dojo.parser");
dojo.require("dijit.form.Button");
dojo.require("dijit.Dialog");
dojo.require("dijit.form.TextBox");

</script>
</head>
<body class="tundra">
<div dojoType="dijit.form.DropDownButton">
<div dojoType="dijit.TooltipDialog" id="dialog1" title="Second Dialog">
<table>

<tr>
<td><label for="name">First Name: </label></td>
<td><input dojoType="dijit.form.TextBox" type="text"

name="firstName"></td>
</tr>
<tr>

<td><label for="loc">Last Name: </label></td>
<td><input dojoType="dijit.form.TextBox" type="text"

name="lastName"></td>

 Chapter 2. WebSphere Commerce Web 2.0 Store features and benefits 87

</tr>
<tr>

<td colspan="2" align="center">
<button dojoType=dijit.form.Button

type="submit">OK</button></td>
</tr>

</table>
</div>
</div>
</body>
</html>

DnD widget
Example 2-32 shows a way to use a DnD widget. We have two images that can
be dragged onto a target.

Example 2-32 Dnd Dojo widget

<html>
<head>
<title>Simple DnD Example</title>
<LINK href="theme/Master.css" rel="stylesheet" type="text/css">
<script type="text/javascript" src="dojo/dojo.js"
djConfig="parseOnLoad: true"></script>
<script type="text/javascript">
 dojo.require("dojo.dnd.Source");
 dojo.require("dojo.parser");
</script>
</head>
<body style="font-size: 12px;">
<h1>A Simple Example</h1>
<table><tbody><tr>
<td>
<!-- Create a source with two nodes -->
<div dojoType="dojo.dnd.Source" jsId="c1" class="source">
 SOURCE
 <div class="dojoDndItem" dndType="first">

 </div>
 <div class="dojoDndItem" dndType="second">

 </div>
</div>
</td>

88 WebSphere Commerce Best Practices in Web 2.0 Store

<td>
<!-- Create a target that accepts nodes of type first and second. -->
<div dojoType="dojo.dnd.Target" jsId="c2" class="target"
accept="first,second">
 TARGET
</div>
</td>
</tr><tbody/></table>

The outermost <div> tag creates a source object. The inner <div> tags with class
dojoDnDItem create nodes that can participate in DnD. The dndType attribute
can be used to specify the type of a node. The accept attribute of the Target is a
comma-separated list of types that can be dragged onto this node. This means
that only those nodes whose dndType is present in the list can be dragged onto
this target. You can restrict DnD operations by specifying appropriate types for
nodes and targets.

Menu, MenuItem, and PopupMenuItem widgets
The Menu widget can be used for creating a context menu, or with
DropDownButton widgets. MenuItem widgets are the actual items in the menu.
The PopupMenuItem also creates an item in a menu, but displays a submenu or
other widget to the right. Figure 2-20 and Example 2-33 on page 90 shows an
example of how you can use all these widgets to create a menu.

Figure 2-20 Menu, Menu Item, and PopupMenuItem widgets in use

Enabled Item

Enabled Submenu Submenu Item One

Submenu Item Two

dijit.Menu

 Chapter 2. WebSphere Commerce Web 2.0 Store features and benefits 89

Example 2-33 Menu, MenuItem, and PopupMenuItem widget

<html>
<head>
<style type="text/css">
 @import
"http://o.aolcdn.com/dojo/1.0.0/dijit/themes/tundra/tundra.css";
</style>
<LINK href="theme/Master.css" rel="stylesheet" type="text/css">
<script type="text/javascript" src="dojo/dojo.js"
 djConfig="parseOnLoad: true">
</script>
<script type="text/javascript">
 dojo.require("dojo.parser");
 dojo.require("dijit.Menu");
</script>
</head>
<body class="tundra">
<div dojoType="dijit.Menu" id="EnabledMenu"
 contextMenuForWindow="true" style="display: none;">

<div dojoType="dijit.MenuItem" iconClass="myStyle"
 onClick="alert('Item is enabled!!!');">Enabled
Item</div>

<div dojoType="dijit.PopupMenuItem" id="Enabled submenu">
Enabled submenu

<div dojoType="dijit.Menu">
<div dojoType="dijit.MenuItem"

onClick="alert('Submenu Item One!!!!')">Submenu Item
One</div>

<div dojoType="dijit.MenuItem"
onClick="alert('Submenu Item Two !!!')">Submenu Item

Two</div>
</div>

</div>
</div>

</body>
</html>

90 WebSphere Commerce Best Practices in Web 2.0 Store

dijit.Menu attributes
The following list details the dijit.Menu attributes:

� contextMenuForWindow

If this attribute is set to true, you can right-click anywhere on the window to
open the context menu. If this attribute is set to false, specify targetNodeIds

� popupDelay -

This attribute sets the number, in milliseconds, it takes to hover over a link for
it to open automatically.

� targetNodeIds

This attribute gives to an array of DOM nodes an ID. This should be filled with
nodeIds upon widget creation, and will become a context menu for those
nodes.

dijit.Menu methods
The following list details the dijit.Menu methods:

� addChild

This method inserts the given DOM node as a child of the current DOM node.

� bindDomNode

This method attaches a menu to the given node.

� getChildren

This method returns an array of children widgets.

� removeChild

This method removes the given widget from the current widget but does not
destroy it.

� unBindDomNode

This method detaches a menu from the given node.

� onClose

This method is called when the current menu is closed.

� onOpen

This method is called when the current menu is open by mouse events.

 Chapter 2. WebSphere Commerce Web 2.0 Store features and benefits 91

dijit.MenuItem attributes
The following list details the dijit.MenuItem attributes:

� disabled

If this attribute is set to true, the menu item is disabled. If this attribute is set to
false (the default value), the menu item is enabled.

� iconClass

This attribute is a style class that can be applied to a <div> in a button to
make it display an icon.

dijit.MenuItem methods
The following list details the dijit.MenuItem methods:

� setDisabled

This method enables or disables this menu item.

� getParent()

This method returns the parent widget of this widget.

� onClick()

This method is called to handle click events.

.dijit.MenuSeparator
The .dijit.MenuSeparator creates a line between two menu items.

The Web 2.0 Store solution uses the new Dojo 1.0 toolkit. There are many
enhancements and added features available in Dojo 1.0, including better
performance and full accessibility support. The widgets that were supplied in the
previous Web 2.0 Store has been recalibrated to use the Dojo 1.0 code base.
The first attempt is to use the Web 2.0 feature pack that is a part of WebSphere
Application Server. Otherwise, use the toolkit that is a part of Commerce.

Note: For more details about Dojo toolkit, refer the following Web page:

http://dojotoolkit.org

Note: Web 2.0 Store Dojo toolkit is described in 3.3, “WebSphere Commerce
Framework for Dojo widgets” on page 134.

92 WebSphere Commerce Best Practices in Web 2.0 Store

http://dojotoolkit.org

Chapter 3. Design and implement your
Web 2.0 Store

This chapter explains how to implement your own Web 2.0 Store using Ajax and
Dojo and the Madisons Store (Web 2.0 reference application for WebSphere
Commerce). Developers can take advantage of this and the next chapters in
combination of our reference application to build their own Web 2.0 Store in a
more efficient way, this helps developers quickly design, develop, test, analyze,
and deploy high-quality Web 2.0 Stores.

This chapter has the following sections:

� Section 3.1, “WebSphere Commerce Web 2.0 Store structure” on page 94
explains the package, file content structure, and page layout of the Madisons
Store. This information assists the developer in getting familiar with the store
structure, and understanding how the file contents and page layouts are
organized.

� Section 3.2, “WebSphere Commerce Ajax framework for Dojo” on page 105
details the WebSphere Commerce Ajax framework, which is an extension of
Dojo Ajax and event API. This section, of particular interest to developers,
shows how easy it is to compose a Web 2.0 Store using the WebSphere
Commerce framework. This section has examples and sample code available
to the reader.

3

© Copyright IBM Corp. 2009. All rights reserved. 93

� Section 3.3, “WebSphere Commerce Framework for Dojo widgets” on
page 134 deals with Dojo functionality and the Dojo widgets used in our store.
This section is key for those who want to implement, extend, or customize
Dojo widgets to fit their application. This section explains each widget used in
our application and gives examples how to extend or customize the widget to
fit their requirements.

� Section 3.4, “Introduce Web 2.0 features into your Web 1.0 Store” on
page 183 explains how the Web 2.0 features can be added to a Web 1.0
Store. This section is aimed at users who want to accelerate their Web 1.0
Store by adding some Web 2.0 features, without developing and publishing a
new store archive.

3.1 WebSphere Commerce Web 2.0 Store structure

This section explains the basic package, file content, and page layout structure
you should use as part of a best practice store structure.

3.1.1 WebSphere Commerce package structure for Web 2.0 Store

The Web 2.0 Store has a typical Webapp package structure. We have two
different packages:

� for store JavaServer™ pages (JSPs) and snippets
� for Dojo

These two folders comes under the following directory:

*Runtime
WC_installdir/AppServer/profiles/demo/installedApps/WC_demo_cell/WC_
demo.ear/Stores.war/
* WebSphere Commerce Developer
WCDE_installdir/workspace/Stores/WebContent/stores

The typical Web 2.0 Store directory contains the following directories:

� css

This directory contains the style sheets for the store. You can have style
sheets for different browsers if needed, and can store language-specific style
sheets.

� images

This directory contains the images used in the UI. If Dojo widgets have any
images for the UI, you can put them in this folder and have a reference in the
style sheet.

94 WebSphere Commerce Best Practices in Web 2.0 Store

� include

This directory contains all common layout snippets for headers, footers, and
sidebars.

� javascript

This directory contains most of the store java script in the .js files.

� shoppingarea

This directory contains the top level JSPs.

� snippets

This directory contains the code snippets commonly used at multiple places
and multiple pages.

� userarea

This directory contains pages related to userarea like MyAccount, Wishlist,
and so forth.

The Dojo package contains dijit, Dojo, Dojox, and WebSphere Commerce
sub-packages. Find more information about these sub-packages in 2.4, “Web 2.0
application concepts” on page 49, WebSphere Commerce contains WebSphere
Commerce Ajax APIs and extended Dojo widgets.

3.1.2 File content structure

Basic top-level JSP structure will contain basic layout structure to maintain
header, footer, sidebar, and main content, and the inclusions and imports of other
parts of the code. Example 3-6 on page 99 show the basic structure of the JSP.
We maintain code level modularity to allow for more flexible, reusable, and easily
maintainable code. Well-structured and modularized code is useful with
large-scale of code snippets. It impacts the total cost of implementation (TCOI)
as well, because it is easy to maintain. As a Web 2.0 Store best practice, we
suggest you maintain the same code and file structure.

Using external JavaScript
We maintain the JavaScript code away from the JSP file contents, and keep them
in a separate .js files. We refer to the code with a single line statement in the JSP
where that JavaScript code is needed. In this way, the code is reused wherever it
is needed, and the code can be easily maintained. Putting the JavaScript code
with the JSP code makes it tough for a new developer to understand the flow, so
external JavaScript is a convenient and easily-readable formatting choice for new
developers.

 Chapter 3. Design and implement your Web 2.0 Store 95

External JavaScript ease of use
Example 3-1 shows how to include a JavaScript file in a JSP.

Example 3-1 Including the JavaScript file in the JSP

<script type="text/javascript" src="<c:out
value="${jspStoreImgDir}javascript/ErrorHandle.js"/>"></script>

Example 3-1 is a one line statement that provides the ErrorHandler JavaScript
code. In a page needing the ErrorHandler, use this statement to render the code.
JavaScript external files provide the advantage of outsourcing JavaScript code to
external files.

External JavaScript performance
By putting the JavaScript into a separate external .js file, you separate the
JavaScript from the actual content of the page, which improves the page load
time. Instead of putting the JavaScript content in the JSP, you can put that
content into the JavaScript file and render. This helps improve site performance.
We have all our JavaScript files under the following directory.

*Runtime
WC_installdir/AppServer/profiles/demo/installedApps/WC_demo_cell/WC_
demo.ear/Stores.war/javascript/
* WebSphere Commerce Developer
WCDE_installdir/workspace/Stores/WebContent/stores/javascript/

Under this folder, we have some .js files that are page-specific, and some .js files
that are used in multiple pages (like Common.js, ErrorHandle.js,
ServicesDeclaration.js, CommonContextsDeclarations.js,
CommonControllersDeclaration.js).

If your page contains less code, search engines can index your page much faster
and much better. Search engines do not actually look for the UI part, or the
logical part of the page, they look for titles, alt tags, names, and so forth. Search
engines are not concerned about JavaScript, so moving code makes it easier for
them and easier for site visitors. The less content in your page, the faster it loads
and indexes the site.

Do not use this same inclusion of the JavaScript file in the top level and sub-level
JSPs. You need to include only once in the top level JSP, so it is lightweight, with
a reduced page load time. To avoid the multiple inclusions of the JavaScript file,
we have a special statement, as shown in Example 3-2 on page 97, in the
JavaScript file itself.

96 WebSphere Commerce Best Practices in Web 2.0 Store

Example 3-2 Avoiding JavaScript redundancy

if(typeof(ErrorHandler) == "undefined" || !ErrorHandler ||
!ErrorHandler.topicNamespace){
ErrorHandler = {
//All the JS content goes here
}
}

In Example 3-2, we have a condition that checks for the existence of the
ErrorHandler object. If it already exists, it will not render the same content again.
This is useful when maintaining the same object instance for the entire page flow.

Using External CSS
If you have cosmetic style properties as part of your code, you must change your
code every time you change styles. It is difficult for a new developer to find the
exact statement where he needs a style change. Instead, separate the styles
from the actual code and maintain them in separate CSS files. This way, you
need update only one file to update all of your Web site’s pages. This may
change when you have browser-specific CSS content.

External CSS ease of use
CSS files are easy to understand and read, so in-depth technical skills are not
required to change styles. We used relevant class attributes for the styles. This
helps to identify the right class for the right element.

External CSS makes maintaining your site easy. Changing the font of an item
name is a matter of changing a property in one class in the CSS. This one
change affects every instance of that item name. This makes for easy
implementation and cost-effective maintenance without changing your actual
code, so the logic still works correctly.

You do not need any special editors to view and change an external CSS. It can
be opened and edited using any simple text editors. You can change your store’s
look by changing one CSS. Do not worry if you do not like the new look, just undo
the changes to revert to the old style.

External CSS performance
There are definite performance advantages to using an external CSS. Because
the search engine does not look at your UIs and the widgets in your code, it can
more quickly scan the code for the titles and names it requires to index your
page. Keeping an external CSS, therefore, is beneficial to you from a
customization, maintenance and performance perspectives.

Example 3-3 on page 98 shows how to include the external CSS in your code.

 Chapter 3. Design and implement your Web 2.0 Store 97

Example 3-3 Including external CSS in the JSP

<link rel="stylesheet" href="<css file here>" type="text/css"/>

Use this statement wherever you use the same style. Set the relative file path
and CSS file name as in Example 3-4.

Example 3-4 Setting the relative file path and CSS name in an external CSS

<link rel="stylesheet" href="<c:out
value="${jspStoreImgDir}${vfileStylesheet}"/>" type="text/css"/>.

Sometimes you may need browser-specific CSS properties. In this case, we
need to have browser-specific classes. This is done with multiple external CSS
files. While including the files, we can have the browser to check the condition for
specific classes. If the condition is true, it overwrites the class. Example 3-5
shows the conditional inclusion of multiple CSS files.

Example 3-5 Conditional inclusion of browser-specific CSS

<link rel="stylesheet" href="<c:out
value="${jspStoreImgDir}${vfileStylesheet}"/>" type="text/css"/>
<!--[if lte IE 6]>
<link rel="stylesheet" href="<c:out
value="${jspStoreImgDir}${vfileStylesheetie}"/>" type="text/css"/>
<![endif]-->

There are two CSS files in Example 3-5. The first one is unconditional and is the
same for all browsers. The second one is included only when the browser is
Internet Explorer version 6 or earlier. This allows for multiple inclusions and
browser-specific inclusions in your pages.

Modular code
We have complex functional flows in our store and we have a large amount of
code for these all functional flows. It is difficult to organize the code as a single
piece. The whole site cannot be developed by a single developer. There are
multiple developers involved in the process. During development they may need
some functionality common across every page. Because there is no common
code sharing between pages, however, there is a redundancy penalty. When the
product goes live and the pages need some common change, every page must
be changed. This takes time and resources. If the developer is new to the pages,
unplanned errors may result.

98 WebSphere Commerce Best Practices in Web 2.0 Store

To avoid confusion, and to achieve easy-to-use, flexible, reusable code, we
modularized our code. You will not find much complex code in any of the top-level
JSP. It contains the inclusions and references to other code snippets. Each of
these snippets are self-organized with some input data. Just include or import
them with the initial data they require. This concept is easier to grasp once you
start coding this way. We have a large amount of complex code for our store. We
organized it to be as modular as possible. The following examples (Example 3-6
to Example 3-12 on page 101) detail our main top-level JSP code.

Example 3-6 Main comment part of code

<%--

 * This JSP page displays the store's top-level categories. It is used
as the starter store's homepage.
 * It imports three JSP pages:
 * - CachedHeaderDisplay.jsp, which displays the header of the page
 * - CachedTopCategoriesDisplay.jsp, which displays the top-level
categories
 * - CachedFooter.jsp, which displays the footer of the page

--%>

Example 3-7 Main inclusions in the page

<%@ taglib uri="http://java.sun.com/jsp/jstl/fmt" prefix="fmt" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
<%@ taglib uri="http://commerce.ibm.com/base" prefix="wcbase" %>
<%@ taglib uri="http://commerce.ibm.com/foundation" prefix="wcf" %>
<%@ taglib uri="flow.tld" prefix="flow" %>
<%@ include file="../../../include/JSTLEnvironmentSetup.jspf"%>
<%@ include file="../../../include/nocache.jspf"%>

Note: These examples are in the same sequence as the actual file. Find out
how to download the full content of the TopCategoriesDisplay.jsp file in
Appendix A, “Additional material” on page 237.

About Example 3-6: This part of the code explains what the JSP shows, what
it contains, and other references to the code snippets. If the file is a code
snippet or sub-JSP, you can list the parameters and inputs needed.

About Example 3-7: This part of the code contains the basic inclusions for
functionality, taglibraris, and environment.

 Chapter 3. Design and implement your Web 2.0 Store 99

Example 3-8 Stylesheet references

<link rel="stylesheet" href="<c:out
value="${jspStoreImgDir}${vfileStylesheet}"/>" type="text/css"/>
<!--[if lte IE 6]>
<link rel="stylesheet" href="<c:out
value="${jspStoreImgDir}${vfileStylesheetie}"/>" type="text/css"/>
<![endif]-->

Example 3-9 Dojo file inclusion and other JavaScript file inclusions

<script type="text/javascript" src="<c:out value="${dojoFile}"/>"
djConfig="${dojoConfigParams}"></script>
<script type="text/javascript" src="<c:out
value="${jspStoreImgDir}javascript/Common.js"/>"></script>
<script type="text/javascript" src="<c:out
value="${jspStoreImgDir}javascript/CategoryDisplay.js"/>"></script>
<script type="text/javascript" src="<c:out
value="${jspStoreImgDir}javascript/ErrorHandle.js"/>"></script>
<script type="text/javascript">

dojo.require("wc.widget.RefreshArea");
dojo.require("wc.render.RefreshController");
dojo.require("wc.render.Context");
dojo.require("dojo.parser");
dojo.require("dojo.dnd.Source");
dojo.require("wc.widget.ScrollablePane");
dojo.require("dijit.layout.ContentPane");

</script>

Example 3-10 Setting the messages

<script type="text/javascript">
categoryDisplayJS.setCommonParameters('${WCParam.langId}','${WCParam.st
oreId}','${WCParam.catalogId}');

ErrorHandler.setErrorMessage("ERR_RESOLVING_SKU", "<fmt:message
key="ERR_RESOLVING_SKU" bundle="${storeText}"/>");

ErrorHandler.setErrorMessage("QUANTITY_INPUT_ERROR", "<fmt:message
key="QUANTITY_INPUT_ERROR" bundle="${storeText}"/>");

ErrorHandler.setErrorMessage("WISHLIST_ADDED", "<fmt:message
key="WISHLIST_ADDED" bundle="${storeText}"/>");

ErrorHandler.setErrorMessage("SHOPCART_ADDED", "<fmt:message
key="SHOPCART_ADDED" bundle="${storeText}"/>");
</script>

100 WebSphere Commerce Best Practices in Web 2.0 Store

Example 3-11 service, RefreshController, and RenderContext declarations

<script type="text/javascript" src="<c:out
value="${jspStoreImgDir}javascript/ServicesDeclaration.js"/>"></script>
<script type="text/javascript">

ServicesDeclarationJS.setCommonParameters('${WCParam.langId}','${WCPara
m.storeId}','${WCParam.catalogId}');
</script>

Example 3-12 Main page content

<div id="page">
 <!-- Header Nav Start -->

<%@ include file="../../../include/LayoutContainerTop.jspf"%>
<%@ include file="../../../include/BreadCrumbTrailDisplay.jspf"%>

 <!-- Header Nav End -->

 <!-- Main Content Start -->
 <div id="content_wrapper">

<div id="left_nav">
 <%@ include file="../../../include/LeftSidebarDisplay.jspf"%>
</div>

<div id="right_nav">
 <%@ include

file="../../../include/HomeRightSidebarDisplay.jspf"%>
</div>

 <!-- Content Start -->
<div id="MessageArea" >

About Example 3-10: You can set error messages, alert messages, and
successful messages in a JavaScript array that is used during Ajax calls.

About Example 3-11: This section contains code for the service declarations,
RefreshController and render context declarations, and sets all require
parameters to those objects. As part of the best practice we have these
declarations in form of JavaScript to improve the performance of the page and
to give minimum loading time.

 Chapter 3. Design and implement your Web 2.0 Store 101

</div>
<%out.flush();%>
<c:import

url="${jspStoreDir}Snippets/Catalog/CategoryDisplay/CachedTopCategories
Display.jsp">

<c:param name="storeId" value="${WCParam.storeId}"/>
<c:param name="catalogId" value="${WCParam.catalogId}"/>
<c:param name="langId" value="${langId}"/>
<c:param name="showLanguageCurrency" value="true"/>
<c:param name="showContractDisplayCustomization"

value="false"/>
</c:import>

<%out.flush();%>

 <!-- Content End -->
 </div>
 <!-- Main Content End -->
 <!-- Footer Start Start -->
 <%@ include file="../../../include/LayoutContainerBottom.jspf"%>
 <!-- Footer Start End -->
</div>

3.1.3 Page layout structure

Our basic page layout (Figure 3-1 on page 103) has the following five sections:

� Header
� Footer
� Left sidebar
� Right sidebar
� Main content

For any Ajax action on the page, we either refresh a section or part of a section.
This approach provides faster interaction between client and the server, and
improves server performance.

About Example 3-12: This code represents the main content for the page.
This section maintains different layouts (like headers, footers, sidebars, and
the main center content of the page).

102 WebSphere Commerce Best Practices in Web 2.0 Store

Figure 3-1 Basic page layout

Each of these five sections are taken care by separate code modules. On the
top-level JSP, we include each of these modules separately, as shown in
Example 3-6 on page 99 to Example 3-12 on page 101. Each of these sections
contains subsections. Headers, footers, and sidebars are common content
across pages, so we made these sections as reusable snippets across pages.
Header and footer information is consistent through the pages, but the sidebar
content can change from page to page. The Header shows the Title of the store,
search box, mini shopping cart, top category drop-down menus, and other
common links (like Home, login, my account and so forth).

The BreadCrumbTrailDisplay widget, which tracks the path followed to reach the
current page, is also part of header. The footer contains the common links to the
other store pages (such as orderstatus, MyAccount, and Help).

 Chapter 3. Design and implement your Web 2.0 Store 103

The left sidebar content varies across pages. For catalog browsing it shows the
top and subcategories. For the MyAccount page it shows sublinks to the
MyAccount page (such as personal information, wishlist, orderstatus, and
address book). For Fast Finder, it shows the brand selections and priceranger.
The right sidebar displays recommendations, and different e-marketing spots
based on the category or product selection. Some store pages (such as
MyAccount, checkout page, and so forth) may not contain all sections. See
Figure 3-2 for an example. The MyAccount page does not contain a right sidebar,
because the right sidebar is meant for recommendations based on the catalog
selection. An account page would not have recommendations.

Figure 3-2 MyAccount page layout without right sidebar

104 WebSphere Commerce Best Practices in Web 2.0 Store

3.2 WebSphere Commerce Ajax framework for Dojo

The WebSphere Commerce Ajax framework is an extension of the Dojo Ajax and
events API, which provides an easy to use framework that meets most Ajax
requirements for storefront development. It hides some of the complexity and
repetitive code, and provides an easy-to-use and fitting functionality for the
storefront.

We have two types of update requests to the server:

� For WebSphere Commerce Controller

These commands are well-known, as we use it in our all starter stores.

� For WebSphere Commerce Component Services

There are four basic scenarios that include the requirements followed by
WebSphere Commerce Ajax framework functionality, which addresses these
requirements and explores the best places for each of these functionalities. The
following four scenarios cover most of our store requirements.

� Make an Ajax call to WebSphere Commerce server to refresh a section in the
page because of certain shopper interactions.

� Make an Ajax call to the WebSphere Commerce server to update some
business object. If the update is successful, a number of different areas in the
Web page need to be refreshed with new content. The new contents for the
page are retrieved through subsequent Ajax calls to the WebSphere
Commerce server.

� Make an Ajax call to the WebSphere Commerce server for JSON data and
then update certain areas in the page using a JavaScript DOM manipulation
API.

� A combination of the second and third scenarios. In this scenario instead of
wanting to make the code modular, less server traffic is desired. Make an Ajax
call to WebSphere Commerce server to update some business object, and if
the update is successful, the relevant information to refresh the contents of
the page are returned as a JSON object. The client side then has the
contents of the JSON object and uses DOM manipulation API to modify the
areas in the Web page that change as a result of the update.

The next four subsections explain the above scenarios, providing in-depth
information about the scenarios and the API required to use for each scenario.

Note: The third and fourth scenarios do not require the use of the WebSphere
Commerce Ajax framework because everything can be done using the Dojo
Ajax API.

 Chapter 3. Design and implement your Web 2.0 Store 105

3.2.1 Getting familiar with the Ajax Framework extension

This section explains the Ajax Framework extension and the JavaScript objects
we use in these scenarios. We use refresh controller, Render Context, service
JavaScript objects, and the wcf:json tag from the framework. And in the next
section, you will see how we use these objects to fulfill each scenario.

Using this framework, you can refresh or reload a part of the page based on a
business object update, or a simple loading of new content in place of old
content. The part of the page to update is called RefreshArea. This RefreshArea
is a simple <div> element registered to a RefreshController. RefreshController is
the central point of control for the RefreshAreas registered to this controller. The
Render Context object keeps track of client context information and can trigger
renderContextChanged events whenever updates occur to a property in the
Render Context object. The refresh controllers are automatically registered to
listen to the renderContextChanged events. The RefreshController logic
determines if the context change should trigger an update of a RefreshArea
widget. Therefore, in the refresh controller’s renderContextChangedHandler, will
use the API to compare the context properties for testForChangedRC to
determine if a context property that you are interested in has changed and then
trigger the refresh of the RefreshArea.

For client-side support in invoking a service request, use the declareservice tag.
To convert the request properties into JSON object, use json tag.

Basic mechanism to refresh or load a part of the page content
In this section, we discuss the refresh and load events of a page.

wc.widget.RefreshArea
The RefreshArea widget is used to wrap a DOM node that may need to be
refreshed by replacing the innerHTML property with fresh HTML loaded from the
server. A RefreshArea widget is associated with a registered refresh controller
that listens for events that will require this widget to be refreshed.

The parameters of the RefreshArea widget are as follows:

� controllerId: String

This parameter is the ID of the refresh controller to which this widget is
registered.

� controller: wc.render.RefreshController

This parameter is the refresh controller instance that is controlling this
RefreshArea. This value is initialized by locating the refresh controller with the
controller ID specified by controllerId.

106 WebSphere Commerce Best Practices in Web 2.0 Store

� objectId: String

This parameter is a unique ID that can be used to distinguish a RefreshArea
from other RefreshAreas that are controlled by the same refresh controller. If
specified, the object ID is passed as a parameter to the URL responsible for
providing the refreshed content.

wc.render.declareRefreshController (initProperties)
This function declares a new refresh controller and initializes it with the specified
initialization properties. The initialization properties are mixed in with the new
refresh controller properties.

A refresh controller controls RefreshArea widgets. It listens to changes in the
render context and changes to the model and decides if the registered
RefreshAreas should be updated.

The parameters of this function are as follows:

InitProperties: The object containing any of these initialization parameters.

� id: String

This parameter is the ID of the refresh controller.

� renderContext: wc.render.Context

This parameter is the render context object that is associated with this refresh
controller.

� url: String

This parameter is the URL that is called by the refresh function to retrieve the
refreshed content for the RefreshArea widget.

� renderContextChangedHandler: Function

If defined, this parameter is called when a renderContextChanged event is
detected. It is called once for each RefreshArea widget registered to this
refresh controller. The function signature is (message, widget), where
message is the renderContextChanged event message and widget is the
RefreshArea widget.

� modelChangedHandler: Function

If defined, this parameter is called when a modelChanged event is detected. It
is called once for each RefreshArea widget registered to this refresh
controller. The function signature is (message, widget), where message is the
modelChanged event message and widget is the RefreshArea widget.

 Chapter 3. Design and implement your Web 2.0 Store 107

� postRefreshHandler: Function

If defined, this parameter is called after a successful refresh. The function
signature is (widget), where widget is the RefreshArea widget that was just
refreshed.

� testForChangedRC (propertyNames): Function

This parameter looks through the specified array of property names for a
render context property that has changed since the last time a
renderContextChanged event was detected. This parameter returns true if
any of the specified render context properties have changed. Otherwise, it
returns false. The function signature is (propertyNames) where
propertyNames is an array of property names to be tested.

wc.render.getRefreshControllerById (id)
This function returns the refresh controller that was declared under the specified
identifier. If the refresh controller was not declared, this function will return
undefined.

This function has the following parameter, id: String, which is the refresh
controller ID.

wc.render.declareContext (id, properties, updateContextURL)
This function declares a new render context and initializes it with the specified
render context properties. The update context URL reports changes to the
render context to the server.

A render context is a set of client-side context information to keep track off on a
page. This context information can be used to decide if changes to RefreshAreas
are needed. Changes to the render context can be communicated to the server
using an Ajax-style request if an updateContextURL is provided. When the
render context is successfully updated, an event is published so that any listening
refresh controllers can refresh their content to reflect the updated render context.

This function has the following parameters:

� id: String

This function is the unique ID of the new render context.

� properties: Object

This function is the initial render context properties.

� updateContextURL: String

This function is the URL used to notify the server of render context updates.

108 WebSphere Commerce Best Practices in Web 2.0 Store

wc.render.getContextById (id)
This function gets the render context declared under the specified ID. If the
render context was not declared, this function will return undefined.

wc.render.updateContext (id, updates)
This function retrieves the render context with the specified ID, and applies the
updates found in the specified updates object.

This function has the following parameters:

� id: String

This parameter is the render context ID.

� updates: Object

This parameter is related to render context updates. The properties of the
object are added to the render context. Properties that have an undefined
value are removed from the render context.

Sample usage
In your page, you can have a RefreshArea <div> for the area you want to load
dynamically. The content inside this <div> is refreshed or replaced dynamically
with the new content based on the request. Example 3-13 is a simple
RefreshArea tag. The most important property is controllerId. This controller is
the central point that handles the refresh mechanism for the RefreshAreas
registered to it.

Example 3-13 RefreshArea <div> tag for MiniShoppingCart

<div dojoType="wc.widget.RefreshArea"
id="MiniShoppingCart"
widgetId="MiniShoppingCart"
controllerId="MiniShoppingCartController">

</div>

Example 3-14 shows a simple declaration of RenderContext. This declaration
adds client-side render context support to the page. We set the ID for this
RenderContext by passing it as a parameter to declareContext method. This ID
identifies the render context. If this tag has already been called for this request
and ID, then it will do nothing. We kept the RenderContext declarations in the
CommonContextsDeclarations.js file.

Example 3-14 RenderContext declaration

wc.render.declareContext("ShopCartDisplay_Context",null,"")

 Chapter 3. Design and implement your Web 2.0 Store 109

We include this CommonContextsDeclarations.js file in the main JSP, and
initialize the RenderContext by setting the common properties to that object, as
shown in Example 3-15.

Example 3-15 How to include the RenderContext declaration in JSP

<script type="text/javascript" src="<c:out
value="${jspStoreImgDir}javascript/CommonContextsDeclarations.js"/>"></
script>

CommonContextsJS.setCommonParameters('${WCParam.langId}','${WCParam.sto
reId}','${WCParam.catalogId}');

Set the other parameters (such as local, url, and properties) by using
setContextProperty(contextId,property,value) method. This method takes
contextId, property, and value as the parameters.

Example 3-16 shows how to declare a RefreshController, and the properties and
handlers that need setting. While declaring RefreshController set the ID and the
renderContext properties. Other optional properties are url, which refers to the
page the snippet needs to load or reload, and the formId that you want to submit.
The RefreshController declaration has three main handlers:

� modelChangedHandler

This handler is called automatically when business object get updated.

� renderContextChangeHandler

This handler is called when you make a call to load or reload a part of the
content in the page just for content change.

� postRefreshHandler

This handler is called when you have the operations needed after the refresh.

Example 3-16 RefreshController declaration

wc.render.declareRefreshController({
id: "MiniShoppingCartController",
renderContext: wc.render.getContextById("MiniShoppingCartContext"),
url: "",
formId: ""

,modelChangedHandler: function(message, widget) {
var controller = this;
var renderContext = this.renderContext;
if(message.actionId in order_updated){

var param = [];

110 WebSphere Commerce Best Practices in Web 2.0 Store

if(message.actionId == 'AjaxAddOrderItem'){
param.addedOrderItemId = message.orderItemId + "";
showDropdown = true;

}
widget.refresh(param);

}
else{

//alert(message.actionId +" not in order_updated..no
work...");

}
}

,renderContextChangedHandler: function(message, widget) {
var controller = this;
var renderContext = this.renderContext;

}

,postRefreshHandler: function(widget) {
var controller = this;
var renderContext = this.renderContext;

//The dialog contents has changed..so destroy the old dialog with
stale data..

destroyDialog();

if(showDropdown){
//We have added item to cart..So display the drop down with

item added message..

showMiniShopCartDropDown(null,"placeHolder",'quick_cart_container','ord
erItemAdded');

showDropdown = false;
}
cursor_clear();

}

})

We have kept the RefreshController declarations in the
commoncontrollerdeclarations.js file. We include this
commoncontrollerdeclarations.js file in the main JSP, and set the other properties
for the controller as shown in Example 3-17 on page 112.

 Chapter 3. Design and implement your Web 2.0 Store 111

Example 3-17 CommonControllerDeclaration

<script type="text/javascript" src="<c:out
value="${jspStoreImgDir}javascript/CommonControllersDeclaration.js"/>">
</script>

CommonControllersDeclarationJS.setControllerURL('MiniShoppingCartContro
ller','${AjaxQuickCartDisplayURL}');

wc.service.declare (initProperties)
This function declares a new Ajax service with the specified ID. A service is a
server URL that performs a server object create, update, delete or other server
processing in WebSphere Commerce. By using this API, you will have the
capability to call a WebSphere Commerce server URL using Ajax whenever it is
needed in your JavaScript code.

When the service completes successfully, a JSON object containing the
response properties of the URL request is returned to the JavaScript functions
defined bysuccessHandle or failureHandler, in case of success or failure
respectively.

If the service completes successfully, a modelChanged event is sent to
subscribed listeners. This means that the following Dojo events are published:

� modelChanged
� modelChanged/<actionId>

This function has the following parameters:

initProperties: Object containing any of these initialization parameters.

� id: String

This parameter is the unique ID of this service.

� actionId: String

This parameter is an identifier for the action performed by this service. This
value is used in the construction of the topic name for the modelChanged
event. The modelChanged event name is of the form modelChanged/actionId.

� url: String

This parameter is the URL for this service.

Note: It is essential to follow the order of declarations. RefreshController
should always be declared after the RenderContext declaration. It should
follow the order because we are using the RenderContext by getting it by ID in
RefreshController declaration.

112 WebSphere Commerce Best Practices in Web 2.0 Store

� formId: String

This parameter is the ID of the form element that is posted to the URL. A
service does not necessarily have to be associated with a form element.

� validateParameters: function (parameters)

This parameter validates that the service parameters are correct. This
function examines the service parameters to determine if the service is ready
to be invoked. The function is called from the invoke function before the
service is invoked. The default implementation of this function returns true.
This function may be replaced by passing in a new version with the
initProperties object when the service is constructed. This parameter returns
true if the parameters are valid. It has the parameter of object. This parameter
is passed to the invoke function.

� validateForm: function (formNode)

This parameter validates that the form values are correct. This function
examines the specified form element to determine if the service is ready to be
invoked. The function is called from the invoke function before the service is
invoked. The default implementation of this function returns true. This function
may be replaced by passing in a new version with the initProperties object
when the service is constructed. This parameter returns true if the form
values are valid. It has the parameter of element. This parameter has the ID
specified by the formId property.

� successTest: function (serviceResponse) {

This parameter is the test for a successful service invocation. This function
examines the specified service response object to determine if the service
was successful or not. The function is called after the response was received
from the service. The default implementation will return true if there is no
errorMessage property in the service response object. This function may be
replaced by passing in a new version with the initProperties object when the
service is constructed. This parameter returns true if the service request is
successful. The serviceResponse is object. The service response object.
This object is the JSON Object returned by the service invocation.

� successHandler: function (serviceResponse)

This parameter performs processing after a successful service invocation.
This function is called after a successful service invocation to allow for any
post service processing. The default implementation does nothing. This
function may be replaced by passing in a new version with the initProperties
Object when the service is constructed. The serviceResponse is Object. The
service response object. This object is the JSON Object returned by the
service invocation.

 Chapter 3. Design and implement your Web 2.0 Store 113

� failureHandler: function (serviceResponse)

This parameter performs processing after a failed service invocation. This
function is called after a failed service invocation to handle any error
processing. The default implementation alerts the user with the error
message found in the service response object. This function may be replaced
by passing in a new version with the initProperties Object when the service is
constructed. The serviceResponse is Object. The service response object.
This object is the JSON Object returned by the service invocation.

wc.service.getServiceById (serviceId)
This function gets the service that was declared under the specified identifier. If
the service was not declared, this function will return undefined.

This function, illustrated in Example 3-18, is useful if you need to find a service to
update some of its parameters before you invoke it.

Example 3-18 Using getServiceById

wc.service.getServiceById("AjaxAddOrderItem ").formId =
“OrderItemForm”;

Sample usage
The code in Example 3-19 on page 115 shows how to declare a service in
JavaScript. We need to set an ID for our service-like ID, AjaxInterestItemAdd.
When you want to use this service , you can get the service by ID. This ID is a
reference to get the service object.

Additional properties are as follows:

� url

This property refers to the service command to which we want to sent a
request.

� actionId

This property is used by RefreshControllers or service handlers to check for
the correct action and perform the post operations.

� formId

You can pass a form by using the formId. This is useful when somebody
wants to add Ajax service to their existing Web 1.0. In this case, they do not
need to change much in their forms. They need to add those extra parameters
or adjust them according to service requirement and set that formId in this
property.

114 WebSphere Commerce Best Practices in Web 2.0 Store

Example 3-19 Service declaration using JavaScript

wc.service.declare({
id: "AjaxInterestItemAdd",
actionId: " AjaxInterestItemAdd",
url: " AjaxInterestItemAdd",
formId: "",

successHandler: function(serviceResponse) {
alert(“success”);

},

failureHandler: function(serviceResponse) {
if (serviceResponse.errorMessage) {

alert(serviceResponse.errorMessage);
}

}
});

We kept the service declarations in a ServicesDeclaration.js file. In the main JSP,
we include this ServicesDeclaration.js file and set the other properties for the
service, as shown in Example 3-20.

Example 3-20 Including the ServicesDeclaration and setting common properties.

<script type="text/javascript" src="<c:out
value="${jspStoreImgDir}javascript/ServicesDeclaration.js"/>"></script>
<script type="text/javascript">

ServicesDeclarationJS.setCommonParameters('${WCParam.langId}','${WCPara
m.storeId}','${WCParam.catalogId}');
</script>

In Example 3-21, we have grouped the services based on the events. These
service event mappings are in ServicesEventMapping.js. We use this file in the
refresh controller to perform the event-based refresh.

Example 3-21 Grouping services based on events

<script type="text/javascript" src="<c:out
value="${jspStoreImgDir}javascript/ServicesEventMapping.js"/>"></script
>

Example 3-22 on page 116 show how to invoke the service and how to set the
extra parameters before invoking the service. We set the required parameters in
a JavaScript array, and pass it to the invoke method with serviceId.

 Chapter 3. Design and implement your Web 2.0 Store 115

Example 3-22 Setting parameters and invoking the service

var params = [];
params.storeId= this.storeId;
params.catalogId= this.catalogId;
params.langId= this.langId;
params.orderId= ".";
params.catEntryId= catEntryIdentifier;
params.quantity= quantity;
wc.service.invoke("AjaxAddOrderItem", params);

When the service is invoked it goes to the service command and performs the
specified operation. The response comes back to the handler section of the
service. If the command succeeds successHandler is called. If the command fails
failureHandler is called. In failureHandler you need to put the error handler code.
The ModelChanged handler in the RefresherController will also get called
automatically upon response.

The following three examples (Example 3-23 through Example 3-25 on
page 117) illustrate how to declare the RenderContext and RefreshController in
JSP code. Considering the best practices of Web 2.0 Store, you should not
declare in this way, as this impacts the performance of the store and pages may
take a long time to load.

Example 3-23 Declaring a RenderContext in JSP

<wcf:declareRenderContext local="true" id="MiniShoppingCartContext" >
<jsp:attribute name="properties">{workAreaMode:

"create"}</jsp:attribute>
</wcf:declareRenderContext>

Example 3-24 Declaring a RefreshController in JSP

<wcf:declareRefreshControllerid="MiniShoppingCartController"
url="${AjaxQuickCartDisplayURL}"
renderContextId="MiniShoppingCartContext"
>

<jsp:attribute name="modelChangedScript">
if(message.actionId in order_updated){

widget.refresh(renderContext.properties);
cursor_clear();

}

</jsp:attribute>

116 WebSphere Commerce Best Practices in Web 2.0 Store

<jsp:attribute name="postRefreshScript">
//miniShoppingCartJs.quickCartPostRefreshHandler();

</jsp:attribute>

<jsp:attribute name="renderContextChangedScript"></jsp:attribute>

</wcf:declareRefreshController>

Example 3-25 Declaring a Service in JSP

<wcf:declareService id="OrderCopy" actionId="OrderCopy"
url="AjaxOrderCopy" >

<jsp:attribute name="successHandlerScript">
for (var prop in serviceResponse) {

console.debug(prop + "=" + serviceResponse[prop]);
}

document.location.href="${PrepareOrderURL}&orderId="+serviceResponse.or
derId;

</jsp:attribute>

<jsp:attribute name="failureHandlerScript">
if(serviceResponse){

for (var prop in serviceResponse) {
console.debug(prop + "=" + serviceResponse[prop]);

}
ErrorHandler.formErrorHandle(serviceResponse, "", "");

}
</jsp:attribute>

</wcf:declareService>

Example 3-26 shows how to create a JSON object. This tag converts the
specified Java object to JSON. You can return this JSON object instead returning
complete content.

Example 3-26 Declaration of Json tag

<wcf:json object=”${RequestProperties}”>

Attention: We do not suggest using the above way of coding. This is only a
possible way of using the RefreshController, RenderContext, and Service. Use
this way only when you have limitations using JavaScript and you are not
concerned about the performance of your site.

 Chapter 3. Design and implement your Web 2.0 Store 117

3.2.2 The four scenarios

In this section, we give more explanation with code examples for each of the four
scenarios we are talking about. After this section, you will have a broad picture
about the scenarios and the flows and you can match these scenarios with any of
the page flows in you store, and add these features to your store.

Scenario 1: Refreshing an area in the page through Ajax
request to get the refresh contents

This scenario is for cases where users interact with the UI and areas of the page
are refreshed with a lot of new content. This scenario uses the render context,
refresh area, and refresh controllers API from the WebSphere Commerce Ajax
framework.

A render context object keeps track of client context information. It can trigger
renderContextChanged events whenever updates occur to any of the properties
in the render context object. The refresh controllers are automatically registered
to listen to the renderContextChanged events. The refresh controller logic
determines if the context change should trigger an update of a RefreshArea
widget. Therefore, in the refresh controller’s renderContextChangedHandler, use
the API to compare the context properties testForChangedRC to determine if a
context property that you are interested in has changed, and then trigger the
refresh of the RefreshArea.

Call the updateContext method in the RenderContext to load or reload the new
content in your page. Before making a call to the updateContext, set the correct
URL for the content snippet in the controller. If you do not set the URL, it takes
the default URL, which sets while Controller declaration. When the updater is
called it sends a request to the server and gets the RefreshJSP snippet and
replaces this content in RefreshArea. This mechanism remains the same
whether you use DataBeans or component services.

When using DataBeans, the snippet uses wcbase:useBean to populate the
bean, and gets the data from that bean object. If you are using the component
services, the snippet uses wcf:getData to get the services object.

Note: Excerpts from WebSphere Commerce Infocenter were used to provide
the following examples. The Infocenter Web page is as follows:

https://jtcid.hursley.ibm.com/commerce/index.jsp?topic=/com.ibm.comm
erce.madisons-starterstore.doc/refs/rsmmadisonajaxinteractions.htm

118 WebSphere Commerce Best Practices in Web 2.0 Store

https://jtcid.hursley.ibm.com/commerce/index.jsp?topic=/com.ibm.commerce.madisons-starterstore.doc/refs/rsmmadisonajaxinteractions.htm

As shown in Figure 3-3, the main page sends a request to the server for
RefreshJSP. The server compiles the refreshJSP, gets the required data either
from a DataBean or from component services, and returns the content to the
main page. It is now the RefreshController’s responsibility to replace the content
in that RefreshArea.

Figure 3-3 How Context change works when the snippet uses DataBean

Figure 3-4 How Context change works when the snippet uses component services

Web Application

Page

Browser

WebSphere Commerce Server

Request

Data bean

Refresh JSP
JSP

User interface
action

Legend

Component
ServicesWeb Application

User interface
action

Legend

Page

Browser

WebSphere Commerce Server

Request Refresh JSP
JSP

getData tag

 Chapter 3. Design and implement your Web 2.0 Store 119

This is a common scenario where some new content needs to load or reload in a
page. Best example for this scenario is MyAccount page and, pagination in
catalog pages, as shown in Figure 3-5. and Figure 3-6 on page 121.

Figure 3-5 Catalog pagination using ContextChange to load the next page content

120 WebSphere Commerce Best Practices in Web 2.0 Store

Figure 3-6 MyAccount main page using ContextChange to load the page content

In Figure 3-5 on page 120, the catalog page where we use RefreshArea to load
the items in the next page. Figure 3-6 has a main content part in the middle of the
page and various links (such as Personal Information, Address Book, Wishlist
and so forth) on the left sidebar. When the user clicks any of these links, it loads
that particular content in that main content area.

Example 3-27 on page 122 shows a RefreshArea for MyAccount center content.
If you want to show some initial content in the RefreshArea you can display that
content or import or include the snippet inside the RefreshArea element as
shown in Example 3-27 on page 122.

 Chapter 3. Design and implement your Web 2.0 Store 121

Example 3-27 RefreshArea <div> tag for MyAccount page

<div dojoType="wc.widget.RefreshArea"
id="MyAccountCenterLinkDisplay_Widget"
controllerId="MyAccountCenterLinkDisplay_Controller"
role="wairole:region" waistate:live="polite" waistate:atomic="false"
waistate:relevant="all">

<%out.flush();%>
<c:import

url="${jspStoreDir}UserArea/AccountSection/MyAccountCenterLinkDisplay.j
sp">

<c:param name="storeId" value="${WCParam.storeId}"/>
<c:param name="catalogId" value="${WCParam.catalogId}"/>
<c:param name="langId" value="${langId}"/>
</c:import>
<%out.flush();%>

</div>

This RefreshArea has a reference to MyAccountCenterLinkDisplay_Controller,
which is defined in Example 3-28.

Example 3-28 RefreshController and RenderContext declaration for MyAccount
centerlink

dojo.require("wc.render.common");

wc.render.declareContext(
"MyAccountCenterLinkDisplay_Context",
{workAreaMode: "myAccountMain"},
"");

wc.render.declareRefreshController({
id: "MyAccountCenterLinkDisplay_Controller",
renderContext:

wc.render.getContextById("MyAccountCenterLinkDisplay_Context"),
url: "",
formId: ""

,modelChangedHandler: function(message, widget) {
var controller = this;
var renderContext = this.renderContext;
console.debug("in model change " + message.actionId);

}

122 WebSphere Commerce Best Practices in Web 2.0 Store

,renderContextChangedHandler: function(message, widget) {
var controller = this;
var renderContext = this.renderContext;
if (controller.testForChangedRC(["workAreaMode"])) {

 console.debug("test:render context value changed");
 MyAccountDisplay.contextChanged = true; //When context

changed, we need create history tracking information
widget.refresh(renderContext.properties);

 }
}

,postRefreshHandler: function(widget) {
//alert("in post refreshhandler");
var controller = this;
var renderContext = this.renderContext;
console.debug("postrefreshscript is invoked");
ErrorHandler.hideAndClearMessage();

cursor_clear();
}

});

This RefreshController uses MyAccountCenterLinkDisplay_Context.
Example 3-29 shows how to set the URL to the controller and call the
updateContext for render

Example 3-29 Calling updateContext to update the center content of MyAccount page

wc.render.getRefreshControllerById("MyAccountCenterLinkDisplay_Controll
er").url = resultPageURL;

wc.render.updateContext("MyAccountCenterLinkDisplay_Context",
{workAreaMode:workAreaModeValue});

 Chapter 3. Design and implement your Web 2.0 Store 123

Scenario 2: Updating business objects in WebSphere
Commerce using Ajax, and refreshing multiple areas through
subsequent Ajax requests to get the refresh contents

This scenario best fits where the client sends an update request to the server
and, upon success, the page needs to be updated again. There are two parts to
this scenario:

� Make an Ajax call to a WebSphere Commerce controller command or
WebSphere Commerce service to update a business objects

� If the above part is successful, make subsequent Ajax get requests to
WebSphere Commerce views to retrieve the new HTML contents for each
area.

The following two diagrams (Figure 3-7 and Figure 3-8 on page 125) display the
interactions that occur between the client and the WebSphere Commerce server
in scenario 1.

Figure 3-7 Interaction diagram when calling WebSphere Commerce controller
commands

Action Forward

Web Application

Refresh JSP
JSP

Service
Response JSPJSP

Page

Browser

WebSphere Commerce Server

Get
Request

User interface
action

Legend

AJAX Controller
Command Action

Update
Request

Data bean

Controller
Command

124 WebSphere Commerce Best Practices in Web 2.0 Store

Figure 3-8 Interaction diagram when calling WebSphere Commerce Services

Making an Ajax call to a WebSphere Commerce controller command
or service

Before the client is able to call a WebSphere Commerce controller command or
service through Ajax, the WebSphere Commerce server must define that the
controller command or service can be called using Ajax. The must be done
because the regular programming model where you make a request and a
redirect to a new is implied by the WebSphere Commerce runtime.

It is simple to define a controller command or service to be available for Ajax-type
requests. Define a new struts-action entry in the struts-config XML file that
identifies the controller command or service as an Ajax type of action, as shown
in Example 3-30 on page 126. For example, to create a new Struts-action for the
InterestItemAdd controller command that can be called through Ajax, define this
in the Struts configuration XML file.

Action Forward

Web Application
Component
Services

Refresh JSP
JSP

Service
Response JSPJSP

Page

Browser

WebSphere Commerce Server

Get
Request

User interface
action

Legend
getData tag

AJAX Component
Service Action

Update
Request

 Chapter 3. Design and implement your Web 2.0 Store 125

Example 3-30 Commands

<action parameter="order.addOrderItem"
path="/AjaxOrderChangeServiceItemAdd"
type="com.ibm.commerce.struts.AjaxComponentServiceAction">

<set-property property="authenticate" value="0:0"/>
<set-property property="https" value="0:1"/>
</action>
<action
parameter="com.ibm.commerce.interestitems.commands.InterestItemAddCmd"
path="/AjaxInterestItemAdd"
type="com.ibm.commerce.struts.AjaxAction">
<set-property property="authenticate" value="0:0"/>
<set-property property="https" value="0:1"/>
</action>

In an AjaxAction-type URL, after the execution of the command or service, the
WebSphere Commerce runtime automatically forwards the request to one of two
well-known views to compose a JSON object containing the entries in the
response back to the client. The well-known views map to these JSPs, as shown
in Example 3-31.

Example 3-31 Well-known view mapping

*Runtime
Stores.war/AjaxActionResponse.jsp (success case)
Stores.war/AjaxActionErrorResponse.jsp (failure case)
* WebSphere Commerce Developer
stores/AjaxActionResponse.jsp (success case)
stores/AjaxActionErrorResponse.jsp (failure case)

With the Ajax struts-actions defined, you can use the wc.service.declare API in
your JavaScript code to define a service for each required URL that you need to
call in the page. This wc.service.declare API declares a JavaScript service object
that calls WebSphere Commerce Ajax type struts-actions. The service object
allows the client to decide when to run the Ajax call. Example 3-32 has the
following JavaScript code in the client to define a service object for calling
InterestItemAdd through Ajax.

Example 3-32 Service declaration for Ajax OrderItem add

wc.service.declare({
id: "AjaxAddOrderItem",
actionId: "AjaxAddOrderItem",
url: "AjaxOrderChangeServiceItemAdd",
formId: ""

126 WebSphere Commerce Best Practices in Web 2.0 Store

,successHandler: function(serviceResponse) {
ErrorHandler.hideAndClearMessage();

ErrorHandler.displayStatusMessage(ErrorHandler.errorMessages["SHOPCA
RT_ADDED"]);

}
,failureHandler: function(serviceResponse) {

if (serviceResponse.errorMessage) {

ErrorHandler.displayErrorMessage(serviceResponse.errorMessage);
}
else {

 if (serviceResponse.errorMessageKey) {

ErrorHandler.displayErrorMessage(serviceResponse.errorMessageKey);
 }

}
cursor_clear();

}

}),

Example 3-33 AjaxAddOrderItem Service Declaration for shopping cart page

wc.service.declare({
id: "AjaxAddOrderItem_shopCart",
actionId: "AjaxAddOrderItem",
url: "AjaxOrderChangeServiceItemAdd",
formId: ""

,successHandler: function(serviceResponse) {
//Now delete from cart..
document.location.href =

"AjaxOrderItemDisplayView?storeId=" + ServicesDeclarationJS.storeId
+ "&catalogId=" + ServicesDeclarationJS.catalogId + "&langId=" +
ServicesDeclarationJS.langId;

}
,failureHandler: function(serviceResponse) {

if (serviceResponse.errorMessage) {

ErrorHandler.displayErrorMessage(serviceResponse.errorMessage);
}
else {

 Chapter 3. Design and implement your Web 2.0 Store 127

 if (serviceResponse.errorMessageKey) {

ErrorHandler.displayErrorMessage(serviceResponse.errorMessageKey);
 }

}
cursor_clear();

}

}),

The above definition in Example 3-32 on page 126 does not trigger the Ajax call
to the WebSphere Commerce server. It defines an object. To invoke the Ajax call,
use the service invoke API shown in Example 3-34.

Example 3-34 Service invocation API

wc.service.invoke(“AjaxAddOrderItem”);

When the request completes successfully, the successHandler function defined
in the service declaration is executed and the following two modelChanged Dojo
events are published automatically by the framework:

� modelChanged
� modelChanged/<actionId>

Dojo will automatically notify all subscribed listeners.

Making Ajax calls to WebSphere Commerce views to get refresh
contents

The WebSphere Commerce Ajax framework provides two more JavaScript
objects, called refresh controllers and refresh areas, to complete this scenario.

You can designate any HTML element in your page as a refresh area. This
means that the content within the HTML tag is replaced by new contents from the
WebSphere Commerce server whenever the refresh controller associated with
the refresh area triggers the refresh request.

Example 3-35 Code defining a refresh area for mini shopping cart

<div dojoType="wc.widget.RefreshArea"
id="MiniShoppingCart"
widgetId="MiniShoppingCart"
controllerId="MiniShoppingCartController">

</div>

128 WebSphere Commerce Best Practices in Web 2.0 Store

A refresh area always has a refresh controller associated with it. Because refresh
controllers are automatically registered to listen to modelChanged and
renderContextChanged events, they are notified when these events occur. These
events evaluate the model changes or render context changes and decide if the
refresh areas that it manages need to be refreshed. Example 3-36 shows how to
define a refresh controller and renderContext.

Example 3-36 RefreshController context declarations for mini shopping cart

wc.render.declareContext("MiniShoppingCartContext",null,""),

wc.render.declareRefreshController({
id: "MiniShoppingCartController",
renderContext: wc.render.getContextById("MiniShoppingCartContext"),
url: "",
formId: ""

,modelChangedHandler: function(message, widget) {
var controller = this;
var renderContext = this.renderContext;
if(message.actionId in order_updated){

var param = [];
if(message.actionId == 'AjaxAddOrderItem'){

param.addedOrderItemId = message.orderItemId + "";
showDropdown = true;

}
widget.refresh(param);

}
else{

//alert(message.actionId +" not in order_updated..no
work...");

}
}

,renderContextChangedHandler: function(message, widget) {
var controller = this;
var renderContext = this.renderContext;

}

,postRefreshHandler: function(widget) {
var controller = this;
var renderContext = this.renderContext;

//The dialog contents has changed..so destroy the old dialog with
stale data..

 Chapter 3. Design and implement your Web 2.0 Store 129

destroyDialog();

if(showDropdown){
//We have added item to cart..So display the drop down with

item added message..

showMiniShopCartDropDown(null,"placeHolder",'quick_cart_container','ord
erItemAdded');

showDropdown = false;
}
cursor_clear();

}

}),

It is important to recognize that the URL defines the WebSphere Commerce
server URL to call to get the new HTML contents for the refresh area with which
that refresh controller is associated. The modelChangedHandler function is
performed by the WebSphere Commerce Ajax framework as soon as there is a
modelChanged event triggered by a successful wc.service.invoke() action. The
modelChangedHandler function checks that the model changed is actually for an
actionId that pertains to the refresh area. The widget.refresh() is the code that
makes an Ajax call to the WebSphere Commerce server for the URL specified in
the refresh controller. When the new HTML fragment returns from the server, the
framework destroys anything that exists in the current refresh area and replaces
the old contents with the new HTML fragment returned by the view.

Another useful function is the postRefreshHandler function of the refresh
controller. This is the last function that the framework calls after a refresh area is
successfully refreshed with new contents. It can be used to unblock the UI if it
was blocked during the Ajax calls.

Note: The refresh controllers need a render context object. In this scenario,
the render context is not used, but you do need to create a dummy render
context for each page to make use of refresh controllers and refresh areas.

130 WebSphere Commerce Best Practices in Web 2.0 Store

Figure 3-9 Mini shopping cart refresh area

As shown in Figure 3-10 on page 132, adding an item from the catalog page or
adding/updating item in Shopping Cart page are the best examples for this
scenario.

 Chapter 3. Design and implement your Web 2.0 Store 131

Figure 3-10 Shopping cart page refresh areas

When you add an item from a catalog page, it sends an Ajax service request to
the server, as shown in Example 3-34 on page 128. When the response comes
back, it goes to the success or failure handler based on whether the request was
successful or if it failed. If there are some messages showing the mechanism in
each of these handlers as shown in Example 3-32 on page 126 and
Example 3-33 on page 127. We have two different service declarations for
catalog pages and the shopping cart page, because we are handling the flows
differently in each page. Message showing and refreshing mechanisms are
different for these pages. The modelChangedHandler handler in the
RefreshController is called automatically once the service is successful and
response comes. We have conditions which checks for the right actionIds and
calls the refresh method.

132 WebSphere Commerce Best Practices in Web 2.0 Store

Scenario 3: Updating business objects in WebSphere
Commerce using Ajax, and returning all relevant update
information through JSON

This scenario can be achieved using Dojo API directly. There is no need to use
the WebSphere Commerce Ajax framework in this scenario. Use the
dojo.xhrPost API in conjunction with the traditional WebSphere Commerce
runtime programming model where a request is made to a controller command or
a service, and after execution the WebSphere Commerce runtime redirects the
request to whatever is specified in the URL or errorViewName parameters in the
original request. Example 3-37 provides sample code.

Example 3-37 Sending data as a JSON object using dojo.xhrPost

var parameters = {};
parameters.storeId = storeId;
parameters.langId=langId;
parameters.catalogId=catalogId;
parameters.catentryId=productId;
parameters.URL=”MiniCartContentsJSON”;

parameters.errorViewName=”MiniCartContentsJSON”;

dojo.xhrPost({
url: "OrderChangeServiceItemAdd",
handleAs: "json-comment-filtered",
content: parameters,
service: this,
load: refreshMiniCart,
error: function(errObj,ioArgs) {

alert("error");
}

});

This code snippet makes an Ajax request to the OrderChangeServiceItemAdd
service and redirects to the MiniCartContentsJSON view, which is mapped to a
JSP that creates a JSON object with the desired contents. In our scenario, we
assume that the same JSP handles the error scenario as we set the
errorViewName to the same MiniCartContentsJSON view. The client gains
control, and either the load or error function is called depending on success or
failure respectively.

 Chapter 3. Design and implement your Web 2.0 Store 133

The load function uses the JSON object and the DOM manipulation API to
replace the elements in the page that need to be updated with new data resulting
from the server update.

Scenario 4: Calling WebSphere Commerce server through
Ajax to gather new data as JSON, and refreshing the page
contents

This scenario can be achieved using Dojo API directly. There is no need to use
the WebSphere Commerce Ajax framework in this scenario. Use the
dojo.xhrPost API in conjunction with the traditional WebSphere Commerce
runtime programming model, where a request is made to a view that maps to a
JSP that creates a JSON object. On the load function of the xhrPost API, use the
DOM manipulation API to put the JSON contents in the Web page elements.

3.3 WebSphere Commerce Framework for Dojo widgets

The WebSphere Commerce Web 2.0 Store uses some Dojo widgets and some
extended Dojo widgets to create a versatile, customer-friendly store. These
widgets give a Web 2.0 look and feel to your store. This section explains how to
use the widgets, and where these widgets best fit in your store. It also provides
details how to implement your own widget. The current widgets are
highly-customizable, so the section explains how to customize the widgets and
use them in several places in the store. After reading this section you will be able
to use and customize the existing widgets, and are able to implement new
widgets to develop your Web 2.0 Store.

Note: An error will only be called when something happens in the
communication with the WebSphere Commerce server. Otherwise, a success
or exception from WebSphere Commerce code still goes to the load function.
It is the load function’s job to determine from the JSON object if the request
was successful or failed.

Note: You do not need to register any of these URLs as AjaxAction. This
scenario does not make use of the new WebSphere Commerce Ajax
framework. The URLs called in this scenario are defined as before.

134 WebSphere Commerce Best Practices in Web 2.0 Store

3.3.1 The Dojo widgets used for Web 2.0 Store

In this section we discuss some of the Dojo widgets we are using for Web 2.0
Store, and how they fit in to the store requirement. You will also find examples
and sample code for these widgets.

Drag and drop(dojo.dnd)
Drag and drop, DnD, is a typical feature in a rich client application. It has become
one of the most important features in the Web 2.0 Store. The Web 2.0 Store
implements the ability to drag items into the shopping cart and compare zone.
This section explains how the drag and drop feature works, and how it fits in our
store. Section 3.4, “Introduce Web 2.0 features into your Web 1.0 Store” on
page 183 shows how to add the drag and drop feature to the ConsumerDirect
store to drag products into the mini shopping cart, and how to update the mini
shopping cart dynamically after dragging an item.

In our store scenario, we have a source container where the product images and
information resides, and a target container where we drag the image from source
content. When you drag the item from the source container, check whether it is
dragged to the right target. When the item is dropped at the correct target, make
the required server requests and handle the response once the server side
updating has completed. To declare the source container, use
dojoType=dojo.dnd.Source, and for the target container. We have listed most
relative functions of drag and drop below.

onDndStart: function(source, nodes, copy)
This method is called to initiate the DnD operation. If you want to perform some
operations on drag start, you can subscribe those with this method. There are
three parameters:

� source: Object

This parameter is the source which provides items.

� nodes: Array

This parameter is the list of transferred items.

� copy: Boolean

This parameter copies items if it is set to true. This parameter move items
otherwise.

onDndSourceOver: function(source)
This method is called when detected a current source. you can use this to for
proper source check. This method takes one parameter, source: Object. This
parameter is the source which has the mouse over it.

 Chapter 3. Design and implement your Web 2.0 Store 135

onDndDrop: function(source, nodes, copy)
This method is called to finish the DnD operation. You can subscribe to a set of
statements or a method to this ondrop event. This method has three parameters:

� source: Object

This parameter is the source which provides items

� nodes: Array

This parameter is the list of transferred items

� copy: Boolean

This parameter copies items if set to true. This parameter moves items
otherwise.

destroy: function()
This method is called internally to prepare the object to be garbage-collected.
You can call this externally as well, when you are operating with multiple DnD
objects.

copyState: function(keyPressed)
This method will check the type of DnD operation for the current object. This
method copies items if set to true. This method moves items otherwise. It has
one parameter, keyPressed: Boolean, indicating the copy was pressed.

checkAcceptance: function(source, nodes)
This method checks the acceptance of the target with current drag item. It has
two parameters:

� source: Object

This parameter is the source which provides items.

� nodes: Array

This parameter is the list of transferred items.

deleteSelectedNodes: function()
This method deletes all selected items. This is useful when you want to perform
your operation on drop of items.

Note: This method is called internally when you drop an item. It checks the
existence of dragsourcetype in the acceptance types of the target and returns
the boolean.

136 WebSphere Commerce Best Practices in Web 2.0 Store

Sample usage of dojo.dnd.source
Example 3-38 shows how to use dojo.dnd.source in your code, and how to put
the drag items in this source. The main parameters set to the drag source are as
follows:

� id

This parameter indicates a unique ID to differentiate this with other drag
sources.

� jsId

� dndType

This is the drag source type. It is checked with acceptance types when the
item drops.

� copyonly

This parameter is flagged to indicate that the item should not be moved during
drag because it is a copy.

Example 3-38 Using dojo.dnd.source

<div dojoType="dojo.dnd.Source" jsId="dndSource"
id="${catEntryIdentifier}" copyOnly="true" dndType="${dragType}">

<div class="dojoDndItem" dndType="${dragType}">
<c:choose>

<c:when test="${!empty catEntryDescription.thumbnail}">
<a href="<c:out value="${catEntryDisplayUrl}"

escapeXml="false"/>" id="img<c:out value="${catEntryIdentifier}"/>"
class="itemhover"
onfocus="showPopupButton('${prefix}_${catEntryIdentifier}');">

<img src="<c:out
value="${imageFilePath}${catEntryDescription.thumbnail}"/>"

alt="<c:out
value="${fn:replace(catEntryDescription.name, search, replaceStr)}
${displayPriceString}" escapeXml="false"/>"

border="0"/>

</c:when>
<c:otherwise>

<a href="<c:out value="${catEntryDisplayUrl}"
escapeXml="false"/>" id="img<c:out value="${catEntryIdentifier}"/>"
class="itemhover"
onfocus="showPopupButton('${prefix}_${catEntryIdentifier}');">

<img src="<c:out value="${hostPath}"/><c:out
value="${jspStoreImgDir}" />images/NoImageIcon_sm.jpg"

 Chapter 3. Design and implement your Web 2.0 Store 137

alt="<c:out
value="${fn:replace(catEntryDescription.name, search, replaceStr)}
${displayPriceString}" escapeXml="false"/>"

border="0"/>

</c:otherwise>
</c:choose>

</div>
</div>

Example 3-39 shows how to use dojo.dnd.Target. The main parameters are as
follows:

� id

This parameter indicates a unique ID.

� accept

This parameter accepts the types that the drag target can accept.

� jsId

A target can have any number of accept types, so the target can accept multiple
drag item types from any number of drag sources. Similarly, the items in the drag
source can be dragged to any target available, but the target only accepts the
acceptable item types.

Example 3-39 Using dojo.dnd.Target

<div dojoType="dojo.dnd.Target" jsId="miniShopCart_dndTarget"
id="miniShopCart_dndTarget" accept="item, product, package, bundle" >

<div id="shopping-cart">
<div id="shopcartContainer">
<div dojoType="wc.widget.RefreshArea" id="MiniShoppingCart"

widgetId="MiniShoppingCart" controllerId="MiniShoppingCartController"
onmouseover="showMiniShopCartDropDown(event,'placeHolder','quick_cart_c
ontainer','orderItemsList');" role="wairole:region"
waistate:live="polite" waistate:atomic="true" waistate:relevant="all">

<%out.flush();%>
<c:import

url="${jspStoreDir}include/MiniShopCartDisplay.jsp">
 <c:param name="storeId" value="${WCParam.storeId}"/>

<c:param name="catalogId"
value="${WCParam.catalogId}"/>

<c:param name="langId" value="${langId}"/>
</c:import>

<%out.flush();%>

138 WebSphere Commerce Best Practices in Web 2.0 Store

</div>
 </div>

</div>
</div>

There are different kinds of handling methods to handle the process after an item
is dropped in the target. We show the method which best fits in to our Web 2.0
Store requirement. It does not mean that the operation is successful once the
acceptable item is dropped in the target area. In fact, the actual process starts at
this point. The next paragraph explains the handling of the process once the item
drops to the mini shopping cart target zone, as shown in Figure 3-11.

Figure 3-11 Dragging to the shopping cart

 Chapter 3. Design and implement your Web 2.0 Store 139

When the catalog item drops to mini shopping cart drop zone, it calls the set of
statements shown inExample 3-40, because we have subscribed this with the
DnD method shown in first line of Example 3-40. This subscribe process should
be a part of page load, so you can put these statements in dojo.onload().

Example 3-40 Handling an ondrop event

dojo.subscribe("/dnd/drop", function(source, nodes, copy, target){

target.deleteSelectedNodes();

if(target.parent.id=='miniShopCart_dndTarget'){
if(source.node.getAttribute('dndType')=='item' ||

source.node.getAttribute('dndType')=='package') {
categoryDisplayJS.AddItem2ShopCartAjax(source.parent.id

,1);
} else if(source.node.getAttribute('dndType')=='product' ||

source.node.getAttribute('dndType')=='bundle') {

showPopup(source.parent.id,'${WCParam.storeId}','${WCParam.langId}','${
WCParam.catalogId}',function(e){return e;},'miniShopCart_dndTarget');

}
}

});

The target subscribed function has the following parameters:

� source (drag source)

� nodes (drop nodes)

� copy

Setting this parameter to true will move the item. Set this parameter to false
and the item will not move.

� target (drop target)

When the item is dropped to the mini shopping cart, it will add the item image to
the target. We are not going to show the image as is, because the actual process
starts at this point. When the process completes successfully, we update the
content of the target(MiniShoppingCart) using RefreshArea.

In the first statement in the target method, we delete the selectedNodes. We then
check whether the item dropped at the right target (the mini shopping cart). If the
item dropped at the right target, we check for the dndType, There are different
processes for different dndTypes. For example, if the dndType is item/package,
we call for further processing, which adds an item to the cart. If the dndType is

140 WebSphere Commerce Best Practices in Web 2.0 Store

bundle or product, we call showPopup, which displays a pop-up window with
more details about the product, and allow user to do more selection.

In our store, we use the DnD feature in two places. We drag items to the cart and
we drag items to the compare zone as shown in Figure 3-11 on page 139 and
Figure 3-12. We only explained one flow. The other flow is similar.

Figure 3-12 Dragging to the compare zone

Tooltip(dijit.Tooltip)
We are using Dojo tooltip to show the alerts and error messages in the store. We
have slightly modified the way the tooltip behaves to match our requirements.
Instead of showing a tooltip on when hovering the mouse over it, we use it to
show an invalid input entry or an error message. The typical scenario for tooltip is
user entries in the UserRegistration page. The following list details some
important tooltip properties and methods:

 Chapter 3. Design and implement your Web 2.0 Store 141

� label: (String)

This is the text to display in the tooltip. Specified as innerHTML when creating
the widget from markup.

� showDelay: (Integer)

This is the number of milliseconds to wait after hovering over/focusing on the
object, before the tooltip is displayed.

� connectId: (String[])

This is the ID (or IDs) of domNodes to which you attach the tooltip. When the
user hovers over any of the specified DOM nodes, the tooltip displays.

open: function(/*DomNode*/ target)
This method will display the tooltip. You can pass a target node where you want
to display this tooltip. It has one parameter, target, which indicates the DomNode
where you want to display this tooltip.

close: function(){
This method hides the tooltip. This is a counter for open but this is not called
directly.

dijit.showTooltip = function(innerHTML,aroundNode)
This method is used to display tooltip with specified contents for a specified node.
It has two parameters:

� innerHTML: (String)

This parameter indicates the HTML content that you want to display in the
tooltip.

� aroundNode

This parameter indicates the node where you want to display the tooltip.

dijit.hideTooltip = function(aroundNode)
This method will hide the tooltip for a specified node. It has one parameter,
aroundNode, which indicates the node for which you want hide the tooltip.

Sample usage of tooltip
Example 3-41 on page 143 illustrates using the tooltip to show the error
messages in a store. In any page, when an error occurs due to wrong user input,
the formErrorHandleClient method is called. In turn, this method will show the
tooltip with the errormessage content against the node, as shown in Figure 3-13
on page 144.

142 WebSphere Commerce Best Practices in Web 2.0 Store

Example 3-41 Using a tooltip for a specific requirement

formErrorHandleClient:function(id,errorMessage){
// summary: This function will show the an error message tooltip
// around the input field with the problem.
// Description: This function will check for the emptiness of the

required filed and displays the
// "errorMessage" related to that field as a tooltip. The tooltip

will be closed on focus lost.
// id: The identifier for the filed in the form.
// errorMessage : The message that should be displayed to the user.

var element = dojo.byId(id);
if(element){

if (this.identifier != (id + "_tooltip")) {
this.identifier = id + "_tooltip";
var node = document.createElement('span');
node.innerHTML = errorMessage;
var tooltip = new dijit.Tooltip({connectId: [id]}, node);
tooltip.startup();
console.log("created", tooltip, tooltip.id);
element.focus();
tooltip.open(element); // force to have this for IE if the

error is on a link (i.e. <a>)
dojo.connect(element, "onblur", tooltip, "close"); // force

to have this for IE if the error is on a link (i.e. <a>)
dojo.connect(element, "onblur", tooltip, "destroy");
dojo.connect(element, "onblur", this,

"clearCurrentIdentifier");
}

}
}

 Chapter 3. Design and implement your Web 2.0 Store 143

Figure 3-13 Tooltip used as error message bubble

Dialog (dijit.Dialog)
We are using the Dojo dialog to show the ProductQuickInfo in the store, as
shown in Figure 3-14 on page 145. ProductQuickInfo is a pop-up window that
displays extra information about the product.

Upon hovering the mouse over a product image, a quickinfo button displays.
Clicking the button shows the product information pop-up window for that
product. For this scenario, the dijit.Dialog fits exactly as per the requirement.
Important methods in dijit.Dialog are described below.

show: function()
This method displays the dialog box for the current object.

hide: function()
This method hides the dialog box for the current object.

144 WebSphere Commerce Best Practices in Web 2.0 Store

Figure 3-14 Product Quickinfo popup

Sample usage of dialog
As per our store scenario, hovering the mouse over any product will display the
quickinfo button. Clicking that button displays a quickinfo pop-up window.
Example 3-42 on page 146 shows to hide the quickinfo button.

Note: The quickinfo button is just one option to show quickinfo pop-up
window. If you want to display the pop-up window on a different action, like
onmouseover on the product itself you can show the popup, In this case, this
step can be skipped, and you can have your own flow to show popup.

 Chapter 3. Design and implement your Web 2.0 Store 145

Example 3-42 Displaying and hiding the quickinfo button for an item

function showPopupButton(id){
var popupButtonStyle =

document.getElementById("popupButton_"+id).style;
popupButtonStyle.visibility="visible";

}

function hidePopupButton(id){
var popupButtonStyle =

document.getElementById("popupButton_"+id).style;
popupButtonStyle.visibility="hidden";

}

Example 3-43 shows sample content for a quickinfo pop-up window. The content
of the quickinfo pop-up window is enclosed in a dialog <div> tag. This is the
parent element for the content. The pop-up window contains the title, a close link,
and the body of the content. The close link is used to hide the pop-up window. In
the body, set the UI without filling in the data. It is loaded dynamically once the
pop-up window is called.

Example 3-43 Sample product quickinfo area

<div id="second_level_category_popup" dojoType="dijit.Dialog"
onkeypress="javaScript:hidePopup('second_level_category_popup',event);"
>

<div class="top_left"><img src="<c:out value="${jspStoreImgDir}"
/>images/trasparent.gif" /></div>
 <div class="top_right"><img src="<c:out value="${jspStoreImgDir}"
/>images/trasparent.gif" /></div>

<div class="header" id="popupHeader">
<div class="close"><a id="closeLink"

href="javascript:hidePopup('second_level_category_popup');"
onkeydown="javaScript:setbackFocus(event);"><div class="icon"><img
src="<c:out value="${jspStoreImgDir}${vfileColor}" />popup_close.png"
/></div><fmt:message key="QuickInfo_Close"
bundle="${storeText}"/></div>

</div>

<div class="bodyarea">
 <div class="bodycontent">
 <div class="title">

 </div>

146 WebSphere Commerce Best Practices in Web 2.0 Store

 <div class="purchase_details">

 </div>
 </div>
</div>

<div class="footer">
<div class="bot_left"></div>
<div class="bot_right"></div>

</div>
</div>

Clicking quickinfo calls the showPopup method with the following parameters:

� productId

This is the product for which the pop-up window will display information.

� storeId

� LangId

� catalogId

� event

This parameter can be a key press or mouse click event.

� targetId

� nodeId

Example 3-44 shows the sample code for the showPopup method.

Example 3-44 showPopup method sample code

function showPopup(productId,storeId,langId, catalogId,
event,targetId,nodeId,productActionList){

if(event == null || (event != null && event.type!="keypress") ||
(event != null && event.type=="keypress" && event.keyCode==13)){

resetPopUp();

// All the code related to ui content goes here

dijit.byId('second_level_category_popup').closeButtonNode.style.display
='none';

dijit.byId('second_level_category_popup').show();

 Chapter 3. Design and implement your Web 2.0 Store 147

// hides the DialogUnderlayWrapper component, the component that
grays out the screen behind,

// as we do not want the background to be greyed out
dojo.query('.dijitDialogUnderlayWrapper',

document).forEach(function(tag) {
tag.style.display='none';

});

var parameters = {};
parameters.storeId = storeId;
parameters.langId=langId;
parameters.catalogId=catalogId;
parameters.productId=productId;

dojo.xhrPost({
url: "GetCatalogEntryDetailsByID",
handleAs: "json-comment-filtered",
content: parameters,
service: this,
load: populatePopUp,
error: function(errObj,ioArgs) {

alert("error");
}

});
}

}

The flow is as follows:

1. The showPopup method sets the required styles.

2. The showPopup method calls the resetPopup method. The resetPopup
method resets the data if there is an existing pop-up window.

3. The show method is called, which opens the pop-up window. The window is a
simple UI without any data.

4. The next statement makes an Ajax request to the server to get data for the
pop-up window. It sets populatePopUp as the call back method.

5. When the server responds, populatePopUp is called automatically.

6. The populatePopUp method sets the data it got from the server to the pop-up
menu user interface. Example 3-45 on page 149 shows the sample code for
the populatePopUp method. This method retrieves the userinterface elements
by ID and sets the data to them, even the content for the actions in the pop-up
menu also handled by this method.

148 WebSphere Commerce Best Practices in Web 2.0 Store

Example 3-45 Populating the data once the xhr response comes

function populatePopUp(serviceResponse, ioArgs) {
var catEntryID =

serviceResponse.catalogEntry.catalogEntryIdentifier.uniqueID;
var isProductBean = false;
if(serviceResponse.catalogEntry.catalogEntryTypeCode=='ProductBean') {

isProductBean = true;
}
document.getElementById('productName').innerHTML =

serviceResponse.catalogEntry.description[0].name;
document.getElementById('productFullImage').src =

serviceResponse.catalogEntry.description[0].fullImage;
document.getElementById('productLongDescription').innerHTML =

serviceResponse.catalogEntry.description[0].longDescription + '
';

document.getElementById('productSKUValue').innerHTML =
serviceResponse.catalogEntry.catalogEntryIdentifier.externalIdentifier.pa
rtNumber;

document.getElementById('productMoreInfoLink').href =
serviceResponse.catalogEntryURL;

for (var i in serviceResponse.catalogEntryPromotions) {
document.getElementById('productPromotions').innerHTML =

serviceResponse.catalogEntryPromotions[i] + '
';
}

var addtoCart;
if(document.getElementById('addToCartLinkAjax')){

if(isProductBean) {
addtoCart = document.getElementById('addToCartLinkAjax');
addtoCart.href =

"JavaScript:categoryDisplayJS.Add2ShopCartAjax('entitledItem_"+catEntryID
+"',document.getElementById('productPopUpQty').value);
hidePopup('second_level_category_popup');";

} else {
addtoCart = document.getElementById('addToCartLinkAjax');
addtoCart.href =

"JavaScript:categoryDisplayJS.AddItem2ShopCartAjax('"+catEntryID+"',docum
ent.getElementById('productPopUpQty').value);
hidePopup('second_level_category_popup');";

}
}
if(document.getElementById('addToCartLink')){

if(isProductBean) {

 Chapter 3. Design and implement your Web 2.0 Store 149

addtoCart = document.getElementById('addToCartLink');
addtoCart.href =

"JavaScript:categoryDisplayJS.Add2ShopCart('entitledItem_"+catEntryID+"',
document.getElementById('OrderItemAddForm_"+catEntryID+"'),document.getEl
ementById('productPopUpQty').value);
hidePopup('second_level_category_popup');";

} else {
addtoCart = document.getElementById('addToCartLink');
addtoCart.href =

"JavaScript:categoryDisplayJS.AddItem2ShopCart(document.getElementById('O
rderItemAddForm_"+catEntryID+"'),document.getElementById('productPopUpQty
').value); hidePopup('second_level_category_popup');";

}
}

if (document.getElementById('addToWishListLinkAjax')) {
document.getElementById('addToWishListLinkAjax').href =

"JavaScript:categoryDisplayJS.Add2WishListAjax('entitledItem_"+catEntryID
+"'); hidePopup('second_level_category_popup');";

} else if(document.getElementById('addToWishListLink')) {
document.getElementById('addToWishListLink').href =

"JavaScript:categoryDisplayJS.Add2WishList('entitledItem_"+catEntryID+"',
document.getElementById('OrderItemAddForm_"+catEntryID+"'));
hidePopup('second_level_category_popup');";

}
if (document.getElementById('addToCompareLink')) {

document.getElementById('addToCompareLink').href =
"JavaScript:categoryDisplayJS.Add2CompareAjax('"+catEntryID+"', '" +
serviceResponse.productCompareImagePath +"', '" +
serviceResponse.catalogEntryURL+ "'); delayHidePopup();";

}
if (document.getElementById('replaceCartItemAjax')) {

document.getElementById('replaceCartItemAjax').href =
"JavaScript:categoryDisplayJS.ReplaceItemAjax('entitledItem_"+catEntryID+
"',document.getElementById('productPopUpQty').value);
hidePopup('second_level_category_popup');";

}
if (document.getElementById('replaceCartItemNonAjax')) {

document.getElementById('replaceCartItemNonAjax').href =
"JavaScript:categoryDisplayJS.ReplaceItemNonAjax('entitledItem_"+catEntry
ID+"',document.getElementById('productPopUpQty').value,document.getElemen
tById('ReplaceItemForm')); hidePopup('second_level_category_popup');";

}
}

150 WebSphere Commerce Best Practices in Web 2.0 Store

Example 3-46 shows how to handle the hide pop-up window. To hide the pop-up
window we make the display = none for the element instead of destroying the
pop-up window. This improves the performance by keeping the same instance of
the pop-up window and refreshing the content for different products.

Example 3-46 Hiding the pop-up window

function hidePopup(id,event){
if(event!=null && event.type=="keypress" && event.keyCode!="27"){

return;
}else{
var popupViewStyle = document.getElementById(id).style;
popupViewStyle.display="none";
}

}

When we click quickInfo, a pop-up window displays. It will try to load the data by
making a server call. If there is already an instance of a pop-up window, it might
show information about some other product. Making a call to the resetPopUp
method clears this old data. This method is called from showPopUp, as shown in
Example 3-47.

Example 3-47 Resetting the data content in the pop-up window

function resetPopUp() {
document.getElementById('productName').innerHTML = "";
document.getElementById('productPrice').innerHTML = "";
document.getElementById('productLongDescription').innerHTML = "";
document.getElementById('productDescriptiveAttributes').innerHTML

= "";
document.getElementById('productSKUValue').innerHTML = "";
document.getElementById('productMoreInfoLink').href = "";
document.getElementById('productPromotions').innerHTML = "";
if(document.getElementById('productPopUpQty')){

document.getElementById('productPopUpQty').disabled = false;
document.getElementById('productPopUpQty').value = "1";

}

document.getElementById('productAttributes').innerHTML = "";
if (document.getElementById('addToCartLinkAjax')) {

document.getElementById('addToCartLinkAjax').href = "";
} else if (document.getElementById('addToCartLink')) {

document.getElementById('addToCartLink').href = "";
}

if (document.getElementById('addToWishListLinkAjax')) {

 Chapter 3. Design and implement your Web 2.0 Store 151

document.getElementById('addToWishListLinkAjax').href = "";
} else if (document.getElementById('addToWishListLink')) {

document.getElementById('addToWishListLink').href = "";
}

if (document.getElementById('addToCompareLink')) {
document.getElementById('addToCompareLink').href = "";

}
if(document.getElementById('replaceCartItemAjax')){

document.getElementById('replaceCartItemAjax').href= "";
} else if(document.getElementById('replaceCartItemNonAjax')){

document.getElementById('replaceCartItemNonAjax').href = "";
}
categoryDisplayJS.selectedAttributes = new Object();
categoryDisplayJS.selectedProducts = new Object();

}

Example 3-48 illustrates the handling of a delayed hide for the pop-up window.
For a delayed hide, we call delayHidePopup, which sets the time-out for the
pop-up window.

Example 3-48 Setting the proper delay before hiding a pop-up window

function delayHidePopup() {

setTimeout(dojo.hitch(this,"hidePopup",'second_level_category_popup'),2
00);

}

152 WebSphere Commerce Best Practices in Web 2.0 Store

WCDialog (wc.widget.WCDialog)
WcDialog is the extension to dijit.Dialog. It is used to display the mini shopping
cart drop-down menu on the header, as shown in Figure 3-15. Specific functions
are required to show the mini shopping cart drop-down menu, hide on delay, and
show the list of items on mouse over again. To fulfill the requirement, we have
extended the digit.Dialog and created our own WcDialog.

Figure 3-15 MiniShoppingCart drop-down menu

 Chapter 3. Design and implement your Web 2.0 Store 153

Figure 3-16 ProductAddtoCart drop-down menu

show:function(event)
This method is an override of the Dojo dialog show method.

1. This will first Call Dojo dialog show method.

2. Make entire document to listen to onClick event and allow _onMouseClick
function to handle it.

3. Hide the title bar.

4. Start the timer to close this dialog after timeOut milliseconds if
closeOnTimeOut is set to true. If closeOnTimeOut == false, developer has to
explicitly call hide(). We never close this dialog.

5. Stop propagating the event further up the document.

154 WebSphere Commerce Best Practices in Web 2.0 Store

_position: function()
This function positions this dialog widget at the given x and y coordinates if
passed in.

This function positions this dialog widget relative to the relatedSource element
passed in. It can also display the dialog box below the relatedSource element.
The left margin is same for both.

If not passed, this will delegate it to parent Dojo dialog to position it at the center
of the window.

rePosition:function(source)
The dialog is already created and associated with some other source, reposition
it, and reset the timer.

hide:function()
This method will do some initialization operations. If a dialog box is associated
with two or more buttons or divs and if it is showing somewhere else, the timer
would be set. This method will reset that timer.

getDisplayStatus:function()
We use the displayStatus variable to indicate the current status of the dialog
object. If the dialog box is opened on the click of a button, this onclick event will
propagate and call the _onMouseClick function, which closes the dialog box.

We use the displayStatus variable to indicate the current status of the dialog
object. If the dialog box is opened on the click of a button, this onclick event will
propagate and call the _onMouseClick function, which closes the dialog box. If
we do not stop this event from propagating further up, then the dialog box will not
work properly. To avoid this situation we are using displayStatus as a flag and the
getDisplayStatus and setDisplayStatus are getter and setter methods for this
flag.

cancelCloseOnTimeOut:function()
This variable cancels the timer function that was setup to close the dialog box
after timeOut milliseconds.

This function is called from mousePress and onKey event handlers when the
event takes places inside the dialog box, so that we do not close the dialog box
when the user is using the dialog widget.

 Chapter 3. Design and implement your Web 2.0 Store 155

_onKey:function(event)
This method checks for the key press event and see if the event is inside dialog.
If so user is using the dialog box and so cancel the closeOnTimeOut event. Do
not close the dialog box unless user explicitly comes out of it by clicking ESC key
or by clicking mouse outside dialog area.

We have to handle it first and then delegate it to Dojo dialog, because Dojo will
stop propagating this event and we may not get the chance to handle this if Dojo
handles it first.

_onMouseClick: function(/*Event*/ evt)
This variable handles mouse click events.

This variable handles mouse click events. If the mouse is clicked inside the dialog
widget area, then the cancelling of the closeOnTimeOut feature is executed. This
will keep the dialog box from closing when it is scheduled to time out. If mouse is
clicked outside dialog widget area then close the dialog immediately.

Sample Usage
Example 3-49 shows how the MiniShopCartDropDown shows the quick details of
the current order items. The showMiniShopCartDropDown method will set the
coordinates for the dialog box. We then check for the content type to show either
a product add drop-down menu (as shown in Figure 3-15 on page 153) or to
show quick cart (as shown in Figure 3-16 on page 154) We then call the show
method to show the content of the drop-down menu. Internally, this drop-down
content is a refresh area, which will get refreshed after each model change (as
mentioned in “wc.widget.RefreshArea” on page 106). Example 3-50 on page 157
shows the sample code to destroy the dialog box when the content has been
changed, for a particular action, or on delay.

Example 3-49 Showing the mini shopping cart drop-down menu

function
showMiniShopCartDropDown(event,relativeId,contentId,contentType){

//Calculate the X and Y co-ordinates for the dialog. We do not want
it to be at the center of the screen.

var t = dojo.byId(relativeId);
var c = dojo.coords(t,true);
var x1 = c.x;
var y1 = c.y;

if(dropDownDlg){
dropDownDlg.x = x1;

156 WebSphere Commerce Best Practices in Web 2.0 Store

dropDownDlg.y = y1;
}

/* Dialog is not yet created..Create one */
if(!dropDownDlg){

var pane = document.getElementById(contentId);
dropDownDlg = new wc.widget.WCDialog({relatedSource: relativeId,

x:x1,y:y1},pane);
}

if(contentType == 'orderItemsList'){
dojo.byId("MiniShopCartProductsList").style.display = "block";
dojo.byId("MiniShopCartProductAdded").style.display = "none";

}
else if(contentType == 'orderItemAdded'){

dojo.byId("MiniShopCartProductsList").style.display = "none";
dojo.byId("MiniShopCartProductAdded").style.display = "block";

}
dropDownDlg.show(event);

// hides the DialogUnderlayWrapper component, the component that
grays out the screen behind,

// as we do not want the background to be greyed out
dojo.query('.dijitDialogUnderlayWrapper',

document).forEach(function(tag) {
tag.style.display='none';

});
}

Example 3-50 Closing the drop-down menu

function destroyDialog(){
//If data has changed, then we should destroy the

quick_cart_container dialog and recreate it with latest data
dojo.query('.dijitDialog', document).forEach(function(tag) {

if (dijit.byNode(tag).id == 'quick_cart_container')
dijit.byNode(tag).destroyRecursive();// or

dijit.getEnclosingWidget(tag).destroyRecursive();
 });
 dropDownDlg = null;

}

 Chapter 3. Design and implement your Web 2.0 Store 157

Dropdown(wc.widget.WCDropDownButton)
WcDropDownButton is the extension for dijit.form.DropDownButton. We are
using this to show the TopCategories menu in the header, as shown in
Figure 3-17. To show this kind of menu, we need functional requirements that
cannot be achieved directly through a Dojo widget. We therefore extended the
Dojo widget and created our own widget to fulfill the requirement.

Figure 3-17 TopCategory menu

_onKey: function(/*Event*/ e)
This method is called automatically when the user presses a key on the menu
pop-up node. This method calls the super method and will check for the key
codes and URL. If the current object is an URL, it will locate that URL.

158 WebSphere Commerce Best Practices in Web 2.0 Store

_onDropDownClick: function(/*Event*/ e)
This method is called automatically when the user clicks on the menu pop-up
node. This method calls the super method and will check for the key codes and
URL. If the current object is an URL, it will locate that URL.

Sample Usage
Example 3-51 shows how we are use the WcDropDownButton in combination
with the Dojo menu to show the TopCategories menu in the header. For each
iteration of the top level loop, we create the wc.widget.WCDropDownButton to
show the root icon and a dijit.Menu to hold the menu items for each TopCategory.
For each TopCategory, we run another loop, which creates dijit.MenuItem for
each SubCategory.

Example 3-51 WCDropDownButton usage in combination with Dojo menu

<div id="header_menu_dropdown" style="display:none;">
<c:forEach var="topCategory" items="${catalog.topCategories}"

varStatus="status">
<wcf:url var="CategoryDisplayURL" value="Category3">

<wcf:param name="langId" value="${langId}" />
<wcf:param name="storeId" value="${WCParam.storeId}" />
<wcf:param name="catalogId" value="${WCParam.catalogId}" />
<wcf:param name="top" value="Y" />
<wcf:param name="categoryId" value="${topCategory.categoryId}"

/>
</wcf:url>

<fmt:message key="DROPDOWN_ACTIVATE" bundle="${storeText}"
var="categoryTitle">

<fmt:param value="${topCategory.description.name}"/>
</fmt:message>

<div dojoType="wc.widget.WCDropDownButton"
url="${CategoryDisplayURL}" title="${categoryTitle}">

<c:out value="${topCategory.description.name}"
escapeXml="false"/>

<div dojoType="dijit.Menu" class ="dropdown">
<c:forEach var="subTopCategory"

items="${topCategory.subCategories}">
<wcf:url var="subTopCategoryDisplayUrl"

value="Category4">
<wcf:param name="catalogId"

value="${WCParam.catalogId}" />
<wcf:param name="storeId" value="${WCParam.storeId}"

/>

 Chapter 3. Design and implement your Web 2.0 Store 159

<wcf:param name="categoryId"
value="${subTopCategory.categoryId}" />

<wcf:param name="langId" value="${langId}" />
<wcf:param name="parent_category_rn"

value="${topCategory.categoryId}" />
<wcf:param name="top_category"

value="${topCategory.categoryId}" />
<wcf:param name="pageView" value="image" />

</wcf:url>
<div dojoType="dijit.MenuItem"

onClick="loadLink('${subTopCategoryDisplayUrl}');">
<c:out

value="${subTopCategory.description.name}"
escapeXml="false"/>

</div>
</c:forEach>

</div>
</div>

</c:forEach>

</div>

ScrollablePane(wc.widget.ScrollablePane)
The ScrollablePane widget can accept any content, and can scroll this content
left and right or up and down. ScrollablePane provides a scrolling effect for the
items or image content inside the widget. Each item in the content should be
inside a ContentPane widget. The user can scroll the items manually as well as
automatically. Passing the autoScroll parameter as true will scroll the items
automatically. There are two basic control buttons to allow users to manually
scroll the contents left and right as desired. Figure 3-18 on page 161 show how
we are using the scrollable widget to show the e-marketing spot on the store
homepage. This widget can be used at different places, and for different usages
(such as to show product associations and MerchandisingAssociations in
product and category pages, and to show the recommendations and special
offers in any of the pages). The style and behavior of the widget can be changed
by passing a few parameters during the declaration of the widget. This is
explained in detail in 3.3.3, “How to customize the Dojo widgets” on page 174.

160 WebSphere Commerce Best Practices in Web 2.0 Store

Figure 3-18 Scrollable widget

 Chapter 3. Design and implement your Web 2.0 Store 161

identifier: String
This property is the identifier of the widget.

size:Number
This property indicates the size of the widget. This is calculated based on
number of nodes to show and width of each item.

autoScroll: Boolean
This property is the flag that indicates whether to scroll automatically or
manually.

totalDisplayNodes: Number
This property indicates how many nodes to show at a time.

thumbHeight: Number
This property is the default height of a thumbnail image.

thumbWidth: Number
This property is the default width of a thumbnail image.

isScrollable: Boolean
This property uses smoothScroll to move between pages when set to true.

isHorizontal: Boolean
This property displays thumbnails horizontally if set to true. Otherwise,
thumbnails are displayed vertically.

sizeProperty: String
This property indicates the way it will animate.

totalItems:Number
This property indicates the total number of items in the queue.

currentRight:Number
This property indicates the current right item index after a animation.

currentLeft:Number
This property indicates the current left item index after a animation.

leftScroll:Boolean
This property indicates the scrolling direction.

162 WebSphere Commerce Best Practices in Web 2.0 Store

rightScroll:Boolean
This property indicates scrolling direction.

leftMost:Number
This property indicates the left-most item in the queue.

rightMost:Number
This property indicates the right-most item in the queue.

lock:Boolean
This property is the locking variable that locks the animation.

direction:Number
This property is the variable that shows the direction of animation. This can
be 1 or -1.

delay:Number
This property indicates the delay of animation.

state:String
This property indicates the state of animation.

altPrev:String
This property indicates alternative text for Previous and Next button images.

tempImgPath:String
This property indicates the image path for the widget images.

scrollHorizontal: function(/*Object?*/ args)
This property animate horizontal.

description: This method is used for horizontally scrolling
scrollVertical: function(/*Object?*/ args)

summary: This is to animate vertical.
This property is used indicate vertical scrolling.

pause: function()
This property pauses the animation. This method is used internally while
switching the directions.

 Chapter 3. Design and implement your Web 2.0 Store 163

play: function()
This property start sor restarts the animation. This method is used internally
to start or restart the animation after direction changes.

autoScroller: function()
This property is the method providing the auto scroll effect. This method calls
prev or next methods based on the direction and will keep auto scrolling.

appendItems: function(items)
This method appends items after a animation. This method is called after a
direction change to rearrange the items accordingly.

setDataStore: function(nodeType)
This method gets the nodetype and returns the nodes. This method takes the
nodetype as parameter and returns the nodes in the scroll area with that node
type.

next: function()
This method scrolls the right-side items. This method sets the direction of the
scroll and calls the showThumbs methods to scroll the right-side items.

prev: function()
This method scrolls the left-side items. This method sets the direction of the
scroll and calls showThumbs methods to scroll the left-side items.

adjustLeftScroll: function()
This method adjusts left-side nodes after an animation. This method will
remove the hidden nodes from the right-side and adds them to left-most
position.

adjustRightScroll: function()
This method adjusts right-side nodes after an animation. This method will
remove the hidden nodes from the left-side and adds them to right-most
position.

showThumbs: function(idx)
This method scrolls the items according to direction. This will animate the
items with a specified delay and scale in the given directions, and calls the
adjustment methods to get the nodes to adjust for further animations.

loadImage: function(data, position)
This method loads the items from the scrollable area. This method will create
new nodes with all data and append them to thumbNode, or insert them first.

164 WebSphere Commerce Best Practices in Web 2.0 Store

updateNavControls: function()
This property updates the navigation controls to hide or show them when at
the first or last images.

Example 3-52 shows how to use the ScrollablePane in your page. Each item in
the ScrollablePane should be a dijit.layout.ContentPane.

Example 3-52 Using ScrollablePane

<div id="id" dojoType="wc.widget.ScrollablePane"
autoScroll='false'
altPrev = '<fmt:message key="SCROLL_LEFT" bundle="${storeText}" />'
altNext = '<fmt:message key="SCROLL_RIGHT" bundle="${storeText}" />'>

<div dojoType="dijit.layout.ContentPane" class="imgContainer">
<HTML markup of the scrollable object>
</div>
<div dojoType="dijit.layout.ContentPane" class="imgContainer">
<HTML markup of the scrollable object>
</div>
</div>

RangeSlider(wc.widget.RangeSlider)
This widget defines a two handle slider that can be used to drive range selection
for an attribute. This is used to adjust price range selection in the Fast Finder
page. Figure 3-19 on page 166 shows the Fast Finder page with the RangeSlider
on the left sidebar.

 Chapter 3. Design and implement your Web 2.0 Store 165

Figure 3-19 Range Slider in the Fast Finder page

defaultStart: Integer
This indicates the default initial position for the first sliding handle.

defaultEnd: Integer
This indicates the default initial position for the second sliding handle.

166 WebSphere Commerce Best Practices in Web 2.0 Store

clickSelect: Boolean
This parameter allows the user to click Bar to move the sliding handles to the
nearest point where it was clicked. This parameter defaults to true.

activeDrag: Boolean
This parameter allows the sliding handle will move along with the mouse
pointer when user drags it, if it is false then handle will not move by dragging
the handle.

incrementValue: Integer
This parameter indicates the multiple that determines values. For example, if
it is set to 5, then the values will be in multiples of 5 (0, 5, 10, 15…100).

decimalPoints: Integer
This parameter indicates the number of decimal points to show on the values.
Defaults to 0.

showTooltip: Boolean
This parameter defines whether the tooltip is available. Setting this parameter
to true indicates the tooltip is available. Setting it to false indicates the tooltip
will not be available for display. The default is true.

showTooltipAllTime: Boolean
This parameter defines whether the tooltip is visible. Setting this parameter to
true indicates the tooltip is visible. Setting it to false indicates the tooltip is
visible only when the user hovers the mouse over the handles. The default is
true.

prefix: String
This parameter indicates the prefix for the 'upper' and 'lower' value for the
widget.

Suffix: String
This parameter indicates the suffix for the 'upper' and 'lower' value for the
widget.

currencyCode: String
This parameter indicates the currency code if the values are prices.

firstHandleTitle: String
This parameter is a translated string that is appended to the left handle and is
read by screen readers when the left handle has the focus.

 Chapter 3. Design and implement your Web 2.0 Store 167

secondHandleTitle: String
This parameter is a translated string that is appended to the right handle and
is read by screen readers when the right handle has the focus.

Sample Usage
Example 3-53 shows how we are using the RangeSlider in the Fast Finder page
to bring down the items by price range.

Example 3-53 RangeSlider in Fast Finder page

<div style="padding-left: 15px;"
id="horizontalRangeSelector"
dojoType="wc.widget.RangeSlider"

onChangeMade="filterWithPrice"startRange="<c:out
value='${minPrice}'/>"totalRange="<c:out value='${maxPrice -
minPrice}'/>" prefix="<c:out value='${prefix}'/>"

currencyCode="<c:out value='${CommandContext.currency}'/>"
defaultStart="0"
defaultEnd="0"
clickSelect="true"
snapToGrid="false"
activeDrag="true"
incrementValue="1"
decimalPoints="0"
showTooltip="true"
showTooltipAllTime="true"
firstHandleTitle="<fmt:message key="FF_FIRSTHANDLE_TITLE"

bundle="${storeText}"/>"
secondHandleTitle="<fmt:message key="FF_SECONDHANDLE_TITLE"

bundle="${storeText}"/>">
</div>

ProgressBar(dijit.ProgressBar)
We are using the ProgressBar in combination with the dialog box in the store
front. When the user performs an action triggering a server request, we show a
progress bar. This indicates that the process is ongoing. Once the response
comes back this is hidden. Figure 3-20 on page 169 shows what the progress
bar looks like in the store, and Example 3-54 on page 169 gives you the sample
code. Inside the "<div id="progress_bar_popup" dojoType="dijit.Dialog">" you
can have your own animated content to show.

168 WebSphere Commerce Best Practices in Web 2.0 Store

We use "cursor_wait" and "cursor_clear" to show and hide the progress bar.
These methods can be called from different places in your Javascript code,
Example 3-55 on page 170 and Example 3-56 on page 171 shows the full
definition of these methods.

Figure 3-20 Progress bar used in store front

Example 3-54 Using the progress bar in combination with the dialog box

<div id="progress_bar_popup" dojoType="dijit.Dialog">
<div class="top_left"><img src="<c:out value="${jspStoreImgDir}"

/>images/trasparent.gif" /></div>
<div class="top_right"><img src="<c:out value="${jspStoreImgDir}"

/>images/trasparent.gif" /></div>
<div class="header" id="popupHeader"></div>

<div class="bodyarea">

 Chapter 3. Design and implement your Web 2.0 Store 169

 <div class="bodycontent">
 <div class="title">

<fmt:message
key="PROGRESS_BAR_REQUEST_PROCESSED" bundle="${storeText}"/>

</div>

 <div id="progress_bar" style="width:400px" indeterminate="true"
dojoType="dijit.ProgressBar"></div>

 <div class="clear_float"></div>
 </div>
</div>

<div class="footer">
 <div class="bot_left"></div>
 <div class="bot_right"></div>

 </div>
</div>

Example 3-55 Showing the progress bar

function cursor_wait(checkForOpera) {
busyCount++;
var showPopup = true;

//Since dijit does not support Opera
//Some progress bar dialog will be blocked in Opera to avoid error
if(checkForOpera == true){

if(dojo.isOpera > 0){
showPopup = false;

}
}

//For all other browsers and pages that work with Opera
//Display the progress bar dialog
if(showPopup){

var popup = dijit.byId('progress_bar_popup');

if(popup != null){
//Hide the header for the close button
popup.closeButtonNode.style.display='none';

//Show the progress bar dialog
popup.show();

170 WebSphere Commerce Best Practices in Web 2.0 Store

//For accessibility: set the focus on the progress bar message
dojo.byId('progress_bar_title').focus();

}
}

}

Example 3-56 This method will hide the progress bar

function cursor_clear() {
busyCount = busyCount - 1;

if(busyCount < 1){
//Hide the progress bar dialog
var popup = dijit.byId('progress_bar_popup');
if(popup != null){

popup.hide();
}

}
}

3.3.2 Implementing your own Dojo widgets

This section explains how to implement your own Dojo widget. Before
implementing your own Dojo widget, determine your requirements and try to find
a Dojo widget that meets your requirements. Try to customize the widget so that
it fulfills your requirements. If you do not find a widget, use the following steps to
implement your own Dojo widget.

1. Select your package. Normally, the new Dojo widgets related to WebSphere
Commerce is under the WebSphere Commerce package. You can utilize the
Dojo widget under the WebSphere Commerce package or you may create
your own package.

2. Add your widget template HTML file under the wc\templates folder and add
the widget-related images under the wc\images folder.

3. Add your widget .js file under wc\widget.

4. The header section of the widget will contain Dojo.provide, which implies the
widget class name you are going to provide, followed by Dojo.require. These
statements will import the required support from other Dojo widgets.

The next statement is the class declaration, which contains className, super
class info, and the body:

dojo.declare(“className“ , <super class info>, {Body});

 Chapter 3. Design and implement your Web 2.0 Store 171

5. If you are extending the functionality from any specific widget, you can add
dojo.lang.extend(superclass,{body}). You need to have an inherits statement
in the header to appear as follows:

dojo.inherits(“className“,”superClassName”);

6. The top part of the body section will have the properties for the widget. You
can have a templateString property instead of the HTML template file in the
step 2 on page 171.

7. (Optional) After the class properties, you can add a constructor for your class.

8. After the constructor, the first method that is called automatically is
postCreate. From this method, you can do the initializations or can call other
methods that will set some basic properties for the widget.

9. Apart from the steps above, you can have your functional methods in the body
content.

Example 3-57 to Example 3-60 on page 173 gives you more information about
how to implement a widget. In these examples, we are explaining the
implementation steps for the Scrollable widget.

Example 3-57 Header section of the widget

dojo.provide("wc.widget.ScrollablePane");

dojo.require("dijit._Widget");
dojo.require("dijit._Templated");
dojo.require("dojo.parser");

Example 3-58 Widget declaration sample

dojo.declare("wc.widget.ScrollablePane",
[dijit._Widget, dijit._Templated],
{//body content will be here}

);

Example 3-59 Extension statements

dojo.inherits(wc.widget.ExtendedThumbnailPicker,dojox.image.ThumbnailPi
cker);
dojo.lang.extend()

dojo.lang.extend(dojox.image.ThumbnailPicker, {

imageStore: null,

request: null,

172 WebSphere Commerce Best Practices in Web 2.0 Store

isContainer: true,

thumbHeight: null,

thumbWidth: null,

getClickTopicName: function(arguments){
// This method can perform some functionlity here and will call

the super methods here like
// this.inherited("getClickTopicName",arguments);
// or it can use

this.superclass.getclickTopicName.call(arguments);
},

// and other extended and new methods will follow here

 });

Example 3-60 Properties declaration for the widget

identifier:null,
//size:Number
// Size of the widget , this will be calculated based on number of

nodes to show and wid of each item
size: 0,
//autoScroll: Boolean
//This is the flag which indicates whether to autoscroll or manual
autoScroll: false,
//delay:Number
//this the delay of animation
delay:2000,
//state:String
//this indicates the state of animation
state: null,
//altPrev:String
//alternative text for prev and next button images
altPrev: 'Scroll Left',
altNext: 'Scroll Right',
//templateString:String
//this is the template string for the widget
templateString:"<div dojoAttachPoint=\"outerNode\"

class=\"thumbOuter\">\n\t<div dojoAttachPoint=\"navPrev\"
tabindex=\"0\" class=\"navPrev\"><img src=\"\"
dojoAttachPoint=\"navPrevImg\" alt=\"\"/></div>\n\t<div

 Chapter 3. Design and implement your Web 2.0 Store 173

dojoAttachPoint=\"thumbScroller\" class=\"thumbScroller\"
valign=\"middle\" >\n\t <div dojoAttachPoint=\"thumbsNode\"
class=\"thumbsNode\"></div>\n\t</div>\n\t<div
dojoAttachPoint=\"navNext\" tabindex=\"0\" class=\"navNext\"><img
src=\"\" dojoAttachPoint=\"navNextImg\" alt=\"\"/></div>\n</div>\n",

//tempImgPath:String
//image path for the widget images
tempImgPath: dojo.moduleUrl("wc.widget", "images/trasparent.gif"),

3.3.3 How to customize the Dojo widgets

The widgets mentioned in 3.3.1, “The Dojo widgets used for Web 2.0 Store” on
page 135 are highly customizable and flexible. This section will explain how to
customize widgets to fit your requirements. You can reuse the widget at different
place in a different manner without modifying the actual code of the widget. We
have parameterized the widget properties that can be passed externally. The
styles ware taken from the CSS class that can be set in your CSS files, so you
can change the look and feel of the widget without modifying the actual code.
And if you want to add additional functionality to the widget, you can extend the
widget (as shown in Example 3-59 on page 172).

A regular scrollable widget with a horizontal scrolling effect will look similar to
Figure 3-21 on page 175. To show the scrollable widget with horizontal scrolling
effect, have CSS classes defined as shown in Example 3-61 on page 175 The
JSP code will look similar to Example 3-62 on page 177.

Note: The complete code for the Scrollable widget (ScrollablePane.js) is
available in Appendix A, “Additional material” on page 237.

174 WebSphere Commerce Best Practices in Web 2.0 Store

Figure 3-21 Regular scrollable pane used for homepage e-spot

Example 3-61 Scrollable widget with horizontal scrolling effect: CSS classes

#scroll_ad {
min-width:585px;

 Chapter 3. Design and implement your Web 2.0 Store 175

padding-right:0px;
margin:0px;
vertical-align:top;
height: 200px;

}
.thumbOuter{

border:0;
height: 200px;
width: 500px;

}
.thumbOuter div{

border: 0px;
}
.navPrev {

float:left;
cursor: pointer;
width: 20px;
height: 100%;
background:

url("../images/colors/color1/accessories_images_arrow_left.png")
no-repeat center center;

padding: 0px 0px 10px 0px;
}
.navNext {

float:right;
cursor: pointer;
width: 20px;
height: 100%;
background:

url("../images/colors/color1/accessories_images_arrow_right.png")
no-repeat center center;

padding: 0px 0px 10px 0px;
}
.thumbScroller {

border: 0px;
float:left;
overflow:hidden;
position: relative;
height: 100%;
padding: 0px 10px 0px 7px;

}
.thumbsNode{

border: 0px;
height: 100%;
float:left;

176 WebSphere Commerce Best Practices in Web 2.0 Store

}
.imgContainer {

float:left;
border: 0px;
width: 135px;
height: 100%;

}

Example 3-62 Scrollable widget with horizontal scrolling effect: JSP code

<div id="id" dojoType="wc.widget.ScrollablePane" autoScroll='false'
altPrev = '<fmt:message key="SCROLL_LEFT" bundle="${storeText}" />'
altNext = '<fmt:message key="SCROLL_RIGHT" bundle="${storeText}" />'>

<div dojoType="dijit.layout.ContentPane" class="imgContainer">
<!-- content goes here -->

</div>
<div dojoType="dijit.layout.ContentPane" class="imgContainer">

<!-- content goes here -->
</div>
<div dojoType="dijit.layout.ContentPane" class="imgContainer">

<!-- content goes here -->
</div>
<div dojoType="dijit.layout.ContentPane" class="imgContainer">

<!-- content goes here -->
</div>
<div dojoType="dijit.layout.ContentPane" class="imgContainer">

<!-- content goes here -->
</div>

</div>

The scrollable widget will fit in to other requirements of the store by modifying the
CSS class. In the product display page, to show the Merchandising Associations
as a single item at a time (as shown in Figure 3-22 on page 178), modify the
changes shown in example Example 3-63 on page 178 and Example 3-64 on
page 180.

 Chapter 3. Design and implement your Web 2.0 Store 177

Figure 3-22 Customized Scrollable to show one item in the product page

Example 3-63 CSS changes to single item scrolling

.thumbOuter{
border:0;
height: 150px;
width: 200px;

}
.thumbOuter div{

border: 0px;
}

178 WebSphere Commerce Best Practices in Web 2.0 Store

.navPrev {
float:left;
cursor: pointer;
width: 20px;
height: 100%;
background:

url("../images/colors/color1/accessories_images_arrow_left.png") no-repeat
center center;

padding: 0px 0px 10px 0px;
}

.navNext {
float:right;
cursor: pointer;
width: 20px;
height: 100%;
background:

url("../images/colors/color1/accessories_images_arrow_right.png")
no-repeat center center;

padding: 0px 0px 10px 0px;
}

.thumbScroller {
border: 0px;
float:left;
overflow:hidden;
position: relative;
height: 100%;
padding: 0px 10px 0px 7px;

}

.thumbsNode{
border: 0px;
height: 100%;
float:left;

}

.imgContainer {
float:left;
border: 0px;
width: 200px;
height: 100%;

}

 Chapter 3. Design and implement your Web 2.0 Store 179

Example 3-64 Scrollable to show one item at a time

<div id="id" dojoType="wc.widget.ScrollablePane" autoScroll='true'
totolDisplayNodes="1" thumbHeight = "150" thumbWidth="150" sizeProperty
= "width" delay = "500" altPrev = '<fmt:message key="SCROLL_LEFT"
bundle="${storeText}" />' altNext = '<fmt:message key="SCROLL_RIGHT"
bundle="${storeText}" />'>

<%out.flush();%>
<c:import

url="${jspStoreDir}Snippets/Marketing/ESpot/ScrollingProductsESpot.jsp"
>

<c:param name="emsName" value="HomePageFeaturedProducts" />
<c:param name="scrollable" value="true" />
<c:param name="catalogId" value="${WCParam.catalogId}" />

</c:import>
<%out.flush();%>

</div>

180 WebSphere Commerce Best Practices in Web 2.0 Store

If page needs to show a vertical scroll instead of horizontal, as shown in
Figure 3-23, the CSS and JSP code should look similar to Example 3-65 and
Example 3-66 on page 183.

Figure 3-23 Scrollable customized to scroll vertical

Example 3-65 CSS change for vertical scrolling

.thumbOuter{
border:0;
height: 150px;
width: 200px;

 Chapter 3. Design and implement your Web 2.0 Store 181

}
.thumbOuter div{

border: 0px;
}
.navPrev {

vertical-align:top;
cursor: pointer;
width: 20px;
background:

url("../images/colors/color1/accessories_images_arrow_up.png")
no-repeat center center;

padding: 10px 0px 0px 0px;
}

.navNext {
vertical-align:bottom;
cursor: pointer;
width: 20px;
background:

url("../images/colors/color1/accessories_images_arrow_down.png")
no-repeat center center;

padding: 10px 0px 0px 0px;
}

.thumbScroller {
border: 0px;
overflow:hidden;
position: relative;
height: 100%;

}

.thumbsNode{
border: 0px;
height: 100%;

}

.imgContainer {
border: 0px;
width: 200px;
height: 100%;

}

182 WebSphere Commerce Best Practices in Web 2.0 Store

Example 3-66 Vertical scrollable widget

<div id="id" dojoType="wc.widget.ScrollablePane" autoScroll='false'
isHorizontal ="false" totolDisplayNodes="1" thumbHeight = "150"
thumbWidth="150" sizeProperty = "height" altPrev = '<fmt:message
key="SCROLL_UP" bundle="${storeText}" />' altNext = '<fmt:message
key="SCROLL_DOWN" bundle="${storeText}" />'>

<%out.flush();%>
<c:import

url="${jspStoreDir}Snippets/Marketing/ESpot/ScrollingProductsESpot.jsp"
>

<c:param name="emsName" value="HomePageFeaturedProducts" />
<c:param name="scrollable" value="true" />
<c:param name="catalogId" value="${WCParam.catalogId}" />

</c:import>
<%out.flush();%>

</div>

3.4 Introduce Web 2.0 features into your Web 1.0 Store

This section provides instructions on how to introduce Web 2.0 elements into
your Web 1.0 Store. To have Web 2.0 capabilities, follow the prerequisites
described in 3.4.1, “Adding a Web 2.0 feature in your Web 1.0 Store” on
page 183. This section also reviews the relationships between the Dojo widgets
and the interactions that occur in this scenario. We add the ability to
drag-and-drop products into the mini-shopping cart to the ConsumerDirect store,
and have the mini shopping cart dynamically update with the new shopping cart
information.

3.4.1 Adding a Web 2.0 feature in your Web 1.0 Store

In this section, the goal is to become more familiar with the Web 2.0 Ajax
programming framework and Dojo widgets, and provide instructions to introduce
Web 2.0 elements into your Web 1.0 Store.

We specifically add the ability to drag-and-drop products into the mini-shopping
cart to the ConsumerDirect store, and have the mini shopping cart dynamically
update with the new shopping cart information.

This section also reviews the relationships between the Dojo widgets and the
interactions that occur in this scenario.

 Chapter 3. Design and implement your Web 2.0 Store 183

Determining the sections in the page that need to be updated
In this part, we identify the pages or fragments that need to be updated, as
shown in Figure 3-24. The goal is as follows:

1. Create a drop zone on top of the mini shopping cart.
2. Allow items to be dragged to the mini shopping cart.
3. Execute an Add to Cart-type command upon an item drop.
4. Refresh the mini shopping cart fragment once the item has been dropped.

Figure 3-24 Drag and drop parts in consumer direct store

Let us look at the page and see what we want to accomplish.

Let us identify the code changes, and the interactions involved
1. We have made the catalog images as drag sources which will have the drag

type associated with them.

2. A drop zone was created to receive the product images.

3. A function was written, which will execute on a drop.

4. Subscribe the javascript which does the client side process and invokes the
service with drop event.

184 WebSphere Commerce Best Practices in Web 2.0 Store

5. An Ajax Dojo service is defined, which is executed by the function and will
request a URL against the Commerce server. When completed successfully,
a Dojo event is created.

6. AjaxOrderChangeServiceItemAdd URL is defined in our Struts configuration.

7. Include all dojo require code in the jsp.

8. A Refresh Area was created around the mini shopping cart section of the
page, which is linked to the refresh controller.

9. A Render context was created and linked to the Refresh Controller widget on
the page.

10.A Refresh Controller was created, which will decide when it is appropriate to
execute a URL/view to be rendered into the refresh area.

11.A new view was created in our Struts configuration that corresponds to the
URL/view that will display the updated shopping cart.

12.Access control was implemented, which is required for access to our new
view.

Make the required code changes
1. In this section, we will access the drag and drop source to change the

thumbnail image into a draggable item. You must add the dojo.dnd.Source tag
on top of the image tag as shown in Example 3-67. We pass the parameters
copyOnly, which indicates that the image cannot be moved it can just be
copied. dndType which sets the type of the source, is checked during the
process once its dropped to the target.

Example 3-67

<div dojoType="dojo.dnd.Source" jsId="dndSource"
id="${catEntryIdentifier}" copyOnly="true" dndType="${dragType}">
<div class="dojoDndItem" dndType="${dragType}"
id="WC_CatalogEntryDBThumbnailDisplayf_div_2">
<c:choose>
<c:when test="${!empty catalogEntry.description.thumbNail}">
<a href="<c:out value="${catEntryDisplayUrl}" escapeXml="false"/>"
id="img<c:out value="${catEntryIdentifier}"/>" class="itemhover"
onfocus="showPopupButton('${prefix}_${catEntryIdentifier}');">
<img src="<c:out
value="${hostPath}${catalogEntry.objectPath}${catalogEntry.descripti
on.thumbNail}"/>"
alt="<c:out value="${fn:replace(catalogEntry.description.name,
search, replaceStr)} ${displayPriceString}" escapeXml="false"/>"
border="0"/>
/a>

 Chapter 3. Design and implement your Web 2.0 Store 185

</c:when>
<c:otherwise>
<a href="<c:out value="${catEntryDisplayUrl}" escapeXml="false"/>"
id="img<c:out value="${catEntryIdentifier}"/>" class="itemhover"
onfocus="showPopupButton('${prefix}_${catEntryIdentifier}');">
<img src="<c:out value="${hostPath}${jspStoreImgDir}"
/>images/NoImageIcon_sm.jpg"
alt="<c:out value="${fn:replace(catalogEntry.description.name,
search, replaceStr)} ${displayPriceString}" escapeXml="false"/>"
border="0"/>

</c:otherwise>
</c:choose>
</div>
</div>

2. In this section, we focus on the drop zone within a Web page. A drop zone
uniquely identify an HTML DOM element to be the desired drop zone. In
Figure 3-24 on page 184, the drop zone is around the mini shop cart. Thus,
we can define the drop in the CachedHeaderDisplay.jsp, which is the parent
JSP that includes the MiniShopCartDisplay.jsp. you can define the drop zone
area by updating
<Stores>\ConsumerDirect\include\styles\style1\CachedHeaderDisplay.jsp
with code shown in Example 3-68.

Example 3-68

<div dojoType="dojo.dnd.Target" jsId="miniShopCart_dndTarget"
id="miniShopCart_dndTarget" accept="item, product, package, bundle"
>
<%out.flush();%>
<c:import url="${jspStoreDir}include/MiniShopCartDisplay.jsp"/>
<%out.flush();%>
</div>

This statement will define the drop target with the accept type as item,
product, package and bundle. This means that all of these types are
acceptable and the user can drag and drop these types into the mini shop
cart.

3. Define the AddItem2ShopCartAjax method, which follow the process after
item drops in the target. This is where we invoke the actual service request. A
typical AddItem2ShopCartAjax method looks like Example 3-69.

Example 3-69

AddItem2ShopCartAjax : function(catEntryIdentifier , quantity)

186 WebSphere Commerce Best Practices in Web 2.0 Store

{
// summary : This function is used to add an item to cart
using ajax call.
// description : This function is used to add an item to
cart using ajax call.
// catalogEntryId: catentryid of the item.
// quantity: quantity of the item.
var params = [];
params.storeId= this.storeId;
params.catalogId= this.catalogId;
params.langId= this.langId;
params.orderId= ".";
params.catEntryId= catEntryIdentifier;
params.quantity= quantity;
var invalidQTY = new RegExp(/^\d*$/);
if(params.quantity == 0 || params.quantity == "" ||
!invalidQTY.test(params.quantity)){
ErrorHandler.displayErrorMessage(ErrorHandler.errorMessages['QUANTIT
Y_INPUT_ERROR']); return;}
if(this.ajaxShopCart){
wc.service.invoke("AjaxAddOrderItem", params);
this.baseItemAddedToCart=true;
}else{
wc.service.invoke("AjaxAddOrderItem_shopCart", params);
this.baseItemAddedToCart=true;
}
cursor_wait()

4. Once the item is dropped into the drop zone, call the actual functional
methods that perform server calls. Subscribe these methods with drop
operation, as shown in Example 3-70, so that these methods follow just after
the item dropped.

Example 3-70

function initShopcartTarget(){
dojo.subscribe("/dnd/drop", function(source, nodes, copy,

Note: We could have easily just called the regular OrderItemAdd through Ajax
rather than this new AjaxOrderChangeServiceItemAdd URL which calls the
new WebSphere Commerce order service. The wc.declare.service Ajax API
can be used to call any WebSphere Commerce command or service as long
as they are defined in the Struts configuration files as
type=com.ibm.commerce.struts.AjaxAction or
type=com.ibm.commerce.struts.AjaxComponentServiceAction.

 Chapter 3. Design and implement your Web 2.0 Store 187

target){
target.deleteSelectedNodes();
if(target.parent.id=='miniShopCart_dndTarget'){
if(source.node.getAttribute('dndType')=='item' ||
source.node.getAttribute('dndType')=='package') {
AddItem2ShopCartAjax(source.parent.id ,1);
} else if(source.node.getAttribute('dndType')=='product'
|| source.node.getAttribute('dndType')=='bundle') {
showPopup(source.parent.id,'${WCParam.storeId}','${WCParam.langId}',
'${WCParam.catalogId}',function(e){return
e;},'miniShopCart_dndTarget');
}
}
});
};
dojo.addOnLoad(initShopcartTarget);

We are subscribed the set of statements to DnD. Once the item is dropped
the subscribed method will get called. Finally, we have defined a function
AddItem2ShopCartAjax which makes the actual operations for add to cart ,
and in this method, we invoke the AjaxAddOrderItem service to add a quantity
of one of this product to the current pending order.

5. As mentioned in 3.2, “WebSphere Commerce Ajax framework for Dojo” on
page 105, the wc.service.declare will give you a service object which has a
reference to the server action and the success and failure handlers.
Example 3-71 shows a typical service declaration for the Add to Cart action.

Example 3-71

wc.service.declare({
id: "AjaxAddOrderItem",
actionId: "AjaxAddOrderItem",
url: "AjaxOrderChangeServiceItemAdd",
formId: ""
,successHandler: function(serviceResponse) {
ErrorHandler.hideAndClearMessage();
ErrorHandler.displayStatusMessage(ErrorHandler.errorMessages["SHOPCA
RT_ADDED"]);
}
,failureHandler: function(serviceResponse) {
if (serviceResponse.errorMessage) {
ErrorHandler.displayErrorMessage(serviceResponse.errorMessage);
}
else {
if (serviceResponse.errorMessageKey) {

188 WebSphere Commerce Best Practices in Web 2.0 Store

ErrorHandler.displayErrorMessage(serviceResponse.errorMessageKey);
}
}
cursor_clear();
}
}),

We have created an AjaxAddOrderItem Ajax service object. This service
called the AjaxOrderChangeServiceItemAdd URL using Ajax (rather than a
normal browser HTTP request) with the parameters in the wc.service.invoke
call of our drop event handler. After a successful execution of the Ajax
service, this widget will automatically trigger a modelChanged events handler
in the RefreshController. See 3.2.1, “Getting familiar with the Ajax Framework
extension” on page 106 to understanding how events are triggered and how
to register listeners.

6. Ensure that the AjaxOrderChangeServiceItemAdd URL is defined in our
Struts configuration as shown in Example 3-72.

Example 3-72

<Stores>\WEB-INF\struts-config-order-services.xml
<action parameter="order.addOrderItem"
path="/AjaxOrderChangeServiceItemAdd"
type="com.ibm.commerce.struts.AjaxComponentServiceAction">
<set-property property="authenticate" value="0:0"/>
<set-property property="https" value="0:1"/>
</action>

7. Import or define the Dojo code, so you do not have any problems loading the
widgets already defined in the example (as well as the ones used in the next
steps). Include the statements in the Example 3-73 after the <!--START
HEADER--> line of the CachedHeaderDisplay.jsp.

Example 3-73

<script type="text/javascript" src="="/wcsstore/dojo101/dojo.js
djConfig="true"></script>
<script type="text/javascript">
dojo.registerModulePath("wc", "../wc");
dojo.require("wc.service.common");
dojo.require("dojo.parser");
dojo.require("dojo.dnd.Source");
dojo.require("wc.widget.RefreshArea");
dojo.require("wc.render.RefreshController");
dojo.require("wc.render.Context");

 Chapter 3. Design and implement your Web 2.0 Store 189

</script>

8. Define the elements that allow the mini shopping cart to refresh. As
mentioned in 3.2, “WebSphere Commerce Ajax framework for Dojo” on
page 105, the Refresh Area widget is a section of the page that will get
updated with new content coming from a URL. Within the miniDropZone we
created earlier in the CachedHeaderDisplay.jsp, create a refresh area using
the example code in Example 3-74.Create the Refresh area which can be
reloaded on a successful drop. This refresh area should be added inside the
target to keep the Result area always a drop target.

Example 3-74

<div dojoType="dojo.dnd.Target" jsId="miniShopCart_dndTarget"
id="miniShopCart_dndTarget" accept="item, product, package, bundle"
>
<div dojoType="wc.widget.RefreshArea" id="MiniShoppingCart"
widgetId="MiniShoppingCart"
controllerId="MiniShoppingCartController" role="wairole:region"
waistate:live="polite" waistate:atomic="true"
waistate:relevant="all">
<%out.flush();%>
<c:import url="${jspStoreDir}include/MiniShopCartDisplay.jsp"/>
<%out.flush();%>
</div>
</div>

9. Define the Refresh Controller and Render. The Refresh area is linked to a
Refresh controller, which needs to be related to a render context. The Render
Context is simply a mandatory element that helps keeping track of a client
state, and is not used in this particular scenario. Add the following to the end
of the CachedHeaderDisplay.jsp to define the Render Context, we again use
the JavaScript to declare these objects as shown in Example 3-75.

Example 3-75

wc.render.declareContext("MiniShoppingCartContext",null,"");

10.Define the Refresh Controller. Add the URL declaration as shown in
Example 3-76 code to the CacheHeaderDisplay.jsp after the definition of the
Render Context (which was added in the previous step).

Example 3-76

<c:url var="miniShopcartURL" value="MiniShoppingCartView">
<c:param name="langId" value="${langId}"/>
<c:param name="storeId" value="${storeId}"/>

190 WebSphere Commerce Best Practices in Web 2.0 Store

<c:param name="catalogId" value="${catalogId}"/>
</c:url>

11.Declare refresh controller, as shown in Example 3-77, that takes care of
deciding when to refresh the mini shopping cart area.

Example 3-77

wc.render.declareRefreshController({
id: "MiniShoppingCartController",
renderContext:
wc.render.getContextById("MiniShoppingCartContext"),
url: "${miniShopcartURL}",
formId: ""
,modelChangedHandler: function(message, widget) {
var controller = this;
var renderContext = this.renderContext;
if(message.actionId in order_updated){
var param = [];
if(message.actionId == 'AjaxAddOrderItem'){
param.addedOrderItemId = message.orderItemId + "";
showDropdown = true;
}
widget.refresh(param);
}
else{
//alert(message.actionId +" not in order_updated..no
work...");
}
}
,renderContextChangedHandler: function(message, widget) {
var controller = this;
var renderContext = this.renderContext;
}
,postRefreshHandler: function(widget) {
var controller = this;
var renderContext = this.renderContext;
//The dialog contents has changed..so destroy the old dialog
with stale data..
destroyDialog();
if(showDropdown){
//We have added item to cart..So display the drop down with
item added message..
showMiniShopCartDropDown(null,"placeHolder",'quick_cart_container','
orderItemAdded');

 Chapter 3. Design and implement your Web 2.0 Store 191

showDropdown = false;
}
cursor_clear();
}
}),

In the example above, we have defined the Refresh Controller linked to our
Render Context. The id of the Refresh Controller is the controller id that the
Refresh Area is linked. The Web 2.0 framework will automatically execute the
modelChangedScript of the refresh controllers whenever a successful Ajax
service is completed. The framework has automatically created listeners in
the Refresh Controller for the modelChanged event. In this refresh controller
widget modelChangedScript method, we are going to make sure that the
successful Ajax service is actually the AjaxAddOrderItem before we ask the
Refresh Area widget to get its new contents. The widget.refresh() call will
cause our Refresh Area to refresh using the MiniShoppingCartView, which is
a JSP that returns the updated HTML to be inserted into the Refresh Area.
The refresh area contents are retrieved through Ajax.

12.Define the MiniShoppingCartView, which is executed when the refresh is
executed. We need to define this new view in our Struts configuration as
shown in Example 3-78. It will simply re-execute the MiniShopCartDisplay.jsp
file. Add the following definitions to the appropriate areas of the
<Stores>\WEB-INF\struts-config-ext.xml file.

Example 3-78

In the <global-forwards> element add:

<forward className="com.ibm.commerce.struts.ECActionForward"
name="MiniShoppingCartView/10551"
path="/include/MiniShopCartDisplay.jsp"/>

In the <action-mappings> element add:
<action path="/MiniShoppingCartView"
type="com.ibm.commerce.struts.BaseAction"/>

In the <global-forwards> element add:

<forward className="com.ibm.commerce.struts.ECActionForward"
name="MiniShoppingCartView/10551"
path="/include/MiniShopCartDisplay.jsp"/>

In the <action-mappings> element add:
<action path="/MiniShoppingCartView"

192 WebSphere Commerce Best Practices in Web 2.0 Store

type="com.ibm.commerce.struts.BaseAction"/>

13.Ensure that you have loaded the appropriate access control policy related to
the new view we have added to refresh the MiniShopCart. Add the content
from Example 3-79 in to a file web20policy.xml. Use the acpload utility to load
the following policy:

Example 3-79

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>
<!DOCTYPE Policies SYSTEM "../dtd/accesscontrolpolicies.dtd">
<Policies>
<Action Name="MiniShoppingCartView"
CommandName="MiniShoppingCartView">
</Action>
<ActionGroup Name="ConsumerDirectAllUsersViews"
OwnerID="RootOrganization">
<ActionGroupAction Name="MiniShoppingCartView"/>
</ActionGroup>
</Policies>

14.Copy the web20policy.xml file to
C:\WebSphere\CommerceServer60\xml\policies\xml

15.Run acpload from the C:\WebSphere\CommerceServer60\bin directory as
follows: acpload.bat mall build diet4coke web20policy.xml

Validating the changes
Once the code is changed and saved, ensure all changes are recompiled by the
system, and that the Struts and access control changes are picked up.

1. Stop the WebSphere Commerce server if it is running.

2. Clear the <temp>\ConsumerDirect directory if it is populated, to ensure the
changes are picked up.

3. Start the WebSphere Commerce server.

4. Navigate to the Furniture; Lounge Chairs category.

5. Drag an item into the shopping cart.

The mini shopping cart fragment at the top of the page should update to
reflect the new item added to the shopping cart. You have added Web 2.0
functionality to your Web 1.0 Store.

 Chapter 3. Design and implement your Web 2.0 Store 193

194 WebSphere Commerce Best Practices in Web 2.0 Store

Chapter 4. Testing and debugging your
Web 2.0 Store

This chapter describes best practices for testing and debugging the
functionalities of your Web 2.0 Store, and presents Web 2.0 Store optimization
best practices.

4

© Copyright IBM Corp. 2009. All rights reserved. 195

4.1 Testing your Web 2.0 Store

After you develop your store, test the functions and responses of the Web 2.0
Store to verify everything works as expected. Based on the use cases, test all
possible flows, including the exception flows, to ensure that the store is
functionally tested. Additionally, the store administrator and store management
should put the store administration tool to a test. From a performance
perspective, stress test with multiple users concurrently accessing the store and
cases with large objects (for example, a single user placing an order with large
quantity). Other tests to consider are as follows:

� Accessibility test
� Globalization test
� Usability test

In this section, we discuss common Web 2.0 Store tests.

4.1.1 Functional testing

Functional testing is the base of the testing life cycle. Only after you are sure the
Web 2.0 Store is functional can you consider the other tests. This section
presents some typical functional scenarios of the WebSphere Commerce Web
2.0 Store solution for your reference during functional testing.

Functional scenarios
The following list presents common functional scenarios to be tested.

� Register a user

There are two places where the registration functionality is provided:

– Store home page
– Order confirmation page

The customer can perform the registration operation when on the home page,
or on the order confirmation page after placing an order as a guest user.

To complete the registration, the customer needs to enter relevant information
and click a button for submission. If the customer enters an existing user ID
an error message displays, indicating this error. For some client-side
validation errors, for example, when the customer inputs an invalid character
for the age information, the error message should display beside the problem
field.

196 WebSphere Commerce Best Practices in Web 2.0 Store

� Manage account information

If the customer logs onto the store as a registered user, he is able to manage
his account information. This includes, for example, updating personal
information, updating the address book, removing an address, viewing order
history, creating new addresses, and so forth.

� Add item to shopping cart

There are two facets to this scenario:

– Add an item by clicking the Add to Cart button

The shopper clicks Add to Cart from the department page, category
page, product compare page, Fast Finder page, e-marketing spot, product
detail page, or tooltip of the product quickview. The item should be added
to the shopping cart successfully. At the same time, the mini shopping cart
details header on the top right corner of the page should be updated to
show the current number of items in the cart and the total price. At this
time, an order can be created successfully.

– Add an item by dragging an item to the mini shopping cart

The shopper selects an item and drags it to the mini shopping cart area on
the top right corner of the page. The item is added to the shopping cart.
The mini shopping cart details header on the top right corner of the page
should be updated to show the current number of items in the cart and the
total price. .

� View items in the shopping cart

A drop-down list containing items in the shopping cart, along with the price of
each item, is displayed. The drop-down list also contains a button for
check-out at the end. The product details page is displayed when the shopper
clicks on a specific item in the shopping cart.

� Update items in the shopping cart

A shopper can perform the following tasks in the shopping cart page:

– Add

The item is added to shopping cart and the shopping cart page is refreshed to
show the current number of items and total price.

– Delete

The item is removed from the shopping cart and the shopping cart page is
refreshed to show the current number of items and total price.

– Update

The shopping cart is updated and the shopping cart page is refreshed to
show the current number of items and total price.

 Chapter 4. Testing and debugging your Web 2.0 Store 197

� Choose shipping and payment methods

There are four facets to this scenario:

– Ship items to one address and single payment method

• Scenario: In the testing, you can put three or more items in the
shopping cart.

• Process: The process is as follows:

1. Click the Single Shipment button in the shopping cart.
2. Select one shipping address and shipping method for all items.
3. Choose single payment method.

• Results: The item details area is refreshed and all the items have the
same address and shipping method. The order is created successfully.

– Ship items to one address and multiple payment methods

• Scenario: In the testing, you can put three or more items in the
shopping cart.

• Process: The process is as follows:

1. Click the Single Shipment button in the shopping cart.
2. Select one shipping address and shipping method for all the items.
3. Choose multiple payment methods.

• Results: The item details area is refreshed and all the items have the
same address and shipping method. The order is created successfully.

– Ship items to multiple addresses and single payment method

• Scenario: In the testing, you can put three or more items in the
shopping cart.

• Process: The process is as follows:

1. Click the Multiple Shipment button in the shopping cart.
2. Select different shipping addresses and shipping methods for each

item.
3. Click the advanced shipping option and enter a requested shipping

date and shipping instructions.
4. Choose single payment method.

• Results: The item details area is refreshed and all the items are
arranged in tabular form, with each item having its own shipping
address and shipping method.

The order total is updated to reflect the changed charges.

Requested shipping dates and shipping instructions are entered
successfully.

The order is created successfully.

198 WebSphere Commerce Best Practices in Web 2.0 Store

– Ship items to multiple addresses and multiple payment methods

• Scenario: In the testing, you can put three or more items in the
shopping cart.

• Process: The process is as follows:

1. Click the Multiple Shipment button in the shopping cart.
2. Select a different shipping address and shipping method for each

item.
3. Click the advanced shipping option and enter shipping dates and

shipping instructions.
4. Choose multiple payment methods.

• Results: The item details area is refreshed and all the items are
arranged in tabular form, with each item having its own shipping
address and shipping method drop down list.

The order total is updated to reflect the changed charges.

Request shipping date and shipping instruction entered are
successfully.

Order is created successfully.

� Manage wishlist

The shopper can add item to a wishlist from a product detail page, tooltip of a
product quickview, e-marketing spot, search result, compare result, Fast
Finder, scrollable pane, customer service links, shopping cart, and check-out
page.

� Compare attributes of selected items

Items dragged to the compare zone can be compared by clicking a button in
the compare zone. The comparison page loads, showing the items
side-by-side with attribute name, values, and prices. The Add to Cart button
is displayed below each item.

In the product tooltip quickview, the Add to Compare button adds the current
item to the compare zone.

� Faster finder

The shopper can use Fast Finder to narrow product selections.

When a shopper performs this operation, the resulting product list narrows.
An option is given to change the display details and the layout of the products
displayed.

The resulting products narrow with only products in a selected price range
displayed. An option to change the display details and layout of the products
is displayed. A tooltip displays more information about the product.

 Chapter 4. Testing and debugging your Web 2.0 Store 199

4.1.2 Usability testing

Usability testing involves measuring the ease with which users can complete
common tasks in your store. When your store has Web 2.0 features, the
shopping experience should be more convenient, with greater usability than the
traditional Web 1.0 store.

Goals of usability testing
Usability testing is a black-box testing technique. The aim is to observe people
using the product to discover errors and areas of improvement. Usability testing
generally involves measuring how well test subjects respond in four areas:

� Performance

How much time, and how many steps, are required for people to complete
basic tasks? (For example, find something to buy, create a new account, and
order the item)

� Accuracy

How many mistakes did people make? (And were they fatal or recoverable
with the right information?)

� Recall

How much does the person remember afterwards, or after periods of
non-use?

� Emotional response

How does the person feel about the tasks completed? Is the person confident,
stressed? Would the user recommend this system to a friend?

The results of the first test can be treated as a base line or control measurement.
All subsequent tests can then be compared to the baseline to indicate
improvement.

Best practice on usability of the Web 2.0 Store
The following list details some usability aspects you should pay attention to when
testing the Web 2.0 Store:

� Consistent behavior from browser to browser

Your Web site should not restrict any of the features behave differently in
different browsers or in different versions of the same browser. Usually the
shopper can log onto the Web 2.0 Store using any browser installed on the
client machine. If one feature of your store happens to not work in a shopper’s
browser, it is with likely that the shopper will leave the online store and
abandon any shopping carts. To avoid this, in the testing phase, ensure that
all Web 2.0 Store functions behave similarly from browser to browser.

200 WebSphere Commerce Best Practices in Web 2.0 Store

Because you do not know what browser your shopper is using, test against all
main versions of each supported browser.

Dojo provides well-designed APIs and widgets shielding the complexity of
browser-specific logic in AJAX code, and if you are just using Dojo APIs or
widgets, you need not care about the browsers, and Dojo will handle it
properly. During development of your Web 2.0 Store, avoid writing the
browser-specific AJAX code yourself unless you cannot find any existing Dojo
APIs or widgets that you can use. We suggest you follow this best practice
because it is risky to write the browser-specific code, and the code may not
work well in those browsers you failed to address in your code.

You may experience formatting problems caused by browser differences that
are hard to solve because the HTML is dynamically generated. Usually, it is
inherited in JavaScript, and sometimes that the version of Dojo is not the
latest. The WebSphere Commerce Web 2.0 Store solution uses Dojo 1.0 (the
version with a lot of enhancements), upgrading from Dojo 0.x may resolve
some of these problems.

� Window resize

When the shopper is browsing your Web 2.0 Store, he can arbitrarily change
the size of the window of your Web 2.0 Store. The operation of window
resizing should not hurt any layout of display elements in your Web 2.0 Store.
If an item’s appearance becomes unpleasant to the shopper, they may leave
the site and abandon the shopping cart.

For example, the problem may occur after the shopper changes to a smaller
window size. The scroll bar appears, but when the shopper drags the scroll
bar the information that should display on the page is not shown well. The
scroll bar appears not to work. This issue conveys a message of poor design
to the shopper, and heavily degrades the shopper’s confidence in the site.

Another example may occur after the shopper maximizes the window. It is
expected that everything displays well as usual. But in some cases, the store
page will still display only the content shown before the window is maximized.
This is ugly.

Test the window resizing functionality to ensure your store behaves
consistently.

� Workstation resolution

Your shoppers will have a variety of screen resolutions when they browse
your Web 2.0 Store. You may want to notify the shoppers regarding the best
resolution to browse your site, though most shoppers are not willing to change
their resolution to meet your requirements. A best practice is to select a low
enough resolution for the majority of your customers screens. For a typical
B2C Web site, the decision is usually split between 800x600 and 1024x768
resolutions. Which one you select is based on your audience, but typically

 Chapter 4. Testing and debugging your Web 2.0 Store 201

1024x768 is the most widely used screen size according to the following Web
page:

http://www.hobo-web.co.uk/tips/25.htm

If you chose 1024x768 as your screen size, you should test at 800x600 to
ensure that your site can support that group of shoppers. Your site should, of
course, be tested to support higher screen resolutions as well.

� Friendly error message

When the shopper experiences your Web 2.0 Store, he may perform an
incorrect operation or incorrectly input required information. When such an
activity occurs, the request is sent to the server side, but an exception occurs
and the request cannot be successfully handled on the server side. The store
page should display the exact error, clearly informing the shopper what
happened. If the store page does not indicate an exception, the shopper may
assume everything works well and continue shopping. In some cases,
continuing shopping can cause unexpected behaviors and generate
out-of-control errors in the system. If the store page displays an unmeaningful
message to the shopper, it may confuse the shopper and the shopper may
abandon the shopping cart, because the shopper has no idea what he should
do to fix the error from his side. Make the exception or error message shown
to the shopper friendly. Avoid using the technical description in the error
message. The shopper may appreciate a message that is clearly understood
in the business domain. If you do not want to expose the exact error message
to the shopper, calmly share the situation with the shopper hoping they will
remain patient.

Another aspect to consider is that when an error happens, it is nice to have
the store automatically forward the shopper to a page where the shopper may
take action to correct the error. The page should provide specific instructions
on how to resolve the error and continue shopping. This feature is convenient
for the shopper and reduces the possibility of the shopper abandoning the
shopping cart.

� Appropriate indicator in the drop area

The drag and drop (DnD) feature is common in the Web 2.0 Store. In previous
chapters, we described what DnD is for in the WebSphere Commerce Web
2.0 Store solution and how it is implemented in typical scenarios. When the
shopper drags something to a drop area, there should be some indication that
the current area is an allowable drop area. In the WebSphere Commerce Web
2.0 Store solution, we use the DnD functionality provided by Dojo. If a
shopper tries to drag something into a non-allowable area, a red plus indicator
displays. When the dragged item is in an allowable drop area, a green plus
indicator will appear, at which point the shopper is allowed to complete the
activity.

202 WebSphere Commerce Best Practices in Web 2.0 Store

http://www.hobo-web.co.uk/tips/25.htm

If you are implementing the DnD feature in your store through Dojo DnD
functionality, this is not a major concern, because Dojo can handle it if you
correctly define the allowable drop area. If you are building the DnD feature
yourself, or are using another Web 2.0 technology, ensure there is an
easy-to-understand indication whether the mouse is in a desired drop area.
Otherwise, the shopper has no idea what exact area he can release the
mouse to complete the DnD operation.

� Consistent behaviors in multilingual and multi-cultural environment

If your Web 2.0 Store supports multiple languages, ensure the exact or
correct information is in each supported language. For example, the store
should show everything correctly when the shopper selects the double byte
language (Chinese, Japanese, Korean, and so forth) as the preferred
language. Your store page should show everything correctly in any supported
browsers when the shopper selects a BIDI (bi-directional) language as the
preferred language.

Carefully consider cultural differences, regulations, and the laws of the
corresponding country.

Hallway usability testing
Hallway testing (or hallway usability testing) is a software usability testing
methodology. The name of the technique, hallway, refers to the fact that the
testers should be random people who pass by in the hallway. The idea behind
hallway testing is that the testers who run the usability testing do not come from
in-house and trained groups. For your Web 2.0 Store test, find five or six people
who have not used this store previously to execute the usability testing.

To test the usability of your Web 2.0 Store, set up a usability test that involves
carefully creating a scenario, or realistic situation, where the tester performs a list
of tasks while observers watch and take notes. Several other test instruments
(such as scripted instructions, paper prototypes, and pre- and post-test
questionnaires) are used to gather feedback on the product being tested. For
example, to test the function of dragging an item to the shopping cart, a scenario
would describe a situation where a shopper searches for and then buys an item
in a product page. The aim is to observe how people function in a realistic
manner, so that developers can identify problem areas.

4.1.3 Performance testing

When your Web 2.0 Store functionality has fulfilled your requirements and it
works as expected, performance testing should be executed to ensure the
performance of your Web 2.0 Store.

 Chapter 4. Testing and debugging your Web 2.0 Store 203

The main purpose of the performance testing is to verify the following states:

� All functions and business scenarios either meet or exceed your requirements
� Microcosm, stress, scalability, and reliability tests meet your requirements
� (Optional) Performance is equal to, or better than, the original Web 1.0 Store

Performance test types and results
There are four performance test types, as listed below. Under each test type is
listed the criterion for judging a test successful, and the recommended test
results to be captured.

� Microcosm

– Pass criterion of microcosm sequential test

• No deadlocks in the database

• Microcosm finishes without finding any system errors and unexpected
application errors

• Test cases run successfully for the entire test duration (A time slice (for
example, five minutes) per scenarios)

– Pass criterion of microcosm concurrent test

• Do not exceed the max deadlock number (for example, 10)

• Do not exceed the max error rate (for example, 1%)

• Test cases run successfully for the entire test duration (for example,
one hour)

– Recommended test results to be captured

• Test result report (including test machines information and tuning
parameters, and so forth.)

• Baseline Report and Time Series Data (for example, using
SilkPerformer)

• CPU usage on all nodes

• Disk I/O on database node

• Deadlock report

• JVM™ logs on the application node

204 WebSphere Commerce Best Practices in Web 2.0 Store

� Stress

– Pass criterion

• Do not exceed the maximum error rate for transactions (for example,
1%)

• Do not exceed the maximum error rate for Web hits (for example, 0.1%)

• Numbers of users have reached its target

• Throughput reaches its target as defined for the individual test
scenarios

• No visible throughput degradation

• Test scenario runs successfully for a long time (for example, three
hours)

– Recommended test results to be captured

• Test result report (including test machines information and tuning
parameters, and so forth)

• Baseline Report and Time Series Data (for example, using
SilkPerformer)

• CPU usage on all nodes

• Disk I/O on database node

• Deadlock report

• JVM logs on the application node

� Scalability

– Pass criterion

• Do not exceed the maximum error rate for transactions (for example,
1%)

• Do not exceed the maximum error rate for Web hits (for example, 0.1%)

• Response time is less than target, on average, for each server function
that is executed (for example, six seconds)

• Test scenario runs successfully for a long time (for example, three
hours)

 Chapter 4. Testing and debugging your Web 2.0 Store 205

– Recommended test results to be captured

• Test result report (including test machines information and tuning
parameters, and so forth.)

• Baseline Report and Time Series Data (for example, using
SilkPerformer)

• Database logs on database node (for example, db2 snapshots,
db2diag.log)

� Reliability

– Pass criterion

• Do not exceed the maximum error rate for transactions (for example,
1%)

• Response time is less than target, on average, for each server function
that is executed (for example, six seconds)

• No memory leak or heap fragmentation problem found

• Test scenario runs successfully for long time (for example, 72 hours)

– Recommended test results to be captured

• Test result report (including test machines information and tuning
parameters, and so forth.)

• Baseline Report and Time Series Data (for example, using
SilkPerformer)

• CPU usage on all nodes

• Disk I/O on database node

• JVM logs on the application node

• Starting time, size, and execution time for utilities (for example,
DBclean, Cache invalidation, and ETL, and so forth)

Test data
The acceptance test can be run based on relatively small-sized data to reduce
the risk that a functional problem breaks the performance test. The following list
details the small-size sample data for the Web 2.0 Store acceptance test.

� 500 registered users
� 5 first categories
� 4 second categories
� 10 products
� 1 item

206 WebSphere Commerce Best Practices in Web 2.0 Store

If the acceptance test passes, a more formal performance test can be run in the
Web 2.0 Store.

The following list details the large-size sample data in the Web 2.0 Store test.

� Member

– Belong to the same buyer organization that has one default business
account

– Each registered user has four orders for a total of 170,000 completed
orders, 20,000 pending orders, and 10,000 canceled orders for registered
users. Each order contains three order items.

– Each registered user has two addresses

– 150,000 guest buyers with a total of 85,000 completed orders, 10,000
pending orders, and 5,000 canceled orders for the first 100,000 guest
users. Each guest user should have no more than one order and the other
guests has none at all. Each order contains two order items.

– Each guest user has two address.

� Catalog

– 10 top-level categories (50,000 catalog entries)
– 20 second-level categories
– 25 three-level categories
– 10 products
– 1 on hand item (quantity=1,000,000)

Web 2.0 Store test scenario best practice
This section details common potential performance risks of a store with Web 2.0
features, and presents a sample performance verification test scenario for your
reference.

Potential Web 2.0 Store performance risks
The following list details potential Web 2.0 Store performance risks:

� Because of the use of AJAX, asynchronous execution of many JSPs for a
given user at the same time may cause deadlocks. These deadlocks would
not be detected.

� The assumption that the response time of an individual weblet is independent
of the response time of another weblet may not be true.

� The assumption that we can scale down the workload (to ensure that CPU
does not reach 100%) would still result in valid response time testing may not
be true.

 Chapter 4. Testing and debugging your Web 2.0 Store 207

� The assumption that the WebSphere Commerce server operates on a
four-way CPU and threads may execute simultaneously.

� Execute a task to delete an item from shopping cart results in the following
asynchronous JSP calls:

– Refresh mini shopping cart contents
– Update cart total in the header
– Display eSpot

� Simultaneous execution of JSPs in different threads for the same user going
against the same database may result in deadlocks.

Sample test scenario
Table 4-1 on page 209 shows the sample Web 2.0 Store performance verification
test scenarios.

These sample test scenarios are organized by shopper type. The first column
listed three shopper types used in the testing:

� Registered Shopper
� Guest
� New Registered Shopper

The second column lists the scenario name and the third column lists the rate of
each scenario. The last column list the Detail flow of each scenario.

208 WebSphere Commerce Best Practices in Web 2.0 Store

Table 4-1 Sample Web 2.0 Store performance testing scenarios

Shopper typea Scenario Name Rate
b

Detail flowc

Registered Shopper

(20%)

Browse 70% Store Front → Log on → Browse

Add to Shopping Cart 5% Store Front → Log on → Browse → Add to Shopping cart

(Click the button to add to shopping cart - 50%)
(Drag and drop - 50%)

Process Order 5% Store Front → Log on → Browse → Add to Shopping cart
→ Shopping Cart Page → Process Order

(Click the button to add to shopping cart - 50%)
(Drag and drop - 50%)
(Click shipping address - 50%)
(Current shipping address - 50%)

Add to Wish List 5% Store Front → Log on → Browse → Add to Wish List

(Click the button to add to wishlist - 50%)
(Drag and drop - 50%)

Search Product 15% Store Front → Log on → Search Product

Guest

(60%)

Browse 70% Store Front → Browse

Process Order 5% Store Front → Browse → Add to Shopping cart →
Shopping Cart Page → Filling Address → Process Order

Add To Shopping Cart 5% Store Front → Log on → Browse → Add to Shopping Cart

Compare 5% Store Front → Browse → Compare

Search Product 15% Store Front → Search Product

New Registered
Shopper

(20%)

Browse 70% Store Front → Register → Browse

Add To Shopping Cart 5% Store Front → Register → Browse → Add to Shopping
Cart

(Click the button to add to shopping cart - 50%)
(Drag and drop - 50%)

Process Order 10% Store Front → Register → Browse → Add to Shopping
Cart → Shopping Cart Page → Process Order

(Click the button to add to shopping cart - 50%)
(Drag and drop - 50%)
(Click shipping address - 50%)
(Current shipping address - 50%)

Search Product 15% Store Front → Register → Search Product

 Chapter 4. Testing and debugging your Web 2.0 Store 209

4.2 Debugging your Web 2.0 Store

Debugging a Web 2.0 Store is not much different than debugging a Web 1.0
Store. The key to any type of problem determination is understanding the
behavior and interactions expected by the system, then breaking down and
isolating the problem.

This section summarizes the Web 2.0 interactions that take place in a typical
WebSphere Commerce store. It provides a model where you can easily isolate
problem areas to solve what appears to be a complex problem.

4.2.1 Web 2.0 interactions

A Web 2.0 Store has an increased level of complexity compared to a traditional
store when it comes to the interactions between the client and server. Figure 4-1
on page 211 illustrates the general flow of interactions in a Web 2.0 Store.

a. The percentage listed in this column is the percentage of this shopper type in all of the shoppers in
the testing scenarios.

b. This number represents the percentage that this scenario is found in all of the scenarios of the
current shopper type.

c. The information in parantheses represents the frequency with which the shopper performs that
action.

210 WebSphere Commerce Best Practices in Web 2.0 Store

Figure 4-1 General flow of interactions in a Web 2.0 Store

The Initial Page Request is what we are used to in a Web 1.0 store. It is the new
set of interactions in the Update and Refresh section that we want to focus on for
Web 2.0.

4.2.2 Breaking down the possible problem areas

Using the interaction model shown in Figure 4-1, you can easily see that there
are interactions created by the client's Web browser, and that the response or
data is generated and returned by the WebSphere Commerce server. The client
itself is responsible for making the necessary requests to the WebSphere
Commerce server and to populate and consume the responses by the
WebSphere Commerce server. This is where Web 2.0 can have problems.

The server processes the requests the same as in Web 1.0. Therefore, the
techniques to debug these server-side problems are the same. However, the
difficult part in a Web 2.0 Store is understanding where something has broken.
Any of the steps in the interaction can fail (server or client), but the visible result
for the user does not make it clear as to which step has the problem.

 Chapter 4. Testing and debugging your Web 2.0 Store 211

4.2.3 Tools to debug and isolate problems

The interaction model shows three areas to analyze and solve a problem:

� Client
� Server
� Interactions between the client and server.

Client-side debugging
Client-side debugging using the Dojo toolkit adds an extra dimension of
complexity. You can add traces to your JSP files, just like in a Web 1.0 scenario.
However, aside from using your regular JavaScript debugging techniques, you
also need to enable Dojo debugging on the client. The Dojo toolkit provides its
own debugging framework. When enabled, it dynamically adds traces to the
bottom of your HTML pages. Dojo debugging helps you troubleshoot why
dynamic actions are not initializing properly, or behaving differently than
expected. For example, if a product reveal does not display when mousing over a
product, the Dojo debugging statements help you isolate the issue. It also helps
monitor client-side events, such as a request being sent, and a response
triggering a client-side event.

To enable Dojo debug tracing, open the
<Stores>\<Web20Store>\include\JSTLEnvironmentSetup.jspf file and set
dojoDebugFlag to true as shown in the following code:

<c:set var="dojoDebugFlag" value="true"/>

By changing a .jspf file, you need to force all the JSPs to re-compile by deleting
the compiled files from the following code:

<WAS_profiledir>\temp\localhost\server1\WC\Stores.war\<Web20Store>

Server-side debugging
This is the same type of debugging that you perform in a Web 1.0 store. Enabling
WC_SERVER tracing helps you understand the requests that have been sent to
the WebSphere Commerce server. There are also specific WebSphere
Commerce component traces that can help debug issues that occur on the
server side. For example, if the Add to the Cart step fails, enable the
WC_ORDER trace to determine the cause of the failure.

Interaction between the client and server
To monitor the interactions, enable WC_SERVER tracing to understand whether
or not a request was made by the client. You can also validate the data in the
request. There are third-party tools or plug-ins that you can download to monitor
the traffic at the client side.

212 WebSphere Commerce Best Practices in Web 2.0 Store

Firebug is a plug-in to Firefox which can allow you to do this (and more). Using
Firebug, you can easily track requests and responses between a client and a
server. Firebug can also assist in detecting client side code defects and errors.

Firebug is available from the following Web page:

https://addons.mozilla.org/en-US/firefox/addon/1843

Figure 4-2 shows two requests that represent the interaction flow expected in the
Web 2.0 Store.

Figure 4-2 AJAX requests to the Commerce server

You can expand the details of each request to inspect the parameters in the
request. Firebug allows you to see the response data. Figure 4-3 shows the data
for the AjaxInterestItemAdd request, including the request parameters.

Figure 4-3 Requesting information of AjaxInterestItemAdd

 Chapter 4. Testing and debugging your Web 2.0 Store 213

https://addons.mozilla.org/en-US/firefox/addon/1843

Figure 4-4 shows the response corresponding to the AjaxInterestItemAdd
request.

Figure 4-4 Response information of AjaxInterestItemAdd

You can also use Firebug to inspect a page, allowing you to understand the
elements that make up a page and to identify the code that may be causing a
problem when rendering. Figure 4-5 on page 215 shows an example of
inspecting a section of a page. The corresponding parts on the page and in the
code are highlighted so that you can determine the HTML code that is rendering
the content.

214 WebSphere Commerce Best Practices in Web 2.0 Store

Figure 4-5 is an example of inspecting a section of a page to determine the
HTML code that is rendering content.

Figure 4-5 Inspecting a section of a page

4.2.4 Identifying and isolating the problem area

To help with isolating and identifying a Web 2.0 problem, you can monitor the
client-server interaction. By reviewing the interactions, you can see whether the
interaction that you expect actually occurred and whether the data within the
interaction was correct. Let us take an example of a DnD into the mini shopping
cart. You expect that once the product has been dropped into the mini shopping
cart, the item is added and the mini shopping cart will reflect this change.

Looking at the interaction model, you can quickly determine where a problem
may have occurred. The first interaction is a request from the client to the server,
calling a command to add the item to the cart. By monitoring the interaction flow,
you can isolate the problem by answering the following questions:

� Did the interaction occur?

If you do not see the request going to the server, the problem is confined to
the client code. In the case of the DnD example, analyze the drop zone and
the JavaScript code that executes the commands. In this case, enabling Dojo
client-side debugging will help you diagnose the problem.

 Chapter 4. Testing and debugging your Web 2.0 Store 215

� Did the request have the correct data?

Did the client send the correct data to the server? If the wrong data is sent to
the server, the problem is in the client because the server cannot return the
correct results given the wrong inputs. Go back to the client code and validate
the logic that sends or populates the parameters. In this case, Firebug or
similar technology will help you diagnose which parameters were sent in the
request. If the request got to the server, the application WC_SERVER trace
log will contain the request parameters.

� Did the response have the correct data?

Assuming the request has been sent correctly, with the correct request
parameters, did the server respond with the expected response? If not, there
is an issue on the server side. Debug this like any client and server interaction
similar to a Web 1.0 store interaction by checking the server logs, input and
output definitions for the action requested, and request and response
parameters.

� Did the result get consumed by the client?

If the server has sent the correct data back to the client, did the client act on
this response? If all the steps above are working, but you still have
unexpected results in the client, there is a client-side problem related to the
rendering of a response. Analyze the widgets that are defined to consume the
response, and whether they are set up and configured correctly. Enabling
Dojo client-side debugging may help you diagnose the problem.

In the interaction model, after the original command response is received, the
Web 2.0 model generally has a second request and response flow to render any
updates. When reviewing the questions above, if the second request does not
occur, this means that there is a problem in one of the following areas:

� In the “Did the result get consumed by the client?” question of the first
request, the result did not get consumed successfully by the client.

� In the “Did the interaction occur?” question of the second request, the new
request for updates did not go to the server.

In reality, both are one and the same. In both cases, the issue is confined to the
client, the interaction between the first response, and the creation of the second
request.

216 WebSphere Commerce Best Practices in Web 2.0 Store

4.2.5 The divide and conquer method

When you have isolated and identified the problem area, you can recursively
apply the algorithm to further focus on the problem.

Going back to our DnD example, let us assume the DnD does not create a
request (for example, failure of the “Did the interaction occur?” question above).
The expected behavior is that you can drag an item into the mini shopping cart,
the drop zone detects the drop, and the drop zone passes the required
parameters into a JavaScript function. This function executes a service to handle
this event. The service calls an URL on the server. You can ask the same
questions to narrow down why the DnD failed on the client side:

� Did the interaction occur?

Did the drop zone detect the item was dropped? The Dojo debug code can
help identify this. If the drop zone did not detect the interaction, review your
drop zone to ensure that it was defined correctly. Review your object to
ensure that it can be dragged.

� Did the request have the right data?

When the drop is detected, were the right parameters passed in? If they are
not correct, review how the object you are dragging is defined, or the way the
widget is gathering the parameters. The Dojo debug may help.

� Did the service get invoked?

If the service is not invoked, there is a missing relationship between the drop
zone event handler and the service defined to handle the event. Review both
to ensure that the event handler is invoking the service, and whether the
service is defined correctly.

To determine the answer to some of these questions, you may need to enable
client side traces, such as the Dojo debug, to facilitate the debugging of your
JSPs and JavaScript code.

The idea behind debugging methodology is to understand the interactions at a
high level, then divide the flow into sections, and use clues in the request and
response data to isolate the problem area. Iteratively, you can use this model to
focus on a problem area and figure out the root cause.

 Chapter 4. Testing and debugging your Web 2.0 Store 217

4.2.6 Debugging a sample problem

The following section illustrates how the debugging methodology can be applied
to a real-life problem. This example uses the steps above to identify the
component that failed, and allows you to narrow down the problem area.

Quick Cart refresh
In this scenario, when adding items to the cart through a DnD, the quickcart
section of the page does not refresh as expected. In addition, there is a
Communication Error, as shown in Figure 4-6:

Figure 4-6 Error page when adding to a shopping cart

Reviewing the SystemOut.log indicates no errors and no sign of failures at the
Application Server level. Based on this, there are no easily identifiable problems
on the Commerce server. In addition, the error within the Web browser is
insufficient to determine the root cause.

Without a debugging methodology, it may be difficult to understand whether you
need to debug a problem on the browser (for example, Dojo, JavaScript, and so
forth) or on the server. One may have started to try to debug this in the client,
because it had returned a communication error.

218 WebSphere Commerce Best Practices in Web 2.0 Store

Debugging the initial page request
To debug the error shown in Figure 4-6 on page 218, use Firebug and the
debugging methodology introduced above.

When we reproduce the issue by dragging one of the items, we can observe the
interactions that occur between the client and server.

Figure 4-7 outlines the set of requests that are generated by the DnD.

Figure 4-7 Requests to the server

Reviewing the interactions expected in this scenario,
AjaxOrderChangeServiceItemAdd is the request made when the item is dropped
into the quickcart. This maps to the Action/Event Request discussed in the
interaction model. The other three requests are related to different parts of the
page that refresh when the AjaxOrderChangeServiceItemAdd request responds
successfully. In this case, the AjaxQuickCartDisplay request is responsible for
refreshing the contents of the quickcart.

To isolate the problem, use the data from Firebug to implement the methodology
introduced earlier. Inspecting the results in Firebug, we can answer the “Did the
interaction occur?” question.

We can tell that the AjaxOrderChangeServiceItemAdd URL was called when we
dragged nd dropped the item into the quickcart. By clicking the + symbol to the
left of the AjaxOrderChangeServiceItemAdd request (Figure 4-8), we can see
the parameters in the request we made. Hovering the mouse on the request will
give us the exact URL called.

Figure 4-8 Detailed information of AjaxOrderChangeServiceItemAdd service

 Chapter 4. Testing and debugging your Web 2.0 Store 219

Inspecting the data in Figure 4-8 on page 219, we can be confident that the
correct URL is called when we drag the item into the quickcart, and that it is
being requested with the correct parameters. This answers the “Did the request
have the correct data?” question in the debugging methodology.

We have easily confirmed that the DnD in the client has worked as expected, and
the problem is not in the client at this step.

Inspect the response data by clicking the Response tab, as shown in Figure 4-9.

Figure 4-9 Response data

Based on this data, we can answer the “Did the response have the correct data?”
question in the debugging methodology.

We can see from the output that the response was successful. This confirms that
the problem did not occur on the server at this stage.

The next step in the interaction flow would be the client acknowledging this
response, and making a new request to the server which refreshes the quickcart.
This is the “Did the result get consumed by the client?” question in the debugging
methodology.

The AjaxQuickCartDisplay request that we see in Firebug is the
RefreshController Page Request in the interaction flow diagram in Figure 4-1 on
page 211. The fact that we can see this in Firebug confirms that the result was
consumed by the client.

We can now analyze the refresh interactions.

220 WebSphere Commerce Best Practices in Web 2.0 Store

Debugging the refresh page request
As we did in the initial request, we can use Firebug to analyze the refresh page
request.

We can answer the question as to whether the refresh request is using the
correct parameters by clicking on the + symbol next to the AjaxQuickCartDisplay
request, and selecting the Params tab, as shown in Figure 4-10.

Figure 4-10 Detailed information of AjaxQuickCartDisplay request

Based on the data in this request, it appears to be correct which answers the “Did
the request have the correct data?” question of the debugging methodology. The
issue is not in the client at this step.

Moving onto the next step of the methodology, eview the response data for the
AjaxQuickCartDisplay request by clicking the Response tab, as shown in
Figure 4-11 on page 222.

 Chapter 4. Testing and debugging your Web 2.0 Store 221

Figure 4-11 Response data of AjaxQuickCartDisplay request

Reviewing the debugging methodology, we need to determine whether the
response has the correct data.

Upon simple inspection, we see that the response does not have the correct
data, The JSP File Name in the example is the GenericError.jsp. In addition, by
inspecting the data in Firebug, as shown in Figure 4-12, we see that the error is
related to a specific server-side error, the AjaxQuickCartDisplay command is not
found.

Figure 4-12 Additional response data of AjaxQuickCartDisplay showing ERR CMD CMD NOT FOUND

Because the data sent to the refresh page request is correct, and the response
data is incorrect, we can be certain that the problem is isolated to the server side.
In addition, we can tell from this response that the problem is related to the
AjaxQuickCartDisplay command not being defined correctly.

Now that we have isolated the problem to the server, we can resolve this in a
similar fashion to any server-side problem you have encountered in a Web 1.0
store.

222 WebSphere Commerce Best Practices in Web 2.0 Store

4.3 Optimizing Web 2.0 Store

Web 2.0 development introduces new performance complexity. It is important
that JSP developers stay in tune with site architecture more so than ever before.
The original intention of AJAX applications was to make requests smaller and
quicker, which holds true. However, application designers are creating widgets
that interact more frequently with the server. Requests are smaller, but they
happen more often and response times are expected to be fast. Furthermore,
dynamic interfaces require increased processing power from client-side
browsers. The Web 2.0 performance optimization techniques focus more on
front-end development, where all the rules and principals for developing Web 1.0
applications still apply. Figure 4-28 outlines some issues to consider when
developing Web 2.0 storefronts. As a best practice, optimization should be
thought of at every level in your site architecture.

Figure 4-13 Web 2.0 optimization outline

 Chapter 4. Testing and debugging your Web 2.0 Store 223

This section consists of four parts:

� Reducing page weight by profiling Dojo code, reducing download file sizes,
and compressing data.

� General performance tips to use as a project reference.

� Advanced UI performance tips for specialized Web developers.

� Efficient handling of requests on the client side.

4.3.1 Page weight review and performance tips

Inspecting and optimizing the weight of a page is important for site performance
and is simple using tools such as Firebug or Tamper Data. The goal is to ensure
that page size is relatively small. 300 KB to 400 KB for all downloaded content on
a home page is a good average to follow. Aim for HTML to be 20 KB or less once
compressed. In this section, we use Firebug to review page weight. If you use
Table 4-2 as a reference of page size to client wait time, and the weight of a page
is 400 KB on a fast cable modem 1 Mbps, the page will take approximately three
seconds to load. With a dial-up connection, a 400 KB page may take 50 seconds
to load. Initial loads are always slower then subsequent loads, because Web
browsers cache content and do not reload it unless needed.

Table 4-2 Page weight

File size:

1 KB (one KiloByte) = 1,024 Bytes (approximately 1 thousand Bytes)

Data transfer size:

1 kbps = 1,000 bits per second

It has been shown in various studies that long wait times cause your audience to
abandon your site. According to Marketing Experiments, half of your visitors will
give up waiting after a 15 second wait time.

Connection
speed

20 KB Page Size 40 KB Page Size 100 KB Page Size

56 Kbps 2 sec 5 sec 13 sec

64 Kbps 2 sec 2 sec 12 sec

128 Kbps 1 sec 2 sec 6 sec

256 Kbps
(DSL/Cable)

<1 sec 1 sec 3 sec

224 WebSphere Commerce Best Practices in Web 2.0 Store

http://addons.mozilla.org/en-US/firefox/addon/966
http://www.marketingexperiments.com/improving-website-conversion/page-weight.html

See the following Web page for more information about Marketing Experiments
and page weighting:

http://www.marketingexperiments.com/improving-website-conversion/page-weight.html

As a best practice, you should target a five seconds wait time for a complex page,
and less for all other pages. Always keep in mind on average, the faster your
pages load, the more pages a shopper will visit, which gives you ample time to
push more creative marketing content to them.

Looking at the Madisons store in Figure 4-14, you can see that there are 81 file
requests just on the homepage of the Madisons store. Looking closely, you will
notice that a lot of these requests are made for Dojo-specific JavaScript files.
Dojo requests files dynamically as they are needed. Trips to and from the server
are costly, so we create a custom dojo.js file to contain all the code your
application needs to perform its actions. The end result is a larger dojo.js file, but
the number of subsequent file downloads are minimized.

Figure 4-14 File requests in the home page of the Madisons store

 Chapter 4. Testing and debugging your Web 2.0 Store 225

http://www.marketingexperiments.com/improving-website-conversion/page-weight.html

There are two key factors to keep in mind when reading the Firebug timeline:

� JavaScript file download time delay

If you look at the JavaScript files downloaded in Firebug (Figure 4-15), notice
that each file waits for the previous one to finish downloading, which causes a
huge time delay. If all your JavaScript includes are in the header of your JSP,
the resulting request will leave your visitors page blank until all the files are
loaded. The ideal behavior is to have minimal file includes in the header and
to cache them on the client’s Web browser. Creating a custom Dojo file
drastically minimizes the number of file downloads which is important.

� Static file loads from the cache

A dark gray timeline means the file was downloaded and a light gray timeline
means it was loaded from cache. See Figure 4-15. On a production system,
we want all static files loaded from cache on the second request. If a file is
downloaded and cached by a Web browser, the next time it requests the file, a
file request with the If-Modified-Since header is sent to the Web server. If the
file has not been changed, the Web server responds back with a 304 Not
Modified response and the Web browser uses the file it has in cache.

Figure 4-15 JavaScript files downloaded on home page

The benefit of minimizing the number of downloads and the size of them is
important. The following list details tasks to perform after code development,
when you are building your source for deployment to your application server and
Web server:

� Create a dojo.js build.
� Run CSSTidy on your cascading style sheets.
� Run ShrinkSafe on your JavaScript files.
� (Optional) Pre-compress your static files.

Creating a custom dojo.js file gathers all Dojo-related files in one single
JavaScript file and compacts it. This function can be incorporated into the build
process, or can be done by a developer and checked into a source control
repository. If you are customizing the Dojo library files, as a developer you want
to use the standard dojo.js file, which is approximately only 4 KB in size. After

226 WebSphere Commerce Best Practices in Web 2.0 Store

http://csstidy.sourceforge.net/
http://dojotoolkit.org/docs/shrinksafe

creating a dojo.js custom build, the file should contain all your source code and
be substantially larger on your production system. To create a custom
distribution, see the Dojo documentation article “Creating a Custom Distribution”
available at the following Web page:

http://manual.dojotoolkit.org/book/dojo-book-0-4/part-6-customizing-dojo
-builds-better-performance/dojo-build-system/creating-cust

The Madisons store is shipped with a default Madisons.profile.js file that defines
all the packages to build into your custom distribution.

When you have successfully built your new distribution, the best practice is to
place your new dojo.js file on both the application server and the Web server.
Even though your new distribution file contains all the code your application may
need, you should still copy all your Dojo files to both the application server and
Web server.

Figure 4-16 on page 228 shows the results of the Madisons home page given
that a custom dojo.js distribution file was created. Notice that the homepage now
makes 20 requests instead of 81. Approximately 80% of the user response time
is spent on the client side, reducing the number of subsequent requests,
resulting in a substantial performance boost.

The steps for you to create a custom distribution are as follows:

1. Open Windows Explorer, and change to the target directory (We call it
<Optimization>).

2. Open the following file in a text editor (UltraEdit):

<Optimization>\Dojo101-profile\buildscripts\profiles\madisons2.profile.js

This file lists all the Dojo packages that are built into your new Dojo
distribution. Minimize this list so your new Dojo package is small. If you leave
out a file you need, Dojo will download the file. So, if there are some packages
that are rarely used, you may not want to include them in this distribution.

3. When the custom distribution is built, you will find it in the following directory:

<Optimization>\Dojo101-profile\release.

4. Copy the WebSphere Commerce widgets to the Dojo build package so that
they can be included in the custom Dojo distribution for your store. Copy the
entire wc folder from <Stores>\dojo101 to <Optimization>\Dojo101-profile.

5. Open a DOS prompt and navigate to the
<Optimization>\Dojo101-profile\buildscripts directory.

Run the following command:

ant -DprofileFile=profiles/madisons2.profile.js clean release
intern-strings

 Chapter 4. Testing and debugging your Web 2.0 Store 227

http://manual.dojotoolkit.org/book/dojo-book-0-4/part-6-customizing-dojo-builds-better-performance/dojo-build-system/creating-cust

When finished, you will notice a new directory called:
<Optimization>\Dojo101-profile\release\dojo

The correct procedure is to use the whole folder when running in production. For
now, we are going to copy the
<Optimization>\Dojo101-profile\release\dojo\dojo.js file to
<Stores>\dojo101\dojo.js (replaces the file that is there).

You will notice that the homepage now only makes 20 requests instead of 81.
This is 4.05 times less. See Figure 4-16.

Figure 4-16 Requests after optimization

A helpful tool to analyze Web performance of your application is called YSlow.
This utility gives you hints and tips on optimizing each page on your Web site. It is
available from the following Web page:

http://developer.yahoo.com/yslow

Another key aspect of optimizing response time on the client side is to shrink the
size of the files sent down the wire. Two tools that will help you do this reliably are
CSSTidy and ShrinkSafe. Both tools should be run when building your
application for deployment. CSSTidy compacts your cascading style sheets and

228 WebSphere Commerce Best Practices in Web 2.0 Store

http://developer.yahoo.com/yslow
http://developer.yahoo.com/yslow

ShrinkSafe minimizes your JavaScript files. These tools may single out
programmatic errors or bad conventions in your code to help you improve the
reliability of your application.

� CSSTidy

– Compacts your cascading style sheets.
– Example usage:

csstidy Master1_1.css Master1_1-2.css

– Available from the following Web page:
http://csstidy.sourceforge.net/

� ShrinkSafe

– Shrinks JavaScript files

– Example usage:

java -jar custom_rhino.jar -opt -1 -c StoreAccordion.js >
StoreAccordion2.js 2>&1

– Available from the following Web page:

http://dojotoolkit.org/docs/shrinksafe

In this example, StoreAccordion.js is shrunk from 50 KB to 20 KB.

CSSTidy and ShrinkSafe will compact your static assets. However, at your
applications Web server tier, you will still want to enable compression algorithms
such as mod_deflate or mod_gzip. Compressing files will result in a substantial
performance boost and is always recommended. Two utilities that are often used
are:

� mod_deflate

This utility is available from the following Web page:

http://httpd.apache.org/docs/2.0/mod/mod_deflate.html

� mod_gzip

This utility is available from the following Web page:

http://sourceforge.net/projects/mod-gzip

As an example, using mod_deflate compression can reduce a 1 MB file down to
134 KB. The result is over a 7× reduction in size. An example of enabling these
compression modules can be found in the 4.3.2, “General performance tips” on
page 230.

 Chapter 4. Testing and debugging your Web 2.0 Store 229

http://httpd.apache.org/docs/2.0/mod/mod_deflate.html
http://sourceforge.net/projects/mod-gzip
http://dojotoolkit.org/docs/shrinksafe
http://csstidy.sourceforge.net/)
http://csstidy.sourceforge.net/
http://dojotoolkit.org/docs/shrinksafe
http://httpd.apache.org/docs/2.0/mod/mod_deflate.html
http://sourceforge.net/projects/mod-gzip

4.3.2 General performance tips

A vast array of performance optimization tips exist for boosting Web site
performance. The following list details some general performance tips that you
can refer to when you would like to build a high-performance store based on the
WebSphere Commerce Web 2.0 Store solution.

Development tips
During development, keep the following tips in mind:

� Reduce the number of HTML tags on your pages. This will decrease
download time and allow Dojo to parse your page quicker.

� Discourage using too many separate JavaScript files on a single page
because they load sequentially.

� Put most of your JavaScript in .js files. Do not put inline JavaScript in a JSP
unless you must. If the JavaScript does not alter the rendering of HTML, put it
as close to the bottom of the page as possible so it does not interrupt the
display speed of the page.

� Monitor all AJAX calls (as Debug) in hopes of minimizing the number of
requests to the server.

� Optimize Dojo widget initialization. See Figure 4-17. This allows Dojo to parse
your page faster.

Figure 4-17 Optimize widget initialization

230 WebSphere Commerce Best Practices in Web 2.0 Store

Build and deployment tips
During build and deployment, run CSSTidy and Dojo ShrinkSafe to optimize and
clean your cascading style sheets and JavaScript files.

Web server configuration tips
All configurations can be enabled and modified by editing the http.conf file in your
Web server.

Perform the following steps to enable and modify configurations:

1. Enable Web server compression by using code similar to that shown in
Figure 4-18.

Figure 4-18 Turn on Web server compression

2. Set file timeout for static assets to a reasonable amount. An example can be
seen in Figure 4-19.

Figure 4-19 Expire all static files after X number of days

 Chapter 4. Testing and debugging your Web 2.0 Store 231

3. Reduce the amount of disk access on your Web server memory cache. An
example is shown in Figure 4-20. Optimize the settings based on your
particular hardware.

Figure 4-20 Tune the memory cache

4. Ensure KeepAlive is set to true in your Web server. This is the default setting
for Apache because it makes a substantial difference in performance. Ensure
that your network routers are not ove throttling the number of client
connections to your site.

4.3.3 Advanced UI performance tips

Making pages load snappy can be broken up into a science. The goal is to have
visuals display as soon as possible, which gives the impression of a quicker page
load. Keep in mind that pages load sequentially. For example, Figure 4-21 on
page 233 shows a page structure to be rendered.

232 WebSphere Commerce Best Practices in Web 2.0 Store

Figure 4-21 A sample page

What does this mean? Move all your <script> includes out of the <head> area if
they are not needed at that level. Reduce the number of inline script sections in
your code, or move them to the bottom of the page. This allows the top of the
page to display to the shopper quicker.

Also, Web browsers seem to limit the number of simultaneous threads per host
name. If you could increase the number of parallel downloads, download speed
is improved. For example, if all your images reference the same domain as the
rest of your content, you will have four parallel downloads. However, if you set up
multiple sub-domains (such as: images1.domain.com, images2.domain.com,
and images3.domain.com), and you split all the files among the different domain
names, you trick the Web browsers into downloading more files in parallel.
Further details about this approach can be found at the following Web page:

http://www.websiteoptimization.com/speed/tweak/parallel

Another technique that may make coding your JSPs easier and perform better is
to have a thin layer combining all JavaScript files into a single download. More
information can be found at the following Web page:

http://rakaz.nl/extra/code/combine

Pre-compressing all your JavaScript files and style sheets may give you slightly
better performance. However, it is more difficult to configure. If you want to
pre-compress and use mod_deflate, ensure you compress all your files and use
mod_rewrite tags to redirect supporting browsers to the gzip content. Some
rewrite rule examples have Apache check the file system to determine if each
static file is compressed. You do not want to do this on a high-performing Web
server. Pre-compression is not always needed if Web server caching is enabled
(as mentioned in 4.2, “Debugging your Web 2.0 Store” on page 210) and large
enough to hold all your JavaScript assets. If using mod_gzip, pre-compression
functionality is supported automatically.

 Chapter 4. Testing and debugging your Web 2.0 Store 233

http://www.websiteoptimization.com/speed/tweak/parallel
http://rakaz.nl/extra/code/combine

4.3.4 Efficiently handling requests on client side

The typical AJAX-enabled features include asynchronous request processing
between client side and server side, and the multiple requests issued at the
same time. This section explains how to issue and manage multiple requests and
responses of the same page.

Issuing requests in parallel or serially
In the Web 2.0 Store, because of the use of asynchronous requests, the store
page running in the shopper’s Web browser is more interactive, responds quickly
to inputs, and sections of pages can be reloaded individually. Shoppers may
perceive the shopper flow to be faster or more responsive. Due to this reason,
there are usually multiple requests sent to the server side in the same page. To
ensure the Web 2.0 Store page behaves correctly (with a quick response in
multiple requests that interact with the server side), it is important to carefully
design when to serialize these requests in the same page and when these
requests can be executed in parallel. Although AJAX supports issuing multiple
requests at the same time, if the requests compete against the same object, the
page needs to serialize the requests to avoid contention.

If the requests are for querying or getting the objects from server side for display
purposes, you can issue the parallel requests to the server side. Another
scenario where you can send the requests in parallel is when each request is
trying to update to a different object and while multiple requests are trying to
update data on the server side simultaneously. For example, reading catalog
datawhen browsing the catalog or product information usually involves multiple
requests to the server side to retrieve the corresponding catalog information
displayed to the shopper. This is the query operation so it should not cause any
harm when you issue these parallel requests to load the product information.

When the shopper is trying to add the item(s) to the shopping cart, the involved
requests are actually updating the same business object current order. If these
requests are executed in parallel, they are competing to update the same order.
Your Web 2.0 Store should understand this and control these types of requests
so they execute in a serial manner to avoid contention on the server side.

Co-ordination in multiple requests/responses
The previous section describes asynchronous page refreshing and how to
implement it in the WebSphere Commerce Web 2.0 Store solution. Considering
the case where there are multiple requests sent to the server side to update
different business objects in one page, the order these response returned from
the server side and received by the client side is uncertain. For example, in the
product information page, the shopper can click a button to add the current item
to the shopping cart. At the same time, the shopper can click another button to

234 WebSphere Commerce Best Practices in Web 2.0 Store

add the item to the wishlist. These two requests are sent to the server serially
when the shopper clicks the two buttons. Nothing can ensure which response is
received by the client side first. The code in the client side of the Web 2.0 Store
page should correctly identify what request to which this response corresponds
and issue a corresponding get request to display the data in the refresh area. In
the example, when the client side is notified that the add to wishlist response of is
received, it should match it with the request adding item to wishlist, and then
issue the get request to a get up-to-date wishlist that is displayed in the
corresponding refresh area.

 Chapter 4. Testing and debugging your Web 2.0 Store 235

236 WebSphere Commerce Best Practices in Web 2.0 Store

Appendix A. Additional material

This book refers to additional material that can be downloaded from the Internet
as described below.

Locating the Web material

The Web material associated with this book is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser at:

ftp://www.redbooks.ibm.com/redbooks/SG247647

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the IBM Redbooks form number, SG247647.

A

© Copyright IBM Corp. 2009. All rights reserved. 237

ftp://www.redbooks.ibm.com/redbooks/SG247647
ftp://www.redbooks.ibm.com/redbooks/SG247647
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Using the Web material

The additional Web material that accompanies this book includes the following
files:

File name Description
TopCategoriesDisplay.jsp Top Level JSP code
scrollablepane.js Code for the Scrollable widget

How to use the Web material

Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder.

238 WebSphere Commerce Best Practices in Web 2.0 Store

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this book.

IBM Redbooks

For information about ordering these publications, see “How to get Redbooks” on
page 241. Note that some of the documents referenced here may be available in
softcopy only.

� Building Dynamic Ajax Applications Using WebSphere Feature Pack for Web
2.0, SG24-7635

� Planning and Managing the Deployment of WebSphere Commerce,
SG24-7588

Online resources

These Web sites are also relevant as further information sources:

� The Book of Dojo

http://manual.dojotoolkit.org/WikiHome/DojoDotBook/Book0

� Accessible Rich Internet Applications Wiki

http://esw.w3.org/topic/PF/ARIA

� ARIA Widgets and Structures

http://esw.w3.org/topic/PF/ARIA/BestPractices/SimpleExamples

� AJAX:WAI ARIA Live Regions

http://developer.mozilla.org/en/docs/AJAX:WAI_ARIA_Live_Regions

� Live Regions

http://esw.w3.org/topic/PF/ARIA/BestPractices/LiveRegion

� WAI-ARIA Live Regions

http://juicystudio.com/article/wai-aria-live-regions.php

© Copyright IBM Corp. 2009. All rights reserved. 239

http://manual.dojotoolkit.org/WikiHome/DojoDotBook/Book0
http://esw.w3.org/topic/PF/ARIA
http://esw.w3.org/topic/PF/ARIA/BestPractices/SimpleExamples
http://developer.mozilla.org/en/docs/AJAX:WAI_ARIA_Live_Regions
http://esw.w3.org/topic/PF/ARIA/BestPractices/LiveRegion
http://juicystudio.com/article/wai-aria-live-regions.php

� Dojo toolkit site

http://www.dojotoolkit.org

� Dojo API documentation

http://api.dojotoolkit.org

� Dojo Base 1.2.3 download

http://dojotoolkit.org/downloads

� Firebug lite

http://www.getfirebug.com/lite.html

� Dojo keys properties

http://api.dojotoolkit.org/jsdoc/dojo/HEAD/dojo.keys

� dojo.dnd 1.2 technical documentation

http://docs.google.com/View?docid=d764479_11fcs7s397

� Dojo books

http://dojotoolkit.org/book/dojo-book-0-9/part-3-programmatic-dijit-
and-dojo/back-button/browser-compatibility

� Dojo.query

http://api-staging.dojotoolkit.org/jsdoc/dojo/HEAD/dojo.query

� W3C css3-selectors

http://www.w3.org/TR/css3-selectors

� dojo.query: A CSS Query Engine For Dojo

http://dojotoolkit.org/node/336

� Status Code Definitions

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

� Header Field Definitions

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

� Dojo Deferred

http://redesign.dojotoolkit.org/jsdoc/dojo/HEAD/dojo.Deferred

� CSSTidy

http://csstidy.sourceforge.net/

� Shrink Safe

http://dojotoolkit.org/docs/shrinksafe

240 WebSphere Commerce Best Practices in Web 2.0 Store

http://www.dojotoolkit.org
http://api.dojotoolkit.org
http://dojotoolkit.org/downloads
http://www.getfirebug.com/lite.html
http://api.dojotoolkit.org/jsdoc/dojo/HEAD/dojo.keys
http://docs.google.com/View?docid=d764479_11fcs7s397
http://dojotoolkit.org/book/dojo-book-0-9/part-3-programmatic-dijit-and-dojo/back-button/browser-compatibility
http://dojotoolkit.org/book/dojo-book-0-9/part-3-programmatic-dijit-and-dojo/back-button/browser-compatibility
http://api-staging.dojotoolkit.org/jsdoc/dojo/HEAD/dojo.query
http://www.w3.org/TR/css3-selectors
http://dojotoolkit.org/node/336
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
http://redesign.dojotoolkit.org/jsdoc/dojo/HEAD/dojo.Deferred
http://csstidy.sourceforge.net/
http://dojotoolkit.org/docs/shrinksafe

� GZIP home page

http://www.gzip.org/

� Optimize Parallel Downloads to Minimize Object Overhead

http://www.websiteoptimization.com/speed/tweak/parallel

� Minimize HTTP Requests

http://www.websiteoptimization.com/speed/tweak/http

� WebSphere Commerce AJAX framework

https://jtcid.hursley.ibm.com/commerce/index.jsp?topic=/com.ibm.comm
erce.madisons-starterstore.doc/refs/rsmmadisonajaxinteractions.htm

� Best Screen Resolution to Design Web sites

http://www.hobo-web.co.uk/tips/25.htm

� Page Weight Tested

http://www.marketingexperiments.com/improving-website-conversion/pag
e-weight.html

� Creating a Custom Distribution

http://manual.dojotoolkit.org/book/dojo-book-0-4/part-6-customizing-
dojo-builds-better-performance/dojo-build-system/creating-cust

� Speed up your web pages with YSlow

http://developer.yahoo.com/yslow

� Apache Module mod_deflate

http://httpd.apache.org/docs/2.0/mod/mod_deflate.html

� mod_gzip is an Internet Content Acceleration module

http://sourceforge.net/projects/mod-gzip

� Combine

http://rakaz.nl/extra/code/combine

How to get Redbooks

You can search for, view, or download Redbooks, Redpapers, Technotes, draft
publications and Additional materials, as well as order hardcopy Redbooks, at
this Web site:

ibm.com/redbooks

 Related publications 241

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.gzip.org/
http://www.websiteoptimization.com/speed/tweak/parallel
http://www.websiteoptimization.com/speed/tweak/http
http://httpd.apache.org/docs/2.0/mod/mod_deflate.htm
https://jtcid.hursley.ibm.com/commerce/index.jsp?topic=/com.ibm.commerce.madisons-starterstore.doc/refs/rsmmadisonajaxinteractions.htm
http://www.hobo-web.co.uk/tips/25.htm
http://www.marketingexperiments.com/improving-website-conversion/page-weight.html
http://manual.dojotoolkit.org/book/dojo-book-0-4/part-6-customizing-dojo-builds-better-performance/dojo-build-system/creating-cust
http://developer.yahoo.com/yslow
http://sourceforge.net/projects/mod-gzip
http://rakaz.nl/extra/code/combine

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

242 WebSphere Commerce Best Practices in Web 2.0 Store

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

Index

A
accessibility 24–27, 40
account information 197
accuracy 200
action forms 31
action servlet 31
actionIds 132
activeDrag 167
addChild 85, 91
adjustLeftScroll 164
adjustRightScroll 164
age information 38
Ajax 35, 201

as part of Web 2.0 4
call 128
conversion rates 18
explained 4
invocation pattern 35–36
serialization 5
struts-actions 126

AjaxAction 126
AjaxAddOrderItem 127
AjaxComponentServiceAction 13
AjaxInterestItemAdd request 213
AjaxOrderChangeServiceItemAdd 219
AjaxQuickCartDisplay 219
Ajax-style request 34, 108
alert messages 101
API (application programming interface)

accessibility 25
APP

see Atom Publishing Protocol
appendItems 164
application errors 204
ARIA (Accessibility Rich Internet Applications)
25–26, 40
aroundNode 142
ASP (active server pages) 50, 71
asynchronous requests 234
AT (Assistive Technology) 24
Atom

as part of Web 2.0 4
Atom Publishing Protocol

defined 5
Atom Syndication Format

defined 5
autoScroll parameter 160
autoScroller 164

B
bad convention 229
base

Dojo toolkit 50
Baseline Report and Time Series Data 206
bindDomNode 91
black-box testing technique 200
bookmarking 69
BreadCrumbTrailDisplay 103
BreadCrumbTrailDisplay widget 103
buildscripts directory 227
Business Object Document (BOD) 33
Button widget 82

C
cache 226
cache invalidation 206
cancelCloseOnTimeOut 155
cascading stylesheets 229
catalog 207
catalog options 39
category page 197
CatEntrySearchListDataBean 48
Change Flow 38, 41
checkAcceptance 136
checkout options 39
class declaration 171
className 171
clickSelect 167
client engine

defined 8
client façade 34
client side context information 108
close 142
close link 146
closeOnTimeOut 154

 Index 243

code modules 103
code snippet 133
CommonContextsDeclarations.js 109
compare result 199
compare zone

conversion rates 18
connectId 142
ConsumerDirect store 135, 183
ContentPane widget 160
contextMenuForWindow 91
controller 106

wc.render.RefreshController 106
controller servlet 31
controllerId 106

String 106
conversion rates

improving 18
copyonly 137
copyState 136
core

Dojo toolkit 51
Cosmetic style properties 97
CPU 207
CPU usage 206
cross-browser communication 50
CSS 50, 94, 97

accessibility 24
definitions 79
Web customization issues 11

CSSTidy 228–229
currency selection 38
currencyCode 167
customization

simplifying 12

D
data interchange format 4
database logs 206
database node 206
dataBeans 118
db2 snapshots 206
db2diag.log 206
DBclean 206
deadlock report 205
debugging 210
decimalPoints 167
declareContext method 109
declareservice tag 106

defaultEnd 166
defaultStart 166
defects 213
delayHidePopup 152
deleteOrderItems 15
deleteSelectedNodes 136
department page 197
destroy 136
Dialog widget 86
dialog widget 155
dijit 79, 95

accessibility 26
defined 51

dijit.byId 57
dijit.Dialog 144
dijit.form.Button 82
dijit.form.DropDownButton 158
dijit.MenuItem 159
dijit.showTooltip 142
dijit.TooltipDialog 87
disabled 92
disk I/O 206
displayStatus variable 155
DIV

Web customization issues 11
div tag 82
djConfig 53
djConfig parameters 54
DnD 9

RIA functionality 9
DnD widget 88
dndType 137, 140
Document Object Model (DOM)

and Ajax 5
Dojo 95

explained 6
Dojo Ajax 93, 105
Dojo API 134
Dojo core library 52
Dojo debug utility 28
Dojo dialog 144
Dojo functionality 94
Dojo package 227
Dojo profile 50
Dojo toolkit 49

as part of Web 2.0 4
Dojo tooltip 141
Dojo widget initialization 230
Dojo widgets 94

244 WebSphere Commerce Best Practices in Web 2.0 Store

accessibility 26
dojo.addOnLoad 59
dojo.back 69
dojo.back.addToHistory 66
dojo.back.setInitialState 66
dojo.byId 57
dojo.connect 60
dojo.connect function 61
dojo.dnd.Source 65
dojo.dnd.Target 65, 138
dojo.every 57
dojo.filter 57
dojo.forEach 57
dojo.fromJson 59
dojo.indexOf 57
dojo.isArray 60
dojo.isFunction 60
dojo.isObject 60
dojo.js 51, 61
dojo.lastIndexOf 57
dojo.map 57
dojo.provide 52
dojo.publish 60
dojo.query 60, 70
dojo.require 53, 56, 80
dojo.require function 53
dojo.some 57
dojo.string.substitute 60
dojo.subscribe 60
dojo.toJson 59
dojo.trim 60
dojo.xhr 78

parameters 71
dojo.xhrDelete 77
dojo.xhrGet 60, 76
dojo.xhrPost 60, 76
dojo.xhrPost API 133
dojo.xhrPut 77
dojoType 80
Dojox 95
DOM

Dojo query engine 69
DOM manipulation API 105, 134
DOM Nodes 142
DOM nodes 142
drag and drop (DnD) 65, 135
dragsourcetype 136
drop area 202
drop down list 197

dropdown content 156
dropdown menus 103
DropDownButton widget 83
dummy render context 130

E
e-marketing spot 46, 104, 197, 199
emotional response 200
Enterprise Service Bus architecture

and SOA 6
error 73
error message 202
error messages 101
errorMessage 113
errors 213
errorViewName 133
errorViewName parameters 133
e-spot 208
ETL (extraction, transformation, and loading) 206
event API 93
exception 202
execution time 206

F
failureHandler 112
Fast Finder 11, 37, 42, 45–49, 165, 197, 199

conversion rates 19
file content structure 93
Firebug 213, 224, 226
Firebug lite 51
FirebugLite 54
firstHandleTitle 167
footer 103
formErrorHandleClient 142
fragment identifier 66
functional scenarios 196
functional testing 196

G
gender information 38
getChildren 85, 91
getDisplayStatus 155
getParent 92
graphical user interface (GUI) 25
green plus indicator 202
gzip 233

 Index 245

H
hallway usability testing 203
handleAs 56
hasChildren 85
header 103
heap fragmentation 206
hide 144, 155
HorizontalSlider widget 81
horizontalSliderValue element 82
HTML

accessibility 24
HTML code 215
HTML DIV tags 25
HTML element 128
HTML tag 128, 230
HTML template 79

I
iconClass 83, 92
IFrame communication 51
images 79, 94
include 95
incrementValue 167
initial page request 211
InitProperties 107
inner tags 89
innerHTML 106, 142
InterestItemAdd controller command 125
invocation pattern 36
ioArgs 73
isDebug 56
isHorizontal 162
isScrollable 162

J
Java Client API 33
Java Servlet 71
JavaScript 28, 79, 95

accessibility 25
and Ajax 5

JavaScript Object Notation (JSON) 34, 50, 105,
117, 126

and Atom feeds 5
as part of Web 2.0 4
data 105
object 106, 134

JavaScript service object 126
jsId 137–138

JSP (Java Server Pages) 12, 27, 34, 50, 71, 99
handles 133
snippets 27

JVM (Java Virtual Machine)
logs 206

K
KeepAlive 232
keyPressed 136

L
label 83, 142
language selection 38
left sidebar 165
live regions 27
loadImage 164
locale 56

M
Madison’s

capabilities 11
introduction 10–11

Madisons 10
Madisons Starter Store 38, 93, 225
Markup parser 51
max error rate 205–206
memory leak 206
Menu 89
Menu widget 89
MenuItem widget 89
MerchandisingAssociations 160
microcosm concurrent test 204
mini shopping cart

streamlining 20
MiniCartContentsJSON 133
MiniCartContentsJSON view 133
MiniShopCartDropDown 156
MiniShoppingCart drop zone 140
mobile devices 50
mod_deflate 229
mod_gzip 229
mod_rewrite tags 233
modelChanged 129
modelChangedHandler 107
modelChangedHandler function 130
modelChangeedHandler 110
modular code 98

246 WebSphere Commerce Best Practices in Web 2.0 Store

mousePress 155
multi-cultural environment 203
multilingual 203
MVC (Model View Controller)

and RIAs 8
design pattern 30–33, 35–36

MyAccount 95
MyAccount Center Content 121
MyAccount page 104
myModule.js 52

O
OAGIS (Open Application Group Integration Speci-
fications) 33
objectId

String 107
onblur 63
onClick 63, 83, 86, 92
onClose 91
onDndDrop 136
onDndStart 135
onDropDownClick 159
onFocus 63
onKey 155, 158
onKeydown 63
onKeypressed 63
onMouseClick 156
onMouseover 145
onOpen 91
ontology 26
open 142
open source framework 31
OpenAjax 51
optimization 223
optimizing response time 228
order confirmation page 196
order options 39
order status tracking 38
OrderChangeServiceItemAdd service 133
OrderItem 126
orderstatus 103
outermost tag 89
out-of-control errors 202

P
page layout 93
page layout structure 102, 104
paper prototypes 203

parseOnLoad 56
performance 200
Perl CGI 71
personal information management page options 38
PFWG (Protocols and Formats working group) 25,
40
PHP 50, 71
populatePopUp 148
popupDelay 91
popupMenuItem 89
PopupMenuItem widget 89
postCreate 172
postRefreshHandler 108, 110
priceranger 104
product compare pag 197
product detail page 197
ProductAddtoCart 154
ProductQuickInfo 144
programmatic error 229
promotional e-mail 38

Q
Quick Checkout profile feature 22
Quick Info panel 45
quickcart 219

R
RangeSlider 165
reading catalog data 234
recall 200
red plus indicator 202
Redbooks Web site 241
refresh area triggers 128
RefreshArea 27, 106, 121
RefreshArea widget 106–107, 114
RefreshController 101, 106

logic 106, 118
RefreshJSP snippet 118
register a user 196
registered refresh controller 106
registration operation 196
registration page options 38
relatedSource element 155
removeChild 85, 91
render context 108
renderContext 107
renderContext declaration 101
renderContext object 118, 130

 Index 247

renderContextChanged 118
renderContextChangedHandler 106–107
renderContextChangeHandler 110
rePosition 155
response time 206–207
REST (Representational State Transfer)

as part of Web 2.0 4
defined 6

RIA (Rich Internet Application) 10, 25
accessibility 24–27
advantages 8
defined 8

right sidebar 104
RSS feeds 19

S
screen resolution 201
scripted instructions 203
scroll bar 201
scrollable pane 199
Scrollable widget 46
ScrollablePane widget 160
scrollVertical 163
secondHandleTitle 168
service 126
service declaration 101, 128
service invocation model 4
service response 34
serviceId 114
service-oriented architecture (SOA)

and Web 2.0 6
serviceResponse 113
ServicesDeclaration.js 115
setDataStore 164
setDisabled 92
setLabel 85
shipping 198
shopper 203, 234
shopper types

guest 208
new registered shopper 208
registered shopper 208

shopping cart 203, 234
abandonment 202

shopping cart page 21
shopping experience 18
shoppingarea 95
ShoppingCart 127

show 144, 154
showDelay 142
showPopup 141, 147–148
showThumbs 164
showTooltip 167
showTooltipAllTime 167
ShrinkSafe 228–229
SilkPerformer 205–206
single payment method 198
single servlet 32
SitePen 50
size 206
sizeProperty 162
SliderHorizontal widget 81
smoothScroll 162
snippets 95
SOAP (Simple Object Access Protocol)

compared to SOA 6
social computing 10
software usability testing 203
starting time 206
states and properties 26
store home page 196
store structure 93
StoreAccordion.js 229
Struts 31, 33
Struts Action Servlet 33
Struts configuration XML file 125
Struts Web application 32
successful messages 101
successHandler 112
successHandler function 128
successTest 113
Sun Microsystems 50
system errors 204

T
tabular form 198
taglibraris 99
tamper data 224
targetNodeIds 91
TCOI (total cost of implementation) 95
templateString property 172
test machines 206
testForChangedRC 106, 108
thumbHeight 162
thumbNode 164
thumbWidth 162

248 WebSphere Commerce Best Practices in Web 2.0 Store

time slice 204
timeOut milliseconds 154
tooltip 141
tooltip of the product quick view 197
Tooltip widget 80
TooltipDialog widget 86
topcategories 103
TopCategories menu 158–159
TopCategoriesDisplay.jsp 99
totalDisplayNodes 162
tree control 25
tuning parameters 206

U
UltraEdit 227
unBindDomNode 91
updateContext method 118
updateContextURL 108
updater 118
usability testing 200
userarea 95
userinterface 148
UserRegisteration page 141

V
validateParameters 113
validation error 196

W
WAI (Web Accessibility Initiative) 25, 40
wc sub packages 95
wc.render.declareContext 108
wc.render.declareRefreshController (initProper-
ties) 107
wc.render.getContextById 109
wc.render.getRefreshControllerById 108
wc.render.updateContext 109
wc.service.declare 112
wc.service.getServiceById 114
wc.service.invoke() 130
wc.widget.WCDropDownButton 159
WcDialog 153
WcDropDownButton 158
wcf

getData tag 35
Web 1.0 Store 200, 210–211
Web 2.0

advantages 7
Web 2.0 Ajax programming framework 183
Web 2.0 interactions 210
Web 2.0 Store 27, 37, 93, 196, 210

checkout process 22
Web developers 224
Web performance 228
webapp package structure 94
weblet 207
WebSphere Commerce Ajax APIs 95
WebSphere Commerce Ajax framework 93, 105,
128, 134
WebSphere Commerce Component Services 105
WebSphere Commerce controller command 105,
125
WebSphere Commerce runtime programming mod-
el 133
WebSphere Commerce Web 2.0 Store 134
widget 79
window resize 201
wishlist 42, 95

conversion rates 19
workstation resolution 201
WSDL (Web Service Definition Language)

compared to SOA 6

X
XHR 50, 73
xhrDelete 77
xhrGet 75
xhrPost 76
xhrPost API 134
xhrPut 77
XML

as part of Web 2.0 4
XMLHttpRequest 66

retrieving data 5
XMLHttpRequest (XHR) 70

Y
YSlow 228

 Index 249

250 WebSphere Commerce Best Practices in Web 2.0 Store

(0.5” spine)
0.475”<

->
0.875”

250 <
->

 459 pages

W
ebSphere Com

m
erce Best Practices in W

eb 2.0 Store

®

SG24-7647-00 0738432547

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

®

WebSphere Commerce
Best Practices in Web 2.0
Store

Understanding the
technologies behind
Web 2.0

Applying Web 2.0 to
an e-commerce site

Implementing a Web
2.0 Store

This IBM Redbooks publication positions Web 2.0 Store and
demonstates how Web 2.0 is applied to an e-commerce site.
This book discusses the Web 2.0 Store and Social solutions. In
addition, you will gain an understanding of the contributions
Dojo and Ajax apply to the Web 2.0 Starter Store.

This book emphasizes some of the Web 2.0 Store solution’s
benefits for the client and describes the Web 2.0 features of
the new Web 2.0 Store solution of WebSphere Commerce.
This book discusses the Model View Controller (MVC) design
pattern for Web 2.0 and provide guidance to developers who
are building and customizing Ajax-based applications.

This book explains how to implement your own Web 2.0 Store
using Ajax and Dojo and on the basis of the Madisons store.
Developers can take advantage of building their own Web 2.0
Store in more efficient ways, for example, developers quickly
design, develop, test, analyze, and deploy high-quality Web
2.0 Stores.

This book describes the best practice when you test and
debug the functionalities of your Web 2.0 Store, and also
presents the Web 2.0 Store optimization best practice.

This book is targeted for the following audience, WebSphere
Commerce Developers, WebSphere Commerce Architects,
and Technical Sales Specialist.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this book
	Become a published author
	Comments welcome

	Chapter 1. WebSphere Commerce Web 2.0 Store solution
	1.1 Introduction to Web 2.0
	1.1.1 The key concepts of Web 2.0
	1.1.2 Technologies behind Web 2.0
	1.1.3 Web 2.0 and service-oriented architecture
	1.1.4 Rich Internet applications

	1.2 Applying Web 2.0 to an e-commerce site
	1.3 :WebSphere Commerce Web 2.0 Store solution
	1.3.1 Introduction to the Madisons Store
	1.3.2 Simplifying customization

	1.4 Applying Dojo and Ajax to the Madisons Store
	1.4.1 Architectural overview
	1.4.2 Common interaction

	1.5 Madisons Store Feature Pack 5 features

	Chapter 2. WebSphere Commerce Web 2.0 Store features and benefits
	2.1 Interactivity for user and benefits to clients
	2.1.1 Rich shopping experience
	2.1.2 Accessibility
	2.1.3 Reducing the total cost of implementation

	2.2 Model View Controller design pattern in Web 2.0
	2.2.1 Model View Controller design pattern
	2.2.2 How MVC applies for Web 2.0

	2.3 Web 2.0 Store (FEP2) features and benefits
	2.3.1 Single store supporting Web 1.0 and Web 2.0
	2.3.2 Madisons Store Change Flow function options
	2.3.3 Accessibility issues
	2.3.4 Browser backward and forward buttons
	2.3.5 Tooltips
	2.3.6 The drag feature
	2.3.7 Mini Shop cart
	2.3.8 Quick Info panel
	2.3.9 Scrollability widget
	2.3.10 Fast Finder

	2.4 Web 2.0 application concepts
	2.4.1 Overview of the Dojo toolkit
	2.4.2 Including the Dojo library
	2.4.3 Dojo core library
	2.4.4 XHR
	2.4.5 The Dojo Widget Library

	Chapter 3. Design and implement your Web 2.0 Store
	3.1 WebSphere Commerce Web 2.0 Store structure
	3.1.1 WebSphere Commerce package structure for Web 2.0 Store
	3.1.2 File content structure
	3.1.3 Page layout structure

	3.2 WebSphere Commerce Ajax framework for Dojo
	3.2.1 Getting familiar with the Ajax Framework extension
	3.2.2 The four scenarios

	3.3 WebSphere Commerce Framework for Dojo widgets
	3.3.1 The Dojo widgets used for Web 2.0 Store
	3.3.2 Implementing your own Dojo widgets
	3.3.3 How to customize the Dojo widgets

	3.4 Introduce Web 2.0 features into your Web 1.0 Store
	3.4.1 Adding a Web 2.0 feature in your Web 1.0 Store

	Chapter 4. Testing and debugging your Web 2.0 Store
	4.1 Testing your Web 2.0 Store
	4.1.1 Functional testing
	4.1.2 Usability testing
	4.1.3 Performance testing

	4.2 Debugging your Web 2.0 Store
	4.2.1 Web 2.0 interactions
	4.2.2 Breaking down the possible problem areas
	4.2.3 Tools to debug and isolate problems
	4.2.4 Identifying and isolating the problem area
	4.2.5 The divide and conquer method
	4.2.6 Debugging a sample problem

	4.3 Optimizing Web 2.0 Store
	4.3.1 Page weight review and performance tips
	4.3.2 General performance tips
	4.3.3 Advanced UI performance tips
	4.3.4 Efficiently handling requests on client side

	Appendix A. Additional material
	Locating the Web material
	Using the Web material
	How to use the Web material

	Related publications
	IBM Redbooks
	Online resources
	How to get Redbooks
	Help from IBM

	Index
	Back cover

