

ibm.com/redbooks

Front cover

Enterprise Data
Warehousing with
DB2 9 for z/OS

Paolo Bruni
Gaurav Bhagat

Lothar Goeggelmann
Sreenivasa Janaki

Andrew Keenan
Cristian Molaro
Frank Neumann

Understand the evolution of
data warehousing

Evaluate infrastructure tools on IBM
System z and Linux on System z

See how the DB2 for z/OS engine
is suitable for data warehousing

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

Enterprise Data Warehousing with DB2 9 for z/OS

September 2008

SG24-7637-00

© Copyright International Business Machines Corporation 2008. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (September 2008)

This edition applies to IBM DB2 Version 9.1 for z/OS (program number 5635-DB2).

Note: Before using this information and the product it supports, read the information in “Notices” on
page xxi.

Contents

Figures . ix

Tables .xv

Examples . xvii

Notices . xxi
Trademarks . xxii

Preface . xxiii
The team that wrote this book . xxiii
Become a published author . xxvi
Comments welcome. xxvi

Part 1. Data warehouse today . 1

Chapter 1. Definitions . 3
1.1 Introduction . 4
1.2 The data warehouse environment. 4

1.2.1 Data warehouse and data mart. 6
1.3 Data warehouse data definitions. 10

1.3.1 Data warehouse data modeling styles . 10
1.3.2 Multidimensional data model. 11

1.4 Data warehouse functional definitions . 14
1.4.1 Replication techniques . 14
1.4.2 Data transformations. 15
1.4.3 Application techniques . 16

Chapter 2. Evolution of business intelligence . 17
2.1 Market drivers and challenges . 18
2.2 BI technology and functionality evolution . 19

2.2.1 Current BI trends. 20
2.2.2 BI evolution and maturity . 21

2.3 Types of users and their requirements . 22
2.4 Information On Demand . 24

2.4.1 Operational business intelligence . 26
2.4.2 Applying Information On Demand with dynamic warehousing 29

Chapter 3. Why implement a data warehouse on System z . 31
3.1 New challenges for data warehouse solutions . 32
3.2 Data warehousing with System z . 32

3.2.1 Availability and scalability . 32
3.2.2 Workload management . 35
3.2.3 Hardware data compression . 36
3.2.4 Regulatory compliance . 36
3.2.5 Disaster recovery . 37
3.2.6 I/O connectivity . 42
3.2.7 Parallel access volumes . 43
3.2.8 Total cost of ownership . 45
3.2.9 System z10 . 46

© Copyright IBM Corp. 2008. All rights reserved. iii

3.2.10 Existing System z customer base . 48
3.2.11 DB2 for z/OS with additional data warehousing capabilities 48
3.2.12 Extract, transform, and load on the same platform . 51

Chapter 4. The architecture for the BI solution on System z . 59
4.1 Business requirements for a data warehouse environment . 60
4.2 The business intelligence architecture with System z . 61

4.2.1 The components involved . 62
4.2.2 Configuration alternatives . 63

4.3 When DB2 for z/OS is a good fit . 67
4.4 Business requirements revisited . 68

Part 2. Design and implementation of our warehouse scenario . 69

Chapter 5. The business scenario and data models . 71
5.1 Background information . 72
5.2 Business requirements . 72
5.3 Solution overview . 75
5.4 The transactional data model . 78

5.4.1 The OLTP database model . 78
5.4.2 Creating the schema for the OLTP model. 80
5.4.3 Data from legacy data sources . 81
5.4.4 Simulating the transactional environment . 84

5.5 The operational and dimensional data model . 85
5.6 Referential integrity for a data warehouse . 87
5.7 Data modeling options: IBM Industry Models . 88

Chapter 6. The system environment . 91
6.1 Implemented architecture . 92
6.2 System configuration. 93
6.3 System parameters of DB2 subsystems . 94
6.4 Workload Manager configuration . 95
6.5 zIIP utilization . 96

Chapter 7. Functions in DB2 for z/OS for a data warehouse . 99
7.1 Index compression . 100

7.1.1 How index compression works . 100
7.1.2 Implementation guidelines . 102
7.1.3 Implementation examples . 107
7.1.4 Considerations on index compression . 118

7.2 Table space compression . 118
7.2.1 Considerations on data compression . 120

7.3 Index-use tracking by using real-time statistics. 121
7.4 Not logged table spaces . 121
7.5 Exploiting the DB2 STATEMENT CACHE . 123
7.6 Star schema processing . 124

7.6.1 Star schema access methods. 125
7.6.2 Star schema processing implementation example . 129

7.7 Index on expressions . 139
7.8 Working with the ADD CLONE SQL command. 143

7.8.1 Operating cloned objects . 144
7.9 Table space partitioning . 148

7.9.1 Universal table space . 149

iv Enterprise Data Warehousing with DB2 9 for z/OS

7.10 Materialized query tables . 152
7.10.1 When to consider an MQT . 152
7.10.2 MQTs used in our scenario . 153

7.11 OLAP functions . 154
7.11.1 RANK and DENSE _RANK. 154
7.11.2 ROW_NUMBER . 157

Chapter 8. Q replication and event publishing. 159
8.1 Introduction to replication functions. 160

8.1.1 Q replication . 160
8.1.2 Event publishing . 162

8.2 Implementation of Q replication and Event Publisher . 162
8.2.1 Common infrastructure . 163
8.2.2 Configuring Q replication subscriptions. 171
8.2.3 Configuring event publishing using the DB2 Replication Center. 183

8.3 Operating Q replication and event publishing . 195

Chapter 9. Setting up ETL components for a data warehouse 201
9.1 Overview of components for ETL on Linux on System z and z/OS. 202
9.2 Configuring a HiperSocket connection to z/OS on Linux on System z 203
9.3 Setting up BatchPipes. 206
9.4 Setting up WebSphere Classic Federation . 210

9.4.1 Setting up the WebSphere Classic Federation server on z/OS 212
9.4.2 Defining and registering the flat file in Classic Data Architect. 215
9.4.3 Installing and configuring the WebSphere Classic Federation client on Linux on

System z . 226
9.5 Installing IBM Information Server . 228

9.5.1 Topology considerations: Product tiers . 229
9.5.2 User ID and registry considerations before installing Information Server 231
9.5.3 Installing server components for Linux on System z. 231
9.5.4 Installing DataStage and QualityStage designer clients on Windows. 242
9.5.5 Configuring DataStage to access DB2 for z/OS, WebSphere MQ, and WebSphere

Classic Federation . 245
9.5.6 Cataloging the DB2 for z/OS subsystems. 248
9.5.7 Setting up ODBC connections to DB2 for z/OS databases and WebSphere Classic

Federation. 248
9.5.8 Troubleshooting configuration problems. 250
9.5.9 Granting user access and creating a new DataStage project 251
9.5.10 Defining multiple nodes for parallel execution. 254

Chapter 10. Full load using DataStage . 257
10.1 ETL data in our scenario . 258
10.2 Loading overview . 260

10.2.1 Full load description . 261
10.2.2 Incremental load description . 261
10.2.3 Lookup tables . 261

10.3 Load jobs for populating ODS from OLTP . 262
10.3.1 DB2z stage: Reading DB2 data . 262
10.3.2 DB2z stage: Writing DB2 data . 262
10.3.3 Parallel jobs and BatchPipes . 263
10.3.4 Sample load jobs from OLTP to ODS . 264

10.4 Load jobs for populating a DDS from an ODS . 266
10.4.1 Load of the Date dimension table . 266
10.4.2 Surrogate key stage utilization . 267

 Contents v

10.4.3 Load of the fact table . 269
10.5 Accessing WebSphere Classic Federation in DataStage jobs 271
10.6 Running and monitoring an ETL job in DataStage Director 273

10.6.1 Typical load challenges. 273
10.6.2 Hints for table organization while preparing for loading data 274

10.7 Debugging load jobs: A brief look . 274
10.8 Performance considerations . 276

10.8.1 Performance statistics. 276
10.8.2 Parallel jobs versus server jobs . 277
10.8.3 Choice of stage for performance improvement . 278

10.9 Naming standards . 279
10.10 Data quality implementation during full load . 279

Chapter 11. Incremental update with DataStage . 281
11.1 Operational BI revisited. 282
11.2 Reduction of a batch window . 283
11.3 Usage of queues as sources of data. 283
11.4 Anatomy of a queue . 284
11.5 DataStage job to read a queue . 285

11.5.1 WebSphere MQ Connector stage. 285
11.5.2 ODBC Enterprise stage . 286

11.6 Automated reading of the queues and updating of the data warehouse. 286
11.6.1 Update of the DWHODS Customer table . 287
11.6.2 Update of the DWHDDS Customer table . 289

11.7 Concurrency considerations . 292
11.8 Summary. 293

Chapter 12. An operational business intelligence implementation 295
12.1 OLTP application with embedded analytics . 296
12.2 The order processing Web application . 297
12.3 Implementation considerations . 299

12.3.1 Handling multiple data sources. 299
12.3.2 Leveraging tools to render business intelligence data 300

12.4 Improving response times by using materialized query tables 300

Chapter 13. Reporting and analysis with Cognos 8 BI . 305
13.1 Overview of Cognos 8 BI components . 306
13.2 Installing Cognos 8 BI Server on Linux on System z . 308

13.2.1 Topology overview . 308
13.2.2 System considerations and version checks . 309
13.2.3 Preparation for installation . 311
13.2.4 Installing Cognos BI Server components . 313
13.2.5 Configuring the IBM HTTP Server . 316
13.2.6 Configuring and starting the Cognos BI Server. 317
13.2.7 Defining DB2 for z/OS data sources . 323
13.2.8 Configuring Cognos with WebSphere Application Server. 326

13.3 Building Cognos data models and packages . 335
13.3.1 Framework Manager packages. 337
13.3.2 Defining Transformer models for PowerCubes. 352
13.3.3 Creating and publishing OLAP PowerCubes . 363

vi Enterprise Data Warehousing with DB2 9 for z/OS

13.4 Reports with Report Studio . 367
13.5 Ad hoc queries with Query Studio. 374
13.6 Multidimensional analysis with Analysis Studio. 385

Chapter 14. Reporting with DataQuant, QMF, and AlphaBlox. 397
14.1 DataQuant. 398

14.1.1 When to consider DataQuant . 398
14.1.2 DataQuant functions . 398
14.1.3 A small DataQuant report for RedParts Distribution . 400

14.2 QMF . 409
14.3 AlphaBlox . 411

14.3.1 When to consider AlphaBlox. 411
14.3.2 AlphaBlox functions . 411
14.3.3 A small AlphaBlox Web application for RedParts Distribution 412
14.3.4 Recommendations to configure AlphaBlox on Linux on System z 421

Part 3. Appendixes . 423

Appendix A. Index compression jobs . 425

Appendix B. Schema definitions . 431
B.1 Schema definition for the transactional database. 432
B.2 Schema definition for the data warehouse database . 437

Appendix C. Additional material . 447
C.1 Locating the Web material . 447
C.2 Using the Web material . 447

C.2.1 System requirements for downloading the Web material 448
C.2.2 How to use the Web material . 448

Related publications . 449
IBM Redbooks . 449
Other publications . 449
Online resources . 450
How to get Redbooks. 451
Help from IBM . 451

Index . 453

 Contents vii

viii Enterprise Data Warehousing with DB2 9 for z/OS

Figures

1-1 Data warehouse and BI environment . 5
1-2 Example of a BI architecture. 8
1-3 Sample incremental process. 14
2-1 Operational intelligence introduction and user population . 22
2-2 BI tools - User associations . 23
2-3 Information On Demand logical architecture. 25
2-4 Performance management cycle . 27
2-5 Example components for a DB2 for z/OS operational BI solution. 29
3-1 Parallel Sysplex architecture. 33
3-2 DB2 data sharing architecture . 34
3-3 GDPS/PPRC. 39
3-4 Parallel access volumes . 44
3-5 HyperPAV . 45
3-6 The specialty engines . 46
3-7 Evolution of the System z platform . 47
3-8 Data sharing and mixed workload. 52
3-9 WebSphere Classic Federation . 54
3-10 WebSphere Classic Data Event Publisher . 55
3-11 Event publishing and Q Capture . 56
3-12 Information Server for System z . 57
4-1 Data flow across components. 61
4-2 Data warehouse architecture on System z with one data sharing groups 64
4-3 SYSPLEX with two LPARs and two data sharing groups . 66
5-1 Conceptual overview for scenario . 76
5-2 Transactional schema (OLTP_B and OLTP_W). 78
5-3 Transactional schema (OLTP) based on the TPC-H data model 79
5-4 The transactional data model . 80
5-5 Web application simulating OLTP workload for the transactional environment 84
5-6 Model for the operational data store, based on TPC-H . 85
5-7 Dimensional data model . 86
6-1 Implemented architecture . 92
6-2 Data warehouse hardware . 94
6-3 RMF Workload Activity Report . 96
7-1 B-tree schematic representation . 101
7-2 Data and index compression compared at run time . 102
7-3 Maximum savings on disk in function of the buffer pool, assuming ideal index

compression . 103
7-4 Impact of buffer pool selection for a compression ratio of 4:1 105
7-5 Access path involving a compressed index . 114
7-6 Index only scan on an uncompressed index. 117
7-7 Exceptional processing and the NOT LOGGED option . 122
7-8 Star schema representation . 125
7-9 Star schema implementation sample . 129
7-10 Query access path before activating star schema processing 132
7-11 Access path changes after enabling a star join . 135
7-12 Star join layout in Optimization Service Center. 135
7-13 Optimization Service Center star join dimension node type 136
7-14 ADD CLONE process schematic representation . 144

© Copyright IBM Corp. 2008. All rights reserved. ix

7-15 Results for the top four customers for each quarter . 155
7-16 Results from DENSE_RANK expression . 156
7-17 Results from ROW_NUMBER expression . 157
8-1 Q replication overview. 161
8-2 Event publishing overview . 162
8-3 DB2 Replication Center launchpad. 170
8-4 DB2 Replication Center main panel . 171
8-5 Replication Center Launchpad for Q replication . 172
8-6 Specifying the type of replication . 173
8-7 Defining the source and target servers . 174
8-8 Creation of a Q replication queue map . 175
8-9 Options for the Q replication queue map . 176
8-10 Defined source and target servers . 177
8-11 Selecting the source tables for Q replication . 177
8-12 Profile settings for target tables . 178
8-13 Manage Target Object Profiles window . 179
8-14 Mapping source to target columns . 180
8-15 Q Apply management of unexpected conditions . 181
8-16 Q replication options for initial load . 182
8-17 Review and complete subscription definition panel . 182
8-18 Event publishing - Replication Center Launchpad . 183
8-19 Creating publications for event publishing . 184
8-20 Sample of a publishing queue map creation. 185
8-21 Event publishing subscription creation . 186
8-22 Selecting source tables for event publishing. 187
8-23 Selecting rows for event publishing . 188
8-24 Event publishing - Review and complete publications panel 189
8-25 Updating Publishing Queue Maps . 191
8-26 Changing queue map properties. 192
8-27 Starting an inactive event publishing subscription . 196
9-1 Components setup for ETL . 202
9-2 YaST Control Center. 204
9-3 Network Card Configuration Overview . 205
9-4 Assigning the static IP address. 205
9-5 HiperSocket connection displayed . 206
9-6 Interacting with batch pipes . 208
9-7 Data server configuration in Classic Architect . 215
9-8 Supplier copybook . 216
9-9 Mapping a sequential table . 217
9-10 Parameters for the sequential table . 218
9-11 Sequential table mapping - Table name and dataset name 219
9-12 Summary of fields . 220
9-13 Generate DDL. 221
9-14 Updated SUPPLIER sequential table DDL . 222
9-15 Running the DDL on the data server . 223
9-16 Running the DDL on the data server . 224
9-17 Supplier sequential table contents . 225
9-18 Installation wizard for WebSphere Classic Federation client installation 226
9-19 Selecting installation options for the WebSphere Classic Federation client 227
9-20 Installation directory for the WebSphere Classic Federation client. 227
9-21 Confirmation message for a successful client installation. 227
9-22 Information Server 8.0.1 tiers . 230
9-23 Welcome panel for the Information Server installation . 232

x Enterprise Data Warehousing with DB2 9 for z/OS

9-24 Installation option to create a response file. 232
9-25 Choosing the installation directory . 233
9-26 Selecting the server tiers for installation . 233
9-27 Selecting the product components to install . 234
9-28 Selecting the installation type . 234
9-29 Message about DB2 installation . 235
9-30 Specifying the user ID to create and access the repository 236
9-31 Installation option for WebSphere Application Server. 237
9-32 User registry selection and WebSphere Application Server user ID. 238
9-33 Selecting the admin user ID for the Information Server Web console 238
9-34 DataStage project list during installation. 239
9-35 Defining a new DataStage project during installation . 239
9-36 Installation location for DB2 for Linux on System z. 240
9-37 Defining the InfoSphere DataStage administrator user . 240
9-38 Name and port number for the DataStage instance . 241
9-39 Summary before installation of DataStage and QualityStage. 242
9-40 Starting the installation of DataStage and QualityStage client on Windows 243
9-41 Installation option to create a response file. 243
9-42 Choosing the installation directory . 244
9-43 Installation options . 244
9-44 Pre-installation summary . 245
9-45 Editing the LD_LIBRARY_PATH for a DataStage project . 247
9-46 Granting use of DataStage . 251
9-47 Assigning roles for DataStage and QualityStage . 252
9-48 Logging in to DataStage . 253
9-49 Adding a new project . 253
9-50 Adding a user of a group. 254
9-51 Selecting the configuration file environment variable for the job properties 256
9-52 Job properties with the configuration file as a parameter . 256
9-53 Selecting a different configuration for running a DataStage job 256
10-1 Transforming customer data from OLTP to ODS . 258
10-2 Transforming order and line-item data from OLTP to ODS. 259
10-3 Transforming data from the ODS to the DDS . 260
10-4 DB2z stage properties for reading data from DB2 for z/OS 262
10-5 DB2z stage properties for writing data to DB2 for z/OS . 263
10-6 BatchPipe utility . 264
10-7 Sample simple job from OLTP to ODS . 264
10-8 Sample simple job from OLTP to ODS successfully completed 265
10-9 Population of ODS Customer table from the OLTP Customer table 265
10-10 Load of DWHODS.ORDERS table from the necessary OLTP tables 266
10-11 Date dimension load . 267
10-12 Properties of the Surrogate key generator stage . 268
10-13 Use of the surrogate key generator stage in loading data 268
10-14 Sample surrogate generator stage values . 269
10-15 Order transaction fact table load. 270
10-16 Completed Order transaction fact table load . 270
10-17 Job log report of reject files during Order transaction fact table load 270
10-18 Accessing legacy data in a DataStage job . 271
10-19 Table definition for supplier data. 272
10-20 Debugging job example . 275
10-21 Peek output for debugging - An example . 275
10-22 DataStage job performance statistics . 276
10-23 DataStage job CPU utilization. 277

 Figures xi

10-24 Combining pipeline and partitioning parallelism . 278
10-25 DataStage job parameters for database name and credentials 279
11-1 MQ message definition link. 284
11-2 Sample WebSphere MQ Connector stage entries . 285
11-3 ODBC Enterprise stage settings . 286
11-4 Read message queue to update ODS Customer table. 287
11-5 Message column Payload split into consisting columns . 288
11-6 Job log from update of the DWHODS customer table . 288
11-7 SCD implementation example . 289
11-8 SCD Lookup of dimension table . 290
11-9 SCD Surrogate Key settings . 290
11-10 SCD dimensional update mapping . 291
11-11 SCD output to file . 291
11-12 SCD result with the effective date. 292
11-13 SCD result continued with the end date and recent flag. 292
11-14 Workload Manager helping to prioritize for operational BI 292
12-1 Order processing application that accesses both OLTP and data warehouse data . 296
12-2 OLTP application for order processing . 297
12-3 OLTP application with BI information . 299
12-4 Access plan for data warehouse query in order processing application without MQT301
12-5 Costs of the data warehouse query without MQT. 301
12-6 Access plan for data warehouse query in order processing application using MQT. 304
12-7 Costs of the data warehouse query using MQT . 304
13-1 Example Cognos 8 BI dashboard portlets . 307
13-2 Topology overview for Cognos installation . 308
13-3 Creating a dedicated user ID for Cognos installation and administration 312
13-4 Welcome panel of the installation wizard for Cognos BI Server 313
13-5 License agreement for Cognos BI Server . 313
13-6 Installation location for Cognos BI Server . 314
13-7 Component selection for Cognos BI Server . 314
13-8 Summary before installation of Cognos BI Server . 315
13-9 Completion notice after Cognos BI Server installation . 315
13-10 Installing Cognos 8 Transformer. 316
13-11 Error message with incompatible JRE . 318
13-12 Deleting an existing setting for the content store . 320
13-13 Creating a new database for the content store . 320
13-14 Configuring and testing the DB2 database for the Cognos content store. 321
13-15 Operations on first touch for the Cognos content store . 321
13-16 Setting port numbers for the Web server gateway . 322
13-17 Starting the Cognos BI Server . 322
13-18 Data source connections in Cognos Administration . 323
13-19 Naming a new data source . 324
13-20 Specifying the type for the new data source . 324
13-21 Database name and signon parameters for the data source 325
13-22 Testing the connection to the new data source . 325
13-23 Data source list with DWHD911 and DWHD912. 325
13-24 Navigating to JVM settings for the application server . 328
13-25 Adding LD_LIBRARY_PATH environment settings . 329
13-26 Starting to build application files for deployment in cogconfig 329
13-27 Selecting the applications to build. 330
13-28 Settings for the p2pd EAR file . 330
13-29 Report about successful creation of the p2pd EAR file. 331
13-30 Changing the dispatcher port number. 331

xii Enterprise Data Warehousing with DB2 9 for z/OS

13-31 Specifying the remote file system . 332
13-32 Installation options for the Cognos 8 application . 333
13-33 Cognos configuration . 336
13-34 Cognos configuration test . 337
13-35 Creating a new Framework Manager project . 339
13-36 Manually running the Run Metadata Wizard. 340
13-37 Cognos 8 defined data source list. 341
13-38 Metadata wizard - Selecting objects . 342
13-39 Database View - Imported metadata . 344
13-40 Example query object within the Business view namespace 345
13-41 Example of a Dimensional view . 346
13-42 Defining relationships between query subjects . 347
13-43 Single determinant definition. 348
13-44 Multiple determinant definitions . 349
13-45 Defining a business filter . 350
13-46 Defining a calculated column . 351
13-47 Defining packages to publish . 352
13-48 Defining Transformer model data source . 353
13-49 Query definition in Transformer . 354
13-50 Data class definition for source fields . 355
13-51 Insert dimensions . 356
13-52 Defining the general properties for the time dimension . 357
13-53 Defining the time properties for the time dimension . 358
13-54 Adding the Branch Name for further role associations . 359
13-55 Completed role associations. 360
13-56 Defining an alternate drill-down path . 361
13-57 Defining a calculated measure . 362
13-58 Completed Transformer model . 363
13-59 Starting to create a new data source for the Power Cube 365
13-60 Selecting the data source type . 365
13-61 Specifying the path to the mdc file for the PowerCube definition 366
13-62 Creating a new package for analysis . 367
13-63 Starting the Report Studio from the My Actions panel . 369
13-64 Package selection for the new report . 369
13-65 Report Studio welcome panel . 369
13-66 Report template selection in Report Studio . 370
13-67 Defining a new SQL-based query object . 370
13-68 Properties for the SQL query in Report Studio . 371
13-69 Setting query hints . 371
13-70 Selecting data items in Report Studio . 372
13-71 Adding a text item to the report . 372
13-72 formatting the table heading . 373
13-73 Running the defined report . 373
13-74 Result of the Returned Item report . 374
13-75 Navigating to Query Studio . 375
13-76 Query - Selecting the source package . 376
13-77 Query - Dragging the order query items . 377
13-78 Query - Dragging the customer nation . 378
13-79 Query - Grouping by nation. 379
13-80 Query - Sorting on descending order . 380
13-81 Query - Adding a query filter . 381
13-82 Query - Adding a column filter . 382
13-83 Query - Modifying the column filter . 383

 Figures xiii

13-84 Query - Adding the conditional formatting. 384
13-85 Query - Viewing the report as a PDF . 385
13-86 Launch analysis studio . 386
13-87 Analysis - Blank analysis . 386
13-88 Analysis - Selecting rows . 387
13-89 Analysis - Selecting columns . 388
13-90 Analysis - Selecting a measure. 389
13-91 Analysis - Selecting a filter . 390
13-92 Analysis - Including charts . 391
13-93 Analysis - Adding a title. 392
13-94 Analysis - Saving the layout . 393
13-95 Analysis - Completed RedParts sample 1 . 394
13-96 Analysis - Building RedParts sample 2 . 395
13-97 Analysis - Removing the subtotals . 396
14-1 DataQuant dashboard. 399
14-2 DataQuant - Defining the source data . 401
14-3 DataQuant - Displaying the table . 402
14-4 DataQuant Diagram Query Builder . 403
14-5 DataQuant Prompted Query Builder . 404
14-6 DataQuant SQL query editor . 405
14-7 DataQuant tabular result . 406
14-8 DataQuant - Visual report design view . 407
14-9 DataQuant - Design view, adding the bar chart . 408
14-10 DataQuant - RedParts report . 409
14-11 AlphaBlox - Defining the data source . 413
14-12 AlphaBlox - Creating the application. 414
14-13 WebSphere Administrative Console - Deploying the application 415
14-14 WebSphere Administrative Console - Defining user roles for the application. 416
14-15 AlphaBlox list of applications . 417
14-16 AlphaBlox Query Builder . 418
14-17 AlphaBlox Blox builder output . 419
14-18 AlphaBlox - Output of RedParts JSP . 421
14-19 WebSphere Administrative Console - Java environment for RedParts application 422

xiv Enterprise Data Warehousing with DB2 9 for z/OS

Tables

2-1 Examples of current BI trends. 20
2-2 BI evolution examples. 21
2-3 Information On Demand architectural principles . 25
3-1 Impact of workload management to a mixed workload environment 35
5-1 Scenario data sources . 72
5-2 Sample scenario deliverables . 73
5-3 Demonstrated DB2 functionality . 77
5-4 PART table format . 82
5-5 Supplier table format . 83
5-6 PART SUPPLIER table format . 83
6-1 DSNZPARM definitions for a data warehouse . 94
7-1 Comparing index and data compression . 101
7-2 Index compression performance compared for index scan operations. 118
7-3 Sample PLAN_TABLE extract before activating star schema processing 132
7-4 Sample PLAN_TABLE extract after activating star schema processing 135
8-1 DEL message format - Message header . 190
8-2 DEL message format - Data from the source table. 190
9-1 Required APARs for BatchPipes support . 209
9-2 The Information Server user IDs. 231
10-1 WebSphere Client Federation properties . 272
12-1 Handing application requirements when using multiple DB2 for z/OS subsystems . 300
13-1 Product components . 309
13-2 Models and packages . 338

© Copyright IBM Corp. 2008. All rights reserved. xv

xvi Enterprise Data Warehousing with DB2 9 for z/OS

Examples

5-1 Table space DDL . 80
5-2 Table DDL. 80
5-3 PART data . 81
5-4 Supplier data. 82
5-5 PART SUPPLIER data . 83
6-1 Service class definitions for the OLTP DB2 subsystem . 95
6-2 Service class definitions for the data warehouse DB2 subsystem 96
7-1 DSN1COMP JCL sample . 106
7-2 DSN1COMP output sample . 106
7-3 SQL extract - Creating and altering an index with the COMPRESS option 107
7-4 Creating a compressed index is not supported on 4K buffer pools 107
7-5 Altering an index defined on a 4K buffer pool to COMPRESS YES 108
7-6 Index in REBUILD PENDING after alter to COMPRESS YES or COMPRESS NO . . 108
7-7 Sample catalog query for index compression analysis . 108
7-8 STOSPACE JCL sample . 109
7-9 Sample index for compression impact analysis . 109
7-10 Index compression query output sample . 109
7-11 Customer table, TPC-H model data sample . 110
7-12 Sample index creation for analysis of column position influence 111
7-13 Index comparison - Influence on compression ratio of column order 111
7-14 DSN1PRNT JCL sample. 111
7-15 Print of first leaf page for index NAME - KEY . 112
7-16 Print of first leaf page for index KEY - NAME . 112
7-17 How data is stored with index compression . 112
7-18 TPC-H order priority checking query. 113
7-19 Index for compression test - Physical properties . 113
7-20 JCL sample for issuing a MODIFY TRACE command . 115
7-21 OMEGAMON XE for DB2 Performance Expert on z/OS command report sample. . 115
7-22 Performance Expert report sample using a non-compressed index 116
7-23 Performance Expert report sample using a compressed index 116
7-24 Sample query index only scan . 117
7-25 Index creation for index only scan of compressed index test 117
7-26 Details for indexes involved in index only scan. 118
7-27 DSN1COMP compression report . 119
7-28 Altering a table space for using compression . 119
7-29 Compression Report of REORG utility . 120
7-30 Alter table space NOT LOGGED syntax. 122
7-31 Sample query against a not logged table space . 122
7-32 ICOPY status of a not logged table space after an update operation. 122
7-33 Index space must be copied with not logged table spaces. 123
7-34 Not logged table space and load nocopypend . 123
7-35 Populating the DSN_STATEMENT_CACHE_TABLE. 124
7-36 Sample query candidate for star join . 126
7-37 Optimization Service Center report - Default values for STARJOIN and SJTABLES 127
7-38 Sample query candidate for a star join . 130
7-39 Creating a multicolumn index in the fact table for star join processing 130
7-40 Defining indexes for each dimension key column in the fact table 131
7-41 System parameters implementation for start join . 133

© Copyright IBM Corp. 2008. All rights reserved. xvii

7-42 Online activation of star schema processing parameters . 133
7-43 Deactivating star schema processing parameters by reloading startup zparms. . . . 134
7-44 Optimization Service Center report on changed values for STARJOIN, SJTABLES 134
7-45 Compression on a star schema index. 137
7-46 DB2 OMEGAMON/PE Record trace - IFCID 002 - STARJOIN pool statistics 138
7-47 Index creation DDL - Index on expression . 139
7-48 Stage 2 predicate query example . 140
7-49 Index on expression creation example . 140
7-50 Index on expression cannot contain aggregate functions. 141
7-51 Creating an index on expression . 141
7-52 Runstats output for an index on expression . 141
7-53 Sample query from TCP-H for index on expression implementation 142
7-54 Creating an index on expression . 142
7-55 SQL sample of creating a CLONE table of CUSTOMER . 145
7-56 Sample query for inquiring clone tables information from the DB2 catalog 145
7-57 Sample DB2 catalog information about cloned tables . 145
7-58 Display of a database that contains cloned objects . 146
7-59 View of VSAM data sets underlying a cloned object. 146
7-60 Exchange data execution sample . 146
7-61 Rollback of an exchange data operation. 147
7-62 Exchange data and operations involving several clones . 147
7-63 Drop clone. 148
7-64 DDL for partition-by-growth table space . 150
7-65 DDL for creating a partition-by-range table space . 151
7-66 Partition-by-range table definition . 151
7-67 Adding a partition . 152
7-68 Creating MQT . 153
7-69 Dropping MQT . 154
7-70 RANK expression . 155
7-71 DENSE_RANK expression . 156
7-72 ROW_NUMBER . 157
8-1 Defining a user and started tasks for replication server . 163
8-2 Q Apply DB2 authority failure report . 164
8-3 Procedure Sample for Q Capture . 164
8-4 Procedure sample for Q Capture . 165
8-5 Started tasks for Q replication. 165
8-6 MQSeries queues used in our implementation . 166
8-7 Creating common MQSeries objects . 166
8-8 MQ queue creation output sample . 167
8-9 JCL sample for the creation of the Q replication queue . 168
8-10 Creating MQSeries queues for Q replication and event publishing 168
8-11 WHERE clause on table rows for event publishing. 188
8-12 Message format . 190
8-13 Event publishing message browse REXX code sample . 193
8-14 JCL sample for event publishing message browse. 194
8-15 Browsing a delimited event publishing message . 194
8-16 Browsing a XML event publishing message . 194
8-17 Sample Q Capture output for event publishing . 195
8-18 Q Capture output - A subscription being started. 196
8-19 REXX sample for formatting the contents of the IBMQREP_APPLYTRACE table. . 196
8-20 Output sample of formatted information in the IBMQREP_APPLYTRACE table . . . 198
8-21 Getting information from USS . 198
8-22 Browsing Q Capture log using OEDIT . 199

xviii Enterprise Data Warehousing with DB2 9 for z/OS

9-1 IOCDS definition for HiperSocket channels . 203
9-2 Using the ping command to verify the HiperSocket connection 206
9-3 Log output for the FTP command issued by a DataStage DB2z stage 207
9-4 Log output for a load utility call though DSNUTILS. 207
9-5 BatchPipes subsystem status . 208
9-6 Listing of currently opened batch pipes in the system . 209
9-7 Error message in the log if PK54242 is missing . 210
9-8 Data server procedure . 213
9-9 Query processor definition . 213
9-10 TCP/IP connection handler configuration . 214
9-11 SAF Exit . 214
9-12 Data server job log . 214
9-13 The cac.ini file . 228
9-14 Modifications in the dsenv file . 246
9-15 Exception in DataStage if MQ libraries are not accessible . 247
9-16 Cataloging the DB2 subsystems. 248
9-17 ODBC data source definitions in file .odbc.ini . 248
9-18 The uvodbc.config file with settings for available ODBC data sources. 249
9-19 DB2 commands to bind DataStage packages and grant access to public 250
9-20 Output of ddtestlib . 250
9-21 Using dssh to verify the ODBC connection to the Classic Federation Server. 251
9-22 Defining an additional node . 255
9-23 Configuration with an additional node. 255
10-1 Error message with DB2z stage and FTP to a data set . 273
10-2 BatchPipe related error messages . 273
12-1 Query for most sold parts in the country of a given customer. 298
12-2 Query for returned items per customer . 298
12-3 MQT definition that supports popular parts query . 302
12-4 Rewritten query using the defined MQT . 302
12-5 JDBC code fragment to set the current refresh age value . 303
13-1 Using netstat to list used ports . 310
13-2 Using db2level to display DB2 for Linux, UNIX, and Windows version information . 310
13-3 Using versionInfo.sh to check the WebSphere Application server version 310
13-4 Output of Java version check for the supported 31-bit version. 311
13-5 Output of Java version check for the unsupported 64-bit version. 311
13-6 Additional .profile settings for the Cognos user . 312
13-7 Sample CLASSPATH setting for including DB2 JDBC driver JAR files 312
13-8 Adding Cognos directories to LD_LIBRARY_PATH . 316
13-9 Modifications in httpd.conf . 316
13-10 HTTP daemons for the Cognos BI Web server gateway . 317
13-11 Running the C8DB2.sh script to create a content store database 318
13-12 Setting the JRE in .profile . 319
13-13 Cataloguing remote DB2 for z/OS databases. 323
13-14 Profile settings for user cognos. 326
13-15 Java version of the JDK that ships with WebSphere Application Server 326
13-16 Running the create_profile script to create a new WebSphere Application Server

profile . 327
13-17 Starting the server instance . 327
13-18 Installation report of p2pd.ear . 333
13-19 Output in SystemOut.log indicating that dispatcher is ready to process requests . 334
13-20 SystemOut.log messages during servlet startup . 334
13-21 Creating the PowerCube on the Server . 364
13-22 Returned item query . 368

 Examples xix

14-1 Sample query for DataQuant . 403
14-2 RedParts home page . 417
14-3 AlphaBlox sample query . 419
14-4 RedParts JSP . 420
A-1 ASM program used for performance evaluation. 425
A-2 JCL sample for assembly, bind and execution of performance model program. 428
B-1 Schema definition for the transactional system . 432
B-2 ODS schema definitions . 437
B-3 DDS schema definitions . 441

xx Enterprise Data Warehousing with DB2 9 for z/OS

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.

© Copyright IBM Corp. 2008. All rights reserved. xxi

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. These and other IBM trademarked terms are
marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
AlphaBlox®
BatchPipes®
Blox®
CICS®
DataStage®
DB2 Connect™
DB2®
DFSMS™
DFSMS/MVS™
DFSMShsm™
DFSORT™
Distributed Relational Database

Architecture™
DRDA®
DS8000™
Enterprise Storage Server®
ESCON®
eServer™
FICON®

FlashCopy®
GDPS®
Geographically Dispersed Parallel

Sysplex™
HiperSockets™
HyperSwap™
IBM®
IMS™
Informix®
InfoSphere™
MQSeries®
MVS™
MVS/ESA™
OMEGAMON®
OS/390®
Parallel Sysplex®
pSeries®
pureXML™
QMF™
RACF®

Redbooks®
Redbooks (logo) ®
REXX™
RMF™
Service Director™
SupportPac™
Sysplex Timer®
System i™
System Storage™
System z™
System z10™
System z9®
Tivoli®
VTAM®
WebSphere®
z/OS®
z/VM®
z10™
z9™
zSeries®

The following terms are trademarks of other companies:

Cognos, PowerCube, and the Cognos logo are trademarks or registered trademarks of Cognos Incorporated,
an IBM Company, in the United States and/or other countries.

SUSE, the Novell logo, and the N logo are registered trademarks of Novell, Inc. in the United States and other
countries.

Oracle, JD Edwards, PeopleSoft, Siebel, and TopLink are registered trademarks of Oracle Corporation and/or
its affiliates.

SAP, and SAP logos are trademarks or registered trademarks of SAP AG in Germany and in several other
countries.

J2EE, Java, JavaScript, JavaServer, JDBC, JDK, JRE, JSP, JVM, Solaris, Sun, and all Java-based trademarks
are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Excel, Internet Explorer, Microsoft, SQL Server, Windows, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

xxii Enterprise Data Warehousing with DB2 9 for z/OS

http://www.ibm.com/legal/copytrade.shtml

Preface

Enterprises look more and more to business intelligence (BI) to gain a competitive edge.
Today’s BI systems incorporate large data warehouses that are consolidated with near
real-time operational data stores (ODS) and continuously updated from multiple sources. An
increasing number of users in the enterprise want to access the data warehouse with BI
applications with real-time needs.

There is a renewed interest in the ability to implement a data warehouse solution on DB2® for
z/OS® and System z™. This is due to the inherent characteristics of security, availability,
performance, mixed workload management, and the growing portfolio of data warehousing
tools and functions provided by IBM®.

In this IBM Redbooks® publication, we focus on today’s software components on System z
and show how you can use them to realize the infrastructure for a full data warehouse
solution. By using a retail business scenario loosely based on the TPC-H benchmark, we
guide you through the warehouse implementation steps. In addition, we highlight the available
methods, techniques, and technologies for the deployment of this solution:

� System z and Linux® on System z
� DB2 9 for z/OS
� InfoSphere™ DataStage® and InfoSphere QualityStage
� WebSphere® Q Replication and WebSphere Data Event Publisher
� Cognos® 8 BI

This book provides an opportunity for you to look at satisfying the operational needs of
corporate users in addition to the longer term needs. In addition, business decision makers,
architects, implementors, DBAs, and data acquisition specialists can use this book to gain a
better understanding of how a data warehouse can be designed, implemented, and used.

This book is dedicated only to the first step of implementing a BI solution and concentrates on
the setup of the infrastructure. It does not intend to cover all the aspects of a BI solution. For
example, specific considerations on data sharing, very large databases, data mining,
performance, and capacity planning are intentionally excluded and will be the topics of future
documents.

The team that wrote this book

This book was produced by a team of specialists from around the world working at the
International Technical Support Organization (ITSO), San Jose Center.

Paolo Bruni is a DB2 Information Management Project Leader at the ITSO, San Jose Center.
He has authored several books about DB2 for z/OS and related tools, and has conducted
workshops and seminars worldwide. During Paolo’s many years with IBM, in development,
and in the field, his work has been mostly related to database systems.

Gaurav Bhagat is a System z Consultant in India Software Lab Services. He has six years of
experience in System z system programming, software deployment, and migration on z/OS.
Over the years, Gaurav has worked as a system programmer and consultant on WebSphere,
DB2, and OMEGAMON® for z/OS. He holds a Bachelor of Engineering degree in Electronics
and Communication from Delhi University.

© Copyright IBM Corp. 2008. All rights reserved. xxiii

Lothar Goeggelmann is a Software Development Engineer for data warehouse on System z
at the IBM Development Lab in Boeblingen, Germany. He has 12 years of experience with
software development on System z and porting of software products to System z. Over the
years, he has worked in various projects such as DB2 for z/OS, WebSphere Portal on z/OS,
and WebSphere Portal on Linux on System z. He has worked at IBM for 24 years. Lothar has
a degree in computer science from the Hochschule Ulm.

Sreenivasa Janaki is a Data Architect working for National City Corporation in the United
States. He has more than 10 years of experience developing data warehouse and BI
systems, many of which are implemented on DB2. His areas of interest include the extract,
transform, and load (ETL) processes of data warehouses, database design, and database
administration. He holds two Master of Science degrees in engineering from the University of
Alaska at Fairbanks.

Andrew Keenan is a Managing Consultant in Australia with IBM Global Business Services.
He has 13 years experience in BI, management reporting, and data migration projects. He
has acquired skills in using multiple vendor products within the Analytics & Reporting,
Information Management, and Single Customer View solution areas. Over the years, Andrew
has worked on a number of projects in implementing Cognos BI solutions.

Cristian Molaro is an independent consultant based in Belgium working in Europe for
customers with some of the largest DB2 installations. His main activity is linked to DB2 for
z/OS administration and performance. He has presented papers at several international
conferences and local user groups in Europe. He is an IBM Certified DBA and Application
Developer for DB2 for z/OS V7, V8, and V9. He holds a Chemical Engineer degree and a
Master in Management Sciences.

Frank Neumann is a Software Architect for Data Warehouse on System z in the IBM Lab in
Boeblingen, Germany. During his career with IBM, Frank worked as a developer, team lead,
and architect for software components and solutions. He holds a Master of Computer Science
degree from the University of Karlsruhe, Germany.

xxiv Enterprise Data Warehousing with DB2 9 for z/OS

Figure 1 shows a photo of the team.

Figure 1 Left to right: Sreeni, Paolo, Cristian, Andrew, Lothar, Frank, and Gaurav

Special thanks to the following people for their contributions to this book:

� Claudia Imhoff, Ph.D., President and Founder of Intelligence Solutions, Inc. for allowing us
to use some of her definitions

� Larry Gosselin for allowing us to use charts from his presentation “IBM Information On
Demand 2007 - Reference Architecture”

� Khadija Souissi, a System z Specialist at the Technical Marketing Competence Center
Europe in the IBM Lab in Boeblingen, Germany, for her contributions throughout this
project

Thanks to the following people for their contributions to this project:

Emma Jacobs
Deanna Polm
Sangam Racherla
ITSO

Oliver Draese
Ingo Hotz
Helmut Schilling
Juergen Schimpf
Emil Wolf
IBM Germany

Angelo Sironi
IBM Italy

Nigel Campbell
Colin Moden
IBM Canada

 Preface xxv

Paul Christensen
Sean Crowley
Gary Crupi
Tony Curcio
Larry Gosselin
Richard Harken
IBM USA

Jaime Anaya
Aarti Borkar
Willie Favero
Beth Hamel
Terrie Jacopi
Bob Lyle
Roger Miller
Terry Purcell
Jonathan Sloan
Guogen Zhang
IBM Silicon Valley Lab

Become a published author

Join us for a two- to six-week residency program! Help write a book dealing with specific
products or solutions, while getting hands-on experience with leading-edge technologies. You
will have the opportunity to team with IBM technical professionals, Business Partners, and
Clients.

Your efforts will help increase product acceptance and customer satisfaction. As a bonus, you
will develop a network of contacts in IBM development labs, and increase your productivity
and marketability.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

xxvi Enterprise Data Warehousing with DB2 9 for z/OS

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Part 1 Data warehouse today

In this part, we provide a brief overview of data warehouse and business intelligence (BI)
definitions. We highlight the main reasons for a return of interest on System z as a platform
that provides the characteristics needed for a successful implementation of a BI solution. We
also describe the infrastructure that may be used for such a solution.

The objective of this part is to present terminology, explain the reasons for using DB2 and
System z for building a data warehouse, and review the methods and tools that are available
to build a solid data warehouse solution.

This part contains the following chapters:

� Chapter 1, “Definitions” on page 3
� Chapter 2, “Evolution of business intelligence” on page 17
� Chapter 3, “Why implement a data warehouse on System z” on page 31
� Chapter 4, “The architecture for the BI solution on System z” on page 59

Part 1

© Copyright IBM Corp. 2008. All rights reserved. 1

2 Enterprise Data Warehousing with DB2 9 for z/OS

Chapter 1. Definitions

Where does a data warehouse begin and end? Is a data mart part of a data warehouse?
When is a project for a company, which was started as a data warehouse, really a data mart?
Where does operational reporting belong? What do you call a data warehouse that provides
detailed operational information? How does business intelligence (BI) differentiate from a
data warehouse?

In this chapter, we provide a broad overview of the concepts of data warehousing and some
operating definitions. This chapter contains the following sections:

� 1.1, “Introduction” on page 4
� 1.2, “The data warehouse environment” on page 4
� 1.3, “Data warehouse data definitions” on page 10
� 1.4, “Data warehouse functional definitions” on page 14

1

© Copyright IBM Corp. 2008. All rights reserved. 3

1.1 Introduction

Data warehousing has evolved from the needs of corporate decision makers. The large
amount of data gathered from the 1970s and 1980s by large corporations in their operational
systems was somewhat harnessed and put together for making informed business decisions
in data warehouses.

In the late 1980s and early 1990s, personal computers, fourth generation languages (4GLs),
and online analytical processing (OLAP) tools became readily available. Users wanted more
direct control over their data. Each department began requesting extra views of the enterprise
data or different extracts for different purposes from the same source.

Today many companies are looking at cross-functional business processes to provide better
customer-centric services. There is a need to understand and react faster to the immediate
concerns of a customer by improving on activities such as customer service, campaign
management, and real-time fraud detection. These services require the ability to access and
update an integrated, consolidated, and current view of detailed operational data. Therefore,
the enterprises are turning to “near” real-time transactional middleware as a way of moving
data between applications and other source and target configurations.

1.2 The data warehouse environment

A data warehouse is an organization’s data with a corporate-wide scope for use in decision
support and informational applications. Therefore, a data warehouse is designed to serve all
possible decision support processes for an organization. Two types of data subsystems make
up the “data warehouse environment”:

� The enterprise data warehouse, which contains all data with a global scope
� The data marts, which contain data for a specific business

Another subsystem, called the BI application layer, incorporates BI user applications and
templates. In general, it provides all the services to select, extract, and manipulate the data.

The data warehouse layer and the BI application layer together become the data warehouse
and BI or decision support system of the enterprise, which is illustrated in Figure 1-1 on
page 5. This data warehouse and BI system provides executives and line managers with
information to help support their decisions and to sustain and improve their business. These
decisions can be about the future developments or operational in nature.

The ETL box is the data warehouse function that manages the extract, transform, and load
(ETL) process for the data warehouse and the ETL elements that populate the data marts.
This function generally entails the extraction, transformation, and loading of your data from
the data source into the data warehouse by using a staging area.

4 Enterprise Data Warehousing with DB2 9 for z/OS

Figure 1-1 Data warehouse and BI environment

Let us see some other definitions.

According to Bill Inmon, the Corporate Information Factory contains components, such as an
applications environment, from which the data flows into an integration and transformation
layer (I & T layer) and then into an operational data store (ODS).1 The data warehouse is fed
by either the ODS or directly from the I & T layer, which consists of current and historical
detailed data. This then can flow into data marts that are derived and dependent on the data
warehouse primarily, except for external data and historical reference data. Therefore,
Inmon’s definition does not put the data marts within the data warehouse.

Traditionally, the Kimball Group has referred to the process of providing information to support
business decision making as data warehousing.2 Now they use the phrase data
warehouse/business intelligence to mean the complete end-to-end system. They refer to the
data that can be queried in a warehouse/BI system as the enterprise’s data warehouse, and
value-add analytics as BI applications.

Barry Devlin states, “A data warehouse is simply a single, complete, and consistent store of
data obtained from a variety of sources and made available to users in a way that they can
understand and use in a business context”.3

As it is often the case, for a given problem, different approaches can yield the right solution.
You may choose to build a data mart directly from the source system data. You can also use a
federated system application or an MIS approach and query all the source systems directly for
decision support processing.

In this chapter, we focus on the definitions of the subsystems that are the components of the
software architecture, especially for the data warehouse environment (shown in Figure 1-1 on
page 5). In Chapter 2, “Evolution of business intelligence” on page 17, we expand these

1 http://www.inmoncif.com/home/
2 http://www.rkimball.com/
3 Barry Devlin. Data Warehouse: From Architecture to Implementation. Addison-Wesley Professional, 1996.

Data Mart

Warehouse Management / ETL

Data
Source

Data Mart

Data Mart

BI Application
Layer

Warehouse Catalog / Metadata

Query
Manipulation

Analysis
Visualization

ETL

ETL

ETL

Enterprise
Data

Warehouse
ETL System /
Data Staging

Chapter 1. Definitions 5

http://www.rkimball.com/
http://www.inmoncif.com/home/

concepts to include more recent additions to data warehousing. We describe the solution that
is pertinent to our scenario in 5.3, “Solution overview” on page 75.

We start by defining the enterprise data warehouse, the departmental data warehouse or data
mart, the operational data store, and business intelligence. Then we mention other commonly
used data warehouse definitions.

1.2.1 Data warehouse and data mart

You know you have built an enterprise data warehouse when it has the following
characteristics:

� Is corporate-wide in scope

� Presents a subject-oriented data organization

� Contains a non-volatile store of data that is integrated, cleansed, and derived as needed
from various source systems

� Is capable of holding historical data

The data mart, or business process dimensional model, usually has a more restrictive scope
in the sense that it is not corporate wide. It is more restrictive in terms of size and usability. It
can have primitive, summarized, and derived data that answers a particular business process
or problem domain, or it helps a particular business group within an organization. A data mart
supports looking at important measures by a variety of contextual dimensions.

You can ask: Is a data mart just a smaller data warehouse? The answer is “not quite,” for
several reasons. We said earlier that the scope of the data mart is smaller. Also the data
warehouse usually is created with many different users in mind and is designed to answer
several questions that are not yet asked by the users.

For example, in a risk-oriented data mart for banking, you may have a data mart that has a
metric called “Count of loans with balances having been past due for greater than 90 days”. It
may span across dimensions of Branch, General Ledger Code, Time (as of the date that the
90-day threshold was crossed), Loan Type of Commercial versus Consumer, and so on. In
the date warehouse, you save the loan number along with the exact due date so that you can
calculate whether the loan is past due for greater than 30 days or 60 days and so forth.

Therefore, we store detailed granular data that is helpful in answering unanticipated questions
within context. Also business rules differ from one department to another in classifying a loan
as past due for a date period. In a data mart, you might apply the rule for one department or
process and ignore the other departments. From a data warehouse, you apply the rule on its
way to a derived data mart.

A data mart has been defined as “An implementation of a data warehouse with a small and
more tightly restricted scope of data and data warehouse functions, serving a single
department or part of an organization” by H. S. Gill and P. C. Rao in The Official Client/Server
Computing Guide to Data Warehousing.4 A data mart is created when the business users
have precise questions that they require to be consistently answered over a period of time. A
data mart commonly supports multidimensional analysis.

Warehouse catalog
The warehouse catalog is the subsystem that stores and manages all the metadata. The
metadata refers to such information as data element mapping from source to target, data
element meaning information for information systems and business users, the data models

4 H. S. Gill and P. C. Rao. The Official Client/Server Computing Guide to Data Warehousing. Que 1996, p. 353.

6 Enterprise Data Warehousing with DB2 9 for z/OS

(both logical and physical), a description of the use of the data, and temporal information. In a
banking environment, for example, if you have a field, such as Chargeoff Amount, then it is
worthwhile to the information systems and business users if this field is the net of Recovery
Amount.

An example of the use of metadata is to inform users how they can distinguish a self-serve
safe deposit box from a non-self serve safe deposit box or distinguish business or commercial
loans from consumer loans. Temporal information is about maintaining knowledge of temporal
intervals for business data. This can include information over time ranges in regard to loan
rates, borrower credit ratings, and collateral ratings.

Warehouse management or ETL subsystem
The warehouse or ETL management subsystem is the data warehouse function that
manages the ETL process for the data warehouse and the ETL elements that populate the
data marts. It can include job scheduler, backup systems, recovery and restart, version
control, lineage, and other areas.

For example, in a banking scenario, someone might want to know whether the load from the
General Ledger system finished successfully and the time at which it completed. In this case,
you go to this subsystem to learn that information. You can even have a report that details this
information. Information in this subsystem, such as the backup and recovery related
information, can be useful to the application development team and the DBAs. Having such a
system can help reduce the burden on key development team resources. It can also help in
any transition efforts as new team members are brought into maintain the decision support
system of the enterprise.

Operational data store
In the data warehousing arena, there is another construct known as the operational data
store. The ODS can also be used to feed the enterprise data warehouse and hence
dependent data marts. An ODS is integrated and subject-oriented similar to the data
warehouse. However, the update frequency, direct update paths from applications that make
it volatile, and current valued information distinguish it from the data warehouse. For general
characteristics and benefits of an ODS, refer to Building the Operational Data Store on DB2
UDB Using IBM Data Replication, WebSphere MQ Family, and DB2 Warehouse Manager,
SG24-6513.

Business intelligence
The term business intelligence is interspersed in this book. Therefore, it is worthwhile to
define it. The book From Multiplatform Operational Data to Data Warehousing and Business
Intelligence, SG24-5174, defines BI as a general term that covers all processes, techniques,
and tools that support business decision making based on information technology. The
approaches can range from a simple spreadsheet to a major competitive intelligence
undertaking. Figure 1-2 on page 8 shows an example of a BI architecture.

Chapter 1. Definitions 7

Figure 1-2 Example of a BI architecture

For more information, see “Business Intelligence and Performance Management” on the Web
at the following address:

http://www.ibm.com/BI

In the following sections, we look at the major components of BI as illustrated in Figure 1-2.

Query and reporting
A query is defined as a business question that is translated into a computer query. In a query
and reporting process, the business question is defined, the data is accessed, the answer set
is returned, and the report is presented in a chart or a graph to the user. The reports can be
canned, in which they represent a stable workload, or they can be ad hoc, where they
represent a variable workload.

Online analytical processing
OLAP is made possible with a multidimensional view of data. OLAP usually involves a
multidimensional data store from which tools, such as those provided by Cognos software,
can display measures, use its calculation component along several dimensions, and present
data to users. Therefore, a user should know the kind of queries in advance to use OLAP. In
Relational OLAP (ROLAP) tools, the data is sourced from relational structures as opposed to
the source being from a prebuilt OLAP cube.

Data mining
Data mining is the exploration and analysis of large quantities of data in order to discover
unknown or hidden, comprehensible and actionable information and using it to make
business decisions and to support their implementation, including formulating tactical and

Data Warehouse

Integration and Transformation

Business Intelligence applications

Operational and External Data

Q
uery &

 R
eports

D
ata M

ining

Statistics

O
LA

P

Data Marts

O D S

8 Enterprise Data Warehousing with DB2 9 for z/OS

http://www.ibm.com/BI

strategic initiatives and measuring their success. You use techniques such as decision trees,
scoring, association analysis, and neural networks.

Operational business intelligence
One of the prime prerequisites for competitive advantage in the marketplace is information.
Business intelligence is the domain that is responsible for gathering that information and
making it available to decision makers. For improved decision making and to enable a
competitive advantage, the need for more current information continues to grow. Most
companies are expending effort to satisfy this need.

There are two primary and different functional areas of any company where BI is required:

� Business strategy and planning

This area is the traditional BI. It is concerned with more strategic issues such as which
products to make, where to sell them, how and where to distribute them, whether to use
mergers and acquisitions, and how to maximize profit. To do this, a company needs what
is termed strategic, or informational, business intelligence.

� Business operations

This area focuses on the tactical day-to-day operations of the company. It is typically
focused heavily on developing and executing efficient business processes. The goal is to
produce and deliver products quickly and at the lowest cost possible, and to maintain
client satisfaction. To do this, a company needs what is termed tactical, or operational
business intelligence.

At the IBM Information On Demand 2007 Conference in Las Vegas Nevada, Claudia Imhoff
and Mike Schroeck defined operational BI as: “a set of services, applications and
technologies for monitoring, reporting on, analyzing, and managing the business
performance of an organization’s daily business operations.”5

Such help in decision making can be useful for front-line managers. For this to happen,
operational data must be available with little latency to the front-line operational managers
with history. An example of this information in a bank is for front-line managers to be better
prepared in cross selling other products to a customer. It can also be to take the lifetime value
of a customer and provide free overdraft protection up to a certain dollar value.

The best feature of operational BI enablement is that more users in an organization can use
the data. This means that the IT managers do not have to constantly justify the value of the
data warehouse environment to the organization. These front-line managers can help extol
the value of this technology product as well. This product helps the front-line manager in
understanding a customer better when they need it most, in real time, and provides service to
the satisfaction of the customer.

It is difficult to argue against a technology that keeps a customer happy, which is the proven
way to keep an organization stable and grow it. In large banks, for example, it is mandatory in
the United States to look for suspicious money laundering activities by looking at
transaction-level data. This rich repository of transaction data can be potentially used for
operational BI enablement.

In general, the data warehouse environment can be broken down into data, functional, and
technical aspects. The definitions that are commonly used are described in 1.3, “Data
warehouse data definitions” on page 10. The definitions portray an understanding of the need

5 Provided by Claudia Imhoff, PH.D., President and Founder of Intelligence Solutions, Inc., and Mike Schroeck,
Partner, IBM Global Business Services, “Operational Intelligence: Business Process Management Meets Business
Intelligence” presentation at the Information On Demand conference in Las Vegas 14-19 October 2007

Chapter 1. Definitions 9

for the perfect alignment of the three aspects to satisfy a business need for an
enterprise-wide decision support system.

1.3 Data warehouse data definitions

To look at the data aspect, you need a data model. A good example is the widely used entity
relationship model, which is perhaps the most traditional approach, with subject areas and
data granularity and metadata. Predefined data models can be purchased to use as a starting
point.

For example, for Banking, IBM offers the Financial Markets Industry Models, which provide an
overall analysis framework for handling risk management, regulatory compliance, and so on.
The IBM Financial Markets Process Models are designed for financial markets organizations
that are looking to re-engineer, broaden, and standardize their core enterprise-wide business
processes. The IBM Financial Markets Services Models are for organizations that are
implementing new business process architectures. They are also for companies that are
focused on their service-oriented architecture (SOA) strategy. For more details about IBM
Industry Models, see 5.7, “Data modeling options: IBM Industry Models” on page 88.

Within the data models for Financial Markets is the Financial Markets data warehouse. This
data warehouse is a data management toolkit that is designed to assist financial institutions in
building warehousing solutions, from both an analytical and operational perspective.

As any data warehouse data model should, the Financial Markets data warehouse provides
the blueprint for a single consistent enterprise view of the data. Such a prepackaged industry
model can accelerate your goal for your own data warehouse. If you have already built a data
warehouse, then chances are that you may be bringing in more source systems with a wider
variety of data. For example, you may have some financial loan information but not lease
information in the data warehouse. You may not have marketing campaign analysis
information. You can use such models for accelerating the next releases of your data
warehouse.

The data model in a warehouse context can be challenging because of the involvement of the
time component that makes it a temporal-entity relationship model. Let us look at the different
data modeling styles that are available.

1.3.1 Data warehouse data modeling styles

When time is introduced, relationships between data can change. For example, if you want
only the latest information for a person, then you can enter their name, marital status, and so
on in that entity. However, if you want a history of that person, then you have to enter a time
component and call it person history. It might have one or more occurrences of name, marital
status, and so on over time. Also, an added time component must be defined, which can be
the time at which it is captured in the online transaction system or when it is known to the data
warehouse at load time.

There are trade-offs because it is unrealistic to capture time stamps for each attribute used in
the data warehouse. Input from the business requirements can help to reduce the span of the
temporal model. The model does not go back to update or delete any inserted data. It inserts
more rows that inform us of the end of the use of the older information. Therefore, in this case,
it behaves in insert-only mode.

10 Enterprise Data Warehousing with DB2 9 for z/OS

Cumulative snapshot
When the cumulative snapshot data modeling style is employed, the data is a series of
snapshots of the source data. The frequency of the snapshots is usually dependent on the
business requirements. It is common to see a data warehouse that consists of monthly
snapshots of information. For example, a state government might be interested in the types of
assistance, such as food stamps, Medicaid, or cash assistance, that are available to a
recipient at the end of each month and then compare the metrics month over month for
several years. Another example is a bank that is interested in metrics such as the outstanding
loan amount at the end of every month.

Cumulative snapshot with rolling summarization
If volume is an issue because of the frequency of taking snapshots, such as daily, then older
snapshot information can be consolidated to a lesser level of detail such as monthly.

Continuous temporal model
In the continuous temporal model type of data modeling approach, all the data changes that
are important to the business are captured without losing the changes. Contrast this with the
cumulative snapshot approach, in a situation where a monthly snapshot was chosen. In the
cumulative snapshot approach, all the changes that happened within the month are unknown
to the data warehouse. Then we only know the information at the end of the month.

In the continuous temporal model, we take a snapshot of the data regardless of whether it is
changed. In the continuous temporal model, we know all the changes that happened within
the month.

The ODS data model used in this book is loosely based on the TPC-H benchmark model. We
have the latest information in the ODS and keep the history in the dimensional data store
(DDS) with the date dimension that provides the time slicing of the metrics in the fact table.

The data warehouse usually contains fact, event, or state information. Events or facts happen
at a specific time, while a state represents a situation that is stable over a period of time.
Events are associated with the time when they occur. The time can be represented by a time
stamp or date based on business needs. States are associated with timestamp (or date)
intervals. For example, consider the interval information, such as “01 October 2007 through
31 October 2007”, in your bank statement. This interval record can be tied to instant records
that designate when the event took place such as each ATM transaction in your account.

Let us now see how the design for query and extract performance leads to summary tables
and the reduction of join complexity that leads us into multidimensional modeling.

1.3.2 Multidimensional data model

To describe multidimensional data modeling, we must first define the elements that are
presented in the following sections. The model can be construed as the resolution of a
many-to-many relationship across all of the contextual dimensions for which the study of the
measure is of interest.

Measure
A measure usually indicates quantities, amounts, durations, and so on. A measure is a data
item that information analysts can use in their queries to measure the performance of their
business, such as the number of policies that are sold by an insurance company.

Chapter 1. Definitions 11

Dimension
Dimensions provide the contextual background for the measures, for example, the number of
auto (line of business) insurance policies sold in Ohio in March 2008. In this example, the line
of business dimension distinguishes auto insurance from homeowners insurance. The
mention of the state of Ohio shows the geography dimension, and March 2008 relates to the
time dimension.

Fact
A fact is a collection of related measures that are taken together with their associated
dimensions and represented by the dimension keys. A fact should be of interest to an
information analyst. For example, a general ledger reconciliation fact is useful in knowing if
the measures used in reporting and analysis match the general ledger.

Grain
The grain of a dimension is the lowest level of detail available within that dimension.

Granularity
The granularity of a measure is determined by the combination of the grains of all of its
dimensions.

Dimension hierarchy
Dimensions can consist of one or more alternate hierarchies. An example shown later in this
book is a hierarchy that corresponds to branches, nations, and regions. Each dimension
hierarchy can include several aggregation levels.

Multidimensional data modeling: Snowflake model
The snowflake model is the representation of a multidimensional model in which the
dimension hierarchies are structured and normalized. For example, a time hierarchy is
structured separately as year, month, week, and day.

Multidimensional data modeling: Star model
The star model is the representation of a multidimensional model in which the dimensions are
collapsed in dimension tables. For example, you might have a date dimension in which the
week number, month, and year are all contained. Therefore, for a year, you can generally
have 365 days. If you have measures that you must look at for 10 years, then you have
approximately 3650 rows with one date for each day in this date dimension table. Each day
has additional details indicating whether it is a holiday and which day of the week it is.

Slowly changing dimensions
Most dimensions change slowly. For example, if you have a customer dimension that contains
the name, gender, marital status, and so on, then it will change slowly. When the dimension
changes, the Kimball Group considers the following design choices and implementation
techniques:6

� Slowly changing dimension (SCD) Type 1

You use this type when you can choose to overwrite the existing information in the
dimension with the new information. For example, if the marital status changes, then you
overwrite the marital status, losing the older status. There are no key changes and so forth
to worry about.

6 “Kimball Design Tip #15: Combining SCD Techniques” by Margy Ross
http://www.kimballuniversity.com/html/designtipsPDF/DesignTips2000%20/KimballDT15CombiningSCD.pdf

12 Enterprise Data Warehousing with DB2 9 for z/OS

http://www.kimballuniversity.com/html/designtipsPDF/DesignTips2000%20/KimballDT15CombiningSCD.pdf

� SCD Type 2

You use this type when you intend to keep the older customer record for use with data until
the change day and create the newer information in a new customer record for use in tying
it to the fact table from that day onward. For this reason, you need surrogate or artificial
keys that can be generated for these two same customer records in the customer
dimension table.

� SCD Type 3

In this type, we keep the original attribute information and the most current information,
while losing anything that happens in between. For example, if the marital status changes,
then we have the first marital status that we knew of in the Original Marital Status field and
the most recent status in the Current Marital Status field. We never overwrite the Original
Marital Status field with any future changes. We only overwrite the Current Marital Status
value.

Data analysis processing
Consider the following examples of general types of data analysis processing for a bank:

� Trend Analysis: How many new accounts have opened every month for the past 12
months?

� Statistical Analysis: How much is the average fee per commercial loan per month by
standard industry classification code?

� Ranking: What are the top 20 customers in terms of performing loans and most loan
amount outstanding with the highest collateral rating and excellent credit rating?

Multidimensional data analysis techniques
Multidimensional data analysis techniques are possible, especially with tools such as those
provided by Cognos software, which can help in analyzing OLAP data sources across many
dimensions. They are slice-and-dice, drill-down, roll-up, and pivoting analysis. You can see
these methods in action in Chapter 13, “Reporting and analysis with Cognos 8 BI” on
page 305. They are defined as follows:

� Slice-and-dice analysis

Slice-and-dice analysis occurs across several dimensions such as in insurance
underwriting company, channel, line of business, geography, and time to look for typical
business behavior and exceptional events.

� Drill-down analysis

Drill-down analysis is an iterative analysis where you explore the metrics at more detailed
levels of the dimension hierarchies. As an example, you can look at the metrics by country,
state, ZIP 3 code (in U.S. the first three digits of the ZIP Code) and ZIP 5 code. Roll-up is
the reverse way of this going up the dimensional hierarchy.

� Roll-up analysis

Roll-up analysis enables you to explore the metrics at a higher level of summarization.

� Pivoting analysis

Pivoting analysis is when the result set from an OLAP source is rotated to another to be
given priority in the demonstration of the result.

Note: In this book, you can see the application of the SCD Type 2 technique in the
customer dimension as implemented by the InfoSphere DataStage Slowly Changing
Dimension stage.

Chapter 1. Definitions 13

1.4 Data warehouse functional definitions

The functional aspect contains the data transport and transformation area. The subsystems
to populate the enterprise data warehouse and the subsystem to move the data into the data
marts are part of this aspect. Each such subsystem is called an ETL task as shown in
Figure 1-1 on page 5. Therefore, the subsystem also populates the ODS and moves the data
from the ODS to the dimensional model, which is the scenario presented in this book.

The data that is populated in the data warehouse environment typically comes from the
source online transaction systems and possibly external sources. It can include foreign
exchange rates, a valid list of ZIP Codes, and so forth. You can use a variety of replication
techniques along with data transformations, data cleansing, and information derivation.

1.4.1 Replication techniques

Typically if you are starting to build your data warehouse project or are bringing in a new
source system information into the data warehouse, you do an initial or full load of the history
of the source system or system and then incrementally update the data with a frequency
needed to satisfy the business requirements. Replication management in this context refers
to techniques in the replication of data between different data management sites.

In Chapter 10, “Full load using DataStage” on page 257, and Chapter 11, “Incremental
update with DataStage” on page 281, you see the full and incremental loads that were
accomplished for the tables that were used for the scenario in this book. Such tools as
DataStage are used to transform and apply the data from the source systems to the target
database.

For the incremental load, a source capture technique can read from the recovery log of the
online transaction system by the Q Capture tool as shown in Figure 1-3. Applying it to the
target system with Event Publisher and DataStage is an efficient way of enabling source
system updates to be piped into the data warehouse environment. For data warehouses to be
useful for the information consumers, they must be nimble. With a quicker implementation of
the ETL in a data warehouse with the use of tools, such as DataStage, this becomes more
plausible. Therefore, source capture techniques, target apply techniques, and tools play an
important role in data warehousing.

Figure 1-3 Sample incremental process

TARGET

SOURCE

SOURCE2

SOURCE1

METADATA

DB2 Log
Q

Capture

DataStage

Delimited
message

queue

TARGET2

TARGET1

14 Enterprise Data Warehousing with DB2 9 for z/OS

1.4.2 Data transformations

You can have either record-level, attribute-level, or both levels of transformation.

Record-level transformation
Record-level transformation happens, for example, when you split one record into multiple
records or push multiple records into one record. You see in Chapter 10, “Full load using
DataStage” on page 257, that we used the DataStage tool and pushed the OLTP shipment
table information into the orders and line-item tables in the ODS.

Attribute-level transformation
Attribute-level transformation involves change at a single attribute-level and can be as simple
as a data lookup. Again in Chapter 10, “Full load using DataStage” on page 257, you see how
we used the country name that came in the OLTP customer table and supplanted it with a
nation key in the ODS customer table using the ODS nation_lookup table. You can have other
attribute-level transformations such as aggregation and enrichment.

Data cleansing
Data cleansing is a complicated process. It consists of statistical and other data manipulation
and transformation techniques, and is used to eliminate variations and inconsistencies in data
content. In general, data cleansing is used to improve the quality, consistency, and usability of
the base data. As an example, you can have address data that may not have proper street
addresses, ZIP Codes, and so forth. It is difficult if the marketing managers in an organization
are doing campaign analysis by ZIP Code and the ZIP Codes in many records of the
transaction system are empty. Therefore, you can use address cleansing tools that can use
U.S. Postal Service information and make sure that the address information and ZIP Codes
are cleansed.

Business metadata
Business metadata is the enterprise knowledge of how the data is used for business
purposes. Business people can refer to the business metadata when trying to understand and
follow business policies and procedures.

Technical metadata
Technical metadata can be static or dynamic.

Static technical metadata can be source-to-target mappings for all the source systems that
are being extracted into the data warehouse environment. Examples of static technical
metadata are the mapping of source system file inventory information to the target system
database’s subject areas, transformation and derivation rules, and so on.

Dynamic metadata includes information from job executions. Load schedules, load statistics,
lookup rejects and, in general, load rejects, and so on are part of this grouping of metadata.

Chapter 1. Definitions 15

1.4.3 Application techniques

In application of the full or initial load, we used “load replace,” and in the incremental load, we
used “load append”. This can be controlled by target table properties for the DB2z stage in
DataStage jobs. (A DataStage process step is described in 10.3, “Load jobs for populating
ODS from OLTP” on page 262).

You can also have a constructive merge in which case you update the end time for any record
that is going to be superseded by new information. You can see this in Chapter 11,
“Incremental update with DataStage” on page 281, where we explain the implementation of
the slowly changing dimension stage.

16 Enterprise Data Warehousing with DB2 9 for z/OS

Chapter 2. Evolution of business
intelligence

In this chapter, we discuss the fast changing evolution of the business intelligence (BI) arena
and the methods and technology that support it. As corporate demands for using vast
information explode, technology and functionality have evolved, and the line of separation
between data warehousing and online transaction processing (OLTP) systems has become
dotted. Evolution within BI is discussed in the areas of technology and functionality maturity,
users, and requirements.

We also discuss some of the market drivers and challenges that organizations are facing. We
explain how recent trends, such as Information On Demand and operational business
intelligence, provide innovative ways to address these challenges.

This chapter contains the following sections:

� 2.1, “Market drivers and challenges” on page 18
� 2.2, “BI technology and functionality evolution” on page 19
� 2.3, “Types of users and their requirements” on page 22
� 2.4, “Information On Demand” on page 24

2

© Copyright IBM Corp. 2008. All rights reserved. 17

2.1 Market drivers and challenges

Organizations are continuing to rate data warehouse and BI initiatives high within their
strategic plans and continue to increase their spending. One of the key areas that is driving
this is the need to invest in performance management and link corporate strategy and
initiatives with metrics, queries, and reporting.

Corporate performance management implementations, along with the right data governance
controls, allow an organization to take advantage of the following actions:

� Have realistic goals based on real information

� Adapt goals intelligently when required and focus on the outcome

� Align individuals’ goals to the strategic goals of the organization

� Provide communication and accountability

� Measure progress against key performance indicators and publish results in a central
location where it is available for everyone to provide feedback

� Gain an understanding of the business and what drives it

Market growth is also being driven by the push to have BI available to “the masses”. That is to
give a greater number of users within the organization, from executives down to the
operational staff, the ability to use corporate information or embedded analytics within
applications to accelerate decision making in their daily tasks. Figure 2-1 on page 22 gives an
indication of the user population and type of users that have been introduced to BI capability
over time.

New capabilities continue to be added to BI implementations. An example of this is the
addition of real-time updates of operational data within an operational data store (ODS) or
similar, further allowing users to use current information.

Growth within the BI industry is also linked to the challenges that organizations are facing,
such as the following examples:

� Increase employee productivity
� Improve business processes
� Better understand and meet customer expectations
� Manage risk and compliance
� Improve operational efficiency
� Manage ongoing cost pressures
� Promote the use of existing information in the decision making process

In addition to the business challenges, technical challenges also arise:

� Too much information and not knowing which is most important

The amount of information is growing, and new types are being introduced.

� Lack of data integration

Information is scattered throughout the organization, sometimes in separate silos.

� Lack of appropriate technical skills available

� Real-time access to information

� Query performance optimization

� The need to integrate structured and unstructured data sources

� Lack of trust in data sources

18 Enterprise Data Warehousing with DB2 9 for z/OS

� The need for rapid deployment of new systems

� Scalability of systems

� The need to provide extended search capabilities across all enterprise data

� The need to create master data sets of information important to the business, for example,
customers, products, and suppliers

� Lack of agility in regard to inflexible IT systems

Employees are spending too much time on managing change in these systems rather than
doing more strategic tasks.

� Lack of self-service BI query, reports, and analysis

� Time too long for operational data updates to flow from an ODS to scorecards and
dashboards in a traditional BI implementation

2.2 BI technology and functionality evolution

The message or concepts of BI have not changed over time. By applying processes and
methodologies against corporate data and turning it into useful information organizations can
gain insight and support their decision making process. The maturity of the technology and
functionality that can be used to help apply the necessary processes and methodologies has
changed, as has the output that BI implementations can deliver to organizations. In 2.2.2, “BI
evolution and maturity” on page 21, we look at how BI has evolved.

Traditionally, data warehouses extract data from the operational storage through batch
processes executed within maintenance windows. Today BI systems incorporate large data
warehouses that are consolidated with near real-time operational data and support
message-based integration of data. Real-time data feeds mean that a database is being
updated in real time while it is being queried. This is similar to the transactional database. The
new generation of data warehouse can be called dynamic warehousing.

Traditional and new breeds of BI applications access the dynamic warehouse, which contains
both historical and operational data. They provide information to the user at the time they
require while performing their tasks. The time available to provide this information has
become shorter, and many organizations need to monitor their operational data and react to
certain events as soon as it is triggered. In addition the number of users requiring information
from the data warehouse environment has increased. This is demonstrated in Figure 2-1 on
page 22.

Traditionally BI and data warehousing were for the executive officers of an organization. This
is no longer true with the technology and functionality available now ensuring that BI can be
applied at all levels within an organization. This has created pressure on conflicting
workloads. and solutions now need to ensure the right balance is found between performance
and latency.

Data warehouses must now address the following workloads:

� Increasing number of reports being developed throughout an organization

� Increasing number of users wanting to perform ad hoc queries

� Near real-time data loads

� New functionality being added to operational applications that provide BI capability against
OLTP information

Chapter 2. Evolution of business intelligence 19

The core characteristics of mainframes are well positioned for processing the heavy workload
of BI and performing the role of the key database server. For many organizations that hold
their corporate information in VSAM, IMS™, or DB2 for z/OS data stores, deciding to put their
data warehouse on System z has benefits.

Enterprises that have an existing DB2 for OLTP in place and already use System z as their
data serving platform are well positioned to consolidate business-relevant data marts on the
System z platform. DB2 for z/OS exploits the System z platform strengths that have been
there from day one. In addition, DB2 for z/OS continues to be enhanced, specifically for data
warehousing and BI functionality. Some of this is discussed in Chapter 3, “Why implement a
data warehouse on System z” on page 31, and Chapter 7, “Functions in DB2 for z/OS for a
data warehouse” on page 99.

Many enterprises are also turning to message-oriented, near real-time transactional
middleware as a way of moving data between applications and other source and target
configurations. The IBM MQSeries® family of products is such an example of messaging
software that enables enterprises to integrate their business processes.

2.2.1 Current BI trends

New innovative functionality and technology is being introduced into the BI arena. We have
discussed real-time data feeds as one example. Table 2-1 shows other examples of some of
the current trends in BI.

Table 2-1 Examples of current BI trends

Trend Description

Enterprise search New search tools that allow access to information everywhere providing
enterprise search capability.

BI Web services Web services that allow collaborative and analytic services for
incremental application development in a BI environment

Embedded analytics Pre-built service-oriented components that can be integrated into
operational applications and Web pages to become part of existing
business processes. They combine current operational information with
historical information from the data warehouse.

Event driven alerts Allows monitoring of key business events and uses push technology to
notify of a change in these events.

Analysis of unstructured
information

Text mining

Organizations have discovered that their unstructured data can contain
useful information. Unstructured formats can include voice-mail,
images, text, e-mails, and documents. New requirements include
integrating structured and unstructured data.

Virtual BI Virtual data martsa and operational data stores that provide real-time
information across both the current operational data and the historic
information held in the data warehouse.

Dynamic warehousing
and real-time information

Traditional warehousing involved query and reporting of what happened
in the past. Dynamic warehousing is an approach to implementing the
Information On Demand story in regard to real-time information and
leveraging information.

Data warehouse industry
models

Provide for a faster implementation of data warehouse and BI solutions.
IBM provide solutions in areas such as banking, insurance,
telecommunications, retail and health.

20 Enterprise Data Warehousing with DB2 9 for z/OS

2.2.2 BI evolution and maturity

In many organizations, the maturity path towards developing an enterprise BI solution may
have included a number of stages over time with various outcomes occurring along the way.

Early data warehouse efforts focussed on querying and reporting of financial and sales
information. The next wave introduced technologies, such as online analytical processing
(OLAP) and data mining. Additional examples are listed in Table 2-2. These implementations
were useful for analysis done in the past. As the maturity of BI has increased over time, the
value that is returned to an organization, and the efficiency and effectiveness of the solutions,
have also increased. Implementations have become useful for analyzing the present and
performing predictive analysis.

Table 2-2 BI evolution examples

a. Virtual data marts are logical views of data warehouse data. The data mart is not physically
implemented, aggregation and summarization logic is contained within the views, and business
users access their data mart directly through these views.

Example Description

Static reports and
spreadsheets

The number of reports throughout an organization increased dramatically.
Sometimes the same reports were developed by different people. They
may have involved manual effort and had no central controlled definition of
business rules or metadata, potentially resulting in multiple versions of the
truth.

Parameter reports Parameter reports can provide multiple reports in one, reducing the number
of reports required to be developed. Traditionally further analysis was
limited to selected analysts.

Implementation of
OLAP

The concept of providing slice-and-dice functionality and summary
information became popular. OLAP cubes allowed multidimensional
analysis of data within a predetermined cube data format. Cubes were
created as required and were sometimes uncontrolled causing a lack of
integration. Data quality within the source data may not have been
addressed sufficiently when building cubes, and data quality issues caused
problems with maintaining such cubes, such as different versions of
hierarchies.

Traditional
warehousing and data
integration

Data integration exercises became important. Traditional data warehouses
and data marts were ways to ensure corporate information could be
integrated into a single reporting environment. The data warehouse
environment proved useful for historical analysis but was unable to provide
operational reporting requirements due to the time it took for data to travel
from the OLTP source systems to the warehouse environment.
Note: The term traditional has been used to distinguish from the term
dynamic warehousing.

Ad hoc queries Self service technology allowed executives to perform some of their own
ad hoc queries against data within data marts or operational repositories.

Corporate performance
management (CPM)

Performance management and scorecard initiatives become popular.
These allowed the monitoring and management of an organization’s
performance by linking key indicators to the organization’s strategies and
goals.

Data mining and
analytics

Complex data mining initiatives required specialists to build and train
appropriate models.

Chapter 2. Evolution of business intelligence 21

2.3 Types of users and their requirements

The types of users who require a BI solution have evolved from traditionally being executives
to everyone throughout the organization. The requirements of these users also differ
depending upon their role and the maturity of BI within the organization.

Figure 2-1 shows that, as the population base for BI users has increased, the type of users
has evolved from the executives down to those people at the front line of the business. Even
now, it has evolved to include those customers to whom an organization is providing services.
Traditionally the executive type users were making strategic decisions and looking at the
organization as a whole. Query and reporting were primarily for the analyst level and above.
Front line employees are now using BI in their day-to-day decision making and impacting at
the transaction data level, for example the customer order of parts.

Figure 2-1 Operational intelligence introduction and user population

To implement a successful BI solution, it helps to understand the types of reports that exist
and the different styles of reporting that can be used.

Reporting can for the most part be grouped into the following two categories:

� Production reports
� Business reports

Production reports can also be classified as operational reports that usually come from an
ODS or operational system, such as a general ledger system. They are mostly used by the
front line, customer facing staff of an organization. These reports are required for the
day-to-day operation of the organization and can include financial statements, invoices, and
customer orders. The trend is for these reports to be provided in more near real time.

“C” Level

Board Room

Executive (ESS)

Managerial (DSS)

Analyst Level (Analytics)

Sales and

Customer Service

Customers

<50

<500

<1,000

>1,000<10,000

Population
Size

>10,000

1985

1990

1995

2005

Introduction
Period

2008

Sets Strategy

Implements
Strategy

Decides Tactics

and Analyzes

Success

Impacts Each
Transaction

Decision
Impact

22 Enterprise Data Warehousing with DB2 9 for z/OS

Production reports are used for operational reporting. Operational reporting relates to a
specific task or day to day business process and is a reaction to a specific event, such as
taking a customer order.

Business reports are more targeted for the executives of middle management of an
organization. These users understand the performance of the organization and are more
responsible for implementing initiatives for strategic goals. Business reports combine
information from more than one operational system and are usually sourced from an
integrated environment, such as a data warehouse implementation.

Business reports are used in strategic and tactical reporting. Tactical reporting relates to a
specific business process but is forward looking and does not just say what happened.
Strategic reporting is also forward looking but addresses multiple business processes and
looks at an organization as a whole, from a strategic and performance level.

BI users can be classified as follows:

� Ad hoc users
� Power users
� Publishers
� Viewers

Figure 2-2 shows how the different types of users require different technologies or capabilities
to provide the interaction they require.

Figure 2-2 BI tools - User associations

Ad hoc users require traditional BI capability to perform their ad hoc analysis and extra mining
functionality if performing specialist mining tasks. Many modern implementations of querying
tools provide this functionality through a Web browser or BI portal.

Reporting Portal

Publisher Ad Hoc
Information

User
Community

Viewer

Power
Users

Exploration Mining

Native Tools

Chapter 2. Evolution of business intelligence 23

Power users may perform complex analysis tasks against relational or multidimensional data.
They require strong analytic and exploration capabilities.

Publishers build and deploy BI models, allowing others to perform their query and reporting
tasks. They are also capable of performing analysis and exploration tasks because they need
to understand the business information and requirements in order to deploy successful
business-oriented solutions. Publishers require native BI tools to define models that meet
business requirements.

Viewers can use a Web browser or BI portal to view published business and production
reports.

2.4 Information On Demand

Information management has traditionally referred to centralized data repositories with
accurate information that can support high performance and high availability. Although this
requirement remains true, for information consumers, the contents of these repositories have
become harder to access. Some of the reasons why this has occurred are mentioned in 2.1,
“Market drivers and challenges” on page 18.

Innovative applications that allow Information On Demand and Information as a Service
capabilities can be applied against selective business processes. In doing so, we can move
beyond the traditional approaches of integrating and accessing information. We can allow
information to become a strategic asset that can be used to make better decisions, by using
the following methods:

� Integrating, analyzing, and standardizing the content and types of data sources available
into master data sets based on business needs and not the underlying applications or
repositories that contain this information

This process is known as master data management. These master data sets are identified
as the information that an organization uses repeatedly across business processes such
as customers, locations, and products. By following this approach, an organization can
proactively address data quality sooner rather than later such as in the traditional data
warehouse environment. The data warehouse can now use these master sets of
information.

� Applying new technologies and architectures such as Web services and service-oriented
architecture (SOA) along with a master data management strategy as mentioned
previously

SOA without a data strategy may not be successful due to the possible high degree of
data inconsistency and inaccuracy.

� Empowering users to make good use of this information by providing new capabilities to
use, analyze, and maintain this information within their usual business processes

� Ensuring that information integrity and data governance methodologies are in place for
people, process, and technology

These methodologies assist in providing compliance and providing trust, accountability,
and stewardship around the data.

Organizing master data about critical information domains, such as customers or products,
leads directly to better business decisions and business operations. Analyzing historical and
real-time information helps unearth insightful relationships, again leading to better business
decisions and business operations.

24 Enterprise Data Warehousing with DB2 9 for z/OS

To successfully provide Information On Demand capabilities, a common reference
architecture or roadmap that supports the business strategy and requirements is required.
This roadmap should describe the major components of an end-to-end solution and provide a
framework to identify the scope, assess the risk, and investigate gaps with an organization’s
existing capabilities.

The Information on Demand logical architecture diagram in Figure 2-3 offers an introduction
to the common components that the Information On Demand architectures can share.

Figure 2-3 Information On Demand logical architecture

In addition, a set of guiding architectural principles that support the Information On Demand
implementation are needed. Table 2-3 provides examples of these principles.1

Table 2-3 Information On Demand architectural principles

Others..

Data Sources

Content Mgmt
Applications

Security and Privacy

Tr
an

sp
or

t
an

d
 C

ol
la

bo
ra

tio
n

Access Web BrowserWeb Browser PortalsPortals Web ServicesWeb Services DevicesDevices

Systems and
Infrastructure

Systems Management
& Administration

Systems Management
& Administration Network & MiddlewareNetwork & Middleware Hardware & SoftwareHardware & Software

In
fo

rm
at

io
n

Se
rv

ic
es

Data ServicesData Services Metadata ServicesMetadata Services Content ServicesContent Services

Analysis &
Discovery

Query, Search
& Reporting

Query, Search
& Reporting MiningMining Operational

Intelligence
Operational
Intelligence MetricsMetrics VisualizationVisualization Embedded

Analytics
Embedded
Analytics

Master Data
&

Information
Integration

Information
Integrity

Information
Integrity

Data Lifecycle
Management

Data Lifecycle
Management

Hierarchy
Management
Hierarchy

Management
Event

Management
Event

Management

ETLETL EAIEAI EIIEII Semantic
Reconciliation

Semantic
Reconciliation

Balance &
Controls

Balance &
Controls

Data Repositories AnalyticalAnalytical MetadataMetadataUnstructured
Data

Unstructured
DataOperationalOperational Master DataMaster Data

DeliveryDelivery

1 Presentation “IBM Information On Demand 2007 - Reference Architecture” by Larry Gosselin

Principle Description

Information as a
service

In an SOA, information services enable business processes to gain access to
information that they need in a timely fashion and in conformance with open
industry standards to make decisions, recognize exceptions, and understand
events.

Virtualized data New composite applications that need data from homogeneous or
heterogeneous sources in distributed or mainframe environments. The data
may be structured or unstructured and available to applications via integrated
or federated access.

Chapter 2. Evolution of business intelligence 25

2.4.1 Operational business intelligence

Operational BI refers to the methodologies, processes, and applications that are used to
report on and analyze operational business performance.

Traditional BI mostly entailed executives analyzing historical data and performing strategic
analysis on general questions, such as how an organization has performed against certain
criteria over a given time period. Operational intelligence or operational BI has moved BI into
all levels of an organization. It allows executives and everyone within the organization to
incorporate proactive analysis into their operational processes and applications. This analysis
is more specific and common than traditional BI analysis. It covers questions and decisions
that are part of the organization’s day-to-day business processes. An example includes:
“What discount can I offer my customers based on their past ordering history?”

Traditional BI implementations usually use portals within Web browsers to display results to
information consumers. Although this is still valid, for operational BI, newer methods, such as
e-mail, corporate applications, metric display panels, and wireless devices, can be used.

Unconstrained
access to data
(structured and
unstructured)

Access and analysis of unstructured information is done to discover, organize,
and deliver relevant knowledge via Unstructured Information Management
Architecture framework (UIMA). Combined with structured data analysis, it
provides enhanced analytics and encourages data reuse or sharing.

Single version of
the truth

This principle entails consolidation of one master enterprise copy that
describes core business entities: customers, suppliers, partners, products,
materials, bill of materials, chart of account, location, and employees.

Metadata
management

This principle refers to the management of data about data (metadata), which
defines the meaning of data in the repository. It ensures consistency,
completeness, and context of data.

Deep analytics Identity resolution, relationship resolution, and anonymous resolution offer
analytics capabilities to relate two entities without the need for a common
attribute key.

Advanced search Uncovering inherent meaning, user intent and application context allows for the
delivery of meaningful information that is easily actionable.

Optimized data
movement and
placement

Data synchronization and data replication across systems provide for
right-time availability. The placement of data facilitates information integration.

Data quality Quality data is the product of an organization or program that builds
information integrity into its technology, processes, and people.

Principle Description

Operational intelligence scenario: In this scenario, BI is used to inform the management
of the RedParts Distribution company about the number of products that are ordered or
returned by customers on a near real-time basis. This information is used to determine
product stock levels and return rates. This can then be combined with current promotions
to determine which discounts to apply to customer orders in the next reporting period.
When a customer calls to organize the return of unwanted products, this information can
be displayed within an analytic application via business event management and analytic
software such as Cognos 8 BI. This software shows the ordering and return history of the
customer. Depending on the customer’s history, a decision can be made to offer different
incentives to the customer.

26 Enterprise Data Warehousing with DB2 9 for z/OS

Operational BI is about optimizing an organization’s performance in the present, not the past.
It provides the organization with a near real-time view by using dashboards, metrics, and
reports.

Traditional BI and operational BI are different but complement each other. The traditional data
warehouse can become a source of information that is used to provide historic data to
operational BI applications.

An operational BI implementation should include the following components:

� Historical data

This includes self-service dashboards with links to traditional analysis and reports.

� Real-time data

Information should also include near real-time data that is also provided to the dashboards
and reports.

� Business activity monitoring for complex event and data processing from both operational
data sources and the data warehouse environment

Key events are distributed to those required by using push technology, for example, e-mail
notification.

� Information On Demand capabilities

Refer to 2.4, “Information On Demand” on page 24, for an explanation of these
capabilities.

Operational BI helps to link high level organization objectives with the day-to-day tasks that
are performed by operational employees. This is achieved by following a performance
management framework that can track how an organization is currently performing and not
just how they did perform.

Performance management is a term that describes the methodologies, metrics, processes,
and systems that are used to align organization resources with business objectives and
goals. Performance management is used to monitor and manage the overall performance of
an organization. The performance management cycle (Figure 2-4) shows an ongoing cycle by
which organizations can set goals, analyze their progress using operational BI applications,
gain insight, take action, and measure their success. This process is ongoing and is
supported by the operational BI implementation.

Figure 2-4 Performance management cycle

Business
Intelligence

MEASUREMENT ACTION

ANALYSIS INSIGHT

Chapter 2. Evolution of business intelligence 27

Data from many operational sources can be analyzed by using embedded analytics that
define, measure, and track details regarding an organization’s strategies and goals. Having
operational BI systems that support this analysis can help in determining what is really
important. It also helps those who make decisions to understand the information that is
required and to alter their decisions at the point of interaction.

Analysis should lead to insight. These insights can be displayed with the help of scorecards
and reports in near real-time by using applications such as Cognos 8 BI and IBM AlphaBlox®.
Through an organization’s decision making process, these insights can suggest actions that
will improve the organization.

Insights and actions can also be measured to ensure that they are working. This can further
lead to more insights and data becoming available for further analysis. The cycle can then be
repeated, allowing an organization to refine its strategies.

Embedded analytics in operational BI provide the following features and characteristics:

� Solution-based operational BI delivery platform

� Customized analytic components

� Embedded into existing processes and Web applications

� Pre-built components (“objects”)

� Integrates multidimensional and relational views

� Combination of operational information (that is, current point in time) with data warehouse
(historic) information

� Service-oriented

� Real-time in nature

Operational intelligence best practices and lessons learned: Consider the following
sample best practices and lessons learned when starting an operational intelligence
initiative:

� Establish clear and continued executive sponsorship.

� Define and develop a shared “point of view” organizational perspective on operational
intelligence.

� Start with a project that is “strategically” important.

� Focus on data governance and stewardship across the organization.

� Provide trusted data sources and solution flexibility.

� Leverage common process models and reference architecture.

� Apply integrated methods, and a common taxonomy and language.

� Deliver phased, value-driven implementations.

� Deploy a scalable, flexible, and technical infrastructure.

� Capture and share best practices and lessons learned.

28 Enterprise Data Warehousing with DB2 9 for z/OS

Data warehouses have been implemented on DB2 for System z servers largely because of
the traditional strengths that the System z platform provides, such as unparalleled
performance, continuous availability, and unlimited scalability. Figure 2-5 shows example
components for an operational BI solution by using DB2 for z/OS.

Figure 2-5 Example components for a DB2 for z/OS operational BI solution

2.4.2 Applying Information On Demand with dynamic warehousing

Dynamic warehousing is a new approach that can be used to implement Information On
Demand initiatives. It addresses the primary business challenges that organizations face
today. These challenges require the ability to deliver the right information to the right people at
the right time to more effectively leverage information and enable more effective business
decisions. It is about information on demand to optimize real-time processes.

Where traditional warehousing involved query and reporting of what happened in the past,
dynamic warehousing is an approach to implement the Information On Demand story in
regard to real-time information and leverage information.

Dynamic warehousing requires the following criteria:

� Support for real-time access to aggregated, cleansed information that can be delivered in
the context of the activities and processes being performed

� Analytics that can be leveraged as part of a business process

� The ability to incorporate knowledge from unstructured information

� A complete set of integrated capabilities that extend beyond the warehouse to enable
Information on Demand

Operational business intelligence solution:
It provides near real-time data through event publishing.
Data never needs to leave the secure System z platform.
It embeds BI analytics in your operational processes.
It provides dashboards and reporting that are ready to use.

CEC One

Member A

OLTP

CP z/OS

Member B

OLTP

CEC Two

z/OSCP

Member D

DWH

Member C

DWH

ICF

zIIP

Information Server
for System z

Linux on System z

Publish or
Extract

Load

IFL

AlphaBlox for
System z

Query
DataQuant for

System z

WebSphere Data
Event Publisher

Report Cognos 8 BI for
System z

Chapter 2. Evolution of business intelligence 29

The distinction between data warehousing and OLTP is blurring. Data warehousing and
analytic applications access operational or near-real-time data. Transactions have become
more complex to provide better interaction and productivity for people. Dynamic warehousing
has capabilities and strengths on all IBM platforms. The traditional mainframe strengths for
consistency with operational data, high security, and continuous availability match well with
dynamic warehousing.

 Dynamic warehousing scenario: In this scenario, we illustrate how to transform sale
effectiveness. By using and understanding the relevant unstructured customer information
to which the RedParts Distribution company has access, they can use this to identify other
product cross-sell opportunities. They can also improve their negotiating position while
engaged with customers at the point at which a customer is making an order over the
Internet or in person at a branch.

30 Enterprise Data Warehousing with DB2 9 for z/OS

Chapter 3. Why implement a data
warehouse on System z

In this chapter, we explain why and when to implement a data warehouse on System z is the
right choice. Customers who are already running their transactional system on DB2 for z/OS
have multiple options if they want to build their warehouse environment.

Originally, DB2 for z/OS was designed to be a business intelligence (BI) platform, but then in
response to customer demand that focused more on online transactional processing (OLTP).
In the past couple of years, however, customers have encouraged IBM to expand business
intelligence functions on DB2 for z/OS to use System z advantages for their data warehouse.

Additionally, new requirements for modern applications, such as using historical data from a
data warehouse for tactical decision making in day-to-day transactions, make the System z
platform an interesting and competitive hosting platform for data warehouses. Refer to IBM
System z Strengths and Values, SG24-7333, for details.

This chapter contains the following sections:

� 3.1, “New challenges for data warehouse solutions”
� 3.2, “Data warehousing with System z” on page 32

3

© Copyright IBM Corp. 2008. All rights reserved. 31

3.1 New challenges for data warehouse solutions

As discussed in Chapter 2, “Evolution of business intelligence” on page 17, enterprises are
increasingly harnessing the power of business intelligence to gain a competitive edge.
Today’s BI systems incorporate large data warehouses that are consolidated with
near-real-time operational data stores (ODS) and are continuously updated from multiple
sources, such as financial, marketing, and inventory databases. Often, thousands of users
access a data warehouse with various business intelligence applications. These applications
analyze and synthesize data into real-time information that supports fast and informed
decisions.

These applications must be capable of leveraging all types of information, including
unstructured content such as call center logs, technical notes, contracts, or call logs. Data
warehouses must serve the expanding needs of different types of applications. As a result,
data warehouses must also support the varying service level demands of these different
applications.

A combination of critical operational applications and analytics insights that require real-time
responsiveness is essential. Also the current traditional back-office reporting and analysis for
strategic and tactical planning purposes are still needed. Together these elements will lead to
increasingly mixed workload environments. This is further complicated by rising data
volumes, continuously expanding amounts of historical data, and the growing number of
users, which causes requests for information to become more numerous and sophisticated.
Current business intelligence solution proposals must consider the challenges that are arising
from the mix of the following four workload types:

� Continuous, near-real-time data loading, similar to an OLTP workload
� A large number of standard reports
� An increasing number of true ad hoc query users
� An increasing level of embedded analytics and business intelligence-oriented functionality

in OLTP applications

These four workload types are increasingly top challenges for organizations beyond the
growing size of the data warehouse. Mixed workload performance is well on its way to
becoming the single most important differentiator issue in data warehousing.

3.2 Data warehousing with System z

The long standing success record of workload management capabilities makes System z an
ideal platform to run a data warehouse workload. In this section, we outline the main reasons
that make System z an ideal platform to run data warehouse workloads and handle emerging
BI and dynamic warehousing requirements.

3.2.1 Availability and scalability

Access to the data warehouse in a BI solution is moving from the back office to the front
office, making the BI solution a business-critical application that requires the same kind of
availability and security as OLTP systems. Frequently the data warehouse is large and
requires careful management to ensure that business information is available when needed
and that access to that data is responsive but safe and protected. The System z platform and
DB2 9 for z/OS provide an excellent infrastructure for these requirements making System z
the platform of choice for critical processing.

32 Enterprise Data Warehousing with DB2 9 for z/OS

The System z hardware, z/OS operating system, and DB2 for z/OS are designed with
reliability characteristics such as self monitoring, redundancy, self healing, and dynamic
configuration and management. For example, in DB2, you can make database changes, such
as adding a partition, without an outage.

As businesses grow, their data processing needs also grow. Business ventures, such as
mergers, acquisitions, new services, or new government regulations, can accelerate how
quickly the data processing needs of the business grow. As rapid growth occurs, companies
need a way to scale their business successfully.

Parallel Sysplex® clustering technology and DB2 data sharing are the answer to availability
and scalability. A sysplex is a group of z/OS systems that communicate and cooperate with
one another by using specialized hardware and software. The systems are connected and
synchronized through a Sysplex Timer® or System z Server Time Protocol (STP), and
Enterprise Systems Connection (ESCON®) or Fiber Channel Connection (FICON®). A
Parallel Sysplex is a sysplex that uses one or more coupling facilities (CFs), which provide
high-speed caching, list processing, and lock processing for any applications on the sysplex.
For information about Parallel Sysplex technology and benefits, refer to the Business
resiliency page at the following address:

http://www.ibm.com/systems/z/resiliency/parsys.html

Figure 3-1 illustrates a Parallel Sysplex. A Parallel Sysplex can include central processor
complexes (CPCs) of different generations (for example, an IBM eServer™ zSeries® z890 or
z990 and a System z9™ BC, or z9 EC, or a System z10™).

Figure 3-1 Parallel Sysplex architecture

FICON
switch

1
12

2

3

4
5

67
8

9

10

11

Sysplex Timers

Coupling
Facilities

Coupling
Facilities

Chapter 3. Why implement a data warehouse on System z 33

http://www.ibm.com/systems/z/resiliency/parsys.html

The Parallel Sysplex can grow incrementally without sacrificing performance. The Parallel
Sysplex architecture is designed to integrate up to 32 systems in one cluster. In a shared-disk
cluster, each system is a member of the cluster and has access to shared data.

A collection of one or more DB2 subsystems that share DB2 data is called a data sharing
group. DB2 subsystems that access shared DB2 data must belong to a data sharing group. A
DB2 subsystem that belongs to a data sharing group is a member of that group. Each
member can belong to one, and only one, data sharing group.

All members of a data sharing group share the same DB2 catalog and directory, and all
members must reside in the same Parallel Sysplex. Figure 3-2 illustrates the DB2 data
sharing architecture. Currently, the maximum number of members in a data sharing group is
32. The DB2 data sharing design gives businesses the ability to add new DB2 subsystems
into a data sharing group, or cluster, as the need arises and without disruption. It provides the
ability to do rolling upgrades of service or versions of the software stack without any
application outage. For information about DB2 data sharing, refer to DB2 for z/OS: Data
Sharing in a Nutshell, SG24-7322.

Figure 3-2 DB2 data sharing architecture

Automatic restart manager (ARM) is a component of z/OS that enables fast recovery of
subsystems that might hold critical resources at the time of failure. If other instances of the
subsystem in the Parallel Sysplex need any of these critical resources, fast recovery makes
these resources available more quickly. Even though automation packages are used today to

34 Enterprise Data Warehousing with DB2 9 for z/OS

restart the subsystem to resolve such deadlocks, ARM can be activated closer to the time of
failure.

The implementation of Parallel Sysplex and DB2 data sharing caters to growing OLTP or BI
needs, again with high availability and scalability.

3.2.2 Workload management

The Workload Manager (WLM) component of z/OS has proven its worth in many studies,
demonstrations, and every-day work being done in systems around the world in its ability to
maximize use of available resources. WLM has the ability to manage widely varying
workloads efficiently and effectively. In doing so, you can fully use the systems resources that
you have available. This means that you can run your data warehouse workload together with
the transactional (OLTP) workload on the same DB2 subsystem or different DB2 subsystems
on the same system.

With WLM, a particular element of work can be given an initial priority based on business
needs. More importantly, over time, the priority of a given element of work can be altered
based on changes in business needs as expressed in the WLM policy. DB2 for z/OS works
hand-in-hand with WLM to ensure that these priority alterations take affect immediately with
respect to query processing, regardless of how that query has been parallelized. Capacity
can be put to use whenever it becomes available. For more information about data sharing
and WLM on z/OS, refer to the following publications:

� Workload Management for DB2 Data Warehouse, REDP-3927
� System Programmer's Guide to: Workload Manager, SG24-6472

Table 3-1 illustrates the impact of workload management in a mixed workload environment.
The first row, as a baseline, shows the times of short running and long running queries that
are run sequentially. Without impact to each other, the short running query takes 1.5 seconds,
while the long running takes 147 seconds.

In the second line, both query types are run in parallel. Because both queries now compete
against each other and try to get resources from the system, the query response time suffers.
However, it is important to note that the time for short running queries increases significantly
by the concurrently run long running queries. In the example, query times go up from 1.5
seconds to 6.7 seconds. This might become an issue if the short running queries are run as
part of a transactional application, where users experience a response time to their requests
that is more than four times slower.

The third line illustrates changes in response time with WLM on z/OS. The concept of period
aging automatically lowers the priority of long running queries and thereby keeps short
running queries running at a higher priority. Consequently, long running queries do not impact
short running queries too much. We see just a minor performance decrease for these.

Table 3-1 Impact of workload management to a mixed workload environment

Short running queries Long running queries

Sequential processing 1.5 147

Parallel processing with limited workload
management

6.7 159

Parallel with z/OS WLM 1.9 158

Chapter 3. Why implement a data warehouse on System z 35

3.2.3 Hardware data compression

DB2 has provided a hardware assisted option to compress table spaces so that they occupy
less disk space since Version 3. Compression and decompression of data are accomplished
on the System z environment via a hardware instruction. This instruction makes it faster than
the software-based compression algorithms that are used by other databases systems on
other platforms. As each generation of the System z processor gets faster, the compression
feature also get faster.

Counter-intuitively, compressing data can reduce elapsed time of most data warehouse-type
queries. DB2 for z/OS compresses the rows on a page, in order that each data page is full of
compressed rows. It uses the hardware instruction along with a data dictionary to give the
most efficient compression available. The compressed data can also be encrypted, thereby
saving space and implementing security requirements at the same time.

With a rule of thumb of a 50% compression rate, a compressed page contains twice the rows
that an uncompressed page contains. This means that each I/O retrieves twice as much
compressed data as it retrieves if the data is uncompressed. The data remains compressed
in the buffer pool. This means that DB2 for z/OS can cache twice as much compressed data
in its buffer pool as it retrieves if the data is uncompressed. Finally, when data is modified in a
row that is compressed, the information logged about that data change is also compressed,
thus reducing log volume.

Not all data on a compressed page is decompressed, just the row or rows that are needed by
the application are decompressed. Combined with the use of a hardware instruction to
perform the decompression, this decompression serves to limit the amount of additional CPU
that is needed to access compressed data.

The larger amount of data retrieved in each I/O is compounded with the DB2 9 for z/OS
increased prefetch quantities. This provides significant elapsed time reductions for all types of
sequential processes, including the typical business intelligence queries that use table scans
and index range scans. This includes sequential processes for utility access, providing
benefits in terms of faster reorganizations, faster unloads, and faster recovery.

3.2.4 Regulatory compliance

Regulations, such as the Sarbanes-Oxley Act (SOX), Basel II, Data Protection Act (UK), and
the U.S. Patriot Act, were created to protect investors’ interests, to avoid fraud, and to improve
financial reporting. Companies must comply with these regulations. Database administrators
must ensure that data is secure, access is controlled, changes are audited, and disaster
recovery is in place. Regulations also emphasize the growing need to reproduce versions of
data, applications, and entire business states, which challenges companies to keep a long
record of activities.

The System z platform meets the highest industry security certifications. Encryption support
is built in, even at the hardware level. Authorization functionality is an integral part of the
operating system. Detection services prevent intrusions and record intrusion attempts.
Network communication encryption follows the highest standards.

Consolidating warehouse data and operational data on one platform, such as the System z
platform, eases efforts to comply with regulation requirements. Audit management efforts are
reduced because of fewer data sources.

36 Enterprise Data Warehousing with DB2 9 for z/OS

3.2.5 Disaster recovery

With the emergence of BI and dynamic warehousing, the disaster recovery requirements for a
data warehouse environment are similar to that of OLTP. Therefore, it is important to consider
disaster recovery scenarios before implementing a data warehouse solution.

The following System z and DB2 for z/OS technologies help in providing some of the best
disaster recover solutions in the industry:

� Copy Services
� GDPS/XRC
� GDPS/PPRC
� GDPS/PPRC HyperSwap™
� BACKUP and RESTORE SYSTEM utilities of DB2 for z/OS

Copy Services
Copy Services is a collection of functions that provide disaster recovery, data migration, and
data duplication functions. With the Copy Services functions, for example, you can create
backup data with little or no disruption to your application. You can also back up your
application data to the remote site for the disaster recovery. Customers who use the System z
platform, along with IBM System Storage™ DS8000™ storage can have following optional
licensed copy services:

� IBM System Storage FlashCopy®, which is a point-in-time copy function

� Remote mirror and copy functions, which include the following tools:

– IBM System Storage Metro Mirror, previously known as synchronous PPRC
– IBM System Storage Global Copy, previously known as PPRC Extended Distance
– IBM System Storage Global Mirror, previously known as asynchronous PPRC
– IBM System Storage Metro/Global Mirror, a three-site solution to meet the most

rigorous business resiliency needs

� z/OS Global Mirror, previously known as Extended Remote Copy (XRC)

� z/OS Metro/Global Mirror, which is a three-site solution that combines z/OS Global Mirror
and Metro Mirror

Many design characteristics of the DS8000 and its data copy and mirror capabilities and
features contribute to the protection of your data, 24 hours a day and seven days a week.

FlashCopy
FlashCopy provides a point-in-time (PIT) copy of logical volumes with almost instant
availability for the application of both the source and target volumes. Only minimal interruption
is required for the FlashCopy relationship to be established to allow the copy operation to be
initiated. The copy is then created “under the covers” by the IBM System Storage Enterprise
Storage Server® (ESS), with minimal impact on other ESS activities.

Currently two FlashCopy versions are available: Version1 and Version 2. FlashCopy Version 2
supports all the previous FlashCopy Version 1 functions plus several enhancements.

Metro Mirror
Metro Mirror, which was previously known as Synchronous Peer-to-Peer Remote Copy
(PPRC), provides real-time mirroring of logical volumes between two DS8000 servers that
can be located up to 300 km from each other. It is a synchronous copy solution where write
operations are completed on both copies (local and remote site) before they are considered
complete.

Chapter 3. Why implement a data warehouse on System z 37

Global Copy
Global Copy, which was previously known as Peer-to-Peer Remote Copy Extended Distance
(PPRC-XD), copies data non-synchronously and over longer distances than is possible with
Metro Mirror. When operating in Global Copy mode, the source volume sends a periodic,
incremental copy of updated tracks to the target volume, instead of sending a constant stream
of updates. This causes less impact to application writes for source volumes and less
demand for bandwidth resources, while allowing a more flexible use of the available
bandwidth.

Global Mirror
Global Mirror, which was previously known as Asynchronous PPRC, is a two-site long
distance asynchronous remote copy technology. This solution integrates the Global Copy and
FlashCopy technologies. With Global Mirror, the data that the host writes to the storage unit at
the local site is asynchronously mirrored to the storage unit at the remote site. This way, a
consistent copy of the data is automatically maintained on the storage unit at the remote site.

Metro/Global Mirror
Metro/Global Mirror is a three-site, multipurpose, replication solution for both System z and
open systems data. Local site (site A) to intermediate site (site B) provides high availability
replication using Metro Mirror. Intermediate site (site B) to remote site (site C) supports long
distance disaster recovery replication with Global Mirror. Both Metro Mirror and Global Mirror
are well established replication solutions. Metro/Global Mirror combines Metro Mirror and
Global Mirror to incorporate the best features of the two solutions.

z/OS Global Mirror
z/OS Global Mirror, which was previously known as Extended Remote Copy (XRC), is a copy
function that is available for the z/OS and OS/390® operating systems. It involves a System
Data Mover (SDM) that is found only in OS/390 and z/OS. z/OS Global Mirror maintains a
consistent copy of the data asynchronously at a remote location that can be implemented
over unlimited distances. It is a combined hardware and software solution that offers data
integrity and data availability. It can be used as part of business continuance solutions for
workload movement and data migration. z/OS Global Mirror function is an optional licensed
function.

z/OS Metro/Global Mirror
The z/OS Metro/Global Mirror mirroring capability implements z/OS Global Mirror to mirror
primary site data to a location that is a long distance away. It also uses Metro Mirror to mirror
primary site data to a location within the metropolitan area. This enables a z/OS three-site
high availability and disaster recovery solution for even greater protection from unplanned
outages of the DS8000.

GDPS/XRC
GDPS/XRC is an industry leading e-business availability, multisite solution that is provided
through IBM Global Services. It provides the capability to manage the remote copy
configuration and storage subsystems, automate Parallel Sysplex operational tasks, and
perform failure recovery from a single point of control, thereby helping to improve application
availability.

Geographically Dispersed Parallel Sysplex™ (GDPS®) is an integrated solution offering that
manages all aspects of switching computer operation from one site to another, planned or
unplanned. In a GDPS/XRC configuration, the SDM is placed outside the production sysplex.
Normally it is located at the recovery site.

38 Enterprise Data Warehousing with DB2 9 for z/OS

One subset of the GDPS solution is the Remote Copy Management Facility (RCMF) offering.
RCMF is an automated disk subsystem and RCMF, with a high level user interface. This
interface is implemented in the form of ISPF-type displays and virtually eliminates the tedious
and time consuming work with Time Sharing Option (TSO) commands. Managing XRC with
RCMF can be the first step of a full GDPS implementation.

GDPS/PPRC
GDPS/PPRC is designed to manage and protect IT services by handling planned and
unplanned exception conditions, and maintain full data integrity across multiple volumes and
storage subsystems. By managing both planned and unplanned exception conditions,
GDPS/PPRC can help maximizing application availability and provide business continuity.
GDPS is capable of providing the following functions:

� Continuous Availability solution
� Near transparent disaster recovery solution
� Recovery time objective (RTO) less than one hour for GDPS/PPRC
� RTO less than two hours for GDPS/XRC
� Recovery point objective (RPO) of zero (optional)
� Protecting against metropolitan area disasters

Figure 3-3 shows a simplified illustration of the physical topology of a GDPS/PPRC
implementation, which consists of a Parallel Sysplex spread across two sites (site 1 and
site 2) separated by up to 100 km of fiber with one or more z/OS systems at each site. The
multisite Parallel Sysplex must be configured with redundant hardware, for example, a CF,
and a Sysplex Timer in each site, and alternate cross-site connections.

Figure 3-3 GDPS/PPRC

All critical data residing on disk storage subsystems in site 1 (the primary copy of data) are
mirrored to the disk storage subsystem in site 2 (the secondary copy of data) through
Synchronous PPRC.

SITE 1

NETWORK

SITE 2
NETWORK

12

2

3

4
567

8

9

10

11 1

12

2

3

4
567

8

9

10

11 1

Chapter 3. Why implement a data warehouse on System z 39

GDPS/PPRC provides the Parallel Sysplex cluster continuous availability benefits, and it
significantly enhances the capability of an enterprise to recover from disasters and other
failures, as well as managing planned actions.

GDPS/PPRC HyperSwap
The GDPS/PPRC HyperSwap function provides the ability to transparently switch the
applications I/O activity to the secondary PPRC volumes for both planned and unplanned
reconfiguration. Large configurations can be supported, because HyperSwap has been
designed to swap a large number of volumes quickly. The important ability to resynchronize
incremental disk data changes in both directions between primary and secondary PPRC
disks is provided as part of this function.

The GDPS/PPRC HyperSwap function is designed to broaden the continuous availability
attributes of GDPS/PPRC. This function can help significantly increase the speed of switching
sites and switching disks between sites. The HyperSwap function is designed to be controlled
by complete automation, allowing all aspects of the site switch to be controlled through
GDPS.

For more information about GDPS, refer to the book GDPS Family: An Introduction to
Concepts and Facilities, SG24-6374, and to the following Web addresses:

� Geographically Dispersed Parallel Sysplex: The e-business Availability Solution

http://www.ibm.com/servers/eserver/zseries/library/whitepapers/gf225114.html

� Implementation Services for GDPS

http://www.ibm.com/services/us/index.wss/so/its/a1000189

BACKUP and RESTORE SYSTEM utilities of DB2 for z/OS
The BACKUP and RESTORE SYSTEM utilities were introduced in DB2 for z/OS V8 and
enriched with DB2 9 for z/OS.

BACKUP SYSTEM utility
The BACKUP SYSTEM utility fully replaces such steps as “SET LOG SUSPEND - FlashCopy
- SET LOG RESUME”, which you might have used with DB2 V7 with a one statement utility
and much less impact on current activity. It requires z/OS V1.5, DFSMShsm™ with the
COPYPOOL construct and storage management subsystem (SMS) managed DASD. It can
be used to back up the data copy pool (including the integrated catalog facility (ICF) catalogs
that define the DB2 Catalog/Directory and the application data) and the log copy pool
(including ICF catalogs for the active logs, bootstrap data sets (BSDSs), and DASD archive
logs) for a full backup. It can also back up only the data copy pool, assuming that you will
provide all the logs that are required from the point of backup to recover the entire subsystem
to a given point-in-time.

The BACKUP SYSTEM utility performs the following main tasks:

� Allows most updates

� Disables 32 KB page writes, if the CI size is not 32 KB, to eliminate integrity exposure

� Disables system checkpoint, data set creation, deletion, rename, and extension
operations

� Acquires new PITR lock in X mode to ensure no restore is taking place on other members

� Records the recover based log point (RBLP) in the BSDS

This is the starting point for the log apply phase that uses the RESTORE SYSTEM utility.

40 Enterprise Data Warehousing with DB2 9 for z/OS

http://www.ibm.com/servers/eserver/zseries/library/whitepapers/gf225114.html
http://www.ibm.com/services/us/index.wss/so/its/a1000189
http://www.redbooks.ibm.com/redpieces/abstracts/sg246374.html?Open

During the backup, DB2 does the following operations:

� DB2 invokes the DFSMShsm ARCHSEND service to take full volume DASD-to-DASD
copies of the DB COPYPOOL DFSMShsm, schedules multiple tasks, and makes copies
of the volumes in parallel by using FlashCopy.

� ARCHSEND returns control to DB2 after the logical copies have completed for all volumes
in the DATABASE copy pool (normally several minutes).

� DB2 updates the BSDS with the system backup information.

� DB2 invokes DFSMShsm ARCHSEND to take full volume copies of the LOG copy pool, in
the same manner as occurred for the DATABASE copy pool.

� DB2 then resumes activities.

In DB2 for z/OS V8, the BACKUP SYSTEM utility is designed for local subsystem
point-in-time recovery and is global in scope. That is, it pertains to an entire DB2 subsystem
or data sharing group and is not to a limited number of objects. It is not directly usable for a
disaster recovery solution, because the copy pools are stored on DASD by generation.

RESTORE SYSTEM utility
You use the RESTORE SYSTEM utility only when you want to recover a subsystem or data
sharing group to an arbitrary point-in-time or to the current time. The utility restores only the
database copy pool of data. Then it applies logs until it reaches a point in the log that is equal
to the log truncation point specified in a point-in-time conditional restart control record
(SYSPITR CRCR) that is created with DSNJU003 or to the current conditional restart control
record. The RESTORE SYSTEM utility uses the RBLP that is stored in the BSDS by the
BACKUP SYSTEM utility as the log scan starting point. The log apply phase uses Fast Log
Apply to recover objects in parallel. DB2 handles table space and index space creates, drops,
and extends, and marks objects that have had LOG NO events as RECP (table spaces and
indices with the COPY YES attribute) or RBDP (indices with COPY NO attribute).

To restore a system to a prior point-in-time with the RESTORE SYSTEM utility:

1. Stop DB2. If data sharing, stop all members.

2. Use DSNJU003 to create a SYSPITR CRCR and specify the point to which you want to
recover the system. If data sharing, create a SYSPITR CRCR for each member.

3. If data sharing, delete all coupling facility structures.

4. Start DB2. If data sharing, start all members of the data sharing group.

DB2 enters into system recover-pending mode, ACCESS(MAINT), and bypasses recovery
except for in doubt units of recovery (URs).

5. Execute the RESTORE SYSTEM utility. The utility must be completed on the original
submitting member.

a. It restores the most recent database copy pool version that was taken prior to the log
truncation point.

b. It performs a log apply function.

6. If a method other than the BACKUP SYSTEM utility was used to copy the system, restore
the data manually and use RESTORE SYSTEM LOGONLY. This option can be used with z/OS
V1R3 and later.

a. It backs up data with another volume dump solution and uses SET LOG
SUSPEND/RESUME.

b. It performs a log apply function only.

Chapter 3. Why implement a data warehouse on System z 41

7. Stop DB2 to reset the system recovery-pending status. If data sharing, stop all members.

8. Display and terminate any active utilities.

9. Display restricted objects, recover objects in RECP status, and rebuild objects in RBDP
status.

DB2 9 for z/OS enhancement for the BACKUP and RESTORE SYSTEM utilities
The BACKUP and RESTORE SYSTEM utilities were added in DB2 for z/OS V8 and use disk
volume FlashCopy backups and copy pool z/OS DFSMShsm V1R5 constructs. In DB2 9 for
z/OS, these utilities are enhanced to use new functions that are available with z/OS V1R8
DFSMShsm:

� Object-level recovery

The backups taken by the BACKUP SYSTEM utility in V8 are used for recovery of the
entire DB2 system. With an enhancement in DB2 9 for z/OS, a DB2 object can be
recovered from system-level backups. Recovery is done by the RECOVER utility, which is
now capable of using system-level backups for the restore phase in addition to image
copies.

� Dump to tape

Maintaining multiple copies of all the data on disk can be expensive. With DB2 9 for z/OS,
you can implement the backup directly to tape.To use this functionality, you must have
z/OS DFSMShsm V1R8 or later.

� Incremental FlashCopy

The physical copying to disk in the background can be improved by the use of incremental
FlashCopy. Even if incremental FlashCopy is used, the dump to tape is always a full dump.
Incremental FlashCopy has no benefit when dumping to tape except that the dumping to
tape might begin earlier because less data must be copied to disk before writing to tape
can be started.

For more details on the disaster recovery related to System z, refer to the following Redbooks
publications:

� Disaster Recovery with DB2 UDB for z/OS, SG24-63700
� GDPS Family: An Introduction to Concepts and Facilities, SG24-6374
� IBM System Storage DS8000 Series: Architecture and Implementation, SG24-6786

3.2.6 I/O connectivity

Because the amount of data in a data warehouse environment is increasing everyday, the
ability to provide fast data access to the processor unit is required. For example, while
building an ad hoc report that can read a large table space, fast data access to the CPU
determines how quickly that report can be built. System z offers FICON Express4, which is a
new generation of FICON and Fibre Channel Protocol (FCP) features that provide fast data
access with 1, 2, and 4 Gbps auto-negotiating links. FICON Express4 helps to support
increased CPU performance and to meet the need for increased application performance,
while providing a manageable migration to higher speed. FICON Express4 continues the
tradition of a robust balanced I/O system design on the System z platform.

FICON Express4 and other System z9® channel enhancements help to improve channel
performance and provide support for more devices. They also aid in supporting
standards-based FCP enhancements that help improve resource sharing and access control
for Linux on System z environments.

42 Enterprise Data Warehousing with DB2 9 for z/OS

FICON distance and bandwidth capabilities also make it an essential and cost effective
component of data high availability and disaster recovery solutions when combined with
System z Parallel Sysplex and GDPS technology. Parallel Sysplex provides resource sharing,
workload balancing, and continuous availability benefits. GDPS provides system-level
automation that enables the most advanced, application-transparent, multisite disaster
recovery solution with fast recovery time. FICON distance support offers two unrepeated
distance options (4 km and 10 km) when using single mode fiber optic cabling.

All FICON Express4 and FICON Express2 features support the Modified Indirect Data
Address Word (MIDAW) facility. MIDAW is new system architecture with software exploitation
that helps to improve channel utilization, reduce channel overhead, and potentially reduce I/O
response times.

For more details about FICON, refer to the I/O Connectivity Web page at the following
address:

http://www.ibm.com/systems/z/hardware/connectivity/news.html

3.2.7 Parallel access volumes

High I/O delays from the data storage devices can lead to performance problems in data
warehouse queries, which sometimes do a high amount of multiple reads from one particular
volume. Parallel access volume (PAV) enables a single System z server to simultaneously
process multiple I/O operations to the same logical volume, which can significantly reduce
device queue delays (IOSQ time). This is achieved by defining multiple addresses per
volume. With dynamic PAV, the assignment of addresses to volumes can be automatically
managed to help the workload meet its performance objectives and reduce overall queuing.

With PAV, reads are simultaneous. Writes to different domains (a set of tracks on which the
disk controller is working) are simultaneous as well. However writes to the same domain are
serialized. No double updates are possible to preserve integrity. Large volumes, such as 3390
mod 9, 27, and 54, greatly benefit by using PAV. Multiple paths or channels for a volume have
been around for many years. However, multiple unit control blocks (UCBs, which are the
same as MVS™ addresses) were only introduced with PAVs.

Multiple allegiance
The DS8000 accepts multiple I/O requests from different hosts to the same device address,
increasing parallelism and reducing channel overhead. In older storage disk subsystems, a
device had an implicit allegiance, which is a relationship that is created in the control unit
between the device and a channel path group when an I/O operation is accepted by the
device. The allegiance causes the control unit to guarantee access (no busy status
presented) to the device for the remainder of the channel program over the set of paths
associated with the allegiance.

With multiple allegiance, the requests are accepted by the DS8000 and all requests are
processed in parallel, unless there is a conflict when writing data to a particular extent of the
CDK logical volume. Figure 3-4 on page 44 and following characteristics describes the
operations of multiple allegiance and PAV:

� With multiple allegiance, the I/Os come from different system images.

� With PAVs, the I/Os come from the same system image:

– For static PAVs, aliases are always associated with the same base addresses.

– For dynamic PAVs, aliases are assigned up front, but can be reassigned to any base
address as needs dictate by means of the Dynamic Alias Assignment function of the

Chapter 3. Why implement a data warehouse on System z 43

http://www.ibm.com/systems/z/hardware/connectivity/news.html

Workload Manager, a reactive alias assignment. Figure 3-4 illustrates the operation of
dynamic PAVs.

Figure 3-4 Parallel access volumes

HyperPAV
With HyperPAV, an on demand proactive assignment of aliases is possible. By using
HyperPAV, an alias address can be used to access any base on the same control unit image
per I/O base. In addition, different HyperPAV hosts can use one alias to access different
bases, which reduces the number of alias addresses that are required to support a set of
bases in a System z environment with no latency in targeting an alias to a base. This
functionality is also designed to enable applications to achieve equal or better performance
than possible with the original PAV feature alone while also using the same or fewer operating
system resources.

Aliases assigned to specific addresses

44 Enterprise Data Warehousing with DB2 9 for z/OS

Figure 3-5 illustrates the HyperPAV operations.

Figure 3-5 HyperPAV

For more information about PAV, HyperPAV, and DS8000 features, refer to IBM System
Storage DS8000 Series: Architecture and Implementation, SG24-6786.

3.2.8 Total cost of ownership

Studies have shown that, when operations and maintenance costs are included in the cost of
any system, System z costs become much more favorable and, in some cases, are less than
those of other platforms. This is true mostly because many different applications can share a
single System z and, in some cases, share the same DB2 subsystem. Therefore, the cost of
administering System z and DB2 can be amortized over multiple application workloads,
where on other platforms this may not be possible.

IBM continues to introduce innovations that further decrease the total cost of ownership
(TCO). The IBM z9 Integrated Information Processor (zIIP), which is designed to maximize
resource optimization, is the latest such innovation. It was introduced in 2006 and was
immediately exploited by DB2 for z/OS V8. See Figure 3-6 on page 46. The zIIP is priced less
than general purpose processors, and the millions of instructions per second (MIPS) it
provides do not count toward the software costs of the system. In DB2 V8 and V9 for z/OS,
distributed requests over TCP/IP, query requests that use parallelism, and utilities that
maintain index structures can exploit zIIPs. BI application costs may directly benefit from DB2
and zIIPs. In DB2 9 for z/OS, remote (Distributed Relational Database Architecture™
(DRDA®)) native SQL procedures also use zIIPs and more are likely to follow.

UCB 08F1

z/
O

S
 S

ys
pl

ex

DS8000

Logical Subsystem (LSS) 0800

Base UA=01

Alias UA=F0
Alias UA=F1

Base UA=02

Alias UA=F2
Alias UA=F3

UCB 08F3
UCB 0802

UCB 08F0
UCB 0801

Applications
do I/O to

base
volumes

Applications
do I/O to

base
volumes

UCB 08F3

UCB 08F0
UCB 0802

UCB 08F1

UCB 08F2

UCB 0801

Applications
do I/O to

base
volumes

Applications
do I/O to

base
volumes

UCB 08F2

P

O

O

L

P

O

O

L

z/OS Image

z/OS Image

Aliases are kept in a pool for use as needed

Chapter 3. Why implement a data warehouse on System z 45

Figure 3-6 The specialty engines

Specialty engines
Additional TCO improvements can be achieved by making use of the other specialty
processors available on the System z platform. The Integrated Facility for Linux (IFL) is used
for Linux applications. You can consolidate Linux servers on a single System z9 partition
(logical partition (LPAR)), or you can move distributed Linux applications to the System z
platform to exploit HiperSockets™ for better performance. The System z Application Assist
Processor (zAAP) is used to run Java™ applications.

System z New Application Charge and DB2 Value Unit Edition
To drive new workload growth on new and existing DB2 for z/OS, IBM is offering customers of
DB2 for z/OS one-time-charge (OTC) pricing for qualified net new workloads on z/OS. The net
new workloads are limited to those that qualify for System z New Application Charge (zNALC)
for example, commercial packaged applications, data warehouses, and WebSphere
applications running in a partition, machine, or sysplex. The value unit edition (VUE) offering
excludes existing qualified workloads.

Refer to the following Web addresses for more information about zNALC and DB2 Value Unit
Edition:

� DB2 for z/OS Value Unit Edition

http://www.ibm.com/software/data/db2/zos/edition-vue.html

� System z New Application License Charges

http://www.ibm.com/servers/eserver/zseries/swprice/znalc.html

3.2.9 System z10

The System z10 is designed from the ground up to help dramatically increase data center
efficiency by significantly improving performance and reducing power, cooling costs, and floor
space requirements. It offers unmatched levels of security and automates the management
and tracking of IT resources to respond to ever-changing business conditions. The System
z10 has the following key features:

� A single System z10 equal in performance to nearly 1,500 x86 servers
� Up to 85% less energy costs
� Up to an 85% smaller footprint
� Consolidation of x86 software licenses at up to a 30-to-1 (30:1) ratio

High utilization

Reduced utilization

DB2/DRDA/StSch

DB2/Batch

BI

Application
DB2/DRDA/StSch

DB2/DRDA

DB2/DRDA

DB2/DRDA

DB2/DRDA

DB2/DRDA/StSch

DB2/DRDA/StSch

TCP/IP
(via Network or
HiperSockets™)

CP

Portions of
eligible DB2
enclave SRB
workload
executed on
zIIPDB2/DRDA

DB2/DRDA/StSch

DB2/DRDA/StSch

DB2/DRDA

DB2/DRDA/StSch

DB2/DRDA

DB2/DRDA/StSch

DB2/DRDA/StSch

zIIP

DB2/DRDA/StSch

DB2/Batch

DB2/DRDA

DB2/DRDA

DB2/DRDA

CP

46 Enterprise Data Warehousing with DB2 9 for z/OS

http://www.ibm.com/software/data/db2/zos/edition-vue.html
http://www.ibm.com/servers/eserver/zseries/swprice/znalc.html

� Quad-Core mainframe
� The following discipline to data center chaos:

– Just-in-time capacity to meet ever-changing business conditions
– Automated management of system performance to favor high-value transactions

Figure 3-7 shows the evolution to System z platform to System z10 compared with the
previous generation machines.

Figure 3-7 Evolution of the System z platform

The System z10 also supports a broad range of workloads. In addition to Linux, XML, Java,
WebSphere, and increased workloads from service-oriented architecture (SOA)
implementations, IBM is working with Sun™ Microsystems and Sine Nomine Associates to
pilot the Open Solaris™ operating system on System z. This collaboration will demonstrate
the openness and flexibility of the mainframe.

To learn more about the features of the System z platform (z9BC, z9EC, and z10EC), refer to
the following Web addresses:

� IBM System z9 Business Class

http://www.ibm.com/systems/z/hardware/z9bc/features.html

� IBM System z9 Enterprise Class

http://www.ibm.com/systems/z/hardware/z9ec/features.html

� IBM System z10 Enterprise Class

http://www.ibm.com/systems/z/hardware/z10ec/features.html

0

500

1000

1500

2000

2500

3000

3500

4000

1997
G4

1998
G5

1999
G6

2000
z900

2003
z990

2005
z9 EC

2008
z10 EC

M
H

z

300
MHz

420
MHz

550
MHz

770
MHz

1.2
GHz

1.7
GHz

G4 - First full-custom CMOS S/390®

G5 - IEEE-standard BFP; branch target prediction
G6 - Copper Technology (Cu BEOL)

z900 - Full 64-bit z/Architecture®

z990 - Superscalar CISC pipeline
z9 EC - System level scaling

4.4
GHz

z10 EC – Architectural
extensions

Chapter 3. Why implement a data warehouse on System z 47

http://www.ibm.com/systems/z/hardware/z9bc/features.html
http://www.ibm.com/systems/z/hardware/z9ec/features.html
http://www.ibm.com/systems/z/hardware/z10ec/features.html

3.2.10 Existing System z customer base

The mainframe has been a solid platform that has delivered value for years. It is a proven
performer in both OLTP and data warehouse scenarios. Where a mainframe is installed today
with a preponderance of critical IT delivery and support to users, consider the following points
about implementing a data warehouse solution on the System z platform:

� Existing infrastructure

Most of the data feeding the warehouse resides on z/OS and is being continuously
updated or added to.

� Platform preferences and skills in-house

Regardless of available platforms, this is a System z-centric enterprise that wants to use
its existing skills.

� Budget and cost

The customer has capacity on the System z platform and does not intend to assume the
cost of a new platform, skills, and associated software.

� Market trends in warehousing solutions and vendors

Gartner substantiates that the System z is viable as a data warehouse solution.1
Customer requirements do not dictate an alternative.

� Complexity

This entails the sheer volume of data involved, its associated issues if it must be replicated
and moved, and other factors.

� Competitive influences

The System z solution is adequate to address competitive situations.

� Mergers and acquisitions or consolidations

The System z platform in the new joint venture has dominance, or the customer wants to
reduce the number of platforms and servers that they currently maintain.

� Data or application sources

The majority of the data is on the System z platform and is constantly being added to,
updated, and changed. It is too large and volatile to re-host.

� Business processes required and business drivers

This refers to the customer infrastructure and business process requirements. For
example, the intranet or Internet infrastructure is set up for the System z platform with high
affinity to warehouse data.

3.2.11 DB2 for z/OS with additional data warehousing capabilities

Several DB2 enhancements, such as enhanced index options, new partitioning options,
advanced SQL, star join enhancements, and materialized query table (MQT) support, are
especially suited for data warehousing.

See Chapter 7, “Functions in DB2 for z/OS for a data warehouse” on page 99, for
implementation details.

1 Gartner, Magic Quadrant for data warehouse DBMS Servers, 2006, Publication Date: 25 August 2006, ID Number
G00141428 as mentioned in Exploiting DB2 on System z to meet your data warehousing needs
ftp://ftp.software.ibm.com/software/data/db2bi/data_warehousing_whitepaper.pdf

48 Enterprise Data Warehousing with DB2 9 for z/OS

ftp://ftp.software.ibm.com/software/data/db2bi/data_warehousing_whitepaper.pdf
ftp://ftp.software.ibm.com/software/data/db2bi/data_warehousing_whitepaper.pdf

Table space partitioning
The large volume of data stored in data warehousing environments can introduce challenges
to database management and query performance. The table space partitioning feature of
DB2 9 for z/OS has the following characteristics:

� Maximizes the availability or minimizes the run time for specific queries

� Can have 4096 partitions

A partition is a separate physical data set.

� Allows the loading and refreshing of activities, including the extraction, cleansing, and
transformation of data, in a fixed operational window

� Increases parallelism for queries and utilities

� Accommodates the growth of data

A universal table space can grow automatically up to 128 TB and adds the functionality of
segmented table spaces.

For more details about the partitioning feature of DB2 9 for z/OS, refer to 7.9, “Table space
partitioning” on page 148.

Very large database
DB2 for z/OS can contain an enormous amount of data. DB2 for z/OS can support up to
64,000 databases. With each database containing up to 32,000 objects, it can easily cater to
the growing need of a data warehouse environment.

Star schema enhancements
A common data model that is used in data warehouse environments is the star schema, in
which a large central fact table is surrounded by numerous dimension tables. Queries
generally provide filtering on the independent dimensions, which must be consolidated for
efficient access to the fact table.

DB2 for z/OS Version 8 contain the following enhancements, among others, to improve the
performance of star schema queries:

� In-memory work files for efficient access to materialized dimensions or snowflakes
� Improved cost formula for join sequence determination
� Predicate localization when OR predicates cross tables

DB2 9 for z/OS further enhances star schema query performance with a new access method.
That is Dynamic Index ANDing, for simpler index design, more consistent performance,
disaster avoidance, and improved parallelism.

Refer to 7.6, “Star schema processing” on page 124, for implementation details.

Query parallelism
You can significantly reduce the response time for data or processor-intensive queries by
taking advantage of the ability of DB2 to initiate multiple parallel operations when it accesses
data in a data warehouse environment.

DB2 for z/OS supports three types of parallelism:

� I/O parallelism
� CPU parallelism
� Sysplex parallelism

Chapter 3. Why implement a data warehouse on System z 49

Materialized query tables
MQTs can simplify query processing, greatly improve the performance of dynamic SQL
queries, and be particularly effective in data warehousing applications, where you can use
them to avoid costly aggregations and joins against large fact tables.

The DB2 optimizer uses partial or entire MQTs to accelerate queries. Its operation and
access path are also kept for an easy refresh of the MQT content without specifying the
source query again.

Refer to 7.10, “Materialized query tables” on page 152, for more information.

OLAP functions
New SQL enhancements are made in DB2 9 for z/OS for improving online analytical
processing (OLAP) functionalities in a data warehouse. The following OLAP expressions
were introduced in DB2 9 for z/OS:

� RANK and DENSE_RANK
� ROW_NUMBER

Refer to 7.11, “OLAP functions” on page 154.

Table space and index compression
DB2 for z/OS uses the hardware assisted compression instructions of the System z server for
compressing table spaces. DB2 9 for z/OS can also compress index spaces by using
software techniques. Table space and index space compression saves a large amount of disk
space (in certain cases CPU saving) when implemented in a data warehouse environment,
considering the amount of data and the number of indexes that are created for query
performance on the large tables. For more details about compression, refer to 7.1, “Index
compression” on page 100, and 7.2, “Table space compression” on page 118.

Index on expression
DB2 9 for z/OS supports the creation of indexes on an expression. The DB2 optimizer can
then use such an index to support index matching on an expression. In certain scenarios, it
can enhance the query performance. In contrast to simple indexes, where index keys are
composed by concatenating one or more table columns specified, the index key values are
not exactly the same as the values in the table columns. The values are transformed by the
expressions that are specified.

Refer to 7.7, “Index on expressions” on page 139.

CLONE tables
To overcome the availability problem when running certain utilities, such as LOAD REPLACE
in a DB2 for z/OS environment, a cloning feature was introduced in DB2 9 for z/OS. A clone of
a table can be created by using the ALTER TABLE SQL statement with the ADD CLONE
clause. The clone can then be used by applications, SQL, or utilities, and therefore, provide
high availability. Refer to 7.8, “Working with the ADD CLONE SQL command” on page 143,
for more details.

XML support
DB2 9 for z/OS provides pureXML™, which is a native XML storage technology that provides
hybrid relational and XML storage capabilities. pureXML provides a huge performance
improvement for XML applications while eliminating the need to “shred” XML into traditional
relational tables or to store XML usually as character large objects (CLOBs), which are

50 Enterprise Data Warehousing with DB2 9 for z/OS

methods that other vendors use. DB2 9 pureXML exploits z/OS XML System Services for
high-performance parsing with improved price performance by using zAAPs and zIIPs.

The pureXML technology includes the following capabilities:

� XML data type and storage techniques for efficient management of hierarchical structures
inherent in XML documents

� pureXML indexes to speed search subsets of XML documents

� New query language support (SQL/XML and XPath) based on industry standards and new
query optimization techniques

� Industry-leading support for managing, validating, and evolving XML schemas

� Comprehensive administrative capabilities, including DB2 utilities and tools

� Integration with popular APIs and development environments

� XML shredding, publishing, and relational view facilities for working with existing relational
models

� Proven enterprise-level reliability, availability, scalability, performance, security, and
maturity that users expect from DB2

3.2.12 Extract, transform, and load on the same platform

Extract, transform, and load (ETL) identifies the processes that extract information from the
OLTP system, transform it according to the needs of the data warehouse environment, move
it to the platform that houses the data warehouse, and finally loads the data into the data
warehouse. The process of extracting information from the OLTP system by necessity runs on
the same platform as the OLTP system. The process of transforming it to conform to the
needs of the data warehouse is usually performed on the platform where the OLTP system
resides. This is because many of the techniques used in the transformation process reduce
the amount of data that then must be moved to and loaded into the data warehouse.

Regardless of where the transformation process is performed, it is necessary to move the
data to the platform that is housing the data warehouse. Many methods can be employed in
this movement of data. Regardless of the method that is employed, if the data warehouse is
physically distinct from the platform that is housing the OLTP system, it is necessary to
transmit this data over a communications path of some kind. Often this is the single most
expensive component of the entire ETL process.

Obviously, if the data warehouse resides on the same platform as the OLTP system, sending
data over a communication path is unnecessary. With the Parallel Sysplex capabilities of the
System z platform, it is a relatively simple matter to have the data warehouse on the same
platform as the OLTP system and, at the same time, on distinct processors or machines from
the OLTP system.

The System z platform is capable of handling the different characteristics of OLTP and BI
workloads within one logical database system. This can be achieved by DB2 subsystems that
are optimized for different workload within a data sharing group. Data sharing is a DB2 feature
of exploiting System z Parallel Sysplex technology and, therefore, sharing the workload
between multiple DB2 subsystems that access the same data.

Chapter 3. Why implement a data warehouse on System z 51

Figure 3-8 shows three subsystems at the top that are optimized to handle transactional
workload. At the bottom are two subsystems that are optimized for BI. All subsystems are in
the same data sharing group.

Figure 3-8 Data sharing and mixed workload

If the subsystems are in the same LPAR, the WLM can be configured to assign the correct
amount of resources to the subsystems. It can be configured in a way that OLTP subsystems
always have a guaranteed amount of resources, no matter how much workload is assigned to
the data warehouse members. Further, WLM can be configured to prioritize short-running
queries in the BI subsystems.

If the subsystems are not in the same LPAR, the Intelligent Resource Director can manage
resources among LPARs. WLM can manage those resources among subsystems within the
same LPAR.

The figure also shows that the transactional systems are routed against the data sharing
members that are optimized for OLTP workload, and the query and reporting and analytical
applications are routed against the data sharing members that are optimized for BI queries.

52 Enterprise Data Warehousing with DB2 9 for z/OS

This is achieved by location alias definitions in DB2. Each application recognizes (“sees”) all
data: detailed transactional data and data warehouse aggregates. However, the DB2
subsystems of member D and E are configured with a focus on parallel query execution, while
members A, B, and C are used for normal, short-running transactions.

This configuration of System z and DB2 is optimal for the different types of workload that
occur if OLTP and BI data is mixed in the same system. It is highly scalable. Detailed data can
be accessed in the same way as aggregates, which allows “in database transformations”.

If data movement to another system or platform is desired for some reason, IBM
WebSphere II Replication provides the ability to stream high volumes of data with low latency
to create near real-time warehouses. Or IBM InfoSphere DataStage can be used to provide
complex transformations of the data before loading them into the warehouse.

In addition to DB2 for z/OS as an essential core component hosting data in a data
warehouse, other components are required to build a comprehensive solution, mainly to
address the following areas:

� Efficient access to multiple data sources
� ETL processing
� Data integration and cleansing
� Managing incremental updates
� Analytics and reporting

WebSphere Classic Federation
A data warehouse may collect, consolidate, and aggregate data from various sources and
various source types, not all being naturally relational data sources, such as DB2 for z/OS.
Some data might reside on System z in the following areas:

� IMS
� CICS® controlled VSAM data sets
� ADABAS
� Flat files

This data (or at least aggregates of it) must be integrated into the data warehouse so that all
information becomes available in a single place.

WebSphere Classic Federation can access this data in a way that makes it unnecessary to
set up a specialized extraction process for each of the different data sources, such as
hierarchical or relational databases.

The WebSphere Classic Federation Data Server is installed where the data sources reside. A
connector is configured and started for each data source that needs to be accessed. These
connectors are then used by the data server to access the source data from IMS, VSAM,
ADABAS, or other supported sources. The data server maps the various source data
structures to a relational structure. Therefore, all data accessed through the WebSphere
Classic Federation Data Server looks similar to one relational database, even if the source is
structured hierarchically.

Mapping between source and target definitions is done by using the Classic Data Architect,
which is an Eclipse-based workstation tool. It allows the importing of IMS DBD or COBOL
Copybooks to obtain the structure definitions of the source data. The user can select which
information to include in a target table that is simulated as a relational structure by the data
server. No further configuration or coding is necessary.

An ETL server may access this data through Java Database Connectivity (JDBC™) or Open
Database Connectivity (ODBC) to move it to the data warehouse in the form of staging tables

Chapter 3. Why implement a data warehouse on System z 53

or aggregates. The ETL server and the WebSphere Classic Federation Data Server are
primarily used for either an initial load or a full reload of the data warehouse. Data in legacy
data sources can be updated as well, but this is usually not required within a data warehouse
environment. Figure 3-9 shows an overview of the components that come with and interact
with the WebSphere Classic Federation Server.

Figure 3-9 WebSphere Classic Federation

WebSphere Classic Data Event Publisher
After the data is loaded into the data warehouse, it usually must be updated incrementally. It
is not necessary to replace the entire content. WebSphere Data Event Publisher and
WebSphere Classic Data Event Publisher, respectively, are used to detect the changes in
DB2 sources and legacy data sources and provide the information about the changes to the
ETL server.

WebSphere Classic Data Event Publisher and Classic Federation have much code in
common. If you previously installed and configured WebSphere Classic Federation, you can
extend this configuration to allow event publishing. Again, you must map legacy data
structures to relational tables by using the Classic Data Architect. You can even configure the
server so that this information is used for federation and event publishing at the same time,
with just one running data server.

Instead of using a connector to directly access the legacy data sources, a change capture
agent is used to detect all manipulations to the data source. In some cases, this is a logger
exit (for example, with IMS). In other cases, it is a log reader. The Change Capture Agent
sends the change information to the correlation service, which maps the legacy data structure
to a relational structure, which is designed with the Classic Data Architect. Finally, Distribution
Service and Publisher are used to send the information about the changes through
WebSphere MQ to the DataStage data integration server. The DataStage server can read the
MQ messages directly from the queue, just as they are transmitted. These events can then be
stacked up in staging tables and applied to the data warehouse in a composite update, which
is run in a batch window. See Figure 3-10.

DB2 Data
Warehouse

IMS

DataServer
ClassicData

Architect

Relational Query Processor

WebSphere Classic Federation

MetaData DataStage
ETL Server

The ETL server does a read access
on the legacy data sources via SQL
just as to any other relational
database through the ODBC driver.
The data is then stored in staging
tables or already aggregated in the
DB2 warehouse database.

Mapping information from the legacy data
source the to relational model, updated through
the Data Server by Classic Data Architect.

ConnectorConnectorConnectorConnector

VSAM ADABAS IDMS

54 Enterprise Data Warehousing with DB2 9 for z/OS

Figure 3-10 WebSphere Classic Data Event Publisher

WebSphere Data Event Publisher for z/OS and the Q replication server
WebSphere Data Event Publisher for z/OS offers efficient changed-data solutions for DB2 for
z/OS databases.

A Q Capture program reads the DB2 log files for transactions that contain changes to the
sources in your publications. It places messages that contain those transactions or messages
that contain individual changes on queues. You provide the destination for the messages. You
can publish XML messages to a Web application, use them to trigger events, and more. You
can either start the Q Capture program with the default settings or modify those settings for
your environment.

Figure 3-11 on page 56 shows a simple configuration for using Q Capture and event
publishing. A queue capture control program reads change information from DB2 for z/OS
logs and (based on definition in control tables) makes these changes available in a queue.
With WebSphere Data Event Publisher for z/OS, you can propagate the data changes to
DataStage and other integration solutions for populating a data warehouse, data mart, or
operational data store with the changes.

DB2 Data
Warehouse

Legacy
Data

Source

Change
Capture
Agent

Updating
Application

Logger
Exit

Correlation Service

DataServer

WebSphere
MQ

Change
Capture
Agent

Relational Query Processor

WebSphere Classic Data Event Publisher

MetaData

Updating
ApplicationPublisher

More than one queue is set up for
the distribution of the event. The
Event Publisher also uses an
administrative queue that is used for
synchronization, and a recovery
queue is used if the logger exit fails.

Any application is updating the
legacy (IMS, VSAM, IDMS,
ADABAS…) data source.

DataStage can
read the change
events directly
from WebSphere
MQ and stores
the changes
within the DB2
data warehouse.Distribution Service

Chapter 3. Why implement a data warehouse on System z 55

Figure 3-11 Event publishing and Q Capture

Information Server for System z
The IBM Information Server is a framework for services around data transformation, data
quality assurance, metadata management, SOA services, and other operations.

Figure 3-12 on page 57 illustrates the four key integration functions in the Information Server.
In the following list, we explain how you can use these components in a data warehouse
environment:

� Understand data.

This function is about analyzing data and determining the meaning and relationships of
information. Web-based tools can be used to define and annotate fields of business data.
Monitoring functions can be used to create reports over time. A metamodel foundation
(and the IBM Metadata Server) helps, for example, in managing changes in the
transactional (OLTP) data model and their implication in the warehouse model and derived
reports.

� Cleanse data.

In a data warehouse environment, multiple data sources maintained by different
applications are to be integrated. Consequently, the data values in the transactional
system may be stored in different formats and independent systems are likely to duplicate
data. The QualityStage component in Information Server supports consolidation,
validation, and standardization of data from these multiple data sources, thereby helping
to build a consistent, accurate, and comprehensive warehouse model.

� Transform data.

Transforming data in the context of an ETL process is a major requirement for a
comprehensive data warehouse solution. The DataStage component in Information
Server provides a variety of connectors and transformation functions for this purpose.

56 Enterprise Data Warehousing with DB2 9 for z/OS

High-speed join and sort operations, as well as the parallel engine, help in implementing
high-volume and complex data transformation and movement. A comprehensive set of
tools are offered to monitor, manage, and schedule ETL jobs.

� Deliver data.

In addition to the components mentioned earlier in this section, Information Server comes
with many ready-to-use native connectors to various data sources, located on distributed
or mainframe systems.

Figure 3-12 Information Server for System z

Information Server 8.0.1 comes with a server and a runtime component. For a
System z-based implementation, the server component may be installed on Linux on
System z. The client components can be installed on a Microsoft® Windows® system and are
used to design and model data and ETL jobs for DataStage and QualityStage.

Cognos, AlphaBlox, DataQuant, and QMF
Reporting, BI analytics, and queries are an integral part of a data warehouse solution. At the
time of writing this book, the following product versions are available on the System z
platform:

� Cognos 8 BI Server (now available for Linux on System z)
� AlphaBlox (available for Linux on System z)
� DataQuant (available on z/OS)
� IBM QMF™ (available on z/OS)

For details, see Chapter 14, “Reporting with DataQuant, QMF, and AlphaBlox” on page 397,
and Chapter 13, “Reporting and analysis with Cognos 8 BI” on page 305.

Other versions of Information Server: An Information Server version is available for
z/OS (running with UNIX® System Services), and an MVS version of the product is
available. Both are currently based on older product levels compared to the one that we
used on Linux on System z. Particularly when running multiple jobs concurrently, the
available product version on Linux on System z may have advantages.

Understand Cleanse Transform Deliver

Parallel Processing
Rich Connectivity to Applications, Data, and Content

IBM Information Server for System z

Discover, model, and
govern information

structure and content

Standardize, merge,
and correct information

Combine and
restructure information

for new uses

Synchronize, virtualize,
and move information

for in-line delivery

Unified Deployment

Unified Metadata Management

Chapter 3. Why implement a data warehouse on System z 57

58 Enterprise Data Warehousing with DB2 9 for z/OS

Chapter 4. The architecture for the BI
solution on System z

In the previous chapters, we provide a short overview of the data warehouse characteristics
and explain the System z functions that can help in implementing a business intelligence (BI)
solution. In this chapter, we describe the business requirements that must be satisfied by the
BI solution, the architecture implemented for the solution during this project, and other
possible configuration scenarios.

This chapter contains the following sections:

� 4.1, “Business requirements for a data warehouse environment” on page 60
� 4.2, “The business intelligence architecture with System z” on page 61
� 4.4, “Business requirements revisited” on page 68

4

© Copyright IBM Corp. 2008. All rights reserved. 59

4.1 Business requirements for a data warehouse environment

Organizations that have an existing data warehouse environment or are building a new data
warehouse environment must consider the following characteristics in their setup:

� Flexibility

With rapid changing business scenario’s, a BI solutions must be flexible to manage
demands for new data sources and new application requirements. For example, assume
that a large organization acquires a small organization. The BI solution of the large
organization should be flexible to incorporate the data of the acquired organization.

� High data volumes

Such regulations as the Sarbanes-Oxley Act (SOX), Basel II, Data Protection Act (United
Kingdom), and the U.S. Patriot Act were created to protect investors’ interests, avoid fraud,
and improve financial reporting. Regulations also emphasize the growing need to
reproduce versions of data, applications, and even entire business states. This regulation
require companies to keep a long record of activities. The implementation of these
regulations leads to large data storage requirements. The increasing number of users and
services adds additional storage requirements.

� Near real-time data

With the emergence of dynamic data warehousing, queries in a BI environment need
access to near real-time data. The data changes from online transaction processing
(OLTP) should be replicated to the data warehouse database with no or small latency. The
data transfer from OLTP to the data warehouse database preferably should not be done
over a communication line because it will increase latency.

� High availability and recovery

With the emergence of dynamic data warehousing, a data warehouse environment should
be available 24x7. Downtime due to database changes, operating system, or software
upgrades is no longer acceptable.

� Query and reporting

To implement a good BI solution, a reporting tool is required to generate various forms of
reports, charts, graphs, cube views, and so on to make quick business decisions.

� Management

Enterprise likely need a BI environment that is easily manageable and does not require a
large number of people to manage. Tools that support the administration of a BI
environment are of a great advantage.

� OLTP performance

The data warehouse data is initially extracted from the OLTP environment, and ongoing
updates are required. The performance impact on OLTP must be minimized.

� Different data sources

Easy integration of various data sources to a data warehouse database is required. In
today’s environment, the data is derived from several sources. In addition to DB2
databases on System z and on distributed systems, non-DB2 databases, legacy sources
on System z, such as IMS and VSAM, and multiple formats from distributed systems must
be accessed.

� Security

Data warehouses hold data that contains confidential information such as customer
details, business processes, and business strengths. This data must be kept secured to
avoid any intrusion.

60 Enterprise Data Warehousing with DB2 9 for z/OS

4.2 The business intelligence architecture with System z

Figure 4-1 shows a possible architecture for a data warehouse on the System z platform. The
components are described in more detail later in this section. The components can be
arranged in various configurations, using the different configuration possibilities that are
provided by System z, for example monoplex, sysplex, number of logical partitions (LPARs) in
the sysplex, and DB2 data sharing.

Figure 4-1 Data flow across components

Figure 4-1 shows several paths to update the data warehouse:

� OLTP database → Change Capture → Q Replication → Data warehouse database

This path is for tables that must be replicated with minor transformations and low latency.

� OLTP database → Change Capture → Event Publisher → DataStage → Data warehouse
database

This path is used to propagate selected changes in predefined intervals to DataStage.
DataStage processes the captured data (for example, aggregation and join with other
sources) and loads it into the data warehouse database. If data cleansing is required, the
data is fed into QualityStage before going to DataStage.

� OLTP database → DataStage → Data warehouse database

This path is entirely controlled by DataStage. DataStage extracts data from the OLTP
database, does any processing that is required, and loads data into the data warehouse
database. This path can be used during the initial load of the data warehouse database.

Linux on System z

Chapter 4. The architecture for the BI solution on System z 61

� Legacy data → WebSphere Classic Federation → DataStage → Data warehouse
database

WebSphere Classic Federation running on z/OS simulates the legacy data (for example,
IMS, VSAM, and Sequential file) as a relational database management system (RDBMS).
It is then read by DataStage, processed as required, and loaded into the data warehouse
database.

� Distributed data sources → Federation Server → DataStage → Data warehouse database

This path is used to use distributed data sources, such as various databases (IBM and
third-party products), and other sources, such as flat files or spreadsheets, as input to the
data warehouse database.

� Analysis and reporting are performed with such products as Cognos 8 BI, DataQuant, and
AlphaBlox. These products access the data warehouse database and generate the
required reports, spreadsheets, dashboards, and so on.

4.2.1 The components involved

The components can be ordered into the following groups:

� Base infrastructure

– Parallel Sysplex

The Parallel Sysplex is already described in 3.2.1, “Availability and scalability” on
page 32. The Parallel Sysplex is used in the configuration options that are described
later in this chapter.

– Linux on System z

Linux on System z runs on Integrated Facility for Linux (IFL) processors or the general
purpose processors. It hosts products for the extract, transform, and load (ETL)
process, such as Information Server, and the Analysis and Reporting components.

� Database management system for the OLTP and data warehouse

– DB2 9 for z/OS

The architecture on the System z platform can be implemented with one DB2 9 data
sharing group for both OLTP and the data warehouse or with separate DB2 9 data
sharing groups for OLTP transactions and one data sharing group for the data
warehouse database. For a description of data sharing, see 3.2.1, “Availability and
scalability” on page 32.

Implementation with a single data sharing group for both databases gives performance
benefits if in-database transformations are used. The trade-off is the connection of
shared objects, such as the db2 catalog, directory tables, and EDM pools, between
OLTP and the data warehouse database.

� Products to implement the ETL process

ETL is the process is to extract data from OLTP, transform it according to BI solution
needs, and load it into data warehouse database. On System z, the ETL process is done
by using the following products:

– WebSphere Replication Server - Q Replication

Q Replication executes on z/OS and replicates changes to another data source with
small or no latency. In a dynamic data warehouse environment, requirements indicate
that changes in OLTP data should be propagated to a data warehouse database with
almost no latency for BI queries to have access to near- real-time data. See 8.2.2,

62 Enterprise Data Warehousing with DB2 9 for z/OS

“Configuring Q replication subscriptions” on page 171, for details about
implementation.

– WebSphere MQ for z/OS

Depending on the type of replication, WebSphere MQ interface is required by
WebSphere Replication Server - Q Replication to safely transfer captured changes to
the apply program running on the remote system. See “Creating the WebSphere MQ
objects” on page 165 for details about use.

– WebSphere Classic Event Publisher for z/OS

WebSphere Classic Event Publisher executing on z/OS is used to capture changes
made in the OLTP database and provides these changes to DataStage via a message
queue. DataStage does the required processing and loads the derived information into
the data warehouse database. See 8.2.3, “Configuring event publishing using the DB2
Replication Center” on page 183, for details.

– Information Server

Information Server executing on Linux on System z is used to profile, cleanse, and
transform information from mainframe and distributed data sources. Refer to 9.1,
“Overview of components for ETL on Linux on System z and z/OS” on page 202, for
details about the ETL components of Information Server. The following components of
Information Server are used in data warehouse environment:

• InfoSphere DataStage

Extracts and transforms data from multiple sources and loads it onto the data
warehouse database.

• InfoSphere QualityStage

Cleans and standardizes information from heterogeneous sources.

• Federation Server

Integrates diverse and distributed information sources.

– WebSphere Classic Federation

This product executes on z/OS and is used to access data from legacy data sources. It
is used to integrate the data from sources, such as VSAM, IMS, and Sequential file, to
a data warehouse database, which then becomes a central repository.

� Products for business intelligence analysis

A couple of choices are available to provide analytics to the user. In our scenario, we use
Cognos 8 BI, as described in Chapter 13, “Reporting and analysis with Cognos 8 BI” on
page 305. Other choices are DataQuant and AlphaBlox as described in Chapter 14,
“Reporting with DataQuant, QMF, and AlphaBlox” on page 397.

4.2.2 Configuration alternatives

You can use the products that we previously describe to build various different configurations.
The following configurations are the most common:

� Configuration with one DB2 data sharing group

The components that are involved in this configuration are two z/OS LPAR’s in Parallel
SYSPLEX, one data sharing group, ETL tools, one WebSphere MQ queue sharing group,
and one Linux for System z LPAR.

Figure 4-2 on page 64 shows a configuration that is made up of a Parallel SYSPLEX with
two LPARs and two coupling facilities (one for the backup). DB2 9 for z/OS is configured in
one data sharing group with four DB2 members: two for handling OLTP transactions and

Chapter 4. The architecture for the BI solution on System z 63

two for data warehouse queries. This can be implemented by configuring the DB2
connection to a particular DB2 member in a data sharing group. In this configuration, DB2
is configured for high availability and scalability. It also gives better performance when we
have “in-database transformations”.

Figure 4-2 Data warehouse architecture on System z with one data sharing groups

With this DB2 configuration, consider the following points:

– Shared resources

Both OLTP and the data warehouse subsystem must share some DB2 resources, such
as Catalog, Directory tables, and EDM pool. The sharing of resources in certain cases
can impact performance of OLTP transactions, which is not acceptable in a production
environment.

– Tuning and monitoring overhead

To avoid contention for DB2 resources between OLTP transactions and data
warehouse queries, more effort is required to tune the environment in doing such tasks
as Workload Monitor (WLM) tuning, buffer pool separations, group buffer pool (GBP)
management, monitoring the lock contention between OLTP transactions, and data
warehouse queries.

– Inability to use the sysplex load balancing feature to distribute workload over multiple
members

The workload is directed to the particular DB2 member (OLTP or data warehouse
member) instead of the complete data sharing group.

64 Enterprise Data Warehousing with DB2 9 for z/OS

Appropriate WLM policies must be defined to assign the right priorities for the members.

The ETL tools for z/OS are identically configured in both LPARs. The ETL components of
one LPAR are started (drawn with color), and the components in the other LPAR are
started by Automatic Restart Manager (ARM) in case of an LPAR failure. In case of a
component failure, ARM starts the component in the same LPAR.

WebSphere MQ for z/OS is configured in a queue sharing group to provide high
availability of the queues used by WebSphere Replication Server - Q Replication.

The Information Server is used for transformation and filtering and reporting tools, such as
Cognos software, Alpha Box, and DataQuant, running on Linux for System z, which runs
on specialist processor IFL. Information Server uses WebSphere Application Server on
Linux on System z, therefore, to provide high availability of WebSphere Application Server
similar to the components that we discussed earlier in this section. WebSphere
Application Server can be configured in a cluster mode with multiple WebSphere
Application Server profiles on two or more Linux on System z LPARs and proper high
availability concepts for metadata hosted on Linux on System z.

For high availability of Cognos 8 BI, Alpha Box, and DataQuant, they can be configured
under standby mode on the other Linux for System z LPARs. The components that are
used by ETL and the reporting tools on Linux on System z can be configured in separate
Linux images to gain better isolation and workload management.

For more details about high availability architectures of Linux on System z, refer to “High
Availability Architectures For Linux on IBM System z” white paper at the following address:

http://www.ibm.com/servers/eserver/zseries/library/whitepapers/pdf/HA_Architect
ures_for_Linux_on_System_z.pdf

� Configuration with two DB2 data sharing group

The components involved in this configuration are two z/OS LPARs in Parallel Sysplex,
one data sharing group, ETL tools, one WebSphere MQ queue sharing group, and one
Linux for System z LPAR.

Figure 4-3 on page 66 shows a configuration that is made up of a Parallel Sysplex with two
LPARs and two coupling facilities (one for the backup). DB2 9 for z/OS is configured in two
data sharing groups: one for OLTP and one for data warehouse workload respectively.
Each data sharing group contains two DB2 members, one member on each LPAR. This
configuration is built for the high availability, scalability, and isolation between the two types
workloads. The sysplex distributor can be used with WLM to distribute the workload
among the members depending upon their current status and the workload running on
them.

Appropriate WLM policies must be defined to assign the right priorities for the members of
different data sharing groups.

The ETL tools for z/OS are identically configured in both the LPARs. The ETL components
of one LPAR are started (drawn with color), and the components in the other LPAR are
started by ARM in case of an LPAR failure. In case of a component failure, ARM starts the
component in the same LPAR.

WebSphere MQ for z/OS configured in a queue sharing group to provide high availability
of the queues that are used by WebSphere Replication Server - Q Replication.

The Information Server is used for transformation and filtering and reporting tools, such as
Cognos 8 BI, AlphaBlox, and DataQuant running on Linux for System z, which runs on the
IFL specialist processor.

Chapter 4. The architecture for the BI solution on System z 65

http://www.ibm.com/servers/eserver/zseries/library/whitepapers/pdf/HA_Architectures_for_Linux_on_System_z.pdf

Figure 4-3 SYSPLEX with two LPARs and two data sharing groups

The Information Server uses WebSphere Application Server on Linux on System z to
provide high availability of the WebSphere Application Server. Similar to the components
we discussed earlier in this section, WebSphere Application Server can be configured in a
cluster mode with multiple WebSphere Application Server profiles on two or more Linux on
System z LPARs and proper high availability concepts for metadata hosted on Linux on
System z.

For high availability of Cognos 8 BI, AlphaBlox, and DataQuant, you can configure them in
standby mode on the other Linux for System z LPARs. The components used by ETL and
reporting tools on Linux on System z can be configured in separate Linux images for a
better isolation and workload management.

For details about high availability architectures of Linux on System z, refer to the “High
Availability Architectures For Linux on IBM System z” white paper at the following address:

http://www-03.ibm.com/servers/eserver/zseries/library/whitepapers/pdf/HA_Archit
ectures_for_Linux_on_System_z.pdf

� Our test configuration: MONOPLEX, one LPAR, two stand-alone DB2 systems, ETL tools,
one WebSphere MQ queue manager, and one Linux for System z LPAR

This configuration can be used to build a test environment where the benefits of sysplex
and data sharing, such as scaling, rolling updates, and failover, are not required. This
scenario is described in 6.2, “System configuration” on page 93.

66 Enterprise Data Warehousing with DB2 9 for z/OS

http://www-03.ibm.com/servers/eserver/zseries/library/whitepapers/pdf/HA_Architectures_for_Linux_on_System_z.pdf

� Additional configurations

Further configurations, for example, allow for a more strict separation between OLTP and
data warehouse database resources, such as the use of separate LPARs for OLTP and
data warehouse databases. The detailed evaluation of those different scenarios is not
within the scope of this book.

Various combinations of different configurations are possible that are related to ETL and
reporting tools on Linux on System z, for example, separate Linux LPAR for each
component of ETL tools using z/VM® for running Linux for System z LPARs.

4.3 When DB2 for z/OS is a good fit

Having described the BI architecture on System z and some of the z/OS unique features to
support this architecture, this question arises: When is DB2 for z/OS a good fit to implement
the data warehouse?

When considering DB2 for z/OS to implement the warehouse, keep in mind the following
criteria:

� The majority of source systems are on z/OS within IMS, VSAM, DB2, or sequential files.
Or there is a requirement for tight integration with existing resources and systems on the
System z platform.

� The data warehouse, data marts, or operational data store already exist on System z.

� Existing skills and investments are on the System z platform.

� The customer already maintains a System z-centric IT solution due to their favorable cost
of ownership and comfort.

� The customer is implementing an operational BI application with embedded analytics
within applications. These types of applications can leverage the System z transaction
scalability capabilities.

� There is a requirement for a true real-time operational data store:

– Operational data is already on the System z platform.
– Data must be virtually in-sync with the operational data.
– Availability, security, and resiliency requirements are high.
– Auditable data warehoused requirements exist.

� Independent software vendor (ISV) packages, such as SAP® and PeopleSoft® on System
z, offer both transactional (OLTP) and informational (warehouse and BI) systems. System
z supports multiple images of SAP and other solutions, which simplifies support for these
complex applications.

– These packaged applications, which have tightly integrated components, have always
made it desirable for the operational data and the warehouse to be housed in the same
environment. Collocation reduces operational complexity, allowing for the reuse of
skills and infrastructure in the form of processes, tools, and procedures.

– There is a desire to consolidate distributed marts or data warehouses to an existing
System z data serving platform. The customer may have spare System z capacity.

� The absolute best in reliability, availability, serviceability, security, and workload
management is needed.

Chapter 4. The architecture for the BI solution on System z 67

4.4 Business requirements revisited

We now revisit the business requirements listed in 4.1, “Business requirements for a data
warehouse environment” on page 60, with the functions that are provided by the components
described in 4.2, “The business intelligence architecture with System z” on page 61:

� Flexibility

Additional data sources can be incorporated with the help of the WebSphere Classic
Federation, Federation Server, or data replication. To handle the additional load capacity,
System z can be scaled up by adding more system resources or by configuring Parallel
Sysplex.

� High data volumes

DB2 for z/OS with DS8000 disk subsystem is well suited to process databases in the
range of terabytes.

� Near real-time data

Q replication provides replication of tables from the OLTP database to the data warehouse
database with low latency.

� High availability/recovery

DB2 for z/OS, which is configured in data sharing mode, provides for system failover and
continuous processing during system upgrades (rolling updates). When used in a Parallel
Sysplex scenario, the ARM feature starts the failed components immediately on the same
LPAR or the other LPAR (in case of an image failure).

� Query and reporting

Cognos 8 BI, AlphaBlox, and DataQuant/QMF offer a broad set of functions for analytics
and reporting.

� Management

The System z platform and DB2 provide an excellent infrastructure for this requirement.
System z hardware, z/OS operating system, and DB2 for z/OS are designed with reliability
characteristics such as self monitoring, redundancy, self healing, and dynamic
configuration and management.

� OLTP performance

The impact of data warehouse processing on OLTP performance can be controlled
granularly with WLM on z/OS. One efficient way is to decrease the priority of queries
depending on the elapsed execution time.

� Different data sources

With WebSphere Classic Federation and with the Federation Server, two products are
available to access non-DB2 resources on z/OS and on various distributed systems.

� Security

The System z platform has proven to be an unmatched architecture for data security by
fulfilling the highest industry security certifications. Features to support data encryption
are built-in on a hardware level. The hardware supported encryption is used to ensure that
backups are not readable if they fall into the wrong hands. With DB2 9 for z/OS, the
network communication between the database and client can be Secure Sockets Layer
(SSL)-encrypted based on a network trusted context.

68 Enterprise Data Warehousing with DB2 9 for z/OS

Part 2 Design and
implementation of our
warehouse scenario

In this part, we describe in detail the implementation of the enterprise warehouse based on
our fictitious application.

This part includes the following chapters:

� Chapter 5, “The business scenario and data models” on page 71
� Chapter 6, “The system environment” on page 91
� Chapter 7, “Functions in DB2 for z/OS for a data warehouse” on page 99
� Chapter 8, “Q replication and event publishing” on page 159
� Chapter 9, “Setting up ETL components for a data warehouse” on page 201
� Chapter 10, “Full load using DataStage” on page 257
� Chapter 11, “Incremental update with DataStage” on page 281
� Chapter 12, “An operational business intelligence implementation” on page 295
� Chapter 13, “Reporting and analysis with Cognos 8 BI” on page 305
� Chapter 14, “Reporting with DataQuant, QMF, and AlphaBlox” on page 397

Part 2

© Copyright IBM Corp. 2008. All rights reserved. 69

70 Enterprise Data Warehousing with DB2 9 for z/OS

Chapter 5. The business scenario and data
models

In this chapter, we introduce the fictitious organization and business requirements that we use
to demonstrate the usefulness of an enterprise business intelligence (BI) solution and data
warehouse on DB2 for z/OS. The scenario, some components of the chosen data model, and
business-oriented queries used throughout our implementation are based on the TPC
Benchmark H Standard Specification Revision 2.5.0 documentation printed 10 July 2006.

We use the components of the TPC-H benchmark because they provide a realistic data
model and a set of business-oriented ad hoc queries that demonstrate possible querying and
analysis tasks in important areas that an organization may require. The generation of new
source information into the transaction systems has been implemented by using a custom
designed Web page to simulate operational transactions.

The scenario provides background information about why we implemented particular data
warehouse functionality within DB2 for z/OS and other components of the end-to-end solution
such as Information Server and Cognos 8 BI. We also provide a summary of our conceptual
implementation, the products installed, and the DB2 capabilities that we demonstrate in our
scenario.

This chapter contains the following sections:

� 5.1, “Background information” on page 72
� 5.2, “Business requirements” on page 72
� 5.3, “Solution overview” on page 75
� 5.4, “The transactional data model” on page 78
� 5.5, “The operational and dimensional data model” on page 85
� 5.6, “Referential integrity for a data warehouse” on page 87
� 5.7, “Data modeling options: IBM Industry Models” on page 88

5

© Copyright IBM Corp. 2008. All rights reserved. 71

5.1 Background information

Our fictitious organization, called RedParts Distribution, is a company that works within the
metal product wholesale and distribution industry. RedParts receives metal parts from
suppliers and distributes these parts to their customers worldwide in the hope of making a
profit. Customers are usually retail business who then sell the parts mostly through retail
stores. At various times, RedParts runs promotions for their customers depending upon the
home country and economic region to which they belong. It is also common to offer discounts
between 1% and 9% to customers depending upon the volumes of parts ordered in the past.

Orders are placed by customers over the Internet or are initiated at one of their many physical
branches. Branches are spread throughout the world and can be classified as small, medium,
or large depending upon the number of orders that they take during the previous quarter.
After an order is received and verified, it is packed by a clerk and eventually shipped to the
customer. The order fulfillment is complete when the customer receives the requested parts.

On occasion, parts are returned by the customer to RedParts. At the time of the return, the
reason for the return is recorded as damaged parts, unwanted parts, or no reason provided.
RedParts measures the return rate for each part because it provides a good basis to
determine whether there are potential problems with particular suppliers, the parts
themselves do not perform, or the parts are not reliable and should not be distributed. On a
monthly basis, these return rates are made available to customers on the Internet if they
require them. The return rates are shown by part, brand, and manufacturer.

RedParts manages the distribution and tracking of all orders from their warehouse in
Germany. Analysis and reporting of order information is extremely difficult because this
information is not located in one single place, and information from the branch ordering
system is not regularly available at the time reporting needs to occur.

Table 5-1 lists the sources of information that RedParts currently uses to fulfill their
operational and strategic reporting requirements.

Table 5-1 Scenario data sources

5.2 Business requirements

RedParts Distribution wants to improve their operational reporting capabilities and strategic
reporting and analysis capabilities. They realize that, to do this, their corporate information
must be consolidated into a single environment, such as a data warehouse. In addition they

Application Database Description

OLTP_B Branch Ordering System
Relational database

This database contains order information for orders initiated at
the physical branches.

OLTP_W Web Ordering System
Relational database

This database contains order information for orders initiated over
the Internet.

OLTP RedParts Reference System
Relational database

This database contains details about customers, suppliers, and
parts for all orders initiated at branches or over the Internet.

Additional product
and supplier
external data

Flat File format Product and supplier extract files are used to demonstrate the
value of WebSphere Classic Federation Server. In our scenario,
this external data contains updated part and price information
and must be merged with the existing part information held within
the reference system (online transaction process (OLTP))

72 Enterprise Data Warehousing with DB2 9 for z/OS

have had problems in the past due to the time it takes to receive updates on order status and
details from their current segregated reporting implementation.

With the help of some external consultants, they put together the following requirements:

� Single integrated repository of order information for both Internet and branch orders is
required.

� Historical order information is to be kept permanently at this stage for ad hoc querying and
reporting. It is expected that the central fact data table within the reporting environment,
which will be used to hold detailed order information, will grow significantly due to the
number of parts being ordered worldwide every day.

� Operational and recent order information must be kept for a rolling 12-month period.

� Operational data must be updated in near real time to ensure accurate reporting of costs
and revenue.

� Reporting and querying must be continuously available 24 hours a day, 7 days a week, for
multiple users.

� Strategic analysis of selected data must be available from a business intelligence portal,
with some drill-up-and-down and slice-and-dice functionality.

� Near real-time information is required in some cases for order and line item information. A
wholesaler cannot wait for a nightly batch extract, transform, and load (ETL) refresh from
OLTP systems.

� A change capture of history is required for customer information. For example, if a
customer has a change of address, then historical reporting should show the address
used at the time of an order and not necessarily the customer’s current address.

� An application with embedded information is required for processing and taking orders
from customers. This application must contain data that is derived from both the
operational and dimensional data store of our data warehouse. Relevant information that
can be of use to the operator at the time must be displayed, which may impact decisions
such as the level of service or amount of discount that are offered.

Reports and queries are required within the following subject areas:

� Pricing and promotions
� Supply and demand
� Profit and revenue
� Customer satisfaction
� Shipping management

Table 5-2 shows specific deliverables that are identified by the wholesaler as examples to
implement in our scenario. Along with the deliverable, we give an indication where, within the
end-to-end solution, this has been implemented.

Table 5-2 Sample scenario deliverables

Deliverable Description Deliverable details

1 Top volume
customer query

The Top volume customer query retrieves a list of
customers based on them having placed a large
quantity order. Large quantity orders are defined as
those orders whose total quantity is above a certain
level. The query lists the customer name, nation,
order key, date, total price, and quantity for the order.
Total price is sorted in descending order.

Query

Used to demonstrate ad hoc querying
capability using Cognos 8 BI.

The implementation is in 13.5, “Ad hoc
queries with Query Studio” on
page 374.

Chapter 5. The business scenario and data models 73

2 Top four
customers per
quarter

This query lists the top four customers for each
financial quarter in a given financial year.

Query, report, and Web application

Used to demonstrate DB2 functionality
as listed in Table 5-3 on page 77, a
DataQuant report, and an AlphaBlox
Web application.

Implementation is in the following
sections:
� 7.11, “OLAP functions” on

page 154
� 14.1.3, “A small DataQuant report

for RedParts Distribution” on
page 400

� 14.3.3, “A small AlphaBlox Web
application for RedParts
Distribution” on page 412

3 Part return rate
analysis

This query performs analysis and explores
customer “part return rates” and determines the
highest return rates by manufacturer and customer
nation. Return rates are calculated by using the
number of parts ordered and the number of parts
returned. We also want to analyze return rates by
customer promotion campaigns, part packaging,
and container types

Online analytical processing (OLAP)
analysis

Used to demonstrate OLAP
multidimensional analysis capability
within Cognos 8 BI.

Implementation is in 13.6,
“Multidimensional analysis with
Analysis Studio” on page 385.

4 Order priority
checking query

This query determines how well the order priority
system is working and gives an assessment of
customer satisfaction. It provides a count of the
number of orders that are received in a given quarter
of a given year in which at least one line item was
received by the customer later than its committed
date.

Query

Used to demonstrate DB2 functionality
as listed in Table 5-3 on page 77.

Implementation is in Example 7-18 on
page 113.

5 Line-item
pricing
summary

Customer
account
balance

The line-item pricing summary query provides a
summary pricing list for all line items shipped as of a
given time period. The query lists the line item and
the charge amount using the following calculation:
L_EXTENDEDPRICE*
(1-L_DISCOUNT)*(1+L_TAX)

The customer account balance is a simple query
that is used to show the current account balance for
a customer. It is planned that this query can be
embedded in an order processing application. The
query is required to match on a customer name and
the account balance multiplied by 1,000.

Query

Used to demonstrate DB2 functionality
as listed in Table 5-3 on page 77.

Implementation is in 7.7, “Index on
expressions” on page 139.

6 Total product
ordered for a
branch and
time period

This query identifies the total quantity product that is
ordered through a selected branch for all customers
in a given region and time period.

Query

Used to demonstrate DB2 functionality
as listed in Table 5-3 on page 77.

Implementation is found in
Example 7-36 on page 126.

Deliverable Description Deliverable details

74 Enterprise Data Warehousing with DB2 9 for z/OS

For the DB2 functionality that we selected to demonstrate in our scenario, refer to Table 5-3
on page 77.

5.3 Solution overview

The solution that has been proposed to RedParts Distribution is based on demonstrating the
following criteria:

� Operational reporting from a traditional operational data store (ODS)
� Near real-time reporting within a data warehouse environment
� Benefits of using DB2 for z/OS for a data warehouse environment
� Best-of-breed reporting solutions available such as Cognos 8 BI and AlphaBlox
� Both traditional ETL and near real-time data extraction options

The solution includes the following technology options:

� DB2 for z/OS as data warehouse environment
� InfoSphere DataStage enterprise edition for ETL parallel jobs
� Event Publisher and DataStage to propagate data changes
� WebSphere Information Server – Q Replication to demonstrate low latency replication
� Cognos 8.3 BI for querying and reporting

7 Order count
query

This query counts the orders by the customer key
and the order date.

Query

Used to demonstrate DB2 functionality
as listed in Table 5-3 on page 77.

Implementation is in 7.10.2, “MQTs
used in our scenario” on page 153.

8 Returned items
report

This reports lists the top 20 customers, in terms of
their effect on lost revenue for a given quarter, who
have returned parts. The report lists the customer’s
name, address, nation, phone number, account
balance, comment information, and revenue lost.
The customers are listed in descending order of lost
revenue. Revenue lost is defined as the following
calculation for qualifying line items:
SUM(L_EXTENDEDPRICE * (1-L_DISCOUNT)

Report

Used to demonstrate reporting
capability using Cognos 8 BI.

Implementation is in 13.4, “Reports
with Report Studio” on page 367.

9 Order
processing
Web
application

This implementation is an example of an application
with embedded analytical information, derived from
our operational and dimensional data store of our
data warehouse.

As part of the implementation, we use a materialized
query table (MQT) to improve query response times.

Used to demonstrate operational BI
and DB2 functionality as listed in
Table 5-3 on page 77.

Implementation is in 12.1, “OLTP
application with embedded analytics”
on page 296.

Deliverable Description Deliverable details

Note: IBM has announced that Cognos 8 BI for Linux on System z will be available in
the second half of 2008. For more information, refer to the following Web address:

http://www.ibm.com/software/data/info/new-systemz-software/

Chapter 5. The business scenario and data models 75

http://www.ibm.com/software/data/info/new-systemz-software/

� AlphaBlox
� WebSphere Classic Federation Server to read the monthly part and supplier sequential

files

This simple example has been chosen to demonstrate the value of Federation Server.
However, in reality, the data exists in a different data source format other than sequential
file.

Figure 5-1 shows a conceptual overview of our data warehouse environment.

Figure 5-1 Conceptual overview for scenario

This is not a complete conceptual overview of what a data warehouse environment should
include. It has been simplified for the purposes of our scenario and the book to demonstrate
some of the concepts.

We have shown in the diagram that metadata management should occur throughout a data
warehouse implementation, because we believe this to an important component within any
solution. For our scenario, any data staging or ETL system functionality, such as data
cleansing, and conforming has been implemented within DataStage.

The data model definitions for our environment are described in 5.4.1, “The OLTP database
model” on page 78, and 5.5, “The operational and dimensional data model” on page 85.

Our simulated enterprise data warehouse environment contains a number of components.
For a definitions and discussion about these and other components, see Chapter 1,
“Definitions” on page 3.

OLTP_B

Generate
Data
Utility

OLTP

Subject Area
OLAP

Reports

Ad-hoc
query

OLTP_W

ETL / Messaging

ODS

DDS Analysis

Lookups /
Summary tables

Enterprise DWH

0

20
40

60
80

100

1st
Qt r

3 r d
Qt r

Ea st

We st

N or t h

Source
Systems

Metadata

E
TL S

ystem
 /

Staging A
rea

Part Supplier
extract files

BI Applications

76 Enterprise Data Warehousing with DB2 9 for z/OS

The overall implementation is based on the scenario that source data from OLTP systems is
being loaded into an ODS for integrated operational reporting. We also demonstrate that
optionally some part and supplier information can be loaded from extract files by using
WebSphere Classic Federation Server. Our ODS is based on the TPC-H data model. The
ODS allows RedParts to perform their operational reporting needs, such as ensuring that
business intelligence reporting covers both orders initiated at branches and those orders
made over the Internet. Selected information within the ODS is updated in near real time from
the respective OLTP systems, providing more value to their BI applications.

The data warehouse environment also includes a dimensional star schema model to
demonstrate an area within the solution that is optimized for reporting and analysis. In a real
scenario, this dimensional model may be a data mart that contains a subset of information
from the data warehouse based on a subject area. For simplicity and to provide an example,
we include a single “order transaction” subject area and refer to this as the dimensional data
store (DDS).

Lookup tables are common within a data warehouse environment. We simulate this in our
scenario by using some of the existing TPC-H tables, such as Nation and Region, and refer to
them as lookups. We have not specifically implemented any summary tables, but note that a
true data warehouse environment may include these. As part of our example deliverables, we
implement summary MQTs to satisfy further reporting requirements.

Table 5-3 shows the DB2 for z/OS functionality that we implement in our scenario. If the
functionality is demonstrated in one of the deliverables that we are producing, the numbers in
the second column refer to the deliverable number in Table 5-2 on page 73.

Table 5-3 Demonstrated DB2 functionality

DB2 functionality Demonstrated where

Universal table space -
Partitioned by growth

The example dimensional data model includes partition by growth on
the transaction fact table to allow DB2 to handle space management
due to the high volume of orders received.

Universal table space -
Partitioned by range

The ODS data model had “partitioned by range” applied to the Part
table based on particular parts coming from particular suppliers. This
is for query performance when queried on a part range or particular
part value.

Materialized query tables Deliverable 7, Order count query
Deliverable 9, Order processing Web application

Index compression Deliverable 4, Order priority checking query

Star join Deliverable 6, Total product ordered for a branch

Index on expression Deliverable 5, Line-item pricing summary and customer account
balance

An index has been successfully placed on the following expressions:
(L_EXTENDEDPRICE*(1-L_DISCOUNT)*(1+L_TAX))

(ACCTBAL*1000)

DB2 OLAP functions Deliverable 2, Top four customers per quarter
The RANK and ROW_NUMBER functions are used to identify the
top four customers per quarter.

Chapter 5. The business scenario and data models 77

5.4 The transactional data model

For the implementation in this book, we assume an existing transactional system with data
stored in a dedicated DB2 for z/OS subsystem and (optionally) in a legacy non-relational data
source. The data model describes an order processing schema, but we do not make
assumptions that are specific to a certain industry.

Furthermore, to demonstrate connections to legacy data sources, we assume that some data
resides in flat files on z/OS and is maintained by a mainframe application. This data is
considered to be part of the transactional environment as well.

In real life, the transactional system continuously creates and updates data in its database
schema. In our example, orders are created, and customer data is updated. A J2EE™
application is used to populate this data structures and simulate this kind of data update.

5.4.1 The OLTP database model

The transactional (OLTP) data model for our fictitious company includes three parts that are
implemented by tables in three different database schemas: OLTP_B, OLTP_W, and OLTP.

The company is assumed to accept orders through two channels:

� One channel handles branch offices where orders are typed manually into a system

� One channel handles Internet (Web) application orders in which customers submit their
order directly to the system

The orders for both channels are maintained by different applications and stored in different
database schemas: OLTP_B for orders from branch offices and OLTP_W for orders from the
Web. These two sets of database tables can conceptually also be the result of a company
merger or an acquisition where two existing order management systems are maintained with
a different set of orders.

For simplicity, in our scenario, both the tables in schema OLTP_B and OLTP_W are identical
and modeled as outlined in Figure 5-2. They include tables for order, shipment, and line-item
data. The structure of the table is derived from the tables that are used for the TPC-H
benchmark, but have slight modifications that require additional transformation logic before
they can be used in the context of the data warehouse.

Figure 5-2 Transactional schema (OLTP_B and OLTP_W)

78 Enterprise Data Warehousing with DB2 9 for z/OS

An order record always refers to one shipment record and has one or more line-item records.
The line items refer to parts and include quantity and pricing information along with discount
and tax. The data in these tables and the relationship between them is consistent, although
some fields contain random values.

The tables in schema OLTP in Figure 5-3 are used to maintain data that is common for both
operational systems, such as customers, parts, suppliers, and data in related tables. The
assumption here is that the company runs an additional application to maintain parts,
suppliers, and customers (maybe through a master data management system). The supplier’s
nation relates to the nation and region tables through the nationkey. However, the customer
table has only the country in plain text. Parts and suppliers have an n:m relationship.
Therefore, an additional partsupp table is used to model this relationship.

Figure 5-3 Transactional schema (OLTP) based on the TPC-H data model

Chapter 5. The business scenario and data models 79

Figure 5-4 shows the relationship between the three mentioned schemas. The order
processing systems use a set of lineitem, order, and shipment tables (at the left and right in
the figure). Both share part, partsupp, and supplier (in the middle) as well as customer,
nation, and region information.

Figure 5-4 The transactional data model

5.4.2 Creating the schema for the OLTP model

To create the table spaces for our transactional environment, we use Data Definition
Language (DDL) statements such as in Example 5-1. For concurrent updates to rows on a
page, LOCKSIZE ROW is specified. To accommodate different languages, we create the
table space with Unicode CCSID.

Example 5-1 Table space DDL

CREATE TABLESPACE TSCUSTOM IN DBOLTP
 USING STOGROUP SGOLTP
 COMPRESS YES

BUFFERPOOL BP2
LOCKSIZE ROW
CCSID UNICODE;

The DDL in Example 5-2 shows how we create the tables for our transactional environment.
We use generated identity columns to create unique keys for the tables. Another option is to
leverage the sequences concept in DB2 z/OS.

Example 5-2 Table DDL

CREATE TABLE OLTP.CUSTOMER
(

CUST_KEY INTEGER NOT NULL GENERATED ALWAYS
AS IDENTITY(START WITH 1001, CACHE 100),

NAME VARCHAR(25),
 ADDRESS VARCHAR(40),
 COUNTRY CHAR(25),
 PHONE CHAR(15),

ACCTBAL DECIMAL(12,2),

OLTP_B (branches) OLTP_W (Web orders)OLTP (common)

Supplier

Partsupp

Part

Nation

Region

Customer

Lineitem

Shipment

Order

Lineitem

Shipment

Order

80 Enterprise Data Warehousing with DB2 9 for z/OS

MKTSEGMENT CHAR(10),
PRIMARY KEY (CUST_KEY)

)
IN DBOLTP.TSCUSTOM;

You can find the complete set of DDL statements for creation of the transactional schema in
Appendix B, “Schema definitions” on page 431.

5.4.3 Data from legacy data sources

For the scenario in the book, we assume that the parts, suppliers, and part suppliers tables
are managed by a separate application, using a non-relational legacy data source, such as
IMS or VSAM files. For demonstration purposes, and due to resource constraints, we use a
flat sequential file for parts, suppliers, and part suppliers data.

The data in this legacy data source, which is in the form of sequential files, is made available
through WebSphere Classic Federation simulated as a relational database management
system (RDBMS). To understand the implementation of WebSphere Classic Federation and
mapping sequential file tables using WebSphere Classic Federation and WebSphere Classic
Data Architect, refer to 9.4, “Setting up WebSphere Classic Federation” on page 210.

Refer to “PART data” on page 81, “SUPPLIER data” on page 82, and “PART SUPPLIER data”
on page 83 for details about the data format and sample data in the sequential files.

PART data
In our scenario PART data is in a sequential file named GAURAN.WCF.PART. Example 5-3
shows the sample data in the sequential file.

Example 5-3 PART data

1 goldenrod lace spring peru powder Ma
 2 blush rosy metallic lemon navajo Ma
 3 dark green antique puff wheat Ma
 4 chocolate metallic smoke ghost drab Ma
 5 forest blush chiffon thistle chocolate Ma
 6 white ivory azure firebrick black Ma
 7 blue blanched tan indian olive Ma
 8 ivory khaki cream midnight rosy Ma
 9 thistle rose moccasin light floral Ma
 10 floral moccasin royal powder burnished Ma
 11 chocolate turquoise sandy snow misty Ma
 12 peru ivory olive powder frosted Ma
 13 ghost blue olive sky gainsboro Ma
 14 linen seashell burnished blue gainsboro Ma

Note: The data in Example 5-3 shows only three columns of the data. The complete data
record is of 176 characters.

Chapter 5. The business scenario and data models 81

Table 5-4 describes the format of the PART table record.

Table 5-4 PART table format

SUPPLIER data
In our scenario, SUPPLIER data is in sequential file named GAURAN.WCF.SUPPLIER.
Example 5-4 shows the sample data in the sequential file.

Example 5-4 Supplier data

2 Supplier#000000002 89eJ5ksX3ImxJQBvxObC
 3 Supplier#000000003 q1,G3Pj6OjIuUYfUoH18BFTKP5aU9bEV
 4 Supplier#000000004 Bk7ah4CK8SYQTepEmvMkkgMw
 5 Supplier#000000005 Gcdm2rJRzl5qlTVz
 6 Supplier#000000006 tQxuVm7s7Cn
 7 Supplier#000000007 s,4TicNGB4uO6PaSqNBUq
 8 Supplier#000000008 9Sq4bBH2FQEmaFOocY45sRTxo6yuoG
 9 Supplier#000000009 1KhUgZegwM3ua7dsYmekYBs
 10 Supplier#000000010 Saygah3gYWMp72i PY
 11 Supplier#000000011 JfwTs,LZrV, M,9
 12 Supplier#000000012 aLIW q0HY
 13 Supplier#000000013 HK71HQyWoqRWOX8GI FpgAifW,2PoH
 14 Supplier#000000014 EXsnO5pTNj4iZR
 15 Supplier#000000015 olXVbNBfVzRqgokr1T,I

Column name Offset Length

PARTKEY 2 9

NAME 13

MFGR 70

BRAND 97

TYPE 109

SIZE 138

CONTAINER 149

KEY_SRC 164

Note: The data in Example 5-4 shows only three columns of the data. The complete data
record is 126 characters.

82 Enterprise Data Warehousing with DB2 9 for z/OS

Table 5-5 shows the format of the SUPPLIER table record.

Table 5-5 Supplier table format

PART SUPPLIER data
In our scenario, PART SUPPLIER data is in sequential file named
GAURAN.WCF.PARTSUPP. Example 5-5 shows the sample data in the sequential file.

Example 5-5 PART SUPPLIER data

1 2 3325 771.64
 1 2500002 8076 993.49
 1 5000002 3956 337.09
 1 7500002 4069 357.84
 2 3 8895 378.49
 2 2500003 4969 915.27
 2 5000003 8539 438.37
 2 7500003 3025 306.39
 3 4 4651 920.92
 3 2500004 4093 498.13
 3 5000004 3917 645.40
 3 7500004 9942 191.92
 4 5 1339 113.97
 4 2500005 6377 591.18

Table 5-6 shows the format of the PART SUPPLIER table record.

Table 5-6 PART SUPPLIER table format

Column name Offset Length

SUPPKEY 2 9

NAME 13 25

ADDRESS_TEXT 40 40

NATIONKEY 84 9

PHONE 95 15

ACCTBAL 114 12

Column name Offset Length

PARTKEY 2 9

SUPPKEY 15 9

AVAILQTY 28 9

SUPPLYCOST 41 12

Chapter 5. The business scenario and data models 83

5.4.4 Simulating the transactional environment

To populate the tables of the transactional data model, we use a J2EE application running on
WebSphere Application Server. This application (Figure 5-5) accesses DB2 for z/OS by using
the Universal JDBC driver (type 4).

Figure 5-5 Web application simulating OLTP workload for the transactional environment

The application simulates a transactional system and offers the following options:

� Overview of records in the OLTP database tables

� Creation of new orders

This option creates new rows in the order and shipment tables. Depending the number of
items to create per order, additional rows per order are created in the lineitem table as
well. Before creating entries in the tables, the set of available part and supplier keys are
retrieved from the partsupplier table. To demonstrate reporting based on order date, you
can use the application to specify a year and month for which to create the order.
Additional dates, such as shipdate, are derived from the order date by adding a random
number of days.

For generation, the application requests the desired target schema (OLTP_B or OLTP_W)
for which the new records should be created.

84 Enterprise Data Warehousing with DB2 9 for z/OS

� Creation of new customer records

All the columns for the OLTP.CUSTOMER table are generated with random values. Before
creating entries in the customer table, the set of available nations is read from the name
column of the nation table. One of these nation names are randomly selected and stored
in the country column of the customer table.

� Update of customer records

To simulate updates to existing records in the OLTP system, a number of customer
records are selected based on the cust_key column. Then the application randomly
assigns a different country name to the customer and performs an update statement on
the customer table.

The J2EE applications takes advantage of user transactions, managed in WebSphere
Application Server, to group SQL statements, queries, and record creation in transactions.
This reduces the number of locks that are held during processing and allows for concurrent
processing on the operational data tables.

5.5 The operational and dimensional data model

The purpose of the operational data model is to provide a consolidated view for the various
data sources described in 5.4, “The transactional data model” on page 78. The model in
Figure 5-6 on page 85 is defined in a single database schema, DWODS, and is derived from
the TPC-H data model.

Figure 5-6 Model for the operational data store, based on TPC-H

Chapter 5. The business scenario and data models 85

This model differs from our OLTP model in that it has no dedicated shipment table, but rather
this information is included in ORDERS and LINEITEM. Some fields, such as
CUSTOMER.C_NATIONKEY, also reference a lookup table, nation_lookup, which is not the
case in the OLTP model.

We do not define referential integrity constraints on the operational data model to ease
loading data from the OLTP system. We assume that consistency of the data is ensured by
the corresponding ETL process. For a description of referential integrity, see 5.6, “Referential
integrity for a data warehouse” on page 87.

The operational data model also uses the same (primary) keys as the OLTP model. In a real
scenario, this approach can cause conflicts if multiple source systems with overlapping keys
are consolidated. In our scenario, the keys in the different OLTP sources are already
guaranteed to be unique. Therefore no new keys have to be introduced.

We also create a dimensional data model (see Figure 5-7) in schema DWHDDS, which is a
star schema with an order transaction fact table (ORDER_TRANSACTION_FACT) and
dimensions for order status, customer, branch, supplier, and part. It also includes a date
dimension.

Figure 5-7 Dimensional data model

This dimensional data model is also used later to define cubes for analysis and reporting.

86 Enterprise Data Warehousing with DB2 9 for z/OS

5.6 Referential integrity for a data warehouse

Referential integrity is used to ensure the legitimate relationships between rows of one table
with the rows of another related table. In a data warehouse environment, usually the following
relationships must be maintained:

� Every foreign key in the fact table must have the associated primary key in a dimension
table.

� Every primary key in a dimension table does not need to be associated with any foreign
key of fact table.

For example, in a data warehouse database, a fact table row that has customer ID value
should have the same corresponding customer ID value in one of the rows of the customer
dimension table.

A fact record that violates the referential integrity can be dangerous because it appears to be
stored incorrectly. The relationship can be easily destroyed if we load a fact table with a
record that does not have the corresponding key value in the dimension table, or we delete a
row from a dimension table that still has a reference in the fact table. This can lead to
unpredictable results for a BI query. Therefore, it is always advisable to maintain a legitimate
relationship between the fact table, dimension table, or other related tables by using an
automated mechanism in a data warehouse environment. The relationships can be
maintained using the following methods:

� Referential integrity in the database

The primary key and foreign key concept of RDBMS can be used to implement this kind of
relationship in the database where a foreign key column in a fact table refers to one of the
primary keys in the dimension table. Enforcing referential integrity in a database always
guarantees clean data, but it also has disadvantages with it as in the following examples:

– Bulk load

In a data warehouse environment, millions of rows of data of a size equivalent to
several GBs are inserted in one load. The load has a performance impact when done
in a referential integrity enforced database. Every row that is inserted is tested for
referential integrity to check for the foreign key in the parent table before it is inserted.

– Administration

Enforcing referential integrity in a database also leads to manageability problems. For
example, if one row in a dimension table is deleted, it either puts in check pending state
the fact table, which may be several millions of rows in size, or it deletes thousands of
rows from the fact table that refer to the corresponding foreign key.

– Authenticity of source data

Most of the data in data warehouse is loaded from OLTP database where in check
pending state is always enforced. Therefore, in certain cases, if a data warehouse
database is loaded in a right sequence from OLTP, the data in data warehouse
database always has the relationship maintained. Enforcing referential integrity on a
database that is always loaded with clean data is an overhead.

Chapter 5. The business scenario and data models 87

� Using the ETL tool

Another way to maintain data integrity is to check or prepare data just before loading the
data and not enforcing the referential integrity in the database. This process can be
implemented by doing the data check in the ETL tool before loading the data in the
database. The ETL tool can use surrogate keys or any other method to check for the
referential integrity before loading the data. Refer to 10.4.2, “Surrogate key stage
utilization” on page 267, for details about using the ETL tool in our scenario for
implementing referential integrity.

� Sanity checks

Referential integrity can be checked in a database after the database change or load to
find and resolve the violations. Finding and resolving the violations on a very large fact
table can be slow and requires manual intervention after every load. A referential integrity
check can be limited to the recently loaded data considering that the previous data has all
the relationships in place.

5.7 Data modeling options: IBM Industry Models

For the scenario in this book, we use a rather simplistic model that is easy to explain and
allows us to demonstrate and implement the concepts for data warehouse on the System z
platform. In a real scenario, the data models for an operational and dimensional data store
and the entire setup of a data warehouse will most likely become more complex.

Business users, business analysts, and data modelers typically work closely together in a
company to create the desired models that best reflect the existing entities and that support
the required reporting and analysis. While all companies are different, the task of defining the
right models can be considerably shortened by using pre-built, industry-specific models.
These models can then be further customized to accommodate individual requirements.

In addition to data models for reporting and analysis, the IBM Industry Models contain key
performance indicators, definitions for data marts, and processes. In times where compliance
requirements and governance play an increasing role, the experience and effort that went into
defining the industry models can considerably reduce costs and project risk when
implementing a data warehouse solution.

The following IBM Industry Models are available today:

� IBM Financial Markets Industry Models

– Brokerage
– Treasury services

� IBM Banking Industry Models

– Retail
– Commercial
– Card Services
– Financing

Note: The decision about which methods to use to implement referential integrity depends
on the scenario and the environment. In our scenario, we used DataStage to check the
referential integrity relationships.

88 Enterprise Data Warehousing with DB2 9 for z/OS

� IBM Insurance Industry Models

– Property and Casualty
– Life and Pensions
– Personal or Commercial
– Group or Individual
– Health

� IBM Retail Data Warehouse

– Retailers (direct, indirect, drug stores)
– Manufacturers
– Distribution

� IBM Telecommunications Data Warehouse

– Telephone companies (local exchange carriers, cell phone
– Long distance carriers
– Cable or satellite operators
– Internet service providers

The underlying SQL definitions can easily be applied and customized for an existing DB2 for
z/OS environment. The IBM industry models provide DDL scripts that can be enriched with
individual table space and table definition attributes as described in this book. Finally, the
models can also integrate with Cognos software for reporting and analysis.

For more information about the IBM industry models, refer to the IBM Industry Models page at
the following address:

http://www.ibm.com/software/data/ips/products/industrymodels/

Chapter 5. The business scenario and data models 89

http://www.ibm.com/software/data/ips/products/industrymodels/

90 Enterprise Data Warehousing with DB2 9 for z/OS

Chapter 6. The system environment

In this chapter, we describe the system environment that we used and implemented for this
project. The implementation is only a subset of the architecture that we propose in Chapter 4,
“The architecture for the BI solution on System z” on page 59. Due to constraints in time and
system resources, we chose a simplified but comprehensive implementation of the
architecture.

This chapter contains the following sections:

� 6.1, “Implemented architecture” on page 92
� 6.2, “System configuration” on page 93
� 6.3, “System parameters of DB2 subsystems” on page 94
� 6.4, “Workload Manager configuration” on page 95
� 6.5, “zIIP utilization” on page 96

6

© Copyright IBM Corp. 2008. All rights reserved. 91

6.1 Implemented architecture

The general architecture of our scenario is described in 4.2, “The business intelligence
architecture with System z” on page 61. With this architecture, we can the following paths to
execute the extract, transform, and load (ETL) steps and query the data warehouse database:

� Replicate tables with Q replication

� Manipulate selected changed data via Event Publisher and DataStage, and load this data
into the data warehouse database

� Extract and load data via DataStage

� Access legacy data on z/OS via Classic Federation

� Perform analysis and reporting by using Cognos software

Figure 6-1 shows the implementation that we have chosen. This is a small configuration that
nevertheless implements all functions that are described by the architecture.

Figure 6-1 Implemented architecture

We ran all components in a single z/OS logical partition (LPAR) and used two DB2
subsystems, with no data sharing group.

92 Enterprise Data Warehousing with DB2 9 for z/OS

In addition to the base components as described in 6.2, “System configuration” on page 93,
we installed the following products:

� WebSphere Replication Server and Event Publisher

For details, see Chapter 8, “Q replication and event publishing” on page 159.

� WebSphere Classic Federation

For details, see 9.4, “Setting up WebSphere Classic Federation” on page 210.

� BatchPipes® to connect the products on Linux on System z with the products on z/OS

For details, see 9.3, “Setting up BatchPipes” on page 206.

� Information Server

For details, see 9.5, “Installing IBM Information Server” on page 228.

� Cognos 8 BI for analytics

For details, see Chapter 13, “Reporting and analysis with Cognos 8 BI” on page 305.

� DataQuant 9.1

For details, see 14.1, “DataQuant” on page 398.

� AlphaBlox

For details, see 14.3, “AlphaBlox” on page 411.

6.2 System configuration

We used the following hardware (Figure 6-2 on page 94) during this project:

� IBM System z9 BC

We used two LPARs within the System z: one for z/OS and one for Linux on System z. The
z/OS LPAR had four dedicated general purpose processors and two z9 Integrated
Information Processors (zIIPs).

– The z/OS LPAR has the following base software:

• DB2 9.1 PUT0801
• VTAM® 1.8
• RACF® 1.8
• DFSMS/MVS™ 1.8
• DFSORT™ 1.8
• JES2 1.8
• z/OS 1.8

– The Linux on System z LPAR uses two shared processors. This LPAR has the following
base software:

• Linux on System z (SUSE® Linux Enterprise Server (SLES) 10 SP1)
• WebSphere Information Server 8.0.1
• WebSphere Application Server 6.1

� IBM eServer pSeries® p550 2-way

Software in the p550 is AIX® (Version 5300-07).

� Disk space on DS8300

Chapter 6. The system environment 93

Figure 6-2 Data warehouse hardware

6.3 System parameters of DB2 subsystems

Some DSNZPARM settings need attention in a data warehouse environment with large
databases and complex queries. Table 6-1 lists and briefly describes those settings.

Table 6-1 DSNZPARM definitions for a data warehouse

Recommendation
for data warehouse

Comments

CDSSRDEF=ANY ANY
Allow parallelism for DWH.
any: parallelism, 1: no parallelism

CONTSTOR=NO NO
For best performance, specify NO for this parameter. To resolve storage
constraints in DBM1 address space, specify YES. See also MINSTOR.

DSVCI=YES YES
The DB2-managed data set has a VSAM control interval that corresponds to
the buffer pool that is used for the table space.

MGEXTSZ=YES YES
Secondary extent allocations for DB2-managed data sets are to be sized
according to a sliding scale.

MINSTOR=NO NO
Recommendation: For best performance, specify NO for this parameter. To
resolve storage constraints in DBM1 address space, specify YES. See also
CONTSTOR.

OPTIXIO=ON OPTIXIO=ON: Provides stable I/O costing with significantly less sensitivity to
buffer pool sizes. This is the new default and recommended setting.

94 Enterprise Data Warehousing with DB2 9 for z/OS

6.4 Workload Manager configuration

Because the requirements of online transaction processing (OLTP) and data warehouse
subsystems are different, the priorities for their workload are also different. For example,
OLTP transactions are short and require a quick response time. However, traditional data
warehouse transactions are long running and do not have any requirements about response
time.

With the evolution of dynamic data warehousing and near real-time data in the data
warehouse database, there are requirements for a quick response time for small queries
running on data warehouse database. For example, to finalize the discount percentage to the
customer, the customer’s last 10 transactions details are queried from the data warehouse
database.

As mentioned in 6.2, “System configuration” on page 93, our OLTP and data warehouse DB2
subsystems are on the same LPAR. Therefore, we configured two service classes (SERD911
for OLTP) and (SERD912 for DWH). Considering the requirements of OLTP, SERD911 was
defined as a multiperiod service class with Average Percentile Response Time Goals.
Example 6-1 shows our OLTP DB2 service class definitions.

Example 6-1 Service class definitions for the OLTP DB2 subsystem

Duration Imp Goal description
- --------- - --
1 10000 1 90% complete within 00:00:00.500
2 25000 1 70% complete within 00:00:02.000
3 Discretionary

Considering the data warehouse database requirements, SERD912 was built with multiperiod
definitions with the first period having Average Percentile Response Time for queries that
require a quick response time. The second period is with execution velocity of 80% for ad hoc

PARAMDEG=X #Processors <= X <= 2*#Processors
If the concurrency level is low, the ratio can be higher.

SRTPOOL=8000 8000
The sort pool is defined as 8 MB.

STARJOIN= The STARJOIN and SJTABLES parameter define the join processing of a
query as described in 7.6, “Star schema processing” on page 124. If you use
this parameter, check the performance improvements carefully.

MXQBCE This is the maximum number of combinations considered by the optimizer at
preparation time when joining N tables. If needed, set to this value to
(2**N – 1), where N is the TABLES_JOINED_THRESHOLD.
The MXQBCE default is 1023 in DB2 9, with N=10.

Recommendation
for data warehouse

Comments

Chapter 6. The system environment 95

queries. The third period is with execution velocity of 50% for reporting jobs. Example 6-2
shows our data warehouse DB2 service class definitions.

Example 6-2 Service class definitions for the data warehouse DB2 subsystem

Duration Imp Goal description
- --------- - --
1 15000 2 60% complete within 00:00:03.000
2 30000 3 Execution velocity of 80
3 60000 4 Execution velocity of 50
4 Discretionary

In these examples for service class definitions, we do not make any recommendations or
suggest a best practice. The definition of service class must be decided depending upon the
applications that are running, other workloads, and system configuration.

Only one WLM policy is active at a time, but multiple policies with different goals can be
created and stored. An active policy can be replaced with another policy dynamically. For
example, during the night, we can activate a new policy that gives slightly more importance to
batch. For more information about WLM configuration for DB2 data warehousing
environment, refer to Workload Management for DB2 Data Warehouse, REDP-3927.

6.5 zIIP utilization

In 3.2.8, “Total cost of ownership” on page 45, we discuss different methods to reduce total
cost of ownership (TCO) in a data warehouse environment with System z by using specialty
processors such as zIIP. DB2 9 exploits zIIP for the data warehouse queries by using
Distributed Relational Database Architecture (DRDA).

To demonstrate the exploitation of zIIP in a data warehouse environment running on System
z, we configured two zIIP processors in our LPAR. We ran an RMF™ Workload Activity
Report for the time interval in which we ran BI queries on a DB2 9 for z/OS subsystem coming
from AIX and Linux on System z via DRDA. Figure 6-3 shows the RMF Workload Activity
Report for the DDF workload for the data warehouse DB2 subsystem for the time interval in
which ran our BI queries.

Figure 6-3 RMF Workload Activity Report

z/OS V1R8 SYSPLEX DWH1PLEX START 05/03/2008-11.54.00 INTERVAL 000.07.59 MODE = GOAL
 RPT VERSION V1R8 RMF END 05/03/2008-12.01.59

 POLICY ACTIVATION DATE/TIME 04/15/2008 17.44.47

 REPORT BY: POLICY=STANDARD REPORT CLASS=REPD912
 DESCRIPTION =Reportclass for D912

 -TRANSACTIONS- TRANS-TIME HHH.MM.SS.TTT --DASD I/O-- ---SERVICE---- --SERVICE TIMES-- ---APPL %--- -----STORAGE-----
 AVG 47.39 ACTUAL 5.634 SSCHRT 0.0 IOC 0 CPU 1583.286 CP 153.03 AVG 0.00
 MPL 47.39 EXECUTION 5.634 RESP 0.0 CPU 425043K SRB 0.000 AAPCP 0.00 TOTAL 0.00
 ENDED 4007 QUEUED 0 CONN 0.0 MSO 0 RCT 0.000 IIPCP 4.56 SHARED 0.00
 END/S 8.35 R/S AFFIN 0 DISC 0.0 SRB 0 IIT 0.000
 #SWAPS 0 INELIGIBLE 0 Q+PEND 0.0 TOT 425043K HST 0.000 AAP N/A --PAGE-IN RATES--
 EXCTD 0 CONVERSION 0 IOSQ 0.0 /SEC 885514 AAP N/A IIP 176.82 SINGLE 0.0
 AVG ENC 47.39 STD DEV 1.060 IIP 848.738 BLOCK 0.0
 REM ENC 0.00 ABSRPTN 19K SHARED 0.0
 MS ENC 0.00 TRX SERV 19K PROMOTED 0.000 HSP 0.0

96 Enterprise Data Warehousing with DB2 9 for z/OS

Reporting class REPD912 is for the data warehouse DB2 subsystem DDF workload. The
value IIP under SERVICE TIMES represents the zIIP service time in seconds. CPU
represents the service time consumed on standard CPs and special purpose processors. The
redirect percentage for zIIP, which in this case signifies the percentage of total DDF workload
run on zIIP, is calculated as follows:

Redirect % = Service Time IIP / Service Time CPU *100
Redirect % = 848.738/1583.286 * 100 = 53.6 %

The redirect percentage for the interval is 53%. Therefore, the zIIP use in this case helps to
save 53% of DB2 9 for z/OS software license cost.

Note: The IIPCP value under APPL% signifies the percentage of CPU time used by zIIP
eligible transactions running on standard central processor (CPs) due to zIIP either not
being available or being busy. This is a subset of APPL% CP.

DB2 does not force a zIIP eligible transaction to only run on a zIIP. If the zIIP is busy and
DB2 is not making its goal, it flows to a standard CP as seen in Figure 6-3 on page 96. The
value of IIPCP is 4.56%. This is because, as the zIIP processors were busy (an average of
176% utilization for two processors for the time interval), some zIIP eligible transactions
ran on standard CPs to meet the WLM service goal.

If the zIIP HONORPRIORITY is set to NO, we can force all zIIP eligible work to run on the
zIIP.

Redirect percentage: The redirect percentage can vary depending upon the type of
workload. This calculation was used to demonstrate the use of zIIP and its value in
reducing the TCO in a data warehouse environment. A higher redirect percentage can be
obtained for parallel SQL execution.

Chapter 6. The system environment 97

98 Enterprise Data Warehousing with DB2 9 for z/OS

Chapter 7. Functions in DB2 for z/OS for a
data warehouse

Several functions in DB2 for z/OS can be exploited while implementing a data warehouse
solution. In this chapter, we describe some of the DB2 9 functions that we considered of
special interest in our data warehouse scenario.

This chapter contains the following sections in which we use the data model and consider the
business requirements on which this book is based:

� 7.1, “Index compression” on page 100
� 7.2, “Table space compression” on page 118
� 7.3, “Index-use tracking by using real-time statistics” on page 121
� 7.4, “Not logged table spaces” on page 121
� 7.5, “Exploiting the DB2 STATEMENT CACHE” on page 123
� 7.6, “Star schema processing” on page 124
� 7.7, “Index on expressions” on page 139
� 7.8, “Working with the ADD CLONE SQL command” on page 143
� 7.9, “Table space partitioning” on page 148
� 7.10, “Materialized query tables” on page 152
� 7.11, “OLAP functions” on page 154

7

© Copyright IBM Corp. 2008. All rights reserved. 99

7.1 Index compression

In data warehouse applications, it is common to apply extensive data compression to table
spaces, which reduces disk space requirements. To improve performance, it is also common
to have several indexes defined on the table with the purpose of solving queries with
index-only access. Star schema implementations require specific indexes to support star
schema processing, such as star join and pair-wise access methods. It is also common to
end up with more disk space requirements for indexes than for table spaces.

DB2 9 for z/OS introduces the ability to create indexes of page sizes larger than 4K, because
the index compression function is based on larger page sizes. Index compression provides a
solution to these requirements, but its implementation requires a good understanding of its
principles. Since data compression has been around DB2 since Version 3, it is easy to get
confused when applying data compression analogies to index compression.

In general, a data warehouse environment is a good candidate for index compression. As a
guideline, you may consider index compression where a reduction in index storage
consumption is more important than a possible increase in CPU consumption.

In this section, we explain how index compression works and show its differences from data
compression. We also show some data warehousing implementation examples.

For more information about index compression, refer to Index Compression with DB2 9 for
z/OS, REDP-4345.

7.1.1 How index compression works

DB2 9 for z/OS uses a hybrid compression algorithm that uses prefix compression, as well as
other methods, to compress index pages. Prefix compression is made possible by the fact
that the keys on each index page are stored in sorted order from the left byte to right, either in
ascending or descending order. The leftmost bytes that are common from one key to the next
constitute the prefix. The prefix length varies throughout the index, but generally the longer
the prefix is, the better the compression will be. Also, some index page elements, such as the
key map are no longer written to disk because this information can be reconstructed when the
compressed page is read from disk again.

We see in the following pages that the structure of the data, that is the presence of patterns,
the order of the columns in the index, and the uniqueness of the keys, influences the degree
of compression that can be achieved. We explain how the index compression ratio is not
always the same as the space savings on disk.

DB2 only compresses leaf pages, which represent the vast majority of the index space.
Figure 7-1 on page 101 shows a schematic representation of the b-tree index structure. Only
the leaf pages (shaded) are compressed. Leaf pages are normally the large majority of the
index pages. In some small indexes, the influence of non-compressed non-leaf pages may
make the benefits of index compression negligible.

100 Enterprise Data Warehousing with DB2 9 for z/OS

Figure 7-1 B-tree schematic representation

Index compression is made possible by the ability of creating indexes with page sizes bigger
than 4K. The index compression implementation is a hybrid approach:

� On disk, pages are always 4K.

� You cannot define a compressed index in a 4K buffer pool. Pages are stored in page sizes
of 8K, 16K, or 32K. In the following pages, we explain the impact of buffer pool selection,
because the maximum disk saving is influenced by this choice.

Unlike data compression, log records for index keys and image copies for indexes are not
compressed. Index compression does not use the Ziv-Lempel algorithm, does not use a
compression dictionary, and is not assisted by hardware.

Table 7-1 shows the major implementation differences between indexes and data
compression.

Table 7-1 Comparing index and data compression

Figure 7-2 on page 102 shows a schematic comparison between data and index compression
at run time:

� Data compression keeps data compressed into disk, and in the buffer pools, the data is
uncompressed when passed to the application. Storage savings are perceptible at the
disk and buffer pool levels. The CPU cost associated with data compression is higher for
high hit ratio operations because each hit means a decompressed row passed to the
application.

� Index compression keeps index data on 4K pages on disk and must expand the data into a
larger buffer pool once read. Storage savings are for disk only. Because the buffer pool
contains data (the index) already, no additional CPU impact is on operations with a high hit

Index compression Data compression

Technique Prefix compression Ziv-Lempel hardware assisted

Dictionary Not needed, compression starts
immediately after definition of the index.
Altering an index to COMPRESS YES
requires rebuilding the index

Must be built before getting
data compressed

Data on disk Compressed Compressed

Data on DB2 log Not compressed Compressed

Data in buffer pool Not compressed Compressed

Image copies Not compressed Compressed

Chapter 7. Functions in DB2 for z/OS for a data warehouse 101

ratio. If I/O is needed to read an index, the extra CPU cost for a index scan is probably
relatively small, but the CPU cost for random access is likely to be significant. CPU cost for
deletes and updates can be significant if I/O is necessary.

Figure 7-2 Data and index compression compared at run time

7.1.2 Implementation guidelines

The following considerations apply when implementing an index compression strategy:

� CPU

There is an impact on CPU depending on the type of workload:

– Pages are decompressed on read and compressed on write.

– A high buffer pool hit ratio does not impact CPU because the data is kept
uncompressed on the buffer pool.

– Random access may be impacted by CPU penalties.

– Index scanning operations might use prefetch I/O that can decompress
asynchronously. While still using extra CPU, this scenario may not be affected by
elapsed time elongation. Some I/O bound queries may be improved by index
compression.

� The compression ratio to be achieved depend on the data and how the columns are
distributed in the index.

� The choice of the buffer pool determines the maximum disk space savings and the
efficiency of memory utilization.

� Fixing a buffer pool in real storage by using the PGFIX(YES) option can improve
performance for indexes with a high I/O rate, but it is not useful for the buffer pools of
compressed indexes. DB2 does not perform I/O from the buffer pool of a compressed
index, but from a 4 KB page I/O work area that is permanently page fixed. The pages in
the work area are used for reading or writing to disk and do not act as a cache for the
application. You may consider isolating compressed indexes to their own buffer pool if you
need to page fix buffer pools for non-compressed indexes.

102 Enterprise Data Warehousing with DB2 9 for z/OS

Understanding the impact of buffer pool choice
The implementation of index compression stores data on disk on 4 KB pages. You have to
decide whether to use a buffer pool of 8 KB, 16 KB, or 32 KB for the expansion of these
pages.

DB2 must make sure that, when uncompressed, the data in each larger index page in the
buffer pool page, compresses and fits in a 4 KB page. The maximum amount of disk storage
saving that you can achieve when using index compression is limited by the buffer pool that
you use for the index:

� For 8 KB, up to 51% compression
� For 16 KB, up to 76% compression
� For 32 KB, up to 88% compression

Figure 7-3 shows the maximum disk space compression that may be achieved as a function
of the buffer pool choice. A single 8, 16, or 32 KB page in the buffer pool compresses onto a
single 4 KB page on disk.

Figure 7-3 Maximum savings on disk in function of the buffer pool, assuming ideal index compression

Because an ideal or a high degree of index data compression is not always possible, using an
inappropriate buffer pool page size can waste buffer pool memory without an increase in disk
storage savings.

BP8K
4 KB

DECOMPRESSION

COMPRESSION

BUFFER POOLDASD

BP16K
4 KB

DECOMPRESSION

COMPRESSION

4 KB

DECOMPRESSION

COMPRESSION

1 page DASD to
2 pages BPOOL - 51%
(compression 2:1)

1 page DASD to
4 pages BPOOL - 76%
(compression 4:1)

1 page DASD to
2 pages BPOOL - 88%
(compression 8:1)

BP32K

8 KB

16 KB

32 KB

Chapter 7. Functions in DB2 for z/OS for a data warehouse 103

Figure 7-4 shows the impact on disk savings and buffer pool memory utilization as a function
of the buffer pool choice for an index that achieves a compression ratio of four to one (4:1).

We can make the following observations:

� If the choice is BP8K:

– A single page of the buffer pool contains 8K of uncompressed data. When compressed
(because of the compression ratio 4:1), the 8K of uncompressed data squeezes into
2K on the disk page.

– Because a compressed page must be contained in a single page when expanded in
the buffer pool, a single disk page cannot contain more than 2K.

– About the half of each leaf page on disk is empty, which increases the number of disk
pages needed for containing the data. For example, 1000K of uncompressed leaf page
data requires 500K of disk (1000K uncompressed = 250K compressed x 50% waste per
page).

– Selecting BP8K produces a 50% savings on disk, even if the data compression ratio is
4:1.

– The limiting factor is the page size of the selected buffer pool, and a better disk savings
is achieved by moving to a bigger buffer pool. If you have an 8K page in the buffer pool,
and you always compress it to a 4K page, the best effective compression ratio that you
can achieve is two to one (2:1).

� If the choice is BP16K:

– Each disk page is full with 4K of index compressed data. This produces the maximum
savings from a disk point of view. This perspective is that 1000K of uncompressed data
is contained in 250K of disk space, which is a 4:1 disk savings.

– Each buffer pool page contains 4K x (4:1) = 16K of expanded index data. This is a
waste of a 16K / 4K = 25% of the buffer pool memory.

– The limiting factor is the compression ratio of the index data, which produces a waste
of buffer pool memory. A better resource utilization (buffer pool memory) is achieved by
selecting a smaller buffer pool page size.

– In this case, both disk and buffer pool pages are optimally used because they are full of
data.

– This produces a 75% savings on disk with full buffer pool page utilization.

� If the choice is BP32K:

– Each disk page is full with 4K of index compressed data. This produces a maximum
savings from a disk point of view. This perspective is that 1000K of uncompressed data
is contained in 125K of disk space, which is an eight to one (8:1) disk savings.

– Each buffer pool page contains 4K x (8:1) = 32K of expanded index data. This is a
waste of a 32K / 4K = 12.5% of the buffer pool memory.

– The limiting factor is the compression ratio of the index data, which produces a waste
of buffer pool memory. A better resource utilization (buffer pool memory) is achieved by
selecting a smaller buffer pool page size.

– In this case, both disk and buffer pool pages are optimally used as they are full of data.

– This produces an 88% savings on disk with full buffer pool page utilization.

104 Enterprise Data Warehousing with DB2 9 for z/OS

Figure 7-4 Impact of buffer pool selection for a compression ratio of 4:1

Estimating space savings and selecting the best buffer pool
DSN1COMP has been enhanced in DB2 9 for z/OS to support index compression. This
stand-alone utility is used to determine the following information:

� The space savings on disk due to index compression
� The buffer pool size that fits best the index

You can run this utility on the following types of data sets that contain uncompressed data or
indexes:

� DB2 full image copy data sets
� VSAM data sets that contain DB2 table or index spaces
� Sequential data sets that contain DB2 table or index spaces

Consider the following points while using this tool:

� The user under which this job is executed must have read access on the VSAM data set
that is the target of the utility.

� The LEAFLIM option of DSN1COMP limits how many leaf pages are examined. If not
specified, all leaf pages in the data set are used.

� The estimation does not consider uncompressed non-leaf pages, which can have an
important influence for small indexes.

� You can run DSN1COMP even when the DB2 subsystem is not operational. Before you
use DSN1COMP, when the DB2 subsystem is running, issue the DB2 STOP DATABASE
command to ensure that the target data sets are not allocated by DB2.

BP8K
4K

DECOMPRESSION

COMPRESSION

BUFFER POOLDASD

BP16K
4K

DECOMPRESSION

COMPRESSION

BP32K
4K

DECOMPRESSION

COMPRESSION

4K

8K

32K

16K

Chapter 7. Functions in DB2 for z/OS for a data warehouse 105

Example 7-1 shows how DSN1COMP can be used for analyzing a non-compressed index
VSAM data set.

Example 7-1 DSN1COMP JCL sample

//DSN1COMP EXEC PGM=DSN1COMP ,
//STEPLIB DD DISP=SHR,DSN=SYS1.DSN.V910.SDSNLOAD
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DISP=OLD,DSN=DSN912.DSNDBC.COMPRESS.CUSTOMER.I0001.A001

Example 7-2 shows the output of the DSN1COMP execution and provides the following
information:

� During this example, the parameter LEAFLIM was not used, and all the index pages were
analyzed.

� A total of 10,000 K RIDs were processed, representing 136.179 K of uncompressed data.

� The tool estimated that this data can be compressed to 76.781 K. This means that ~ 56%
(76.781 K / 136.179 K) of the original leaf page space is required based on how well the
data compresses. However the actual savings on disk storage is determined by the
adopted buffer pool.

� For this index, the limiting factor to the compression efficiency is how well the data
compresses. The adoption of a buffer pool larger than 8K does not improve disk savings.
For this example, an 8K buffer pool size yields the best result, because it provides the full
compression benefit, but only results in a 12% increase in buffer pool space.

Example 7-2 DSN1COMP output sample

1DSN1999I START OF DSN1COMP FOR JOB CRISDXXX DSN1COMP
 DSN1998I INPUT DSNAME = DSN912.DSNDBC.COMPRESS.CUSTOMER.I0001.A001 , VSAM

 DSN1944I DSN1COMP INPUT PARAMETERS
 PROCESSING PARMS FOR INDEX DATASET:
 NO LEAFLIM WAS REQUESTED

 DSN1940I DSN1COMP COMPRESSION REPORT

 38,611 Index Leaf Pages Processed
 10,000,000 Keys Processed
 10,000,000 Rids Processed
 136,719 KB of Key Data Processed
 76,781 KB of Compressed Keys Produced

 EVALUATION OF COMPRESSION WITH DIFFERENT INDEX PAGE SIZES:

 8 K Page Buffer Size yields a
 43 % Reduction in Index Leaf Page Space
 The Resulting Index would have approximately
 57 % of the original index's Leaf Page Space
 12 % of Bufferpool Space would be unused to
 ensure keys fit into compressed buffers
 --
 16 K Page Buffer Size yields a
 44 % Reduction in Index Leaf Page Space
 The Resulting Index would have approximately
 56 % of the original index's Leaf Page Space
 55 % of Bufferpool Space would be unused to
 ensure keys fit into compressed buffers
 --
 32 K Page Buffer Size yields a

106 Enterprise Data Warehousing with DB2 9 for z/OS

 44 % Reduction in Index Leaf Page Space
 The Resulting Index would have approximately
 56 % of the original index's Leaf Page Space
 77 % of Bufferpool Space would be unused to
 ensure keys fit into compressed buffers
DSN1994I DSN1COMP COMPLETED SUCCESSFULLY, 38,611 PAGES PROCESSED

7.1.3 Implementation examples

DB2 9 SQL has been expanded to include an index compression option. As shown in
Example 7-3, you can define or alter an index to COMPRESS YES or NO.

Example 7-3 SQL extract - Creating and altering an index with the COMPRESS option

>>-CREATE--+----------------------------+--INDEX--index-name---->
 '-UNIQUE--+----------------+-'
 '-WHERE NOT NULL-'
>---------+----------------------------+------------------------>
 | .-COMPRESS NO--. |
 '-+--------------+-----------'
 '-COMPRESS YES-'

>>-ALTER INDEX--index-name-------------------------------------->

>------+-COMPRESS NO--+--->
 '-COMPRESS YES-'

Some restrictions currently apply. For example, index compression is not supported for
versioned indexes and for indexes in 4K buffer pools. As shown in Example 7-4, the creation
of a compressed index fails if defined in a 4K buffer pool with COMPRESS YES.

Example 7-4 Creating a compressed index is not supported on 4K buffer pools

CREATE INDEX
ORIG.CUSTOMER_CPRS
ON
ORIG.CUSTOMER
(C_CUSTKEY ASC)
BUFFERPOOL BP2
COMPRESS YES;
---------+---------+---------+---------+---------+---------+---------+---------+
DSNT408I SQLCODE = -676, ERROR: THE PHYSICAL CHARACTERISTICS OF THE INDEX ARE
 INCOMPATIBLE WITH RESPECT TO THE SPECIFIED STATEMENT. THE STATEMENT
 HAS FAILED. REASON 2

The return code -676, REASON 2, explains that the combination of COMPRESS YES and 4K
buffer pool is not valid.

Example 7-5 on page 108 shows that the ALTER to COMPRESS YES for a 4K index is not
allowed either. You must alter the index to a larger buffer pool, and both operations can be
executed in the same command.

Note: The primary motivation with which you look at index compression is for disk space
savings. However, performance can be improved for I/O bound index scan processing
where you may observe elapsed time reduction.

Chapter 7. Functions in DB2 for z/OS for a data warehouse 107

Example 7-5 Altering an index defined on a 4K buffer pool to COMPRESS YES

ALTER INDEX WORK.SJOIN_ALL_KEY COMPRESS YES;
---------+---------+---------+---------+---------+---------+---------+--------
DSNT408I SQLCODE = -676, ERROR: THE PHYSICAL CHARACTERISTICS OF THE INDEX ARE
 INCOMPATIBLE WITH RESPECT TO THE SPECIFIED STATEMENT. THE STATEMENT
 HAS FAILED. REASON 2
---------+---------+---------+---------+---------+---------+---------+---------+
ALTER INDEX WORK.SJOIN_ALL_KEY BUFFERPOOL BP8K0 COMPRESS YES;
---------+---------+---------+---------+---------+---------+---------+---------+
DSNT404I SQLCODE = 610, WARNING: A CREATE/ALTER ON OBJECT WORK.SJOIN_ALL_KEY
 HAS PLACED OBJECT IN REBUILD PENDING

Example 7-6 Index in REBUILD PENDING after alter to COMPRESS YES or COMPRESS NO

DSNT360I -D912 ***********************************
DSNT361I -D912 * DISPLAY DATABASE SUMMARY
 * GLOBAL
DSNT360I -D912 ***********************************
DSNT362I -D912 DATABASE = STARJOIN STATUS = RW

DBD LENGTH = 36332
DSNT397I -D912
NAME TYPE PART STATUS PHYERRLO PHYERRHI CATALOG PIECE
-------- ---- ----- ----------------- -------- -------- -------- -----
SJOINRAL IX L* RW,PSRBD

Analyzing compression efficiency by using the DB2 catalog
You can use the query shown in Example 7-7 to analyze how compression worked for a
particular index.

Example 7-7 Sample catalog query for index compression analysis

SELECT
 SUBSTR(NAME,1,23) AS IDX
 ,COMPRESS AS COMP
 ,UNIQUERULE AS UNIQ
 ,COLCOUNT AS COLS
 ,AVGKEYLEN AS AVGKEYL
 ,PGSIZE
 ,SPACE
 ,NLEAF
 ,NLEVELS
FROM SYSIBM.SYSINDEXES
 WHERE DBNAME = 'COMPRESS'
ORDER BY IDX,COMP ,PGSIZE,UNIQ;

To obtain the space allocated information, you must execute the STOSPACE online utility
before executing this query. This utility updates the DB2 catalog columns that indicate how
much space is allocated for storage groups and related table spaces and indexes.

The amount of space allocated by each object is gathered from the appropriate VSAM
catalog. Because the utility must have access to it, the DBD for the objects involved, the
target database, table spaces, and index spaces must not be STOPPED.

Attention: The alter of an index to COMPRESS YES or COMPRESS NO places the object
in REBUILD PENDING status and, therefore, is unavailable for applications, as shown in
Example 7-6.

108 Enterprise Data Warehousing with DB2 9 for z/OS

The output from STOSPACE consists of updated values in the DB2 catalog. The following list
describes the ones of interest for indexes. In each case, an amount of space is given in KB. If
the value is too large to fit in the SPACE column, the SPACEF column is updated:

� SPACE in SYSIBM.SYSINDEXES shows the amount of space that is allocated to indexes.

� SPACE in SYSIBM.SYSINDEXPART shows the amount of space that is allocated to index
partitions.

Example 7-8 shows a job control language (JCL) that can be used for executing STOSPACE.

Example 7-8 STOSPACE JCL sample

//STOSPACE EXEC DSNUPROC,SYSTEM=D912,
// LIB='SYS1.DSN.V910.SDSNLOAD',
// UID='STOSPACE'
//SYSIN DD *
STOSPACE STOGROUP SYSDEFLT
/*

To test the effect of different compressed index configuration, 12 indexes were created on the
CUSTOMER table of the data model used for this book.

Example 7-9 shows a simplified Data Definition Language (DDL) of the non-compressed
version of the indexes. For each one of these, three more where created on 8K, 16K, and 32K
buffer pools.

Example 7-9 Sample index for compression impact analysis

CREATE INDEX ORIG.CUSTOMER
ON ORIG.CUSTOMER
(C_CUSTKEY ASC);

CREATE UNIQUE INDEX ORIG.CUSTOMER_UQ
ON ORIG.CUSTOMER
(C_CUSTKEY ASC);

CREATE INDEX ORIG.CUSTOMER_BIGX
ON ORIG.CUSTOMER
(C_CUSTKEY ASC,
 C_NAME ASC,
 C_ADDRESS ASC,
 C_NATIONKEY ASC,
 C_PHONE ASC,
 C_ACCTBAL ASC,
 C_MKTSEGMENT ASC,
 C_COMMENT ASC);

Example 7-10 shows the output of this query after execution of STOSPACE. It can be used for
analyzing space saving efficiency. A sample of the data of the three first columns of the table
is shown in Example 7-11. The data is as defined in the TPC-H standard.

Example 7-10 Index compression query output sample

IDX COMP UNIQ COLS AVGKEYL PGSIZE SPACE NLEAF NLEVELS

CUSTOMER N D 1 4 4 166320 38611 3
CUSTOMER_CPRS_8K Y D 1 4 8 86400 19813 3
CUSTOMER_CPRS_16K Y D 1 4 16 86400 19567 3
CUSTOMER_CPRS_32K Y D 1 4 32 86400 19567 4

Chapter 7. Functions in DB2 for z/OS for a data warehouse 109

CUSTOMER_UQ N U 1 4 4 136800 33113 3
CUSTOMER_CPRS_UQ_8K Y U 1 4 8 86400 19921 3
CUSTOMER_CPRS_UQ_16K Y U 1 4 16 86400 19921 3
CUSTOMER_CPRS_UQ_32K Y U 1 4 32 86400 19921 4

CUSTOMER_BIGX N D 8 167 4 2052000 502109 4
CUSTOMER_BIGX_CPRS_8K Y D 8 167 8 1738800 428885 4
CUSTOMER_BIGX_CPRS_16K Y D 8 167 16 1738800 428885 4
CUSTOMER_BIGX_CPRS_32K Y D 8 167 32 1789200 428885 5

The following considerations can be made after the analysis of this example:

� The limiting factor to index compression for this example is how well the data can
compress. Increasing the buffer pool page size does not increase disk savings but
increases the buffer pool memory waste. A buffer pool with a page size of 8K is the best
indication for any of the indexes in this example.

� Disk space requirements for the small indexes is ~ 63% (86.400K / 136.800K) of the
original. For the big indexes, it is ~ 84% (1.738.800 / 2.052.000). This is related to the
random nature of the data on the TCP-H table and is not a characteristic of index
compression.

The degree of compression and, in consequence, the disk savings may be impacted by the
distribution of the columns inside the index, because index compression works better when
the data presents long prefixes.

Considering the sample data of the TPC-H table CUSTOMER shown in Example 7-11, we
note the following points:

� An index on ADDRESS does not compress well because there is no pattern or prefix in
the sample data.

� The column order KEY, NAME presents a shorter prefix than the sequence NAME, KEY,
and this second column distribution compresses better.

Example 7-11 Customer table, TPC-H model data sample

KEY NAME ADDRESS
----------- ------------------ --
 1 Customer#000000001 IVhzIApeRb ot,c,
 2 Customer#000000002 XSTf4,NCwDVaWNe6tEgvwfmRchLXak
 3 Customer#000000003 MG9kdTD2WBH
 4 Customer#000000004 XxVSJsLAGt
 5 Customer#000000005 KvpyuHCplrB84WgAiGV6sYpZq7Tj
...

Important: Consider that this method provides information about disk allocation savings,
but cannot be used for analyzing buffer pool memory usage.

Important: The NLEAF column in SYSINDEXES can be used for estimating performance
of index processing. It is the number of active leaf pages for a non-compressed index, but
for compressed indexes, it is the number of pages on disk. In reality, the needed pages in
the buffer pool are going to increase by a factor that depends on the compression ratio and
the page size of the buffer pool.

110 Enterprise Data Warehousing with DB2 9 for z/OS

To validate these observations, four indexes where created as shown in Example 7-12. The
only difference among them is the order of the involved columns and the fact that two of them
are COMPRESS YES.

Example 7-12 Sample index creation for analysis of column position influence

CREATE INDEX IDX_KEY_NAME ON CUSTOMER (KEY,NAME);
CREATE INDEX IDX_KEY_NAME_COMP ON CUSTOMER (KEY,NAME) COMPRESS YES;
CREATE INDEX IDX_NAME_KEY ON CUSTOMER (NAME,KEY);
CREATE INDEX IDX_NAME_KEY_COMP ON CUSTOMER (NAME,KEY) COMPRESS YES;

After executing the STOSPACE utility, the catalog query shown in Example 7-7 on page 108
produces the results in Example 7-13.

Example 7-13 Index comparison - Influence on compression ratio of column order

--
IDX COMP UNIQ COLS AVGKEYL PGSIZE SPACE NLEAF NLEVELS
--
IDX_KEY_NAME N D 2 25 4 403920 97088 4
IDX_KEY_NAME_COMP Y D 2 25 8 292320 69533 4
IDX_NAME_KEY N D 2 25 4 403920 97088 4
IDX_NAME_KEY_COMP Y D 2 25 8 198720 48077 4

Note the following observations:

� An uncompressed index uses the same space and number of leaf pages for both column
combinations.

� The index IDX_KEY_NAME_COMP compresses ~ 72% (292.320/403.920), with a
savings of ~ 28% in disk requirements.

� The index IDX_NAME_KEY_COMP compresses better at ~49% (198.720/403.920), with
a savings of ~ 51% in disk requirements.

� This example confirms that, because of the way index compression works, the column
distribution within an index affects the degree of compression that can be achieved.

Using the JCL in Example 7-14, we printed the first leaf page, which contains the same
information, of both indexes.

Example 7-14 DSN1PRNT JCL sample

//PRINT2 EXEC PGM=DSN1PRNT,
// PARM=(PRINT(002F0,002F5),FORMAT)
//STEPLIB DD DISP=SHR,DSN=SYS1.DSN.V910.SDSNLOAD
//SYSUDUMP DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DISP=OLD,DSN=DSN912.DSNDBC.COMPRESS.xxxxxxx.I0001.A001

Example 7-15 on page 112 shows an extract of the job output for the combination NAME,
KEY. Example 7-16 on page 112 shows an extract of the index on KEY, NAME. The character
representation of the index page contents, to the right of the examples, helps you to
understand how the column disposition within and index can impact the degree of
compression:

� The (NAME, KEY) order presents a longer prefix, and the data portion and less data
needs to be written for each key

� The (KEY, NAME) has a shorter prefix, which requires more data to be written when
compressing.

Chapter 7. Functions in DB2 for z/OS for a data warehouse 111

� IPKEYLN is the maximum length of index keys, which is the same for both indexes,
‘0020’X.

� IPNKEYS is the number of key values that are contained in the page. Even if the key
length is the same for both indexes, the index on (NAME,KEY) contains 208 keys, while
the index on (KEY,NAME) holds only 154.

Example 7-15 Print of first leaf page for index NAME - KEY

PAGE: # 00000003 --
TYPE 2 INDEX LEAF PAGE: PGCOMB='10'X PGLOGRBA='00030138F569'X PGNUM='00000003'X PGFLAGS='7C'X

INDEX PAGE HEADER: IPIXID='003D'X IPFLAGS='4C68'X IPNKEYS=208 IPFREESP='034C'X IPFREEP='1B12'X
 IPFCHSIZ='0000'X IPFCHNXT='0000'X IPKEYLN='0020'X IPPRNTPG='00000002'X

COMPRESSED INDEX LEAF PAGE FOLLOWS (UNFORMATTED):
0000 10000301 38F56900 0000037C 00000000 00000000 003D4C68 00D0034C 1B120000 *.....5.....@..........<....<....*
0020 00000020 00000002 010A0003 00D00000 00000005 00000000 00000000 80000001 *................................*
0040 06A30101 190000C3 A4A2A396 9485997B F0F0F0F0 F0F0F0F0 F1800000 01020200 *.......C.......#000000001.......*
0060 011912F2 80000002 02020101 1912F380 00000302 02020119 12F48000 00040202 *...2..........3..........4......*
0080 03011912 F5800000 05020204 011912F6 80000006 02020501 1912F780 00000702 *....5..........6..........7.....*
00A0 02060119 12F88000 00080202 07011912 F9800000 09020208 011911F1 F0800000 *.....8..........9..........10...*
00C0 0A020209 011912F1 8000000B 02020A01 1912F280 00000C02 020B0119 12F38000 *.......1..........2..........3..*
00E0 000D0202 0C011912 F4800000 0E02020D 011912F5 8000000F 02020E01 1912F680 *........4..........5..........6.*
0100 00001002 020F0119 12F78000 00110202 10011912 F8800000 12020211 011912F9 *.........7..........8..........9*
0120 80000013 02021201 1911F2F0 80000014 02021301 1912F180 00001502 02140119 *..........20..........1.........*
.....

Example 7-16 Print of first leaf page for index KEY - NAME

PAGE: # 00000003 --
TYPE 2 INDEX LEAF PAGE: PGCOMB='10'X PGLOGRBA='000301380E98'X PGNUM='00000003'X PGFLAGS='7C'X

INDEX PAGE HEADER: IPIXID='003B'X IPFLAGS='4C68'X IPNKEYS=154 IPFREESP='0AAE'X IPFREEP='141C'X
 IPFCHSIZ='0000'X IPFCHNXT='0000'X IPKEYLN='0020'X IPPRNTPG='00000002'X

COMPRESSED INDEX LEAF PAGE FOLLOWS (UNFORMATTED):
0000 10000301 380E9800 0000037C 00000000 00000000 003B4C68 009A0AAE 141C0000 *...........@..........<.........*
0020 00000020 00000002 010A0003 009A0000 00000005 00000000 00000000 80000001 *................................*
0040 00140101 19008000 000100C3 A4A2A396 9485997B F0F0F0F0 F0F0F0F0 F1020200 *...........C.......#000000001...*
0060 01190302 00C3A4A2 A3969485 997BF0F0 F0F0F0F0 F0F0F202 02010119 030300C3 *.....C.......#000000002........C*
0080 A4A2A396 9485997B F0F0F0F0 F0F0F0F0 F3020202 01190304 00C3A4A2 A3969485 *.......#000000003........C......*
00A0 997BF0F0 F0F0F0F0 F0F0F402 02030119 030500C3 A4A2A396 9485997B F0F0F0F0 *.#000000004........C.......#0000*
00C0 F0F0F0F0 F5020204 01190306 00C3A4A2 A3969485 997BF0F0 F0F0F0F0 F0F0F602 *00005........C.......#000000006.*
00E0 02050119 030700C3 A4A2A396 9485997B F0F0F0F0 F0F0F0F0 F7020206 01190308 *.......C.......#000000007.......*
0100 00C3A4A2 A3969485 997BF0F0 F0F0F0F0 F0F0F802 02070119 030900C3 A4A2A396 *.C.......#000000008........C....*
0120 9485997B F0F0F0F0 F0F0F0F0 F9020208 0119030A 00C3A4A2 A3969485 997BF0F0 *...#000000009........C.......#00*
.....

A portion of the character representation of the leaf page (to the right of the report) is
reproduced for clarity in Example 7-17.

Example 7-17 How data is stored with index compression

NAME - KEY KEY - NAME
.......C.......#000000001....... *...........C.......#000000001...*
...2..........3..........4...... *.....C.......#000000002........C*
....5..........6..........7..... *.......#000000003........C......*
.....8..........9..........10... *.#000000004........C.......#0000*
.......1..........2..........3.. *00005........C.......#000000006.*
........4..........5..........6. *.......C.......#000000007.......*
.........7..........8..........9 *.C.......#000000008........C....*

112 Enterprise Data Warehousing with DB2 9 for z/OS

Performance evaluation examples
To validate the index compression impact on performance, we used the TPC-H order priority
checking query. This query counts the number of orders placed in a given quarter of a given
year in which at least one line item was received by the customer later than its committed
date. The query lists the count of such orders for each order priority sorted in ascending
priority order. This is considered a good example of a data warehouse query. This and other
selected queries were included in assembler programs for performance evaluation.

TPC-H order priority checking query and index compression
Example 7-18 shows the query and the indexes that were created for the testing. Refer to
Example A-1 on page 425, which shows one of the programs that was used for these tests,
and Example A-2 on page 428, which shows the JCL for assembly, bind, and execution.

Example 7-18 TPC-H order priority checking query

SELECT
 O_ORDERPRIORITY,
 COUNT(*) AS ORDER_COUNT
FROM ORIG.ORDERS
WHERE
 O_ORDERDATE >= '1992-01-01'
 AND O_ORDERDATE < '1993-01-04'
 AND EXISTS (
 SELECT 1
 FROM ORIG.LINEITEM
 WHERE
 L_ORDERKEY = O_ORDERKEY
 AND L_COMMITDATE < L_RECEIPTDATE
)
GROUP BY O_ORDERPRIORITY
ORDER BY O_ORDERPRIORITY;

CREATE INDEX ORDERS2 ON ORDERS (O_ORDERKEY);
CREATE INDEX ORDERS2_COMPR ON ORDERS (O_ORDERKEY) COMPRESS YES;

Example 7-19 shows the physical properties of these indexes.

Example 7-19 Index for compression test - Physical properties

IDX COMP UNIQ COLS AVGKEYL PGSIZE SPACE NLEAF NLEVELS

ORDERS2 N D 1 7 4 198720 46949 3
ORDERS2_COMPR Y D 1 7 8 97920 23256 3

Important: If possible, consider the attributes of the data and create indexes with the
columns combination that provides the longer prefix for better compression results. When
the column distribution within an index has been fixed, you cannot control or influence the
degree of compression that can be achieved on the data on which the index is based.
However you can control the buffer pool placement, which may be a compromise between
disk saving and memory utilization.

Note: The purpose of these example is not to provide figures on expected CPU impact, but
rather to show a method of analysis. For CPU impact on index compression, refer to Index
Compression with DB2 9 for z/OS, REDP-4345.

Chapter 7. Functions in DB2 for z/OS for a data warehouse 113

Figure 7-5 shows the Optimization Service Center access path graphical representation for
the query by using the compressed version of the index. Its shows that all the leaf pages of
the index (23.256) will be scanned.

Figure 7-5 Access path involving a compressed index

To evaluate the DBM1 CPU impact, you may proceed as follows:

1. Issue a MODIFY TRACE command to produce a new statistics record before starting your
testing.

2. As the single user of the DB2 subsystem, perform your tests several times to produce a
valid average.

3. Issue again a MODIFY TRACE command to cut another STATISTIC record.

4. (Optional) Issue an SMF switch command to have SMF data immediately available for
analysis (/I SMF).

Note: During our tests, the optimizer always selected the non-compressed version of the
index, even if the number of leaf pages was notably less for the compressed version.

Important: You must consider the CPU impact on DBM1 during the analysis of index
compression performance:

� All synchronous CPU time is counted as class 2 CPU time.
� All asynchronous CPU time is counted as DBM1 SRB time.

114 Enterprise Data Warehousing with DB2 9 for z/OS

The JCL in Example 7-20 can be used to issue the MODIFY command.

Example 7-20 JCL sample for issuing a MODIFY TRACE command

//DB2COMM EXEC PGM=IKJEFT01,DYNAMNBR=20
//STEPLIB DD DISP=SHR,DSN=SYS1.DSN.V910.SDSNLOAD
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSTSIN DD *
 DSN SYSTEM(D912)
 -DIS TRACE(*)
 -MOD TRA(S) CLASS(1,3,4,5,6) TNO(01)
/*

The IBM Tivoli® OMEGAMON XE for DB2 Performance Expert on z/OS command sample in
Example 7-21 can be used to generate an accounting and statistics report for CPU impact
analysis.

Example 7-21 OMEGAMON XE for DB2 Performance Expert on z/OS command report sample

GLOBAL
 SSID(D912)
 LEVEL(DETAIL)
 INDEX(YES)
 OWNER(CRIS)
ACCOUNTING
 REDUCE
 FROM(04/21/08,05:00:00.00)
 TO(04/21/08,23:00:00.00)
 REPORT
 DDNAME(ACCREPO)
 TRACE
 DDNAME(ACCTRA)
STATISTICS
 REDUCE
 FROM(04/21/08,05:00:00.00)
 TO(04/21/08,23:00:00.00)
 REPORT /*STATS REPORT*/
 DDNAME(STATS)
 TRACE
 DDNAME(STATSTRA)
EXEC

Chapter 7. Functions in DB2 for z/OS for a data warehouse 115

Example 7-22 and Example 7-23 show combined extracts of OMEGAMON XE for DB2
Performance Expert on z/OS reports. These reports show accounting and statistics
information for the execution of two sample programs against compressed and
non-compressed index versions. The difference in the number of leaf pages for the indexes is
46949 (uncompressed) – 23256 (compressed) = 23693. The OMEGAMON XE for DB2
Performance Expert on z/OS reports indicate that approximately 23K fewer getpages were
executed during the execution of the program by using the compressed index.

Example 7-22 Performance Expert report sample using a non-compressed index

#OCCURS #COMMIT INSERTS OPENS PREPARE CLASS2 EL.TIME BUF.UPDT LOCK SUS
PRIMAUTH #DISTRS SELECTS UPDATES CLOSES CLASS1 EL.TIME CLASS2 CPUTIME SYN.READ #LOCKOUT
 PLANNAME #ROLLBK FETCHES MERGES DELETES CLASS1 CPUTIME GETPAGES TOT.PREF
--------------------------- ------- ------- ------- ------- -------------- -------------- -------- --------
CRIS 5 5 0.00 1.00 0.00 30.660371 0.00 0.00
 RED01 0 0.00 0.00 1.00 31.760353 20.949162 0.00 0
 0 6.00 0.00 0.00 20.953251 673.7K 24463.00

 |PROGRAM NAME TYPE #OCCURS SQLSTMT CL7 ELAP.TIME CL7 CPU TIME CL8 SUSP.TIME CL8 SUSP|
 |RED01 PACKAGE 5 8.00 30.660365 20.949157 7.353675 12.1K|

CPU TIMES TCB TIME PREEMPT SRB NONPREEMPT SRB TOTAL TIME PREEMPT IIP SRB
------------------------------- --------------- --------------- --------------- --------------- ---------------
SYSTEM SERVICES ADDRESS SPACE 0.012398 0.000000 0.009259 0.021657 N/A
DATABASE SERVICES ADDRESS SPACE 0.000754 0.000000 19.736916 19.737670 0.000000
IRLM 0.000003 0.000000 0.019269 0.019272 N/A
DDF ADDRESS SPACE 0.000121 0.000000 0.000108 0.000229 0.000000

TOTAL 0.013276 0.000000 19.765553 19.778829 0.000000

Example 7-23 Performance Expert report sample using a compressed index

#OCCURS #COMMIT INSERTS OPENS PREPARE CLASS2 EL.TIME BUF.UPDT LOCK SUS
PRIMAUTH #DISTRS SELECTS UPDATES CLOSES CLASS1 EL.TIME CLASS2 CPUTIME SYN.READ #LOCKOUT
 PLANNAME #ROLLBK FETCHES MERGES DELETES CLASS1 CPUTIME GETPAGES TOT.PREF
--------------------------- ------- ------- ------- ------- -------------- -------------- -------- --------
CRIS 5 5 0.00 1.00 0.00 30.884626 0.00 0.00
 REDC1 0 0.00 0.00 1.00 31.327963 20.978062 0.00 0
 0 6.00 0.00 0.00 20.981970 650.0K 24450.00

 |PROGRAM NAME TYPE #OCCURS SQLSTMT CL7 ELAP.TIME CL7 CPU TIME CL8 SUSP.TIME CL8 SUSP|
 |REDC1 PACKAGE 5 8.00 30.884621 20.978057 6.858745 11.9K|

CPU TIMES TCB TIME PREEMPT SRB NONPREEMPT SRB TOTAL TIME PREEMPT IIP SRB
------------------------------- --------------- --------------- --------------- --------------- ---------------
SYSTEM SERVICES ADDRESS SPACE 0.010801 0.000000 0.009304 0.020104 N/A
DATABASE SERVICES ADDRESS SPACE 0.000843 0.000000 24.674301 24.675144 0.000000
IRLM 0.000005 0.000000 0.019982 0.019987 N/A
DDF ADDRESS SPACE 0.000153 0.000000 0.000117 0.000270 0.000000

TOTAL 0.011801 0.000000 24.703704 24.715505 0.000000

The reports also show a CPU regression of about 25% on the DATABASE SERVICES
ADDRESS SPACE CPU.

Index compression and index scan
The previous example concentrates on a data warehouse query in which the activity against a
compressed index was part of a bigger process. To validate the impact of index compression

116 Enterprise Data Warehousing with DB2 9 for z/OS

on a query where the getpages are done mostly on the indexes, we used the query shown in
Example 7-24.

Example 7-24 Sample query index only scan

SELECT
O_ORDERDATE ,
COUNT (*) AS ORDER_COUNT
FROM ORIG . ORDERS
where O_ORDERKEY > 0
GROUP BY O_ORDERDATE;

Figure 7-6 shows the access path of the test programs.

Figure 7-6 Index only scan on an uncompressed index

The index in Example 7-25 was created on four versions: uncompressed and compressed on
8K, 16K, and 32K buffer pools.

Example 7-25 Index creation for index only scan of compressed index test

CREATE INDEX ORIG.ORDERS4
ON ORIG.ORDERS
(O_ORDERDATE ASC,
O_ORDERKEY ASC,
O_CUSTKEY ASC);

Chapter 7. Functions in DB2 for z/OS for a data warehouse 117

Example 7-26 shows the catalog information for these indexes.

Example 7-26 Details for indexes involved in index only scan

IDX COMP UNIQ COLS AVGKEYL PGSIZE SPACE NLEAF NLEVELS

ORDERS4 N D 3 17 4 313200 74627 4
ORDERS4_COMPR Y D 3 17 8 151200 37038 4
ORDERS4_COMPR16 Y D 3 17 16 151200 35964 4
ORDERS4_COMPR32 Y D 3 17 32 151200 35964 4

Table 7-2 summarizes the performance measurements.

Table 7-2 Index compression performance compared for index scan operations

7.1.4 Considerations on index compression

Use index compression on an index space if the index space has the following characteristics:

� It is large enough to save significant disk space, for example larger than 10 MB, and to
check the benefit of pages saved versus the cost of compress or decompress.

� It compresses by at least 35% and can fit at least one more rows on a page
(index length < compression ratio x page size).

Watch the trade off of CPU and memory overhead versus savings on disk. Keep in mind that,
with index compression, the CPU overhead is incurred at read and write I/O execution time
only. This is quite different from data compression where the CPU overhead is incurred while
each row is transferred to and from the buffer pool to the application.

With the larger index page sizes required, probably less free space is required, but free space
is still useful to avoid page splits on inserts.

A larger buffer pool space for random processing avoids more frequent I/O and reduces
compression and decompression.

7.2 Table space compression

Data warehouse environments that run on DB2 9 for z/OS can use the table space
compression option. This option uses the hardware compression feature of System z, which
is described in 3.2.3, “Hardware data compression” on page 36. For details, see DB2 for
OS/390 and Data Compression, SG24-5261.

No compression Compress 8K Compress 16K Compress 32K

Getpages 74630 37041 35967 35967

CPU 4.22 4.07 4.06 4.17

Elapsed time 4.92 5.82 5.61 6.49

Suspend time 0.01 0.01 0.08 1.39

Total prefetch 2346 2330 4533 9219

SQL statements 2409 2409 2409 2409

118 Enterprise Data Warehousing with DB2 9 for z/OS

In our data warehouse scenario, we used the table space compression option. To
demonstrate its value, we started with uncompressed table space. This uncompressed table
space contains 1 million rows and is approximately 1.4 GB in size. To estimate the effect of
compression on this table space, we ran the DSN1COMP utility on the uncompressed table
space to find the percentage of space savings after compression. To save time, we ran the
utility to scan the first 100,000 rows only to provide the compression report. The DSN1COMP
compression report showed a 55 percent space savings. See Example 7-27.

Example 7-27 DSN1COMP compression report

DSN1998I INPUT DSNAME = DSN912.DSNDBD.COMPRESS.LINEITEM.I0001.A001 ,VASM
DSN1944I DSN1COMP INPUT PARAMETERS
 4,096 DICTIONARY SIZE USED
 0 FREEPAGE VALUE USED
 5 PCTFREE VALUE USED
 100,000 ROWLIMIT REQUESTED
 1 NUMBER OF PARTITIONS
 ESTIMATE BASED ON DB2 REORG METHOD
 255 MAXROWS VALUE USED

DSN1940I DSN1COMP COMPRESSION REPORT
 14,190 KB WITHOUT COMPRESSION
 6,055 KB WITH COMPRESSION
 57 PERCENT OF THE BYTES WOULD BE SAVED

 793 ROWS SCANNED TO BUILD DICTIONARY
 100,000 ROWS SCANNED TO PROVIDE COMPRESSION ESTIMATE
 4,096 DICTIONARY ENTRIES

 148 BYTES FOR AVERAGE UNCOMPRESSED ROW LENGTH
 65 BYTES FOR AVERAGE COMPRESSED ROW LENGTH

 16 DICTIONARY PAGES REQUIRED
 3,847 PAGES REQUIRED WITHOUT COMPRESSION
 1,711 PAGES REQUIRED WITH COMPRESSION
 55 PERCENT OF THE DB2 DATA PAGES WOULD BE SAVED

 DSN1994I DSN1COMP COMPLETED SUCCESSFULLY, 3,879 PAGES PROCESS

The table space in Example 7-27 is a good candidate for compression because it is giving a
55% savings in disk space. The compression of this table space will also result in shorter I/O
and paging times, with more data instantly accessible in caches and in buffer pools. To use
the hardware compression for this table space, we must issue the SQL ALTER TABLESPACE
statement with the COMPRESS YES clause as shown in Example 7-28.

Example 7-28 Altering a table space for using compression

ALTER TABLESPACE COMPRESS.LINEITEM COMPRESS YES

After the ALTER statement completes, the REORG utility must be run on the table space to
compress the existing data. Example 7-29 on page 120 shows the compression report of the
REORG utility that we ran against the table space. It shows a 56% disk space savings due to
compression. In this case, we saved approximately 800 MB of physical disk space because of
compression.

Chapter 7. Functions in DB2 for z/OS for a data warehouse 119

Example 7-29 Compression Report of REORG utility

-D912 123 17:11:38.11 DSNURWT - COMPRESSION REPORT FOR TABLE SPACE COMPRESSION REPORT FOR
TABLE SPACE COMPRESS.LINEITEM, PARTITION 1
1418278 KB WITHOUT COMPRESSION
 611473 KB WITH COMPRESSION
 56 PERCENT OF THE BYTES SAVED FROM COMPRESSED DATA ROWS

 100 PERCENT OF THE LOADED ROWS WERE COMPRESSED

 148 BYTES FOR AVERAGE UNCOMPRESSED ROW LENGTH
 65 BYTES FOR AVERAGE COMPRESSED ROW LENGTH

 382556 PAGES REQUIRED WITHOUT COMPRESSION
 167999 PAGES REQUIRED WITH COMPRESSION
 56 PERCENT OF THE DB2 DATA PAGES SAVED USING COMPRESSED DATA

7.2.1 Considerations on data compression

Use data compression on a table space if the table space has the following characteristics:

� It is large enough to provide a significant space savings (for example, larger than 10 MB)
or pages saved are greater than 5 MB.

� It compresses by at least 30%.

� It can fit at least one more rows on a page, where row length < compression ratio x page
size value.

There is a maximum number of rows per page:

row length > page size / 255 - 6

If the row lengths are shorter than the following values, then there is no savings:

� 4K → 10 bytes
� 8K → 26 bytes
� 16k → 58 bytes
� 32K → 122 bytes

With data compression, buffer pool memory use generally improves, because buffers contain
compressed data, and getpages are reduced for sequential access.

The processor overhead must be considered, especially with older processors, such as G4,
and when there are many updates or every data row is examined. Index access is generally
inexpensive.

Generally you want to increase free space with compression to handle the variability of the
rows and avoid off page pointers

You must consider the space requirements for dictionaries (one per partition), which are
loaded in memory when open and can cause virtual storage constraint, prior to DB2 V8.

Note: The percentage of disk savings due to compression may vary from case to case
because it depends on multiple factors such as data type definitions, data repetition, and
data quality.

120 Enterprise Data Warehousing with DB2 9 for z/OS

7.3 Index-use tracking by using real-time statistics

With DB2 9 for z/OS, the date when the index is last used for SELECT, FETCH, searched
UPDATE, searched DELETE, or enforce referential integrity constraints with dynamic SQL is
maintained in the RTS column SYSINDEXSPACESTATS.LASTUSED. As a reminder, if an
index is used by a static SQL statement, it is displayed as BTYPE='I' in SYSPACKDEP
(package) or SYSPLANDEP (database request module (DBRM) bound directly into a plan).

7.4 Not logged table spaces

Logging can become a bottleneck for INSERT-intensive operations. In the context of a data
warehouse environment, this can apply to the following scenarios:

� Creation of intermediate summary tables
� Insert processing in parallel
� Seasonal massive treatments
� Extract, load, and transform processes
� Massive batch updates due to confidentiality requirements (scrambling)

DB2 9 for z/OS introduces the notion of logging volume reduction capabilities by allowing
logging to be suppressed for table spaces and associated indexes.

Before implementing not logged table spaces, consider the following elements:

� DB2 9 for z/OS has introduced the following additional logging improvements:

– Log record sequence number (LRSN) increment wait reduction in data sharing
environments

– VSAM data striping and compression now available for archive logs

– Dual buffering for archive log reads

– Support for up to 4 GB archive logs

� The existence of faster devices, controllers, and paths associated with Modified Indirect
Data Address Word (MIDAW) improves dramatically the logging capabilities of System z.

Refer to How does the MIDAW Facility Improve the Performance of FICON Channels
Using DB2 and other workloads?, REDP-4201, and Disk Storage Access with DB2 for
z/OS, REDP-4187, for more details about DB2 and I/O infrastructure

� The LOAD utility can be used with the LOG NO option as a way of skipping logging. LOG
NO is used in most of the cases in a data warehouse environment.

� If elapsed time is increased because of logging, VSAM data striping can provide relief for
non-synchronous logging operations.

� By avoiding logging, RECOVER is not possible.

� DATA CAPTURE CHANGES is not compatible with the NOT LOGGED option.

Example 7-30 on page 122 shows an extract of the DB2 9 for z/OS SQL guide, indicating how
you disable or enable logging for a table space.

Important: Indiscriminate use of not logged operations can cause a loss of data. Use NOT
LOGGED on an exception basis and generally as a last resort after checking that your
system is optimally configured for high logging demand operations.

Chapter 7. Functions in DB2 for z/OS for a data warehouse 121

Example 7-30 Alter table space NOT LOGGED syntax

>>-ALTER TABLESPACE--+----------------+-table-space-name-------->
 '-database-name.-'

>------+-LOGGED-----+--->
 '-NOT LOGGED-'

You also must consider the impact to your backup policy that is caused by the use of the NOT
LOGGED option. Figure 7-7 highlights again the fact that a not logged operation should be
exceptional and image copies before and after the exceptional processing are needed. With
NOT LOGGED, if transactions are updating the database while the table is not logged, and a
problem occurs in a table, then the table space is reset. You also need to start again from the
copy. You relinquish the option of database recovery by replacing it with application recovery.

Figure 7-7 Exceptional processing and the NOT LOGGED option

Updating operations against a NOT LOGGED object puts the table space in RW,ICOPY
status. For example, we execute the query in Example 7-31.

Example 7-31 Sample query against a not logged table space

UPDATE WORK.CUSTOMER_DIM
SET LAST_UPDATE = CURRENT_TIMESTAMP

Example 7-32 shows the output of the display table space after the query execution.

Example 7-32 ICOPY status of a not logged table space after an update operation

DSNT360I -D912 ***********************************
DSNT361I -D912 * DISPLAY DATABASE SUMMARY
 * GLOBAL
DSNT360I -D912 ***********************************
DSNT362I -D912 DATABASE = STARJOIN STATUS = RW
 DBD LENGTH = 12104
DSNT397I -D912
NAME TYPE PART STATUS PHYERRLO PHYERRHI CATALOG PIECE
-------- ---- ----- ----------------- -------- -------- -------- -----
ORDERRTR TS 0001 RW,ICOPY
******* DISPLAY OF DATABASE STARJOIN ENDED **********************
DSN9022I -D912 DSNTDDIS 'DISPLAY DATABASE' NORMAL COMPLETION

ICOPY is an informational COPY pending advisory status and indicates that the affected
object should be copied.

122 Enterprise Data Warehousing with DB2 9 for z/OS

Unless defined as COPY NO, indexes are also in the ICOPY status after an update operation.
An attempt of copying the index independently of the table space produces a DSNU449I
error, as shown in Example 7-33.

Example 7-33 Index space must be copied with not logged table spaces

DSNU000I 116 10:20:34.55 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = COPYX
DSNU1044I 116 10:20:34.58 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
DSNU050I 116 10:20:34.58 DSNUGUTC - COPY INDEXSPACE STARJOIN.CUST18GD DSNUM ALL
COPYDDN(SYSCOPY)
DSNU449I -D912 116 10:20:34.58 DSNUBAII - THE NOT LOGGED INDEXSPACE STARJOIN.CUST18GD

IN ICOPY PENDING STATE MUST BE COPIED WITH ITS TABLESPACE IN THE SAME COPY
INVOCATION
DSNU012I 116 10:20:34.59 DSNUGBAC - UTILITY EXECUTION TERMINATED, HIGHEST RETURN CODE=8

A NOT LOGGED index that is in ICOPY pending state must be copied together with its table
space in the same COPY invocation. An image copy of such an index made without its table
space cannot be used for recovery of the index to a point that is consistent with its table
space. The recovery requires applying log records, which were not written.

The load utility places a NOT LOGGED table space on RW,ICOPY status, even when using
the NOCOPYPEND option as shown in Example 7-34.

Example 7-34 Not logged table space and load nocopypend

DSNU000I 116 08:55:20.79 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = LOAD
DSNU050I 116 08:55:20.83 DSNUGUTC - LOAD INDDN SYSREC LOG NO RESUME YES NOCOPYPEND
DSNU650I -D912 116 08:55:20.83 DSNURWI - INTO TABLE "WORK"."CUSTOMER_DIM"
....
DSNU570I -D912 116 08:55:21.15 DSNUGSRX - TABLESPACE STARJOIN.CUSTOMER PARTITION 1 IS IN
INFORMATIONAL COPY PENDING
DSNU010I 116 08:55:21.15 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

7.5 Exploiting the DB2 STATEMENT CACHE

A typical data warehouse can run most of its reports by using dynamic SQL statements. To
analyze the most intensive or expensive statements, the information in the DB2 STATEMENT
cache can be used.

The IFCID 316, 317, 318 must be active in your system to exploit this feature. You can do this
by selectively activating them with the trace statement:

-STA TRACE(P) CLASS(30) IFCID(316,317,318)

The sample member HLQ.SDSNSAMP(DSNTESC) contains the necessary DDL for the
creation of a DB2 9 for z/OS STATEMENT CACHE table called
DSN_STATEMENT_CACHE_TABLE.

Important: ICOPY is not a restricted status, and a -DIS DB() SPACENAM() RESTRICT
does not show any ICOPY table space. This technique cannot be used for detecting
non-recoverable objects.

Chapter 7. Functions in DB2 for z/OS for a data warehouse 123

The SQL command in Example 7-35 copies the dynamic SQL statements from the DB2
cache to the table.

Example 7-35 Populating the DSN_STATEMENT_CACHE_TABLE

EXPLAIN STMTCACHE ALL;

After the DSN_STATEMENT_CACHE_TABLE is populated, it can be queried by any method
to identify the most consuming or more frequently executed queries. Among others, the
following columns provide information that may be of interest in a data warehouse
environment:

STMT_ID The statement ID. This value is the EDM unique token for the
statement.

PROGRAM_NAME The name of the package or DBRM that performed the initial
PREPARE for the statement.

STAT_EXEC The number of times this statement has been run. For a statement
with a cursor, this is the number of OPENs.

STAT_GPAG The number of getpage operations that are performed for the
statement.

STAT_INDX The number of index scans that are performed for the statement.

STAT_RSCN The number of table space scans that are performed for the
statement.

STAT_ELAP The accumulated elapsed time that is used for the statement.

STAT_CPU The accumulated CPU time that is used for the statement.

STAT_SUS_SYNIO The accumulated wait time for synchronous I/O operations for the
statement.

STAT_RIDLIMT The number of times a record identifier (RID) list was not used
because the number of RIDs might exceed DB2 limits.

STAT_RIDSTOR The number of times a RID list was not used because not enough
storage is available to hold the list of RIDs.

7.6 Star schema processing

A star schema is a logical database design that is often found in a data warehouse
implementation. It is composed of a fact table and a number of dimension tables that are
connected or related to it. A dimension table contains several values that are given an ID,
which is used in the fact table instead of all the values. The fact table is typically much larger

Important: The authorization rules are different if the STMTCACHE keyword is specified
to have a cached statement explained. The privilege set must have SYSADM authority or
the authority that is required to share the cached statement. For more information about
the authority to use the dynamic statement cache, see the DB2 Version 9.1 for z/OS
Application Programming and SQL Guide, SC18-9841.

Tip: DB2 Optimization Service Center and DB2 Optimization Expert provide extensive
support for the analysis of the information on the DB2 STATEMENT CACHE. Refer to IBM
DB2 9 for z/OS: New Tools for Query Optimization, SG24-7421, for details.

124 Enterprise Data Warehousing with DB2 9 for z/OS

than the dimension tables. The graphical representation of the logical relationship among
these tables resembles a star formation, as shown in Figure 7-8.

Figure 7-8 Star schema representation

A snowflake is an extension of a star schema, where a dimension table is normalized into
several tables and only one of the tables in the snowflake joins directly with the fact table.

DB2 for z/OS can use special access methods, called a star join and pair-wise join, to solve
queries against a star schema:

� A star join (JOIN_TYPE = 'S' in PLAN_TABLE) consolidates the dimensions to form a
Cartesian product for matching to a single fact table index. This access method requires a
single multicolumn index in the fact table.

� A pair-wise join (JOIN_TYPE = 'P' in PLAN_TABLE) considers each dimension as an
independent object to match the fact table on corresponding single column indexes. This
access method requires an index in the fact table for each dimension key column.

In this section, we discuss these methods and the changes that are introduced in DB2 9 to
improve performance of star schema-related queries.

7.6.1 Star schema access methods

Join methods, such as nested-loop join, merge-scan join, and hybrid join, involve only two
tables in each step. A single step in a star join can involve three or more tables to consolidate
filtering before accessing the large fact table. For this reason, a star join can be a more
efficient choice for processing a star schema than traditional join methods. The optimizer

Chapter 7. Functions in DB2 for z/OS for a data warehouse 125

considers star schema access methods based on costs, and a star join method is not
necessarily always used.

To have a query be a candidate or eligible for a star join, the following conditions are required:

� The query must respect some SQL restrictions.
� Two specific DSNZPARMs must be setup accordingly: STARJOIN and SJTABLES.
� Proper index design must be present in the star schema tables.

These requirements are described in the following paragraphs.

SQL restrictions for star join
In order for a query to be a candidate for star schema processing, the following conditions
must be met:

� The query references at least two dimensions.

� All join predicates are between the fact table and the dimension tables, or within tables of
the same snowflake. If a snowflake is connected to the fact table, only one table in the
snowflake (the central dimension table) can be joined to the fact table.

� All join predicates between the fact table and dimension tables are equi-join predicates.

� All join predicates between the fact table and dimension tables are Boolean term
predicates. A Boolean term predicate is a simple or compound predicate that, when it is
evaluated false for a particular row, makes the entire WHERE clause false for that
particular row.

� If predicates contain OR conditions that involve multiple tables, then at least one common
table is referenced in each OR branch.

� There are no correlated subqueries across dimensions.

� After DB2 simplifies join operations, no outer join operations exist.

� The data type and length of both sides of a join predicate are the same.

The query shown in Example 7-36 is based on our data model. This query is an example of a
candidate for star schema processing.

Example 7-36 Sample query candidate for star join

SELECT
 SUM(FACT.QUANTITY)
FROM
 WORK.ORDER_TRANSACTION_FACT FACT,
 WORK.DATE_DIM DATE,
 WORK.BRANCH_DIM BRANCH,
 WORK.CUSTOMER_DIM CUST,
 WORK.PART_DIM PART,
 WORK.SUPPLIER_DIM SUPP
WHERE
 FACT.CUSTKEY_DW = CUST.CUSTKEY_DW
 AND FACT.BRANCHKEY_DW = BRANCH.BRANCHKEY_DW
 AND FACT.DATEKEY_DW = DATE.DATEKEY_DW
 AND FACT.PARTKEY_DW = PART.PARTKEY_DW
 AND FACT.SUPPKEY_DW = SUPP.SUPPKEY_DW
 AND BRANCH.BRANCHKEY_DW = 1
 AND DATE.DATE_VAL = '2007-01-01 '
 AND CUST.CUST_REGION_NAME = 'EUROPE'

126 Enterprise Data Warehousing with DB2 9 for z/OS

System parameters for star schema processing
To have star schema processing considered, the following DSNZPARMs must be correctly set
up:

� STARJOIN

It specifies whether star join processing is enabled. It can have the following values:

– DISABLE: Star schema processing is disabled. This is the default value.

– 1: Star schema processing is ENABLED. The table with the largest cardinality is
considered as the fact table. However, if more than one table has this cardinality, the
star join is not enabled.

– ENABLE: Star schema processing is enabled if the cardinality of the fact table is at
least 25 times the cardinality of the largest dimension that is a base table that is joined
to the fact table.

– 2 to 32768: Star schema processing is enabled if the cardinality of the fact table is at
least n times the cardinality of the largest dimension that is a base table that is joined to
the fact table.

� SJTABLES

This value indicates the minimum number of tables in the star schema query block,
including the fact table, dimensions tables, and snowflake tables that are needed for
enabling star schema processing.

These two parameters can be changed online via the -SET SYSPARM command.

The following parameters are other star schema-related DSNZPARM parameters:

� MXQBCE

MXQBCE limits how many different join sequences the DB2 optimizer will consider. The
lower the number is, the fewer the number of join sequences are considered. By reducing
the number of join sequences that are considered, you can reduce the time that DB2
spends in bind processing. Of course, spending less time can also mean that a less
appropriate access path might be chosen.

� SJMISSKY

By specifying SJMISSKY = ON, DB2 has a better chance to choose a more efficient
access path for star join queries when the star join outside-in phase involves missing keys,
the dimension table is not highly normalized, or both.

Example 7-37 shows an Optimization Service Center report of the default values for the
system parameters STARJOIN and SJTABLES on a DB2 9 for z/OS subsystem.

Example 7-37 Optimization Service Center report - Default values for STARJOIN and SJTABLES

****Optimization Service Center Parameter Browser *********
Parameter: STARJOIN Macro: DSN6SPRM Installation panel: DSNTIP8
Value: DISABLE

Description: STARJOIN- Disable (default) = no star join. Enable = enable star join. 1 = The
fact table will be the largest table in the star join query. No fact/dimension ratio
checking. 2-32768 = Star join fact table and the largest dimension table ratio.

****Optimization Service Center Parameter Browser *********
Parameter: SJTABLES Macro: DSN6SPRM Installation panel: Installation field:
Value: 00010

Description: SJTABLES- Effective only when star join is enabled (see starjoin parm, below).
Sets the total number of tables in a query block as the threshold to enable star join for
the query block. Valid settings range from 0-32767, as follows: 0: indicates that the

Chapter 7. Functions in DB2 for z/OS for a data warehouse 127

default value isused, that is, start join is considered for aquery block haviong 10 or more
tables. 1,2,3: Star join is always considered. 4-225: Star join is considered for a query
block having at least the specified number of tables 226-32767: star join will never be
enabled.

Follow these general guidelines for setting the value of SJTABLES and STARJOIN:

� If you have queries that reference fewer than 10 tables in a star schema database and you
want to make the star schema methods applicable to all qualified queries, set the value of
SJTABLES to the minimum number of tables used in queries that you want to be
considered for star schema processing.

� If you want to use star schema processing for relatively large queries that reference a star
schema database but are not necessarily suitable for star join or pair-wise join, use the
default. The star schema methods are considered for all qualified queries that have 10 or
more tables.

� If you have queries that reference a star schema database but, in general, do not want to
use star schema processing, consider setting STARJOIN to DISABLE to disable the star
schema join methods from being considered.

You have to consider that, even if star schema processing can reduce bind time significantly,
when the query contains a large number of tables, it does not provide optimal performance in
all cases.

The performance of a star join and pair-wise join depends on several factors, such as the
available indexes on the fact table, the cluster ratio of the indexes, and the selectivity of rows
through local and join predicates. You might consider a strategy to quickly disable star
schema processing in your system in case of performance issues, for example, changing
online the related DSNZPARMs to its default values (DISABLED).

Index design for star schema processing
Star join and pair-wise join are index-based access methods. Proper indexes are necessary
to have these techniques considered by the optimizer.

To design indexes to enable pair-wise join, create an index for each key column in the fact
table that corresponds to a dimension table. For further performance improvement for some
star schema queries, consider the following index design recommendations to encourage
DB2 to use star join access:

� Define a multicolumn index on all key columns of the fact table. Key columns are fact table
columns that have corresponding dimension tables.

� If you do not have information about the way that your data is used, first try a multicolumn
index on the fact table that is based on the cardinality of the key columns. Order the index
key columns from lowest to highest cardinality.

Define this multicolumn index as clustering on the fact table.

� Define indexes on dimension tables to improve access to those tables.

� When you have executed a number of queries and have more information about the way
that data is used, follow these recommendations:

– Place more selective columns at the beginning of the multicolumn index.

– If a number of queries do not reference a dimension, place the column that
corresponds to that dimension at the end of the index, or remove it completely.

128 Enterprise Data Warehousing with DB2 9 for z/OS

7.6.2 Star schema processing implementation example

To show the steps for implementing and monitoring star schema processing, a query was
executed against the star schema that we implemented in our scenario.

Figure 7-9 shows the star schema representation of the data model that is used in the
following examples. During this implementation, the fact table, which is represented in the
middle of the figure, contains at least 35 times more rows that any of the dimensions tables.
No referential integrity is established among the tables.

The optimizer determines parent child relationships by the existence of unique indexes on
one side of the join, implying that this is the parent. If the optimizer cannot decide which one
of the tables is the fact table based on this, it refers to the cardinality of the objects.

Figure 7-9 Star schema implementation sample

In our example, the star schema is built as follows:

� Fact table, named ORDER_TRANSACTION_FACT, contains additive information about
orders and line items.

� Dimension tables contain descriptive information:

– DATE_DIM
– BRANCH_DIM
– CUSTOMER_DIM
– PART_DIM
– SUPPLIER_DIM

Chapter 7. Functions in DB2 for z/OS for a data warehouse 129

We used the query shown in Example 7-38 as a candidate for star join access methods.

Example 7-38 Sample query candidate for a star join

SELECT
 SUM(FACT.QUANTITY)
FROM
 WORK.ORDER_TRANSACTION_FACT FACT,
 WORK.DATE_DIM DATE,
 WORK.BRANCH_DIM BRANCH,
 WORK.CUSTOMER_DIM CUST,
 WORK.PART_DIM PART,
 WORK.SUPPLIER_DIM SUPP
WHERE
 FACT.CUSTKEY_DW = CUST.CUSTKEY_DW
 AND FACT.BRANCHKEY_DW = BRANCH.BRANCHKEY_DW
 AND FACT.DATEKEY_DW = DATE.DATEKEY_DW
 AND FACT.PARTKEY_DW = PART.PARTKEY_DW
 AND FACT.SUPPKEY_DW = SUPP.SUPPKEY_DW
 AND BRANCH.BRANCHKEY_DW = 1
 AND DATE.DATE_VAL = '2007-01-01 '
 AND CUST.CUST_REGION_NAME = 'EUROPE'

Implementing indexes
The following indexes were created before activating star schema processing in our DB2 9 for
z/OS subsystem:

� A multicolumn index on all key columns of the fact table

In our example, it includes five columns from the five dimension tables. The DDL is
described in Example 7-39. This index can help the optimizer to select a star join access
method for eligible queries.

Example 7-39 Creating a multicolumn index in the fact table for star join processing

CREATE INDEX WORK.SJOIN_ALL_KEY
 ON WORK.ORDER_TRANSACTION_FACT
 (DATEKEY_DW ASC,
 BRANCHKEY_DW ASC,
 CUSTKEY_DW ASC,
 PARTKEY_DW ASC,
 SUPPKEY_DW ASC);

In our test scenario, the index described in Example 7-39 must be defined as CLUSTER in
order to be considered by DB2 for star join.

130 Enterprise Data Warehousing with DB2 9 for z/OS

� An index for each key column in the fact table that corresponds to a dimension table

Indexes that contain the same keys were created in the dimension tables. Example 7-40
shows a DDL sample for the creation of these indexes on the fact table. They can support
the pair-wise access method.

Example 7-40 Defining indexes for each dimension key column in the fact table

CREATE INDEX WORK.SJOIN_DIM_X1
 ON WORK.ORDER_TRANSACTION_FACT
 (DATEKEY_DW ASC);

CREATE INDEX WORK.SJOIN_DIM_X2
 ON WORK.ORDER_TRANSACTION_FACT
 (BRANCHKEY_DW ASC);

CREATE INDEX WORK.SJOIN_DIM_X3
 ON WORK.ORDER_TRANSACTION_FACT
 (CUSTKEY_DW ASC);

CREATE INDEX WORK.SJOIN_DIM_X4
 ON WORK.ORDER_TRANSACTION_FACT
 (PARTKEY_DW ASC);

CREATE INDEX WORK.SJOIN_DIM_X5
 ON WORK.ORDER_TRANSACTION_FACT
 (SUPPKEY_DW ASC);

To better appreciate the impact of the star join, we used Optimization Service Center to
graphically represent the access paths that are chosen by the optimizer during the execution
of our tests. Figure 7-10 on page 132 shows the original access path for the query in
Example 7-38 on page 130.

Tip: To determine the best order of columns in an index for a star schema, refer to the
method described in Chapter 27, “Tuning your queries” in the DB2 Version 9.1 of the
DB2 Version 9.1 for z/OS Application Programming and SQL Guide, SC18-9841.

Tip: Partitioning cluster data according to commonly used dimension keys can reduce the
I/O that is required on the fact table for a pair-wise join.

Chapter 7. Functions in DB2 for z/OS for a data warehouse 131

Figure 7-10 Query access path before activating star schema processing

Table 7-3 shows an extract of the PLAN_TABLE for this query, including the columns of
interest for this analysis.

Table 7-3 Sample PLAN_TABLE extract before activating star schema processing

The optimizer uses the SJOIN_ALL_KEY index to access the table
ORDER_TRANSACTION_FACT, which is the fact table in our example, with an index scan.
The resolution of this query involves six steps executed in series.

PLANNO METHOD TNAME JOIN
TYPE

SORTN
JOIN

ACCESS
TYPE

PRIMARY ACCESS
TYPE

1 0 BRANCH_DIM N I

2 1 DATE_DIM N R

3 1 ORDER_TRANSACTION_FACT N I

4 2 CUSTOMER_DIM Y R

5 1 PART_DIM N I

6 1 SUPPLIER_DIM N I

132 Enterprise Data Warehousing with DB2 9 for z/OS

The column JOIN_TYPE indicates the type of join. It has the following possible values:

F Full outer join
L Left outer join (RIGHT OUTER JOIN converts to a LEFT OUTER JOIN)
S Star join
Blank INNER JOIN or no join

PRIMARY_ACCESSTYPE provides indication of whether direct row access is attempted first.
It has the following possible values:

D DB2 tries to use direct row access with a rowid column.

T The base table or result file is materialized into a work file, and the work file is
accessed via sparse index access. If a base table is involved, then ACCESSTYPE
indicates how the base table is accessed.

Blank DB2 does not try to use direct row access by using a rowid column or sparse index
access for a work file.

System parameters
To activate star schema processing, we changed the default DSNZPARMs as shown in
Example 7-41.

Example 7-41 System parameters implementation for start join

STARJOIN=1
SJTABLES=3

Changing this setting has the following effects:

� STARJOIN=1 enables star schema processing, and the optimizer considers the table with
the highest cardinality as the fact table. In our example, the table
ORDER_TRANSACTION_FACT is, by far, bigger than any of the dimension tables.

� SJTABLES=3 indicates that star schema processing will be considered when at least
three tables, including the fact table, are included in a query block candidate to star join.
This value is acceptable for our purposes, but you can find it too aggressive because start
join or pair-wise access methods do not always provide the better performance. In mixed
workloads, you might consider using a higher value for your installation.

Because these parameters can be changed online, we assembled a specific DSNZPARM
load module to activate and deactivate these two parameters as desired, as shown in
Example 7-42.

Example 7-42 Online activation of star schema processing parameters

-D912 SET SYSPARM LOAD(STARPARM)
DSN9022I -D912 DSNZCMD0 'SET SYSPARM' NORMAL COMPLETION
DSNZ006I -D912 DSNZCMD1 SUBSYS D912 SYSTEM PARAMETERS LOAD MODULE NAME STARPARM
IS BEING LOADED
DSNZ007I -D912 DSNZCMD1 SUBSYS D912 SYSTEM PARAMETERS LOAD MODULE NAME STARPARM
LOAD COMPLETE

During our testing, we were able to fall back from these changes, that is to deactivate these
parameters, by reloading the startup DSNZPARM as shown in Example 7-43 on page 134.
You might consider this as a quick method to fix a performance issue related to star schema
processing.

Chapter 7. Functions in DB2 for z/OS for a data warehouse 133

Example 7-43 Deactivating star schema processing parameters by reloading startup zparms

-D912 SET SYSPARM STARTUP
DSN9022I -D912 DSNZCMD0 'SET SYSPARM' NORMAL COMPLETION
DSNZ011I -D912 DSNZCMD1 SUBSYS D912 SYSTEM PARAMETERS SET TO STARTUP

We used Optimization Service Center to verify the changes on these system parameters, as
shown in Example 7-44.

Example 7-44 Optimization Service Center report on changed values for STARJOIN, SJTABLES

****Optimization Service Center Parameter Browser *********
Parameter: SJTABLES
Value: 00003

****Optimization Service Center Parameter Browser *********
Parameter: STARJOIN
Value: 00001

Observed changes on access path
After verification of the system parameters changes, the query shown in Example 7-38 on
page 130 is explained again. The changes on access path as reported by the Optimization
Service Center are shown in Figure 7-11 on page 135. We numbered some of the elements
of this graph that are the indication of a star join processing being implemented:

Point 1 STARJOIN node. This node indicates the execution of a star join operation.

Point 2 Star join dimension work file node. A star join dimension work file node represents
a work file that results from the sorting of a dimension table or another star join
dimension work file during a data manager pushdown star join.

Point 3 This part of the graph indicates that the dimension table BRANCH_DIM is
accessed by using one of its indexes.

Point 4 This part shows that the access to dimension tables, for local qualification or rows,
is not exclusively done by index access. The table CUSTOMER_DIM is read by a
table space scan. We might consider adding a proper index to improve
performance.

134 Enterprise Data Warehousing with DB2 9 for z/OS

Figure 7-11 Access path changes after enabling a star join

Point 5 A new section is activated in the Optimization Service Center access path graph
when a star join is involved, star join layout. This section is shown in Figure 7-12.

Figure 7-12 Star join layout in Optimization Service Center

Table 7-4 shows relevant PLAN_TABLE information for this explanation.

Table 7-4 Sample PLAN_TABLE extract after activating star schema processing

PLANNO METHOD TNAME JOIN
TYPE

SORTN
JOIN

ACCESS
TYPE

PRIMARY ACCESS
TYPE

1 0 DATE_DIM S N I

2 1 BRANCH_DIM S Y I T

3 1 CUSTOMER_DIM S Y R T

4 1 PART_DIM S Y I T

Chapter 7. Functions in DB2 for z/OS for a data warehouse 135

The PLAN_TABLE shows JOIN_TYPE=’S’ for this query, meaning that it chooses to execute
a star join. It will access four of five dimensions before accessing the fact table, as shown in
Figure 7-12 on page 135. This decision is based on costs. The optimizer can select another
strategy involving one, two, or all dimensions before accessing the fact table.

The value PRIMARYACCESS_TYPE = ‘T’ in the PLAN_TABLE indicates that there is
materialization into a work file, and the work file is accessed via sparse index access.
Figure 7-13 shows a graphical representation of this work file and the use of a sparse index.

Figure 7-13 Optimization Service Center star join dimension node type

The optimizer chooses a fact table clustering index that qualifies the most number of join
columns. In this example, it is the index that is created in Example 7-39. Based on this index,
DB2 performs a Cartesian join on the corresponding dimension tables in the index key order.
For each record in the resulting virtual table, DB2 uses a matching index scan on the fact table
to find qualifying records. During run time, DB2 does not create the virtual table. However, it
sorts each dimension table in the fact table index key order, and uses a variant of a nested loop

5 1 ORDER_TRANSACTION_FACT S N I

6 1 SUPPLIER_DIM N I

PLANNO METHOD TNAME JOIN
TYPE

SORTN
JOIN

ACCESS
TYPE

PRIMARY ACCESS
TYPE

136 Enterprise Data Warehousing with DB2 9 for z/OS

join to join them together. DB2 also uses a special technique, called index skipping, to further
reduce the number of rows that it needs to retrieve from the dimension tables.

This star schema does not contain snowflakes. If they exist, they are processed before the
central part of the star join as individual query blocks and are materialized into work files, one
for each snowflake.

During our tests, we provided the optimizer the choice of having twice the same index
described in Example 7-39. It is the multicolumn index that is created to support the star join.
One one of the indexes was compressed. Example 7-45 shows some of its characteristics.

Example 7-45 Compression on a star schema index

--
IDX COMP COLS AVGKEYL PGSIZE SPACE NLEAF NLEVELS
--
SJOIN_ALL_KEY N 5 20 4 234000 57870 4
SJOIN_ALL_KEY_COMP Y 5 20 8 151200 34687 4

Index compression can be a good idea for this kind of index because they can be big specially
when the star schema contains a large number of dimension keys. In our tests, we observed
that the optimizer takes the compressed version of the index, instead of the non-compressed
one, which is the opposite of what we observed during non-star join tests. The assumption is
that the optimizer is more favorable to compressed versions of the same index when it is
deployed in a star join context, but you have to validate this observation on your own
environment.

Dynamic index ANDing
Dynamic index ANDing (also known as pair-wise join) is one of the new features on DB2 9 for
z/OS for data warehousing. It provides a simpler solution to previous index design challenges
for star schemas.

With star schema, the filtering is done generally on the dimension tables and not on the fact
table. These dimensions are generally independent. Creating fact table indexes to support the
various combination of filtering dimensions was one of the challenges of a star schema before
the introduction of dynamic index ANDing.

Dynamic index ANDing only requires a single column index for each filtering dimension on the
fact table. Each filtering dimension is accessed independently and in parallel. Each dimension
is joined with the fact table indexes independently, building separate RID lists.

During run time, each of these parallel processes is checked for completion. In case a long
running process is still executing after all the others have finished, DB2 can decide to
terminate its processing to avoid waiting until it ends. This provides the advantage of being
able to recover, at run time, out of a less than perfect access path choice made at bind or
prepare time.

The obtained RIDs are then combined and intersected before accessing the fact table. This
ability of dynamically ANDing RIDs avoids the need of defining fact table indexes with the
combination of the dimension keys.

A RID pool failure during RID list processing causes a fall back to the table space scan in DB2
for z/OS V8, which may have huge impacts on performance. In DB2 9 for z/OS, within the
dynamic index ANDing access method, a RID pool failure does not fall back to a table space
scan. The current RID list is written into a work file, and processing continues by writing into
that work file.

Chapter 7. Functions in DB2 for z/OS for a data warehouse 137

In summary, dynamic index ANDing provides the following improvements:

� Pre-fact table filtering to filter dimensions that are accessed concurrently

� Runtime optimization, which terminates poorly filtering processing on dimension tables at
run time

� More aggressive parallelism

� Fallback to a work file for RID pool failure instead of table space scan

Enabling data caching for star schema queries
You can enable data caching to improve the performance of queries on star schemas. When
data caching is enabled for star schemas, DB2 caches data from work files that are used by
star schema queries.

Data caching provides the following advantages:

� Immediate data availability

During a star join operation, work files might be scanned many times. If the work file data
is cached in the dedicated virtual memory pool, that data is immediately available for join
operations.

� Reduced buffer pool contention

Because the virtual memory space for data caching is separated from the work file buffer
pool, contention with the buffer pool is reduced. Reduced contention improves
performance particularly when sort operations are performed concurrently.

If the dedicated memory pool is not large enough to contain the materialized work file, DB2
uses a sparse index on the work file instead.

OMEGAMON XE for DB2 Performance Expert on z/OS, in combination with IFCID 002, can
be used to monitor this pool performance, as shown in Example 7-46.

Example 7-46 DB2 OMEGAMON/PE Record trace - IFCID 002 - STARJOIN pool statistics

STARJOIN POOL STATISTICS
CURRENT POOL SIZE (MB) 102
POOL FULL FAILURES 101
ALLOCATION REQUESTS 100
MAX POOL SIZE (MB) 103

In DB2 9 for z/OS, in-memory data caching is extended to joins other than the star join. Since
DB2 9 uses a local pool above the bar instead of a global pool, data caching storage
management is associated with each thread and, therefore, potentially reduces storage
contention.

Tip: With DB2 9 for z/OS, a local pool above the 2 GB bar is used instead of a global pool.
DSNZPARM MXDTCACH specifies the maximum size in MB (default of 20 MB) of virtual
memory for data caching each thread. To set the pool size, use the MXDTCACH DSNTIP8
installation panel. To determine the best setting for the size of this pool, refer to the DB2
Version 9.1 for z/OS Performance Monitoring and Tuning Guide, SC18-9851.

138 Enterprise Data Warehousing with DB2 9 for z/OS

7.7 Index on expressions

DB2 9 for z/OS introduces indexes on expressions. This new feature can enhance
performance for queries if the optimizer decides to use the index on expression.

In contrast to simple indexes, where index keys consist of a concatenation of one or more
table columns, the index key values on this new kind of index are not the same as the values
in the table columns. The values have been transformed or precalculated by the specified
expressions called key expressions. An index can mix regular columns and key expressions.

The key expression specifies an expression that returns a scalar value and cannot be
specified with the GENERATE KEY USING clause. Each key expression must contain as
least one reference to a column.

A key expression cannot contain the following items:

� A subquery
� An aggregate function
� An undeterministic function
� A function that has an external action
� A user-defined function
� A sequence reference
� A host variable
� A parameter marker
� A special register
� A CASE expression
� An online analytical processing (OLAP) specification

Example 7-47 shows an extract of the DB2 V9 for z/OS SQL reference, which includes how to
integrate the expression into the index definition.

Example 7-47 Index creation DDL - Index on expression

>>-CREATE--+----------------------------+--INDEX--index-name---->
 '-UNIQUE--+----------------+-'

>--ON--->

>--+-table-name--(------+-column-name----+--+--------+---+--)-+-->
 | '-key expression-' +-DESC---+ |
 | '-RANDOM-' |
 '-aux-table-name---'

Keep in mind the following design considerations and limitations:

� An index on expression cannot be a clustering index.

� If the index is created by using an expression, EXECUTE privilege is required on any
user-defined function that is invoked in the index expression.

� All references to columns of table name must be unqualified. Referenced columns cannot
be large object (LOB), XML, or DECFLOAT data types or a distinct type that is based on
one of these data types. Referenced columns cannot include any FIELDPROCs or a
SECURITY LABEL.

Important: One of the most important applications of index on expression is the ability to
make stage 2 predicates indexable, providing potentially large performance improvements.

Chapter 7. Functions in DB2 for z/OS for a data warehouse 139

� If key expression references a cast function, the privilege set must implicitly include
EXECUTE authority on the generated cast functions for the distinct type.

� If key expression references the LOWER or UPPER functions, the input string expression
cannot be FOR BIT DATA, and the function invocation must contain the locale name
argument.

� The maximum length of the text string of each key expression is 4000 bytes after
conversion to UTF-8. The maximum number of key expressions in an extended index
is 64.

Refer to DB2 documentation for further details about limitations and restrictions for index on
expressions.

Design example
Use index on expression when you want an efficient evaluation of queries with a column
expression. You can consider the creation of an index on expression to improve performance.
The precalculated values are stored on the index. This saves the runtime evaluation of the
expression. It can also provide index only access paths that are not possible otherwise.

The query in Example 7-48 is considered stage 2 and cannot use the index
OLTP.CUSTOMER_X1 because of the UPPER function.

Example 7-48 Stage 2 predicate query example

CREATE TABLE OLTP.CUSTOMER
(CUST_KEY INTEGER NOT NULL,

NAME VARCHAR(25),
ADDRESS VARCHAR(40),
COUNTRY CHAR(25),
PHONE CHAR(15),
ACCTBAL DECIMAL(12,2),
MKTSEGMENT CHAR(10)

);

CREATE INDEX OLTP.CUSTOMER_X1
ON
OLTP.CUSTOMER
(NAME, ACCTBAL);

SELECT
ACCTBAL
FROM OLTP.CUSTOMER
WHERE UPPER(NAME) = ‘BOEHLER’
;

Example 7-49 shows how to implement a simple index on expression that makes the
predicate stage 1 and indexable.

Example 7-49 Index on expression creation example

CREATE INDEX OLTP.CUSTOMER_XE1
ON
OLTP.CUSTOMER
(UPPER(NAME), ACCTBAL);

All the information needed for the key expression evaluation must be contained in a single
row.

140 Enterprise Data Warehousing with DB2 9 for z/OS

Example 7-50 shows a DDL for index creation failing with return code -120, which means that
an aggregate function cannot be used for a key expression.

Example 7-50 Index on expression cannot contain aggregate functions

CREATE INDEX
OLTP.CUSTOMER_XE2
ON
OLTP.CUSTOMER
(SUM(ACCTBAL));
---------+---------+---------+---------+---------+---------+---------+---------+
DSNT408I SQLCODE = -120, ERROR: AN AGGREGATE FUNCTION IS NOT VALID IN THE
 CONTEXT IN WHICH IT WAS INVOKED
---------+---------+---------+---------+---------+---------+---------+---------+

Example 7-51 shows the successful creation of an index including a multiplication expression.
SQLCODE 807 is a warning message that indicates that the runtime evaluation of the
expression can cause overflow. This message does not prevent index creation.

Example 7-51 Creating an index on expression

CREATE INDEX OLTP.CUSTOMER_XE3
ON OLTP.CUSTOMER
(ACCTBAL*1000);
---------+---------+---------+---------+---------+---------+---------+---------+
DSNT404I SQLCODE = 807, WARNING: THE RESULT OF DECIMAL MULTIPLICATION MAY
 CAUSE OVERFLOW
---------+---------+---------+---------+---------+---------+---------+---------+
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0
---------+---------+---------+---------+---------+---------+---------+---------+

Some changes were introduced in the DB2 catalog to support index on expression.
Example 7-52 shows an extract of the RUNSTATS utility executed after the index creation. It
includes the update of the related new catalog tables SYSKEYTARGETS and
SYSKEYTGTDIST. Notice that SYSCOLUMNS is not updated.

Example 7-52 Runstats output for an index on expression

DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = CRIS.CRISD
DSNUGUTC - RUNSTATS TABLESPACE STARJOIN.LINEITEM TABLE(ALL) INDEX(ALL)
DSNUSUTP - SYSTABLEPART CATALOG UPDATE FOR STARJOIN.LINEITEM SUCCESSFUL
....
DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR WORK.LINEITEM_X1 SUCCESSFUL
DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR WORK.LINEITEM_XEXP_01 SUCCESSFUL
DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR WORK.LINEITEM_X1 SUCCESSFUL
DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR WORK.LINEITEM_X1 SUCCESSFUL
DSNUSUKT - SYSKEYTARGETS CATALOG UPDATE FOR WORK.LINEITEM_XEXP_01 SUCCESSFUL
DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR WORK.LINEITEM_XEXP_01 SUCCESSFUL
DSNUSUCD - SYSCOLDIST CATALOG UPDATE FOR WORK.LINEITEM_X1 SUCCESSFUL
DSNUSUKD - SYSKEYTGTDIST CATALOG UPDATE FOR WORK.LINEITEM_XEXP_01 SUCCESSFUL
DSNUSEOF - RUNSTATS CATALOG TIMESTAMP = 2008-04-25-15.52.50.656740
DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Chapter 7. Functions in DB2 for z/OS for a data warehouse 141

The new catalog tables are impacted by RUNSTATS in an index that contains an expression
as follows:

� SYSIBM.SYSKEYTARGETS contains one row for each key target that is participating in
an extended index definition.

� SYSIBM.SYSKEYTGTDIST contains one or more rows for the first key target of an
extended index key.

Taking advantage of index on expressions

We observed that the optimizer does not use the index on expression in some circumstances
where, for example, an aggregate function and a GROUP BY are involved. The optimizer
prefers to use the traditional index and make the calculations before the resolution of the
GROUP BY.

Complex expressions that are good candidates for materialized query tables (MQTs) can also
be implemented as index on expressions. You may consider this possibility if your application
requirements are not compatible with an MQT because, for example, keeping the data up to
date requires a high frequency of REFRESH operations. Expressions on indexes are
calculated and kept in sync with the base data as soon as the data is updated.

Example 7-53 shows a query including a predicate that can be made indexable by the
implementation of the index shown in Example 7-54.

Example 7-53 Sample query from TCP-H for index on expression implementation

SELECT
L_LINENUMBER,
SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)*(1+L_TAX)) AS SUM_CHARGE
FROM
WORK.LINEITEM
GROUP BY
L_LINENUMBER;

Example 7-54 Creating an index on expression

CREATE INDEX
WORK.LINEITEM_XEXP_01
ON
WORK.LINEITEM
 (L_LINENUMBER ASC,
 L_EXTENDEDPRICE*(1-L_DISCOUNT)*(1+L_TAX)
);

Important: You do not need to change your query to help the optimizer to use an index
that contains an expression. However, further changes to the query make the optimizer
skip the index on expression. On dynamic SQL environments, this can cause the index not
to be used.

142 Enterprise Data Warehousing with DB2 9 for z/OS

7.8 Working with the ADD CLONE SQL command

The service-level agreement (SLA) of data warehouse systems becomes more and more
aggressive, and a 24x7x365 SLA is not exaggerated for operational data warehouses.

Many installations have data warehouse processing that involves LOAD REPLACE utilities
that make the objects unavailable longer than desired or allowed. Other installations might
have an online process that includes the massive updating or summarization of data that
might encounter or produce concurrency issues.

The new cloned table concept provides the ability to generate a table with the exact same
attributes as a table that already exists in the data warehouse. While the original object
remains operational, the clone can be acceded by applications, SQL, or utilities. It can also be
used as the target of the offline or disreputable processing without impacting the operations
on the base table. After the update processing is finished, there is an exchange of data, and
the base table becomes the container of the information of the clone, and vice versa.

The creation or drop of a clone table does not impact applications that access base table
data.

Figure 7-14 on page 144 illustrates the steps that are involved in a cloning operation. The
steps are described as follows:

1. The process starts with the ADD CLONE SQL command against the base table. The
clone table is created identical to the base table in every way, with the same columns,
check constraints, indexes, and before triggers, for example. Security privileges are not
cloned, and privileges need to be applied on the clone table, unless using Resource
Access Control Facility (RACF)-based security with an appropriate profile.

2. After the clone objects creation, you can access them directly without impacting the base
table. Processes that require exclusive locking on the objects or that can be
non-compatible with an operational data warehouse can be executed while the base table
is accessible all the time to users and applications.

3. After the update processing is achieved on the clone table, it contains the most updated
information. The EXCHANGE DATA SQL command is run. You can imagine this operation
like an extended FAST SWITCH that is applied to all the VSAM data sets involved in the
object definitions. Table spaces, indexes, and auxiliary table spaces for LOBs have their
definitions changed in the DB2 catalog. This quick operation makes available the new data
to the users in a nondisruptive and fast way. The clone table, which now contains the data
that was previously available for the users, remains available for another cloning cycle.

Important: The cloning process does not apply to data. No rows are copied from the base
table to the clone, only the definition of the table.

Important: No base object quiesce is necessary. This process does not invalidate plans,
packages, or the dynamic statement cache.

Chapter 7. Functions in DB2 for z/OS for a data warehouse 143

Figure 7-14 ADD CLONE process schematic representation

7.8.1 Operating cloned objects

A base table must be compliant with some restrictions before it can accept a clone:

� It cannot participate in a referential constraint.

� The base table cannot have any AFTER triggers (only BEFORE triggers) defined against
it.

� Only one clone relationship can be created for a table.

� It can only create a clone in a DB2 managed table space. The table space is a universal
table space, and there is only a table in the table space.

� Creating a clone against a table defined in a non-universal table space will not fail and a
SQL error is not received. However the table is not defined within the complete scope of
the ADD CLONE command. That is, indexes will be missing.

� No clones can be defined on MQTs.

The following considerations apply after the clone creation:

� A base table cannot receive a referential integrity constraint if the table has been cloned.

� After a table enters a cloned relationship, you can create a BEFORE trigger on the base
table and that trigger will be created for base and clone tables.

� Index creation is allowed against the base table after that table has been cloned, and that
index will be created for the base and cloned tables. If the clone table should happen to
have data in it when the index is created, the index on the clone table will be placed in
RBDP/PSRBD status.

� The RUNSTATS utility cannot be run against a clone table.

� FASTSWITCH is not allowed.

� No online schema changes for base and clone table are allowed.

� Real-time statistics for the base table are invalidated.

144 Enterprise Data Warehousing with DB2 9 for z/OS

Example 7-55 shows the DDL that is used for the clone creation of three tables of our data
model. The name for the clone objects follows the naming rules for tables.

Example 7-55 SQL sample of creating a CLONE table of CUSTOMER

ALTER TABLE EXAMPLE.CUSTOMER ADD CLONE EXAMPLE.CUSTOMER_CLONE;
ALTER TABLE EXAMPLE.ORDERS ADD CLONE EXAMPLE.ORDERS_CLONE;
ALTER TABLE EXAMPLE.LINEITEM ADD CLONE EXAMPLE.LINEITEM_CLONE;

Example 7-56 shows a sample query against the DB2 catalog that can be used for getting
information about cloned objects.

Example 7-56 Sample query for inquiring clone tables information from the DB2 catalog

SELECT
 SUBSTR(NAME,1,15) AS NAME
 ,TYPE
 ,SUBSTR(TSNAME,1,8) AS TSNAME
 ,CARD
 ,NPAGES
 ,PCTPAGES
 ,CREATEDTS
 ,HEX(RBA1) AS RBA1
 ,HEX(RBA2) AS RBA2
 ,STATSTIME
FROM
SYSIBM.SYSTABLES
WHERE DBNAME = 'CLONING';

Example 7-57 shows a sample output.

Example 7-57 Sample DB2 catalog information about cloned tables

--
NAME TYPE TSNAME CARD NPAGES PCTPAGES CREATEDTS RBA1 RBA2
--
ORDERS T ORDERS -1 153 85 2008-04-21-14.26.26.492153 00030842BC51 000308ABA074
ORDERS_CLONE C ORDERS 0 -1 -1 2008-04-21-14.53.44.435564 000308ABA074 000308ABA074
CUSTOMER T CUSTOMER -1 220 40 2008-04-21-14.26.57.889064 00030844A20E 000308AB2BCE
CUSTOMER_CLONE C CUSTOMER 0 -1 -1 2008-04-21-14.53.44.194213 000308AB2BCE 000308AB2BCE
LINEITEM T LINEITEM -1 186 34 2008-04-21-14.27.27.970241 000308465437 000308AC4726
LINEITEM_CLONE C LINEITEM 0 -1 -1 2008-04-21-14.53.44.675273 000308AC4726 000308AC4726

Example 7-57 shows the TYPE=C column value for cloned objects. This value is new in
DB2 9 and is used to inform you that the object is a clone. The column TBCREATOR of
SYSTABLES for a clone table is the name of the creator of the base table.

There is no statistical information on cloned tables. RUNSTATS cannot be executed against a
clone table. When the exchange of data is executed, the clone table inherits the statistical
information from the base table. In that way, packages and plans are not invalidated, but you
can consider running RUNSTATS to update the statistics information if the data on the clone
and base table are too different.

The CREATEDTS column of a clone table indicates the time stamp at which it was created.
The RBA1 column indicates the log RBA when the table was created, while RBA2 indicates
the log RBA when the table was last altered. RBA1 is different between a base table and its
clone, because they can only be created at different moments. However, RBA2 is the same
for both tables, as seen in Example 7-57.

Chapter 7. Functions in DB2 for z/OS for a data warehouse 145

Example 7-58 shows the display of a database that contains cloned objects.

Example 7-58 Display of a database that contains cloned objects

DSNT360I -D912 ***********************************
DSNT361I -D912 * DISPLAY DATABASE SUMMARY
 * GLOBAL
DSNT360I -D912 ***********************************
DSNT362I -D912 DATABASE = CLONING STATUS = RW
 DBD LENGTH = 12104
DSNT397I -D912
NAME TYPE PART STATUS PHYERRLO PHYERRHI CATALOG PIECE
-------- ---- ----- ----------------- -------- -------- -------- -----
ORDERS TSB1 0001 RW
ORDERS TSC2 0001 RW
ORDE1LEQ IXB1 L* RW
ORDE1LEQ IXC2 L* RW

The message DSNT397I in Example 7-58 shows the data header TYPE = TS for a table
space or IX for an index space. If the object is involved in cloning, the object type is appended
with a B for “base” or a C for “clone” along with a data set instance number.

Example 7-59 shows the VSAM data sets that re created during the cloning process of the
objects displayed in Example 7-58. The data set instance number is in bold.

Example 7-59 View of VSAM data sets underlying a cloned object

Command - Enter "/" to select action Message Volume

DSN912.DSNDBC.CLONING.ORDERS.I0001.A001 *VSAM*
DSN912.DSNDBC.CLONING.ORDERS.I0002.A001 *VSAM*
DSN912.DSNDBC.CLONING.ORDE1LEQ.I0001.A001 *VSAM*
DSN912.DSNDBC.CLONING.ORDE1LEQ.I0002.A001 *VSAM*

Refer to the column CLONE in the SYSTABLESPACE catalog table to determine if a table
space and all its related objects are involved with cloning. A CLONE='Y' value indicates that
cloning is active. The INSTANCE column value indicates the data set instance number for the
current base objects.

The cloned indexes are not visible in the DB2 Catalog, but the VSAM data sets are defined.
When defined, you can execute SQL against a cloned table, as shown in Example 7-60. The
DB2 Control Center (v9.5.0.808) and DB2 Admin Tool (DB2 Administration Menu 7.2.0)
cannot be used to perform a SELECT against a CLONE. Instead, use SPUFI.

Example 7-60 shows how you can execute an EXCHANGE DATA operation by using SPUFI.
This process is reversible. You can exchange data between the base table and its clone an
unlimited number of times.

Example 7-60 Exchange data execution sample

SELECT COUNT(*) FROM EXAMPLE.ORDERS ;
 5000
---------+---------+---------+---------+---------+---------+---------+
SELECT COUNT(*) FROM EXAMPLE.ORDERS_CLONE;
 1000
---------+---------+---------+---------+---------+---------+---------+
EXCHANGE DATA BETWEEN TABLE EXAMPLE.ORDERS_CLONE AND EXAMPLE.ORDERS;
---------+---------+---------+---------+---------+---------+---------+
COMMIT;
---------+---------+---------+---------+---------+---------+---------+

146 Enterprise Data Warehousing with DB2 9 for z/OS

SELECT COUNT(*) FROM EXAMPLE.ORDERS ;
 1000
---------+---------+---------+---------+---------+---------+---------+
SELECT COUNT(*) FROM EXAMPLE.ORDERS_CLONE;
 5000

Example 7-61 shows that an exchange data operation can be rolled back if needed.

Example 7-61 Rollback of an exchange data operation

SELECT COUNT(*) FROM EXAMPLE.ORDERS ;
 5000
---------+---------+---------+---------+---------+---------+---------+
SELECT COUNT(*) FROM EXAMPLE.ORDERS_CLONE;
 1000
---------+---------+---------+---------+---------+---------+---------+
EXCHANGE DATA BETWEEN TABLE EXAMPLE.ORDERS_CLONE AND EXAMPLE.ORDERS;
---------+---------+---------+---------+---------+---------+---------+
ROLLBACK;
---------+---------+---------+---------+---------+---------+---------+
SELECT COUNT(*) FROM EXAMPLE.ORDERS ;
 5000
---------+---------+---------+---------+---------+---------+---------+
SELECT COUNT(*) FROM EXAMPLE.ORDERS_CLONE;
 1000

When executing several EXCHANGE DATA operations within the same logical unit of work
(LUW), a rollback operation affects all of them. You must consider the scope of the LUW for
this kind of operations to keep the related objects in synchrony in case one of the operations
fails. Refer to Example 7-62.

Example 7-62 Exchange data and operations involving several clones

SELECT COUNT(*) FROM EXAMPLE.ORDERS ;
 1000
---------+---------+---------+---------+---------+---------+---------+---------+
SELECT COUNT(*) FROM EXAMPLE.ORDERS_CLONE;
 5000
---------+---------+---------+---------+---------+---------+---------+---------+
SELECT COUNT(*) FROM EXAMPLE.CUSTOMER ;
 1000
---------+---------+---------+---------+---------+---------+---------+---------+
SELECT COUNT(*) FROM EXAMPLE.CUSTOMER_CLONE;
 5000
---------+---------+---------+---------+---------+---------+---------+---------+
SELECT COUNT(*) FROM EXAMPLE.LINEITEM ;
 1000
---------+---------+---------+---------+---------+---------+---------+---------+
SELECT COUNT(*) FROM EXAMPLE.LINEITEM_CLONE;
 5000
---------+---------+---------+---------+---------+---------+---------+---------+
EXCHANGE DATA BETWEEN TABLE EXAMPLE.ORDERS_CLONE AND EXAMPLE.ORDERS;
---------+---------+---------+---------+---------+---------+---------+---------+
EXCHANGE DATA BETWEEN TABLE EXAMPLE.CUSTOMER_CLONE AND EXAMPLE.CUSTOMER;
---------+---------+---------+---------+---------+---------+---------+---------+
EXCHANGE DATA BETWEEN TABLE EXAMPLE.LINEITEM_CLONE AND EXAMPLE.LINEITEM;
---------+---------+---------+---------+---------+---------+---------+---------+
ROLLBACK;
---------+---------+---------+---------+---------+---------+---------+---------+
SELECT COUNT(*) FROM EXAMPLE.ORDERS ;

Chapter 7. Functions in DB2 for z/OS for a data warehouse 147

 1000
---------+---------+---------+---------+---------+---------+---------+---------+
SELECT COUNT(*) FROM EXAMPLE.ORDERS_CLONE;
 5000
---------+---------+---------+---------+---------+---------+---------+---------+
SELECT COUNT(*) FROM EXAMPLE.CUSTOMER ;
 1000
---------+---------+---------+---------+---------+---------+---------+---------+
SELECT COUNT(*) FROM EXAMPLE.CUSTOMER_CLONE;
 5000
---------+---------+---------+---------+---------+---------+---------+---------+
SELECT COUNT(*) FROM EXAMPLE.LINEITEM ;
 1000
---------+---------+---------+---------+---------+---------+---------+---------+
SELECT COUNT(*) FROM EXAMPLE.LINEITEM_CLONE;
 5000

Example 7-63 shows the procedure for dropping a clone object, which is done with the
ALTER command.

Example 7-63 Drop clone

ALTER TABLE ORIG.CUSTOM DROP CLONE TABLE;

7.9 Table space partitioning

In a data warehouse environment, the size, growth estimates, or both of certain tables, such
as fact tables and history tables, pose a challenge in designing and administering the table
space. They also present challenges in ensuring query performance, and loading and
deleting data. Partitioned table spaces, as they have evolved with the implementation in
DB2 9 for z/OS, help resolve most of these problems.

The partitioned table spaces have the following characteristics among others:

� There is a single table per table space.

� One table space consists of multiple physical data sets called partitions.

� Each partition can be considered as a unit of storage.

� They have a maximum of 4096 partitions.

� Each partition can reside in a different storage group.

� Partitions are based on the boundary values of data columns or on the size threshold of
physical data sets or a partition.

� They are highly scalable. The size limit of a partitioned table space is 128 TB.

� A utility job can work on a part of data, while allowing applications to access other parts.

� A partition can be added dynamically.

� A partition that contains old data can be reused by using rotation.

� The maximum size of each partition can be 64 GB (64 x 4096, not 128 TB).

� They can run a mass update, delete, or insert of jobs at partition level to reduce the elapse
time.

� DB2 can do parallel processing on more than one partition simultaneously.

148 Enterprise Data Warehousing with DB2 9 for z/OS

7.9.1 Universal table space

As a follow-on to all of the changes regarding partitioning in DB2 V8, which centered on the
unbundling of the partitioning index functions, DB2 9 has introduced universal table space as
a new partitioned table space type. Universal table spaces combine the advantages of both
partitioned and segmented table spaces. The new characteristics help with scalability and
growth of data.

There are two different types of universal table spaces:

� Partition by growth
� Partition by range

Partition by growth
Partition by growth simplifies manageability of table spaces that may exceed existing size
limitations that are associated with segmented table spaces. Partition-by-growth table spaces
have the following features:

� The creation of partitions is managed by DB2.

� DB2 automatically adds a new partition when an insert cannot be added to the current
partition.

� They are best used when a table is expected to exceed 64 GB and does not have a
suitable partitioning key for the table.

� They combine the size and growth capability of partitions along with space management,
mass delete, and insert performance characteristics of segmented table space.

� They are useful in a data warehouse environment to store high volume growth data
because the space management is done by DB2.

� They are created by specifying the MAXPARTITIONS, DSSIZE, and SEGSIZE parameters
in the CREATE TABLESPACE statement. This type of table space can grow up to 128 TB
with a maximum size determined by the values of MAXPARTITIONS, DSSIZE, and page
size.

– Like segmented table spaces, the SEGSIZE value must be a multiple of 4K between 4
and 64 (inclusive) and cannot be changed.

– The value of MAXPARTITIONS can range from 1 to 4096 (default 256), but the
maximum value depends upon the DSSIZE and page size value for the table space.

– DSSIZE can have one of the following values and cannot be changed:

• 1 G - 1 GB
• 2 G - 2 GB
• 4 G - 4 GB
• 8 G - 8 GB
• 16 G - 16 GB
• 32 G - 32 GB
• 64 G - 64 GB

Attention: For a DSSIZE of more than 4G, the following conditions are required:

� DB2 is running with DFSMS™ Version 1 Release 5.

� The data sets for the table space are associated with a DFSMS data class that
has been specified with extended format and extended addressability.

Chapter 7. Functions in DB2 for z/OS for a data warehouse 149

� They have better space management as it relates to varying-length rows because a
segmented space map page has more information about free space than a partitioned
space map page.

� They have improved mass delete performance and have immediate reuse of the segments
after the mass delete.

� A compression dictionary is copied from the previous partition to the new partition.

� The Freespace, caching, define, logging and trackmod attributes are same for each
partition.

� All utilities can operate at the partition level, except the LOAD utility.

� The APPEND clause on CREATE TABLE statement can be specified to insert the data at
the end of table space instead of searching for the space from the first partition. This
clause is useful in improving the performance when doing a bulk load in a data warehouse
environment.

� Example 7-64 shows a sample DDL for partition by growth. The DDL was used in our
scenario to create a table space for the ORDER_TRANSACTION_FACT table.

Example 7-64 DDL for partition-by-growth table space

CREATE TABLESPACE TSTRANFT IN DBTENGB USING STOGROUP TENGB
DSSIZE 2G MAXPARTITIONS 48 SEGSIZE 4 LOCKSIZE ANY BUFFERPOOL BP3

� They can also be created by using CREATE TABLE PARTITION BY SIZE EVERY nG
statement. This is only available when you do not specify a table space name in the
CREATE TABLE statement.

Partition by range
Partition-by-range table spaces have the following features:

� They require a partitioning column. Range-partitioned table spaces are based on
partitioning ranges for the partitioning column.

� They can spread a large table over several DB2 storage groups.

� They let a utility job work on part of the data, while allowing other applications to
concurrently access data on other partitions.

� They can break mass update, delete, or insert operations into separate jobs. Each works
on a different partition that is helpful in a data warehouse environment when doing mass
load, delete, or a table scan.

� The maximum size of a range-partitioned universal table space is 128 TB.

� All current types of indexes are allowed on partition-by-range table spaces.

� They combine the size and data distribution capability of the traditional partitioned table
space with space management, mass delete, and insert performance characteristics of
the segmented table space.

� They take advantage of parallelism for certain read-only queries. When DB2 determines
that processing will be extensive, it can begin parallel processing of more than one
partition at a time. Parallel processing (for read-only queries) is most efficient when the
partitions are spread over different disk volumes.

� They can take advantage of query parallelism in a DB2 data sharing group.

Note: The partition-by-growth table space cannot be used in a work file database and LOB
table spaces.

150 Enterprise Data Warehousing with DB2 9 for z/OS

� They are created by specifying the NUMPARTS, DSSIZE, and SEGSIZE parameters in
the CREATE TABLESPACE statement as shown in Example 7-65. This DDL was used to
create a table space for the PART table in our scenario.

Example 7-65 DDL for creating a partition-by-range table space

CREATE TABLESPACE TSPART IN DBTENGB
USING STOGROUP TENGB PRIQTY -1 SECQTY -1 SEGSIZE 4 DSSIZE 4G
NUMPARTS 10 COMPRESS YES BUFFERPOOL BP2

The PART table was created by using the PARTITION BY RANGE clause on the CREATE
TABLE statement. Ten partition ranges were defined as shown in Example 7-66.

Example 7-66 Partition-by-range table definition

PARTITION BY RANGE (P_PARTKEY)
PARTITION 1 ENDING AT (1250),
PARTITION 2 ENDING AT (2500),
PARTITION 3 ENDING AT (3750),
PARTITION 4 ENDING AT (4000),
PARTITION 5 ENDING AT (5250),
PARTITION 6 ENDING AT (6500),
PARTITION 7 ENDING AT (7750),
PARTITION 8 ENDING AT (8000),
PARTITION 9 ENDING AT (9250),
PARTITION 10 ENDING AT (10500))

� They provide better space management as it relates to varying-length rows because a
segmented space map page has more information about free space than a partitioned
space map page.

� They have improved mass delete performance and immediate reuse of the segments after
the mass delete.

� No index controlled partitioning can be defined. Only table controlled partitioning is
acceptable.

� They can grow up to 128 TB depending upon NUMPARTS, DSSIZE, and page size
values.

� Similar to partition-by-growth table spaces, the DSSIZE value can vary from 1G to 64 G.
The maximum DSSIZE value depends on the value of NUMPARTS that is specified. If
NUMPARTS is greater than 256, the maximum DSSIZE value also depends on the page
size of the table space.

� This table space can be used for doing a load and scan at the partition level.

� Data in the table is spread across the multiple partitions as per the table definition in the
partitioning key or the partitioning index on the table.

Data can be re-distributed between existing partitions by using ALTER TABLE with the ALTER
PARTITION clause and then doing a REORG on the table space. In the partition-by-range
table space, a partition can be added dynamically (as we describe in the following section), or
an existing partition that has old data can be reused.

Adding a partition
In a partition-by-range table space, a partition can be added dynamically by using the ALTER
TABLE statement with the ADD PARTITION clause. It adds a partition to the table and to each
partitioning index on the table. The existing table space PRIQTY and SECQTY attributes of
the previous logical partition are used for the space attributes of the new partition. For each
partitioned index, the existing PRIQTY and SECQTY attributes of the previous partition are

Chapter 7. Functions in DB2 for z/OS for a data warehouse 151

used. This feature is extremely useful in a data warehouse environment where a partition can
be added dynamically on new range of values or on the basis of a time period. For example,
on our PART table, if we want to add a new partition for new values ending at 12000, we can
use the SQL statement shown in Example 7-67. It adds another partition dynamically for the
p_partkey range from 10500 to 11999.

Example 7-67 Adding a partition

ALTER TABLE PART ADD PARTITION ENDING AT (12000)

Rotating a partition
The first logical partition in a partition-by-range table space can be reused by using the
ALTER TABLESPACE statement with the ROTATE PARTITION FIRST TO LAST clause. It
specifies that the first logical partition should be rotated to become the last logical partition. A
new range for is specified by using ENDING AT clause for this partition, which is now logically
last. This can be done dynamically, and the data in the first partition is deleted. A partition
rotation can be applicable when the data in the first partition is no longer of use to the
application.

For example, an application that requires only the last five years of data has a
partitioned-by-range table space that is partitioned on the year value. After five years, the first
partition can be reused by using the rotation-of-partition feature, which helps in reusing the
existing space and definitions.

7.10 Materialized query tables

MQTs offer a way to speed up response times on well-known and repeatable queries against
large volumes of data, where results are often expressed as summaries or aggregates. An
MQT is a real (materialized) table that is built from the result set of a query. Like any other
table, an MQT can have indexes. You can use RUNSTATS to collect and store table statistics.

MQTs primarily exist for performance. Properly selected, MQTs perform a set of calculations
that can be used over and over by subsequent queries, but without repeatedly going through
the same operations. The qualifying rows do not need to be fetched again, saving input time.
Also, the calculations do not need to be redone, which saves CPU time.

With informational referential constraints (NOT ENFORCED option), users can declare a
referential constraint and avoid the overhead of enforcing the referential constraints by DB2.
However, DB2 can use the data association information for query rewrite of MQTs when extra
tables are in the MQT definition.

In this section, we provide simple examples of MQTs as they relate to our scenario. For a
more comprehensive description, see Chapter 11, “Using materialized query tables to
improve SQL performance,” in DB2 Version 9.1 for z/OS Performance Monitoring and Tuning
Guide, SC18-9851.

7.10.1 When to consider an MQT

The design of good materialized query tables requires adequate up-front planning and
analysis. You need to be familiar with the query workload to identify patterns for accessing

152 Enterprise Data Warehousing with DB2 9 for z/OS

tables and frequently performed aggregation and summarization. When deciding whether to
create a materialized query table, consider:

� Does the MQT significantly increase performance?

� Do many queries benefit? Do the most frequent, most critical, or most expensive and
longest running queries benefit?

� Does the MQT offer resource savings: communication, I/O, and CPU?

� Is the loss of disk space that contains the MQT and its indexes a worthwhile trade for the
performance gained?

� What is the cost of updating or refreshing the MQT?

� What are the patterns for accessing groups of tables, for aggregation, and for grouping
requirements?

� How current does the data in the MQT need to be? Does it need to be up to the minute?

� For MQTs that are maintained in real time, are automatic updates too slow?

� What is the logging requirement when large MQTs are refreshed?

� Does the MQT need to be system-maintained or user-maintained?

7.10.2 MQTs used in our scenario

Example 7-68 defines an MQT in the ORDERS table that counts the orders by the customer
key and the order date with the following options:

DATA INITIALLY DEFERRED
Specifies that the data is not inserted into the MQT when it is created. Use the
REFRESH TABLE statement to populate the MQT.

REFRESH DEFERRED
Specifies that the data in the table can be refreshed at any time by using the
REFRESH TABLE statement.

MAINTAINED BY SYSTEM
Specifies that the MQT is maintained by the system. Only the REFRESH
statement is allowed on the table.

ENABLE QUERY OPTIMIZATION
Specifies that the MQT can be used for query optimization. In real life, we
recommend that you initially DISABLE QUERY OPTIMIZATION until after the
first refresh. Otherwise optimizer can redirect queries to an empty MQT.

Example 7-68 Creating MQT

CREATE TABLE ORDERS_MQT (CUSTKEY, ORDERDATE, CNT) AS
(SELECT O_CUSTKEY, O_ORDERDATE, COUNT(*)
 FROM DWHODS.ORDERS
 GROUP BY O_CUSTKEY, O_ORDERDATE)
DATA INITIALLY DEFERRED
REFRESH DEFERRED
MAINTAINED BY SYSTEM
ENABLE QUERY OPTIMIZATION;
---------+---------+---------+---------+---------+---------+--------
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0
---------+---------+---------+---------+---------+---------+--------
---------+---------+---------+---------+---------+---------+--------
DSNE617I COMMIT PERFORMED, SQLCODE IS 0
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0
---------+---------+---------+---------+---------+---------+--------

Chapter 7. Functions in DB2 for z/OS for a data warehouse 153

DSNE601I SQL STATEMENTS ASSUMED TO BE BETWEEN COLUMNS 1 AND 72
DSNE620I NUMBER OF SQL STATEMENTS PROCESSED IS 1
DSNE621I NUMBER OF INPUT RECORDS READ IS 34
DSNE622I NUMBER OF OUTPUT RECORDS WRITTEN IS 46

The MQT can be dropped like any other table, as shown in Example 7-69.

Example 7-69 Dropping MQT

DROP TABLE ORDERS_MQT;
---------+---------+---------+---------+---------+---------+----
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0
---------+---------+---------+---------+---------+---------+----
---------+---------+---------+---------+---------+---------+----
DSNE617I COMMIT PERFORMED, SQLCODE IS 0
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0
---------+---------+---------+---------+---------+---------+----
DSNE601I SQL STATEMENTS ASSUMED TO BE BETWEEN COLUMNS 1 AND 72
DSNE620I NUMBER OF SQL STATEMENTS PROCESSED IS 1
DSNE621I NUMBER OF INPUT RECORDS READ IS 35
DSNE622I NUMBER OF OUTPUT RECORDS WRITTEN IS 47

Another example of an MQT is in 12.4, “Improving response times by using materialized
query tables” on page 300, where we discuss operation business intelligence (BI)
implementation.

7.11 OLAP functions

DB2 9 for z/OS offers new SQL enhancements for improving OLAP functionalities in a data
warehouse solution. The following OLAP expressions were introduced in DB2 9 for z/OS:

� RANK and DENSE_RANK
� ROW_NUMBER

These functions provide the ability to return ranking and row numbering information as a
scalar value in the result query. The result of a RANK, DENSE_RANK, and ROW_NUMBER
specification is BIGINT, and the result cannot be null. When an OLAP function is invoked, a
window is specified that defines the rows and the order of rows over which the function is
applied.

7.11.1 RANK and DENSE _RANK

RANK or DENSE_RANK specifies the ordinal rank of a row that is computed within the
specified window. Rows that are not distinct, with respect to the ordering within the specified
window, are assigned the same rank. The value for the ranking can be with or without gaps in
the sequence depending upon the function that is used (RANK or DENSE_RANK) and
non-distinct values of the columns specified in the window.

RANK specifies that the row is 1 plus the number of rows preceding it in the result set. All the
rows that are not distinct have the same rank values. RANK and DENSE_RANK are useful
expressions in finding the top n rows in certain business scenarios, for example, in finding the
top 10 suppliers.

154 Enterprise Data Warehousing with DB2 9 for z/OS

The PARTITION BY clause defines the window within which the ranking occurs. Upon
changing the value of the PARTITION BY column or columns, the ranking is reset to 1.
Without the PARTITION BY clause, the window is the entire qualified result.

Refer to the query shown in Example 7-70 for the use of the RANK function. This query finds
the top four customers for each quarter in the year 2007 based on the highest quantity value.

Example 7-70 RANK expression

SELECT ORDER_YEAR_VAL, ORDER_QTR_CODE, CUST_NAME, RANK_VAL, TOTAL_QUANT
 FROM
 (SELECT B.ORDER_YEAR_VAL, B.ORDER_QTR_CODE, C.CUST_NAME, RANK() OVER (PARTITION BY B.ORDER_QTR_CODE
ORDER BY SUM(A.QUANTITY) DESC) AS RANK_VAL,
 SUM(A.QUANTITY) AS TOTAL_QUANT
 FROM

DWHDDS.ORDER_TRANSACTION_FACT AS A INNER JOIN DWHDDS.ORDERDATE_DIM_VW AS B ON A.ORDERDATEKEY
= B.ORDERDATEKEY INNER JOIN DWHDDS.CUSTOMER_DIM AS C ON A.CUSTKEY_DW = C.CUSTKEY_DW
 WHERE B.ORDER_YEAR_VAL = 2007

GROUP BY B.ORDER_YEAR_VAL, B.ORDER_QTR_CODE, C.CUST_NAME) AS QTR_RANKING
 WHERE RANK_VAL < 5
 ORDER BY ORDER_QTR_CODE, RANK_VAL

The query in Example 7-70 does the SUM of quantity bought by customers in each quarter
and then uses the RANK function to rank them for each quarter based on the total quantity
bought in each quarter. The quantity data is read from the ORDER_TRANSACTION_FACT
table and then ranked per quarter with the help of the PARTITION BY clause in the RANK
expression. Refer to the Figure 7-15 for the results from the query in Example 7-70.

Figure 7-15 Results for the top four customers for each quarter

If you notice the results for QTR 2, three customers have the third RANK because they were
identical in the total number of items bought by them in QTR2. As per the RANK expression
definitions, if we use a similar query to get the top 10 customers, then the next RANK after
these three customers is sixth. Therefore the RANK function leaves holes in the rank values
that are retrieved.

The DENSE_RANK function specifies that the rank of a row is defined as 1 plus the number
of preceding rows that are distinct with respect to the ordering. Therefore, there will be no
gaps in the sequential rank numbering. To describe DENSE_RANK functionality in more

Chapter 7. Functions in DB2 for z/OS for a data warehouse 155

detail, we use this expression for the previous scenario and then compare the results with
RANK. Example 7-71 shows the SQL statement that uses DENSE_RANK.

Example 7-71 DENSE_RANK expression

SELECT ORDER_YEAR_VAL, ORDER_QTR_CODE, CUST_NAME, RANK_VAL, TOTAL_QUANT
 FROM
 (SELECT B.ORDER_YEAR_VAL, B.ORDER_QTR_CODE, C.CUST_NAME, DENSE_RANK() OVER (PARTITION BY
B.ORDER_QTR_CODE ORDER BY SUM(A.QUANTITY) DESC) AS RANK_VAL,
 SUM(A.QUANTITY) AS TOTAL_QUANT
 FROM
 DWHDDS.ORDER_TRANSACTION_FACT AS A INNER JOIN DWHDDS.ORDERDATE_DIM_VW AS B ON A.ORDERDATEKEY
= B.ORDERDATEKEY INNER JOIN DWHDDS.CUSTOMER_DIM AS C ON A.CUSTKEY_DW = C.CUSTKEY_DW
 WHERE B.ORDER_YEAR_VAL = 2007
 GROUP BY B.ORDER_YEAR_VAL, B.ORDER_QTR_CODE, C.CUST_NAME) AS QTR_RANKING
 WHERE RANK_VAL < 5
 ORDER BY ORDER_QTR_CODE, RANK_VAL

Figure 7-16 shows the results of the DENSE_RANK expression.

Figure 7-16 Results from DENSE_RANK expression

Between the results for QTR2 when using the RANK expression and when using the
DENSE_RANK expression, the difference is in the results for the QTR2. In RANK, we did not
have any customer with a RANK value of four because there were three customers with a
RANK value equal to three. Therefore, the next RANK value was six. Because the query only
looks for rows that have a RANK value up to four, it did not have the next RANK in the result
set. Alternatively when using DENSE_RANK, the next RANK assigned, after the three
customers who received RANK value three, was RANK value four. Therefore, they were
included in the result set.

156 Enterprise Data Warehousing with DB2 9 for z/OS

7.11.2 ROW_NUMBER

ROW_NUMBER specifies that a sequential row number is computed for the row that is
defined by the ordering, starting with 1 for the first row. If the ORDER BY clause is not
specified in the window, the row numbers are assigned to the rows in an arbitrary order,
because the rows are returned (not according to any ORDER BY clause in the
select-statement). ROW_NUMBER prompts DB2 to provide a sequential counter based on
the expression specified in the OVER keyword. To demonstrate the result by using
ROW_NUMBER from the previous scenario, we ran the SQL statement shown in
Example 7-72 on page 157.

Example 7-72 ROW_NUMBER

SELECT ORDER_YEAR_VAL, ORDER_QTR_CODE, CUST_NAME, ROW_VAL, TOTAL_QUANT
 FROM
 (SELECT B.ORDER_YEAR_VAL, B.ORDER_QTR_CODE, C.CUST_NAME, ROW_NUMBER() OVER (PARTITION BY
B.ORDER_QTR_CODE ORDER BY SUM(A.QUANTITY) DESC) AS ROW_VAL,
 SUM(A.QUANTITY) AS TOTAL_QUANT
 FROM
 DWHDDS.ORDER_TRANSACTION_FACT AS A INNER JOIN DWHDDS.ORDERDATE_DIM_VW AS B ON A.ORDERDATEKEY
= B.ORDERDATEKEY INNER JOIN DWHDDS.CUSTOMER_DIM AS C ON A.CUSTKEY_DW = C.CUSTKEY_DW
 WHERE B.ORDER_YEAR_VAL = 2007
 GROUP BY B.ORDER_YEAR_VAL, B.ORDER_QTR_CODE, C.CUST_NAME) AS QTR_RANKING
 WHERE ROW_VAL < 5
 ORDER BY ORDER_QTR_CODE, ROW_VAL

Figure 7-17 shows the results.

Figure 7-17 Results from ROW_NUMBER expression

Notice that the result set ROW_NUMBER expression generates a unique sequence number
for each customer in all four quarters based on the highest quantity value.

Chapter 7. Functions in DB2 for z/OS for a data warehouse 157

158 Enterprise Data Warehousing with DB2 9 for z/OS

Chapter 8. Q replication and event
publishing

In this chapter, we discuss Q replication and event publishing as solutions for near real-time,
but asynchronous, replication of data and propagation of changes from the operational
system to the operational data warehouse. We also show how to implement Q replication and
event publishing for an operational data warehouse.

This chapter contains the following sections:

� 8.1, “Introduction to replication functions” on page 160
� 8.2, “Implementation of Q replication and Event Publisher” on page 162
� 8.3, “Operating Q replication and event publishing” on page 195

8

© Copyright IBM Corp. 2008. All rights reserved. 159

8.1 Introduction to replication functions

Replication involves the copying of changes from one location, which is the source, to
another location, which is the target, and synchronizing the data in both locations. The source
and the target can be in servers that are on the same machine or on different machines in the
same network.

Publishing is a technique that captures changes in a location, which is the source, and makes
the changes available for applications or processes. These processes can transform this
information before saving it in an operational data warehouse, for example.

The IBM WebSphere Replication Server is a collection of smaller programs that track
changes to source databases and replicate some or all of the changes to target databases.
To detect these changes, a capture process continuously reads the database recovery log.
You can use WebSphere Replication Server to help maintain your data warehouse and
facilitate real-time business intelligence. WebSphere Replication Server provides the flexibility
to distribute, consolidate, and synchronize data from many locations by using differential
replication or extract, transform, and load (ETL) processes.

8.1.1 Q replication

Two different types of replication are available in WebSphere Replication Server: Q replication
and SQL replication. The main difference is the repository of changes and how these
changes are transmitted:

� Q replication is a WebSphere MQSeries-based product, and the captured changes are
stored and moved using MQ queues.

� SQL replication keeps track of changes in DB2 tables.

Because of its low latency and high throughput capabilities, we implemented Q replication in
our scenario.

The Q Capture program replicates transactions from a source table and puts those
transactions on a send queue in compact format. Then the Q Apply program gets the
compact messages from a receive queue and applies the transactions to a target table (either
a DB2 table or a nickname on a DB2 federated server) or passes them to a stored procedure.
Figure 8-1 on page 161 shows a schematic representation of the Q replication process.

The following replication scenarios are available within Q replication:

� Unidirectional replication, which replicates changes in a single direction, from source to
target

� Bidirectional replication, in which the data replication occurs in two senses

This configuration requires source and target tables to be identical. Also, it is not possible
to replicate a subsets of rows.

� Peer-to-peer replication, under which replication occurs between tables on two or more
servers

160 Enterprise Data Warehousing with DB2 9 for z/OS

For our scenario we used unidirectional replication. With unidirectional replication, you
replicate data from source tables to target tables or stored procedures. Unidirectional Q
replication has the following characteristics:

� Transactions that occur at a source table are replicated over WebSphere MQ queues to a
target table or are passed as input parameters to a stored procedure to manipulate the
data.

� Transactions that occur at the target table are not replicated back to the source table.

� The target table typically is read only or is not updated by applications other than the Q
Apply program.

From any source table, you can replicate either all of the columns and rows or only a subset of
the columns and rows. If you want to transform the data, you can specify for the Q Apply
program to pass the transactions from a source table as input parameters to a stored
procedure that you provide. The stored procedure can update data in either a DB2 or
non-DB2 server.

You must create at least one replication queue map to transport data from the Q Capture
program on the source server to the Q Apply program on the target server (or the DB2
federated server if you are replicating to a non-DB2 target table). There is one Q subscription
for every pair of source and target tables or every pair of source tables and stored
procedures.

Figure 8-1 Q replication overview

Refer to the following Redbooks publications for more information:

� WebSphere Information Integrator Q Replication: Fast Track Implementation Scenarios,
SG24-6487

� WebSphere Replication Server for z/OS Using Q Replication: High Availability Scenarios
for the z/OS Platform, SG24-7215

Chapter 8. Q replication and event publishing 161

8.1.2 Event publishing

Event publishing captures changes on source tables and converts committed transactional
data to messages in XML or delimited format. Each message can contain an entire
transaction or only a row-level change. These messages are put on an MQ queue and read
by an application.

You can use event publishing for a variety of purposes that require published data, including
feeding central information brokers and Web applications, and triggering actions based on
insert, update, or delete operations at the source tables. Source tables can be relational
tables in DB2 for z/OS and DB2 for Linux, UNIX, and Windows.

In our data warehouse implementation, the messages are taken by DataStage, which
updates the operational data warehouse system after data transformation.

Figure 8-2 shows a schematic representation of event publishing.

Figure 8-2 Event publishing overview

8.2 Implementation of Q replication and Event Publisher

In this section, we explain how we implemented Q replication and Event Publisher in our
operational data warehouse environment:

� Q replication is used for the tables ORDER and LINEITEMS. The information of these
tables is required in the operational data warehouse and changes must be propagated
with low latency. By having these tables, current information can be available for
operational reporting without the need of accessing the production tables. The replication
is done unidirectionally from the production system to the operational data warehouse. No
change is done to the data, and the source and target tables have the same structure.

� Event publishing is used for the table CUSTOMER. Changes are made available to
DataStage, which reads the event publishing messages that are stored in a delimited
format from an MQSeries queue. The latency requirements are not relevant, and it is more
important to transform the data. DataStage updates the information that comes from event
publishing, making aggregations and cross-reference checks before storing the data into
the data warehouse.

162 Enterprise Data Warehousing with DB2 9 for z/OS

This section is by no means a full description of all the possibilities and problems that you
may encounter, but a quick guide through the process. In the following descriptions, we
assume that the System Modification Program/Extended (SMP/E) installation of the products
were done successfully.

Refer to WebSphere Information Integration Version 9.1 Replication Installation and
Customization Guide for z/OS, SC19-1025, for more information.

8.2.1 Common infrastructure

Both Q replication and event publishing use the Q Capture program to capture changes from
the source objects. It converts the transaction data to messages and place the messages on
a WebSphere MQ queue.

Q replication and event publishing can share the following objects:

� Q Capture started task
� Q Capture user
� WebSphere MQ queues

For our implementation, we created a new user ID, QREP, to be used in the started tasks.
Example 8-1 shows the Resource Access Control Facility (RACF) definitions for its creation.
This example also shows the definitions of the started tasks for Q Capture and Q Apply.

Example 8-1 Defining a user and started tasks for replication server

ADDUSER
QREP DFLTGRP(SYS1)
OMVS(UID(xxx) ---> define UID
HOME(/u/qrep)
PROGRAM(/bin/sh))
+ NAME('QREP STARTED TASKS')
NOPASSWORD
NOOIDCARD
SETROPTS
CLASSACT(STARTED)

RDEFINE
STARTED CAPT*.*
STDATA(USER(QREP)
GROUP(SYS1)
TRACE(YES))

RDEFINE
STARTED APPL*.*
STDATA(USER(QREP)
GROUP(SYS1)
TRACE(YES))

SETROPTS
RACLIST(STARTED)
GENERIC(STARTED)
REFRESH

This user ID must have DB2 and WebSphere MQ privileges defined. It also needs a UNIX
System Service (USS) profile and access to the /TMP directory in OMVS.

Chapter 8. Q replication and event publishing 163

Example 8-2 shows how Q Apply reports a DB2 authority failure in the system log and stops
processing.

Example 8-2 Q Apply DB2 authority failure report

IEF695I START APPLDWH1 WITH JOBNAME APPLDWH1 IS ASSIGNED TO USER QREP , GROUP STCGROUP
2008-04-11-02.43.32.002229 ASN8999D "Q Apply" : "N/A" :
ASN0531E "Q Apply" : "REDDWH" : "Initial" : The program could
not open the plan. The SQL return code is "8", the reason code is
"f30034", the subsystem name is "D912", and the plan name is
"ASNQA910".
ASN0573I "Q Apply" : "REDDWH" : "Initial" : The program was stopped.
IEF142I APPLDWH1 APPLDWH1 - STEP WAS EXECUTED - COND CODE 0012

In our implementation, we used the same Q Capture started task for Q replication and event
publishing. Example 8-3 shows our procedure and its key elements:

� CAPTURE_SERVER=D911 indicates the DB2 subsystem on which Q Capture works and
must contain the Q Capture replication control tables.

� capture_schema=REDDWH is the schema of the Q Capture control tables as defined
during the creation of the subscription.

We do not describe all the working parameters of Q Capture in this book. Refer to
WebSphere Information Integrator Q Replication: Fast Track Implementation Scenarios,
SG24-6487, for further details.

During this example, the same Q Capture schema was used for Q replication and event
publishing, but this is not mandatory. They can be defined into two different schemas. A
Q Capture started task can only serve a single schema.

Example 8-3 Procedure Sample for Q Capture

//CAPTDWH1 JOB NOTIFY=CRIS,
// MSGCLASS=H,MSGLEVEL=(1,0),
// REGION=0M,TIME=NOLIMIT
//**
//*
//* Sample JCL for QCapture for schema REDDWH
//*
//**
//QCAP EXEC PGM=ASNQCAP,
// PARM='CAPTURE_SERVER=D911 capture_schema=REDDWH startmode=warmsi'
//STEPLIB DD DISP=SHR,DSN=SYS1.REP.V910.SASNLOAD
// DD DISP=SHR,DSN=SYS1.DSN.V910.SDSNLOAD
//CAPSPILL DD DSN=&&CAPSPL,DISP=(NEW,DELETE,DELETE),
// UNIT=VIO,SPACE=(CYL,(50,70)),
// DCB=(RECFM=VB,BLKSIZE=6404)
//MSGS DD PATH='/local/REP910/db2repl_09_01/msg/En_US/db2asn.cat'
//CEEDUMP DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD DUMMY

164 Enterprise Data Warehousing with DB2 9 for z/OS

Example 8-4 shows our Q Apply procedure. Notice that we used another DB2 subsystem as
the apply server and the same apply schema name, which is defined at the target server.

Example 8-4 Procedure sample for Q Capture

//APPLDWH1 JOB NOTIFY=CRIS,
// MSGCLASS=H,MSGLEVEL=(1,0),
// REGION=0M,TIME=NOLIMIT
//**
//*
//* Sample JCL for Q Apply for schema REDDWH
//*
//**
//APPLDWH1 EXEC PGM=ASNQAPP,
// PARM='APPLY_SERVER=D912 APPLY_SCHEMA=REDDWH logstdout=y'
//STEPLIB DD DISP=SHR,DSN=SYS1.REP.V910.SASNLOAD
// DD DISP=SHR,DSN=SYS1.DSN.V910.SDSNLOAD
//CEEDUMP DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD DUMMY
//*

Example 8-5 shows both started tasks running in our system. Both started tasks are needed
only for a Q replication solution. Event publishing requires only Q Capture.

Example 8-5 Started tasks for Q replication

DEST=(ALL) OWNER=QREP SORT=Pos/D
JOBNAME StepName ProcStep JobID Owner
APPLDWH1 APPLDWH1 APPLDWH1 STC10334 QREP
CAPTDWH1 CAPTDWH1 QCAP STC10337 QREP

Creating the WebSphere MQ objects
In this section, we show examples of how to setup a local Q replication and event publishing
infrastructure.

When a Q Capture program replicates data to a Q Apply program on the same system, you
need only one queue manager. You can use the same local queue for the send queue and
receive queue, and the two programs can share one local administration queue. You do not
need remote queue definitions, transmission queues, or channels.

The following WebSphere MQ objects are required for our Q replication and event publishing
implementation:

� Common objects:

– One queue manager to which both the Q Capture and Q Apply program connects

– One local queue to serve as the administration queue for both the Q Capture and Q
Apply program

– One local queue to serve as the restart queue

– A spill queue

Note: The description applies to a local replication. That is when all the WebSphere MQ
objects, including the MQ Managers, are local.

Chapter 8. Q replication and event publishing 165

� For Q replication, one local queue to serve as both the send and receive queue

� For event publishing, one local queue to serve as the receive queue

Example 8-6 shows the queues that we defined for our implementation.

Example 8-6 MQSeries queues used in our implementation

Name Type Disposition
<> RED* QUEUE PRIVATE Q801

 REDDWH.ADMINQ QLOCAL QMGR Q801
 REDDWH.D911.OLTP.EVPUB QLOCAL QMGR Q801
 REDDWH.D911.OLTP.EVPUB.DEL QLOCAL QMGR Q801
 REDDWH.D911.OLTP.EVPUB.XML QLOCAL QMGR Q801
 REDDWH.D911.TO.D912.QREP QLOCAL QMGR Q801
 REDDWH.RESTARTQ QLOCAL QMGR Q801
 REDDWH.SPILLQ QMODEL QMGR Q801

The utilization of the queues is listed as follows:

REDDWH.ADMINQ Used by the Q Apply program to communicate with the Q Capture
program at the source.

REDDWH.D911.OLTP.EVPUB
Event publishing target queue, default message definition.

REDDWH.D911.OLTP.EVPUB.DEL
Event publishing target queue, delimited format for messages.

REDDWH.D911.OLTP.EVPUB.XML
Event publishing target queue, XML message format.

REDDWH.D911.TO.D912.QREP
Transmission and receive queue for Q replication.

REDDWH.RESTARTQ
Stores restart information for the Q Capture program.

REDDWH.SPILLQ A model queue definition. Spill queues are created dynamically to hold
any transactions that arrive from the source while the target table is
loaded.

Example 8-7 shows a job control language (JCL) sample for the creation of the common MQ
queues.

Example 8-7 Creating common MQSeries objects

//CRISQDEF JOB (),'QUEUE DEF SAMPLE',
// REGION=0K,NOTIFY=CRIS,
// MSGCLASS=X,
// CLASS=C
//**
//* WS Replication Server for z/OS
//**
//CRTQ EXEC PGM=CSQUTIL,PARM='Q801'
//STEPLIB DD DSN=SYS1.MQM.Q801.CSQLOAD,DISP=SHR
// DD DSN=SYS1.MQM.V600.SCSQANLE,DISP=SHR
// DD DSN=SYS1.MQM.V600.SCSQAUTH,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 COMMAND DDNAME(CMDINP)
/*
//CMDINP DD *

166 Enterprise Data Warehousing with DB2 9 for z/OS

DEFINE REPLACE +
 QLOCAL('REDDWH.ADMINQ') +
 DESCR('SAMPLE ADMIN LOCAL QUEUE') +
 PUT(ENABLED) +
 GET(ENABLED) +
 SHARE

DEFINE REPLACE +
 QLOCAL('REDDWH.RESTARTQ') +
 DESCR('SAMPLE RESTART LOCAL QUEUE') +
 PUT(ENABLED) +
 GET(ENABLED) +
 SHARE

DEFINE REPLACE +
 QMODEL('REDDWH.SPILLQ') +
 DEFTYPE(PERMDYN) +
 DEFSOPT(SHARED) +
 MAXDEPTH(500000) +
 MAXMSGL(4194304) +
 MSGDLVSQ(FIFO)
/*

The creation jobs may return RC=0 even if a syntax errors is in the define commands.
Carefully check the job output shown in Example 8-8 for failures.

Example 8-8 MQ queue creation output sample

DEFINE REPLACE +
 QLOCAL(REDDWH.RESTARTQ') +
 DESCR('SAMPLE RESTART LOCAL QUEUE') +
 PUT(ENABLED) +
 GET(ENABLED) +
 SHARE
CSQN205I COUNT= 8, RETURN=00000008, REASON=FFFFFFFF
CSQ9002E <Q801 Unbalanced parentheses following 'QLOCAL'
CSQ9003E <Q801 'QLOCAL' parameter contains unbalanced apostrophes
CSQ9031E <Q801 Syntax error following 'QLOCAL'
CSQ9003E <Q801 'REDDWH.RESTARTQ'' parameter contains unbalanced
apostrophes
CSQ9026E <Q801 'QLOCAL' parameter does not satisfy name rules
CSQ9023E <Q801 CSQ9SCND 'DEFINE QLOCAL' ABNORMAL COMPLETION

MQSeries requirements for Q replication
In addition to the common administrative and restart queue, Q replication needs one local
queue to serve as both the send queue (Q Capture) and receive queue (Q Apply).

This queue must be defined with the following characteristics:

PUT (ENABLED) Allows Q Capture to PUT messages in the queue

MAXMSGL(n) n defines the maximum message length

DEFPSIST(YES) The queue uses persistent messages. That is, they are logged and
then recoverable. The MQSeries log can become a performance
bottleneck on stressed systems. You might consider techniques for
improving logging throughput, such as VSAM data striping for logging.
We recommend that you use persistent messages for recoverability.

Chapter 8. Q replication and event publishing 167

INDXTYPE(MSGID) Allows the queue manager to maintain an index of message
identifiers.

SHARE More than one application instance can get messages from the queue.

GET(ENABLED) Allows Q Apply to GET messages from the queue.

MSGDLVSQ(PRIORITY)
Messages on the queue are delivered in FIFO order within priority. It is
the recommended default for the receive queue even though Q
replication messages are not prioritized.

Example 8-9 shows the JCL that we used for the creation of this queue.

Example 8-9 JCL sample for the creation of the Q replication queue

//CRISQDEF JOB (),'QUEUE DEF SAMPLE',
// REGION=0K,NOTIFY=CRIS,
// MSGCLASS=X,
// CLASS=C
//**/
//* WS Replication Server for z/OS V91 */
//**/
//CRTQ EXEC PGM=CSQUTIL,PARM='Q801'
//STEPLIB DD DSN=SYS1.MQM.Q801.CSQLOAD,DISP=SHR
// DD DSN=SYS1.MQM.V600.SCSQANLE,DISP=SHR
// DD DSN=SYS1.MQM.V600.SCSQAUTH,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 COMMAND DDNAME(CMDINP)
/*
//CMDINP DD *
DEFINE REPLACE +
 QLOCAL(REDDWH.D911.TO.D912.QREP) +
 DESCR('LOCAL QUEUE - QREPLICATION') +
 PUT(ENABLED) +
 GET(ENABLED) +
 MAXMSGL(4194304) +
 SHARE +
 DEFSOPT(SHARED) +
 DEFPSIST(YES) +
 INDXTYPE(MSGID)
/*

MQSeries requirements for event publishing
In addition to the common queues, one local queue to serve as the target for the publishing is
needed. In our scenario, this queue is the input to InfoSphere DataStage. Example 8-10
shows the JCL that is used for the creation of these queues.

Example 8-10 Creating MQSeries queues for Q replication and event publishing

//CRISQDEF JOB (),'QUEUE DEF SAMPLE',
// REGION=0K,NOTIFY=CRIS,
// MSGCLASS=X,
// CLASS=C
//**
//* WS Replication Server for z/OS
//**
//CRTQ EXEC PGM=CSQUTIL,PARM='Q801'
//STEPLIB DD DSN=SYS1.MQM.Q801.CSQLOAD,DISP=SHR
// DD DSN=SYS1.MQM.V600.SCSQANLE,DISP=SHR

168 Enterprise Data Warehousing with DB2 9 for z/OS

// DD DSN=SYS1.MQM.V600.SCSQAUTH,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 COMMAND DDNAME(CMDINP)
/*
//CMDINP DD *
DEFINE REPLACE +
 QLOCAL(REDDWH.D911.OLTP.EVPUB) +
 DESCR('LOCAL QUEUE - EVENT PUBLISHING') +
 PUT(ENABLED) +
 GET(ENABLED) +
 MAXMSGL(4194304) +
 SHARE +
 DEFSOPT(SHARED) +
 DEFPSIST(YES) +
 INDXTYPE(MSGID)
/*

DB2 Replication Center
The replication and event publishing definitions are created and updated by using the DB2
Replication Center. The Replication Center supports administration for DB2-to-DB2
replication environments and administration for replication between DB2-and-non-DB2
relational databases. The DB2 Replication Center is part of the DB2 Control Center set of
tools. The process described in this section was done by using version DB2 v9.5.0.808 of the
DB2 Replication Center.

The subscription definitions and the running parameters of the replication server are stored in
a series of control tables. You create these control tables early in the configuration process
from the DB2 Replication Center, or you can use the DDL samples provided by IBM in
hlq.SASNSAMP(ASNQCTLZ). The updates of the contents of these tables are executed by
the Replication Center using SQL. This code is always shown before execution.

Chapter 8. Q replication and event publishing 169

Figure 8-3 shows the Replication Center launchpad. This panel contains a brief description of
each of the replication techniques that you can control from this tool:

� Q replication
� Event publishing
� SQL replication

Some of the operations that can be done from the Replication Center require that a DB2
Administration Server instance be installed on your target z/OS system. This installation is
beyond the scope of this section.

Figure 8-3 DB2 Replication Center launchpad

170 Enterprise Data Warehousing with DB2 9 for z/OS

Figure 8-4 shows the main panel of the tool. Here we can choose one of the possible
solutions.

Figure 8-4 DB2 Replication Center main panel

8.2.2 Configuring Q replication subscriptions

A unidirectional Q replication scenario requires the following definitions:

� Replication queue maps

These maps define which MQSeries queues are used for storing the captured data and
making it available to an Apply program or a stored procedure. You must define at least
one queue map.

� Q subscriptions

You must define one Q subscription for each source and target pair. For performance
reasons, consider spreading subscriptions on more than one MQSeries Queue Manager.

In the remainder of this section, we show the definitions of these elements by using the DB2
Replication Center.

Chapter 8. Q replication and event publishing 171

Figure 8-5 shows the Replication Center Launchpad for Q replication. Steps 1 and 2 of the
Replication Center Launchpad for Q replication create the required Q Capture and Q Apply
Control Tables that are needed for the functioning of the product. While the description of
these steps is not shown, you must complete these steps before continuing with the
remainder of the task. You can create these tables from the launchpad or by using the sample
job hlq.SASNSAMP(ASNQCTLZ) that is provided with the product.

Figure 8-5 Replication Center Launchpad for Q replication

To configure Q replication subscriptions:

1. From the Replication Center Launchpad, click 3. Create a Q Subscription to start the
Create Q Subscriptions launchpad.

172 Enterprise Data Warehousing with DB2 9 for z/OS

2. Click the 2. Replication button on the left. In the Which type of replication? pane
(Figure 8-6) on the right, specify the type of replication to configure:

– Unidirectional
– Bidirectional
– Peer-to-peer, two servers
– Peer-to-peer, three or more servers

We select Unidirectional for our data warehouse. With this type of replication, changes
on the source table are replicated to the target unidirectionally.

Click Next to continue the configuration process.

Figure 8-6 Specifying the type of replication

Chapter 8. Q replication and event publishing 173

3. Click the 3. Servers button on the left. In the Which source and target servers? pane
(Figure 8-7) on the right, define the source and target servers for the replication
configuration.

Our implementation replicates changes from a DB2 9 New Function Mode subsystem to
another one, both located in the same LPAR and none in data sharing.

You must catalog these subsystems and create the replication control tables before you
can select them as the source of the target for replication. You can do this easily by using
the Replication Center Launchpad for Q replication (Figure 8-5 on page 172).

Figure 8-7 Defining the source and target servers

For Queues, define and select a replication queue map. The replication queue map
identifies the MQ queues that a Q Capture program and a Q Apply program use to
transport data and communicate. Each replication queue map identifies one of each of the
following WebSphere MQ queues:

– Send queue

This is the queue where the Q Capture program sends source data and informational
messages. Messages that are sent using a send queue that is identified by a
replication queue map must be in compact format, which is the message format that
the Q Apply program reads.

– Receive queue

This is the queue where the Q Apply program receives source transactions before
applying them to the target table or passing them to a stored procedure.

– Administration queue

This is the queue that the Q Apply program uses to send control messages to the Q
Capture program.

You can use a single replication queue map to transport data for one or more Q
subscriptions. Also, a single Q Capture program can write data to many send queues. A
single Q Apply program can read and apply data from many receive queues. For our
implementation, we use the same queue object for the definition of the send and receive
queue.

174 Enterprise Data Warehousing with DB2 9 for z/OS

a. On the General page of the Create Replication Queue Map window (Figure 8-8), name
the queue map, which in our case, is DWHD911_TO_DWHD912. Introduce the send and
receive queue name, which is the same in our case, and the administration queue
name. The other fields are filled with the name of the objects that we defined at the
beginning of this chapter.

Figure 8-8 Creation of a Q replication queue map

Chapter 8. Q replication and event publishing 175

b. Click the Options tab (Figure 8-9) of the Create Replication Queue Map window.
Specify the properties to change for a queue map. These replication properties specify
how the Q Capture and Q Apply programs process messages that use the send queue
and the receive queue. For each replication queue map, you can specify the following
properties:

• The maximum size of a message that the Q Capture program can put on the send
queue. This limit is independent of the queue maximum message length, but this
limit must be equal to or less than the queue maximum message length.

• How the Q Capture program responds if an error occurs in the queue.

• The frequency at which the Q Capture program sends messages on this queue to
tell the Q Apply program that the Q Capture program is still running when there are
no changes to replicate.

• The number of threads for each Q Apply browser to be created to apply
transactions to target tables or pass transactions to stored procedures to
manipulate the data.

• The amount of memory that the Q Apply program can use to process messages
from the receive queue.

Figure 8-9 Options for the Q replication queue map

Figure 8-10 on page 177 shows the completed Which source and target servers? pane
after you provide the servers and queue map definitions.

176 Enterprise Data Warehousing with DB2 9 for z/OS

Figure 8-10 Defined source and target servers

4. Click the 4. Source Tables button on the left. In the Select Source Tables window, define
the source tables. For our data warehouse system, we replicate the LINEITEM and
ORDER tables, as shown in Figure 8-11.

Figure 8-11 Selecting the source tables for Q replication

Chapter 8. Q replication and event publishing 177

5. Click the 5. Target Tables button on the left. In the Which profile settings for target tables?
pane (Figure 8-12), profile the settings for the target tables. You can define one of the
following targets:

– Target is a table

We implement this option in our scenario and replicate the changes to a table. As
shown in the lines that follow, options can be applied to control how the changes are
replicated.

– Target is a consistent-change-data (CCD) table

By using a CCD table as your target type, you can keep a history of source changes.
For example, you can track before and after comparisons of the data, when changes
occurred, and which user ID updated the source table.

Figure 8-12 Profile settings for target tables

178 Enterprise Data Warehousing with DB2 9 for z/OS

You can click the Change button to change the properties of the target tables and table
spaces. While this process is not shown here, it is straightforward. In the Manage Target
Object Profiles window (Figure 8-13), you can specify whether to create target tables in
new or existing table spaces. You can also specify operational parameters of the table
space, including whether the target table space should use the same partitioning as the
source table space.

Figure 8-13 Manage Target Object Profiles window

Chapter 8. Q replication and event publishing 179

6. Click the 6. Mapping Columns on the left. In the Which source columns map to which
target columns? pane (Figure 8-14), map column names from the source to the target
table, if their name is not the same.

Figure 8-14 Mapping source to target columns

For existing target tables or for stored procedures, specify how you want the data from
source columns to map to target columns or to parameters in a stored procedure. If a
target table does not exist, then the Replication Center creates the target table with the
same columns that the source table has.

The source table cannot replicate more columns than are in the target table or more
columns than parameters in the stored procedure. However, the target table can contain
more columns than the number of source columns that you selected for replication.

When you create Q subscriptions, you can choose from the following options for mapping
source columns to target columns:

– Map by column name and data type

Each column in the source table is mapped to the column in the target table (or
parameter in the stored procedure) that has an identical name and data type.

– Map by column position and data type

The first column in the source table that you selected for replication is mapped to the
first column in the target table or parameter in the stored procedure. Then the second
column in the source table that you selected for replication is mapped to the second
target column or parameter, and so on. The columns in the target are mapped from left
to right. The data types of each pair of mapped columns must be the same.

In our example, both the source and target table columns were named in the same way.
We implemented mapping by column name and data type.

7. Click the 7. Unexpected Conditions button. The How should the Q Apply program
respond to unexpected conditions? pane (Figure 8-15 on page 181) shows the available
options for Q Apply to handle unexpected conditions. The Q Apply program updates the
targets with changes that occur at the source table. If other applications are also making
changes to the target, then the Q Apply program might encounter rows in the target that
are different than expected. For example, the Q Apply program might try to update a row in
the target that another application has already deleted. The option that you choose
depends on the level of granularity at which you want to isolate and fix the problem.

180 Enterprise Data Warehousing with DB2 9 for z/OS

In many scenarios, you are likely to want the Q Apply program to either force the change
or ignore unexpected conditions in target data. However, in some scenarios, you might
never expect problems in the target data and, therefore, might choose a different action,
depending on the level at which you think you have to troubleshoot problems.

You can specify that the Q Apply program takes one of the following actions when it
encounters unexpected conditions in target data:

– Force the change
– Ignore the unexpected condition
– Deactivate the corresponding Q subscription
– Have the Q Apply program stop reading from the corresponding receive queue
– Stop the Q Apply program

Figure 8-15 Q Apply management of unexpected conditions

8. Click the 8. Loading Target Tables button on the left. In the How should target tables be
loaded? pane (Figure 8-16 on page 182), you see the options for the initial load. When you
create a Q subscription, choose among the following options for loading target tables with
data from the source:

– Automatic load

The Q Apply program manages the loading of target tables. You can select which load
utility the Q Apply program calls, or you can let the Q Apply program choose the best
available utility for your operating system and version.

– Manual load

You handle the loading of target tables and then signal the replication programs when
loading is done. This option is also known as external load.

– No load

You either do not load target tables or you load target tables outside the context of the
replication programs.

Chapter 8. Q replication and event publishing 181

Figure 8-16 Q replication options for initial load

9. Click the 9. Review Q Subscriptions button on the left. In the Review and complete Q
subscriptions pane (Figure 8-17), review, complete, or modify the definitions.

Figure 8-17 Review and complete subscription definition panel

Important: If you instruct APPLY to do the initial load, a Distributed Relational
Database Architecture (DRDA) connection between source and target DB2 must exist.
The load method used is CURSOR.

182 Enterprise Data Warehousing with DB2 9 for z/OS

8.2.3 Configuring event publishing using the DB2 Replication Center

As described before, our Q replication and event publishing implementation will share the
Q capture schema, and the starting tasks will be the same. You may consider separating the
process on different schemas to improve parallelism.

The event publishing launchpad in Figure 8-18 is similar to the Q replication launchpad. As a
reminder, an event publishing process publishes changes into a queue from where an
application must extract the data. In our implementation, DataStage is used to exploit the
information produced by event publishing. No Q Apply process is running for an event
publishing implementation.

Step 1, Create Q Capture Control Tables is not necessary to do. We click step 2. Create a
Publication. The Create Publications launchpad opens.

Figure 8-18 Event publishing - Replication Center Launchpad

Chapter 8. Q replication and event publishing 183

To create publications:

1. Click the Start button to view the first pane, Creating publications (Figure 8-19), of the
event publishing process. This pane shows a description of the tasks to perform.

Figure 8-19 Creating publications for event publishing

184 Enterprise Data Warehousing with DB2 9 for z/OS

2. Click the 2. Server and Queue Map button on the left. In the Creating Publishing Queue
Map window (Figure 8-20), as with Q replication, define a queue map for event publishing.
However, this process is simpler for event publishing because only a send queue is
needed. A receive queue is not defined for event publishing. In this panel, define the send
queue and the message format on which event publishing will store the captured
information.

Figure 8-20 Sample of a publishing queue map creation

The message format can be either XML or delimited. Both formats are supported by
DataStage. We used the delimited format in our installation. Refer to “Event publishing
message formats” on page 189 for more information and to learn how to work with them.

After the publishing queue map is created, we can continue with the creation of the event
publishing subscription creation.

Chapter 8. Q replication and event publishing 185

The Which Q Capture server and publishing queue map? pane (Figure 8-21) introduces
the Q Capture server name, Q capture schema, and the publishing queue map.

Figure 8-21 Event publishing subscription creation

186 Enterprise Data Warehousing with DB2 9 for z/OS

3. Click the 3. Source Tables button on the left.

a. In the Select Source Tables window (Figure 8-22), continue the process by selecting
the source tables.

Figure 8-22 Selecting source tables for event publishing

Chapter 8. Q replication and event publishing 187

b. Select which columns to publish. You have the option to publish all the rows or to
publish changes of a selection of rows, as shown in Figure 8-23. With this latter option,
you can indicate whether a filter on the source table rows must be applied.

Figure 8-23 Selecting rows for event publishing

The filtering criteria is introduced in the form of a WHERE clause. Example 8-11 shows
how a filter criteria can be applied to the source table Customer.

Example 8-11 WHERE clause on table rows for event publishing

WHERE COUNTRY = ‘BELGIUM’

Alternatively, you can select the All source table rows option to publish all the rows.

In addition, you can indicate if deletes will be published by Q Capture. By selecting this
option, you can build a logging target table, for example.

188 Enterprise Data Warehousing with DB2 9 for z/OS

4. Click the 6. Review Publications button on the left. The Review and complete
publications pane (Figure 8-24) is presented before you apply the changes.

Figure 8-24 Event publishing - Review and complete publications panel

Event publishing message formats
The messages in event publishing can be published in XML or delimited format. The captured
changes are made available in the target queue for an application. In our scenario, we used
DataStage to get the messages from the queue, apply transformation to the data, and store
the new information in our data warehouse. We used the delimited format, but XML is also
supported by DataStage.

Because you have to configure DataStage, or create your own application, knowing the
internal structure of a message can be of great help for debugging. Table 8-1 on page 190
shows the message header structure of a delimited message.

Steps 4 and 5: In this scenario, steps 4 and 5 of the Create Publications launchpad do not
apply to our implementation, yet they are worthy of an explanation.

Step 4, “Columns and Rows” applies when you select a single table in step 3, “Source
Tables.” In this case, you can identify the specific columns, key columns, and rows to be
published in the Columns and Rows pane However, if you select more than one table in
step 3, “Source Tables,” this pane is not displayed. During this implementation, we publish
all the columns of the source table and therefore do not see this pane.

By using step 5, “Message Content,” you can control the message content. You must
specify whether Q Capture is to send messages when a selected source table contains
changed columns or when any table has a column that changes. You can also indicate
whether messages will contain only changed columns or unchanged columns. In addition,
you can specify whether messages will include old and new values. Because this option is
not relevant for this set up, we did not apply it.

Chapter 8. Q replication and event publishing 189

Table 8-1 DEL message format - Message header

Table 8-2 describes the format of the data part of the message.

Table 8-2 DEL message format - Data from the source table

Example 8-12 shows the schematic representation of how the data is distributed inside the
data part of the message. It is a succession of values and column delimiters until the end of
the record, where there is a record delimiter.

Example 8-12 Message format

column_value column_delimiter column_value column_delimiter record_delimiter

Header element
name

Description

type An integer value that is used internally by IBM.

identifier An identifier for the sending program. This value is used internally.

date The date that the delimited message was put on the send queue.

time The time that the delimited message was put on the send queue.

table_owner The source table owner.

table_name The source table name.

operation ISRT An INSERT operation. For inserts, the before values of each column
are null and are represented by column delimiters with no values
between them.

REPL An UPDATE or replace operation. Updates include the before values
for each column followed by the after values.

DLET A DELETE operation. For deletes, the after values of each column
are null and are represented by column delimiters with no values
between them.

transaction_identifier A character string that uniquely identifies a DB2 unit of work

commit_lsn A time-based log sequence number of the COMMIT statement for the
transaction.

commit_time The time stamp of the COMMIT statement for the transaction.

plan_name The DB2 application plan name.

segment_number Four numeric characters that are used to link segmented transaction
messages.

Data element name Description

column_value The data value from the source table. A null column value is represented by
two consecutive column delimiters.

column_delimiter A single character that is used to separate column values. The default is a
comma.

record_delimiter A single character that is used to denote the end of a change-data record.
The default is a new-line character

190 Enterprise Data Warehousing with DB2 9 for z/OS

You may need to change the delimiters that are provided by default. The update of
publications and queue maps are done using the DB2 Replication Center. Figure 8-25 shows
how to select the queue map that will have its message properties changed.

Figure 8-25 Updating Publishing Queue Maps

Chapter 8. Q replication and event publishing 191

In the Publishing Queue Map Properties window (Figure 8-26), you can change the delimited
format message properties.

Figure 8-26 Changing queue map properties

For the purpose of this book, we changed the publishing queue map parameters as follows:

� Type of message content: Row Operation
� Delimited format: <blank>
� Column delimiter: , (comma)
� Character string delimiter: “ (left quotation mark)
� New line value: % (percent sign)

Browsing event publishing messages
During our implementation, we found in multiple occasions the need for browsing the
messages that event publishing was generating for debugging purposes. To browse these
messages in the z/OS system, we need a tool that can access these messages from
MQSeries in a non-destructive way and convert the information from Unicode to a readable
ISPF format.

192 Enterprise Data Warehousing with DB2 9 for z/OS

Example 8-13 shows a REXX™ program that is used to browse our event publishing queues.

Example 8-13 Event publishing message browse REXX code sample

/* REXX */
/* NOTE: ERROR HANDLING CODE WAS REMOVED FOR CLARITY */
/*--*/

ARG CSQ DBSSID Q1 /* RECEIVE QUEUE MANAGER AND QUEUE NAME AS PARAMETER */

RCC= RXMQV('INIT') /* INITIALISE THE MQ SERIES INTERFACE */
RCC = RXMQV('CONN', CSQ) /* CONNECT TO QUEUE MANAGER */

/* OPEN QUEUE Q1 FOR OUTPUT AND BROWSE ACCESS */
OO = MQOO_INQUIRE+MQOO_OUTPUT+MQOO_BROWSE+MQOO_SET
RCC = RXMQV('OPEN', Q1, OO , 'H2', 'OOD.')

/* BROWSE ALL MSGS ON QUEUE Q1 */
DO I=1
 G.0 = 100000
 G.1 = ''
 IGMO.OPT = MQGMO_WAIT+MQGMO_BROWSE_NEXT
 RCC = RXMQV('GET', H2,'G.','IGMD.','OGMD.','IGMO.','OGMO.')

 IF (WORD(RCC,1) <> 0) THEN LEAVE
 SAY COPIES('-',85)
 SAY 'MESSAGE NUMBER' I
 SAY 'MESSAGE LENGTH' G.0

 DO CONV = 1 TO (ABS(G.0/80)+1) /* UNICODE CONVERSION */
 START = (CONV * 80)-79
 CAST_LINE = SUBSTR(G.1,START,80)
 ADDRESS TSO 'SUBCOM DSNREXX'
 IF RC <> 0 THEN SUBCC = RXSUBCOM('ADD','DSNREXX','DSNREXX')

 ADDRESS DSNREXX 'CONNECT ' DBSSID
 ADDRESS DSNREXX 'EXECSQL DECLARE C1 CURSOR FOR S1'

 SQLSTMT = "SELECT CAST(XXXXX AS CHAR(80) CCSID 1208) AS CONVT ",
 "FROM (",
 " SELECT CAST('"||CAST_LINE||"'",
 " AS VARCHAR(3800) CCSID UNICODE FOR BIT DATA" ,
 ") AS XXXXX" ,
 " FROM SYSIBM.SYSDUMMY1) AS DD"

 ADDRESS DSNREXX 'EXECSQL PREPARE S1 FROM :SQLSTMT'
 ADDRESS DSNREXX 'EXECSQL OPEN C1'
 ADDRESS DSNREXX 'EXECSQL FETCH C1 INTO :CONVT'
 ADDRESS DSNREXX 'EXECSQL CLOSE C1'

 SAY LEFT(CONV,2,' ') ":" CONVT

 END /* DO CONV = 1 TO (ABS(MLEN.0/80)+1) */
 END /* DO I=1 */
 SAY COPIES('-',85)

RCC = RXMQV('BACK',)
RCC = RXMQV('TERM',)

Chapter 8. Q replication and event publishing 193

This REXX program gets the messages from the queue passed as a parameter as shown in
the JCL sample in Example 8-14. It uses a DB2 CAST function to convert the message text to
a readable format and print the messages in 80 columns lines. You must agree to IBM terms
before downloading and using the MQSeries SupportPac™ used for this program. For more
details about the SupportPac, refer to the MA18: A Rexx Interface to IBM MQSeries for
MVS/ESA™ Version 2.0 document:

ftp://ftp.software.ibm.com/software/integration/support/supportpacs/individual/ma18.pdf

Example 8-14 shows the output of this program for a delimited format message.

Example 8-14 JCL sample for event publishing message browse

//CRISMQUN JOB (),'BROWSE QCAPT MESS',REGION=0K,NOTIFY=CRIS,
// MSGCLASS=X,CLASS=C
//*---
//RUN EXEC PGM=IKJEFT01
//SYSPROC DD DISP=SHR,DSN=CRIS.UTIL.CNTL
//STEPLIB DD DSN=CRIS.UTIL.MQREXX,DISP=SHR <-- SUPPORTPACK MA18
// DD DSN=SYS1.MQM.Q801.CSQLOAD,DISP=SHR <-- MQ SERIES
// DD DSN=SYS1.MQM.V600.SCSQANLE,DISP=SHR <-- MQ SERIES
// DD DSN=SYS1.MQM.V600.SCSQAUTH,DISP=SHR <-- MQ SERIES
// DD DSN=SYS1.DSN.V910.SDSNLOAD,DISP=SHR <-- DB2
//SYSPRINT DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//* REXX NAME
//* | QUEUE MANAGER
//* | | DB2 SUBSYSTEM
//* | | | QUEUE NAME
//* V V V V
//* REXXUNI1 Q801 D911 REDDWH.D911.OLTP.EVPUB
//SYSTSIN DD *
REXXUNI1 Q801 D911 REDDWH.D911.OLTP.EVPUB
/*

Example 8-15 shows the output of this program for a delimited format message.

Example 8-15 Browsing a delimited event publishing message

MESSAGE NUMBER 8
MESSAGE LENGTH 260
1 : 10,"IBM","2008106","021741852842","OLTP","CUSTOMER","ISRT","0000:0000:4815:566e:
2 : 0000","0000:0000:4815:5923:0000","2008-04-15-09.17.41","ADB ",0000,,,,,,,,16
3 : 07,"KATRIN NOACK","LUXEMBLAAN 2","GERMANY ","555-55-5555 ",-
4 : 1000.0,"DIRECTOR " @@

Example 8-16 shows an XML example.

Example 8-16 Browsing a XML event publishing message

MESSAGE NUMBER 2
MESSAGE LENGTH 1534
1 : @@@ <<psc><Command>Publish</Command><PubOpt>N
2 : one</PubOpt></psc>@@ <mcd><Msd>jms_text</Msd></mcd>@@ <jms></jms>@<?xml ve
3 : rsion="1.0" encoding="UTF-8" ?><msg xmlns:xsi="http://www.w3.org/2001/XMLSchema-
4 : instance" xsi:noNamespaceSchemaLocation="mqcap.xsd" version="1.0.0" dbName="DWHD
5 : 911"><trans authID="CRIS " correlationID="javaw.exe " planName="DISTSERV" i

194 Enterprise Data Warehousing with DB2 9 for z/OS

ftp://ftp.software.ibm.com/software/integration/support/supportpacs/individual/ma18.pdf

6 : sLast="0" segmentNum="1" cmitLSN="0000:0000:0a03:cc3c:0000" cmitTime="2008-04-09
7 : T17:38:14.717104"><insertRow subName="CUSTOMER0003"
8 :
9 :
10 :
11 :
12 :
13 :
14 : srcOwner="OLTP" srcName="CUSTOMER" intentSEQ="0000:0000:0a03:c9dd:0000"><
15 : col name="CUST_KEY" isKey="1"><integer>1603</integer></col><col name="ACCTBAL"><
16 : decimal xsi:nil="1"/></col><col name="ADDRESS"><varchar>Duitslandlaan X</varchar
17 : ></col><col name="COUNTRY"><char>BELGIUM </char></col><col name
18 : ="MKTSEGMENT"><char xsi:nil="1"/></col><col name="NAME"><varchar>Molaro Fernando
19 : </varchar></col><col name="PHONE"><char>555-0111-0111 </char></col></insertRow>
20 : </trans></msg>@@

8.3 Operating Q replication and event publishing

To use Q Capture to capture changes, the source tables objects must be altered to DATA
CAPTURE CHANGES. Example 8-17 shows the output of the Q Capture started task at start.
Notice the error message ASN7018E. Because the required DATA CAPTURE CHANGES
attribute was missing on the source table, the Q Subscription is deactivated. The started task
continues to run, but no changes on the source table can be captured.

Example 8-17 Sample Q Capture output for event publishing

IEF695I START CAPTEP01 WITH JOBNAME CAPTEP01 IS ASSIGNED TO USER QREP , GROUP STCGROUP
ASN0600I "Q Capture" : "" : "Initial" : Program "mqpub 9.1.0 (APAR pk60401, ASNRBASE APAR
pk60401)" is starting.
ASN7018E "Q Capture" : "REDDWH" : "WorkerThread" : The source
table "OLTP.CUSTOMER" for publication or Q subscription
"CUSTOMER0001" does not have the DATA CAPTURE CHANGES attribute
set.
ASN7006E "Q Capture" : "REDDWH" : "WorkerThread" : The
publication or Q subscription "CUSTOMER0001" was deactivated due
to an error.
ASN7000I "Q Capture" : "REDDWH" : "WorkerThread" : "0"
subscriptions are active. "1" subscriptions are inactive. "0"
subscriptions that were new and were successfully activated. "0"
subscriptions that were new could not be activated and are now
inactive.
ASN0572I "Q Capture" : "REDDWH" : "WorkerThread" : The "mqpub
9.1.0 (APAR pk60401, ASNRBASE APAR pk60401)" program initialized
successfully.

Chapter 8. Q replication and event publishing 195

To solve this problem, the CUSTOMER table is altered as required, and the subscription must
be activated again. Figure 8-27 shows how to activate the subscription by using the DB2
Replication Center.

Figure 8-27 Starting an inactive event publishing subscription

After this change, the Q Capture started task activates the subscription and starts capturing
changes on the source table. Example 8-18 shows the output in the Q Capture started task.

Example 8-18 Q Capture output - A subscription being started

ASN7010I "Q Capture" : "REDDWH" : "WorkerThread" : The program
successfully activated publication or Q subscription
"CUSTOMER0001" (send queue "REDDWH.D911.OLTP.EVPUB", publishing
or replication queue map "REDDWH") for source table
"OLTP.CUSTOMER".

Apply also uses the IBMQREP_APPLYTRACE table for tracing information. This table
contains informational, warning, and error messages.

The DESCRIPTION column, which is defined as VARCHAR(1024), contains the description
of the information. The REXX code in Example 8-19 can be used to format this table’s
contents in an easier to read format.

Example 8-19 REXX sample for formatting the contents of the IBMQREP_APPLYTRACE table

/* REXX */
/* NOTE: ERROR HANDLING CODE WAS REMOVED FOR CLARITY */
/*--*/

ARG DBSSID QSCHEMA

ADDRESS TSO 'SUBCOM DSNREXX'
IF RC <> 0 THEN SUBCC = RXSUBCOM('ADD','DSNREXX','DSNREXX')

ADDRESS DSNREXX 'CONNECT ' DBSSID
ADDRESS DSNREXX 'EXECSQL DECLARE C1 CURSOR FOR S1'

196 Enterprise Data Warehousing with DB2 9 for z/OS

SQLSTMT = "SELECT OPERATION,TRACE_TIME,DESCRIPTION, ",
 "COALESCE(REASON_CODE,0),",
 "COALESCE(MQ_CODE,0)",
 "FROM " || QSCHEMA || ".IBMQREP_APPLYTRACE"

ADDRESS DSNREXX 'EXECSQL PREPARE S1 FROM :SQLSTMT'
ADDRESS DSNREXX 'EXECSQL OPEN C1'
ADDRESS DSNREXX 'EXECSQL FETCH C1 INTO :OPER,:TIMS,:DESC,:REAS,:MQCD'
DO WHILE SQLCODE = 0
 SAY '+' || COPIES('-',82) || '+'
 SAY "| MESS TYPE: " LEFT(OPER,67," ") "|"
 SAY "| TIME: " LEFT(TIMS,67," ") "|"
 SAY "| REASON CODE:" LEFT(REAS,67," ") "|"
 SAY "| MQ CODE: " LEFT(MQCD,67," ") "|"
 SAY "| DESCRIPTION:" LEFT(' ',67," ") "|"
 DO I = 1 TO (ABS(LENGTH(DESC)/80)+1)
 START = (I * 80)-79
 DESC_LINE = SUBSTR(DESC,START,80)
 SAY "|" DESC_LINE "|"
 END /* DO I = 1 TO (ABS(DESC/80)+1) */
 ADDRESS DSNREXX 'EXECSQL FETCH C1 INTO :OPER,:TIMS,:DESC,:REAS,:MQCD'
END /* DO WHILE SQLCODE = 0 */
SAY '+' || COPIES('-',82) || '+'

ADDRESS DSNREXX 'EXECSQL CLOSE C1'
/* END */

JCL Sample for REXX code above:

//CRISMQUN JOB (),'BROWSE QCAPT MESS',REGION=0K,NOTIFY=CRIS,
// MSGCLASS=X,CLASS=C
//*---
//RUN EXEC PGM=IKJEFT01
//SYSPROC DD DISP=SHR,DSN=CRIS.UTIL.CNTL
//STEPLIB DD DSN=SYS1.DSN.V910.SDSNLOAD,DISP=SHR <-- DB2
//SYSPRINT DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//* REXX NAME
//* |
//* | DB2 SUBSYSTEM
//* | | QUEUE APPLY SCHEMA
//* V V V
//* REXXAPPL D912 REDDWH
//SYSTSIN DD *
REXXAPPL D912 REDDWH
/*

Chapter 8. Q replication and event publishing 197

Example 8-20 shows an example of trace information being formatted by this program.

Example 8-20 Output sample of formatted information in the IBMQREP_APPLYTRACE table

+--+
| MESS TYPE: INFO |
| TIME: 2008-04-11-02.47.31.931200 |
| REASON CODE: 0 |
| MQ CODE: 0 |
| DESCRIPTION: |
| ASN7613I "Q Apply" : "REDDWH" : "BR00000" : Start processing queue (receive que |
| ue "REDDWH.D911.TO.D912.QREP", replication queue map "DWHD911_TO_DWHD912"), appl |
| ication single byte codepage "500", double byte codepage "500", source codepage |
| "500", endian conversion required "0", float conversion "0". |
+--+
| MESS TYPE: ERROR |
| TIME: 2008-04-11-02.47.32.093161 |
| REASON CODE: 0 |
| MQ CODE: 0 |
| DESCRIPTION: |
| ASN0552E "Q Apply" : "REDDWH" : "BR00000SP005" : The program encountered an SQL |
| error. The server name is "DWHD911". The SQL request is "CONNECT". The table na |
| me is "N/A". The SQLCODE is "-950". The SQLSTATE is "42705". The SQLERRMC is "". |
| The SQLERRP is "DSNLTSET". |
+--+

Q Capture and Apply are USS applications that run under a user ID that has a UNIX profile
defined in USS. In the home directory of this user ID, you can find useful information in a deep
level of detail, which provides a great value for debugging and understanding how the
programs are working.

We defined the user QREP for running Q Capture and Q Apply in our installation. To browse
this information, assuming that you have the necessary privileges, you invoke OpenMvs by
running the TSO OMVS command. Then you browse the home directory of the Q Capture
started task user as shown in Example 8-21. In this example, the cd /u/qrep command fails
because of a lack of authorization. After becoming root with the su command, we get into the
qrep user directory. In this example, we list the unhidden files with the ls -l command.

The log file names are composed of the server name, the subscription schema, and QAPP for
the apply of QCAP for capture, followed by the particle .log.

Example 8-21 Getting information from USS

DWH1:CRIS:/u/cris>cd /u/qrep
cd: /u/qrep: EDC5111I Permission denied.
DWH1:CRIS:/u/cris>su
:CRIS:/u/cris>cd /u/qrep
:CRIS:/u/qrep>
:CRIS:/u/qrep>ls -l
total 1000
-rw-r--r-- 1 QREP DE#03557 7803 Apr 10 15:42 D911.CRIS.QAPP.log
-rw-r--r-- 1 QREP DE#03557 506047 Apr 10 15:40 D911.CRIS.QCAP.log
-rw-r--r-- 1 QREP DE#03557 42431 Apr 11 12:13 D911.REDDWH.QCAP.log
-rw-r--r-- 1 QREP DE#03557 19195 Apr 11 12:13 D912.REDDWH.QAPP.log
:CRIS:/u/qrep>
===>
RUNNING

198 Enterprise Data Warehousing with DB2 9 for z/OS

You can browse these files by using the oedit command as shown in Example 8-22.

Example 8-22 Browsing Q Capture log using OEDIT

oedit ./D911.REDDWH.QCAP.log

EDIT /u/qrep/./D911.REDDWH.QCAP.log
Command ===>
000213 2008-04-11-03.13.14.905434
000214 <masterSub::selectKeyColumns>
000215 ASN7023W "Q Capture" : "REDDWH" : "WorkerThread" :
000216 Source table "OLTP_B.LINEITEM" does not have a primary key, unique constraint, or unique index.
000217 2008-04-11-03.13.14.908136
000218 <subMgr::handleCAPSTART>
000219 ASN7017I "Q Capture" : "REDDWH" : "WorkerThread" :
000220 The target table "DWHODS.LINEITEM_QREP" is ready to be loaded from source table
000221 "OLTP_B.LINEITEM" for publication or Q subscription "LINEITEM0001".
000222 2008-04-11-03.13.19.910982
000223 <subMgr::handleSignal>
000224 ASN7019I "Q Capture" : "REDDWH" : "WorkerThread" :
000225 "CAPSTART" signal was received and will be processed.
000226 2008-04-11-03.13.19.918373
000227 <subMgr::handleCAPSTART>
000228 ASN7017I "Q Capture" : "REDDWH" : "WorkerThread" :
000229 The target table "DWHODS.ORDER_QREP" is ready to be loaded from source table
000230 "OLTP_B.ORDER" for publication or Q subscription "ORDER0001".

Chapter 8. Q replication and event publishing 199

200 Enterprise Data Warehousing with DB2 9 for z/OS

Chapter 9. Setting up ETL components for a
data warehouse

We use IBM Information Server on Linux on System z to both model and run the extract,
transform, and load (ETL) jobs for accessing data from and loading it to our DB2 for z/OS
subsystems. We also use WebSphere Classic Federation for DB2 for z/OS data and flat files.

In the following sections, we explain how to set up the required components both on z/OS and
Linux on System z. This chapter includes the following sections:

� 9.1, “Overview of components for ETL on Linux on System z and z/OS” on page 202
� 9.2, “Configuring a HiperSocket connection to z/OS on Linux on System z” on page 203
� 9.3, “Setting up BatchPipes” on page 206
� 9.4, “Setting up WebSphere Classic Federation” on page 210
� 9.5, “Installing IBM Information Server” on page 228

9

© Copyright IBM Corp. 2008. All rights reserved. 201

9.1 Overview of components for ETL on Linux on System z
and z/OS

Figure 9-1 shows an overview of the components that we install for both the initial and
incremental updates of our data warehouse. We assume that DB2 for z/OS is set up and
running and that the z/OS components are System Modification Program/Extended (SMP/E)
installed.

Figure 9-1 Components setup for ETL

We run a logical partition (LPAR) with Linux on System z and another LPAR with z/OS with
the following configuration:

� For connecting components between the LPARs, we configure and use HiperSockets.

� On z/OS, we configure the BatchPipes subsystem for loading data in DB2 for z/OS.

� To access the flat file that is storing our supplier data, we install WebSphere Classic
Federation (server components on z/OS and client components on Linux on System z).

� For incremental updates, we use Data Event Publisher on z/OS and WebSphere MQ
(server components on z/OS and the client on Linux on System z).

� Information Server for Linux on System z with the DataStage component is installed and
configured on Linux on System z. It comes with WebSphere Application Server and DB2
for Linux on System z for metadata.

z/OSz/OS

DB2 for z/OS: Data for OLTP
(OLTP, OLTP_W, OLTP_B)

DB2 for z/OS: Data for OLTP
(OLTP, OLTP_W, OLTP_B)

DB2 for z/OS: Data warehouse
(ODS, DDS)

DB2 for z/OS: Data warehouse
(ODS, DDS)

Linux on System zLinux on System z

WebSphere
Application Server 6.1

WebSphere
Application Server 6.1

H
iperSockets

H
iperS

ockets

Flat file
(suppliers)

Flat file
(suppliers)

WebSphere
Classic Federation

WebSphere
Classic Federation

WebSphere Classic
Federation Client

WebSphere Classic
Federation Client

IBM
Information Server 8.0.1

IBM
Information Server 8.0.1

Batch PipesBatch Pipes

WebSphere MQ ClientWebSphere MQ Client

WebSphere MQWebSphere MQ

DB2 UDB for Linux on System zDB2 UDB for Linux on System z

Q Capturing /
Data Event Publisher

Q Capturing /
Data Event Publisher

202 Enterprise Data Warehousing with DB2 9 for z/OS

9.2 Configuring a HiperSocket connection to z/OS on Linux on
System z

If you start with a fresh installation of Linux on System z and run z/OS on the same physical
machine, you can configure a HiperSocket connection from your LPAR running Linux on
System z to z/OS. By doing this, you can access the remote DB2 for z/OS system using
TCP/IP but avoid any additional physical hardware and software network stack overhead.

As a prerequisite, our z/OS system already has channels defined for HiperSockets. These
definitions are in the Input Output Configuration Data Set (IOCDS) for z/OS. In our case, they
contain four channels (E0, E1, E2 and E3) for the four available frame sizes of 16 KB, 24 KB,
40 KB, and 64 KB respectively (Example 9-1).

Example 9-1 IOCDS definition for HiperSocket channels

* HIPERSOCKET CHANNEL MAX. FRAMESIZE 16 KB
 CHPID PATH=(CSS(0,1),E0),SHARED,TYPE=IQD
 CNTLUNIT CUNUMBR=8000,PATH=((CSS(0),E0),(CSS(1),E0)),UNIT=IQD
 IODEVICE ADDRESS=(8000,032),CUNUMBR=(8000),UNIT=IQD
*
* HIPERSOCKET CHANNEL MAX. FRAMESIZE 24 KB
*
 CHPID PATH=(CSS(0,1),E1),SHARED,CHPARM=40,TYPE=IQD
 CNTLUNIT CUNUMBR=8100,PATH=((CSS(0),E1),(CSS(1),E1)),UNIT=IQD
 IODEVICE ADDRESS=(8100,032),CUNUMBR=(8100),UNIT=IQD
*
* HIPERSOCKET CHANNEL MAX. FRAMESIZE 40 KB
*
 CHPID PATH=(CSS(0,1),E2),SHARED,CHPARM=80,TYPE=IQD
 CNTLUNIT CUNUMBR=8200,PATH=((CSS(0),E2),(CSS(1),E2)),UNIT=IQD
 IODEVICE ADDRESS=(8200,032),CUNUMBR=(8200),UNIT=IQD
*
* HIPERSOCKET CHANNEL MAX. FRAMESIZE 64 KB
*
 CHPID PATH=(CSS(0,1),E3),SHARED,CHPARM=C0,TYPE=IQD
 CNTLUNIT CUNUMBR=8300,PATH=((CSS(0),E3),(CSS(1),E3)),UNIT=IQD
 IODEVICE ADDRESS=(8300,032),CUNUMBR=(8300),UNIT=IQD

Chapter 9. Setting up ETL components for a data warehouse 203

To make a HiperSocket connection available on Linux on System z:

1. By using the YaST configuration utility on Linux on System z, in the YaST Control Center
window (Figure 9-2), under Network Devices, select Network Card.

Figure 9-2 YaST Control Center

2. For the Network Setup Method option, select Traditional Method with ifup and click
Next.

Notes:

� Configuration utilities, such as YaST, are not available on all Linux distributions.

� We use SUSE Linux Enterprise Server 10 (SLES 10, Linux version
2.6.16.53-0.18-default).

204 Enterprise Data Warehousing with DB2 9 for z/OS

3. In the Network Card Configuration Overview (Figure 9-3), which shows the available and
not yet configured HiperSockets, choose a HiperSocket and click Edit.

Figure 9-3 Network Card Configuration Overview

4. Assign the new connection a static IP address. In this example, we type 10.10.10.4 as
shown in Figure 9-4. Assign the HiperSocket device name. On this same page, you see
the channels as defined on z/OS.

Figure 9-4 Assigning the static IP address

5. Accept the default of the remaining settings and click Finish.

Chapter 9. Setting up ETL components for a data warehouse 205

The configured HiperSocket connection is now displayed in the Network Card
Configuration Overview (Figure 9-5).

Figure 9-5 HiperSocket connection displayed

6. Apply the new setting to the system.

7. Type the ping command to check whether the network is reachable and verify that the
configuration is working as expected. See Example 9-2.

Example 9-2 Using the ping command to verify the HiperSocket connection

ping 10.10.10.2
PING 10.10.10.2 (10.10.10.2) 56(84) bytes of data.
64 bytes from 10.10.10.2: icmp_seq=1 ttl=64 time=0.131 ms

#ping 10.10.10.4
PING 10.10.10.4 (10.10.10.4) 56(84) bytes of data.
64 bytes from 10.10.10.4: icmp_seq=1 ttl=64 time=0.029 ms

9.3 Setting up BatchPipes

In our scenario, DataStage integration jobs extract and transform data based on defined data
sources. The jobs eventually write the result to a data set in the file system or insert records
into a database in DB2 for z/OS by using the load utility.

Traditionally, the LOAD utility reads from a data set and cannot start processing before writing
to the data set is completed. Particularly, there is no way that the ETL job can write while the
LOAD job processes records.

BatchPipes offer a way for both “writer” and “reader” jobs to run concurrently and thereby
provide a new approach to efficiently load data from remote servers into DB2 for z/OS. The
recent enhancements facilitate and allow the use of BatchPipes in our context.

206 Enterprise Data Warehousing with DB2 9 for z/OS

Feeding z/OS BatchPipes through z/OS FTP
With the authorized program analysis report (APARs) mentioned in Table 9-1 on page 209,
FTP is extended to support the feeding of data to BatchPipes. The log output in Example 9-3
shows an FTP command that is triggered by a DataStage job on Linux on System z. It feeds
data into BatchPipes for subsystem BP0 by specifying the site command site subsys=BP01
for FTP.

Example 9-3 Log output for the FTP command issued by a DataStage DB2z stage

DB2Z_1: [0] pftp
[1] -schema
[2] record
(X: nullable int32 {position=0, binary, big_endian, null_field="``"};
 S: nullable string[max=200] {position=4, padchar="@", ebcdic, prefix=2, null_field="``"};
 nullFieldVector[2]: uint8 {delim=none, position=206, binary};
)
[3] -uri
[4] FTP://10.10.10.2/'FNEUMAN.IN00000'
[5] -open_command
[6] quote site LRECL=209;quote site RECFM=FB;quote site subsys=BP01;debug 1
[7] -user
[8] FNEUMAN
[9] -password
[10] xxxxx
[11] -mode
[12] put
[13] -overwrite
[14] -transfer_type
[15] binary
[16] -norepartition

Using BatchPipes in the DB2 LOAD utility
With the APARs mentioned in Table 9-1 on page 209, the LOAD utility can load data from a
BatchPipes data set by using the following keywords:

� SUBSYS name, which specifies the BatchPipes subsystem name

When SUBSYS is specified, LRECL and RECFM are required.

� LRECL, which specifies the record length of the BatchPipes subsystem

There is no default value, and this option is required when SUBSYS is specified.

� RECFM, which specifies the record format of the BatchPipes subsystem file

Valid values are F, FB, V, or VB. There is no default value, and this option is required when
SUBSYS is specified.

The log output in Example 9-4 shows the LOAD utility call that is triggered by a DataStage
integration job through the DSNUTILS stored procedure.

Example 9-4 Log output for a load utility call though DSNUTILS

TEMPLATE TMPL_IN DSN 'FNEUMAN.IN00000'
 SUBSYS(BP01) RECFM(FB) LRECL(209)
 TEMPLATE TMPL_WK1 DSN 'FNEUMAN.WORK1' UNIT SYSDA
 DISP(NEW,DELETE,DELETE)
 SPACE(16,1) CYL
 TEMPLATE TMPL_WK2 DSN 'FNEUMAN.WORK2' UNIT SYSDA
 DISP(NEW,DELETE,DELETE)
 SPACE(16,1) CYL
 TEMPLATE TMPL_ERR DSN 'FNEUMAN.SYSERR' UNIT SYSDA

Chapter 9. Setting up ETL components for a data warehouse 207

 DISP(MOD,CATLG,DELETE)
 SPACE(16,1) CYL
 LOAD DATA INDDN TMPL_IN RESUME NO REPLACE
 LOG NO NOCOPYPEND EBCDIC
 SORTKEYS 0 SORTDEVT SYSDA
 WORKDDN(TMPL_WK1,TMPL_WK2) ERRDDN TMPL_ERR
 INTO TABLE FNEUMAN.FNT11 (
"X" POSITION(1:4) INTEGER NULLIF(207)=X'FF',
"S" POSITION(5:206) VARCHAR NULLIF(208)=X'FF'
);

Interaction between DataStage and DB2 for z/OS
Figure 9-6 depicts the interaction between the components. A DataStage job running on
Linux on System z creates an output that is sent through FTP and the BatchPipes extension
to the BatchPipes subsystem on z/OS. While transferring data to the batch pipe, DataStage
invokes the DSNUTILS administration stored procedure to trigger the LOAD utility. LOAD
reads from the batch pipe and loads the data into the desired DB2 for z/OS table.

Figure 9-6 Interacting with batch pipes

Troubleshooting BatchPipes
With /BP01 STATUS, you can inspect the status of the BatchPipes subsystem BP01
(Example 9-5) and check if writer or reader jobs are currently running.

Example 9-5 BatchPipes subsystem status

RESPONSE=DWH1
 ASFP210I 16:22:23 BP01 STATUS 639
 #JOBS=4 #PIPES=3 #ALLOC=4 STATUS=ACTIVE MODE=LOCAL
 #WAITALLOC=0 MAX WAITALLOC TIME=00:00:00
 #WRITERS=0
 #WAITOPEN=3 MAX WAITOPEN TIME=00:59:01
 #IDLE=0 MAX IDLE TIME=00:00:00
 #WAIT=0 MAX WAIT TIME=00:00:00
 #WAITCLOSE=0 MAX WAITCLOSE TIME=00:00:00
 #WAITTERM=0 MAX WAITTERM TIME=00:00:00
 #READERS=0
 #WAITOPEN=1 MAX WAITOPEN TIME=00:07:34
 #IDLE=0 MAX IDLE TIME=00:00:00
 #WAIT=0 MAX WAIT TIME=00:00:00
 #WAITEOF=0 MAX WAITEOF TIME=00:00:00
 #WAITCLOSE=0 MAX WAITCLOSE TIME=00:00:00
 #WAITTERM=0 MAX WAITTERM TIME=00:00:00

Linux on System zLinux on System z z/OSz/OS

Data stage
ETL job

1. FTP data to batch pipes
2. Invoke DSNUTILS for LOAD

Data stage
ETL job

1. FTP data to batch pipes
2. Invoke DSNUTILS for LOAD DB2 for z/OSDB2 for z/OS

DSNUTILS
LOAD

DSNUTILS
LOAD

Batch
pipes
Batch
pipesFTP

call

208 Enterprise Data Warehousing with DB2 9 for z/OS

To get a list of currently opened batch pipes, you can issue the following command:

/BP01 ST,p=*

Example 9-6 shows output with three open batch pipes, named FNEUMAN.IN00000,
SREENI.IN00000 and SREENI.PART.IN00000). The default name that Information Server
chooses for the batch pipes are in the form dsn.IN00000.

Example 9-6 Listing of currently opened batch pipes in the system

RESPONSE=DWH1
 ASFP210I 16:23:33 BP01 STATUS 644
 PIPE=FNEUMAN.IN00000 DSPNM=ASFPDQ01
 JOB=DSNUTILS SYS=DWH1 STEP=IEFPROC NUM=STC08157
 READ WAITOPEN=00:08:44 COUNT=0 WAITS=0
 REMAINING OPENS=(W=1 ,R=0)
 PIPE=SREENI.IN00000 DSPNM=ASFPDQ01
 JOB=SREENI SYS=DWH1 STEP=STEP1 NUM=
 WRITE WAITOPEN=01:00:11 COUNT=0 WAITS=0
 REMAINING OPENS=(W=0 ,R=1)
 JOB=SREENI SYS=DWH1 STEP=STEP1 NUM=
 WRITE WAITOPEN=00:58:32 COUNT=0 WAITS=0
 REMAINING OPENS=(W=0 ,R=1)
 PIPE=SREENI.PART.IN00000 DSPNM=ASFPDQ01
 JOB=SREENI SYS=DWH1 STEP=STEP1 NUM=
 WRITE WAITOPEN=00:50:12 COUNT=0 WAITS=0
 REMAINING OPENS=(W=0 ,R=1)

You can obtain additional information for specific batch pipes by using a commands such as
the following example:

/BP01 ST,p=FNEUMAN.IN00000,FLOW

List of required APARs for BatchPipes support
Table 9-1 shows the required maintenance for this function.

Table 9-1 Required APARs for BatchPipes support

Important: We encountered situations where the DataStage job failed and we had to
manually cancel either the job writing into BatchPipes (FTP) or the job reading from
BatchPipes (LOAD). If you are using a BatchPipes file, you cannot restart the LOAD utility.
If the application that populates the BatchPipes file terminates, you must terminate the job
where the LOAD utility is executing. If the utility was invoked from a stored procedure, you
must also terminate the Workload Manager (WLM) application environment of the LOAD
utility that reads the BatchPipes file. After you terminate the job, terminate the LOAD utility
by using the DB2 TERM UTILITY command. Then you can resubmit the LOAD job.

APAR Description

PK37032 for z/OS Introduces BatchPipes support for FTP in z/OS as of 1.8

PK54242 for z/OS FTP server using BatchPipes is not setting the proper LRECL

PK34251 (PTF UK26290)
for DB2 z/OS V8

BatchPipes support for DB2 LOAD

PK34251 (PTF UK25291)
for DB2 9 for z/OS

BatchPipes support for DB2 LOAD

Chapter 9. Setting up ETL components for a data warehouse 209

If PK54242 is not installed on your system, you receive an error message in the log such as
the one listed in Example 9-7.

Example 9-7 Error message in the log if PK54242 is missing

$HASP373 DSNUTILS STARTED
 ICH70001I FNEUMAN LAST ACCESS AT 16:19:43 ON THURSDAY, APRIL 24, 2008
 ASFP328I BATCHPIPES FAILURE. LRECL IS NOT CONSISTENT WITH PIPE. 630
 JOB=FNEUMAN STEP=STEP1 DD=SYS00001 SUBSYS=BP01
 IEC150I 913-74,IGG0199G,FNEUMAN,STEP1,SYS00001

9.4 Setting up WebSphere Classic Federation

The WebSphere Classic Federation Server for z/OS architecture consists of following
components:

� Data server
� Data connectors
� Classic Data Architect
� Metadata catalog
� Clients (Open Database Connectivity (ODBC), Java Database Connectivity (JDBC), and

command line interface (CLI))

Data server
Data servers perform all data access. The data server consists of several components or
services. A major service embedded in the data server is the query processor that acts as the
relational engine for Classic Federation. These services are defined by service information
entries in a configuration file.

Data servers perform the following functions:

� Accept SQL queries from clients
� Determine the type of data to access
� Transform SQL queries into the native file or database access language
� Optimize queries
� Create relational result sets from native database records
� Process post-query result sets as needed

A data server accepts connection requests from client applications. Client applications can
access a data server by using the ODBC, JDBC, or CLI client that IBM WebSphere Classic
Federation Server for z/OS provides. The following services run under the data server:

� Region controller

The region controller is the main service of a data server. It monitors and controls the
other services that run within the data server. The region controller directly or indirectly
activates each service based on the configuration parameters that you define in a master
configuration member by using service information entry parameters.

� Connection handlers

A connection handler listens for connection requests from client applications and routes
them to the appropriate query processor task. The connection handler task can load the
following communication protocols:

– TCP/IP
– z/OS Cross Memory Services
– WebSphere MQ

210 Enterprise Data Warehousing with DB2 9 for z/OS

� Query processors

The query processor is the subcomponent of the data server that processes SQL
requests. The SQL requests can access a single database or file system or reference
multiple types of databases or file systems. There are two types of query processors:

– Single-phase commit query processor (CACQP) accesses and joins information from
multiple data sources and performs updates to a single data source.

– Two-phase commit query processor (CACQPRRS) accesses and joins information from
multiple data sources and performs updates to multiple data sources. The two-phase
commit query processor uses z/OS Resource Recovery Services to coordinate the
data source updates. The two-phase commit query processor supports the
CA-Datacom, DB2 for z/OS, IMS, and VSAM data sources.

� Initialization services

Initialization services are special tasks that initialize different types of interfaces to
underlying database management systems and z/OS system components.

� System exits

System exits are subcomponents of the data server and the query processor. The system
exits are designed to run in a multiuser environment and perform security, accounting, and
workload management functions to support large numbers of concurrent users.

� Logger service

The logger service is a task for system monitoring and troubleshooting. A single logger
task can run within a data server. The logger reports data server activities and is used for
error diagnosis.

Data connectors
WebSphere Classic Federation for z/OS supports data connectors, which provide access to
the following data sources:

� Adabas

Provides access to Adabas files.

� CA-Datacom

Provides access to CA-Datacom files.

� CA-IDMS

Provides access to CA-IDMS files.

� DB2 for z/OS

Provides access to DB2 for z/OS tables.

� IMS

Provides access to IMS data using the IMS DRA interface or the IMS BMP/DBB interface.

� Sequential

Provides access to sequential files or members.

� VSAM

Provides access to native VSAM files, VSAM files under the control of CICS, and VSAM
files under the control of DFSMStvs.

The query processor dynamically loads one or more data connectors to access the target
database or file system that is referenced in the SQL request.

Chapter 9. Setting up ETL components for a data warehouse 211

Classic Data Architect
The Classic Data Architect is the administrative tool that is used to map the data definitions to
the logical tables. It helps to perform following tasks:

� Define tables, columns, primary keys, indexes, stored procedures, and views

� Specify user authorization for all objects

� Import existing physical definitions from copybooks, CA-IDMS schemas, and IMS
database descriptors (DBDs)

� Generate Data Definition Language (DDL) for the objects that you create that can be run
directly on a server or saved to a script file

� Generate DDL scripts from objects that are already defined in the catalog and export DDL
scripts to a data set on the server for use with the metadata utility

� Connect directly to a classic data source and view the objects in the system catalog

Metadata catalog
A metadata catalog is a set of relational tables that contain information about how to convert
data from non-relational to relational formats. The data server accesses the information
stored in these catalogs. The information generated from Classic Data Architect is stored in a
metadata catalog.

Clients (ODBC, JDBC, and CLI)
WebSphere Classic Federation Server for z/OS provides the ODBC, JDBC, and CLI clients.
The clients enable client applications or tools to submit SQL queries to the data server. The
clients use TCP/IP or WebSphere MQ communication protocols to establish a connection
with a target data server.

9.4.1 Setting up the WebSphere Classic Federation server on z/OS

After completing the SMP/E installation, you must complete the following tasks to configure
WebSphere Classic Federation on z/OS:

� APF authorize the SCACLOAD and SCACSASC data sets
� Configure the data servers and services

Configuring the data server on z/OS
The data server configuration parameters that define services and other operational and
tuning parameters are defined in configuration files that are stored as members in a
configuration partitioned data set (PDS). To implement WebSphere Classic Federation, we
use the following members stored in SCACCONF PDS to configure a data server:

� Data server configuration (CACDSCF)
� Query processor configuration (CACQPCF)

Note: In this book, we do not discuss how to leverage WebSphere Classic Event Publisher
to handle incremental updates to legacy data sources. We assume that the data in the
referenced legacy data sources remains constant and that changes are just considered for
processing during a full refresh of the data warehouse.

212 Enterprise Data Warehousing with DB2 9 for z/OS

To configure the data server:

1. Copy the sample data server job control language (JCL) in a separate proclib or JCL
library for editing per the required configuration. Customize the JCL for the environment
and point to our configuration member ‘WCF.CACDS01.SCACCONF(CACDSCF1) on the
VHSCONF DD statement. Refer to Example 9-8 for the data server JCL procedure details.

Example 9-8 Data server procedure

//CACDS PROC CAC='SYS1.WSC.V910', INSTALLED HIGH LEVEL QUALIFIER
// DB2='SYS1.DSN.V910', DB2 HIGH LEVEL QUALIFIER
// CONFIG=CACDSCF1, DATA SERVER CONFIG FILE
// SOUT='*', SYSOUT CLASS
// RGN=32M REGION SIZE
//CACPROC EXEC PGM=CACCNTL,TIME=1440,REGION=&RGN
//* PARM='&PARM1 '
//STEPLIB DD DISP=SHR,DSN=&CAC..SCACLOAD
//* DD DISP=SHR,DSN=&ADA..LOAD
// DD DISP=SHR,DSN=&DB2..SDSNLOAD
//VHSCONF DD DISP=SHR,DSN=WCF.CACDS01.SCACCONF(&CONFIG)
//CTRANS DD DISP=SHR,DSN=&CAC..SCACSASC
//*
//* META DATA CATALOGS
//CACCAT DD DISP=SHR,DSN=WCF.CACDS01.CATALOG
//CACINDX DD DISP=SHR,DSN=WCF.CACDS01.CATINDX

2. Copy CACDSCF and CACQPCF from the SCACCONF member to a separate
configuration library, which is WCF.CACDS01.SCACCONF in our case.

3. Modify the CACDSCF member for the required configuration. We made the following
modification in the CACDSCF member:

a. Define a query processor (REDDWHZ) with the following query processor service
definition in the CACDSF member in our configuration library (copied as CACDSF1).
Refer to Example 9-9 for details about the definition.

Example 9-9 Query processor definition

**
*
* QUERY PROCESSOR SERVICE INFO ENTRY
* THE LAST SUBPARAMETER POINTS TO A QP SERVICE CONFIGURATION FILE
SERVICE INFO ENTRY = CACQP REDDWHZ 2 5 10 20 4 5M 5M CACQPCF
*
**

The Query processor definitions field shown in Example 9-9 has the following fields:

Field 1 Type of query processor. CACQP describes it as single phase commit query
processor.

Field 2 Provides the name in the data server for the service. It is REDDWHZ in our
case.

Field 3 Service start class. Provides the priority to the service definition. Service
class 2 is less than the data server’s main controller task (service class = 0)
and the logger task (service class=1).

Field 4 Minimum of number of instances of the service.

Field 5 Maximum number of instances of the service.

Field 6 Maximum number of connections per task.

Chapter 9. Setting up ETL components for a data warehouse 213

Field 7 Tracing level as the service passes the logger service. Trace level 4 means
informational and warning messages only.

Field 8 Response time out.

Field 9 Idle time out.

Field 10 Service specific information. The name of the member of SCACCONF library.

b. Configure the TCP/IP connection handler. We modified the TCP/IP connection handler
service information entry in the CACDSF1. We defined port 5999 in the definition
where the data server will listen to incoming requests. Refer to Example 9-10 for the
exact definition.

Example 9-10 TCP/IP connection handler configuration

*
* TCP/IP CONNECTION HANDLER
* REFER TO DOCUMENTATION FOR DETAILED INFORMATION ON LAST SUBPARAMETER
SERVICE INFO ENTRY = CACINIT TCPIP 2 1 1 100 4 5M 5M \
 TCP/0.0.0.0/5999
*

c. Enable SAF Exit by using the statements in Example 9-11. SAF Exit is used to verify
that a user has authority to access a physical file or PSB referenced in an SQL query.

Example 9-11 SAF Exit

* SAF (SECURITY) SYSTEM EXIT
SAF EXIT = CACSX04

4. Start the data server. The data server can be started by issuing the start command from
the MVS log. The data server job log should look similar to the log in Example 9-12.

Example 9-12 Data server job log

CAC00105I LOG V9.1 08172007: STARTED
CAC00100I CONTROLLER: LOGGING STARTED
CAC00105I QUERY PROCESSOR V9.1 11142007: STARTED
CAC00102I CONTROLLER: STARTED CACQP
CAC00105I QUERY PROCESSOR V9.1 11142007: STARTED
CAC00102I CONTROLLER: STARTED CACQP
CAC00105I QUERY PROCESSOR V9.1 11142007: STARTED
CAC00102I CONTROLLER: STARTED CACQP
CAC00105I QUERY PROCESSOR V9.1 11142007: STARTED
CAC00102I CONTROLLER: STARTED CACQP
CAC00105I QUERY PROCESSOR V9.1 11142007: STARTED
CAC00102I CONTROLLER: STARTED CACQP
CAC00102I CONTROLLER: STARTED CACINIT
CAC00103I DATA SERVER: V9.1 08172007 READY
CAC00105I CONNECTION HANDLER V9.1 08172007: STARTED

214 Enterprise Data Warehousing with DB2 9 for z/OS

9.4.2 Defining and registering the flat file in Classic Data Architect

To map the sequential files in the Classic Federation data server, we used the Classic Data
Architect tool. We describe the configuration of Classic Data Architect for the data server in
“Configuring the Classic Data Architect for the data server” on page 215.

Configuring the Classic Data Architect for the data server
To map sequential files in Classic Federation, Classic Data Architect connects to the data
server that is running on z/OS. Figure 9-7 shows the configuration parameters for our
scenario.

Figure 9-7 Data server configuration in Classic Architect

The data source name in the connection details point to the query processor name configured
in the CACDSF1 configuration file. The port number used here is also configured in the
Service Info Entry for the CACINIT in CACDSF1 member.

Chapter 9. Setting up ETL components for a data warehouse 215

Defining copybook for the sequential file
A copybook must be defined in Data Architect. The copybook is used later for defining a
sequential table in the data server. We defined the copybook shown in Figure 9-8 in
consideration of the sequential file format described in “SUPPLIER data” on page 82.

Figure 9-8 Supplier copybook

216 Enterprise Data Warehousing with DB2 9 for z/OS

Mapping the table
First we define the sequential table in our local data model, then we define the corresponding
the copybook, and finally we go into the details of defining the sequential table by using the
classic data architect (DWHRES_MODEL). Figure 9-9 shows how to start the sequential table
configuration.

Figure 9-9 Mapping a sequential table

Chapter 9. Setting up ETL components for a data warehouse 217

In the New Sequential Table – Specify Location and COBOL Copybook window (Figure 9-10),
we specify the copybook and schema name for the sequential table.

Figure 9-10 Parameters for the sequential table

218 Enterprise Data Warehousing with DB2 9 for z/OS

In the New Sequential Table – Specify Sequential Information window (Figure 9-11), we
specify the table name and the dataset name that it maps to in the system. We can also
specify a DD name here but it name should be coded in the data server job that is running on
the host. The data in the data set in the figure is described in “SUPPLIER data” on page 82.

Figure 9-11 Sequential table mapping - Table name and dataset name

Chapter 9. Setting up ETL components for a data warehouse 219

Figure 9-12 shows the summary of the fields that are defined for the SUPPLIER sequential
table.

Figure 9-12 Summary of fields

220 Enterprise Data Warehousing with DB2 9 for z/OS

After the sequential table is defined in the local data model, we define it in the data server by
using the Generate DDL function as shown in Figure 9-13.

Figure 9-13 Generate DDL

Chapter 9. Setting up ETL components for a data warehouse 221

We edit the generated DDL to change the fields defined as USE AS INTEGER or USE AS
DECIMAL to USE AS CHAR because we are reading from a sequential file in which data is
stored in a character format. Figure 9-14 shows the updated DDL.

Figure 9-14 Updated SUPPLIER sequential table DDL

222 Enterprise Data Warehousing with DB2 9 for z/OS

In the Connection Selection window, we run the edited DDL on the data server that is running
on the host as shown in Figure 9-15.

Figure 9-15 Running the DDL on the data server

Chapter 9. Setting up ETL components for a data warehouse 223

We define the sequential table on the data server as shown in Figure 9-16.

Figure 9-16 Running the DDL on the data server

224 Enterprise Data Warehousing with DB2 9 for z/OS

Figure 9-17 shows the table and its contents displayed from Classic Data Architect.

Figure 9-17 Supplier sequential table contents

Note: The method described in “Mapping the table” on page 217 is for the SUPPLIER
table. We follow a similar process to map the PART and PART SUPPLIER table.

Chapter 9. Setting up ETL components for a data warehouse 225

9.4.3 Installing and configuring the WebSphere Classic Federation client on
Linux on System z

To access a data source through WebSphere Classic Federation on Linux on System z and to
connect to it from Information Server, you have to install the WebSphere Classic Federation
client on Linux on System z and define an ODBC data source for metadata retrieval.

Installing WebSphere Classic Federation client on Linux on System z
The following support document points to the download information for the Linux on System z
client:

http://www.ibm.com/support/docview.wss?uid=swg21291254

You can download this information directly from the following FTP address:

ftp://ftp.software.ibm.com/software/data/integration/iicf/

The file for Linux on System z at the time when we wrote the book was cac91zlx_120807.
This file contains a script and the binaries and can be run directly from the Linux on System z
shell. To install the client:

1. Log in as root and enter the following command:

./cac91zlx_120807 -console

2. After the Java SE Runtime Environment (JRE™) is extracted and you see the text in
Figure 9-18, press Enter to accept the default selection. Then type 1 to continue.

Figure 9-18 Installation wizard for WebSphere Classic Federation client installation

Note: There is no dedicated client for WebSphere Classic Federation. You must install the
WebSphere Classic tools, which include the client code for connection to a WebSphere
Classic Federation server. In the following description, we discuss the WebSphere
Federation client.

Note: The client installation uses a GUI by default. Without an X server, you can add
the -console parameter to run it on the console.

Welcome to the InstallShield Wizard for IBM WebSphere Classic Tools V9.1

The installation wizard will install the following tools and clients for
Classic Federation Server, Event Publisher and Replication Server for z/OS :
 - ODBC driver and CLI client

 - JDBC client

Click Next to continue.

Press 1 for Next, 3 to Cancel or 5 to Redisplay [1]

226 Enterprise Data Warehousing with DB2 9 for z/OS

http://www.ibm.com/support/docview.wss?uid=swg21291254
ftp://ftp.software.ibm.com/software/data/integration/iicf/

3. In the next panel (Figure 9-19), install the ODBC and CLI client, the JDBC client, or both
clients. Select both available options and press Enter to confirm the current selection.

Figure 9-19 Selecting installation options for the WebSphere Classic Federation client

4. In the next panel (Figure 9-20), confirm the proposed default path (/opt/ibm/wsclassic91)
and press Enter. This is the path where the WebSphere Classic Federation client will be
installed.

Figure 9-20 Installation directory for the WebSphere Classic Federation client

The installation procedure lays down the file in the specified directory (showing the
progress of the installation based on percent complete).

5. After some seconds, when you see the screen that indicates a successful installation
(Figure 9-21), type 3 to finish the installation procedure and press Enter.

Figure 9-21 Confirmation message for a successful client installation

Select the features for IBM WebSphere Classic Tools that you would like to
install:

 IBM WebSphere Classic Tools, V9.1

 To select/deselect a feature or to view its children, type its number:

 1. [x] ODBC driver and CLI client (installed)
 2. [x] JDBC client (installed)

 Other options:

 0. Continue installing

 Enter command [0]

IBM WebSphere Classic Tools, V9.1 will be installed in the following location:

/opt/IBM/wsclassic91

with the following features:

ODBC driver and CLI client
JDBC client

for a total size:

 75.9 MB

Press 1 for Next, 2 for Previous, 3 to Cancel or 5 to Redisplay [1]

The InstallShield Wizard has successfully installed IBM WebSphere Classic
Tools, V9.1. Choose Finish to exit the wizard.

Press 1 for Next, 3 to Finish or 5 to Redisplay [1] 3

Chapter 9. Setting up ETL components for a data warehouse 227

Configuring the WebSphere Classic Federation client
During configuration of the WebSphere Classic Federation server on z/OS, we chose
REDDWHZ as the data source name, which we must use in the client configuration as well.

The settings for the WebSphere Classic Federation client are stored in the cac.ini file, which is
located by default in /opt/IBM/wsclassic91/cli/lib. Edit this file as follows and as shown in
Example 9-13.

For the DATASOURCE name, type REDDWHZ. This is the name of the remote data source that
matches the service name of the service information entry parameter in the query processor
task on the data server.

The IP address 10.10.10.2 is the (HiperSocket) IP address to the z/OS system and port 5999
is the value that has been defined during setup of WebSphere Classic Federation Server on
z/OS.

For the DEFLOC parameter, which must point to a valid WebSphere Classic Federation data
source, type REDDWHZ.

Example 9-13 The cac.ini file

NL CAT = /opt/IBM/wsclassic91/cli/lib
NL = US English
* user id/pwd needed for catalog security
USERID = cacuser
USERPASSWORD = cacpwd
* default datasource location
DEFLOC = REDDWHZ
DATASOURCE = REDDWHZ tcp/10.10.10.2/5999
* performance and memory parameters
FETCH BUFFER SIZE = 32000
MESSAGE POOL SIZE = 4000000
* codepage parameters
SERVER CODEPAGE = IBM-037
CLIENT CODEPAGE = IBM-850

Additional configuration steps, such as setting environment variables and configuring an
ODBC data source, are required to access a WebSphere Classic Federation Server from
within an Information Server environment. These settings are described in 9.5.6, “Cataloging
the DB2 for z/OS subsystems” on page 248, and 9.5.7, “Setting up ODBC connections to
DB2 for z/OS databases and WebSphere Classic Federation” on page 248.

9.5 Installing IBM Information Server

We use Information Server version 8.0.1 with fix pack 1 for this project. We install it on a Linux
on System z that runs on an LPAR of our System z.

We use the server install image to install server components on Linux on System z. In
addition, we use a client install image to install components, such as the Designer and
Administrator client, on a Windows machine.

Naming and terminology: The announced next version for IBM Information Server comes
with slightly different naming and terminology. For this book, we tried to use the new
names, such as InfoSphere DataStage, where it is appropriate and where we feel it does
not cause confusion. The figures reflect the names of Information Server 8.0.1.

228 Enterprise Data Warehousing with DB2 9 for z/OS

9.5.1 Topology considerations: Product tiers

An typical Information Server installation involves the following five tiers, which are illustrated
in Figure 9-22 on page 230:

� Client tier

The clients for IBM Information Server include InfoSphere DataStage and InfoSphere
QualityStage clients and the Information Server console. InfoSphere Information Analyzer
and InfoSphere Information Services Director are part of the IBM Information Server
console. The clients can be installed by the suite installer or stand-alone client installer.

For this project, we need and use the following components:

– InfoSphere DataStage and InfoSphere QualityStage Administrator to create and define
projects

– InfoSphere DataStage and InfoSphere QualityStage Designer to model ETL jobs that
cleanse, transform, and integrate data

– InfoSphere DataStage and InfoSphere QualityStage Director to validate, schedule, run,
and monitor our ETL jobs

We do not use and show InfoSphere Information Analyzer and InfoSphere Service
Director™ in this book.

For this book, the client components are installed on a Windows system.

� Repository tier

The repository contains the metadata for the Information Server. The metadata server,
hosted by the application server, connects to the repository to store and retrieve data.

� Services tier

The services tier includes InfoSphere Metadata Server, InfoSphere Business Glossary,
Information Server Web console, the services components of the products that you install,
and the information center.

For this book, we need and use the Information Server Web console primarily to create
users and authorize them to use components and features of Information Server.

� Engine tier

The engine tier consists of the engine components of the products that you install, such as
InfoSphere DataStage and InfoSphere QualityStage. The engine tier also includes
WebSphere Federation Server. The services tier must be installed on the same computer
or on a different computer in the same network before you install the engine tier.

For this book, we install the engine tier and the services tier on the same computer, which
is our Linux on System z system.

Note: With Information Server 8.0.1, the topology is defined with tiers. The next version
uses the term “tier” instead and comes with a slightly different grouping. Because we refer
to this topology in the installation steps, we use the 8.0.1 terminology here.

Note: With version 8.0.1 of the Information Server, the repository cannot be hosted by a
database on DB2 for z/OS. For this project, we decided to use a database on DB2 for
Linux on System z instead. Future versions might support DB2 for z/OS for the
repository as well.

Chapter 9. Setting up ETL components for a data warehouse 229

We need the following components:

– Engine components

This is basically the component that runs the ETL jobs that we define in our projects.
DataStage offers a server engine and a parallel engine to run respective job types.

– InfoSphere Metadata Server agent

This is a Java process that runs in the background and offers access to the metadata
server.

– ODBC drivers

We need the ODBC drivers to access our remote DB2 for z/OS system and retrieve
metadata information, such as tables definitions from there.

� Documentation tier

The documentation for the product modules and components that you install is available in
several formats, including PDF, online, and information center.

You can distribute product components among multiple physical servers and install multiple
engine components on multiple server for scaleout.

For the purpose of this book, we use a Windows XP machine for the client and documentation
tiers (Computer A in Figure 9-22) and a single Linux on System z system for repository,
services and engine tiers (Computer B in Figure 9-22).

Figure 9-22 Information Server 8.0.1 tiers

230 Enterprise Data Warehousing with DB2 9 for z/OS

9.5.2 User ID and registry considerations before installing Information Server

Several user IDs must be created to work with Information Server. They can be created by the
installation procedure or you can create them beforehand.

We have the required user IDs created by the installation procedure. Table 9-2 lists the user
IDs that we used for the Information Server installation. They are the defaults that are
proposed by the installation procedure. The user IDs that are related to the repository tier are
used to manage the DB2 system and access the repository database there.

Table 9-2 The Information Server user IDs

For the users who can log on to the software, you must decide if you want to define them in
the operating system user registry or in Information Server’s own internal user registry. There
are pros and cons for both options and the decision ultimately should be taken based on
requirements of the environment.

For this project, we use the operating system user repository because we want to use the
user IDs and credentials for other software components on the same system. Therefore,
having the same set of users created in a dedicated Information Server user repository
results in two sets of credentials that users have to manage. If most of the users gain access
to DataStage and do not access other software on the same system, using the internal
registry might be a better choice.

9.5.3 Installing server components for Linux on System z

In the following steps, we describe the installation of Information Server for Linux on
System z. We use the GUI-driven interactive installation method, which requires an X Window
System running on the client machine, for example, Windows.

1. Log in as root or with the user ID that should own the installation.

2. Run ./install from your server installation image on Linux on System z.

User ID Group tier Required user

xmeta N/A Repository Owner of the repository database, also used to access the
repository.

db2inst1 db2iadm1 Repository Owner of the DB2 instance on DB2 for Linux on System z.

db2fenc1 db2fenc1 Repository Fenced user for DB2 instance on DB2 for Linux on
System z.

dasusr1 dasadm1 Repository DB2 administration (DAS) user.

wasadmin N/A Services Application Server ID, required to start and stop WebSphere
Application Server and manage installed applications (if
required).

dsadm dstage Engine InfoSphere DataStage administrator.

admin N/A Services Information Server administrator; use this user ID to log into
the Information Server Web console.

Chapter 9. Setting up ETL components for a data warehouse 231

3. In the installation wizard window (Figure 9-23) that opens on your X Window System, click
Next.

Figure 9-23 Welcome panel for the Information Server installation

4. In the next panel that shows the licensing agreement, click the accept option and then
click Next.

5. Read the comment about the firewall restrictions during installation and click Next.

6. In the Installation and Response File Selection panel (Figure 9-24), install the suite, create
a response file, or do both. By choosing to have a response file created, you can rerun the
installation in silent mode again. Click Next.

Figure 9-24 Installation option to create a response file

232 Enterprise Data Warehousing with DB2 9 for z/OS

7. In the Installation Directory panel (Figure 9-25), specify the installation directory of
Information Server. We accept the default proposal to install the components under
/opt/IBM/InformationServer. Then click Next.

Figure 9-25 Choosing the installation directory

8. In the IBM Information Server Layers panel (Figure 9-26), select the service tiers to install.
As explained in 9.5.1, “Topology considerations: Product tiers” on page 229, we install the
engine, services and repository tiers on our server. For shared access to the
documentation files, we include documentation. Therefore, we click Select All. Click Next.

Figure 9-26 Selecting the server tiers for installation

9. In the next panel, point to the location of the XML license file, which is the license for your
Information Server installation. Click Next.

Chapter 9. Setting up ETL components for a data warehouse 233

10.The the Product Module and Component Select panel (Figure 9-27), select the available
product component to install for the selected tiers. Make sure that you select InfoSphere
DataStage and QualityStage and Documentation. The Metadata repository option is
selected by default and cannot be cleared. Click Next.

Figure 9-27 Selecting the product components to install

11.In the Installation Type panel (Figure 9-28), select Typical for the installation type and click
Next.

Figure 9-28 Selecting the installation type

12.In the next panel, upgrade the existing DataStage installation in a given directory. Because
we run a new installation, select New Installation and click Next.

234 Enterprise Data Warehousing with DB2 9 for z/OS

13.In the DB2 Version 9.1 Is Not Installed on Your Computer panel (Figure 9-29), read the
message, which explains that you need a version of DB2 installed on the server and that
the installation routine ensures that it is set up automatically for you. Click Next.

Figure 9-29 Message about DB2 installation

Important: If you have already run a DB2 instance on your Linux on System z, you
might want to use an existing installation. However, make sure that the version you use
is compatible with Information Server. For example, using DB2 9.5 for Linux on System
z might not work together with Information Server. If in doubt, have Information Server
install the DB2 version that comes with Information Server.

Chapter 9. Setting up ETL components for a data warehouse 235

14.In the Metadata Repository Configuration panel (Figure 9-30), enter the user ID to use (or
create) for creating and accessing the repository. As outlined in 9.5.2, “User ID and
registry considerations before installing Information Server” on page 231, we use the
suggested default user ID xmeta and have Information Server create the user ID for us. If
the user ID already exists, specify the correct password. Click Next to validate the
credentials.

Figure 9-30 Specifying the user ID to create and access the repository

236 Enterprise Data Warehousing with DB2 9 for z/OS

15.In the WebSphere Application Server Selection panel (Figure 9-31), choose whether you
want to install a new version of WebSphere Application Server for the services tier or
configure an existing one. Select Install WebSphere Application Server and click Next.

Figure 9-31 Installation option for WebSphere Application Server

16.Enter the directory in which to install your copy of WebSphere Application Server. We
confirm the default of /opt/IBM/WebSphere/AppServer for this location and then click Next.

Note: Because Information Server requires special settings on the server instance, we
recommend that you do not run other applications in the same instance. If you already
have an existing and compatible installation of WebSphere Application Server on your
Linux on System z, create a new profile and dedicate this one for Information Server.
Otherwise, we recommend that you create a new instance of WebSphere Application
Server.

Chapter 9. Setting up ETL components for a data warehouse 237

17.In the Choose the style of user registry panel (Figure 9-32), choose whether to use an
internal user registry or a local OS user registry. We choose Local OS User Registry and
type the wasadmin user ID for WebSphere Application Server management. See 9.5.2,
“User ID and registry considerations before installing Information Server” on page 231, for
a discussion about user registry selection and the list of required user IDs. Click Next.

Figure 9-32 User registry selection and WebSphere Application Server user ID

18.In the IBM Information Server Administrator Information panel (Figure 9-33), log in to the
Information Server Web console. As described in 9.5.2, “User ID and registry
considerations before installing Information Server” on page 231, we use admin for the
user ID. Enter the password of the existing user or the one to be created and click Next.

Figure 9-33 Selecting the admin user ID for the Information Server Web console

238 Enterprise Data Warehousing with DB2 9 for z/OS

19.In the WebSphere DataStage Projects panel (Figure 9-34), create an initial DataStage
project.

a. In the empty project list, click New Project to name a new project to create.

Figure 9-34 DataStage project list during installation

b. In the next window that opens (Figure 9-35), type the name of the new project. We type
a project name of p1, leave the project path at its default location, and click OK. The
project list in Figure 9-34 now shows the newly defined project p1.

Figure 9-35 Defining a new DataStage project during installation

c. Back in the WebSphere DataStage Projects panel, click Next.

Chapter 9. Setting up ETL components for a data warehouse 239

20.The next steps cover the installation of DB2 for Linux on System z. The first step
(Figure 9-36) asks for the target location for the DB2 installation. In our case, we choose
the default location /opt/IBM/db2/v9. Click Next.

Figure 9-36 Installation location for DB2 for Linux on System z

21.In the next panels, provide the user IDs and passwords to use for the DB2 instance.
According to 9.5.2, “User ID and registry considerations before installing Information
Server” on page 231, we defined the user IDs dasuser1, db2inst1, and db2fenc1. Add a
desired password and accept the suggested defaults. Click Next on each panel.

22.In the WebSphere DataStage Administrator panel (Figure 9-37), define one user ID on the
operating system level. This user also must be part of the dstage group You must do this
regardless of whether you choose the operating system user registry or the DataStage
internal registry to manage your users. This ID is effectively used to administer DataStage.
Provide the password and for Group name, type dstage. Confirm and click Next.

Figure 9-37 Defining the InfoSphere DataStage administrator user

240 Enterprise Data Warehousing with DB2 9 for z/OS

23.In the DataStage Instance Tag panel (Figure 9-38), type a DataStage instance tag. If
multiple instances of DataStage are installed, make sure that they have different names
and port numbers. For our installation, we verify that port number 31538 is not used by any
other application on our server. We then keep the defaults. Click Next.

Figure 9-38 Name and port number for the DataStage instance

24.In the next panels, depending on your installation, install the following options:

– National Language Support
– IBM WebSphere MQ Plug-ins
– Oracle® Operator Configuration
– SAS Configuration

For our book, we do not use any of these options. To confirm not to install these options,
click Next in the respective installation panels.

Note: Check /etc/services on Linux on System z to see which ports are registered.
After your installation, you will find an entry like the following example in the file:

dsrpc 31538/tcp # RPCdaemon
DSEngine@/opt/IBM/InformationServer/Server/DSEngine

Chapter 9. Setting up ETL components for a data warehouse 241

25.In the Pre-installation Summary panel (Figure 9-39), review the configuration decisions
you made and confirm them before the procedure starts to install DataStage and
QualityStage on the server. Click Install to proceed.

Figure 9-39 Summary before installation of DataStage and QualityStage

This completes the installation of the Information Server on Linux on System z.

9.5.4 Installing DataStage and QualityStage designer clients on Windows

The client for DataStage and QualityStage can be installed with the server installation image
for Windows, or you can use a dedicated client installation image. We describe and choose
the client installation image option because we do not need additional server components on
Windows and, therefore, prefer the smaller installation image.

Note: During installation, you might encounter an warning message like the following
example:

Warning: / partition has insufficient space to install the items selected.
1217.4 MB additional space would be needed to install the selected items.

In this case, work with the Linux volume manager or disk partitioning utilities to provide
more disk space for the file system where you plan to install Information Server.

242 Enterprise Data Warehousing with DB2 9 for z/OS

1. Start the setup installation program on your Windows client (Figure 9-40) and click Next.

Figure 9-40 Starting the installation of DataStage and QualityStage client on Windows

2. Read and accept the license terms and click Next.

3. Read the suggestions to disable your firewall and click Next.

4. In the Installation and Response File Selection panel (Figure 9-41), select to install the
suite, create a response file, or do both. By creating a response file, your installation
options are recorded for later review and for running a silent installation without GUI
interaction. This is particularly useful if you plan to install the client on many Windows
systems and you do not want to repeat the GUI.

In our case, we click Install IBM Information Server and save my settings in a
response file for later review. Click Next.

Figure 9-41 Installation option to create a response file

Chapter 9. Setting up ETL components for a data warehouse 243

5. In the Installation Directory panel (Figure 9-42), specify an installation directory if one is on
your Windows system. If an Information Server is already installed on your system, you
are prompted to modify the existing one or you can create a new installation. Since we
have not installed Information Server yet, we choose New Installation, and select the
installation directory. Click Next.

Figure 9-42 Choosing the installation directory

6. In the Product Module and Component Selection panel (Figure 9-43) select the products
to install for the client. Select at least the first option InfoSphere DataStage and
QualityStage (client only). We recommend that you also install the documentation. The
Information Analyzer and Information Services Director are additional components that
you might want to use, but they are not crucial to build ETL jobs for our scenario. Then,
click Next.

Figure 9-43 Installation options

244 Enterprise Data Warehousing with DB2 9 for z/OS

7. In the Installation Type panel, select Typical Installation and click Next.

8. Depending on the options that you choose to install, when additional panels prompt for
ODBC driver and template locations, confirm the defaults and click Next until you reach
the summary page

9. In the Pre-installation Summary panel (Figure 9-44), review and confirm the components
that you want to install. Then click Next.

Figure 9-44 Pre-installation summary

The components are now installed on your Windows system. A post installation panel informs
you that the installation was successful and lists the path to the response that was created.
You are now ready to use the DataStage and QualityStage Designer and Administrator on
your Windows system.

See 9.5.9, “Granting user access and creating a new DataStage project” on page 251, for an
example where we use the DataStage and QualityStage Administrator to set up a new
DataStage project.

9.5.5 Configuring DataStage to access DB2 for z/OS, WebSphere MQ, and
WebSphere Classic Federation

During run time, the Information Server engine needs access to the client libraries of DB2,
WebSphere MQ, and WebSphere Classic Federation on Linux on System z. In our
environment, the 64-bit client libraries are in the following directories:

� DB2 runtime client: /opt/IBM/db2/V9/lib64
� WebSphere MQ libraries: /opt/mqm/lib64
� WebSphere Classic Federation: /opt/IBM/wsclassic91/lib/lib64

You must add these directories to the LD_LIBRARY_PATH environment variable for the
effective user running an Information Server engine job that accesses DB2, WebSphere MQ,
and WebSphere Classic Federation respectively.

Chapter 9. Setting up ETL components for a data warehouse 245

You must also set the following environment variables for DB2 and WebSphere Classic
Federation:

� DB2INSTANCE, which points to the DB2 instance to use
� CAC_CONFIG, which points to the configuration file for WebSphere Classic Federation

There are two options to set LD_LIBRARY_PATH in DataStage:

� Modify the DataStage setting in the dsenv file.

This preferred option requires that you are logged in as root or a member of the dstage
group. Edit dsenv in $DSHOME, which points to /opt/IBM/InformationServer/Server/
DSEngine in our installation, and add the highlighted lines in Example 9-14. The first
highlighted line adds the 64-bit DB2 and WebSphere MQ libraries to the library path. The
second group of highlighted lines defines the (local) DB2 instance to use.

Example 9-14 Modifications in the dsenv file

...
if [-n "$DSHOME"] && [-d "$DSHOME"]
then
 ODBCINI=$DSHOME/.odbc.ini; export ODBCINI
 HOME=${HOME:-/}; export HOME

 #LANG="<langdef>";export LANG
 #LC_ALL="<langdef>";export LC_ALL
 #LC_CTYPE="<langdef>";export LC_CTYPE
 #LC_COLLATE="<langdef>";export LC_COLLATE
 #LC_MONETARY="<langdef>";export LC_MONETARY
 #LC_NUMERIC="<langdef>";export LC_NUMERIC
 #LC_TIME="<langdef>";export LC_TIME
 #LC_MESSAGES="<langdef>"; export LC_MESSAGES

 LD_LIBRARY_PATH=`dirname $DSHOME`/branded_odbc/lib:`dirname
$DSHOME`/DSComponents/lib:`dirname
$DSHOME`/DSComponents/bin:$DSHOME/lib:$DSHOME/uvdlls:$ASBHOME/apps/jre/bin:$ASBHOME/apps
/jre/bin/classic:$ASBHOME/lib/cpp:$ASBHOME/apps/proxy/cpp/linux-all-s390x_64:/opt/IBM/db
2/V9/lib64:/opt/mqm/lib64:/opt/IBM/wsclassic91/cli/lib/lib64:$LD_LIBRARY_PATH
 export LD_LIBRARY_PATH
fi

export DB2INSTANCE==db2inst1
export CAC_CONFIG=/opt/IBM/wsclassic91/cli/lib/cac.ini
...

246 Enterprise Data Warehousing with DB2 9 for z/OS

� Modify the project settings.

In this option, you select the project. Then on the General tab, you click Environment and
edit the LD_LIBRARY_PATH setting accordingly. Figure 9-45 shows the DataStage
Administrator Client window that you reach. Note that this change only affects the settings
for the selected projects. You must redo this for all projects where you want the setting to
be applied.

Figure 9-45 Editing the LD_LIBRARY_PATH for a DataStage project

If you do not add the WebSphere MQ libraries to the library path and run a job that has an MQ
connector stage, you receive an error message in the job log such as the one in
Example 9-15.

Example 9-15 Exception in DataStage if MQ libraries are not accessible

WebSphere_MQ_Connector_0: Error occurred during initializeFromArgs().
WebSphere_MQ_Connector_0: [IIS-CONN-WSMQ-000005] System call dlopen() failed with
OS error 2 (No such file or directory) (CC_WSMQUtil::resolveMqiMethodPointers(),
file CC_WSMQUtil.cpp, line 317)

DataStage accesses our two DB2 for z/OS subsystems, DWHD911 for OLTP data and
DWHD912 for warehouse data, in two places:

� Access in a DataStage job is through cataloged databases, using DB2 Connect™. For
DataStage jobs to access our DB2 for z/OS databases, we must catalog the two
subsystems in our scenario on DB2 Connect on our Linux on System z.

� In DataStage, you define table metadata (column name and types) by using table
definitions. You can import table definitions for existing tables through an ODBC
connection to a database. For this option to work, you must set up an ODBC connection to
DB2 for z/OS.

If you want to access WebSphere Classic Federation in your jobs, you need an ODBC
connection definition for metadata retrieval and a configured WebSphere Classic Federation
client setup as described in 9.4.3, “Installing and configuring the WebSphere Classic
Federation client on Linux on System z” on page 226.

Note: To access the WebSphere MQ client on Linux on System z, the effective user ID
must be in the mqm group. We add all user IDs that need access to WebSphere MQ to the
mqm group by editing the /etc/group file on our Linux on System z server.

Chapter 9. Setting up ETL components for a data warehouse 247

9.5.6 Cataloging the DB2 for z/OS subsystems

Our ETL processing needs access to two DB2 for z/OS subsystems: DWHD911 for OLTP
(transactional) source data and DWHD912 for the target warehouse data.

You must have DB2 Connect installed and configured on Linux on System z to access the
remote DB2 for z/OS subsystem. The Information Server installation also comes with an
installation for DB2 on Linux on System z.

Use DB2 Connect and catalog the two subsystems. The commands in Example 9-16 assume
that your HiperSocket connection to z/OS is assigned an IP address of 10.10.10.2 and that
DWHD911 is accessible from remote on port 5911 and DWHD912 on port 5912 respectively.

Example 9-16 Cataloging the DB2 subsystems

-- catalog DWHD911
catalog tcpip node dwhd911 remote 10.10.10.2 server 5911 ostype mvs;
catalog database dwhd911 as dwhd911 at node dwhd911 authentication dcs
catalog dcs database dwhd912 as dwhd911 parms ',,INTERRUPT_ENABLED'

-- catalog DWHD912
catalog tcpip node dwhd912 remote 10.10.10.2 server 5912 ostype mvs;
catalog database dwhd912 as dwhd912 at node dwhd912 authentication dcs
catalog dcs database dwhd912 as dwhd912 parms ',,INTERRUPT_ENABLED'

9.5.7 Setting up ODBC connections to DB2 for z/OS databases and
WebSphere Classic Federation

To register an ODBC connection for our two DB2 for z/OS subsystems (DWHD911 and
DWDH912) and for WebSphere Classic Federation, perform the following steps when logged
in as a user of the dstage group (or as root):

1. Change directory to $DSHOME, which points to
/opt/IBM/InformationServer/Server/DSEngine in our installation.

2. Run dsenv to set up environment variables in your current shell:

. ./dsenv

3. Edit $DSHOME/.odbc.ini to change the ODBC data source configuration and add
definitions for our two subsystems and the WebSphere Classic Federation data source.
Example 9-17 shows the definition for DWHD911, DWHD912, and REDDWHZ. Note that
you must add references to the three new data source names in the [ODBC Data Sources]
section at the top of the file.

Example 9-17 ODBC data source definitions in file .odbc.ini

[ODBC Data Sources]
DWHD911=Redbook OLTP Database
DWHD912=Redbook Warehouse Database
REDDWHZ=Classic Federation Server

[DWHD911]
Driver=/opt/IBM/InformationServer/Server/branded_odbc/lib/VMdb223.so
Description=DataDirect DB2 Wire Protocol Driver

Access license: You need a valid license for DB2 Connect on Linux on System z in order
to access the remote DB2 for z/OS system.

248 Enterprise Data Warehousing with DB2 9 for z/OS

AddStringToCreateTable=
AlternateID=
Collection=
DynamicSections=100
GrantAuthid=PUBLIC
GrantExecute=1
IpAddress=10.10.10.2
IsolationLevel=CURSOR_STABILITY
Location=DWHD911
LogonID=
Password=
Package=
PackageOwner=
TcpPort=5911
WithHold=1

[DWHD912]
Driver=/opt/IBM/InformationServer/Server/branded_odbc/lib/VMdb223.so
Description=DataDirect DB2 Wire Protocol Driver
AddStringToCreateTable=
AlternateID=
Collection=
DynamicSections=100
GrantAuthid=PUBLIC
GrantExecute=1
IpAddress=10.10.10.2
IsolationLevel=CURSOR_STABILITY
Location=DWHD912
LogonID=
Password=
Package=
PackageOwner=
TcpPort=5912
WithHold=1

[REDDWHZ]
Driver=/opt/IBM/wsclassic91/cli/lib/lib64/libcacsqlcli.so
Database=REDDWHZ

4. Edit the uvodbc.config file and add the data source names that should be available in
DataStage projects. A master copy of this file is in the $DSHOME directory, and individual
copies are in each project directory. If you edit uvodbc.config before you create your
project, the definition in the master copy is copied to the project’s version. If you created
the project already, you must edit the configuration file in the project directory for the
changes to take effect. Add the lines in Example 9-18 to the file.

Example 9-18 The uvodbc.config file with settings for available ODBC data sources

<DWHD911>
DBMSTYPE = ODBC
<DWHD912>
DBMSTYPE = ODBC
<REDDWHZ>
DBMSTYPE = ODBC

Chapter 9. Setting up ETL components for a data warehouse 249

5. Run the commands in Example 9-19 to bind the bind file to subsystem DWHD911. Do the
same step for DWHD912. The bind file is located in the /opt/IBM/InformationServer/
Server/DSComponents/bin directory. Each user who accesses data through the
DataStage DB2 z stage must have access to this bind file for the database the user wants
to access. DataStage is using static SQL to access DB2 for z/OS.

Example 9-19 DB2 commands to bind DataStage packages and grant access to public

connect to DWHD911 user xxxx using yyyy
bind db2zeZLNX.bnd datetime iso blocking all
grant execute on package DSKXS1.DB2ZEZLN to public
connect reset

9.5.8 Troubleshooting configuration problems

You can use the ddtestlib tool in Information Server to check if client libraries can be loaded
properly. This is particularly useful in a 64-bit environment to make sure that you loaded the
right libraries. As an example, you can issue the following command to check if the current
user (with the proper LD_LIBRARY_PATH set) can load the CLI library for WebSphere
Classic Federation:

/opt/IBM/InformationServer/Server/DSEngine/branded_odbc/bin/ddtestlib
libcacsqlcli.so

Example 9-20 shows the type of output that you receive.

Example 9-20 Output of ddtestlib

Load of libcacsqlcli.so successful, qehandle is 0x80002050
Unable to obtain version information. DataDirect ODBC drivers prior to version 4.2 SP3
have no version information available via this method.

You can use the dssh tool in the Information Server to check if a connection through the
ODBC drivers can be established. Go to a project directory, which is
/opt/IBM/InformationServer/Server/Projects/DWHzRedbook in our case, and run the dssh tool
interactively as shown in Example 9-21 on page 251. The query that is used n the example
does not return any results but indicates an error message if the connection cannot be
established.

Important: Add spaces before and after the equal sign. Otherwise you might encounter
an error message such as the following example:

SQLConnect error: Status = -1 SQLState = IM997 Natcode = 0
[SQL Client] An illegal configuration option was found
Invalid parameter(s) found in configuration file

250 Enterprise Data Warehousing with DB2 9 for z/OS

Example 9-21 Using dssh to verify the ODBC connection to the Classic Federation Server

lnxdwh2:/opt/IBM/InformationServer/Server/Projects/DWHzRedbook #
/opt/IBM/InformationServer/Server/DSEngine/bin/dssh

DataStage Command Language 8.0 Licensed Materials - Property of IBM
(c) Copyright IBM Corp. 1997, 2006 All Rights Reserved.
DWHzRedbook logged on: Fri Apr 25 11:55:04 2008

>DS_CONNECT REDDWHZ
Enter username for connecting to 'REDDWHZ' DBMS [root]: FNEUMAN
Enter password for FNEUMAN:
CAC00105I LOG V9.1 00002007: STARTED

REDDWHZ> select count(*) from cac.part_seq;
:-1
REDDWHZ>

9.5.9 Granting user access and creating a new DataStage project

Information Server uses projects to group definitions, jobs, and data that belongs together. To
create a new project named DWHzRedbook:

1. Launch the Information Server Web console through the Web interface, and log in using
your suite administrator account. In the Information Server window (Figure 9-46), click the
Administrator tab. In the left navigation pane, select Users and Groups → Users to
open the user to whom you want to grant the right to access and use DataStage.

Figure 9-46 Granting use of DataStage

Chapter 9. Setting up ETL components for a data warehouse 251

2. Under Roles, select Suite User and DataStage and QualityStage User (Figure 9-47).
This setting provides access to InfoSphere DataStage and QualityStage. Additionally, this
role is used to filter the lists of users and groups that are shown in the InfoSphere
DataStage Administrator client. If an IBM Information Server user does not have this role,
the user cannot access any of the InfoSphere DataStage or QualityStage product
modules, even if the user has been assigned InfoSphere DataStage or InfoSphere
QualityStage project roles.

Click Save and Close.

Figure 9-47 Assigning roles for DataStage and QualityStage

Note: Depending on your installation, when you access DataStage through a client, you
must ensure that you can access the UV_USERS file. This file typically belongs to the
dstage group. We add all user IDs that need access to DataStage to the dstage group
by editing /etc/group file on our Linux on System z server.

252 Enterprise Data Warehousing with DB2 9 for z/OS

3. Using the WebSphere Server DataStage and QualityStage Administrator on your client
installation, enter host name and port of your Information Server server installation
(Figure 9-48) and log in as an administrator to attach to DataStage.

Figure 9-48 Logging in to DataStage

4. In the WebSphere DataStage Administration window (Figure 9-49), in the list of existing
projects, click Add to add a new project. In the Add Project window (inset in Figure 9-49),
name it DWHRedbook and click OK. When you return to the list of projects, click Close.

Figure 9-49 Adding a new project

Chapter 9. Setting up ETL components for a data warehouse 253

5. For the new project, select Properties.

6. In the Project Properties window (Figure 9-50):

a. Click the Permissions tab.

b. Click Add User of Group to select the users that should be allowed to access the
project. Only the users who you defined as DataStage and QualityStage users can be
added to the project access list.

c. To allow client access, under User Role, select DataStage and QualityStage Super
Operator.

d. Click OK.

Figure 9-50 Adding a user of a group

Now both the new project and the users are setup to use the DataStage and QualityStage
designer to model and save ETL jobs.

9.5.10 Defining multiple nodes for parallel execution

If you run a multiprocessor system for your Information Server engine, you can leverage the
parallel execution of ETL jobs in DataStage.

The Linux on System z that we are using has two associated Integrated Facilities for Linux
(IFLs). Therefore we define an additional DataStage configuration with two nodes:

1. Start the DataStage and QualityStage Designer on Windows and log into any of your
projects.

254 Enterprise Data Warehousing with DB2 9 for z/OS

2. From the menu, select Tools → Configurations and then select the default configuration.
With a typical installation, the content looks as shown in Example 9-22 and defines a
single node for execution of the stages in the Information Server engine.

Example 9-22 Defining an additional node

{
node "node1"
{

fastname "lnxdwh2"
pools ""
resource disk "/opt/IBM/InformationServer/Server/Datasets" {pools ""}
resource scratchdisk "/opt/IBM/InformationServer/Server/Scratch" {pools ""}

}
}

3. To create an additional node, edit the text and add an additional node definition as outlined
in Example 9-23.

Example 9-23 Configuration with an additional node

{
node "node1"
{

fastname "lnxdwh2"
pools ""
resource disk "/opt/IBM/InformationServer/Server/Datasets" {pools ""}
resource scratchdisk "/opt/IBM/InformationServer/Server/Scratch" {pools ""}

}
node "node2"
{

fastname "lnxdwh2"
pools ""
resource disk "/opt/IBM/InformationServer/Server/Datasets" {pools ""}
resource scratchdisk "/opt/IBM/InformationServer/Server/Scratch" {pools ""}

}
}

4. Click Save → Save Configuration As.

5. Type the name of your configuration for two nodes, for example TwoNodes. Click Close.

You now have two configurations defined, one named default and the other defined
TwoNodes. Both are available in all your projects. You have to take additional steps to make
them selectable for individual jobs and runs.

To give you a choice of which configuration to use for a job run, define an additional job
parameter for the configuration environment variable:

1. With you DataStage job open in DataStage and QualityStage Designer, click Edit → Job
Properties → Parameters and then click Add Environment Variable.

2. In the list of available environment variables (Figure 9-51 on page 256), select
Configuration file ($APT_CONFIG_FILE).

Note: If you change the default configuration, this change applies to all jobs and projects.

Chapter 9. Setting up ETL components for a data warehouse 255

Figure 9-51 Selecting the configuration file environment variable for the job properties

3. In the job properties panel (Figure 9-52), click OK.

Figure 9-52 Job properties with the configuration file as a parameter

4. If you run your job again, specify the configuration to use in the window in Figure 9-53.
Click the dotted square button on the right under Value to select TwoNodes from the
available configurations. Then click Run.

Figure 9-53 Selecting a different configuration for running a DataStage job

256 Enterprise Data Warehousing with DB2 9 for z/OS

Chapter 10. Full load using DataStage

In this chapter, we describe the implementation for extract, transform, and load (ETL)
processing from the operational (online transaction processing (OLTP)) data of our sample
scenario into the data warehouse. We explain how, by the full load, all the initial data that
existed in the OLTP environment was moved to the operational data store (ODS) and the
dimensional data store (DDS) by using InfoSphere DataStage.

In Chapter 9, “Setting up ETL components for a data warehouse” on page 201, we explain the
installation of the Information Server. This installation helps in using InfoSphere DataStage,
which is central in the loading of the operational data in the ODS and DDS. In Chapter 11,
“Incremental update with DataStage” on page 281, we expand on the jobs that read data from
DB2 on z/OS tables to show a sample job that reads message queues that have been
populated from the OLTP database log. This enables real-time business intelligence (BI).

In this chapter, we present an overview of the DataStage jobs that were developed to load all
the initial data to satisfy the business scenario in Chapter 5, “The business scenario and data
models” on page 71. We also explain some basic steps in modeling DataStage jobs for
running, debugging, and improving performance as needed while maintaining data quality.
More focus is employed on some of the stages needed for particular BI functions, such as the
surrogate key stage (in this chapter) and the slowly changing dimension stage (in Chapter 11,
“Incremental update with DataStage” on page 281). An additional objective of this chapter is
to show how an ETL tool, such as DataStage, interacts well with DB2 on z/OS and enables
strategic and operational BI.

This chapter includes the following topics:

� 10.1, “ETL data in our scenario” on page 258
� 10.2, “Loading overview” on page 260
� 10.3, “Load jobs for populating ODS from OLTP” on page 262
� 10.4, “Load jobs for populating a DDS from an ODS” on page 266
� 10.5, “Accessing WebSphere Classic Federation in DataStage jobs” on page 271
� 10.6, “Running and monitoring an ETL job in DataStage Director” on page 273
� 10.7, “Debugging load jobs: A brief look” on page 274
� 10.8, “Performance considerations” on page 276
� 10.9, “Naming standards” on page 279
� 10.10, “Data quality implementation during full load” on page 279

10

© Copyright IBM Corp. 2008. All rights reserved. 257

10.1 ETL data in our scenario

Our OLTP data sources contain information about orders from customers. Orders can contain
line items of parts. These parts come from suppliers. For each line item of an order, we keep
track of the part and the supplier along with other information such as quantity ordered. Each
order also contains shipment information. These orders can be placed at the branches or on
the Web. The transaction data of orders, shipment, and line items coming from the branches
goes into the OLTP_B source schema tables. The data that originates from the Web goes into
the OLTP_W source schema.

You can read more about the fictitious distribution company created for our business scenario
in 5.1, “Background information” on page 72. The transactional data model that pertains to
this scenario is discussed in 5.4.1, “The OLTP database model” on page 78. The data model
for the ODS and the DDS is explained in 5.5, “The operational and dimensional data model”
on page 85.

We go through the required table structures across the different environments for
background, before we go in more detail about the load jobs that were developed to move
data into these environments. The OLTP systems have the following main tables:

� Parts, suppliers, nation, region
� Order, lineitem, and shipment
� Customer

Parts, supplier, nation, and region information for the source OLTP system and for the target
operational data store are basically the same. They are considered to be either stored in
identical data structures or maintained in a data source that can be accessed from both OLTP
and data warehouse systems. For the purpose of this book, we implement both options. That
is, parts and supplier data is either stored in database tables or maintained in flat files and
accessed through WebSphere Classic Federation.

For demonstration purposes, the part, supplier, nation, and region information is assumed to
be static. It does not impose any sophisticated transformation or load requirements. To
manage loading of the data with the same tool and the same technique, we use a DataStage
ETL job.

Customer data stored in the source OLTP system slightly differs from the required target
format in the operational data store (Figure 10-1). The column names are different. In
addition, the OLTP system only provides a country name, while the target operational data
store expects a key that points to a nation lookup table. Therefore, the ETL job needs to look
up data from other tables and transform the column names accordingly.

Figure 10-1 Transforming customer data from OLTP to ODS

OLTP
DWHODS

258 Enterprise Data Warehousing with DB2 9 for z/OS

Loading the order and line-item data in our operational data store requires more steps
(Figure 10-2). When comparing DWHODS with our two OLTP database schemas (OLTP_W
and OLTP_B), our ETL job must complete the following tasks:

� Load and merge data from both OLTP data sources.

� Adjust column names.

� Transform data from the shipment table and assign it to the Orders and Lineitem tables in
the target ODS accordingly.

Figure 10-2 Transforming order and line-item data from OLTP to ODS

Conceptually, we can load our target DDS directly from the OLTP system and load the
operational and DDS in one run. For our implementation, however, we derive the DDS data
from the previously populated ODS (Figure 10-3 on page 260). The ETL jobs have the
following predominant requirements:

� Building up the order transaction star schema of the DDS

� Maintaining history information for slowly changing dimension data

� Adding time stamps for changes

� Computing and resolving values that are required for reporting, for example, the quantity
of part returns

� Assigning surrogate keys

To store the historical data, we must define and create new primary keys for some tables and
load the star schema in two phases. First we populate the dimension tables, and then we
populate the fact table with foreign keys that point to the dimension table records.

OLTP_W

OLTP_B

DWHODS

Chapter 10. Full load using DataStage 259

Figure 10-3 Transforming data from the ODS to the DDS

10.2 Loading overview

After WebSphere Information Server on Linux on System z is installed, which we explain in
Chapter 9, “Setting up ETL components for a data warehouse” on page 201, you use the
WebSphere DataStage designer tool most of the time to develop your jobs. As soon as you
open the designer, you have a choice of jobs to design. For the purpose of loading all the data
warehouse tables, we select parallel jobs. For the difference between parallel and server jobs,
see 10.8.2, “Parallel jobs versus server jobs” on page 277.

In developing a DataStage parallel job, you have to select stages and link the m by using
DataStage links. In DataStage, data conceptually moves along the links. Stages represent a
particular process step. They can be a temporary place to hold this set of data and act upon it
as needed, or they can be a source and target for the data that is moving via the links.

DWHDDS

DWHODS

260 Enterprise Data Warehousing with DB2 9 for z/OS

In the following sections, we describe briefly the context of a full load. Then in 10.3, “Load
jobs for populating ODS from OLTP” on page 262, we describe how DB2z stage and
BatchPipes are useful for moving the data. Following this, we explain some of the jobs that
were developed for moving data in our scenario.

10.2.1 Full load description

The BI solution for the scenario in this book focuses on the movement of data from the
operation transaction databases to the ODS and the DDS. The requirement of developing the
jobs to do this is to provide you with a quick and reasonable example of the relative quickness
in developing DataStage jobs to move the data from a transaction system to a data
warehouse and BI solution. Since the focus of the book is to provide operational and strategic
BI, the full load shows the entire ODS loaded with a current snapshot of data, and from there,
moved to a data mart or DDS environment for querying and reporting.

10.2.2 Incremental load description

The incremental load shows a low latency movement of data from the operational system to
the ODS to demonstrate that a consolidated view can be kept current by the movement of
operational system updates into the data warehouse environment. Business activities in the
operational database are written to the database log in general situations where logging is
employed. This log is read by tools, such as Q replication and Event Publisher, and is written
to a queue. The messages can be written in different formats such as delimited or XML
formats. DataStage jobs can be set up to read the queues and update the tables in the data
warehouse environment. This way users who are heavy consumers of this current data can
cement personal relationships with customers and engage in cross-sell opportunities.

In 3.2.2, “Workload management” on page 35, we provide a glimpse of one of the DB2 for
z/OS capabilities in handling a read of the tables while they are updated with minimum
inconvenience by managing these mixed query loads relatively seamlessly. In Chapter 8, “Q
replication and event publishing” on page 159, we explain the Q replication and Event
Publisher tools and walk you through the population of a queue. Then in Chapter 11,
“Incremental update with DataStage” on page 281, we show how messages in the queue can
be read by a job in DataStage and used in the update of information.

10.2.3 Lookup tables

Lookup stages are used to look up the descriptions of coded values. These are used in the
population of dimension tables in the DDS where descriptions needed to be populated. This
means that a number of lookups are performed to the reference or lookup tables such as
Nation and Region.

The Lookup stage is also handy for the population of any key values, such as surrogate keys,
used in the dimensions that need to be looked up and placed in the Fact table.

The focus on explaining these jobs is not to teach DataStage comprehensively but to show
some of the jobs that are created in order to load the business scenario data models.

Chapter 10. Full load using DataStage 261

10.3 Load jobs for populating ODS from OLTP

DB2z stages are DataStage process steps that facilitate in reading from a DB2 for z/OS
database or writing data to a DB2 for z/OS database. We provide the following short
descriptions, which include examples of properties for the stage.

10.3.1 DB2z stage: Reading DB2 data

In the DB2z stage to read DB2 data, you can specify the table name and database
information from which to read data. You can specify the table (or a subset of the columns for
a table) that you need to be read or extracted. The properties of the DB2z stage (Figure 10-4)
require the name of the database (more specifically, the subsystem that is cataloged on Linux
on System z) and the user credentials for accessing the database.

The column definition for the query result can be specified based on metadata of the
underlying DB2 for z/OS tables through an import wizard, using Open Database Connectivity
(ODBC).

Figure 10-4 DB2z stage properties for reading data from DB2 for z/OS

10.3.2 DB2z stage: Writing DB2 data

If your target is a DB2 z/OS table, then you have a DB2z stage as the last target stage in your
job. In this stage, you can choose options such as whether you want to append to data that
already exists in the table or truncate existing table data and load replace into it.

The DB2z stage is optimized for loading data into DB2 for z/OS and uses the load utility for
best performance. There are other options to insert data into a DB2 for z/OS database, such
as the ODBC stage. However, from a performance point of view, the DB2z stage is the
preferred choice. Figure 10-5 on page 263 shows the properties of the DB2 stage for writing
DB2 data.

In our scenario the OLTP tables and the ODS and DDS tables are all setup in DB2 z/OS
database. The OLTP tables are in one subsystem, and the ODS and DDS tables are setup on
another subsystem. In 4.2, “The business intelligence architecture with System z” on

262 Enterprise Data Warehousing with DB2 9 for z/OS

page 61, we provides information about Workload Manager, which you can set up to provide
the proper priorities for the queries to access the two different subsystems.

You must use care when choosing some options in the target DB2z stage. The DB2z stage
technically uses FTP to send data from Linux on System z to z/OS. The data submitted by
FTP can either go into a data set on z/OS or immediately serve as input for a batch pipe.

If you are not using BatchPipes, place the amount of anticipated row count in the Row Count
Estimate property of the DB2z stage. If this number is significantly less, the stage may not
allocate a data set with enough space for your transform stages that you have in your job.

If your job stops, make sure that some of the created data sets are not lingering on the z/OS
server.

A load card is created when you write data to a target with this stage. Make sure that you
terminate this utility if it stops after an unsuccessful load. The default name for this is
DB2ZLOAD, but you can change it and use a different name by the Utility ID option available.

For the Overwrite option of the Transfer property, choose True if you are running the job
again. Otherwise the job execution might try to create the same data sets again. When it finds
that they already exist on z/OS, it gives you a message.

Figure 10-5 DB2z stage properties for writing data to DB2 for z/OS

Ensure that you apply the list of required APARs for BatchPipes support. You can find these
APARs in Table 9-1 on page 209. If these APARs are not installed when you input your
BatchPipes system ID, the job may not complete successfully. You might also receive error
messages when you write to decimal data type fields in the target. Sometimes only a few
rows can be pushed into the target table and the job may not stop. Be sure to verify the
number of records in the target table after the load run. All of these records should be rectified
if you install all the required APARs.

10.3.3 Parallel jobs and BatchPipes

Using BatchPipes with parallel jobs in DataStage is particularly beneficial because it allows
continuous loading of data through the DB2 LOAD utility while data is being processed in the
DataStage job. Since you do not create intermediate data sets, proper data set allocation is
not required because traditionally a Job1, for example, writes data to an I/O device. When all

Chapter 10. Full load using DataStage 263

the records are written and the data set is closed, then a job, for example Job2, starts. Job2
reads the data from the device, which does not occur in BatchPipes. In BatchPipes, for
example, Job1, which is a writer that writes data to the processor storage buffer, and Job2,
which is a reader from that buffer, run concurrently. Job2 can obtain data from the processor
storage buffer as soon as Job1 writes the first block. Output from Job1 becomes immediately
available as input to Job2. You can think of the data as “flowing” from Job1 to Job2.

The processor storage buffer is called, in BatchPipe terms, a pipe, through which data flows,
always in the same direction, from a writer job to a reader job. The writer →pipe →reader flow
is called a pipeline.

In the traditional way, Job1 writes data to an I/O device, such as DASD or a table. Then, when
all the records are written and the data set is closed, Job2 starts. After Job2 finishes
processing all the records, the data set is no longer required and can be deleted. In
BatchPipes, as illustrated in Figure 10-6, which is from IBM BatchPipes OS/390 V2R1
BatchPipeWorks User Guide, SA22-7457, you can see that external storage devices are
absent. Instead they are replaced by a processor storage buffer. This parallelism provides
great elapsed time savings and helps you avoid worrying about setting a good row count
estimate to ensure that enough space on DASD is allocated.

Figure 10-6 BatchPipe utility

10.3.4 Sample load jobs from OLTP to ODS

Let us start with a simple job to populate an ODS PART table from the OLTP PART table. In
DataStage, the job when developed looks as shown in Figure 10-7.

Figure 10-7 Sample simple job from OLTP to ODS

264 Enterprise Data Warehousing with DB2 9 for z/OS

A successful job run looks as shown in Figure 10-8.

Figure 10-8 Sample simple job from OLTP to ODS successfully completed

You can use a DB2z stage if the source or target table is on DB2 for z/OS. You use a
transformer stage to perform routine transformations that are needed and to map them from
the source to the target. However, other stages can be of more interest. Although this book
does not explain all possible stages while using DataStage, we discuss some of the stages
that we used to load the ODS and DDS tables for our business scenario. We provide a quick
primer for those who need to quickly develop DataStage jobs to load data. Refer to the
WebSphere DataStage Parallel Job Advanced Developer Guide, LC18-9892, which explains
all the stages in great detail.

Let us look at a job that uses some lookups. For the DWHODS.CUSTOMER table, we take
the Country value that comes from the OLTP.CUSTOMER table and look up the nation key
from the DWHODS.NATION_LOOKUP table. See Figure 10-9.

Figure 10-9 Population of ODS Customer table from the OLTP Customer table

Let us graduate to a slightly more interesting DataStage job. In the OLTP environment, there
is an OLTP_B.ORDER table and an OLTP_W.ORDER table, because orders are coming from
either the branch stores or the Web. In populating the target DWHODS.ORDERS table, we
also need information from the OLTP_B.SHIPMENT and OLTP_W.SHIPMENT tables.

Here is the job that provides the load to the DWHODS.ORDERS table. You have to order by
the key in the join stage before the data reaches the join stage. You can use a sort stage or
the ORDER BY clause option when reading from the source Order and Shipment tables. You
can also choose a Sort Funnel to keep the data in the required order.

Chapter 10. Full load using DataStage 265

Figure 10-10 shows that we received 6,000 order rows each from the Web and the branch,
and we loaded the12,000 rows into the target ODS Orders table. We also obtained additional
information from an equal number of shipment rows.

Figure 10-10 Load of DWHODS.ORDERS table from the necessary OLTP tables

The job to load the DWHODS.LINEITEM is similar to the load of the Orders table
accomplished previously. We also need to move the data from the ODS to the DDS. We go
through the jobs and show the DDS load, which indicates a variation from the ODS loads. For
example, we show a load from a flat file for the load of the Date dimension table, usage of the
surrogate key stage, and so on.

10.4 Load jobs for populating a DDS from an ODS

Several jobs are created for the load of the DDS tables from the ODS data as part of the initial
full load. We focus on jobs that deal with slightly different stages than those that we
encountered in the load from OLTP to ODS. Let us initially look at the load of the Date
dimension table.

10.4.1 Load of the Date dimension table

The contents that are loaded into the date dimension are at a day granularity for the calendar
years 2007 and 2008. Because there are 731 days between these years, the job shown in
Figure 10-11 on page 267 reflects the load of the 731 rows.

Note: One extra row was inserted to account for a Null value in the Ship, Receipt, or
Commit dates.

266 Enterprise Data Warehousing with DB2 9 for z/OS

The job shows the read from a sequential file. It also shows that, if needed, you can use more
than one transformer stage in immediate succession. Especially if the number of rows is
relatively small, such as for the date dimension, you can choose to keep your stages clean
and use more than one transformer stage as needed.

Figure 10-11 Date dimension load

10.4.2 Surrogate key stage utilization

Figure 10-12 shows the properties of the surrogate key generator stage. Figure 10-13
illustrates the use of this stage in which the population of the Order Status dimension with its
primary key column is a surrogate key. According to requirements, the Order Status
dimension is unique based on the concatenated columns of L_LINESTATUS,
O_ORDERSTATUS, L_RETURNFLAG, O_SHIPPRIORITY, O_ORDERPRIORITY,
L_SHIPINSTRUCT, and L_SHIPMODE. Based on a change of all of these natural columns
together, we created a surrogate key.

Other stages, such as the slowly changing dimension stage, are valuable in the movement of
data to the data mart. The surrogate key stage is discussed in Chapter 11, “Incremental
update with DataStage” on page 281.

Let us quickly go through the Order Status dimension population job and focus on the
surrogate key generator stage. Our target is to populate the
DWHDDS.ORDER_STATUS_DIM table. Our input is the DWHODS.LINEITEM table with
additional information of order status, order priority, and ship priority coming from
DWHODS.ORDERS based on a match of the orderkey and DWHODS.STATUS_LOOKUP for
the Order status description and Line item status description. We sort in the ascending order
of the concatenated columns mentioned previously, because before we remove the duplicates
by using the remove duplicates stage, we must apply the Sort stage.

When the load file is ready, except for the surrogate key, we pass it through the surrogate key
stage. One way to create the surrogate keys is to create a state file and then set up the
properties of the stage. You can open Microsoft Notepad, choose Save As, and create an
empty text file. Then send the text file by FTP to the server on which you are going to run the
surrogate key generator stage. You can run the surrogate key generator stage with no input or
output and compile and run the job. The job will run successfully although you receive a
message indicating that the file is empty. You can then place the file name in the Source
Name property as shown in Figure 10-12 on page 268.

Chapter 10. Full load using DataStage 267

Figure 10-12 Properties of the Surrogate key generator stage

You can now run your job as shown in Figure 10-13.

Figure 10-13 Use of the surrogate key generator stage in loading data

268 Enterprise Data Warehousing with DB2 9 for z/OS

After the job runs, you can go to the sequential file that we created and look at the surrogate
key values, which are shown in Figure 10-14.

Figure 10-14 Sample surrogate generator stage values

10.4.3 Load of the fact table

The ODS ORDERS table contains the orders that came from the branches and the Web.
Similarly the ODS LINEITEM table contains the line items of the orders from both the
branches and the Web. Now this order and line-item information needs to be populated in the
ORDER_TRANSACTION_FACT table. This way the Cognos 8 BI can be used on top of it to
create useful BI.

The design of the fact table in our scenario has nine keys that need to be looked up along with
the retail price of a part before population of a fact table row. Line item is the granularity of this
fact table. Therefore, we take all the line items, add some order information to them, make
one pass at getting all the keys from the relatively small dimension tables, and push them into
the fact table. We have reject files for each lookup to trap non-matching lookups. During
development, you can have peek stages to provide information in the output log when
something does not match in the lookups. We can place the peek stage directly on the lookup
stage.

Chapter 10. Full load using DataStage 269

Figure 10-15 shows the job for load to the fact table.

Figure 10-15 Order transaction fact table load

Upon successful completion, the job looks as shown in Figure 10-16

Figure 10-16 Completed Order transaction fact table load

You can verify if your reject files are empty by looking at the log as shown in Figure 10-17.

Figure 10-17 Job log report of reject files during Order transaction fact table load

270 Enterprise Data Warehousing with DB2 9 for z/OS

10.5 Accessing WebSphere Classic Federation in
DataStage jobs

DataStage offers a dedicated stage to include data from legacy data sources in ETL jobs.
With the proper setup of the WebSphere Classic Federation client, refer to the relational data
that is exposed by WebSphere Classic Federation on z/OS. For more information, see 9.4.3,
“Installing and configuring the WebSphere Classic Federation client on Linux on System z” on
page 226.

For our scenario, we have data for parts and suppliers stored as flat files on z/OS. We make
them available as relational data in table structures CAC.PART_SEQ and
CAC.SUPPLIER_SEQ respectively.

The purpose of the ETL job shown in Figure 10-12 is to read data for suppliers and populate
the supplier dimension table in our dimensional data store. The layout in the DDS assumes
that the nation and regional names are being resolved. Therefore, we use two lookup stages
to add these names from the respective database tables.

Figure 10-18 Accessing legacy data in a DataStage job

Chapter 10. Full load using DataStage 271

Table 10-1 shows the parameters of the WebSphere Classic Federation stage in Figure 10-18
on page 271.

Table 10-1 WebSphere Client Federation properties

We create the table definition for the structure of the CAC.SUPPLIER_SEQ table manually by
using the definition shown in Figure 10-19.

Figure 10-19 Table definition for supplier data

Due to the way in which the file is created and that WebSphere Classic Federation makes the
data available, we choose all column types to be of type character, even if the values
represent numbers of type decimal and integer. Right after the WebSphere Classic
Federation, a transformer stage (CHAR_TO_NUMBERS in Figure 10-18 on page 271)
converts the character values in columns S_SUPPKEY, S_NATIONKEY, and S_ACCTBAL to
their corresponding numeric representations. The S_ACCTBAL column, for example, is
transformed by using a function such as StringToDecimal(Supplier.S_ACCTBAL).

From the transformer stage, the rest of the job looks the same as though we were reading
supplier data from a database table.

Property name Value Comment

Source - Read Method Table Specifies that we want to read the entire
table and not just a subset of the
columns or rows.

Source - Table CAC.SUPPLIER_SEQ The name of the table configured in
WebSphere Classic Federation on
z/OS.

Connection - DataSource REDDWHZ The data source name configured in the
cac.ini file.

Password #DatabaseUserPassword# If WebSphere Classic Federation is set
up with security, the user password is
required. We use a job parameter here.

UserId #DatabaseUser# The user ID that connects to
WebSphere Classic Federation. We use
a job parameter here.

272 Enterprise Data Warehousing with DB2 9 for z/OS

10.6 Running and monitoring an ETL job in DataStage Director

You can compile and run the job in the DataStage designer. You can see the output of your
job execution by clicking Tools → Run Director. During the development and debug phase,
you can use stages, such as the peek stage, to look into the data. By using the peek stage,
the information can be written to the job log as you see a bit more in the next section.

10.6.1 Typical load challenges

While developing jobs, it is likely that you may encounter some challenges. In the following
sections, we explain some of the challenges that are encountered during population of the
jobs described previously.

Intermediate dataset space allocation issues
When you use a DB2z stage on DataStage, some intermediate data sets are produced. You
mention these in the properties of the target DB2z stage. The name of the data set has the
same prefix that you specify as a DSN Prefix option on the Properties page of the DB2z
stage. When you are not using BatchPipes, but are using FTP for the files that are created on
System z, you see the message shown in Example 10-1.

Example 10-1 Error message with DB2z stage and FTP to a data set

DB2Z_30,0: The runLocally() of the operator failed. Message Id.IIS-DSEE-TFOR-00089
DB2Z_30,0: Input 0 consumed 1 records. Message Id. IIS-DSEE-TFOR-00163
DB2Z_30,0: Operator terminated abnormally: runLocally did not return APT_StatusOk. Message
Id. IIS-DSEE-TFPM-00040
main_program: Step execution finished with status = FAILED. Message Id. IIS-DSEE-TFSC-00011

When you see this message, increase the row count estimate for the target of the load job. In
this case, the target was a DB2z stage. Therefore, you double-click DB2z and then click
Properties and then Options to choose the Row Count estimate and change it. If this
estimate is too high, the job may fail again because it tries to create a data set on System z
that is too large. We recommend that you use BatchPipes.

BatchPipe usage considerations
When using BatchPipes, you must enter the BatchPipes system ID as one of the options on
the Property page for the target DB2z stage to where you are writing. We used the identifier
BP01 in this project. When you use this option, you are likely to receive the error message
shown in Example 10-6. For information about fixing this issue, refer to “Troubleshooting
BatchPipes” on page 208.

Example 10-2 BatchPipe related error messages

DB2z_DWHODS_CUSTOMER,0: 1DSNU000I 107 08:37:46.35 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = DB2ZLOAD
DSNU1044I 107 08:37:46.39 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
0DSNU050I 107 08:37:46.39 DSNUGUTC - TEMPLATE TMPL_IN DSN 'SREENI.IN00000' SUBSYS(BP0) RECFM(FB) LRECL(120)
DSNU1035I 107 08:37:46.40 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY
0DSNU050I 107 08:37:46.40 DSNUGUTC - TEMPLATE TMPL_WK1 DSN 'SREENI.WORK1' UNIT SYSDA DISP(NEW, DELETE, DELETE)
SPACE(878, 87) CYL
DSNU1035I 107 08:37:46.40 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY
0DSNU050I 107 08:37:46.40 DSNUGUTC - TEMPLATE TMPL_WK2 DSN 'SREENI.WORK2' UNIT SYSDA DISP(NEW, DELETE, DELETE)
SPACE(878, 87) CYL
DSNU1035I 107 08:37:46.40 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY
0DSNU050I 107 08:37:46.40 DSNUGUTC - TEMPLATE TMPL_ERR DSN 'SREENI.SYSERR' UNIT SYSDA DISP(MOD, CATLG, DELETE)
SPACE(878, 87) CYL
DSNU1035I 107 08:37:46.40 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY
0DSNU050I 107 08:37:46.40 DSNUGUTC - LOAD DATA INDDN TMPL_IN RESUME NO REPLACE LOG NO NOCOPYPEND EBCDIC SORTKEYS

Chapter 10. Full load using DataStage 273

0 SORTDEVT SYSDA WORKDDN(TMPL_WK1, TMPL_WK2) ERRDDN TMPL_ERR
DSNU650I -D912 107 08:37:46.40 DSNURWI - INTO TABLE DWHODS.CUSTOMER
DSNU650I -D912 107 08:37:46.40 DSNURWI - ("CUSTKEY_DW" POSITION(1:4) INTEGER,
DSNU650I -D912 107 08:37:46.40 DSNURWI - "C_NATIONKEY" POSITION(5:8) INTEGER NULLIF(114)=X'FF',
DSNU650I -D912 107 08:37:46.40 DSNURWI - "C_CUSTKEY_SRC" POSITION(9:12) INTEGER,
DSNU650I -D912 107 08:37:46.40 DSNURWI - "C_NAME" POSITION(13:39) VARCHAR NULLIF(115)=X'FF',
DSNU650I -D912 107 08:37:46.40 DSNURWI - "C_ADDRESS" POSITION(40:81) VARCHAR NULLIF(116)=X'FF',
DSNU650I -D912 107 08:37:46.40 DSNURWI - "C_PHONE" POSITION(82:96) CHAR(15) NULLIF(117)=X'FF',
DSNU650I -D912 107 08:37:46.40 DSNURWI - "C_ACCTBAL" POSITION(97:103) DECIMAL PACKED NULLIF(118)=X'FF',
DSNU650I -D912 107 08:37:46.40 DSNURWI - "C_MKTSEGMENT" POSITION(104:113) CHAR(10) NULLIF(119)=X'FF')
DSNU1015I 107 08:37:46.41 DSNUGDYN - ERROR ALLOCATING DATA SET DSN=SREENI.IN00000 CODE=X'04B00000'
DSNU1042I 107 08:37:46.41 DSNUGDYN - START OF IDCAMS MESSAGES
IKJ56231I DATA SET SREENI.IN00000 NOT ALLOCATED, SYSTEM OR INSTALLATION ERROR+
IKJ56231I DYNAMIC ALLOCATION REASON CODE IS X'000004B0'
DSNU1043I 107 08:37:46.41 DSNUGDYN - END OF IDCAMS MESSAGES
DSNU012I 107 08:37:46.41 DSNUGBAC - UTILITY EXECUTION TERMINATED, HIGHEST RETURN CODE=8

10.6.2 Hints for table organization while preparing for loading data

In this section, we provide several helpful hints while loading data. First, if a job output log is
open in the Run Director and you try to rename the job in the DataStage designer, the log
generates a message indicating that it cannot get an exclusive lock to make the change. In
this case, exit from the job log and then make the name change.

Second, for a join stage to work, the column names must be identical. If a primary key moved
into a child table as a foreign key, we recommend that you name them with the same name.
Otherwise you may have to use a transformer stage to rename one of the columns for join
purposes.

Third, double-check referential integrity among the tables in the source system to understand
the discards in the lookups that can result in later loads. For example, all ensure that the
part_key values in OLTP_W.LINEITEM and OLTP_B.LINEITEM are contained in the
p_partkey in the OLTP.PART table. If you do not consistently look into the referential integrity,
the fact table checks result with rejects in lookup with the dimensions.

10.7 Debugging load jobs: A brief look

DataStage has several stages and options to help in debugging. In the target DataStage job
to which you are writing, you can choose the option Verbose=true for the DB2z stage to learn
more about the messages that DataStage is generating.

You can also use the Peek DataStage job to look into the reject data as shown in the
PEEK_ORD_STAT_REJECTS peek stage in Figure 10-20 on page 275. To create this
example, we updated three order status values to a value that is not in the order status table.
Six line items matched the three updated orders, and all the records showed up in this job log.
For every lookup, you can keep a reject file in case of tracking any anomalies for a non-match.
You can also choose to ignore a non-match based upon your needs.

274 Enterprise Data Warehousing with DB2 9 for z/OS

Figure 10-20 Debugging job example

By using the peek stage, you can view the contents of the reject records in the job log as
shown in Figure 10-21. In this peek output, you can see O_ORDERSTATUS column with a
value of 3, which was the value that did not have a match in the corresponding
DWHODS.STATUS_LOOKUP table, therefore, causing the rejects.

Figure 10-21 Peek output for debugging - An example

The same job with the peek stage is used to generate the performance statistics in the next
section.

Chapter 10. Full load using DataStage 275

10.8 Performance considerations

For smaller jobs, performance is not an issue. However, for jobs dealing with a large amount
of data, the configuration file has to be set up to use partitioning and exploit the hardware
capabilities. A performance analysis feature is available in the DataStage designer. By
clicking this feature, you see the output shown in Figure 10-22.

10.8.1 Performance statistics

When the DataStage harvests the performance data, you see a chart like the example in
Figure 10-22.

Figure 10-22 DataStage job performance statistics

276 Enterprise Data Warehousing with DB2 9 for z/OS

In addition to the job timeline, you have the option charts, which include charts for CPU
utilization, memory utilization, disk utilization, process density, and so on. By clicking Charts
and the CPU, you can see CPU utilization, memory utilization, disk utilization, process
density, and so on. Figure 10-23 shows the corresponding CPU utilization.

Figure 10-23 DataStage job CPU utilization

10.8.2 Parallel jobs versus server jobs

All the jobs that were developed for this book are parallel jobs. Parallel jobs allow parallel
processing on symmetric multiprocessing (SMP), massively parallel processing (MPP), and
cluster systems. The WebSphere DataStage Parallel Job Advanced Developer Guide,
LC18-9892, has examples of configuration files that you need for SMP, MPP and cluster
systems to help DataStage exploit these capabilities. In the DataStage context, there are two
kinds of parallel processing: pipeline and partitioning.

Pipeline parallelism
Suppose that you have a job such as the example shown in Figure 10-7 on page 264 where
you have a Source DB2z stage, a transformer stage, and a target DB2z stage. In pipeline
parallelism, where you have three processors, for example, one processor starts reading the
source stage. The second processor runs the transformer stage to transform the data in some
way, and the third processor writes to the target. All three processors work simultaneously
without waiting for sequential completion.

Chapter 10. Full load using DataStage 277

Partitioning parallelism
In partitioning parallelism, the same job is run simultaneously by several processors with each
processor handling a separate subset of the data. At the end of the job, all the subsets of data
can be collected back and written to a single target.

Pipeline and partitioning parallelism
You can combine pipeline and partitioning parallelism by having all stages run simultaneously
and for subsets of data to be worked on by various processors. Figure 10-24 from the
WebSphere DataStage Parallel Job Advanced Developer Guide, LC18-9892, shows this
combination.

Figure 10-24 Combining pipeline and partitioning parallelism

Server jobs
Server jobs are compiled and run on the IBM WebSphere DataStage server sequentially.

10.8.3 Choice of stage for performance improvement

The join stage must be preceded by a sort, which can be accomplished by using an ORDER
BY clause when the source data is extracted. In the case that the source stage is a DB2z
stage, then it uses the sort area on the System z server to do the sorting. If there is a funnel
stage after the source stage, choose a Funnel type of Sort Funnel to ensure that the ordering
is maintained. Sort data using the database is a best practice.

When doing the lookup in DataStage, the size of the reference table used in the lookup
matters. If it is small, it does not impede in the running of the job from the lookup point of view.
If it is large, consider the use of a join stage instead.

In instances where the population of a fact table by one job is taking a long time, explore the
possibility of slicing the job so that parts of the job can produce output that can be dumped
into data set stages that do not use as much memory locally. Having a slowly changing
dimension stage has an overhead in that it involves the creation and lookup of a key.

278 Enterprise Data Warehousing with DB2 9 for z/OS

A best practice is to use the database name, user ID, and password as a job parameter so
that it is not tied to one individual developer. To do this, you can select Edit → Job Properties
and click the Parameters tab (Figure 10-25). Then when you establish your access to the
database for your DB2z stage either for reading or writing, you can insert a job parameter
instead of hard coding a value into it.

Figure 10-25 DataStage job parameters for database name and credentials

10.9 Naming standards

We used naming standards for the purposes of this book. You can follow a standard
consistent with your company standards. In our jobs, we tried to have all DB2z stages starting
with DB2z, all lookup stages starting with LKP, all links beginning with LNK, funnels beginning
with FNL and so on. However our main task was to show how DataStage can be used quickly
and relatively easily to populate all the ODS and DDS tables on DB2 for z/OS.

10.10 Data quality implementation during full load

The implementation of the load in this book is low in complexity compared to data warehouse
loads in the real world with which companies struggle all the time. The reasons for the
complexities are well known in the industry such as the integration of data from different
online transaction systems and the lack of data conforming to the required business
specifications.

For the purposes of the load required for the business scenario in this book, we used only
simple features, such as peek stages for debugging, to keep a sequential reject file for lookup
rejects and carefully monitor load counts. In a real world situation, it is important to perform
analysis of the data to be loaded before the design and implementation of DataStage jobs. In
this context, an additional tool called QualityStage is available from IBM. QualityStage shares
the same development environment with DataStage.

Chapter 10. Full load using DataStage 279

You can use QualityStage stages in your DataStage and vice versa. QualityStage helps in
various data quality processes such as the following examples:

� Data investigation
� Data standardization
� Data matching
� Data survivorship

Discussing these processes is beyond the scope of this book. The following manuals are
available for those of you who are interested in using the QualityStage tool along with
DataStage:

� WebSphere QualityStage User Guide, SC18-9922
� WebSphere QualityStage Tutorial, SC19-9925

The most current information about the IBM Information Server suite, which includes
DataStage and QualityStage functions, is available in the IBM Information Server information
center at the following address:

http://publib.boulder.ibm.com/infocenter/iisinfsv/v8r0/index.jsp

280 Enterprise Data Warehousing with DB2 9 for z/OS

http://publib.boulder.ibm.com/infocenter/iisinfsv/v8r0/index.jsp

Chapter 11. Incremental update with
DataStage

Chapter 10, “Full load using DataStage” on page 257, shows the initial load into the data
warehouse. After the initial load is done, you must incrementally load the data warehouse to
reflect the updates that are taking place in the online transaction system. The ability to update
your data warehouse environment with low latency enables near real-time business
intelligence (BI).

Therefore, you must define the frequency of the incremental load, which mainly depends on
the business requirements. In the business realm, a gradual shift is taking place. Initially data
warehouses were established with a few users in mind. They generally looked at the past
historical data and predict trends. This type of historical integrated look at customers, along
with the products that they buy, for example, was not available to general everyday customer
interacting company employees. When a customer walked into the door, an employee had no
idea of any cross-selling opportunities.

To open a data warehouse to customer facing employees, current data, the ability of the
database to support the requests from several users, and the mixed workload of small
queries with queries that, for example, use an exact account number or social security
number must be known. At the same time, larger queries that are used to build either data
marts or extensive reports with historical data must also be catered to. This information
makes the difference blurry between a data warehouse and an online transaction system.
Fortunately technologies can help meet the requirements of these new groups of data
warehouse users.

The products in Chapter 10, “Full load using DataStage” on page 257, and in this chapter are
product modules of the IBM Information Server for System z. In Chapter 10, we look at IBM
InfoSphere DataStage for Linux on System z and IBM WebSphere Federation Server and talk
about IBM InfoSphere QualityStage for Linux on System z. In this chapter, we look at how we
can use DataStage to read the messages that have been written by the IBM WebSphere Data
Event Publisher based on online transaction processing (OLTP) transactions. This Event
Publisher is also a module of the IBM Information Server for System z. We also point to tools,
such as Workload Manager, that can be tailored to cater to mixed query workloads such as
where real-time BI or operational BI is enabled.

11

© Copyright IBM Corp. 2008. All rights reserved. 281

This chapter includes the following topics:

� 11.1, “Operational BI revisited” on page 282
� 11.2, “Reduction of a batch window” on page 283
� 11.3, “Usage of queues as sources of data” on page 283
� 11.4, “Anatomy of a queue” on page 284
� 11.5, “DataStage job to read a queue” on page 285
� 11.6, “Automated reading of the queues and updating of the data warehouse” on page 286
� 11.7, “Concurrency considerations” on page 292
� 11.8, “Summary” on page 293

11.1 Operational BI revisited

The first time you go to a doctor’s office, you complete a form to give the doctor access to your
complete medical history. If you go to this doctor again, a nurse records on a chart your
weight, temperature, blood pressure, and most recent health issue for which you are at the
doctor’s office and adds this information to your medical history. The doctor reviews your
chart for your previous history and current issues in order to have the right context to perform
an examination and provide proper medical guidance at the time of service.

Whenever a history of information can be applied to optimize service and care, it can be
construed as operational BI. You must determine whether you can provide your
customer-facing personnel with the ability to look at the history of a customer’s interaction
with your company. You do this to satisfy day-to-day tasks and to see the interaction as an
opportunity to look through their history. For example, you might look at past complaints to
avoid a particular problem or problems again. You might look at the products a customer likes
to use as a base for cross-selling other products. Or you might look at any consistent loss of
business and pass that information to the relevant product development group. If you can
make these determinations, then you are employing operational BI by empowering your
customer service personnel to ensure customer satisfaction. How well you do this
differentiates you from the competition.

The users of the operational BI can be both the customer facing personnel and the customers
themselves, which results in a massive increase of users against the data warehouse.
Operational BI is about optimizing the day-to-day business and not a replacement of the
strategic BI for which the warehouses were initially developed.

Senior executives need strategic requirement to look at corporate-wide trends and to set a
company-wide direction based on that information. For example, a government executive
working at the governor’s office in the state of Ohio (U.S.) might ask questions related to
alcohol and drug addiction support, for example: How many dollars per successful outcome is
the government spending by county and over time? A successful outcome is the abstinence
of alcohol and drugs along with employment of a person who availed the government’s care
during their time of addiction.

With operational BI, you learn about the precursors to a behavior, such as alcohol addiction in
this case, when providing services, such as rehabilitation. You can assess the likelihood that
a person will repeat this behavior again, such as to abuse alcohol again, and provide basic
preventive measures. There can be other examples for transforming a business to be more
dynamic operationally.

282 Enterprise Data Warehousing with DB2 9 for z/OS

11.2 Reduction of a batch window

The advent of operational BI has reduced the batch window due to the need for real-time data
for some source systems to percolate to the data warehouse environment. Even if
service-level agreements (SLAs) with IT customers do not change, the nature of a tiered data
warehouse environment contributes to the batch window. Also as more source systems are
added and, therefore, more data is in the data warehouse, there is a concern of not meeting
the SLAs. In addition, upgrades are made to source systems that may prevent you from
getting a monthly load file on time, assuming a monthly feed from that source.

You need an array of solutions, such as a combination of technical hardware, a database, and
related software, and a clear delineation of business requirements of priority that is reflected
in the data acquisition and distribution approach. In previous chapters, we show the
performance, architecture, and continuous availability of System z hardware along with DB2
for z/OS and related software, such as DataStage, working together to account for limited
batch windows.

11.3 Usage of queues as sources of data

Message queues as a source of data are pivotal in a real-time environment. In Chapter 8, “Q
replication and event publishing” on page 159, we explain how you can use WebSphere Data
Event Publisher for z/OS to read OLTP database recovery logs and publish these events as
delimited or XML messages into a queue. DataStage can then read these messages and use
them to update the data warehouse tables. These messages are the updates made to the
source transaction system. By reading the messages and applying them to the data
warehouse, you enable your data warehouse with low latency updates. Not all subject areas
of your warehouse may need low latency. Therefore, you can select to which data warehouse
areas you need to apply OLTP updates as soon as possible and so on. For those for which a
batch update to their data warehouse suffices, then you can use DataStage to write to a
staging table.

The IBM WebSphere Replication Server and IBM WebSphere Data Event Publisher are both
modules of the IBM Information Server for System z. They can be used to read the recovery
logs via the Q Capture program and write to WebSphere MQ queues. In Replication Server,
the Q Apply program can read the WebSphere MQ queue and apply the changes to a target
table. In Event Publisher, there is no Q Apply program. There is only the Q Capture program
that writes to the WebSphere MQ queue in delimited or XML format.

We use Q Capture to satisfy the business scenario in this book. After the queue information is
read, the data must be populated first in the operational data store (ODS) and then in the
DDS. Sometimes lookups are done on existing data to keep track of history requirements and
then as needed on end-date old information and inserted new data. Since it is not a straight
insert into the target tables, we used DataStage.

Changes that are made to your source tables are captured by the Q Capture program from
the recovery log. The Q Capture program runs on the server on which the source tables are
located. Since the OLTP tables in the scenario for this book reside on DB2 for z/OS, the
server refers to the DB2 subsystem on z/OS. You can choose, via the Q Capture program,
whether you want only new data values in your message or to have both old and new data
values in your message. Similarly you can also choose changed columns only or both
changed and unchanged columns for Q Capture to use to build the message. For Inserts, you
have only new information.

Chapter 11. Incremental update with DataStage 283

The Q Capture program uses a set of control tables, known as the Q Capture control tables,
to store the information that the Q Capture program needs in order to build the messages in
the send queue, which is ready to be read by a receiving application such as DataStage. The
Q Capture control tables define the data source tables and the data to extract from the
recovery log and write to the queue for each of these source tables.

In reading the message queues with DataStage, one goal is to update the data warehouse
ODS or enterprise data warehouse in real time. By doing this, customer-facing employees
have current information when they read from the ODS or the enterprise data warehouse.
The second goal is for this information to be cascaded to a data mart.

In our business scenario, the OLTP information is written to the ODS from which the history is
kept in the dimensional data store (DDS) or data mart. To highlight the ability to provide
real-time BI, we read from a message queue and update the first ODS and then the DDS. We
look at the format of a queue and develop a DataStage job to read the queue and update the
data warehouse. Lastly we discuss any concurrency considerations that arise from writing
data to the data warehouse frequently while reading from it.

11.4 Anatomy of a queue

In your project folder in DataStage, in the subfolder Real Time, you find a WebSphere MQ
Connector and an MQ message beneath it. This MQ message is the structure of the message
that you need. Whenever you start, you use the WebSphere MQ Connector stage as shown
in the stage named MQ_CUSTOMER in Figure 11-1. Then if you have a transformer stage,
such as XFORM_GRAB_PAYLOAD (also shown in Figure 11-1), and a link between them,
you can drag the MQ message definition on top of the link.

Figure 11-1 MQ message definition link

By doing this, when your MQ queue is populated on z/OS and we read that queue when we
execute a DataStage job, the structure of the queue is in this definition format. For our
purposes, the message that we needed was in one column, called Payload, at the bottom,
after many columns that contain different information about the message such as
QueueName and PutDate.

You can see the format of the payload column in the queue structure in the “WebSphere MQ
message queues for the WebSphere Business Integration wrapper and the adapter” topic in
the IBM DB2 Database for Linux, UNIX, and Windows Information Center at the following
address:

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp?topic=/com.ibm.swg.
im.iis.ep.xmlpubsguide.doc/topics/iiyexpmgrdelimstruct.html

You can also see the structure of the payload column in Figure 11-5 on page 288. Although
we named the columns, they are patterned after the metadata of the column structure shown
in the information center at the previous Web address.

In the sections that follow, we explain how we use the Payload column information to move it
to the data warehouse environment.

284 Enterprise Data Warehousing with DB2 9 for z/OS

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp?topic=/com.ibm.swg.im.iis.ep.xmlpubsguide.doc/topics/iiyexpmgrdelimstruct.html

11.5 DataStage job to read a queue

The most important new DataStage stages that we need in an incremental load, as compared
to a full load, are the WebSphere MQ Connector stage and the Open Database Connectivity
(ODBC) Enterprise stage. The MQ Connector stage is used to read message queues that
have been written by Event Publisher. The ODBC Enterprise stage is used in an upsert mode
to update rows or insert rows based on a match, or lack thereof, of the key column that is
identified.

11.5.1 WebSphere MQ Connector stage

Figure 11-2 shows a sample MQ Connector stage entry. This entry is used to read the queue
for the updates that are made to the OLTP.CUSTOMER table.

Figure 11-2 Sample WebSphere MQ Connector stage entries

Chapter 11. Incremental update with DataStage 285

11.5.2 ODBC Enterprise stage

The ODBC Enterprise stage is used to update and then insert those rows that do not match
the update criteria in the ODS customer table. In order for this to happen, the upsert mode of
“Update then Insert” is specified. Subsequent to this stage, we might account for all the rows
that came in via the message queue. We must be careful that the columns coming in from the
message queue are renamed just before this ODBC Enterprise stage to match the column
names exactly as in the target ODS Customer table. The upsert does not work if the column
names that come in are different. We accomplish this name alignment in the
XFORM_FOR_UPSERT transformer stage. Figure 11-3 shows the settings of this ODBC
Enterprise stage

Figure 11-3 ODBC Enterprise stage settings

11.6 Automated reading of the queues and updating of the data
warehouse

Our immediate goal is to read the message queues that are populated based on the changes
to the OLTP tables and update the ODS and then the DDS. This shows the possibility of
real-time BI in action. We tested this for one table, the OLTP.CUSTOMER table. In Chapter 8,
“Q replication and event publishing” on page 159, we explain how the message queue is
populated. In this section, you see the transport of this message first from the queue to the
DWHODS Customer table and then to the DWHDDS Customer table. During development,
the messages were first written to a CUSTOMER_2 table, which is a mirror image of
CUSTOMER table for testing purposes.

286 Enterprise Data Warehousing with DB2 9 for z/OS

11.6.1 Update of the DWHODS Customer table

All the data needed for the update and insert is provided in the Payload column of the
message queue. Therefore, as soon as the message is read from the WebSphere MQ
Connector stage, named MQ_CUSTOMER in Figure 11-4, the message is passed into a
transformer stage, XFROM_GRAB_PAYLOAD, to pull just the payload column. Figure 11-4
shows the entire job that was developed to read the queue and populate the ODS Customer
table.

Figure 11-4 Read message queue to update ODS Customer table

Chapter 11. Incremental update with DataStage 287

The payload column in the message is comprised of much more detail than the information
that is needed to update the Customer table of the ODS. We use a restructure stage, called
Column Import, that is available in DataStage to split this payload column into all the
necessary data elements as shown in Figure 11-5.

Figure 11-5 Message column Payload split into consisting columns

When we execute the job as shown in Figure 11-4, the update summary (Figure 11-6) from
the log is created. This log shows that the number of rows updated is 10, which is the
anticipated number of rows for this exercise.

Figure 11-6 Job log from update of the DWHODS customer table

This log also shows that the data updates made to the OLTP environment can be read from
the recovery log and placed in a message queue for DataStage to pick them up and apply

288 Enterprise Data Warehousing with DB2 9 for z/OS

them into a data warehouse environment. In this case, the near real-time possible updates
are applied to the ODS Customer table.

11.6.2 Update of the DWHDDS Customer table

Our primary intention is to show the low latency update of the data warehouse environment.
We want to accomplish this by reading the message queues that are populated from the
recovery log. In the previous section, we show that it is possible to read the queue by using
DataStage with the OLTP updates and reflect that information in the ODS. We choose
customer information as an example. Therefore, we must push the same customer
information into the data mart/DDS to make it go through the complete decision support loop.

The business requirement is that, whenever the business users look at the measures for
orders and order line items, they need the corresponding customer information to be relevant
at that time. Technically we must store historical customer information of the customer
dimension table. As we explain in “Slowly changing dimensions” on page 12, we use the SCD
Type 2 pattern when we store history information in a dimension table. The DataStage tool
that we use has an SCD stage that you can set to Type 2 to help implement this business
requirement.

The source DWHODS Customer table provides the same source customer identification key
for updated information. When we pick it up, we need to store it in the CUST_KEY_SRC
column in the Customer dimension table. We then assign a new surrogate key for the new
changed information. An end date is required for the effectiveness of the older customer row.
We set SCD_RECENTFLAG to N for the older information row of the customer, and we set
SCD_RECENTFLAG to Y for newer information of the same customer. We do this as part of
an SCD Type 2 implementation.

Figure 11-7 shows the DataStage job that we developed.

Figure 11-7 SCD implementation example

Chapter 11. Incremental update with DataStage 289

Let us walk through the steps and look at the results. Since our source ODS data is on DB2
for z/OS, we use a DB2z stage. The names that you pass from this table must match the
target column names in the dimension table for the upsert mode to work in the ODBC
Customer dimension stage. For this purpose, when we send data to
LNK_ODSCUST_TO_SCD, we change the column names from the source columns to match
the target columns.

To define the SCD stage, you need two inputs: the ODS input of customer information and a
lookup to the dimension table. This dimension is also what you are going to update. The
lookup is needed in order that DataStage can first see if there are any changes for the input
rows that you are getting for which you must create history rows in the dimension table. The
lookup is based on the customer source key that comes from the ODS Customer table and is
matched to the customer source key in the DDS Customer dimension table, as shown in
Figure 11-8.

Figure 11-8 SCD Lookup of dimension table

For the target Customer dimension table, you also must create a surrogate key, which is
defined as shown in Figure 11-9.

Figure 11-9 SCD Surrogate Key settings

290 Enterprise Data Warehousing with DB2 9 for z/OS

Next you specify the output from the SCD stage. Figure 11-10 shows an example of the
mapping that updates the Customer dimension table.

Figure 11-10 SCD dimensional update mapping

If you want to look at the input rows that are being passed into the SCD stage, then you can
define a text file to capture this data. Figure 11-11 shows the mapping for this. As in creating
regular SQL scripts and programming, watch for handling NULL values, especially during
matching data for lookups and the like.

Figure 11-11 SCD output to file

Testing the functioning of SCD Type 2
To test the functioning of this SCD Type2 job for a source key of 211611, we had one row in
the Customer dimension with a name. For the same source key of 211611, we had a different
name come in the input from the ODS. Now we must see the different names on two different

Chapter 11. Incremental update with DataStage 291

rows. We must also see the end date and the SCD_RECENTFLAG updated for the older row.
This is shown in Figure 11-12 and Figure 11-13. SCD_END_DT is populated and
SCD_RECENTFLAG is set to N for the older row. The new row shows N in the SCD_END_DT
and Y for the SCD_RECENTFLAG.

Figure 11-12 SCD result with the effective date

Figure 11-13 SCD result continued with the end date and recent flag

11.7 Concurrency considerations

To enable real-time BI, we populate the data warehouse environment with low latency. This
means that we are inserting rows into the tables while users may be reading the data from
those tables. By using such tools as z/OS Workload Manager, you can set up the priorities for
your work. Refer to 3.2.2, “Workload management” on page 35, for more information.

For the considerations here, in incremental loading, you can use Workload Manager to put
together a policy to favor the queries to read the data when such a need is more pronounced.
You can also switch the policy to refresh the data when such a need takes precedence.
Figure 11-14 illustrates these capabilities.

Figure 11-14 Workload Manager helping to prioritize for operational BI

---------+---------+---------+---------+---------+---------+---------+---------+
 CUSTKEY_DW CUST_NAME CUST_KEY_SRC SCD_EFFECTIVE_DT
---------+---------+---------+---------+---------+---------+---------+---------+
 100007 SREENIVASA JANAKI 211611 2008-05-06-13.44.01.000000
 100008 Andrew J C 211611 2008-05-06-13.53.41.000000

---------+---------+---------+---------+---------+---------+---------+---------+
 CUSTKEY_DW CUST_KEY_SRC SCD_END_DT SCD_RECENTFLAG
---------+---------+---------+---------+---------+---------+---------+---------+
 100007 211611 2008-05-06-13.53.41.000000 N
 100008 211611 -------------------------- Y

M anagem ent betw een partitions and servers

z/OS
W LM

DB2
Database

Test

Application

CP

M

CP

M

I/O

I/O

More
resources

added

Need
m ore

resources

292 Enterprise Data Warehousing with DB2 9 for z/OS

11.8 Summary

This chapter showed that, from a technology standpoint, opportunities for real-time BI are
opening up for managers who work on a daily basis with customers. They can use these
opportunities to cross-sell and cement the bond with customers for long-term relationships.
For example, you can open a report each day to see if the top 100 customers in your area
submitted any complaints. You can reach out to them and placate them as necessary to void
a difficult situation.

Depending on a data warehouse implementation, sometimes data fails data quality checks
and is not written to the data warehouse. This can result when the data warehouse does not
have the updated code tables when new codes are entered in the online transaction system.
Therefore, the transactions in OLTP have these codes, such as General Ledger codes in a
banking environment, but the data warehouse does not. In such cases, you can either use the
logs of the transaction system or tools to write to message queues from which they can be
used to update the data warehouse with relatively low latency.

There can also be help by using federation, which allows for reading a text file, for example,
on a source application system and using the data as though it were in a table. We discussed
reading the queues in this chapter, but explain how to use federation in 10.5, “Accessing
WebSphere Classic Federation in DataStage jobs” on page 271.

Chapter 11. Incremental update with DataStage 293

294 Enterprise Data Warehousing with DB2 9 for z/OS

Chapter 12. An operational business
intelligence implementation

The advent and requirement for operational business intelligence (BI) is one of the important
reasons why you should consider a data warehouse to run on the System z server.

As outlined in 2.4.1, “Operational business intelligence” on page 26, one aspect of
operational BI is adding embedded analytics to online transactional processing (OLTP)
systems. In our scenario, we run a transactional processing system, dealing with order
processing. In this chapter, we show implementation examples for an application with
embedded analytical information, derived from the operational data store (ODS) and
dimensional data store (DDS) of our data warehouse.

Combining both OLTP data and historical data from the data warehouse in the same
application and making them available to (potentially many) users emphasizes that both
systems must comply to the same high standards and quality of service. If both data sources
are needed for tactical and business-critical applications, then the availability and quality of
service for the data warehouse must be comparable with the one for OLTP data.

This chapter includes the following topics:

� 12.1, “OLTP application with embedded analytics” on page 296
� 12.2, “The order processing Web application” on page 297
� 12.3, “Implementation considerations” on page 299
� 12.4, “Improving response times by using materialized query tables” on page 300

12

© Copyright IBM Corp. 2008. All rights reserved. 295

12.1 OLTP application with embedded analytics

For this book, we simulate an order processing system with the help of a J2EE application
running on Linux on System z. Figure 12-1 shows our OLTP data (by using schema OLTP,
OLTP_W, and OLTP_B) and the data warehouse data on the right side. Both are managed by
DB2 for z/OS. On the left side, the order processing Web application runs in an instance of
WebSphere Application Server 6.1 on Linux on System z.

Potentially many users who work in order processing can access the Web application by
using their Web browser and submit new orders to the system. We use call center agents as
an example of users of these applications. However, the same conceptual architecture can
also be used to run a Web application that is available directly for customers through the
Internet.

Figure 12-1 Order processing application that accesses both OLTP and data warehouse data

The Web application does not have to run on Linux on System z. We placed it there because
we already had an WebSphere Application Server installed there. Running on WebSphere
Application Server for z/OS works as well.

To achieve the best performance when accessing DB2 for z/OS, placing the Web application
on System z (either Linux on System z or z/OS) is preferred over running the application on a
distributed system.

DB2 for z/OSDB2 for z/OS

Data for OLTP
(OLTP, OLTP_W, OLTP_B)

Data for OLTP
(OLTP, OLTP_W, OLTP_B)

Data warehouse
(ODS, DDS)

Data warehouse
(ODS, DDS)

Linux on System zLinux on System z

WebSphere
Application Server 6.1

WebSphere
Application Server 6.1

Web browserWeb browser

Order processing
web application

Order processing
web application

296 Enterprise Data Warehousing with DB2 9 for z/OS

12.2 The order processing Web application

Figure 12-2 shows a sample of a simple J2EE Web application that a call center agent might
use to enter new orders for existing customers. On the left side (in blue), the agent first
selects a customer from the list, then interactively adds the items (parts), and finally clicks the
Submit Order button to complete the creation of the order in the transactional system. A real
application requires additional functions for order processing that are not implemented in our
application.

The order processing application contains a context-sensitive BI pane on the right side (in
yellow). Based on a selected customer, this pane shows additional information that can help
the call center agent to complete the order.

Figure 12-2 OLTP application for order processing

In our sample scenario, we decided to add the following information based on data stored in
our data warehouse environment:

� In the first example, based on the country where the selected customer lives, the most
sold parts in past transactions are derived. The call center agent might use this
information to offer additional parts when talking to the customer. While this is simply an
example, it is easy to imagine other kinds of data (for example, promotions based on
region, showing parts that other customers combined) that can be derived and displayed
to support the call center agent.

Chapter 12. An operational business intelligence implementation 297

Example 12-1 shows the query for our DDS that we use to retrieve this information. We
join the ORDER_TRANSACTION_FACT table with the PART_DIM and CUSTOMER_DIM
dimensions and filter based on values in CUST_NATION_NAME for the selected
customer. The value 211629 is an example, and the order processing applications run the
query with the customer number of the selected customer.

Example 12-1 Query for most sold parts in the country of a given customer

SELECT P.PART_NAME, P.PART_TYPE, SUM(O.QUANTITY) AS SUM
FROM

DWHDDS.ORDER_TRANSACTION_FACT O, DWHDDS.PART_DIM P, DWHDDS.CUSTOMER_DIM C
WHERE
 O.PARTKEY_DW = P.PARTKEY_DW AND
O.CUSTKEY_DW = C.CUSTKEY_DW AND

 C.CUST_NATION_NAME =
(SELECT CUST_NATION_NAME FROM DWHDDS.CUSTOMER_DIM WHERE CUSTKEY_DW=211629)

GROUP BY PART_NAME, PART_TYPE
ORDER BY SUM DESC
FOR READ ONLY
FETCH FIRST 10 ROWS ONLY

� The second example for BI data in our application is derived from the customer’s past
behavior. In our implementation, we query the number of parts that the selected customer
returned in the past months and display an ordered list of month/year along with returned
items. Again, this simplistic example can easily be enhanced to display a more
sophisticated analysis on purchase behavior in the past. A call center agent might use this
data when talking to the customer and ask how the company can improve the service in
order to avoid returns. Or the agent might give a higher discount based on transactions
done in the past.

Example 12-2 shows the query that we use to obtain the quantity of returned items per
month. The customer number (211613 in this example) is again replaced with the value for
the selected customer. The real code in the application uses a prepared statement with a
parameter marker in this place.

Example 12-2 Query for returned items per customer

SELECT D.MONTH_VAL, D.YEAR_VAL, SUM(O.QUANTITY_RETURNED) AS QTY
FROM

DWHDDS.ORDER_TRANSACTION_FACT O, DWHDDS.DATE_DIM D
WHERE

O.ORDERDATEKEY = D.DATEKEY_DW AND O.CUSTKEY_DW = 211613
GROUP BY MONTH_VAL, YEAR_VAL
ORDER BY QTY DESC
FOR READ ONLY
FETCH FIRST 5 ROWS ONLY

� The third example at the bottom of the BI panel is a suggestion for the discount that the
customer might receive. Various information from the data warehouse and from
transactional systems can be included to create this option. In our example, we choose the
average discount that the customer received in the past.

Figure 12-3 on page 299 shows the retrieved values for a selected customer, Frank N Q
(living in Japan). Upon selecting the customer, the BI information on the right side is
instantly updated with the information described earlier. The first table, for example, shows
that lemon lace khaki powder blanched is the most popular part in Japan and has been
sold with a quantity of 55.0 so far.

298 Enterprise Data Warehousing with DB2 9 for z/OS

Figure 12-3 OLTP application with BI information

12.3 Implementation considerations

We create our order processing Web application by using JavaServer™ Pages (JSPs) and
connect it to DB2 for z/OS by using Java Database Connectivity (JDBC) and the DB2
Universal JDBC driver (Type 4). The same application connects to two DB2 for z/OS data
sources. Depending on the requirement of the scenario and the setup of the two data
sources, different techniques are required for an implementation.

12.3.1 Handling multiple data sources

In real-life scenarios, data that has been replicated might need to be enriched by combining it
with data that resides in other tables of the OLTP or data warehouse database. Table 12-1 on
page 300 illustrates different cases where OLTP and data warehouse data reside in the same
subsystem or in different subsystem. It also indicates which techniques can be used to
implement joins between data or if there is a need to access data in the same transaction.
Typically, there is no need to combine data in the same transaction or to join them. Our
sample application starts a new transaction for reading BI data from the data warehouse after
the customer retrieval from the transactional system is completed.

Chapter 12. An operational business intelligence implementation 299

However, if there is a requirement to either join data, access data, or do both in the same
transaction, then this can be achieved by using different subsystems.

Table 12-1 Handing application requirements when using multiple DB2 for z/OS subsystems

12.3.2 Leveraging tools to render business intelligence data

In a professional application, consider leveraging available products for both doing analysis
and rendering of BI data. Examples for such applications include Cognos 8 BI, AlphaBlox and
DataQuant. For more details, see Chapter 13, “Reporting and analysis with Cognos 8 BI” on
page 305, and Chapter 14, “Reporting with DataQuant, QMF, and AlphaBlox” on page 397.

When building a Web application, also consider using WebSphere Portal. With WebSphere
Portal, you can render BI data in additional (supporting) portlets on the same portal page
where your transactional order processing system is displayed. In our example,
communication between portlets can be used to send information about the selected
customer to other portlets on the page and show supporting information there.

12.4 Improving response times by using materialized
query tables

Because our data warehouse queries are run in context or in a transactional environment with
a large number of users, the query response time for our SQL query in Example 12-1 on
page 298 (popular parts in a country) might not be satisfying anymore. Therefore, we
consider the definition of a materialized query table (MQT) to improve query response times
and CPU costs.

We use IBM Optimization Service Center to review the access plan for the query (Figure 12-4
on page 301). It shows the accessed tables during query execution and also the join and sort
operations to return the result for each individual request.

Same DB2 subsystem Different DB2 subsystems

Join data No issue Use federation or application logic (for
example, temporary table)

Access data in the
same transaction

No issue Use global transactions and XA data source in
WebSphere Application Server

Access data in a
different transaction

No issue (one data source) No issue (two data sources)

300 Enterprise Data Warehousing with DB2 9 for z/OS

Figure 12-4 Access plan for data warehouse query in order processing application without MQT

We also get the estimated costs based on the current statistics for the tables (Figure 12-5).

Figure 12-5 Costs of the data warehouse query without MQT

Number of rows: The number of rows in the tables that we used for our implementation is
not representative for a customer environment. We have a few thousand rows stored in the
tables, while a real environment might have millions of rows. The benefits of using MQTs
are even greater with a larger amount of data.

Chapter 12. An operational business intelligence implementation 301

In order to get to the definition of a suitable MQT, we revisit the SQL statement for the original
query in Example 12-1 on page 298. It uses a where predicate to filter based on the nation
name, which in turn is retrieved from a given customer key. We decide to define an MQT that
contains nation name, part name, part type, and the sold quantity for this combination.

Another option is a definition with cust_key instead of nation name. Because there are
potentially many customers with the same nation but only (comparable) few nations, this
approach can significantly increase the rows in the MQT. Furthermore, a lookup of the nation
for a given customer key is considered to be index only access. Therefore, index only access,
rather than index and data access, is much better performing.

Example 12-3 shows the final definition of our MQT. The nation column is added as an
additional column, and the sub select clause to retrieve the customer’s nation from the
customer key is removed.

Example 12-3 MQT definition that supports popular parts query

CREATE TABLE POPULAR_PARTS (NATION, PART_NAME, PART_TYPE, QTY) AS
(SELECT C.CUST_NATION_NAME, P.PART_NAME, P.PART_TYPE, SUM(O.QUANTITY) AS SUM

FROM
DWHDDS.ORDER_TRANSACTION_FACT O, DWHDDS.PART_DIM P, DWHDDS.CUSTOMER_DIM C
WHERE

O.PARTKEY_DW = P.PARTKEY_DW AND
O.CUSTKEY_DW = C.CUSTKEY_DW

GROUP BY CUST_NATION_NAME, PART_NAME, PART_TYPE
)

DATA INITIALLY DEFERRED
REFRESH DEFERRED
MAINTAINED BY SYSTEM
ENABLE QUERY OPTIMIZATION

We define an MQT that is maintained by the system and enable query optimization. Both
properties are required to make the materialized query table eligible for query rewrites. MQTs
support the definition of indexes on the table. Because our original query filters based on
country name, we introduce the following index to support this query:

CREATE INDEX POP_NATION ON POPULAR_PARTS (NATION)

After the definition and the data is loaded into our DDS, we refresh the MQT by using the
following command:

REFRESH TABLE POPULAR_PARTS

The query can be manually rewritten and used in our order processing Web application, or
DB2 for z/OS can rewrite the query automatically. Example 12-4 shows the effective query.

Example 12-4 Rewritten query using the defined MQT

SELECT PART_NAME, PART_TYPE, QTY
FROM

POPULAR_PARTS
WHERE

NATION =
(SELECT CUST_NATION_NAME FROM DWHDDS.CUSTOMER_DIM WHERE CUSTKEY_DW=211629)

FETCH FIRST 10 ROWS ONLY

Note: Our objective is to leave the implementation of our order processing untouched and
use the automatic query rewrite mechanism for MQTs in DB2 for z/OS.

302 Enterprise Data Warehousing with DB2 9 for z/OS

The value of the CURRENT REFRESH AGE register is an important criteria for DB2 for z/OS
when considering an MQT for automatic query rewrite. The initial value of CURRENT
REFRESH AGE is determined by the value of field CURRENT REFRESH AGE on installation
panel DSNTIP8. The default installation for the initial value of that field is 0, unless your
installation has changed it to ANY by modifying the value of that field.

We verified that the value for CURRENT REFRESH AGE in our DB2 for z/OS subsystem is
indeed 0 and, therefore, change it to ANY in the corresponding ZPARM.

We define our MQT with the option MAINTAINED BY SYSTEM. Therefore, we do not have to
change register CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION, which is
used to determine the tables that should be considered by the optimizer for query rewrites.

Another option for setting the desired registry values is to modify the application program and
add additional JDBC statements. See Example 12-5.

Example 12-5 JDBC code fragment to set the current refresh age value

Connection con = ...;
Statement stmt = con.createStatement();
stmt.execute("SET CURRENT REFRESH AGE ANY");
stmt.close();

After the MQT is defined and we changed the ZPARM value, we again use IBM Optimization
Service Center to verify whether the query is being rewritten. DB2 for z/OS now accesses our
newly defined MQT. In Figure 12-6 on page 304, we see that this is the case. The part of the
access graph that represents retrieving the nation name from the customer key is unchanged.
Access to the fact table and the part dimension, however, is completely replaced by
accessing the MQT.

Important: Use care when changing CURRENT REFRESH AGE to ANY for the entire
subsystem. The benefit is that qualifying queries are automatically rewritten to leverage
eligible materialized queries. However, if data in the MQTs is outdated, the query rewrite
might be undesired.

In our scenario, we make sure that the MQT is refreshed whenever we change data in the
underlying tables of the DDS. We also verify that no other negative impact is imposed by
changing this ZPARM value.

Chapter 12. An operational business intelligence implementation 303

Figure 12-6 Access plan for data warehouse query in order processing application using MQT

Comparing CPU cost estimates for the previous plan (Figure 12-5 on page 301) with the one
using MQTs (Figure 12-7) shows an improvement factor of 30. As usual, these are estimates,
but they give an indication of the kind of improvement that can be achieved. This example
shows how MQTs can significantly support an existing operational BI application, such as our
order processing Web application.

Figure 12-7 Costs of the data warehouse query using MQT

With a more complex application, after analyzing expensive data warehouse queries, a set of
multiple data warehouse queries can be defined to support these queries. This will likely
become an iterative process with a trade-off where the cost of storing and maintaining
materialized queries must be balanced against the benefit of improved CPU and response
time.

304 Enterprise Data Warehousing with DB2 9 for z/OS

Chapter 13. Reporting and analysis with
Cognos 8 BI

In this chapter, we give an overview of our Cognos software implementation by using
Cognos 8 Business Intelligence (BI) for Linux on System z. The implementation has been
delivered to fulfill the requirements for the RedParts Distribution scenario, which is
documented in 5.2, “Business requirements” on page 72, and to complete the enterprise data
warehouse environment that was developed by using DB2 for z/OS and System z tools.
Cognos 8 BI is available from Linux, UNIX, and Windows.

The Cognos 8 BI components that we demonstrate include Query Studio, Report Studio,
Analysis Studio, PowerCubes, Transformer, and Framework Manager. Other components of
Cognos 8 BI, such as Metric Studio and Event Studio, are available that we have not
demonstrated.

For more information about the full range of capabilities that are available with Cognos 8 BI,
visit the following Web site:

http://www.cognos.com

This chapter contains the following topics:

� 13.1, “Overview of Cognos 8 BI components” on page 306
� 13.2, “Installing Cognos 8 BI Server on Linux on System z” on page 308
� 13.3, “Building Cognos data models and packages” on page 335
� 13.4, “Reports with Report Studio” on page 367
� 13.5, “Ad hoc queries with Query Studio” on page 374
� 13.6, “Multidimensional analysis with Analysis Studio” on page 385

13

Note: For more information about Cognos 8 BI for Linux on System z, see “Cognos 8
Business Intelligence for Linux on System z” at the following address:

http://www.ibm.com/software/data/cognos/cognos-8-business-intelligence/
system-z/

© Copyright IBM Corp. 2008. All rights reserved. 305

http://www.ibm.com/software/data/cognos/cognos-8-business-intelligence/system-z/
http://www.cognos.com

13.1 Overview of Cognos 8 BI components

Cognos 8 BI is a powerful suite of components that delivers a complete range of BI and
performance management capabilities on a single, service-oriented architecture (SOA).
These components share one common infrastructure for creating, managing, and deploying
queries, reports, analyses, dashboards, scorecards, and alerts. Cognos 8 BI helps to meet an
organization’s BI objectives and the needs of every kind of user from simple report
consumers to professional authors and developers.

In the following sections, we highlight some components and capabilities of Cognos 8 BI.

Reporting
Reporting with Cognos 8 BI gives users the ability to author, share, and use reports that draw
on data across all enterprise sources for better business decisions. Cognos 8 BI delivers all
report types (ad hoc queries, simple inventory lists, managed business, bills, statement style,
invoice, and business dashboards).

The Report Studio component provides the report authoring capability. Reports can include
charts, cross-tabs, and lists as well as non-BI components such as images, logos, and live
embedded applications that can be linked to information. Users can drag report objects into
the report authoring window. The report layout is automatically rearranged correspondingly.
The task-based interface offers flexibility and simplifies report authoring and modification.

Cognos 8 BI provides complete enterprise reporting coverage as it lets each group work with
information as they want. Reports can be accessed and shared by the recipients in their own
work language. Reporting with Cognos 8 BI helps business managers make reports, analyze,
follow performance metrics, and collaborate with other users. It also helps executives get
business dashboards for at-a-glance summaries of critical information and understanding of
the business.

With the open data strategy provided by Cognos 8 BI, user can deliver complex reports
against either relational or multidimensional sources. Reporting with dimensional data
includes automatic recognition of hierarchies and automatic drill for text reports and charts.

Cognos 8 BI delivers a zero-footprint browser based easy-to-use interface for all reporting
functionality and provides high usability, interaction, high scalability, and complex formatting.

Self-service reporting with Cognos 8 BI enables any user in the organization to create reports
quickly and distribute information faster by reusing report objects and queries created by
others.

Analysis
Analysis Studio is a Cognos 8 BI component that delivers the capability to analyze
information presented by business dimensions and measures independently from where the
operational data is stored. This capability uses online analytical processing (OLAP)
technologies or dimensionally modeled relational data.

Complex data analysis becomes easier through elaborate functions and features that allow
sophisticated filtering and exclusion of unimportant information through business-oriented
calculations. The asymmetrical analysis feature enables the integration of different rows and
columns of data for an easier recognition of business issues.

The analysis capability is characterized by its ease of use, thanks to drag-and-drop
techniques, and the possibility to drill down through increasing detail levels, rank, sort,
forecast, and nest information. These techniques can offer a better insight into trends,

306 Enterprise Data Warehousing with DB2 9 for z/OS

causes, and effects. The user-friendly interface, the use of graphics to analyze data
relationships, and the possibility to change displays easily make multidimensional analysis
simple for all users independently of their business or technical level.

Dashboards
Business dashboards are designed to give a broad overview of how well your business is
running and an easy-to-understand view of the numbers that matter most. Dashboards use
visuals that include graphs, charts, maps, and other at-a-glance displays to provide critical
information about processes, performance, and progress toward goals. In case of poor
performance, managers and executives can issue alerts and warnings and make decisions to
keep the business running smoothly. Figure 13-1 shows an example dashboard that has been
built with Cognos 8 BI portlets.

Figure 13-1 Example Cognos 8 BI dashboard portlets1

With Cognos dashboards, business users can drill into or through related reports and
analysis cubes to obtain additional information or a better understanding of trends and issues.
They can schedule and define criteria to receive critical information by creating personalized
alerts based on data conditions. Using global dashboard filters allows for smooth
orchestrated changes across multiple objects in a portal page.

Tactical dashboards deliver analysis and tracking of departmental activities, processes, and
projects. They run against data marts or data warehouses. Managers and analysts can get
visibility into monitored performance on a daily, weekly, or monthly basis. They can display
results either as a stand-alone report or in a corporate portal.

By using strategic dashboards and scorecards, executives and senior staff can measure their
progress against the associated target and strategic objectives at each level of an
organization. Executives can also drill into supporting details, such as reports or analysis, to
understand why a metric is performing a certain way. Scorecards perform an important role in
the performance management of an organization.

Operational dashboards have the unique need for real-time updates to be displayed.
Operational dashboards are provided by the Cognos Now! product line.

1 Dashboard image source: Cognos Web site: http://www.cognos.com

Chapter 13. Reporting and analysis with Cognos 8 BI 307

http://www.cognos.com

BI modeling tools
Framework Manager is a metadata modeling tool for building models that present data source
information in a business perspective. From these models, a number of packages that contain
business metadata can be published with appropriate security information. Published
packages can then be used by many different groups of users as the source within Cognos
web studios to perform their BI needs.

Transformer is the OLAP modeling component of Cognos 8 BI and is used to define and
model OLAP PowerCubes. With this tool, users can define their organization reporting
structures as dimensional hierarchies and levels. These reporting structures are then related
to defined organization facts or measures such as “dollars spent.” The resulting model is used
to create an OLAP PowerCube®, which when deployed to the Cognos server, can be used for
reporting and drill analysis within the Cognos web studios.

13.2 Installing Cognos 8 BI Server on Linux on System z

In this section, we explain how to install the Cognos 8 BI Server components on Linux on
System z.

13.2.1 Topology overview

Figure 13-2 illustrates the technical components for Cognos BI and the platform on which
they are installed.

Figure 13-2 Topology overview for Cognos installation

Note: At the time when we wrote the book, Cognos 8 BI Server had only been announced
to become available for Linux on System z, but was not actually available. We used a beta
version of the product code for our book. Be aware that windows shown in this section and
in the installation steps may change with the final version.

WindowsWindows

Framework
Manager

(Modeling)

Linux on System zLinux on System z z/OSz/OS

publish access DB2 for z/OS
Data

Warehouse

Web Server
Gateway

DB2 UDB LUW
Content

Store

Content
Manager

Application Tier
Components

Transformer
(Building Cubes)

Transformer
(Building Cubes)

308 Enterprise Data Warehousing with DB2 9 for z/OS

On Windows, we install Framework Manager, the Cognos BI modeling tool to define
packages that are then published to the Cognos server, running on Linux on System z. The
server components include a Web server gateway, which accepts HTTP requests from (Web)
clients, and an application tier layer that processes the requests. The content manager
accesses the content store database, which maintains metadata, such as the published
packages and stored reports.

The Cognos server components access data sources, particularly the data warehouse as in
our case, that are maintained by DB2 for z/OS. For this book, we install the Cognos BI Server
and the Cognos Transformer product components both on Linux on System z and Windows.
We verified building PowerCubes on both platforms.

The server components, for example, the Web server gateway, can be distributed among
multiple physical machines for load balancing and high availability. For our implementation,
we choose to run all the Cognos server components on a single installation of Linux on
System z. For this book, we installed Cognos BI Server 8.x along with the product versions
and components listed in Table 13-1.

Table 13-1 Product components

We do not describe installation of IBM HTTP Server, WebSphere Application Server, or DB2
for Linux, UNIX, and Windows in this book. In the following section, we assume that these
components are installed and configured properly.

13.2.2 System considerations and version checks

Before installing Cognos BI Server, apply the following system considerations and checks to
make sure that the environment is properly setup.

Component Product and version

Web Server Gateway IBM HTTP Server 6.1

Application Tier Tomcat 4.1.27 (default)
WebSphere Application Server 6.1.0.17 (optional)

Content Store DB2 for Linux, UNIX, and Windows Enterprise Server Edition,
V9.5, FP1

Notes:

� We install DB2 for Linux, UNIX, and Windows Enterprise Server Edition on Linux on
System z because we need the DB2 installation both for the local Content Store and for
connecting to our remote DB2 for z/OS data warehouse.

� We do not use an LDAP server for a user registry and do not implement user
authentication for Cognos BI Server.

Note: For current information about active and compatible Cognos 8 software
environments, refer to the Cognos 8 Installation and Configuration Guide and the software
environments topic at the following Web address:

http://support.cognos.com/en/support/products/environments.html

Chapter 13. Reporting and analysis with Cognos 8 BI 309

http://support.cognos.com/en/support/products/environments.html

Ports
Cognos BI Server requires, by default, access to three ports. You must ensure that these
ports are “open”. Firewalls and other security components may prevent desktop machines
from accessing certain ports on servers. Therefore, make sure that the following planned
ports can be used in your environment:

� The main port is the dispatcher port, which by default, is set to 9300.

� You also need a shutdown port (9399) and a logging port (9362).

� Additionally, for access to the Web server, you need port 80 (or whichever port the Web
server runs on) to be open as well.

To avoid conflicting port assignments, you can use the netstat command to list the ports that
are already in use. In Example 13-1, we use netstat -a and check if port 9080 is in use.

Example 13-1 Using netstat to list used ports

cognos@lnxdwh1:~> netstat -a | grep 9080
tcp 0 0 *:9080 *:* LISTEN

Free disk space
As a rule of thumb, plan for the following required free disk space. Depending on selected
components, disk space requirements may vary.

� 3 GB for Cognos BI Server
� 1 GB for DB2 for Linux, UNIX, and Windows
� 3 GB for WebSphere Application Server

Checking the DB2 for Linux, UNIX, and Windows version
To verify that you run the required DB2 version for Linux on System z, run the db2level
command in a shell with a logon user who has the DB2 environment setup. The result should
look as shown in Example 13-2. You should see that, at a minimum, version 9.5.0.1 is
installed.

Example 13-2 Using db2level to display DB2 for Linux, UNIX, and Windows version information

db2inst1@lnxdwh1:~> db2level
DB21085I Instance "db2inst1" uses "64" bits and DB2 code release "SQL09051"
with level identifier "03020107".
Informational tokens are "DB2 v9.5.0.1", "s080328", "MI00227", and Fix Pack
"1".
Product is installed at "/opt/IBM/db2/V9.5".

Checking the WebSphere Application Server version
To verify the version of WebSphere Application server, run the versionInfo.sh script in the
application server’s bin directory. In Example 13-3, we show the version report of a network
deployment (ND) installation. Alternatively, you can use a “base” installation.

Example 13-3 Using versionInfo.sh to check the WebSphere Application server version

cognos@lnxdwh1:/opt/IBM/WebSphere32/AppServer/bin> ./versionInfo.sh
WVER0010I: Copyright (c) IBM Corporation 2002, 2005; All rights reserved.
WVER0012I: VersionInfo reporter version 1.15.4.1, dated 11/23/07

--
IBM WebSphere Application Server Product Installation Status Report
--

310 Enterprise Data Warehousing with DB2 9 for z/OS

(... lines skippped ...)

Installed Product
--
Name IBM WebSphere Application Server - ND
Version 6.1.0.17
ID ND
Build Level cf170821.07
Build Date 5/28/08

--
End Installation Status Report
--

Checking the Java version
It is important to verify that you run a supported 31-bit Java virtual machine (JVM™). For
installation with WebSphere Application Server, you can check the JVM versions by using
java -version as shown in Example 13-4. If you use a stand-alone Java Runtime
Environment (JRE) installation, call java -version in the installation directory of the JRE
installation that you plan to use.

Example 13-4 Output of Java version check for the supported 31-bit version

cognos@lnxdwh1:/opt/IBM/WebSphere32/AppServer/java/bin> java -version
java version "1.5.0"
Java(TM) 2 Runtime Environment, Standard Edition (build pxz31dev-20080315 (SR7))
IBM J9 VM (build 2.3, J2RE 1.5.0 IBM J9 2.3 Linux s390-31 j9vmxz3123-20080315 (JIT enabled)
J9VM - 20080314_17962_bHdSMr
JIT - 20080130_0718ifx2_r8
GC - 200802_08)
JCL - 20080314

Example 13-5 shows the check output when the unsupported 64-bit version of the Java
Developer Kit (JDK™) is detected. In this case, install the 31-bit version of WebSphere
Application Server or the JRE.

Example 13-5 Output of Java version check for the unsupported 64-bit version

cognos@lnxdwh1:/opt/IBM/WebSphere64/AppServer/java/bin> java -version
java version "1.5.0"
Java(TM) 2 Runtime Environment, Standard Edition (build pxz64devifx-20071025 (SR6b))
IBM J9 VM (build 2.3, J2RE 1.5.0 IBM J9 2.3 Linux s390x-64 j9vmxz6423-20071007 (JIT
enabled)
J9VM - 20071004_14218_BHdSMr
JIT - 20070820_1846ifx1_r8
GC - 200708_10)
JCL – 20071025

13.2.3 Preparation for installation

Because of the several environment variables to be set properly for installing, configuring, and
running Cognos BI Server, we created a dedicated user ID that owns the physical files of the
Cognos BI Server installation and that is also used for Cognos administration tasks. We use
YaST (the Linux configuration tool) to define a new user named cognos and a group named
cognosgrp (Figure 13-3 on page 312).

Chapter 13. Reporting and analysis with Cognos 8 BI 311

Figure 13-3 Creating a dedicated user ID for Cognos installation and administration

After the user is created in the system, you edit .profile (or the corresponding name for the
shell you are using) and add the section shown in Example 13-6. Assuming that your DB2
installation created an instance and corresponding user db2inst1 for it, running the
db2profile script prepares the environment for the cognos user to access DB2 properly.

Example 13-6 Additional .profile settings for the Cognos user

The following lines give access to the IBM DB2 instance
if [-f /home/db2inst1/sqllib/db2profile]; then
 . /home/db2inst1/sqllib/db2profile
fi
export LD_LIBRARY_PATH=/home/db2inst1/sqllib/lib32:$LD_LIBRARY_PATH

Invoking db2profile in Example 13-6 also sets the CLASSPATH environment variable for the
cognos user to include the Java archive (JAR) files for the DB2 JDBC driver. If you do not
want to run db2profile, you must set CLASSPATH explicitly as shown in Example 13-7.

Example 13-7 Sample CLASSPATH setting for including DB2 JDBC driver JAR files

export CLASSPATH =
/home/db2inst1/sqllib/java/db2java.zip:/home/db2inst1/sqllib/java/db2jcc.jar:/home/db2inst1
/sqllib/function:/home/db2inst1/sqllib/java/db2jcc_license_cu.jar:$CLASSPATH

Note: The Cognos BI Server application code is compiled with 32-bit libraries and also
needs access to the DB2 for Linux, UNIX, and Windows 32-bit libraries. Therefore, the
LD_LIBRARY_PATH variable must include the DB2 32-bit libraries before the 64-bit
libraries.

312 Enterprise Data Warehousing with DB2 9 for z/OS

13.2.4 Installing Cognos BI Server components

To install Cognos BI Server on Linux on System z:

1. Log in as user cognos and run the issetup program in your installation image. A
GUI-based installation wizard opens and requires that you have an X Server running on
your machine.

2. In the welcome panel (Figure 13-4), select English and click Next.

Figure 13-4 Welcome panel of the installation wizard for Cognos BI Server

3. In the License Agreement panel (Figure 13-5), click I accept. Since we used the beta
version of the product, the example shows the corresponding license and conditions from
that version. Click Next.

Figure 13-5 License agreement for Cognos BI Server

Chapter 13. Reporting and analysis with Cognos 8 BI 313

4. In the Installation Location panel (Figure 13-6), specify the file system location where the
product files should be allocated. We select /opt/IBM/cognos/c8. The panel gives an
overview of the available and required disk space. Keep in mind that the installation
process also needs space in the temporary directory. Click Next.

Figure 13-6 Installation location for Cognos BI Server

5. If a window opens with a message indicating the directory /opt/IBM/cognos/c8 does not
exist yet, click Yes to confirm that the directory should be created. You see this window if
you did not install Cognos BI Server into the same location before.

6. In the Component Selection panel (Figure 13-7), specify the components that you want to
install. We install all the components on our single Linux on System z. See the topology
discussion in 13.2.1, “Topology overview” on page 308.

Because we plan to use DB2 for Linux, UNIX, and Windows for the content store, we clear
the option Cognos Content Database. (Selecting this option results in the creation of an
Apache Derby database for the content store.)

Click Next.

Figure 13-7 Component selection for Cognos BI Server

314 Enterprise Data Warehousing with DB2 9 for z/OS

7. In the Installation Summary panel (Figure 13-8) review the selections for the installation
and the location of the installation log file. Click Next to start the installation.

Figure 13-8 Summary before installation of Cognos BI Server

8. After the installation completed, in the Finish panel (Figure 13-9), notice that the message
about the successful transfer of the files. You also see the location of the installation log
files with more information. Clear the Start Cognos Configuration option and click
Finish. Although we click Finish, we must perform some additional steps before we can
run the configuration.

Figure 13-9 Completion notice after Cognos BI Server installation

Chapter 13. Reporting and analysis with Cognos 8 BI 315

We must revisit the environment settings for our cognos user ID again to extend the
LD_LIBRARY_PATH. Edit ~cognos/.profile and adapt the export statement as shown in
Example 13-8. We added both the cgi-bin and the bin directories, which are required to run
the HTTP server and the Cognos configuration.

Example 13-8 Adding Cognos directories to LD_LIBRARY_PATH

export LD_LIBRARY_PATH=
/home/db2inst1/sqllib/lib32:$LD_LIBRARY_PATH:/opt/IBM/cognos/c8/cgi-bin:/opt/IBM/cognos/c8/
bin

Because we use the Cognos transformer to build PowerCubes later in this chapter, we install
the required components from the respective installation image as well. The procedure is
similar to the previous steps for the Cognos BI Server components, except that the
component selection shows just the transformer component (Figure 13-10).

Figure 13-10 Installing Cognos 8 Transformer

13.2.5 Configuring the IBM HTTP Server

For a detailed description about how to configure the IBM HTTP Server, refer to the
“Configure the Gateway for Cognos Apache Web Server Module” section in the Cognos BI
Server Installation Guide.

In our environment, we install IBM HTTP Server 6.1 in /opt/IBM/HTTPServer. The HTTP
server configuration file is in /opt/IBM/HTTPServer/httpd.conf. Edit the configuration file and
make the changes as shown in Example 13-9.

Example 13-9 Modifications in httpd.conf

For Section 1 (global configuration)

1. Change the listner port from 80 (default) to 9380
(replace the port number 80 with 9380)
Listen 9380

2. Load the cognos module from the installation directory
(add this line to the end of the LoadModule configuration lines)
LoadModule cognos_module /opt/IBM/cognos/c8/cgi-bin/mod2_cognos.so

316 Enterprise Data Warehousing with DB2 9 for z/OS

For Section 2 (’main’ server configuration)

3. Change name of user and group for httpd
(replace nobody/nobody with cognos/cognosgrp)
User cognos
Group cognosgrp

4. Cognos alias definition
(add section after other alias and directory definitions)
ScriptAlias /cognos8/cgi-bin /opt/IBM/cognos/c8/cgi-bin
Alias /cognos8 /opt/IBM/cognos/c8/webcontent
<Directory "/opt/IBM/cognos/c8/webcontent">

Options Indexes MultiViews
</Directory>

5. Cognos location definition
(add after other location definitions in the file
and make sure that this definition comes after the alias
definition in 4.)
<Location /cognos8/cgi-bin/cognos_module>

SetHandler cognos-handler
</Location>
<Location /cognos8/cgi-bin/diag_cognos_module>

SetHandler cognos-handler
</Location>
<IfModule mod_cognos.c>

CGIBinDir "/opt/IBM/cognos/c8/cgi-bin"
</IfModule>

You are now ready to start the HTTP daemon by entering the following command:

/opt/IBM/HTTPServer/bin/apachectl -k start

This command starts the configured number of httpd daemons. You can use ps to check if all
of the daemons came up successfully. See Example 13-10.

Example 13-10 HTTP daemons for the Cognos BI Web server gateway

lnxdwh1:/opt/IBM/HTTPServer # ps -ef | grep httpd
root 7623 1 0 09:06 ? 00:00:00 bin/httpd -d /opt/IBM/HTTPServer
cognos 7624 7623 0 09:06 ? 00:00:00 bin/httpd -d /opt/IBM/HTTPServer
cognos 7625 7623 0 09:06 ? 00:00:00 bin/httpd -d /opt/IBM/HTTPServer
cognos 7628 7623 0 09:06 ? 00:00:00 bin/httpd -d /opt/IBM/HTTPServer

To stop the HTTP daemon(s) again, enter the following command:

/opt/IBM/HTTPServer/bin/apachectl -k stop

13.2.6 Configuring and starting the Cognos BI Server

Configuring the Cognos BI Server includes setting for the content store, running the
configuration tool, adapting the configuration settings, and starting the server.

Chapter 13. Reporting and analysis with Cognos 8 BI 317

Preparing DB2 for Linux, UNIX, and Windows for the content store

The Cognos installation documentation offers several ways to set up the content store
database. We choose to modify and run the script for DB2 for Linux, UNIX, and Windows,
which is provided in /opt/IBM/cognos/c8/C8SE/C8DB2.sh. Edit the user ID and password
settings in the file and run it from the shell. By default, a database named C8CM is created
with all the required settings (Example 13-11).

Refer to the Cognos 8 BI Installation and Configuration Guide, which you can find at the
following Web address, for the recommended process to create your content store:

http://support.cognos.com/index.html

Example 13-11 Running the C8DB2.sh script to create a content store database

cognos@lnxdwh1:/opt/IBM/cognos/c8/C8SE> ./C8DB2.sh
SQL1026N The database manager is already active.
DB20000I The CREATE DATABASE command completed successfully.
DB20000I The CHANGE DATABASE COMMENT command completed successfully.

 Database Connection Information

 Database server = DB2/LINUXZ64 9.5.1
 SQL authorization ID = COGNOS
 Local database alias = C8CM

DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.
DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.
DB20000I The SQL command completed successfully.
... (lines skipped) ...
DB20000I The SQL command completed successfully.

Configuration settings for JRE
To run the Cognos BI Server configuration tool (cogconfig), you need a suitable JRE. We
installed the IBM 32-bit 1.5 JRE in /opt/IBM/ibm-java2-s390-50. Refer to “Checking the Java
version” on page 311 for a description of and checks for supported JREs. Running an
unsupported 64-bit JRE with cogconfig can result in an error message such as the example
in Figure 13-11.

Figure 13-11 Error message with incompatible JRE

Note: In this section, we assume that DB2 for Linux, UNIX, and Windows is already
installed and configured properly.

318 Enterprise Data Warehousing with DB2 9 for z/OS

http://support.cognos.com/index.html

You probably have other Java environments on your system installed already. To use the right
JRE for Cognos configuration, modify ~cognos/.profile and add the section shown in
Example 13-12.

Example 13-12 Setting the JRE in .profile

export JAVA_HOME=/opt/IBM/ibm-java2-s390-50/jre
export PATH=/opt/IBM/ibm-java2-s390-50/jre/bin:$PATH

As described in the Cognos BI Server documentation, copy the bcprov-jdknn-nnn.jar file from
the c8_location/bin/jre/version/lib/ext directory to the Java_location/jre/lib/ext directory. In our
environment, we run the following command:

cp /opt/IBM/cognos/c8/bin/jre/1.5.0/lib/ext/bcprov-jdk14-134.jar
/opt/IBM/ibm-java2-s390-50/jre/lib/ext

Configuration settings for DB2 for Linux, UNIX, and Windows
Cognos BI Server needs access to the DB2 JDBC driver in two places: in the context of the
application tier components and when running the configuration tool (cogconfig). Our DB2
installation is in /opt/IBM/db2/V9.5, and we use the JDBC driver that ships as db2java.zip.

To make the JDBC driver available for the application tier component running Tomcat as the
servlet container, copy and rename the driver with the following command:

cp /opt/IBM/db2/V9.5/java/db2java.zip
/opt/IBM/cognos/c8/webapps/p2pd/WEB-INF/lib/db2java.jar

The Cognos configuration tool runs in its own shell and resets the LD_LIBRARY_PATH
environment variable. Therefore, the JDBC driver is not accessible by default. You can either
change the script that starts cogconfig or add the JDBC driver to the bin directory of the
Cognos installation. We to create a soft link in the bin directory as follows:

ln -s /opt/IBM/db2/V9.5/java/db2java.zip /opt/IBM/cognos/c8/bin/db2java.jar

Chapter 13. Reporting and analysis with Cognos 8 BI 319

Running the Cognos configuration tool (cogconfig)
Launch /opt/IBM/cognos/c8/bin/cogconfig.sh as user cognos from the Linux shell. This opens
a GUI-based configuration panel and requires again X Windows server running on your
machine. To complete the configuration:

1. In the Explorer pane of the Cognos Configuration window (Figure 13-12), select Local
Configuration → Data Access → Content Manager. Right-click the existing
configuration named Content Store and select Delete to remove the configuration for an
(non-existing) SQL Server® database.

Figure 13-12 Deleting an existing setting for the content store

2. Right-click Content Store again and select New resource → Database (Figure 13-13).

Figure 13-13 Creating a new database for the content store

3. In the window that opens, type C8CM as the new resource name and select DB2 Database
as the database type. Click OK.

320 Enterprise Data Warehousing with DB2 9 for z/OS

4. Add the database name (C8CM) and user ID (cognos) and password for access to the DB2
database. Then right-click the new entry for the content store and select Test
(Figure 13-14).

Figure 13-14 Configuring and testing the DB2 database for the Cognos content store

With the first connection to a new content store, Cognos creates the required tables and
also generates cryptographic information, stored in the content store.

5. In the message window (Figure 13-15), click Close to continue.

Figure 13-15 Operations on first touch for the Cognos content store

Chapter 13. Reporting and analysis with Cognos 8 BI 321

6. Select Local Configuration → Environment in the configuration explorer window
(Figure 13-16) to modify the URI settings for the Web gateway. Change the port number in
the definition for the Gateway URI and for the Controller URI for Gateway to 9380 (as
configured in 13.2.5, “Configuring the IBM HTTP Server” on page 316).

Figure 13-16 Setting port numbers for the Web server gateway

7. Start the Cognos BI Server. Click the green triangle in the configuration toolbar to start the
required services.

8. In the window (Figure 13-17) that opens, which inform you about the progress, confirm the
information to continue a successful startup of the server.

We did not use and configure a mail server connection. In this case, you might see a
warning message.

Figure 13-17 Starting the Cognos BI Server

The Cognos BI Server is now up and running. In this environment, you can direct your Web
browser to the following URL to access the initial page of the Web portal:

http://lnxdwh1.boeblingen.de.ibm.com:9380/cognos8/

322 Enterprise Data Warehousing with DB2 9 for z/OS

13.2.7 Defining DB2 for z/OS data sources

For access to our data warehouse data, the data sources to our DB2 for z/OS subsystems
DHWD911 and DWHD912 must be configured.

We catalogued the remote DB2 for z/OS databases with the DB2 commands shown in
Example 13-13. We use the HiperSocket connection to the z/OS system. If you already
catalogued the DB2 for z/OS databases in the context of the Information Server installation,
you do not have to perform this step again. In our environment, Cognos BI Server runs on a
different Linux on System z.

Example 13-13 Cataloguing remote DB2 for z/OS databases

catalog tcpip node dwhd911 remote 10.10.10.2 server 5911 ostype mvs;
catalog database dwhd911 as dwhd911 at node dwhd911 authentication dcs;
catalog dcs database dwhd911 as dwhd911 parms ',,INTERRUPT_ENABLED';

catalog tcpip node dwhd912 remote 10.10.10.2 server 5912 ostype mvs;
catalog database dwhd912 as dwhd912 at node dwhd912 authentication dcs;
catalog dcs database dwhd912 as dwhd912 parms ',,INTERRUPT_ENABLED';

Open the Cognos Administration panel in the Cognos Web portal and follow these steps:

1. Select Configuration → Data Source Connections and click the icon at the top of the list
to create a new data source definition (Figure 13-18).

Figure 13-18 Data source connections in Cognos Administration

Chapter 13. Reporting and analysis with Cognos 8 BI 323

2. In the Specify a name and description panel (Figure 13-19), name the new data source
DWHD912 and click Next.

Figure 13-19 Naming a new data source

3. In the Specify the connection panel (Figure 13-20), for the database type, select DB2. This
is the place where OLAP data sources, such as a Cognos PowerCube, can also be
selected. Click Next.

Figure 13-20 Specifying the type for the new data source

4. In the next panel (Figure 13-21 on page 325), for DB2 database name, type DWHD912,
which is the name of the previously catalogued database in the local DB2 installation. We
also provide a signon with user ID and password to connect to the DB2 database. These
credentials are then always used for access. You do not have to enter a user ID and
password for each request.

Click Test the connection to verify the parameters.

Attention: Depending on the following settings, by creating a signon user ID and
password, you may expose access to data in DB2 for z/OS in an uncontrolled way. For
our exercise, this approach might be appropriate, but in a production environment, you
may want to implement more restrictive access control.

324 Enterprise Data Warehousing with DB2 9 for z/OS

Figure 13-21 Database name and signon parameters for the data source

5. In the View the results panel (Figure 13-22), which indicates that the connection to DB2 for
z/OS can be established, click Close. Finish the definition of the new data source.

Figure 13-22 Testing the connection to the new data source

6. Repeat the definition for DWHD911 by repeating step 1 on page 323 through step 5.
Figure 13-23 shows the data source list.

Figure 13-23 Data source list with DWHD911 and DWHD912

Chapter 13. Reporting and analysis with Cognos 8 BI 325

13.2.8 Configuring Cognos with WebSphere Application Server

In the previous sections, we describe the installation and configuration of the Cognos BI
Server components using Tomcat as the servlet container for the application tier
(“dispatcher”). In this section, we show how we change the existing installation to use
WebSphere Application Server instead.

For this book, we use WebSphere Application Server 6.1.0.17 and assume that the
application server is installed and configured properly. Because we run multiple WebSphere
Application Server versions on our Linux on System z, the one we use for Cognos is located
in a non-default path /opt/IBM/WebSphere32. It runs under the cognos user ID that we defined
earlier in this chapter.

For a description of how to check versions of an installed WebSphere Application Server and
JREs, refer to “Checking the WebSphere Application Server version” on page 310.

Change settings for the JDK
In the installation with Tomcat as the dispatcher component, we use a stand-alone IBM 31-bit
JDK and set the environment for the cognos user accordingly. For the installation with
WebSphere Application Server, we now use the JDK that ships with the application server
and modify the settings in the cognos user .profile according to Example 13-14.

Example 13-14 Profile settings for user cognos

export JAVA_HOME=/opt/IBM/WebSphere32/AppServer/java
export PATH=/opt/IBM/WebSphere32/AppServer/java/jre/bin:$PATH

The Java version is reported as in shown Example 13-15. Again make sure that you are using
the 31- or 32-bit JDK and WebSphere Application Server version. The highlighted number 31
in Example 13-15 indicates the correct version. Also double check that you run at least SR7
of the JDK.

Example 13-15 Java version of the JDK that ships with WebSphere Application Server

cognos@lnxdwh1:~> java -version
java version "1.5.0"
Java(TM) 2 Runtime Environment, Standard Edition (build pxz31dev-20080315 (SR7))
IBM J9 VM (build 2.3, J2RE 1.5.0 IBM J9 2.3 Linux s390-31 j9vmxz3123-20080315 (JIT enabled)
J9VM - 20080314_17962_bHdSMr
JIT - 20080130_0718ifx2_r8
GC - 200802_08)
JCL - 20080314

As with the stand-alone JDK, the bcprov-jdk14-134.jar file must be copied to the JRE location:

cp /opt/IBM/cognos/c8/bin/jre/1.5.0/lib/ext/bcprov-jdk14-134.jar
/opt/IBM/WebSphere32/AppServer/java/jre//lib/ext

Note: According to the Cognos 8 Business Intelligence - Installation and Configuration
Guide, you must save encryption keys and data in the content store before you move to a
new JDK. However, the version that we used turned out to be the same one that we used
before with the Tomcat-based version. Therefore, our environment worked without
regenerating encryption keys. If you plan to use a (completely) different JDK, check the
documentation for the required additional steps.

326 Enterprise Data Warehousing with DB2 9 for z/OS

Creating and configuring a WebSphere Application Server profile
We recommend that you run the Cognos BI Server applications in a dedicated WebSphere
Application Server profile. Because we run our application server instance just for Cognos BI
Server, we use the default profile AppSrv01 that was created during installation of the
application server. However, if you decide to use a new profile, you can use a script that ships
with Cognos. Example 13-16 shows how it works. Or you can use the manageprofile tool
from WebSphere Application Server directly to create a new profile.

Example 13-16 Running the create_profile script to create a new WebSphere Application Server profile

lnxdwh1:/opt/IBM/cognos/c8/C8SE # ./create_profile.sh cognos8
Where is IBM WebSphere installed to?
Input a directory, or hit enter to accept /opt/IBM/WebSphere:
/opt/IBM/WebSphere32

Using /opt/IBM/WebSphere32 as IBM WebSphere location.

Generating new portdef.props file.

Input 'y' to review or edit the generated portdef.props file,
or anything else to proceed:

Executing the following command:
/opt/IBM/WebSphere32/AppServer/bin/manageprofiles.sh -create -profileName cognos8
-profilePath /opt/IBM/WebSphere32/AppServer/profiles/cognos8 -templatePath
/opt/IBM/WebSphere32/AppServer/profileTemplates/default/ -portsFile
/tmp/create_profile.sh.26580/portdef.props

manageprofiles.sh completed successfully.

To start the cognos8 server profile, run the following command:
/opt/IBM/WebSphere32/AppServer/profiles/cognos8/bin/startServer.sh server1

When the server has started, it can be tested via the URL:
http://lnxdwh1:7753/admin

If you create a new profile with the create_profile script, ports for access to the
administrative console and for enterprise application virtual host are randomly assigned and
stored in a properties files. You can use the link displayed at the end of the profile creation
script (http://lnxdwh1:7753/admin) to access the administrative console and determine
which port is assigned for enterprise applications. We need this information later to set the
dispatcher settings in the Cognos configuration panel. For our setup with the default profile,
we have (default) host port 9080 for applications.

Now, start the WebSphere Application Server as shown in Example 13-17. If you do not use
the default profile, go to the profile’s bin directory and start the server from there.

Example 13-17 Starting the server instance

cognos@lnxdwh1:/opt/IBM/WebSphere32/AppServer/bin> ./startServer.sh server1
ADMU0116I: Tool information is being logged in file
 /opt/IBM/WebSphere32/AppServer/profiles/AppSrv01/logs/server1/startServer.log
ADMU0128I: Starting tool with the AppSrv01 profile
ADMU3100I: Reading configuration for server: server1
ADMU3200I: Server launched. Waiting for initialization status.
ADMU3000I: Server server1 open for e-business; process id is 14024

Chapter 13. Reporting and analysis with Cognos 8 BI 327

If the user ID that is running the application server’s JVM does not have a setting for
LD_LIBARY_PATH pointing to the Cognos libraries, you must perform the following steps. In
any case, make sure that the user ID that is running the application server can access the
files in the Cognos installation directory.

1. Open the WebSphere Application Server administration console in a Web browser. In our
case, we type the following URL:

http://lnxdwh1:9060/ibm/console/

2. Select any name for the user ID. Because the application server profile is not configured
by using security, no user credential checks take place and the name is just used to
separate concurrent changes to the configuration repository.

3. Expand Servers → Application Servers. In the right panel, select server 1.

4. Select Java and Process Management.

5. In the next pane, select Process Definition.

6. In the next pane, click Environment Entries.

7. In the Application servers panel (Figure 13-24), click New.

Figure 13-24 Navigating to JVM settings for the application server

328 Enterprise Data Warehousing with DB2 9 for z/OS

8. In the next panel (Figure 13-25), add a new entry with the name LD_LIBRARY_PATH and the
value of /opt/IBM/cognos/c8/bin. Click OK.

Figure 13-25 Adding LD_LIBRARY_PATH environment settings

9. Click Save directly to the master configuration.

You might want to revisit other JVM settings at this point as well. Particularly the maximum
JVM heap size in the Java Virtual Machine panel, under Process Definition, can be adapted,
depending on the expected workload.

Building the application files
The code for the Cognos dispatcher is installed as an enterprise application in WebSphere
Application Server. Perform the following steps to create the corresponding EAR (enterprise
application archive) file.

1. Start the Cognos configuration with c8location/bin/cogconfig.sh.

2. Select Actions → Build Application Files from the menu (Figure 13-26).

Figure 13-26 Starting to build application files for deployment in cogconfig

Chapter 13. Reporting and analysis with Cognos 8 BI 329

3. In the Select the application to build panel (Figure 13-27), select Cognos 8 and Include
static files from the Web content folder in the EAR file as well. Because we continue
using the IBM HTTP Server for the gateway, we do not need the servlet gateway and
therefore do not select the check boxes. For Application Server Type, select Other. Click
Next.

Figure 13-27 Selecting the applications to build

4. In the Specify Cognos 8 application files panel (Figure 13-28), leave the default name for
the resulting EAR file as p2pd.ear and click Next.

Figure 13-28 Settings for the p2pd EAR file

330 Enterprise Data Warehousing with DB2 9 for z/OS

5. When you see the panel that shows the successful creation of the EAR file (Figure 13-29),
write down the location of the file. In this case, the location is
/opt/IBM/cognos/c8/p2pd.ear. Then click Finish.

Figure 13-29 Report about successful creation of the p2pd EAR file

Changing dispatcher URI settings
In the Cognos configuration tool, make sure that an existing service is stopped (if you ran with
Tomcat before) and modify the dispatcher URIs to point to the WebSphere Application Server
ports. In our example, we change the port number to 9080 (Figure 13-30), leave the rest
unchanged, and save the changes.

Figure 13-30 Changing the dispatcher port number

Chapter 13. Reporting and analysis with Cognos 8 BI 331

Installing the application files
To install the application files:

1. Open the WebSphere Application Server administration console in a Web browser. We
type the following URL in our example:

http://lnxdwh1:9060/admin

2. Navigate to Applications → Install New Applications.

3. In the Preparing for the application installation pane (Figure 13-31), select Remote File
system and type /opt/IBM/cognos/c8/p2pd.ear for Full path. Click Next.

Figure 13-31 Specifying the remote file system

332 Enterprise Data Warehousing with DB2 9 for z/OS

4. In the Select installation options pane (Figure 13-32), accept all default install options.
Note that the application is named Cognos 8. Click Next.

Figure 13-32 Installation options for the Cognos 8 application

5. In the Map modules to servers pane, accept the default to deploy the application on the
single server. Click Next.

6. In the Map virtual hosts for Web modules pane, accept the defaults and click Next.

7. Review the summary pane and click Finish to start installation of the EAR file.
Example 13-18 shows the resulting output for our example.

Example 13-18 Installation report of p2pd.ear

ADMA5016I: Installation of Cognos 8 started.

ADMA5067I: Resource validation for application Cognos 8 completed successfully.

ADMA5058I: Application and module versions are validated with versions of deployment
targets.

ADMA5005I: The application Cognos 8 is configured in the WebSphere Application Server
repository.

ADMA5053I: The library references for the installed optional package are created.

Chapter 13. Reporting and analysis with Cognos 8 BI 333

ADMA5005I: The application Cognos 8 is configured in the WebSphere Application Server
repository.

ADMA5001I: The application binaries are saved in
/opt/IBM/WebSphere/AppServer/profiles/cognos8/wstemp/0/workspace/cells/lnxdwh1Node03Cell
/applications/Cognos 8.ear/Cognos 8.ear

ADMA5005I: The application Cognos 8 is configured in the WebSphere Application Server
repository.

SECJ0400I: Successfuly updated the application Cognos 8 with the appContextIDForSecurity
information.

ADMA5011I: The cleanup of the temp directory for application Cognos 8 is complete.

ADMA5013I: Application Cognos 8 installed successfully.
Application Cognos 8 installed successfully.

8. Select Save directly to the master configuration.

This completes the installation of the Cognos 8 application in WebSphere Application Server.
The application is still in the state of stopped, but to make the earlier JVM settings effective,
we must restart the application server anyway. After the restart, the Cognos 8 application is
started automatically.

Restart the application server with the following two commands. Again, use the scripts in the
profile’s directory if you do not use the default profile.

/opt/IBM/WebSphere32/AppServer/bin/stopServer.sh server1
/opt/IBM/WebSphere32/AppServer/bin/startServer.sh server1

After the restart is completed, check the SystemOut.log file in the server’s log directory and
search for an entry like the one in Example 13-19. Note that it might take a few minutes after
the server starts until the dispatcher reports that it is ready for requests.

Example 13-19 Output in SystemOut.log indicating that dispatcher is ready to process requests

[6/3/08 15:13:49:034 CEST] 0000000a WsServerImpl A WSVR0001I: Server server1 open for
e-business
^B[6/3/08 15:15:05:802 CEST] 00000034 SystemOut O JMXConnectorServer started at:
service:jmx:hessian://lnxdwh1:9080/p2pd/hessian
[6/3/08 15:15:06:150 CEST] 00000034 SystemOut O The dispatcher is ready to process
requests.

If you encounter error messages such as the ones in Example 13-20, there is either a
problem with the JDK (64-bit versus 31-bit) or the library path to the Cognos binaries is not
properly set up.

Example 13-20 SystemOut.log messages during servlet startup

[6/2/08 15:13:28:274 CEST] 00000025 WebApp E [Servlet Error]-[dispatcher]:
java.lang.NoClassDefFoundError: com.cognos.accman.jcam.crypto.jni.JNISystemProperties
(initialization failure)
 at java.lang.J9VMInternals.initialize(J9VMInternals.java:132)
 at
com.cognos.accman.jcam.crypto.SystemProtectionSession.<init>(SystemProtectionSession.java:3
9)
 at com.cognos.accman.jcam.crypto.misc.Configuration.<init>(Configuration.java:49)

334 Enterprise Data Warehousing with DB2 9 for z/OS

 at
com.cognos.accman.jcam.crypto.misc.Configuration.getInstanceWithDefaultConfig(Configuration
.java:96)
 at com.cognos.accman.jcam.crypto.CAMFactory.initialize(CAMFactory.java:131)
 at com.cognos.caf.CAFFactoryImpl.configure(CAFFactoryImpl.java:89)
...

Testing the new setup
After directing your Web browser to the gateway address, which is the following address in
our example, you can access the Cognos BI Server functions as usual:

http://lnxdwh1.boeblingen.de.ibm.com:9380/cognos8

You can also try to access the dispatcher directly by typing the following URL:

http://lnxdwh1.boeblingen.de.ibm.com:9080/p2pd/servlet/dispatch/ext

Or you can type the following URL to validate access to the content manager:

http://lnxdwh1.boeblingen.de.ibm.com:9080/p2pd/servlet/

13.3 Building Cognos data models and packages

In this section, we give an overview the Cognos 8 client modeling tools used to implement our
scenario. We also discuss the development and deployment of the packages that we used to
create queries and reports from the portal Cognos Connection.

The following client modeling tools are installed in our scenario:

� Cognos 8 Framework Manager for building packages that contain business reporting
views of the operational data store (ODS) and dimensional data store (DDS)

� Cognos 8 BI Transformer for building the model that will be used to generate an OLAP
PowerCube

This cube is used to demonstrate multidimensional online analytical processing (MOLAP)
analysis

Transformer was installed both on a Windows client machine for developing the model and on
the server for the processing the model and deployment of the cube. You can find complete
installation instructions for these components in the Cognos 8 BI Installation and
Configuration Guide.

For guidelines and best practices on modeling metadata in Framework Manager, refer to the
Cognos 8 BI Guidelines for Modeling Metadata manual and the Cognos 8 BI Framework
Manager User Guide. For guidelines about modeling metadata in Transformer, refer to the
Transformer User Guide.

Chapter 13. Reporting and analysis with Cognos 8 BI 335

After you install the client modeling tools, you have to update the connection details of the
Cognos configuration on the client machine, as shown in Figure 13-33, to ensure a
successful connection with the Cognos server.

Figure 13-33 Cognos configuration

336 Enterprise Data Warehousing with DB2 9 for z/OS

You might also have to check the cryptography security settings in the left pane (Security →
Cryptography) and then click the Test button to generate cryptographic information
(Figure 13-34). Otherwise you might see an error message that indicates that the credentials
(user ID and password) cannot be decrypted when you later try to build a data source.

Figure 13-34 Cognos configuration test

13.3.1 Framework Manager packages

In this section, we provide an overview of the development and deployment of the Framework
Manager packages that we used to implement our scenario in Cognos 8 Business
Intelligence. For detailed information and guidance on modeling within Framework Manager,
refer to the Cognos publication Framework Manager Guidelines for Modeling Metadata.

Framework Manager is a metadata modeling tool. A model is a business presentation of the
information from one or more data sources that is published and made available for multiple
groups of users to serve their query and reporting requirements.

Chapter 13. Reporting and analysis with Cognos 8 BI 337

Table 13-2 shows the models that we developed along with the resulting packages that are
published to Cognos Connection. We include the Cognos 8 Transformer model that we build
later in 13.3.3, “Creating and publishing OLAP PowerCubes” on page 363, in this table to
show a complete list.

Table 13-2 Models and packages

In the following sections, we explain the key steps and concepts that we followed in
implementing the models and publishing the packages. We do not show the step-by-step
process but only highlight key areas of the modeling that were undertaken.

Model Description Published package

dwhz_RedParts_ODS Framework Manager model containing
information from the RedParts organization
ODS. The model includes relational business
views, filters, and calculated columns for
performing reporting and querying within
Cognos 8 BI.

RedParts
Distribution ODS
(Query)

dwhz_RedParts_DDS Framework Manager model containing
information from the RedParts organization
DDS. The model includes relational business
views, filters, and calculated columns for
performing reporting and querying within
Cognos 8 BI.

Note: Typically this model might also include
dimensional data views for performing
relational aware analysis against the source
data. These views can then be published as
another package for analysis tasks.

RedParts
Distribution DDS
(Query)

RedParts Order Analysis.pyj Transformer model showing the relationship
between defined dimensions and measures
for the analysis of order transaction
information.

RedPart Order
(Analysis)

Note: The model design strategy that we used was to create separate projects and
packages for the ODS and the DDS environment. We did this because it typically aids in
maintenance, providing flexibility, and there is no overlap in the metadata we wanted to
make available to users in different reporting, querying, or analysis scenarios. If your
reporting requirements show that you might want to combine your ODS and dimensional
data, consider defining one Framework Manager project for both. You might also need to
consider the size of the model and the number of query subjects in regard to the
manageability of the project.

338 Enterprise Data Warehousing with DB2 9 for z/OS

Creating the model project files and importing metadata
To create the model project files and import the metadata:

1. Start Cognos 8 Framework Manager and click Create a new project (Figure 13-35).

Figure 13-35 Creating a new Framework Manager project

2. Specify a name for the project and update the location to store the project files if required.
A project contains a project file (.cpf) and other related files in the one location. Click the
OK button. The wizard displays a message indicating that it is creating the project and
initializing the components.

3. Choose the language for the project, which in our case is English. Click OK.

Chapter 13. Reporting and analysis with Cognos 8 BI 339

Figure 13-36 Manually running the Run Metadata Wizard

4. Select the metadata source as Data Sources and click Next.

5. In the Select Data Source window (Figure 13-37 on page 341), which shows the list of
data sources that were previously defined in Cognos 8, click the scenario data source,
which is DWHD912 in our scenario. The process that we used to define our data source is
explained in 13.2.7, “Defining DB2 for z/OS data sources” on page 323.

Tip: At this point, you can continue within the wizard to define the data source and
import metadata for the project or you can click Cancel to create an empty project and
manually perform the import. Figure 13-36 shows where you can right-click and select
Run Metadata Wizard to run the metadata import manually.

340 Enterprise Data Warehousing with DB2 9 for z/OS

Figure 13-37 Cognos 8 defined data source list

Click Next.

Third-party metadata sources: There are several alternatives to select from when
choosing a metadata source. Particular selections can help in ensuring that you define
metadata in a single environment and quickly bring additional metadata into your
cognos environment.

The following examples are of metadata sources:

� IBM WebSphere DataStage, with which you can import the existing metadata that
has been defined in XML or DSX files. XML files are recommended

� CA AllFusion Erwin for importing XML data model information such as physical and
logical models and definition comments defined in Erwin

Note: The list of data sources that is displayed in Figure 13-37 on page 341 is retrieved
from the server definition where the Cognos BI Server component is installed and
running. Framework Manager is a traditional client-server application. While it retrieves
database connection information, such as authentication data, from the content
manager, which might be on another machine, Framework Manager performs its own
data access locally. Therefore, you must install the client and configuration tools for the
data source on the machine where Framework Manager resides. For our scenario, you
must have a suitable DB2 client installed and configured on your Windows machine,
and you must catalog the DB2 for z/OS databases with the same name (DWHD911 and
DWH912 in our case). This ensures that you do not get an error message indicating
that configured credentials (user ID and password) cannot be used to connect to the
data source.

Chapter 13. Reporting and analysis with Cognos 8 BI 341

6. In the Select objects window (Figure 13-38), select the scenario database to import all
metadata. We use the default option Import and create a unique name to create a
unique name for objects when importing query subjects (tables) if the name is not already
unique. Click Next.

Figure 13-38 Metadata wizard - Selecting objects

7. In the Generate Relationships window, for our scenario, keep the default options and click
Import for the following actions to occur:

a. Generate relationships and use primary and foreign keys to determine the relationship
b. Enable fact data detection for measures such as counts and currency

8. In the Metadata Wizard Finish window, click the Finish button to view the model.

The relational query subjects are now imported into the project under a namespace that has
been given a default name. For our scenario, we renamed this namespace to reflect that it
was based on the ODS or DDS physical models. By using namespaces, you can have more
than one occurrence of an object with the same name to be in a model.

Verifying metadata after import: It is important to verify the import results from a
requirements perspective after importing metadata. The items to verify include attribute
usage properties, aggregation types (both used to determine aggregation rules),
relationships, and determinants (similar to key fields).

In the Framework Manager project in Figure 13-39 on page 344, we highlight that the
query item (field) L_PARTKEY has been identified as usage type fact. This is noted by the
icon in front of the attribute name and by viewing the Usage property in the properties
pane. Framework Manager has determined this as a fact because the data type for the
attribute is integer. In this case, we want this attribute to act as an identifier or key for
records within the query subject. Figure 13-39 shows an example of changing the Usage
property from fact to identifier.

342 Enterprise Data Warehousing with DB2 9 for z/OS

Data source query processing
Set the default data source query processing mode for the Framework Manager projects to
Limited Local. Do this for both the ODS and DDS projects created in our scenario. With this
setting, the database server can do as much processing as possible, while allowing local
processing for some reports where required. If you do not set this mode, an exception error
message is generated when an entire operation cannot be sent to the database engine.
Follow these steps:

1. In Framework Manager, expand the Data Sources folder and click a data source from the
list, for example, DWH912.

2. In the Properties window, locate the Query Processing property. Ensure the Limited
Local is set as the property value by using the drop-down list.

Project structure
Within our projects, we created further child namespaces to organize the project, provide
context for the relationships between query subjects, and ensure that object names are
unique. Our model structure is setup with namespaces to represent the physical Database
view and the logical Business view. Depending upon requirements, in some cases, you can
include a Dimension view to represent hierarchies and levels in your data and a Presentation
view, which contains shortcuts to model objects, to provide a semantic layer to minimize the
flow on effect of changes in your model. For more information about namespaces and project
structure techniques, refer to the Cognos recommended practices in the Cognos 8
Framework Manager - User Guide and in the best practice guides.

Chapter 13. Reporting and analysis with Cognos 8 BI 343

Figure 13-39 shows the relational query subjects held within the Database view namespace
after import. In the Project Viewer pane on the left side of the window, toward the end of the
list, you also see the Business view namespace, which is where business views of the
physical definitions are held.

Figure 13-39 Database View - Imported metadata

344 Enterprise Data Warehousing with DB2 9 for z/OS

Figure 13-40 demonstrates the definition of the business-oriented model query subject Order
Details - Returned Products, stored within the Business view namespace. This model query
subject is defined in order that, when selected by a user, the result set only contains the
combined order and line-item information where the part has been returned. The original
order and line-item query subjects are held in the Database view namespace.

As much as possible, it is best to leave these original objects untouched and have any
extensions or modifications to them be made in the business view or logical namespace. This
provides the opportunity to reduce or sometimes eliminate additional API calls to the source
database for metadata at run time. By using this approach, model query subjects within the
business view have their attributes renamed to be more meaningful to users when used in
one of the Cognos studios. This model query subject also has a filter defined on the Filters
page. This filter is used to restrict the data results to parts that have been returned by
customers.

Figure 13-40 Example query object within the Business view namespace

Note: With Cognos 8, you can define model objects, such as the query subject, or use
shortcuts. By using model objects, you can define the object as you choose to by including
or excluding items. Shortcuts that point to a target object are less flexible, but are
automatically updated when the target object changes. If there is no need to change an
object and maintenance is a concern, shortcuts are useful. Shortcuts are also useful for
designing a Presentation view in your model that points back to your Business view. This is
helpful when changes occur in your model and you want to minimize the impact. Cognos 8
provides regular reference shortcuts and alias shortcuts.

Refer to the Cognos 8 BI product documentation for more information about shortcuts and
their use.

Chapter 13. Reporting and analysis with Cognos 8 BI 345

Figure 13-41 demonstrates the ability to define dimensionally modeled relational (DMR)
metadata into hierarchies and levels to represent dimensional data, by using the relational
query subjects as a source. Dimensions can be published within a separate analysis package
to perform relational aware analysis within Cognos 8 BI Analysis Studio and can also be used
for drill-down functionality in reports. Such a package can also be used as a source to define
an OLAP PowerCube within Cognos 8 Transformer.

Figure 13-41 Example of a Dimensional view

Data analysis using PowerCubes: To conduct analysis of data, depending on your
requirements, you can use either OLAP PowerCubes. If pre-cubing is not a requirement,
you might model your relational data by using dimensional concepts. PowerCubes can
often out perform relational equivalents and can be constructed from sources that might be
required but that do not reside in your warehouse environment. PowerCubes can be
combined with relational data to allow drill-though capability from analysis to detail. In
addition, PowerCubes can be used for tabular and multidimensional queries.

346 Enterprise Data Warehousing with DB2 9 for z/OS

Creating or validating relationships
Within our scenario models, we validate existing relationships that were created during the
metadata import wizard and create new ones. Figure 13-42 shows an example of a
relationship being defined between the Customer and Order tables.

You can access the relationship definition window by using the following methods. Other
shortcuts are not documented here.

� Click the query subject and select Action → Create → Relationship.

� Right-click a query subject and select Create → Relationship.

� In the Explorer tab, navigate to create or edit an existing relationship object. The Explorer
is in the top right pane of Framework Manager. By using the Explorer, you can drill up and
down within folders and namespaces. Relationships are identified by their icon showing a
join between two query subjects.

Figure 13-42 Defining relationships between query subjects

Creating or validating determinants
Determinants describe functional dependencies between query items and reflect granularity
by representing subsets or groups of data such as are required for a denormalized dimension
table. For example, country code and region code can be used to identify the attribute region
name in a dimension. Identifying this dependency by using determinants can be useful in
some cases to ensure accurate results when querying data. Determinants are also used to
ensure correct aggregation of repeated data within these subsets.

Determinants are most closely related to the notion of a key in a third normal form (3NF)
database design. The collection of columns uniquely identifies one or more functionally

Chapter 13. Reporting and analysis with Cognos 8 BI 347

dependent columns. A best guess of required determinants can be auto populated by using
RDBMS keys, constraints, and indexes that are read during the metadata import process.

You might want to create or modify determinants based on the business reporting
requirements that you are implementing in your model. By doing this, you will override, within
your model, the index and key information in your data source. The usage of index metadata
from the source is only an indication to probable dependencies in your BI layer. When
imported, modelers should review whether they need determinants, and if so, determine if
they have to be modified accordingly.

Within our scenario models, we validate and modify determinants to ensure the correct
aggregation within repeated data groups. Figure 13-43 shows the Branch key of the Branch
lookup table that is being uniquely defined as a determinant along with its remaining
attributes.

Figure 13-43 Single determinant definition

348 Enterprise Data Warehousing with DB2 9 for z/OS

Figure 13-44 shows multiple determinants that are being created on the Branch dimension
query subject within the scenario DDS database. Here we highlight that the extra non-unique
determinants are created by selection of the Group By check box. This option is used to
group and aggregate the data correctly. It is also used to apply aggregate functions and
grouping to avoid double counting when a user reports at the Nation, Region, and Type level.

Figure 13-44 Multiple determinant definitions

Creating filters and calculated columns
With Framework Manager, you can create filters and calculated columns within your models
to support business rule implementation at the BI semantic layer. Investing in these objects
has the advantage of providing consistency by defining the same definitions when used by
multiple end-user query and report objects. Filters and calculated columns can also aid users
in Web studios such as query studio and report studio. Users can drag several objects from
the insertable objects pane and reduce the number of executions of requests on the
database. Additionally, the filter and calculated column objects can contain logic that might be
unable to be expressed in the given Web studio.

Filters and calculated columns can be defined as either stand-alone or embedded.
Stand-alone has the benefit of being defined once and used across multiple model objects or
published to be selected for use by users in a package. Embedded filters or calculated
columns can be defined when the filter or calculation is only used by one model object, such
as being included in the definition of a business view query item.

Stand-alone calculations in Analysis Studio: You cannot reference stand-alone
calculations in Analysis Studio. You must use an embedded calculation or create the
calculation within your analysis.

Chapter 13. Reporting and analysis with Cognos 8 BI 349

Depending upon whether you use stand-alone or embedded filters and calculations in your
model, you may want to consider the timing of when the filter or calculation may be applied
and the difference in possible generated SQL. For example, consider the situation where a
user is querying a customer query subject that has no embedded filters and then drags a
stand-alone filter on to their report. In this case, the generated SQL applies the filter
differently than if the query subject had the filter embedded. You can find more discussion
about this topic in Cognos 8 Framework Manager - Guidelines for Modeling Metadata.

A number of filters are created in our models that can be used later in implementing the
scenario business requirements. Figure 13-45 shows the creation of a filter that, when
selected within Cognos 8, restricts the result set to those records where the return flag is set
to a value of 1. In our scenario, a value of 1 signifies that the parts were returned with a return
reason of Unsatisfactory.

Figure 13-45 Defining a business filter

350 Enterprise Data Warehousing with DB2 9 for z/OS

Calculated columns are also created to fulfill scenario requirements and to demonstrate this
functionality. Figure 13-46 shows the calculation for Discount Sale Amount being created.

Figure 13-46 Defining a calculated column

Publishing packages to the Cognos content store
Packages are a subset of your Framework Manager project and contain the metadata that
you make available to users. The best practice is to define multiple packages for different
usage types such as queries and analysis. Table 13-2 on page 338 documents the packages
that we created as part of the RedParts scenario.

Chapter 13. Reporting and analysis with Cognos 8 BI 351

Figure 13-47 highlights the definition of the query-oriented package called RedParts
Distribution ODS (Query). This figure shows that the Database view namespace is not
published but rather referenced as part of the final package definition. This is shown by the
smaller green checkmark icon.

Figure 13-47 Defining packages to publish

13.3.2 Defining Transformer models for PowerCubes

For our scenario, we require an OLAP cube to perform product return rate analysis. The
return rate is a calculated percentage that does not exist in the source data. The analysis
shows, for a given financial quarter, the highest return rates by product, manufacturer, and
customer nation.

In this section, we demonstrate the development of the Transformer model for building the
OLAP cube. The information shows the steps to create the model data source and the
selected techniques that we used to design and implement the model. Step-by-step
instructions for building the model are not provided.

In 13.3.3, “Creating and publishing OLAP PowerCubes” on page 363, we explain the process
that is used to deploy the OLAP PowerCube to Cognos 8. For our scenario, the model is
designed in Transformer on the Windows platform. The model file is then transferred to the
server where a script is used to direct the server Transformer installation to build the cube.

352 Enterprise Data Warehousing with DB2 9 for z/OS

After the cube is built, we create the package for the PowerCube from Cognos Connection.
See “Creating a data source for the PowerCube” on page 365. Alternatively we might have
used Transformer’s new functionality to publish the cube directly to Cognos Connection.

Defining the model data source
The data source for our model is the RedParts Distribution DDS (Query) package, which was
published from Framework Manager. This package contains relational query subjects that we
use to build a dimensional model.

To set up the name of our model and set the published source package as the data source,
we used the New Model wizard in Transformer:

1. Launch the New Model wizard. Either select File → New from the menu bar or right-click
in the Data Source pane and select Insert Data Source.

2. In the initial New Model wizard panel, click Next.

3. Enter the model name as RedParts Order Analysis.pyj and click Next.

4. In the New Model panel (Figure 13-48), for Data source name, type RedParts
Distribution DDS (Query) or leave the default variable. For Data source type, select
Cognos Package. Click Next.

Figure 13-48 Defining Transformer model data source

Combining PowerCube and relational data as a single published source: If you want
to combine a PowerCube and relational data together as a single published source for
users, then you must use Framework Manager to publish the cube. Otherwise you can
create the package for the PowerCube from Cognos Connection instead of using
Framework Manager or publish the cube directly from Transformer.

Building dimensions and measures in Transformer: An alternative to building the
dimensions and measures in Transformer is for us to define dimensions by using relational
query subjects within the Framework Manager model and publish another Analysis
package that includes these dimensions. Figure 13-41 on page 346 shows an example of
this. Transformer can then use these dimensions to define the cube model file.

Chapter 13. Reporting and analysis with Cognos 8 BI 353

5. In the Package Data Source panel, click Browse. Navigate to and select the RedParts
Distribution DDS (Query) package. Click OK to return to the data source panel and click
Next.

6. Define the attributes that you want to include as shown in Figure 13-49. To build the time
dimension in Transformer, we use Transformer’s relative time functionality with the Order
Date field. We do this instead of using the rest of the date part fields that are defined in the
source Order Date dimension table. Therefore, in Figure 13-49, we highlight that we do not
include all fields from the Time Dimension that were defined in our source Framework
Manager package. Click OK to continue.

Figure 13-49 Query definition in Transformer

7. In the Finish panel, for our scenario, deselect the Run AutoDesign feature to build the
model from scratch. Click Finish. A blank model is displayed with the query items that you
selected from the source package shown in the Data Sources pane.

Transformer warning message: You receive the following Transformer warning
message:

“The rollup type ‘automatic’ for ‘Total Charge Amt’ is not supported. The
default will be used.”

The query item Total Charge Amt is defined in Framework Manager as a calculation
with the Regular Aggregate property set to Automatic. Transformer does not support a
regular rollup of Automatic. Therefore, a warning message is displayed to indicate that
the default regular rollup will be used. In our case, the default Transformer regular rollup
is set to Sum, which is correct for this field. That is, the Total Charge Amt for a given
member in a level is the sum of the underlying amounts. Click OK in the warning
message window to continue.

354 Enterprise Data Warehousing with DB2 9 for z/OS

8. Double-click each source attribute to see the Data class definition property shown in
Figure 13-50. If you are building the model without the AutoDesign feature, the data class
can remain as unspecified because the source package contains the data type for each
source field. If you are using the AutoDesign feature, you might want to verify that the data
class is appropriate for how you want the design feature to use the field. Transformer
attempts to set the correct data class by using information that is held in query item
properties within the Framework Manager package.

Figure 13-50 Data class definition for source fields

For our scenario, we build a Cognos relative time dimension by using the Order Date attribute.
We confirm that the data class for the order date is set to Date. We also click the Time tab in
the Column - Returned Units window (Figure 13-50), and for the degree of detail for the time
field, we select Day. This ensures that Transformer automatically builds levels within the
dimension to the day level. The date input format can be left as unspecified or set to match
the input of YMD.

In the following sections, we show specific areas of interest that are required to build and
complete our Transformer model.

Chapter 13. Reporting and analysis with Cognos 8 BI 355

Insert dimensions
All dimensions in our model are created by right-clicking in the Dimension map and selecting
Insert Dimension. Our time dimension is also created manually by using the Insert Dimension
option and the Transformer’s relative time functionality. An alternative is to use the Date
Wizard or to drag the Order Date field to the top of the Dimension map to have Cognos create
it automatically. Figure 13-51 highlights the Date Wizard and Insert Dimension options.
Figure 13-58 on page 363 shows the Transformer model with all dimensions completed.

Figure 13-51 Insert dimensions

356 Enterprise Data Warehousing with DB2 9 for z/OS

Setting the dimension types
All non-time dimensions are set as Regular type dimensions. Figure 13-52 shows the
dimension type for the time dimension All Order Dates that is set to a dimension type of Time.
The time dimension also requires additional information to be set that is available under the
Calculation and Time tabs. If you are creating this dimension manually and not dropping the
Order Date field into the Dimension map, you must use the Calculation tab to set the source
field to Order Date.

Figure 13-52 Defining the general properties for the time dimension

Chapter 13. Reporting and analysis with Cognos 8 BI 357

Time dimension settings
Figure 13-53 shows the additional information that is set on the Time page. In our scenario,
we want Transformer to set the current time period automatically. This will be used for current
time and YTD related members in the cube and will be available as a selection in the time
dimension by using Analysis Studio. The current time is set to the latest order date read by
the data source definition at the time the cube is processed.

Figure 13-53 Defining the time properties for the time dimension

358 Enterprise Data Warehousing with DB2 9 for z/OS

Dimension levels and role associations
Levels within dimensions are created by dragging the source field under the relevant
dimension headers that were previously created. Figure 13-56 on page 361 shows an
example of two dimensions with their levels created.

Double-click a level within the Dimension map to view the source associations for that level,
as shown in Figure 13-54. In the following example, the Branch level is created by using the
Branch Key field. We also want to add a label for the branch by using the Branch Name field.
Click the Order By tab and click the Add button to add the branch name as the description or
label.

Figure 13-54 Adding the Branch Name for further role associations

Chapter 13. Reporting and analysis with Cognos 8 BI 359

Figure 13-55 shows the result of adding the field Branch Name as the label for this level.
Highlighted also is that the refresh Label option is selected. Each time the PowerCube is
processed, a check is performed to ensure that the latest labels are being used.

Figure 13-55 Completed role associations

360 Enterprise Data Warehousing with DB2 9 for z/OS

Alternate drill-down paths
Alternate drill-down paths in a dimension provide a different perspective of the data that it
contains. Each alternate path connects to the primary path at a convergence level.

Figure 13-56 shows an example of one of the alternate drill-down paths that we create for our
scenario. This figure highlights that the Branch Type field is dragged to the All Branches
dimension. Drag the field to the right of the existing Region and Nation levels for Transformer
to give you an indication of where the alternate path and convergence level will be created.

After you drop the field, confirm the action and click No to the following question from
Transformer:

“You made level 'Branch Key' into a convergence level that connects two or more
alternate drill-down paths. Categories in convergence levels must have unique
source values. Can there be two categories in this level with the same source
value?”

Figure 13-56 Defining an alternate drill-down path

Chapter 13. Reporting and analysis with Cognos 8 BI 361

Insert measures
Drag measures from the Data Sources pane to the Measures pane. Figure 13-58 on
page 363 shows the list of completed measures.

Calculated measures
Figure 13-57 shows an example of defining the calculated measure Return Rate %. To
access this window, right-click in the Measures pane and select Insert Measure. This window
also shows that the output scale for the calculated column is set to the value of 2. Output
scale is required to get the correct result after the percent function is applied later. Additional
information to define the calculated measure is required on the Type, Rollup, and Format
pages as follows:

� The Type page contains the calculation percent (Returned Units, Ordered Units).

� The Rollup page contains the setting for the Regular Timing property, for which you must
select After Rollup. This setting ensures the calculation is performed at dimension levels
after the measures Returned Units and Ordered Units are aggregated.

� The Format tab contains the settings to format the result with a percent sign and two
decimal places.

Figure 13-57 Defining a calculated measure

362 Enterprise Data Warehousing with DB2 9 for z/OS

Figure 13-58 shows the final Transformer model for the RedParts scenario. When completed,
we validate the model and generate categories by selecting Run → Test Build.

Figure 13-58 Completed Transformer model

13.3.3 Creating and publishing OLAP PowerCubes

In this section, we assume that a model file has been built in Transformer and sent from the
Windows client on which it was developed to the server. Refer to 13.3.2, “Defining
Transformer models for PowerCubes” on page 352, for information about the process to
develop the model.

To start Cognos Transformer on the server with the model file RedParts Order Analysis.mdl
and generate the PowerCube, enter the following command on the server:

cogtr -c -m"/opt/cognos/cube/RedParts Order Analysis.mdl"

Chapter 13. Reporting and analysis with Cognos 8 BI 363

The command creates a file (Example 13-21) that represents the OLAP cube, which is
/opt/cognos/c8/temp/RedPart Order Analysis.mdc in our case, in the file system.

Example 13-21 Creating the PowerCube on the Server

Business Intelligence Transformer version .3.818.0
Transformer(Transformer) Mon Apr 28 12:17:50 2008

LogFileDirectory=/opt/cognos/c8/logs/
ModelSaveDirectory=/opt/cognos/c8/temp/
DataSourceDirectory=/opt/cognos/c8/data/
CubeSaveDirectory=/opt/cognos/c8/temp/
DataWorkDirectory=/opt/cognos/c8/temp
ModelWorkDirectory=/opt/cognos/c8/temp/
MaxTransactionNum=500000

Mon 28 Apr 2008 12:17:50 Command Line: cogtr -c -m/opt/cognos/cube/RedParts Order Analysis.mdl [->OK]
Mon 28 Apr 2008 12:17:50 Processing MDL file /opt/cognos/cube/RedParts Order Analysis.mdl
Mon 28 Apr 2008 12:17:50 Creating model file /opt/cognos/c8/temp/ppd36928.qyj
Mon 28 Apr 2008 12:17:50 Completed processing of MDL file /opt/cognos/cube/RedParts Order Analysis.mdl
Mon 28 Apr 2008 12:17:50 Start cube update.
Mon 28 Apr 2008 12:17:50 No cube defined. Create default cube.
Mon 28 Apr 2008 12:17:50 Initializing categories.
Mon 28 Apr 2008 12:17:50 Timing, INITIALIZING CATEGORIES,00:00:00
Mon 28 Apr 2008 12:17:50 Start processing data source 'RedParts Distribution DDS'.
Mon 28 Apr 2008 12:17:50 Reading source data.
Mon 28 Apr 2008 12:17:56 Timing, OPEN DATA SOURCE,00:00:06
Mon 28 Apr 2008 12:17:58 End processing 18000 records from data source 'RedParts Distribution DDS'.
Mon 28 Apr 2008 12:17:58 Timing, READ DATA SOURCE,00:00:08
Mon 28 Apr 2008 12:17:58 Marking categories used.
Mon 28 Apr 2008 12:17:58 Timing, MARKING CATEGORIES USED,00:00:00
Mon 28 Apr 2008 12:17:58 Updating category status.
Mon 28 Apr 2008 12:17:58 Processing the work file.
Mon 28 Apr 2008 12:17:58 Processing cube 'RedPart Order Analysis' at location /opt/cognos/c8/temp/RedPart Order Analysis.mdc
Mon 28 Apr 2008 12:17:58 Timing, UPDATE CATEGORY AND PROCESS WORK FILE,00:00:00
Mon 28 Apr 2008 12:17:58 Start metadata update of cube 'RedPart Order Analysis'.
Mon 28 Apr 2008 12:17:58 Marking categories needed.
Mon 28 Apr 2008 12:17:58 Updating the PowerCube metadata.
Mon 28 Apr 2008 12:17:58 Updating the PowerCube with currency data.
Mon 28 Apr 2008 12:17:58 End metadata update of cube 'RedPart Order Analysis'. 1675 categories were added to the cube.
Mon 28 Apr 2008 12:17:58 Timing, METADATA,00:00:00
Mon 28 Apr 2008 12:17:58 Start update of cube 'RedPart Order Analysis'.
Mon 28 Apr 2008 12:17:58 --- Performing Pass 0 with 18000 rows and 1675 categories remaining.
Mon 28 Apr 2008 12:17:58 Start Write leaving 1675 categories remaining.
Mon 28 Apr 2008 12:17:58 Updating the PowerCube data.
Mon 28 Apr 2008 12:17:58 Updating the PowerCube data.
Mon 28 Apr 2008 12:17:59 Performing DataBase Commit at record number 18001.
Mon 28 Apr 2008 12:17:59 End Write leaving 1675 categories remaining..
Mon 28 Apr 2008 12:17:59 Timing, CUBE UPDATE,00:00:01
Mon 28 Apr 2008 12:17:59 Committing PowerCube(s).
Mon 28 Apr 2008 12:17:59 Timing, CUBE COMMIT,00:00:00
Mon 28 Apr 2008 12:17:59 Updating the PowerCube with optimized metadata.
Mon 28 Apr 2008 12:17:59 Start update of cube '/opt/cognos/c8/temp/RedPart Order Analysis.mdc' with optimized metadata.
Mon 28 Apr 2008 12:17:59 End update of cube '/opt/cognos/c8/temp/RedPart Order Analysis.mdc' with optimized metadata.
Mon 28 Apr 2008 12:17:59 End cube update.
Mon 28 Apr 2008 12:17:59 Timing, TOTAL TIME (CREATE CUBE),00:00:09
Mon 28 Apr 2008 12:17:59 Closing model file /opt/cognos/c8/temp/ppd36928.qyj
Mon 28 Apr 2008 12:17:59 Transformer exiting - OK

364 Enterprise Data Warehousing with DB2 9 for z/OS

Creating a data source for the PowerCube
After we create the mdc file, we copy it from the temporary directory to its target directory:

cp /opt/cognos/c8/temp/*.mdc /opt/cognos/cube

Then we create a Cognos data source and package for further use in the Cognos Connection
portal. You can also perform this step by using the commanding tool (cogtr). In the following
steps, we create the data source by using the Web Cognos Connection user interface:

1. In the Cognos Web interface, click Cognos Administration → Data Source
Connections and click the icon to create a new data source definition (circled in
Figure 13-59).

Figure 13-59 Starting to create a new data source for the Power Cube

2. In the New Data Source wizard, type the name RedPart Order Analysis and click Next.

3. In the Specify the connection panel (Figure 13-60), for Type, select Cognos PowerCube
and click Next.

Figure 13-60 Selecting the data source type

Chapter 13. Reporting and analysis with Cognos 8 BI 365

4. In the Specify the Cognos PowerCube connection string panel (Figure 13-61), specify the
file system location of the PowerCube file created previously (/opt/cognos/cube/RedPart
Order Analysis.mdc).

Then click Finish.

Figure 13-61 Specifying the path to the mdc file for the PowerCube definition

After the data source wizard creates the data source successfully, it offers to create a
package that allows users to use the cube as a source for analysis.

Note: When we performed this step, we inserted a value in the Windows location field
as well. By not doing this, we received the following error message:

The field “Windows location:” is mandatory. Please enter a value.

The Windows location is not used for processing, but is required to move past this step.

366 Enterprise Data Warehousing with DB2 9 for z/OS

5. Select the check box to Create a package since we need an additional package for
analysis later and click OK.

6. In the Specify the name and description panel (Figure 13-62), enter the name RedPart
Order (Analysis) and select a location (folder) for the new package. For our scenario, we
create the new package in the folder Public Folders > Redbook Scenario - RedParts
Distribution Warehouse. Click Finish.

Figure 13-62 Creating a new package for analysis

This completes the creating and publishing of the new PowerCube for our analysis. We have
a new data source named RedPart Order Analysis that points to our PowerCube mdc file in
the file system and a new package that we can use within Analysis Studio. Our analysis
example is in 13.6, “Multidimensional analysis with Analysis Studio” on page 385.

13.4 Reports with Report Studio

In this section, we show how to create a simple sample report based on the data in our ODS.
We use a slightly modified native SQL query from the queries that TPC-H provides. See
Example 13-22 on page 368. We base our report on a business requirement listed in
Table 5-2 on page 73.

Important: In this example, we copy the native SQL shown directly into Report Studio.
This method is not a best practice nor do we recommend it. Generate queries for reports
interactively by selecting objects and functions from the published package using the
drag-and-drop method. By doing this, Cognos can determine the most efficient query to
generate selected results, provide more value to the user, and allow report authoring to be
done by those who do not have SQL skills. A similar example of using the drag-and-drop
method is shown in 13.5, “Ad hoc queries with Query Studio” on page 374. The purpose of
this chapter is to demonstrate that a report can be created in Cognos 8 BI based on data
stored in our ODS that is hosted by DB2 on z/OS.

Chapter 13. Reporting and analysis with Cognos 8 BI 367

Example 13-22 Returned item query

select
c_custkey,
c_name,
sum(l_extendedprice * (1 - l_discount)) as revenue,
c_acctbal,
n_name,
c_address,
c_phone,
c_comment

from
dwhods.customer,
dwhods.orders,
dwhods.lineitem,
dwhods.nation_lookup

where
c_custkey = o_custkey
and l_orderkey = o_orderkey
and l_returnflag = '1'
and c_nationkey = n_nationkey

group by
c_custkey,
c_name,
c_acctbal,
c_phone,
n_name,
c_address,
c_comment

order by
revenue desc

According to the description in the TPC-H benchmark,2 this query returns the following
information:

“... customers, in terms of their effect on lost revenue ... who have returned parts. The
query lists the customer’s name, address, nation, phone number, account balance,
comment information, and revenue lost. The customers are listed in descending order of
lost revenue. Revenue lost is defined as sum(l_extendedprice*(1-l_discount)) for all
qualifying line items.”

In the following steps, we assume that the RedParts Distribution ODS (Query) package with
our ODS model information is already created and published to the Cognos BI Server. See
13.3.1, “Framework Manager packages” on page 337.

2 Transaction Processing Performance Council (TPC): http://www.tpc.org/tpch/results/tpch_perf_results.asp

368 Enterprise Data Warehousing with DB2 9 for z/OS

http://www.tpc.org/tpch/results/tpch_perf_results.asp

1. In the Cognos 8 BI Server portal, in the My Actions panel (Figure 13-63), choose Create
professional reports to start the Report Studio.

Figure 13-63 Starting the Report Studio from the My Actions panel

2. In the next window (Figure 13-64), select a package that contains the metadata on which
the reports should be built. Select RedParts Distribution ODS (Query).

Figure 13-64 Package selection for the new report

3. In the welcome panel (Figure 13-65) of the full-screen, Report Studio browser window,
select Create a new report or template to create a new report.

Figure 13-65 Report Studio welcome panel

Chapter 13. Reporting and analysis with Cognos 8 BI 369

4. In the New panel (Figure 13-66), select the type of report to be created. For our simple
report, select Blank and click OK to confirm the selection.

Figure 13-66 Report template selection in Report Studio

5. In the next panel, select Query Explorer and then Queries to display the available
queries. Drag the SQL object from the Insertable Objects list to the explorer view
(Figure 13-67). Both a new SQL icon and a new query icon, named Query 1, are created
in the view. The vertical bar between the properties panels on the left side and the view
panel on the right side offers explorers for pages, queries, and conditions.

Figure 13-67 Defining a new SQL-based query object

Note: Report Studio (and other studios as well) require Internet Explorer® 6.0 or
higher. If you try to run Report Studio with an unsupported browser, you receive an
error message.

370 Enterprise Data Warehousing with DB2 9 for z/OS

6. Make sure that the SQL icon in the query explorer is selected and edit the properties panel
(Figure 13-68):

a. Select the Data Source property for your SQL query (DWDH912 in our case) from the
list of data sources that are configured through Cognos Administration on the Cognos
BI Server.

b. Click the ... (ellipses) button for the SQL property text to copy the SQL statement from
Example 13-22 on page 368 into the SQL editor window.

c. In the Name property field, rename the SQL query to Q10.

Figure 13-68 Properties for the SQL query in Report Studio

7. Depending on the complexity of the query and the capabilities of the database engine,
provide query hints for query processing. Ensure that the Processing property is set to
Limited Local. This should have been set as one of the data source properties in the
Framework Manager model by default. With the setting of Limited Local, the Cognos query
engine can perform some local processing instead of trying to run the entire operation in
the database engine.

Select the Query 1 icon to the left of the SQL icon and confirm the properties for the
query. If not already selected, choose Limited Local for the Processing property in the
Query Hints section (Figure 13-69).

The processing option specifies whether the query engine picks up a minimal amount of
processing.

Figure 13-69 Setting query hints

Note: When entering SQL in the SQL property, if the SQL you enter contains constructs
that DB2 does not allow in a derived table, you must change the SQL Syntax property
from Native to Pass-Through. This is not required in this particular example.

We recommend that you allow Cognos to generate the most optimized SQL by using
drag-and-drop functionality and not entering SQL text.

Chapter 13. Reporting and analysis with Cognos 8 BI 371

8. Use the Page Explorer and select Page 1 from the report pages. A blank window is
displayed because we selected the Blank report template when creating the report.

a. In the second tab under the Insertable Objects panel, select the Data Items icon. The
panel now looks as shown in Figure 13-70. Drag the Query 1 object from the
Insertable Objects pane to the pane on the right.

Figure 13-70 Selecting data items in Report Studio

b. To add a heading for the report, at the bottom of the Insertable Objects pane on the
left, click the third Toolbox tab and drag the Text Item object to just in front of the table
with the query columns (Figure 13-71).

Figure 13-71 Adding a text item to the report

c. In the new panel that opens, add Returned Item Reporting and click OK.

372 Enterprise Data Warehousing with DB2 9 for z/OS

d. Select the inserted table heading and use the toolbar tools to increase font size to 14 pt
and select a bold font. Report Studio now looks like the example shown in
Figure 13-72.

Figure 13-72 formatting the table heading

e. Select File → Save from the menu and store the report definition (for example, with the
name Returned Item Reporting) in the Cognos BI Server.

This completes the definition of the simple report. To test and run the report, click Run
Report - HTML in the toolbar (Figure 13-73).

Figure 13-73 Running the defined report

Chapter 13. Reporting and analysis with Cognos 8 BI 373

Figure 13-74 shows the resulting report.

Figure 13-74 Result of the Returned Item report

13.5 Ad hoc queries with Query Studio

In this section, we show how to create a simple ad hoc query based on the data in our ODS
by using Query Studio within Cognos 8 BI. We base our query on a business requirement
listed in Table 5-2 on page 73.

The business requirement is to produce the top volume customer query. This query retrieves
a list of customers based on them having placed a large quantity order. For this sample, large
quantity orders are defined as those orders where total quantity is greater than or equal to 18.
The query lists the customer name, nation, order key, order date, total price, and the quantity
for the order. Total price is sorted in descending order.

In the following steps, we assume that the package RedParts Distribution ODS (Query) with
our ODS model information is already created and published to the Cognos BI Server. See
13.3.1, “Framework Manager packages” on page 337.

374 Enterprise Data Warehousing with DB2 9 for z/OS

1. In the Cognos 8 portal, select Launch → Query Studio, which is highlighted in
Figure 13-75.

Figure 13-75 Navigating to Query Studio

Chapter 13. Reporting and analysis with Cognos 8 BI 375

2. In the Select a package window (Figure 13-76), select the package that contains the
business metadata for users to select query items from. Click the RedParts Distribution
ODS (Query) package to open a blank Query Studio canvas.

Figure 13-76 Query - Selecting the source package

376 Enterprise Data Warehousing with DB2 9 for z/OS

3. In the Business view (Figure 13-77), expand the query subject Order Details - All Orders.
Press Ctrl+click to select the query items Order Number, Order Date, Customer Name,
Unit Quantity, Total Charge Amt and then drag them to the blank canvas. The selected
query items are displayed in the query along with the result set.

Figure 13-77 Query - Dragging the order query items

Chapter 13. Reporting and analysis with Cognos 8 BI 377

4. Expand the query subject Customer, click the query item Nation, and drag the query item
to the canvas to the left side of the existing Customer Name query item (Figure 13-78).
Nation is displayed in the result set.

Figure 13-78 Query - Dragging the customer nation

378 Enterprise Data Warehousing with DB2 9 for z/OS

5. For the top volume customers query, group the results by Nation. Click the Nation header
as shown in Figure 13-79 and then click the Group toolbar button to perform the grouping.

Figure 13-79 Query - Grouping by nation

Chapter 13. Reporting and analysis with Cognos 8 BI 379

6. To sort the Total Charge Amt in descending order, right-click the Total Charge Amt
header and select Sort. The sort options pane is displayed at the bottom of the browser
window. Figure 13-80 shows that the sort options of Descending and Sort on report details
are selected.

Figure 13-80 Query - Sorting on descending order

380 Enterprise Data Warehousing with DB2 9 for z/OS

7. For this query, return orders that have a status of shipped and packed. In the Insert Data
tree structure (Figure 13-81), expand the Filters folder to view the available filters. Click
the Order Status - Shipped & Packed filter and drag it to the query canvas.

Figure 13-81 Query - Adding a query filter

Chapter 13. Reporting and analysis with Cognos 8 BI 381

8. To filter the results to show only customers whose total quantity is greater than or equal
to 18 (Figure 13-82):

a. Click the Unit Quantity header.
b. Click the Filter toolbar button.
c. In the Filter pane, in the From field, type 15.
d. For Apply the filter to, select Values in the report.
e. Click OK.

The filter is applied and listed under the query heading at the top of the page.

Figure 13-82 Query - Adding a column filter

Note: Initially we demonstrate this step using the value 15 and then modify the filter
to 18.

382 Enterprise Data Warehousing with DB2 9 for z/OS

9. Modify the filter to reduce the number of records returned (Figure 13-83):

a. Click the filter link Unit Quantity: Greater than or Equal to 15 at the top of the query.
b. Change the value from 15 to 18 in the filter pane.
c. Click OK.

The number of records returned in the result set decreases.

Figure 13-83 Query - Modifying the column filter

Chapter 13. Reporting and analysis with Cognos 8 BI 383

10.Right-click the Total Charge Amt field and select Define Conditional Styles. In the
Define conditional styles pane, type 15,000 as the threshold and select the Very Good
and Average styles for the highest and lowest definitions. Click OK to apply the
conditional styles to the result set.

Different colors are shown in the Total Charge Amt field within the query, highlighting the
relevant data that meets the defined conditional styles (Figure 13-84).

Figure 13-84 Query - Adding the conditional formatting

11.To modify the title of the query, click the default title once and enter the new title
information into the Edit Title Area pane shown at the bottom of the browser.

The ad hoc query for top volume customers is now complete. Query Studio provides a
number of options to run and share this result.

384 Enterprise Data Warehousing with DB2 9 for z/OS

12.From the menu on the left side of the Query Studio interface, click Run Report. To
demonstrate the option of exporting the query results to PDF, click the option View in PDF
Format. Figure 13-85 shows the query result in PDF format.

Figure 13-85 Query - Viewing the report as a PDF

13.6 Multidimensional analysis with Analysis Studio

In this section, we show how to perform simple guided analysis based on data that was taken
from our DDS and placed into an OLAP cube. We demonstrate the analysis by using Analysis
Studio within Cognos 8 BI. Analysis Studio can be used to analyze data both within OLAP
data sources, such as Cognos PowerCubes, and within relational Framework Manager
packages that have dimensions defined and published. Figure 13-41 on page 346 shows an
example of dimensions that are defined in Framework Manager.

We base our analysis on a business requirement listed in Table 5-2 on page 73. The
examples provided are simple in nature and do not demonstrate the complete comprehensive
functionality of Analysis Studio or OLAP data sources. For example, typically a number of
exploration techniques, such as defining sets or adding calculations, can be applied when
using Analysis Studio. These have not been included, and the steps that are provided only
demonstrate some of the techniques that can be applied to perform the following analysis.

Chapter 13. Reporting and analysis with Cognos 8 BI 385

The business requirement is to perform some analysis on part return rates. In our example,
we show, for a given financial quarter YTD, the highest return rates. We then explore this
further to determine these return rates by manufacturer and customer nation. Based on the
results of this analysis and other information that has been given to our call center operators,
we have an idea that these return rates may be linked to the types of packaging that are used
when distributing our parts to customers. We want to investigate this and determine whether
this is impacting all regional promotions or only some promotions. Therefore, we continue to
analyze return rates by customer promotion campaigns and part container types.

Multidimensional analysis provides a quick way to perform guided analysis and exploration by
navigating through information by using conformed organization reporting structures and
measures. By using Analysis Studio, you can select members within dimensions as rows and
columns for describing the measures defined within the data. You can then slice and dice, drill
up, drill down, and summarize the information to your requirements. As you discover details of
interest, you can further investigate the results by changing the selections that you have
made.

In the following steps, we assume that the package RedPart Order (Analysis), which uses the
OLAP PowerCube, is already created and published to the Cognos BI Server as discussed in
“Creating a data source for the PowerCube” on page 365.

1. In the Cognos 8 portal, select Launch → Analysis Studio in the top right corner of the
window (Figure 13-86).

Figure 13-86 Launch analysis studio

Analysis Studio opens and depending on the setting, the Welcome window is displayed on
which you can start using a blank analysis or a default analysis. The default analysis builds
an initial analysis by selecting default dimensions for the row and column and a default
measure.

2. For our scenario, click Blank Analysis and click OK as shown in Figure 13-87.

Figure 13-87 Analysis - Blank analysis

386 Enterprise Data Warehousing with DB2 9 for z/OS

3. In our scenario, in the Insertable Objects pane, expand the All Customers dimension and
drag the All Customers hierarchy to the rows position within the work area
(Figure 13-88).

By doing this, we can explore the return rates of parts for customers that have returned
their orders. The customers dimension is represented by the level displaying customer
nations, with a row total label displaying the text All Customers.

Figure 13-88 Analysis - Selecting rows

Chapter 13. Reporting and analysis with Cognos 8 BI 387

4. To investigate return rates for parts, include the part dimension in our analysis. In the
Insertable Objects pane, expand the All Parts dimension and drag the All Parts hierarchy
to the column position in the work area (Figure 13-89).

The part dimension is displayed as columns, represented by the part manufacturers.

Figure 13-89 Analysis - Selecting columns

Several corporate measures or facts are available from the published PowerCube. At this
point we can choose all of them or a subset of them to investigate. We can also define new
calculated measures. In this case, we want to specifically investigate return rates.

388 Enterprise Data Warehousing with DB2 9 for z/OS

5. In the Insertable Objects pane, expand the Measures folder and drag Return Rate % to
the Measure position in the work area (Figure 13-90).

The result is a cross tab analysis of return rate % by part manufacturers and customer
nations. The intersection of the total row and column for manufacturer 2 shows that, for all
customers who ordered parts from this manufacturer, there is a 30.46% return rate of
parts. This is based on all orders and not specific to a time frame.

Figure 13-90 Analysis - Selecting a measure

Chapter 13. Reporting and analysis with Cognos 8 BI 389

6. To investigate Manufacturer 2 further and determine if they are in fact the highest source
of return rates for the current year, see what the return rate is for this year up to the end of
the last financial quarter. In the Insertable Objects pane, expand the All Order Dates
dimension and the YTD hierarchy in this dimension. Drag the 2007 Qtr 3 category to the
Context Filter position in the work area (Figure 13-91).

The result is that the data is sliced based on the filter 2007 Qtr 3. We see that the 2007
Qtr3 YTD return rate for Manufacturer 2 is 28.78%, but also notice that this is not the
highest return rate. Further analysis is required.

Figure 13-91 Analysis - Selecting a filter

7. Click the Swap Rows and Columns toolbar button to pivot the row and column
information in the cross tab analysis shown in the work area. This is the second to last
button on the right above the overview area of the window. The rows and columns are then
swapped.

8. Sort the manufacturer rows in descending order by the manufacturer subtotal for Return
Rate %. The column header reads All Customers. Right-click the All Customers subtotal.
and select Sort → Descending.

The part manufacturers are now ordered from highest return rate for all customers to the
lowest return rate for all customers. By doing this, we can determine that, in fact,
Manufacturer 5 is producing the highest return rate for the year so far.

390 Enterprise Data Warehousing with DB2 9 for z/OS

9. Insert a standard column chart. Click the Chart Type toolbar button and select Column
Chart → Standard (Figure 13-92). The column chart is inserted above the cross-tab
analysis.

Figure 13-92 Analysis - Including charts

Chapter 13. Reporting and analysis with Cognos 8 BI 391

10.By using the cross tab and chart that are displayed, we can determine that, although
Manufacturer 5 has the highest customer return rate, the largest impact of this seems to
be from Europe. Further analysis is now possible, such as drilling down to a particular
nation within Europe or part brand within manufacturer to further analyze and solve why
the part return rate is so high. However, at this stage in our example, we want to name the
report and save it for reference.

a. Click the Report menu and Report Options.

b. In the Report options pane (Figure 13-93), on the Title page, for Title, type RedParts
Distribution, and for Subtitle, type Return Rate Analysis. Click the OK button.

Figure 13-93 Analysis - Adding a title

392 Enterprise Data Warehousing with DB2 9 for z/OS

11.To save the analysis:

a. Click the Save or Save As toolbar buttons (highlighted in Figure 13-94).

b. Navigate to the server Analysis folder in the folder Redbook Scenario - RedParts
Distribution Warehouse.

c. Click Save.

The analysis is available from this location within the Cognos Connection portal.

Figure 13-94 Analysis - Saving the layout

Chapter 13. Reporting and analysis with Cognos 8 BI 393

Figure 13-95 shows the completed Return Rate analysis by Part Manufacturers and
Customer Nations. Our analysis has shown that, for the current year up to the end of the last
financial quarter, manufacturer #5 is having the largest impact on customer return rates,
based on returned European orders.

Figure 13-95 Analysis - Completed RedParts sample 1

In our simple scenario, based on earlier results and information provided from the RedParts
Distribution call center, further analysis is required. In the second example, the analysis can
continue to include the packaging for parts sent to customers and the regional promotions
that were running for the customer’s nation. Figure 13-96 on page 395 shows example output
that might be reached during this further analysis.

394 Enterprise Data Warehousing with DB2 9 for z/OS

To create this exact output, repeat the techniques in sample analysis 1, to apply the following
information as highlighted in Figure 13-96:

1. Drag the alternate part hierarchy for container types (By Part Key) to the rows.

2. Drag the alternate customer hierarchy for economic promotions (By Customer Key) to
the columns.

3. Ensure that the Return Rate % measure is still shown within the measure work area.

4. Replace the chart as shown in Figure 13-96 with a Standard Pie Chart.

5. Click the first instance of the Container rows within the cross tab and click the Suppress
Rows or Columns toolbar button (left of the Sort toolbar button).

Figure 13-96 Analysis - Building RedParts sample 2

Chapter 13. Reporting and analysis with Cognos 8 BI 395

6. Remove the subtotals column from the cross tab (Figure 13-97):

a. Select Settings → Totals and Subtotals.
b. Deselect the second last check box.
c. Click OK.

Figure 13-97 Analysis - Removing the subtotals

7. Modify the title to Return Rate Analysis by Promotion and Container, and save to the
Cognos Connection portal as a separate analysis result.

The analysis examples are now complete. By using Analysis Studio, we were able to
investigate the DB2 z/OS data warehouse information by using defined reporting structures
and measures. We were able to analyze different views of data until we saw something of
interest. Analysis by discovery is useful in providing information when required to those who
require it during a decision making process.

396 Enterprise Data Warehousing with DB2 9 for z/OS

Chapter 14. Reporting with DataQuant, QMF,
and AlphaBlox

Many analytical tools are available that can be used for business intelligence (BI) reporting on
a data warehouse that is implemented with DB2 for z/OS. Examples includes include Cognos,
Business Objects, Crystal Reports, DataQuant, QMF, and AlphaBlox, among others.

In the scenario described in this book, we use Cognos to implement the required queries.
See Chapter 13, “Reporting and analysis with Cognos 8 BI” on page 305. However, IBM has
additional products that can be considered when the reporting product is selected. We briefly
explore some of the additional options.

This chapter contains the following sections:

� 14.1, “DataQuant” on page 398
� 14.2, “QMF” on page 409
� 14.3, “AlphaBlox” on page 411

14

© Copyright IBM Corp. 2008. All rights reserved. 397

14.1 DataQuant

DataQuant is a query, reporting, and data visualization solution for both relational and
multidimensional data sources that became available in 2007. This product provides
enterprises with a means of rapidly developing and distributing page-based reports and
interactive visual dashboards.

DataQuant consists of an Eclipse-based content authoring environment and a Web-based
runtime environment. The product presents features that are a natural evolution of QMF and
the Visionary tools.

14.1.1 When to consider DataQuant

Consider using DataQuant in the following situations:

� Where there is s a need for a turnkey solution that allows organizations to rapidly create
and distribute BI queries, reports, and interactive dashboards across the enterprise

� Where there is a need for self-service reporting, empowering lines of business and users
with the ability to answer their own business questions while decreasing demands on IT

� For customers who consider resource governing, granular security, and object tracking to
be important factors in an enterprise-wide BI solution

� Where quick prototyping and rapid solution development are more important than complex
analytical features

� For customers who find competitor solutions too complex and costly

� For customers who already have reporting capabilities implemented with QMF

14.1.2 DataQuant functions

While many analytical tools require extensive programming and lengthy deployment times,
DataQuant for z/OS and Multiplatforms provides an easy-to-use environment that you can
immediately use to quickly and easily develop BI solutions. This includes a wealth of charts,
controls, and graphics that you can drag to quickly create dashboards and reports. In
addition, DataQuant includes the following features:

� Over 100 built-in mathematical and analytical functions

� The ability to create compound, multipage reports that concurrently draw data from
multiple data sources across your enterprise

� Multiplatform support including System z, Linux on System z, Linux, System i™, Windows,
IBM AIX, and Solaris

� Support for interactive dashboards that permit users to dynamically access relevant
enterprise data, on demand, using intuitive drill-down and information zooming facilities

� Drag-and-drop development of online analytical processing (OLAP) analytics, SQL
queries, embedded subqueries, tabular reports, visual reports, and pivot tables

� OLAP query editor with support for MDX OLAP-based engines, connecting via XML for
Analysis (XMLA)

� Full compatibility with an existing QMF infrastructure and objects

� Support for DB2, Informix®, and most other popular database management systems

� Support for a wide variety of report formats, including XML, HTML, Microsoft Excel®, and
PDF

398 Enterprise Data Warehousing with DB2 9 for z/OS

� Full support for the Eclipse Foundation’s Business Intelligence and Reporting Tools (BIRT)
report format, which complements DataQuant’s native tabular and visual reporting formats

� A rich set of Java APIs, Web service APIs, and a command library interface, allowing
DataQuant content to be directly embedded within a custom-developed or third-party
application infrastructure

� One-click function to populate Excel with DataQuant output with all formatting retained

Thin client and rich client deployment options in DataQuant include both an Eclipse-based
rich client desktop application and an WebSphere-based, thin-client Web application. The
Eclipse-based offering provides a powerful, intuitive and highly productive rich desktop
environment within which queries, reports, and visual dashboards (Figure 14-1) can be
quickly authored, tested, and deployed.

Figure 14-1 DataQuant dashboard

The high-performance runtime environment (thin client) based on WebSphere software
extends key functionality to browser-based users across multiple platforms. It provides
access to all DataQuant BI content, the ability to create queries and reports, and the ability to
perform ad hoc, visual drag-and-drop data analysis. The share BI content internally and
externally options in DataQuant for WebSphere include a robust service-oriented architecture
(SOA). It provides a flexible infrastructure that enables you to easily share BI solution
components (queries, reports, dashboards, and so on) with partners or clients over secure
Web connections.

Chapter 14. Reporting with DataQuant, QMF, and AlphaBlox 399

By using the SOA capabilities and rich security infrastructure of DataQuant, organizations
can distribute BI assets to both internal or external users via a standard, secure Internet
connection. Available to both Web and rich desktop application users, these SOA capabilities
provide user and group-specific access to BI assets without requiring knowledge or direct
access to the underlying databases and data repositories that power them. This way, you can
readily share your BI solutions with users both inside and outside of the firewall, all with zero
client-side administration. These capabilities provide a build once, service many infrastructure
as required by SOA deployments.

Security and personalization integrated BI systems require a high level of security to protect
important information. Regulatory requirements for information continue to grow. Therefore,
you must be able to secure business information at the appropriate level.

DataQuant provides granular access control, tailoring the view and usage of available reports
and the visualizations and data on a per user or group basis. For example, technical users
may see a traditional database-centric view, where business users see a role-specific view of
relevant reports and dashboards. You may opt to tailor offline schemas to each user or group
so that individuals see only those tables and columns that are relevant to their job function or
business area.

DataQuant also supports single sign-on, allowing users to log on to all enterprise assets
using a single account. DataQuant logon information can be automatically passed to all
databases or derived from specific accounts designated as appropriate for the particular user.

14.1.3 A small DataQuant report for RedParts Distribution

In the following scenario, we use the DataQuant visual report, because no interaction or
configuration of the output is required. If interaction is required, dashboards are the right
choice. We use the following steps to create the visual report:

1. Define the data source.

2. Create the query.
3. Create the visual report as base for further modifications.
4. Modify the report (to insert bar chart).

The following scenario assumes that DataQuant for Workstation is successfully installed on
any of the supported platforms, and a DataQuant repository is created. This repository is
used by DataQuant to save its meta information.

Defining the data source
To define the data source:

1. While in the administrator perspective, click the Repositories tab.

2. Expand the repository that you want to use to define your new data source.

3. Right-click the data source icon and select New → Data Source.

Data source definition: The data source is not defined yet, so we include this as the
first step. If the data source is already defined, only steps 2 through 4 are necessary.

400 Enterprise Data Warehousing with DB2 9 for z/OS

4. In the New Data Source window (Figure 14-2):

a. Enter the configuration data that required for the new data source. In this example, the
data for the DDS database on z/OS described in 5.5, “The operational and dimensional
data model” on page 85.

b. Verify the data and click the Test Connection button to test the connection to the data
source.

c. If the test executed successfully, click Next to complete the definition of this new data
source.

Figure 14-2 DataQuant - Defining the source data

After the new data source is created by the administrator, it is available for the administrator to
use. If any user is able to use the new data source, a link must be created from the data
source to the view to which the use has access. To create this link:

1. Click the Repository tab (while still in the administrator perspective) and drag the data
source to the appropriate view. In this example, the view is “Lothar”.

2. To verify that the data source is visible in the view, switch to the user perspective and open
the “Lothar” view.

Chapter 14. Reporting with DataQuant, QMF, and AlphaBlox 401

You can now browse all tables in D912. Expand the data source D912 down to the table level.
Figure 14-3 shows the tables in our DDS database. Right-click the
ORDER_TRANSACTION_FACT table and select Open with → table viewer to display the
contents of the selected table.

Figure 14-3 DataQuant - Displaying the table

Creating the query
By using DataQuant for Workstation and DataQuant for WebSphere, you can create SQL
statements that query a relational data source in any of the following ways:

� Write your own SQL statements

� Open queries that have been created and saved to a file or a database

� Create SQL statements by using the prompted interface

� Create SQL statements visually by using diagram interface (DataQuant for Workstation
only)

� Create queries by using the Draw Query command (DataQuant for Workstation only)

402 Enterprise Data Warehousing with DB2 9 for z/OS

Example 14-1 shows the sample query that we created.

Example 14-1 Sample query for DataQuant

SELECT A.ORDERKEY, B.CUST_NAME, C.PART_NAME
FROM DWHDDS.ORDER_TRANSACTION_FACT A INNER JOIN DWHDDS.CUSTOMER_DIM B ON A.
 CUSTKEY_DW = B.CUSTKEY_DW INNER JOIN DWHDDS.PART_DIM C ON A.PARTKEY_DW = C
 .PARTKEY_DW
WHERE (A.QUANTITY > 2)

Figure 14-4 shows the same query in the Diagram Query Builder.

Figure 14-4 DataQuant Diagram Query Builder

Chapter 14. Reporting with DataQuant, QMF, and AlphaBlox 403

Figure 14-5 shows the prompted Query Builder.

Figure 14-5 DataQuant Prompted Query Builder

While the Diagram Query Builder and the prompted Query Builder are well suited to create
syntactical correct queries quickly, both builders do not support every possible SQL query.

404 Enterprise Data Warehousing with DB2 9 for z/OS

In our example, the query is available in error free SQL, because we use the same query with
Cognos, AlphaBlox, and DataQuant. Therefore, we paste the query into the SQL Query
Builder panel. Figure 14-6 shows the query SQL.

Figure 14-6 DataQuant SQL query editor

Chapter 14. Reporting with DataQuant, QMF, and AlphaBlox 405

After the query is created by using either method, it is ready for execution. The execution of
the query results in the output shown in Figure 14-7. It shows the ranking of the customers in
each quarter of the year.

Figure 14-7 DataQuant tabular result

Creating a visual report
Visual reports are page-based, printable reports that have the following key features:

� Support for the full range of dashboard graphics, including charts, geospatial layouts, and
graphical primitives

� The ability to incorporate nested tables and charts in each report section, driven by
independent queries that optionally draw one or more parameters from the outer query

For example, an employee report may include a salary history bar chart in each employee
section of the report.

� The ability to incorporate fixed pages that are printed along with the report

These pages may be used for report title pages, summary data, and report appendixes.
Due to their graphical nature, visual reports are authored in the Visual Designer
perspective in DataQuant for Workstation. DataQuant for WebSphere has the ability to run
and display visual reports but does not have the ability to edit them.

406 Enterprise Data Warehousing with DB2 9 for z/OS

To create a visual report in DataQuant for Workstation, perform the following steps. The query
that we want to use is already open.

1. Click the Display a report button in the application toolbar or select Results → Display
Report item from the menu bar.

2. In the Display Report window, select the first radio button and click OK to create a visual
report using the format of the current query. A new visual report view is presented in
Design mode as shown in Figure 14-8.

3. Select the Visual Designer perspective by either clicking the Open Perspective toolbar
button or by selecting Window → Open Perspective → Other item from the menu bar.
The Visual Designer perspective is displayed.

The Project Explorer lists the key components of the visual reports. The report content is fully
represented by the MainPage item. The MainPage object is driven by the visual report query.
The sections under MainPage represent the headings, detail (data) areas, and footers (totals)
across each of the grouped sections (department and job in this case).

Given this basic structure, we are now free to add additional graphical elements in the
headers, footers, or detail sections. As a simple example, we add a bar chart to the Report
Footing Set, which charts the quantity of parts for each customer.

Figure 14-8 DataQuant - Visual report design view

Chapter 14. Reporting with DataQuant, QMF, and AlphaBlox 407

To insert the bar chart below the result table, select the Report Footing Set section in the
Project Explorer. Enlarge the graphical area of the Footing Set, and drag the bar chart icon
from the palette to the enlarged area as shown in Figure 14-9.

Figure 14-9 DataQuant - Design view, adding the bar chart

408 Enterprise Data Warehousing with DB2 9 for z/OS

After aligning the tabular columns and the bar chart, you see the result as shown in
Figure 14-10.

Figure 14-10 DataQuant - RedParts report

This completes the small report for RedParts Distribution.

14.2 QMF

As mentioned previously, one big advantage of DataQuant is its ability to use already existing
QMF objects. QMF has been available many years and is a family of products.

The QMF family consists of the following products:

� DB2 QMF for TSO/CICS

DB2 QMF for TSO/CICS is tightly integrated with the z/OS system architecture. It provides
a fluid yet secure environment where applications, data, and business processes have
access to existing resources managed with great flexibility, higher levels of utilization, and
lower overall costs. Customers who run DB2 QMF for TSO/CICS are well positioned to
deal with the exponential explosion of data, with the capability to sense and respond to
market shifts and changing demands as they occur. QMF for TSO/CICS provides powerful
data access, manipulation, and presentation functions that scale to many different

Chapter 14. Reporting with DataQuant, QMF, and AlphaBlox 409

database knowledge levels and can be customized in many ways to meet specific
business needs.

� DB2 QMF for Workstation

QMF for Workstation is an Eclipse-based desktop application that provides a development
environment within which all QMF objects can be created, managed, and executed. QMF
for Workstation extends DB2 QMF function to virtually all workstation operating systems.
QMF for Workstation offers multiple interfaces that help you build relational and OLAP
queries according to your level of SQL expertise. When query result data is returned, an
assortment of intuitive editors can help you analyze, aggregate, and format the query
results online. You can also create and easily distribute reports that can vary in format
from classic paged reports to more visually rich formats. QMF for Workstation's
administrative features make it easy to configure connectivity to data sources and protect
resource consumption on a per-user and per-group basis.

� DB2 QMF for WebSphere

DB2 QMF for WebSphere is the DB2 QMF family’s browser-based portal to business
information on demand. As a Web application, QMF for WebSphere provides a substantial
subset of the QMF for Workstation query and reporting capabilities using a pure HTML
thin-client deployment model. QMF for WebSphere makes it easy to provide the most
frequently used QMF query and reporting capabilities to a large number of users quickly
and easily. The thin-client model eliminates the need to install or maintain any additional
software on multiple user machines. You can access QMF for WebSphere from any
machine that has a Web browser. Support is provided for a variety of Web browsers
across a number of platforms.

The functions that are provided by DB2 QMF for Workstation and DB2 QMF for
WebSphere in Version 9.1 are a subset of the functions provided by DataQuant for
Workstation and DataQuant for WebSphere in Version 1.2 respectively. Both products
provide the same user interface and the same support to create queries and reports. They
also share the same governor functions and connectivity. The big difference is the extent
of the support for visual reports and dashboards. DataQuant provides a lot of graphical
elements that can be used to create visual reports such as bar charts, pie charts, horizon
charts, and candle charts. The interactive dashboards are only provided by DataQuant but
not by QMF.

� DB2 QMF High Performance Option for TSO/CICS

DB2 QMF High Performance Option is a multifaceted tool that helps database
administrators manage the QMF environment. DB2 QMF HPO consists of two major
components:

– QMF HPO/Manager

By using QMF HPO/Manager, you can govern (pre-emptively and in real time) ad hoc
and dynamic query and reporting activities. With easily collected, detailed information,
you can more precisely control CPU resource usage at varying levels according to any
number of schedules applied to QMF user groups.

– QMF HPO/Compiler

By using QMF HPO/Compiler, you can track and identify heavily used queries and
reports and then automatically convert them into efficient COBOL programs. Most
query and reporting jobs can be greatly streamlined to reduce CPU resource
consumption, DB2 catalog contention, DB2 Optimizer overhead, and dynamic SQL
security concerns.

410 Enterprise Data Warehousing with DB2 9 for z/OS

14.3 AlphaBlox

AlphaBlox V9.5 for Linux, UNIX, and Windows is a platform for the rapid assembly and broad
deployment of integrated analytics embedded within applications. It has an open, extensible
architecture based on Java 2 platform, Enterprise Edition (J2EE) standards, and an industry
standard for developing Web-based enterprise applications. AlphaBlox leverages AJAX
technology, automatically handling many details of application behavior without the need for
complex programming.

14.3.1 When to consider AlphaBlox

Consider using AlphaBlox in the following situations:

� Where there is a need for customized analytical solutions that are tightly integrated and
embedded within the customer’s existing BI infrastructure

� Where inline analytics are required; that is where analytical application content is
embedded in a business process

� For customers who require full control of the solution’s appearance and behavior, from
data gathering and analysis to the appearance and usage of the user interface

� Where there is a need to include sophisticated analytical capabilities

� As a development environment for customized Web applications instead of packaged

14.3.2 AlphaBlox functions

AlphaBlox V9.5 delivers various modular and reusable Blox® components, as well as an
application framework, a powerful programming model, and a variety of development tools for
assembling analytic applications. For its runtime environment, AlphaBlox leverages standard
J2EE application servers. It can be installed on leading commercial J2EE application servers
such as WebSphere Application Server and others.

AlphaBlox V9.5 for Linux, UNIX, and Windows now enables developers to build analytic,
browser-based applications with a new, easy-to-use, point-and-click user interface. It also
provides functionality to make it easier to design, develop, and test analytic applications and
new features to help users interact with data and perform calculations.

AlphaBlox provides the ability to rapidly create custom, Web-based applications that fit into
the corporate infrastructure and have the ability to reach a wide range of users, both inside
and outside the corporate firewall. Applications that are built with the AlphaBlox platform run
in standard Web browsers, allowing real-time, highly customizable multidimensional analysis
in a Web browser.

The following features, among others, are available in the AlphaBlox platform:

� The ability to access and interact with data in multidimensional and relational databases

� The ability to create structured reports sourced from relational databases

� The ability to choose from a variety of charts to display data

� The ability to create applications that write data back to the database, which is particularly
useful in “what-if” financial planning applications

� With multidimensional data sources, the ability to allow users to interact with the different
levels of data (for example, filter and drill down) to interactively display the exact view of
the data desired

Chapter 14. Reporting with DataQuant, QMF, and AlphaBlox 411

� User access to an intuitive user interface, making analysis of the data easy and powerful

� Access to multiple data sources by a single application

� Integration into a variety of enterprise infrastructure components, including application
servers (WebSphere and BEA WebLogic)

� The availability of a variety of APIs so developers can create custom applications

AlphaBlox APIs are written in the Java programming language. Application developers can
access them by using Java executed on the server or via JavaScript™ that is interpreted in
the browser.

14.3.3 A small AlphaBlox Web application for RedParts Distribution

Based on the AlphaBlox installation that we had on Linux on System z, we create a small
sample that issues a query against the DDS database. The following steps are required to
create an AlphaBlox application:

1. Define the data source.
2. Define an empty application.
3. Create an application home page.
4. Create the Blox.
5. Embed the Blox in a JavaServer Page (JSP™).

Defining the data source
AlphaBlox can work with data sources that are defined in AlphaBlox or in WebSphere
Application Server. For this sample, we use the AlphaBlox internal data source definition.

To define the data source:

1. Go to the DB2 AlphaBlox home page of your installation. In our installation, we type the
following URL:

http://lnxdwh1:9080/AlphabloxAdmin/home

2. Click the Administration tab and the Data Sources subtab.

3. Click the create button.

4. In the Data Sources panel, enter the configuration values for this data source definition as
shown in Figure 14-11 on page 413.

5. Save the entries, and test the access to the data source.

412 Enterprise Data Warehousing with DB2 9 for z/OS

Figure 14-11 AlphaBlox - Defining the data source

Defining your application
To create an application by using the J2EE development approach, you must create a
directory structure with a WEB-INF directory that contains an application descriptor file
(web.xml). The simplest way to create this structure in DB2 AlphaBlox is to create a new
application by using the Application page within the DB2 AlphaBlox Admin Pages.

1. Create the application RedParts and folder:

a. Log into the DB2 AlphaBlox Admin Pages as a user who is a member of the
administrators group.

b. Click the Administration tab and the Applications subtab.

c. Click the create button.

Chapter 14. Reporting with DataQuant, QMF, and AlphaBlox 413

d. In the Create Application panel, complete the configuration values as shown in
Figure 14-12.

e. Click Save to create the application.

Figure 14-12 AlphaBlox - Creating the application

2. Install the application in WebSphere Application Server. In the previous task, AlphaBlox
created the Web application /opt/IBM/Alphablox/installableApps/RedParts.ear. This Web
application must be deployed in the WebSphere Application Server. To deploy this
application:

a. Open the WebSphere Administrative Console.

b. Select Applications → Install New Application.

414 Enterprise Data Warehousing with DB2 9 for z/OS

c. In the Preparing for application installation panel (Figure 14-13), select Remote file
system and specify the path to the AlphaBlox application. Click Next to complete the
definition.

Figure 14-13 WebSphere Administrative Console - Deploying the application

3. Define the User Role mapping for this new application. This mapping defines the roles that
an authenticated user can assume. The user can have either of the following roles:

– AlphaBlox Administrator
– AlphaBlox User

To define the user role mapping, in the WebSphere Administrative Console, select
Applications → Enterprise Applications. Then select RedParts →Security role to
user/group mapping.

Chapter 14. Reporting with DataQuant, QMF, and AlphaBlox 415

In the Enterprise Applications panel (Figure 14-14), each user is defined that is
authenticated by the WebSphere Application Server as a valid AlphaBlox user.

Figure 14-14 WebSphere Administrative Console - Defining user roles for the application

416 Enterprise Data Warehousing with DB2 9 for z/OS

After completion of the definition steps, the application is successfully installed in the
Application Server. Figure 14-15 shows the AlphaBlox Application page. Because
AlphaBlox is already installed and configured for other applications, under RedParts
Distribution, you see other applications, such as the My App and BI Retail Solution, and
AlphaBlox system applications such as AlphaBlox Query Builder.

Figure 14-15 AlphaBlox list of applications

4. Create a home page for the Application in the WebSphere Directory. The home page is a
simple HTML file (Example 14-2) that displays a title and invokes the PresentBloxView.jsp
that contains the query and display functions.

Example 14-2 RedParts home page

/opt/IBM/WebSphere/AppServer/profiles/AppSrv01/installedApps/lnxdwh1Node01Cell/RedParts.
ear/RedParts.war/index.html

<html>
<head>
<title>ReadParts Distribution</title>
</head>
<body>
<h2>RedParts Distribution Application</h2>
<p>

Chapter 14. Reporting with DataQuant, QMF, and AlphaBlox 417

Simple PresentBlox View
</p>
</body> </html>

5. Create the Blox and the PresentBloxView.jsp to display the Blox:

a. Open a browser to the DB2 AlphaBlox Admin Pages. By default, the Applications tab is
visible.

b. Click DB2 AlphaBlox Query Builder to open the application.

c. Connect to the database:

i. Click the Connection Settings button.

ii. In the Database Connection window, select the D912 data source. Click the
Connect button. The window closes, and you see that “Connected” is not longer
displayed in the Database Status section of the Query Builder page.

d. Paste the query into the query window. Click Execute Query. The query is executed on
z/OS. The result is displayed in the Query Builder as shown in Figure 14-16.

Figure 14-16 AlphaBlox Query Builder

418 Enterprise Data Warehousing with DB2 9 for z/OS

Example 14-3 shows the query that we used.

Example 14-3 AlphaBlox sample query

SELECT ORDER_YEAR_VAL, ORDER_QTR_CODE, CUST_NAME, RANK_VAL, TOTAL_QUANT
 FROM
 (SELECT B.ORDER_YEAR_VAL, B.ORDER_QTR_CODE, C.CUST_NAME, RANK()
 OVER (PARTITION BY B.ORDER_QTR_CODE ORDER BY SUM(A.QUANTITY) DESC)
 AS RANK_VAL,
 SUM(A.QUANTITY) AS TOTAL_QUANT
 FROM
 DWHDDS.ORDER_TRANSACTION_FACT AS A
 INNER JOIN DWHDDS.ORDERDATE_DIM_VW AS B ON

A.ORDERDATEKEY = B.ORDERDATEKEY
 INNER JOIN DWHDDS.CUSTOMER_DIM AS C ON

A.CUSTKEY_DW = C.CUSTKEY_DW
 WHERE B.ORDER_YEAR_VAL = 2007
 GROUP BY B.ORDER_YEAR_VAL, B.ORDER_QTR_CODE, C.CUST_NAME)
 AS QTR_RANKING
 WHERE RANK_VAL < 5
 ORDER BY ORDER_QTR_CODE, RANK_VAL

6. Create the Blox and the JSP that displays the Blox. While you are still in the Query Builder,
click the Create Blox button. AlphaBlox creates the Blox for you as shown in Figure 14-17.

Figure 14-17 AlphaBlox Blox builder output

Chapter 14. Reporting with DataQuant, QMF, and AlphaBlox 419

7. Use the text as created to build the JSP file:

a. Add the taglib as first line in the JSP.
b. Add the Blox as created previously.
c. Add the HTLM code to display the Blox.

Example 14-4 shows the complete JSP.

Example 14-4 RedParts JSP

/opt/IBM/WebSphere/AppServer/profiles/AppSrv01/installedApps/lnxdwh1Node01Cell/RedParts.
ear/RedParts.war/PresentBloxView.jsp

<%@ taglib uri="bloxtld" prefix="blox" %>
<blox:present
 id="queryBuilder4_present"
 calculationEditorEnabled="true"
 height="500"
 visible="false"
 width="100%">
 <blox:grid/>
 <blox:chart/>
 <blox:page/>
 <blox:data
 dataSourceName="DWHD912WS"
 onErrorClearResultSet="true"
 query="SELECT ORDER_YEAR_VAL, ORDER_QTR_CODE, CUST_NAME, RANK_VAL, TOTAL_QUANT
 FROM
 (SELECT B.ORDER_YEAR_VAL, B.ORDER_QTR_CODE, C.CUST_NAME, RANK()
 OVER (PARTITION BY B.ORDER_QTR_CODE ORDER BY SUM(A.QUANTITY) DESC)
 AS RANK_VAL,
 SUM(A.QUANTITY) AS TOTAL_QUANT
 FROM
 DWHDDS.ORDER_TRANSACTION_FACT AS A
 INNER JOIN DWHDDS.ORDERDATE_DIM_VW AS B ON
 INNER JOIN DWHDDS.ORDERDATE_DIM_VW AS B ON
 A.ORDERDATEKEY = B.ORDERDATEKEY
 INNER JOIN DWHDDS.CUSTOMER_DIM AS C ON
 A.CUSTKEY_DW = C.CUSTKEY_DW
 WHERE B.ORDER_YEAR_VAL = 2007
 GROUP BY B.ORDER_YEAR_VAL, B.ORDER_QTR_CODE, C.CUST_NAME)
 AS QTR_RANKING
 WHERE RANK_VAL < 5
 ORDER BY ORDER_QTR_CODE, RANK_VAL
"
 useAliases="true"/>
 <blox:toolbar/>
 <blox:dataLayout/>
 <bloxui:calculationEditor />
</blox:present>
<html>
<head>
<blox:header/>
</head>
<body>
<h2>RedParts Distribution Blox</h2>
<p>

420 Enterprise Data Warehousing with DB2 9 for z/OS

<blox:display bloxRef="queryBuilder4_present"/>
</p>
</body>
</html>

After this JSP is completed, the small Web application is finished. To view the JSP, type the
URL in a browser and enter the query. See Figure 14-18.

Figure 14-18 AlphaBlox - Output of RedParts JSP

14.3.4 Recommendations to configure AlphaBlox on Linux on System z

AlphaBlox is an application that executes in the Web server environment. In our
implementation, this is the WebSphere Application Server on Linux on System z. AlphaBlox
comes with a built-in cubing engine, which executes on Linux on System z and provides a
cache for the active cubes. This cache can be enabled and disabled for each cube. If the
cache is enabled, AlphaBlox retrieves the data once by using SQL and Distributed Relational
Database Architecture (DRDA) from z/OS. Any further request to the cube is processed
completely in Linux on System z. If the cache is disabled, each request results in an SQL
query that must be processed by DB2 on z/OS. This has two disadvantages:

� Longer response time
� CPU utilization on z/OS

Chapter 14. Reporting with DataQuant, QMF, and AlphaBlox 421

Therefore, we make the following recommendations:

� Recommendation 1

Activate the cache for each cube, unless there are good reasons why you want to
calculate each cube for each query again.

� Recommendation 2

Because AlphaBlox is a Java application that executes in the Web server environment, the
Web server settings define the execution environment for this application. We found that
the Java maximum heap size should be at least 1563 MB. Figure 14-19 shows the
definition in the WebSphere Administrative Console.

Figure 14-19 WebSphere Administrative Console - Java environment for RedParts application

422 Enterprise Data Warehousing with DB2 9 for z/OS

Part 3 Appendixes

In this part, we provide additional information that supports the contents of this book:

� Appendix A, “Index compression jobs” on page 425
� Appendix B, “Schema definitions” on page 431
� Appendix C, “Additional material” on page 447

Part 3

© Copyright IBM Corp. 2008. All rights reserved. 423

424 Enterprise Data Warehousing with DB2 9 for z/OS

Appendix A. Index compression jobs

In this appendix, we list the jobs that are used for index compression tests. These two
examples are used in 7.1, “Index compression” on page 100.

Example A-1 shows one of the programs that was used for these tests.

Example: A-1 ASM program used for performance evaluation

*--
* SG24-7637-00 performance asm program sample
*--
RED01 CSECT
 TITLE 'Redbook performance'
 SAVE (14,12)
 LR R12,R15
 USING red01,R12,13
 ST R13,SAVEAREA+4
 LA R13,SAVEAREA
 B BEGIN
 EXEC SQL INCLUDE SQLCA
 EXEC SQL INCLUDE SQLDA
*--
BEGIN EQU *
 WTO ' '
 WTO 'Starting program RED01'
*--
* Connect to db2
*--
* Load DSNALI
L_DSNALI DS 0F
 CLC EPDSNALI,BINZERO
 BNE CONNDB2
 LOAD EP=DSNALI
 ST R0,EPDSNALI
 B CONNDB2
* Connect to DB2
CONNDB2 DS 0H
 LA R5,SUBSYSTM
 LA R6,TECB

A

© Copyright IBM Corp. 2008. All rights reserved. 425

 LA R7,SECB
 LA R8,RIBPTR
 L R15,EPDSNALI
 MVC CALLPA(CAFLEN),CAFCALL
 CALL (15), X
 (CONNECT,(5),(R6),(R7),(R8)),VL,MF=(E,CALLPA)
 LTR R15,R15
 BZ OPENDB2
 WTO 'Error when connecting to DB2'
 B PGMEXIT
* Open DB2
OPENDB2 DS 0H
 LA R5,SUBSYSTM
 LA R6,PLANNM
 L R15,EPDSNALI
 MVC CALLPA(CAFLEN),CAFCALL
 CALL (15), X
 (OPEN,(5),(6)),VL,MF=(E,CALLPA)
 LTR R15,R15
 BZ OPENOK
OPENOK DS 0H
*--
* Execute DB2 workload
*--
LOOP1 EQU *

 EXEC SQL X
 DECLARE CUR001 CURSOR FOR X
 select X
 o_orderpriority, X
 count(*) as order_count X
 from orig.orders X
 where X
 o_orderdate >= '1992-01-01' X
 and o_orderdate < '1993-01-04' X
 and exists (X
 select 1 X
 from orig.lineitem X
 where X
 l_orderkey = o_orderkey X
 and l_commitdate < l_receiptdate) X
 group by X
 o_orderpriority X
 order X
 by o_orderpriority

 LA R9,SQLDLEN
 GETMAIN R,LV=(R9)
 LR R9,R1
 USING SQLDSECT,R9

 EXEC SQL OPEN CUR001

FETCH EQU *

 EXEC SQL X
 FETCH CUR001 X
 INTO :DATA001 , :NUMBR01

426 Enterprise Data Warehousing with DB2 9 for z/OS

 CLC SQLCODE,=F'0'
 BNE OUTLOOP2
* Print retrieve data to console
 MVC BUFFER24,blanks
 MVC BUFFER24,DATA001
 MVC WTO002+12(24),BUFFER24
WTO002 WTO ' '
* End print
 B FETCH
OUTLOOP2 EQU *
 L R2,SQLCODE
 CVD R2,AUXP
 UNPK AUXZ,AUXP
 OI AUXZ+7,X'F0'
 MVC TRACE,BLANKS
 MVC TRACE(15),=C'End SQL CODE :'
 MVC TRACE+16(8),AUXZ
 MVC BUFFER24,TRACE
 MVC WTO003+12(24),BUFFER24
WTO003 WTO '--> '

 EXEC SQL CLOSE CUR001

*--
* End program
*--
PGMEXIT EQU *
 WTO 'Closing PGM RED01'
 WTO ' '
 L R13,SAVEAREA+4
 RETURN (14,12),RC=0
*--
* Definitions
*--
EPDSNALI DC A(0)
BINZERO DC F'0'
SUBSYSTM DC CL4'D912'
PLANNM DC CL8'RED01 '
CONNECT DC CL12'CONNECT '
OPEN DC CL12'OPEN '
DISC DC CL12'DISCONNECT '
CALLPA DS 0F
 CALL ,(*,*,*,*,*),VL,MF=L
CAFCALL CALL ,(*,*,*,*,*),VL,MF=L
CAFLEN EQU *-CAFCALL
TECB DS F
SECB DS F
RIBPTR DS F
CALLING DS F
SAVE_R1 DS F
SAVE_R15 DS F
SAVE_R0 DS F
BUFFER24 ds cl24
AUXP DS PL8
AUXZ DS ZL8
DATA001 DS CL18
DATA002 DS CL18
NUMBR01 DS PL8
NUMBR02 DS PL8
TRACE DS CL80

Appendix A. Index compression jobs 427

BLANKS DC 80C' '
SAVEAREA DS 18F
*--
SQLAREA EQU *-SQLDSECT
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
 END

Example A-2 shows the JCL for assembly, bind, and execution.

Example: A-2 JCL sample for assembly, bind and execution of performance model program

//CRISDRED JOB (),'JOB HERE'....
//*--
//* CHANGE RED01 BY PGM NAME
//*---
//* DB2 PRECOMPILATION
//*---
//DB2PRE EXEC PGM=DSNHPC,PARM='HOST(ASM),SOURCE,APOST
// VERSION(),ATTACH(CAF)'
//STEPLIB DD DSN=SYS1.SCEELKED,DISP=SHR
// DD DSN=SYS1.DSN.V910.SDSNEXIT,DISP=SHR
// DD DSN=SYS1.DSN.V910.SDSNLINK,DISP=SHR
// DD DSN=SYS1.DSN.V910.SDSNLOAD,DISP=SHR
// DD DSN=SYS1.DSN.V910.SDXRRESL,DISP=SHR
//DBRMLIB DD DSN=CRIS.UTIL.ASM.DBRM(RED01),DISP=(OLD,PASS),
// DCB=(RECFM=FB,LRECL=80),SPACE=(TRK,(2,2,4),RLSE)
//SYSPRINT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSUT1 DD SPACE=(CYL,(1,1)),UNIT=VIO
//SYSUT2 DD SPACE=(CYL,(1,1)),UNIT=VIO
//SYSIN DD DSN=CRIS.UTIL.ASM(RED01),DISP=SHR
//SYSCIN DD DSN=&&OUTDB2,DISP=(MOD,PASS),
// SPACE=(CYL,(5,1)),UNIT=VIO
//*---
//* PRINT OUTPUT DB2 PRECOMPILER
//*---
//* IF (RC LE 0) THEN
//PRINTSRC EXEC PGM=IEBGENER
//SYSPRINT DD DUMMY
//SYSUT1 DD DSN=&&OUTDB2,DISP=(OLD,PASS)
//SYSUT2 DD SYSOUT=*
//SYSIN DD DUMMY
//* ENDIF
//*---

428 Enterprise Data Warehousing with DB2 9 for z/OS

// IF (RC LE 4) THEN
//AASM EXEC PGM=ASMA90,PARM=(OBJECT,NODECK)
//SYSLIB DD DSN=CRIS.UTIL.ASM,DISP=SHR
// DD DSN=SYS1.SCEEMAC,DISP=SHR
// DD DSN=SYS1.SCEESAMP,DISP=SHR
// DD DSN=SYS1.MACLIB,DISP=SHR
//SYSUT1 DD UNIT=3390,SPACE=(TRK,(5,15))
//SYSUT2 DD UNIT=3390,SPACE=(TRK,(5,15))
//SYSUT3 DD UNIT=3390,SPACE=(TRK,(5,15))
//SYSLIN DD DSN=&LOADSET,DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(80,(8000,5000))
//SYSPRINT DD SYSOUT=*,
// DCB=(RECFM=FB,LRECL=121,BLKSIZE=2420)
//SYSUT1 DD DSN=&SYSUT1,UNIT=SYSDA,
// SPACE=(1024,(200,50),,CONTIG,ROUND),DCB=BLKSIZE=1024
//* SOURCE FOLDER
//SYSIN DD DSN=&&OUTDB2,DISP=SHR
// ENDIF
//*---
// IF (RC LE 4) THEN
//LKED EXEC PGM=IEWL,COND=(8,LT),
// PARM='SIZE=(4096K,512K),XREF,AMODE=31,RMODE=ANY'
//SYSLIB DD DSN=SYS1.SCEELKED,DISP=SHR
// DD DSN=SYS1.DSN.V910.SDSNEXIT,DISP=SHR
// DD DSN=SYS1.DSN.V910.SDSNLINK,DISP=SHR
// DD DSN=SYS1.DSN.V910.SDSNLOAD,DISP=SHR
// DD DSN=SYS1.DSN.V910.SDXRRESL,DISP=SHR
//SYSUT1 DD DSN=&SYSUT1,UNIT=SYSDA,
// SPACE=(1024,(200,50),,CONTIG,ROUND),DCB=BLKSIZE=1024
//* MODULE PDS
//SYSLMOD DD DSN=CRIS.UTIL.ASM.MOD(RED01),DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DSN=&LOADSET,DISP=(OLD,DELETE)
// ENDIF
//*---
//* BIND
//*---
// IF (RC LE 4) THEN
//BINDPK EXEC PGM=IKJEFT1A
//STEPLIB DD DSN=SYS1.SCEELKED,DISP=SHR
// DD DSN=SYS1.DSN.V910.SDSNEXIT,DISP=SHR
// DD DSN=SYS1.DSN.V910.SDSNLINK,DISP=SHR
// DD DSN=SYS1.DSN.V910.SDSNLOAD,DISP=SHR
// DD DSN=SYS1.DSN.V910.SDXRRESL,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//DBRMLIB DD DSN=CRIS.UTIL.ASM.DBRM(RED01),DISP=SHR
//SYSTSIN DD *
 DSN SYSTEM(D912)

 BIND PLAN(REDBOOK) -
 QUAL(CRIS) -
 OWNER(CRIS) -
 PKL(*.CRIS.*) -
 NODEFER(PREPARE) -
 VALID(R) -
 ISOL(UR)

 BIND PACKAGE (CRIS) -

Appendix A. Index compression jobs 429

 OWNER(CRIS) -
 QUALIFIER(CRIS) -
 MEMBER(RED01) -
 SQLERROR(NOPACKAGE) -
 VALIDATE(BIND) -
 FLAG(I) -
 ISOLATION(CS) -
 RELEASE(COMMIT) -
 EXPLAIN(YES) -
 CURRENTDATA(NO) -
 DYNAMICRULES(BIND) -
 ACTION(REPLACE)
/*
// ENDIF
//*---
//* EXECUTE
//*---
// IF (RC LE 4) THEN
//EXECUTE EXEC PGM=RED01,PARM=('D912,REDBOOK')
//STEPLIB DD DSN=CRIS.UTIL.ASM.MOD,DISP=SHR
// DD DSN=SYS1.DSN.D912.SDSNEXIT,DISP=SHR
// DD DSN=SYS1.DSN.V910.SDSNEXIT,DISP=SHR
// DD DSN=SYS1.DSN.V910.SDSNLINK,DISP=SHR
// DD DSN=SYS1.DSN.V910.SDSNLOAD,DISP=SHR
// DD DSN=SYS1.DSN.V910.SDXRRESL,DISP=SHR
//SYSPRINT DD SYSOUT=*
// ENDIF

430 Enterprise Data Warehousing with DB2 9 for z/OS

Appendix B. Schema definitions

In this appendix, we provide details about the schema definitions that are used in the
transactional and data warehouse environments. This appendix includes the following
sections:

� Appendix B.1, “Schema definition for the transactional database” on page 432
� Appendix B.2, “Schema definition for the data warehouse database” on page 437

The Data Definition Language (DDL) statements for both schema definitions are also
available for download as explained in Appendix C, “Additional material” on page 447.

B

© Copyright IBM Corp. 2008. All rights reserved. 431

B.1 Schema definition for the transactional database

Example B-1 shows the data definition file that we use to create the transactional data model
in DB2 z/OS that we describe in 5.4, “The transactional data model” on page 78. The script
contains drop table statements before each definition that deletes table definitions before it
recreates them with each run.

Example: B-1 Schema definition for the transactional system

-- Create schema for OLTP_B system (branches)

-- O R D E R S

DROP TABLE OLTP_B.ORDER;

CREATE TABLE OLTP_B.ORDER
(
 ORDER_KEY INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY(START WITH 2001, INCREMENT BY 2
CACHE 100),
 CUST_KEY INTEGER,
 STATUS CHAR(1),
 TOTALPRICE DECIMAL(12,2),
 ORDERDATE DATE,
 ORDERPRIORITY CHAR(15),
 CLERK CHAR(15),
 BRANCHKEY INTEGER,
 PRIMARY KEY(ORDER_KEY)
)
IN DBOLTP.TSORDERS ;

GRANT ALL ON TABLE OLTP_B.ORDER TO PUBLIC;

CREATE UNIQUE INDEX OLTP_B.XORDER on OLTP_B.ORDER
(
 ORDER_KEY
)
BUFFERPOOL BP1 ;

-- S H I P M E N T

DROP TABLE OLTP_B.SHIPMENT;

CREATE TABLE OLTP_B.SHIPMENT
(
 ORDER_KEY INTEGER NOT NULL,
 SHIPPRIORITY INTEGER,
 SHIPDATE DATE,
 COMMITDATE DATE,
 RECEIPTDATE DATE,
 SHIPINSTRUCT CHAR(25),
 SHIPMODE CHAR(10),
 PRIMARY KEY(ORDER_KEY)
)
IN DBOLTP.TSSHIP;

GRANT ALL ON TABLE OLTP_B.SHIPMENT TO PUBLIC;

432 Enterprise Data Warehousing with DB2 9 for z/OS

CREATE UNIQUE INDEX OLTP_B.XSHIP ON OLTP_B.SHIPMENT
(
 ORDER_KEY
)
BUFFERPOOL BP1 ;

-- L I N E I T E M

DROP TABLE OLTP_B.LINEITEM;

CREATE TABLE OLTP_B.LINEITEM
(
 ORDER_KEY INTEGER NOT NULL,
 PART_KEY INTEGER,
 SUPP_KEY INTEGER,
 LINENUMBER INTEGER,
 QUANTITY DECIMAL(12,2),
 EXTENDEDPRICE DECIMAL(12,2),
 DISCOUNT DECIMAL(12,2),
 TAX DECIMAL(12,2),
 RETURNFLAG CHAR(1),
 LINESTATUS CHAR(1)
)
IN DBOLTP.TSLINEIT;

GRANT ALL ON TABLE OLTP_B.LINEITEM TO PUBLIC;

CREATE INDEX OLTP_B.XLINEITEM ON OLTP_B.LINEITEM
(
 ORDER_KEY
)
BUFFERPOOL BP1;

-- Create schema for OLTP_W system (web orders)

-- O R D E R S

DROP TABLE OLTP_W.ORDER;

CREATE TABLE OLTP_W.ORDER
(
 ORDER_KEY INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY(START WITH 2000, INCREMENT BY 2,
CACHE 100),
 CUST_KEY INTEGER,
 STATUS CHAR(1),
 TOTALPRICE DECIMAL(12,2),
 ORDERDATE DATE,
 ORDERPRIORITY CHAR(15),
 CLERK CHAR(15),
 BRANCHKEY INTEGER,
 PRIMARY KEY(ORDER_KEY)
)
IN DBOLTP.TSORDERS ;

Appendix B. Schema definitions 433

GRANT ALL ON TABLE OLTP_W.ORDER TO PUBLIC;

CREATE UNIQUE INDEX OLTP_W.XORDER on OLTP_W.ORDER
(
 ORDER_KEY
)
BUFFERPOOL BP1 ;

-- S H I P M E N T

DROP TABLE OLTP_W.SHIPMENT;

CREATE TABLE OLTP_W.SHIPMENT
(
 ORDER_KEY INTEGER NOT NULL,
 SHIPPRIORITY INTEGER,
 COMMITDATE DATE,
 SHIPDATE DATE,
 RECEIPTDATE DATE,
 SHIPINSTRUCT CHAR(25),
 SHIPMODE CHAR(10),
 PRIMARY KEY(ORDER_KEY)
)
IN DBOLTP.TSSHIP;

GRANT ALL ON TABLE OLTP_W.SHIPMENT TO PUBLIC;

CREATE UNIQUE INDEX OLTP_W.XSHIP ON OLTP_W.SHIPMENT
(
 ORDER_KEY
)
BUFFERPOOL BP1 ;

-- L I N E I T E M

DROP TABLE OLTP_W.LINEITEM;

CREATE TABLE OLTP_W.LINEITEM
(
 ORDER_KEY INTEGER NOT NULL,
 PART_KEY INTEGER,
 SUPP_KEY INTEGER,
 LINENUMBER INTEGER,
 QUANTITY DECIMAL(12,2),
 EXTENDEDPRICE DECIMAL(12,2),
 DISCOUNT DECIMAL(12,2),
 TAX DECIMAL(12,2),
 RETURNFLAG CHAR(1),
 LINESTATUS CHAR(1)
)
IN DBOLTP.TSLINEIT;

GRANT ALL ON TABLE OLTP_W.LINEITEM TO PUBLIC;

CREATE INDEX OLTP_W.XLINEITEM ON OLTP_W.LINEITEM
(
 ORDER_KEY

434 Enterprise Data Warehousing with DB2 9 for z/OS

)
BUFFERPOOL BP1;

-- Create schema for OLTP Customer/Parts/Supplier

-- C U S T O M E R

DROP TABLE OLTP.CUSTOMER;

CREATE TABLE OLTP.CUSTOMER
(
 CUST_KEY INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY(START WITH 1001 INCREMENT BY 2,
CACHE 100),
 NAME VARCHAR(25),
 ADDRESS VARCHAR(40),
 COUNTRY CHAR(25),
 PHONE CHAR(15),
 ACCTBAL DECIMAL(12,2),
 MKTSEGMENT CHAR(10),
 PRIMARY KEY (CUST_KEY)
)
IN DBOLTP.TSCUSTOM;

GRANT ALL ON TABLE OLTP.CUSTOMER TO PUBLIC;

CREATE UNIQUE INDEX OLTP.XCUST ON OLTP.CUSTOMER
(
 CUST_KEY
)
BUFFERPOOL BP1;

-- P A R T

DROP TABLE OLTP.PART;

CREATE TABLE OLTP.PART
(
 P_PARTKEY INTEGER NOT NULL,
 P_NAME VARCHAR(55),
 P_MFGR CHAR(25),
 P_BRAND CHAR(10),
 P_TYPE VARCHAR(25),
 P_SIZE INTEGER,
 P_CONTAINER CHAR(10),
 P_RETAILPRICE DECIMAL(12,2),
 PRIMARY KEY(P_PARTKEY)
)
IN DBOLTP.TSPART;

GRANT ALL ON TABLE OLTP.PART TO PUBLIC;

CREATE UNIQUE INDEX OLTP.XPART ON OLTP.PART
(
 P_PARTKEY
)

Appendix B. Schema definitions 435

BUFFERPOOL BP1;

-- P A R T S U P P

DROP TABLE OLTP.PARTSUPP;

CREATE TABLE OLTP.PARTSUPP
(
 ps_partkey integer not null,
 ps_suppkey integer not null,
 ps_availqty integer,
 ps_supplycost decimal(12,2)
)
IN DBOLTP.TSPARTSU;

GRANT ALL ON TABLE OLTP.PARTSUPP TO PUBLIC;

CREATE INDEX OLTP.XPARTSU ON OLTP.PARTSUPP
(

PS_PARTKEY, PS_SUPPKEY
)
BUFFERPOOL BP1;

-- S U P P L I E R

DROP TABLE OLTP.SUPPLIER;

CREATE TABLE OLTP.SUPPLIER
(
 S_SUPPKEY INTEGER NOT NULL,
 S_NAME CHAR(25),
 S_ADDRESS VARCHAR(40),
 S_NATIONKEY INTEGER,
 S_PHONE CHAR(15),
 S_ACCTBAL DECIMAL(12,2),
 PRIMARY KEY(S_SUPPKEY)
)
IN DBOLTP.TSSUPP;

GRANT ALL ON TABLE OLTP.SUPPLIER TO PUBLIC;

CREATE UNIQUE INDEX OLTP.XSUPP ON OLTP.SUPPLIER
(
 S_SUPPKEY
)
BUFFERPOOL BP1;

-- N A T I O N

DROP TABLE OLTP.NATION;

CREATE TABLE OLTP.NATION
(
 n_nationkey integer not null,
 n_name char(25),
 n_regionkey integer,

436 Enterprise Data Warehousing with DB2 9 for z/OS

 n_comment varchar(152),
 primary key(n_nationkey)
)
in DBOLTP.TSNATION;

GRANT ALL ON TABLE OLTP.NATION TO PUBLIC;

CREATE UNIQUE INDEX OLTP.XNATION1 ON OLTP.NATION
(
 n_nationkey
)
BUFFERPOOL BP1;

CREATE UNIQUE INDEX OLTP.XNATION2 ON OLTP.NATION
(
 N_NAME
)
BUFFERPOOL BP1;

-- R E G I O N

DROP TABLE OLTP.REGION;

CREATE TABLE OLTP.REGION
(
 R_REGIONKEY INTEGER NOT NULL,
 R_NAME CHAR(25),
 R_COMMENT VARCHAR(152),
 PRIMARY KEY(R_REGIONKEY)
)
in DBOLTP.TSREGION ;

GRANT ALL ON TABLE OLTP.REGION TO PUBLIC;

CREATE UNIQUE INDEX OLTP.XREGION ON OLTP.REGION
(
 R_REGIONKEY
)
BUFFERPOOL BP1;

B.2 Schema definition for the data warehouse database

Example B-2 shows the data definition file that we use to create the operational data store
(ODS) of the data warehouse data model in DB2 z/OS that we describe in 5.5, “The
operational and dimensional data model” on page 85. Notice the use of the DROP statement for
recreation.

Example: B-2 ODS schema definitions

SET CURRENT_SCHEMA = DWHODS;

-- CUSTOMER

DROP TABLE DWHODS.CUSTOMER;
CREATE TABLE DWHODS.CUSTOMER
(
C_CUSTKEY INTEGER NOT NULL,

Appendix B. Schema definitions 437

C_NAME VARCHAR(25),
C_ADDRESS VARCHAR(40),
C_NATIONKEY INTEGER,
C_PHONE CHAR(15),
C_ACCTBAL DECIMAL(12,2),
C_MKTSEGMENT CHAR(10),
C_COMMENT VARCHAR(117),
C_LAST_UPDATE TIMESTAMP NOT NULL WITH DEFAULT,
PRIMARY KEY (C_CUSTKEY)
)
IN DBTENGB.TSCUSTOM;

CREATE UNIQUE INDEX DWHODS.IX_CUSTOMER
 ON CUSTOMER (C_CUSTKEY) USING STOGROUP TENGB;

-- ORDERS

DROP TABLE DWHODS.ORDERS;
CREATE TABLE DWHODS.ORDERS
(
O_ORDERKEY INTEGER NOT NULL,
O_CUSTKEY INTEGER,
O_ORDERSTATUS CHAR(1),
O_TOTALPRICE DECIMAL(12,2),
O_ORDERDATE DATE,
O_ORDERPRIORITY CHAR(15),
O_CLERK CHAR(15),
O_SHIPPRIORITY INTEGER,
O_COMMENT VARCHAR(79),
O_LAST_UPDATE TIMESTAMP NOT NULL WITH DEFAULT,
O_BRANCHKEY INTEGER,
O_SOURCEKEY CHAR(1) NOT NULL,
PRIMARY KEY(O_ORDERKEY,O_SOURCEKEY)
) IN DBTENGB.TSORDERS ;

CREATE UNIQUE INDEX DWHODS.IX_ORDERS
 ON ORDERS (O_ORDERKEY) USING STOGROUP TENGB;

-- NATION_LOOKUP

DROP TABLE DWHODS.NATION_LOOKUP;
CREATE TABLE DWHODS.NATION_LOOKUP
(
N_NATIONKEY INTEGER NOT NULL,
N_NAME CHAR(25),
N_REGIONKEY INTEGER,
N_COMMENT VARCHAR(152),
N_LAST_UPDATE TIMESTAMP NOT NULL WITH DEFAULT,
PRIMARY KEY(N_NATIONKEY)
)
IN DBTENGB.TSNATION ;

CREATE UNIQUE INDEX DWHODS.IX_NATION_LOOKUP
 ON NATION_LOOKUP (N_NATIONKEY) USING STOGROUP TENGB;

-- BRANCH_LOOKUP

DROP TABLE DWHODS.BRANCH_LOOKUP;

438 Enterprise Data Warehousing with DB2 9 for z/OS

CREATE TABLE DWHODS.BRANCH_LOOKUP
 (B_BRANCHKEY INTEGER NOT NULL,
 B_REGIONKEY INTEGER,
 B_NATIONKEY INTEGER,
 B_BRANCH_TYPE VARCHAR(15),
 B_BRANCH_NAME VARCHAR(25),
 B_LAST_UPDATE TIMESTAMP NOT NULL WITH DEFAULT ,
 PRIMARY KEY (B_BRANCHKEY)
) IN DBTENGB.TSBRNHLK;

CREATE UNIQUE INDEX DWHODS.IX_BRANCH_LOOKUP
 ON BRANCH_LOOKUP (B_BRANCHKEY) USING STOGROUP TENGB;

-- REGION_LOOKUP

DROP TABLE DWHODS.REGION_LOOKUP;
CREATE TABLE DWHODS.REGION_LOOKUP
(
R_REGIONKEY INTEGER NOT NULL,
R_NAME CHAR(25),
R_COMMENT VARCHAR(152),
R_LAST_UPDATE TIMESTAMP NOT NULL WITH DEFAULT,
PRIMARY KEY (R_REGIONKEY)
)
IN DBTENGB.TSREGION ;

CREATE UNIQUE INDEX DWHODS.IX_REGION_LOOKUP
 ON REGION_LOOKUP (R_REGIONKEY) USING STOGROUP TENGB;

-- LINEITEM

DROP TABLE DWHODS.LINEITEM;
CREATE TABLE DWHODS.LINEITEM
(
L_ORDERKEY INTEGER NOT NULL,
L_PARTKEY INTEGER,
L_SUPPKEY INTEGER,
L_LINENUMBER INTEGER NOT NULL,
L_QUANTITY DECIMAL(12,2),
L_EXTENDEDPRICE DECIMAL(12,2),
L_DISCOUNT DECIMAL(12,2),
L_TAX DECIMAL(12,2),
L_RETURNFLAG CHAR(1),
L_LINESTATUS CHAR(1),
L_SHIPDATE DATE,
L_COMMITDATE DATE,
L_RECEIPTDATE DATE,
L_SHIPINSTRUCT CHAR(25),
L_SHIPMODE CHAR(10),
L_COMMENT VARCHAR(44),
L_LAST_UPDATE TIMESTAMP NOT NULL WITH DEFAULT,
L_SOURCEKEY CHAR(1) NOT NULL,
PRIMARY KEY(L_ORDERKEY,L_LINENUMBER,L_SOURCEKEY)
) IN DBTENGB.TSLINEIT ;

CREATE UNIQUE INDEX DWHODS.IX_LINEITEM
 ON LINEITEM(L_ORDERKEY) USING STOGROUP TENGB;

-- STATUS_LOOKUP

Appendix B. Schema definitions 439

DROP TABLE DWHODS.STATUS_LOOKUP;
CREATE TABLE DWHODS.STATUS_LOOKUP
 (ST_STATUSKEY CHAR(1) NOT NULL,
 ST_STATUS_DESC VARCHAR(40),
 ST_LAST_UPDATE TIMESTAMP NOT NULL WITH DEFAULT,
 PRIMARY KEY (ST_STATUSKEY)
) IN DBTENGB.TSSTATLK;

CREATE UNIQUE INDEX DWHODS.IX_STATUS_LOOKUP
 ON STATUS_LOOKUP (ST_STATUSKEY) USING STOGROUP TENGB;

-- SUPPLIER

DROP TABLE DWHODS.SUPPLIER;
CREATE TABLE DWHODS.SUPPLIER
(
S_SUPPKEY INTEGER NOT NULL CONSTRAINT PRI PRIMARY KEY,
S_NAME CHAR(25),
S_ADDRESS VARCHAR(40),
S_NATIONKEY INTEGER,
S_PHONE CHAR(15),
S_ACCTBAL DECIMAL(12,2),
S_COMMENT VARCHAR(101),
S_LAST_UPDATE TIMESTAMP NOT NULL WITH DEFAULT
)
IN DBTENGB.TSSUPPLI ;

CREATE UNIQUE INDEX DWHODS.IX_SUPPLIER
 ON SUPPLIER (S_SUPPKEY) USING STOGROUP TENGB;

-- PART

DROP TABLE DWHODS.PART;
CREATE TABLE DWHODS.PART
(
P_PARTKEY INTEGER NOT NULL CONSTRAINT PRI PRIMARY KEY,
P_NAME VARCHAR(55),
P_MFGR CHAR(25),
P_BRAND CHAR(10),
P_TYPE VARCHAR(25),
P_SIZE INTEGER,
P_CONTAINER CHAR(10),
P_RETAILPRICE DECIMAL(12,2),
P_COMMENT VARCHAR(23),
P_LAST_UPDATE TIMESTAMP NOT NULL WITH DEFAULT
)
 PARTITION BY RANGE (P_PARTKEY)
(PARTITION 1 ENDING AT (1250),
 PARTITION 2 ENDING AT (2500),
 PARTITION 3 ENDING AT (3750),
PARTITION 3 ENDING AT (3750),
 PARTITION 4 ENDING AT (4000),
 PARTITION 5 ENDING AT (5250),
 PARTITION 6 ENDING AT (6500),
 PARTITION 7 ENDING AT (7750),
 PARTITION 8 ENDING AT (8000),
 PARTITION 9 ENDING AT (9250),
 PARTITION 10 ENDING AT (10500))
 IN DBTENGB.TSPART ;

440 Enterprise Data Warehousing with DB2 9 for z/OS

CREATE UNIQUE INDEX DWHODS.IX_PARTKEY
 ON PART (P_PARTKEY) USING STOGROUP TENGB;

-- PART SUPPLIER

DROP TABLE DWHODS.PARTSUPP;
CREATE TABLE DWHODS.PARTSUPP
(
PS_PARTKEY INTEGER NOT NULL,
PS_SUPPKEY INTEGER NOT NULL,
PS_AVAILQTY INTEGER,
PS_SUPPLYCOST DECIMAL(12,2),
PS_COMMENT VARCHAR(199),
PS_LAST_UPDATE TIMESTAMP NOT NULL WITH DEFAULT,
PRIMARY KEY(PS_PARTKEY,PS_SUPPKEY)
)
IN DBTENGB.TSPARTSU ;

CREATE UNIQUE INDEX DWHODS.IX_PARTSUPP
 ON PARTSUPP (PS_PARTKEY,PS_SUPPKEY) USING STOGROUP TENGB;

Example B-3 shows the data definition file that we use to create the DDS of the data
warehouse data model in DB2 z/OS that we describe in Chapter 6, “The system environment”
on page 91.

Example: B-3 DDS schema definitions

SET CURRENT_SCHEMA = DWHDDS;

-- ORDER STATUS DIMENSION

CREATE TABLE DWHDDS.ORDER_STATUS_DIM
 (STATUSKEY_DW INTEGER NOT NULL,
 ORDER_RETURNFLAG CHAR(1),
 ORDER_LINESTATUS CHAR(1),
 ORDER_LINESTATUS_DESC VARCHAR(15),
 ORDER_SHIP_PRIORITY INTEGER,
 ORDER_SHIPMODE CHAR(10),
 ORDER_SHIPINSTRUCT CHAR(23),
 ORDER_PRIORITY CHAR(11),
 ORDER_STATUS CHAR(1),
 ORDER_STATUS_DESC VARCHAR(15),
 LAST_UPDATE TIMESTAMP NOT NULL WITH DEFAULT,
 PRIMARY KEY (STATUSKEY_DW)
) IN DBTENGB.TSORSTDM;

CREATE UNIQUE INDEX IX_STATUSKEY_DW
 ON ORDER_STATUS_DIM (STATUSKEY_DW) USING STOGROUP TENGB;

-- CUSTOMER DIMENSION

CREATE TABLE DWHDDS.CUSTOMER_DIM
 (CUSTKEY_DW INTEGER NOT NULL,
 CUST_NAME VARCHAR(25),
 CUST_ADDRESS VARCHAR(40),
 CUST_PHONE CHAR(15),
 CUST_NATION_NAME VARCHAR(25),
 CUST_REGION_NAME VARCHAR(25),
 CUST_MKTSEGMENT CHAR(10),
 CUST_KEY_SRC INTEGER,

Appendix B. Schema definitions 441

 SCD_EFFECTIVE_DT TIMESTAMP,
 SCD_END_DT TIMESTAMP,
 SCD_RECENTFLAG CHAR(1),
 LAST_UPDATE TIMESTAMP NOT NULL WITH DEFAULT,
 PRIMARY KEY (CUSTKEY_DW)
) IN DBTENGB.TSCUSTDM;

CREATE UNIQUE INDEX IX_CUSTKEY
 ON CUSTOMER_DIM (CUSTKEY_DW) USING STOGROUP TENGB;

-- BRANCH DIMENSION

CREATE TABLE DWHDDS.BRANCH_DIM
 (BRANCHKEY_DW INTEGER NOT NULL,
 BRANCH_REGION_NAME VARCHAR(25),
 BRANCH_NATION_NAME VARCHAR(25),
 BRANCH_TYPE VARCHAR(15),
 BRANCH_NAME VARCHAR(25),
 BRANCH_KEY_SRC INTEGER,
 LAST_UPDATE TIMESTAMP NOT NULL WITH DEFAULT,
 PRIMARY KEY (BRANCHKEY_DW)
) IN DBTENGB.TSBRNHDM;

CREATE UNIQUE INDEX DWHDDS.IX_BRANCHKEY_DW
 ON BRANCH_DIM (BRANCHKEY_DW) USING STOGROUP TENGB;

-- DATE DIMENSION

CREATE TABLE DWHDDS.DATE_DIM
 (DATEKEY_DW INTEGER NOT NULL,
 DATE_VAL DATE,
 DAY_YEAR_VAL SMALLINT,
 DAY_MONTH_VAL SMALLINT,
 DAY_WEEK_VAL SMALLINT,
 DAY_WEEK_CODE CHAR(3),
 DAY_WEEK_DESC VARCHAR(9),
 WEEKDAY_IND CHAR(1),
 WEEK_VAL SMALLINT,
 WEEK_START_DATE_VAL DATE,
 MONTH_VAL SMALLINT,
 MONTH_CODE CHAR(3),
 MONTH_DESC VARCHAR(9),
 QTR_VAL SMALLINT,
 QTR_CODE CHAR(4),
 YEAR_VAL SMALLINT,

LAST_UPDATE TIMESTAMP NOT NULL WITH DEFAULT,
 PRIMARY KEY (DATEKEY_DW)
) IN DBTENGB.TSDATEDM;

CREATE UNIQUE INDEX IX_DATEKEY_DW
 ON DATE_DIM (DATEKEY_DW) USING STOGROUP TENGB;

CREATE VIEW DWHDDS.RECEIPTDATE_DIM_VW AS
SELECT DATEKEY_DW AS RECEIPTDATEKEY,
 DATE_VAL AS RECEIPT_DATE_VAL,
 DAY_YEAR_VAL AS RECEIPT_DAY_YEAR_VAL,
 DAY_MONTH_VAL AS RECEIPT_DAY_MONTH_VAL,
 DAY_WEEK_VAL AS RECEIPT_DAY_WEEK_VAL,

442 Enterprise Data Warehousing with DB2 9 for z/OS

 DAY_WEEK_CODE AS RECEIPT_DAY_WEEK_CODE,
 DAY_WEEK_DESC AS RECEIPT_DAY_WEEK_DESC,
 WEEKDAY_IND AS RECEIPT_WEEKDAY_IND,
 WEEK_VAL AS RECEIPT_WEEK_VAL,
 WEEK_START_DATE_VAL AS RECEIPT_WEEK_START_DATE_VAL,
 MONTH_VAL AS RECEIPT_MONTH_VAL,
 MONTH_CODE AS RECEIPT_MONTH_CODE,
 MONTH_DESC AS RECEIPT_MONTH_DESC,
 QTR_VAL AS RECEIPT_QTR_VAL,
QTR_CODE AS RECEIPT_QTR_CODE,
YEAR_VAL AS RECEIPT_YEAR_VAL,
LAST_UPDATE AS LAST_UPDATE
FROM DATE_DIM;

 CREATE VIEW DWHDDS.ORDERDATE_DIM_VW AS
 SELECT DATEKEY_DW AS ORDERDATEKEY,
 DATE_VAL AS ORDER_DATE_VAL,
 DAY_YEAR_VAL AS ORDER_DAY_YEAR_VAL,
 DAY_MONTH_VAL AS ORDER_DAY_MONTH_VAL,
 DAY_WEEK_VAL AS ORDER_DAY_WEEK_VAL,
 DAY_WEEK_CODE AS ORDER_DAY_WEEK_CODE,
 DAY_WEEK_DESC AS ORDER_DAY_WEEK_DESC,
 WEEKDAY_IND AS ORDER_WEEKDAY_IND,
 WEEK_VAL AS ORDER_WEEK_VAL,
 WEEK_START_DATE_VAL AS ORDER_WEEK_START_DATE_VAL,
 MONTH_VAL AS ORDER_MONTH_VAL,
 MONTH_CODE AS ORDER_MONTH_CODE,
 MONTH_DESC AS ORDER_MONTH_DESC,
 QTR_VAL AS ORDER_QTR_VAL,
 QTR_CODE AS ORDER_QTR_CODE,
 YEAR_VAL AS ORDER_YEAR_VAL,
 LAST_UPDATE AS LAST_UPDATE
 FROM DWHDDS.DATE_DIM;

 CREATE VIEW DWHDDS.SHIPDATE_DIM_VW AS
 SELECT DATEKEY_DW AS SHIPDATEKEY,
 DATE_VAL AS SHIP_DATE_VAL,
 DAY_YEAR_VAL AS SHIP_DAY_YEAR_VAL,
 DAY_MONTH_VAL AS SHIP_DAY_MONTH_VAL,
 DAY_WEEK_VAL AS SHIP_DAY_WEEK_VAL,
 DAY_WEEK_CODE AS SHIP_DAY_WEEK_CODE,
 DAY_WEEK_DESC AS SHIP_DAY_WEEK_DESC,
 WEEKDAY_IND AS SHIP_WEEKDAY_IND,
 WEEK_VAL AS SHIP_WEEK_VAL,
 WEEK_START_DATE_VAL AS SHIP_WEEK_START_DATE_VAL,
 MONTH_VAL AS SHIP_MONTH_VAL,
 MONTH_CODE AS SHIP_MONTH_CODE,
 MONTH_DESC AS SHIP_MONTH_DESC,
 QTR_VAL AS SHIP_QTR_VAL,
 QTR_CODE AS SHIP_QTR_CODE,
 YEAR_VAL AS SHIP_YEAR_VAL,
 LAST_UPDATE AS LAST_UPDATE
FROM DWHDDS.DATE_DIM;

CREATE VIEW DWHDDS.COMMITDATE_DIM_VW AS
SELECT DATEKEY_DW AS COMMITDATEKEY,
 DATE_VAL AS COMMIT_DATE_VAL,
 DAY_YEAR_VAL AS COMMIT_DAY_YEAR_VAL,
 DAY_MONTH_VAL AS COMMIT_DAY_MONTH_VAL,
 DAY_WEEK_VAL AS COMMIT_DAY_WEEK_VAL,

Appendix B. Schema definitions 443

 DAY_WEEK_CODE AS COMMIT_DAY_WEEK_CODE,
 DAY_WEEK_DESC AS COMMIT_DAY_WEEK_DESC,
 WEEKDAY_IND AS COMMIT_WEEKDAY_IND,
 WEEK_VAL AS COMMIT_WEEK_VAL,
 WEEK_START_DATE_VAL AS COMMIT_WEEK_START_DATE_VAL,
 MONTH_VAL AS COMMIT_MONTH_VAL,
 MONTH_CODE AS COMMIT_MONTH_CODE,
 MONTH_DESC AS COMMIT_MONTH_DESC,
 QTR_VAL AS COMMIT_QTR_VAL,
 QTR_CODE AS COMMIT_QTR_CODE,
 YEAR_VAL AS COMMIT_YEAR_VAL,
 LAST_UPDATE AS LAST_UPDATE
 FROM DATE_DIM;

-- SUPPLIER DIMENSION

CREATE TABLE DWHDDS.SUPPLIER_DIM
 (SUPPKEY_DW INTEGER NOT NULL,
 SUPP_NAME CHAR(25),
 SUPP_ADDRESS VARCHAR(40),
 SUPP_REGION_NAME VARCHAR(25),
 SUPP_NATION_NAME VARCHAR(25),
 SUPP_PHONE CHAR(15),
 SUPP_KEY_SRC INTEGER,
 LAST_UPDATE TIMESTAMP NOT NULL WITH DEFAULT,
 PRIMARY KEY (SUPPKEY_DW)
) IN DBTENGB.TSSUPPDM;

CREATE UNIQUE INDEX IX_SUPPKEY_DW
 ON SUPPLIER_DIM (SUPPKEY_DW) USING STOGROUP TENGB;

-- PART DIMENSION

CREATE TABLE DWHDDS.PART_DIM
 (PARTKEY_DW INTEGER NOT NULL,
 PART_NAME VARCHAR(55),
 PART_MFGR CHAR(25),
 PART_BRAND CHAR(10),
 PART_TYPE VARCHAR(25),
 PART_SIZE INTEGER,
 PART_CONTAINER CHAR(10),
 PART_KEY_SRC INTEGER,
 LAST_UPDATE TIMESTAMP NOT NULL WITH DEFAULT,
 PRIMARY KEY (PARTKEY_DW)
) IN DBTENGB.TSPARTDM;

CREATE UNIQUE INDEX IX_PARTKEY_DW
 ON PART_DIM (PARTKEY_DW) USING STOGROUP TENGB;

-- ORDER TRANSACTION FACT

CREATE TABLE DWHDDS.ORDER_TRANSACTION_FACT
 (ORDERDATEKEY INTEGER NOT NULL,
 SHIPDATEKEY INTEGER NOT NULL,
 RECEIPTDATEKEY INTEGER NOT NULL,
 COMMITDATEKEY INTEGER NOT NULL,
 BRANCHKEY_DW INTEGER NOT NULL,
 CUSTKEY_DW INTEGER NOT NULL,
 STATUSKEY_DW INTEGER NOT NULL,
 PARTKEY_DW INTEGER NOT NULL,

444 Enterprise Data Warehousing with DB2 9 for z/OS

 SUPPKEY_DW INTEGER NOT NULL,
 SOURCEKEY CHAR(1) NOT NULL,
 ORDERKEY INTEGER NOT NULL,
 LINENUMBER INTEGER NOT NULL,
 QUANTITY DECIMAL(12,2),
 QUANTITY_RETURNED DECIMAL(12,2),
 RETAILPRICE DECIMAL(12,2),
 EXTENDEDPRICE DECIMAL(12,2),
DISCOUNTPRICE DECIMAL(12,2),
 TAXPRICE DECIMAL(12,2),
 LAST_UPDATE TIMESTAMP NOT NULL WITH DEFAULT,
 PRIMARY KEY (ORDERKEY, CUSTKEY_DW, PARTKEY_DW, SUPPKEY_DW,
LINENUMBER)
) IN DBTENGB.TSTRANFT;
CREATE UNIQUE INDEX IX_TRANSACTION_FACT
 ON ORDER_TRANSACTION_FACT(ORDERKEY, CUSTKEY_DW, PARTKEY_DW,
 SUPPKEY_DW,LINENUMBER) USING STOGROUP TENGB;

Appendix B. Schema definitions 445

446 Enterprise Data Warehousing with DB2 9 for z/OS

Appendix C. Additional material

This book refers to additional material that can be downloaded from the Internet as described
below.

C.1 Locating the Web material

The Web material associated with this book is available in softcopy on the Internet from the
IBM Redbooks Web server. Point your Web browser at:

ftp://www.redbooks.ibm.com/redbooks/SG247637

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with the IBM
Redbooks form number, SG247637.

C.2 Using the Web material

The additional Web material that accompanies this book includes the following files:

File name Description

SG247637_OrderGenerationWebApplication.zip

J2EE application for order generation and simulation of a transactional
environment as used in 5.4, “The transactional data model” on
page 78 and Chapter 12, “An operational business intelligence
implementation” on page 295. See the following readme file for
instructions.

SG247637_Readme_OrderGenerationWebApplication.txt

Instructions for importing the J2EE application into WebSphere
Integration Developer 6.1.

C

© Copyright IBM Corp. 2008. All rights reserved. 447

ftp://www.redbooks.ibm.com/redbooks/SG247637
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

SG247637_DataStageJobs.zip

Jobs used for load and incremental update of the data warehouse as
used in Chapter 10, “Full load using DataStage” on page 257 and
Chapter 11, “Incremental update with DataStage” on page 281.

SG247637_Cognos8Models.zip

Compressed documents as used in Chapter 13, “Reporting and
analysis with Cognos 8 BI” on page 305.

SG247637_DDS_ODS_DDL.zip

Schema definitions as listed in Appendix B, “Schema definitions” on
page 431 and used in 5.4, “The transactional data model” on page 78
and Chapter 6, “The system environment” on page 91.

C.2.1 System requirements for downloading the Web material

The following system configuration is recommended:

Hard disk space: 2 MB minimum
Operating System: Windows
Processor: Intel® 386 or higher
Memory: 16 MB

C.2.2 How to use the Web material

Create a subdirectory (folder) on your workstation, and extract the contents of the Web
material compressed file into this folder.

448 Enterprise Data Warehousing with DB2 9 for z/OS

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks

For information about ordering these publications, see “How to get Redbooks” on page 451.

� Best Practices for SAP BI using DB2 9 for z/OS, SG24-6489

� Building the Operational Data Store on DB2 UDB Using IBM Data Replication,
WebSphere MQ Family, and DB2 Warehouse Manager, SG24-6513

� DB2 for OS/390 and Data Compression, SG24-5261

� DB2 for z/OS: Data Sharing in a Nutshell, SG24-7322

� Disaster Recovery with DB2 UDB for z/OS, SG24-6370

� Disk Storage Access with DB2 for z/OS, REDP-4187

� From Multiplatform Operational Data to Data Warehousing and Business Intelligence,
SG24-5174

� GDPS Family: An Introduction to Concepts and Facilities, SG24-6374

� How does the MIDAW Facility Improve the Performance of FICON Channels Using DB2
and other workloads?, REDP-4201

� IBM DB2 9 for z/OS: New Tools for Query Optimization, SG24-7421

� IBM System Storage DS8000 Series: Architecture and Implementation, SG24-6786

� IBM System z Strengths and Values, SG24-7333

� Index Compression with DB2 9 for z/OS, REDP-4345

� System Programmer's Guide to: Workload Manager, SG24-6472

� WebSphere Information Integrator Q Replication: Fast Track Implementation Scenarios,
SG24-6487

� Workload Management for DB2 Data Warehouse, REDP-3927

Other publications

These publications are also relevant as further information sources:

� DB2 Version 9.1 for z/OS Administration Guide, SC18-9840

� DB2 Version 9.1 for z/OS Application Programming and SQL Guide, SC18-9841

� DB2 Version 9.1 for z/OS Installation Guide, GC18-9846

� DB2 Version 9.1 for z/OS Performance Monitoring and Tuning Guide, SC18-9851

� IBM BatchPipes OS/390 V2R1 BatchPipeWorks User Guide, SA22-7457

� WebSphere DataStage Parallel Job Advanced Developer Guide, LC18-9892

© Copyright IBM Corp. 2008. All rights reserved. 449

� WebSphere Information Integration Version 9.1 Replication Installation and Customization
Guide for z/OS, SC19-1025.

� WebSphere QualityStage User Guide, SC18-9922

� WebSphere QualityStage Tutorial, SC19-9925

� Cognos 8 Business Intelligence documents available from the product installation library
and Cognos Global Customer Services support Web site at the following address (license
required):

http://support.cognos.com

– Cognos 8 Framework Manager - User Guide

– Cognos 8 Business Intelligence - Installation and Configuration GuideCogn

– Cognos 8 Business Intelligence IBM Special Edition Installation and Configuration
Guide

– Cognos 8 Framework Manager - Guidelines for Modeling Metadata

– Cognos 8 Business Intelligence - Transformer User Guide

� Barry Devlin. Data Warehouse: From Architecture to Implementation. Addison-Wesley
Professional, 1996. ISBN 0201964252.

� H. S. Gill and P. C. Rao. The Official Client/Server Computing Guide to Data Warehousing.
Que 1996. ISBN 0789707144.

� Claudia Imhoff, PH.D., President and Founder of Intelligence Solutions, Inc., and Mike
Schroeck, Partner, IBM Global Business Services, “Operational Intelligence: Business
Process Management Meets Business Intelligence” presentation at the Information On
Demand conference in Las Vegas 14-19 October 2007

� “Kimball Design Tip #15: Combining SCD Techniques” by Margy Ross

http://www.kimballuniversity.com/html/designtipsPDF/DesignTips2000%20/KimballDT
15CombiningSCD.pdf

Online resources

These Web sites are also relevant as further information sources:

� IBM Information Server Information Center

http://publib.boulder.ibm.com/infocenter/iisinfsv/v8r0/index.jsp

� Business Intelligence and Performance Management

http://www.ibm.com/BI

� Parallel Sysplex technology and benefits

http://www.ibm.com/systems/z/resiliency/parsys.html

� GDPS

– Geographically Dispersed Parallel Sysplex: the e-business Availability Solution

http://www.ibm.com/servers/eserver/zseries/library/whitepapers/gf225114.html

– Implementation Services for GDPS

http://www.ibm.com/services/us/index.wss/so/its/a1000189

� FICON

http://www.ibm.com/systems/z/hardware/connectivity/news.html

450 Enterprise Data Warehousing with DB2 9 for z/OS

http://www.kimballuniversity.com/html/designtipsPDF/DesignTips2000%20/KimballDT15CombiningSCD.pdf
http://publib.boulder.ibm.com/infocenter/iisinfsv/v8r0/index.jsp
http://www.ibm.com/BI
http://www.ibm.com/systems/z/resiliency/parsys.html
http://www.ibm.com/servers/eserver/zseries/library/whitepapers/gf225114.html
http://www.ibm.com/services/us/index.wss/so/its/a1000189
http://www.ibm.com/systems/z/hardware/connectivity/news.html
http://support.cognos.com

� DB2 Value Unit Edition

http://www.ibm.com/software/data/db2/zos/edition-vue.html

� System z New Application License Charges

http://www.ibm.com/servers/eserver/zseries/swprice/znalc.html

� System z

– IBM System z9 Business Class

http://www.ibm.com/systems/z/hardware/z9bc/features.html

– IBM System z9 Enterprise Class

http://www.ibm.com/systems/z/hardware/z9ec/features.html

– IBM System z10 Enterprise Class

http://www.ibm.com/systems/z/hardware/z10ec/features.html

� IBM industry models

http://www.ibm.com/software/data/ips/products/industrymodels/

� WebSphere Classic Federation client on Linux on System z

ftp://ftp.software.ibm.com/software/data/integration/iicf/

� Cognos Global Customer Services Web site (for documentation such as Cognos Proven
Practice and Guideline white papers)

http://support.cognos.com

� Cognos 8 BI for System z

http://www.ibm.com/software/data/info/new-systemz-software/

� Corporate Information Factory

http://www.inmoncif.com/home/

� Kimball Group

http://www.rkimball.com/

How to get Redbooks

You can search for, view, or download Redbooks, Redpapers, Technotes, draft publications
and Additional materials, as well as order hardcopy Redbooks, at this Web site:

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

 Related publications 451

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www.inmoncif.com/home/
http://www.ibm.com/software/data/db2/zos/edition-vue.html
http://www.ibm.com/servers/eserver/zseries/swprice/znalc.html
http://www.ibm.com/systems/z/hardware/z9bc/features.html
http://www.ibm.com/systems/z/hardware/z9ec/features.html
http://www.ibm.com/systems/z/hardware/z10ec/features.html
http://www.ibm.com/software/data/ips/products/industrymodels/
http://www.ibm.com/software/data/ips/products/industrymodels/
ftp://ftp.software.ibm.com/software/data/integration/iicf/
http://www.ibm.com/software/data/info/new-systemz-software/
http://support.cognos.com
http://www.rkimball.com/

452 Enterprise Data Warehousing with DB2 9 for z/OS

Index

Numerics
3NF (third normal form) 347
64-bit DB2 246

A
access path 50, 114, 131, 134
ad hoc query 19, 71, 374
ad hoc report 8
ad hoc users 23
ADABAS 53
ADD CLONE 143
ADD CLONE SQL command 143
administration 87
aggregation 12, 61, 153, 342
AIX 93
allegiance, implicit or multiple 43
AlphaBlox 411

functions 411
small sample Web application 412

ALTER TABLE
EXAMPLE.CUSTOMER 145
EXAMPLE.LINEITEM 145
EXAMPLE.ORDERS 145
SQL statement 50

ALTER TABLESPACE
COMPRESS.LINE Item 119
SQL statement 119
statement 152

analysis
index compression 108
tasks 71
techniques 13

Analysis Studio 305–306, 385
further use 365
stand-alone calculations 349

Apache Derby database 314
APARs 207, 263
application layer, BI 4
application server 229, 237

new instance 237
Application Server ID 231
architecture, scenario 92
ARM (automatic restart manager) 34–35, 65
Asynchronous PPRC 38
attribute-level transformation 15
automatic restart manager (ARM) 34–35, 65
automation packages 34
availability

BI solution 32
data warehouse 295

B
backup

© Copyright IBM Corp. 2008. All rights reserved.
ETL subsystem 7
policy 122

BACKUP SYSTEM utility 37, 40
enhancement 42

Barry Devlin 5
base table 127

statistical information 145
batch 273

massive updates 121
update 283
window 283
window, reduction 283

batch pipe, opened 209
BatchPipes 93, 206, 263, 273

DB2 LOAD utility 207
parallel jobs 263
setup 206
subsystem 202
subsystem file 207
support APARs 209, 263
troubleshooting 208

BI (business intelligence) 3, 7–8, 17, 31–32, 75, 269,
305, 364, 397–398

analysis 63
application cost 45
application layer 4
architecture 7, 67
modeling tools 308
operational 9
solution 32, 60, 400

data warehouse 32
solution architecture 59
strategic or informational 9
tactical or operational 9
trends 20

bidirectional replication 160
Bill Inmon 5
Blox components 411
Boolean term predicate 126
BRANCH.BRANCHKEY_DW 126
buffer pool 36, 94, 101, 119

compressed index 101
needed pages 110
reduced contention 138
single page 104

BUFFERPOOL BP2 107
bulk load 87
business

challenges 18, 36
metadata 15
process 19, 48, 160, 280, 411
processes 18
questions 6, 26, 282, 398
reports 23
requirement 17, 24, 32, 59, 68, 72, 283, 289, 350
 453

for a data warehouse environment 60
scenario 60, 71, 257–258, 283–284
users 17, 60, 281, 295, 398

business intelligence (BI) 3, 7–8, 17, 31–32, 75, 269,
305, 364, 397–398

analysis 63
application cost 45
application layer 4
architecture 7, 67
modeling tools 308
operational 9
solution 32, 60, 400

data warehouse 32
solution architecture 59
strategic or informational 9
tactical or operational 9
trends 20

C
C_CUSTKEY ASC 107
CAC.SUPPLIER_SEQ 271–272
CAC00102I Controller 214
call center 32, 296
canned report 8
cardinality 127
catalog database

dwhd911 248
dwhd912 248

central data warehouse 284
Change Capture Agent 54, 61
CICS 53, 211
Classic Data Architect 53–54, 210, 212

flat file 215
Classic Federation 62, 201

Data server 215
relational engine 210
sequential files 215
Server 72, 210

Claudia Imhoff 9
CLI client 212
client tier 229
clients (ODBC, JDBC, and CLI) 212
clone table 50, 143
cogconfig tool 318–320
Cognos 8 BI 73, 306, 368

Analysis Studio 306
components 306
ports 310
Report Studio 306
reporting 306

Cognos 8 BI Transformer 335
Cognos 8 Framework Manager 335
Cognos Administration 371
Cognos Connection 335
column mapping 180
columns 100, 161, 212, 262, 283, 306, 400
COMMAND DDNAME 166
complex queries 94
concurrency

considerations 284, 292

issues 143
level 95

connection handler 210
consistency of data 26
consolidated view 261

of data sources 85
continuous temporal model 11
control interval 94
COPY 122–123
COPY NO attribute 41
Copy Services 37
COPY YES attribute 41
copybook 216
Corporate performance management (CPM) 18
corresponding key value 87
cost pressure 18
coupling facility (CF) 33

structures 41
CPU consumption 100

possible increase 100
CPU cost estimate 304
cumulative snapshot 11

with rolling summarization 11
current data 5, 18, 146, 162, 281, 358
customer expectations 18
customer service 282

D
dashboards 307
data

access 19, 32, 60, 202, 210, 299
aggregation 347
analysis techniques 13
caching for star schema queries 138
characteristics 7, 20, 51, 149, 161
cleansing 15
compression 36, 100
connector 210–211
consolidation 56
currency 342, 364
current 5, 18, 146, 162, 281, 358
elements 4, 7, 288
filter 298
formats 20, 56, 60, 410
frequency 7
immediate availability 138
integration 5, 55, 60, 226, 279
integrity 24, 38, 129
modeling options 88
moving 20, 32, 260, 284
non-relational 78
operational 3, 18, 71, 73, 79, 143, 159, 212, 257, 282,
295, 306
processing 33
quality 21, 56, 257, 280, 293, 295
real-time 67, 75, 160
requirements 20, 31, 60, 95, 100, 162, 258, 267, 337
source types 53
striping 121
structures 54, 78, 258, 271, 386

454 Enterprise Data Warehousing with DB2 9 for z/OS

subject area 77
transfer 208
transformation 15, 53, 56, 62, 162
types 4, 24, 32, 105, 180, 272
volatile 48

Data Definition Language (DDL) 80, 123
script 89, 212
statement 81

data element mapping 6
data mart 3–6, 20, 55, 67, 77, 267, 281, 284, 289, 307

multidimensional analysis 6
data model 6, 56, 71, 76–78, 88, 109, 126, 258, 335, 337

dimensional 85
dimensions 129
enterprise 71
multidimensional 11
operational 85
relationships 56
star schema representation 129

data server 53–54, 210, 213
classic data architect 215
main service 210
query processor task 228
relational structure 53
sequential table 216

data set 143, 273
data sharing 33–34

group 34
data source 36, 53–54, 60, 62, 72, 78, 206, 211, 258,
271, 295, 299–300, 337, 340, 364, 371, 398

consolidated view 85
DB2 53, 60, 68, 299, 410
internal 412
legacy data 81
multiple 56, 60, 299, 337, 398
non-DB2 68
operational 27, 85
queues 283
relational 53, 385, 410

data warehouse 3, 6, 18–19, 31–32, 51, 60–61, 67, 71,
73, 75, 78, 99–100, 123, 159–160, 162, 201, 212,
257–258, 260, 281, 295, 307, 397, 431, 437, 448

availability 295
characteristics 59
data mart part 3
data modeling styles 10
database 60, 67, 87, 92, 95

derived information 63
initial load 61
load data 61
real-time data 95
resource 67

environment 4–5, 31, 37, 42, 60, 94, 118, 148, 261
business requirements 60
growing need 49

function 6
functionality 71
growing size 32
historical data 31
load 279

queries 300
referential integrity 87
solution 32, 48

challenges 32
T layer 5
type query 36
updates 283

database
design 124
recovery log 160
referential integrity 87

database-centric view 400
DataQuant 397–398

big advantage 409
multiplatform support 398
rich security infrastructure 400

DataQuant for z/OS 398
DataStage 53, 61, 63, 75, 88, 92, 162, 168, 189, 202,
206–207, 257, 281, 341

engine tier 229
interaction with DB2 for z/OS 208
job 207–208, 257, 265, 279, 284–285
links 260
parallel job 260
performance analysis feature 276
repository tier 229

DB2 1, 20, 31, 60–61, 71, 92–93, 99, 160, 257, 283, 296,
318, 397, 425–426, 432, 437

64-bit 246
buffer pools 102
data compression 100
data sharing 33–34
data source 53, 60, 68, 299, 410
functionality 74
instance 231

fenced user 231
LOAD utility with BatchPipes 207
log file 55
member 63

data sharing group 63
non-DB2 data source 68
optimizer 136
replication environment 169
tools 51, 169
utilities to maintain index structures 45

DB2 9 32, 42, 45, 62, 95, 99–100, 209
data 62
exploitation of zIIP 96
new features 137
New Function Mode subsystem 174
pureXML 51
SQL language 107
use 100

DB2 9 for z/OS
BACKUP and RESTORE SYSTEM utilities

enhancement 42
software license cost 97

DB2 Administration
Menu 7.2.0 146
Server 170

 Index 455

DB2 AlphaBlox
Admin Page 413
home page 412

DB2 Connect 247
DB2 Control Center 146, 169
DB2 for Linux, UNIX, and Windows 162

configuration settings 319
content store preparation 318
Enterprise Server Edition 309
relational tables 162
version check 310

DB2 for z/OS
BACKUP and RESTORE SYSTEM utilities 37, 40
data sharing 35, 68
data warehouse environment 75
functions for a data warehouse 99
interaction with DataStage 208
subsystem for accessing and loading data 201
V8 45
WebSphere Classic Federation 201

DB2 optimizer 50
DB2 QMF for TSO/CICS 409
DB2 QMF for WebSphere 410
DB2 QMF High Performance Option for TSO/CICS 410
DB2 Replication Center 169

event publishing 183
DB2 subsystem 34, 94, 105, 164, 248, 283

single user 114
DB2 Universal Database 202, 240

9.5 235
instance 235

DB2z stage 261–262, 290
DD DISP 164, 213
DD DSN 166
DD name 219
DDF workload 97
DDL (Data Definition Language) 80, 123

script 89, 212
statement 81

DDS (dimensional data store) 11, 77, 259, 284
table 262

ddtestlib tool 250
debugging load jobs 274
delimited format 162
DENSE _RANK 154
departmental data warehouse 6, 14
Devlin, Barry 5
dimension 12

hierarchy 12
table 124, 259, 289

corresponding key value 87
history rows 290
primary key 87
target column names 290

dimensional data model 85
dimensional data store (DDS) 11, 77, 259, 284

table 262
dimensional model 14
dimensional star schema model 77
disaster recovery 37

disk partitioning utilities 242
disk space requirement 100
disk storage

saving 103
subsystem 39

dispatcher port 310
Distributed Relational Database Architecture (DRDA) 45
documentation tier 230
drag-and-drop data analysis 399
DRDA (Distributed Relational Database Architecture) 45
DSN prefix 273
DSNT408I SQLCODE 107
DSS 4
dssh tool 250
dump-to-tape utility 42
DWHODS.LINE Item 267, 368
DWHODS.ORDE RS 153, 265, 368
dynamic index ANDing 49, 137
dynamic metadata 15
dynamic PAV 43–44
dynamic warehouse 19
dynamic warehousing 19, 29

requirements 32

E
EBCDIC 123, 208, 273
EDM pool 62
employee productivity 18
end date 289, 292
engine tier 229
enterprise data warehouse 4, 6
Enterprise Storage Server (ESS) 37
environment, heterogeneous 25
ESS (Enterprise Storage Server) 37
ETL (extract, transform, and load) 4, 51, 53, 62, 257

component 63, 201
job 57, 201, 258–259, 271, 273

parallel execution 254
process 51, 62

data warehouse 62
process expensive component 51
subsystem 7
surrogate keys 88
tool 63, 88, 257

data check 88
ETL task 14
event 11
Event Publisher 75, 92, 202, 261, 281

implementation 162
event publishing 54–55, 159, 192

DB2 Replication Center 183
Q Capture program 163
queue map 185
replication 162
schematic representation 162
source tables 187
table rows 188

EXAMPLE.CUSTOMER 145
EXAMPLE.CUSTOMER_CLONE 145
EXAMPLE.LINEITEM 145

456 Enterprise Data Warehousing with DB2 9 for z/OS

EXAMPLE.LINEITEM_CLONE 145
EXAMPLE.ORDERS 145
EXAMPLE.ORDERS_CLONE 145
EXCHANGE DATA

operation 146–147
SQL command execution 143

existing information, use of 18
Extended Remote Copy (XRC) 38
extract, transform, and load (ETL) 4, 51, 53, 62, 257–258

component 63, 201
job 57, 201, 258–259, 271, 273

parallel execution 254
process 51, 62

data warehouse database 62
expensive component 51

surrogate keys 88
tool 63, 88, 257

data check 88

F
fact 11–12
fact table 77, 124, 259, 261, 269, 303

available indexes 128
dimension key column 131
foreign key 87
foreign key column 87
key column 131
key columns 128
legitimate relationship 87
LOAD 269–270
matching index scan 136
order_transaction_fact table 269
single multicolumn index 125

FACT.BRAN CHKEY_DW 126
FACT.QUAN TITY 126
failure 34, 65, 137, 164
Fast Log Apply 41
FCP (Fibre Channel Protocol) 42
federated system 5
Fibre Channel Protocol (FCP) 42
FICON Express4 42
FlashCopy 37

incremental 42
flat files 53, 62, 78, 201, 258, 271
foreign key column 87
Framework Manager 335, 337
FTP command 207
full load description 261

G
GDPS (Geographically Dispersed Parallel Sysplex) 37
GDPS/PPRC 39
GDPS/PPRC HyperSwap 37, 40
GDPS/XRC 38
Geographically Dispersed Parallel Sysplex (GDPS) 37
given time period, criteria 26
Global Copy 38
Global Mirror 38
grain 12

granularity 12, 180, 266, 269

H
hardware 33, 68, 94, 101, 203, 283
high availability 24, 60, 64
high data volumes 60, 68
HiperSocket connection 203
history 26, 73, 148, 178, 259, 282, 406
HyperSwap function 40

I
I/O 36, 94, 96, 102, 264

device 263
IBM Industry Models 88
IBM QMF 409
IBM WebSphere Classic

Federation Server 210
tool 226

ICF catalog 40
ICOPY status 122
identity columns 80
IFL (Integrated Facility for Linux) 46, 62, 65
Imhoff, Claudia 9
implicit allegiance 43
IMS 20, 53, 60, 62, 81, 211
incremental FlashCopy 42
incremental load description 261
incremental update 212
index 77, 168, 284, 302, 348, 417

design for star schema processing 128
skipping 137
use tracking by using real-time statistics 121

index compression 50, 77, 100
analysis 108
CPU impact 113
good candidate 100
jobs 425

index on expression 50, 139
index-only access query 100
Information On Demand 25

dynamic warehousing 29
Information Server 56, 62–63, 71, 93, 201–202, 233

DataQuality component 56
DataStage component 56
ddtestlib tool 250
dssh tool 250
installation 228
installation directory 244
user ID and registry considerations 231

Information Server for System z 56
informational business intelligence 9
InfoSphere DataStage administrator 231
infrastructure 1, 28, 32, 62, 68, 121, 163, 306
initialization service 211
Inmon, Bill 5
installation directory 233
INTEGER NULLIF 208, 274
Integrated Facility for Linux (IFL) 46, 62, 65
integration of rows and columns of data 306

 Index 457

Intelligent Resource Director 52
internal data source 412
Internet 8, 78, 370, 400
Internet service provider (ISP) 164
intranet 48
IP address 205
ISP (Internet service provider) 164

J
Java APIs 399
JavaServer Pages (JSP) 299, 412
JCL (job control language) 106, 164, 213

sample 109, 166
JDBC client 212
job control language (JCL) 106, 164, 213

sample 109, 166
JSP (JavaServer Pages) 299, 412

K
key column 125, 285

multicolumn index 128
key expressions 139
Kimball Group 5, 12

L
latency 19, 53, 60, 75, 281, 293

movement 261
layer

external 5
transformation 5

leaf page 100
legacy 54, 60, 62, 78, 212, 271
level of detail 198
limited workload management, parallel processing 35
line item 74–75, 79, 129, 177, 258, 266, 269
lineitem table 84, 259
Linux on System z 62, 281

BatchPipes 93
Cognos 8 BI 75
ETL components 202
Information Server 201
J2EE application 296
LPAR 202
WebSphere Information Server 260

LOAD 50, 121, 123, 207, 425
load description

full 261
incremental 261

local queue 165
locks 85
LOCKSIZE Row 80
log 36, 101, 164, 207, 257, 283, 400

RBA 145
log reader 54
logger service 211
logging port 310
lookup 77

stages 261

tables 261
LPAR 63, 202–203

failure 65
z/OS 92

M
maintenance 19, 209, 338
manageprofile tool 327
mapping

columns 180
user role 415

market challenges 18
market drivers 18
massively parallel processing (MPP) 277
master data management 24
materialized query table (MQT) 50, 75, 77, 144, 152, 300
maximum number 140
measure 11
message 19, 63, 162, 227, 250, 257, 263, 339, 370

queue 283–284
payload column 287

XML 166
metadata 6, 21, 56, 76, 202, 212, 284, 337, 369

business 15
catalog 212–213
dynamic 15
repository

System z server 230
static technical 15
technical 15
usage 342

Metro Mirror 37
Metro/Global Mirror 38
MIDAW (Modified Indirect Data Address Word) 43
Mike Schroeck 9
mixed workload 281

environment 32
model 337
modeling

multidimensional 11
Modified Indirect Data Address Word (MIDAW) 43
movement of data 20, 32, 260, 284
MPP (massively parallel processing) 277
MQ

code 197
library 245
message 54

MQSeries 20, 160, 168
log 167
queue 162
Queue Manager 171
requirement 168

MQT (materialized query table) 50, 75, 77, 144, 152, 300
multicolumn index 130
multidimensional analysis, data mart 6
multidimensional data model 11
multidimensional data modeling

snowflake model 12
star model 12

multidimensional modeling 11

458 Enterprise Data Warehousing with DB2 9 for z/OS

multiple allegiance 43
multiple data sources 56, 60, 299, 337, 398
multiple platforms 399
MXQBCE 127

N
naming standards 279
near real time 75
near real-time data loads 19
near real-time ODS 32
near real-time operational data 19
near real-time warehouse 53
nodes 254

multiple for parallel execution 254
non-DB2 data source 68
non-relational data 78
not logged table space 121

O
O_ORDERSTATUS column 275
object-level recovery 42
ODBC 53, 210, 285

client 212
data source configuration 228, 248
driver 226, 230
Enterprise stage 286

ODS (operational data store) 5–7, 18, 20, 32, 55, 67, 75,
77, 85, 257–259, 283, 335, 367

environment 288, 338
near real-time 32
population 261, 269
real time 22, 77

oedit command 199
OLAP 4, 8, 21, 50, 74, 77, 139, 154, 335, 346, 363, 398

Analysis Studio 306
function 154
functions 154
query editor 398

OLTP 17, 30–32, 60, 72, 78, 86, 95, 166, 247–248,
257–258, 281, 295

data source 259
database log 257
database model 78
database schema 259
database table 84
model schema 80
performance 60, 68

data warehouse processing 68
system 32, 51, 73, 77, 258
transaction 62–63, 95

data sharing group 65
DB2 resources 64
lock contention 64

OLTP.CUSTOMER 195
OMEGAMON XE 115, 138
Open Solaris 47
operational application 19–20
operational BI 9, 17, 26, 75

application 27, 67

solution 29
system 28

operational data 3, 19, 36, 67, 71, 73, 79, 143, 159, 212,
257–258, 282, 295, 306

model 85
real-time information 20
source 27, 85

operational data store (ODS) 5–7, 18, 20, 32, 55, 67, 75,
77, 85, 257–259, 283, 335, 367

environment 288, 338
near real time 32
population 261, 269
real time 22, 77

operational data updates 18
operational efficiency 18
operational intelligence 26
operational reporting requirements 21
operational sources 28
Optimization Service Center

parameter browser 127
report 127

optimizer 95, 114, 125, 128, 303
Oracle 241
order key 374
order processing

application 297
Web application 75, 296

order record 79
ORIG.CUSTOMER 107
outages unplanned 38

P
page size 100

buffer pool 110
pair-wise join 125, 137
parallel access volume (PAV) 43
parallel engine 230
parallel execution of multiple nodes 254
parallel queries 49
Parallel Sysplex 33, 62, 68

architecture 34
capability 51
cluster continuous availability benefit 40
clustering technology 33
GDPS/PPRC 39
operational task 38
scenario 68
technology 33, 51, 450

parallelism 94, 138, 183, 264
I/O 43
partitioning 278
partitioning and pipeline 278
pipeline 277
query requests 45

PART
data 81
table record 82

PART SUPPLIER
data 83
table record 83

 Index 459

partition 49, 148
adding 151
by growth 77, 149
by range 150
parallelism 278
rotating 152

partitioning parallel processing 277
PAV (parallel access volume) 43
Peer-to-Peer Remote Copy Extended Distance
(PPRC-XD) 38
peer-to-peer replication 160
PeopleSoft 67
performance

analysis feature 276
bottleneck, MQSeries log 167
considerations for DataStage 276
impact on OLTP 60
improvement with DataStage jobs 257
metrics in Report Studio 306

performance management 18, 27
cycle 27
framework 27

pipe 264
pipeline processing 277
pivot table 398
point-in-time (PIT) copy 37
port number 215, 241
power users 24
PowerCube 308, 363, 365

new data source 365
PowerCubes 346, 353
PPRC (Peer-to-Peer Remote Copy) 37
PPRC-XD (Peer-to-Peer Remote Copy Extended Dis-
tance) 38
prefix compression 100
PRIMARY Key 199, 212, 259, 267, 274
primary key 87
product layer 229
production 24, 64, 162

report 22
sysplex 38

publisher 24
publishing 160
pureXML 50

Q
Q Apply program 160
Q Capture 196

control table 284
program 55, 160–161, 283

recovery logs 283
Q replication 160

implementation 162
MQSeries requirements 167
Q Capture program 163
subscription configuration 171
types 160

QMF 409
HPO/Compiler 410
HPO/Manager 410

QMF for Workstation 410
QualityStage 279
query 5, 8, 32, 108, 210, 337, 398

columns 372
index-only access 100
loads 261
parallelism 49, 150
performance 77
processor 210–211
response time 35, 300
table 152–153, 300

Query Studio
ad hoc query 374

queue
anatomy 284
data source 283

quiesce 143

R
RANK 154
RBLP (recover based log point) 40–41
RCMF (Remote Copy Management Facility) 39
read and write 257
real time 32, 73, 75

BI 257
data 60, 283
statistic 144

real-time data 67, 75, 160
real-time statistics for index-use tracking 121
record-level transformation 15
RECOVER 42
recover based log point (RBLP) 40–41
recovery 34, 60, 68, 123, 283

extract, transform, and load (ETL)
subsystem 7

recovery point objective (RPO) 39
recovery time objective (RTO) 39
Redbooks Web site 451

contact us xxvi
REDDWH.ADMI NQ 166
REDDWH.REST ARTQ 166
REDDWH.SPIL LQ 166
redirect percentage 97
RedParts Distribution 26, 72, 400

JSP 420
small AlphaBlox Web application 412
small report 409

redundancy 33, 68
referential integrity

data warehouse 87
database 87
ETL tool 88
sanity checks 88

region controller 210
relational data source 53, 385, 410
relational database 72
Relational OLAP (ROLAP) 8
Remote Copy Management Facility (RCMF) 39
REORG utility 119

Compression report 119

460 Enterprise Data Warehousing with DB2 9 for z/OS

replication 26, 38, 62–63, 75, 159–160
control tables 164
execution 169
subscription 161
techniques 14

Replication Center Launchpad 172
Report Studio 305

data items 372
performance metrics 306
reports 306
SQL query 371

reporting requirements 338
reports 8

Cognos 8 BI 306
repository tier 229, 231
requirement

business 72
disk space 100
dynamic warehousing 32
MQSeries for Q replication 167
operational reporting 21
reporting 338
response time 95
storage 60
strategic reporting 72

response time 35, 95, 304, 421
requirements 95

RESTORE SYSTEM utility 37, 40–41
enhancement 42

return rate 72, 352
% measure 395
analysis 392

REXX code 193
JCL sample 197

risk and compliance 18
RMF Workload Activity Report 96
rollback operation 147
rolling updates 66
row inserted 274
ROW_NUMBER 50, 154, 157
RPO (recovery point objective) 39
RTO (recovery time objective) 39
RUNSTATS utility 141, 144

S
SAF Exit 214
same LPAR 52, 65, 68, 95, 174
same system 35, 53, 231

different DB2 subsystems 35
other software 231
other software components 231

SAP 67
scalability 29, 32–33, 35, 64–65, 67, 149, 306

data 33, 35
SCD (slowly changing dimension) 12

stage 257
SCD Type 2 pattern 289
SCD_RECENTFLAG 289
scenario model 347
schema, OLTP model 80

Schroeck, Mike 9
SELECT Count 146, 251
selected customer

Frank N Q 298
life 297

separate LPARs 67
sequential file 62–63, 76, 81, 211, 216, 222, 267, 269

copybook 216
mapping 215
sample data 81

Server Time Protocol (STP) 33
service level 32, 283
service time

CPU 97
IIP 97

serviceability 67
service-level agreement (SLA) 143
service-oriented architecture (SOA) 24, 399

capability 400
services tier 229
shutdown port 310
single-phase commit query processor 211
SJMISSKY 127
SJTABLES 95, 127
SLA (service-level agreement) 143
slowly changing dimension (SCD) 12

stage 257
SMP/E (System Modification Program/Extended) 163,
202, 212, 277
snowflake model 12
SOA (service-oriented architecture) 24, 399

capability 400
source data 21, 53, 77, 174, 248, 278, 338, 352, 401

authenticity 87
Data Quality 21
relational aware analysis 338

source table 160, 283
data value 190
event publishing change capture 162
first column 180
second column 180

SQL command, ADD CLONE 143
SQL icon 370
SQL queries 210
SQL request 198, 211
SQL restriction 126
SQL statement 85, 118, 123, 302, 371, 402

DSNE620I NUMBER 154
staging table 283
standard CP 97
standards 25, 36, 295, 411
star join 125

SQL restrictions 126
star model 12
star schema 49, 86, 124–125, 259

access methods 125
index design 128
model 77
previous index design challenges 137
processing 126

 Index 461

queries 138
STARJOIN 127
state 11
static PAV 43
static technical metadata 15
STOGROUP TENGB 150
storage requirements 60
stored procedures 161, 176, 212
strategic business intelligence 9
strategic reporting requirements 72
subject area 77
subsystem name 164
summarization 143
summary table 77, 121
SUPPLIER data 82
SUPPLIER table record 83
suppliers 79, 154, 258, 271
surrogate key 261, 267, 290

stage 257
symmetric multiprocessing (SMP) 277
synchronization 26
Synchronous Peer-to-Peer Remote Copy (PPRC) 37
SYS1.DSN.V910.SDSN Load 106, 164
SYS1.MQM.Q801.CSQL OAD 166
SYS1.MQM.V600.SCSQ AUTH 166
SYS1.REP.V910.SASN Load 164
SYSINDEXSPACESTATS.LASTUSED 121
SYSPITR CRCR 41
sysplex 33
Sysplex Timer 33, 39
SYSPRINT DD SYSOUT 106
system

exit 211
parameters for star schema processing 127
updates 261

System Data Mover (SDM) 38
System Modification Program/Extended (SMP/E) 163,
202, 212, 277
System z 31–32, 46, 57, 93, 118, 121

architecture for BI solution 59
business intelligence architecture 61
data warehouse 20, 31–32
hardware 33
hardware compression feature 50
Information Server 56–57, 281
Open Solaris 47
operation BI for data warehousing 295
three-site, multipurpose, replication solution 38
Web application 296

system-level backup 42

T
TABLE SPACE

COMPRESS.LINE Item 120
COMPRESSION Report 120

table space 94, 108, 119, 179
compression 118
data sets 149
hardware compression 119
not logged 121

operational parameters 179
page size 151
page size value 149
partitioning 49, 148–149
transactional environment 80

tables 61–62, 77–78, 121, 160, 211–212, 257, 283, 342
TABLESPACE statement 149
tactical BI 9
target queue 166
target table 53, 160, 199, 263, 283

first column 180
Profile settings 178
straight insert 283

TCO (total cost of ownership) 45–46, 97
TCP/IP 203, 210

connection handler service information entry 214
distributed requests 45

technical metadata 15
third normal form (3NF) 347
three-site solution 37

high availability and disaster recovery 38
multipurpose replication 38

time dimension 354
general properties 357
time properties 358

time period 74
tools

data warehouse 4, 56, 292
user 23

Total Charge Amt
field 384
header 380

total cost of ownership (TCO) 45–46, 97
TPC-H benchmark 71, 78, 368

model 11
TPC-H data model 85
TPC-H queries 367
traditional BI analysis 26
transaction 22, 67, 71, 77, 162, 258, 281, 293, 299
transactional data model 78, 80
transactional environment

OLTP workload 84
simulation 84

transformation 53, 64, 265
Transformer 335, 353
Transformer model 352, 355
transformer stage 265, 267, 284
two-phase commit query processor 211

U
uncompressed data 104
unidirectional replication 160–161
UNIQUE INDEX

ORIG.CUST OMER_UQ 109
universal table space 144, 149

different types 149
partition by growth 149
partition by range 150

UNIX 411
UNIX System Service (USS) 198

462 Enterprise Data Warehousing with DB2 9 for z/OS

profile 163
upsert mode 285–286
user ID 178, 198, 228, 231, 272

home directory 198
USER QREP 164
User Role mapping 415
user-defined function 139
USS profile 163

V
VARCHAR NULLIF 208
varying-length row 150
very large database 49
viewers 24
virtual data mart 20
visual report 398, 400

key components 407
volatile data 48
VSAM 20, 53, 60, 62, 81, 94, 105, 167, 211

data set 143
data striping 121
file 211

W
warehouse catalog 6
warehouse management subsystem 7
warehouse•business intelligence 5
WCF.CACDS01.SCAC CONF 213
Web application 28, 74, 162, 296, 399
WebSphere Administration 414
WebSphere Application Server 65, 84, 202, 231, 296,
411

existing and compatible installation 237
high availability 65
new version 237

WebSphere Classic Data Event Publisher 54
WebSphere Classic Federation 53, 62–63, 76, 81, 93,
202, 258, 271

CLI library 250
client 226, 271, 451
client configuration 228
client installation 226
configuration file 246
data server 53
data source 228, 248
dedicated client 226
Server 54, 77, 210, 226
stage 271–272

WebSphere DataStage 63, 229, 260
administrator 252

WebSphere Federation Server 281
WebSphere MQ 54, 63, 161, 202, 210, 241, 245, 283

client 245, 247
communication protocol 212
Connector 284
Connector stage 284
library 245–246
object 165
object creation 165

privilege 163
queue 63, 163, 283
queue manager 66

WebSphere Portal 300
WebSphere Quality Stage 63
WLM (Workload Manager) 35, 64–65, 96, 209, 263, 281

Dynamic Alias Assignment function 43
work file 133, 364

DB2 caches data 138
WORK.LINE Item 142
WORK.LINE ITEM_X1 141

SYSCOLDIST CATALOG UPDATE 141
SYSCOLUMNS CATALOG UPDATE 141
SYSINDEXES CATALOG UPDATE 141
SYSINDEXPART CATALOG UPDATE 141

WORK.LINE ITEM_XEXP_01
SYSINDEXES CATALOG UPDATE 141
SYSINDEXPART CATALOG UPDATE 141
SYSKEYTARGETS CATALOG UPDATE 141
SYSKEYTGTDIST CATALOG UPDATE 141

WORK.ORDE R_TRANSACTION_FACT 126
workload 20, 64, 84, 102, 211, 281

balancing 64
growth 46
performance 32
priorities 95

workload management 32, 35, 65–67
Workload Manager (WLM) 35, 64–65, 96, 209, 263, 281

Dynamic Alias Assignment function 43

X
XML for Analysis (XMLA) 398
XML support 50
XMLA (XML for Analysis) 398
XRC (Extended Remote Copy) 38

Z
z/OS 20, 31, 62, 71, 78, 257, 283, 397

data source 299
DataQuant 398
Global Mirror 38
LPAR 92
Metro/Global Mirror 38
system 33, 170, 203

remote DB2 203, 248
system architecture 409
V8 137

z/VM 67
z9 Integrated Information Processor (zIIP) 45, 93

utilization 96
zIIP (z9 Integrated Information Processor) 45, 93

utilization 96
zNALC 46

 Index 463

464 Enterprise Data Warehousing with DB2 9 for z/OS

(1.0” spine)
0.875”<

->
1.498”

460 <
->

 788 pages

Enterprise Data W
arehousing w

ith DB2 9 for z/OS

Enterprise Data W
arehousing

w
ith DB2 9 for z/OS

Enterprise Data W
arehousing w

ith
DB2 9 for z/OS

Enterprise Data W
arehousing w

ith DB2 9 for z/OS

Enterprise Data W
arehousing w

ith
DB2 9 for z/OS

Enterprise Data W
arehousing w

ith
DB2 9 for z/OS

®

SG24-7637-00 ISBN 0738431400

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

®

Enterprise Data
Warehousing with
DB2 9 for z/OS
Understand the
evolution of data
warehousing

Evaluate
infrastructure tools
on IBM System z and
Linux on System z

See how the DB2 for
z/OS engine is
suitable for data
warehousing

Enterprises look more and more to business intelligence (BI) to gain a
competitive edge. Today’s BI systems incorporate large data
warehouses that are consolidated with near real-time operational data
stores (ODS) and continuously updated from multiple sources. An
increasing number of users in the enterprise want to access the data
warehouse with BI applications with real-time needs.

There is a renewed interest in the ability to implement a data
warehouse solution on DB2 for z/OS and System z. This is due to the
inherent characteristics of security, availability, performance, mixed
workload management, and the growing portfolio of data warehousing
tools and functions provided by IBM.

In this IBM Redbooks publication, we focus on today’s software
components on System z and show how you can use them to realize
the infrastructure for a full data warehouse solution. By using a retail
business scenario loosely based on the TPC-H benchmark, we guide
you through the warehouse implementation steps. In addition, we
highlight the available methods, techniques, and technologies for the
deployment of this solution.

This book provides an opportunity for you to look at satisfying the
operational needs of corporate users in addition to the longer term
needs. In addition, business decision makers, architects,
implementors, DBAs, and data acquisition specialists can use this book
to gain a better understanding of how a data warehouse can be
designed, implemented, and used.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Figures
	Tables
	Examples
	Notices
	Trademarks

	Preface
	The team that wrote this book
	Become a published author
	Comments welcome

	Part 1 Data warehouse today
	Chapter 1. Definitions
	1.1 Introduction
	1.2 The data warehouse environment
	1.2.1 Data warehouse and data mart

	1.3 Data warehouse data definitions
	1.3.1 Data warehouse data modeling styles
	1.3.2 Multidimensional data model

	1.4 Data warehouse functional definitions
	1.4.1 Replication techniques
	1.4.2 Data transformations
	1.4.3 Application techniques

	Chapter 2. Evolution of business intelligence
	2.1 Market drivers and challenges
	2.2 BI technology and functionality evolution
	2.2.1 Current BI trends
	2.2.2 BI evolution and maturity

	2.3 Types of users and their requirements
	2.4 Information On Demand
	2.4.1 Operational business intelligence
	2.4.2 Applying Information On Demand with dynamic warehousing

	Chapter 3. Why implement a data warehouse on System z
	3.1 New challenges for data warehouse solutions
	3.2 Data warehousing with System z
	3.2.1 Availability and scalability
	3.2.2 Workload management
	3.2.3 Hardware data compression
	3.2.4 Regulatory compliance
	3.2.5 Disaster recovery
	3.2.6 I/O connectivity
	3.2.7 Parallel access volumes
	3.2.8 Total cost of ownership
	3.2.9 System z10
	3.2.10 Existing System z customer base
	3.2.11 DB2 for z/OS with additional data warehousing capabilities
	3.2.12 Extract, transform, and load on the same platform

	Chapter 4. The architecture for the BI solution on System z
	4.1 Business requirements for a data warehouse environment
	4.2 The business intelligence architecture with System z
	4.2.1 The components involved
	4.2.2 Configuration alternatives

	4.3 When DB2 for z/OS is a good fit
	4.4 Business requirements revisited

	Part 2 Design and implementation of our warehouse scenario
	Chapter 5. The business scenario and data models
	5.1 Background information
	5.2 Business requirements
	5.3 Solution overview
	5.4 The transactional data model
	5.4.1 The OLTP database model
	5.4.2 Creating the schema for the OLTP model
	5.4.3 Data from legacy data sources
	5.4.4 Simulating the transactional environment

	5.5 The operational and dimensional data model
	5.6 Referential integrity for a data warehouse
	5.7 Data modeling options: IBM Industry Models

	Chapter 6. The system environment
	6.1 Implemented architecture
	6.2 System configuration
	6.3 System parameters of DB2 subsystems
	6.4 Workload Manager configuration
	6.5 zIIP utilization

	Chapter 7. Functions in DB2 for z/OS for a data warehouse
	7.1 Index compression
	7.1.1 How index compression works
	7.1.2 Implementation guidelines
	7.1.3 Implementation examples
	7.1.4 Considerations on index compression

	7.2 Table space compression
	7.2.1 Considerations on data compression

	7.3 Index-use tracking by using real-time statistics
	7.4 Not logged table spaces
	7.5 Exploiting the DB2 STATEMENT CACHE
	7.6 Star schema processing
	7.6.1 Star schema access methods
	7.6.2 Star schema processing implementation example

	7.7 Index on expressions
	7.8 Working with the ADD CLONE SQL command
	7.8.1 Operating cloned objects

	7.9 Table space partitioning
	7.9.1 Universal table space

	7.10 Materialized query tables
	7.10.1 When to consider an MQT
	7.10.2 MQTs used in our scenario

	7.11 OLAP functions
	7.11.1 RANK and DENSE _RANK
	7.11.2 ROW_NUMBER

	Chapter 8. Q replication and event publishing
	8.1 Introduction to replication functions
	8.1.1 Q replication
	8.1.2 Event publishing

	8.2 Implementation of Q replication and Event Publisher
	8.2.1 Common infrastructure
	8.2.2 Configuring Q replication subscriptions
	8.2.3 Configuring event publishing using the DB2 Replication Center

	8.3 Operating Q replication and event publishing

	Chapter 9. Setting up ETL components for a data warehouse
	9.1 Overview of components for ETL on Linux on System z and z/OS
	9.2 Configuring a HiperSocket connection to z/OS on Linux on System z
	9.3 Setting up BatchPipes
	9.4 Setting up WebSphere Classic Federation
	9.4.1 Setting up the WebSphere Classic Federation server on z/OS
	9.4.2 Defining and registering the flat file in Classic Data Architect
	9.4.3 Installing and configuring the WebSphere Classic Federation client on Linux on System z

	9.5 Installing IBM Information Server
	9.5.1 Topology considerations: Product tiers
	9.5.2 User ID and registry considerations before installing Information Server
	9.5.3 Installing server components for Linux on System z
	9.5.4 Installing DataStage and QualityStage designer clients on Windows
	9.5.5 Configuring DataStage to access DB2 for z/OS, WebSphere MQ, and WebSphere Classic Federation
	9.5.6 Cataloging the DB2 for z/OS subsystems
	9.5.7 Setting up ODBC connections to DB2 for z/OS databases and WebSphere Classic Federation
	9.5.8 Troubleshooting configuration problems
	9.5.9 Granting user access and creating a new DataStage project
	9.5.10 Defining multiple nodes for parallel execution

	Chapter 10. Full load using DataStage
	10.1 ETL data in our scenario
	10.2 Loading overview
	10.2.1 Full load description
	10.2.2 Incremental load description
	10.2.3 Lookup tables

	10.3 Load jobs for populating ODS from OLTP
	10.3.1 DB2z stage: Reading DB2 data
	10.3.2 DB2z stage: Writing DB2 data
	10.3.3 Parallel jobs and BatchPipes
	10.3.4 Sample load jobs from OLTP to ODS

	10.4 Load jobs for populating a DDS from an ODS
	10.4.1 Load of the Date dimension table
	10.4.2 Surrogate key stage utilization
	10.4.3 Load of the fact table

	10.5 Accessing WebSphere Classic Federation in DataStage jobs
	10.6 Running and monitoring an ETL job in DataStage Director
	10.6.1 Typical load challenges
	10.6.2 Hints for table organization while preparing for loading data

	10.7 Debugging load jobs: A brief look
	10.8 Performance considerations
	10.8.1 Performance statistics
	10.8.2 Parallel jobs versus server jobs
	10.8.3 Choice of stage for performance improvement

	10.9 Naming standards
	10.10 Data quality implementation during full load

	Chapter 11. Incremental update with DataStage
	11.1 Operational BI revisited
	11.2 Reduction of a batch window
	11.3 Usage of queues as sources of data
	11.4 Anatomy of a queue
	11.5 DataStage job to read a queue
	11.5.1 WebSphere MQ Connector stage
	11.5.2 ODBC Enterprise stage

	11.6 Automated reading of the queues and updating of the data warehouse
	11.6.1 Update of the DWHODS Customer table
	11.6.2 Update of the DWHDDS Customer table

	11.7 Concurrency considerations
	11.8 Summary

	Chapter 12. An operational business intelligence implementation
	12.1 OLTP application with embedded analytics
	12.2 The order processing Web application
	12.3 Implementation considerations
	12.3.1 Handling multiple data sources
	12.3.2 Leveraging tools to render business intelligence data

	12.4 Improving response times by using materialized query tables

	Chapter 13. Reporting and analysis with Cognos 8 BI
	13.1 Overview of Cognos 8 BI components
	13.2 Installing Cognos 8 BI Server on Linux on System z
	13.2.1 Topology overview
	13.2.2 System considerations and version checks
	13.2.3 Preparation for installation
	13.2.4 Installing Cognos BI Server components
	13.2.5 Configuring the IBM HTTP Server
	13.2.6 Configuring and starting the Cognos BI Server
	13.2.7 Defining DB2 for z/OS data sources
	13.2.8 Configuring Cognos with WebSphere Application Server

	13.3 Building Cognos data models and packages
	13.3.1 Framework Manager packages
	13.3.2 Defining Transformer models for PowerCubes
	13.3.3 Creating and publishing OLAP PowerCubes

	13.4 Reports with Report Studio
	13.5 Ad hoc queries with Query Studio
	13.6 Multidimensional analysis with Analysis Studio

	Chapter 14. Reporting with DataQuant, QMF, and AlphaBlox
	14.1 DataQuant
	14.1.1 When to consider DataQuant
	14.1.2 DataQuant functions
	14.1.3 A small DataQuant report for RedParts Distribution

	14.2 QMF
	14.3 AlphaBlox
	14.3.1 When to consider AlphaBlox
	14.3.2 AlphaBlox functions
	14.3.3 A small AlphaBlox Web application for RedParts Distribution
	14.3.4 Recommendations to configure AlphaBlox on Linux on System z

	Part 3 Appendixes
	Appendix A. Index compression jobs
	Appendix B. Schema definitions
	B.1 Schema definition for the transactional database
	B.2 Schema definition for the data warehouse database

	Appendix C. Additional material
	C.1 Locating the Web material
	C.2 Using the Web material
	C.2.1 System requirements for downloading the Web material
	C.2.2 How to use the Web material

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get Redbooks
	Help from IBM

	Index
	Back cover

