

ibm.com/redbooks

Designing and Coding Applications
for Performance and Scalability in
WebSphere Application Server

Byron Braswell
Marcelo Manhães

Kon Samartzis
Eddy Tjandra

Application design

Performance considerations

Best practices

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Designing and Coding Applications for
Performance and Scalability in
WebSphere Application Server

January 2008

International Technical Support Organization

SG24-7497-00

© Copyright International Business Machines Corporation 2008. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (January 2008)

This edition applies to Version 6, Release 1 of WebSphere Application Server.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xiii.

Contents

Notices . xiii
Trademarks . xiv

Preface . xv
The team that wrote this book . xv
Become a published author . xviii
Comments welcome. xviii

Chapter 1. Introduction . 1
1.1 Introduction . 2
1.2 Layered application design . 3

1.2.1 Presentation layer . 4
1.2.2 Controller layer . 5
1.2.3 Business facade layer . 5
1.2.4 Domain layer . 5
1.2.5 Data access layer . 5

1.3 Naming conventions . 6
1.3.1 Naming for applications. 6
1.3.2 Naming for resources . 6

1.4 Source code management . 7
1.4.1 Rational ClearCase . 8
1.4.2 Concurrent Versions System . 9
1.4.3 Which source code management to use. 9

1.5 Automated build process. 10
1.6 Automated functional tests . 12
1.7 Test environments. 12

1.7.1 Development environment . 14
1.7.2 Integration test environment . 14
1.7.3 System test environment. 15
1.7.4 Acceptance test environment . 16

1.8 New in WebSphere Application Server V6.1. 17
1.9 Development and deployment tools . 18

1.9.1 Application Server Toolkit V6.1 . 19
1.9.2 Rational Application Developer V7.0. 20

Chapter 2. Application planning and design . 23
2.1 System capabilities and qualities . 24

2.1.1 Availability . 25
2.1.2 Scalability . 26

© Copyright IBM Corp. 2008. All rights reserved. iii

2.1.3 Flexibility . 26
2.1.4 Manageability . 26

2.2 Architectural patterns . 27
2.2.1 Three tier architecture . 27
2.2.2 Model View Controller . 28
2.2.3 Service Oriented Architecture . 29

2.3 Design patterns . 31
2.3.1 Presentation Layer patterns . 31
2.3.2 Business Layer patterns . 35
2.3.3 Integration Layer patterns . 43
2.3.4 General patterns . 46

2.4 Cluster considerations. 48
2.5 Best practices . 51

2.5.1 Set performance goals early . 51
2.5.2 Validate your architecture and design early 52
2.5.3 Always use the Model View Controller architecture pattern 52
2.5.4 Do not “reinvent the wheel” . 53
2.5.5 Develop to the specifications, not the application server 53
2.5.6 Employ iterative development . 54
2.5.7 Always use Session Facades whenever you use EJB components . 55
2.5.8 Acquire shared resources late and release early 56
2.5.9 Put the processing closer to the resources it requires 56
2.5.10 Embrace Java EE, rather than faking it. 56

Chapter 3. General coding considerations . 57
3.1 General considerations . 58

3.1.1 Reviews and testing . 59
3.2 Garbage collection . 60

3.2.1 Vertical clustering . 61
3.2.2 Explicit garbage collection. 62
3.2.3 Lazy instantiation . 63
3.2.4 Object pools . 64
3.2.5 Thread local variables . 64
3.2.6 String concatenations . 67
3.2.7 Canonicalize objects . 69
3.2.8 Array copy . 71
3.2.9 Collection sizing . 72
3.2.10 Static and final variables . 72
3.2.11 Object references . 73
3.2.12 Finalizers. 76

3.3 Synchronization. 77
3.3.1 Synchronized keyword . 77
3.3.2 Synchronized object lock . 79

iv Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

3.3.3 Synchronized method decomposition . 80
3.3.4 Double-checked locking . 83
3.3.5 Implicit synchronization . 84

3.4 Logging . 84
3.5 Database access. 85
3.6 Event-driven processing . 88
3.7 Exceptions. 88
3.8 New input/output library. 89

3.8.1 Buffered read and writes using channels . 89
3.8.2 File locking . 89
3.8.3 Asynchronous I/O . 90

3.9 Java 5 features . 93
3.9.1 Ease of development . 93
3.9.2 Garbage collection . 103

3.10 General coding best practices. 103
3.10.1 Do not put business logic in your client . 104
3.10.2 Always clean up after yourself . 104
3.10.3 Plan for version updates . 104
3.10.4 Follow rigorous procedures for development and testing 105

Chapter 4. Presentation and control layer . 107
4.1 Presentation layer . 108
4.2 JavaServer Pages . 108

4.2.1 Use JSPs as your first choice of presentation technology 110
4.2.2 JSP processor phases . 110
4.2.3 JSP basic syntax. 113
4.2.4 Template content . 113
4.2.5 Directives . 114
4.2.6 Scripting elements. 115
4.2.7 Scripting elements: Best practices . 117
4.2.8 Actions . 117
4.2.9 Tag libraries . 125
4.2.10 Implicit objects. 148
4.2.11 Best practices to use composed Web components 152
4.2.12 Expression Language . 158
4.2.13 Use composed JSPs to optimize caching and code re-use 167
4.2.14 Best practices summary for JSPs . 168

4.3 XML/XSLT processing. 168
4.3.1 Server-sided XSLT processing . 169

4.4 Control layer . 170
4.4.1 General best practices for the control layer 172

4.5 Servlets . 172
4.5.1 General best practices for servlets . 172

 Contents v

4.5.2 HttpSession best practices . 173
4.5.3 Use webcontainer approaches to create/deliver resources 187
4.5.4 Compose your servlets . 188
4.5.5 Avoid presentation layer servlets . 191
4.5.6 Implement thread safe servlets . 192
4.5.7 Optimizing service. 199
4.5.8 Use a framework that implements a controller 199

4.6 Struts . 199
4.6.1 Model View Controller model 2 pattern with Struts 199
4.6.2 General performance considerations . 202
4.6.3 Overview of Struts components . 203
4.6.4 Reuse data across multiple ActionForms . 205
4.6.5 Design guidelines for Actions . 206
4.6.6 Use the Action class to handle requests . 207
4.6.7 Use Struts validation framework . 208
4.6.8 Do not make direct JDBC calls from Actions 214
4.6.9 Use ActionForm to work on session data . 214
4.6.10 Handle exceptions effectively . 214
4.6.11 Choose JSP instead of XSLT for rendering the view in Struts . . . 216
4.6.12 Using Tiles . 216
4.6.13 Do not use form beans to transfer data to business logic layer . . 219
4.6.14 Use servlet/controller best practices to implement action handlers219

4.7 JavaServer Faces . 220
4.7.1 JavaServer Faces features and benefits. 221
4.7.2 JavaServer Faces architecture . 223
4.7.3 FrameWork responsibilities. 225
4.7.4 JavaServer Faces life cycle . 226
4.7.5 JavaServer Faces page components . 228
4.7.6 Use JSF from an application example . 229
4.7.7 Best practices to use JSF and/or Struts . 230
4.7.8 JSF and AJAX integration . 233

4.8 Caching Web components . 240
4.8.1 Configuring cache policy for your servlet and JSP 241
4.8.2 Configuring cache policy for your Struts and Tiles 243

4.9 Java client programming . 246
4.9.1 Abstract Window Toolkit . 247
4.9.2 Swing . 247
4.9.3 Standard Widget Toolkit . 247
4.9.4 Java components providing a GUI . 248

4.10 References . 249
4.10.1 JSP best practices . 249
4.10.2 JSF best practices. 249
4.10.3 Servlets best practices . 250

vi Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

4.10.4 Struts best practices . 250

Chapter 5. Business logic layer . 251
5.1 Introduction . 252
5.2 EJB 3.0 for business logic . 252

5.2.1 History of Enterprise Java Beans . 253
5.2.2 Enterprise Java Beans: Reasons to use . 254
5.2.3 EJB server and EJB container: Overview . 256
5.2.4 Session beans. 258
5.2.5 Message-driven beans . 283
5.2.6 Best practices for advanced concepts of EJBs 291

5.3 General best practices considerations for business logic 304
5.3.1 Choose a Web application framework that can work with or without using

EJBs . 304
5.3.2 Apply automated unit tests in the business logic layer 305
5.3.3 Prefer to develop core business logic in POJOs. 306
5.3.4 Build a better exception-handling framework 306
5.3.5 Central coding and DAO . 306
5.3.6 Embrace the qualities of service provided by the application server

environment . 306
5.3.7 Plan for using Java EE security from day one 307

5.4 References . 308

Chapter 6. Integration layer . 309
6.1 The integration layer: EIS integration . 310

6.1.1 Levels of EIS integration . 310
6.2 Data access layer . 314
6.3 Java object serialization . 315

6.3.1 Serialization drawbacks . 317
6.4 JDBC and SQLJ . 317

6.4.1 Driver types: Overview . 318
6.4.2 Data type mapping . 319
6.4.3 Using static SQL . 320
6.4.4 Use a data source to get connections. 323
6.4.5 Control your transactions . 326
6.4.6 Using JTA . 329
6.4.7 Releasing resources best practices . 337
6.4.8 Optimization with Statements . 339
6.4.9 Optimization with ResultSet . 343
6.4.10 Optimization with SQL Query . 346
6.4.11 Fetch small amounts of data iteratively. 347

6.5 Entity Beans 2.x . 347
6.5.1 Container Managed versus Bean Managed Persistence 348

 Contents vii

6.5.2 Considerations on the techniques used . 349
6.5.3 General tips for EJB Entity Beans performance 350
6.5.4 Developing a read-only Entity Bean . 353
6.5.5 EJB QL enhancements from EJB 2.1 specification. 354
6.5.6 Tuning the Entity Bean container pools . 355
6.5.7 Understanding caching options to improve performance 358
6.5.8 Defining data cache settings for a bean for performance 360
6.5.9 Improving passivation behavior. 362
6.5.10 Applying lightweight local model to an Entity Bean. 363
6.5.11 Using partial column updates for CMP beans. 366
6.5.12 Understanding EJB access intents for best practices 369
6.5.13 Enterprise JavaBeans Data Mediator Service 379
6.5.14 EJB session bean: direct access to back-end. 379

6.6 Java Persistence API: Entity Beans 3.0 . 380
6.6.1 Domain Model and POJO-based programming 381
6.6.2 JPA programming model. 383
6.6.3 Introducing entity manager and persistence life cycle 392
6.6.4 Object/relational mapping . 395
6.6.5 JPQL overview . 415
6.6.6 Best practices for scalability and improved performance 418
6.6.7 JPA adoption considerations. 422

6.7 iBATIS . 422
6.7.1 iBATIS basic concepts . 424
6.7.2 iBATIS Data Mapper framework . 425
6.7.3 SQL map config file. 429
6.7.4 The DAO framework . 431
6.7.5 Transactions in the Data Mapper framework 432
6.7.6 Caching in iBATIS . 433
6.7.7 Dynamic SQL in iBATIS . 434

6.8 Java Data Objects . 435
6.8.1 Advantages: JDO . 435
6.8.2 Disadvantages: JDO . 436
6.8.3 Alternatives: JDO . 436
6.8.4 Best practices . 436

6.9 Service Data Objects. 436
6.9.1 SDO objectives . 437
6.9.2 SDO architecture. 439
6.9.3 Others SDO perspectives . 442
6.9.4 Advantages: SDO . 445
6.9.5 Disadvantages: SDO. 446
6.9.6 Best practices: SDO . 446
6.9.7 Resource information . 446

viii Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

6.10 Java 2 Connector Architecture . 447
6.10.1 Re-use of objects . 447
6.10.2 Managed environment . 449
6.10.3 Use of transactions . 450
6.10.4 Connection pooling . 451
6.10.5 Connection usage . 451
6.10.6 Lazy association . 452
6.10.7 Lazy enlistment . 453
6.10.8 Best practices for CICS Transaction Gateway 454
6.10.9 IMS Connect . 455

6.11 Java Message Service . 456
6.11.1 Basic concepts . 456
6.11.2 What the Java Message Service is . 459
6.11.3 JMS connection considerations . 462
6.11.4 JMS session considerations . 465
6.11.5 JMS destination considerations . 466
6.11.6 JMS message producer / consumer considerations 467
6.11.7 JMS message considerations . 471
6.11.8 JMS performance testing . 471

6.12 Web Services . 471
6.12.1 Some concepts . 472
6.12.2 Web Services architectures and best practices 496
6.12.3 Best practices while developing Web Services. 500
6.12.4 Web Services performance best practices 503

6.13 References . 506
6.13.1 EIS access layer . 506
6.13.2 JDBC and SQLJ . 506
6.13.3 iBATIS . 507
6.13.4 JPA . 507
6.13.5 Entity Beans . 507
6.13.6 SDO . 508
6.13.7 JMS . 508
6.13.8 Web Services . 508

Chapter 7. Environmental performance considerations 509
7.1 What is new in V6.1. 510
7.2 Application environment tuning . 510

7.2.1 Tuning the Java Virtual Machine. 511
7.2.2 Java memory tuning tips . 517
7.2.3 Tuning Web container . 525
7.2.4 Tuning the EJB container . 528
7.2.5 Tuning Object Request Broker . 532
7.2.6 Tuning XML parser selection . 544

 Contents ix

7.2.7 Tuning the URL invocation cache . 545
7.2.8 Tuning transport channel services . 546
7.2.9 Tuning data sources and associated connection pools 554
7.2.10 Tuning session management . 557

7.3 Tuning a Web server . 567
7.4 DB2 tuning parameters . 570

7.4.1 DB2 logging. 570
7.4.2 DB2 configuration advisor . 571
7.4.3 DB2 - MaxAppls and MaxAgents . 571
7.4.4 DB2 buffpage . 571
7.4.5 DB2 query optimization level. 573
7.4.6 DB2 reorgchk . 573
7.4.7 DB2 locktimeout . 574
7.4.8 DB2 maxlocks . 574
7.4.9 DB2 locklist . 575

7.5 Workload Management . 575
7.5.1 Clustering application servers . 577
7.5.2 Tuning a Workload Management configuration 579
7.5.3 Tuning Web server plug-in for balancing workloads 580
7.5.4 Improving performance in a high stress environment 581

Appendix A. Additional best practices for SQLJ 583
Additional best practices for SQLJ . 584

Appendix B. EJB 3 Feature Pack for WebSphere V6.1 589
Installation of prerequisites. 590
Update Installer V6.1 and WebSphere FP installation: Overview 591
EJB 3.0 Feature Pack installation . 598

Using PMT: Overview . 601
Install verification. 604

Application sample . 606
Install application sample . 606
Executing the sample . 609

Executing the sample from the servlet . 609
Configuring Eclipse for application sample development. 612
Setting up the workspace . 612
Creating a java project . 617
Adding Java EE Runtime Jar files to your project . 620
Importing the sample source . 622
Building the EJB3CounterSample Application . 629
Known limitations with sample . 631
Understanding some parts of the sample code . 632

JPACounterEntity . 632

x Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Stateless Counter Bean . 637

Appendix C. WebSphere Application Server Toolkit 6.1 641
Application Server Toolkit. 642
Starting WebSphere Application Server Toolkit . 642
Configuring Application Server Toolkit . 643
Prerequisites . 644

Abbreviations and acronyms . 645

Related publications . 649
IBM Redbooks . 649
Other publications . 649
Online resources . 650
How to get Redbooks . 651
Help from IBM . 651

Index . 653

 Contents xi

xii Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

© Copyright IBM Corp. 2008. All rights reserved. xiii

Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

CICS®
ClearCase®
ClearCase MultiSite®
ClearQuest®
DB2®
developerWorks®
IBM®
IMS™

Purify®
Rational®
Rational Rose®
Rational Unified Process®
Redbooks®
Redbooks (logo) ®
RequisitePro®
RUP®

System p™
System z™
Tivoli®
WebSphere®
Workplace™
z/OS®

The following terms are trademarks of other companies:

SAP, and SAP logos are trademarks or registered trademarks of SAP AG in Germany and in several other
countries.

Oracle, JD Edwards, PeopleSoft, Siebel, and TopLink are registered trademarks of Oracle Corporation
and/or its affiliates.

Enterprise JavaBeans, EJB, Java, Java Naming and Directory Interface, Javadoc, JavaBeans, JavaScript,
JavaServer, JavaServer Pages, JDBC, JDK, JNI, JRE, JSP, JVM, J2EE, J2SE, Solaris, Sun, and all
Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or
both.

Expression, Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

xiv Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Preface

In many WebSphere® Application Server environments, support personnel often
get more questions on application performance and tuning than WebSphere
Application Server tuning.

While there is much documentation and guidance for installing, monitoring, and
tuning the performance and scalability aspects of WebSphere Application Server,
not a lot of guidance and recommendations for performance and scalability
considerations are given when designing and coding applications that execute in
the WebSphere Application Server environment.

This IBM® Redbooks® publication provides performance and scalability
considerations to keep in mind when developing and coding WebSphere
Application Server applications. In this book, we take a layered approach to
application development covering performance and coding considerations for
each layer in a separate chapter.

In addition, various application development tools and strategies are compared
within each layer along with best practices to keep in mind when designing and
developing applications.

The target audience for this book includes the application development team,
especially architects and developers. It also includes developers with experience
using various application development techniques and tools for the different
layers in the application architecture.

The team that wrote this book

This book was produced by a team of specialists from around the world working
at the International Technical Support Organization, Raleigh Center.

© Copyright IBM Corp. 2008. All rights reserved. xv

The team: Byron, James, Marcelo, Eddy, Kon

Byron Braswell is a Networking Professional at the ITSO, Raleigh Center. He
received a Bachelor of Science degree in Physics and a Master of Computer
Science degree in Computer Sciences from Texas A&M University. He writes
extensively in the areas of networking, application integration middleware, and
personal computer software. Before joining the ITSO, Byron worked in IBM
Learning Services Development in networking education development.

Marcelo Manhães is a WebSphere IT Specialist working for IBM Global
Services in Hortolândia-São Paulo-Brazil. He has ten years of experience in Web
development and seven years in the WebSphere Software Platform field with
support and development. He holds a degree in Bachelor in Computer from
Paraná Federal University. He is certified for WebSphere Application Server 5
(Basic/Advanced Administration) and WebSphere Application Server 6
(Network Deployment Administration) and Sun™ certified for Java™
Programmer, Developer, Web Components, Business Components. His areas of
expertise include EJB™ development and design, infrastructure development,
and WebSphere Application Server support.

Kon Samartzis is a Senior IT Specialist in IBM Global Services, Australia. He
has 13 years of experience in Web development and the systems integration
field. He holds a degree of Bachelor in Computer Science from LaTrobe
University in Melbourne. His areas of expertise include J2EE™ design and
development, Enterprise Application Integration, Service Oriented Architecture,
IBM WebSphere Application Server, WebSphere MQ, Web Services, and global
technical team leadership.

xvi Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Eddy Tjandra is an IT Specialist with IBM Software Lab Services in IBM
Software Group Indonesia. He specializes in implementing IBM software that is
based on J2EE technology such as WebSphere Application Server, WebSphere
Portal Server, Workplace™ Software, and so on. He holds a Bachelor of
Informatics Engineering degree from Sepuluh Nopember Institute of Technology
(ITS), Surabaya, Indonesia.

Thanks to the following people for their contributions to this project:

James S. Pagadala is an IBM Global Business Services Associate Consultant,
Package Solution Consultant. James participated in the planning and with the
sample application setup during the project.

Margaret Ticknor
Carla Sadtler
Carolyn Briscoe
Linda Robinson
Robert Haimowitz
International Technical Support Organization, Raleigh Center

Richard M Conway
International Technical Support Organization, Poughkeepsie Center

Yvonne Lyon
International Technical Support Organization, San Jose Center

Thomas Alcott
Keys Botzum
Kyle Brown
Beena Hotchandani
Ruth Willenborg
IBM WebSphere Design/Performance

Richard Raszka
IBM Australia

Amrit Sanjeev
IBM India

Rudhi Wijanarko
Topik Hidayat
IBM Indonesia

 Preface xvii

Become a published author

Join us for a two- to six-week residency program! Help write a book dealing with
specific products or solutions, while getting hands-on experience with
leading-edge technologies. You will have the opportunity to team with IBM
technical professionals, Business Partners, and Clients.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you will develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about
this book or other IBM Redbooks in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

xviii Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Chapter 1. Introduction

This chapter introduces the overall application development environment
including the layered application design structure.

A review of design considerations is presented, followed by an introduction to
various development and testing tools that are available.

The chapter is organized into the following major sections:

� 1.1, “Introduction” on page 2
� 1.2, “Layered application design” on page 3
� 1.3, “Naming conventions” on page 6
� 1.4, “Source code management” on page 7
� 1.5, “Automated build process” on page 10
� 1.6, “Automated functional tests” on page 12
� 1.7, “Test environments” on page 12
� 1.8, “New in WebSphere Application Server V6.1” on page 17
� 1.9, “Development and deployment tools” on page 18

1

© Copyright IBM Corp. 2008. All rights reserved. 1

1.1 Introduction
This book discusses best practices and performance considerations for
developing WebSphere Application Server based applications.

Before you start reading, you should be aware that the “best” in best practices is
situational. There are certain situations where design decisions that are contrary
to the “best” practices listed below are actually good. Just keep in mind that there
are always several different factors that lead to a specific design decision, so
being clear about the factors contributing to the decision is key.

We use the Model View Controller (MVC) paradigm as a basis for design
guidelines, because this common architectural concept is used in nearly all
J2EE-based applications running on an application server. See 2.2.2, “Model
View Controller” on page 28 for more information on Model View controller.

Nevertheless, even with a good architecture, it is still possible to have a bad
design. Therefore, we outline several different design alternatives that are based
on this model. For each specific layer, we focus on existing design patterns,
rather than “reinventing the wheel,” but also cover new technologies that are
available in IBM WebSphere Application Server V6.1. Throughout this book, we
especially focus on performance-related aspects. In general, the best practices
should help you in designing a scalable, high-performing application that can
also be run on a highly available WebSphere cluster. In addition, we also cover
some techniques and strategies that can assist you in optimizing the
performance of your current application. However, they do not compensate for a
poorly designed or architected application.

There can be a number of reasons for a poor application design, with limited
scalability or several performance bottlenecks. These include a lack of focus on
performance during requirement analysis and application design, a limited
awareness of performance issues by the developers, or a desire to produce an
elegant, extremely flexible, or highly object-oriented solution. It is important that
performance targets be set at the beginning of the project and communicated to
all team members involved in development. The implications of these targets on
development work should also be analyzed early in the development cycle and
made known. Note that there is often a trade-off between implementations that
are elegant, flexible, and easy to read and maintain; and those that offer higher
performance.

2 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

In general, it is a good idea to verify as soon as possible that the performance
expectations are met. In general, a load-performance test is a good way to find
possible architecture and design defects. So it might make sense to develop and
then load-test a prototype in a very early stage of the project, just to verify your
design decisions. Always keep in mind that design changes in a later phase of
the software life cycle are very, very expensive! Therefore, ongoing performance
testing activities should be undertaken throughout the whole project life cycle to
ensure that the performance requirements are met.

To optimize this specific testing of performance under simulated loads, we
recommend using a tool such as Rational® Performance Tester, OpenSTA, or
Apache JMeter. The tool can also provide insight as to where performance
optimization work should be targeted.

If your application is already in or near production and you notice performance
problems, the following chapter also contains useful information, for example,
about caching technologies or other performance optimizations whereby IBM
WebSphere Application Server V6.1 can potentially improve your application
performance without changing the overall application design. In these cases,
profiling tools can also be extremely useful, such as those included with IBM
Rational Application Developer and described in Chapter 15 of WebSphere
Application Server V6 Scalability and Performance Handbook, SG24-6392.

These tools indicate which parts of the code are most frequently used, and also
where the majority of the execution time is spent. Typically, most of the execution
time is spent on a minimum of the code, as suggested by the 80/20 rule: 80% of
the execution time is spent on 20% of the code. In many cases, the ratio might be
even higher, such as 90/10 or more. Although it is important to be aware of best
practices when performing all development work, extra care should be taken to
optimize the most frequently used code sections.

More information about server-side tools for analyzing usage patterns of
components of an application such as servlets and EJBs can be found in
Chapter 14 of WebSphere Application Server V6 Scalability and Performance
Handbook, SG24-6392.

1.2 Layered application design

Any application based on Java 2 Platform, Enterprise Edition is inherently a
distributed application and thus it can be classified into a set of layers. During the
implementation stage, we can group together related code under one layer. For
example, all the code related to user interface (UI) elements for data input and for
displaying information can be grouped together under the presentation layer.

 Chapter 1. Introduction 3

A typical separation of layers in J2EE applications is:

� Presentation layer
� Controller layer
� Business facade layer
� Domain layer
� Data access layer

When the application is divided into layers, we can identify a horizontal
separation of the functionality, as shown in Figure 1-1.

Figure 1-1 Horizontal separation of the application functionality

1.2.1 Presentation layer
The presentation layer is the user interface of a component. This layer includes
any Web pages that use forms and other UI elements to allow the user to enter
data, as well as any Web pages that use tables and other UI elements to display
information. It is normally implemented using a combination of:

� HTML pages
� JavaServer™ Pages™(JSP™)
� JavaScript™
� Images and other multimedia files

Presentation layer

Data access layer

Domain layer

Business facade layer

Controller layer

4 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

1.2.2 Controller layer
The controller layer connects the presentation layer with the component business
logic, which is implemented in the business facade layer. In effect, the controller
layer accepts a request from the presentation layer, calls the appropriate method
of the business facade layer, stores any results in the request object, and returns
back to the presentation layer for displaying the results. It is normally
implemented using a combination of:

� Java Servlets
� JavaBeans™
� Struts actions
� Struts forms

1.2.3 Business facade layer
The business facade layer plays the role of a bridge between the front-end and
the back-end of the application. It is implemented using a manager class which
exposes the business methods required from the implementation of the
component. In effect, a method of the manager is called from one of the servlets
or Struts actions of the controller layer with some parameters passed in the form
of a Data Transfer Object (DTO). The manager creates an instance of the
appropriate Data Access Object (DAO), executes it, and returns the results
obtained from the database to the caller either as a single DTO or a collection of
DTOs.

1.2.4 Domain layer
The domain layer consists of custom-designed JavaBeans that are used to
encapsulate data transferred between layers of the application. These
JavaBeans are called Data Transfer Objects (DTOs). To implement these DTOs,
we used the functionality provided by WebSphere Studio and the Rational
Software Development Platform to help us generate getter and setter methods.

1.2.5 Data access layer
The data access layer consists of custom designed JavaBeans that perform
database operations using JDBC™. These JavaBeans are called Data Access
Objects (DAOs). To implement these DAOs, we used the various data wizards
provided by WebSphere Studio and the Rational Software Development
Platform.

 Chapter 1. Introduction 5

1.3 Naming conventions

Spending some extra time on application-related naming concepts quickly pays
off in practice, because it can reduce the time spent on analyzing the source of
issues during standard operations of future J2EE applications.

1.3.1 Naming for applications

Generally, some form of the version, release, modification, fix (VRMF) schema is
used to organize code and builds, and commonly, a dotted number system such
as 1.4.0.1 is used. In this way, code management systems can be certain of
identifying, creating, and re-creating application builds accurately from the
correct source code, and systems administrators and developers know exactly
which version is used.

Append the version number to the enterprise archive (EAR) file name, such as in
OrderApplication-1.4.0.1.ear.

Sometimes, the version number of included components, such as utility JAR files
packaged in the EAR, can also have version numbers in their file names, but this
can often cause problems. Consider a utility JAR with a version number in the file
name, such as log4j-1.2.4.jar. If that is updated and the name is changed to
log4j-1.2.5.jar, each developer has to update the class path settings in their
workspace, which costs them time. It is then better to use an SCM system and
label the new JAR file as being version 1.2.5, but keep the file name constant,
such as just log4j.jar.

To keep track of all the versions of included components, it is a good idea to
include a bill of materials file inside the EAR file itself. The file can be a simple
text file in the root of the EAR file that includes versions of all included
components, information about the tools used to build it, and the machine on
which application was built. The bill of materials file can also include information
about dependencies to other components or applications, as well as a list of fixes
and modifications made to the release.

1.3.2 Naming for resources

When naming resources, preferably associate the resource to both the
application using it and the physical resource to which it refers. As an example for
our discussion, we use a data source, but the concept holds also for other types
of resources such as messaging queue. Remember, if your company already has
a naming convention for other environments (non-WebSphere) in place, it is
probably a good idea to use the same naming convention in WebSphere.

6 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Assume that you have a database called ORDER that holds orders placed by
your customers. The obvious name of the data source would be Order and its
JNDI name jdbc/Order.

If the ORDER database is used only by a single application, the application name
can also be included to further explain the purpose of the resource. The data
source would then be called Order_OrderApplication and its JNDI name
jdbc/Order_OrderApplication.

Because the WebSphere administrative console sorts resources by name, you
might want to include the name of the application first in the resource, such as in
OrderApplication_Order. This gives you the possibility to sort your resources
according to the application using them.

To group and sort resources in the WebSphere administrative console, you can
also use the Category field, which is available for all resources in the
administrative console. In this text field, you can enter, for example, a keyword
and then sort your resource on the Category column. So instead of including the
name of the application in the resource name, you enter the application name in
the Category field instead.

If you have several different database vendors, you might also want to include the
name of the database vendor for further explanation. The Category field is a
good place to do that.

1.4 Source code management

In development, it is important to manage generations of code. Carefully
organize and track application builds and the source code used to create them to
avoid confusion. In addition to tracking the version of the source code, it is
equally important to track the version of the build tools and which machine was
used to generate a build. Not all problems are due to bugs in source code.

Developers produce code and usually use an integrated development
environment (IDE) such as the Application Server Toolkit or Rational Application
Developer to do that. Code in an IDE is stored in a workspace on the file system,
usually locally on each developer’s machine. As the project continues, and
perhaps new members join the team, the code grows and it becomes necessary
to manage the code in a central master repository. This allows for:

� Development team collaboration (work on common code)
� Code versioning (managing which versions are in which releases)
� Wider team collaboration (access for project managers, testers)

Source code management (SCM) systems are used for these purposes.

 Chapter 1. Introduction 7

Rational Web Developer and Rational Application Developer support Rational
ClearCase® and CVS as SCM systems, while the Application Server Toolkit
supports only CVS.

1.4.1 Rational ClearCase

Rational ClearCase organizes its code repositories as versioned object bases or
VOBs. VOBs contain versioned file and directory elements. Users of Rational
ClearCase are organized according to their role. Each user has their own view of
the data that is in the VOB on which they are working. Rational ClearCase tracks
VOBs and views and coordinates the checking in and checking out of VOB data
to and from views.

As the role-based model suggests, Rational ClearCase is not just an SCM
system but also a Software Asset Management (SAM) system. This means that it
not only manages code but other assets. These further assets might be
produced by the other Rational products with which Rational ClearCase
integrates.

The Rational products with which ClearCase integrates are Rational Enterprise
Suite Tools, the Rational Unified Process®, and, of course, Rational IDEs.
Artifacts such as use cases generated by Rational RequisitePro® can be stored
in Rational ClearCase. These can then be fed into a Rational Rose® design
model and used to design Java components and generate Unified Modeling
Language (UML) diagrams and documentation.

ClearCase can also be used to implement the Unified Change Management
(UCM) process. This change management process can be enhanced by using
Rational ClearCase in conjunction with Rational ClearQuest®, a change and
defect tracking software.

The software is scalable. Rational ClearCase LT is a cut down version of Rational
ClearCase for small-to medium-sized teams. It can be upgraded seamlessly to
Rational ClearCase as a user’s requirements change. Additionally, use a
ClearCase MultiSite® add-on to support use of the software in geographically
dispersed development teams.

In short, although ClearCase is an SCM system, it is also an integral part of the
Rational toolset and RUP®.

For more information about Rational software, see:

http://www.ibm.com/software/rational

8 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://www.ibm.com/software/rational

1.4.2 Concurrent Versions System

Concurrent Versions System (CVS) uses a branch model to support multiple
courses of work that are somewhat isolated from each other but still highly
interdependent. Branches are where a development team shares and integrates
ongoing work. A branch can be thought of as a shared workspace that is updated
by team members as they make changes to the project. This model enables
individuals to work on a CVS team project, share their work with others as
changes are made, and access the work of others as the project evolves. A
special branch, referred to as HEAD, represents the main course of work in the
repository (HEAD is often referred to as the trunk).

CVS has the following features:

� It is free to use under the GNU license.
� It is open source.
� It is widely used in the development community.
� Other SCM repositories can be converted to CVS.
� Many free client applications are available, for example, WinCVS.
� It can store text and binary files.
� It handles versioning and branching.
� It is a centralized repository.

For more information about Concurrent Versions System, see:

http://ximbiot.com/cvs/wiki

1.4.3 Which source code management to use

The obvious question arises: Which SCM should the team use? There is no
simple answer to this question, because the answer depends on a number of
factors.

Current software and processes
To some extent, the choice depends on what the existing situation is (if any) and
what the SCM and development process requirements are now and in the future.
If a team uses CVS and an existing, successful, development process,
ClearCase might not be necessary, especially if the size and complexity of
requirements is not likely to grow in the future. If this is not the case, Rational
ClearCase LT or Rational ClearCase are a good choice so that the full integration
of Rational and WebSphere products can be exploited now and in the future.

 Chapter 1. Introduction 9

http://ximbiot.com/cvs/wiki

Team size
Rational ClearCase LT gives a sound starting place for smaller teams. Rational
ClearCase LT can be upgraded to Rational ClearCase later if necessary. On very
large development projects, Rational ClearCase and Rational ClearQuest have a
MultiSite option that allows for easier development by geographically dispersed
development teams.

Complexity of requirements
RUP provides a holistic approach to the end-to-end development life cycle. The
use of the UCM process, which is part of the RUP, can shield the user from
complex tagging and branching of code. CVS does not shield the user from this.

Cost
CVS is a possibly a cheaper option because it is free and has a large user base,
which means cheaper skills. In terms of hardware, it is likely that hardware costs
for hosting CVS itself are cheaper because of its smaller footprint. However,
these might be false economies. The limitations of CVS can cause a team to
migrate to Rational ClearCase later.

Change management process
If the development team uses CVS rather than Rational ClearCase, the team
does not get a prescribed change management process for CVS such as the
UCM. If their organization does not have its own change management process,
such a process should be created and put into place.

Summary
In summary, the smaller the development team and the less complex the
requirements, the more likely that CVS or Rational ClearCase LT are good
choices. As team size and complexity grows, Rational ClearCase and then
Rational ClearCase MultiSite become more attractive. Existing processes and
software as well as the budget for new software, hardware, and training are likely
to inform the decision further. In matters of cost, there might be false economies.

1.5 Automated build process

The major driver for implementing and maintaining an automated build process is
to provide a simple and convenient method for developers to perform builds for
development, test, and production environments.

10 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

These are some of the main problems you might run into when you do not have
an automated process:

� Failures occur in your test or production environment because the code was
not packaged correctly.

� The wrong code was deployed, causing the application to fail.

� The development team, testers, and even customers have to wait to get the
code out to a test, staging, or production environment because the only
person who has control over these is unavailable.

� You cannot reproduce a problem on production because you do not know
what version of files are in production at the moment.

The time spent developing an automated build script pays for itself over time.
After you have an automatic build process in place, you can virtually eliminate
failures due to improper deployment and packaging, considerably reduce the
turnaround time for a build, allow you to easily recreate what is in each of your
environments, and ensure that the code base is under configuration
management.

There are several tools on the market to help you develop a build script, including
Apache Ant. Apache Ant is a Java-based build tool that extends Java classes
and uses XML-based configuration files to perform its job. These files reference a
target tree in which various tasks are run. Each task is run by an object that
implements a particular Task interface. Ant has become a very popular tool in the
Java world.

WebSphere Application Server provides a copy of the Ant tool and a set of Ant
tasks that extend its capabilities to include product-specific functions. These
Apache Ant tasks reside in the com.ibm.websphere.ant.tasks package. The
Javadoc™ for this package contains detailed information about the Ant tasks and
how to use them.

The tasks included with WebSphere Application Server enable you to:

� Install and uninstall applications.
� Run EJB deployment and JSP pre-compilation tools.
� Start and stop servers in a base configuration.
� Run administrative scripts or commands.

By combining these tasks with those provided by Ant, you can create build
scripts that pull the code from the SCM repository, and then compile, package,
and deploy the enterprise application on WebSphere Application Server. To run
Ant and have it automatically see the WebSphere classes, use the ws_ant
command.

 Chapter 1. Introduction 11

For more detailed information about Ant, refer to the Apache organization Web
site at:

http://ant.apache.org/index.html

1.6 Automated functional tests

Automating your functional tests might be a good idea, depending on your project
size and how complex the requirements of the project are. Scripts execute much
faster than people, but they are not automatically generated, so someone has to
create them at least one time. It is possible to create a script to cover all function
in your application, but it would be very complicated and costly. A good idea is to
create scripts for the main features of the system and for those that do not
change very much over time, so whenever a new build is published by an
automated build tool or human personnel, you can be sure that the application
still works properly.

IBM offers a rich set of software tools for implementing automated test solutions.
These solutions solve many common problems and therefore reduce complexity
and cost. For more information, see Rational Functional Tester at:

http://www.ibm.com/software/awdtools/tester/functional/

1.7 Test environments

Before moving an application into production, it is very important to test it
thoroughly. Because there are many kinds of tests that have to be run by different
teams, a proper test environment often consists of multiple test environments.

Tests cases must be developed according to system specification and use cases.
Do this before the application is developed. These system specification and use
cases must be detailed enough so that test cases can be developed. Test cases
have to verify both functional requirements (such as application business logic
and user interface) and non-functional requirements (such as performance or
capacity requirements). After developing the test cases and enough functionality
has been developed in the application, start testing.

12 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://ant.apache.org/index.html
http://www.ibm.com/software/awdtools/tester/functional/

Figure 1-2 shows an overview of a recommended test environment setup.

Figure 1-2 Test environments

Whether you choose to use some of these test environments, all of them, or even
additional test environments, depends on the system being developed, project
size, budget constraints, and so on.

Each environment is maintained as a separate cell in order to completely isolate
the environments from each other. For smaller environments, a single application
server profile is usually sufficient, while larger ones might require a deployment
manager for that particular cell environment.

Database,
backends

WebSphere

HTTP

Acceptance test environment

Load
balancer

Database,
backends

WebSphere

HTTP

Acceptance test environment

Load
balancer

Database,
backends

WebSphere

HTTP

Production environment

Load
balancer

Database,
backends

WebSphere

HTTP

Production environment

Load
balancer

Database

WebSphere

HTTP

System test environment

Database

WebSphere

HTTP

System test environmentIntegration test
environment

HTTP,
WebSphere,

Database

Integration test
environment

HTTP,
WebSphere,

Database

Development
environment

SCM Build
server

Development
environment

SCM Build
server

 Chapter 1. Introduction 13

1.7.1 Development environment

Usually each developer has their own WebSphere test environment integrated in
the development tool. This test environment is used for the developer’s daily work
and it is often active while the developer is coding. Whenever necessary, the
developer can perform instant testing.

Because of the tight integration between WebSphere Application Server and the
IBM development tools, the application server can run the application using the
resources in the developer’s workspace. This eliminates the necessity for
developers to execute build scripts, export, or otherwise package the application
into an EAR file and deploy that on a test server for every small change made.
This capability makes it very easy and quick to test applications while developing
them and increases developer productivity.

Each developer is also responsible for performing unit testing of their own code.
Most tests performed for the system are executed in this environment, and the
primary goal is to wash out obvious code bugs. The developers work against this
environment and share code using the SCM system. The development
environment is most often a powerful Windows® desktop machine.

When each developer has committed their code on to the integration stream in
the SCM system, a development lead or integration team usually performs a
clean build of the whole application, bringing together code developed by
different developers. This is usually done on a special build server and is
controlled by automatic build scripts (see 1.5, “Automated build process” on
page 10). This server might require having a copy of the Application Server
Toolkit or Rational Web Developer installed.

The development team should also create a Build Verification Test process (see
1.6, “Automated functional tests” on page 12), one where each new build is
executed before making this build available to the team. A Build Verification Test
covers test cases or scenarios that verify that critical paths through the code are
operational. Build Verification Test scripts are often controlled by JUnit.

Another activity that is every developer’s responsibility is to perform basic code
profiling. By using the profiling tools in Rational Application Developer, a
developer can discover methods that perform poorly, find memory leaks, or
excessive creation of objects.

1.7.2 Integration test environment

After a successful build and regression test, the application is deployed to the
integration test environment. This is the environment where the developers
perform integration tests among all system components on a hardware and

14 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

software platform that mirrors the production environment, although in a very
small size.

Because the production environment is often not the same platform as the
development environment, a guideline is to start testing on the target platform as
early as possible in the test phase. This testing helps discover problems with
incompatibilities between platforms, for example, hard coded folder paths (such
as C:\ versus /usr). The integration test environment is usually the first
environment suitable for that.

For small projects, the integration test environment can often be shared between
different projects. But if the number of projects or developers is too large, it
becomes difficult to manage. Usually no more that 5 to 10 developers should
share a single integration test environment. If a developer has to perform tests
that might damage the environment, a dedicated environment should be used.

As long as the machine has enough resources in terms of CPU and memory,
using multiple WebSphere profiles can also be a good method to isolate different
teams from each other. Using VMWare is another option.

The development team manages and controls the integration test environment.

1.7.3 System test environment

The purpose of the system test is to verify that the system meets both functional
and non-function requirements. After the development team has tested the
application in their own controlled environment, it is delivered to the system test
team. When the application is delivered, the system test team deploys it using
the instructions given.

If the tests in the previous test stages have been less formal, a key aspect of the
system test is formality. The system test team is responsible for verifying all
aspects of the system and ensuring that it conforms to the specifications.
Functional requirements include things such as does the system execute the
business rules defined, does the user interface show the right information, and
so on. Non-functional requirements include capacity, performance, installation,
backup, and failover requirements.

The system test team completely controls the system test environment. The
environment is usually a cut-down version of the real production environment, but
with all the important components in place. If the production environment is a
highly available environment with WebSphere clusters, the system test should
also be set up with clusters to verify both application functionality and
deployment routines.

 Chapter 1. Introduction 15

The system test environment can also be used by other teams. Perhaps the
system administrators have to test new patch levels for the operating system,
WebSphere, database, and so on before rolling them out in production. The
system test environment is a good place to do that. If a patch is committed, it
should also be applied to the other test environments to keep all environments in
sync.

1.7.4 Acceptance test environment

The acceptance test environment is the last stage, where testing takes place
before moving the application into production. The acceptance test environment
is the one that most closely resembles the actual production environment.
Hardware and software must be identical to the production environment.

Because of cost constraints, it is often not possible to have an acceptance test
environment with identical capacity as the production environment. The
acceptance test environment is, therefore, usually smaller than the production
environment, but must contain all the same components, same brands, same
software patch levels, and same configuration settings as the production
environment.

The purpose of the acceptance test environment is to give the operations team a
chance to familiarize themselves with the application and its procedures (such as
installation, backup, failover, and so on). It also provides an opportunity to test
unrelated applications together. The previous environments all focused on testing
the applications independently of each other.

Often the acceptance test environment is where performance tests are run,
because the acceptance test environment is the one most similar to the real
production environment.

When doing performance tests, it is extremely important to have a representative
configuration as well as representative test data. It is not unusual that projects
perform successful performance tests where the results meet the given
requirements, and then when the application is moved into production, the
performance is bad. Often this can be because the production database is much
larger than the databases used in the acceptance test environment.

Therefore, it is very important that the test databases have been populated with
representative data. Ultimately, a copy of the production database should be
used, but sometimes this is not possible because tests might involve placing
orders or sending confirmation e-mails. Other causes for differences in
performance between the successful performance tests and the production
environment is, for example, that the performance tests ran without HTTP
session persistence, while the production environment uses session persistence.

16 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

To get realistic results, the performance test environment and setup must be
realistic, too.

1.8 New in WebSphere Application Server V6.1

The following list highlights the features added since WebSphere Application
Server V6.1:

� Application Server Toolkit enhancements:

The Application Server Toolkit has shipped with WebSphere Application
Server since Version 5.1, but with Version 6.1, it has been significantly
improved and is now a full-blown integrated development environment (IDE).
It can be used to build, test, and deploy J2EE applications on a WebSphere
Application Server V6.1 environment (but not on any previous release). It has
support for all J2EE artifacts supported by WebSphere Application Server
V6.1, such as servlets, JSPs, EJBs, XML, and Web Services, and also
supports developing Java 5.0 applications.

� Portlet application support:

The portlet container in WebSphere Application Server V6.1 provides the
runtime environment for JSR 168 compliant portlets. Portlet applications are
intended to be combined with other portlets to collectively create a single
page of output. The portlet container takes the output of one or more portlets
and generates a complete page that can be displayed.

The primary development tool for portlets on WebSphere Application Server
portlet applications is the Application Server Toolkit. You can also use
Rational Application Developer, but you should review the following item in the
WebSphere Information Center:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.
websphere.nd.doc/info/ae/ae/cport_portlets.html

Portlets are packaged in WAR files.

Note that the portlet runtime does not provide the advanced capabilities of
WebSphere Portal, such as portlet aggregation and page layout,
personalization and member services, or collaboration features.

For more information about JSR 168, see:

http://jcp.org/en/jsr/detail?id=168

 Chapter 1. Introduction 17

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.nd.doc/info/ae/ae/cport_portlets.html
http://jcp.org/en/jsr/detail?id=168

� Session Initiation Protocol (SIP) support:

SIP applications are Java programs that use at least one Session Initiation
Protocol (SIP) servlet written to the JSR 116 specification. SIP is used to
establish, modify, and terminate multimedia IP sessions. SIP negotiates the
medium, the transport, and the encoding for the call. After the SIP call has
been established, the communication takes place over the specified transport
mechanism, independent of SIP. Examples of application types that use SIP
include voice over IP, click-to-call, and instant messaging.

The Application Server Toolkit provides special tools for developing SIP
applications. SIP applications are packaged as SIP archive (SAR) files and
are deployed to the application server using the standard WebSphere
Application Server administrative tools. SAR files can also be bundled within a
J2EE application archive (EAR file), just like other J2EE components.

For more information, see:

– JSR 116 SIP Servlet API 1.0 Specification:

http://www.jcp.org/aboutJava/communityprocess/final/jsr116/

– RFC 3261:

http://www.ietf.org/rfc/rfc3261.txt

� WebSphere Application Server V6.1 Feature Pack for Web Services extends
the capabilities of Application Server V6.1 to enable Web Services messages
to be sent asynchronously, reliably, and securely, focusing on interoperability
with other vendors.

For more information, see:

http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg21264563

1.9 Development and deployment tools

The WebSphere Application Server V6.1 environment comes with a rich set of
development tools. All editions of WebSphere Application Server V6.1 include
the Application Server Toolkit V6.1, which has been much improved since
previous WebSphere releases and is now a full-blown J2EE development tool.

The Application Server Toolkit is targeted to support only the version of the
WebSphere Application Server with which it ships. This means that Application
Server Toolkit V6.1 supports all new features of WebSphere Application Server
V6.1 and supports it as an integrated test environment. It does not, however,
support any of the previous versions of WebSphere Application Server as
integrated test environments.

18 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://www.jcp.org/aboutJava/communityprocess/final/jsr116/
http://www.ietf.org/rfc/rfc3261.txt
http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg21264563

1.9.1 Application Server Toolkit V6.1

Application Server Toolkit was first shipped with WebSphere Application Server
V5.1 and was originally only for the assembly, deployment, and debugging of
J2EE applications on WebSphere. In WebSphere Application Server V6.1, it has
been significantly enhanced and is now a full-blown development tool that can be
used also for developing J2EE applications.

Application Server Toolkit V6.1 is based on the Eclipse 3.1.2 platform and
inherits much of its functionality from the Eclipse Web Tools Platform, which is a
relatively new Eclipse project to which IBM has been a major contributor. The
Web Tools Platform is what provides the Web and J2EE concepts to Eclipse and,
thus, the Application Server Toolkit.

The Application Server Toolkit V6.1 provides the following features:

� Java 5.0 support

� Development of standard J2EE artifacts, such as servlets, JSPs, and EJBs
complying with J2EE 1.2, 1.,3 and 1.4 specifications

� Web Services tools, including wizards to generate Web Services from Java
beans, EJBs, and WSDL files and to consume Web Services; also includes
UDDI test registry integration

� Development of static Web projects (HTML, CSS style sheets, JavaScript)

� SIP development, including support for JSR 116 SIP servlets

� Portlet development (JSR 168)

� XML tools to build and validate XML artifacts, including schemas, DTDs, and
XML files

� Data tools for connecting to and interacting with various database vendors

� WebSphere Enhanced EAR support

� Support for annotation-based development (part of WebSphere rapid
deployment)

� Support for WebSphere Application Server V6.1 test environments in either a
local or remote configuration, but no support for any previous versions of
WebSphere Application Server (such as 6.0 or 5.1)

� Jython script development, including script debugging capabilities

� Jacl to Jython script conversion tools (jacl2jython)

� Integration with Concurrent Versions System (CVS), which is a popular
Source Code Management (SCM) repository (no integration with Rational
ClearCase is provided)

 Chapter 1. Introduction 19

To summarize, Application Server Toolkit V6.1 is a full-blown development
environment that provides you with the tooling necessary to create, test, and
deploy the various artifacts supported by WebSphere Application Server V6.1.

It does not, however, include the productivity-enhancing features and visual
editors found in Rational Application Developer. It also does not include Rational
ClearCase, Crystal Reports, UML modeling, Struts, or JSF support, and it does
not support any of the previous releases of WebSphere Application Server (such
as 5.1 or 6.0) as test environments.

1.9.2 Rational Application Developer V7.0
IBM Rational Application Developer for WebSphere Software V7.0 is an
integrated development environment and platform for building Java Platform
Standard Edition (Java SE) and Java Platform Enterprise Edition (Java EE)
applications with a focus on applications to be deployed to IBM WebSphere
Application Server and IBM WebSphere Portal.

There are many new features in Version 7. The objective of this section is to
summarize the new features in Rational Application Developer V7.0:

� Specification versions: Full support is provided for Java EE V1.4, Java SE
V5.0 and IBM WebSphere Application Server V6.1.

� Eclipse and IBM Rational Software Delivery Platform: Based on Eclipse 3.2.

� Application Developer V7.0 supports Java 5. There is tooling for such features
as annotations, generics, enums, static import, and variable arguments.

� Web tooling:

– The Web Diagram Editor is rewritten to leverage the Graphical Modeling
Framework (GMF).

– Drag and drop functionality (from the Palette) in the Web Diagram Editor
updates the diagram and (behind the scenes) generates appropriate code
(keeping diagram and code in-sync).

� JavaServer Faces (JSF):

– Full support is provided for JSF 1.1.

– There is a new version of the IBM JSF Widget Library (JWL), including
AJAX-like behavior.

– Support is provided for JSF portlet bridge.

– Support is provided for standard JSF only mode (which excludes usage of
IBM-specific JSF components) as well as support for third party JSF
components.

– Support is provided for multiple faces configuration files.

20 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

� Portal application development:

– Application Developer V7.0 includes portal development tooling, as well as
integrated test environments for WebSphere Portal V5.1 and V6.0.

– Support is provided for Web Services for Remote Portlet (WSRP).

– Wizard support is provided for cooperative portlets.

– Enhanced credential vault support is provided.

– Support is provided for business process portlet.

� Test server environments:

– Test environments are included for WebSphere Application Server V6.1,
V6.0, V5.1, WebSphere Portal V6.0, V5.1, and WebSphere Express V5.1.

– Integration with IBM WebSphere Application Server V6.0 for deployment,
testing, and administration is the same (test environment, separate install,
and Network Deployment edition).

� XML

– Updated support is provided for XML and XSLT tooling.

– Updated support is provided for XML schema editing, including visual
modeling.

– Updated support is provided for XML schema to Java code generation.

� Web Services:

– There is a series of usability improvements in Web Services development
(improved skeleton merge for top-down Web Services creation, simplified
editing of WSDL and XML schema, remote WSDL validation).

– Complex schema support is provided with SDO.

– Enhanced support is provided for XSD.

– Support is provided for WSDL and XSD modeling.

� Model driven development:

– Support is provided JET transformations.
– Updates to general features are provided (such as Project Explorer, model

import, and model template).

� Rational Unified Process (RUP) integration:

– Process Browser provides search capability for RUP best practices and life
cycle for development.

– Process Advisor view displays RUP information specific to current task.

– This feature is offered in Application Developer and Rational Software
Architect.

 Chapter 1. Introduction 21

� Debugging:

– Support is provided for debugging WebSphere Jython administration
scripts.

– Support for DB2® V9.0 Stored Procedure Debug.

� Additional enhancements:

– Database tools are provided.

– There are many enhancements provided around DB2 V9.0.

22 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Chapter 2. Application planning and
design

J2EE design encourages component portability across different operating
systems and hardware architectures. More complex designs adapting to new
technologies become an important consideration with component development,
multi-tier enterprise applications. Questions were asked on how best to design
across different application layers and J2EE components.

This chapter provides a starting point for the design patterns and other
considerations one should have when designing enterprise applications.

The chapter is organized into the following major sections:

� 2.1, “System capabilities and qualities” on page 24
� 2.2, “Architectural patterns” on page 27
� 2.3, “Design patterns” on page 31
� 2.4, “Cluster considerations” on page 48
� 2.5, “Best practices” on page 51

2

© Copyright IBM Corp. 2008. All rights reserved. 23

2.1 System capabilities and qualities

Many distributed systems developed eventually fail to deliver a performing
solution that is scalable to the customer’s requirements, due to any of the
following possible limitations:

� Lack of focus on performance during requirement analysis and application
design

� Lack of understanding in the intent of patterns in design

� Lack of skilled resources in the target technology to leverage the provided
features

� Limited awareness of performance issues by the developers

� A desire to produce an elegant, extremely flexible or highly object-oriented
solution

It is important that, at the beginning of the project, performance targets are
defined and communicated to all team members. The implications of these
targets on development work should also be analyzed early in the development
cycle and made known. There is often a trade-off between implementations that
are elegant, flexible, and easy to read and maintain; and those that offer higher
performance.

Design changes in a later phase of the software life cycle are very expensive.
Therefore it is a good idea to conduct load-performance modeling as soon as
possible to identify early architecture and design issues that could degrade the
performance expectations. It is good practice to verify your design decisions by
developing and then load-testing a prototype, especially when adopting new
technologies for the first time.

Considerations should be placed on a performance testing harness during the
design of systems, and the tools should be developed or acquired in a timely
manner to test the system components of concern. Tools such as Rational
Performance Tester, OpenSTA, or Apache JMeter exist to simulate load and
provide insight as to where performance optimization work should be targeted.

A well designed performing system should have the following main capabilities
and qualities:

� Availability
� Scalability
� Flexibility
� Manageability

24 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

2.1.1 Availability

Availability is the ability for a system to be operational for the largest percentage
of time possible. The most any one system can be operational is 24/7/365 (for 24
hours, 7 days a week, 365 days in a year). The greatest challenge to availability
is surviving system instabilities, whether from hardware or software failures.

The ability to have multiple copies of an application working together is a
technique known as clustering and is used to provide high availability and
performance. Clustering can occur within a single host or, most effectively,
across multiple hosts. In Figure 2-1, each copy is on a separate host and a load
balancer is used to distributed requests across the two copies.

Figure 2-1 Deploying an application in a clustered environment

The risk of the system being unavailable from hardware or software failures is
now reduced. If problems arise on one host, the other host is available to process
the request. The client is unaware of the inactive server, as its request is
seemlessly rerouted to the active server.

Client

Client

Client

Network

Request B

Request C

Request A

Request D

Load
Balancer

Server

Server

Request A

Request B

Request C

Request D

CLUSTER

 Chapter 2. Application planning and design 25

2.1.2 Scalability

Scalability is the ability of a system to cater for increases in load, remain
available, and be able to perform by adding hardware. The approach adopted
can be either or both of the following possibilities:

� Vertical scalability: Adding capacity such as memory and CPU to existing
nodes/servers

� Horizontal scalability: Adding more nodes to the same system infrastructure

Here are some considerations to help achieve scalable systems:

� Design platform independent solutions, to cater for future server/node
upgrades.

� Design with load balancing in mind, to avoid the reliance of subsequent
requests processed by the same server as for the original. This situation
arises when client data is maintained in the servicing application’s memory.

� Leverage application layering architecture pattern to adequately deploy
components to nodes that can best provide performance.

2.1.3 Flexibility

Flexibility is the ease of a system to address change to its environment. Flexible
systems are component driven solutions that easily integrate with various
technologies, not tied to a specific software vendor or hardware. A design should
have the flexibility to allow application components or even entire layers to be
deployed onto different application servers. Technology platform changes should
have a minimum effect on business processes, as should changes in business
process on the technology platforms. Such systems are very adaptable and
portable, however, designs that provide greater flexibility are increasingly
complex operationally.

2.1.4 Manageability

Manageability is the ability to ensure system integrity when faults occur and to
react to them. Logging the occurrence of faults is the absolute minimum a system
should provide. Other means of notification should also be considered when fault
detection might not reflect the true state of a system. System heartbeat
capabilities can be used to indicate that the system is in a functional state but
idle. The lack of a heartbeat might indicate that a system’s unresponsiveness
could be due to errors that have not been logged, leaving it in a hung state.

26 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

System state notification is only as effective as the tools used to monitor it.
Without enterprise monitoring tools, corrective action can only be taken after
something more serious occurs, rather than when the system first begins to show
problematic symptoms. Obviously, we want to know as soon as possible when a
failure occurs. Enterprise monitoring products such as Tivoli® Management
Solutions provide tools to monitor systems for health and fault tolerance and
automatically notify administrators in response to specific events. These tools
should directly integrate with the system’s notification mechanism to provide a
highly maintainable system.

2.2 Architectural patterns

The authors of “In Pattern-Oriented Software Architecture: A System of Patterns,
by F. Buschmann, R. Meunier, H. Rohnert, P.Sommerlad, and M. Stal, John
Wiley and Sons, 1996, ISBN 0-471-95869-7” define an architectural pattern as
follows:

“...expresses a fundamental structural organization or schema for software
systems. It provides a set of predefined subsystems, specifies their
responsibilities, and includes rules and guidelines for organizing the
relationships between them.”

Next, we discuss the following architectural patterns:

� Three tier architecture
� Model View Controller
� Service Oriented Architecture

2.2.1 Three tier architecture

Many applications developed today adopt a three tier architecture. Figure 2-2
shows the basic layering approach adopted in this IBM Redbooks publication.

 Chapter 2. Application planning and design 27

Figure 2-2 Typical Three Tier Architecture

� The Presentation tier is responsible for interacting with the user and
submitting requests to the Business tier. Technologies like HTML, JSP, JSF
and Servlets are used within this layer.

� The Business tier is responsible for defining the business services provided
by the application. Depending on the design patterns adopted, a further
subdivision of the layer can exist within.

� The Integration tier manages communication to external systems or
resources. Technologies such as Entity Beans, JDBC and J2EE Connectors
are used to communicate to data sources, legacy systems, and other
enterprise systems.

Decomposing applications into tiers addresses each layer’s specific design
requirements. Designs can be more comprehensive and in context of what they
are trying to achieve rather that focus on the application as a whole. This enables
clear demarcation of roles and responsibilities and better placement of
application components.

2.2.2 Model View Controller

Model View Controller (MVC) is a architectural design pattern for interactive
applications. An interactive application is organized into three separate modules:

� The model, for the business logic and application data representation
� The view, to present the data to the user and accept input
� The controller, to control flow and dispatch requests

Presentation

Business

Integration

28 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Figure 2-3 briefly describes the MVC-architecture: the Web-tier controller
receives each incoming (HTTP) request and invokes the requested business
logic operation in the application model. Based on the results of the operation
and state of the model, the controller then selects the next view to display. Finally,
the view renders the contents of the model. It accesses enterprise data through
the model and specifies how that data should be presented. It is the view's
responsibility to maintain consistency in its presentation when the model
changes.

Figure 2-3 Model View Controller architecture

The main advantage is the clear separation between the different design
concerns: data persistence, business logic, presentation, and control. This
means that changes to the presentation (view) of the data are limited to this
layer; the other layers (business logic, control, and data persistence) remain
unaffected. The same applies to changes in all other layers. Another advantage
is that this separation facilitates parallel application development.

2.2.3 Service Oriented Architecture

Service Oriented Architecture (SOA) is an architectural design pattern that
transforms systems into what is essentially a collection of linked services that
can be accessed when required over a network. A service is a repeatable
business task performed by a service provider to achieve desired end results for
a service consumer. In Figure 2-4, we illustrate the exposure of services in the
Integration Layer to access our business domain. The Presentation Layer in this
example still retains access directly to the Business Layer. For illustration
purposes, only services are depicted in the Integration Layer, however, other
entities such as those for database access could also exist.

Client Server

Request

Response

Browser

Model

Controller

View

Instantiate and
Control

Access

forward/
include

 Chapter 2. Application planning and design 29

Figure 2-4 Exposing services in the Integration Layer

The goal of SOA is to achieve loose coupling among interacting producers and
consumers and promote reusability. Figure 2-5 illustrates the interaction among
the distributed SOA entities. This can also take place on a single node.

Figure 2-5 Systems composed of consumers and services providers

Presentation
Layer

Business Layer Integration
Layer

Business
Entity Business

Entity

Business
Entity

Business
Entity

Business
Entity

Business
Entity

Business
Entity

Service

Service

Consumer

Service
Provider

Service
Descr.

Service

Network

Find Service

Bind &
Interact

Publish Service

Discovery
Registry

Service
Descr.

Service
Discovery
Registry

Service
Descr.

Discovery
Registry

Service
Descr.

Service
Discovery
Registry

Service
Descr.

30 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

The service provider (that is, the producer) defines a service description for the
Web service and publishes it to a requestor or service discovery registry. The
consumers retrieves the service description either locally or from the service
discovery registry and uses it to bind and invoke to the Web service.

2.3 Design patterns

Design patterns are an integral part of application design. They are recurring
solutions to software design problems and promote the re-use of concepts,
ideas, design templates and frameworks that are proven, rather than “reinventing
the wheel.” Design patterns help to improve software quality and reduce
development time. Evolution of technology means that there is no one best
design that caters for all scenarios. You have to assess which design patterns
meet your application requirements and not develop applications for design
patterns.

For each of the three architecture tiers, we focus on some existing design
patterns for performance, scalability, and re-use of code. The bibliography lists
references for further details on these and other design patterns.

2.3.1 Presentation Layer patterns

In the following sections we discuss the Presentation Layer patterns:

� “Front Controller” on page 31
� “View Dispatcher” on page 34

Front Controller
Use the Front Controller pattern to centralize incoming client requests.

Web applications often require the user to navigate through a set of screens.
User requests can be managed in a centralized fashion, where all screen
requests are initially serviced by a common component; or decentralized, where
each screen deals with the generated requests individually. Figure 2-6 shows the
decentralized approach of handling requests.

 Chapter 2. Application planning and design 31

Figure 2-6 Decentralized page control

A request to display Page A is issued from the browser. For Page A to be
displayed, Common Service Component and Service A Component have to be
invoked. The Web browser then issues a request for Page B. Page B requires
interaction with Common Service Component and Service Component B. In this
example, the next view to display is determined either by hyperlinks selected in
the current page displayed by the Web browser or from the requested URL.

Each page invokes its own model components to fulfill their request. This leads to
duplication of business logic when dealing with services that are common across
views, like security. When screen navigation is performed by each page, it makes
it difficult to clearly understand the different navigation paths a user might take for
the entire application.

The Front Control pattern focuses on centralizing control logic in the client layer,
dispatching requests to the next page based on the requested URL, input
parameters, and application state. It provides a central point for handling Web
requests, removing the decision logic performed by each view. This enables
services to be easily applied across all screens, such as the loss of a user’s
interaction across the site, or to handle error scenarios uniformly across the
presentation layer.

1) request

2) request

1c) response

Client

Browser

Server

Common
Service

Component

Service
Component A

Service
Component B

Model

2a) invoke

1a) invoke

1b) invoke

2b) invoke

Page
A

View

Page
B

2c) response

32 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Figure 2-7 shows how a request resulting in Page A is initially handled by the
Front Controller.

Figure 2-7 Centralized control logic for pages

A request for a dynamic page is issued by the Web browser to the Front
Controller. The Front Controller interacts with the model and dispatches Page A
to the browser. The same control logic is also used to handle a request resulting
in Page B, as shown in Figure 2-8.

1) request

1g) response

Client

Browser

Server

Common
Service

Component

Model

Helper

1b) invoke

Page
A

View

Front
Controller

View
Dispatcher

1a) invoke

1e) invoke

1f) invoke
Service

Component A

1c) invoke

1d) invoke

 Chapter 2. Application planning and design 33

Figure 2-8 Centralized control logic for pages

All requests are initially handled by the Front Controller. The controller can be a
servlet, which then delegates the business processing to a number of service
components. The helper provides an interface to the Front Controller, hiding the
business layer implementation. This can be a Business Delegate for a distributed
service component, or lain Old Java Objects (POJO) Facade for non-distributed
components. In 2.3.2, “Business Layer patterns” on page 35 we provide further
details on the Business Delegate and Facade. Based on the outcome of the
business processing, the controller determines the next screen to display. Like
the business processing, this can be delegate by the controller to another class,
responsible for screen navigation.

We can have multiple controller classes within an application, grouping the
application into logical modules such as administration and normal business
processing.

View Dispatcher
Use the View Dispatcher pattern to minimize code duplication in pages.

Presentation formatting code logic that can be reused in different screens should
be provided as utilities/helpers. This would include JSP tags and HTML code, for
example, to create tables. In doing so, code duplication can be minimized in the
pages and reused, as it is not particular to the realization of a use case.

2) request

2g) response

Client

Browser

Server

Common
Service

Component

Model

Helper

2b) invoke

Page
B

View

Front
Controller

View
Dispatcher

2a) invoke

2e) invoke

2f) invoke
Service

Component B

2c) invoke

2d) invoke

34 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

2.3.2 Business Layer patterns

In this section, we cover the following Business Layer patterns:

� “Application Service” on page 35
� “Session Facade” on page 36
� “Service Locator” on page 38
� “Business Delegate” on page 40
� “Transfer Object” on page 41
� “Page-by-Page Iterator” on page 42

Application Service
Use the Application Service pattern to centralize business logic.

Application development is based on a set of functional requirements, normally in
the form of use cases. This defines not only the objects that are to exist in the
domain, but also their interaction. The coordination of multiple Business Objects,
Data Access Objects, and Services providing common utilities for realizing use
cases should not reside within Business Objects, as this increases coupling and
reduces cohesion. We also do not want the coordination to reside in the client, as
this can increase dependencies between the presentation and business tiers.

The Application Service pattern encapsulates all object invocations and exposes
a simplified coarse grain interface. The invoker of an Application Service can be
other Application Services, helper objects, or a presentation tier component via a
Session Facade, discussed later in this chapter. Figure 2-9 shows the Application
Service interaction with objects in the business tier.

Figure 2-9 Application Service Interaction

Session Facade
or

Helper Object

Business
Object

Application
Service

Data
Access
Object

invoke

invoke

invoke

Application
Service

invoke

 Chapter 2. Application planning and design 35

Application Services can layered to according to the services provided:

� Common business logic that is not use case specific
� Use case specific business knowledge
� Client channel type specific business processing

Session Facade
Use the Session Facade pattern to provide a unified, workflow-oriented interface
to presentation layer.

The Session Facade addresses clients interacting directly with Application
Services, Business Objects, or Data Access Objects to perform a workflow. The
client’s knowledge of the objects within the business layer, their interactions and
dependencies tightly couples both layers together. Modifications to the objects
within the business layer would also affect the clients invoking that object. Where
objects in the business layer are distributed, each call can become a remote
method invocation. Figure 2-10 illustrates an object in the client layer directly
invoking the remote Business Objects participating in a workflow.

Figure 2-10 Client direct access to remote Business Objects

When interacting with remote objects, the client is placing extra load on the
network and increasing processing time. Transaction management becomes
more complicated, as each enterprise bean performs a separate transaction on
the server side requiring synchronization of remote entity beans with the
underlying data store. For cooperating beans to work in a single transaction, the
client would require extra logic to cater for errored scenarios and undoing the
work done by prior successful bean invocations. Another approach is to adopt
the demarcation of a transaction boundary by the client with the usage of Java
Transaction API. This would make each remote enterprise bean call perform
under the same transaction.

Client

Remote
Business

Object

Network

Remote
Business

Object

invoke

invoke

36 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

As can be seen from the foregoing approach, this introduces high coupling
between the client and business layer, slow performance due to high network
usage, and poor transaction management. Figure 2-11 introduces the Session
Facade as the mediator between the client and business layer.

Figure 2-11 Client work delegated to Session Facade

The Session Facade encapsulates the interactions and dependencies between
participants in the workflow and exposes to the client a simplified coarse grained
set of operations. This removes the complexity of managing Business Objects
from the client to the session facade. With a session bean behaving as the
Session Facade, the number of remote calls made by the client can be minimized
with the bean co-located together with the enterprise business objects.

It is good practice when employing a Session Facade to have the enterprise
Business Objects behave as local beans rather than remote, to reduce network
overhead. Transaction management is simplified with the session bean
demarcating the transaction boundary, such that all updates performed by the
enterprise beans within it are treated as a single transaction.

Having a Single Facade for the entire system would prove to be quite a
maintenance and manageability headache for a non-trivial application. At the
same time, one does not want to create too many facades by having a
one-to-one mapping of Session Facades to use cases. It could be best to
partition your system in a logical way that in turn defined your facades. Facades
would therefore contain several operations, each to a particular workflow within
that logical grouping.

Client

Network

Session
Facade

invoke

Local
Business

Object

Local
Business

Object

invoke

invoke

 Chapter 2. Application planning and design 37

For example, all interactions with a particular Business Object such as Purchase
Order can be grouped into a PurchaseOrder Facade. Operations such as create,
view, update, delete Purchase Order details can be defined within the one
facade. This provides highly course-grained access and control to underlying
components. A Session Facade works best when it has little or no business logic.
The work flows exposed by a Session Facade should be implemented by
Business Objects and Application Services with any additional work required to
sequence them to be performed the Session Facade. Thus Session Facades can
be seen as the remote interfaces for Application Services. For non-EJB
applications, their applicability still remains as a controller, even though they are
implemented as POJO Facades.

The Session Facade is a synchronous way of accessing the business logic and it
should be used whenever immediate feedback is required. This kind of feedback
is in general required for read operations. For writing or updating the business
model, it might make sense to have a look at the Messaging Facade.

Service Locator
Use the Service Locator pattern to hide the JNDI lookup from the client.

Java Naming and Directory Interface™ (JNDI) is an interface service that
associates names (bindings) with the location of services and information. The
naming service provides a single location for locating machines, users, objects
and services by applications.

Services are identifiable in JNDI by a binding name. When looking up for an
object, you provide the name it is bound to. The naming server returns the object
or, in some cases, a stub that can be used to interact with the object. Figure 2-12
shows how a naming service in general maintains the bindings to the Enterprise
Bean Home object and JMS ConnectionFactory object.

Figure 2-12 Logical view of Naming Service bindings

Naming Service

Name

Name

Binding

Binding

Application

Enterprise Bean Home object

JMS Connection Factory object

38 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

The Directory service is similar to the Naming service, except that it allows you to
associate properties with the objects stored and provides tools for searching
them.

The JNDI server is provided by application servers like WebSphere. The EJB
container registers application session or entity EJBs with the local JNDI server.
Access to the container objects is through the associated JNDI server.

The following tasks are done to perform a lookup of Enterprise Beans:

� Get the initial JNDI context to be used to look up the bean. The initial context
contains the name bindings for the enterprise home beans it contains.
Note that all JNDI lookups are performed relative to a context.

� The initial context provided by the JNDI service is used by the client to look up
the EJB Home interface, based on the specified binding name.

� With the EJB Home interface, you can find, create, and remove the enterprise
bean.

Lookup of a JMS QueueSender or QueueReceiver is very similar and is done as
follows:

� Obtain the initial context.

� The initial context provided by the JNDI service is used by the client to obtain
the ConnectionFactory associated with JNDI binding name.

� With the ConnectionFactory, you can get a QueueConnection.

� Using the QueueConnection, obtain the QueueSession

� With the QueueSession, obtain the QueueSender or QueueReceiver.

Rather than requiring each client to perform the same steps over and over again,
we recommend that you introduce a Service Locator. The Service Locator is
responsible for retrieving the EJB home interface or JMS Destination. This
minimizes duplication of code in clients, as the code used to access the JNDI
service is common across all. Creating a JNDI Initial Context and performing a
lookup for a resource utilizes significant resources. Performance gains can be
obtained by caching the same bean used by different clients to minimize lookups
using the InitialContext. However, this can place restrictions on the application;
see 2.4, “Cluster considerations” for further details.

In Figure 2-13, for an object, the client delegates JNDI access for the retrieval of
the Enterprise Bean Home to the Service Locator. Once the client has acquired
the Enterprise Bean Home, the client can invoke methods on it as with any other
ordinary Java object.

 Chapter 2. Application planning and design 39

Figure 2-13 Service Locator sequence diagram

A single instance of the Service Locator should exist, and used by all the clients.
The lookup of JNDI resources is done with the Initial Context. The Initial Context
is only created once, on the first call to the Service Locator. Subsequent calls to
the service locator all use the same initial context.

Business Delegate
Use the Business Delegate pattern to hide the complexities of a distributed
business layer from the client.

Clients that interact with distributed business components have to look up and
retrieve a remote reference before invoking it. They also have to cater for
infrastructure and network exceptions that can arise, such as
java.rmi.RemoteException or EJBException. The Business Delegate pattern is
used to minimize exposure of the distributed business layer from the client. The
client should not have to be concerned with the technologies implemented by the
business layer such as EJB. The location of business services should be
transparent to the client. In Figure 2-14, rather than invoke the Session Facade
directly, the client uses the Business Delegate as the intermediatory.

Figure 2-14 Business Delegate masking all remote invocations

Client

Service
Locator

1) getEJBHome

1a) lookUp
Initial

Context

Enterprise
Bean
Home

1b) resolve

Enterprise
Bean

2) create/find/remove 2a) create/find/remove

Client

Network

Session
Facade

Business
Delegate

invokeA invokeA

invokeB invokeB

40 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

The Business Delegate is a Plain Old Java Object (that is, POJO) that behaves
like a proxy to the client, hiding the business services and their remoteness. For
each remote business service, we have an equivalent business delegate. There
is a direct one to one mapping between Business Delegate and business service
methods. All remote method invocations are now performed by the business
delegate. The client is made transparent of naming and lookup services and
uses the business delegate to perform the business service invocations. This
lookup service can be apart of Business Delegate, but it is best performed by the
Service Locator described in “Service Locator” on page 38.

The Business Delegate can be designed such that it has the ability to retry
operations in the business layer on failure. The client is unaware of any attempts
for successful execution, only after the number of retry attempts have failed. The
Business Delegate translates business service remote exceptions into
application exceptions. This also helps shield the client from EJB and
network-related implementation details.

Transfer Object
Use the Transfer Object pattern to efficiently transfer remote, fine-grained data by
sending a coarse-grained view of the data.

Clients require access to server domain model and the ability to manipulate its
contents. The domain model refers to the application mapping of real world
entities into objects. In enterprise applications, these objects are developed as
entity beans. Allowing client access to the domain model is not a recommended
practice. Apart from the tight cohesion that is introduce between the two layers, in
a distributed environment, accessing attributes in a remote entity bean can have
performance degradation, as each call becomes a remote method invocation.

Using Session Facades resolves the issue with the client’s direct invocation with
enterprise beans, however, it does not address how the data in the client layer is
structured. The Transfer Object pattern also knows, as Value Object provides the
client layer with a copy of the domain object’s data enabling localized data
access and manipulation. In Figure 2-15, the client receives data from the
business layer in the form of Transfer Object.

 Chapter 2. Application planning and design 41

Figure 2-15 Data returned to Client layer in the form of Transfer Object

The client can now access the return data provided in the Transfer Object,
decoupled from any of the Entity Beans it might represent. Entity Beans would
contain an access method that allows for the session facade to retrieve a
Transfer Object version of the bean. The Transfer Object being a POJO means
that calls by the client to its access methods are local, thus reducing the network
overhead. Modifications to the Transfer Object can be incorporated back into the
Entity Bean by providing a method on the bean to copy the values from the
Transfer Object to the beans corresponding attributes. Transfer Objects can also
be created by the client, encapsulating the data that is to be passed to the
Session Facade via the Business Delegate.

Page-by-Page Iterator
Use the Page-by-Page Iterator pattern to efficiently access a large, remote list by
retrieving its elements one sublist of value objects at a time.

The Page-by-Page Iterator design pattern is used to manage large lists of data in
response to a client’s request. Returning the entire list has a performance impact
on the application due to the extra load placed on the network. When the client
does not require all the data on the first request, the list can be decomposed into
smaller pages and returned one page at a time. The client can specify the size of
the list to be returned, with each subsequent request retrieving the next portion of
the list.

Important: As the Transfer Object is created and used across application
layers, it has to be serializable. There can be many variations of the Transfer
Object for a component, varying the degree of information contained within.

Client

2) use

Network

1) invoke
Session
Facade

Business
Delegate

1a) invoke

Transfer
Object
•attr1
•attr2

1b) create &
update

(Copy)
Transfer
Object
• attr1
• attr2

return: copy of
Transfer Objectreturn: copy of

Transfer Object

42 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

While this pattern provides efficient access to large lists, the number of data
transfers/requests increases. It is important to note that data should not be
duplicated, so copies of the lists are not contained by the application’s business
layer. To achieve this, the last entry in the returned page has to be either sent as
a part of the request or maintain by the application. If the data list is concurrently
altered by insertions or removals, this interferes with the page results returned to
the client.

2.3.3 Integration Layer patterns

Next, we discuss the following Integration Layer patterns:

� “Data Access Object” on page 43
� “Message Facade” on page 44

Data Access Object
Use the Data Access Object pattern to decouple business logic from data access
logic.

The Data Access Object (DAO) design pattern decouples the business logic from
the data access logic. It provides accesses to the persistence medium, and by
exposing uniform data access APIs, the business layer is made unaware of the
type of persistence medium accessed/modified. Data sources such as RDBMS,
LDAP, and flat files can be interchanged or co-exist without knowledge or impact
to business layer code.

DAOs are implemented as stateless POJOs, and do not cache data retrieved
from the data store. If caching is required, this should be done in the business
layer of the application. Only DAO code is aware of the persistence API required,
and how data is accessed/modified. Figure 2-16 illustrates a call made to the
DAO to retrieve data from the RDBMS.

 Chapter 2. Application planning and design 43

Figure 2-16 Using DAO patter to access RDBMS

Before the DAO retrieves data from the RDBMS, it is required to obtain a
connection to the datastore. It is assumed for simplicity that the DAO already has
a reference to the datastore. With the datastore connection, it uses JDBC API to
run a query on the datastore with the data returned used to populate a Transfer
Object. The Transfer Object is then returned to the caller, which it is acted upon.
The client is not exposed to any JDBC API and data structures. DAO creation
can be made highly flexible, using the Factory pattern as discussed in 2.3.4,
“General patterns” on page 46.

Message Facade
Use the Message Facade pattern to provide asynchronous processing of
requests.

Response times can be improved when use cases can be identified that
executed separately from the client, without requiring the client to wait. This
enables large applications to scale effectively, as the request can be queued and
processed separately from the clients, allowing the client to progress through the
system while their request is actioned by another part of the system. The
Message Facade pattern is an asynchronous version of the Session Facade. The
client is abstracted from the enterprise objects in the workflow, however, rather
than blocking until all the participating enterprise objects in the facade have

RDBMS

1) getData

1b) runQuery1a) getConnection 1d) releaseConnection

1c) create &
Populate

client

Transfer
Object

DAO

Data Access
Interface

44 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

completed, control is returned to client once the request has been submitted.
The facade processes the request independent of the client. To achieve this,
the Message Facade is developed using a message-driven bean (MDB).
Figure 2-17 shows how a client’s request is processed asynchronously.

Figure 2-17 Asynchronous processing of a client’s request

The client creates a Java Message Service (JMS) message containing the
request details and sends it to the JMS destination, a queue in this example.
Application control is returned to the client to continue processing. The message
bean container allocates the next available Message Facade bean to process the
JMS message. If one is not available in the pool of message beans, it waits
without impacting the client response time. Aside from the asynchronous
processing difference between Session and Message Facade, another and just
as important distinction is the guarantee of execution. If the Message Facade
transaction fails, for instance, due to the unavailability of an interface system, the
transaction is rolled back and the JMS message is placed back on the queue for
processing at a later time/date.

This retry is performed without the client’s knowledge. As the client is not notified
of the success of the Message Facade when it regains application control, a
mechanism must be devised if it is required to communicate the result back to
the client. This can achieved using the polling model, where the client with a
given reference identifier can find the status of an asynchronous request.
Another approach might be adopting the event model, where once the message
facade completes processing, an event is raised to notified the result. This event
might trigger a Web service call to the client, passing back the result. A drawback
of using the Message Facade is the mapping of the request into a JMS message.
The request object, if serializable, can be stored directly into the JMS message,
and extracted by Message Facade actioning it.

Client

Enterprise
Business
Object 1

Message
Facade

Enterprise
Business
Object 2

Enterprise
Business
Object 3

send JMS
message

invoke

invoke

invoke

receive JMS
message

 Chapter 2. Application planning and design 45

2.3.4 General patterns

The following Integration Layer patterns are covered:

� “Singleton” on page 46
� “Factory” on page 46

Singleton
Use the Singleton pattern to provide a single instance of an object.

Some application resources are exclusive in that there is one and only one of this
type of resource. A single instance of the class managing the resource might be
required throughout the application, such as for logging, caching, thread pools,
handling preferences, database access, and factory implementations. If more
than one was to be instantiated, it might result in overuse of a resource or
encounter problems with inconsistency.

One approach is to use global variables; in Java this would be a static Class
attribute. The problem with this approach is that the object might be created
when the application starts up. This could be a resource intensive operation in
which the application might never use it. Another approach is to use the
Singleton pattern, where an instance of the object is created when it is required.

The responsibility for creating an instance of the class is on itself, rather than the
caller. The caller is unable to explicitly instantiate the class, it only requests an
object of that class to be returned. Typical use of this pattern is in service-like
classes.

Factory
Use the Factory pattern to create more than one kind of object.

Many of the design patterns encourage loose coupling. To understand this
concept, it is easiest to talk about a struggle that many developers go through in
large systems. The problem occurs when you change one piece of code and
watch as a cascade of breakage happens in other parts of the system, parts you
thought were completely unrelated. The problem is tight coupling. Functions and
classes in one part of the system rely too heavily on behaviors and structures in
other parts of the system’s functions and classes. You require a set of patterns
that lets these classes talk with each other, but you do not want to tie them
together so heavily that they become interlocked.

In large systems, lots of code relies on a few key classes. Difficulties can arise
when you have to change those classes. Figure 2-18 shows an example of two
classes tightly coupled, one using the other class to read from a file.

46 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Figure 2-18 Tightly coupled classes

In this diagram, the client represents an object that requests a service. If you
want to change the client to use a different class that reads from the database, all
code references that read from a file must be removed. This is where the Factory
pattern comes in handy.

The Factory pattern is a class that has methods that create objects for you.
Instead of directly creating the data access class, you use the factory class to
create the appropriate object. That way, if you want to change the types used by
your client, you can change just the factory. All the code that uses the factory
changes automatically.

An important to point to note with the factory implementation is that its access
methods have an interface for their return type. The caller is not aware of the
object types returned by the factory, only the interface they implement.
Figure 2-19 shows how the factory is used to provide the appropriate object to
the caller for retrieval of data.

Figure 2-19 Factory returns an object to access a data file

The client is unaware that it is accessing an object of type file data access. Its
only concern is that the data access factory has provided an object to service the
request identified to the factory. The exposed interface must be implemented by
the returned object, in this example, to retrieve data from the persistence
medium. The interface clearly defines all the operations that are to be provided
by the object returned from the factory. How the factory determines which object

client
File

Data
Access

2) getData
2a) read

File

1) create

client
File
Data

Access

2) getData 2a) read

File

Data
Access
Factory

1) getDataAccess

1a) create

D
at

a
A

cc
es

s
In

te
rfa

ce
D

at
a

A
cc

es
s

In
te

rfa
ce

 Chapter 2. Application planning and design 47

to return can be configured via a property file, database table, JNDI, and so on.
Using the key provided by the client on the request of a data access class, it can
obtain the mapped class, instantiate it, and return the object to the client.

Figure 2-20 shows how the factory can be modified to return an object that
accesses the database.

Figure 2-20 Factory returns an object to access a database

To simplify the example, we do not depict how the client obtains an instance of
the factory. To limit the number of factory objects created within an application,
one should adopt the Singleton pattern.

2.4 Cluster considerations

An important characteristic of any design is the ability for it to be able to scale
under load. Application performance involves more than applying coding best
practices, it is how one’s design is able to leverage off the application server’s
capabilities, such as clustering provided by the IBM WebSphere Application
Server Network Deployment Edition.

Utilizing clustering, a group of servers appears to a client as a single application
server. From a client perspective, the existence of multiple servers is transparent.
The client does not have to be aware that it is dealing with multiple copies of an
application server (in a cluster,) rather than a single stand-alone application
server. Application load can be shared across application servers improving
performance, and fail over capabilities increase with more than one server
available to handle requests. Most application servers allow you to utilize the
clustering support without having to change the application, if considered during
application design.

client
Database

Data
Access

2) getData 2a) read

RDBMS

Data
Access
Factory

1) getDataAccess

1a) create

D
at

a
A

cc
es

s
In

te
rfa

ce
D

at
a

A
cc

es
s

In
te

rfa
ce

48 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

If an application is not designed to be clustered, functional or performance issues
can arise when deploying your application to such an environment. A common
mistake during design is expecting the application to run only on a single JVM™.
This severely restricts an application’s ability to scale when load is beginning to
impact performance and application response times. This situation could be
alleviated if clustering strategies were considered during design. With a clustered
environment, multiple application instances are now executing on different JVMs
on the same or across different hosts. Subsequent requests now can be
processed by different instances of the application, so the sharing of resources
and data between instances has to be considered.

Next, we discuss the following design considerations in further detail:

� Some objects cannot be shared across a cluster
� Avoid using local files to contain mutable configuration data
� Cater for concurrent data access
� Leverage the caching capabilities provided by application servers
� Use application server provided workload management and replication
� Keep user session state to a minimum

Some objects cannot be shared across a cluster
To enable any instance of an application server within a cluster to handle a
request, most of them must share some objects. However, there are objects such
as timed services and file services that are not going to be able to take
advantage of being shared between instances of the application server, even if
they are associated with objects that are shared across the cluster. The result is
that each server is running its own instance. If this is an issue, then a checking
mechanism has to be adopted to ensure that only one instance is ever running.
This could be a flag set in the database shared by all instances in the cluster.

Avoid using local files to contain mutable configuration data
It is common to have properties files containing application configuration data.
This data is normally contained in applications as Java objects accessed using
static fields or a singleton. A single instance of the data is shared across the
application and any changes are accessible to the entire application on the JVM.
Even though the changes are persisted back in the property file, when deployed
in a clustered environment, these updates are not reflected to all running copies
of the application. A preferred practice is to use a database or LDAP server to
keep the configuration data.

 Chapter 2. Application planning and design 49

Cater for concurrent data access
With multiple copies of an application using the same shared data, concurrent
data access becomes more significant. Application servers provide a level of
concurrency, such as that Servlet threads never process the same HTTP
request. However, applications require appropriate levels of locking in a
transaction to ensure for instances records with a database are not altered
concurrently. These mechanisms, even if they are considered during design, can
still lead to data corruption or duplicate processing if not properly addressed for a
clustered environment.

Locking mechanisms serializing modification or processing of shared data
should not be restricted within an application’s JVM. Maintaining a list of requests
processed by an application in memory does not prevent an application copy
from processing the same request. Using a database table in this instance to
register requests being actioned would provide visibility to all copies of the
application. With locking, caution must to be heeded to ensure that deadlocks are
not possible.

Leverage the caching capabilities provided by application
servers
Application servers can help to improve application performance with the caching
capabilities provided for read-only EJBs, Java objects, Web Services, and
servility/JSP/JSF tags. Some application servers support caching across
application copies in a cluster. The policies governing when and how often
updated data in a cache is reflected across the cluster should be taken into
consideration during application design, to achieve the desired performance
improvements and behavior. Two such policies are “End of Service” (EOS) and
“Time Based Writes” (TBW).

The EOS policy is catered for regular cache updates, with synchronization
occurring at the end of a request. The TBW policy synchronizes cache updates
in batches at certain time intervals. This provides better performance, as the
frequency of the updates is less, however, there is more data inconsistency,
which is not ideal for requirements of data with high integrity.

Use application server provided workload management and
replication
Before designing a solution, become familiar with services provided by the
targeted application server. WebSphere provides capabilities for cluster
scalability, including workload management and failover, HTTP session affinity,
HTTP session and cache replication services. The provided services should
simplify the design of your application, and if well designed, should not require
code changes when deployed in a clustered environment.

50 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Keep user session state to a minimum
HTTP is a stateless protocol requiring user state to be stored on the server. In a
stand-alone application environment, all user requests are service by the one
server with HTTP sessions maintaining user state. However in a cluster
environment, different requests from the same user might go to different
application servers. Application servers provide the ability to share HTTP session
data across servers through workload routing and caching, eliminating the
necessity for the server servicing the request to repopulate the session object
from the database or shared memory.

To enable efficient session sharing, adhere to the following recommendations:

� Session objects should be small with little complex data structures as
possible. Keep only key data.

� Ensure that the session data represents the user’s state, not request history.

� The state data maintained in the session object should be specific for that
user and not just application data.

� All Java objects stored in a session have to be serializable.

� Define object attributes that do not have to be persisted as transient.

2.5 Best practices

You should be aware that the “best” in best practices is situational. There are
certain situations where design decisions that are contrary to the “best” practices
listed below are actually good. Just keep in mind that there are always several
different factors that lead to a specific design decision, so being clear about the
factors contributing to the decision is key.

2.5.1 Set performance goals early

At the beginning of design, ensure that you have a clear understanding of the
requirements for the system qualities and capabilities so designs and tests can
incorporate them. Avoid ambiguous or incomplete goals that cannot be
measured, such as “the application must run fast” or “the application must handle
increased load.” Make sure that your goals are measurable and verifiable.

Requirements to consider include response times, workload, throughput and
resource. For example:

� How long should a particular request take?

� What is the peak load the application must handle?

 Chapter 2. Application planning and design 51

� How many users does your application have?

� How critical is its availability?

2.5.2 Validate your architecture and design early

Ensure that the application architecture and design can support your
performance goals up-front by validating the important decisions like deployment
topology, load balancing, authentication and authorization strategies, database
design, data access strategies, state management, and caching. Decisions that
do not meet the performance goals would have to be revisited. Thus, ensure that
the costs of specific design choices are considered and documented for future
reference.

2.5.3 Always use the Model View Controller architecture pattern

Cleanly separate business logic (Java beans and EJB components) from
controller logic (servlets/Struts actions) from presentation (JSP, XML/XSLT).
Good layering can cover many coding problems.

This practice is so central to the successful adoption of Java EE that there is no
competition for the MVC architecture. Model-View-Controller is fundamental to
the design of good Java EE applications. It is simply the division of labor of your
programs into the following parts:

1. Those responsible for business logic (the Model — often implemented using
Enterprise JavaBeans™ or plain old Java objects).

2. Those responsible for presentation of the user interface (the View).

3. Those responsible for application navigation (the Controller — usually
implemented with Java servlets or associated classes like Struts controllers).

There are a number of problems that can emerge from not following basic Model
View Control architecture. Most problems occur from putting too much logic into
the view portion of the architecture. Performing application flow control or
database access within a JSP are relatively common in small-scale applications.
These can cause issues in later development as JSPs become progressively
more difficult to maintain and debug.

The same can also be noted for business logic containing view layer constructs,
such as having XML parsing technologies used in the construction of views
contained within the business layer. The business layer should operate on
business objects, not on a particular data representation tied to the view.

52 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

However, just having the proper components does not make your application
properly layered. It is quite common to find applications that have servlets, JSPs,
and EJB components, where the majority of the business logic is done in the
servlet layer, or where application navigation is handled in the JSP. You must be
rigorous about code review and refactoring to ensure that business logic is
handled in the Model layer only, that application navigation is solely the province
of the Controller layer, and that your Views are simply concerned with rendering
model objects into appropriate HTML and Javascript.

User interface technologies change rapidly, and tying business logic to the user
interface makes changes to “just the interface” deeply impact existing systems.
Just a few years ago, user interface developers for Web applications could
choose from servlets and JSPs, Struts, and perhaps XML/XSL transformation.
Since then, Tiles and Faces have become popular, and now AJAX is gaining a
strong following. It would be a shame to have to redevelop an application's core
business logic every time the preferred user interface technology changes.

2.5.4 Do not “reinvent the wheel”

Use common, proven frameworks such as Apache Struts, JavaServer Faces,
and Eclipse RCP. Use proven patterns. Struts and JSF are not only well accepted
in the Java community, but fully supported within the WebSphere runtimes and
Rational tool suites as well. Likewise, in the rich client arena, the Eclipse Rich
Client Platform (RCP) has also gained wide acceptance for building stand-alone
rich clients. While not a part of the Java EE standard, these frameworks are now
a part of the Java EE community, and should be accepted as such.

2.5.5 Develop to the specifications, not the application server

Know the specifications by heart and deviate from them only after careful
consideration. Just because you can do something does not mean you should.

It is very easy to cause yourself grief by trying to play around at the edges of
what Java EE enables you to do. Developers can dig themselves into a hole by
trying something that they think might work “a little better” than what Java EE
allows, only to find that it causes serious problems in performance, or in
migration (from vendor to vendor, or more commonly from version to version)
later. In fact, this is such an issue with migrations, that it calls this principle out as
the primary best practice for migration efforts.

There are several places in which not taking the most straightforward approach
can definitely cause problems. A common one today is where developers take
over Java EE security through the use of JAAS modules rather than relying on
built-in spec compliant application server mechanisms for authentication and

 Chapter 2. Application planning and design 53

authorization. Be very wary of going beyond the authentication mechanisms
provided by the Java EE specification. This can be a major source of security
holes and vendor compatibility problems. Likewise, rely on the authorization
mechanisms provided by the servlet and EJB specs, and where you have to go
beyond them, make sure you use the spec's APIs, such as getCallerPrincipal(),
as the basis for your implementation. This way, you are able to leverage the
vendor-provided strong security infrastructure and, where business has a greater
requirement, then support more complex authorization rules.

Other common problems include using persistence mechanisms that are not tied
into the Java EE spec (making transaction management difficult), relying on
inappropriate Java Standard Edition facilities (like threading or singletons) within
your Java EE programs, and creating your own solutions for program-to-program
communication instead of staying within supported mechanisms like Java 2
Connectors, JMS, or Web Services. Such design choices cause no end of
difficulty when moving from one Java EE compliant server to another, or even
when moving to new versions of the same server.

Using elements outside of Java EE often causes subtle portability problems. The
only time you should ever deviate from a spec is when there is a clear problem
that cannot be addressed within the spec. For instance, scheduling the execution
of timed business logic was a problem prior to the introduction of EJB 2.1. In
cases like this, we might recommend using vendor-provided solutions where
available (such as the Scheduler facility in WebSphere Application Server), or to
use third-party tools where these are not available. Today, of course, the EJB
specification now provides for time-based function, so we encourage the use of
standard interfaces. In this way, maintenance and migration to later spec versions
becomes the problem of the vendor, and not your own problem.

Be careful about adopting new technologies that are yet to be integrated into the
rest of the J2EE specification, or into a vendor's product. Support is critical,
where if your vendor does not directly support a particular technology proposed
in a JSR that is not yet accepted into J2EE, you should probably not pursue it.

2.5.6 Employ iterative development

Iterative development allows you to gradually master all the moving pieces of
J2EE, rather than doing everything at once. For a development team that is just
starting with J2EE, it is difficult to try to learn it all at once. The key to success in
this environment is to take J2EE on in small, controlled steps. This approach is
best implemented through building small, vertical slices through your application.
Once a team has built its confidence by building a simple domain model,
back-end persistence mechanism (perhaps using JDBC), and thoroughly tested
the model, they can then move on to mastering front-end development with
servlets and JSPs that use that domain model. If a development team finds a

54 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

requirement for EJBs, they could likewise start with simple Session Facades atop
Container-Managed persistence EJB components or JDBC-based Data Access
Objects (DAOs) before moving on to more sophisticated constructs such as
Message-Driven beans and JMS.

Iterative development of each application layer fosters the application of
appropriate patterns and best practices. If you begin with the lower layers of your
application and apply patterns like Data Access Objects and Session Facades,
you should not end up with domain logic in your JSPs and other View objects.

When you do development in thin vertical slices, it makes it easier to start early in
performance testing your application. Delaying performance testing until the end
of an application development cycle is a sure recipe for disaster.

2.5.7 Always use Session Facades whenever you use EJB
components

Never expose entity beans directly to any client type. Only use local EJB
interfaces for entity types. Using a session facade is one of the best-established
practices for the use of EJB components. The lower the distribution
“cross-section” of your application, the less time is wasted in overhead caused by
multiple, repeated network hops for small pieces of data. The way to accomplish
this is to create very large-grained facade objects that wrap logical subsystems
and that can accomplish useful business functions in a single method call. Not
only does this reduce network overhead, but within EJBs, it also critically reduces
the number of database calls by creating a single transaction context for the
entire business function.

EJB local interfaces provide performance optimization for co-located EJBs. Local
interfaces must be explicitly called by your application, requiring code changes
and preventing the ability to later distribute the EJB without application changes.
Because the Session Facade and the entity EJBs it wraps should be local to
each other, we recommend using local interfaces for the entity beans behind the
Session Facade. However, the implementation of the Session Facade itself,
typically a stateless session bean, should be designed for remote interfaces.

For performance optimization, a local interface can be added to the Session
Facade. This takes advantage of the fact that most of the time, in Web
applications at least, your EJB client and the EJB are co-located within the same
JVM. If you use a remote interface (as opposed to a local interface) for your
Session Facade, then you might also be able to expose that same Session
Facade as a Web service in a J2EE 1.4 compliant way. (This is because JSR
109, the Web Services deployment section of J2EE 1.4, requires you to use the
remote interface of a stateless session bean as the interface between an EJB

 Chapter 2. Application planning and design 55

Web service and the EJB implementation.) Doing so is often desirable, since it
can increase the number of client types for your business logic.

2.5.8 Acquire shared resources late and release early

Minimize the duration that shared and limited resources such as network and
database connections are held onto.

2.5.9 Put the processing closer to the resources it requires

If your processing involves a lot of client-service interaction, you might have to
push the processing closer to the client. If the processing interacts intensively
with the data store, you might want to push the processing closer to the data.

2.5.10 Embrace Java EE, rather than faking it

Commit to building real Java EE applications that truly leverage Java EE function.

One of the most disturbing things we have observed, more than once, is an
application that claims to “run in WebSphere” but is not really a WebSphere
application. We have seen several examples where there is a thin piece of code
(perhaps a servlet) in WebSphere Application Server and all of the remaining
application logic is actually in a separate process; for example, a daemon
process written in Java, C, C++ or whatever — but not using Java EE — does the
real work.

That is not a real WebSphere Application Server application. Virtually all of the
qualities of service that WebSphere Application Server provides are not available
to such applications. This can be quite a rude awakening for folks who think that
they have a WebSphere Application Server application.

56 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Chapter 3. General coding
considerations

This chapter describes performance and scalability considerations when coding
an application. Our discussion is not specific to any application layer — we leave
those details to subsequent chapters. New features of Java 5 are highlighted at
the end of this chapter.

The chapter is organized into the following major sections:

� 3.1, “General considerations” on page 58
� 3.2, “Garbage collection” on page 60
� 3.3, “Synchronization” on page 77
� 3.4, “Logging” on page 84
� 3.5, “Database access” on page 85
� 3.6, “Event-driven processing” on page 88
� 3.7, “Exceptions” on page 88
� 3.8, “New input/output library” on page 89
� 3.9, “Java 5 features” on page 93
� 3.10, “General coding best practices” on page 103

3

© Copyright IBM Corp. 2008. All rights reserved. 57

3.1 General considerations

This section describes a variety of techniques to improve performance of
WebSphere applications, particularly through the efficient use of the core Java
functionality. Here are some considerations:

� Although the reflection facilities in Java can be extremely useful and allow for
elegant implementations, reflection is an expensive operation that should not
be used indiscriminately. This is another case where a trade-off between
performance and elegance of the solution should be made.

� Avoid creating excessively complicated class structures. There is a
performance overhead in loading and instantiating these classes.

� Avoid excessive and repeated casting. Once an object has been cast, assign
a variable of the correct type and reuse this reference.

� Use of “? :”, where the equivalent “if” blocks simply assign one value or
another, provides better performance for most JVMs.

� When iterating n items, iterating from n-1 to 0 instead of 1 to n is quicker for
most JVMs. See Example 3-1.

Example 3-1 Iterating through a loop n times

for (int i=n-1;i>0;i--)
{

// Do something in a loop.....
}

� Avoid repeatedly calling the same method within a loop if the result is the
same every time. Instead, store the value in a variable prior to entering the
loop and use this stored value for each loop iteration.

� Where possible, declare methods with the final modifier if they are not to be
overridden. Final methods can be optimized by the compiler by method
in-lining. The byte code of the method is included directly in the calling
method. This avoids the overhead of performing a method call.

� When reading and writing small amounts of data, use of the Java Buffered I/O
classes can significantly improve performance, by minimizing the number of
actual I/O calls that should be made.

� It is best to avoid spawning of new threads. Spawned threads do not have
access to J2EE resources such as JNDI, security, or transaction contexts.
Rather than spawning a thread to act as a server to receive incoming
messages, consider using message-driven beans (MDBs).

58 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

� In many applications, performance can be improved by performing some
caching of data by the application. Note that if this is done, consideration must
be given to periodically flushing the cache and the usage of SoftReferences to
avoid it growing continuously. Also be careful with making assumptions about
requests for a client always being served by a particular application server
instance. Even if session affinity is used, in a failover situation, HTTP requests
can be serviced by a different application server instance, which might not
have the cached data. We recommend that the cache be implemented using
a well-defined interface, and that data that is not in the cache be retrieved
again, transparent to the rest of the application.

3.1.1 Reviews and testing

It is important to conduct reviews during software development. Coding should
not commence until designs have been reviewed. The earlier that issues and
concerns are detected within application development, the less effort is required
to rectify them. It is imperative that reviews be conducted with team members
who have adequate development experience to foresee potential performance
and scalability problems within an application.

Performance testing should be done as the application components are
developed, not only on the final version of the application. As issues arise, that
application can be modified to ensure that it performs and is scalable before
other components that might be affected are built. Performance testing the final
version of the application might require running different scenarios over several
days, even weeks. Application tuning should only be done using profiling tools
such as those provided by IBM Rational Application Developer, Borland
OptimizeIt, and Sitraka JProbe (by Quest Software). These tools can help you to
find bottlenecks in your code, blocked threads, excess object creation, and
unused objects that survive garbage collection.

It is also important to ensure the test environments mirror the production
environment. Do not be guilty of improper testing due to cost considerations.

Note: You can use the WebSphere Dynamic Cache service to intercept
calls to cacheable objects and store their output in a Dynamic Cache.
Refer to the content related to dynamic caching in the WebSphere
InfoCenter at:

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp?topic
=/com.ibm.websphere.base.doc/info/aes/ae/tdyn_dynamiccache.html

 Chapter 3. General coding considerations 59

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/tdyn_dynamiccache.html

3.2 Garbage collection

Garbage collection has an important role when considering application
performance. Design decisions such as object pooling are introduced to
minimize the creation and, in turn, cleanup by the garbage collector of objects no
longer in use.

Unlike other programming languages, Java does not require (or even allow)
programmers to explicitly allocate and reclaim memory. The Java Virtual Machine
(JVM) runtime environment allocates memory when a new object is created, and
reclaims the memory once there are no more references to the object. This
reduces the amount of coding required, as well as minimizing the potential for
memory “leaks” caused by the programmer forgetting to deallocate memory once
it is no longer required. Additionally, Java does not allow pointer arithmetic.
Memory deallocation is performed by a thread executing in the JVM called the
garbage collector (GC).

In the early days of Java technology, JVMs performed poorly in both memory
allocation and garbage collection. There were many articles advising developers
to avoid creating temporary objects unnecessarily because allocation and the
corresponding garbage collection overhead was expensive. Approaches such as
object pooling were adopted to avoid allocation, which used to be good advice,
but is no longer generally applicable to all but the most performance critical
situations. In fact, object pooling can now pose performance loss for all but the
most heavyweight of objects, and even then it is tricky to get right without
introducing concurrency bottlenecks.

The introduction of generational collectors in JDK™ 1.2 has enabled a much
simpler approach to allocation, greatly improving performance. Efficient
collection is made possible by focusing on the fact that a majority of objects
“die young”. A generational garbage collector divides the heap into multiple
generations with most JVMs using two generations, a “young” and an “old”
generation. Garbage collection occurs in each generation when a configurable
amount of the generation fills up.

Objects are allocated in a generation for younger objects, or the “young”
generation, and because of infant mortality, most objects die there. When the
young generation fills up, it causes a minor collection. Minor collections can be
optimized assuming a high infant mortality rate. A young generation full of dead
objects is collected very quickly. The vast majority of objects in most Java
applications become garbage before the next collection. The cost of a minor
garbage collection is proportional to the number of live objects in the young
generation, not the number of objects allocated since the last collection.

60 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Because so few young generation objects survive to the next collection, the cost
of collection per allocation is fairly small (and can be made even smaller by
simply increasing the heap size, subject to the availability of enough memory).
Some surviving objects are moved to an “old” generation if they survive past a
certain number of garbage collections. They are considered “long lived” and get
promoted into the old generation as they are less likely to be collected. When the
“old” generation has to be collected, there is a major collection that is often much
slower because it involves all live objects.

As the JVM can support many threads of execution, concurrent access to the
shared heap can become a problem.Therefore, it must be protected by a
resource lock so that one thread can complete updates to the heap before
another thread is allowed in. Access to the heap for most JVMs is therefore
single-threaded. Most JVMs use thread-local allocation blocks to avoid this,
areas of the heap that are allocated as a single large object, marked non
collectable, and allocated to a thread. Threads can now sub allocated from the
thread local heap, objects that are below a defined size. No heap lock is required,
so allocation is very fast and efficient. When a cache becomes full, a thread
returns the thread local heap to the main heap and grabs another chunk for a
new cache. As a result, the number of times a thread has to acquire the shared
heap lock is greatly reduced, improving concurrency.

More details about garbage collection can be found in:

� “Garbage collection policies” by Mattias Persson

http://www-128.ibm.com/developerworks/java/library/j-ibmjava2/index.html

� “Improving Java Application Performance and Scalability by Reducing
Garbage Collection Times and Sizing Memory using JDK 1.4.1” by Nagendra
Nagarajayya and J. Steven Mayer

http://developers.sun.com/techtopics/mobility/midp/articles/garbagecollecti
on2/

3.2.1 Vertical clustering

Most current garbage collections still require single threading at some point, as
when performing major collection. JVMs have been optimized to try to keep this
minimal, however, this causes all other program threads to stop, potentially
increasing the response times experienced by users of the application. The
length of each garbage collection call is dependent on numerous factors,
including the heap size and number of objects in the heap. Thus as the heap
grows larger, garbage collection times can increase, potentially causing erratic
response times depending on whether a garbage collection occurred during a
particular interaction with the server. The effect can be reduced by using vertical
scaling and running multiple copies of the application on the same hardware.

 Chapter 3. General coding considerations 61

http://developers.sun.com/techtopics/mobility/midp/articles/garbage/
http://developers.sun.com/techtopics/mobility/midp/articles/garbagecollection2/

Provided that the hardware is powerful enough to support vertical scaling, this
can provide two benefits: first, the JVM for each member of the cluster only
requires a smaller heap, and secondly, it is likely that while one JVM is
performing garbage collection, the other one should be able to service client
requests, because the garbage collection cycles of the JVMs are not
synchronized in any way. However, any client requests that have been directed
by Workload Management to the JVM (doing garbage collection) are affected.

3.2.2 Explicit garbage collection

A common mistake by developers is the use of System.gc() in their application
code to trigger garbage collection. This call only suggests that the Java Virtual
Machine spend effort towards garbage collection. Garbage collection occurs
asynchronously when free memory reaches threshold values, and it cannot be
explicitly scheduled programmatically. A call to the System.gc() method requests
the JVM to perform garbage collection. However, this is not guaranteed to
happen immediately or within any specified time period. Do not try to control the
garbage collector or to predict what might happen in a given garbage collection
cycle. You cannot do it. This unpredictability is handled by the JVM, and the
garbage collector is designed to run well and efficiently inside these conditions.
Therefore let the garbage collector run in the parameters that an application
selects at start-up time. This approach nearly always produces best
performance.

Forcing the garbage collector to run can severely degrade the JVM performance.
The System.gc() triggers a full collection, which includes tracing all live objects in
the heap and sweeping and compacting the old generation. This can be a lot of
work. In general, it is better to let the system decide when it should collect the
heap, and whether or not to do a full collection. Most of the time, a minor
collection does the job. Worse, calls to System.gc() are often deeply buried
where developers might be unaware of their presence, and where they might get
triggered far more often than necessary. If you are concerned that your
application might have hidden calls to System.gc() buried in libraries, you can
invoke the JVM with the -XX:+DisableExplicitGC option to prevent calls to
System.gc() and triggering a garbage collection.

Tools exist that parse verbose GC trace, analyze Java heap usage, and
recommend key configurations for optimizing garbage collection. Consider the
following tools:

� IBM Pattern Modeling and Analysis Tool for Java Garbage Collector:

http://www.alphaworks.ibm.com/tech/pmat

� Diagnostic Tool for Java Garbage Collector:

http://www.alphaworks.ibm.com/tech/gcdiag?open&S_TACT=105AGX59&S_CMP=GR

62 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://developers.sun.com/techtopics/mobility/midp/articles/garbage/
http://developers.sun.com/techtopics/mobility/midp/articles/garbage/

3.2.3 Lazy instantiation

Lazy instantiation is a technique used to refrain from creating certain resources
until the resource is first required. Typically, this comes about for instance
variable initialization. Rather than initialize explicitly in the constructor (or class
static initializer), it is left until access time for the variable to be initialized, using a
test for null to determine if it has been initialized. Example 3-2 is a simple
illustration of lazy instantiation.

Example 3-2 Lazy instantiation of an attribute.

public class LazyInitialization
{
 private AttrType attr = null;
 ...
 public AttrType getAttr()
 {
 if (attr == null)
 {
 attr = initializeAttr();
 }

 return attr;
 }
}

With lazy instantiation, the null tests are always performed upon accessing the
variable even after it has been initialized. The overhead generally is small and
can be ignored, however, you should use lazy instantiation only when there is a
defined merit in the design, or when identifying a bottleneck which is alleviated
using lazy instantiation. When implementing lazy instantiation, it is important to
take into consideration multi threading issues and synchronization. Refer to 3.3,
“Synchronization” on page 77 for further detail on synchronization
considerations.

A significant benefit in application performance can be gained when you have
objects with complex initialization that might never be used by creating the
objects when first required. Applications avoid exercising code that might never
be run. Delaying object creation also has benefits with load distribution, where
there are many and/or complex objects that should be created and initialized but
not used immediately. To prevent an application’s performance been impacted
with large hits from object creations, it can be useful to spread out the load of
object creation and initialization. On the other hand, there can be situations
where creation and initialization of expensive objects can be performed on
application startup, to reduce the performance hit during normal processing.

 Chapter 3. General coding considerations 63

Designing with lazy instantiation in mind can result in over-engineering of
applications prior to performance tuning. Even though you might want to
introduce this into the application from the beginning, it is best used as a
performance tuning technique. Designs could take into consideration some
object attributes that might never used, however, the impact might be small and
additional complexity not warranted. But this is quite an easy change to make
when performance profiling the application identifies this as an issue, usually
affecting just the accessor for that object attribute.

3.2.4 Object pools

If objects of the same class are being repeatedly created and destroyed, it can be
beneficial to create an object pool that allows the objects to be reused. When the
object creation cost is high or the pooled object represents a limited and costly
resource, then pooling is a good practice. Classes whose objects are to be used
in a pool require an initializer, so that objects obtained from the pool have some
known initial state. It is also important to create a well-defined interface to the
pool to allow control over how it is used.

However, the number of situations where applying object pooling is beneficial is
fairly small. Object pooling has some serious downsides. Because the object
pool is generally shared across all threads, allocation from the object pool can be
a synchronization bottleneck. Pooling also forces you to manage deallocation
explicitly, which reintroduces the risks of dangling pointers. The pool size must be
properly tuned to get the desired performance result. If it is too small, it does not
prevent allocation; and if it is too large, resources that could get reclaimed,
instead sit idle in the pool. By tying up memory that could be reclaimed, the use
of object pools places additional pressure on the garbage collector. Writing an
effective pool implementation is not simple.

3.2.5 Thread local variables

In multi threaded applications, sometimes you require only one object per thread,
with a thread consistently using the same object throughout its processing. Since
Java 1.2, the ThreadLocal class was introduced to provide thread local variables,
where you can associate a variable value to a thread. This could be useful, for
instance, in a servlet associating a user to the thread assigned by the servlet
container to process the request. If you place the user associated with a servlet
request into a thread local variable, you can refer to that user downstream,

Note: IBM WebSphere Application Server V6 provides object pools for pooling
application defined objects or basic JDK types. This benefits an application
which tries to squeeze every ounce of performance gain out of the system.

64 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

without passing the details along as a parameter. The ThreadLocalUser class in
Example 3-3 allows you to do this.

Example 3-3 Class containing user id that allows each thread to have its own instance

public class ThreadLocalUser
{
 private static ThreadLocal id = new ThreadLocal();

 public static void setId(String newValue)
 {
 id.set(newValue);
 }

 public static String getId()
 {
 return (String) id.get();
 }
}

Thread local variables differ from their object attribute counterpart in the way they
are declared, initialized, and accessed. They are typically private static fields and
use the set and get access methods on the ThreadLocal class to modify and
retrieve its value.

An instance of the class containing the thread local variable is therefore not
required, and a call to set the userId on the ThreadLocalUser class can be made
as follows:

ThreadLocalUser.setId(“TEL12345”);

Once the ThreadLocalUser userId has been set to “TEL12345”, we can retrieve
its value by calling the access method as shown below:

String userId = ThreadLocalUser.getId();

To help illustrate how separate threads create their own instance of the
ThreadLocalUser attribute id, the test class ThreadLocalTestServlet in
Example 3-4 was written.

Example 3-4 Usage of ThreadLocal class

public class ThreadLocalTestServlet extends HttpServlet
{
 public void doGet(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException
 {

 Chapter 3. General coding considerations 65

 Thread currThread = Thread.currentThread();
 String threadDtls = "Thread id["+currThread.getName()+"]";

 // Display user id before setting its value.
 System.out.println(threadDtls +
 ",User id["+ThreadLocalUser.getId()+"]");

 // Set user id value with that passed in from the request.
 System.out.println(threadDtls+",Set user id...");
 ThreadLocalUser.setId(req.getParameter("UserId"));
 System.out.println(threadDtls+
 ",User Id["+ThreadLocalUser.getId()+"]");

 // Sleep for 10 seconds
 // This will cause other threads run concurrently for that time.
 System.out.println(threadDtls+",Sleep of 10 seconds...");
 try
 {
 Thread.sleep(10 * 1000);
 } catch (InterruptedException e)
 {
 // Do nothing for interrupt exception.
 }

 // Log the user id value, after the pause in processing.
 System.out.println(threadDtls+
 ",End processing for ["+
 ThreadLocalUser.getId()+"]...");

 }
}

The ThreadLocalTestServlet, on receipt of an HTTP GET request, performs the
following actions:

� It logs the for the thread’s ThreadLocalUser attribute id.

� It sets the ThreadLocalUser attribute id value to that passed in the request.

� It sleeps for a period of 10 seconds to allow others threads to run concurrently
and access their own ThreadLocalUser attribute id.

� Finally, it logs the current value of ThreadLocalUser attribute id.

As each thread has its own copy of the ThreadLocalUser attribute id, we would
expect the value of id to be null when first logged to indicate it has not been set.

66 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Once a value has been assigned, other thread operations on that attribute would
not affect the thread’s value.

The following calls to the ThreadLocalTestServlet were made in separate
browser windows, within seconds of each other:

http://localhost/Examples/ThreadLocalTestServlet?UserId=Bob
http://localhost/Examples/ThreadLocalTestServlet?UserId=Larry
http://localhost/Examples/ThreadLocalTestServlet?UserId=Bill

The output from the three consecutive calls to the test servlet logged the
following details:

Thread id[WebContainer : 1],User id[null]
Thread id[WebContainer : 1],Set user id...
Thread id[WebContainer : 1],User Id[Bob]
Thread id[WebContainer : 1],Sleep of 10 seconds...
Thread id[WebContainer : 0],User id[null]
Thread id[WebContainer : 0],Set user id...
Thread id[WebContainer : 0],User Id[Larry]
Thread id[WebContainer : 0],Sleep of 10 seconds...
Thread id[WebContainer : 2],User id[null]
Thread id[WebContainer : 2],Set user id...
Thread id[WebContainer : 2],User Id[Bill]
Thread id[WebContainer : 2],Sleep of 10 seconds...
Thread id[WebContainer : 1],End processing for [Bob]...
Thread id[WebContainer : 0],End processing for [Larry]...
Thread id[WebContainer : 2],End processing for [Bill]...

Each thread holds an implicit reference to its copy as long as the thread is alive
and the thread local variable is accessible. All of its copies are subject to garbage
collection upon thread completion and no further references to the thread local
variable.

3.2.6 String concatenations

Although strings are a simple and efficient data structure in many languages
such as C/C++, there is overhead associated with the use of strings
(java.lang.String) in Java. Java strings are immutable; once created, their
value cannot be changed. Hence operations such as string concatenation (+)
involve the creation of new strings with the data copied from the original strings,
creating more work for the garbage collector as well. When performing string
manipulation operations, the use of java.lang.StringBuffer can improve
performance. Using String and StringBuffer classes together is an optimization
performed by many Java compilers today. Code is written like that shown in
Example 3-5.

 Chapter 3. General coding considerations 67

Example 3-5 Sample code

String b;
// ... value of b is set at some stage in the application.
String abc = “a” + b + “c”;

This is automatically optimized by Java compilers to the code shown in
Example 3-6.

Example 3-6 Java optimized sample code

String b;
// ... value of b is set at some stage in the application.
String abc = new StringBuffer().append(“a”)
 .append(b)
 .append(“c”)
 .toString();

However, there are instances when it is best to use a StringBuffer class on the
onset, rather than allow this optimization to be performed by the Java compiler.
The code snippet shown in Example 3-7 performs the string concatenation
several times, within the loop block.

Example 3-7 Code snippet

String nbrs1To9 = "";
for (int i=1; i<10;i++)
{
 nbrs1To9 +=i;
}

The Java compiler would transform this to the code shown in Example 3-8.

Example 3-8 Java optimized code snippet

String nbrs1To9 = "";
for (int i=1; i<10;i++)
{
 nbrs1To9 = new StringBuffer().append(nbrs1To9)
 .append(i)
 .toString();
}

In each loop iteration, a new StringBuffer is created and then discarded once the
String value is returned to the assigned variable. It would have been better to
have written the code shown in Example 3-9 from the beginning.

68 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Example 3-9 Efficient code

String nbrs1To9 = "";
StringBuffer buffer = new StringBuffer();
for (int i=1; i<10;i++)
{
 buffer.append(i);
}
nbrs1To9 = buffer.toString();

This code is more efficient, with the StringBuffer only created once and updated
within the loop block.

3.2.7 Canonicalize objects

Canonicalizing objects is the replacing of copies of an object with a single or pool
of copies. When a single copy is to be used by the entire application, the
restriction on object instantiation can enforce by either using static methods on
the class or implementing the Singleton pattern.

Static classes
Static classes have no object representation. All methods are defined as static,
and the visibility of their constructors is restricted to prevent instantiation, as
shown in Example 3-10.

Example 3-10 Static class implementation

public class ClassicStaticClass
{
 private ClassicStaticClass()
 {
 // Restrict the ability to instanciate this class.
 }

 public static String doSomething(String inputVal)
 {
 String returnVal = null;

 // Perform something on the input String and
 // assign it to the returnVal variable.

 return returnVal;
 }
}

 Chapter 3. General coding considerations 69

Rather than invoking a method on an instance, you access the class method
directly as shown here:

String resultSt = MyStatic.doSomething(strval);

Singleton objects
Singleton objects follow the Singleton pattern, described in “Singleton” on
page 46. Singletons are classes with a private constructor's and often with a
getInstance() method that returns an instance of the class, as shown in
Example 3-11.

Example 3-11 Implementation of a singleton

public class ClassicSingleton
{
 // Contain a single instance of this class.
 private static ClassicSingleton sInstance = new ClassicSingleton();

 private ClassicSingleton()
 {
 // Restrict the ability to instanciate this class.
 }

 /*
 * Exists only to provide access to a single instance of this class.
 */
 public static ClassicSingleton getInstance()
 {
 return sInstance;
 }

 /*
 * Instance method(s)
 */
 public void doSomething(String inputVal)
 {
 // Perform something on the input String.
 }
}

When coding singletons, it is important to keep synchronization in mind. Refer to
3.3, “Synchronization” on page 77, for further details on this subject.

To invoke a method on a singleton, you have to obtain an instance to the class as
shown here:

ClassicSingleton.getInstance().soSomething(strval);

70 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Static classes versus singletons
When should one use a static class and when a singleton class? There is no one
correct answer to this question. The main difference between the two is that
static classes have no instance level variables, while singleton classes can and
probably do. Static classes are best suited for utility type classes like a Math
class, having no state and a collection of methods that convert a value and return
another value based on what was passed in. If a class has to hold some data and
only one instance of the class to be available, a singleton class would be the
preferred option.

Singleton classes create an object of the class and use that throughout the
application. At a later stage, if you require more instances of a singleton class,
you can modify the method that returns a single instance of the class to return
either an instance from a pool of objects or a new instance on every call. Static
classes do not create an object, therefore methods are referenced through class
name.

A limitation with static classes is that static methods are not polymorphic. They
cannot take advantage of inheritance nor implement interfaces. A true singleton
is a factory. It is configurable to load different implementations at runtime, just as
the Runtime class differs for each operating system. Use static classes if the
details do not change over time — a utility class for parsing strings is a good
example. They are not impacted by a change in context, and additionally, they
gain very little from polymorphism. If the code contains business logic that is
likely to change over time, the singleton provides the flexibility.

3.2.8 Array copy

Use the System.arraycopy() method for copying the contents of one array into
another, instead of an iterative loop. For example, the following two arrays are to
be copied into a third array:

int array1[] = {0,1,2,3,4};
int array2[] = {5,6,7,8,9};
int array3[] = new int[array1.length+array2.length];

Using loops, the contents of array1 and array2 can be copied as shown in
Example 3-12.

Example 3-12 Copy 2 arrays into a third array

for (int i = 0; i < array1.length; i++)
{
 array3[i] = array1[i];
}
for (int i = 0; i < array2.length; i++)

 Chapter 3. General coding considerations 71

{
 array3[array1.length + i] = array2[i];
}

However, a more efficient approach is to use the System.arraycopy method as
shown in Example 3-13.

Example 3-13 Efficient copy technique

System.arraycopy(array1, 0, array3, 0, array1.length);
System.arraycopy(array2, 0, array3, array1.length, array2.length);

3.2.9 Collection sizing

Although the Java runtime environment dynamically grows the size of collections
such as java.util.Vector or Java.util.Hashtable, it is more efficient if they are
appropriately sized when created. Each time the collection size is increased, its
size is doubled so when the collection reaches a stable size, it is likely that its
actual size can become significantly greater than required. It is better to presize
the collection to its largest potential size to reduce, rather than having the runtime
environment managing this. The collection only contains references to objects
rather than the objects themselves, which minimizes the overallocation of
memory due to this behavior.

3.2.10 Static and final variables

When a value is used repeatedly and is known at compile time, it should be
declared with the static and final modifiers. This ensures that it gets substituted
for the actual value by the compiler. If a value is used repeatedly but can be
determined only at runtime, it can be declared as static and referenced
elsewhere to ensure that only one object is created. Note the scope of static
variables is limited to the JVM. Hence if the application is cloned, care should be
taken to ensure that static variables used in this way are initialized to the same
value in each JVM. A good way of achieving this is the use of a singleton object.
For example, an EJB initial context can be cached with a singleton using the
code fragment shown in Example 3-14.

Example 3-14 Use of the singleton pattern to cache EJB initial context references

public class EJBHelper
{

private static javax.naming.InitialContext initialContext= null;

public javax.naming.InitialContext getInitialContext()

72 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

{
if (initialContext == null)
{

initialContext = new javax.naming.InitialContext();

return initialContext
}

}

Use the final modifier on instance-variable definitions to create immutable
internally accessible objects.

3.2.11 Object references

Although memory does not have to be explicitly deallocated, it is still possible to
effectively have “memory leaks” due to references to objects being retained even
though they are no longer required. They do not only degrade performance, but
could eventually cause the application to terminate prematurely. These objects
are commonly referred to as loitering objects. Memory leaks tend to be very
subtle and difficult to debug, and tend to result from objects either referenced by
variables that never go out of scope, or once placed into collection, are never
removed.

Object references should be cleared once they are no longer required, rather
than waiting for the reference to be implicitly removed when the variable is out of
scope. This can be as simple as assigning the object reference to null when the
object is no longer required, allowing it to be reclaimed sooner. Care should be
taken with objects in a collection, particularly if the collection is being used as a
type of cache. In this case, some criteria for removing objects from the cache is
required to avoid the memory usage constantly growing. A complete
understanding of the problem domain is required.

Another common source of memory leaks in Java is due to programmers not
closing resources such as IO streams, Java Database Connectivity (JDBC)
(further discussed in 3.5, “Database access” on page 85), Java Message Service
(JMS) and Java Connector Architecture (JCA) resources when they are no
longer required, particularly under error conditions. In Example 3-15, the
loadProperties() method is not catered to handle any exceptions encountered
once the file handle has been acquire. The exceptions are propagated to the
caller, with the stream not closed until the garbage collector runs its finalizer.

Example 3-15 Incorrectly acquiring, using and releasing a resource

public Properties loadProperties(String inputFileName)
 throws IOException

 Chapter 3. General coding considerations 73

{
 FileInputStream fistream = new FileInputStream(inputFileName);
 Properties properties = new Properties();

 properties.load(fistream);
 fistream.close();

 return props;
}

In Example 3-16, the file handle, once obtained, is released prior to returning
from the method call regardless of whether an exception was encountered or not.

Example 3-16 Correctly acquiring, using and releasing a resource

public Properties loadProperties(String inputFileName)
 throws IOException
{
 Properties properties = null;
 FileInputStream fistream = null;

 try
 {
 fistream = new FileInputStream(inputFileName);
 properties = new Properties();
 properties.load(fistream);
 }
 finally
 {
 if (fistream != null)
 {
 fistream.close();
 }
 }

 return properties;
}

Note, however, that the code in the finally block can throw an exception, in this
case an I/O Exception, which would supersede any exception raised in the try
block. This means that the original exception is lost and masking the real reason
why an error was encountered. To aid in the debugging effort, any exceptions
raised in the final block should be handled, as shown in Example 3-17.

74 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Example 3-17 Handling exceptions raised in finally block

public Properties loadProperties(String inputFileName)
 throws IOException
{
 Properties properties = null;
 FileInputStream fistream = null;

 try
 {
 fistream = new FileInputStream(inputFileName);
 properties = new Properties();
 properties.load(fistream);
 }
 finally
 {
 if (fistream != null)
 {
 try
 {
 fistream.close();
 }
 catch(Exception e)
 {
 // Do nothing as this is only trying
 // to close the file stream.
 }
 }
 }

 return properties;
}

Normally, exceptions relating to closing a resource can be ignored within the
finally block, and if one chooses, can log a message to note that this has
occurred.

It is also important that static references be explicitly cleared when no longer
required, because static fields never go out of scope. Since WebSphere
Application Server applications typically run for a long time, even a small memory
leak can cause the JVM to run out of free memory. An object that is referenced
but no longer required might in turn refer to other objects, so that a single object
reference can result in a large tree of objects which cannot be reclaimed.

 Chapter 3. General coding considerations 75

The profiling tool available in IBM Rational Application Developer can help to
identify memory leaks. Other tools that can be used for this purpose include
Rational Purify®, Sitraka JProbe (by Quest Software), and Borland OptimizeIt.

3.2.12 Finalizers

Objects with finalizers (those that have a non-trivial finalize() method) have
significant overhead compared to objects without finalizers, and should be used
sparingly. Finalizeable objects are both slower to allocate and slower to collect.
At allocation time, the JVM must register any finalizeable objects with the
garbage collector, and (at least in the HotSpot JVM implementation) finalizeable
objects must follow a slower allocation path than most other objects. Similarly,
finalizeable objects are slower to collect. It takes at least two garbage collection
cycles (in the best case) before a finalizeable object can be reclaimed, and the
garbage collector has to do extra work to invoke the finalizer. When the garbage
collector runs, it determines which are the unreachable objects and normal those
objects would be collected. However, objects with finalizer must have its finalizer
run before it can be collected, therefore no finalized garbage can be collected in
the cycle that actually finds it.

Finalizers are not run at any particular time. The garbage collector cannot run
finalizers itself when it finds them. This is because a finalizer might run an
operation that takes a long time, and the garbage collector cannot risk locking out
the application while this operation is running. Finalizers must be collected into a
separate thread for processing and this adds more overhead into the garbage
collection cycle.

The sequence in which finalized objects are located by the garbage collector has
no relationship to the sequence in which they were created nor to the sequence
in which their objects became garbage. The garbage collector has no knowledge
of what is in a finalizer, or how many finalizers exist, it tries to satisfy an allocation
without having to process finalizers. If a garbage collection cycle cannot produce
enough normal garbage, it might decide to process finalized objects. So it is not
even possible to predict when a finalizer is run, if at all.

Finalizers should be used as an emergency clear-up of, for example, hardware
resources. If you must use finalizers, there are a few guidelines you can follow
that can help contain to minimize their impact. Limit the number of finalizeable
objects, which can minimize the number of objects that have to incur the
allocation and collection costs of finalization. Organize your classes so that
finalizeable objects hold no other data, which can minimize the amount of
memory tied up in finalizeable objects after they become unreachable, as there
can be a long delay before they are actually reclaimed. In particular, beware
when extending finalizeable classes from standard libraries.

76 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

For tidying Java resources, think about the use of a clean up routine. When you
have finished with an object, call the routine to null out all references, deregister
listeners, clear out hash tables, and so on. This is far more efficient than using a
finalizer and has the useful side-benefit of speeding up garbage collection. The
Garbage Collector does not have so many object references to chase in the next
garbage collection cycle.

3.3 Synchronization

The mechanism by which access to shared resources by different threads is
controlled is called Synchronization. While the synchronization functionality in
Java is convenient and easy to use, it can introduce significant performance
overhead. When a block of code is synchronized, only a single thread can
execute it at any one time. There are two performance impacts of
synchronization:

� Managing the monitors, the objects internal to the JVM that are used to
control access to synchronized resources. Although they are not explicitly
accessed by programmers, there is an overhead due to the management of
the monitors by the JVM.

� Reduced concurrency, since threads have to wait for other threads to exit from
synchronized blocks of code.

Thus the use of synchronization should be minimized and limited to cases where
it is definitely necessary. It is also good practice to clearly document all
assumptions relating to synchronization, because they might not be obvious to
someone reading the design or code.

3.3.1 Synchronized keyword

Defining methods as sychronized (using the synchronized keyword) is one of the
most common approaches to prevent other threads from accessing the same
functionality until the thread performing the action is finished. Example 3-18
illustrates the usage.

Example 3-18 Using the synchronized keyword to obtain a lock

import java.util.*;

public class Jury
{
 ArrayList members;
 String juryReferenceNbr;

 Chapter 3. General coding considerations 77

 public Jury(String referenceNbr)
 {
 members = new ArrayList(12);
 juryReferenceNbr = referenceNbr;
 }

 public String getJuryReferenceNbr()
 {
 return juryReferenceNbr;
 }

 /**
 * Add member to jury list.
 */
 public synchronized void addMember(String name)
 {
 members.add(name);
 }

}

Here, two threads cannot invoke addMember() function at the same time; one must
block while the other is working. However, any number of threads can
simultaneously access the jury reference number via the getJuryReferenceNbr()
function, because getJuryReferenceNbr() is not a synchronized function and
hence is independent of the associated locking. Consider the impact of adding
another function in the Jury class with the following implementation shown in
Example 3-19.

Example 3-19 Adding addAlt() function to Jury class

import java.util.*;

public class Jury
{
 ArrayList members;
 ArrayList alternates;
 String juryReferenceNbr;

 public Jury(String referenceNbr)
 {
 members = new ArrayList(12);
 alternates = new ArralyList(12);
 juryReferenceNbr = referenceNbr;

78 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

 }

 ...

 /**
 * Add member to alternate jury list.
 */
 public synchronized void addAlt(String name)
 {
 alternates.add(name);
 }

}

The function addAlt(), when accessed, blocks not only other invocations of that
function, but also the addMember() function in the same instance of Jury class,
because both functions access the same lock. If the two functions must not block
each other, then the programmer must use synchronization at a lower level.

3.3.2 Synchronized object lock

Synchronization can also occur for a block of code using objects as the locking
mechanism. For instance, to ensure that addMember() and addAlt() functions do
not block each other, the Jury class can be rewritten as shown in Example 3-20.

Example 3-20 Object locking within Jury class methods addMember() and addAlt()

import java.util.*;

public class Jury {
 ArrayList members;
 ArrayList alternates;
 String juryReferenceNbr;

 public Jury(String referenceNbr)
 {
 members = new ArrayList(12);
 alternates = new ArrayList(12);
 juryReferenceNbr = referenceNbr;
 }

 public String getJuryReferenceNbr()
 {

 Chapter 3. General coding considerations 79

 return juryReferenceNbr;
 }

 /**
 * Add member to jury list.
 */
 public void addMember(String name)
 {
 synchronized(members)
 {
 members.add(name);
 }
 }

 /**
 * Add member to alternate jury list.
 */
 public void addAlt(String name)
 {
 synchronized(alternates)
 {
 alternates.add(name);
 }
 }
}

Synchronizing using the keyword can cause different methods to be
unnecessarily synchronized with each other, and hence reduce concurrency.
Note that synchronizing on an object has a greater overhead than calling a
synchronized method. However, synchronizing the method can result in
significantly greater amounts of code being synchronized, again reducing the
concurrency. So the trade-off between the synchronization overhead and
reduced concurrency has to be evaluated on a case-by-case basis.

3.3.3 Synchronized method decomposition

When using synchronization, it is best to use specific lock objects to synchronize
on. You should analyze and ensure that only the minimum amount of execution
time is spent within a synchronized block. To illustrate this, in Example 3-21 we
add the method retrieveAll() to the class Jury to retrieve a list of jury participants.

80 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Example 3-21 Using members and alternates as synchronized objects

public ArrayList retrieveAll()
{
 ArrayList retval;

 synchronized(members)
 {
 synchronized(alternates)
 {
 retval = new ArrayList(members);
 retval.addAll(alternates);
 }
 }
 return retval;
}

However, that would have been inefficient because we are obtaining locks on
members and alternates well before they would be required. The rewrite in
Example 3-22 is a better example because it holds the lock for the least amount
of time and also obtains only one lock at a time.

Example 3-22 Rewrite with better lock management

public ArrayList all()
{
 ArrayList retval;
 synchronized(members)
 {
 retval = new ArrayList(members);
 }
 synchronized(alternates)
 {
 retval.addAll(alternates);
 }
 return retval;
}

As seen before, synchronized methods acquire a lock on the object. If the
method is being called frequently by different threads, the method becomes the
bottleneck by limiting the parallelism and hence limiting the efficiency. Thus, as a
general philosophy, synchronized functions should be kept as small as possible.
Notwithstanding this philosophy, there are times where a single function might
have to do some tasks that require locking an object, while also doing other tasks
that consume a lot of time. Example 3-23 shows low efficiency code where two
function calls unsafe1() and unsafe2() required synchronization.

 Chapter 3. General coding considerations 81

Example 3-23 Original low-efficiency code

public synchonized void doWork()
{
 unsafe1();
 write_file();
 unsafe2();
}

In such situations, a dynamic lock-release-lock-release method can be
employed. The next example shows code that could be transformed in this
manner.

Example 3-24 Rewritten high-efficiency code

public void doWork()
{
 synchonized(this)
 {
 unsafe1();
 }
 write_file();
 synchonized(this)
 {
 unsafe2();
 }
}

First and third functions require the object to be locked, while the more
time-consuming write_file() function does not. As you can see, by rewriting the
function, the lock to the object is released after the first function is finished and
then reacquired when necessary for the third function. As a result, any other
method that is waiting for a lock on this object can run while the write_file()
function is executing. Decomposing a synchronized method into such hybrid
code can greatly improve the performance. However, you should be careful that
no logical errors are introduced in such a code.

You should pay special attention to methods that access slow resources that can
degrade your program’s efficiency like files, directories, network sockets, and
databases. Try to put access to such resources in a separate thread, preferably
outside any synchronized code.

82 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

3.3.4 Double-checked locking

Double-checked locking was a practice introduced to reduce the necessity for
synchronization of a shared attributed, in particular after its initialization. A
common implementation that is flawed is shown in Example 3-25.

Example 3-25 How not to perform double-check locking

public class Singleton
{
 private static Singleton instance = null;

 private Singleton(){};

 public static Singleton getInstance()
 {
 if (instance == null)
 {
 synchronized(Singleton.class)
 {
 if (instance == null)
 {
 instance = new Singleton();
 }
 }
 }

 return instance;
 }
}

Unfortunately, in Java versions 1.4 and earlier, there were issues where
double-checking locking does not work. This has been rectified with Java 5 with
the usage of the volatile keyword. Example 3-26 shows how the variable instance
is declared as volatile, to insure that multiple threads handle the class variable
correctly when it is being initialized.

Example 3-26 Double-check locking in Java 5

public class Singleton
{
 private volatile static Singleton instance = null;

 private Singleton(){};

 public static Singleton getInstance()

 Chapter 3. General coding considerations 83

 {
 if (instance == null)
 {
 synchronized(Singleton.class)
 {
 if (instance == null)
 {
 instance = new Singleton();
 }
 }
 }

 return instance;
 }
}

Using object locks within the getInstance() method or synchronizing the method
as discussed earlier are working alternatives independent of the version of Java.
Synchronization can be alleviated when instance attributes can be initialized on
class load up as shown in Example 3-11 on page 70.

3.3.5 Implicit synchronization

In addition to the explicit use of synchronization in application code,
synchronization can be used indirectly, as some of the commonly used core Java
functionality uses synchronization. Here are some particular examples:

� For Java I/O libraries, it is best to minimize the use of System.out.println()
for this reason. Use of a multithreaded logging library as discussed in 3.4,
“Logging” on page 84 is suggested.

� Some of the Java collection classes, such as java.util.Hashtable and
java.util.Vector, are synchronized. If only a single thread is accessing the
data (or multiple threads are reading only), the synchronization overhead is
unnecessary. Many of the newer collections introduced in Java 1.2, such as
java.util.ArrayList are not synchronized and can provide better
performance. However, care should be taken when accessing them from
multiple threads.

3.4 Logging

Java I/O classes use synchronization. Hence, System.out.println() should not
be used for logging purposes. If a lot of output using stdout is generated by an
application in a UNIX® environment, the overhead can be avoided by redirecting

84 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

stdout to /dev/null in the production environment. However, a better approach is
to use logging framework such as the Jakarta Commons Logging. Jakarta
Commons Logging provides a simple logging interface and thin wrappers for
several logging systems. The logging interface enables application logging to be
simple and independent of the logging libraries that the application uses. In
addition it allows logging statements to be defined at a particular level, which can
be dynamically changed at runtime. Thus the amount of logging in production
environments can be reduced in comparison to development and test
environments without requiring code changes, improving the performance of the
application.

WebSphere Application Server supports Jakarta Commons Logging by providing
a logger, a thin wrapper for the WebSphere Application Server logging facility.
WebSphere Application Server is pre-configured to use Jakarta Commons
Logging with application logging calls routed by default to the underlying
WebSphere Application Server logging facility.

When logging, it is also good practice to guard log statements so that the
parameters are not evaluated if the logging level is not on. The use of guard
statements is shown in Example 3-27.

Example 3-27 Use of guard statements for logging

if (Log.isLogging(Log.WARN)
{

Log.log(LOG.WARN, “This is a warning”);
}

3.5 Database access

The Java Database Connectivity (JDBC) API provides a vendor-independent
mechanism to access relational databases from Java. However, obtaining and
closing a connection to a database can be a relatively expensive exercise, so the
concept of connection pools has been introduced. When a database operation is
to be performed, a connection can be obtained from the pool, which contains a
defined number of connections to the database that have already been
established. When the connection is closed, it is returned to the pool and made
available for reuse. Using connection pooling can significantly reduce the
overhead of obtaining a database connection. However, the connection pool is
accessed via a data source. References to the data source are obtained by
performing a lookup via the Java Naming and Directory Interface (JNDI). This
lookup is an expensive operation, so it is good practice to perform the lookup
once and cache the result for reuse.

 Chapter 3. General coding considerations 85

JDBC resources should always be released once they are no longer required.
This includes java.sql.ResultSet, java.sql.Statement and
java.sql.Connection objects, which should be closed in that order. The code to
close the resources should be placed in a final block to ensure that it is executed
even when an exception condition occurs, as shown in Example 3-28.

Example 3-28 Correctly releasing JDBC resources

public List retrieveUsers() throws SQLException
{
 Statement statement = null;
 ResultSet resultSet = null;
 Connection connection = null;
 ArrayList userList = new ArrayList();

 try
 {
 connection = getConnection();
 statement = connection.createStatement();
 resultSet = statement.executeQuery("SELECT * FROM user");

 // Use resultSet to populate the userList.
 }
 finally
 { // Release JDBC resources.

 // Release result set.
 try
 {
 if (resultSet != null)
 {
 resultSet.close();
 }
 }
 catch(Exception e)
 {
 // Do nothing with exceptions raised
 // from releasing a resource.

 // You can choose to log a message to
 // indicate what exception was raised
 // from releasing the resource.
 }

 // Release statement.

86 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

 try
 {
 if (statement != null)
 {
 statement.close();
 }
 }
 catch(Exception e)
 {
 }

 // Release connection.
 try
 {
 if (connection != null)
 {
 connection.close();
 }
 }
 catch(Exception e)
 {
 }

 } // Release JDBC resources.

 return userList;
}

private Connection getConnection()
{
 // Returns a database connection.
}

Failure to properly close resources can cause memory leaks, as well as slow
response due to threads having to wait for a connection to become available from
the pool. Since database connections in the pool are a limited resource, they
should be returned to the pool once they are no longer required.

If an application repeatedly executes the same query, but with different input
parameters, then performance can be improved by using a
java.sql.PreparedStatement instead of java.sql.Statement. Turning off auto
commit for read only operations can also increase performance.

 Chapter 3. General coding considerations 87

To avoid having to retrieve and process large amounts of data, sometimes it is
beneficial to use database stored procedures for implementing some of the
application logic. Alternatively, in some cases, calls to the database can be
minimized by using a single statement that returns multiple result sets.

There are different types of JDBC drivers available, some written in pure Java
and others that are native. Although use of a native driver can reduce portability,
performance can be better with a native driver.

3.6 Event-driven processing

When an application has to react to events or conditions (both internal or
external), there are two methods of designing the system. In the first method,
known as polling, the system periodically ascertains the status and reacts
accordingly. This method, while simple, is also less efficient because you cannot
always predict when it might have to be invoked.

The second method, known as event-driven processing, is more efficient but also
more complex to implement. In the case of event-driven processing, you require
a signaling mechanism to control when a particular thread should run. In Java
programs, you can use the wait(), notify(), and notifyAll() functions inherited from
the Object class to signal a thread. These functions allow threads to block on an
object until such time as the desired condition is met and then to start running
again. This design reduces CPU usage because threads do not consume
execution time while blocked and can instantly awaken when notify() methods
are called. The event-driven method provides better response time compared to
that of the polling method.

3.7 Exceptions

The creation of exception objects is an expensive process that degrades
performance. When an exception is created, it has to gather a stack trace
describing where it was created. Building those stack traces requires taking a
snapshot of the runtime stack, and that is the expensive part. The stack is
recorded all the way from main or Thread.run (at the bottom of the stack) right up
to the top. The stack trace snapshot happens in the Throwable constructor
through a native method call to fillInStackTrace(). This method is responsible for
walking the stack frame to collect trace information. The catching and throwing of
exceptions is not the expensive part.

Good programming practice dictates that exceptions should be used for error
conditions only, and not control flow.

88 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

3.8 New input/output library

The new input/output (NIO) library was introduced in Java 1.4 as a supplement to
the existing java.io package. It introduced an alternative approach of reading and
writing data, from the existing streaming model. New capabilities such as file
blocking and asynchronous I/O were also introduced. In the following sections,
we describe these features in the NIO library in more detail.

3.8.1 Buffered read and writes using channels

Most of the programs work with external data stored either in local files or coming
from other computers on the network. Java has a concept of working with
streams of data. After a physical data storage is mapped to a logical stream, a
Java program reads data from this stream serially — byte after byte, character
after character, and so on. Some of the types of streams are byte streams
(InputStream, OutputStream) and character streams (Reader and Writer). The
same physical file could be read using different types of streams, for example,
FileInputStream, or FileReader. The classes that work with streams are located
in the java.io package. Java 1.4 introduced the new package java.nio with
improved performance. With the NIO library, all I/O is dealt in blocks of data.
Each operation produces or consumes a block of data in one step.

All data is handled with buffers. Data is directly read from or written to a buffer. As
buffers represent the data container, a Channel is required in which you can read
from and write data to. Channels are the stream equivalent in the I/O library.
Unlike streams, however, they can be bidirectional, opened for read, for writing,
or both. To read a file, you have to get the Channel from the FileInputStream,
create a Buffer and read from the Channel into the Buffer. Writing to a file is a
similar process to the read. You get the Channel from the FileOutputStream,
create a Buffer and populate it with the data we wish to write, and finally write
from the Buffer into the Channel. From the foregoing read and write operations,
notice that you never directly read and write to the Channel, only via the Buffer.

3.8.2 File locking

File locking is notoriously specific to the operating system and even the file
system, and not done by all in a consistent manner. Some implementations
provide only exclusive locks, while other implementations provide for shared
locks. With NIO, file locks are built right into the FileChannel class. Prior to Java
1.4, apart from native method calls, there was another way to check or set for file
locks.

 Chapter 3. General coding considerations 89

The file locks are regular Java objects of type FileLock that allow different parts of
the system to coordinate data access. These locks do not prevent data access.
Example 3-29 illustrates the usage of file locks.

Example 3-29 Restricting access using file locking

RandomAccessFile raf = new RandomAccessFile(“sharedfile.txt”,”rw”);

// Obtain exclusive access to file, to carry out sensitive operations.
FileChannel fc = raf.getChannel();
fc.lock();

// Do file operations...

// Now that all was needed to be done to the file was completed,
// we can release the lock.
lock.release();

3.8.3 Asynchronous I/O

With traditional Java I/O model, when an application thread reads or writes data,
it blocks until the operation completes. NIO introduced Asynchronous I/O calls,
where the application thread does not have to block for read or write operations.
This is only applicable for socket channels (SocketChannel,
ServerSocketChannel, and DatagramChannel). FileChannel cannot be placed in
non-blocking mode.

With Asynchronous I/O, rather than blocking, it registers your interest in particular
I/O events such as the arrival of new data, and the system tells you when such an
event occurs. This allows you to do a number of inputs or outputs without having
to create new threads. You can listen for I/O events on an arbitrary number of
channels without having to poll. When a channel is non-blocking, read() or write()
calls always return immediately, whether they transferred any data or not. This
enables a thread to check if data is available without getting stuck. As shown in
Example 3-30, if there is no data to be read from the Channel, the read() call
returns zero, and the thread bypasses the processing of the input buffer and
continues its processing.

Example 3-30 Using non-blocking I/O to read from a file

// Bind to a port expecting to receieve data.
ServerSocketChannel ssc = ServerSocketChannel.open();
ssc.configureBlocking (false);
ssc.socket().bind(new InetSocketAddress(portNbr));

90 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

// Create an Input Buffer to store the data read from the channel.
ByteBuffer ib = ByteBuffer.allocate (1024);

// Read data from channel.
if (ssc.read (ib) != 0)
{
 // Process data read from the channel.
 processInputBuffer(ib);
}

Polling to determine when input is ready on a non-blocking channel introduces
the practice of periodically checking for input, rather than being notified when
there is data to be read. If the application has to respond to inputs arriving on a
connection, then the conventional blocking model might seem a better option.
However, as the number of connections serviced increases, so does the number
of threads required, as each is listening on a single connection. A single thread is
unable to manage multiple I/O channels. But polling quickly on non-blocking
Channels consumes many CPU cycles and many unproductive I/O requests. I/O
requests are expensive, as they generate system calls that in turn entail context
switches.

The NIO class Selector aids a single thread in managing many I/O channels.
It provides an alternation to polling or thread-per-channel/stream. You create a
Selector instance, register one or more non-blocking channels with it, indicating
for each, what events are of interest. The call on the select() method blocks until
at least one of the registered events occurs, followed by the processing of the
event. This processing is normally contained within a loop, as depicted in
Example 3-31.

Example 3-31 Managing many I/O channels with a single thread

// Maintain list so we can close sockets later.
ServerSocketChannel sscList[] = new
ServerSocketChannel[portNbrList.length];

Selector selector = Selector.open();

// Bind to each port expecting to received incoming data.
for (int i=0; i < portNbrList.length ; i++)
{
 ServerSocketChannel ssc = ServerSocketChannel.open();
 ssc.configureBlocking (false);
 ssc.socket().bind(new InetSocketAddress(portNbrList[i]));

 // Configure socket channel for accepting new connections.

 Chapter 3. General coding considerations 91

 ssc.register(selector, SelectionKey.OP_ACCEPT);

 sscList[i]=ssc;
}

while (true)
{
 // Wait until an event occurs.
 selector.select();

 // We will no go through the list of raised events and process
 // each one individually.
 Iterator it = selector.selectedKeys().iterator();

 while (it.hasNext())
 {
 SelectionKey key = (SelectionKey) it.next();
 ServerSocketChannel ssc = null;
 SocketChannel sc = null;;

 // If event is an incoming connection waiting to a server socket,
 // accept it and configure the socket channel for reading rather
 // than accepting new connections.
 if (key.isAcceptable())
 {
 ssc = (ServerSocketChannel) key.channel();
 sc = ssc.accept();

 sc.configureBlocking (false);
 sc.register (selector, SelectionKey.OP_READ);
 }

 // If the event is triggered from incoming data, read the data from
 // the channel and process it accordingly.
 if (key.isReadable())
 {
 sc = (SocketChannel)key.channel();

 // Create an Input Buffer to store the data read from the channel.
 ByteBuffer ib = ByteBuffer.allocate (1024);

 // Read data from channel.
 if (sc.read(ib) != 0)
 {
 // Process data read from the channel.

92 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

 processInputBuffer(ib);
 }

 }

 // Remove key so we don't process again it next time.
 it.remove();
}

This example is a bit simplistic, and does not deal with removing closed channels
from the Selector. It demonstrates how much simpler and more scalable
implementations can be in using Selectors compared to the thread-per-socket
model. The key point is that a Selector object does the hard work of checking the
state of a potentially large number of channels. You just act on the result of
selection, and do not have to check each one yourself.

The Async IO package is designed to provide fast and scalable input/output (IO)
for Java applications using sockets and files. It provides an alternative to the
original synchronous IO classes available in the java.io and java.net packages,
where scalability is limited by the inherent “one thread per IO object” design.

3.9 Java 5 features

Java 5 encompasses 15 component Java Specification Requests (JSRs) and
nearly 100 other significant updates. This section covers only major changes that
ease development and improve performance and scalability. A comprehensive
list of changes is given in the Sun documentation site at the following URL:

http://java.sun.com/j2se/1.5.0/docs/index.html

3.9.1 Ease of development

The Java 5 virtual machine specification adds several features and functions to
benefit application developers to make development quicker, easier, and less
error prone. Features such as enhanced for loops, enumerated types, static
imports, C style formatted input/output, variable arguments, concurrency utilities,
generics, auto-boxing of primitives, and annotations are covered in the following
sections.

Generics
Generic types in Java provide the ability during compile time to detect
inappropriate downcasting of objects. A common practice in Java applications is

 Chapter 3. General coding considerations 93

http://java.sun.com/j2se/1.5.0/docs/index.html

to downcast expressions to datatypes of a more specific type. The most common
reason to downcast in the Java language is that classes are often used in
specialized ways that restrict the potential runtime types of arguments returned
by method calls. For example, suppose we are adding and retrieving elements to
an ArrayList. The element types stored in an ArrayList vary for each program. As
such, the interface to add or retrieve an element is of type Object. This provides
the maximum flexibility, however, when retrieving elements from the ArrayList, it
requires to downcast the return type of Object to a more appropriate type. Prior
to generics, the way we access collections such as ArrayLists is shown in
Example 3-32.

Example 3-32 Accessing collections prior to Java 5

ArrayList list = new ArrayList();
list.add(0, new Integer(1));
Integer listEntry = (Integer) list.get(0);

Every downcast in a program can potentially raise ClassCastException, however,
applying generic types help to reduces this substantially. Using generified
Collections, Example 3-33 shows how we now can access elements in the list.

Example 3-33 Accessing generified collections in Java 5

ArrayList<Integer> list = new ArrayList<Integer>();
list.add(0, new Integer(1));
Integer total = list.get(0);

Generics in the Java language are implemented almost entirely in the compiler,
which performs type checking and type inference, and then generates ordinary,
non-generic bytecodes.

Further details can be obtained from the DeveloperWorks article:

http://www.ibm.com/developerworks/java/library/j-genjava.html?n-j-3151

Enhanced loops
Traversing all entries with a Collection usually involves the usage of an Iterator.
Iterators provide sequential access through a Collection. Example 3-34
illustrates the usage of an Iterator to get all of the elements in an ArrayList.

Example 3-34 Accessing a Collection prior to Java 5

ArrayList list = new ArrayList();

// populate list with Integer objects ...

94 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://www.ibm.com/developerworks/java/library/j-genjava.html?n-j-3151
http://www.ibm.com/developerworks/java/library/j-genjava.html?n-j-3151

for (Iterator i = list.iterator(); i.hasNext();)
{
 Integer listEntry=(Integer)i.next();

 // do something with listEntry ...
}

With the addition of generics, this is made a little bit easier, as shown in
Example 3-35.

Example 3-35 Using generics with Collection Iterators

for (Iterator<Interger> i = list.iterator(); i.hasNext();)
{
 Integer listEntry=i.next();

 // do something with listEntry ...
}

The enhanced loop can replace the iterator when traversing through a Collection,
as shown in Example 3-36.

Example 3-36 Enhanced loop for traversing Collections

for (Integer listEntry : list)
{
 // do something with listEntry ...
}

The compiler generates the looping code necessary, and with generic types, no
additional casting is required. The same can also be applied to array types. In
Example 3-37 we access an array of Integers using the traditional means.

Example 3-37 Traversing and array prior to Java 5

int list = new int[20];

// populate list ...

for (int i = 0; i < list.length; i++)
{
 int listEntry = array[i]);

 // do something with listEntry ...
}

 Chapter 3. General coding considerations 95

Using enhanced loops simplifies traversing the array as shown in Example 3-38.

Example 3-38 Enhanced loop for traversing arrays

for (int listEntry : list)
{
 // do something with listEntry ...
}

Enumerated types
Enumerated types in previously releases were represented as static final
constants, as shown in Example 3-39.

Example 3-39 Enumerations as simple static final types

public class Status
{
 public static final int SUCCESS = 0;
 public static final int FAILURE = 1;
 public static final int RETRY = 2;
}

There are problems with implementing enumerates like this, such as these:

� They are not type safe, so you can pass in any other int value where Status is
required.

� As int types, when you print out a Status type, only the int value is displayed.
This does not inform you of what it actually represents.

A workaround to these problems is to expand on the constant class Status, as
shown in Example 3-40.

Example 3-40 Enumerations as custom static final types

public class Status
{
 private String descr;

 public static final Status SUCCESS = new Status("SUCCESS");
 public static final Status FAILURE = new Status("FAILURE");
 public static final status RETRY = new Status("RETRY");

 private Status(String statusDescr)
 {
 description = statusDescr;
 }

96 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

 public toString()
 {
 return super.toString() + "[" + descr + "]";
 }
}

With the introduction of enumerated types, this now becomes more simplified,
resembling their C and C++ counterparts. In Example 3-41, the Status type is
now defined using enumerated types.

Example 3-41 Enumerations as defined in Java 5

public enum Status { SUCCESS, FAILURE, RETRY };

With enumerated types, we have new implementations of Set and Maps called
EnumSet and EnumMap.

EnumSet
EnumSet is a high-performance Set for enums. It is similar to BitSet in that it
implements a vector of bits, each entry as a single long line. Example 3-42
shows EnumSet operations that provide additional value.

Example 3-42 EnumSet valued added operations

import java.util.EnumSet;

enum MyEnumSet
{
 E0,
 E1
 E2,
 E3,
 E4,
 E5,
 E6,
 E7,
 E8,
 E9
};

public class EnumSetExample
{

 // test method

 Chapter 3. General coding considerations 97

 public static void main (String[] args)
 {
 EnumSet<MyEnumSet> setA = EnumSet.<MyEnumSet> of (E1,E4,E5);

 // set A = E1, E4, E5

 EnumSet<MyEnumSet> setB = EnumSet.complementOf(setA);

 // set B = E2, E3, E6, E7, E8, E9

 EnumSet<MyEnumSet> setC = EnumSet.range(MyEnum.E6, MyEnum.E9);

 // set C = E6, E7, E8, E9

 }
}

EnumMap
Similarly, EnumMap is a high-performance Map for enum keys. All enum keys
must be of the same enum type. As it is optimized to only contain enum keys,
performance is gained, as it does not have to call hashCode() to find its location
within the map. Internally the map is implemented as an array and the keys
maintained in the order which the enum constants are declared. You should
always use EnumMap to map an enum to a value.

Static imports
Many classes use constants defined within other classes. When accessing a
constant in another class, the class names have to be prefixed before the
constant, as shown in Example 3-43.

Example 3-43 Prefixing constants with class name

import java.lang.Math;

public class SimpleMathTest
{
 public static void main(String args[])
 {
 double newValue = Math.PI + 1;
 }
}

To reference the PI constant in the Math class, we have to call Math.PI. If the
constant referenced was contained within a class that is not a part of the Java

98 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

SDK or J2EE libraries, you could potentially extend that class and call the
constant directly without the class name as the prefix. Java SDK and J2EE
libraries tend to have the final modifier to prevent classes from extending them.

With static import, you no longer have to prefix constants with the class name or
extend the class with the constant. All that has to be done is to declare a static
import of the class with the constant and then use the constant name freely with
your code, as shown in Example 3-44.

Example 3-44 Using import static statements for constants

import static java.lang.Math.PI;

public class SimpleMathTest
{
 public static void main(String args[])
 {
 double newValue = PI + 1;
 }
}

You can also use wildcards with the import static statement

import static java.lang.Math.*;

However, if constants from another class are extensively used, it is best to
include the constant to make the code easier to read.

Variable arguments
In previous releases, arrays or Lists were used by methods that accepted an
arbitrary number of arguments. With the introduction of variable arguments
(also commonly referred to as varags), methods can have an unspecified number
of arguments without explicitly using arrays or Lists, similar to C and C++. This
can be achieved by using an elipse (...) within the method signature, as shown in
Example 3-45.

Example 3-45 Method with variable argument lists

public void foo(int lvalue, String... svalues)
{
 for (String str : svalues)
 {
 // do something with str
 }
}

 Chapter 3. General coding considerations 99

Parameters that a method requires to be explicitly passed in, must precede the
variable arguments. Even though not specified in the method signature, the
multiple arguments passed are treated as a array of the specified type by the
method. Example 3-46 shows that you can directly assign the variable argument
to an array of that type within the method.

Example 3-46 Varags hidden array implementation

public void foobar(String... svalues)
{
 String sarray = svalues;
 // do something sarray
}

Thus you can pass in either multiple arguments, comma separated, or an array of
that type, as shown in Example 3-47.

Example 3-47 Invocation of methods with varargs

foo(1, “Hello”);
foo(2, “Hello”, “World”);
String sarray = new String[4];
// populate sarray with String values
foo(10, sarray);

This is upward compatible with preexisting APIs such as the String and System
classes. In Example 3-48, we show how varags simplifies the printing of strings
using the System class.

Example 3-48 Comparing System.out.prin method invocation without and with varags

System.out.println(“Your password for “ + username + “ will expire in “
+ daysexpr + “ days.”);
System.out.printf(“Your password for %s will expire in %d days %n.”,
username, daysexpr);

Using the printf() method makes the string to be printed more readable. For those
familiar to C and C++, you can use ‘\n’ for the newline character, however, we
recommend that you use the Java ‘%n’ for cross-platform support.

Concurrency utilities
Included in Java 5 are new packages that are to be used as building blocks in the
development of concurrent applications. They aim to simplify development by
providing a high-performance, scalable, and thread-safe framework of classes
that would commonly be used in developing a concurrent software solution.

100 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Having common utilities across applications makes for easier maintenance,
faster development, and encourages commonality between applications. The
utilities provided in the java.util.concurrent, java.util.concurrent.atomic, and
java.util.concurrent.locks packages cover thread pools, concurrent collections,
semaphores, latches, and barriers.

Primitive auto-boxing and auto-unboxing
A common problem with using Collections is the inability to handle primitives.
Collections can only store object references, so if we have to store a primitive
such as int, we first must convert it into an equivalent object representation such
as Integer and then store the Integer. This is known as boxing a primitive with an
appropriate wrapper class. On retrieval of the object from the Collection, if
necessary to convert it back to a primitive value, we have to call the intValue
method on the Integer object. This process of extracting the object’s primitive
value is known as unboxing. This is illustrated in Example 3-49 using generics.

Example 3-49 Boxing and unboxing primitives for Collection storage

int ioriginal = 15;
ArrayList<Integer> list = new ArrayList<Integer>(10);
list.add(new Integer(ioriginal));
Integer iobj = list.get(0);
int iprim = iobj.intValue();

The Java 5 feature of auto-boxing alleviates the conversion of primitives to
objects for storage in Collections and likewise auto-unboxing with the conversion
from objects back to primitives. In Example 3-50 the primitive is passed in and
retrieved from the Collection.

Example 3-50 Auto-boxing and auto-unboxing primitives for Collection storage

int ioriginal = 15;
ArrayList<Integer> list = new ArrayList<Integer>(10);
list.add(ioriginal);
int iprim = list.get(0);

Meta data
Meta data was introduced to reduce effort in development and deployment by
providing a common infrastructure for development and runtime tools. Additional
data know as annotations can be added to your code with the intent to create
documentation, track down dependencies in code, and perform rudimentary
compile-time checking. By allowing information to be maintained in the source
file, meta data also eliminates the necessity for “side files” and the maintenance
of them when changes occur in the source files. Annotations can be applied to

 Chapter 3. General coding considerations 101

package declarations, type declarations, constructors, methods, fields,
parameters, and variables. Annotations take the form of an “at” sign (@),
followed by the annotation name. You can supply data to an annotation when it is
required — in name=value pairs.

Prior to release Java 5, Javadoc was the closest to a meta data facility. With
Javadoc, you mark up your code with a special set of tags and then execute the
javadoc command to turn the tags into a formatted HTML page that documents
the classes the tags are attached to. You can use standard annotations offered
by Java 5, such as Deprecate, SuppressWarnings and Override, and also create
your own annotation types. To illustrate a simple usage of annotations,
Example 3-51 shows how the Overide annotation is used to indicate to the
compiler that the method marked should override a superclass method.

Example 3-51 Using the Override annotation

public class OverrideExample
{
 @Override
 public String toString()
 {
 String overRideStr= super.toString() + "[OverrideExample]";
 return overRideStr;
 }
}

When methods marked with the Override annotation do not override superclass
methods as shown in Example 3-52, there is no toStrin() method in the
superclass Object, so you get a compilation error for that method.

Example 3-52 Applying the Override annotation to a method that does not override

public class OverrideExample
{
 @Override
 public String toStrin()
 {
 // do stuff here
 }
}

For a more comprehensive explanation of annotations, refer to the developer
works article shown here:

http://www.ibm.com/developerworks/java/library/j-annotate1/

102 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://www.ibm.com/developerworks/java/library/j-annotate1/

3.9.2 Garbage collection

Considerable effort has been made in Java 5 to improve performance and
scalability. Applications that use threading heavily and run on multiprocessor
hardware with large amounts of memory might have to customize the behavior of
the default collector or have to use an alternative collector. In the release of Java
5, the default settings for the garbage collector, heap size, and runtime compiler
have be optimized for a number of platforms. Existing applications that have
tuned these settings should re-evaluate their JVM command line arguments to
use where possible the new default values. Java 5 also has simplified the tuning
of the garbage collector with the introduction of two settings:

� Maximum pause time goal: The maximum pause time in milliseconds or less
that the garbage collector can suspend the application to reclaim unused
memory

� Application throughput goal: A ratio of the time spent by the garbage collector
compared to the time spend by the application for processing

These goals are an indication to the JVM of the desirable values. The JVM
adjusts the collection parameters accordingly to ensure that they can be either
lower for pause time or greater for throughput. For instance, if the maximum
pause time was 60 milliseconds, it ensures that any application pause caused by
the garbage collector would be less than 60 milliseconds. If this was not being
achieved, the collector would automatically configure the JVM parameters to do
so. However, the heap must be sized to at least accommodate all of the objects
that are in use by the application, otherwise the goals might not be met.

In previous releases, the configuration of generation sizes within the heap, the
survivor spaces sizes, and when objects are to be promoted from the young
generation to the tenured generation, had to be configured explicitly.

For further details, refer to the Sun reference documentation on Ergonomics in
the 5.0 Java™ Virtual Machine; see the following URL.

http://java.sun.com/docs/hotspot/gc5.0/ergo5.html

3.10 General coding best practices

The best practices given here are mostly intended for coding design. Chapter 4,
“Presentation and control layer” on page 107 contains more detail about Java
coding best practices.

 Chapter 3. General coding considerations 103

http://java.sun.com/docs/hotspot/gc5.0/ergo5.html

3.10.1 Do not put business logic in your client

Be careful not to put business logic in your Java client. As business logic tends to
have more changes, it becomes difficult to deploy these changes to clients. Use
patterns such as Business Delegate to separate view from business calls. Also
use value objects to communicate the view with control that is a server-side
component. Remember — put as little code as possible in the client.

3.10.2 Always clean up after yourself

If you obtain an object from a pool, always make sure you return it back to the
pool.

One of the most common errors we see with Java EE applications, whether
running in development, test, or production, are memory leaks. Nine times out of
ten, it is because a developer forgot to close a connection (JDBC most of the
time) or return an object back into the pool. Make sure that any objects that
should be explicitly closed or returned to the pool are so done. Do not be one of
the culprits responsible for the offending code.

3.10.3 Plan for version updates

Change is inevitable. Plan for new releases and fix updates so that your
customers can stay current.

WebSphere Application Server continues to evolve, and so it should be no
surprise that IBM regularly produces fixes for WebSphere Application Server,
and that IBM periodically releases new major versions. You have to plan for this.
There are two kinds of development organizations that this impacts: in-house
developers and third party application vendors. The basic issues are the same,
but each is impacted differently.

First, consider fixes. IBM regularly releases recommended updates that fix
known bugs in our products. While it is likely impossible to always be running at
the latest levels, it is prudent to not fall too far behind. How “far behind” is it okay
to be? There is no right answer to this, but you should plan on supporting fix
levels within a few months of their release.

Yes, this means upgrades in production a few times a year. In-house developers
can feel free to skip certain fix levels and support one fix level at a time to reduce
testing costs. Application vendors are not so lucky. If this is your case, then you
should support multiple fix levels at the same time so that your customers can
run your software in conjunction with other software. If you support only one fix
level, it might quite literally be impossible to find fix levels compatible across

104 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

multiple products. Really, the best approach for vendors is to go with the model of
supporting “upwardly compatible fixes.” This is the approach IBM uses with
regard to support products of other vendors with which we integrate (such as
Oracle®, Solaris™, and so on). Refer to our support policy for more information.

Second, consider major version upgrades. Periodically, IBM releases new major
releases of our products with major functional upgrades. We continue to support
older major releases, but not forever. This means that you must plan for forced
moves from one major release to another. This is simply unavoidable and must
be considered in your cost model. If you are a vendor, this means you have to
upgrade your product to support new versions of WebSphere Application Server
from time to time, or your customers could be stranded on unsupported IBM
products — which is something we have seen happen more than once! If you are
purchasing a product from a vendor, we encourage you to ensure through due
diligence that your vendor is committed to supporting new versions of IBM
products. Being stranded on unsupported software is a very dangerous situation.

3.10.4 Follow rigorous procedures for development and testing

This includes adopting and following a software development methodology.

Large scale system development is difficult and it should be taken seriously. Yet,
too many times we find teams that are lax in their policies, or that casually follow
development methods which might not apply for the type of development that
they are doing, or that they do not understand well. Perhaps the worst extreme of
this is trying on the “Development method of the month” where a team swings
from RUP to XP to some other agile method within the life cycle of a single
project.

In short, almost any method can work for most teams, provided that the methods
are well-understood by the team members, followed rigorously, and adjusted
carefully to deal with the specific natures of the technology and team that is using
that method.

 Chapter 3. General coding considerations 105

106 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Chapter 4. Presentation and control
layer

This chapter describes programming considerations that apply to the application
presentation and control layer. It focuses on some basic technology best
practices. Also covered are application development frameworks such as Struts
and JavaServer Faces (JSF). The intent is not only to use the newer technologies
when developing new applications, but also to promote good programming
practices when maintaining and modifying existing projects and applications for
better performance in WebSphere Application Server.

For the newer application development technologies, we focus on basic
knowledge and coding practices instead of delving into more advanced features.
The chapter is organized into the following major sections:

� 4.1, “Presentation layer” on page 108
� 4.2, “JavaServer Pages” on page 108
� 4.3, “XML/XSLT processing” on page 168
� 4.4, “Control layer” on page 170
� 4.5, “Servlets” on page 172
� 4.6, “Struts” on page 199
� 4.7, “JavaServer Faces” on page 220
� 4.8, “Caching Web components” on page 240
� 4.9, “Java client programming” on page 246
� 4.10, “References” on page 249

4

© Copyright IBM Corp. 2008. All rights reserved. 107

4.1 Presentation layer

The presentation layer is responsible for rendering the view, meaning the
graphical representation of the user interface. In the J2EE point of view,
client-side access to an application in most cases occurs through a browser. It is
also possible to access J2EE applications on the server through a “fat” client, for
example, a Java client-side application, a CORBA client-side application, a
WebSphere MQ client, or a Web Services client.

In this chapter, we focus on two access types: Web client and Java client-side
access. These two types are the most used today. We discuss several different
approaches for generating the dialog that describes the user interface, focusing
on performance aspects and coding tips. In addition, we cover basic concepts to
more easily understand the application coding considerations we are describing.
When required, we explain when to use or not use some application
development features to gain a performance benefit.

Figure 4-1 Presentation layer

4.2 JavaServer Pages

JavaServer Pages (JSP) technology generates HTML or Extensible Markup
Language (XML) output of a Web server dynamically as a response to a Web

Client Server

Request

Browser

Model

View

Instantiate
and

Control

Access

Presentation Layer

forward/include

Request

Response

Response
Controller

Java
Application

Presentation
Layer

View

108 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

client request. JSP technology is one of the most powerful, easy-to-use, and
fundamental tools in a Web-site developer's toolbox. It combines HTML and XML
with Java servlets (server application extensions) and JavaBeans technologies to
create a highly productive environment for developing and deploying reliable,
interactive, high-performance platform-independent Web sites.

JSPs are translated into Java servlets by a JSP compiler in a Web container.
These servlets are then executed in the Web container. JSPs should be used for
presentation, while servlets should be used for the control function. The various
components involved for presentation are shown in Figure 4-2.

Figure 4-2 Components in a simple Web application

It is a common mistake to mix the purpose of each component. To make your
code reusable and easy to maintain, use the Model View Controller (MVC)
pattern to avoid accessing the database layer directly from a JSP without a
JavaBean component that represents the Model layer of the application. See
2.2.2, “Model View Controller” on page 28 for more information on the Model
View Controller pattern. The JavaBeans components used to access databases
can be reused in another application. Consider a case when you require a new
application that accesses the same database shown in Figure 4-2 for
maintenance information purposes. JavaBeans allow the model to be reusable
for this new application.

JavaServer
Page

Java
Servlet

JavaBean

Relational
Database

Web
Browser

Simple
Web
Application

1 - Request
2 – Instantiate

and Control

4 – Invoke
JSP

3 – Get Data

6 - Response 5 - Access

 Chapter 4. Presentation and control layer 109

JSP Java code can be placed in Tag Libraries to separate page design, such as
HTML design tags, from Java code. Refer to 4.2.9, “Tag libraries” on page 125 for
more information.

4.2.1 Use JSPs as your first choice of presentation technology

The most basic reason to select JSPs as your presentation technology is
because it is the best supported and best understood Java EE view technology
available. Also, JSPs usually offer the best performance of all the technologies
discussed in this chapter. Therefore, JSP based frameworks should be
considered first when building high-volume Web sites. Simple Web applications
built on JSPs and servlets are faster than more complex frameworks such as
Struts or JavaServer Faces, which we cover later. However, Struts and
JavaServer Faces have other significant advantages; for example, they simplify
good application design and are easier to maintain.

Given the introduction of custom tag libraries, the JSP Standard Tag Library
(JSTL), and the JSP 2.0 features, it is becoming increasingly easy to build JSPs
that do not require any Java code, and that cleanly separate application code and
presentation view. It allows separating development between page designer and
Java developer. There is significant support (including debugging support) for
JSPs built into development environments, for example, IBM Rational Application
Developer, and many developers find developing with JSPs easier than
developing with XSL — mainly due to how JSP is procedurally based, as
opposed to rules-based.

4.2.2 JSP processor phases

Before we get into performance tips for each core syntax JSP element, it is
important to understand how a JSP processor works at a high level. Refer to
Figure 4-3.

110 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Figure 4-3 JSP processor phases overview

Translation Phase
During the translation phase, the JSP page (also called translation unit) has to be
converted from text to an executable form so that it can run in an application
server. The executable form of a JSP page is a Java class that implements
javax.servlet.Servlet Interface. This means that a JSP is turned into an
HttpServlet. For example, WebSphere Application Server’s JSP container
performs the translation phase in three steps:

1. Validation:

The JSP container ensures that the syntax of JSP page is correct, and
generates informative error messages when it encounters errors. To validate
that a JSP page’s syntax is correct, the JSP container reads the page
character by character, parsing the page's contents. The JSP container looks
for character sequences that it recognizes; sequences that indicate there is
some syntax that it has to process. On this phase, for example, directives,
custom tags, jsp:useBeans are validated.

<table bgcolor=${tableColorVar} border="0" width="25%">

Validation

OK, ${tableColorVar} EL expression is well formed

Java source code generation

out.write("\r\n<table bgcolor=");
out.write((java.lang.String) PageContextImpl.proprietaryEvaluate("${tableColorVar}"));
out.write(" border=\"0\" width=\"25%\">);

Java source code compilation

Servlet Java ClassRequest
Phase

call PageContextImpl.proprietaryEvaluate
method implementation

Reloading checks Runtime Support

Source code

Translation
Phase

JSP Container

Reload Support

 Chapter 4. Presentation and control layer 111

However, the JSP processor does not recognize text sequences such as
HTML syntax and simply puts them into the JSP page implementation class
exactly as they appear in the JSP page. Also, the JSP container does not
validate what is inside script elements (Declarations, Scriptlets and
Expressions). A JSP container does not know how to parse Java code. It just
passes the contents into the JSP page implementation class.

2. Java source code generation:

If the JSP page is valid, the JSP container converts the text in the JSP page
into Java source code for what becomes the JSP page implementation class.
In this step the JSP processor has rules to convert Expression® Language
(EL) expressions, custom tags and useBean actions in Java source code, for
example.

3. Java source code compilation:

The JSP container compiles the .java file it has generated. Java compilation
creates a binary class, the JSP page implementation class, which resides on
disk as a .class file. If there are Java compilation errors, then error messages
are generated that identify the error, the JSP line number, and the equivalent
.java source file line number where the error took place.

Request Phase
When a JSP is requested in a running application server, its page
implementation servlet class is invoked. On each request, the servlet's service
method executes on a thread of its own; the thread on which the request is
executing. This way, a single JSP servlet can handle multiple concurrent
requests.

From the WebSphere JSP container, we have two phases:

� Runtime support:

Provides classes and methods used by the servlet. This is called runtime
support.

� Reloading:

Checks to see if the JSP source file, from which the servlet was created,
has been modified and has to be re-translated. There are parameters in
WebSphere configuration that can be configured. See Chapter 7,
“Environmental performance considerations” on page 509 for additional
details.

112 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

4.2.3 JSP basic syntax

The main syntax elements are described in Table 4-1.

Table 4-1 JSP syntax elements

There is much documentation that provides guidance and help in building JSPs.
It is not within the scope of this book teach you how to create a JSP. Our scope is
focused on discussing best practices. In 4.10, “References” on page 249, you
can find material to assist you in the initial steps to learn JSP coding.

Next we discuss each syntax element.

4.2.4 Template content

Template content is all the static content (HTML and comments) on your page.
JSP does no recognize template content. The best practice here is to separate
template content from Java code to make it easier to understand and debug.

Type of Element Element content

Template Content (see
4.2.4, “Template content”
on page 113)

Everything in your JSP source file that is not a JSP
element. Includes all static content such as HTML.

Directives (see 4.2.5,
“Directives” on page 114)

Instructions you place in your JSP to tell the JSP container
how to build your page, such as whether to include another
file.

Scripting elements (see
4.2.6, “Scripting
elements” on page 115)

Declarations (<%!...%>)
Scriptlets (<%...%>)
Expressions (<%=...%>)
Used to embed Java code into your JSPs.

Actions (see 4.2.8,
“Actions” on page 117)

Actions provide high-level functionality, in the form of
custom XML-style tags, to a JSP without exposing the
scripting language. Standard actions include those to
create, modify, and otherwise use JavaBeans within your
JSP.

Expression Language
(EL) (see 4.2.12,
“Expression Language”
on page 158)

Expression language is used for run-time assignment of
values to action element attributes. It was first introduced
as part of JSP Standard Tag Library (JSTL) 1.0
specification, but is now part of the JSP 2.0 specification.
Example:
<table bgcolor=${tableColorVar} border=0
width=”25%”>
where ${tableColorVar} is Expression Language.

 Chapter 4. Presentation and control layer 113

We talk more about separating HTML from Java code in 4.2.9, “Tag libraries” on
page 125.

4.2.5 Directives

Directives provide additional information to the JSP container and describe
attributes for your page. We describe three directives normally used in JSPs
below. In addition to these, JSP 2.0 introduced three additional directives which
are available only to tag files. They are discussed in the JSP Standard Tag
Library section (see “Tag libraries” on page 125).

Table 4-2 JSP directives

The general syntax for a directive is:

<%@ directive [attr="value"]%>

or

<jsp:directive directive [attr="value"] />

Where directive is page or include or taglib and attr is a directive attribute.

The page directive has many attributes that are covered in more detail in other
documentation. For performance issues, we review the two page directive
attributes shown next:

� isThreadSafe:

Indicates whether the resulting servlet is threadsafe. The JSP 2.0
specification advises against using isThreadSafe because the generated
servlet might implement the SingleThreadModel interface, which has been
deprecated in the Servlet 2.4 specification.

The best practice is not to do anything. This maintains the default value of
“false”. We talk about SingleThreadModel Interface in “Do not use
SingleThreadModel” on page 193.

Directive Purpose

page Controls properties of the JSP

include Includes the contents of a file into JSP at translation time

taglib Makes a custom tag library available within the including page

114 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

� session:

Indicates whether the page requires participation in an HttpSession. By
default, the value is “true”. You have the option of specifying the value as
“false” (in which case, any reference to HttpSession in the page is not
resolved).

The best practice is to not create HttpSessions in JSPs. By default, a JSP
session object is created implicitly if one does not exist. However, if the
session is not required, creation can be avoided with the following directive:

<%@ page session=”false” %>

4.2.6 Scripting elements

The Scripting elements are used to manipulate objects and perform processing
in the page content. The best practice, however, is to not use scripting elements
as explained in “Scripting elements: Best practices” on page 117.

Next, we discuss the three types: declarations, scriptlets, and expressions.

Declarations
The following list describes declarations scripting elements:

� Syntax:

<%! java declarations %>
or
<jsp:declaration> java declarations </jsp:declaration>

� Purpose:

You can declare static or dynamic class members or functions.

� Example:

<jsp:declaration>
public static final String LOG_NAME=”mylog.log”;
public static final int DEFAULT_MESSAGE_ERROR_CODE= 500;
</jsp:declaration>

� Recommendation:

Be careful of use because the variables are class variables, not instance
variables. This means that they do not remain in only one request, and they
are not thread safe.

For clarity, never user the <%! syntax for declarations. The XML syntax is
self-descriptive and much clearer to the reader than remembering which JSP
element uses an exclamation point.

 Chapter 4. Presentation and control layer 115

Scriptlets
The following list describes scriptlets and scripting elements:

� Syntax:

<% java-statements %>
or
<jsp:scriptlet>
java-statements
</jsp:scriptlet>

� Purpose:

Supports small sets of Java statements that you put inside page to logic flow,
such as looping and branching.

� Example:

<jsp:scriptlet>
for(int i=0;i<users.size();++i){
out.println(“User Name: “+users(i).getName());
}
</jsp:scriptlet>

� Recommendation:

Using the XML syntax when writing scriptlets is preferable.

Variables declared here are local variables. This approach is preferable for
thread safe code. Each request creates a new set of variables.

Scriptlets allow you to include Java code within a JSP. This is not generally in
keeping with good JSP design. Use tag libraries instead for better reuse and
design.

Expressions
The following list describes expressions scripting elements:

� Syntax:

<%= a-java-expression %>
or
<jsp:expression> a-java-expression </jsp:expression>

� Purpose:

Used when you have to output a value.

� Example:

The local server time is <%= new java.util.Date() %>

� Recommendation:

Do not use a semicolon at the end of the expression command.

116 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

4.2.7 Scripting elements: Best practices

Many developers and support staff no longer choose to use scripting elements.
There are some motivations for this. For example, use of declarations creates
class variables. If you create a variable that contains user information in the
declarations section, and then use it in other parts of the JSP code in your
runtime environment, then in two or more executions, the correct value for each
user gets lost. The correct way is declare variables in a scriptlet session, but it is
very easy to make mistakes. Also, it is a bad programming design to mix HTML
and comments with Java code. If you look at long line codes of a JSP with this
mix, it is difficult to isolate distinct presentation code, difficult to maintain the
code, and difficult to debug for errors. It is best to avoid scripting elements.

However, there are cases when you have to initialize variables before your JSP is
ready to receive requests. Also, you might be required to deliver resources when
the JSP is not receiving requests. The jspInit method, if declared, is called to
prepare the page before the first request is delivered. Similarly, a JSP container
can reclaim resources used by a JSP page when a request is not being serviced
by the JSP page by invoking its jspDestroy method, if declared. For this situation,
use declaration syntax as shown in Example 4-1.

Example 4-1 jspInit() and jspDestroy usage

<jsp:declaration>
public void jspInit()
{
 // do some initialization work
}
public void jspDestroy()
{
 // do some finalization work
}
</jsp:declaration>
<HTML>
 <BODY>
 <!--Another JSP use? put here, but be carefull with scripting
elements or do not use-->
 </BODY>
</HTML>

4.2.8 Actions

Actions provide a higher level of functionality than the declarations, expressions,
and scriptlets you have seen thus far. Unlike the scripting elements, actions are

 Chapter 4. Presentation and control layer 117

independent of any scripting language. In many respects, JSP actions are like
built-in custom tags. In fact, only XML syntax is defined for actions; there is no
equivalent <% syntax. There are five categories of standard actions in Table 4-3.

Table 4-3 Actions categories

We do not cover the jsp:plugin action category in this book. However, you can
find more details the following URL:

https://www6.software.ibm.com/developerworks/education/j-introjsp/index
.html

JavaBeans components
Before we discuss how JavaBeans are used in a JSP, we have to understand
what a JavaBean is. The main goal is to understand the basic syntax and best
practices.

The JavaBeans component model is a framework and a specification that allows
developers to write reusable and portable components that can be used in
different frameworks. Also, it can be manipulated visually from a builder tool and
can provide some features such as introspection (a bean worker can be analyzed
by a builder tool), customization (you can customize behavior and appearance of
a bean), events support, properties edition support for programmatic use and
persistence support (a bean can be customized from a application builder and
your state can be saved and reloaded later).

Category Purpose

JavaBeans components
(<jsp:useBean>)
(“JavaBeans components” on
page 118)

Provides a well-designed integration between
JavaBeans and HTML forms.

Including and Forwarding
(<jsp:include> and <jsp:forward>)
(“Best practices to use composed
Web components” on page 152)

Used for composing your JSP with another
JSPs in request time.

<jsp:plugin> The sole purpose is generate the appropriate
<OBJECT> or <EMBED> tag to load the Java
Plug-in software when browser support for
Java is out-of-date or missed.

<jsp:invoke>
(“Tag libraries” on page 125)

New with JSP 2.0. Used with tag files.

<jsp:doBody>
(“Tag libraries” on page 125)

New with JSP 2.0. Used with tag files.

118 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

https://www6.software.ibm.com/developerworks/education/j-introjsp/index.html

The class construction does not have to inherit any class or interface. However,
to make them from visual containers, JavaBeans have to inherit
java.awt.Component.

JSP provides a well-designed integration between JavaBeans and HTML forms.
The <jsp:useBean>, <jsp:setProperty>, and <jsp:getProperty> action tags work
together to achieve this integration. Table 4-4 briefly explains these components.

Table 4-4 Action tags for javabeans

<jsp:useBean>
The <jsp:useBean> tag tells the JSP that you want a bean of a given name
(which might be a request-time expression) and scope. You also provide creation
information if necessary. The JSP checks to see if a bean of that name and
scope already exists. If not, the bean is instantiated and associated with a
declared variable. See the syntax in Example 4-2.

Example 4-2 <jsp:useBean> syntax

<jsp:useBean id=" name " scope="Bean-Scope" class="Bean-Class"
type="Varible-Class" beanName="Bean-Serializated-Name or ClassName"/>
or
<jsp:useBean id=" name " scope="Bean-Scope" class="Bean-Class"
type="Varible-Class" beanName="Bean-Serializated-Name or ClassName"/>
creation-body
</jsp:useBean>

If the bean has to be created and you use the second form of jsp:useBean shown
in Example 4-2, the statements that make up the creation-body are also
executed.

Table 4-5 gives a brief description of the elements.

Table 4-5 jsp:useBean elements

Action Purpose

<jsp:useBean> Prepares a JavaBean to be used in a JSP

<jsp:setProperty> Sets a property for the JavaBean

<jsp:getProperty> Gets a JavaBean property value in String Java type

Attribute name Description Required Example

id It is in short the variable
name to be used in the
page coding

yes id=”employee”

 Chapter 4. Presentation and control layer 119

� scope attribute:

Table 4-5 gives a brief description of the scope types.

Table 4-6 Scope types

scope The bean is viable during
scope definition, which can
be page, request, session,
or application. The default
is page.

No scope=”session”

class The class of Bean. It is
used for creation purposes
when the JSP engine does
not find it defined in an
existing JavaBean scope.
The requirement is that it
must be a non-abstract
and no parameter
constructor.

No class=”packagename.Em
ployeeAddress” where
packagename is used
if class belongs a
package

type This defines the variable
type of id parameter.

No type=”pakagename.Addr
essBean” where
packagename is used
if class belongs a
package

beanName The serialized bean name
is loaded from a serialized
file or serialized class
name if we have to create a
new instance.

No and if
used, type
attribute is
required

beanName=”data.employ
ee.john”
beanName=”AddressBean
”

Scope Explanation

page The bean is good only within the defining JSP and is recreated for
each new request.

request The bean is good throughout that request and is available to
included or forwarded pages.

session The bean is associated with the particular session responsible for
its creation and is good for the lifetime of the session.

application The bean is common to all sessions and is good until the Web
application terminates.

Attribute name Description Required Example

120 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Page scope (Example 4-3) depends on your application design. If your
application does not have to pass JavaBean objects between JSPs, use page
scope if possible because it guarantees that used variables are thread safe.
For more information, see 4.5.6, “Implement thread safe servlets” on
page 192. Also, the object life cycle is related to page execution, and this
approach avoids letting objects remain in memory after execution. You get
more benefits from this approach in high volume access. Otherwise, a good
practice is to use request or session scope, depending on design. You can get
more details on scope in 4.2.10, “Implicit objects” on page 148.

Example 4-3 Page scope usage

<jsp:useBean id="trainBean" scope="page"/>
or
<jsp:useBean id="trainBean"/><!--Default Behavior-->

� class attribute:

The functionality here is that if useBean does not find a bean with a scope, a
new instance of the object is created. It requires that the Bean class have a
public constructor with no parameters (Example 4-4).

Example 4-4 class attribute usage

<jsp:useBean id=”employee” class=”EmployeeBean”/>

The translation in servlet code is similar to Example 4-5.

Example 4-5 class usage translation

EmployeeBean employee=
(EmployeeBean)pageContext.getAttribute(“employee”);
if (employee == null){
employee = new EmployeeBean();
pageContext.setAttribute(“employee”, employee);

� type attribute:

This configuration tells the JSP engine to for search an instance of this type or
subtype. If an instance is not found, a java.lang.InstantiationException is
thrown, and no new instance of Bean is created (Example 4-6).

Example 4-6 type usage

<jsp:useBean id=”employee” type=”PersonBean”/>

 Chapter 4. Presentation and control layer 121

� class and type attributes:

If useBean does not find a bean in a scope, a JavaBean is created using new
instance syntax. This requires that the Bean class has a public constructor
with no parameters. The variable type used on the page is from the type
parameter information (Example 4-7).

Example 4-7 class and type usage - 1

<jsp:useBean id=”employee” class=”EmployeeBean” type=”PersonBean”/>

It is similar to the following coding (Example 4-8).

Example 4-8 class and type usage - 2

PersonBean employee=
(PersonBean)pageContext.getAttribute(“employee”);
if (employee == null){
employee = new EmployeeBean();
pageContext.setAttribute(“employee”, employee);
}

� beanName and type:

If useBean does not find a bean in a scope, it is created as a JavaBean using
Beans.instantiate() syntax. The variable type used on the page is from the
type parameter (Example 4-9).

Example 4-9 beanName and type usage - 1

<jsp:useBean id=”employee” beanName=”somepackage.EmployeeBean”
type=”PersonBean” scope=”session”/>
<!--somepackage.EmployeeBean.ser is a serialized version of
somepackage.EmployeeBean Object. Remember to use wihout .ser
extension-->

It is similar to the following coding (Example 4-10).

Example 4-10 beanName and type usage - 2

PersonBean employee=(PersonBean)session.getAttribute(“employee”);
if(employee==null){
ClassLoader classloader = this.getClass().getClassLoader();
employee =
java.beans.Beans.instantiate(classloader,”somepackage.EmployeeBean”)
;
session.setAttribute(“employee”,employee);
}

122 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

The best practice here is not to use <jsp:UseBean> with beanName. It is an
expensive operation because the JVM checks the file system for a serialized
bean. Hence, you can use another option without performance problems.

For more details about Beans.instantiate functionality, see the following URLs:

http://java.sun.com/products/javabeans/docs/spec.html

http://jcp.org/aboutJava/communityprocess/final/jsr152/

<jsp:setProperty>
The <jsp:setProperty> tag usage is straightforward. The purpose is to assign
new values to javaBean properties. See the syntax in Example 4-11.

Example 4-11 jsp:setProperty syntax

<jsp:setProperty name="Bean-Name" property="Property-Name"
value="Value" param="HttpRequest-Parameter-Value"/>

The best practice here concerns the property attribute use. See Table 4-7 for a
review of each attribute.

Table 4-7 jsp:setProperty attributes

The requirement to use the <jsp:setProperty> action is that it has to be related to
a previous <jsp:useBean> action and the name attribute value for
<jsp:setProperty> must be equal to id attribute on a previous <jsp:useBean>
action.

Attribute Required Purpose

name Yes Used to identify the name of bean in JSP page.

property Yes Used to identify the property name to be set.
The property name=”LastName” is equivalent to
setLastName on the JavaBean method, for example. If
request parameters match, the JavaBean attributes does
not require value and param attributes.

value No. if present
param cannot
be present

Used to set the new value to the property. I can be used
with request time attribute expression using syntax
<%=...%>. for example: value=<%=lastNameVar%>

param No. if present
value cannot
be present.

Used to get request parameter attributes. For example,
the param=”LastName” is equivalent to
request.getParameter(“LastName”).

 Chapter 4. Presentation and control layer 123

http://java.sun.com/products/javabeans/docs/spec.html
http://jcp.org/aboutJava/communityprocess/final/jsr152/

For best practice purposes, if you use “*” for the property value, the JSP
processor automatically assigns the request value parameter XXX inside method
setXXX inside JavaBean. See Example 4-12.

Example 4-12 Parameter with “*”value usage

<jsp:useBean id=”employee” class=”EmployeeBean” scope=”session”/>
<jsp:setProperty name=”employee” property=”*”/>
<!--The setProperty action is equivalent to!-->
<%
employee.setFirstName(request.getParameter(“firstName”));
employee.setLastName(request.getParameter(“LastName”));
employee.setAddress1(request.getParameter(“address1”));
employee.setAddress2(request.getParameter(“address2”));
employee.setCity(request.getParameter(“city”));
employee.setZip(request.getParameter(“zip”));
%>
<!----Java Bean code snippet------>
<!--Look equivalence to JavaBean class attributes
public class EmployeeBean {
String firstName;
String lastName;
String address1;
String address2;
String city;
String zip;-->

If you look at the previous example, you can see the equivalence between each
request.getParameter() syntax with each class attribute inside javaBean code.
Keep in mind, for example, that a request with firstName value is related with a
setFirstName method and getFirstName method inside the javaBean.

Another tip is about automatic conversion when you use another property inside
a bean that is not String type. Consider that EmployeeBean has an attribute age
with integer type and an attribute regular with boolean type. See Example 4-13
for clarity.

Example 4-13 setProperty for different types

<jsp:useBean id="employee" class="somepackage.EmployeeBean"
scope="session"/>

<!-- Conversion is automatically done to correct type by JSP Processor
-->
<jsp:setProperty name="employee" property="regular" value="true"/>
<jsp:setProperty name="employee" property="age" value="34"/>

124 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

<!-- The same efect you can gain with * param value -->
<!-- For a request =>
http://localhost:9080/JSP/Employee.jsp?regular=true&age=34 -->
<jsp:setProperty name="employee" property="*"/>

<!-- But if you use expression manual conversion is needed. If not
example will not compile -->
<%String age="34";%>
<jsp:setProperty name="employee" property="age"
value="<%=Integer.parseInt(age)%>"/>

<!-- See the results -->
<P>Regular : <jsp:getProperty name="employee" property="regular"/></P>
<P>Age : <jsp:getProperty name="employee" property="age"/></P>

<!--The jsp:getProperty is the same than
out.println(employee.getAge()); for example-->

Also, as you can see in the previous example, the jsp:getProperty acts as an
out.prinln of JavaBean property value. For more details about useBean features,
see the following URL:

http://www.ibm.com/developerworks/edu/j-dw-jsp-i.html

4.2.9 Tag libraries

Scriptlets are good for quick coding. However, in the long run, a less cluttered
solution for JSP pages is a better answer. Scriptlets introduce more long-term
complexity to your pages than they offer in terms of short-term benefit. They
interweave all sorts of HTML with Java code, which makes debugging and
authoring tricky. They are not reusable, which often leads developers to
cut-and-paste between JSP pages, which in turn leads to multiple versions of the
same piece of code. And they make error reporting difficult, since JSP pages
have no clean-cut way to output the script errors.

Tag libraries are a standard way of packaging tag extensions for applications
using JSPs.

Tag extensions address the problem that arises when a developer wants to use
non-trivial processing logic within a JSP. Java code can be embedded directly in
the JSP using the standard tags described above. This mixture of HTML and
Java makes it difficult to separate development responsibilities (the HTML/JSP
designer has to maintain the Java code) and makes it hard to use appropriate
tools for the tasks in hand (a page design tool does not provide the same level of

 Chapter 4. Presentation and control layer 125

http://www.ibm.com/developerworks/edu/j-dw-jsp-i.html

support for Java development as a Java development tool). This is essentially the
reverse of the problem described when discussing servlets above. To address
this problem, developers have documented the View Helper design pattern, as
described in Core J2EE Patterns: Best Practices and Design Strategies by Crupi,
et al. The pattern catalog contained in this book is also available at the URL:

http://java.sun.com/blueprints/corej2eepatterns/Patterns/

Tag extensions are the standard way of implementing View Helpers for JSPs.

Using tag extensions, a Java developer can create a class that implements some
view-related logic. This class can be associated with a particular JSP tag using a
tag library descriptor (TLD). The TLD can be included in a Web application, and
the tag extensions defined within it can then be used in JSPs. The JSP designer
can use these tags in exactly the same way as other (standard) JSP tags. The
JSP specification includes classes that can be used as a basis for tag extensions
and (new in JSP v2.0) a simplified mechanism for defining tag extensions that
does not require detailed knowledge of Java.

Using tag libraries instead of Java code in your JSP pages offers the following
benefits:

� They help separate presentation from implementation.
� They are easy to maintain and reuse, offering better usability by design.
� They simplify complex actions.
� They provide Java-coded functions without the task of coding in Java.
� They can dynamically generate page content and implement a controlled flow.

JSP Standard Tag Libraries or custom tag libraries can be used in your JSP
pages. First, we discuss the JSTL to get an understanding of how to use a tag
library. Following that, we discuss how to implement a custom tag library (see
“Implementing JSP custom tags” on page 147).

Overview of tag library elements
To understand the tag library mechanism, we must understand the core
elements:

1. Tag handlers:

This is a Java class that implements tag library functionality. The class has to
implement one of the following tag interfaces: Tag, IterationTag, BodyTag, and
SimpleTag from the javax.servlet.jsp.tagext package. The last tag interface
was introduced in JSP 2.0. While classic tags handlers support doStartTag()
and doEndTag methods, the SimpleTag interface provides a simple doTag()
method which is called once only for any tag invocation. This single method
controls all tag logic. It was created to make tag development easier.

126 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://java.sun.com/blueprints/corej2eepatterns/Patterns/

However, we do not have to implement these classes directly. The API
provides three adapter classes. TagSupport, BodyTagSupport, and
SimpleTagSupport implement the IterationTag, BodyTag, and SimpleTag
interfaces respectively and provide default implementation of all methods.
The programmer only has to override those methods to customize to his
requirements. See Example 4-14.

Example 4-14 Tag handler implementation example

package somepackage;

import java.io.IOException;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

public class HelloTag extends TagSupport {

 // The "person" to say hello to
 private String name;

 // Accept the attribute data
 public void setName(String name) {
 this.name = name;
 }

 public int doEndTag() {
 try{
 StringBuffer message = new StringBuffer("Hello, ");
 message.append(name).append("!");
 pageContext.getOut().println(message.toString());
 } catch (IOException ignored) { }
 return EVAL_PAGE;
 }
}

2. Tag Library Descriptor:

This component describes how the JSP engine finds the tag handler and how
it can be used. This archive has a .tld extension. See Example 4-15.

Example 4-15 Tag library descriptor file example

<?xml version="1.0" encoding="ISO-8859-1" ?>

<taglib>
 <tlibversion>1.1</tlibversion>
 <info>A simple tag library</info>

 Chapter 4. Presentation and control layer 127

 <tag>
 <name>displayName</name>
 <tagclass>somepackage.HelloTag</tagclass>
 <bodycontent>empty</bodycontent>
 <attribute>
 <name>name</name>
 <required>true</required>
 </attribute>
 <info>Display Name</info>
 </tag>
</taglib>

3. Taglib map inside web.xml:

The XML tag has a function to describe where a JSP Engine finds the tag
library descriptor. The basic element (<taglib-uri> value) is an alias and the
second element is a tag library location (<taglib-location>). It belongs to the
<jsp-config> enclosing tag. See Example 4-16.

Example 4-16 Code snippet of xml configuration inside web.xml

....
<jsp-config>
 <taglib>
 <taglib-uri>helloURI</taglib-uri>
 <taglib-location>/WEB-INF/HelloTagLib.tld</taglib-location>
 </taglib>
</jsp-config>

4. The directive on the JSP page to call the tag library:

This is a directive we use to refer to the tag library. See Example 4-17.

Example 4-17 Code snippet in JSP to call a tag library

<%@ taglib prefix="hello" uri="helloURI"%>
<P><hello:displayName
name="John"/></P>

Using a tag library
Now that we have had a basic overview of elements, next we show how tag
library execution works when you are using a tag library. In this description, we
begin after the tag handler and tag library descriptor discussed previously:

� Putting the information about the tag library inside a JSP page:

<%@ taglib prefix="hello" uri="HelloTagLib.tld"%>

128 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

This is the simplest way to point to tag library information. Note that, in this
example, we put the direct tag library name on the JSP page. This forces the
JSP engine to search the tag library directly in the same directory where the
JSP page exists. The is not secure because if, for example, a user calls
http://localhost/JSP/HelloTagLib.tld, it is possible to see all tag library content.

A good place to put your tag library file is inside the WEB-INF root dir.
Remember that WEB-INF is where you put your class files, jar files, and
web.xml also.

This directory is not a part of the document application root. This means that
you cannot view it using a browser.

Using /WEB-INF/HelloTagLib.tld as a value for the URI parameter tag library
directive is not recommended because if you have to use a new version of the
tag library, for example, HelloTagLib_2.tld, you have to change the code.

JSP supports a solution using a mapping between an alias and a real tag
library location. This is called a taglib map, as discussed previously.

� Tag library map details:

We can use any alias to make a mapping. For example, if we use the tag
uri=”http://www.itso.ibm.com/JSP/HelloTagLib” it does not means that the JSP
engine loads the tag library information from that URI. It means that the JSP
engine tries to find an alias inside the web.xml configuration with a key called
http://www.itso.ibm.com/JSP/HelloTagLib in the <taglib-uri> xml tag. See
Example 4-18.

Example 4-18 Alias from tag lib map example

<jsp-config>
 <taglib>
<taglib-uri>http://www.itso.ibm.com/JSP/HelloTagLib</taglib-uri>
 <taglib-location>/WEB-INF/HelloTagLib.tld</taglib-location>
 </taglib>
</jsp-config>

The recommended method to define a tag library location when you receive a
tag library is that the tag library class and the TLD comes in a jar file using the
structure shown in Example 4-19.

Example 4-19 Jar that contains a taglibrary

somepackage/HelloTag.class
somepackage/Utility.class
META-INF/taglib.tld

 Chapter 4. Presentation and control layer 129

It is mandatory from the JSP specification that the tag library name is taglib.tld
and it has to be placed in META-INF directory inside the jar. The mapping
best practice is similar to what is shown in Example 4-20.

Example 4-20 Best practice taglib mapping

<jsp-config>
 <taglib>
<taglib-uri>http://www.itso.ibm.com/JSP/HelloTagLib</taglib-uri>
 <taglib-location>taglibs-hello.jar</taglib-location>
 </taglib>
</jsp-config>

The taglibs-hello.jar directory is in <doc-root>/WEB-INF/lib, where other
project jars and third party jar files are stored.

If your TLD is not in a jar file, you can put it in <doc-root> or
<doc-root>/WEB-INF. See Example 4-20 and Example 4-20.

Example 4-21 Taglib location from <doc-root> directory with / in the beginning

<taglib-uri>SomeAlias</taglib-uri>
<taglib-location>/somedir/HelloTagLib.tld</taglib-location>
this tag will points to <doc-root>/somedir/HelloTagLib.tld

Example 4-22 Taglib location from <doc-root> directory without / in the beginning

<taglib-uri>SomeAlias</taglib-uri>
<taglib-location>somedir/HelloTagLib.tld</taglib-location>
this tag will points to /WEB-INF/somedir/HelloTagLib.tld

If a JSP cannot find the tag library, it searches in the same directory that the
JSP page is stored in. However, if <taglib-location> is an absolute URL path,
an exception is thrown.

Using JSP Standard Tag Library (JSTL)
The JSP Standard Tag Library is a collection of custom tag libraries that
implement general purpose functionality common to Web applications, including
iteration and conditionalization, data management formatting, manipulation of
XML, and database access. By providing standard implementations for typical
presentation layer tasks such as data formatting and iterative or conditional
content, the JSTL allows JSP authors to focus on application-specific
development requirements, rather than “reinventing the wheel” for these generic
operations.

130 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Incorporating JSTL core tags
In this example, wel use the JSTL library installed in RAD.

Follow these steps:

1. We create our test project in RAD. For these steps, create a new project as
shown in Figure 4-4. In our example, it is JSTL Project.

Figure 4-4 Creating a Web project

 Chapter 4. Presentation and control layer 131

2. Select Dynamic Web Project and click Next (see Figure 4-5).

Figure 4-5 Defining a name for a Web project

3. We named our project JSTL. Click Finish as shown in Figure 4-5.

132 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

4. We now create a new JSP file as shown in Figure 4-6.

Figure 4-6 Creating a JSP file

 Chapter 4. Presentation and control layer 133

5. In the JSP creation screen shown in Figure 4-7, enter JstlCoreExample
in the JSP page, and check the Configure advanced options check box.
Click Next.

Figure 4-7 Specifying a name and setting advanced options

134 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

6. The screen shown in Figure 4-8 is displayed to add tag libraries. Click Add.

Figure 4-8 Using the Add button to configure a tag library

 Chapter 4. Presentation and control layer 135

7. In the next screen, you select the option, http://java.sun.com/jsp/jstl/core/
(Figure 4-9). You can see that the tag library belongs to a standard library
from WebSphere. In this case, no copy of a jar is required in the WEB-INF/lib
application directory because it is a standard library visible to all Web
applications in the WebSphere environment.

Figure 4-9 Selecting a standard tag library to use

8. After selecting the core tag library, click OK, and on the next screen, click
Finish.

An important thing to notice here is that no configuration inside web.xml is
required because the standard tag is from the WebSphere Application Server
environment.

The result is that inside the JSP page, you can see that the taglib directive is
created automatically for you.

Example 4-23 Taglib directive created from wizard in JSP page

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>

136 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

You can see the entire example in Example 4-24.

Example 4-24 Taglib directive creation example

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<HTML>
<HEAD>
<%@ page language="java" contentType="text/html; charset=ISO-8859-1"
pageEncoding="ISO-8859-1"%>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>
<TITLE>JstlCoreExample.jsp</TITLE>
</HEAD>
<BODY>
<jsp:useBean id="user" scope="session" type="somepackage.PersonBean"
class="somepackage.EmployeeBean">
<jsp:setProperty name="user" property="firstName" param="name"/>
</jsp:useBean>
Hello <c:out value="<%=user.getFirstName()%>" default=="Guest"/>!
</BODY>
</HTML>

In our example we mix useBean usage and the JSTL tag c:out. The interesting
point here is that the c:out tag uses a default value if the user.getFirstName()
method returns a null value. Executing our JSP without parameters in the URL
returns the results shown in Figure 4-10.

Figure 4-10 Results from our JSP core tag library usage example

 Chapter 4. Presentation and control layer 137

Incorporating JSTL third party tags
We use the JSTL library from the Apache Project and RAD in our example.
RAD has a core tag library to do internationalization actions, but for our example,
suppose that you require a formatCurrency function that does not exist in the
default installed JSTLs in RAD.

Follow these steps:

1. Download the required tag library. For our example, we download a tag library
from the URL:

http://jakarta.apache.org/taglibs/doc/i18n-doc/intro.html

2. After the download, unzip into a directory.

3. For the following steps, we use the existing project created in the previous
example “Incorporating JSTL core tags” on page 131, the JSTL project.

We now create a new JSP file as shown in Figure 4-11.

Figure 4-11 Creating a JSP file

138 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://jakarta.apache.org/taglibs/doc/i18n-doc/intro.html

4. In the JSP creation screen in Figure 4-12, enter Internationalization for the
file name and check the Configure advanced options check box. Click Next.

Figure 4-12 Defining the JSP file name and clicking the Next button

 Chapter 4. Presentation and control layer 139

5. The screen shown in Figure 4-13 is displayed to add tag libraries. Click Add.

Figure 4-13 Using the Add button to configure a tag library

140 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

6. On the next screen (Figure 4-14), click Import and search for a jar file in the
unzipped directory named taglibs-i18n.jar.

Figure 4-14 Importing a tag library

 Chapter 4. Presentation and control layer 141

7. In our example, we selected the directory shown in Figure 4-15.

Figure 4-15 Finding the tag library jar

142 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

8. Click Finish to complete the import.

The Tag Library window is displayed, showing our tag library in the list
(Figure 4-16). Note that Rational Application Developer has opened the Tag
Library Descriptor and detected the Custom Tags available.

Figure 4-16 Viewing the imported tag library

9. Click OK. On the New JSP screen, click Finish. In the structure of the project,
notice that the same directory structure recommended in the beginning of this
section is used: the tag jar file is inside the <doc-root>WEB-INF/lib directory.
See Figure 4-17.

 Chapter 4. Presentation and control layer 143

Figure 4-17 Project structure

In short, the RAD wizard for import tag libraries puts the jar in the correct
structure for deployment, and puts in the jar in the classpath to compile. In
addition, RAD creates the syntax in the JSP page for you:

<%@ taglib uri="http://jakarta.apache.org/taglibs/i18n-1.0"
prefix="i18n"%>

If you do not use RAD, you can do these steps manually. This means that you
must put the jar in <doc-root>/WEB-INF/lib and put it in the classpath to compile.
Also, we can refer to a tag with this syntax above. Note that if you unzip the jar,
the TLD file is inside the jar in META-INF/taglib.tld as we described in the
beginning of this session. The next step here is to do a taglib map in our web.xml
config file. For this, add a <taglib> element to your Web application deployment
descriptor in /WEB-INF/web.xml as shown in Example 4-25.

Example 4-25 taglib map

<jsp-config>
<taglib>
<taglib-uri>http://java.sun.com/jsp/jstl/fmt</taglib-uri>
<taglib-location>/WEB-INF/lib/taglibs-i18n.jar</taglib-location>
</taglib>
</jsp-config>

144 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

We can now use the taglib in our internationalization JSP example. See the code
in Example 4-26.

Example 4-26 Internationalization example

<html>
<head>
<%@ taglib uri="http://java.sun.com/jsp/jstl/fmt" prefix="fmt"%>
<%@ page import="java.util.Date" %>
<%@ page import="java.util.Locale" %>
<title>Examples of using fmt Tag Library Tag</title>
</head>
<body>

<%
 Date d = new Date();
 Number n = new Double(1234567.89);
%>
<h2>Default Locale (<%= request.getLocale() %>)</h2>
<%
 Locale locale = request.getLocale();
%>
<fmt:locale locale="<%=locale%>">
<h3>The time is now:-</h3>
<fmt:formatTime/>
<h3>The date is now:-</h3>
<fmt:formatDate pattern="yyyy MMMMM ddd hh:mm:ss"/>
<h3>The currency is:-</h3>
<fmt:formatCurrency value="<%= n %>"/>
</fmt:locale>

<%
 String country = request.getParameter("country");
 if (country == null) {
 country = "US";
 }
 String language = request.getParameter("language");
 if (language == null) {
 language = "en";
 }
 locale = new Locale(language,country);
%>

<h2>Country: <%= country %> and Language: <%= language %></h2>
<fmt:locale locale="<%=locale%>">

 Chapter 4. Presentation and control layer 145

<h3>The time is now:-</h3>
<fmt:formatTime/>
<h3>The date is now:-</h3>
<fmt:formatDate pattern="yyyy MMMMM ddd hh:mm:ss"/>
<h3>The currency is:-</h3>
<fmt:formatCurrency value="<%= n %>"/>
</fmt:locale>
</body>
</html>

If you execute our JSP above, the result is similar to what is shown in
Figure 4-18.

Figure 4-18 Results from JSP that uses JSTL

146 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Implementing JSP custom tags
A custom tag library is a library that has been put together for a specific use or
purpose. You create a custom tag if there is no solution available such as in
JSTL. Developers working together in a team might create very specific custom
tag libraries for individual projects, as well as a more general one for ongoing
use.

To create a tag library, follow these steps:

1. Write the tag handler class.

2. Create the tag library descriptor (TLD).

3. Make the TLD file and handler classes accessible (packaging).

4. Reference the tag library.

5. Use the tag in a JSP page.

The last three items were covered in 4.2.9, “Tag libraries” on page 125.

You can see in 4.10, “References” on page 249 how to create you own tag library
and TLD file. But more important here for best practices is that you must follow
the MVC pattern when you develop a tag. The new tag support for JSP 2.0
SimpleTag makes the development very easy because you can put all tags in
one method public void doTag(). While it is easy to develop, it can easily get out
of hand if you develop a method doTag with 200 lines, for example. Remember
that when you develop Java code, it is important that methods do not have to be
so extensive. As recommended in the MVC pattern, it is a good practice not to
access the database layer directly. Use JavaBeans to make a bridge to database
access. It is also important for reusability. See Figure 4-19.

Figure 4-19 Best custom tag Library usage

Relational
Database

Tag Library

Access

Handle data

Uses

JavaServer

Page
JavaBean

 Chapter 4. Presentation and control layer 147

4.2.10 Implicit objects

The concept behind the JSP architecture is to provide a Web component that
allows developers to focus on the presentation of Web content without getting
drawn into the details of parsing, programming, and data manipulation. JSP
applications are essentially special Web components that a J2EE Web container
converts into servlets prior to handling user requests. Within each JSP
application is the complete set of implicit objects.

Implicit objects let developers access container-provided services and resources.
These objects are defined as implicit because you do not have to explicitly
declare them. They are defined in every JSP page and used behind the scenes
by the container whether you declare them or not — although you cannot
redeclare them. Because implicit objects are declared automatically, we only
have to use the reference variable associated with a given object to begin calling
methods on it. See the implicit objects in Table 4-8.

Table 4-8 Implicit object types

Object Description

out Provides access to the servlet's output stream.

request Provides access to HTTP request data, as well as providing a context
for associating request-specific data.

response Enables direct access to the HTTPServletResponse object and is rarely
used by JSP authors.

session Is perhaps the most commonly used of the state management contexts.
The concept of a “session” is that of a single user interacting with a Web
application over several requests.

pageContext Is the context for the JSP page itself. It provides a single API to manage
the various scoped attributes. This API is used extensively when
implementing JSP custom tag handlers.

page Is the instance of the JSP page's servlet processing the current request.

application Is the broadest context state available. It allows the JSP page's servlet
and any Web components contained in the same application to share
information.

config Allows initialization data to be passed to a JSP page's servlet

exception Houses exception data to be accessed only by designated JSP “error
pages.”

148 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Although some implicit objects address a single function, several of them provide
multiple categories of functionality:

� State management: application, session, request, pageContext

� Flow control: application, config, pageContext, request, session

� Logging and exceptions: application, config, exception, pageContext, request,
session

� Input/output control: request, response, out

� Initialization parameters: config

Next we review the implicit objects that are more related to coding for
performance: State management, loggin,g and exceptions. We talk more about
flow control in 4.2.11, “Best practices to use composed Web components”. For
more information on input/output control and initialization parameters, see the
Implicit JSP Objects article at the following URL:

http://www.ibm.com/developerworks/java/library/j-pj2ee7.html

State management (application, session, request,
pageContext)

Four of the implicit objects defined for JSP pages can be used to associate
stateful data within a particular context, or scope. Those four scopes are
application, session, request, and page. Table 4-9 identifies the four objects and
the stateful context each scope defines, and also gives a brief description of what
each context details.

Table 4-9 Scopes and implicit objects

Scope Implicit Object Description

Application javax.servlet.Servlet
Context

Represents the entire runtime Web module
(application). Data that is scoped to an
application is shared among all the Web
components within a single application module.
This is the closest that J2EE offers to “global”
data.

Session javax.servlet.http.Http
Session

Represents the current HTTP session. Next to
page scope, session scope is the most
commonly used context. This is the most
commonly used context for providing a
persistent, stateful user experience spanning
multiple requests.

 Chapter 4. Presentation and control layer 149

http://www.ibm.com/developerworks/java/library/j-pj2ee7.html

From a best-practices standpoint, page scope should be used whenever
possible. It is simple, and it is also the default scope for JSP data. Request scope
is excellent for sharing data between components at run time in order to process
a particular request. Session scope is designed to provide a persistent, stateful
experience for a unique user, spanning multiple requests. Application scope
should be used only when you have to share data between components and
across user sessions.

Logging and exceptions: application, config, exception,
pageContext, request, session
If you have to store information related to your Web application in a log, there is
one built-in method available to you. The ServletContext interface declares two
methods for passing data to a log. One accepts a simple text message:
log(java.lang.String), and the other accepts exception information and a text
message: log(java.lang.Throwable, java.lang.String). However, there are many
ways to obtain the ServletContext interface instance. You can use application,
config, exception, pageContext, request, and session.

Request javax.servlet.http.Http
ServletRequest

Represents the current HTTP request. This
context can span multiple Web components
(servlets and JSP pages) that are still a part of
the same atomic request. Request-specific data
(request methods, URI, HTTP parameters, and
so on) provided by the client is automatically
stored in a request context. Data can also be
programmatically scoped to a request by one
servlet or JSP page to be retrieved by another
within the same request scope.

Page javax.servlet.jsp.Page
Context

Represents the current JSP page's context.
Because the context for a JSP page includes
the current request, session, and application, a
pageContext instance provides access to all the
namespaces associated with a JSP page. It is
the default scope for all objects, including
JavaBeans components. Objects with page
scope are typically bound to a local variable to
be accessed within scriptlets, expressions,
JavaBeans tags, and custom tags.

Scope Implicit Object Description

150 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

The implementation of the log method depends on the Web container provider. In
WebSphere, both methods go to SystemOut.log that belongs to the application
server. The best practice here is to be careful to log methods. Put in key points of
code. To trace your code, use IDE tools such as Rational Application Developer
(RAD). Avoid using logs for tracing purposes.

Another tip is the use of exceptions. Although sending messages to a log file can
be quite useful, there are often times when you would also like to display a
helpful user error message in the event of an unrecoverable exception. To do
this, you can declare that your JSP page uses a separate page to handle error
messages. This is accomplished by including the page directive anywhere in
your JSP page. See Example 4-27.

Example 4-27 Allow JSP to handle exceptions in a page

<%@ page errorPage="ErrorMessage.jsp"%>

Whenever an exception is thrown while processing your JSP page, the exception
object is immediately thrown to the designated error page by means of the
implicitly declared exception variable.

In order for a JSP page to function as an error page, it must include a directive
that declares the page to be a special page designed to handle errors, as shown
in Example 4-28.

Example 4-28 Page to handle exceptions

<%@ page isErrorPage="true"%>

In order for the ErrorMessage.jsp page to be able to act as an error page, this
directive must appear somewhere in the page. The error page can then display a
friendly error message to the user, and then perhaps log the relevant exception
information for the system administrator to review at a later time.

 Chapter 4. Presentation and control layer 151

4.2.11 Best practices to use composed Web components

In the following sections we provide some recommendations to keep in mind
when using Web components.

Static inclusion
In time-to-marketplace, we have to develop applications quickly to meet business
demand. To reach these goals, use composed JSPs to optimize caching and
code reuse.

In the JSP world, we can reuse the content or output of another JSP. If we are
working with Static inclusion, this means that a JSP includes another JSP
content at the time when the first JSP file is translated. On the other hand,
Dynamic inclusion is an output of another JSP included inside an output of a
requested JSP page.

The include directive makes it very easy to incorporate uniform header and footer
files and navigation components into your site.

� Syntax:

<%@ include file=”relativeURL” %>

or

<jsp:directive.include file=”relativeURL”/> <!--XML format-->

Note: This relative URL cannot be a result of an expression such as:

String relativeURL = “CelsiusCalc.jsp”;
<%@ include file=”<%=relativeURL%>” %>

Also you cannot pass request parameters to included jsp. We are in
Translation Time not Execute time.

<%@ include file=”other.jsp?param=mode1” %>

� How static inclusion works:

In the translation time of the JSP processor, it sees the static include
sentences and inserts the corresponding JSP inside the calling JSP. It
appears to be a unique JSP program after the translation phase and ready for
request time. See Figure 4-20 and Example 4-29.

152 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Figure 4-20 Static Inclusion functionality

Example 4-29 Static inclusion code sample

<![CDATA[
<%@ page language="java" contentType="text/html" %>
<html>
<head>
 <title>newInstance.com</title>
 <meta http-equiv="Content-Type" content="text/html;
charset=iso-8859-1" />
 <link href="/styles/default.css" rel="stylesheet" type="text/css"
/>
</head>

<body>

<html><body>

Utility Functions
<% include file=“Header.jsp” %>
<! Other functions here-- !>

</body></html>

<html><body>
<input type="Image"
src=“http://../search_button2.gif"
name="Image">
</body></html>

File MainPage.jsp

File Header.jsp public void _jspService() {
//…..
out.write(“<html><body>Utility Functions”);

out.write(“</body></html>”);
}

Generated servlet of MainPage.jsp
<html><body>

</body></html>

HTML output

Translation time
of MainPage.jsp

Request
time

out.write(“<input type="Image" src=“http://../search_button2.gif"
name="Image">”);

<input type="Image"
src=“http://../search_button2.gif"
name="Image">

 Chapter 4. Presentation and control layer 153

<%@ include file="header.jsp" %>
<%@ include file="navigation.jsp" %>
<%@ include file="bookshelf.jsp" %>
<%@ include file="/mt-blogs/index.jsp" %>
<%@ include file="footer.jsp" %>

</body>
</html>
]]>

This example shows that you can make a pattern for your pages using static
inclusion.

Dynamic inclusion
Dynamic content tends to change frequently and must always be up to date. In
this case, there are drawbacks to using the include directive. One of the
downsides of the include directive is that it causes your Web browser to cache
complete pages. This makes a lot of sense if we are talking about static pages,
but if included content is volatile, such as a JSP that loads dynamic data or
HTML such as a time stamp, you would require the last version of this file when
the Web page is loaded. The include directive does not have that functionality.

You can work around this problem by disabling the browser cache in test and
development environments. However, in production where performance is a key
factor, disabling caching is not a viable solution. In the production environment,
the best solution is to use jsp:include tag for working with dynamic content.

� Syntax:

<jsp:include page="filename"/>

� How dynamic inclusion works:

The <jsp:include> action transfers the control of the request to the included
JSP temporarily. When the included JSP finishes its processing, control
returns to the including page. This means that the included component is
interpreted and the resulting response is included. If the page is HTML, you
get the HTML essentially unchanged. But if it is a Perl script, a Java servlet, or
a CGI program, you get the interpreted result from that program. Because
interpretation happens at every page request, the results are never cached as
they were with the include directive. See Figure 4-21, Example 4-30, and
Example 4-31.

154 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Figure 4-21 Dynamic inclusion functionality

Example 4-30 Dynamic inclusion code sample (Weather.jsp)

<HTML>
<TITLE>Weather Forecast</TITLE>
</HEAD>
<BODY>
<P>
 <jsp:include page="CelsiusCalc.jsp"/>
 <!-- Another Functions here -->
</BODY>
</HTML>

Example 4-31 Dynamic inclusion code sample (CelsiusCalc.jsp)

<HTML>
<TITLE>Celsius</TITLE>

<HTML>
<BODY>

<jsp:include page="CelsiusCalc.jsp"/>
<!-- Other functions here -->

</BODY>
</HTML>

Weather.jsp

public void _jspService() {
//…..
out.write(“<html><body>”);

out.write(“</body></html>”);
}

Translation time

Request time

Generated servlet for
Weather.jsp
(source example)

<HTML><BODY>
<P>Celsius Temperature:
<%
int farVar=Integer.parseInt(request.getParameter("farValue"));
%>
<%=(farVar-32)*5/9%></P>
</BODY></HTML>

CelsiusCalc.jsp
Translation time

public void _jspService() {
//…..

}

Generated servlet for
CelsiusCalc.jsp

(source example)

Delegate for
include processing

Return Result

out.write(“<html><body><p>Celsius Temperature”);
int farVar=Integer.parseInt(request.getParameter("farValue"));
out.write(((farVar-32)*5/9));
out.write(“</p></body></html>”);

<!—Delegate Request to CelsiusCalc.jsp-->
RequestDispatcher rd =

request.getRequestDispatcher("CelsiusCalc.jsp");
rd.include(request,response);

 Chapter 4. Presentation and control layer 155

</HEAD>
<BODY>
<P>Celsius Temperatute:
<%
if (request.getParameter("farValue")!=null){
int farVar=Integer.parseInt(request.getParameter("fahrenheit"));
out.println((farVar-32)*5/9);
}else{
out.println("param farVar not found, usage
http://...?fahrenheit=value");
}%>
</P>
</BODY>
</HTML>

The important thing here is that only body content of CelsiusCalc.jsp is
returned to the main Page. The HTML Title tag, for example, remains the
same from the Weather.jsp.

Dynamic caching
JSPs that are composed of several other JSPs, on one hand, frequently use the
<jsp:include> tag and therefore offend the best practice listed previously, but on
the other hand, the different components can easily be cached and re-used. So
the use of caching can reduce the performance disadvantages of compositional
JSPs, while facilitating the development of complex pages.

WebSphere Application Server provides a functionality called Dynamic caching
service to cache JSPs, thereby making it possible to have a master JSP that
includes multiple JSP components, each of which can be cached using different
cache criteria. For example, think of a complex portal page, which contains a
window to view stock quotes, another to view weather information, and so on.
The stock quote window can be cached for five minutes, the weather report
window for ten minutes, and so on.

If you are not planning to use Dynamic Caching, the best practice is to minimize
the use of the <jsp:include> because each included JSP is a separate servlet.

Forwarding
The <jsp:forward> action delegates processing to another JSP page. The main
difference from the <jsp:include> action is that control does not return to the
including page. See Figure 4-22.

156 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Figure 4-22 Forwarding functionality

As the page control is delegated to another page without return, the HTML layout
(the page title, for example) is done by another page (CelsiusCalc in
Figure 4-22).

Using JavaBeans is the best way to pass data between JSPs
If you have a simple page with a few JSPs in your project, JavaBeans might not
be required. Even in this case, using JavaBeans is a good way to separate data
from presentation in your Java coding. Also when it comes to programming a real
Web site or Web application interface, you generally require a communication
mechanism to pass data between the parent page and included files.

<HTML>
<BODY>

<jsp:forward page="CelsiusCalc.jsp"/>
<!-- Other functions here -->

</BODY>
</HTML>

Weather.jsp

public void _jspService() {
//…..
out.write(“<html><body>”);

out.write(“</body></html>”);
}

Translation time

Request time

Generated servlet for
Weather.jsp
(source example)

<HTML><BODY>
<P>Celsius Temperature:
<%
int farVar=Integer.parseInt(request.getParameter("farValue"));
%>
<%=(farVar-32)*5/9%></P>
</BODY></HTML>

CelsiusCalc.jsp
Translation time

public void _jspService() {
//…..

}

Generated servlet for
CelsiusCalc.jsp

(source example)

Process forwarding
page and forward
request to another page
for processing

out.write(“<html><body><p>Celsius Temperature”);
int farVar=Integer.parseInt(request.getParameter("farValue"));
out.write(((farVar-32)*5/9));
out.write(“</p></body></html>”);

<!—Delegate Request to CelsiusCalc.jsp-->
RequestDispatcher rd =

request.getRequestDispatcher("CelsiusCalc.jsp");
rd.forward(request,response);

 Chapter 4. Presentation and control layer 157

4.2.12 Expression Language

Expression Language (EL) is used for run-time assignment of values to action
element attributes. It was first introduced as part of the JSP Standard Tag Library
(JSTL) 1.0 specification, but is now part of the JSP 2.0 specification. As part of
JSTL, you could only use expression language with JSTL actions. Now, as an
integral part of the JSP 2.0 specification, you can use EL with template text, as
well as with standard and custom actions. Expression language is inspired by
both ECMAScript and XPath expression languages, and uses the features of
both languages, as well as introduces some new ones. For example, expression
language performs data-type conversions automatically.

The main advantage of using EL in JSPs is to enforce writing scriptless JSPs.
You can do this through the configuration element scripting-invalid. Setting
the value of this element “true” allows the use of Expression Language, but
prohibits the user from using Java scriptlets, Java expressions, or Java
declaration elements within JSPs.

As we discussed previously, the JSP Standard Tag Library (JSTL) is a collection
of JSP 1.2 custom tag libraries that implement basic functionality common to a
wide range of server-side Java applications. By providing standard
implementations for typical presentation-layer tasks such as data formatting and
iterative or conditional content, JSTL allows JSP authors to focus on
application-specific development requirements, rather than “reinventing the
wheel” for these generic operations.

Of course, you could implement such tasks using the JSP scripting elements:
scriptlets, expressions, and declarations. Conditional content, for example, can
be implemented using three scriptlets, highlighted in Listing 1. Because they rely
on embedding program source code (typically Java code) within the page,
though, scripting elements tend to complicate the software maintenance task
significantly for JSP pages that use them. The scriptlet example in Listing 1, for
instance, is critically dependent upon proper matching of braces. Nesting
additional scriptlets within the conditionalized content can wreak havoc if a
syntax error is inadvertently introduced, and it can be quite a challenge to make
sense of the resulting error message when the page is compiled by the JSP
container.

Example 4-32 Implementing conditional content through scriptlets

<% if (user.getRole() == "member")) { %>
 <p>Welcome, member!</p>
<% } else { %>
 <p>Welcome, guest!</p>
<% } %>

158 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Fixing such problems typically requires a fair bit of programming experience.
Whereas the markup in a JSP page might typically be developed and maintained
by a designer well-versed in page layout and graphic design, the scripting
elements in that same page require the intervention of a programmer when
problems arise. This shared responsibility for the code within a single file makes
developing, debugging, and enhancing such JSP pages a cumbersome task. By
packaging common functionality into a standardized set of custom tag libraries,
JSTL allows JSP authors to reduce or eliminate the requirement for scripting
elements and avoid the associated maintenance costs.

For this reason, we now discuss EL concepts in more depth.

Implicit objects and EL basics
EL expressions support several implicit objects. The following table describes
these objects.

Table 4-10 Implicit objects in Expression Language

Implicit object Description

pageScope A map of all page-scope variables and their values

requestScope A map of all request-scoped variables and their values

sessionScope A map of all session-scoped variables and their values

applicationScope A map of all application-scoped variables and their values

pageContext An object of pageContext class

param A map of all request parameter values wherein each parameter is
mapped to a single String value

paramValues A map of all request parameter values wherein each parameter is
mapped to a single String array

header A map of all request header values wwherein each parameter is
mapped to a single String value

headerValues A map of all request header values wherein each parameter is
mapped to a single String array

cookie A map of all request cookie values wherein each cookie is
mapped to a single javax.servlet.http.Cookie value

initParam A map of all application initialization parameter values wherein
each parameter is mapped to a single String value

 Chapter 4. Presentation and control layer 159

Examples of implicit objects
Let us consider an example detailing the use of implicit objects. The table below
describes how you can access and resolve information such as request
attributes, session attributes, and request parameters (first column of the table)
using EL (second column of the table).

Table 4-11 Examples of implicit objects

In the foregoing examples, User-Agent returns Browser information.

Syntax of Expression Language
The syntax of Expression Language is quite simple:

� You can use a [] operator to access properties of JavaBeans objects, lists, or
arrays of objects.

� You can also use a . operator to access the properties of a JavaBean object.

� You can use arithmetic operators for computations.

� You can use standard Java relational operators for relational comparisons.

� Logical operators are also available for your use.

� Literals of boolean, integer, floating point, string, and null are available.

� You can also use conditional operators for conditional processing.

Next, let us discuss the above syntactic rules in detail.

Arithmetic operators
Expression Language can use the following five arithmetic operators to act on
integer and floating point values:

� + operator for addition

� - operator for subtraction

� * operator for multiplication

� / operator for division

� % operator for remainder

Source JSP Expression Language sentence

request.getAttribute(“name”); ${requestScope[“name”]}

session.getAttribute(“name”); ${sessionScope[“name”]}

request.getParameter(“name”); ${param.customerName}

request.getHeader(“User-Agent”); ${header[“user-agent”]}

request.getHeader(“Host”); ${header[“host”]}

160 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Table 4-12 describes the arithmetic operators through some examples.

Table 4-12 Arithmetic operations examples

Relational operators
Relational operators operate on two operands and always return a boolean
result. You can use the following relational operators with EL:

� == operator for evaluating “equal condition”

� ! = operator for evaluating “are not equal condition”

� < operator for evaluating “less than” condition

� > operator for evaluating “greater than” condition

� <= operator for evaluating “less than equal to” condition

� >= operator for evaluating “greater than equal to” condition

Table 4-13 describes the relational operators through some examples.

Table 4-13 Relational operations

Logical operators
Logical operators operate on two expressions and always return a boolean value.
Expression Language can use the following logical operators:

� The && operator returns true if both expressions evaluate to true.

� The || operator returns true if one of the expressions evaluates to true.

Expression for arithmetic operators Result

${2.7 + 5.6} 8.3

$(-2 -7} -9

${10%4} 2

${9/2} 4.5

Expression using relational operator Result

${10 == 2*5} true

${10 > 4} true

${10 < 10/2} false

${10 <= 20/2} true

${10 != 2*5} false

 Chapter 4. Presentation and control layer 161

� The ! operator returns the inverse of the evaluation result.

Table 4-14 describes the logical operators through some examples.

Table 4-14 Logical operations

Conditional operator
This operator is used for conditional processing. Depending on the boolean
result of the condition, one of the two possible results is returned.

The examples in Table 4-13 show conditional operator usage.

Table 4-15 Conditional operator usage examples

Accessors ([] and . operators)
We use [] and . operators to look for a named property in a bean or in a
collection. Let's consider an example where customer is the name of a bean with
property SSN. To access the property SSN, you can use the following expression
shown in Example 4-33.

Example 4-33 Accessor example

${customer['SSN']}
or
${customer["SSN"]}

The value within the brackets must be a string literal for the property's name, or a
variable that holds the property's name. You can even use a complete EL
expression that resolves to a property.

Expression using logical operator Result

${10 > 4 && 4 < 16} true

${10 > 4 && 16 < 5} false

${10 > 4 || 16 < 5} true

${ ! (10 > 4) } false

Expression using conditional operator Result

${(5<6) ? 5 : 6} 5

${(5<6) ? 5 : 6} 6

162 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Here are a few general rules that exist while evaluating expr-a[expr-b]:

� Evaluate expr-a into value-a.

� If value-a is null, return null.

� Evaluate expr-b into value-b.

� If value-b is null, return null.

� If value-a is a map, list, or array, then evaluate whether value-b resolves to a
property for it.

Using the . operator, the alternative syntax could be as shown in Example 4-34.

Example 4-34 . operator usage examples

${customer.SSN}
${customer.address.zip}

Notice that this last example uses a zip property from an address object that is
an attribute of the customer object.

Combining core JSTL elements and EL sentences
To illustrate the interaction of JSTL tags with the Expression Language, we look
at several of the tags from the JSTL core library. As is true with any JSP custom
tag library, a taglib directive must be included in any page that you want to be
able to use this library's tags. The directive for this specific library appears in
Example 4-35.

Example 4-35 JSTL core directive in JSP page

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

The first JSTL custom tag we consider is the <c:set> action. As indicated,
scoped variables play a key role in JSTL, and the <c:set> action provides a
tag-based mechanism for creating and setting scoped variables. The syntax for
this action is shown in Example 4-36, where the var attribute specifies the name
of the scoped variable, the scope attribute indicates which scope the variable
resides in, and the value attribute specifies the value to be bound to the variable.
If the specified variable already exists, it is simply assigned the indicated value.
If not, a new scoped variable is created and initialized to that value.

Example 4-36 <c:set> action syntax

<c:set var="name" scope="scope" value="expression"/>

The scope attribute is optional and defaults to page.

 Chapter 4. Presentation and control layer 163

Two examples of the <c:set> are presented in Example 4-37. In the first example,
a session-scoped variable is set to a String value. In the second, an expression is
used to set a numeric value: a page-scoped variable named square is assigned
the result of multiplying the value of a request parameter named x by itself.

Example 4-37 <c:set> action examples

<c:set var="timezone" scope="session" value="CST"/>
<c:set var="square" value="${param['x'] * param['x']}"/>

Rather than using an attribute, you can also specify the value for the scoped
variable as the body content of the <c:set> action. Using this approach, you
could rewrite the first example in Example 4-37 as shown in Example 4-38.
Furthermore, as we see momentarily, it is acceptable for the body content of the
<c:set> tag to employ custom tags itself. All content generated within the body of
<c:set> is assigned to the specified variable as a String value.

Example 4-38 Putting a value inside <c:set> body content

<c:set var="timezone" scope="session">CST</c:set>

The JSTL core library includes a second tag for managing scoped variables,
<c:remove>. As its name suggests, the <c:remove> action is used to delete a
scoped variable, and takes two attributes. The var attribute names the variable to
be removed, and the optional scope attribute indicates the scope from which it
should be removed and defaults to page, as shown in Example 4-39.

Example 4-39 <c:remove action example>

<c:remove var="timezone" scope="session"/>

While the <c:set> action allows the result of an expression to be assigned to a
scoped variable, a developer often wants to simply display the value of an
expression, rather than store it. This is the role of JSTL's <c:out> custom tag, the
syntax of which appears in Example 4-40. This tag evaluates the expression
specified by its value attribute, then prints the result. If the optional default
attribute is specified, the <c:out> action instead prints its value if the value
attribute's expression evaluates either to null or an empty String.

Example 4-40 <c:out> syntax

<c:out value="expression" default="expression" escapeXml="boolean"/>

164 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

The escapeXml attribute is also optional. It controls whether or not characters
such as “<“, “>”, and “&”, which have special meanings in both HTML and XML,
should be escaped when output by the <c:out> tag. If escapeXml is set to true,
then these characters are automatically translated into the corresponding XML
entities (<, >, and &, respectively, for the characters mentioned here).

For instance, suppose there is a session-scoped variable named user that is an
instance of a class that defines two properties for users, username and company.
This object is automatically assigned to the session whenever a user accesses
the site, but the two properties are not set until the user actually logs in. Given
this scenario, consider the JSP fragment shown in Example 4-41. Once the user
has logged in, this fragment displays the word “Hello,” followed by his or her
username and an exclamation point. Before the user has logged in, however, the
content generated by this fragment is instead the phrase, “Hello Guest!” In this
case, because the username property has yet to be initialized, the <c:out> tag
instead prints out the value of its default attribute (that is, the character string,
“Guest”).

Example 4-41 <c:out> action with default content

Hello <c:out value="${user.username}" default=="Guest"/>!

Next, consider Example 4-42, which uses the <c:out> tag's escapeXml attribute.
If the company property has in this case been set to the Java String value “Flynn
& Sons”, then the content generated by this action, in fact, is Flynn & Sons.
If this action is part of a JSP page generating HTML or XML content, then the
ampersand in the middle of this string of characters might end up being
interpreted as an HTML or XML control character and interrupt the rendering or
parsing of this content. If the value of the escapeXml attribute is instead set to
true, however, the generated content instead is Flynn & Sons. A browser or
parser encountering this content should have no problems with its interpretation.
Given that HTML and XML are the most common content types in JSP
applications, it should come as little surprise that the default value for the
escapeXml attribute is true.

Example 4-42 <c:out> action with escaping disable

<c:out value="${user.company}" escapeXml=="false"/>

In addition to simplifying the display of dynamic data, the ability of <c:out> to
specify a default value is also useful when setting variable values through
<c:set>. As highlighted in Example 4-38 on page 164, the value to be assigned
to a scoped variable can be specified as the body content of the <c:set> tag, as
well as through its value attribute. By nesting a <c:out> action in the body content
of a <c:set> tag, the variable assignment can leverage its default value capability.

 Chapter 4. Presentation and control layer 165

This approach is illustrated in Example 4-43. The behavior of the outer <c:set>
tag is straightforward enough: it sets the value of the session-scope timezone
variable based on its body content. In this case, however, that body content is
generated through a <c:out> acon. The value attribute of this nested action is the
expression ${cookie['tzPref'].value}, which attempts to return the value of a
cookie named tzPref by means of the cookie implicit object. (The cookie implicit
object maps cookie names to corresponding Cookie instances, which means you
must use the dot operator to retrieve the actual data stored in the cookie through
the object's value property.)

Example 4-43 Combining <c:set> and <c:out> to provide default variable values

<c:set var="timezone" scope=="session">
 <c:out value="${cookie['tzPref'].value}" default=="CST"/>
</c:set>

Consider the case, however, in which this is the user's first experience with the
Web application using this code. As a result, there is no cookie named tzPref
provided in the request. This means that the lookup using the implicit object
returns null, in which case the expression as a whole returns null. Since the
result of evaluating its value attribute is null, the <c:out> tag instead outputs the
result of evaluating its default attribute. Here, this is the character string CST. The
net effect, then, is that the timezone scoped variable is set to the time zone
stored in the user's tzPref cookie or, if none is present, use a default time zone of
CST.

Differences between scriptlets and ELs in one example
To observe the improvements that can be achieved by using EL instead of
scriptlets, consider an example of using jsp:useBean with scriptlets and the
updated version changing scriptlets to EL and core JSTL tag libraries (see
Example 4-44 and Example 4-45).

Example 4-44 jsp:useBean with scriptlets example

<HTML>
<HEAD>
<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"%>
<TITLE>WelcomeScriptlet.jsp</TITLE>
</HEAD>
<BODY>
<jsp:useBean id="user" scope="session" type="somepackage.PersonBean"
class="somepackage.EmployeeBean"></jsp:useBean>

<%if(user.getFirstName()==""){%>

166 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

 <P>Welcome, guest !</P>
 <%}else{%>
 <P>Welcome <%user.getFirstName();%></P>
 <%}%>
</BODY>
</HTML>

Example 4-45 Example with EL and JSTL instead of scriptlets

<HTML>
<HEAD>
<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"%>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>
<TITLE>WelcomeEL.jsp</TITLE>
</HEAD>
<BODY>
<jsp:useBean id="user" scope="session" type="somepackage.PersonBean"
class="somepackage.EmployeeBean"></jsp:useBean>

<c:set var="user" scope="session" value="${sessionScope['user']}"/>
<c:choose>
<c:when test="${user.firstName == ''}">
 <p>Welcome, guest!</p>
 </c:when>
 <c:otherwise>
 <p>Welcome,${user.firstName}!</p>
 </c:otherwise>
</c:choose>
</BODY>
</HTML>

As can be seen, the conditional if (<c:when>) is much simpler and easier to mix
HTML tags with EL instead of HTML tags with scriptlets. Now consider a JSP
with thousands of lines of code. With scriptlets it is more difficult to maintain and
understand both from a page design and from a Java programmer point of view.

4.2.13 Use composed JSPs to optimize caching and code re-use

On the one hand, JSPs that are composed of several other JSPs frequently use
the <jsp:include> tag and therefore offend the best practice listed below; but on
the other hand, their different components can easily be cached and re-used. So
the use of caching can reduce the performance disadvantages of compositional
JSPs, while facilitating the development of complex pages.

 Chapter 4. Presentation and control layer 167

WebSphere Application Server provides a functionality called Dynamic caching
service to cache JSPs, thereby making it possible to have a master JSP that
includes multiple JSP components, each of which can be cached using different
cache criteria. For example, think of a complex portal page, which contains a
window to view stock quotes, another to view weatherinformation, and so on. The
stock quote window can be cached for five minutes, the weather report window
for ten minutes, and so on.

4.2.14 Best practices summary for JSPs

Here we provide a list of best practices for working with JSPs:

� Prefer JSPs as your first choice of presentation technology.

See 4.2.1, “Use JSPs as your first choice of presentation technology” on
page 110

� Avoid using scripting elements.

See 4.2.7, “Scripting elements: Best practices” on page 117

� Use existing Tag Libraries.

See 4.2.9, “Tag libraries” on page 125

� Create custom Tag Libraries.

See “Implementing JSP custom tags” on page 147

� Use implicit objects in JSP pages.

See 4.2.10, “Implicit objects” on page 148

� Use composed JSPs.

See 4.2.11, “Best practices to use composed Web components” on page 152

� Use EL (Expression Language) instead of scripting elements.

See 4.2.12, “Expression Language” on page 158

� Combine expression languages with tag libraries.

See “Combining core JSTL elements and EL sentences” on page 163

4.3 XML/XSLT processing

With the help of the Extensible Stylesheet Language Transformation (XSLT),
which is a part of the XSL standard, you can easily transform any XML-based
document into another. In the presentation layer, this technology is usually used
to generate an XML-based document that is recognized by a browser, like HTML,
XHTML or other XML-based documents that can be understood by other client

168 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

devices such as handheld devices. To do this, XSLT first parses the source XML
document to determine which parts have to be transformed. The parts that
should be transferred, and the manner of transformation, are pre-defined in one
or more templates. So if a matching part is found, XSLT transforms this part of
the source document into the resulting XML document. All other parts that do not
match any of the templates remain unmodified and are simply copied into the
result. See Figure 4-23.

Figure 4-23 Server-sided XSLT processing

In general, the XSLT transformation can take place either on the application
server or in a browser/client that supports XSLT. We only cover the server-side
XSLT processing, because XSLT processing on the client is not possible in most
cases due to security reasons, network traffic, or limited browser support. A valid
compromise could be to implement a servlet that checks the client for an
XML-enabled browser and returns the XML directly to the client to get client-side
XSLT. Server-side XSLT is only done when the client is not XML-enabled.

4.3.1 Server-sided XSLT processing

The use of XML/XSLT processing on the application server to generate the view
of your application implies a lot of processing overhead and, from a performance
point of view, it is therefore only recommended in cases where you really have
multiple presentation output types that must be supported. Performance tests
done at IBM comparing the relative speed of XSL and JSP show that in most
cases, a JSP is several times faster at producing the same HTML output as an
equivalent XSL transform, even when compiled XSL is used.

Browser Web Tier

HTML XSLT
Processor

XSLT Stylesheet

XML Data

Presentation
Data

Presentation Layer

Model

Server

 Chapter 4. Presentation and control layer 169

While this is often not an issue, in performance-critical situations, it can create
problems. This does not mean that you should never use XSL, but it might not be
the recommended way to generate the view for high volume Web sites. However,
there are certain cases, especially in the pervasive computing sector, where
XSLT might be the best/easiest solution for rendering the views. Here the power
and the abilities of using XSL to support multiple mobile devices countervail the
processing overhead by far.

But this kind of requirement is most often the exception rather than the rule. If
you are using XSLT just for producing the HTML rendering for each page, then
this is overkill and causes more problems for your developers than it can solve.

If you decide to use XSLT processing on the server, you should use the following
best practices to minimize the performance impact:

� Use Extensible Stylesheet Language Transformation compiled (XSLTC), the
compiled version of XSLT, whenever possible

XSLTC directly compiles the stylesheet into a Java class and is therefore the
much faster alternative. It is about three times faster than the XSLT
interpreter.

� Keep XSL stylesheets as simple as possible; use XML Data Transfer Object

It is a common best practice to generate a value object to transfer the data
between the business logic layer and the presentation layer. The same should
be done using XSLT. The business logic should return a Data Transfer Object
(or SDO) that contains the XML representation of the data required in the
view. There is no requirement to have any complicated logic in the XSL
stylesheet to generate or collect the XML data that is required for the view.
The generation of an XML Data Transfer Object really simplifies the
stylesheet processing and greatly improves performance.

4.4 Control layer
Whatever the presentation technology, requests for domain state and behavior
are be done through a Controller object defined for the particular presentation
requirements. See Figure 4-24.

170 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Figure 4-24 Showing controller component

For Web-based applications, the best practice is that Java Servlets must be used
to implement this work. If you are using a framework, like Struts or JavaServer
Faces (JSF), controller objects based on Java servlets are already defined to
handle the incoming client requests. These frameworks provide a clean
separation between the presentation and the control objects, so if you decide not
to use one, you must take care of this yourself.

For server-based applications that support “fat clients,” meaning clients that have
to be installed on every client machine, the implementation of the controller
object depends on the communication protocol that is used. If you are using
HTTP or HTTPS, for example, SOAP/HTTP or SOAP/HTTPS, to communicate
with the application server, Java servlets is the best practice choice to control
incoming requests. If RMI/IIOP or JMS is your preferred protocol to send
requests to the application server, Enterprise JavaBeans, more precisely EJB
session beans, are the best fit to handle incoming RMI/IIOP traffic and EJB
message-driven beans for JMS.

We discuss both Struts (see 4.6, “Struts” on page 199) and JavaServer Faces
(see 4.7, “JavaServer Faces” on page 220). The heart of the Struts framework is
ActionServlet (org.apache.struts.action.ActionServlet). The heart of the JSF
framework is FacesServlet (javax.faces.webapp.FacesServlet). In JSF we note
more statements that JSP could be changed by another presentation technology.

Client Server

Request

Browser

Model

View

Instantiate
and

Control

Access

Presentation Layer

forward/include

Request

Response

Response
Controller

Java
Application

Presentation
Layer

View

 Chapter 4. Presentation and control layer 171

4.4.1 General best practices for the control layer

Irrespective of the technology that is used to control the incoming requests,
observe the following guidelines.

Keep controller objects as simple as possible
The controller should neither contain any business logic, nor generate any kind of
presentation. Its purpose is just mediation between the presentation and the
business logic layer and conversion from one interface to another. It can be
thought of as a pipe between presentation and logic layer. When an entry arrives,
the controller knows to what component it requires to be redirected. if you are
using Struts for example, the framework has already defined in the architecture
as ActionServlet. A worst case example is when there are thousands of code
lines in one servlet for a doGet or doPost method containing controller, business
logic and data access layer logic. With this approach it is very difficult to make
your code reusable and also is very complicated to find which layer an error is in.
When you mix up layers, you mix up exceptions.

Do not put your control layer in the client
If you are using a Java client to access the server remotely, be careful to not code
the controller function in the client. The reason is simple: If you have to add some
corrections or additional function in your controller, you have to update the logic
in each client. The Java client should contain only the presentation code and the
components that must call the controller. In those components, and the controller
itself, use value objects to make a loose coupling between layers.

4.5 Servlets

As a server-side entity in a J2EE architecture, servlets are an effective player in
Web programs. In this section we focus on important performance tips to help
you create well constructed code in base statements.

4.5.1 General best practices for servlets

Observe the following guidelines when using servlets.

Abstract parent class for all servlets
Consider creating an abstract parent class, using the template inheritance
pattern, for all your controller servlets (and Struts action handlers) to realize a
common behavior. This abstract class is a good place to put standard code that
you want executed in all servlets, such as tracing, logging or additional security.

172 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Avoid the “killer” servlet
Use multiple servlets instead of one massive one. This avoids undue routing
logic and also allows you to configure J2EE security for individual servlets. This
guideline also simplifies the maintenance and team development process.

4.5.2 HttpSession best practices

Because the protocols used for communication between the client and the
application server are usually based upon a request/response model and
therefore stateless, the application developer has to take care of the state
himself. For example, if a request is submitted from the browser to the application
server, the server just receives the request, process it, and send a response
back. After this transaction is complete, there is no way for the protocol to hold
state information about the transaction itself. Therefore, this state information has
to be stored either on the client or on the server.

In a Web application, state information relating to each client is typically stored in
an HTTP session, which is identified by some unique identifier that is associated
with an HTTP cookie. In an environment with a single application server, session
information can be stored in-memory by IBM WebSphere Application Server V6.

However, it is more common to use a clustered environment with multiple
application servers to provide scalability and improve fault tolerance. In this
scenario, session information has to be made available for multiple or even all
cluster members. In WebSphere Application Server V4.x and earlier, this was
achieved using a session persistence database that was available to all clones in
a server group. In addition to this, a new mechanism for memory-to-memory
replication was introduced in IBM WebSphere Application Server V5.0.

In general, HTTP sessions might better fit your requirements if you are building
systems that only require a Web front end. There is an alternative to
HttpSession: stateful session beans.

Stateful session beans
A stateful session bean is used to capture state information that must be shared
across multiple consecutive client requests that are part of a logical sequence of
operations. The client must obtain an EJB object reference to a stateful session
bean to ensure that it is always accessing the same instance of the bean.

 Chapter 4. Presentation and control layer 173

WebSphere Application Server currently supports the clustering of stateful
session bean home objects among multiple application servers. However, it does
not support the clustering of a specific instance of a stateful session bean. Each
instance of a particular stateful session bean can exist in just one application
server and can be accessed only by directing requests to that particular
application server. State information for a stateful session bean cannot be
maintained across multiple application server cluster members. Thus, stateful
session bean instances cannot participate in WebSphere workload
management.

One significant improvement introduced in WebSphere Application Server V6 is
the failover support for stateful session beans, which means that the state
information maintained by a stateful session bean can survive various types of
failures now. This is achieved by utilizing the functions of the Data Replication
Service (DRS) and server workload management (WLM).

However, HTTPSession is the preferred way to store session information.

The following guidelines are important to ensure performance and scalability
while using HTTP sessions.

Keep HTTP sessions small
HTTP sessions should only be used to store information about application state;
it is not a data cache! You should always try to minimize the amount of data
stored in the session. Since the session must be shared, it must be serialized,
which also involves serializing all objects that are reachable from the session. It
means that all objects have to implement java.io.Serializable. Serialization in
Java is an expensive operation. If persistent sessions are used, the serialized
session data must be stored in the database (usually as a BLOB), which
introduces further overhead.

WebSphere Application Server has HttpSession configuration options that can
optimize the performance impact of using persistent HttpSessions. The
HttpSession configuration options are discussed in Chapter 7, “Environmental
performance considerations” on page 509. Also consider alternatives to storing
the entire servlet state data object graph in the HttpSession.

Figure 4-25 compares the relative performance of a sample application with a
single object of different sizes. As the size of the objects stored in the
HttpSession increases, throughput (requests by second) decreases, in large part
due to the serialization cost.

174 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Figure 4-25 Throughput relation with Http Session data size

For example, assume that a given application stores 1 MB of information for each
user session object. If 100 users arrive over the course of 30 minutes, and we
assume that the session timeout remains at 30 minutes, the application server
instance must allocate 100 MB just to accommodate the newly arrived users in
the session cache:

1 MB for each user session * 100 users = 100 MB

Note that this number does not include previously allocated sessions that have
not timed out yet. The memory required by the session cache could be
considerably higher than 100 MB.

In short, you should keep those HTTP sessions small. If you do not, your
application's performance can suffer. A good rule of thumb is something under
2K-4K. This is not a hard rule. 8K is still okay, but obviously slower than 2K. Just
watch this value and prevent the HttpSession from becoming a dumping ground
for data that “might” be used. When using HttpSessions, store only as much state
as you require for the current business transaction and no more.

Improving HttpSession performance with smart serialization
There are a lot of alternatives possible to try to reduce the data to be placed in
HttpSession. Some approaches are too complex and the programmer forgets
that Http session servers to keep the state between requests are not a persistent
mechanism itself.

Amount of State Data Maintained
4K 8K 16K

R
eq

ue
st

s
pe

r S
ec

on
d

50

40

30

20

10

0

 Chapter 4. Presentation and control layer 175

Application servers go to great lengths to ensure that session management is
efficient, but there are limits to what they can do without application domain
knowledge. Recall that there are three basic approaches to keeping session
state valid across multiple clustered application servers:

� Storing session objects in a shared database:

When configuring persistent sessions in a shared database in WebSphere
Application Server, use a dedicated data source. To avoid contention for
JDBC connections, do not reuse an application data source or the
WebSphere Application Server repository for persistent session data.

� Using memory to memory replication state between clusters:

For WebSphere 6.1, this approach is done using the data replication service
available in distributed server environments.

� Using session affinity:

The Servlet 2.4 specification requires that an HTTP session be:

– Accessible only to the Web application that created the session. The
session ID, but not the session data, can be shared across Web
applications.

– Handled by a single JVM for that application at any one time. In a
clustered environment, any HTTP requests associated with an HTTP
session must be routed to the same Web application in the same JVM.
This ensures that all of the HTTP requests are processed with a consistent
view of the user’s HTTP session. The exception to this rule is when the
cluster member fails or has to be shut down.

WebSphere is able to assure that session affinity is maintained in the
following way: Each server ID is appended to the session ID. When an
HTTP session is created, its ID is passed back to the browser as part of a
cookie or URL encoding. Then, when the browser makes further requests,
the cookie or URL encoding is sent back to the Web server. The Web
server plug-in examines the HTTP session ID in the cookie or URL
encoding, extracts the unique ID of the cluster member handling the
session, and forwards the request.

All objects placed in HttpSession have to implement the java.io.Serializable
interface. You can use a technique to choose which objects really have to be
placed in HttpSession. This technique is called smart serialization. The attributes
that do not have to be placed in HttpSession are put in a transient qualifier. See
Example 4-46 for more explanation.

Example 4-46 Code sample using smart serialization

public class EmployeeBean implements java.io.Serializable
{

176 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

 private String employeeId;
 private String employeeName;
 private transient AddressBean employeeAddress;

 /**
 Return the cached employee address. If it hasn't been
 fetched, retrieve it from the DAO layer.
 */

 public AddressBean getEmployeeAddress() {
 if (employeeAddress == null) {
 EmployeeDAO dao = new EmployeeDAO();
 employeeAddress =
 dao.fetchAddressFor(getEmployeeId());
 }
 return employeeAddress;
 }

 public String getEmployeeId() {
 return employeeId;
 }

 public String getEmployeeName() {
 return employeeName;
 }

 public void setEmployeeAddress(Address employeeAddress) {
 this.employeeAddress = employeeAddress;
 }

 public void setEmployeeId(String employeeId) {
 this.employeeId = employeeId;
 }

 public void setEmployeeName(String employeeName) {
 this.employeeName = employeeName;
 }

}

What happens is that in normal circumstances, each of the transient fields
(for example, Address) are retrieved once and then cached in memory in the
Employee object contained in the HttpSession. That means the Web application
code has fast access to them. However, in the event of a failure or termination of

 Chapter 4. Presentation and control layer 177

that application server, when the application server “fails over” to another JVM,
the Employee object read back in contains (initially) those fields that were
non-transient, which are the fields necessary to reconstruct the other transient
fields. This technique solves several problems elegantly:

� All application code that uses the HttpSession is completely unaware of what
is managed persistently and what is transient. No more abstraction concerns.

� The HttpSession can contain as many objects as you like as long as most of
the data is transient. That is, the amount of data persisted is small and this
results in good performance. Of course, sessions cannot be so large that you
run out of memory.

� Since failover is rare, the data in transient fields are rarely reloaded. In the
event of a failover, there is a slightly increased response time, but all
succeeding accesses are fast because the values are fetched directly out of
memory.

� As a side benefit, by using lazy instantiation techniques, user data that is not
read by the application is never fetched from the back end.

Notice that the code above is a value object (VO). Because you have attributes
and accessors (sets and gets for access attributes), and the transient address
object when requested (lazy instantiation), the code asks the Data Access Object
(DAO) pattern to fetch data from the database, and you can see the Model View
Controller pattern here. Inside this code there is no direct access to the
database, which is a also a best practice.

Improving HttpSession performance with externalization
The operations of the storing/recovering state, which are based on object
serialization, can be improved by using Java externalization. Externalization can
be up to 40% faster than serialization. Nevertheless, in order to reduce the
amount of data stored in the session, avoid storing large, complex object graphs
in it. Sometimes, it can be beneficial to store objects in the session, although they
can be recreated or retrieved to avoid the overhead of doing so. In these cases,
consideration should be given to making these attributes transient. If this is done,
you have to ensure that the application code handles the transient attributes
having null values. Alternatively, the readObject() method of the object could be
overwritten to recreate the transient data when the object is deserialized. Again,
Java externalization can be used to eliminate introspection and improve
performance.

To understand how to use this approach, consider a more complex object graph
with an EmployeeBean that extends a PersonBean. The PersonBean has an
attribute called AddressBean and uses a PersonDAO class to fetch data from the
database. See Figure 4-26.

178 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Figure 4-26 Class diagram for data to use externalization approach

EmployeeBean is the class that we have to place in HttpSession. The class we
used implements java.io.Serializable in EmployeeBean. For this reason you can
see methods readExternal() and writeExternal() in this class. Now our job is to
choose what data we have to keep in session. Remember that we can choose
data from the PersonBean superclass. For the PersonBean class, you can see
the access to database data controlled by a Data Access Object (DAO) pattern.
For more details on DAO, refer to “Data Access Object” on page 43.

See Example 4-47 showing how we did an EmployeeBean class implementation.

Example 4-47 EmployeeBean class implementation

package somepackage;

import java.io.Externalizable;
import java.io.IOException;
import java.io.ObjectInput;
import java.io.ObjectOutput;

public class EmployeeBean extends PersonBean implements Externalizable{

 Chapter 4. Presentation and control layer 179

 boolean regular;
 int age;
 String level;

 public boolean isRegular() {
 return regular;
 }
 public void setRegular(boolean regular) {
 this.regular = regular;
 }
 public int getAge() {
 return age;
 }
 public void setAge(int age) {
 this.age = age;
 }
 public String getLevel() {
 return level;
 }
 public void setLevel(String level) {
 this.level = level;
 }
 public void readExternal(ObjectInput in) throws IOException,
 ClassNotFoundException {
 //read super class fields
 personID = (String) in.readObject();
 firstName = (String) in.readObject();
 lastName = (String) in.readObject();
 /*
 if superclass implements Serializable
 only that you need is putting super sentence
 Exmple: readExternal(out);
 */
 // now we take care of this subclass's fields
 age = in.readInt();
 regular = in.readBoolean();
 level = (String)in.readObject();
 }
 public void writeExternal(ObjectOutput out) throws IOException {
 //write super class fields
 out.writeObject(personID);
 out.writeObject(firstName);
 out.writeObject(lastName);
 /*
 if superclass implements Serializable

180 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

 only that you need is putting super sentence
 Exmple: super.writeExternal(out);
 */
 // now we take care of this subclass's fields
 out.writeInt(age);
 out.writeBoolean(regular);
 out.writeObject(level);
 }
}

Note that to persist, we are using out.writeXXX, and for read data, in.readXXX.
Concerning transient data, remember that if you have to recreate transient data,
you can use lazy instantiation. This means that data is returned when called.
HttpSession usage in the servlet code does not change the externalization
approach. See the code snippet in Example 4-48.

Example 4-48 Session usage with externalization

HttpSession https = request.getSession();
if (https.isNew())
{
 //This a only an example
 //Because you need to catch the employee information
 //from somewhere
 EmployeeBean employee = new EmployeeBean();
 employee.setFirstName("john");
 employee.setLastName("smith");
 employee.setPersonID("1234");
 employee.setAge(34);
 employee.setLevel("Senior");
 https.setAttribute("employeeData",employee);
}

Enable security integration for securing HTTP sessions
HTTP sessions are identified by session IDs. A session ID is a pseudo-random
number generated at runtime. Session hijacking is a known attack on HTTP
sessions and can be prevented if all the requests going over the network are
enforced to be over a secure connection (meaning, HTTPS). But not every
configuration in a customer environment enforces this constraint because of the
performance impact of SSL connections. Due to this relaxed mode, an HTTP
session is vulnerable to hijacking, and because of this vulnerability, WebSphere
Application Server has the option to tightly integrate HTTP sessions and
WebSphere Application Server security.

 Chapter 4. Presentation and control layer 181

You should enable security integration in the session management component of
WebSphere Application Server so that the sessions are protected in a manner
that only users who created the sessions are allowed to access them.

See Chapter 10. Session Management in WebSphere Application Server V6.1:
System Management and Configuration, SG24-7304 for more information.

Always invalidate unused HTTP sessions
The session object can be garbage collected after it has been invalidated. This
can be done programmatically or after a predefined time-out period during which
the session was not accessed. To allow the memory used by the session to be
reclaimed as early as possible, it is best to explicitly invalidate the session when
finished with it rather than waiting for the time-out. This might require the
introduction of logout functionality into the application, and training for the users
to make use of this functionality rather than simply closing the browser.

HttpSession objects live inside the WebSphere servlet engine until:

� The application explicitly and programmatically releases them using the API,
javax.servlet.http.HttpSession.invalidate ().

� WebSphere Application Server destroys the allocated HttpSession when it
expires (by default, after 1800 seconds or 30 minutes). You can set up this
feature in web.xml for each Web application putting timeout in minutes
(Example 4-49).

Example 4-49 Session timeout application configuration in web.xml file

<web-app>
 <!--Others parameters -->
 <session-config>
 <session-timeout>5</session-timeout>
 </session-config>
</web-app>

� WebSphere Application Server can only maintain a certain number of
HttpSessions in memory.

However, be careful about where you put this procedure. It is more common
to put it in a Logout Servlet. In statistical terms, a percentage of users use the
logout button of a Web program and another portion closes the browser. You
can alleviate database unused sessions by following the procedure shown in
Example 4-50.

Example 4-50 Programatic HttpSession invalidation

package somepackage;
import java.util.*;

182 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

import javax.servlet.*;
import javax.servlet.http.*;

public class ApplicaitonLogOutServlet extends HttpServlet
{
 public void doGet(HttpServletRequest request,
HttpServletResponse response) throws ServletException,
IOException
{
 HttpSession mySession = request.getSession(false);
 if (mySession != null)
 {
 // Invalidate the Session Here !!!!!
 mysession.invalidate();
 // Invalidate the Session Here !!!!!
}
//--
//
// Some other Application Logoff Processing and Output Reply Back
// to Browser
//
//--
 }

}

� Use manual update and either the sync() method or time-based write if
necessary.

This approach is used in applications that read session data, and update
infrequently. With END_OF_SERVICE as write frequency, when an
application uses sessions and anytime data is read from or written to that
session, the LastAccess time field updates. If database sessions are used, a
new write to the database is produced. This activity is a performance hit that
you can avoid using the Manual Update option and having the record written
back to the database only when data values update, not on every read or
write of the record.

To use manual update, turn it on in the session management service.
Additionally, instead of the generic HttpSession, the application code must
use the com.ibm.websphere.servlet.session.IBMSession class. Within the
IBMSession object, there is a sync method. This method tells the WebSphere
Application Server to write the data in the session object to the database. This
activity helps the developer to improve overall performance by having the
session information persist only when necessary.

 Chapter 4. Presentation and control layer 183

An alternative to using the manual updates is to utilize the timed updates to
persist data at different time intervals. This action provides similar results as
the manual update scheme.

Do not cache references to HTTP sessions
References to the session should always be obtained from the current servlet
context as required; they should not be cached by the application. This ensures
that the session objects can be reclaimed when the session is invalidated. Never
use static or instance variables to refer a session. Get a session from a servlet
method. Also avoid putting static objects in a session. See Example 4-51.

Example 4-51 BadServlet example

package somepackage;

import java.io.IOException;
import javax.servlet.ServletException;
import javax.servlet.SingleThreadModel;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

public class BadServletExample extends HttpServlet implements
SingleThreadModel {

 static HttpSession wrongHttpSessionVariable;
 static Object wrongObjectToPutInSession;

 public BadServletExample() {
 super();
 }

 protected void doGet(HttpServletRequest request, HttpServletResponse
response) throws ServletException, IOException
 {
 wrongHttpSessionVariable = request.getSession(true);

wrongHttpSessionVariable.setAttribute("badObject",wrongObjectToPutInSes
sion);
 }
}

184 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Take care when using HTML frames
Special care must be taken when using HTML frames when each frame is
displaying a JSP belonging to a different Web application on the same server. In
this case, a session should only be created and accessed by one of the pages.
Otherwise, although a session is created for each page, the same cookie is used
to identify the session. This means that the cookie for each newly created
session overwrites the previous cookie, and only one of the sessions is
accessible. The remaining sessions are created but are inaccessible and thus
consume memory until the time-out interval is reached. If the Web application
was split into multiple applications in order to improve scalability, consider
combining all of the Web applications into a single one, and using clustering to
achieve the required scalability.

When using multi-framed pages, follow these guidelines:

� Create a session in only one frame or before accessing any frame sets. For
example, assuming there is no session already associated with the browser
and a user accesses a multi-framed JSP file, the browser issues concurrent
requests for the JSP files. Because the requests are not part of any session,
the JSP files end up creating multiple sessions and all of the cookies are sent
back to the browser. The browser honors only the last cookie that arrives.
Therefore, only the client can retrieve the session associated with the last
cookie. We recommend creating a session before accessing multi-framed
pages that utilize JSP files.

� By default, JSP files get an HTTPSession using request.getSession(true)
method. So by default, JSP files create a new session if none exists for the
client. Each JSP page in the browser is requesting a new session, but only
one session is used per browser instance. A developer can use <% @ page
session="false" %> to turn off the automatic session creation from the JSP
files that do not access the session. For more information on this JSP setup,
see 4.2.5, “Directives” on page 114. If the page requires access to the
session information, the developer can use the following coding to get the
already existing session that was created by the original session creating the
JSP file:

<%HttpSession session =
javax.servlet.http.HttpServletRequest.getSession(false); %>

This action helps to prevent breaking session affinity on the initial loading of
the frame pages.

� Update session data using only one frame. When using framesets, requests
come into the HTTP server concurrently. We recommend modifying session
data within only one frame so that session changes are not overwritten by
session changes in the concurrent frameset.

 Chapter 4. Presentation and control layer 185

Avoid using multi-framed JSP files where the frames point to different Web
applications. This action results in losing the session created by another Web
application because the JSESSIONID cookie from the first Web application
gets overwritten by the JSESSIONID created by the second Web application.

Do not use hidden form fields or cookies for session purposes
In some cases, there are programs that use hidden form fields or cookies to store
data. Note that there is a 4 KB limit on the total size of all cookies for a particular
site and it can be difficult if you have to use cookies for other features inside your
application. Also, be aware that the use of hidden fields increases the page size
and the data can be seen by the user when viewing the HTML source. This is
reason enough to not use this approach.

Other alternatives
Defer persistence of session data to the business logic layer.

Data can also be persisted into a database by the business logic. By using native
data types instead of serialized BLOBs, it is often possible to achieve better
performance. It is also possible to read and write only the data that has changed,
rather than the entire data set as is normally the case with BLOBs. The
application must remove data when it is no longer required (after a time-out
period). This can be implemented by placing an object that implements the
HttpSessionBindingListener interface into the session, and placing the clean up
code in the valueUnBound() method.

For example, you can do a wrapper database class using Data Access Object
pattern to a database. A good point that can be explored is that a key of database
can be retrieved using HTTPSession getId() method. With this, the key value
from a client request does not have to be propagated between requests.
Because you do not have automatic cleanup of this data in the database (you are
not using data in an HTTPSession), a cron job running to clear old session data
with a time criterion is an important choice.To do this, be careful with transaction
controls to access data to avoid locks in database rows when the cron deletes
the data. Also keep in mind that for each access to data, you have to do a update
the “last access” time field. This approach causes a lot of updates in the
database. Refer to “Data Access Object” on page 43.

See the following URLs for examples of improving HttpSession performance with
a sample DB solution.

http://www-128.ibm.com/developerworks/websphere/library/bestpractices/s
tore_objects_in_httpsession.html

http://www.ibm.com/developerworks/websphere/library/bestpractices/store
_objects_in_httpsession.html

186 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://www.ibm.com/developerworks/websphere/library/bestpractices/store_objects_in_httpsession.html
http://www.ibm.com/developerworks/websphere/library/bestpractices/store_objects_in_httpsession.html
http://www-128.ibm.com/developerworks/websphere/library/bestpractices/store_objects_in_httpsession.htm

4.5.3 Use webcontainer approaches to create/deliver resources

The following sections provide alternatives to how a webcontainer can be used to
create and deliver resources.

Use the contextInitialized() method
The contextInitialized() method can be used to initialize resources that are to
be used for all servlets in an application. This method is called by a Web
container before a Web application can be ready for requests. To use this feature,
make sure your class implements javax.servlet.ServletContextListener interface.

Use the servlet.init() method
The javax.servlet.Servlet.init() method can be used to perform expensive
operations that must be performed once only, rather than using the doGet() or
doPost() methods of the servlet. By definition, the init() method is thread-safe.
The results of operations in the HttpServlet.init() method can be cached
safely in servlet instance variables, which become read-only in the servlet
service method. A typical use for this would be to cache any JNDI lookups, for
example, to EJBs or to data sources.

Use the HttpServlet destroy() method
As you used the init() method for expensive operations and to cache some
data as JNDI lookups, you should use the destroy() method to release these
resources to avoid memory leaks. This method gives you an opportunity to clean
up any resources that are being held (for example, memory, file handles, threads)
and make sure that any persistent state is synchronized with the servlet's current
state in memory. But remember that the destroy method is not called in the end
of a servlet execution or when the servlet instance is destroyed by the container.
Example 4-52 shows using the init(), destroy(), and contextInitialize() methods.

Example 4-52 initialization resources best practice code

package somepackage;

import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.Servlet;
import javax.servlet.ServletContext;
import javax.servlet.ServletContextEvent;
import javax.servlet.ServletContextListener;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;

 Chapter 4. Presentation and control layer 187

import javax.servlet.http.HttpServletResponse;

public class Initialization extends HttpServlet implements Servlet ,
ServletContextListener {
 public void init(){
 //Put your initialization code here to initialize resouce that
will be seen by
 //this servlet.
 //you can use instance variables
 }

 protected void doGet(HttpServletRequest arg0, HttpServletResponse
arg1) throws ServletException, IOException {
 //Put your coding here
 }

 public void destroy(){
 //Put your deliver resouces procedures here.
 //But only when servlet is destroyed this method will be called
 }

 public void contextInitialized(ServletContextEvent arg0) {
 //Here you can put a resource that will be seen by all Servlets
 Map countryList = new HashMap();
 //Initialize countryList
 ServletContext appContext = arg0.getServletContext();
 appContext.setAttribute("countryList",countryList);
 }
 public void contextDestroyed(ServletContextEvent arg0) {
 //Here you can release a web application resouce
 }
}

4.5.4 Compose your servlets

You can compose servlets with other servlets or other JSPs as we have seen in
4.2.11, “Best practices to use composed Web components” on page 152. There
are two methods:

� Forward: This transfers an execution of a request to another servlet or JSP
and does not return to the forwarding servlet.

� Include: The including servlet gains execution control after the included
servlet or JSP finishes execution.

188 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

In Example 4-53, you can see that a servlet called Forward delegates processing
to another JSP.

Example 4-53 ForwardServlet example

package somepackage;
import java.io.IOException;

import javax.servlet.RequestDispatcher;
import javax.servlet.Servlet;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class ForwardServlet extends HttpServlet implements Servlet {

 public ForwardServlet() {
 super();
 }

 protected void doGet(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {
 try{
 request.setAttribute("message",new
PresentationMessageBean(0));
 }
 catch(Exception e){
 request.setAttribute("message",new
PresentationMessageBean(1035,e));
 }
 RequestDispatcher rd =
getServletContext().getRequestDispatcher("jspResponse.jsp");
 rd.forward(request,response);
 }
}

 Chapter 4. Presentation and control layer 189

In Figure 4-27, the jspResponse is in the same Web application doc-root.

Figure 4-27 Location of jspResponse

You can also call another servlet or JSP in another Web application. The unique
requisite is that the Web application that has to be found must be available in the
same Java Virtual Machine that the calling Web application is in.

For this example, we use the ServletContext class to get another Web context,
and after that, to get RequestDispatcher. See Example 4-54.

Example 4-54 include another Web resource from another Web application

protected void frameworkCall (ServletContext context,
HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException{
 PrintWriter writer = response.getWriter();

 writer.write("<HTML>");
 writer.write("<HEAD>");
 writer.write("</HEAD>");
 writer.write("<BODY>");

 //Include intestmentSummary.jsp resource placed
 //in another web application with context root /investiments
 RequestDispatcher rd = getRequestDispatcher (context,
"/investments", "/investmentSummary.jsp");

190 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

 rd.include(request, response);

 //Include the accountSummary.jsp placed in anono aplicativo da Web
 //in another web application with context root /banking.
 rd = getRequestDispatcher (context, "/banking",
"/accountSummary.jsp");
 rd.include(request, response);

 writer.write("</BODY>");
 writer.write("</HTML>");

}
private RequestDispatcher getRequestDispatcher (ServletContext context,
String contextName, String resource) {
 return
context.getContext(contexName).getRequestDispatcher(resource);
}

In this example you pass the object ServletContext that can be reached using the
.getServletContext() where this is the including servlet.

Remote Request Dispatcher
Remote Request Dispatcher (RRD) is a WebSphere Application Server
extension that can be connected to a Web container, which allows a Servlet or a
JSP to include another resource in another JVM (Java Virtual Machine). See the
following URL:

http://wm-live.world.mii-streaming.net/live/cbcnm/pull/1

Search for Remote Request Dispatcher.

4.5.5 Avoid presentation layer servlets

We recommend that you avoid presentation layer coding in servlets. Use JSPs to
present data. Servlet presentation code creates a binding between the page
designer and Java programmer that makes it difficult to maintain and divide work
in different teams. Also, problem determination is more difficult. Continuing from
Example 4-53 on page 189, we can see that for a call from ForwardServlet:

RequestDispatcher rd =
getServletContext().getRequestDispatcher("jspResponse.jsp");
rd.forward(request,response);

 Chapter 4. Presentation and control layer 191

http://wm-live.world.mii-streaming.net/live/cbcnm/pull/1

We call the jspResponse.jsp that contains the presentation logic. See
Example 4-55.

Example 4-55 jspReponse.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<HTML>
<HEAD>
<%@ page language="java" contentType="text/html; charset=ISO-8859-1"
 pageEncoding="ISO-8859-1"%>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>

<jsp:useBean id="message" scope="request"
type="somepackage.PresentationMessageBean">
</jsp:useBean>
<c:set var="messageTitle" scope="request"
value="<%=message.getPresentationMessageTitle()%>"/>
<c:set var="message" scope="request"
value="<%=message.getPresentationMessage()%>"/>

<TITLE><c:out value="${messageTitle}" default="Default Title"/></TITLE>
</HEAD>
<BODY>
<c:out value="${message}" default="Processing OK"/>
</BODY>
</HTML>

4.5.6 Implement thread safe servlets

First we give you an overview of how a Web container works: A Web container
receives many requests from browsers in a production enviroment. When a
container receives a request for a servlet, a thread called the dispatcher thread
picks up another thread from a pool to assist the request. The threads inside the
pool, called worker threads, allow multiple requests to be served concurrently.

The goal is to receive a request from the dispatcher thread and call a servlet
instance for processing the service method of the desired servlet that was called
from the URL. If a dispatcher thread receives another request and the first worker
thread is busy with a servlet instance, it takes another worker thread to process
request, no matter if a request is to the same servlet that was called in the first
request. Hence, if a request is to the same servlet, the service() method of the
requested servlet is called two times: one for each worker thread — but the
servlet instance is the same. See Figure 4-28.

192 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Figure 4-28 Servlet Container Worker Threads functionality

For example, if you use an inside service() method or the called methods such as
doGet and doPost, a Thread.sleep method, it does not affect the response
performance for a unique servlet. This is because if you execute each service()
method in each thread, then each thread handles your Thread.sleep() command
separately.

Do not use SingleThreadModel
The normal functionality of a container improves performance to do tasks in
parallel. When you use the SingleThreadModel interface in a servlet, the servlet
container handles servlets either by synchronizing access to a single instance of
the servlet, or by maintaining a pool of servlet instances and dispatching each
new request to a free servlet, depending of container implementation. If
synchronizing the servlet service() method is used, this approach reduces the
throughput, and consequently increases the response times experienced by
users. If the pool of servlet instances is used, the same problem is experienced
because the number of Objects can increase hugely.

The WebSphere servlet engine handles the servlet's reentrancy problem by
creating separate servlet instances for each user. Because this causes a great
amount of system overhead, you should avoid SingleThreadModel. In addition,
with the Servlet 2.4 specification that is included in J2EE 1.4 and by
consequence in WebSphere Application Server 6.1, SingleThreadModel
interface is deprecated. If a servlet has shared variables that have to be
protected, it is preferable to do so using synchronization of the relevant
accesses, as we see in “Avoiding or minimizing synchronization in servlets” on
page 196. The coding is shown in Example 4-56.

Dispatcher
Thread

Instance of
Servlet A

Instance of
Servlet B

Worker Thread Pool

Client Requests

service()

service()

Worker Threads

 Chapter 4. Presentation and control layer 193

Example 4-56 SingleThreadModel bad usage example

public class BadServletExample extends HttpServlet implements
SingleThreadModel

See Figure 4-29 to understand SingleThreadModel functionality.

Figure 4-29 Two types of single thread model functionality inside container

Best practices for variables usage in servlets
The correct usage of servlet scope variables in your code can make a huge
difference in both performance and runtime errors. A thread safe variable means
that if the object variable is accessed from multiple threads, the state is
consistent after these calls, independent of processing order. However, a thread
unsafe variable can be inconsistent depending on the thread schedule sequence
of processing. In any Java class, the servlet has three variable types:

� Class or Static variables:

Class variables can exist in any instances of a class. They are not thread safe,
so do not use them for volatile data such as user information. In short, use
static variables only for constants and read-only data.

Dispatcher
Thread

Instance of
Servlet A

Another
Instance of

Servlet A

Worker Thread Pool

Client Requests

service()

service()

Worker Threads

Dispatcher
Thread

Instance of
Servlet A

Worker Thread Pool

Client Requests
service()

Worker Threads

Synchronize
access to Servlet A

194 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

� Instance variables:

Instance variables can be used for all service() servlet methods executed
from threads. They are not thread safe, so do not use them for volatile data
such as user information. A common usage is for operations that consume
processing and remain in all servlet life cycles as a connection created by a
DAO (Data Access Object) mechanism. Put this processing in a servlet.init()
method for one servlet or contextInitialized() method that is executed when a
class implements a ServletContextListener interface. See section 4.5.3, “Use
webcontainer approaches to create/deliver resources” on page 187.

� Local variables:

Local variables are unique variables that are thread safe because they exist in
a method execution. This means that each service() entry point method and
subsequent calls to doGet or doPost, if used, has your set of variables per
each WorkerThread that is calling. Also, they are eligible to be garbage
collected at the end of execution. The recommendation is to use local
variables when possible.

If you have to keep local variables live after execution of a servlet, you can use
request, session, or context scope. See Table 4-16.

Table 4-16 Scope variables usage

You can see an example of variables best practice in Example 4-57.

Example 4-57 Variables best practice example

package somepackage;

import java.io.*;
import javax.servlet.http.*;

public class ThreadSafeServlet extends HttpServlet
{
 //Class Variables usage
 static final int STORE_CODE = 10;

Scope Usage

request This is used to keep data live when you use composed Web
components, for example, to a dispatch or forward commands.

session This is used to keep data live between different requests, for
example, in a shopping application.

context This is used to keep data live between all servlets in a Web
application, for example, for an application’s configuration data.

 Chapter 4. Presentation and control layer 195

 static final String DEFAULT_GENERAL_MESSAGE = "General failure, try
Again !";

 //Instance Variables usage
 public DAOAccessor dao;

 public void init(){
 dao = new DAOAccessor();
 dao.initializeConnections();
 }

 public void doGet(HttpServletRequest request, HttpServletResponse
response){
 //Local variables usage
 String accountNumber = "";
 try{
 accountNumber = request.getParameter("account");
 }
 catch(Exception e){}
 }
}

Avoiding or minimizing synchronization in servlets
No synchronization in servlets presents the best option, because if large sections
of code are synchronized, an application effectively becomes single threaded,
and throughput decreases dramatically. However, if the application design cannot
avoid synchronization, then use a “Lock Object” and lock the smallest possible
code path. Do not synchronize the servlet service method or the doGet and
doPost methods. These methods are the major code paths. Synchronizing these
methods or any of the servlet methods locks the entire servlet instance.
Example 4-58 shows an example using a “Lock Object” to protect the servlet
instance variable numberOfRows.

Example 4-58 MinimizeSynchronizationServlet example

public class MinimizeSynchronizationServlet extends HttpServlet
{
private int numberOfUsers = 0;

private Object lockObject = new Object();

 public void doGet(HttpServletRequest request, HttpServletResponse
response)
 throws ServletException, IOException

196 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

 {
 //Some code here...

 synchronize(lockObject){
 numberOfUsers = getAllUsersConnected() + 1;
 }
 try {
 //Another code here
 }
 catch (Exception es){
 // Error handling code here
 }
 }
}

Be careful when you use more than one mutex variable (lock Object). The code
in Example 4-59 could be right, but is not.

Example 4-59 Bad usage of mutex objects in synchronized blocks

public class BadMutexUsage extends javax.servlet.http.HttpServlet
 implements javax.servlet.Servlet {

 public String mutex = "";
 public String mutex2 = "";

 protected void doGet(HttpServletRequest request, HttpServletResponse
response) throws ServletException, IOException {
 synchronized (mutex) {
 //Your code here
 }
 synchronized (mutex2) {
 //Your code here
 }
 }
}

The mutex and mutex2 Strings are the same object because they were initialized
with the same constant ““. The object is returned from a pool of unique strings.
Be wary of this example. Use Objects to do synchronization instead. It is simpler
and you do not have to use a specialized class such as String (shown in
Example 4-59) to do this approach.

 Chapter 4. Presentation and control layer 197

Another interesting point is that if even you are using primitive variable types in
two separate command lines, there is no guarantee that they are thread safe.
See Example 4-60.

Example 4-60 ThreadNotSafeServlet example

public class ThreadNotSafeServlet extends HttpServlet
{

 int a = 0;
 int b = 0;

 public void doGet(HttpServletRequest request, HttpServletResponse
response){

 //Local variables usage
 try{
 a++;
 b = a + 1;
 }
 catch(Exception e){}
 }
}

This servlet could cause problems. If a worker thread T1 executes the line a++
and at a later time another worker thread T2 executes the same line a++, the
results are unpredictable. Then the best practice is shown in Example 4-61.

Example 4-61 ThreadSafeServlet using correct locking for primitives

//Instance Servlet variable
private Object lockObject = new Object();

public void doGet(HttpServletRequest request, HttpServletResponse
response) throws ServletException, IOException
{
 //Some code here...
 synchronize(lockObject){
 a++;
 b = a + 1;
 }
}

For more details on synchronization techniques, see on Chapter 3, “General
coding considerations” on page 57.

198 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

4.5.7 Optimizing service

When you code your service() method, or doGet or doPost, and there is a
requirement to write to an output stream, avoid the use of PrintWriter to send
binary data, because there is overhead in PrintWriter usage. PrintWriter is for
use with character output streams and it encodes data to bytes. For binary data,
use ServletOutputStream.

Also, do partial flushes with the flush method of ServletOutputStream and
PrintWriter class when there is a lot of data to be sent to the client. Otherwise,
the client might think that the servlet is not responding and might perform many
unnecessary requests.

4.5.8 Use a framework that implements a controller

If you are planing to develop a controller that implements an MVC pattern,
consider using a framework that does it for you. Do not reinvent the wheel!
Struts offers a solid and tested framework.

4.6 Struts

Struts is an open source framework you can use to build Web applications and is
based on the popular Model View Controller (MVC2) design paradigm. The
Struts framework control layer uses technologies such as servlets, JavaBeans,
and XML. The view layer is implemented using a JSP approach as a foundation
and enhancing it with a powerful custom tag library that speeds up Web
application development and implements the concept and the advantages of a
Model View Controller based architecture. Its tag libraries provide features such
as parsing and validation of user input, error handling, and internationalization
support. The Struts architecture encourages the implementation of the concepts
of the Model View Controller architecture pattern. By using Struts, you can get a
clean separation between the presentation and business logic layers of your
application.

4.6.1 Model View Controller model 2 pattern with Struts
In 2.2.2, “Model View Controller” on page 28, we described general concepts and
architecture of the MVC pattern. But remember that the difference between
Model View Controller (MVC) model 1 and model 2 is that there is always a
controller that dispatches requests from clients and select views. So all calls from
one JSP to another are not done directly. Calls pass to a controller that decides
the JSP for the next view, for example.

 Chapter 4. Presentation and control layer 199

Figure 4-30 depicts Struts components in relation to the MVC pattern:

� Model: Struts does not provide model classes. The business logic must be
provided by the Web application developer as JavaBeans or EJBs.

� View: Struts provides action forms to create form beans that are used to pass
data between the controller and view. In addition, Struts provides custom JSP
tag libraries that assist developers in creating interactive form-based
applications using JSPs. Application resource files hold text constants and
error message, translated for each language, that are used in JSPs.

� Controller: Struts provides an action servlet (controller servlet) that populates
action forms from JSP input fields and then calls an action class where the
developer provides the logic to interface with the model.

Figure 4-30 Struts components in the MVC architecture

 : ActionForm

View Controller Model

Action

Action

Action

Action
Configuration

File

Model

 Application
Resources

ActionServlet

Tag libraries

 : JSP

Struts Support

200 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

A typical Struts Web application is composed of the following components:

� A single servlet (extending org.apache.struts.action.ActionServlet)
implements the primary function of mapping a request URI to an action class.
Before calling the action class, it populates the form bean associated to the
action with the fields from the input JSP. If specified, the action servlet also
requests the form bean to validate the data. It then calls the action class to
carry out the requested function. If form bean validation fails, control is
returned to the input JSP so the user can correct the data. The action servlet
is configured by an XML configuration file that specifies the environment and
the relationship between the participating components.

� Multiple JSPs that provide the end-user view. Struts includes an extensive tag
library to make JSP coding easier. The JSPs display the information prepared
by the actions and request new information from the user.

� Multiple action classes (extending any one of the Struts action classes such
as org.apache.struts.action.Action) that interface with the model. When an
action has performed its processing, it returns an action forward object, which
determines the view that should be called to display the response. The action
class prepares the information required to display the response, usually as a
form bean, and makes it available to the JSP. Usually the same form bean that
was used to pass information to the action is used also for the response, but it
is also common to have special view beans tailored for displaying the data.
An action forward has properties for its name, address (URL), and a flag
specifying if a forward or redirect call should be made. The address to an
action forward is usually hard coded in the action servlet configuration file, but
can also be generated dynamically by the action itself.

� Multiple action forms (extending any one of the Struts Action Form classes
like org.apache.struts.action.ActionForm) to help facilitate transfer form data
from JSPs. The action forms are generic Javabeans with getters and setters
for the input fields available on the JSPs. Usually there is one form bean per
Web page, but you can also use more coarse-grained form beans holding the
properties available on multiple Web pages (this fits very well for wizard-style
Web pages). If data validation is requested (a configurable option), the form
bean is not passed to the action until it has successfully validated the data.
Therefore the form beans can act as a sort of firewall between the JSPs and
the actions, only letting valid data into the system.

� One application resource file per language supported by the application holds
text constants and error messages and makes internationalization easy.

 Chapter 4. Presentation and control layer 201

Figure 4-31 shows the basic flow of information for an interaction in a Struts Web
application.

Figure 4-31 Struts request sequence

A request from a Web browser reaches the Struts ActionServlet. If the action that
handles the request has a form bean associated with it, Struts creates the form
bean and populates it with the data from the input form. It then calls the validate
method of the form bean. If validation fails, the user is returned to the input page
to correct the input. If validation succeeds, Struts calls the action’s execute
method. The action retrieves the data from the form bean and performs the
appropriate logic.

Actions often call session EJBs to perform the business logic. When done, the
action either creates a new form bean (or other appropriate view bean) or reuses
the existing one, populates it with new data, and stores it in the request (or
session) scope. It then returns a forward object to the Struts action servlet, which
forwards to the appropriate output JSP. The JSP uses the data in the form bean
to render the result.

4.6.2 General performance considerations

In general, the Struts Framework has proven its performance and scalability. It is
widely used and it also enforces the Model View Controller architecture, which is
a big advantage compared to JSP-servlet based applications. Struts makes
heavy use of JSP tag libraries, which results in a small performance overhead.
This overhead can be easily reduced by using the dynamic caching framework of
IBM WebSphere Application Server V6, which now includes support for the
Struts framework, including tiles.

 : Web user
(Browser)

 : ActionServlet : Action : ActionForm : JSP

HTTP setXxx()
validate()

execute()

forward()

getXxx()

getXxx()

setXxx()"forward"

202 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

4.6.3 Overview of Struts components

First, we explain the Struts components in the context of best practices and the
role each one plays in your Web application development.

Action
Every Action of your application extends Struts' org.apache.struts.action.Action.
These Action classes provide an interface to the application's Model layer, acting
as a wrapper around the business logic. The goal of an Action class is to process
a request, via its execute method, and return an ActionForward object that
identifies where control should be forwarded (such as a JSP, Tile definition,
Velocity template, or another Action) to provide the appropriate response. For it,
each Action class must provide its case-specific implementation to the perform()
method. The perform() method always returns a value of type ActionForward.

To be more specific, the Action class defines two methods that could be executed
depending on your servlet environment (Example 4-62).

Example 4-62 Two method types for action

public ActionForward execute(ActionMapping mapping, ActionForm form,
ServletRequest request, ServletResponse response) throws Exception;

public ActionForward execute(ActionMapping mapping, ActionForm form,
HttpServletRequest request, HttpServletResponse response) throws
Exception;

ActionForm
Every ActionForm of your application extends Struts'
org.apache.struts.action.ActionForm. ActionForms are simple JavaBeans that
encapsulate and validate request parameters. To validate your request data, your
ActionForm's validate() method must give a case-specific implementation.
ActionForms serve as a carrier of request data to the Action class. A JSP object
combines with a respective ActionForm to form your application's View layer,
where almost every form field of the JSP object maps to an attribute of the
corresponding ActionForm (Example 4-63).

Example 4-63 ActionForm example

package somepackage.forms;
import javax.servlet.http.HttpServletRequest;
import org.apache.struts.action.ActionMapping;
import org.apache.struts.validator.ValidatorForm;
public class LogonForm extends ValidatorForm

 Chapter 4. Presentation and control layer 203

{
 private String ssn = null;
 public String getSsn() {
 return ssn;
 }
 public void setSsn(String s) {
 this.ssn = s;
 }
 public void reset(ActionMapping mapping, HttpServletRequest
request) {
 // Reset values are provided as samples only. Change as
appropriate.
 ssn = null;
 }
 public ActionErrors validate(ActionMapping mapping,
 HttpServletRequest request) {
 ActionErrors errors = super.validate(mapping,request);
 if ((field == null) || (field.length() == 0)) {
 errors.add("field", new
org.apache.struts.action.ActionError("error.field.required"));
 }
 return errors;
 }
}

JSP custom tag libraries
The JSP custom tag libraries are a collection of actions presented as tags. This
allows you to separate presentation from other application tiers. The libraries are
easy to use and you can read them in XML-like fashion. You can easily maintain
the JSP components by minimizing the use of Java scriptlets in them. The JSP
tags that Struts provides include HTML, logic, and bean tags (Example 4-64).

Example 4-64 Struts jsp custom tag libraries

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html"%>
<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean"%>
...
<html:form action="/logon">
 <TABLE border="0">
 <TBODY>
 <TR>
 <TH>Please enter your Customer Number(ssn): </TH>
 <TD><html:text property="ssn" /></TD>
 </TR>

204 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

 <TR>
 <TD><html:submit property="submit" value="Submit" /></TD>
 <TD><html:reset /></TD>
 </TR>
 </TBODY>
 </TABLE>
</html:form>

ActionErrors
You use ActionErrors to support exception handling. An ActionError traps and
propagates an application exception to the View layer. Each one is a collection of
ActionError instances. ActionErrors encapsulate error messages, while the
</html:errors> in the Presentation layer renders all error messages in the
ActionError collection.

4.6.4 Reuse data across multiple ActionForms

We continue by showing you ways to get the most out of the framework. First,
Struts recommends that you associate every JSP object with an ActionForm,
which encapsulates data represented in the screen. You access the form data in
the JSP object using accessory methods found in ActionForm. Example 4-65
shows the conventional use of ActionForm tag in the View layer.

Example 4-65 ActionForm usage in JSP

<html:form action="/bp1">
<html:text property="attrib1" />
</html:form >

The ActionForm called “BP1AForm” includes the attribute attrib1, as well as its
getter and setter methods. In the configuration file struts-config.xml, the action
“/bp1” maps to BP1AForm using the name attribute. This facilitates data display
in the JSP (Example 4-66).

Example 4-66 struts-config.xml snippet, initial configuration

<action path="/bp1" type="somepackage.BP1AForm" name="bp1AForm"
scope="request">

To implement this best practice with reuse of data in ActionForms, Struts
recommends that you do two things (Example 4-67):

� Create a JavaBean (BP1BForm) with attributes that form an attribute subset
in BP1AForm, along with the attributes' getter and setter methods.

 Chapter 4. Presentation and control layer 205

� Replace the attributes in BP1AForm with the bean BP1BForm by associating
the bean with bp1AForm. Now you can access this attribute subset in
BP1AForm through BP1BForm.

Example 4-67 Accessing form attributes in JSP

<html:form action="/bp1">
<bean:define name="bp1AForm" property="bp1BForm" id="bp1B"
 type="somepackage.BP1BForm" />
<html:text name="bp1B" property="subsetAtt1" />
</html:form >

Points to remember
The main advantage of this practice is that you can use it when you have multiple
ActionForms to access a set of attributes. When following this best practice, you
might want to keep the following considerations in mind:

� Struts implements the <bean:define/> tag.

� When the code <%@ taglib uri="struts-bean.tld" prefix="bean" %> points to
struts-bean.tld, the <bean:define/> tag starts to work in the JSP components.

� BP1AForm's validation framework, which extends ActionForm, must validate
BP1BForm's data.

When creating Action classes in your application, instead of directly extending
org.apache.struts.action.Action, create an Action class (IntermediateAction) by
extending org.apache.struts.action.Action to handle common things in your
application. All other Action classes extend this IntermediateAction class.

4.6.5 Design guidelines for Actions

When you code an Action class, remember the following design guidelines:

� Write code for a multi-threaded environment: Our controller servlet creates
only one instance of your Action class, and uses this one instance to service
all requests. Thus, you have to write thread-safe Action classes. Follow the
same guidelines you would use to write thread-safe Servlets. Here are two
general guidelines to help you write scalable, thread-safe Action classes:

– Only Use Local Variables: The most important principle for thread-safe
coding is to use only local variables, not instance variables, in your Action
class. Local variables are created on a stack assigned (by your JVM) to
each request thread, so you do not have to worry about sharing them. An
Action can be factored into several local methods, so long as all variables
required are passed as method parameters. This assures thread safety, as
the JVM handles such variables internally using the call stack which is
associated with a single Thread.

206 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

– Conserve Resources: As a general rule, allocating scarce resources and
keeping them across requests from the same user (in the user's session)
can cause scalability problems. For example, if your application uses
JDBC and you allocate a separate JDBC connection for every user, you
are probably going to run into some scalability issues when your site
suddenly shows up on Slashdot. You should strive to use pools and
release resources (such as database connections) prior to forwarding
control to the appropriate View component — even if a bean method you
have called throws an exception.

� Don't just throw it, catch it! Have you ever used a commercial Web site only to
have a stack trace or exception thrown in your face after you have already
typed in your credit card number and clicked the purchase button? Let us just
say it does not inspire confidence. Now is your chance to deal with these
application errors — in the Action class. If your application specific code
throws exceptions, you should catch these exceptions in your Action class,
log them in your application's log (servlet.log(“Error message”, exception))
and return the appropriate ActionForward.

It is wise to avoid creating lengthy and complex Action classes. If you start to
embed too much logic in the Action class itself, you might begin to find the Action
class hard to understand, maintain, and impossible to reuse. Rather than
creating overly complex Action classes, it is generally a good practice to move
most of the persistence, and “business logic” to a separate application layer.

When an Action class becomes lengthy and procedural, it might be a good time
to refactor your application architecture and move some of this logic to another
conceptual layer; otherwise, you could be left with an inflexible application which
can only be accessed in a Web application environment. The framework should
be viewed as simply the foundation for implementing MVC in your applications.
Struts provides a useful control layer, but it is not a fully featured platform for
building complete MVC applications.

4.6.6 Use the Action class to handle requests

Typically, when using the Struts framework, for every action that the JSP
component requests your application to execute, the application must extend
Struts' org.apache.struts.action.Action to create an Action class. This individual
Action class interfaces with the application's Model layer while processing the
request.

 Chapter 4. Presentation and control layer 207

To implement this practice, Struts recommends that you follow these steps:

1. Create an Action class, say BP2Action, by extending
org.apache.struts.action.Action.

2. Create all other Action classes in your Web application by extending
BP2Action.

3. In BP2Action, create a method performTask(), as in public abstract
ActionForward performTask(ActionMapping mapping, ActionForm form,
HttpServletRequest request, HttpServletResponse response) throws
IOException, ServletException.

4. In BP2Action add one or more generic methods to the application, for
example, serverSideValidate(). You can decide on the method's access
modifier by considering the following factors:

– If all Action classes must implement this method, make it abstract.

– If some Action classes must provide a case-specific implementation,
declare the method protected and give it a default implementation.

5. In BP2Action, declare method perform() as final. Invoke the above generic
method, which must always be called before processing the request. Now call
the method performTask() created in step 3.

6. In every Action class extending BP2Action, add method performTask() with a
case-specific implementation.

Advantages
This practice has two main advantages. First, it helps you avoid redundant code
in every Action class of your Web application. Second, it gives the application
more control over generic tasks by centralizing the behavior in one Action class.

4.6.7 Use Struts validation framework

The Struts validation framework provides automatic validation of forms using
configuration files. To explain this best practice, we are using Rational Application
Developer.

Consider the following logon.jsp example (Example 4-68).

Example 4-68 Logon.jsp example

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html"%>
<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean"%>
<html:html>
<HEAD>
<TITLE>logon.jsp</TITLE>

208 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

</HEAD>

<BODY>

<P>Simple Validation Example</P>
<HR>

<center><html:errors/></center>

<html:form action="/logon">
 <TABLE border="0">
 <TBODY>
 <TR>
 <TH>Please enter your Customer Number(ssn): </TH>
 <TD><html:text property="ssn" /></TD>
 </TR>
 <TR>
 <TD><html:submit property="submit" value="Submit" /></TD>
 <TD><html:reset /></TD>
 </TR>
 </TBODY>
 </TABLE>
</html:form>
</BODY>
</html:html>

This logon.jsp calls a Struts framework that has an action called LogonAction
with a LoginForm associated. See the struts-config.xml snippet (Example 4-69).

Example 4-69 Snippet of struts-config.xml

<action-mappings>
 <action path="/logon" type="somepackage.LogonAction" name="logonForm"
scope="request">
 <forward name="success" contextRelative="false"
path="/welcomeCustomer.jsp">
 </forward>
 <forward name="failure" contextRelative="false" path="/logon.jsp">
 </forward>
 </action>
 <action path="/logoff" type="somepackage.LogonAction">
 <forward name="success" contextRelative="false" path="/logon.jsp">
 </forward>
 </action>
 </action-mappings>

 Chapter 4. Presentation and control layer 209

Remember that, in the beginning of Struts life cycle, if the action that is to handle
the request has a form bean associated with it, Struts creates the form bean and
populates it with the data from the input form. It then calls the validate method of
the form bean. Instead of using programmatic validation, you can use the files,
validation.xml and validator-rules.xml, which are the two configuration files used
by the Struts validation framework to validate forms.

To do this, the LogonForm program does not have your own validation. It is
commented using /* comments. See Example 4-70.

Example 4-70 LogonForm

package somepackage.forms;

import javax.servlet.http.HttpServletRequest;

import org.apache.struts.action.ActionMapping;
import org.apache.struts.validator.ValidatorForm;

/**
 * Form bean for a Struts application.
 * Users may access 1 field on this form:
 *
 * ssn - [your comment here]
 *
 * @version 1.0
 * @author
 */
public class LogonForm extends ValidatorForm

{

 private String ssn = null;

 /**
 * Get ssn
 * @return String
 */
 public String getSsn() {
 return ssn;
 }

 /**
 * Set ssn
 * @param <code>String</code>
 */

210 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

 public void setSsn(String s) {
 this.ssn = s;
 }

 public void reset(ActionMapping mapping, HttpServletRequest
request) {

 // Reset values are provided as samples only. Change as
appropriate.

 ssn = null;

 }

/*
 public ActionErrors validate(ActionMapping mapping,
 HttpServletRequest request) {

 ActionErrors errors = super.validate(mapping,request);

 //ActionErrors errors = new ActionErrors();
 // Validate the fields in your form, adding
 // adding each error to this.errors as found, e.g.

 // if ((field == null) || (field.length() == 0)) {
 // errors.add("field", new
org.apache.struts.action.ActionError("error.field.required"));
 // }
 return errors;

 }
*/
}

To validate the logonForm using the Struts validation framework, do these steps:

1. Import the EAR project called Control/Struts.ear after unzipping our add
material.

2. In the RAD Web perspective, add the Struts validator plug-in and required
property to the plug-in indicating the location of the validation configuration
files. Expand Dynamic Web Projects → Struts → WebContent →
WEB-INF.

3. Double-click the struts-config.xml file to open in the Struts Configuration
Editor.

 Chapter 4. Presentation and control layer 211

4. Click the Plug-ins tab in the Struts Configuration Editor.

5. Click Add... in the Plug-ins field and select the ValidatorPlugIn in the Class
Selection Wizard.

6. Click OK to close the Class Selection Wizard. The Struts Validator Plug-in
has now been added.

7. Add the required parameter by clicking Add in the Plug-in Mapping Extension
field.

8. In the Property and Value fields, enter in pathnames and
/WEB-INF/validator-rules.xml,/WEB-INF/validation.xml, respectively, as seen
in Figure 4-32.

Figure 4-32 Struts configurator editor - Adding validator plugin

9. . Save the configuration file and close the Struts configuration file.

The validation.xml file contains all the Struts form beans and the fields within the
form bean that are validated, and the rule to be applied to validate the bean. The
validation.xml for the logonForm is shown in Example 4-71.

212 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Example 4-71 validation.xml snippet - LogonForm

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE form-validation PUBLIC "-//Apache Software Foundation//DTD
Commons Validator Rules Configuration 1.0//EN"
 "http://jakarta.apache.org/commons/dtds/validator_1_0.dtd">

<form-validation>
 <global>

 </global>
 <formset>
 <form name="logonForm">
 <field property="ssn" depends="required">
 <arg0 key="form.ssn" />
 </field>
 </form>
 </formset>
</form-validation

The validator-rules.xml file contains the rule configurations for all the rules
defined in the validation.xml file. In our previous example, the rule that is defined
is required for the field ssn, as shown in Example 4-71. The snippet for the
required rule is shown in Example 4-72.

Example 4-72 Validation-rules.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE form-validation PUBLIC "-//Apache Software Foundation//DTD
Commons Validator Rules Configuration 1.0//EN"
 "http://jakarta.apache.org/commons/dtds/validator_1_0.dtd">

<form-validation>
 <global>
 <validator name="required"
 classname="org.apache.struts.validator.FieldChecks"
 method="validateRequired"
 methodParams="java.lang.Object,
org.apache.commons.validator.ValidatorAction,
org.apache.commons.validator.Field,
org.apache.struts.action.ActionErrors,
javax.servlet.http.HttpServletRequest"
 msg="errors.required" />
 </global>
</form-validation>

 Chapter 4. Presentation and control layer 213

4.6.8 Do not make direct JDBC calls from Actions

Some developers make JDBC calls from Actions, but such practices are not
recommended. The Struts best practice is for Actions to delegate business and
system logic calls to another component, such as using a business facade. The
Struts Action passes appropriate values to one or methods on the facade. The
outcome is used to determine an appropriate response. Often, the outcome of an
Action is described as either “success” or “failure”.

4.6.9 Use ActionForm to work on session data

In a Struts-based Web application, each ActionForm extends
org.apache.struts.action.ActionForm. These ActionForms encapsulate page data
and provide a validation framework to validate request parameters.

Most Web applications maintain data in session to make them available
throughout the application. This best practice addresses this Web application
feature. It allows methods toSession() and fromSession() to move session data
to and from the form data. Thus, it addresses session data maintenance in a
Web application.

To adhere to this practice, follow these steps:

1. Create an abstract class named BP3Form by extending
org.apache.struts.action.ActionForm.

2. In BP3Form, add methods with access modifiers as in public abstract void
toSession(SessionData sessionData) and void fromSession(SessionData
sessionData).

3. In every ActionForm, extend BP3Form and implement the abstract methods
in which the form data is transported to and from the session.

4. The corresponding Action class can determine the order in which these
methods are called. For example, you could invoke method toSession() on the
ActionForm just before actionForward is determined.

When to use it: This practice is most useful when session data is maintained as a
single object and/or every page manipulates or uses session data.

4.6.10 Handle exceptions effectively

Conventionally, when an application exception occurs in an Action class, the
exception is first logged. Then the class creates an ActionError and stores it in
the appropriate scope. This Action class then forwards control to the appropriate
ActionForward. Example 4-73 shows how the Action class handles exceptions.

214 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Example 4-73 Exception handling in an Action class

try {
//Code in Action class
}
catch (ApplicationException e) {
 //log exception
 ActionErrors actionErrors = new ActionErrors();
 ActionError actionError = new ActionError(e.getErrorCode());
 actionErrors.add(ActionErrors.GLOBAL_ERROR, actionError);
 saveErrors(request, actionErrors);
}

While conventional exception handling procedures save exception information in
every Action class, the best practice is to avoid redundant code while handling
exceptions. To use this practice, Struts recommends following these steps:

1. Create an Action class, such as BP4Action, by extending
org.apache.struts.action.Action.

2. Create all other Action classes in your Web application by extending
BP4Action.

3. In BP4Action, declare variable ActionErrors actionErrors = new
ActionErrors();.

4. In BP4Action, create a method performTask() as in public abstract
ActionForward performTask(ActionMapping mapping, ActionForm form,
HttpServletRequest request, HttpServletResponse response, ActionErrors
actionErrors) throws IOException, ServletException.

5. In BP4Action, declare method perform() as final. Then invoke generic
methods, which must always be called before processing the request. Now
you can call the method performTask() created in the previous step.

6. While implementing method performTask() in every Action class (by extending
BP4Action), handle application exceptions as shown in Example 4-74.

Example 4-74 Using Action errors effectively

try{
//Code in Action class
}
catch(ApplicationException appException) {
 //Log exception
 //Add error to actionErrors
 actionErrors.add(ActionErrors.GLOBAL_ERROR,
 new ActionError(appException.getErrorCode()));
}

 Chapter 4. Presentation and control layer 215

In BP4Action, after invoking the method performTask(), save the ActionErrors
using saveErrors(request, errors).

Advantages
This main advantage of this practice is that it avoids code redundancy in every
Action class that handles ActionErrors.

4.6.11 Choose JSP instead of XSLT for rendering the view in Struts

If you decide to use the Struts framework, you should try to use JavaServer
Pages instead of Extensible Stylesheet Language Transformation (XSLT) to
generate the user interface, whenever possible, for performance reasons. For
more information about XSLT, see 4.3, “XML/XSLT processing” on page 168.

4.6.12 Using Tiles

This section provides a short overview about Tiles in preparation for when we
discuss caching Web components in 4.8, “Caching Web components” on
page 240 to get more performance.

Tiles overview
Tiles framework builds on the jsp:include feature of JavaServer Pages (JSP)
architecture, and comes bundled with the Struts Web application framework. This
framework helps to reduce the duplication between JSP files, as well as making
layouts flexible and easy to maintain. The Tiles structure provides a full-featured,
robust framework for assembling presentation pages from component parts.

Creating a template with Tiles
Consider a set of pages with the same layout in common in terms of header,
navigation, and footer layout. Duplicating an HTML code for these components to
this page can be a nightmare and it is not a good practice. The JSP include tags
(jsp:include) or Tiles inserts (<tiles:insert>) could do the service easily.

Now consider if the position of the HTML body changes — for example, on one
page it is on the left, and on another page it is on the right. The new challenge is
to find a convenient way to switch the Web UI from one layout to another. The
Tiles template feature meets this requirement.

A Tiles template is a generic layout that does not contain any actual content. It
contains attributes that are placeholders to enable things such as page URI and
string value to be inserted later. Content pages like News.jsp and Solutions.jsp
can reference the template and insert the page URI through the attributes.

216 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

To create a template page, you use Tiles insert tags. The insert tag in a Tiles
template has only one attribute named attribute, which becomes the placeholder
for the JSP page URI insertion. The template code to create the header
placeholder is <tiles:insert attribute="header" />.

The template defines a common layout of Web UI components that concrete
pages can reference. The JSP code in Example 4-75 is a sample template using
Tiles.

Example 4-75 Layout.jsp is a Tiles Template (TemplatingTilesWeb)

<TITLE>IBM Solutions</TITLE>
</HEAD>
<BODY>
<TABLE border="0">
 <TBODY>
 <TR>
 <TD colspan="2"><tiles:insert attribute="header"/></TD>
 </TR>
 <TR>
 <TD width="20%" valign="top"><tiles:insert
attribute="navigation"/></TD>
 <TD width="80%" valign="top"><tiles:insert attribute="body"/></TD>
 </TR>
 <TR>
 <TD colspan="2"><tiles:insert attribute="footer"/></TD>
 </TR>
 </TBODY>
 </TABLE>
</BODY>
</HTML

After a template is defined, it cannot be used on its own. An actual JSP page has
to reference the template and provide page URI for the attributes. The line
<tiles:insert page="/Layout.jsp"flush="true"> is used to reference the template.

The concrete JSP pages delegate the layout composition to the template
Layout.jsp. They have to specify the page implementation names for the attribute
using the Tiles put tag. The code <tiles:put name="header"
value="/Header.jsp"/> inserts the page /Header.jsp into the attribute named
header.

Example 4-76 and Example 4-77 show the JSP code for Solutions.jsp and
News.jsp, which use the Tiles template feature.

 Chapter 4. Presentation and control layer 217

Example 4-76 Solutions.jsp with the Tiles template feature (TemplatingTilesWeb)

<%@ taglib uri="/WEB-INF/struts-tiles.tld" prefix="tiles" %>
<tiles:insert page="/Layout.jsp" flush="true">
<tiles:put name="header" value="/Header.jsp"/>
<tiles:put name="navigation" value="/Navigation.jsp"/>
<tiles:put name="body" value="/Fragment-Solutions.jsp"/>
<tiles:put name="footer" value="/Footer.jsp"/></tiles:insert>

Example 4-77 News.jsp with the Tiles template feature (TemplatingTilesWeb)

<%@ taglib uri="/WEB-INF/struts-tiles.tld" prefix="tiles" %>
<tiles:insert page="/Layout.jsp" flush="true">
<tiles:put name="header" value="/Header.jsp"/>
<tiles:put name="navigation" value="/Navigation.jsp"/>
<tiles:put name="body" value="/Fragment-News.jsp"/>
<tiles:put name="footer" value="/Footer.jsp"/>
</tiles:insert>

To understand the Tiles facility in more detail, see Figure 4-33.

Figure 4-33 Changing page layout with tiles

If you want to change the layout from Page 1 to Page 2, all you have to do is to
modify the template Layout.jsp as shown in Example 4-78, without touching
concrete pages such as Solutions.jsp and News.jsp. Compared to modifying
multiple pages when a template is not used, using the Tiles template feature can
significantly reduce maintenance costs.

Example 4-78 Change the template to create a new layout

<HTML>
<HEAD>
<%@ taglib uri="/WEB-INF/struts-tiles.tld" prefix="tiles" %>
<TITLE>IBM Solutions</TITLE>
</HEAD>

Header

Navigation Body

Footer

Header

NavigationBody

Footer

Page 1 Page 2

218 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

<BODY>
 <TABLE border="0">
 <TBODY>
 <TR>
 <TD colspan="2"><tiles:insert attribute="header"/></TD>
 </TR>
 <TR>
 <TD width="80%" valign="top"><tiles:insert attribute="body"/></TD>
 <TD width="20%" valign="top"><tiles:insert
attribute="navigation"/></TD>
 </TR>
 <TR>
 <TD colspan="2"><tiles:insert attribute="footer"/></TD>
 </TR>
 </TBODY>
 </TABLE>
</BODY>
</HTML>

For more information about Tiles integration with Struts, see:

http://www.ibm.com/developerworks/websphere/library/techarticles/0311_f
ung_yu/fung_yu1.html

http://www.ibm.com/developerworks/java/library/j-strutstiles.html

4.6.13 Do not use form beans to transfer data to business logic layer

Although it can generate a small performance overhead to copy the data into a
custom created Data Transfer Object, you should not use the view-helper class
(form bean) to pass the data to the business logic. The use of form beans for this
purpose creates a dependency on the Struts framework that you do not want to
force into the Business Process layer. Therefore, try not to use form beans for
data transfer, in order to provide a clean separation between the layers and to
avoid data conversion at the business logic layer. You might also want to use
reflection to easily copy the data between the two objects.

4.6.14 Use servlet/controller best practices to implement action
handlers

Actions are multi-threaded like servlets. They communicate with the model,
invoke business logic, and return the model objects to the view. Finally, they
perform tasks very much like controller servlets. Therefore, you have to follow all
of the best practices associated with servlets (see 4.5, “Servlets” on page 172).

 Chapter 4. Presentation and control layer 219

http://www.ibm.com/developerworks/websphere/library/techarticles/0311_fung_yu/fung_yu1.html
http://www.ibm.com/developerworks/java/library/j-strutstiles.htm
http://www.ibm.com/developerworks/websphere/library/techarticles/0311_fung_yu/fung_yu1.html
http://www.ibm.com/developerworks/java/library/j-strutstiles.htm

4.7 JavaServer Faces

For years, developers have been using servlets and JavaServer Pages (JSP)
technology to build Web-based user interfaces. As applications become more
and more complex, we face many challenges. If we mix logic and presentation
code, we find it extremely difficult to develop large applications consisting of
hundreds or even thousands of Web pages. The construction of custom
components is another big challenge: A simple table viewer requires a significant
amount of time to develop and test. In addition, there is no easy way to port those
HTML-based user interfaces onto other platforms, like handheld devices. Struts,
a popular Web framework, and some other proprietary technologies solve some
but not all of the problems.

JavaServer Faces (JSF) technology is a server-side user interface component
framework for Java technology-based Web applications, which is now generally
available in WebSphere Application Server V6. One of the greatest advantages
of JavaServer Faces technology, compared to standard JavaServer Pages, is
that it offers a very clean separation between behavior and presentation.
Designed to ease the burden of developing and maintaining applications that run
on Java application servers and render their UIs back to a target client, JSF
leverages existing, standard UI and Web-tier concepts without limiting developers
to a particular markup language, protocol, or client device.

In Figure 4-34 we can see a UI that has been created with JSF, which runs on the
server side and renders back to the target client.

Figure 4-34 JSF simple functionality

This means that the look (rendering) of a User Interface (UI) component and its
feel (behavior) are now split up, which makes it possible to generate different
layouts (while implementing multiple renderers) for one and the same UI
component. You can therefore easily add support for multiple different clients to a
JavaServer Faces application. Another important goal of JavaServer Faces
technology is to deliver — compared to JavaServer Pages, for example — a
richer and more responsive UI experience.

JavaServer Faces

page.jsp

HTTP request

Sends events

Client/
Browser

form UI
Renders HTML

220 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

JavaServer Faces components automatically provide their own event handling,
support client-sided and server-sided validation, and maintain their UI state on
the server. Page navigation, data conversion, and internationalization support
are also included in the JavaServer Faces framework. This is done by adding a
backing bean to each page of the application. A backing bean is a Java bean that
defines all properties and methods from the associated UI components used on
this page.

4.7.1 JavaServer Faces features and benefits

In general, the JSF Framework is very powerful and easy to use. One reason is
that the JSF’s reference implementation includes an extensive JSP tag library;
there is also very good tooling support from several different products, such as
IBM Rational Application Developer V7.0. Even though the reference
implementation demonstrates JSF with JSP, it is important to realize that JSF is
not exclusively tied to the JavaServer Pages technology.

The following is a list of the key features and benefits of using JSF for Web
application design and development:

� Standards-based Web application framework:

JSF is a standards-based Web application framework. JavaServer Faces
technology is the result of the Java Community process JSR-127 and evolved
from Struts. JSF addresses more of the Model View Controller pattern than
Struts, in that it more strongly addresses the view or presentation layer
though UI components, and addresses the model through managed beans.
Although JSF is an emerging technology and likely to become a dominant
standard, Struts is still widely used. JSF is targeted at Web developers with
little knowledge of Java and eliminates much of the hand coding involved in
integrating Web applications with back-end systems.

� Event driven architecture:

JSF provides server-side rich UI components that respond to client events.

� User interface development:

UI components are de-coupled from its rendering. This allows for other
technologies such as WML to be used (for example, mobile devices). JSF
allows direct binding of user interface (UI) components to model data.
Developers can use extensive libraries of prebuilt UI components that provide
both basic and advanced Web functionality.

� Session and object management:

JSF manages designated model data objects by handling their initialization,
persistence over the request cycle, and cleanup.

 Chapter 4. Presentation and control layer 221

� Validation and error feedback:

JSF allows direct binding of reusable validators to UI components. The
framework also provides a queue mechanism to simplify error and message
feedback to the application user. These messages can be associated with
specific UI components.

� Internationalization:

JSF provides tools for internationalizing Web applications, including
supporting number, currency, time, and date formatting, and externalization of
UI strings.

Despite all the advantages of the new JavaServer Faces technology, there are
also a few drawbacks:

� JavaServer Faces is a relatively new technology, so it has not proven its
performance and stability in very large projects.

� First performance tests indicate that although the Faces Framework is more
powerful, it is just a little bit slower than JavaServer Pages or Struts, because
of its higher level of abstraction and the more complicated life cycle. When a
client makes a request for a page containing JSF UI components, the
JavaServer Faces implementation must perform several tasks, such as
validating the data input of all components in the view and converting input
data to types specified on the server side.

The performance and scalability of the JavaServer Faces Framework really
depends on the implementation of the UI components you are using. If, for
example, one UI component stores the state of thousands of table rows in its
backing bean and therefore takes one minute to render the view, you cannot
blame the JavaServer Faces architecture for this. So if you add custom UI
components to your application, always check if they are optimized for
performance and scale well.

� You should control the amount of data that is stored in your backing beans.

JavaServer Faces implementations often provide very powerful UI
components that make it easy for you to display data from your back end on
the Web. Make sure that the amount of data that should be rendered does not
get too much. For example, do not misuse a UI component to fetch a whole
database table and store it in the backing bean, just to display some entries.
This might work well for a small number of users, but it neither scales well nor
satisfies performance expectations for a larger number of users.

222 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

4.7.2 JavaServer Faces architecture

The JSF application architecture can be easily extended in a variety of ways to
suit the requirements of your particular application. You can develop custom
components, renderers, validators, and other JSF objects and register them with
the JSF runtime.

First of all, we group the JSP architecture in MVC components.

Model View Controller architecture
Applications built with JavaServer Faces are intended to follow the Model View
Controller (MVC) architectural pattern. According to the MVC pattern, a software
component should separate its business logic along the following lines:

� Model: Encapsulates the state and behavior of the application

� View: Renders the model

� Controller: Processes user events and drives model and view updates

As shown in Figure 4-35, we can group the important components of JSF as they
fall into these categories:

� Model:

– Managed beans make up the model of a JSF application. These Java
beans typically interface with reusable business logic components or
external systems, such as a mainframe or database. Also JSF moves the
data between managed beans and user interface components. JavaBeans
are defined in the configuration file to hold the data from JSF components.

� View:

– JSPs make up the view of a JSF Web application. These JSPs are created
by combining model data with predefined and custom-made UI
components.

– Tag libraries: The JSF components are implemented in tag libraries.

– Validators: Java classes to validate the content of JSF components, for
example, to validate user input.

– Events: Java code executed in the server for events (for example, a push
button). Event handling is used to pass managed beans to business logic.

– UI components represented as stateful objects on the server

� Controller:

– The FacesServlet, one servlet which drives navigation and object
management, makes up most of a JSF application’s controller. Event
listeners also contribute to the controller logic.

 Chapter 4. Presentation and control layer 223

– Configuration file: An XML file (faces-config.xml) that contains the
configuration.

Figure 4-35 JavaServer Faces architecture

JavaServer Faces is layered directly on top of Servlet API, and although JSF
uses JSP custom tag libraries for presentation, JSF can use another
presentation technology instead creating your own custom components directly
from the component classes, and generating output for various client devices.
This is the reason that we put in the control chapter. JSF is not a view in MVC
patter, is a complete framework.

A typical JavaServer Faces application that is using JSP pages for presentation
that render to HTML must include a custom tag library that defines the tags
representing UI components and have another custom tag library for
representing other core actions, such as validators and event handlers.
JavaServer Faces implementation provides both of these tag libraries.

Other Models (EJB or Pojos)

View

Client Business
Logic

Model

JSF Web ApplicationController

Request
Browser

Response

JSP Libraries/Tags

Validators

Managed JavaBeansManaged JavaBeansManaged JavaBeans

Events

JSPs with JSF UI
Component

Tree

XML Configuration FileFaces Servlet

224 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

4.7.3 FrameWork responsibilities

With a clear separation between page design and coding, we can split some
responsibilities. JSF allows for more secure development and design phases.
This is very important, mainly in big projects. Here is an overview of each
responsibility:

� Page authors: They are graphics designers who have a lot of experience in
HTML; also, they are the primary users of JSP tags.

� Application developers: This includes program event handlers, validators,
converters, as well as extra helper classes.

� Component writers: These are experienced programmers who prefer to
create a custom UI with a programming language. These people can create
their own components directly from the UI component classes, or they can
extend the standard components provided by JavaServer Faces technology.

� Application architects: They design the application, defining the scalability,
configuration beans, page navigation, and register objects within application.

� Tools vendors: They build tools to allow easy JSF programming with wizards
and visual facilities. An example is Rational Application Developer V6 and V7,
which offer a lot of tools.

Putting responsibilities in a scenario
Now we put the responsibilities described above in a scenario for better
understanding.

An application developer has written some Java classes which provide an
object-oriented interface for a set of tables in a database. The developer
packages the code into a JAR file and hands it off to a page author.

A page author creates a new JSF application and imports the supplied JAR file
from the application developer. He creates a new JSF page for interfacing with
the database. He adds a class from the JAR to the page as a managed bean,
then drags it on to the page. A set of fields are created with which to update the
record. He drags a command button onto the page from the Web design palette,
and associates it with a supplied update method in the supplied business logic.
He adds navigation rules to display other pages depending on the success of the
update operation. Finally, he tests the JSF page by running it on the application
server.

The end user accesses the Web application for the database application, and
can now update the database directly through a familiar Web interface. The
application developer has no Web skills, the page author has no Java skills, and
the end user does not even know he is updating a database.

 Chapter 4. Presentation and control layer 225

4.7.4 JavaServer Faces life cycle

JSF is typically used within Web applications and thus handles HTTP requests
and produces HTTP responses. The JSF run time manages a sequence of
events known as the JSF life cycle. The main actor here is the FaceServlet.

The FacesServlet (javax.faces.webapp.FacesServlet), is the heart of a JSF
application. It is responsible for processing and using the metadata in the
faces-config.xml to handle the model life cycle and navigation. It receives UI
events and maps them to the appropriate business logic. The FacesServlet
processes external input, also known as the request, in a set of phases, which
eventually result in the production of new output, or a response.

This life cycle has seven phases, as shown in Figure 4-36. The solid lines show
normal flow of control, whereas the dashed lines show alternate flows that are
mostly used to handle errors.

Figure 4-36 JSF life cycle

Associating with a simple example
Suppose that an end user is currently viewing a Web page, updateCustomer.jsp,
which is used to update a customer record. The page contains name and
address fields, which are bound to a customer model object, and a Submit
button, which is bound to an update method. There is a navigation rule defined
which forwards to the page customerList.jsp on a successful update. The user
changes the customer’s last name from Smith to Smythe, and clicks Submit.
Using this example, we split these actions into the phases described next.

Reconstitute
Request Tree

Apply Request
Values

Handle
Request
Events

Process
Validatons

Render
Response

Invoke
Application

Update Model
Values

Redisplay Requested

Request

Response

Validation Errors

Conversion Errors

226 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Reconstitute request tree
The first thing that happens when a request comes in (as a result of a link or
button being clicked) is the reconstruction of the request tree. A JSF page is a
tree of components, and the JSF run time instantiates this tree for use by the
other phases of the life cycle, including the wiring of event handlers (registered
as listeners), validators, and navigators. If the tree has already been constructed
(perhaps because this is a second request within the same page), the JSF run
time restores the application state information from the server.

Reconstitute request tree simple example
JSF looks up the stored view information for updateCustomer.jsp, and
successfully finds it.

Apply request values
When the components tree is restored, values from the request (typically from an
HTML form) are applied to the components in the tree. For example, input fields
have values sent from the client, and these values have to be applied to the
component tree. Each component is responsible for extracting its values from the
request using various decode methods.

Apply request values simple example
The component bound to the customer object’s last name property pulls the
value Smythe from the request and stores it in itself. Remember that Smith was
changed to Smythe.

Handle request events
Events might be outstanding in the Handle Request Events phase, in which case
the JSF run time dispatches events to the listeners. A typical example of such
event handling occurs when an event handler has registered interest in value
changes of a value (typically through an input field).

Handle request events simple example
Suppose that a changed field was a date field that automatically puts “/” between
day and month for example. depends of the data that you type the field
appearance is changing. this case can be considered a handle request event that
only this field has to be changed.

Process validations phase
Next comes the Process Validations phase. The JSF run time processes all
validations registered on the components of the tree. If values cause a validation
rule to fire, an error message is queued, and the run time progresses to the
Render Response phase, causing the page to be rendered again with error
messages next to the erroneous components.

 Chapter 4. Presentation and control layer 227

Process validations simple example
The validator associated with the last name component determines that the new
value is all letters, and hence, is valid.

Update model values
Now that the JSF run time knows that the data are valid, it can update the values
in the model components. The run time updates the bean properties that the UI
component's attributes point at. If conversion errors occur, the run time redirects
to the Render Response phase, and the error messages are displayed on the
page.

Update model values simple example
The last name component updates the last name field in the customer JavaBean
object.

Invoke application example
The run time then handles any application-level events, and all listeners are
activated based on all queued events.

Invoke application simple example
JSF invokes the update method (application-level events), which writes the
customer data from the customer object back into the database. JSF sees that
the method returned success and determines that the next page is the
customerList.jsp.

Render response
Finally, the run time invokes the component's encoding functions and renders the
component tree to produce the final HTML that is sent to the client who made the
original request.

Render response simple example
JSF forwards to customerList.jsp, which is rendered to the client. While
rendering, JSF stores the component structure from the page as the saved view.

4.7.5 JavaServer Faces page components

Each JSF page is a tree constructed of components; this tree is often called the
JSF view. Each component in turn has a list of child components, a set of
attributes, one or more validators, and one or more event handlers. A JSF
component's attributes store component-specific information such as the URL for
an image component and the text for a label component.

228 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Validators are used by the Process Validations phase, and the event handlers are
used by the Handle Request Events phase. JavaServer Faces components can
either render themselves or delegate to an external renderer.

JSF component event handling can be managed directly by the component or by
delegating to event handlers that are registered with the component. This added
layer of flexibility allows you to build flexible UIs as well as build custom
components and custom event-handling code.

If you use Rational Application Developer (RAD), for example, to design your
page with JSF components, remember that there is a large “infrastructure” on
which you can rely and which prevents a lot of unnecessary coding. This
infrastructure comes in the form of libraries of components and includes:

� A tag library for rendering UI components on pages

� A tag library for event handling, validation, and conversions

� UI components that run on the server, manage application state, and
generate the HTML to be displayed

� Backing Beans, which work with the UI components and maintain properties
that the UI components use as well as process events on behalf of the UI
components

The tag libraries used when developing JSF applications represent UI
components and core actions such as validation and event handling. The
component tag library eliminates the requirement to hard-code UI components,
and the core tag library makes it easy to register events, validators, and other
actions with the components. In RAD, some of these tag libraries became part of
your project when you chose to create a Faces JSP Page; others became part of
the project when you added the HTML JSF library to the JSF page. After these
libraries are available to you, you add components to your page directly from the
palette.

4.7.6 Use JSF from an application example

Initially, the best practice here is developing using JSF, which has several
advantages, as we discussed in prior topics. We describe the facility to develop
with JSF. Of course, if you have an abstraction layer above simple components,
such as JSP and servlets, there are some drawbacks as described in early JSF
sections. With a base theory and practice described in sections such as JSP and
Servlets, the developer has a solid understanding. As you might have realized by
now, JSF already has a collection of development and design best practices.

 Chapter 4. Presentation and control layer 229

For more information to help initial developers understand how to do their first
example using Rational Application Developer, there is a good DeveloperWorks
tutorial in:

http://www.ibm.com/developerworks/edu/i-dw-r-webuis-i.html

4.7.7 Best practices to use JSF and/or Struts

In this section we discuss the relationship of the Struts framework to the
JavaServer Faces framework. We compare and contrast the two frameworks,
then discuss how you might use them in conjunction. Also, we show a practical
example of use. For more details about JSF architecture, see 4.7.2, “JavaServer
Faces architecture” on page 223. For more details on Struts, see 4.6.1, “Model
View Controller model 2 pattern with Struts” on page 199.

Comparing JavaServer Faces and Struts
Struts and JavaServer Faces contain many of the same features, and both have
a very similar overall structure. However, depending on the requirements of the
application, it is useful to examine the various discrepancies between the two
frameworks.

See Table 4-17 to understand the differences and similarities.

Table 4-17 JavaServer Faces and Struts feature comparison

Features JavaServer Faces Struts

Components � Rich data bound UI
components with
events provided

� Custom components.
JSF makes it relatively
easy to combine
complex GUIs into a
single manageable
component

� Struts-specific tag
library

� Only very basic, form
bean bound
components provided

Device independence � Reader kits that
provide device
independence

� None

Event handling and
validation

� Validation framework
� Many predefined

validators

� Validation driven by an
XML descriptor
(validation.xml)

230 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://www.ibm.com/developerworks/edu/i-dw-r-webuis-i.html

Scripting � Script can be atached
to events

� All components
accessible from scripts

� Scripts written in Java
action classes

� Form data, but not
components,
accessible

Page flow � Simple navigation file
(faces-config.xml). It is
simpler.

� XML-based

� Sophisticated, flexible
framework

� XML-based

Session and object
management

� Automatic � Manual

HTML and HTTP limited � No � Yes

Simple Controller and
bean definitions

� Does not require your
controller and beans
class to extend any
particular parent class

� Struts requires that
you extend a particular
class (Action) and
method (execute) for
controller and bean
class

Current tool support � Less supported by
IDEs

� Supported by many
widely IDEs.

Tiles like support � JSF does not have but
you can extract Tiles
from struts and use
with JSF

� Comes with a powerful
page layout facility

Post and Get support � JSF does not support
GET, so you cannot
bookmar results pages

� Yes support boths

Client-side validation
built-in

� Not supported. AJAX
can help with this
feature

� Support using
form-field validation

Features JavaServer Faces Struts

 Chapter 4. Presentation and control layer 231

Apart from the features of the frameworks, it is important to consider the strength
of their relative tools, maturity, and future directions. Refer to Table 4-18.

Table 4-18 JavaServer Faces and Struts considerations

Choosing Struts and/or JavaServer Faces
JavaServer Faces originated as a follow-on to the Struts framework, largely
driven by the original creator of Struts, Craig McClanahan. However, JSF is not
intended to be a complete replacement for Struts. In fact, when deciding which
framework to use when developing your applications, the choice between JSF
and Struts is not mutually exclusive.

The “Struts Faces” component contains an add-on library that supports the use
of JavaServer Faces user interface technology in a Struts-based Web
application, in place of the Struts custom tag libraries.

The Struts Faces Integration Library should work with any implementation of
JavaServer Faces, version 1.0 or later. Note that the Struts Faces component is
intended as a “bridge” between Struts 1 and JavaServer Faces. The typical use
case is a team that would like to experiment with JSF components but does not
want to completely rework an existing application.

For more information, see the following URLs:

� WebSphere Studio 5.1.2 JavaServer Faces and Service Data Objects,
SG24-6361:

http://www.redbooks.ibm.com/abstracts/sg246361.html?Open

� Struts Faces:

http://struts.apache.org/1.x/struts-faces/index.html

JavaServer Faces Struts

Tooling Extensive Support for JSF in RAD
6 and improvements in RAD 7

Extensive, mature IDE
support.

Maturity Not mature as Struts but can be
considered well mature.

Quite mature, stable, not
subject to significant
changes.

Recent and Future
Plans

In continuous development.
There are a lot of complementary
frameworks to extend this
functionality as AJAX for example.
The tools are in the continuous
improvement.

Struts 2 was recently
launched as a effort to
improve productivity in
Struts, making Web
application development
faster, easier, and more
productive than ever
before.

232 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://www.redbooks.ibm.com/abstracts/sg246361.html?Open
http://struts.apache.org/1.x/struts-faces/index.html

� Struts 2:

http://struts.apache.org/2.x/

� Apache Shale:

http://shale.apache.org/

4.7.8 JSF and AJAX integration

JSF introduced a strong standard into the world of Java-based Web application
frameworks. Meanwhile, advanced user interface (UI) features to the browser
client in a standards-based way are introduced by AJAX. Richness of fat client
interfaces that a lot of developers were awaiting from AJAX make this possible.

Asynchronous JavaScript and XML (AJAX) is arguably the most popular
technology on the Web today, because it is the cornerstone of what is often
called Web 2.0. The good news is that JSF and AJAX are highly complimentary.
They provide developers with a complete client-side and server-side technology
set for building highly interactive and standards-based Web applications when
combined.

However, creating an AJAX application is not an easy task, especially when you
have to integrate it with another framework, such as JavaServer Framework.
IBM Rational Application Developer V7 provides AJAX functionality for the JSF
components, which makes the task much easier.

AJAX advantages and disadvantages
Although not really new, AJAX technology has become very popular in the last
year or two. Many major Web sites use it to improve their users' experiences. In
fact, improving the user experience is what AJAX is all about.

In the usual Web applications developed over the past decade, the interactions
between the user and the browser, as well as between the browser and the
server, are well-defined and visible: The user sees a page in the browser, takes
an action (picks something from a contextual drop-down menu, or selects a few
check boxes), and then instructs the browser to communicate with the server by
clicking a link or a Submit button. The browser sends a request to the server and
passes the user's input in that request. The server processes the request and
sends back a response, which is either a new page or the same page, but
updated.

 Chapter 4. Presentation and control layer 233

http://shale.apache.org/
http://struts.apache.org/2.x/

Such Web applications are now commonly referred to as Web 1.0. They have two
distinct weak points from the user experience point of view:

� The interaction between the browser and the server is initiated by a limited
number of controls on the page — usually only by links and buttons. Rarely
would a server be notified immediately after the user selects a check box on
the page or marks a selection in a combo box.

� The interaction between the browser and the server results in updating the
entire browser window. This is often so slow that the user has to wait a
significant amount for time for the page to update. Worse, when the same
page is reloaded or refreshed, it usually flickers in the browser window.

The new generation of Web applications, commonly called Web 2.0, works
around these weak points by using AJAX technology. In AJAX, interactions
between the browser and the server occur in the background, unnoticed by the
user. They are also more targeted than the usual browser-server interactions, in
that only a subset of the page can be sent to the server, and the server can
return only a subset of the page to be updated. As a result of this approach,
communication between the browser and server can be initiated by almost any
event, such as a selection change in a combo box or a check box or hovering
mouse pointer. This results in significant benefits:

� Communication is faster, because less data is transmitted.

� The user stays on the same page, because less navigation from page to page
is required.

� The reloaded page does not flicker, because only small regions of the page
get updated with each AJAX request.

The ideas behind AJAX are quite simple: Listen for an event in the browser, send
a background request to the server, and update part of the page when server
responds. But the implementation can be very complicated. It requires in-depth
knowledge of JavaScript, client-server communication protocols, and server-side
code. The differences between versions of major browsers make it even trickier
to develop and debug. However, IBM Rational Application Developer Version 7
provides everything you require to develop AJAX-enabled Web applications
without having to implement all of the low-level details.

Rational Application Developer V7 provides:

� Extensions to JSF that allow AJAX requests to be processed within the
JavaServer Framework

� A JavaScript library that can initiate AJAX requests in all recent versions of
the major browsers and process server responses by updating only parts of
the page.

234 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

How to use AJAX with JavaServer Faces components
Adding AJAX to a JavaServer Faces page is a four-step process:

1. Identify the area of the page to be updated by the AJAX request. In Rational
Application Developer V7, you can use AJAX with the content of almost any
panel component. The panels range from simple containers, such as
<h:panelGroup> and <h:panelGrid>, to feature-rich panels, such as menus
(<hx:panelMenu>) and dialogs (<hx:panelDialog>).

2. Select the type of AJAX request to use. There are three different kinds of
AJAX requests supported in the Rational Application Developer V7 JSF
library:

– GET request for the same page (<hx:ajaxRefreshRequest>)

– POST request for the same page (<hx:ajaxSubmitRequest>)

– GET request for another page (<hx:ajaxExternalRequest>)

3. Configure parameters to pass to the server with the AJAX request:

– For GET requests, you can pass values of various input fields on the page.

– For POST request, the entire form is submitted.

4. Identify the event that initiates the AJAX request. This can be any client-side
JavaScript event, such as onclick for a button, onblur for an input field, or
onchange for a check box.

Let us walk through all of these steps, using a simple example of a “Hello, world”
type of application. You build a page with two fields: input and output. After the
user tabs out of the input field, you use AJAX to send the value that the user
entered to the server and to update the output field with a greeting.

Set up your Web project
To begin, create a Web project (see Figure 4-37):

1. Select File → New → Project → Dynamic Web Project from the menu.

2. In the New Project wizard:

a. Enter a project name (for example, HelloWorld).

b. Select the Faces Project configuration.

c. Select Add project to an EAR.

3. Click Finish.

 Chapter 4. Presentation and control layer 235

Figure 4-37 Creating a Web Project HelloWord

To create a Web page (see Figure 4-38):

1. Right-click the project name in the Project Explorer.

2. Select New → Web Page from the context menu.

3. In the New Web Page wizard, enter a page name (for example, hello).

4. Click Finish.

236 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Figure 4-38 Creating a hello Web page with new Web Page wizard

Add components to the page
Now that you have a page to work with, you can add the components. You use an
inputText component for the text field where the user types a name and an
outputText component to show the greeting. Because you are going to update
the outputText with AJAX, you have to put it inside of a panel component. You
use a panelGroup component for this page.

To add the components:

1. Drag an Input component from the Enhanced Faces Components drawer of
the palette onto the page.

 Chapter 4. Presentation and control layer 237

2. Drag a Panel Group box component from the palette onto the page below the
Input component. When you are prompted for the group box type, select
Group.

3. Drag an Output component from the palette onto the Panel Group box.

Add AJAX support to the panel
To make content of the panel updatable via AJAX (in this case, an Output field),
you have to mark the panel as “AJAXable” and configure the parameters that you
want the user's request to pass to the server (see Figure 4-39):

1. Select the outputText component and switch to the Properties view.

2. In the Properties view, select the h:panelGroup tag, which is directly above
the h:outputText tag in the left-side tag navigator.

3. Select the AJAX page for the h:panelGroup tag.

4. Click the Allow AJAX updates check box.

5. Select Refresh as the AJAX request type.

Figure 4-39 panelGroup properties

This example uses a refresh request to show how parameters can be passed
with an AJAX request. Alternatively, a submit request would submit the entire
form. In that case, because the form on the sample page contains just one input
field, you would not have to configure parameters for the AJAX request at all.

To configure parameters for the AJAX request, select Click to edit AJAX
request properties on the AJAX properties page (Figure 4-39).

On the Properties page for the hx:ajaxRefreshRequest tag:

1. Click Add Parameter for the parameters to send from the browser.

2. Select the name of the Input component (in this case, text1) from the combo
box (see Figure 4-40).

238 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Figure 4-40 ajaxRefreshRequest properties

You have configured the panelGroup tag to be updated by an AJAX request and
to use the value of the Input field as a parameter for the request. The only thing
left to do is to make the outputText component use this parameter to display a
greeting (see Figure 4-41):

1. Select the outputText component.

2. Enter Hello, #{param.text1} into the Value field.

Figure 4-41 outputText Properties

Initiate the AJAX request
If you look back to the four steps required to use AJAX, you see that you have
already completed the first three steps. Now you just have to identify the event to
trigger the AJAX request. To update the greeting as soon as the user tabs out of
the input field, you use the onblur event on the inputText component (see
Figure 4-42):

1. Select the inputText component.

2. Switch to Quick Edit view.

3. In the Quick Edit view:

a. Select the onblur event in the list of events on the left side.

b. Click the Use predefined behavior check box.

c. Select the Invoke AJAX behavior on the specified tag action.

d. Select the name of the panelGroup (in this case, group1) as the target.

 Chapter 4. Presentation and control layer 239

Figure 4-42 Quick edit view

Now you can save the page and run it on a server. When the browser window
opens, you see an input field and the “Hello” text beneath it. As soon as the user
types anything in the field and then tabs out, the greeting is updated with the text
that the user typed in the input field. See Figure 4-43.

Figure 4-43 Running the Web page on server

As you can see, you were able to build a simple yet functional AJAX page with
standard JSF components and absolutely no JavaScript code.

This tutorial is based on the article at the following URL:

http://www.ibm.com/developerworks/rational/library/06/1205_kats_rad2/

4.8 Caching Web components

Server-side caching techniques have long been used to improve Internet
performance of Web applications. In general, caching improves response time
and reduces system load. Since the introduction of dynamic caching,
WebSphere Application Server is also able to cache dynamic content that
changes from time to time. Although dynamic caching can be added later to
nearly any Web-based application, because the programming model is
unaffected, it requires a proactive and effective invalidation mechanism to ensure
the freshness of the content.

240 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://www.ibm.com/developerworks/rational/library/06/1205_kats_rad2/

To maximize the performance improvement, it might also make sense to
decompose the pages into several small cacheable units (see 4.2.13, “Use
composed JSPs to optimize caching and code re-use” on page 167). Therefore,
you should plan to integrate the IBM dynamic caching technology as soon as
possible in your development life cycle. Although JSP servlet caching is an IBM
extension, and is not part of the current J2EE specification, the application
changes for invalidating cache entries are marginal. Therefore, the application is
still portable and compliant with the J2EE specification, but still benefits from the
performance optimizations provided by the dynamic cache. The cache policy
itself is specified declaratively and configuration is through XML deployment
descriptors.

IBM WebSphere Application Server V6 now provides support for the following
presentation technologies:

� JavaServer Pages/servlets
� Struts and Tiles

For more information on dynamic caching, see Chapter of WebSphere
Application Server V6 Scalability and Performance Handbook, SG24-6392.
You can see significant improvements in the performance of a Web application,
and WebSphere Application Server offers a built-in dynamic caching service for
caching such content.

4.8.1 Configuring cache policy for your servlet and JSP

Dynamic caching in WebSphere Application Server supports the caching of Java
servlets and JSP files. The servlet and JSP cache can be enabled or disabled
using the Web container settings in the WebSphere Application Server
administrative console. See 4.6.14, “Use servlet/controller best practices to
implement action handlers” on page 219. In addition, the dynamic cache also
requires a cache policy for each cacheable servlet and JSP file. This policy
defines a set of rules for the cache to decide when and how to cache an object.
These rules are stored in the cachespec.xml file. This file is localized inside the
Web module WEB-INF or enterprise bean META-INF directory.(See the
WebSphere Application Server Information Center for more information.)

Because all JSP files are compiled into servlets by WebSphere Application
Server, JSP files and servlets are identical from the viewpoint of the dynamic
cache. Then the same set of rules applies for servlets and JSP files.
For example, here is a sample cache policy for the servlet
com.ibm.sample.TimeStampServlet.class, which has a servlet-mapping of
/TimeStamp. See Example 4-79.

 Chapter 4. Presentation and control layer 241

Example 4-79 Caching policy configuration example

<cache-entry>
 <class>servlet</class>
 <name>/TimeStamp</name>
 <cache-id>
 <component id="location" type="parameter">
 <required>true</required>
 </component>
 <timeout>180</timeout>
 </cache-id>
</cache-entry

In this example, the servlet response is cached based on the request parameter
location. In addition to the request parameter, the servlet and JSP responses can
also be cached based on the request attribute, servlet path, pathinfo, HTTP
session, request header, request locale, and cookie.

The <name> element defines either a fully qualified class name or the URI of a
servlet and JSP file. In WebSphere Application Server releases prior to V6.0,
only one cache policy (that is, <cache-entry>... </cache-entry> in the
cachespec.xml file) is permitted for each servlet and JSP file. A one-to-one
mapping existed between the cache policy and the servlet class. In WebSphere
Application Server V6, however, multiple cache policies are supported for a
single servlet. For example, if the previously mentioned servlet has mappings
/TimeStamp, /TimeStamp1 and /TimeStamp2 defined in the web.xml file, you can
have three cache policies in addition to the one mentioned above for the same
servlet, as shown in Example 4-80.

Example 4-80 Caching policies for the same servlet

<cache-entry>
 <class>servlet</class>
 <name>/TimeStamp1</name>
 <cache-id>
 <component id="time" type="cookie">
 <required>true</required>
 </component>
 </cache-id>
</cache-entry>

<cache-entry>
 <class>servlet</class>
 <name>/TimeStamp2</name>
 <cache-id>
 <component id="attr" type="attribute">

242 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

 <required>true</required>
 </component>
 </cache-id>
</cache-entry>
<cache-entry>
 <class>servlet</class>
 <name>com.ibm.sample.TimeStampServlet.class</name>
 <cache-id>
 <component id="" type="pathinfo">
 <required>true</required>
 </component>
 </cache-id>
</cache-entry>

The dynamic cache looks through the cache policies in the order in which these
policies are defined in the cachespec.xml file until it finds a rule that matches the
current request, then builds a cache ID using that rule.

4.8.2 Configuring cache policy for your Struts and Tiles

Struts and Tiles caching is an extension of servlet and JSP caching. Enabling
servlet caching using the Web container setting in the administrative console
automatically enables Struts and Tiles cache. In addition to enabling the servlet
cache, a cache policy is also required to cache a Struts or Tiles response.

Struts configuration
The Struts framework provides the controller component in the MVC model 2
application. A servlet called org.apache.struts.action.ActionServlet.class is the
controller. A servlet mapping of *.do is added for this Struts ActionServlet servlet
in the web.xml file of the application so that every request for a Web address that
ends with .do is processed by this servlet. The ActionServlet servlet uses the
information in the struts-config.xml file to decide which Struts action class is
called to actually run the request for the specified resource.

As mentioned earlier, only one cache policy is supported per servlet in releases
prior to WebSphere Application Server V6, but in the case of Struts, every
request URI ending in .do maps to the same ActionServlet.class. To cache Struts
responses, the cache policy has to be written for the ActionServlet servlet based
on its servlet path.

For example, consider two Struts actions: /HelloParam.do and /HelloAttr.do.
To cache their responses based on the request parameter ID, and the request
attribute arg respectively, the cache policy looks as shown in Example 4-81.

 Chapter 4. Presentation and control layer 243

Example 4-81 Caching policy example prior WebSphere 6.x

<cache-entry>
 <class>servlet</class>
 <name>org.apache.struts.action.ActionServlet.class</name>
 <cache-id>
 <component id="" type="servletpath">
 <value>/HelloParam.do</value>
 </component>
 <component id="id" type="parameter">
 <required>true</required>
 </component>
 </cache-id>
 <cache-id>
 <component id="" type="servletpath">
 <value>/HelloAttr.do</value>
 </component>
 <component id="arg" type="attribute">
 <required>true</required>
 </component>
 </cache-id>
</cache-entry>

However, in WebSphere Application Server V6.x, with the support for mapping
multiple cache policies for a single servlet, the previous cache policy can be
rewritten as shown in Example 4-82.

Example 4-82 Caching policy for WebSphere Application Server 6.x

<cache-entry>
 <class>servlet</class>
 <name>/HelloParam.do</name>
 <cache-id>
 <component id="id" type="parameter">
 <required>true</required>
 </component>
 </cache-id>
</cache-entry>
<cache-entry>
 <class>servlet</class>
 <name>/HelloAttr.do</name>
 <cache-id>
 <component id="arg" type="attribute">
 <required>true</required>
 </component>
 </cache-id>

244 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

</cache-entry>

Tiles configuration
Because the Tiles framework is built on the jsp:include tag, everything that
applies to JSP caching also applies to Tiles. Similar to the jsp:include case, the
fragments included using the tiles:insert tag are cached correctly only if the flush
attribute is set to true. The only extra feature is caching based on the tiles
attribute. For example, consider a page layout defined using the Tiles templating
feature, as shown in the layout.jsp file in Example 4-83.

Example 4-83 layout.jsp

<html>
<body>
 <%String categoryId = request.getParameter("categoryId")+"test";%>
 <tiles:insert attribute="header">
 <tiles:put name="categoryId" value="<%= categoryId %>" />
 </tiles:insert>
 <TD width="70%" valign="top">
 <tiles:insert attribute="body"/>
 </TD>
 <TR>
 <TD colspan="2"><tiles:insert attribute="footer"/></TD>
 </TR>
</body>
</html>

In the foregoing code, a tile attribute categoryId is defined using the nested
tiles:put tag. This tile attribute is passed on to header.jsp, for example, when this
defined layout is used in a JSP file. Keep in mind that a first JSP insert layout.jsp
passing an initialization parameter as shown in Example 4-84.

Example 4-84 A JSP using layout.jsp and passing parameters to others JSPs

<html>
<body>
<tiles:insert page="/layout.jsp?categoryId=1002" flush="true">
 <tiles:put name="header" value="/header.jsp" />
 <tiles:put name="body" value="/body.jsp" />
 <tiles:put name="footer" value="/footer.jsp" />
</tiles:insert>
</body>
</html>

 Chapter 4. Presentation and control layer 245

The header.jsp can retrieve the value of categoryId using <tiles:useAttribute> tag
that came from a first page that uses layout.jsp. See Example 4-85.

Example 4-85 Header.jsp example

<HTML>
<HEAD>
<TITLE>header.jsp</TITLE>
</HEAD>
<tiles:useAttribute id="categoryId" name="categoryId" />
<%= categoryId%>
<table id="header">
<tr><td><%= System.currentTimeMillis() %></td></tr>
</table>
</HTML>

To cache the header.jsp file based on the value of the categoryId attribute, the
cache policy shown in Example 4-86 can be used.

Example 4-86 Cache file example

<cache-entry>
 <class>servlet</class>
 <name>/header.jsp</name>
 <cache-id>
 <component id="categoryId" type="tiles_attribute">
 <required>true</required>
 </component>
 </cache-id>
</cache-entry>

The Struts and Tiles frameworks have been around for quite some time and have
become very popular with developers for developing J2EE Web applications.
Other than the differences discussed here, Struts and Tiles caching is very
similar to servlet and JSP caching. Hence, enabling caching for a Struts and
Tiles application is fairly simple if you are already familiar with servlet and JSP
caching.

4.9 Java client programming

In some intranet applications, Java client programming is used. Next, we briefly
explain what technologies are used for graphical user interfaces.

246 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

4.9.1 Abstract Window Toolkit

The Abstract Window Toolkit (AWT) is the original GUI toolkit for Java. It has
been enhanced since it was originally introduced, but the basic structure remains
the same. The AWT includes the following features:

� A wide range of user interface components, represented by Java classes
such as java.awt.Frame, Button, Label, Menu, and TextArea

� An event-handling model to deal with events such as button clicks, menu
choices, and mouse operations

� Classes to deal with graphics and image processing

� Layout manager classes to help with positioning components in a GUI

� Support for drag-and-drop functionality in GUI applications

The AWT is implemented natively for each platform’s JVM. AWT interfaces
typically perform relatively quickly and have the same look-and-feel as the
operating system, but the range of GUI components that can be used is limited to
the lowest common denominator of operating system components and the
look-and-feel cannot be changed.

More information on the AWT can be found at:

http://java.sun.com/j2se/1.4.2/docs/guide/awt/

4.9.2 Swing

Swing is a newer GUI component framework for Java. It provides Java
implementations of the components in the AWT and adds a number of more
sophisticated GUI components, such as tree views and list boxes. For the basic
components, Swing implementations have the same name as the AWT
component with a J prefix and a different package structure, for example,
java.awt.Button becomes javax.swing.JButton in Swing. Swing GUIs do not
normally perform as quickly as AWT GUIs, but have a richer set of controls and
have a pleadable look-and-feel.

More information on Swing can be found at:

http://java.sun.com/j2se/1.4.2/docs/guide/swing/

4.9.3 Standard Widget Toolkit

The Standard Widget Toolkit (SWT) is the GUI toolkit provided as part of the
Eclipse Project and used to build the Eclipse GUI itself. The SWT is written
entirely in Java and uses the Java Native Interface (JNI™) to pass the calls

 Chapter 4. Presentation and control layer 247

http://java.sun.com/j2se/1.4.2/docs/guide/awt/
http://java.sun.com/j2se/1.4.2/docs/guide/swing/

through to the operating system where possible. This is done to avoid the lowest
common denominator problem. The SWT uses native calls where they are
available and builds the component in Java where they are not. In many respects,
the SWT provides the best of both worlds (AWT and Swing):

� It has a rich, portable component model, like Swing.

� It has the same look-and-feel as the native operating system, like the AWT.

� GUIs built using the SWT perform well, like the AWT, since most of the
components simply pass through to operative system components.

A disadvantage of the SWT is that, unlike the AWT and Swing, it is not a
standard part of J2SE™ V1.4. Consequently, any application that uses the SWT
has to be installed along with the SWT class libraries. However, the SWT, like the
rest of the components that make up Eclipse, is open source and freely
distributable under the terms of the Common Public License.

More information on the SWT can be found at:

http://www.eclipse.org/swt/

4.9.4 Java components providing a GUI

There are two types of Java components that might provide a GUI:

� Stand-alone Java applications: Launched in their own process (JVM). This
category would include J2EE Application Clients, which we come to later.

� Java applets: Normally run in a JVM provided by a Web browser or a Web
browser plug-in.

An applet normally runs in a JVM with a very strict security model, by default.
The applet is not allowed to access the file system of the machine on which it is
running and can only make network connections back to the machine from which
it was originally loaded. Consequently, applets are not normally suitable for
applications that require access to databases, since this would require the
database to reside on the same machine as the Web server. If the security
restrictions are relaxed, as might be possible if the applet was being used only on
a company intranet, this problem is not encountered.

An applet is downloaded on demand from the Web site that is hosting it. This
gives an advantage in that the latest version is automatically downloaded each
time it is requested, so distributing new versions is trivial. On the other hand, it
also introduces disadvantages in that the applet can often be downloaded
several times even if it has not changed, pointlessly using bandwidth, and the
developer has little control over the environment in which the applet is run.

248 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://www.eclipse.org/swt/

4.10 References

In the following sections we list documentation and URLs that you can study for
additional information.

4.10.1 JSP best practices

For more information, see the following references:

� Introduction to JavaServer Pages:

http://www.ibm.com/developerworks/edu/j-dw-jsp-i.html

https://www6.software.ibm.com/developerworks/education/j-introjsp/in
dex.html

� Best Practices column in developer works:

http://www.ibm.com/developerworks/java/library/j-jspcol.html

� Implicit JSP Objects — article:

http://www.ibm.com/developerworks/java/library/j-pj2ee7.html

� JSTL (JSP Standard Tag Library) usage:

http://www.ibm.com/developerworks/java/library/j-jsp05273.html

� EL (Expression Language) usage:

http://www.ibm.com/developerworks/java/library/j-jstl0211.html

� How to create a custom tag Library:

http://www.ibm.com/developerworks/java/library/j-pj2ee8/

� Developking Web applications using JSPs and servlets:

Chapter 11, Rational Application Developer V6 Programming Guide,
SG24-6449

4.10.2 JSF best practices

For more information, see the following references:

� Integrating Struts, Tiles, and JavaServer Faces document, at:

http://www.ibm.com/developerworks/java/library/j-integrate/

� WebSphere Studio 5.1.2 JavaServer Faces and Service Data Objects,
SG24-6361.:

http://www.redbooks.ibm.com/abstracts/sg246361.html?Open

 Chapter 4. Presentation and control layer 249

http://www.ibm.com/developerworks/java/library/j-integrate/
http://www.redbooks.ibm.com/abstracts/sg246361.html?Open
http://www.ibm.com/developerworks/edu/j-dw-jsp-i.html
https://www6.software.ibm.com/developerworks/education/j-introjsp/index.html
http://www.ibm.com/developerworks/java/library/j-jspcol.html
http://www.ibm.com/developerworks/java/library/j-pj2ee7.html
http://www.ibm.com/developerworks/java/library/j-jsp05273.html
http://www.ibm.com/developerworks/java/library/j-jstl0211.html
http://www.ibm.com/developerworks/java/library/j-pj2ee8/

4.10.3 Servlets best practices

For more information, see the following references:

� Best practices to use HTTPsessions:

http://www-128.ibm.com/developerworks/websphere/library/bestpractice
s/store_objects_in_httpsession.html

http://www-128.ibm.com/developerworks/websphere/library/bestpractice
s/httpsession_performance_serialization.html

http://www.ibm.com/developerworks/websphere/library/bestpractices/re
leasing_and_invalidating_httpsessions.html

� WebSphere Application Server Infocenter:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

� Thread safe servlets — article:

http://www.javaworld.com/javaworld/jw-07-2004/jw-0712-threadsafe.htm
l

� Avoiding or minimizing servlet synchronization — article:

http://www.ibm.com/developerworks/websphere/library/bestpractices/av
oiding_or_minimizing_synchronization_in_servlets.html

4.10.4 Struts best practices

For more information about the Struts Framework, go to:

� “Struts, an open-source MVC implementation”:

http://www.ibm.com/developerworks/ibm/library/j-struts/

� Struts home page:

http://struts.apache.org/

� Struts with Tiles:

http://www.ibm.com/developerworks/websphere/library/techarticles/031
1_fung_yu/fung_yu1.html

� Building Controller components:

http://struts.apache.org/1.3.8/userGuide/building_controller.html

250 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://www.javaworld.com/javaworld/jw-07-2004/jw-0712-threadsafe.html
http://www.ibm.com/developerworks/websphere/library/bestpractices/avoiding_or_minimizing_synchronization_in_servlets.html
http://www.ibm.com/developerworks/ibm/library/j-struts/
http://struts.apache.org/
http://www.ibm.com/developerworks/websphere/library/techarticles/0311_fung_yu/fung_yu1.html
http://struts.apache.org/1.3.8/userGuide/building_controller.htm
http://www-128.ibm.com/developerworks/websphere/library/bestpractices/store_objects_in_httpsession.html
http://www-128.ibm.com/developerworks/websphere/library/bestpractices/store_objects_in_httpsession.html
http://www-128.ibm.com/developerworks/websphere/library/bestpractices/httpsession_performance_serialization.html
http://www-128.ibm.com/developerworks/websphere/library/bestpractices/httpsession_performance_serialization.htm
http://www-128.ibm.com/developerworks/websphere/library/bestpractices/httpsession_performance_serialization.html
http://www-128.ibm.com/developerworks/websphere/library/bestpractices/httpsession_performance_serialization.html
http://www.ibm.com/developerworks/websphere/library/bestpractices/releasing_and_invalidating_httpsessions.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

Chapter 5. Business logic layer

This chapter introduces concepts and best practices that apply to the business
logic layer. Enterprise Java Beans (EJBs) plays an important part of this layer. In
this chapter we discuss best practices for new code, focusing on EJB 3.0.
However, we also describe best practices for existing code using EJBs in
previous versions such as EJB 2.0/2.1. In addition, you can develop code without
using EJBs, and we explain the best practices for these cases.

The chapter is organized into the following major sections:

� 5.1, “Introduction” on page 252
� 5.2, “EJB 3.0 for business logic” on page 252
� 5.3, “General best practices considerations for business logic” on page 304
� 5.4, “References” on page 308

5

© Copyright IBM Corp. 2008. All rights reserved. 251

5.1 Introduction

When developing at the business logic layer, the first thing that you must focus on
is the core business of the application. You can complete a business logic
implementation using Plain Old Java Objects (POJO), but it is more likely that
you will use EJBs.

If you require a business class that must have persistence, remote access,
clustering, pooling, transaction control, or cache, use EJB for your project.
Otherwise, if you require only transaction management, for example, then you
can use the Java Transaction API (JTA). If you want your application to have only
distributed computing, then the RMI/RMI-IIOP or Web service approaches are
satisfactory.

For simple components to make an application well constructed and reusable,
refer to Chapter 2, “Application planning and design” on page 23 for planning and
design, and Chapter 3, “General coding considerations” on page 57 for general
coding best practices.

In this chapter, we explain best practices to follow to create effective EJBs for
your system.

5.2 EJB 3.0 for business logic

In this section, we focus in Enterprise Java Beans 3.0 best practices for business
logic using:

� Session beans (stateless/stateful)
� Message-driven beans (MDB)

Note: For best practice recommendations of previous versions of EJB
(EJB 2.x), see the following links:

http://www.ibm.com/developerworks/java/library/j-ejbcol.html
http://www.ibm.com/developerworks/websphere/techjournal/0501_col_ham
brick/0501_col_hambrick.html

In addition, if you require a basic understanding and best practices for building
EJB 2.x applications, see Chapter 16 “Develop Web applications using EJBs”
in Rational Application Developer V7 Programming Guide , SG24-7501:

http://www.redbooks.ibm.com/redpieces/abstracts/sg247501.html?Open

252 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://www.redbooks.ibm.com/redpieces/abstracts/sg247501.html?Open
http://www.redbooks.ibm.com/redpieces/abstracts/sg247501.html?Open
http://www.ibm.com/developerworks/java/library/j-ejbcol.html
http://www.ibm.com/developerworks/websphere/techjournal/0501_col_hambrick/0501_col_hambrick.html

Entity beans are explained in “Java Persistence API: Entity Beans 3.0” on
page 380.

5.2.1 History of Enterprise Java Beans

The IBM original EJB specification in 1997 is an important development in the
world of Java technology. EJBs and the J2EE application servers that contained
them were rapidly adopted by the enterprise development world. However, the
criticisms of EJBs came just as quickly as the adoption of J2EE. Chief among
these criticisms was that EJBs were difficult to understand and tedious to
develop.

The EJB specification was designed to solve complex problems, such as
distributed computing, transaction management, and data persistence. Complex
problems often lead to complex solutions. The original EJB specifications reflect
the complex problems they were designed to solve. As a result, developers
experienced a lot of pain when working with EJBs. When you understood EJBs,
you could use sophisticated tools to make your development easier. There was
still a significant learning curve for EJB newcomers.

The EJB 1.0 and 1.1 specifications were developed and released by Sun
Microsystems. All subsequent new specifications have been created using Java
Specification Requests (JSRs) and approved using the Java Community Process
(JCP). The involvement of the community is the key to the evolution of Java
technology. The pain felt by EJB developers found a voice in the JCP. The result
was the EJB 3.0 specification, finalized in May 2006.

EJBs were no longer just about solving complex problems, they were about
solving these problems through easy and straightforward development. The
focus of EJB 3.0 is on making initial development easier and applications more
maintainable. Here you find out how much simpler a 3.0 EJB is compared to a
2.1 EJB.

Note: The EJB 3.0 implementation is available in:

� IBM WebSphere Application Server Community Edition V2.0:

http://www.ibm.com/developerworks/downloads/ws/wasce/?S_TACT=105A
GX10&S_CMP=WASCE

� IBM WebSphere Application Server Version 6.1 Feature Pack for EJB 3.0:

https://www14.software.ibm.com/iwm/web/cc/earlyprograms/websphere
/was61ejb3/download.shtml

 Chapter 5. Business logic layer 253

http://www.ibm.com/developerworks/downloads/ws/wasce/?S_TACT=105AGX10&S_CMP=WASCE
https://www14.software.ibm.com/iwm/web/cc/earlyprograms/websphere/was61ejb3/download.shtml
https://www14.software.ibm.com/iwm/web/cc/earlyprograms/websphere/was61ejb3/download.shtml

5.2.2 Enterprise Java Beans: Reasons to use

In this section we describe some reasons to use session beans. We then extend
to other types such as message-driven beans and even entity beans, which are
discussed in the next chapter.

Services available from application server
The first reason to use session beans could be the same reason we can find in
early versions of EJBs. Session beans allow the developer team to focus on
business code, instead of creating services such as transaction demarcation,
security, pooling, resource manager, concurrency, thread safe, and so on, which
are provided by the EJB container in J2EE (Java 2 Enterprise Edition) application
server implementations.

Reusability and ease of use
In early versions of EJBs, there were complications in the component reusability
for other systems that did not require these services. We had to follow specific
rules of code such as implementing EJBHome interfaces (local and/or remote),
EJBObject interfaces (local and/or remote), and a bean. This meant having three
to five classes. Also, we were obligated to put in callback methods such as
ejbCreate(), ejbRemove() and so on, even if we did not implement any code. In
other words, for example, if we would use EJBs in another system for which there
is no use of container services, it would be difficult to reuse the same
components.

With the POJO approach, EJB 3.0, you can develop an EJB in the same way that
you would develop a normal Java class, and the reusability becomes easy. More
good news is that you can replace deployment descriptors, which were difficult to
maintain in early versions, with annotations beside the code, thus facilitating the
service configuration as well.

An open Java standard and several support vendors
EJB 3.0 was developed from the Java Community Process with no exclusive
group of people. This is an open standard and does not have any dependency of
a proprietary solution. There are several players that implement EJB 3.0, such as
IBM, Oracle, and BEA. Also, there are open source groups such as Apache
(Geronimo) and JBoss.

Note: A special point here is that annotations and deployment descriptors are
not mutually exclusive. You can mix them, for example, when an exception
case occurs for which you have to put in a special container behavior. In this
situation, deployment configuration replaces annotation configuration.

254 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

EJBs as important players to SOA
A main concept of Service Oriented Architecture (SOA) is the concept of service.
A service can be defined as a “discoverable resource that executes a repeatable
task, and is described by an externalized service specification”.

Based on this definition, the best EJB components are service oriented, with
functions that are:

� Coarse grained: The functions are designed to minimize the number of calls
between layers.

� Stateless: All data associated with a given function is passed in and out on a
single call, enabling any client request to be handled by any running instance
in any order.

� Mediatable: The data passed in and out is serializable such that it can be
easily transformed.

� Adaptable: The linkage between client and service implementation is logical
(loosely coupled) rather than physical (tightly coupled). Loose coupling
enables a different implementation to be substituted without changing the
application, and enables the client and server to be distributed or co-located
as required.

� POJO oriented: In early EJB versions, POJO delegate classes were often
used to simplify invoking services in a common way, and Helper classes were
used to simplify building services. Now with EJB 3.0, this has become easier
because of POJO oriented building.

� Exposed as Web services: EJB components, as loosely coupled services, are
easily exposed as Web services, facilitating the integration of other services
to challenge business requirements to build the Business Application
Services layer in SOA. These integrated services are joined with emerging
choreography, orchestration, and collaboration technologies such as Web
Services Business Process Execution Language (WS-BPEL), Electronic
Business XML Business Process Specification Schema (EbXML BPSS) and
Web Services Choreography Description Language (WS-CDL).

Note: IBM WebSphere Application Server Community Edition V2.0 (powered
by Apache Geronimo) is a free application server implementing Java 5.
available at the following URL:

http://www.ibm.com/developerworks/downloads/ws/wasce/?S_TACT=105AGX1
0&S_CMP=WASCE

 Chapter 5. Business logic layer 255

http://www.ibm.com/developerworks/downloads/ws/wasce/?S_TACT=105AGX10&S_CMP=WASCE
http://www.ibm.com/developerworks/downloads/ws/wasce/?S_TACT=105AGX10&S_CMP=WASCE

5.2.3 EJB server and EJB container: Overview

In this section we review the components of the EJB infrastructure.

EJB server
An EJB server is the part of an application server that hosts EJB containers. It is
also called an Enterprise Java Server (EJS). WebSphere Application Server is
an EJS.

The EJB server provides the implementation for the common services available
to all EJBs. The EJB server’s responsibility is to hide the complexities of these
services from the component requiring them. The EJB specification outlines
eight services that must be provided by an EJB server:

� Naming
� Transaction
� Security
� Persistence
� Concurrency
� Life cycle
� Messaging
� Timer

EJB container
The Enterprise Java Beans container functions as a runtime environment for
enterprise beans by managing and applying the primary services that are
required for bean management at runtime. In addition to being an intermediary to
the services provided by the EJB server, the EJB container also provides for EJB
instance life cycle management and EJB instance identification. EJB containers
create bean instances, manage pools of instances, and destroy them.

Containers are transparent to the client in that there is no client API to
manipulate the container, and there is no way for a client to tell in which container
an enterprise bean is deployed.

One of the container’s primary responsibilities is to provide the means for remote
clients to access components that live within them. Remote accessibility enables
remote invocation of a native component by converting it into a network
component. EJB containers use the Java RMI interfaces to specify remote
accessibility to clients of the EJBs or Web Services end points.

The responsibilities that an EJB container must satisfy can be defined in terms of
the primary services. Specific EJB container responsibilities are as follows:
Note the similarity to the list in “EJB server” on page 256. This is due to the
unspecified division of responsibilities between the EJB server and container.

256 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Naming
The container is responsible for registering the unique lookup name in the JNDI
namespace when the server starts up, and binding the appropriate object type
into the JNDI namespace.

Transaction
The EJB container can handle the demarcation of transactions automatically,
depending on the EJB type and the transaction type attribute, both described in
the EJB module’s deployment descriptor. When the container demarcates the
transactions, applications can be written without explicit transaction demarcation
code (for example, begin, commit, rollback).

Security
The container provides security realms for enterprise beans. It is responsible for
enforcing the security policies defined at the deployment time whenever there is
a method call, through access control lists (ACL). An ACL is a list of users, the
groups they belong to, and their rights, and it ensures that users access only
those resources and perform those tasks for which they have been given
permission.

Persistence
The container is also responsible for managing the persistence of a certain type
of bean (discussed later in this chapter) by synchronizing the state of the bean’s
instance in memory with the respective record in the data source.

Concurrency
The container is responsible for managing the concurrent access to components,
according to the rules of each bean type.

Life cycle
The container controls the life cycle of the deployed components. As EJB clients
start sending requests to the container, the container dynamically instantiates,
destroys, and reuses the beans as appropriate. The container can provide some
resource utilization optimizations, and employ techniques for bean instance
pooling.

Messaging
The container must provide for the reliable routing of asynchronous messages
from messaging clients (JMS or otherwise) to message-driven beans (MDBs).
These messages can follow either the peer-to-peer (queue-based) or
publish/subscribe (topic-based) communication patterns.

 Chapter 5. Business logic layer 257

Timer
Enterprise applications can model business processes that are dependent on
temporal events. To implement this characteristic, the container must provide a
reliable and transactional EJB Timer Service that allows callbacks to be
scheduled for time-based events. Timer notifications can be scheduled to occur
at a specific time, after a specific elapsed duration, or at specific recurring
intervals.

5.2.4 Session beans

Session beans play an important role when you write business logic. In EJB 2.1
and prior versions, session beans were often used. With EJB 3.0, this process
becomes simpler and closer to normal Java Class (like POJO). Before we go
more deeply into the behavior of session beans for EJB 3.0 as a best practice,
we must understand what is meant by a session, as well as the basic concepts:
stateless and stateful. After that, we explain motivations for their use.

What is a session?
A session is a connection between a client and a server, and this connection
exists for a finite period of time. A session can be stateless, meaning that no state
of requests is maintained between invocations. An HTTP request and a session
can be stateful when a state is maintained between invocations — for example, a
Telnet session to a server in which the user can type several commands, where
each command is an invocation and the state is maintained, for example, the
UNIX ID that is doing the commands.

Motivations to use session beans
In 5.2.2, “Enterprise Java Beans: Reasons to use” on page 254 we explained
some generic reasons to use EJBs. Next, we explain specific motivations to use
session beans:

� Thread safe and concurrency: If client requests are directly handled by your
business logic and there are remote demands of clients at same time to use
the service. In this case, thread safe and concurrency plays an important
point, and by using session beans, the container provides this service to you.

� Expose your service remotely and with Web services: The use of EJBs as
Web services is discussed in “EJBs as important players to SOA” on
page 255. Also, if you want to expose your service remotely, the best choice
includes the Remote Method Invocation (RMI) and the use of session beans.

� Security and transaction: If you require a service with security features and
you can use EJB container services that contains J2EE built-in security rules
ready to use. Moreover, EJB is integrated with Java Authentication and
Authorization Service (JAAS).

258 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Also, if you require a service that controls transaction integrity of other
sub-tasks in the principles of atomicy, consistency, isolation, durability (ACID),
the container EJB can do this for you.

� Interceptors: A nice addition to the EJB specification is the use of
interceptors. One thing missing from EJB components has been the ability to
perform Aspect Oriented Development (AOP) for things such as
pre/post-processing and cross cutting concerns, much like servlet filters do
for servlets. You can now develop an interceptor class and apply it to a bean.
This feature is applied when the code is not related to business logic; for
example, you can use interceptors for login and auditing. We explain this later
as a best practice.

� Timer services: This feature has been offered since the EJB 2.1 specification.
If you require a schedule service, session beans are a good choice. This
requires that you implement an interface, as we explain later.

Session beans: Types
The difference between session beans and other types is that they are short lived
objects whose lifetime exists only, for example, while processing a client request
(stateless mode), in a request/response mode, or while a client is using the
session (stateful mode), such as in an Internet purchase, while putting several
products in a basket before sending the order. This means that in a stateful
session, there is a conversational state with the client, and in a stateless session,
there is no conversational state. Session beans do not represent data in a
database (entity beans do) and do not manage asynchronous processing directly
from a request (message-driven beans do).

Session beans: Format
Because EJB 2.x programs require that you extend specific classes, provide
several interfaces, and write deployment descriptors, they are viewed as
“overloaded” Java objects that are no longer plain; rather, you require a J2EE
container to run and test them. EJB 3.0 changes that:

� EJB components no longer require home interfaces. In addition, EJB
components are no longer required to provide different interfaces or extend
any EJB-specific classes.

� J2SE 5.0 annotations are now a major facilitator for implementing EJB 3.0
components. By specifying special annotations, developers can create POJO
classes that are EJB components, as an alternative to XML.

� EJB 3.0 introduces the notion of a business interface, rather than separate
remote and local interfaces.

The basic format of a session bean is shown in Figure 5-1.

 Chapter 5. Business logic layer 259

Figure 5-1 Session bean format example

Looking at this example, we have two different parts in a session bean format:

� One or more business interfaces: Here, the client invokes the bean in a
loosely coupled way. We put the declaration of bean methods there. The
interesting point here is about the polymorphic way that a single EJB can
implement different interfaces for different clients. For example, a single
CardProcessorBean is available for customers using the CardProcessor
interface and the CardProcessorAdmin interface (see Figure 5-2).

Figure 5-2 A session bean implementing multiple interfaces

Going back to early versions of EJB, we could have four interfaces, two for
EJBHome (EJBHome and EJBLocalHome) used to control the bean life cycle,
and two for EJBObject (EJBObject and EJBLocalObject). EJB 3.0 has greatly
simplified the construction.

260 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Now that we have one interface, how do we specify whether the methods are
remote or local? We use annotations that were provided with J2SE 5.0.

In Example 5-1, we used the @Remote annotation for customer access in the
CardProcessor interface.

Example 5-1 Using annotations in business interface CardProcessor

package com.ibm.itso.sg247497.ejb3;

@Remote
public interface CardProcessor {
 public double balance(String card) throws Exception;
 public boolean check(String card) throws Exception;
 public void debit(String card,double amount) throws Exception;
 public void credit(String card,double amount) throws Exception;
}

In Example 5-2, we used the @Local annotation for interface
CardProcessorAdmin.

Example 5-2 Using annotations in business interface CardProcessorAdmin

package com.ibm.itso.sg247497.ejb3;

@Local
public interface CardProcessorAdmin {
 public void block(String card) throws Exception;
 public void invalidate(String card) throws Exception;
}

� The EJB bean class: This provides the concrete implementation of the
business interface. The bean class is a normal Java class and the
implementation is done using the implements clause. See Example 5-3.

Example 5-3 Bean class implementation example

package com.ibm.itso.sg247497.ejb3;

@Stateless
public class CardProcessorBean implements CardProcessor,
CardProcessorAdmin {

 //CardProcessor implemented methods
 public double balance(String card) throws Exception {
 //Put your Business Logic Here
 return 0;

 Chapter 5. Business logic layer 261

 }

 public boolean check(String card) throws Exception {
 //Put your Business Logic Here
 return true;
 }

 public void debit(double amount) throws Exception {
 //Put your Business Logic Here
 }

 //CardProcessorAdmin implemented methods
 public void block(String card) throws Exception {
 //Put your Business Logic Here
 }

 public void invalidate(String card) throws Exception {
 //Put your Business Logic Here
 }
}

Looking at the previous example, we can see the @Stateless annotation that
indicates a stateless session bean. If you have to use a stateful session bean,
you must use @Stateful. This informs the EJB container how to manage the
bean. We see the particulars and best practices in the next sections.

Programming rules to write a session bean
Next we discuss the rules to follow when building a session bean.

Business interface
A session bean requires at least a business interface.

No final or abstract class
A session bean class cannot be implemented as final or abstract because the
container must manipulate it. However, you can subclass another session bean
or another POJO class.

Note: You can annotate either the business interface or the bean class with
@Local or @Remote. Enabling the annotation on the bean class is useful
when you choose to let the container generate the business interface for you.

262 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Default no arg constructor
A default no arg constructor is required in a session bean class. If there are no
constructors defined in the class, the compiler puts one in by default. If you
defined other constructors, you must define a no arg constructor.

Business methods definition
Business methods can be defined either in a superclass or a bean class.
However, it should be public and not final or static.

Callback methods and life cycle (overview)
Life cycle callbacks are bean methods and are not exposed in a bean interface
that the container invokes during a life cycle transition or event. You can define
callback methods either in superclass or bean class. Prior to EJB 3.0, you had to
implement callback methods, such as ejbCreate(), on the bean class; bean
classes had to implement all the methods, whether they used them or not. In
most cases, these method implementations were empty. Callbacks are now
handled through annotations, using either callback methods or callback listener
classes.

There are two events in a bean life cycle that are common for all session beans:
creation and destruction. These methods are defined with the @PostConstruct
and @PreDestroy annotations. Two more events for stateful session beans,
called passivation and activation, are represented with the @PrePassivate and
@PostActivate annotations.

To write a method with these annotations, you can make it public, private,
protected, or default (package).

In Example 5-4. we write code to respond to a callback using callback methods.

Example 5-4 Using callback methods

@stateless
public class CardProcessorBean implements CardProcessor {

 //CardProcessor implemented methods
 public double balance(String card) throws Exception {
 //Put your Business Logic Here
 return 0;
 }

//Other business methods

 @PostConstruct public void initializeResouces(){
 connection = datasource.getConnection();

 Chapter 5. Business logic layer 263

 }

 @PreDestroy public void deliverResources(){
 connection.close();
 connection = null;
 }
}

The previous code enables you to implement code after a bean instance is
created and before destroying the instance by container. If you wanted to use a
callback listener, you could create a callback listener class. See Example 5-5.

Example 5-5 Using callback listener

public class CardProcessorCallbackListener
{
 @PrePassivate public deliverResources(Object obj)
 {
 CardProcessor card = (CardProcessor) obj;
 //perform logic
 }
}

A callback class that is not part of the bean class has to take in a java.lang.Object
parameter. The container then passes the bean instance. A bean class adds the
callback listener class by using a special callback annotation at the bean class
level. See Example 5-6.

Example 5-6 Referencing callback listener in bean class

@CallbackListener CardProcessorCallbackListener
@stateless
public class CardProcessorBean implements CardProcessor {

 //CardProcessor implemented methods
 public double balance(String card) throws Exception {
 //Put your Business Logic Here
 return 0;
 }

 //Other business methods
}

264 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Avoid using the word “ejb” in business methods declarations
Avoid using business methods that start with “ejb” because it can cause
problems with infrastructure processing.

Use java.io.Serializable
If you intend to use remote invocations, make sure that the parameters and
return type implement java.io.Serializable.

Stateless session beans
Stateless session beans do not maintain the conversational state with the client.
This means there is no guarantee that the same session bean responds to the
same client between requests. Stateless beans are pooled; in other words, it
seems that there are a number of instances in the pool to service clients. See
Figure 5-4.

Figure 5-3 Execution example of some requests to ejb stateless pool

In this example, the first request from client 1 to EJB A used EJB A instance 1.
The next request from client 1 used EJB A instance 2. A request from client 2
uses EJB A instance 1. In other words, there is no guarantee that EJB A instance
1 serves all client 1 requests.

Client 1

Pool of EJB instances

Time
Client 2

Client 1
(new request)

EJB A instance 1

EJB A instance 2

 Chapter 5. Business logic layer 265

Stateless life cycle (overview)
To understand the life cycle of a stateless session bean, see Figure 5-4.

Figure 5-4 Stateless session bean life cycle

The first step in the life cycle is when the newInstance method is invoked on the
session bean class to instantiate a bean class. The container injects the bean’s
SessionContext and performs any other applicable Dependency Injection that is
specified by metadata annotations on the bean class or by the deployment
descriptor. The container then calls the PostConstruct life cycle callback
interceptor methods for the bean, if defined. The container can perform the
instance creation at any time with no direct relationship to a business invocation
from client.

In the method-ready pool state, the session bean instance is now ready to
receive a business method as a delegated call from any client or a call from the
container to the timeout callback method.

Usually, when the container wants to reduce the number of instances in the
method-ready pool and no longer requires the instance, the container invokes the
PreDestroy life cycle callback interceptor methods for it, if defined. This event
finalizes the life of the stateless session bean instance.

Does not exist

Method-ready pool

1 – newInstance()

2 – dependency injection

3 – PostConstruct
callbacks if defined

PreDestroy callbacks, if
defined

method Timeout callback
method

method() – action initiated by client

newInstance() – action initiated by container

266 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Annotations used in stateless session beans
In Table 5-1 we explain the annotations used in stateless session beans as a
summary of annotation concepts.

Table 5-1 Annotations used in stateless session beans

For more information on callback methods, see “Callback methods and life cycle
(overview)” on page 263.

Annotation Purpose Usage example

@Stateless Marks a bean class (POJO
class) as a stateless
session bean.

@Stateless
public class CardProcessorBean
implements CardProcessor

@Local Used for local interfaces
designated for clients that
access the session bean
instance from the same
JVM.

@Local
public interface
CardProcessorAdmin

@Remote Used for remote interfaces
designated for clients that
access the session bean
instance from another
JVM.

@Remote
public interface CardProcessor

@WebService Exposes a stateless
session bean as a SOAP
based Web service to be
invoked by a .NET
application, for example.

@WebService
public interface CardProcessor

@PostConstruct Used as a container
callback method after bean
is constructed.

@PostConstruct public void
initializeResouces()

@PreDestroy Used as a container
callback method before
bean is destroyed.

@PreDestroy public void
deliverResources()

@Resource Used to inject resources
such as data sources. The
parameter is a JNDI and
tells the container to find a
resource in a described
JNDI location and assign
to parameter variable. This
step is done after bean
creation.

@Resource(name="jdbc/UserCardDS"
)
public void
setDataSource(DataSource
datasource){
 this.datasource = datasource;
}

 Chapter 5. Business logic layer 267

Stateful session beans
Stateful beans are used when you must record and remember the conversational
state between client requests. In other words, the next request has to know the
previous request state. There is no huge difference between stateless and
stateful beans. The most significant changes refer to the way that the container
manages resources. See Figure 5-5.

Figure 5-5 Execution example of some requests to EJB stateful pool

In this case, EJB A instance 1 is used for all client 1 requests. EJB A instance 1 is
held by client 1 until the session is disconnected, making this instance
unavailable to other clients. If a large number of concurrency clients call a stateful
EJB, this could cause a drawback in terms of memory usage. To alleviate this
problem, a technique called passivation and activation is used.

Passivation means that the container serializes and saves the bean instance into
a persistence storage such as a file or database when the container decides to
save resources. For example, when the client is idle and the session timeout has
not been reached, or a high number of concurrency clients are reached.

In activation, the container does the opposite process, retrieving a requested
bean instance from a persistence storage, deserializing, and moving back to
memory.

Note: When you use a remote interface, you can extend java.rmi.Remote.
However, this is not mandatory, and the EJB container inserts it when
performing byte-code enhancements.

Client 1

Pool of EJB instances

Time
Client 2

Client 1
(new request)

EJB A instance 1

EJB A instance 2

EJB A instance 1

Same
instance

268 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

When you code a stateful session bean, all variables for which you must keep
state should be put in as Java primitive types or implementing
java.io.Serializable. Variables that you do not need to keep state for can be put in
a transient attribute.

Stateful bean life cycle (overview)
In Figure 5-6, notice that the stateless session bean life cycle is more complex
and very different from stateless session beans. This situation is caused by
passivation and activation control, which are necessary.

Figure 5-6 Stateful bean life cycle

Looking at Figure 5-6, note that stateful beans do not have a pool state. See the
following numbered steps, corresponding to the numbers in the figure:

1. A new bean instance is created using a default constructor when a new client
session is started. Resources described in @Resource annotations are
injected and the bean is left in memory.

2. In method ready state, the client executes methods on a stateful bean using a
business interface. The container waits for the next request, counting idle time
between requests.

Client

Bean does not
exist

Bean
method ready

Bean
passivated

Bean instance
removed

Bean instance
created

Bean instance
removed

Bean instance
activated

Bean instance
passivated

1

Business
Interface

Client executes
methods using a
business Interface

3

4

5

6

2

Client starts a

new stateful session

Client executes remove()
method starting step 6 or
step 4 + step 6 if bean is
passivated

 Chapter 5. Business logic layer 269

3. If an idle time limit is reached, the container passivates the bean instance.
This means that the container moves this bean from memory; it is serialized
and persisted in a temporary storage managed by the container.

4. If a client invokes the passivated bean again, the container loads the
passivated bean from a temporary storage.

5. If a client does not invoke a passivated bean within a period of time, the bean
is destroyed.

6. If a client executes a method to remove, this action starts at step 6. If the bean
is passivated, step 4 is executed first before removal.

Annotations used in stateful session beans
Stateful beans use the same annotations used by stateless beans except for
@WebService, which is a SOAP-based Web service with stateless behavior.
See Table 5-1 on page 267. Beyond the annotations used by stateless beans,
stateful beans use the coding shown in Table 5-2.

Table 5-2 Annotations used only for stateful beans

Annotation Purpose Usage example

@PrePassivate Programs some logic
before the bean state is
safe into persistence
storage. For example,
java.sql.Connection
cannot be serializable;
then it is a good practice to
deliver the connection to
the data source pool.

@PrePassivate
@Remove()
public void
deliverResources(){
 if (con!=null)
 con.close();
 con = null;
}

@PostActivate Programs some logic after
the bean is retrieved from
persistence storage to
memory. It can be used to
get a new database
connection to use.

@PostActivate
 public void getResources(){
 //get Datasource code
 con =
datasource.getConnection();
}

@Remove Indicates that a method
that is using this annotation
is be executed by the
container before
destroying the bean
instance.

@PrePassivate
@Remove()
public void
deliverResources(){
 if (con!=null)
 con.close();
 con = null;
}

270 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Some performance considerations for stateful session beans
When we code a stateful bean, we must take care of the following issues
according to best practices:

� Memory, disk, and network considerations: Because stateful session beans
maintain state between invocations, you must be aware of the amount of data
that is being passivated. This concern is the same as when you use an
HttpSession in a servlet. Since the container stores session data information
in memory, putting a large amount of data in a stateful session can cause
performance drawbacks and disk space problems for passivation. Consider
using simpler types of data, for example, AccountID instead of the whole
Account object. Network overhead may also be a consideration if stateful
beans are clustered, because the state is replicated between different
instances of the EJB container.

� EJB container tuning for passivation rules: Consider tuning the EJB container
for passivation rules to get more performance. For example, if you want to
avoid the passivation and activation process, you have to make the maximum
number of active instances and the maximum number of clients equal. See
Chapter 7, “Environmental performance considerations” on page 509 for
more information about WebSphere Application Server 6.1 best practices for
configuration.

� Alternatives to using stateful beans: If you are using a Web application, for
example, servlets, JSPs, and associated framework such as Struts, JSF, and
others, consider using the session data managed by the Web container,
which performs better than stateful session beans. However, if you are
developing a J2SE client for which you must keep state between invocations
with an application server, stateful session beans could be a good choice.

For more information on HttpSession best practices, see 4.5.2, “HttpSession
best practices” on page 173 for best practices for the presentation and control
layer.

Another option could be to write a stateless session bean with logic to persist
data in the database and load data from it, keeping the state between
invocations. But this approach is not recommended for two main reasons:
proprietary code to maintain, and no guarantees for scalability and cluster
effectiveness issues when these services are offered by the EJB container.

Note: You can see that the examples of @PrePassivate and @Remove are
the same. We can refer more than one annotation to a unique method.
The container in this example executes the deliverResouces() method
two times before the bean is passivated to persistence storage because the
java.sql.Connection is not serialized, and before destroying the bean instance,
in order not to hold resources that are never used.

 Chapter 5. Business logic layer 271

Programming rules to write client code
The general rules for writing a session bean are as follows:

1. The client obtains a reference to the beans using Dependency Injection (DI)
or using Java Naming and Directory Interface (JNDI) lookups.

2. All session calls are done using the business interface to accomplish the
business requirements.

3. In the case of a stateful bean, as a best practice, the last invocation is the
remove() method to deliver resources more quickly.

The difference between DI and JNDI calls
DI is a new feature in EJB 3.0 that leaves the dependencies between
components loosely coupled. The idea is that one component calls another
component or resource using only interfaces, and we can glue components and
resources together using configuration instead of code. One desirable result of
this is that the application can have its implementation changed by using a
simple application reconfiguration.

Using JNDI means that our code does a manual lookup and the bean retrieves
resources and components that it requires explicitly. The result is that
dependencies of other components and resources are hard-coded inside the
bean. In other words, you can think of DI as an abstraction of JNDI lookups.

Using Dependency Injection
Example 5-7 shows a servlet that invokes an EJB for processing some tasks. For
this goal we use @EJB annotation.

Example 5-7 Servlet invoking an EJB

public class ServletCard extends HttpServlet{

 @EJB
 private CardProcessor cardProcessor;

 public void service(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
IOException{
 String cardId = request.getParameter("cardId");

 if (cardProcessor.check(cardId)){

Note: To learn more about the Dependency Injection pattern, see this URL:

http://www.martinfowler.com/articles/injection.html

272 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://www.martinfowler.com/articles/injection.html

 double ammount = cardProcessor.balance(String card);
 }
 //Other code parts
 }
}

As we can note, regardless of EJB annotation, the cardProcessor variable is
used as a simple local Plain Old Java Object. Another interesting point is that
behind the scenes, when the servlet is loaded, the servlet container looks up an
instance of CardProcessor EJB, CardProcessorBean in the JNDI tree, and sets
the cardProcessor variable with the retrieved EJB reference. If the EJB is remote,
the container looks up the EJB too. In Example 5-8, an EJB is calling another
EJB using DI.

Example 5-8 EJB calling another using Dependency Injection

@stateless
public class CardProcessorBean implements CardProcessor {
 @EJB
 Account account;

 public void payCard(String accountID,String card,double amount){
 if (account.balance(accountID) < amount){
 //Process InsufficientFundsException
 }
 else {
 account.withdraw(amount);
 credit(String card,double amount);
 //Other code Parts
 }
 }
 //Another code parts
}

Also, we can call an EJB from a client in a JVM other than the application server
as a J2EE client container application. See Example 5-9.

Example 5-9 J2EE client container example

//Client as a J2EE client container

package com.ibm.itso.sg247497.ejb3.client;

import javax.ejb.EJB;

 Chapter 5. Business logic layer 273

import com.ibm.itso.sg247497.ejb3.CardProcessor;

public class RemoteEJBCard {

@EJB(beanName = "CardProcessorBean")
private static CardProcessor cardProcessor;

public static void main(String[] args) {

try {
char option = ' ';
while (option != '0') {

System.out.println("\n\nEnter a number for the operation:"
+ "\n\t0 - Exit" + "\n\t1 - get card balance");

option = (char) System.in.read();
switch (option) {
case '0':

break;
case '1':

System.out.println("\n\nEnter the card number:");
byte[] inputData=null;
System.in.read(inputData);
String card = new String(inputData);
System.out.println("\nThe balance for card " + card

+ " is : " + cardProcessor.balance(card));
break;

default:
System.out.println("\nInvalid option - " + option);
break;

}
System.in.skip(4);

}
} catch (Exception e) {

System.out.println("Unexpected exception:");
e.printStackTrace();

}
}

}

274 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Using Java Naming and Directory Interface
Next, we describe various circumstances for using this interface:

� Outside the container, with a helper class:

When you call an EJB using another JVM from outside the container, it is
similar to previous versions of EJB except that is not necessary for the home
interface to instantiate a bean. See Example 5-10.

Example 5-10 EJB Client code

public void payCard(String account,String card,double amount){
 InitialContext context = new InitialContext();
 Account account =
(Account)context.lookup("java:comp/env/ejb/Account");
 if (account.balance(accountID) < amount){
 //Process InsufficientFundsException
 }
 else {
 account.withdraw(amount);
 //Other code Parts
 }
}

� Inside the container, with an EJB accessing another EJB:

Consider the case where a servlet is accessing an EJB or a resource, for
example, a JDBC resource, an EJBContext, or a JMS resource. In this case,
we use two annotation types: @EJB and @Resource.

To get access to another EJB, the first step is to inform the container that you
require access to another EJB using the @EJB annotation defining a
dependency. See Example 5-11.

Example 5-11 Referencing another EJB for call with @EJB annotation

@EJB(name="ejb/Account" beanInterface=Account.class)
@stateless
public class CardProcessorBean implements CardProcessor

Note that you must put, in the name parameter, the JNDI complete path to
reach this other EJB and the business interface class.

The next step is getting access to container services using the same class
used in previous versions of EJB, that is a SessionContext. However, we use
annotation @Resource, which informs a container to instantiate the
SessionContext for you. This technique is called injection (Example 5-12).

 Chapter 5. Business logic layer 275

Example 5-12 SessionContext instantiation with @Resource annotation

@EJB(name="ejb/Account" beanInterface=Account.class)
@stateless
public class CardProcessorBean implements CardProcessor {
 @Resource
 SessionContext context;
 //Another code parts
}

Now we invoke the target EJB inside a method (Example 5-13).

Example 5-13 Getting another EJB using SessionContext lookup method

@stateless
public class CardProcessorBean implements CardProcessor {
 @Resource
 SessionContext context;

 public void payCard(String accountID,String card,double amount){
 Account account = (Account)context.lookup("ejb/Account");
 if (account.balance(accountID) < amount){
 //Process InsufficientFundsException
 }
 }
 //Another code parts
}

Note: In regard to @EJB usage, consider the following situation:

@EJB CardProcessor cardProcessor1;
@EJB CardProcessor cardProcessor2;
...
if (cardProcessor1.equals(cardProcessor1)) { // this test must
return true
...
}
...
if (cardProcessor1.equals(cardProcessor2)) { // this test must also
return true
...
}

if you are using the same business interface from the same session bean type,
the equals() method always returns true.

276 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Using Web services
A Web service client accesses a stateless session bean through the Web service
client view, which is described by the Web Services Description Language
(WSDL) document for the Web service that the bean implements. @WebService
annotations are used in method declarations that are exposed as Web services
and are only available for stateless session beans. For more information, see
“Annotations used in stateless session beans” on page 267.

The Web service client view of an enterprise bean is location independent and it
can be remote. Web service clients might be Java clients and/or clients not
written in the Java programming language. A Web service client that is a Java
client accesses the Web service by means of JAX-WS, which is a new
programming model for Web services from J2EE 5, or JAX-RPC client APIs.
Access through Web service clients occurs through SOAP 1.1, SOAP 1.2, or
plain XML over HTTP or HTTPS.

To conclude this topic, we discuss a complete example of calling a stateless
session bean using Web services. First we start with a stateless session bean
configuration. We can use our previous example with CardProcessorBean
(Example 5-14).

Example 5-14 Annotations used example in stateless beans for Web Services

@Stateless
@WebService(serviceName="CardServices", portName="CardServicePort")
public class CardProcessorBean implements CardProcessor {

 @WebMethod
 public double balance(String card) throws Exception {
 //Put your Business Logic Here
 return 0;
 }
}

Note: For more information about JAX-WS and JAX-RPC difference and other
specifications, see the following articles:

http://www.ibm.com/developerworks/webservices/library/ws-tip-jaxwsrp
c.html
http://www.ibm.com/developerworks/websphere/library/techarticles/070
7_barcia/0707_barcia.html

Also see the Web services feature pack for WebSphere 6.1:

http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg21264563

 Chapter 5. Business logic layer 277

http://www.ibm.com/developerworks/webservices/library/ws-tip-jaxwsrpc.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0707_barcia/0707_barcia.html
http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg21264563

As you can see, we did not do any coding for Web services features. We put in
@WebService annotation with two members: serviceName and servicePort that
tell the container about the name and port name of the Web service, and these
configurations appear in the <service> tag of a WSDL config file (Example 5-15).

Example 5-15 WSDL service tag definition of a session bean

<service name="CardServices">
 <port name="CardServicePort" binding="tns:CardServicePortBinding">
 <soap:address location="http://localhost:80/CardService"/>
 </port>
</service>

Another annotation, @WebMethod, as shown in Example 5-14 on page 277,
exposes a method in the WSDL file. But this annotation is optional; if omitted, all
methods are exposed in the WSDL file.

After configuring the bean with these annotations, we must redeploy the
application. The EJB container knows how to receive incoming SOAP message
requests to the bean and properly dispatch the bean doing a mapping between
XML data as a SOAP request to Java. When the response is completed from the
EJB method, the container knows how to translate the Java return data to the
SOAP response message. These mapping rules between XML data and Java
are a feature of the Java Architecture for XML binding (JAXB).

To learn more about JAXB, go to following link:

http://www.ibm.com/developerworks/xml/library/x-pracdb2.html

Example 5-16 shows client code that accesses the session bean Web service.

In this sample, we used JAX-WS 2.0, which is the successor to JAX-RPC 1.1.

Note: To learn about some initial Web services concepts, refer to 6.12, “Web
Services” on page 471.

Because a WSDL file is an XML file, you can find some background
information about XML at the following link:

http://www.ibm.com/developerworks/edu/x-dw-xmlintro-i.html

To learn more about the WSDL structure, see Section 2, “Service Definition” at
the following link:

http://www.w3.org/TR/wsdl

278 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://www.ibm.com/developerworks/edu/x-dw-xmlintro-i.html
http://www.w3.org/TR/wsdl
http://www.ibm.com/developerworks/xml/library/x-pracdb2.html

Example 5-16 Web service client code

//Web Service Client (StandAlone) using JAX-WS

package com.ibm.itso.sg247497.ejb3;

import java.net.URL;
import javax.xml.namespace.QName;
import javax.xml.ws.Service;

public class WSClientCard{

 static String host = "localhost";
 static String portType = "CardProcessor";
 static String serviceName = "CardServices"
 static String serviceEndPointAddress =
 "http://"+ host+":8080/"+ serviceName;
 static String nameSpace = "http://itso.sg247497.ejb3";

 public static void main(String[] args) throws Exception{

 System.out.println("\n\nEnter the card number:");
 byte[] inputData;
 System.in.read(inputData);
 String card = new String(inputData);

 URL wsdlLocation = new URL(serviceEndPointAddress + "/" + portType
+ "?WSDL");
 QName serviceQName = new QName(nameSpace, serviceName);

 //Dynamic service mode usage
 Service service = Service.create(wsdlLocation, serviceQName);
 CardProcessor cardPort = service.getPort(CardProcessorBean.class);
 System.out.println(" Dynamic service test
:"+cardPort.balance(card));

 //Static service mode usage
 CardServices card = new CardServices();
 CardProcessor cardPort = card.getCardServicePort();
 System.out.println(" Static service test :"+cardPort.balance(card));
}

Session beans: Best practices
In the following topics, we discuss best practices for session beans.

 Chapter 5. Business logic layer 279

Use stateless session beans instead of stateful session beans
In most cases, stateless session beans are the best choice instead of stateful
beans because of the resources required, such as disk, memory, and network
bandwidth, to implement a stateful approach. Implementations that avoid storing
the client user state scale and perform the best. You should design
implementations to avoid storing state. Using stateless session beans instead of
stateful beans makes your system more resilient to failover.

If state storage is required, use the HttpSession to store user-specific state.
Ensure that the size of the state data and the time that the state is stored are kept
to the smallest possible values. J2EE application servers providing for stateful
session bean failover can work around some issues, but stateful solutions are not
as scalable as stateless ones. The use of stateful session beans pushes state to
your application server, which is undesirable. It increases system complexity and
complicates failure scenarios. One of the key principles of robust distributed
systems is stateless behavior whenever possible.

We recommend that you choose a stateless session bean approach for most
applications. Any user-specific state necessary for processing should either be
passed in as an argument to the EJB methods (and stored outside the EJB
through a mechanism like the HttpSession) or be retrieved as part of the EJB
transaction from a persistent back-end store (for instance, through the use of
entity beans). Where appropriate, this information can be cached in memory, but
beware of the potential challenges that surround keeping the cache consistent in
a distributed environment. Caching works best for read-only data.

Prefer local interfaces rather than remote interfaces
If you want to make sure that your client invokes an EJB from the same JVM, use
local interfaces. Remote interfaces involve network resources such as Remote
Method Invocation (RMI) or SOAP access and use more resources than local
interfaces.

Remote object invocations are expensive compared to local calls, requiring
request and return object serialization and de-serialization. Use as many local
object accesses as possible, and where feasible, deploy all application
components in the same tier. For example, having Web and EJB components in
the same tier ensures local access to EJBs. You should use the EJB “local” APIs
to avoid request and response object pass-by value semantics (requiring
serialization and de-serialization).

Avoid accessing EJB entity beans from the presentation layer. Instead, use a
session facade to contain complex interactions and reduce the number of
distributed business objects accessed by the presentation layer. When a client
application accesses an entity bean directly, each getter method is a remote call.

280 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

A session facade can access the entity bean locally, collect the data in a
structure, and return it by value. When remote objects are required, design
course grain interfaces to reduce the number of invocations required and make
sure that only the minimal required data is sent and retrieved.

Be careful when using Dependency Injection (DI)
When you use Dependency Injection, be careful to not use a stateful session
bean referring to a stateless session bean. This is a concern because when you
use an injection, the variables used are instance variables and have the class
scope. Then, in this case, a global variable of a stateless bean is in the stateful
bean class. When the stateless bean comes back to the pool, the state of the
stateful bean turns inconsistent.

Use session facade for better results
In previous versions of EJB, we could access entity beans from remote clients
directly. The best practice was to create a stateless session facade to access
entity beans. In other words, you would only access entity beans from stateless
session beans. The session facade brings the following benefits:

� Dependencies between client and server are minimized, increasing our ability
to reuse entity beans in multiple applications, and masking changes in the
entity bean from the client. It also better defines the programming logic,
allowing session beans to control the logic.

� It acts as a transaction facade, enforcing the control of transaction activities to
be executed on the server’s behalf. If a client controls the entity bean without
a session facade, this could increase the transaction time, thus decreasing
concurrency for other clients accessing this entity.

� It minimizes data traffic when the entity bean is used. Without session facade,
a higher data traffic from updates may result.

With EJB 3.0, no entity beans can be accessed remotely, making this pattern
easy. It means that a stand alone client is forced to access entity beans through
session beans. However, if you are using a local call to an entity bean from a
servlet or JSP, the session facade pattern brings the benefits related above,
improving the application design.

It is not a good practice to use only one session bean for all of your business
logic. Modeling of use cases for each independent business case is necessary in
order to plan for reuse and to program the session beans according to this
approach. Also, when you use an entity bean, do not put domain data logic in
your session bean, only delegate the CRUD operations to an entity bean. The
exception is when a session bean controls a workflow of entities that are not
related directly. In this case, a domain logic operation is required.

 Chapter 5. Business logic layer 281

Tuning stateless session beans
Stateless tuning involves the following considerations:

� Pool size tuning: The pool size should be tuned according to the EJB
container vendor configuration. Other application components such as HTTP
connections, servlet connections, and database connections, which are used
in your application must also be analyzed. For more details about pool size
tuning in WebSphere Application Server 6.1, see “Set EJB container pool
size” on page 530.

� Resource caching with effectiveness: We must plan the components that fit
best for caching. For example, a database connection is not a good
component to cache because you decrease reusability to other beans when
you reach the maximum session beans connected. In this case, the database
connection number can be lower than the session bean pool size to better
reuse this resource, and you can get a connection when it is required in a
business method scope. Another resource might be a data source that is
gotten from a JNDI operation; that is an expensive operation and can be
cached. This approach is nice because a data source is a ConnectionFactory,
not the connection.

Tuning stateful session beans
Stateful tuning involves the following considerations:

� Cache configuration: When you do not properly configure the cache for your
stateful session beans, this hugely affects the performance of your
application. Caching is reached when the number of clients exceed the
number of maximum stateful instances allowed. During caching, the state of
the bean is kept in storage, and the bean instance is available to another
client request. Stateful session beans are held in the EJB cache until they are
removed by the application or their session timeout value is reached.

The EJB cache size and the cache cleanup intervals can be tuned to provide
optimal performance. Determining the appropriate values for these
parameters will require that you analyze your environment.

For more information on EJB cache tuning, see:

– EJB Container Tuning:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.i
bm.websphere.ejbfep.multiplatform.doc/info/ae/ae/rprf_ejbcontaine
r.html

Note: You can find more details in 6.5, “Entity Beans 2.x” on page 347 or
6.6, “Java Persistence API: Entity Beans 3.0” on page 380.

282 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.ejbfep.multiplatform.doc/info/ae/ae/rprf_ejbcontainer.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.ejbfep.multiplatform.doc/info/ae/ae/rprf_ejbcontainer.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.ejbfep.multiplatform.doc/info/ae/ae/rprf_ejbcontainer.html

– Tuning the EJB cache using the trace service:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.
websphere.ejbfep.multiplatform.doc/info/ae/ae/tejb_tunecash.html

– Chapter 7, “Environmental performance considerations” on page 509

� Serialization and deserialization control: The serialization and deserialization
process consumes CPU cycles and I/O resources. This step occurs in the
passivation and activation processes of stateful session beans respectively. It
is best practice to build your session bean with minimum data to passivate. In
other words, put in simple attributes to passivate. See “Some performance
considerations for stateful session beans” on page 271 for more discussion
about activation and passivation.

5.2.5 Message-driven beans

Messaging systems play an increasingly important role in enterprise computing.
Java Message Service (JMS) is the Java API that enables loosely coupled Java
clients to make asynchronous interactions with messaging systems such as IBM
WebSphere MQ. JMS is a low-level API that enables applications to connect to
messaging systems. To simplify coding for message consumption, a specific kind
of enterprise bean, called the message-driven bean (MDB), was introduced
based on the JMS API.

The message-driven bean
Message-driven beans (MDBs) act as JMS message listeners for asynchronous
messages. When a message arrives at the destination or endpoint that is
serviced by a message-driven bean, the container detects and invokes the
message-driven bean.

JMS is an abstraction of the interfaces and classes that enable Java messaging
clients to communicate with messaging systems. Just as JDBC provides an
abstract implementation to access relational databases, JMS provides an
abstract implementation to access messaging systems. With the help of JMS,
messaging clients are portable across messaging products such as WebSphere
MQ and SonicMQ. To better understand the JMS concepts, refer to 6.11, “Java
Message Service” on page 456.

MDB motivations
Message-driven beans execute in the same container as session and entity
beans, and thus benefit from the infrastructure that the container provides.

Based on the JMS API, MDBs support both publish/subscribe and point to point
models. They act as a subscriber of a topic or a receiver of a queue, which is a
message listener in the asynchronous communication model.

 Chapter 5. Business logic layer 283

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.ejbfep.multiplatform.doc/info/ae/ae/tejb_tunecash.html

Multithreading message consumers
MDBs can process multiple messages concurrently. The container provides
multithread services for message-driven beans, keeping a pool of MDB instances
available for incoming messages. When a message arrives, an instance from the
pool is assigned for processing.

Simplified coding
With MDBs, aspects of processing messages, such as looking up connection
factories or destinations, creating connections, opening sessions, creating
consumers, and so on, are done for you with the default configuration in EJB 3.0.

Characteristics of MDBs
Compared to session and entity beans, MDBs have the following characteristics:

� Like stateless session beans, MDBs do not maintain conversational state
between requests. They might have instance variables throughout the life
cycle, but due to the pooling of bean instances by the EJB container, the bean
instances that consume the messages can be different between requests.
That is why the conversational state might not be stored properly.

� Like a stateless session bean, the EJB container maintains many bean
instances of the same type in a pool. This enables concurrent message
consumption and processing when several messages are delivered at the
same time, which means that MDBs can deliver better performance and
scalability.

� Unlike session and entity beans, MDBs do not have remote or home
interfaces. An MDB is a listener and it is not a remote process call
component.

� Unlike session and entity beans, MDBs do not expose any business methods
that can be invoked by clients, such as a servlet, EJB, or Java application.

� Like session and entity beans, MDBs must use the JMS API to send
messages when they act as a message producer. However, sending
messages from MDBs is not recommended — MDBs should delegate this
task to the business logic layer.

Programming rules for writing an MDB
MDBs, like other EJB types, are POJO classes and follow simple rules of
construction and annotations. We explain this in the following sections.

Must implement javax.jms.MessageListener
When you build an MDB, it is mandatory that it implements
javax.jms.MessageListener using the implements keyword, with annotations, or
is denoted in the deployment descriptor as an MDB.

284 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Example 5-17 shows the implementation using the implements keyword.

Example 5-17 MDB class declaration using implements keyword

public class CreateUsersCardProcessor implements
javax.jms.MessageListener

Also see the annotation shown in Example 5-18.

Example 5-18 MDB class declaration using annotations

@MessageDriven(
 name="CreateUsersCardJMSProcessor",
 messageListenerInterface="javax.jms.MessageListener")
public class CreateUsersCardProcessor{

MDB class should be concrete
This means that a message-driven bean class cannot be abstract or final. It must
be a POJO class and also cannot be a subclass of another MDB.

MDB must be public with no arg constructor
The MDB class must have a no argument constructor. If you do not declare
another constructor, the compiler constructs a no argument constructor for you. If
you declared another constructor, you must create a no argument constructor.

Do not define a finalize method; use PreDestroy callback instead
If you require a cleanup process, you should define a method designated with
@PreDestroy annotation.

Define methods specified in message listener interface
You must implement methods defined in the message listener interface, but they
must be public and not static or final.

Do not throw javax.rmi.RemoteException or any runtime exception
Do not use javax.rmi.RemoteException or any runtime exception. However, the
MDB bean instance is finalized if a RuntimeException is thrown. Remember that
RuntimeExceptions do not have to be declared and are thrown normally by Java
functionality.

Life cycle of MDBs
The EJB container is responsible for controlling the life cycle of an MDB, as
explained in Figure 5-7.

 Chapter 5. Business logic layer 285

Figure 5-7 Message driven bean life cycle

The container can perform the instance creation at any time with no direct
relationship to a business invocation from client.

Here we expand upon the numbered steps in the previous diagram:

1. First, the newInstance method is invoked on the MDB class and a new
instance is created.

2. Next, the EJB container injects the MessageDrivenContext and any other
Dependency Injections specified by annotations or by the deployment
descriptor.

3. The container calls the PostConstruct callback method, if defined. The
message-driven bean instance is now ready to accept messages that arrive
on its associated destination or endpoint.

4. When a message arrives, the container pulls an idle bean out of the pool to
process the message. If additional messages arrive and there are no MDB
instances available to process the message, the container will increase the
pool size (assuming the maximum pool size has not been reached).

Does not exist

Method-ready pool

1 – newInstance()

2 – dependency injection if
defined

3 – PostConstruct
callbacks if defined

PreDestroy callbacks, if
defined

Message listener
method

Timeout callback
method

Message listener method – action started from client message arrival

newInstance() – action initiated by container

286 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

5. The bean’s onMessage method is executed. When execution is complete, the
EJB container puts the idle bean back into the method-ready pool to wait for
another incoming message. Another processing activity that can occur at this
state is a call from the container to the timeout callback.

6. When the container no longer requires the instance (which usually happens
when the container wants to reduce the number of instances in the
method-ready pool), the container invokes the PreDestroy life cycle callback
methods for it, if any are defined. This ends the life of the message-driven
bean instance.

Annotations used in message-driven beans
There are few annotations defined specifically for message-driven beans; only
@MessageDriven and @ActivationConfigProperty. In the following topics, we
explain the annotations used in message-driven beans.

The @MessageDriven annotation
The purpose of the @MessageDriven annotation is set up the configuration of
message-driven beans. The coding in Example 5-19 shows the usage of this
annotation.

Example 5-19 @MessageDriven annotation usage example

@MessageDriven(
 name="CreateUsersCardJMSProcessor",
 messageListenerInterface="javax.jms.MessageListener"
 activationConfig= {
 @ActivationConfigProperty(
 propertyName="destinationType",
 propertyValue="javax.jms.Queue"),
 @ActivationConfigProperty(
 propertyName="destinationName"
 propertyValue="jms/CreateUsersRequestQueue")
 }
)

In this example, notice that all three parameter types are all optional.

� The name parameter provides a label for the MDB. If not specified, the class
name is used.

� The messageListenerInterface is discussed in “Must implement
javax.jms.MessageListener” on page 284. If omitted, the interface must be
denoted in the deployment descriptor.

� The activationConfig parameter is used to configure listener specific
properties.

 Chapter 5. Business logic layer 287

If all parameters are omitted, the annotation for the message-driven bean will
look like Example 5-20.

Example 5-20 @MessageDriven annotation with default values

@MessageDriven
public class CreateUsersCardProcessor

Using @ActivationConfigProperty
The activationConfig parameter describes the message listener configuration. It
has @ActivationConfigProperty annotations that provide name/value pairs for
each configuration property defined.

An MDB is by definition a JMS consumer. The EJB container takes care of
subscribing the bean to the desired topic or connecting it to the desired queue
based on its deployment descriptor or annotations that are described in this
section.

The following information is required for the container to deploy an MDB. It is the
application assembler's responsibility to make sure that the settings are correct
according to the business requirements. The @ActivationConfigProperty is used
to define this information.

� Destination Type:

A queue or a topic. An MDB either connects to a queue or subscribes to a
topic. The container also has to know how to look up the instance of the
destination through the use of a JNDI name. See Example 5-21.

Example 5-21 @ActivationConfigProperty for destination

@ActivationConfigProperty(
 propertyName="destinationType",

 propertyValue="javax.jms.Queue")

� Destination Name:

Defines the JNDI name of the destination the MDB listens to for messages.
See Example 5-22.

Example 5-22 @ActivationConfigProperty for destination name

@ActivationConfigProperty(
 propertyName="destinationName"
 propertyValue="jms/CreateUsersRequestQueue")

288 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

� ConnectionFactory:

For MDBs that connect to a queue, the container has to know the JNDI name
of the QueueConnectionFactory instance that creates connections to the
queue. For MDBs that subscribe to a topic, the container has to know the
JNDI name for the TopicConnectionFactory instance that creates connections
to the topic. See Example 5-23.

Example 5-23 @ActivationConfigProperty for ConnectionFactory

@ActivationConfigProperty(
 propertyName="connectionFactoryJndiName",

 propertyValue="jms/QueueConnectionFactory")

� Durability:

An MDB that subscribes to a topic can choose to use durable or non-durable
subscriptions with the topic. Durability is not applicable to the message
receivers of a queue.

In durable subscription, it is the responsibility of the server to store messages
that a subscriber misses while disconnected from the JMS server. The
messaging server sends all of the unexpired messages it stores to the
subscriber when it reconnects.

If an MDB subscribes to a topic, it has two options for durability: Durable or
Nondurable. If Durable is selected, then when it reconnects, the MDB gets all
of the messages that it missed during the disconnected period. See
Example 5-24 to specify durability.

Example 5-24 @ActivationConfigProperty for durability

@ActivationConfigProperty(propertyName="SubscriptionDurability",
propertyValue="Durable")

� Acknowledge mode:

A message is not removed from a queue until the consumer agrees with this
request. This action is called acknowledge mode. By default, a JMS session
is assumed to be AUTO_ACKNOWLEDGE. This means that the session
acknowledges receipt automatically after a message has been received or
processed successfully. Another configuration supported is
DUPS_OK_ACKOWLEDGE, which is similar to AUTO_ACKNOWLEDGE, but
the application can handle delivery of duplicate messages. In terms of
@ActivationConfigProperty, this is shown in Example 5-25.

Example 5-25 @ActivationConfigProperty for acknowledge mode

@ActivationConfigProperty(
 propertyName="acknowledgeMode"

 Chapter 5. Business logic layer 289

 propertyValue="DUPS_OK_ACKNOWLEDGE")

� Message selector:

An MDB can select the messages for consumption based on their headers
and properties. A message selector is not a part of the Message object, but it
is related to the message headers and properties. A message selector lets a
JMS consumer declare which messages it wants to receive by using message
headers and properties as criteria in conditional expressions.

An MDB works as a message consumer; therefore it can use the message
selector definition. Message selectors are based on a subset of the SQL-92
conditional expression syntax, which is used in the WHERE clauses of SQL
statements. For example, consumers with a simple message selector like
InventoryID = 12345 receive all messages that have a property named
InventoryID with the value 12345. In terms of @ActivationConfigProperty
annotation, see Example 5-26.

Example 5-26 @AtivationConfigProperty for message selector

@ActivationConfigProperty(propertyName="messageSelector",
propertyValue="RECIPIENT = 'MDB'")

Other annotations used in MDBs
Table 5-3 shows an overview of other annotations used in MDBs. It does not
include transaction control, which is explained in 5.2.6, “Best practices for
advanced concepts of EJBs” on page 291. MDBs behave similar to stateless
session beans in terms of life cycle and the callback annotations are the same
(@PostConstruct and @PreDestroy). The @WebService annotation is exclusive
for stateless beans. @Local and @Remote are not related to MDBs because
they do not have synchronous client access, and of course, the @Stateless
annotation is not used because it describes a stateless bean to the container.

Table 5-3 Other annotations used in MDBs

Annotation Purpose Example

@PostConstruct Used as a container
callback method after the
bean is constructed.

@PostConstruct public
void
initializeResouces()

@PreDestroy Used as a container
callback method before the
bean is destroyed.

@PreDestroy public void
deliverResources()

290 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Message-driven beans: Best practices
In the following sections we describe some message-driven best practices.

Modeling your message-driven in right way
When you develop your message-driven beans, avoid putting business logic in
the onMessage method to ensure separation of business logic from message
specific concerns. If, for example, you develop another set of business logic,
POJOs could be a better choice, increasing reusabilities to other parts of code
that do not use message concerns.

Tuning message-driven beans
We can consider an MDB as a stateless session bean with an onMessage()
method that is triggered by the container when a message arrives. The pool
settings are the same as the stateless session bean. Parameters that should be
tuned include initial pool size, maximum pool size, resize factor, and pool idle
time timeout settings.

Tuning Java Message Service
If you can, avoid using DUPS_OK_ACKNOWLEDGE, because when using this
approach, you can receive duplicated messages increasing the network
bandwidth. For more information on JMS tuning, see 6.13.7, “JMS” on page 508.

5.2.6 Best practices for advanced concepts of EJBs

In the following sections, we discuss EJB best practices for advanced concepts
such as transactions, interceptors, and timers.

EJB transactions
Before going into depth about EJB transactions, we discuss some transaction
concepts.

@Resource Used to inject resources
such as data sources. The
parameter tells the
container to find a resource
in a described JNDI
location and assign it to a
parameter variable. This
step is done after bean
creation.

@Resource(name="jdbc/Us
erCardDS")
public void
setDataSource(DataSourc
e datasource){
 this.datasource =
datasource;
}

Annotation Purpose Example

 Chapter 5. Business logic layer 291

Transactions: An overview
So what is a transaction? Why are they so important? Consider this very
simplistic case of a banking transaction: You transfer $100 from your checking
account to your savings account. On further investigation, this might involve two
smaller operations:

� Your bank subtracts $100 from your checking account.
� Your bank adds $100 to your savings account.

If the bank reduced your checking balance by $100 but failed to increase your
savings balance by $100, you might be a little upset. We prefer to think of the two
operations as one operation. So if $100 is never added to your savings account,
$100 should never be subtracted from your checking account!

Similarly, there are business cases in applications that take on this all-or-nothing
approach. Some large operations consist of one or more smaller steps. For the
operation to complete, all steps within the operations must complete, or none at
all. This behavior is known as atomicity.

Atomicity is one of four characteristics (or properties) that transactions must
guarantee. The other three properties are:

� Consistency
� Isolation
� Durability

Together these four properties are called the ACID properties.

ACID properties
Transactions exhibit these well-known ACID properties:

� Transactions are atomic. All operations are considered a single unit of work.
This is an all-or-nothing approach, as discussed previously.

� Transactions are consistent. After a transaction executes, it must leave the
system in a consistent (or legal) state. What defines a legal state is up to the
system. To follow the earlier example, after any withdrawals, your bank
dictates that you leave your checking account with a positive balance.

� Transactions are isolated. Each transaction behaves in isolation of other
transactions executing on the same resource. This is achieved through lock
synchronization of data.

� Transactions are durable. Updates to resources must survive system failures,
such as hardware or network failures. In distributed systems, recovery
processes are required when networks fail or databases crash.

292 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Transaction models
There are two popular transaction models: flat transactions and nested
transactions. EJBs support the flat transaction model.

Flat transactions are a series of operations performed as a single unit of work.
There can be only two results from this unit of work: either success or failure. If all
steps in a transaction complete successfully, the transaction is committed and all
persistent data changes performed by the operation become permanent. If any
steps within the transaction fail, the transaction rolls back and reverses any data
effects caused by the steps in the transaction.

Nested transactions allow for transactions (or units of work) to be nested in other
transactions. Transactions nested in other transactions allow rollbacks to occur
without affecting their parent transactions. Failed nested transactions can
continue to retry. If failure continues, the parent transactions might be rolled back.

EJB transactions support
EJBs are a framework for component development. You develop EJBs that run
within an EJB container. Among other things, the EJB container provides the
benefit of transactions.

Also, the EJB architecture supports distributed transactions. This transaction
feature occurs when multiple participants within a single transaction are
physically distributed across a network. Distributed transactions allow for different
types of resources to participate in the transaction. Here are some examples of
distributed transactions:

� A single session bean begins a transaction and updates database A. It
invokes a second session bean running on the same application server to
update database B. The first session bean commits the transaction. Both
database updates occur in the same transaction.

� A single session bean begins a transaction and updates database A. It
invokes a second session bean running on a different application server to
update database B. The transaction managers for each application server
ensure that both databases are updated in the same transaction.

� A single session bean begins a transaction and updates database A, followed
by a Java Message Service (JMS) operation. Both units of work are part of
the same transaction. If the JMS operation were to fail, the transaction would
not update the database.

� A Java client to explicitly demarcate transaction boundaries before updating
multiple databases on multiple EJB servers.

Several transaction managers must work together to perform a distributed
transaction. Usually a single transaction manager (called the transaction

 Chapter 5. Business logic layer 293

coordinator or distributed transaction manager) is appointed to coordinate the
other transaction managers.

Transaction managers, in turn, coordinate with resource managers to perform the
necessary commits or rollbacks on their resources (perhaps a database or a
messaging server). Most databases have their transaction managers and
resource managers tightly coupled together.

Transaction boundaries
When implementing EJB transactions, you are demarcating transaction
boundaries: who begins the transaction, who commits or aborts the transaction,
and when you should use the transactions. It is up to the EJB container and
server provider to provide transaction management and a low-level transaction
communication protocol.

There are two demarcation options:

� The declarative option, in which you can delegate transaction implementation
to the EJB container. (This option is the focus of the remainder of this
chapter.)

� The programmatic option, in which the enterprise beans provide the commit
or abort information themselves in their code.

With declarative transaction demarcation, the EJB container applies transaction
boundaries on an enterprise bean's methods based on instructions declared by
the application developer in the EJB deployment descriptor or annotation for EJB
3.0 applications. This is called a container-managed transaction (CMT). The EJB
container is responsible for controlling transaction boundaries.

When implementing programmatic demarcation of transactions, the application
developer is responsible for programming transaction logic and boundaries into
enterprise bean code. This is called a bean-managed transaction (BMT).

With bean-managed transactions, you programmatically control your transaction
boundaries and decide when transactions begin, commit, and roll back. Within
bean-managed transactions, you can choose between implementing Java
Transaction API (JTA) or Java Database Connectivity (JDBC) transactions.
JTA transactions use the javax.transaction.UserTransaction interface to control
transactions, while JDBC transactions control the behavior of transactions by
performing operations directly through the java.sql.Connection interface.

If you are using session beans or MDBs, you can implement bean-managed or
container-managed transactions. Entity beans, however, can only use
container-managed transactions.

294 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Table 5-4 summarizes these options by transaction type for each enterprise bean
implementation.

Table 5-4 Transaction type for each enterprise bean

Transaction attributes
You specify transaction attributes for the entire enterprise bean, for individual
methods on the bean, or for both. The following choices are available:

� Required: The bean must always run within a transaction. If the client has
started a transaction, the bean joins the transaction. If the client has not
started one, the EJB container starts a new transaction. Use this attribute
when you want your bean to always run within a transaction.

� RequiresNew: The bean always starts a new transaction. If the client has
started a transaction, this transaction is suspended until the new transaction
commits or aborts. After the new transaction completes, the existing
transaction resumes. Use this attribute when you want your bean to run as a
single unit of work and exhibit all of the ACID properties.

� Supports: If the client has started a transaction, the bean joins the
transaction. However, the EJB container does not start a new transaction if
one does not exist. Use this attribute for non-mission-critical operations on
your enterprise bean.

� Mandatory: The client must start a transaction when the bean is invoked. A
new transaction can't be created. If there is no transaction already started
when the bean is invoked, an exception is thrown. Use this attribute when a
bean is part of a larger system. Usually a third party might be responsible for
starting the transaction. This is a safe option to use because it guarantees
that the bean becomes part of a transaction.

� NotSupported: Bean cannot be involved in a transaction. If the client has
started a transaction, the existing transaction is suspended until the bean's
method has completed. After completion, the existing transaction is resumed.
If the client has not started the transaction, a new transaction is not created.
Use this attribute when you do not require your bean to exhibit any of the
ACID properties, such as for non-system-critical operations like reporting.

� Never: If the client has started a transaction, the bean throws an exception.
You might never want your bean to participate in a transaction. Use this
attribute in those cases.

Transaction type Session bean Entity bean Message-driven bean

Bean-managed Yes No Yes

Container-managed Yes Yes Yes

 Chapter 5. Business logic layer 295

In terms of bean support, session beans and entity beans support all transaction
attributes. Message-driven beans support only the NotSupported and Required
attributes. This restriction is related to the fact that no client invokes an MDB
directly.

Best practices for using EJB transactions
In the following sections we offer best practices recommendations for EJB
transactions.

Use distributed transactions only when necessary
Be aware that distributed transactions are slower than using local transactions.
All transaction participants require more system resources. Network chatter
between the transaction coordinator and all the transaction participants affects
system response time. Distributed transactions just take longer due to the
number of transaction managers and resource managers involved.

Use container-managed transactions and the required attribute
If you are unsure of which transaction type to use for your bean, we recommend
using container-managed transactions with the required attribute.

For developers, using container-managed transactions is simpler and requires
less work. No transactional logic is required in your bean method. You demarcate
transaction boundaries at the method level on the enterprise bean. Your bean
method must either run within the context of a transaction or not.

Prefer to use container-managed transactions
Learn how two-phase commit transactions work in Java EE and rely on them
rather than developing your own transaction management. The container is
almost always better at transaction optimization.

Using container-managed transactions provides two key advantages that are
nearly impossible to obtain without container support: composable units of work,
and robust transactional behavior.

If your application code explicitly begins and ends transactions (perhaps using
javax.jts.UserTransaction, or even native resource transactions), future
requirements to compose modules, perhaps as part of a refactoring, often
require changing the transaction code. For example, if module A begins a
database transaction, updates the database, and then commits the transaction,
and module B does the same, consider what happens when you try to use both
from module C. Now, module C, which is performing what is a single logical
action, is actually causing two independent transactions to occur.

296 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

If module B were to fail during an operation, module A's work is still committed.
This is not the desired behavior. If, instead, module A and module B both used
container-managed transactions, module C can also start a container-managed
transaction (typically implicitly via the deployment descriptor) and the work in
modules A and B are implicitly part of the same unit of work without any
requirement for complex rework.

If your application must access multiple resources as part of the same operation,
you require two-phase commit transactions. For example, if a message is
removed from a JMS queue and then a record is updated in a database based on
that message, it is important that either both operations occur — or that neither
occurs. If the message was removed from the queue and then the system failed
without updating the database, this system is inconsistent. Serious customer and
business implications result from inconsistent states.

We occasionally see client applications trying to implement their own solutions.
Perhaps the application code might try to “undo” the queue operation if the
database update fails. We do not recommend this. The implementation is much
more complex than you might think (imagine what happens if the application
crashes in the middle of this). Instead, use two-phase commit transactions. If you
use container-managed transactions and two-phase commit capable resources
(like JMS and most databases) in a single container-managed transaction,
WebSphere Application Server takes care of the dirty work. It makes sure that
the transaction is entirely done or entirely not done, including failure cases such
as a system crash, or database crash.

The implementation maintains transactional state in transaction logs. We cannot
emphasize enough the importance of relying on container-managed transactions
transactions if the application accesses multiple resources. If the resources you
are using cannot provide for two-phase commit, then of course you have no
choice but to use a more complex approach — but you should do everything
possible within your power to avoid this situation.

Use bean-managed transactions only to meet specific requirements
In container-managed transactions, the demarcation boundaries are at the
bean-method level. In some cases this might not be granular enough. If you
require stricter control of your transaction boundaries or expect to have
long-running processes within your enterprise beans, use bean-managed
transactions. It is best to have your transactions to run for as short a time as
possible.

By using bean-managed transactions, you can limit the duration of the
transactions to be short-lived. You can isolate the database operations within the
transaction and allow the longer-running processes to run outside the scope of

 Chapter 5. Business logic layer 297

the transaction. This ensures that you do not block any other transactions from
accessing the same data.

@TransactionManagement and @TransactionAttribute annotation
The @TransactionManagement annotation specifies if the particular bean uses
container manager transactions or bean manager transactions.

For example if you use the @TransactionManagement attribute
TransactionManagementType.CONTAINER in the bean declaration, it means that
a container-managed transaction is used. On the other hand, if you define the
@TransactionManagement attribute TransactionManagementType.BEAN in the
bean declaration, it means that a bean-managed transaction is used.

Another important annotation is @transactionAttribute, which tells the container
how to manage transactions and can be applied either to individual bean
methods or the entire bean. For more information about transaction types, see in
“EJB transactions” on page 291.

See Example 5-27, which is a complete coding example using the described
annotations. In this example, a container-managed transaction with the required
attribute is being used.

Example 5-27 @transactionManagement attribute usage

@stateless
@TransactionManagment(TransactionManagmentType.CONTAINER)
public class CardProcessorBean implements CardProcessor {
 @Resource
 SessionContext context;

 @EJB
 Account account;

 @TransactionAttribute(TransactionAttribute.REQUIRED)
 public void payCard(String accountID,String card,double amount){
 try{
 if (account.balance(accountID) < amount){
 //Process InsufficientFundsException
 }
 else{
 account.debit(amount);
 }
 }
 catch(InsufficientFundsException ife){
 context.setRollbackOnly();
 }

298 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

 catch(AccountException ae){
 context.setRollbackOnly();
 }
 }
 //Another code parts
}

Rolling back a transaction in container-managed transactions
If an appropriate business condition occurs, a container-managed transaction
method can ask the container to roll back the transaction. However, the rollback
is not done until the end of the transaction; only a flag to roll back is set for the
container. After the end of the transaction, the rollback is done. We took a small
code snippet from Example 5-27 on page 298 to explain this situation. See
Example 5-28.

Example 5-28 Rollback a transaction

catch(AccountException ae){
 context.setRollbackOnly();
}

Interceptors
A nice addition to the EJB specification is the use of interceptors. One thing
missing from EJB components has been the ability to perform Aspect Oriented
Development (AOP) for things such as pre/post-processing and cross cutting
concerns, much as servlet filters do for servlets. You can now develop an
interceptor class and apply it to a bean.

The code in Example 5-29 is an example of an interceptor that audits invocations
of the CardProcessorBean class.

Example 5-29 Interceptor class for auditing

public class CardProcessorRequestAudit {
@AroundInvoke
public Object auditCardOperation(InvocationContext inv) throws
Exception {

try {
Object result = inv.proceed();
Auditor.audit(inv.getMethod().getName(),

inv.getParameters[0]);
return result;

} catch (Exception ex) {
Auditor.auditFailure(ex);
throw ex;

 Chapter 5. Business logic layer 299

}
}

}

The interceptor in the previous example intercepts the call to the target EJB
method, then calls the proceed() method on the InvocationContext. This enables
the call to flow through to the actual EJB method that was invoked. After the
target EJB method returns, it uses the metadata in the InvocationTarget to get
the method name and parameters of the target EJB component that was called.
The interceptor can then be applied to the bean class as shown in Example 5-30.

Example 5-30 Interceptor annotation in bean class

@stateless
@Interceptors({CardProcessorRequestAudit})
public class CardProcessorBean implements CardProcessor {

 //CardProcessor implemented methods
 public double balance(String card) throws Exception {
 //Put your Business Logic Here
 return 0;
 }

 //Other business methods

}

Additionally, you can develop interceptor methods that are implemented inside
the bean class and also specify multiple interceptors, in which case the order in
which they are called is specified by the order in which they are defined in the
bean class. Interceptors can also be applied using XML away from the bean,
which is preferred in AOP, since you want to transparently apply cross cutting
concerns to beans.

300 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Timers
Since the EJB2.1 specification, a new support for scheduling using the EJB
container was introduced. This is the EJB Timer Service, which you can code
using the Timer Service API.

Timer services are used for building J2EE applications that depend on time
based services. Time based services are mostly used in scheduling workflow
type applications that define a configurable sequence of activities or tasks that
take place at a particular point of time. Before EJB 2.1, one had to manually code
for building and deploying time-based workflow systems. But, with the invent of
EJB 3.0, with annotations and Dependency Injections, this has become easier.

Timers: Services provided by the container
Time services provided by the container. Developers can use this service to
register enterprise beans to receive time-based notifications. We can use timers
only in stateless session beans and MDBs because the bean types are stateless
and asynchronous. However, timers can survive a container crash or restart.
Timers are transactional, it means that when a failure happens in a timeout
method, a rollback occurs. See Figure 5-8 for an explanation of EJB functionality.

Note: In this section we focus on developing a time service using the EJB 3.0
specification. To develop a time service for the EJB 2.1 specification, see the
following URL:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topi
c=/com.ibm.websphere.express.doc/info/exp/ae/tejb_timerserviceejb.ht
ml

 Chapter 5. Business logic layer 301

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.express.doc/info/exp/ae/tejb_timerserviceejb.html

Figure 5-8 EJB timer service functionality

As the first step, the client invokes a business method that creates a time service
and registers a callback in the EJB timer service. The EJB container invokes the
timeout method in the bean instance when timer expires.

Timers: Object types
The EJB container supports two types of Timer objects:

� Single action timer:

A single action timer (or a single interval timer) is one that expires only once.

EJB supports two ways for building a single interval timer:

– The first way is to create the timer object in such a way that it expires at a
particular period of time, specified as a Date.

– The other way is make the timer to expire after certain period of time (such
as after 10 hours or 1 day) which is usually specified in milliseconds. After
the timer expires, the enterprise bean receives a notification and the
container calls the ejbTimeout() method or another method that has
@Timeout annotation.

Client

Invokes a method
that creates a timer

EJB Timer
Service

EJB

EJB Container

The Business
method inside EJB
setups timer service

Invoke timeout
method after
expiration

302 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

� Interval timer:

The interval timer (or multiple action timer) has multiple expirations at regular
intervals of time.

EJB supports two ways to build these timers:

– The first approach is to create a timer object to have an initial expiration at
some period of time specified and to have the subsequent expirations
occurring at a specified interval.

– The second approach is to construct a timer whose initial expiration
happens after an elapsed duration of time (in milliseconds) and to have the
subsequent expirations happen after a specific interval. For every
expiration of the Timer object, the container continues to call the
ejbTimeout() method (or the method that is annotated with @Timeout
annotation) until the bean explicitly calls the cancel() method of a
javax.ejb.Timer instance.

Using the timer service
In Example 5-31, we provide a code sample showing how to use a time service.

Example 5-31 Using a time service example

@stateless
public class CardProcessorBean implements CardProcessor {
 @Resource TimerService timerService;

 public boolean check(String card){
 //Code for check card
 timerService.createTimer(15*60*100, 15*60*1000, card);
 }
 @Timeout
 public void monitorCardChecks(Timer timer){
 String card = (String)timer.getInfo();
 // code to monitor card activity
 }
}

Looking at the foregoing code, the line with the @Resource annotation tells the
container to inject a time service instance. The check() method registers the
timer and specifies the time interval. At the expiration of each interval, the
monitorCardCheck() method is called by EJB time service. This is denoted by the
@TimeOut annotation.

 Chapter 5. Business logic layer 303

The cancel method in the Timer object is used to cancel the service. Upon
invoking this method, the enterprise bean registered for notifications no longer
receives callbacks. See Example 5-32.

Example 5-32 Timer interface using example

@Timeout
public void monitorCardChecks(Timer timer){
 String card = (String)timer.getInfo();
 // code to monitor card activity
 if (cancel) // for some reason cancel the timer
 timer.cancel();
}

When to use EJB timers
It is a good practice to use EJB timers when you require a scheduling service as
part of your a business logic and EJB timers are provided as a built-in container
service. The timers should be persistent, capable of surviving an application
server crash.

5.3 General best practices considerations for business
logic

Following are best practice recommendations when planning and creating
business logic components.

5.3.1 Choose a Web application framework that can work with or
without using EJBs

Use common, proven frameworks such as Apache Struts, JavaServer Faces,
and Eclipse RCP. Use proven patterns and do not re-invent the wheel.

Developing a framework for user-interface development significantly improved
developer productivity over building UI applications directly to the base servlet
and JSP specifications. As a result, many companies developed their own UI
frameworks that simplified the task of interface development.

As open-source frameworks like Apache Struts began to develop, it seemed that
the switchover to these new frameworks would be automatic and quick. It
seemed that the benefits of having an open-source community supporting the
framework would be readily apparent to developers, and that they would gain

304 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

universal acceptance very rapidly — not only for new development, but in
retrofitted applications as well.

What has proven surprising is that this has turned out not to be the case. There
are still many companies maintaining or even developing new user-interface
frameworks that are functionally equivalent to Struts or JSF. There are many
reasons why this could be true: Organizational inertia, “not invented here”
syndrome, lack of perceived benefit in changing working code, or possibly even a
slight sense of hubris in thinking that one could do things “better” than the
open-source developers did in a particular framework.

However, the time is long past when any of these reasons are worth using as an
excuse not to adopt a standard framework. Struts and JSF are not only well
accepted in the Java community, but fully supported within the WebSphere
runtimes and Rational tool suites as well. Likewise, in the rich client arena, the
Eclipse Rich Client Platform (RCP) has also gained wide acceptance for building
standalone rich clients. While not a part of the Java EE standard, these
frameworks are now a part of the Java EE community, and should be accepted
as such.

Using EJBs, Apache Struts and JavaServer Faces, which are part of J2EE since
V1.4, are the best choices to work with, because there is a good integration with
EJB technology and there is extensible tool support in the market. Rational
Application Developer has a complete tool support with wizards to make the
development easy.

5.3.2 Apply automated unit tests in the business logic layer

We recommend strongly that you unit test not only your business logic but the
whole program. You can use proven tools, such as JUNIT, for testing. This tool is
well integrated with development tools such as Eclipse and Rational Application
Developer with wizards. With JUNIT you can easily create unit tests and you can
mix several unit tests in a test suite enabling regression tests. For more
information about JUNIT, see the URL:

http://www.junit.org/

For EJB tests for versions prior to EJB 3.0, there is an Apache framework called
Cactus. For more information, see the following URL:

http://jakarta.apache.org/cactus/writing/howto_ejb.html

With EJB 3.0, there are huge improvements in tests because EJBs are
considered POJOs. Even for a remote client test we can use the J2EE client
container making it easy to run standalone unit tests.

 Chapter 5. Business logic layer 305

http://jakarta.apache.org/cactus/writing/howto_ejb.html
http://www.junit.org/

5.3.3 Prefer to develop core business logic in POJOs

Use plain old Java objects (POJOs) or simple Java beans to develop your
business logic. By following this recommendation, any technology dependency is
only related to Java and not to other frameworks such as JavaServer Faces or
Struts. Using this approach, it is easy to change or reuse your business logic for
use in other systems. With EJB 3.0, this approach is easier because of the
annotations approach taken to set up an EJB and rules that do not affect the
behavior of a POJO.

5.3.4 Build a better exception-handling framework

The first thing to think about when designing a solid exception-handling scheme
is the abstraction of what we call low-level or system-level exceptions. These are
generally core Java exceptions that report errors in network traffic, problems with
JNDI or RMI, or other technical problems in an application. RemoteException,
EJBException (EJB 2.1 and before), and NamingException are common
examples of low-level exceptions in enterprise Java programming.

These exceptions are fairly meaningless, and can be especially confusing when
received by a client in the Web tier. Throwing this type of exception to the
customer can be a problem in terms of error control and application design.
Design your exception-handling scheme so customers see a friendly message,
and meaningful information about the error is logged.

5.3.5 Central coding and DAO

Avoid putting your business logic in the GUI since it can make it difficult to
maintain and find errors, as well as to isolate the access to the data access layer
Data Access Object (DAO). Refer to “Data Access Object” on page 43 for more
information.

5.3.6 Embrace the qualities of service provided by the application
server environment

Design applications to be clusterable using WebSphere Application Server
Network Deployment.

We have already mentioned the importance of leveraging WebSphere
Application Server security and transactional support. One more important area
that we see ignored far too often is clustering. Applications must be designed and
delivered to run in a clustered environment. Most realistic environments require

306 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

clustering for scalability and reliability. Applications that do not cluster lead
quickly to disaster.

Closely related to clustering is supporting WebSphere Application Server
Network Deployment. If you are building an application that you intend to sell to
others, make sure your application runs on WebSphere Application Server
Network Deployment and not just the single server versions.

5.3.7 Plan for using Java EE security from day one

Turn on WebSphere security. Lock down all your EJBs and URLs to at least all
authenticated users. Do not even ask — just do it.

It is a continual source of astonishment to us how few customers we work with
originally plan to turn on WebSphere Application Server's Java EE security. In
our estimate, only around 50% of the customers we see initially plan to use this
feature. We have even worked with several major financial institutions (banks,
brokerages, and so on) that did not plan on turning security on; luckily this
situation was usually addressed in review prior to deployment.

Not leveraging Java EE security is a dangerous game. Assuming your application
requires security (almost all do), you are betting that your developers can better
build a security infrastructure than the one you bought from the Java EE vendor.
That's not a good bet. Securing a distributed application is extraordinarily difficult.

For example, suppose that you have to control access to EJBs using a
network-safe encrypted token. In our experience, most home-grown security
infrastructures are not secure, with significant weaknesses that leave production
systems extremely vulnerable.

Reasons cited for not using Java EE security include: fear of performance
degradation, belief that other security products like IBM Tivoli Access Manager
and Netegrity SiteMinder handle this already, or ignorance of the features and
capabilities of WebSphere Application Server security. Do not fall into these
traps. In particular, while products like Tivoli Access Manager provide excellent
security features, they alone cannot secure an entire Java EE application. They
must work hand in hand with the Java EE application server to secure all aspects
of the system.

Another common reason given for not using Java EE security is that the
role-based model does not provide sufficiently granular access control to meet
complex business rules. Though this is often true, this is no reason to avoid Java
EE security. Instead, leverage the Java EE authentication model and Java EE
roles in conjunction with your specific extended rules. If a complex business rule
is required to make a security decision, write the code to do it, basing the

 Chapter 5. Business logic layer 307

decision upon the readily available and trustable Java EE authentication
information (the user's ID and roles).

5.4 References

Here is a list of references that you might find useful when reading this chapter:

� SOA terminology overview, Part 1: Service, architecture, governance, and
business terms:

http://www.ibm.com/developerworks/webservices/library/ws-soa-term1/

� The EJB Advocate: Is it ever best to use EJB components without facades in
service oriented architectures?

http://www.ibm.com/developerworks/websphere/techjournal/0506_ejba/05
06_ejba.html

� Get to know Java EE 5:

http://www.ibm.com/developerworks/websphere/library/techarticles/070
7_barcia/0707_barcia.html

� EJB 3.0 specification (Java Community Process):

http://jcp.org/aboutJava/communityprocess/final/jsr220/index.html

� Integrating Message-Driven Beans into Enterprise Applications with
WebSphere Studio: Part 1 -- JMS and Message-Driven Beans:

http://www.ibm.com/developerworks/websphere/library/techarticles/030
4_yu/yu1.html

� IBM WebSphere Developer Technical Journal: The top Java EE best
practices:

http://www.ibm.com/developerworks/websphere/techjournal/0701_botzum/
0701_botzum.html

� The Redbooks publication, Rational Application Developer V7, SG24-7501:

http://www.redbooks.ibm.com/redpieces/abstracts/sg247501.html?Open

� Weighing the options for Apache Geronimo EJB transactions, Part 1:
Container-managed transactions:

http://www.ibm.com/developerworks/opensource/library/os-ag-ejbtrans1

308 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://www.redbooks.ibm.com/redpieces/abstracts/sg247501.html?Open
http://www.redbooks.ibm.com/redpieces/abstracts/sg247501.html?Open
http://www.ibm.com/developerworks/websphere/techjournal/0701_botzum/0701_botzum.html
http://www.ibm.com/developerworks/websphere/techjournal/0701_botzum/0701_botzum.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0304_yu/yu1.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0304_yu/yu1.html
http://jcp.org/aboutJava/communityprocess/final/jsr220/index.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0707_barcia/0707_barcia.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0707_barcia/0707_barcia.html
http://www.ibm.com/developerworks/websphere/techjournal/0506_ejba/0506_ejba.html
http://www.ibm.com/developerworks/websphere/techjournal/0506_ejba/0506_ejba.html
http://www.ibm.com/developerworks/webservices/library/ws-soa-term1/
http://www.ibm.com/developerworks/websphere/techjournal/0506_ejba/0506_ejba.html
http://www.ibm.com/developerworks/websphere/techjournal/0506_ejba/0506_ejba.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0707_barcia/0707_barcia.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0707_barcia/0707_barcia.html
http://jcp.org/aboutJava/communityprocess/final/jsr220/index.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0304_yu/yu1.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0304_yu/yu1.html
http://www.ibm.com/developerworks/websphere/techjournal/0701_botzum/0701_botzum.html
http://www.ibm.com/developerworks/websphere/techjournal/0701_botzum/0701_botzum.html
http://www.ibm.com/developerworks/opensource/library/os-ag-ejbtrans1/

Chapter 6. Integration layer

This chapter focuses on some technologies involved with the enterprise
integration layer. We offer tips that can be used for legacy applications when you
do not have the option to make major changes. In addition, we cover some new
technology directions and best practices. For some new technologies, we include
an overview along with best practices.

The chapter is organized into the following major sections:

� 6.1, “The integration layer: EIS integration” on page 310
� 6.2, “Data access layer” on page 314
� 6.3, “Java object serialization” on page 315
� 6.4, “JDBC and SQLJ” on page 317
� 6.5, “Entity Beans 2.x” on page 347
� 6.6, “Java Persistence API: Entity Beans 3.0” on page 380
� 6.7, “iBATIS” on page 422
� 6.8, “Java Data Objects” on page 435
� 6.9, “Service Data Objects” on page 436
� 6.10, “Java 2 Connector Architecture” on page 447
� 6.11, “Java Message Service” on page 456
� 6.12, “Web Services” on page 471
� 6.13, “References” on page 506

6

© Copyright IBM Corp. 2008. All rights reserved. 309

6.1 The integration layer: EIS integration

In the J2EE world, the integration layer, also referred to as the Enterprise
Information System (EIS tier), handles EIS software and includes enterprise
infrastructure systems. Today most companies have some sort of a back-end EIS
that processes business transactions and maintains business data in a database.
Examples of a corporate EIS are:

� Enterprise Resource Planning (ERP) systems (for example, SAP®)

� A Customer Information Control System (CICS®) and Information
Management System (IMS™) system running business transactions

� A corporate database running SQL stored procedures

� A corporate database storing company data

� Another EIS process that has be integrated, for example, using a Web service

� A combination of some or all of these scenarios

6.1.1 Levels of EIS integration

Architects and designers have designed and successfully implemented different
back-end integration solutions for many years. Chances are good that there are
still production systems running in many companies today that integrate with a
back-end system that is running CICS / COBOL, through Systems Network
Architecture (SNA), using Advanced Program to Program Communication
(APPC). In these environments, it is likely that the company has created a
framework for their back-end integration requirements. A common approach
used by such frameworks is to create a request record and to parse a response
record using connection management.

The way that applications were architected, designed, and constructed in the
past (the “client/server era”) is quite different from how we perform those tasks in
the era of the Web. Even now, when we talk about on demand computing and
creating composite applications using services-based architecture styles, we can
expect our architectures, designs, and implementations to be quite different in
the future.

310 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

There are three different levels of back-end systems integration:

� Applications directly to a back-end system (Level 1)

Before the J2EE Connector Architecture (JCA or J2C) specification was
created, many project teams used the Common Connector Framework (CCF)
from IBM to integrate with back-end systems. In some instances, developers
created their own legacy frameworks using sockets and proprietary protocols
between their applications and a corporate back-end system.

This level of integration is typically where the application layer integrates
directly with a back-end system

� Applications to an EIS integration with a J2C component and service (Level 2)

This level of back-end integration is where an application uses a J2C
component that has been exposed as a service that is using Web Services
technology.

� Applications to a EIS system process (Level 3)

This level of back-end integration is where an application invokes a business
process, or rather a system process, to handle its back-end integration.

The key difference between level 3 and the previously discussed levels is that
the EIS service or a J2C service are not called directly or explicitly by any
application. Using this level of EIS integration, any application (or any
enterprise business process) integrates with a back-end system using a
system process that is itself exposed as a service. This system process,
referred to as the EIS system process in this discussion, contains all of the
back-end system integration rules (including logging, exception handling,
routing, transformation, configuration management, versioning, and so on)
that usually are implemented and maintained by an application.

As with integration level 2, the EIS system process is not part of the
application. It is a business process that is exposed with Web-services
technologies using a service-based architecture style.

The EIS system process can be implemented using Business Process
Execution Language (BPEL) and Business Process Choreographer.

 Chapter 6. Integration layer 311

Figure 6-1 illustrates the integration levels.

Figure 6-1 EIS integration levels

The scope of this chapter is to explain best practices to access the back-end
system directly (Level 1 of integration) and best practices to use Web Services
that are part of Level 2 and Level 3 integration. We do not cover BPEL and
Business Process Choreographer.

Level 1 of integration
The three types of integration best practices that we discuss for Level 1 of
integration are:

� EIS integration with data access layer
� EIS integration with J2EE Connector Architecture (JCA or J2C)
� EIS integration with Java Message Service (JMS)

Presentation

Components

EIS

Process

Level 1
Level 2

Level 3

Application

Illustrates that components are exposed as services

Illustrates an interface

Lo
gi

ca
l A

rc
hi

te
ct

ur
e

La
ye

rs

312 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

EIS integration with data access layer
The purpose of the data access layer (see 6.2, “Data access layer” on page 314)
is to provide a flexible and portable data programming model that separates the
data access, which usually depends on some kind of Enterprise Information
System (EIS), from the data itself. In addition, the data access layer decouples
the application code from data access code, to enable business logic reuse and
simplify application maintenance. The subtopics described are:

� Java Object Serialization (see 6.3, “Java object serialization”)

� Java and SQLJ (see 6.4, “JDBC and SQLJ”)

� Entity Beans (see 6.5, “Entity Beans 2.x”)

� Java Persistence API (see 6.6, “Java Persistence API: Entity Beans 3.0”)

� iBATIS Data Mapper framework (see 6.7, “iBATIS”)

� Java Data Objects (see 6.8, “Java Data Objects”)

� Service Data Objects (see 6.9, “Service Data Objects”)

EIS integration with J2C
The purpose of J2C integration or JCA integration (these two mnemonics refer to
J2EE Connector Architecture) in this chapter is to discuss performance tips to
access Customer Information Control System (CICS) and IBM Information
Management System (IMS) back-end systems. The subtopic described is:

� Java 2 Connector Architecture (see 6.10, “Java 2 Connector Architecture”)

EIS integration with JMS
This section discusses best practices integration with EIS using the Java
Message Service (JMS) that is a MOM (Message Oriented Middleware)
software. The back-end that represents a message service provider can be a
WebSphereMQ for example. The subtopic described is:

� Java Message Service (see 6.11, “Java Message Service”)

Level 2 and Level 3 of integration
Level 2 of integration, which concerns process integration, and level 3 of
integration, which concerns business integration, are covered in:

� Web Services (see 6.12, “Web Services”)

 Chapter 6. Integration layer 313

6.2 Data access layer

In this section we make a comparison between the technologies described in the
following sections related to the data access layer. This comparison describes
the features available (Yes) and not available (No) to several technologies.

Table 6-1 Comparison between persistent data storage/retrieval options

If you analyze this table, the serialization approach is simple to develop but does
not have the major important features for persistence. Java Database
Connectivity (JDBC) supports more options than serialization, and simplicity too.
However, JDBC does not have Java Objects support or advanced OO and
portability concepts important to high productivity in Java development. EJB 2.x
addresses some of the lack of productivity in JDBC.

On the other hand, this is not simple to develop and demands experienced
developers to implement advanced topics such as entity relations. The artifacts
to do some more advanced functions are very complex. Java Data Objects (JDO)
addresses all these features, however, it is not a J2EE standard and does not
have many tools available for development support. The future of JDO is not
clear. Java Persistence API (JPA) is in fact a standard implemented as part of
EJB 3.0 specification. However, it does not implement object oriented databases.
The main players in application servers are heading toward this standard.

In the following topics, keep in mind that we have best practices for several
technologies compared here. This is very important because there is much

Supports: Serialization JDBC EJB 2.x JDO JPA

Java objects Yes No Yes Yes Yes

Advanced OO concepts Yes No No Yes Yes

Transactional integrity No Yes Yes Yes Yes

Concurrency No Yes Yes Yes Yes

Large data sets No Yes Yes Yes Yes

Existing schema No Yes Yes Yes Yes

Relational and non-relational
databases

No No Yes Yes No

Queries No Yes Yes Yes Yes

Strict standards / portability Yes No Yes Yes Yes

Simplicity Yes Yes No Yes Yes

314 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

legacy code installed in both large and small businesses. These businesses do
not have time or money to modify or rewrite all code to new technology adoption.
These best practices can help you to improve your systems to make more use of
several resources available in WebSphere Application Server environment.

6.3 Java object serialization

Object serialization is the simplest of Java persistence strategies. Object
serialization is a process of flattening object graphs to a linear sequence of bytes.
Objects graphs are relations realized as a result of the inheritance, association,
and aggregation of objects. An object's non-transient instance properties are
written to persistent storage in the form of bytes. The values of instance
properties are the values in the memory at the time serialization is performed.
For a Java object to be serializable, it must at minimum implement the
java.io.Serializable interface, which has the structure shown in Example 6-1.

Example 6-1 Java serialization

package java.io;
public interface Serializable
{}

As you can see, the java.io.Serializable interface does not declare any methods.
It is a marker, or tagged, interface. It tells the Java Runtime Environment that the
implementing class can be serialized. Example 6-2 shows a sample class that
implements this interface.

Example 6-2 Serialization usage example

import java.io.Serializable;

public class MySerializableObject extends MySuperClass implements
Serializable
{
 private String property1 = null;
 private String property2 = null;

 public String getProperty1()
 {
 return property1;
 }

 public void setProperty1(String val)
 {

 Chapter 6. Integration layer 315

 property1 = val;
 }
 public String getProperty2()
 {
 return property2;
 }

 public void setProperty2(String val)
 {
 property2 = val;
 }

 private void writeObject(ObjectOutputStream out)
 throws IOException
 {
 out.writeObject (getProperty1 ());
 out.writeObject (getProperty2 ());
 }

 private void readObject (ObjectInputStream in)
 throws IOException, ClassNotFoundException
 {
 setProperty1 ((String) in.readObject ());
 setProperty2 ((String) in.readObject ());
 }
}

You do not have to implement the writeObject(...) and readObject(...) methods
yourself to perform serialization; the Java Runtime Environment has the default
implementation of these methods available. However, you can override these
methods and provide your own implementation of how the object state is to be
stored.

There are some points about serialization to keep in mind. First, the entire object
graph (that is, all parent and referenced classes) is serialized during serialization.
Second, all instance variables of a Serializable class should themselves be
Serializable unless they have been specifically declared transient, or the
writeObject(...) and readObject(...) methods have been overridden to serialize
only serializable instance variables. If this latter rule is violated, an exception is
thrown at runtime.

Normally, a serialized stream contains only one serialized instance of any given
object and makes back references to it from other objects that share references
to it. It is often desirable to serialize an object independent of any references that
other objects might maintain to it. The unshared read and write methods allow

316 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

objects to be serialized as new and unique objects, achieving an effect similar to
object cloning but with less overhead.

6.3.1 Serialization drawbacks

Serialization involves externalizing object graphs from memory to persistent
storage (like a hard disk). This involves a lot of I/O overhead. Generally,
serialization is not the optimal choice for applications that:

� Manage hundreds of thousands of megabytes of persistent data

� Update serializable objects frequently

Serialization is a bad choice for storing enterprise data because:

� Serialized streams of bytes are readable only by the Java language. This is a
major drawback because enterprise systems are generally heterogeneous,
with many applications cooperating with each other and working on the same
data.

� Object retrieval involves lot of I/O overhead.

� There is no query language for retrieving data from a serialized object graph.

� Serialization has no built-in security mechanism.

� Serialization does not offer any transaction control mechanisms per se, so it
cannot be used within applications that require concurrent access without
making use of additional APIs.

6.4 JDBC and SQLJ

The objective of this section is to discuss best practices when the Java Database
Connectivity (JDBC) approach is used. We also talk briefly about Structured
Query Language for Java (SQLJ). More about SQLJ can be found in Appendix A,
“Additional best practices for SQLJ” on page 583. Of course, we have other
alternatives to use, such as Entity Beans, Java Data Objects (JDO), SDO, and so
on. But the main goal here, when you have existing code, is that you can tune to
gain performance. This can be of benefit if you have many legacy applications
implemented and you do not have time or budget to modify or rewrite your
system to use new technologies.

If you use a framework to persist data for your application, in reality the
framework takes care of JDBC connections for you. However, do not expect
every framework to implement the best practices for you.

 Chapter 6. Integration layer 317

6.4.1 Driver types: Overview

JDBC defines how a Java application communicates with databases (). In JDBC
we have a driver, which is at the middle layer (it implements the JDBC API
interfaces that maps Java to database specific language), and a database, which
is at the bottom (to store physical data). The driver available depends on
Database Management System (DBMS) vendors. Refer to Figure 6-2.

Figure 6-2 JDBC driver types

In this figure, there are four types of drivers, briefly described in Table 6-2.

Table 6-2 JDBC types short description

DatabaseClient

Java Program Drivers Server

Type 1

Type 2

Type 3

Type 4

JDBC-ODBC
Bridge ODBC

JDBC-Native Native
Libraries

JDBC Net
Client

All Java
Code

Middleware

JDBC type Description

Type 1 JDBC convert calls in Open Database Connectivity (ODBC) using
JDBC-ODBC bridge. This is used when the database does not have a
JDBC driver.

Type 2 This driver uses a database client and uses native drives to connect to
the database. For this you require a client database installed in the
machine that you have the client code. In DB2 the DB2JDBC Type 2
driver is quite popular and is often referred to as the app driver.

318 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

6.4.2 Data type mapping

For optimal performance, we recommend properly mapping the Java data types
used in the application for your database type. In this topic we relate Java data
types to the DB2 column data types. The main reason for this is to avoid
unnecessary conversions and thus reduce performance. Table 6-3 shows a
summary of recommended mappings of Java to DB2 data types. Primitive Java
types should be used for NOT NULL columns and corresponding wrapper types
for nullable columns.

Table 6-3 Mapping data types

Type 3 The JDBC Type 3 driver is a pure Java implementation that must talk to
middleware for communication with the server. In DB2 this approach is
done by a DB2 JDBC Applet Server and this driver was designed to
enable Java applets for access to DB2 data sources. In this scenario,
the application talks to another machine where a DB2 client has been
installed. The JDBC Type 3 driver is often referred to as the net driver,
appropriately named after its package name (COM.ibm.db2.jdbc.net.)

Type 4 This driver type is 100% Java and does not require middleware or native
drivers. This is the predominant type used today.

JDBC type Description

Java data type DB2 data type Comment

boolean
Boolean

SMALLINT No direct mapping in DB2;
SMALLINT is the best match.
Zero indicates false, and any
non-zero value indicates true.

byte
Byte

SMALLINT No direct mapping in DB2;
SMALLINT is the best match.

short
Short

SMALLINT

int
Integer

INTEGER

long
Long

DECIMAL(19.0) No 64-bit integer in type in DB2;
DECIMAL with precision 19 can hold
all long values.

java.math.BigInteger DECIMAL(19.0)

float
Float

REAL

 Chapter 6. Integration layer 319

6.4.3 Using static SQL

Static SQL is generally faster than dynamic SQL and should be used wherever it
is possible. When using static SQL, parsing and access path calculation are
done at compile time and not at runtime. Java’s implementation of static SQL is
called SQLJ. Figure 6-3 shows the differences between dynamic and static SQL.

double DOUBLE or FLOAT FLOAT is a synonym for DOUBLE in
DB2.

java.math.BigDecimal DECIMAL(p,s) p = precision, s = scale.

java.lang.String CHAR(n) Fixed-width column of length n.

VARCHAR(n) Variable-width column of maximum
length n.

GRAPHIC(n) Fixed-width column of length n.

VARGRAPHIC(n) Variable-width column of maximum
length n.

byte[] CHAR(n) FOR BIT
DATA

VARCHAR(n) FOR
BIT DATA

java.sql.Date DATE

java.sql.Time TIME

java.sql.Timestamp TIMESTAMP

java.sql.Blob BLOB(n)

java.sql.Clob CLOB(n)

DBCLOB(n)

Java data type DB2 data type Comment

320 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Figure 6-3 Dynamic versus static SQL

In some cases, it is not possible to use static SQL, for example, if a GUI
application allows a large number of options on your SQL queries. In this case,
the dynamic statement caching should be turned on in the DB2 database. You
can find more information about this in Chapter 10 of Performance Monitoring
and Best Practices for WebSphere on z/OS, SG24-7269.

Example 6-3 and Example 6-4 show the equivalent code necessary in JDBC and
SQLJ respectively to select the address for a given name from table EMP.

Example 6-3 JDBC

java.sql.PreparedStatement ps = con.prepareStatement("SELECT ADDRESS
FROM EMP WHERE NAME=?");

ps.setString(1, name);
java.sql.ResultSet rs = ps.executeQuery();
rs.next();
addr = rs.getString(1);
rs.close();

Check auth for plan/pkg

Parse SQL statement

Check table/view auth

Calculate access path

Execute statement

Check auth for plan/pkg

Execute statement

Dynamic SQL Static SQL

 Chapter 6. Integration layer 321

Example 6-4 SQLJ

#sql [con] { SELECT ADDRESS INTO :addr FROM EMP WHERE NAME=:name };

The chart in Figure 6-4 shows the results of a simple SQL performance
comparison between JDBC and SQLJ. Using JDBC, the SQL statement was
preloaded into the dynamic statement cache and always found there during the
measurement. The measured SQL statements are:

� Open - 4 Fetch - Close, selecting four rows containing columns of different
data types

� Four inserts, inserting four rows containing columns of different data types

� Four singleton selects, selecting four rows containing columns of different
data types

Figure 6-4 Comparison JDBC and SQLJ

SQLJ applications are portable even to DBMSs that do not support SQLJ. When
the preparations, such as precompile and BIND, for an SQLJ program have not
been done, the SQLJ runtime automatically emits JDBC calls. SQLJ is key to
high performance, but does not lock a customer into a particular DBMS. The only

Open - 4 Fetch - Close

Simple SQL Performance

4 Insert 4 Singleton Select

JDBC
SQLJ

322 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

performance advantage of using JDBC over SQLJ is where the SQL statements
are very complex and literals are provided.

For more information about SQLJ, see Appendix A., “Additional best practices for
SQLJ” on page 583.

6.4.4 Use a data source to get connections

To get a connection, you have two approaches using java.sql.DriverManager or
using javax.sql.Datasource (only available with JDBC 2.0 specification). See the
Example 6-5 and Example 6-6.

Example 6-5 DriverManager code snippet using java.sql.DriverManager

//This part is recommeded to put in some initialization class method
//or servlet.init() method for example if you use Servlets
try {
 // Load the DB2(R) Universal JDBC Driver with DriverManager
 Class.forName("com.ibm.db2.jcc.DB2Driver");
} catch (ClassNotFoundException e) {
 e.printStackTrace();
}
//In another code part
try {
 user = getUser();
 password = getPassword();
 java.sql.Connection con =
 java.sql.DriverManager.
 getConnection("jdbc:db2:Sample",user,password);
} catch (SQLException e) {
 e.printStackTrace();
}

Example 6-6 Code snippet using javax.sql.Datasource

//This part is recommeded to put in some initialization class method
//or servlet.init() method for example if you use Servlets
java.util.Hashtable env = new java.util.Hashtable();
env.put(Contex.INITIAL_CONTEXT_FACTORY,
 "com.ibm.ejs.ns.jndi.CNInitialContextFactory");
ctx = new InitialContext(env);
java.sql.DataSource ds =
(javax.sql.DataSource)ctx.lookup("jdbc/SAMPLE");
//In another code part
try {

 Chapter 6. Integration layer 323

 user = getUser();
 password = getPassword();
 java.sql.Connection con =
 ds.getConnection("jdbc:db2:Sample",user,password);
} catch (SQLException e) {
 e.printStackTrace();
}

We recommend using DataSource. The advantage of getting connections from
this approach is that DataSource provides a connection pool that offers some
guarantee for an application to reuse connections. The DataSource object is
retrieved from Java Naming and Directory Interface (JNDI). The implementation
of DataSource is done by vendor, for example you can find this feature in
WebSphere. The vendor simply creates a DataSource implementation class and
binds it to the JNDI tree. Example 6-7 shows how a vendor creates an
implementation class and binds it to the JNDI tree.

Example 6-7 Bind example in JNDI tree

DataSourceImpl dsi = new DataSourceImpl();
dsi.setServerName("db2");
dsi.setDatabaseName("Demo");
Context ctx = new InitialContext();
ctx.bind("jdbc/demoDB", dsi);

This code registers the DataSourceImpl object to the JNDI tree, then the
programmer can get the DataSource reference from JNDI tree without
knowledge of the underlying technology.

The best practice here is avoiding the overhead of acquiring a
javax.sql.DataSource for each SQL access. This is an expensive operation that
severely impacts the performance and scalability of the application. Instead,
servlets should acquire the javax.sql.DataSource in the Servlet.init() method (or
some other thread-safe method) and maintain it in a common location for reuse.
See Example 6-8 about DataSource usage in a Servlet.

Example 6-8 DataSource usage in a Servlet

public class DataSourceServletExample extends HttpServlet
{
 // Caching the DataSource - It is obtained in the Servlet.init()
method
 private javax.sql.DataSource ds = null;

 // This Happens Once and is Reused
 public void init(ServletConfig config) throws ServletException

324 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

 {
 super.init(config);
 Context ctx = null;
 try
 {
 java.util.Hashtable env = new java.util.Hashtable();
 env.put(Contex.INITIAL_CONTEXT_FACTORY,
 "com.ibm.ejs.ns.jndi.CNInitialContextFactory");

 ctx = new InitialContext(env);
 ds = (javax.sql.DataSource)ctx.lookup("jdbc/SAMPLE");
 ctx.close();
 }
 catch(Exception es)
 {
 es.printStackTrace();
 }
 finally{
 try{
 if (ctx!=null)
 ctx.close()
 }
 catch(Exception e){//Make your handlings}
 }
 }
}

When you use DataSource Object, you can control the maxconnections,
minconnections, connectiontimeout and Unused Timeout in a central point. It
helps technical support for capacity planning connections and if necessary ask
Database administrations to increase the maxconnections in the database
server. For example, a data source A with 30 maxconnections for a DB2
database instance, and another data source B with 20 maxconnections for the
same DB2 database instance, represent for the DBA, 50 connections for that
database instance. See the parameters for DataSource in WebSphere
Application Server in Table 6-4 for a short description.

Table 6-4 DataSource configuration parameters

Parameter Name Description

Maximum Connections Specifies the maximum number of physical connections
that you can create in this pool.

Minimum Connections Specifies the minimum number of physical connections to
maintain.

 Chapter 6. Integration layer 325

For more details about DataSource configuration in WebSphere, see 7.2.9,
“Tuning data sources and associated connection pools” on page 554.

For example, if you are using a configuration with 3 minconnections and 10
maxconnections, the data source starts with 3 connections and only gets a new
connection if more than 3 clients are requesting a connection at same time. If the
number of clients reaches more than 10, the remaining clients are put in a queue
and a connection timeout counter is started. If the client thread reaches the
connection timeout value, an exception is thrown.

We also recommend to use one data source for each application or for each
application module. For example an application A, used for administration
account purposes in a bank, uses 100ms for Unused Timeout timeout because it
uses the connections for many data selects. In another case an application B,
used for login account purposes, has to use a Unused Timeout of 10ms because
this application uses the connection fast. In short, a group of applications uses a
connection for a long time and another uses it for a short time. This means that
the best practice here is instead of using only one data source, use two data
sources to configure the best tuning parameters for each application.

6.4.5 Control your transactions

What is a transaction? Before we define this term, first we must define the
concept of application state. An application's state encompasses all of the
in-memory and on-disk data items that affect the application's operation —
everything the application “knows.” Application state can be stored in memory, in
files, or in a database. In the event of a system failure — for example, if the
application, network, or computer system crashes — we want to ensure that
when the system is restarted, the application's state can be restored.

Connection Timeout Specifies the maximum time that a application can wait in
a queue to receive a connection from Datasource.

Reap Time Specifies the interval, in seconds, between runs of the
pool maintenance thread.

Unused Timeout Specifies the interval in seconds after which an unused or
idle connection is discarded.

Aged Timeout Specifies the interval in seconds before a physical
connection is discarded.

Purge Policy Specifies how to purge connections when a stale
connection or fatal connection error is detected

Parameter Name Description

326 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

We can now define a transaction as a related collection of operations on the
application state, which has the properties of atomicity, consistency, isolation,
and durability. These properties are collectively referred to as ACID properties.

� Atomicity means that either all of the transactions' operations are applied to
the application state, or none of them are applied; the transaction is an
indivisible unit of work.

� Consistency means that the transaction represents a correct transformation of
the application state — that any integrity constraints implicit in the application
are not violated by the transaction. In practice, the notion of consistency is
application-specific. For example, in an accounting application, consistency
would include the invariant that the sum of all asset accounts equal the sum of
all liability accounts.

� Isolation means that the effects of one transaction do not affect other
transactions that are executing concurrently; from the perspective of a
transaction, it appears that transactions execute sequentially rather than in
parallel. In database systems, isolation is generally implemented using a
locking mechanism. The isolation requirement is sometimes relaxed for
certain transactions to yield better application performance.

� Durability means that once a transaction successfully completes, changes to
the application state can survive failures.

What do we mean by “survive failures?” What constitutes a survivable failure?
This depends on the system, and a well-designed system is able to explicitly
identify the faults from which it can recover. The transactional database running
on a desktop workstation is robust to system crashes and power failures, but not
to my office building burning down. A bank would likely not only have redundant
disks, networks, and systems in its data center, but perhaps also have redundant
data centers in separate cities connected by redundant communication links to
allow for recovery from serious failures such as natural disasters. Data systems
for the military might have even more stringent fault-tolerance requirements.

JDBC transactions are controlled using the Connection object. The JDBC
Connection interface (java.sql.Connection) provides two transaction modes:
auto-commit and manual commit. The java.sql.Connection offers the following
methods for controlling transactions (see Example 6-9).

 Chapter 6. Integration layer 327

Example 6-9 Connection Interface

public interface Connection {
 //Other Methods declarations
 boolean getAutoCommit();
 void setAutoCommit(boolean autocommit);
 void commit();
 void rollback();
 //Other Methods declarations
}

If a JDBC transaction uses AutoCommit mode true, this means that a transaction
starts and commits after each statement's execution on a connection. Therefore,
a programmer does not have to write a commit() method explicitly after each
statement. This mechanism is good for programmers that want to execute a
single statement. However, to commit multiples statements, you must use
AutoCommit mode of false and issue the commit() method after a set of
statements execute. This is called a batch transaction. Use rollback() in a catch
block to rollback the transaction whenever an exception occurs in your program.
The code sample in Example 6-10 illustrates the batch transaction approach.

Example 6-10 Transaction control JDBC Usage

Connection conn =null;
 PreparedStatement pstmt1,pstmt2;

 try {
 InitialContext ctx = new InitialContext();

 ds = (DataSource)ctx.lookup("jdbc/BankDS");
 conn = ds.getConnection();
 conn.setAutoCommit(false);

 pstmt1 = conn.prepareStatement("UPDATE ACCOUNT SET BALANCE = ?
WHERE CUSTOMER_ID = ?");
 pstmt1.setString(1, "500.00");
 pstmt1.setString(1, "0964564");
 pstmt1.executeUpdate();

 pstmt2 = conn.prepareStatement("INSERT INTO
TRANSRECORD(DETAILS,TYPE,AMOUNT,TRANSRECORD_ID,ACCOUNT_ID)
VALUES(?,?,?,?,?)");
 pstmt2.setString(1, "withdraw");
 pstmt2.setString(1, "D");
 pstmt2.setString(1, "200.00");

328 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

 pstmt2.setString(1, "960402382");
 pstmt2.executeUpdate();

 conn.commit();
 } catch (NamingException e) {
 e.printStackTrace();
 } catch (SQLException e) {
 try {
 conn.rollback();
 } catch (SQLException e1) {
 e1.printStackTrace();
 }
 e.printStackTrace();
 } }
 finally{
 //Finally procedures to close PrepareStatements and Connections
}

With JDBC transaction demarcation, you can combine multiple SQL statements
into a single transaction, and this batch transaction gives good performance by
reducing commit calls after each statement's execution.

However, one of the drawbacks of JDBC transactions is that the transaction's
scope is limited to a single database connection. A JDBC transaction cannot
span multiple databases.

6.4.6 Using JTA

Next, we see how transaction demarcation is done using JTA. Because JTA is not
as widely known as JDBC, we start with an overview.

JTA overview
The Java Transaction API (JTA) and its sibling, the Java Transaction Service
(JTS), provide distributed transaction services for the J2EE platform. A
distributed transaction involves a transaction manager and one or more resource
managers. A resource manager is any kind of persistent datastore. The
transaction manager is responsible for coordinating communication between all
transaction participants. The relationship between the transaction manager and
resource managers is shown in Figure 6-5.

 Chapter 6. Integration layer 329

Figure 6-5 Transaction and Resources Managers

JTA transactions are more powerful than JDBC transactions. Whereas a JDBC
transaction is limited to a single database connection, a JTA transaction can have
multiple participants. Any one of the following Java platform components can
participate in a JTA transaction:

� JDBC connections
� JDO PersistenceManager objects
� JMS queues
� JMS topics
� Enterprise JavaBeans
� A resource adapter that complies with the J2EE Connector Architecture

specification

Transaction demarcation with JTA
To demarcate a transaction with JTA, the application invokes methods on the
javax.transaction.UserTransaction interface. Example 6-11 shows a typical JNDI
lookup for the UserTransaction object.

Example 6-11 User Transaction instantiation code snippet

import javax.transaction.*;
import javax.naming.*;
// ...
InitialContext ctx = new InitialContext();

Transaction
manager

Resource
manager

Resource
manager

Resource
manager

Application

330 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Object txObj =
 ctx.lookup("java:comp/UserTransaction");
UserTransaction utx = (UserTransaction) txObj;

The foregoing code sample only explains the UserTransaction object
instantiation. However, keep in mind that as a DataSource, you should cache the
object reference because a JNDI tree search is an expensive operation. After the
application has a reference to the UserTransaction object, it can start the
transaction as shown in Example 6-12.

Example 6-12 Starting a transaction with JTA

InitialContext ctx = new InitialContext(); utx.begin();
if(ds == null)
 ds = (XADataSource)ctx.lookup("jdbc/BankDS");
 conn = ds.getXAConnection().getConnection();
 pstmt1 = conn.prepareStatement("UPDATE ACCOUNT SET BALANCE = ? WHERE
CUSTOMER_ID = ?");
 pstmt1.setString(1, "500.00");
 pstmt1.setString(2, "0964564");
 pstmt1.executeUpdate();

 if(ds2 == null)
 ds2 = (XADataSource)ctx.lookup("jdbc/CrediCardDS");
 conn2 = ds2.getXAConnection().getConnection();
 pstmt2 = conn2.prepareStatement("INSERT INTO
TRANSRECORD(DETAILS,TYPE,AMOUNT,TRANSRECORD_ID,ACCOUNT_ID)
VALUES(?,?,?,?,?)");
 pstmt2.setString(1, "monthly debit");
 pstmt2.setString(2, "D");
 pstmt2.setString(3, "200.00");
 pstmt2.setString(4, "960402382");
 pstmt2.executeUpdate();
 utx.commit();
} catch (Exception e) {
 try {
 if (utx != null)
 utx.rollback();
 } catch (Exception e1) {
 e1.printStackTrace();
 }
 e.printStackTrace();
 }
 finally{//Close Statements and Connections Procedures

 Chapter 6. Integration layer 331

When the application invokes a commit(), the transaction manager uses a
two-phase commit protocol to end the transaction.

For transaction control, the javax.transaction.UserTransaction interface provides
the following methods:

� public void begin()
� public void commit()
� public void rollback()
� public int getStatus()
� public void setRollbackOnly()
� public void setTransactionTimeout(int)

To start a transaction, the application calls begin(). To end a transaction, the
application calls either commit() or rollback().

For more information on JTA, see the following URL:

http://java.sun.com/products/jta/

Using JTA and JDBC
Developers often use JDBC for low-level data operations in Data Access Object
(DAO) classes. If you plan to demarcate transactions with JTA, you require a
JDBC driver that implements the javax.sql.XADataSource,
javax.sql.XAConnection, and javax.sql.XAResource interfaces. A driver that
implements these interfaces is able to participate in JTA transactions. An
XADataSource object is a factory for XAConnection objects. XAConnections are
JDBC connections that participate in JTA transactions.

You are required to set up the XADataSource using your application server's
administrative tools. Consult the application server documentation and the JDBC
driver documentation for specific instructions.

J2EE applications look up the data source using JNDI. When the application has
a reference to the data source object, to obtain a connection to the database, it
calls javax.sql.DataSource.getConnection().

XA connections are different from non-XA connections. Remember that XA
connections are participating in a JTA transaction, meaning that XA connections
do not support JDBC's auto-commit feature. Also, the application must not invoke
java.sql.Connection.commit() or java.sql.Connection.rollback() on an XA
connection. Instead, the application should use UserTransaction.begin(),
UserTransaction.commit(), and UserTransaction.rollback().

332 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://java.sun.com/products/jta/

Choosing the best approach
We have discussed how to demarcate transactions with both JDBC and JTA.
Each approach has its advantages and you have to decide which one is most
appropriate for your application.

Implement your DAO classes with JDBC when:

� Transaction demarcation code must be embedded inside the DAO class.

� The caller has no way to demarcate the transaction.

� Transaction scope is limited to a single JDBC Connection.

JDBC transactions are not always suitable for complex enterprise applications.
Demarcate your transactions with JTA when:

� Your transactions span multiple DAOs or multiple databases

� Transaction demarcation code must separated from the DAO

� The caller is responsible for demarcating the transaction

� The DAO participates in a global transaction

The JDBC approach is attractive due to its simplicity; the JTA approach offers
greater flexibility. The implementation you choose depends on the specific
requirements of your application.

Choose the best isolation level
Isolation level represent how a database maintains the level of data integrity and
concurrency. A higher isolation level leads to increased data integrity, while a
lower isolation level leads to more concurrency and better performance. A lower
isolation level also decreases row locking, so the probability of deadlock is
reduced.

JDBC supports five isolation types:

� TRANSACTION_NONE
� TRANSACTION_READ_UNCOMMITED
� TRANSACTION_READ_COMMITED
� TRANSACTION_REPEATABLE_READ
� TRANSACTION_SERIALIZABLE

Before we talk about JDBC isolation types in more depth, we review dirty reads,
phantom reads, and non-repeatable reads, which can occur due to concurrent
transactions.

 Chapter 6. Integration layer 333

� Dirty read problem:

The following steps illustrate the dirty read problem:

a. Database row has PRODUCT = X and PRICE = 20.

b. Connection1 starts Transaction (T1).

c. Connection2 starts Transaction2 (T2).

d. T1 updates PRICE =40 for PRODUCT = X.

e. Database has now PRICE = 40 for PRODUCT = X.

f. T2 reads PRICE = 20 for PRODUCT = X.

g. T2 commits the transaction.

h. T1 rollbacks the transaction because of some problem.

The problem is that T2 should be PRICE=40 for PRODUCT=X. However, it
incorrectly gets PRICE=20 because of the uncommitted read. It is very
dangerous in critical transactions if you read inconsistent data. If you are sure
that your data is not going to be accessed concurrently, then you can allow
this situation by setting TRANSACTION_READ_UNCOMMITED or
TRANSACTION_NONE. This improves performance. Otherwise, to avoid this
problem, you have to use TRANSACTION_READ_COMMITED.

� Unrepeatable read problem:

The following steps illustrate the unrepeatable read problem:

a. Database row has PRODUCT = X and PRICE = 20.

b. Connection1 starts Transaction1 (T1).

c. Connection2 starts Transaction2 (T2).

d. T1 reads PRICE =20 for PRODUCT = X.

e. T2 updates PRICE = 40 for PRODUCT = X.

f. T2 commits the transaction.

g. Database row has PRODUCT = X and PRICE = 40.

h. T1 reads PRICE = 40 for PRODUCT = X.

i. T1 commits the transaction.

Here the problem is that Transaction1 reads 10 the first time and reads 20 the
second time. However, the correct value would always be 10 during the T1
transaction. You can control this problem by setting isolation level as
TRANSACTION_REPEATABLE_READ.

334 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

� Phantom read problem:

The following steps illustrate the phantom read problem:

a. Database has a row PRODUCT = X and SELLER_ID = 123.

b. Connection1 starts Transaction1 (T1).

c. Connection2 starts Transaction2 (T2).

d. T1 selects a row with a condition SELECT PRODUCT WHERE
SELLER_ID = 123.

e. T2 inserts a row with a condition INSERT PRODUCT= Z WHERE

SELLER_ID= 123.

f. T2 commits the transaction.

g. Database has 2 rows with that condition.

h. T1 select again with a condition SELECT PRODUCT WHERE
SELLER_ID=123 and gets 2 rows instead of 1 row.

i. T1 commits the transaction.

The problem here is that T1 must get 1 row instead of 2 rows from the
SELECT operation during T1 life time. Setting isolation level as
TRANSACTION_SERIALIZABLE solves this problem.

See Table 6-5 for an overview of isolation types.

Table 6-5 Isolation types

Isolation Types Short Explanation Performance

TRANSACTION_NONE No isolation level is configured. FASTEST

TRANSACTION_READ_
UNCOMMITTED

Isolation level permits dirty reads,
nonrepeatable reads, and phantom
reads.

FASTEST

TRANSACTION_READ_
COMMITTED

Isolation level prohibits dirty reads only. FAST

TRANSACTION_REPEA
TABLE_READ

Isolation level is the second highest
isolation level. It prohibits dirty reads
and nonrepeatable reads, but allows
phantom reads.

MEDIUM

TRANSACTION_SERIAL
IZABLE

Isolation level is the highest, most
restrictive, isolation level. It prohibits
dirty reads, nonrepeatable reads, and
phantom reads.

SLOW

 Chapter 6. Integration layer 335

As you have seen, the isolation levels have a huge impact on application
performance. In Example 6-13. you can see the JDBC usage for isolation level
for using the java.sql.Connection interface.

Example 6-13 java.sql.Connection methods and constants for isolation level

public interface Connection {
public static final int TRANSACTION_NONE = 0
public static final int TRANSACTION_READ_COMMITTED = 2
public static final int TRANSACTION_READ_UNCOMMITTED = 1
public static final int TRANSACTION_REPEATABLE_READ = 4
public static final int TRANSACTION_SERIALIZABLE = 8
int getTransactionIsolation();
void setTransactionIsolation(int isolationlevelconstant);
}

You can get the existing isolation level with getTransactionIsolation() method and
set the isolation level with setTransactionIsolation(int isolationlevelconstant) by
passing the foregoing constants to this method.

Choosing the right isolation level for your program
Choosing the right isolation level for your program depends on your application
requirements. If you have to write a program that searches product information in
a database, you can choose TRANSACTION_READ_UNCOMMITED because
you do not have to worry about database updates or insertion. Another search
gets the new values. This approach improves performance significantly.

If you write a critical program that requires full integrity, such as financial analysis,
you can choose TRANSACTION_SERIALIZABLE for maximum safety. But keep
in mind that there is a price, a trade-off between the safety and performance:
more safety but less performance.

If you do not have to deal with concurrent transactions in your application, then
the best choice is TRANSACTION_NONE to improve performance.

Two other isolation levels are more specific.
TRANSACTION_READ_COMMITED isolation is the better choice if your
application requires only committed records. However, if your application has to
read a row exclusively until you finish a unit of work (transaction), then
TRANSACTION_REPEATABLE_READ is the best choice.

The last key point here is to be careful when selecting isolation support because
some database providers do not support all these values.

336 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

6.4.7 Releasing resources best practices

Remember that when you use the connection pool, closing a connection means
that it returns back to the connection pool rather than closing the direct
connection to the database. If a resource is not closed, for example,
java.sql.ResultSets or java.sql.Statements, the number of database cursors
increases hugely in your application. Also if a connection is not sending data to a
data source, the maxconnection can be easily reached, causing access
problems in your application. The question is, what safe approach to follow to
close unusable resources?

Use the finally syntax to close resources such as ResultSets, Statements, and
Database Connections, in this order. Using this approach to release resources
acquired in a method is reliable but can easily get unwieldy when multiple
resources are involved. Consider a method that uses a JDBC Connection to
execute a query and iterate the ResultSet. It acquires a Connection, uses it to
create a Statement, and executes the Statement to yield a ResultSet. But the
intermediate JDBC objects Statement and ResultSet have close() methods of
their own, and they should be released when you are done with them. However,
the “obvious” way to clean up, shown in Example 6-14, does not work.

Example 6-14 Bad practice to release multiple resources

public void enumerateFoo() throws SQLException {
 Statement statement = null;
 ResultSet resultSet = null;
 Connection connection = getConnection();
 try {
 statement = connection.createStatement();
 resultSet = statement.executeQuery("SELECT * FROM Foo");
 // Use resultSet
 }
 finally {
 if (resultSet != null)
 resultSet.close();
 if (statement != null)
 statement.close();
 connection.close();
 }
}

The reason this “solution” doesn't work is that the close() methods of ResultSet
and Statement can themselves throw an SQLException, which could cause the
later close() statements in the final block not to execute. That leaves you with
several choices, all of which are annoying: wrap each close() with a try..catch

 Chapter 6. Integration layer 337

block, nest the try...finally blocks as shown in Example 6-15, or write some sort of
mini-framework for managing the resource acquisition and release.

Example 6-15 Best Practice example to deliver resources

 public void enumerateBar() throws SQLException {
 Statement statement = null;
 ResultSet resultSet = null;
 Connection connection = getConnection();
 try {
 statement = connection.createStatement();
 resultSet = statement.executeQuery("SELECT * FROM Bar");
 // Use resultSet
 }
 finally {
 try {
 if (resultSet != null)
 resultSet.close();
 }
 finally {
 try {
 if (statement != null)
 statement.close();
 }
 finally {
 connection.close();
 }
 }
 }
 }

 private Connection getConnection() {
 //Get a Connection
 return connection;
 }

Keep in mind that when you deliver resources, everything can throw an
exception. You then have to look at the method specification to see which
exceptions it can throw.

338 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

6.4.8 Optimization with Statements

A JDBC Statement object is used to send your SQL statements to the Database
Management System (DBMS), and should not be confused with an SQL
statement. A JDBC Statement object is associated with an open connection, and
not any single SQL statement. You can think of a JDBC Statement object as a
channel sitting on a connection, passing one or more of your SQL statements
(which you ask it to execute) to the DBMS. They also provide some methods to
fine tune performance. Programmers can overlook these fine tuning methods,
resulting in poor performance. The following tips can help you improve
performance by using Statement interfaces:

� Choose the right Statement interface.
� Do batch update.
� Do batch retrieval using Statement.
� Use Statement with multiple results.

Choose the right Statement interface
Three types of Statement interfaces in JDBC can represent the SQL query and
execute that query: Statement, PreparedStatement, and CallableStatement.

Statement is used for static SQL statements with no input and output
parameters, PreparedStatement is used for dynamic SQL statements with input
parameters, and CallableStatement is used for dynamic SQL statements with
both input and output parameters. However, PreparedStatement and
CallableStatement can be used for static SQL statements as well.
CallableStatement is mainly meant for stored procedures. Here are some tips:

� Use PreparedStatement over Statement if you are writing an SQL statement
to be used more than once — it performs better as a PreparedStatement than
as a Statement object. Every time you process a statement, you go through a
two step process: the statement is prepared (parsing), and the statement is
processed (compiled). When you use a prepared statement, the statement is
prepared only at the time that it is constructed, not each time it is processed.
In other words, it is pre-parsed and pre-compiled by the database once for the
first time and then onwards it reuses the parsed and compiled statement.
Though it is recognized that a PreparedStatement performs faster than a
Statement, this advantage is often neglected by programmers.

� Use CallableStatement if you require SQL procedures with high performance
for extensive operations. CallableStatement is used to call stored procedures.
CallableStatement gives better performance when compared to
PreparedStatement and Statement when there is a requirement for a single
request to process multiple complex statements. All stored procedure parsing
and compiling is done in the database and this approach improves
performance. However, there is a price for it: you lose portability.

 Chapter 6. Integration layer 339

Do batch update
After JDBC 2.0, you can use a powerful API for batch processing. Batch
processing allows you to accumulate a group of SQL statements and send them
for processing in one go. A typical batch processing scenario might involve a
banking application that updates a number of accounts every quarter. Batch
processing is a powerful feature in that it reduces the number of round trips from
Java code to a database.

The Statement interface provides an addBatch(String) method for adding an SQL
statement to a batch. When you have added all your SQL statements to the
batch, you can execute them in one go using the executeBatch() method.

The executeBatch() method then executes the SQL statements and returns an
array of int values. This array contains the number of rows affected by each
statement. Putting a SELECT statement or other ResultSet-returning SQL in a
batch results in an SQLException.

A simple example of batch processing with the java.sql.Statement is shown in
Example 6-16.

Example 6-16 batch code sample

Statement stmt = conn.createStatement();
stmt.addBatch("DELETE FROM Users");
stmt.addBatch("INSERT INTO Users VALUES('rod', 37, 'circle')");
stmt.addBatch("INSERT INTO Users VALUES('jane', 33, 'triangle')");
stmt.addBatch("INSERT INTO Users VALUES('freddy', 29, 'square')");
int[] counts = stmt.executeBatch();

Batch processing is a nice way to handle SQL code when you do not know how
many times a particular statement is going to run. For instance, if we tried to
insert 100 records into a database without batching, the performance might be
affected. If we wrote a script to add 10,000 records, things could get nasty.
Adding batch processing helps to improve the performance, and in the latter case
even improves the readability of the code.

Java object serialization does not support batch processing. Typically,
serialization involves working on the extent (the association graph) of an object,
so batch processing does not make sense in such a case. Batch processing thus
affords you a flexibility in terms of the timing and grouping of data updates that is
not necessarily available with serialization.

340 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Do batch retrieval using Statement
When an SQL query is executed, the number of rows of data that a driver
physically copies from the database to the client is called the fetch size. If you
have to performance-tune a query, you can adjust the fetch size to fit your
requirements.

With getFechSize() you get the default number of rows that is provided by the
driver. With setFetchSize() you can increase the number of rows to be fetched at
a time from database, improving performance. In this case, the next time data
has to be fetched from the database, the driver copies over as many rows as are
specified by the current fetch size. See the code snippet in Example 6-17.

Example 6-17 Code snippet fetch size features usage

// Get the fetch size of a statement
 PreparedStatement pstmt = conn.prepareStatement("SELECT * FROM ACCOUNT
WHERE WHERE CUSTOMER_ID = ?");
 pstmt.setString(2, "0964564");
 int fetchSize = pstmt.getFetchSize();

 // Set the fetch size on the statement
 pstmt.setFetchSize(100);

 // Create a result set
 ResultSet resultSet = pstmt.executeQuery();

Use Statement with multiple results
A limitation of the JDBC 2 specification is that statements that return multiple
results must have only one ResultSet open at any given time. As a part of the
changes in JDBC 3.0, the specification allows the Statement interface to support
multiple open ResultSets. It is important to note, however, that the execute()
method still closes any ResultSets that were opened from a previous call to
execute(). So, to support multiple open results, the Statement interface adds an
overloaded version of the method getMoreResults(). The new form of the method
takes an integer flag that specifies the behavior of previously opened ResultSets
when the getResultSet() method is called. The interface defines the flags as
shown in Table 6-6.

 Chapter 6. Integration layer 341

Table 6-6 Statement options for previous ResultSets behavior

A code sample using multiple ResultSets is shown in Example 6-18.

Example 6-18 Multiple ResultSets usage example

String procCall = "";
// Set the value of procCall to call a stored procedure.
// ...

CallableStatement cstmt = connection.prepareCall(procCall);
boolean retval = cstmt.execute();
if (retval == false) {
 // The statement returned an update count, so handle it.
 // ...
} else { // ResultSet
 ResultSet rs1 = cstmt.getResultSet();
 // ...

 retval = cstmt.getMoreResults(Statement.KEEP_CURRENT_RESULT);
 if (retval == true) {
 ResultSet rs2 = cstmt.getResultSet();

 // Both ResultSets are open and ready for use.
 rs2.next();
 rs1.next();
 // ...
 }
}

Option Description

CLOSE_ALL_RESULTS All previously opened ResultSet objects should be
closed when calling getMoreResults().

CLOSE_CURRENT_RESULT The current ResultSet object should be closed when
calling getMoreResults().

KEEP_CURRENT_RESULT The current ResultSet object should not be closed
when calling getMoreResults().

342 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

6.4.9 Optimization with ResultSet

The ResultSet interface represents data that contains the results of executing an
SQL Query, and it provides a number of methods and constants to work with that
data. It also provides methods to fine tune retrieval of data to improve
performance. The following fine tuning tips can help you improve performance by
using the ResultSet interface:

� Do batch retrieval using ResultSet.
� Use proper get methods.
� Use getXXX(int) instead of getXXX(String).
� Avoid getObject calls for Java primitive types.

Do batch retrieval using ResultSet
ResultSet interface also provides a batch retrieval facility like Statement as
mentioned in “Do batch retrieval using Statement” on page 341. It overrides the
Statement behavior. Initially you can get the default value of fetch size using
ResultSet.getFetchSize() and sets the size as required. See Example 6-19.

Example 6-19 setFetchSize usage

ResultSet.setFetchSize(50);

This feature improves performance significantly when you retrieve a large
number of rows, such as search functionality.

Use proper get methods
The JDBC API defines that each getxxx() method returns a matching Java object
(for example, getString() returns a String object). The processing cost of each
getxxx() method is mainly determined by the cost of the object’s constructor call.
Returning values of Java native data types, like an integer, is much cheaper than
returning complex objects, like a Timestamp object.

Based on this information, the database can be designed for high performance.
You should avoid retrieving “expensive” data types if you do not require them.
Just performing a “SELECT *” from a table, and later sorting out in the application
which fields you want to use, is too much luxury for a Java application. You
should only select the fields you really use in your query. Also, never make it a
default in your application to include TIMESTAMP and DATESTAMP in your
queries; again, only select them if you really require them. A glance at Figure 6-6
shows the relative cost of all getxxx() methods. Retrieving a Date column is about
21 times more expensive than retrieving a short column.

 Chapter 6. Integration layer 343

Figure 6-6 Relative cost of getXXX() processing

The JDBC API allows you to use different getxxx() methods to retrieve a
database column, and using a non-matching getxxx() method is syntactically
correct, but it causes a performance overhead per column. The overhead heavily
depends on the DB2 data type, for example.

Figure 6-7 shows the overhead retrieving a column of a certain data type using
the getString() method instead of the matching getxxx() method in percents. The
overhead you get when a getString() method is used to receive a SMALLINT
instead of the matching getShort() is about 380%.

0

5

10

15

20

25

Ti
m

es

ge
tS

ho
rt(

)

ge
tIn

t()

ge
tF

lo
at

()

ge
tD

ou
bl

e(
)

ge
tB

oo
le

an
()

ge
tD

at
e(

)

ge
tT

im
e(

)

ge
tT

im
eS

ta
m

p

ge
tB

ig
D

ec
im

al

S
BC

S

ge
tS

tri
ng

()
ch

a

ge
tS

tri
ng

()
va

r

344 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Figure 6-7 Comparing getString() when used to get all types

The best practice here is to use getXXX() according to the requested type.

Use getXXX(int) instead of getXXX(String)
Use the ResultSet getXXX methods that take numeric values instead of the
versions that take column names. While the freedom to use your column names
instead of numeric constants seems like an advantage, the database itself only
knows how to deal with column indexes. Therefore, each getXXX method with a
column name you call must be resolved by the JDBC driver before it can be
passed to the database. Because getXXX methods are typically called inside
loops that could be processed millions of times, this little bit of overhead can
rapidly accumulate.

Avoid getObject calls for Java primitive types
When getting values from the database of primitive types (ints, longs, floats, and
so on), it is far faster to use the get method specific to the primitive type (getInt,
getLong, getFloat) than to use getObject. The getObject call does the work of the
get for the primitive type, and then creates an object to return to you. This is
typically done in loops, potentially creating millions of objects with short lifespans.

0

100

200

300

400

500

S
M

A
LL

IN
T

IN
TE

G
E

R

R
EA

L

D
O

U
B

LE

D
A

TE

C
H

A
R

(6
)

V
AR

C
H

AR
(1

0)

TI
M

E

TI
M

E
ST

A
M

P

N
U

M
E

R
IC

(1
0,

3)

600

700

CPU

 Chapter 6. Integration layer 345

Using getObject for primitive commands has the added drawback of frequently
activating the garbage collector, further degrading performance.

6.4.10 Optimization with SQL Query

This is an area where programmers generally make an incorrect choice. We
provide the following tips to help you get better performance.

Avoid SELECT * SQL queries
SELECT * FROM... is a common way to state a query in SQL. Often, however,
you do not have to query all the fields. For each column that is to be returned, the
JDBC driver must do the additional work of binding and returning the row. Even if
your application never uses a particular column, the JDBC driver has to be made
aware of it and has to reserve space for its use. If your tables have few columns
that are not used, this is not a significant overhead. For a large number of unused
columns, however, the overhead can be significant. A better solution is to list the
columns that your application is interested in individually, as shown in
Example 6-20.

Example 6-20 Select statement best practice

SELECT COL1, COL2, COL3 FROM...

Cache the read-only data or updated occasionally
There are tables on most database schemas that are read-only or have updates
occasionally. For read-only tables, writing operations occurred when there is a
maintenance on the system, in the system runtime execution. There are no
writing operations in these tables.

If your application reads data for these tables, the best practice is to read the
table information only once and cache. This solution improves performance
significantly.

For more information, go to this URL:

http://www.javaworld.com/javaworld/jw-07-2001/jw-0720-cache.html

For read-only data, this approach works fine. If you have some data that
occasionally is updated in runtime execution, you can add a schedule do a
refresh between specific configured times.

346 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://www.javaworld.com/javaworld/jw-07-2001/jw-0720-cache.html

6.4.11 Fetch small amounts of data iteratively

If your application has to fetch large amounts of data, and if you use a single
search, the response time can be very slow or not viable. The solution for this
problem is to use a paging approach.

In a paging approach, you return a specific data amount of data to the client in a
page. For example, instead of returning 1000 results directly to the client, return
10 iterations of 100 results and add a Next button for the next 100 and cache the
search data at the server-side.

However, you can use stored procedures to return data iteratively instead of
through server-side caching. In this case, the server-side application uses stored
procedures to return small amounts of data iteratively.

This second approach gives better performance because is not necessary to
keep data for paging in-memory but the first result can be used if the data volume
is not very large.

6.5 Entity Beans 2.x

The goal of this section is to explore some best practices to get improved
performance from existing code using Entity Beans. For new code development,
consider the following sections:

� JPA as described in 6.6, “Java Persistence API: Entity Beans 3.0” on
page 380

� iBATIS as described in 6.7, “iBATIS” on page 422

Entity Beans are server-side components that represent business objects stored
in a persistent storage mechanism. This means, they provide an object view of
transactional data in an underlying datastore that can be accessed from multiple,
either local or remote, clients.

There are two different types of Entity Beans available:

� Container Managed Persistence (CMP) Entity Beans:

A Container Managed Persistence CMP) bean is an Entity Bean for which the
container handles the interactions between the enterprise bean and the data
source. The container is responsible for synchronization of instance fields
with the persistent store. When you develop a Container Managed
Persistence bean, the application is insulated from the details of the
persistence mechanism.

 Chapter 6. Integration layer 347

� Bean Managed Persistence (BMP) Entity Beans:

A Bean Managed Persistence (BMP) Entity Bean is simply an entity EJB
where the developer manually implements the service methods to manage
persistence, most notably ejbLoad() to load the persistent state from the
backing store and ejbStore() to store it.

6.5.1 Container Managed versus Bean Managed Persistence

The decision to use Container Managed Persistence or Bean Managed
Persistence Entity Beans is usually easy. Whenever possible, you should prefer
CMP to BMP, for the following reasons:

� Portability and flexibility:

BMP Entity Beans contain hard-coded SQL statements that require not only a
specific database layout, but can also be dependent on the database vendor.
These hand-optimized SQL statements are difficult to port to another
relational database or database layout. CMP Entity Beans, on the other hand,
use an abstract persistence schema to specify the CMP and CMR fields in the
deployment descriptor. These fields are mapped to the relational database
fields during deployment. The deployment tool then generates the database
vendor-specific classes. These steps ensure a high degree of flexibility and
portability regardless of the used relational database schema or vendor.

� Faster development:

If CMP is used, nearly all bean code can be automatically generated using
actual development tools, such as IBM Rational Application Developer V6.
Therefore, developers can concentrate on writing the business logic and
assign the persistence and relationship management logic to the deployment
tool and the EJB container. If BMP is used, the developer is responsible for
loading and persisting the bean data itself.

� Performance:

To write high-performance and scalable BMP Entity Beans, bean developers
— who are usually responsible for writing the business logic — must be highly
skilled in database programming as well. Unfortunately this is usually not the
case — this is the domain of database administrators, not of bean developers.
Another problem is that a higher level of optimization in the bean class
automatically increases the difficulty to port the bean to another database.
With CMP Entity Beans, the deployment tool can generate highly optimized
code for every specific data source. Usually the performance of CMP Entity
Beans is by far better than corresponding BMP Entity Beans. For further
performance increase, IBM WebSphere Application Server V6 can also
generate deployed code that uses SQLJ stored procedures to access IBM
DB2 UDB.

348 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

� Automatic relationship management:

Bean developers can define relationships to other CMP beans in the CMP
Entity Beans deployment descriptor. This includes cardinality, navigation, and
cascade delete which are automatically generated and maintained by the EJB
container. When BMP Entity Beans are used, relationship management,
including integrity checks and navigation, has to be implemented by the bean
developer.

Although CMP Entity Beans have overwhelming advantages over BMP Entity
Beans, there are also some drawbacks:

� Persistence limited to relational databases:

Even though there are some approaches to extend the persistence
mechanism to other than relational data sources, they are not yet available
and therefore the usage of CMP Entity Beans is currently limited to relational
databases. With BMP Entity Beans, access to non-relational data sources, for
example, using a JCA adapter, is possible.

� Reduced control over database access:

With BMP, the developer has complete control over the data access logic and
the persistence management of the Entity Bean. Therefore, the developer has
the ability to call vendor-specific functions or perform complex database joins
to realize huge persistence schemas. In some rare cases, this high level of
data access control might be required.

6.5.2 Considerations on the techniques used

The techniques used in the following sections refer to tuning your Entity Bean for
better performance in three ways:

� In design and code: Coding and design tips to gain performance are given.

� In deployment descriptor: The developer or application assembly can set up
this configuration using for example Rational Application Developer or
WebSphere Application Server toolkit. In this case the setup is related to a
specific Entity Bean in an EAR (Enterprise Archive). Note: A deployment
descriptor contains specific parameters to an EJB or groups of EJBs that
belong to the same EAR.

� In an Application Server: In this case the tuning is more generic and relates to
an EJB Container that can run different EJB projects and is inside an
Application Server.

In the following sections, for examples of techniques to gain performance in
Entity Beans, we use Application Server Toolkit 6.1 because there are a lot of
cases where we have to change the deployment descriptor. This approach

 Chapter 6. Integration layer 349

changes the container service functionality of the Enterprise Bean. But if you
have Rational Application Developer, you can accomplish the same results.

6.5.3 General tips for EJB Entity Beans performance

While Entity Beans can reduce the amount of coding work required to access
persisted data, care must be taken with the use of Entity Beans to avoid
performance problems.

Access Entity Beans from session beans
Avoid accessing EJB Entity Beans from client or servlet code. Instead, wrap and
access EJB Entity Beans in EJB session beans. This satisfies two performance
concerns:

� When the client application accesses the Entity Bean directly, each getter
method is a remote call. A wrapping session bean can access the Entity Bean
locally and collect the data in a structure, which it returns by value.

� An Entity Bean synchronizes its state with its underlying data store at the
completion of each transaction. When the client application accesses the
Entity Bean directly, each getter method becomes a complete transaction. A
store and a load follow each method. When the session bean wraps the Entity
Bean to provide an outer transaction context, the Entity Bean synchronizes its
state when the outer session bean reaches a transaction boundary.

Avoid extremely fine-grained EJB models
Although local interfaces, introduced in EJB 2.0, make more fine-grained EJB
models possible, take care that you do not carry the granularity to excess. Think
of using dependent value classes as an alternative. They can increase
performance, because no separate call and no EJB relationship is required.

Reduce method calls with coarse granularity
The best practice here is to use a Value Object to do remote calls instead of
individual calls on each data object increasing the remote traffic, as shown in
Example 6-21.

Example 6-21 Using remote calls for each data access

remoteObject.getFirstName();
remoteObject.getLastName();
remoteObject.getCity();
remoteObject.getState();
remoteObject.getZipCode();
remoteObject.getCrediCardNumber();

350 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

In Example 6-21, there are six network calls from the client to the remote object.
You can minimize these network calls by reducing the number of method calls
using a Value Object to get all this information required in one remote call. See
Example 6-22.

Example 6-22 Using a Value Object to reduce remote calls

// create an object and fill that object locally
CustomerInfo customer = new CustomerInfo();
customer.setFirstName("firstname");
customer.setLastName("lastname");
customer.setCity("Austin");
customer.setState("TX");
customer.setZipCode("78749");
customer.setCrediCardNumber("287459754974");
remoteObject.getPersonInfo(person); // send object through network

In this example, there is only one network call instead of six network calls.

Use the coarse grained approach to minimize the number of network calls and
improving performance for Entity Beans.

Control serialization in remote EJBs
If you use an Object to pass data from a client to an EJB, be careful when you
use Value Objects. All attributes of Value Objects have to be Serializable
because they are sent over the network. In addition, if you do not have to use
some attribute to send to an EJB, make this attribute transient.

Do not use entity EJBs to read large amounts of data
Entity EJBs are best used for manipulating small amounts of data. Returning
large result sets from (default) EJB finders can be inefficient and it is often better
to use JDBC directly from a session bean for this.

Beware of significant use of EJB inheritance
In cases where Entity Beans significantly use ejb-inheritance, care must be taken
to ensure that performance is adequate. If performance problems are
encountered, they can potentially be addressed by reducing the use of
inheritance in the model or by use of Bean Managed Persistence (BMP) in
preference to Container Managed Persistence (CMP). Another strategy is to
avoid turning each entity (table) into a single EJB— in some cases two or more
related entities can be represented by a single EJB.

 Chapter 6. Integration layer 351

Use local interfaces
If the EJB client is located in the same Java Virtual Machine as the EJB, you can
take advantage of the local interface. No network tasks are necessary and the
bean parameters are passed by reference. This increases performance. So if you
intend to deploy your EJB clients in the same JVM where the EJB itself is
deployed, you should use the local interface. Usually local interfaces are used to
access entity EJBs from the Facade.

Use caching options from EJB Container
To improve performance, some caching techniques can be used. Selection of the
appropriate option requires an understanding of how the Entity Beans are to be
used, as there is a trade-off between minimizing database reads and supporting
Workload Management (WLM). For more details, see 6.5.7, “Understanding
caching options to improve performance” on page 358.

Optimize EJB transaction and isolation level settings
In EJBs we have declarative transaction management. So the developer does
not have to take care of all the resources required in the transaction, the
container does. Nevertheless the definition of the transaction attributes in the
deployment descriptor is an important task that can change application behavior
and performance dramatically.

WebSphere Application Server V6 includes a feature called application profiling
that allows you to optimize transaction and isolation level settings. This feature
allows you to dynamically adjust the access intent settings to the actual runtime
requirements of the work currently performed. Application profiling enables you
to configure multiple access intent policies on the same Entity Bean. It reflects
the fact that different units of work have different use patterns for enlisted entities
and can require different kinds of support from the server runtime environment.

For more information about access intent settings, see 6.5.12, “Understanding
EJB access intents for best practices” on page 369.

Getting remote nested or root cause exception in EJB Clients
If you are using a remote EJB client, a good practice is get the nestable or root
cause of an exception. Using this approach, you can correct logic in your client.
The following URI shows how to set up this feature in WebSphere Application
Server 6.1.

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/
com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/tejb_rollback.html

352 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/tejb_rollback.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/tejb_rollback.html

6.5.4 Developing a read-only Entity Bean

Following is a usage scenario and example for writing an EJB application that
uses a read-only Entity Bean.

Usage scenario
A customer has a database of catalog pricing and shipping rate information that
is updated daily no later than 10:00 PM local time (22:00 in 24-hour format). They
want to write an EJB application that has read-only access to this data. That is,
this application never updates the pricing database. Updating is done through
some other application.

Example 6-23 Customer Entity Bean local interface

public interface ItemCatalogData extends EJBLocalObject {

 public int getItemPrice();

 public int getShippingCost(int destinationCode);
}

Applying this technique
The code in the stateless SessionBean method (assume that it is a TxRequired)
invokes this EntityBean to figure out the total cost including shipping. This would
look like the code shown in Example 6-24.

Example 6-24 SessionBean code to access read-only EntityBean

//
// Some transactional steps occur prior to this point, such as removing
// the item from
// inventory, etc.
// Now obtain the price of this item and start to calculate the total
cost to the purchaser

ItemCatalogData theItemData =
 (ItemCatalogData)
ItemCatalogDataHome.findByPrimaryKey(theCatalogNumber);

int totalcost = theItemData.getItemPrice();

// ... some other processing, etc. in the interim
// ...
// ...
// Add the shipping costs

 Chapter 6. Integration layer 353

totalcost = totalcost +
theItemData.getShippingCost(theDestinationPostalCode);

At application assembly time, the customer sets the EJB caching parameters for
this bean as follows:

� ActivateAt = ONCE
� LoadAt = DAILY
� ReloadInterval = 2200

On the first call to the getItemPrice() method after 22:00 each night, the EJB
container reloads the pricing information from the database. If the clock strikes
22:00 between the call to getItemPrice() and getShippingCost(), the
getShippingCost() method still returns the value it had prior to any changes to the
database that might have occurred at 22:00, since the first method invocation in
this transaction occurred prior to 22:00. Thus, the item price and shipping cost
used remain in sync with each other.

6.5.5 EJB QL enhancements from EJB 2.1 specification

The new specification extends the existing query to make it consistent SQL-like.
Support for the following aggregate function has been added:

� AVG, MIN, MAX, SUM, COUNT

Support ordering at the database level, ORDER BY clause, has been added to
the query language. The new EJB 2.1 specification supports an additional
numeric function, MOD. e EJB QL examples with new features are shown in
Example 6-25, Example 6-26, and Example 6-27.

Example 6-25 Return the maximum salary among the employees of the company

SELECT MAX(e.salary) FROM EMPLOYEE AS e

Example 6-26 Return all employees with even numbered ids

SELECT OBJECT(e) from EMPLOYEE AS e WHERE MOD(e.id,2)=0

Example 6-27 Return employee records sorted by asc order of employee’s last name

SELECT OBJECT(e) FROM EMPLOYEE AS e ORDER BY e.lastName

354 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

6.5.6 Tuning the Entity Bean container pools

In this section we discuss tuning the EJB container for Entity Bean behavior at a
high level. In an EJB container, you have two types of pools that belong to the life
cycle of a Entity Bean:

� Instance Pool: When the bean is not associated to data in a database.

� Instance Cache Pool: When the bean is in a ready state to be used. It means
that the bean has data associated with a database.

See Figure 6-8 to help visualize these pools in an Entity Bean life cycle.

Figure 6-8 Entity Beans life cycle

1: newInstance()
2: setEntityContext()c

1: unsetEntityContext()
2: The JVM will collect

the elected objects
by finalizing the
approach

ejbHome()
ejbFind()
or
ejbSelect()

Bean Activation:
1: ejbActivate()
2: ejbLoad()

Bean Passivation:
1: ejbStore()
2: ejbPassivate()

Business Methods
or ejbSelect()

ejbLoad() ejbStore()

1: ejbCreate()
2: ejbPostCreate() ejbRemove()

Instance Pool

Does not exist

Ready
(Instance Cache Pool)

 Chapter 6. Integration layer 355

Notice in Figure 6-8 that the first state of an Entity Bean is does not exist. If you
set up your minimum pool size to 25, when the application server starts up, it
executes 25 beans using class.newInstance() and setEntityContext() method of
each bean. If you set the maximum pool size to 50 and this number is reached,
the next clients must wait for an Entity Bean be delivered to this pool from an
Instance cache pool when a bean is released. As the number of clients
decreases, the EJB container can deliver resources until minimum pool size is
reached using unsetEntityContext() and object’s finalize().

The next step is when a client calls a create() method. The EJB container
counter calls the corresponding ejbCreate() method on one of the beans in the
instance pool and creates a row in the database and populates the values to the
variables and puts it in the instance cache after returning primary key. At this
stage, an EJBObject is assigned to the client that communicates to the bean in
the instance cache pool. Next, the container calls the ejbPostCreate() method. At
this stage, the bean is moved from the pool to the cache and is ready to serve the
client’s business methods.

Next, when the client calls the business method, the container calls ejbLoad()
that updates the bean’s state, executes the business method, and calls the
ejbStore() method to store the data in the database. Note that depending on
configuration of your bean, these steps are not executed by the container if a
Bean has exclusive access to database (a commit option type A).

If the concurrent active clients are more than the cache size, then the container
passivates a bean and calls ejbStore(), ejbPassivate() methods and puts it back
in the instance pool. If the idle client calls again some time later, the container
calls ejbLoad() to get the latest data, and calls ejbActivate() method and puts it in
the instance cache.

Next, if the client calls the remove() method, the container calls the ejbRemove()
method that removes the data from the database and puts the bean back in the
instance pool from instance cache pool.

Using the foregoing summary, we can understand that:

� The client is responsible to control the life cycle of a bean — this means the
creation of data in database and removing data from database using
ejbCreate() and ejbRemove() methods.

� The container controls the life cycle in the pool and cache and also activation
and passivation processes in the cache.

� Both client and container are responsible to control ejbLoad() and ejbStore()
methods, depending upon client's method calls and container activation and
passivation process.

356 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

� The overall life cycle depends upon the client’s concurrent operations,
instance pool size, and instance cache size.

Next, we discuss tuning pools of Entity Beans.

Tuning instance pool size
As shown in the Entity Bean life cycle in Figure 6-8 on page 355, we understand
that we can control creation and destruction of beans by describing pool size
(min and max). This configuration is vendor specific. If this size is less (if your
default size is less or you configure a smaller size) then the container has to put
the clients in the queue when the number of concurrent clients accessing
(create/finder/home methods) are more than the max pool size. Also, instance
cache depends upon the instance pool because the instance cache has to get
beans from the instance pool. So if the pool size is small, it degrades the
performance and clients take more time to execute.

For best performance here, you must set the maximum beans in the pool equal
to the number of maximum concurrent client accesses (create/finder/home
methods), so that it reduces creation and destruction of beans.
To configure instance pool size, see 7.2.4, “Tuning the EJB container” on
page 528.

Tuning instance cache size
As shown in the Entity Bean life cycle Figure 6-8 on page 355, we understand
that we can control activation and passivation indirectly by describing the
instance cache size in the EJB container setup of an application server. See
7.2.4, “Tuning the EJB container” on page 528 for a discussion on tuning the
instance cache size.

Activation and passivation are expensive. It depends on your commit option
schema. In the worst case, for every activation, the container calls ejbLoad() to
get the latest data from the database and calls the ejbActivate() method. For
passivation, in the worst case, the container calls ejbStore() to store data in the
database and calls the ejbPassivate() method. The ejbLoad() and ejbStore()
methods communicate with the database to synchronize the latest data. If the
concurrent active clients (when the client calls business methods) are more than
the instance cache size, then activation and passivation occur often, thus
affecting performance. In order to increase performance, configure optimal cache
sizes. Cache size must be equal to concurrent active clients accessing the bean.

The important thing here is that the instance cache size and pool size for Entity
Beans are larger than session beans. The beans in the pool and cache should
accommodate the Entity Beans requirements, like finder methods that return a
large number of records and populate the data in the beans. So be careful when

 Chapter 6. Integration layer 357

you configure Entity Bean pool size and cache size. If you are not sure about
what the exact parameters are, use the default pool size and cache size.

Use setEntityContext() method as cache
The setEntityContext() method is called only once in a bean's life time. Because
Entity Beans in the pool are reused by a number of other clients, you can cache
any bean specific resources like Entity home references and DataSource
references in this method. You have to declare those resources as instance
variables and acquire them in this method. These resources are specific to a
bean but not available globally. For global reuse, it is better to use the technique
related to Cache EJBHome object references.

Also, you can use this approach to acquire other resources. Remember that you
should not acquire physical resources like database connections in these
methods. If there are more concurrent clients and the pool size is greater, it is
better to acquire such resources in each method and release them in that
method only. Use setEntityContext() method to cache bean specific resources
that are required by other clients as well.

6.5.7 Understanding caching options to improve performance

The EJB container has three types of caching that can be performed for Entity
Beans between transactions. These three commit options affect performance
and behavior of a Entity Bean life cycle. According to the option, you can
increase or decrease your Entity Bean performance.

Commit option A
The bean stays ready and attached to the EJBObject. It means that the entity
instance is still associated to the client. Also the Container keeps the Entity
locked and nobody out of Entity Bean can change the Bean state. When a
business method is invoked the Container does not do ejbAcivate() and
ejbLoad() in the activation process because the data is synchronized all the time
while bean is active.

Commit option B
In this case the bean stays attached to the EJBObject and loaded with data but
the bean is marked as invalid. It means that the Container knows that the bean
can be stale between method invocations, for example, to be available to another
client. Then the Container does an ejbLoad() for each business method invoked
from the client but does not execute ejbActivate() in the activation process.

358 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Commit option C
After a method is called, the bean is passivated at the end of the transaction and
goes back to the instance pool. The next time that a client calls a business
method, a bean comes out of the pool, is activated and loaded, and the business
method is passed to the bean.

Applying this technique
To apply this technique, we use Rational Application Developer V7. From this
starting point, perform the following steps.

1. Open your EJB Project in a J2EE perspective.

2. Open deployment descriptor of project (ejb-jar.xml).

3. Go to the Bean view of the deployment descriptor.

4. Inside the Bean view, look at the Bean Cache section as shown in Figure 6-9.

Figure 6-9 Setting up Entity Bean using WebSphere extensions

Now we show you the relation between theory and practice. If you want to use:

� Commit option A: You set Activate at: ONCE. That means that ejbActivate()
occurs once between transactions and Load at: ACTIVATION for means that
the ejbLoad() is called once when bean is activated.

 Chapter 6. Integration layer 359

� Commit option B: You set Activate at: ONCE. That means that ejbActivate()
occurs once between transactions and Load at: TRANSACTION for means
that the ejbLoad() is called between transactions.

� Commit option C: You set Activate at: TRANSACTION and Load at:
TRANSACTION. This configuration means that whole activation process is
used for each transaction unit.

You can see other options in the Load at: parameter, such as:

� INTERVAL: Performs an ejbLoad from a specific interval defined in Reload
Interval Integer field.

� DAILY: Creates ejbCache on a daily basis.

� WEEKLY: Creates ejbCache on a weekly basis.

These three last parameters should be used if you know the update frequency.

6.5.8 Defining data cache settings for a bean for performance

Lifetime in cache usage settings are WebSphere Application Server extensions
to the Enterprise JavaBeans 2.x specification. For more information, see the
WebSphere Application Server documentation. Lifetime in cache settings can
provide a way for you to improve performance for beans that are only
occasionally updated.

Applying this technique
To define data cache settings (this option is only available to 2.x CMP Entity
Beans):

1. Using Rational Application Developer, switch to the J2EE perspective.

2. In the Project Explorer view, select the desired EJB module.

3. Right-click on the Deployment Descriptor Editor and select Open With from
the pop-up menu.

4. On the Beans page of the editor, go to the Data Cache section.

5. In the Lifetime in cache field, specify the lifetime, in seconds, of cached data
for an instance of this bean type. This value indicates how long the cached
data is to exist beyond the end of the transaction in which the data was
retrieved.

6. In the Lifetime in cache usage field, select one of the following values to
indicate how the lifetime-in-cache setting is to be used by the caching
mechanism:

– OFF: When this value is used, the value of Lifetime in cache is ignored.

360 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

– ELAPSED_TIME: When this value is used, the value of Lifetime in cache
is added to the time at which the transaction in which the bean instance
was retrieved is completed. The resulting value becomes the time at which
the cached data expires.

– CLOCK_TIME: When this value is used, the value of Lifetime in cache
represents a particular time of day.

– WEEK_TIME: Usage of this value is the same as for CLOCK_TIME except
that the value of Lifetime in cache can represent more than 24 hours, but
not more than 7 days.

The use of a value other than OFF requires that finders on the enterprise
bean have an access type of Read (wsPessimissticRead or
wsOptimisticRead) because EJB applications are not permitted to update
such CMP beans.

See Figure 6-10 for this configuration.

 Chapter 6. Integration layer 361

Figure 6-10 Data Cache configuration in EJB deployment descriptor

For additional information on data cache settings, see the WebSphere
Application Server documentation.

6.5.9 Improving passivation behavior

In the section 6.5.6, “Tuning the Entity Bean container pools” on page 355 we
gave an overview about the Entity Bean life cycle. There we showed that the
passivation process of an Entity Bean concerns two methods: ejbStore(), which
refreshes the data in the database; and ejbPassivate(), which sends the bean
from the ready pool to the instance pool. WebSphere Application Server has
some configuration options to improve performance in this process.

362 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Applying this technique
To apply this technique we use Rational Application Developer version 7. From
this starting point, perform the following steps.

1. Open your EJB Project in a J2EE perspective.

2. Open deployment descriptor of project (ejb-jar.xml).

3. Go to Bean view of deployment descriptor.

4. Inside Bean view, look at the WebSphere extension section. See Figure 6-11.

Figure 6-11 Setting up Entity Bean using WebSphere extensions

The parameter highlighted in Figure 6-11 is a WebSphere extension. It detects
that if the data is not modified, the container does not execute ejbStore() that
belongs to the passivation process.

6.5.10 Applying lightweight local model to an Entity Bean

WebSphere Application Server provides a special operational mode called
lightweight local mode, which can improve the performance of Entity Bean
methods. You can decide which Entity Beans in your application to run in this
mode.

 Chapter 6. Integration layer 363

In lightweight local mode, the container streamlines the processing that it
performs before and after every method on the local home interface and local
business interface of the bean. This streamlining can result in improved
performance when Entity Bean operations are called locally from within an
application. Because some processing is skipped when running in lightweight
local mode, this mode can be used in certain scenarios only.

Lightweight local mode is patterned somewhat after the Plain Old Java Object
(POJO) entity model introduced in the Enterprise JavaBeans (EJB) 3.0
specification. Using lightweight local mode, you can obtain some of the
performance advantages of the POJO entity model without having to convert
your existing EJB 2.x application code to the new POJO model. You can apply
lightweight local mode to both Container Managed Persistence (CMP) and Bean
Managed Persistence (BMP) entity types that meet the specific criteria.

When to use the lightweight local mode
Lightweight local mode is designed for Entity Beans that are created, found, and
called using the Session Facade pattern. Under this pattern, Entity Bean local
home and local business methods are called from within methods of a stateless
session bean or stateful session bean. The session bean methods, which can be
called remotely or locally, provide security control and transaction demarcation
for the Entity Beans that are accessed by the session bean.

You can apply lightweight local mode only to an Entity Bean that meets the
following criteria:

� The bean implements an EJB local interface.

� No security authorization is defined on the Entity Bean local home or local
business interface methods.

� No run-as security attribute is defined on the local home or local business
methods.

� The classes for the calling bean and the called Entity Bean are loaded by the
same Java class loader.

� The Entity Bean methods do not call the WebSphere Application
Server-specific Internationalization Service or Work Area Service.

The first criterion prevents CMP 1.x beans from supporting lightweight local
mode, because the 1.x beans cannot have local interfaces.

In addition, lightweight local mode provides its fullest performance benefits only
to Entity Bean methods that do not have to start a global transaction. This
condition is true if you ensure that your Entity Bean also meets the following
criteria:

364 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

� A global transaction is already in effect when the Entity Bean home or
business method is called. Typically, this transaction is started by the calling
session bean.

� The local business interface methods and the local home methods of the
Entity Bean use the following transaction attributes only: REQUIRED,
SUPPORTS, or MANDATORY.

If an Entity Bean method that is running in lightweight local mode must start a
global transaction, the bean still functions normally but only a partial performance
benefit is realized.

You can mark an Entity Bean that defines a remote interface or a TimedObject
interface, in addition to the local interface, for lightweight local mode. However,
the performance benefit is apparent only when the bean is called through its local
interface.

Applying this technique
You can decide which Entity Beans in your application to run in this mode.

You can apply lightweight local mode to specific EntityBean types within your
application in two ways. You can use application server tooling, or the Marker
interface technique.

Using Application Server Tooling procedure
1. Start the Application Server Toolkit. See “Starting WebSphere Application

Server Toolkit” on page 642.

2. Select the EJB deployment descriptor of the Entity Bean that you want to
work with.

3. In the property pane, select the WebSphere Extension tab.

4. Check the box labeled Use Lightweight Local mode.

5. Select OK.

6. Save your changes.

Marker interface technique
Use the marker interface technique when a group of beans within the application
is related through a common inheritance hierarchy, and all the beans in the
hierarchy are to be marked. For an application with a large number of beans in a
hierarchy, this technique is the most efficient.

To use a marker interface, code your bean implementation class to implement
the com.ibm.websphere.ejbcontainer.LightweightLocal interface. The bean
implementation class does not have to directly implement the interface; any

 Chapter 6. Integration layer 365

parent class or interface can also implement it. For details, see the
com.ibm.websphere.ejbcontainer package in the API documentation section of
the information center.

6.5.11 Using partial column updates for CMP beans

Previously, the WebSphere Application Server implementation of the Container
Managed Persistence (CMP) bean method ejbStore always stored all of the
persistent attributes of the CMP bean to the database, even if only a subset of
persistent attribute fields were changed. This unnecessary performance
degradation is eliminated in this release of the product.

For Enterprise JavaBeans (EJB) 2.x CMP Entity Beans, you can use the partial
update feature to specify how you want to update the persistent attributes of the
CMP bean to the database. This feature is provided as a bean level persistence
option, called PartialOperation, in the access intent policy configured for the
bean. PartialOperation has two possible values:

� NONE

Partial update is turned off. All of the persistent attributes of the CMP bean
are stored to the database. This is the default value.

� UPDATE_ONLY

This specifies that updates to the database occur only for the persistent
attributes of the CMP bean that are changed.

Effects on performance
Performing partial updates increases performance in several ways:

� By reducing query execution time, since only a subset of the columns are in
the query. Improvement is higher for tables with many columns and indexes.
When the table has many indexes only the indexes affected by the updated
columns have to be updated by the back-end database.

� By reducing network I/O because there is less data to be transmitted.

� By saving any processing time for non-trivially mapped columns (if a column
uses converters/composers/transformations), by partially injecting the input
record.

� By eliminating unnecessary firing of update triggers. If a CMP bean field is not
changed, any trigger depending only on the corresponding column is not
fired.

Although partial update improves performance in general, it can adversely affect
performance too:

366 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

� If you enable partial update for a bean for which your application modifies
several different combinations of columns during the same time span, then
the prepared statement cache maximum for the connection is reached very
quickly. As a result, statement handles are evicted from the cache based on
least recent usage. This results in statements being prepared again and
again, decreasing performance for all CMP functions (not just limited to
ejbStore()).

� Partial update query templates cached in the function set increase memory
use. The increase is linear relative to the number of fields in the CMP bean for
which the partial update access intent option is turned on.

� The PartialOperation persistent option, when used in combination with the
Batch Update persistent option, affects the performance of the batch update
because now each partial query is different. There is an execution time cost
incurred for generating a partial update query string dynamically. Since query
fragments are stored for each column, the execution cost to assemble the
query fragments is linear, based on the number of CMP bean fields dirtied.

� There are condition checks for each CMP field (for example, to inspect the
dirty flags, to execute the preparedStatement setXXX() calls, and so on).

Considerations for using partial update
The performance gains you hope to achieve should be weighed against the
possible instances where degradation can occur. You can use the following
guidelines to help you make the decision:

� Partial update might not benefit an application that only involves a small table
(few columns) with simple data types and no update triggers. The cost to
assemble the partial query dynamically would probably outweigh the
performance gain.

� Partial update is a benefit if there is a complex data type that is not updated
often. An example of a complex data type might be an employee bean with a
“photo” CMP attribute mapped to a BLOB OR VARGRAPHIC or similar
complex back-end type that is typically stored in a different location in the
database manager implementation.

� Partial Update might benefit if there are several VARCHAR type columns and
only a very few of them are updated typically.

� It is better not to use the partial operation if the application can randomly be
updating different combinations of columns and the number of assignable
columns (non-key) is higher than five. This generates many different partial
queries and fills up the prepared statement cache quickly. But if the bean
does not have too many columns (four or less) and it has complex data types,
then you might consider turning partial update on, with the option of

 Chapter 6. Integration layer 367

increasing the statement cache size to allow for the increased number of
queries.

� Partial Update is beneficial when there are update triggers required on a
subset of columns.

� Partial Update is beneficial when the table has many columns and indexes
and only a few indexes are touched by a typical update.

Restrictions
By default, batch update of update queries is disabled for all CMP beans for
which partial update is enabled. In other words, partial update takes precedence
over batch update. Batch update of delete and insert queries is not affected.

Batch update performance is affected when both batch update and partial update
persistence options are used on the same bean, because each partial query is
different. To group the similar partial update queries into a batch update, you can
use the JVM property -Dcom.ibm.ws.pm.grouppartialupdate=true.

Grouping of partial updates only helps when there are several partial queries
with the same shape in a transaction. Otherwise, grouping partial updates has
the opposite affect on performance. Because this setting is not on a bean level
basis, you should be careful when turning it on. Because this affects all beans
that have both partial update and batch update on, you must make sure that
batch update of partial queries does indeed increase performance when viewed
across all the beans for which both updates are on.

So you should determine which situation gives the best performance for your
application: batch update only or partial update only or both (with
grouppartialupdate flag set to true).

To set the JVM property:

1. Open the server.xml file.

2. Change the value of -Dcom.ibm.ws.pm.grouppartialupdate=true to
-Dcom.ibm.ws.pm.grouppartialupdate=false.

Applying this technique
Follow these steps to apply the technique:

1. Start the Application Server Toolkit. See “Starting WebSphere Application
Server Toolkit” on page 642.

2. Open the J2EE perspective to work with J2EE projects. Click Window →
Open Perspective → Other → J2EE.

3. Open the Project Explorer view. Click Window → Show View → Project
Explorer.

368 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

4. Open the EJB Deployment Descriptor. Click EJB Projects → project →
ejbModule → META-INF → ejb-jar.xml. The Deployment Descriptor editor
opens.

5. In the Deployment Descriptor editor, select the Access tab. The access page
opens.

6. In the Default Access Intent for Entities 2.x (Bean Level) section of the access
page, select the bean for which you want to set partial operation. If an access
intent has already been configured for this bean, click the Edit button to edit
the access intent policy. Otherwise, click the Add button to add an access
intent policy to the bean. This opens the Add access intent window.

7. Select the Persistence Option check box if it is not already checked.

8. Select the Partial Operation check box. Use the drop-down list next to the
Partial Operation check box to select your preference:

– NONE

Partial update is turned off. All of the persistent attributes of the CMP bean
are stored to the database. This is the default value.

– UPDATE_ONLY

Specifies that updates to the database occur only for the persistent
attributes of the CMP bean that are changed.

9. Select Finish.

6.5.12 Understanding EJB access intents for best practices

A Java 2 Enterprise Edition (J2EE) application server has a highly multi-threaded
execution profile that allows multiple transactions to be active simultaneously.
The persistent application data associated with these transactions is held in a
Relational Database Management System (RDBMS). The application data held
in the database is loaded into container managed Enterprise JavaBeans (EJBs)
when required by the application within the scope of a transaction.

It is important that this data is correctly protected from the competing
requirements of those transactions that require read access, and those that
require update access. The EJB container, persistence manager, and the
relational resource adapter and database work together to control the
concurrency. Application data integrity is essential, and is ensured by the
application server engine. WebSphere Application Server takes care of these
low-level details so the application developers do not have to.

To support different database access methods, WebSphere Application Server
defines an extension to the EJB deployment descriptor that enables developers
to customize the concurrency control settings specific to their applications'

 Chapter 6. Integration layer 369

transactional requirements. Different policies are implemented as declarative
annotations that give WebSphere hints on how to access the data. These
policies are referred to as Access Intents. WebSphere enables these to be
configured manually and can provide performance benefits. Contention on
transactional resources, such as a relational database in this case, can become
a bottleneck. Tuning the way the application server accesses the persistent data
could be used to improve throughput and response times, as well as lead to
lower resource contention.

Attributes of an access intent policy
Access intents are a combination of database-specific isolation levels, locking
policies and, in some cases, read-ahead hints. Each access intent policy defined
is an aggregate of a set of properties used to control different aspects of the
persistence and concurrency handling involved in dealing with EJB entities.

Database isolation level
A transaction processing system must support complete isolation of a transaction
from other concurrently running transactions. Complete isolation, however, might
have an impact on performance and throughput. If each transaction executes in a
serial fashion, our multi-threaded application server would not perform very well.

The ANSI SQL-92 standard defines four levels of database isolation that we can
use to gain some form of parallelism in our transactions. They are identified with
respect to what particular data access characteristics they allow (for example,
dirty reads, non-repeatable reads or phantom reads). The isolation level is set on
the database connection and, as we see later, the access intent policy in use
determines how the application server sets this parameter. Different database
vendors can use different techniques to ensure that the requirements of isolation
level are met.

The four different JDBC isolation levels are listed in the following sections, with a
description of how DB2 handles each one. Other database vendors might
implement this differently, but the general idea is similar.

TRANSACTION_SERIALIZABLE
This is the strongest isolation level. DB2's internal isolation level for this is
referred to as Repeatable Read. All the rows in the database table that are
affected by the current transaction are locked; no other transaction can insert,
delete or update a row in the selection set. Locking is also performed so that
rows cannot be inserted in a way that would change the selection set used in
other transaction. For example, SELECT * FROM orders WHERE Total > 2000
would not only lock the rows that match the predicate condition, but also all rows
in the table. This prevents the presence of phantom rows. Uncommitted changes
from other transactions cannot be seen.

370 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

TRANSACTION_REPEATABLE_READ
Phantom rows can appear with this isolation level. This is because the statement
SELECT * FROM orders WHERE Total > 2000 only locks the rows that meet the
condition. If the same statement is reissued within the transaction, the result
could be different. It is ensured that the rows updated or read during the
transaction cannot be changed by anyone else until the work commits.
Repeatable Read maps to DB2's isolation level Read Stability.

TRANSACTION_READ_COMMITTED
DB2 maps this to its Cursor Stability isolation level. If you issue the statement
SELECT * FROM orders WHERE Total > 2000 rows are only locked as the
resultset is traversed. Obviously, phantom rows can occur, but more importantly,
non-repeatable reads can occur. This happens when a transaction reads the
same data twice, while another transaction modifies the data between the two
reads, resulting in a different result for each read.

TRANSACTION_READ_UNCOMMITED
Transactions are not isolated from each other, and can access uncommitted
changes from each other. Currently, none of the access intents in WebSphere
Application Server use this isolation level.

For more information about JDBC isolation levels, look at “Choose the best
isolation level” on page 333.

Choosing the correct isolation level can be complex. However, each access
intent policy in WebSphere Application Server chooses an appropriate isolation
level for supported databases, relieving the developer from this level of detail.

Locking strategy
In conjunction with the isolation level, the application server can use two different
locking strategies to further control the concurrency of transactions.

Pessimistic locking
A pessimistic locking strategy is one where a lock is obtained early in the
transaction and kept until either the transaction is committed or rolled back. Other
transactions wanting access to this data must wait until the lock is released. See
Figure 6-12 for a better understand of pessimistic locking.

 Chapter 6. Integration layer 371

Figure 6-12 Pessimistic locking scenario

Figure 6-12 shows the idea behind pessimistic locking. Transaction 1 (Tx1) reads
the value 1000 from the database into the balance variable. When Transaction 2
(Tx2) wants access to the row that contains the balance for this account, Tx2 is
blocked until Tx1 has updated the balance to 3000 and committed its changes.
Tx2 can then proceed with reading the value 3000 and updating it to 4000.

Optimistic locking
The main problem with a pessimistic approach is that transactions have to wait
for each other. A way to avoid this is to be more optimistic and believe that it is
unlikely that another transaction would want to update the same entity at the
same time. With this kind of thinking, locking the data in the beginning of the
transaction can be avoided. Instead, it is only locked at the end of the transaction
when it is updated. This method requires a way to ensure that the data has not
been altered between the time it was read it and when it was updated. This is
known as a WriteWriteConflict. See Figure 6-13.

4000

3000

1000

3000

Begin Tx
Lock and

read value → balance
(wait on Tx 1)
. . .

Wakeup and
value → balance

Balance += 1000;
. . .
Commit Tx

Begin Tx
Lock and

read value → balance
. . .
Balance += 2000;
. . .
Commit Tx

Time DB State Tx 1 Tx 2

372 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Figure 6-13 Optimistic locking scenario

Figure 6-13 shows the idea behind optimistic locking. Similar to Figure 6-12 on
page 372, Transaction 1 (Tx1) reads the balance value as 1000 without locking
the row in the database. Transaction 2 (Tx2) is not prevented from doing the
same thing, and reads the balance initially as 1000. Before committing the
transaction, it must check for conflict and finds that the value is now 3000, which
is different from the initial value read. It must now abort the transaction and start
the transaction again. The task of checking for a conflict can be done in several
ways. An extra column can be used in the database to hold a version or a
timestamp. The update is then made with a conditional expression to only update
if this field is the same as when the data was read. One or more fields could be
used for the same purpose. It would have to be a field that is updated in each
transaction.

The use of optimistic locking offers more concurrent access to the data. The
drawback is the requirement for collision handling, which is very expensive if
collisions are frequent. For this reason it is only appropriate to apply optimistic
locking when collisions are rare. If the application access pattern is
predominately update access, then a pessimistic approach might be
advantageous in that it avoids optimistic concurrency update failures.

Access Intent policies
We now look at the different Access Intents that exist in WebSphere Application
Server.

The main identifier for a policy is its locking strategy and type. The type of an
access intent can be either read or update. If you assign a read policy to an
Entity Bean, an exception is thrown if you attempt to update it. That is, you

4000

1000

3000

Begin Tx
read value → balance

Balance += 1000;
. . .

chWriteWriteConflict

Commit Tx

Begin Tx
read value → balance

. . .
Balance += 2000;
. . .
checkWriteWriteConflict
Commit Tx

Time DB State Tx 1

Tx 2

1000

 Chapter 6. Integration layer 373

cannot call any setter methods. It is also interesting to consider what isolation
level is to be used, especially if you have other systems accessing the same
database. It is important to realize that different database vendors can have their
own meanings of the database isolation level. Most implementations are like that
shown in Table 6-7 (except for Oracle, which is mapped to different isolation
levels). See your database provider’s documentation to determine the
differences. Table 6-7 shows the seven different policies currently defined in
WebSphere Application Server. This data is based on using DB2 as the RDBMS.

Table 6-7 Access Intent policies in WebSphere

� For other databases scenarios, see the following URL:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topi
c=/com.ibm.websphere.wsfep.multiplatform.doc/info/ae/ae/rdat_isolevt
ab.html

Pessimistic policies
As described previously, the intent of the pessimistic approach is to ensure that
the data loaded into the Entity Bean is locked during the entire duration of a
transaction. The normal behavior of a database access is to get a read lock on
the queried data, which gets transformed into an update lock if data is updated.

We want to make sure that all the rows are locked when the data is fetched from
the database. This can be done by using a specific SQL query referred to as
SELECT..FOR UPDATE. The update clause ensures that an update lock is held
on the selected rows. A subsequent transaction issuing the same statement on
any of the rows is blocked until the first transaction commits its changes. There
are five different pessimistic policies defined in WebSphere Application Server.
They all have lock hints described by their name, wsPessimistic#hint#, where
#hint# further describes our intention with the Entity Bean.

Policy Type Locking strategy Isolation level

wsPessimisticUpdate Update Pessimistic Repeatable Read

wsPessimisticUpdateWeakestLo
ckAtLoad (Default policy)

Update Pessimistic Repeatable Read

wsPessimisticUpdateNoCollision Update Pessimistic Read Committed

wsPessimisticUpdateExclusive Update Pessimistic Serializable

wsPessimisticRead Update Pessimistic Repeatable Read

wsOptimisticUpdate Update Optimistic Read Committed

wsOptimisticRead Read Optimistic Read Committed

374 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.wsfep.multiplatform.doc/info/ae/ae/rdat_isolevtab.html

� wsPessimisticUpdate

No specific hint is specified. The isolation level is be set to Repeatable Read
and a “SELECT..FOR UPDATE” SQL statement is used to get an update lock
on the row in the database. If you are looking to create a true pessimistic
scenario, then this is the policy to use. A drawback is that you cannot have
complex queries defined in your finder methods. This is because a
SELECT..FOR UPDATE does not support grouping and ordering, so you
cannot create a finder that would get a set of rows from the database and
order them by a specific column.

� wsPessimisticUpdateWeakestLockAtLoad

This is the default policy. If no access intent is specified in the deployment
descriptor, WebSphere Application Server uses this hint. Compared to
wsPessimisticUpdate, it does not use a SELECT..FOR UPDATE clause to
obtain an update lock. The container loads the data with the weakest lock
available for the targeted database. This means that the rows are locked as
shared. When an attempt to update is made, the lock is promoted to an
update lock.

� wsPessimisticUpdateNoCollision

Uses Read Committed, which is a lower isolation level. It does not use a FOR
UPDATE clause when loading the data, so the rows do not get locked. Using
this policy, one must ensure that there are no concurrent updates to the same
row or range of rows. That is, if concurrent transactions update an Entity Bean
with same primary key, updates could get lost. Avoid using this policy.

� wsPessimisticUpdateExclusive

This ensures that the transaction has exclusive access to the data being
updated. Database isolation is set to Serializable and a SELECT..FOR
UPDATE statement is used when loading the data. Both readers and writers
must wait until the exclusive transaction has committed its changes. This
policy should be used with caution since it can create serious bottlenecks in
the application. It has the same limitation as wsPessimisticUpdate in that
complex queries are not supported.

� wsPessimisticRead

If you know that an Entity Bean is only to be read and not updated, then this
policy simulates a read-only lock. If an attempt to update the data in the Entity
Bean is made, then an exception is thrown. Be careful and ensure that no
other external applications are accessing the same table(s) with different
intentions.

� Optimistic policies

By applying an optimistic policy, data is not locked when the Entity Bean is
loaded. Instead, an overqualified update statement UPDATE .. WHERE is

 Chapter 6. Integration layer 375

used when the Entity Bean is stored back into the database. We see later how
to configure this in WebSphere Studio. Situations where an Entity Bean is not
updated very often benefits from an optimistic policy. Also if there are a lot
more reads than updates on the Entity Bean, an optimistic locking strategy
might improve performance.

� wsOptimisticUpdate

This is the only policy we can use if we choose to implement an optimistic
locking strategy to update Entity Beans. It issues a normal select statement to
load the data into the Entity Bean, perform its updates, and then issue an
overqualified update statement when committing the data.

� wsOptimisticRead

This only differs from wsPessimisticRead in that the isolation level is set to
Read Committed.

� Read-ahead hint

An extra feature that can be applied to an access intent policy is a read-ahead
hint. This is only applicable when there is a relation defined between entities.
The idea is to minimize database calls by caching the related beans. For
example, if bean A has a relation to B and C, we specify a read-ahead hint on
these relations. Then, when A is loaded, one entity of C is loaded since it is a
1:1 relationship, and a matching number of Bs is loaded since it is a 1-M
relationship. Read-ahead hints apply only to the findByPrimaryKey method on
CMP 2.x Entity Beans. The application server generates a more complex
SQL query that brings in the data from multiple tables. When we later request
to access these beans, no database access is necessary. See Figure 6-14.

Figure 6-14 EntityBean with container manager relation

376 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Read-ahead hints can be defined on more than one level. If D relates to E and
E to F, a hint can be created so that when D is loaded the corresponding E
and F entities are also loaded. One should not use read-ahead hints unless
the corresponding Container Managed Relations (CMR) bean is touched in
the transaction. The hint does imply an extra cost on the database due to the
join statement between tables, which should be avoided if not required.

Best practices to use access intent policies
Now we go to best practices for access intent usage.

Deprecated support for methods
Support for applying access intent policies at the method level is deprecated from
WebSphere Application Server Version 6.0. In this practice of configuring access
intent, you apply a policy to methods within the scope of an EJB module so that
the policy becomes the default access intent for all requests upon those
methods.

Access intent design considerations
Best practice: Refrain from over-tuning an application. You can introduce errors
by incorrectly using the access intent service. For example, misuse of the
wsPessimisticUpdate-NoCollision policy can result in lost updates;
inappropriately setting the collection increment value can introduce performance
issues; and problem determination is more difficult when an application is
confusingly configured with multiple access intent policies.

Even though access intent policies can be configured on any method of an Entity
Bean, some attributes of a policy can only be leveraged by the runtime
environment under certain conditions. For example, concurrency and access
intent are only used for CMP Entity Beans when the ejbLoad() method is driven
to open a connection to, and read data from, a given resource; that data is
cached and used to drive the proper queries during invocation of the ejbStore()
method. Read-ahead hints are only used during the execution of a finder for a
bean. Finally, the collection increment and resource manager prefetch increment
are only used on multi-object finders.

Configuring policies on methods that do not use those policies is not an error
(only certain attributes of any policy are used, even when the policy is
appropriately applied to a method). However, configuring policies unnecessarily
throughout an application obscures the design of the application and complicates
the maintenance of the application.

Note: Clarity and simplicity should be your guiding principles when using the
access intent service. This is even more important when applying access
intent polices within the scope of application profiles.

 Chapter 6. Integration layer 377

Access intent with BMP Entity Beans
Access intent's declarative functionality provides great power to you as a CMP
Entity Bean developer. You can provide hints on how WebSphere Application
Server is to manage the details of persistence without having to explicitly
manage any of the persistence logic from within the application. There are
situations, however, in which you might have to develop BMP Entity Beans.
Because the only meaningful difference between BMP and CMP components is
who provides the persistence logic, BMP Entity Beans should be able to leverage
access intent hints just as WebSphere Application Server does on behalf of CMP
Entity Beans. BMP Entity Beans that use the access intent service participate in
application profiling; that is, the value of the access intent attributes can differ
from request to request, allowing the BMP Entity Bean to seamlessly modify its
persistence strategy.

You can apply access intent policies to BMP Entity Bean methods as well as
CMP Entity Bean methods. Because access intent hints are not contractual in
nature, there is no obligation for a BMP Entity Bean to exploit them. BMP Entity
Beans are expected to use only those access intent attributes that are important
to that particular bean.

The current access intent policy is bound into the java:comp namespace for a
particular BMP Entity Bean. That policy is current only for the duration of the
method call during which the access intent policy was retrieved. In a typical
scenario, you would cache the access type during invocation of the ejbLoad()
method so that appropriate actions can be taken during invocation of the
ejbStore() method.

General access intent best practices
When applying access intent policies to Enterprise JavaBeans (EJB) methods,
consider the following issues.

� Start by configuring the default access intent policy for an entity. After your
application is built and running, you can more finely tune certain access paths
in your application using application profiling or method-level access intent.

� Do not mix access types. Avoid using both pessimistic and optimistic policies
in the same transaction. For most databases, pessimistic and optimistic
policies use different isolation levels. This can result in multiple database
connections, which prevents you from taking advantage of the performance
benefits possible through connection sharing.

� Take care when applying wsPessimisticUpdate-NoCollision. This policy does
not ensure data integrity. No database locks are held, so concurrent
transactions can overwrite each other's updates. Use this policy only if you
can be that only one transaction is attempting to update persistent store at
any given time.

378 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

6.5.13 Enterprise JavaBeans Data Mediator Service

The Enterprise JavaBeans (EJB) Data Mediator Service (DMS) is the Service
Data Objects (SDO) Java interface that, given a request in the form of EJB
queries, returns data as a DataGraph containing DataObjects of various types.

This differs from a normal EJB finder or ejbSelect method, which also takes an
EJB query but returns a collection of EJB objects (all of the same type) or a
collection of container managed persistence (CMP) values.

The EJB DMS enables you to specify an EJB query that returns a data graph
(the DataGraph) of data objects (DataObjects). The query can be expressed as a
compound EJB query contained in a string array of EJB query statements. One
advantage of using a DataGraph is that much of the code written in an EJB
facade session bean that deals with creating, populating, and updating copy
helper objects can be replaced with a DataGraph and a DMS.

For more information about this feature, see the following links:

� http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=
/com.ibm.websphere.zseries.doc/info/zseries/ae/cejb_ejbmed.html

� http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=
/com.ibm.websphere.zseries.doc/info/zseries/ae/rejb_ejbmedqarg.html

The foregoing information is more relevant if you have a project with SDO and
EJB. However, the best practice here is to use another method more suitable for
long lived solutions in persistence such as JPA, as described in 6.6, “Java
Persistence API: Entity Beans 3.0” on page 380.

6.5.14 EJB session bean: direct access to back-end

Reading large amounts of data with Entity Beans, for example, just to display a
large scrollable list of data, implies a big performance overhead, because a lot of
transactional aware EJB objects are unnecessarily instantiated from the EJB
container. Therefore, in domains where a set of objects exist whose state is
frequently read but very rarely updated, the usage of EJB Entity Beans might be
overkill. In these cases, a different approach using an EJB session bean that
directly accesses the back-end, might be more advisable. Update operations are
also possible because EJB session beans support transactions that can be
automatically handled by the container.

Important: The EJB Data Mediator Service has support for EJB2.x container
managed persistence (CMP) Entity Beans only.

 Chapter 6. Integration layer 379

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.zseries.doc/info/zseries/ae/cejb_ejbmed.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.zseries.doc/info/zseries/ae/rejb_ejbmedqarg.html

Here we list advantages and disadvantages, as well as some alternatives:

� Advantages of this solution:

– High performance for large amounts of data
– Full transactional support
– Universal data access to all types of back-end systems

� Disadvantages of this solution:

– Limited portability: Implementation highly depends on data schema and
type of back-end system

– Not very easy to use: missing tooling support
– No caching available

� Alternatives:

– EJB 3.0 with Java Persistence API (JPA)
– Session Beans stateless with iBATIS if the first alternative is not available.

6.6 Java Persistence API: Entity Beans 3.0

The Java Persistence API was created as an effort among several development
communities such as Hibernate, Java Data Objects (JDO), TopLink®, EJB
suppliers and individual workers to unify the persistence Java model. The goal of
this persistence Java model was to create a standard in terms of mapping the
object/relational way, simplify the programming model, improve performance in a
runtime environment, improve search capabilities, support pluggable
implementations such as JDBC, and create a unique persistence methodology
for J2EE and J2SE environments.

As JPA is new for a lot of developers, in the following sections we explain the
main concepts of JPA starting from a point that it is a new persistence
technology. We also recommend best practices for its use.

Since the EJB 3.0 specification has become available, a clear separation
between persistence and programming model has become apparent. The EJB3
expert group produced three specifications:

� EJB Core Contracts and Requirements
� EJB 3.0 Simplified API
� Java Persistence API

The first and second part of the specification take care of the programming
model for session beans, message-driven beans, deployment rules, annotations
and so on. The third part addresses persistence items such as entities, ORM
(Object relational mappings) metadata, query language and persistence

380 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

manager interfaces that work with both Java 2 Enterprise Edition (J2EE) and
Java 2 Standard Edition (J2SE). We can say that the third part is called Java
Persistence API (JPA).

You can think of JPA as the successor to well-known transparent persistence
technologies such as JDO and Hibernate because you can add a transparent
persistence layer to Plain Old Java Object (POJO) also using a specification
placed in EJB 3.0. Hibernate, for example, has interfaces to be used as a JPA
provider being in compliance with the JPA specification. POJO is nothing more
than a normal class such as Java Beans. However, we cannot use just any class
for persistence. There are some rules that have to be applied that we cover in the
next sections.

First, we focus on the JPA specification in the following key areas:

� A new POJO-based programming (domain model)
� JPA programming model (overview)
� Own object/relational mapping (metadata)

We then cover more items related to persistence that are standardized, such as:

� Object versioning for optimistic concurrency control
� Database key generation
� Lazy vs. eager loading of fields
� Inheritance and polymorphism
� JPQL
� Best practices for scalability and performance

At the end of this section we talk about JPA adoption in your programs.

6.6.1 Domain Model and POJO-based programming

The first step when you develop an enterprise application is creating the domain
model. Domain model means you list the entities and the relationships between
them. After that you create UML class diagrams to represents your domain
model. The natural evolution in your analysis is mapping your actors (Objects)
into Java Objects. If you consider that a domain object has attributes (instance
variables in Java Object) and behavior (methods in Java Object), the POJO
usage is a normal way in your analysis, design and coding.

To insure a close persistence to the domain model, a new POJO-based
programming model is introduced in JPA which applies equally well to both the
Java EE and Java SE environments. With POJO adoption, you can select the
class in your domain model to be entity objects and apply some basic rules to be
ready to persistence in JPA.

 Chapter 6. Integration layer 381

POJO, as was mentioned previously, is similar to a JavaBean class. In POJO,
you declare business methods that define the behavior and properties that define
its state. POJO has some restrictions to make available entities for persistence.

Other important considerations in your domain model and in your Java
implementation are:

� Relationships:

In Java code when an object has a reference to another.

� Multiplicity or cardinality:

Refers to the nature of relationships that can be:

– One-to-one: Each side of the relationship can have only one object at
most. For example, one Account can have only one checking; on the other
hand, one checking can be related to only one account. Another example
is that a Customer can have only one CustomerInfo, and CustomerInfo
can be related to only one Customer.

– One-to-many: An object instance can be related to several instances to
another object. For example, one account can have several transaction
records. However, one transaction record can be related to one account
only.

– Many-to-many: If both sides of the relationship have more than one object
of another, this relation is many-to-many. For example, an Author can have
several books. On the other hand, a book can be written by several
authors.

� Optionality:

Indicates that a relation does not always exist. For example, a Customer
object might not always have a BillingAddress associated. In this case, the
one-to-one relation is optional.

POJO for JPA building rules
The restrictions to coding POJOs to make them ready for persistence are as
follows:

� Default or No-Arg Constructor:

The JPA specification requires a constructor with no arguments for each
persistent class. The constructor can be nonpublic, but at least package
visible. It means that public, protected and package is allowed for constructor.

� Final class and methods are not allowed:

The entity class cannot be final for methods.

382 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

� Identity Fields:

All entity classes must declare one or more fields which together form the
persistent identity of an instance. These entity fields can be implemented as
protected or private properties. The accessor methods follow the same
JavaBeans specification pattern. See Example 6-28.

Example 6-28 Pattern for identity fields

public class User {
 //Another implementation here
 private String username;

 public User(); // No-argument class constructor
 public String getUsername(){
 return username;
 }
 public void setUsername(String username){
 this.username = username;
 }
}

Annotations can now be used to define metadata directly in the application
code. Also you can use an XML-based mechanism.

The entity POJOs no longer have to implement any EJB framework-based
interfaces.

� The programming model also defines a detachment model for the POJO
(Entity) objects. This should be a benefit to the client/server and Web
application environments.

� Besides enhancing the EJB Query Language (also known as JPQL), the
programming model also enables the use of native SQL queries.

6.6.2 JPA programming model

We now introduce some rules to identify a POJO class as a persistence class for
JPA work. This feature can be described using both Java annotations and
separate xml from Java. We explain using Java annotations.

Make a class persistence capable
The first rule is to use the @Entity annotation that allows a POJO to be
persistence capable. The entity concept means that an entity Object can be
made persistent by a persistence framework. See Example 6-29.

 Chapter 6. Integration layer 383

Example 6-29 @Entity annotation usage

@Entity
public class Customer implements Serializable {
//Declaration of attributes here and methods
}

An entity requisite is to have a non argument constructor with at least a package
visible as we saw in “POJO for JPA building rules” on page 382. In the foregoing
example, we did not include a constructor because you can implicitly use the
public Customer() constructor.

Establishing a primary key
The second rule is about primary key concerns. All entity objects require a
primary key declared. The primary key can be mapped to field-based or
properties (via setter and getter methods).

The code snippet in Example 6-30 shows a field-based persistence example.

Example 6-30 id field-based example

@Entity
public class Customer implements Serializable {
@id private Long customerId;
}

In the foregoing example, the persistence provider would infer that the id field
should be persisted because of the @id annotation. The annotations can be
used in getters methods (properties) instead of a field-base model. See
Example 6-31.

Example 6-31 id property-based example

@Entity
public class Customer implements Serializable {
private Long customerId;
@id
public Long getCustomerId(){
return customerId;
}

A tip here is that setter methods with annotations (@id for example) are ignored
by persistence providers.

384 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

A primary key can be simple or composed. In the case of composed, you can use
another Java class to represent a Composed Primary Key. See Example 6-32.

Example 6-32 Composed primary key

package itso.bank.jpa.model;

import java.util.Date;

public class TransrecordPK implements java.io.Serializable{
 Date transrecordId;
 Long accountId;

 public TransrecordPK(){}

 public boolean equals(Object obj){
 if(this == obj)
 return true;
 if(obj == null || obj.getClass() != getClass())
 return false;
 TransrecordPK other = (TransrecordPK) obj;
 return (other.accountId.equals(accountId)
 && other.transrecordId.equals(transrecordId));
 }

 public int hashCode(){
 return super.hashCode();
 }
}

To accomplish this feature in a class in which we have to refer to the composed
primary key, we can use @IdClass annotation or @EmbeddedId. The @IdClass
usage requires that you repeat @id for fields related to Primary Key class in the
main entity class. See Example 6-33.

Example 6-33 @idClass usage

@Entity
@IdClass(TransrecordPK.class)
public class Transrecord{

 public Transrecord(){}
 @id
 protected Long accountId;

 Chapter 6. Integration layer 385

 @id
 protected Date transrecordId;

 //....
}

You can realize a redundancy in repeating the identity fields in the main class.
However, you can more easily note what are the id fields. On the other hand, you
can avoid this by using the @Embedded annotation. See Example 6-34.

Example 6-34 @Embedded annotation example

@Entity
public class Transrecord{

 public Transrecord(){}

 @EmbeddedId
 protected TransrecordPK transrecordPK;

 //....
}

Persisting other fields
By default, the persistence provider saves all entities in fields or properties with
public or protected setters and getters. The best practice here is that you should
use field-based with accessor methods. In large scale systems mainly, accessor
methods are more elegant. To avoid persistence, you can use the @transient
annotation or transient Java attribute. In Example 6-35 you can see the usage to
avoid persistence.

Example 6-35 Transient usage

public class Transrecord {
 private Long accountId;
 private double amount;
 private String details;
 private Date transrecordId;
 private char type;
 @Transient
 protected Long activeTransactionCount;
 /** Or use this approach below
 transient protected Long activeTransactionCount;
 *
 */

386 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

 //...
}

Relationships between entities
In 6.6.1, “Domain Model and POJO-based programming” on page 381 we talked
about relationship, optionality, and multiplicity. Now we translate these concepts
into JPA language. In short, an Entity has a relation with another entity when it
holds an object reference to this other entity.

@OneToOne
We use @OneToOne annotation to mark uni and bidirectional one-to-one
relationships. This might not make sense, but it is very normal in a domain
model.

� Unidirectional one-to-one:

Consider. for example. a relation between Customer Object and CustomerInfo
Object. A Customer Object can have at most one instance of CustomerInfo
Object and CustomerInfo cannot exists without Customer. See Example 6-36
using annotations.

Example 6-36 @OneToOne usage

@Entity
public class Customer {
 @Id
 protected Long customerId;
 protected String firstname;
 protected String lastname;
 protected String title;
 @OneToOne
 protected CustomerInfo customerInfo;
}

@Entity
public class CustomerInfo {
 @Id
 protected Long customerinfoId;
 protected String street;
 protected String city;
 protected String state;
 protected String zipcode;
 protected String email;
 protected userId;
 protected password;

 Chapter 6. Integration layer 387

 protected Date password_expiration;
}

In the foregoing example, Customer Class has only one attribute
CustomerInfo. The @OneToOne annotation says that the persistence
provider keeps this relation in the database. Furthermore, you can use
@OneToOne relation with properties instead of field approach. See
Example 6-37.

Example 6-37 @OneToOne relation usage with properties

@Entity
public class Customer {
 private Long customerId;
 private String firstname;
 private String lastname;
 private String title;
 private CustomerInfo customerInfo;

 @OneToOne
 public CustomerInfo getCustomerInfo(){
 return this.customerInfo;
 }

 public void setCustomerInfo(CustomerInfo customerInfo){
 this.customerInfo = customerInfo;
 }
}

@Entity
public class CustomerInfo {
 @Id
 protected Long customerinfoId;
 protected String street;
 protected String city;
 //....
}

� Bidirectional one-to-one:

Analyzing the foregoing relationship, suppose that you have to get Customers
from a CustomerInfo, for example, to get Customers that have a password
soon to expire. In this case, you have to reach Customers from the
CustomerInfo Object, then a Bidirectional one-to-one is required.
Example 6-38 example explains how it works.

388 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Example 6-38 One-to-One bidirectional relationship

@Entity
public class Customer {
 @Id
 protected Long customerId;
 protected String firstname;
 protected String lastname;
 protected String title;
 @OneToOne
 protected CustomerInfo customerInfo;
}

@Entity
public class CustomerInfo {
 @Id
 protected Long customerinfoId;
 protected String street;
 protected String city;
 protected String state;
 protected String zipcode;
 protected String email;
 protected String userId;
 protected String password;
 protected Date password_expiration;
 @OneToOne(mappedBy="customerInfo", optional="false");
 protected Customer customer;
}

Note that in the foregoing example the Object customer that shows a relation
from CustomerInfo to Customer. Another interesting point are the
@OneToOne parameters. The first parameter mappedBy=”customerInfo” tells
the JPA container that customerInfo object in the Class Customer is the
“owning” side of the relationship. The second parameter is optional and says
that the CustomerInfo object cannot exist without Customer Object being
present.

@OneToMany and @ManyToOne
This relation is the most common in domain objects. In this case an entity has
two or more references to another. In Java terms it means that an entity has a
Collection type of another Object for example java.util.Collection, java.util.List,
java.util.Set. An important thing is that this relation is bidirectional, it means that
while one side of relation is one-to-many the other side is many-to-one. See
Example 6-39.

 Chapter 6. Integration layer 389

Example 6-39 One-to-many bidirectional example

@Entity
public class Account {
 @Id
 protected Long accountId;
 protected double balance;

 @OneToMany(mappedBy="account")
 protected Set<Transrecord> transrecord;
 //..
}

@Entity
public class TransRecord{
 @Id
 protected Long transrecordId;
 protected double amount;
 protected String details;
 protected char type;
 //...
 @ManyToOne
 protected Account account;
 //...
}

In the @OneToMany annotation the mappedBy parameter has the same effect
as viewed in @OneToOne annotation. It means that the side that has the owning
of relationship is in TransRecord object that is account object. As observed in line
below from @OneToMany annotation that we are using generics. If you do not
use generics you have to use a new parameter called targetEntity to indicate to
persistence provider which type the Set is related to. Then the foregoing example
code snippet appears similar to Example 6-40.

Example 6-40 targetEntity usage

@Entity
public class Account {
 @Id
 protected Long accountId;
 protected double balance;

 @OneToMany(targetEntity=Transrecord.class, mappedBy="account")
 protected Set transrecord;
 //..

390 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

}

Looking again at Example 6-39 on page 390, we can see that as this relation is
bidirectional in class Transrecord, there is an Account object. Another interesting
point is that as ManyToOne is always the owner of the relation, there is no
necessity to use the mappedBy parameter in annotation @ManyToOne.

@ManyToMany
This type of relation is not so common in enterprise applications. Consider a
relation between Authors and Books. An author can have written several books
and a Book can been written by several authors. See the code in Example 6-41.

Example 6-41 ManyToMany relationship usage

@Entity
public class Book {
 @Id
 protected String isbn;
 protected String title;
 //...
 @ManyToMany
 protected Set<Author> authors;
 //...
}

@Entity
public class Author{
 @Id
 protected Long authorId;
 protected String name;

 //....
 @ManyToMany(mappedBy="authors")
 protected Set<Book> books;
}

As we can see, the authors variable is assigned to @ManyToMany annotation
and it is the owner of this bidirectional relation. On the other hand, the books
Object that belongs to Author and in this case this other @ManyToMany
annotation means that this side of the relation is the subordinated side. The
mappedBy parameters guarantee this subordination.

 Chapter 6. Integration layer 391

6.6.3 Introducing entity manager and persistence life cycle

Entity manager is the most important part of Java Persistence API. All entities in
JPA have a life cycle that is managed by an EntityManager Object. Then an
EntityManager performs several actions that affect the life cycle of entity
instances. Before looking at entity states, we take an overview of the
EntityManager Interface.

The EntityManager interface
The EntityManager function can be thought of as a bridge between relational
databases and objects. It makes an interpretation from the object/relational
mapping specified for an entity and saves the entity in the database. See
Figure 6-15.

Figure 6-15 The EntityManager functionality

To perform this functionality, EntityManager is a small and easy to use interface.
You can see the some of the supported methods in Table 6-8.

Table 6-8 EntityManager methods

Method Signature Explanation

public void persist(Object entity); Persists an entity into the database.

public void remove(Object entity); Removes an entity from the database.

public void flush(); Synchronizes the states of entities
managed by EntityManager with
database.

public void refresh(Object entity); Refreshes an entity from the database.

public void close(); Closes an application-managed
EntityManager.

public Query createQuery(String
jpqlString);

Create a dynamic Query String in
JPQL-Like statement.

Objects Relational
Database

EntityManager

Persists

Retrieve

SQL

Results

392 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

We provide some usage examples in Example 6-42, Example 6-43, and
Example 6-44.

Example 6-42 Persist Example

public Order createNewOrder(Customer customer) {
Order order = new Order(customer);
entityManager.persist(order);
return order;
}

Example 6-43 Find and remove example

public void removeOrder(Long orderId) {
Order order = entityManager.find(Order.class, orderId);
entityManager.remove(order);
}

Example 6-44 change example (merge)

public OrderLine updateOrderLine(OrderLine orderLine) {
return entityManager.merge(orderLine);
}

public Query createNativeQuery(String
sqlString);
public Query createNativeQuery(String
sqlString, Class result);
public Query createNativeQuery(String
sqlString, String resultSetMapping);

Creates a dynamic query using SQL-Like
statement.

public Query createNamedQuery(String
name)

Creates a named query based in name
parameter that belongs to annotation in
entity class called
@NamedQuery(name=<query_name>,q
ueryString=<query_string>).

public EntityTransaction getTransaction(); Gets a transaction object that can be used
to manually start or end a transaction.

public void joinTransaction(); Invokes a EntityManager to join an
existing JTA transaction.

public <T> T merge(T entity); Invoke an EntityManager to merges an
entity and returns a merged entity.

Method Signature Explanation

 Chapter 6. Integration layer 393

Here we list the four states of an entity:

� Transient or New
� Persistent or Managed
� Detached
� Removed

In this section, we discuss these types. Figure 6-16 shows an overview of these
four elements and the relations between them.

Figure 6-16 Entity states and relations overview

All these methods except Query.getResultList(), Query.getSingleResult(), and
garbage action are EntityManager methods. Next we describe these elements.

Transient or new objects
When you use the new operator, the objects instantiated are not persistent
immediately. We can infer that its state is transient, which means that they are
not associated to any database table row. if an object of this type is not referred
by any other object, its state is lost and is available for garbage collection. By
default, objects that are referenced only by other transient instances are also
transient. To become persistent or managed requires a call to a persistence
manager or assigning a reference from an already persistent instance.

Removed

garbage

garbage

remove()

New/Transient garbage

Detached

Managed/Persistent

merge()
close()
clear()
commit()
rollback()

find()
getReference()
Query.getResultList()
Quary.getSingleResult()

New

persist()
merge()

394 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Persistent or managed objects
If an entity instance has a primary key value as a database identifier, then it
means that an entity instance is a persistent and managed instance. A persistent
instance can be created by an application and made persistent by calling one of
the persistence manager methods. Also it can be created when a reference was
created from another persistent object or by query execution, by an identifier
lookup, or from another persistent instance you navigate to its object graph.

Removed objects
You can remove an object executing explicitly by removing the method from the
persistence manager object. A removed state means that an object has been
scheduled for deletion at the end of the unit of work, and while the end of work is
not reached, it is still managed by the persistence manager. Moreover, this
removed object should not be used because it is to be deleted when the unit of
work finishes.

Detached objects
An instance is considered detached after a unit of work completes and the
persistence context is closed. This state indicates that their state is no longer
guaranteed to be synchronized with the database state because it is not attached
to a persistent context.

6.6.4 Object/relational mapping

O/R mapping is a crucial element of an application designed around JPA. It
directly affects the way the entity manager populates the domain objects. As a
result, a mapping change can be felt as far as the presentation tier. You can
produce especially undesirable effects by changing fetch type or cascade type.

You have two ways to define the mapping: metadata (annotations) and a
mapping file. Although the metadata approach is heavily promoted, you should
be mindful of the baggage it carries. The approach essentially entangles two
logical layers of an application: the domain model and the mapping information.
Being separate, these logical layers require separate testing using different
techniques. The metadata approach does not hamper the testability of the layers
per se. Rather, it causes two layers to appear to be one, which might or might not
be a problem depending on a range of factors.

One factor that can affect the choice of a mapping approach is the project team
structure. In a small project with a few developers, a small number of tables
(fewer than 100 as a rule of thumb) and no dedicated mapping person, taking the
annotation approach for defining mappings is probably the best bet because
working with annotations is generally faster. For medium-sized and large projects
that have a dedicated mapping person or team, a smarter choice is to go with a

 Chapter 6. Integration layer 395

mapping-files approach. This approach reduces resource contention and adds
another degree of freedom to the development process. The metadata-based
mapping approach proved to be more time-efficient for the PetStore application.

The goal of an O/R mapping layer is to shield the rest of the application from the
effects of changes in the underlying database. When we migrated the PetStore
application back-end to PostgreSQL, the mapping layer did not require any
changes at all. This can be attributed to the fact that both the original database
and PostgreSQL support sequences, so the primary key generation strategy
stayed intact. In the general case, you should expect some rework in the area of
the mapping related to object ID handling. In short, the JPA specification explicitly
defines the object/relational (O/R) mapping instead of relying on vendor-specific
O/R mapping of past releases. This should help with vendor plugability and
application migration.

Thorough test coverage of the mapping is of paramount importance. You must
cover all the relationship mappings to make sure fetching behavior and transitive
persistence is tested. You can leverage out-of-container use of JPA to perform
the task (more on that in the next section).

Mapping entities bases
In this section we examine some fundamental features of EJB 3.0 JPA O/R
mappings such as @Table, @Column, @Enumeration, @Lob, @Temporal and
@Embeddable. See Example 6-45.

Example 6-45 Entity mapping

@Entity
@Table(name="CUSTOMER")
@SecondaryTable(name="CUSTOMER_TOKEN",
 pkJoinColumns=@PrimaryKeyJoinColumn(name="CUSTOMER_ID"))
public class Customer implements Serializable{

 //Column Mappings
 @Id
 @Column(name="CUSTOMER_ID", nullable=false)
 protected Long customerId;

 @Column(name="FIRSTNAME", nullable=false)
 protected String firstname;

 @Column(name="LASTNAME", nullable=false)
 protected String lastname;

 //Enumerated field

396 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

 @Enumerated(EnumType.STRING)
 @Column(name="CUSTOMER_TYPE", nullable=false)
 protected CustomerType customerType;

 //Blob Column
 @Column(name="TOKEN" ,table="CUSTOMER_TOKEN")
 @Lob
 @Basic(fetch=FetchType.LAZY) //Lazy loading
 protected byte[] securityToken;

 //Temporal field
 @Column(name="JOIN_DATE", nullable=false)
 @Temporal(TemporalType.DATE)
 protected Date joinDate;

 //Embedded field
 @Embedded
 protected CustomerInfo customerInfo;

 public Customer() {
 }
}

@Embeddable
public class CustomerInfo implements Serializable{
 @Column(name="USERID", nullable=false)
 protected String userId;

 @Column(name="PASSWORD", nullable=false)
 protected String password;

 @Column(name="EMAIL", nullable=false)
 protected String email;

 @Column(name="STREET", nullable=false)
 protected String street;

 @Column(name="CITY", nullable=false)
 protected String city;

 @Column(name="STATE", nullable=false)
 protected String state;

 @Column(name="ZIPCODE", nullable=false)
 protected String zipcode;

 Chapter 6. Integration layer 397

}

Table mapping
The table mapping is done using the @Table annotation and the name parameter
represents the table name in database.

Column mapping
The column mapping is done using the @Column annotation and name params
represents the column name in Table specified in @Table annotation. If you use
@SecondTable annotation in a case where you map a table to more than one
column, you can use the parameter table. See Example 6-46.

Example 6-46 Column annotation with table usage

@Column(name="TOKEN" ,table="CUSTOMER_TOKEN")

@Enumerated annotation
The enumeration type was introduced in Java 1.5. Note in Example 6-45 on
page 396 that there is a Class called CustomerType. The class is defined as
shown in Example 6-47.

Example 6-47 Enumeration class

public enum CustomerType {GOLD, STANDARD, MASTER};

We decided to save, in a database, the String value such as “GOLD”. Then we
set the enumeration Type as String (Example 6-48).

Example 6-48 Enumeration annotation

@Enumerated(EnumType.STRING)

If we decided to set the array order for example 0,1,2... we could use:

@Enumerated(EnumType.ORDINAL)

CLOBs and BLOBs mappings
To map a CLOB or BLOB data type, we use @Lob annotation. See the code
snippet in Example 6-49, which was extracted from Example 6-45 on page 396.

Example 6-49 @lob annotation usage

@Lob
@Basic(fetch=FetchType.LAZY) //Lazy loading

398 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

The @Basic annotation states that we should load this data from a database
when it is first accessed. This approach is very important because CLOBs or
BLOBs consume much memory and have to be loaded if necessary. Otherwise
we can use fetch=FetchType.EAGER.

Temporal mapping types
In general, databases support temporal data types such as DATE (day, month
and year) or TIME (storing just time without DATE presentation). The default
value if not specified is TemporalType.TIMESTAMP. However, in Example 6-50
we defined it as date.

Example 6-50 Temporal types usage

@Column(name="JOIN_DATE", nullable=false)
@Temporal(TemporalType.DATE)
protected Date joinDate;

Entity to multiple table mapping
Sometimes entity data has to be mapped from two different tables. This strategy
is done using a code snippet from our source example (Example 6-51).

Example 6-51 An entity for two tables strategy

@Entity
@Table(name="CUSTOMER")
@SecondaryTable(name="CUSTOMER_TOKEN",
 pkJoinColumns=@PrimaryKeyJoinColumn(name="CUSTOMER_ID"))
public class Customer implements Serializable{

This kind of relation is created by mapping a foreign key in the secondary table
pointing to the primary key in the first table. The parameter pkJoinColumns
sentence does this service. In this case, CUSTOME_ID is the primary key for the
first column called CUSTOMER and foreign key to CUSTOMER_TOKEN table.

Database key generation
There are three popular ways to manually generate primary key values that are
identifiers, sequences, and tables. All the three types are supported by JPA.
Otherwise you can leave it to the persistence provider to generate a database
key. These types are described in the next sections.

Identity columns as generators
Some databases support identity columns. By changing the customerId field
declaration in Example 6-45 on page 396, it looks as shown in Example 6-52.

 Chapter 6. Integration layer 399

Example 6-52 Database identity columns

@Id
@GeneratedValue(strategy=Generation.IDENTITY)
@Column(name="CUSTOMER_ID", nullable=false)
protected Long customerId;

This coding assumes that identity constraints exist in the CUSTOMER_ID
column in table CUSTOMER. When we use generator type, the value of the
identity field is only available when the data is safely on the database.

Using database sequences as generators
To use sequences as generators, the first step is generated in a database. In
DB2, for example, a sequence is created using the command in Example 6-53.

Example 6-53 Sequence command database example

CREATE SEQUENCE CUSTOMER_SEQUENCE START WITH 1 INCREMENT BY 10

In the next step we create a sequence sentence for JPA (Example 6-54).

Example 6-54 Sequence generator annotation in JPA

@SequenceGenerator(name="CUSTOMER_SEQUENCE_GENERATOR"
sequenceName="CUSTOMER_SEQUENCE" initialValue=1, allocationSize=5)

In the foregoing example we created a sequence generator called
CUSTOMER_SEQUENCE_GENERATOR related to CUSTOMER_SEQUENCE
created in our DB2 database. By default, if you do not declare otherwise, the
initialValue is 0, and the allocationSize (the increment) is 50.

Finally we define the generation key for our CUSTOMER_ID column as shown in
Example 6-55.

Example 6-55 Generated key for sequence generator

@Id
@GeneratedValue(strategy=GeneratorType.SEQUENCE,
generator="CUSTOMER_SEQUENCE_GENERATOR")
@Column(name="CUSTOMER_ID")
protected Long customerId;

400 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Using sequence tables as generators
You can use sequence tables as generators. In DB2 the command is shown in
Example 6-56.

Example 6-56 Create Table sequence command

CREATE TABLE SEQUENCE_GENERATOR_TABLE (SEQUENCE_NAME VARCHAR(60) NOT
NULL,SEQUENCE_VALUE INTEGER NOT NULL, PRIMARY KEY (SEQUENCE_NAME))

The next step is to insert an initial value manually in the table created. See
Example 6-57.

Example 6-57 Insert an initial value to the sequence table

db2 => INSERT INTO SEQUENCE_GENERATOR_TABLE (SEQUENCE_NAME,
SEQUENCE_VALUE) VALUES('CUSTOMER_SEQUENCE', 1)

These two commands combined have the same effect as using a database
sequence. To accomplish this command in JPA, use the @TableGenerator
annotation shown in Example 6-58.

Example 6-58 @TableGenerator

@TableGenerator(name="CUSTOMER_TABLE_GENERATOR”,
table="SEQUENCE_GENERATOR_TABLE", pkColumnName="SEQUENCE_NAME",
valueColumnName="SEQUENCE_VALUE", pkColumnValue="CUSTOMER_SEQUENCE")

You can specify the initialValue and allocationSize in the same form as database
sequence generation.

The final step is do the annotation for the id field customerId as shown in
Example 6-59.

Example 6-59 Final annotation configuration

@Id
@GeneratedValue(strategy=GenerationType.TABLE,
generator="CUSTOMER_TABLE_GENERATOR")
@Column(name="CUSTOMER_ID")
protected Long customerId;

 Chapter 6. Integration layer 401

Embeddable class mapping
Figure 6-17 shows how @Embeddable/@Embedded annotations mapping to
Embeddable class mapping works. It describes a customer table structure.

Figure 6-17 Table for Embeddable class mapping

With the foregoing example, we map the customer table into two different
objects: Customer Object and CustomerInfo Object. To use this approach, we
implement it using @Embeddable/@Embedded annotations. See Example 6-60.

Example 6-60 Embeddable class mapping example

@Entity
@Table(name="CUSTOMER")
public class Customer implements Serializable{

 //Column Mappings
 @Id
 @Column(name="CUSTOMER_ID", nullable=false)
 protected Long customerId;

 @Column(name="FIRSTNAME", nullable=false)
 protected String firstname;

 @Column(name="LASTNAME", nullable=false)
 protected String lastname;

CUSTOMER

USERID
PASSWORD

EMAIL
STREET
STATE

ZIPCODE

CUSTOMER_ID
FIRSTNAME
LASTNAME

TITLE

Customer Object

CustomerInfo
Object

402 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

 //Embedded field
 @Embedded
 protected CustomerInfo customerInfo;

 public Customer() {
 }
}

@Embeddable
public class CustomerInfo implements Serializable{
 @Column(name="USERID", nullable=false)
 protected String userId;

 @Column(name="PASSWORD", nullable=false)
 protected String password;

 @Column(name="EMAIL", nullable=false)
 protected String email;

 //Other mappings
}

The @Embedded annotation refers to customerInfo attribute inserted into
Customer class and @Embeddable refers to CustomerInfo class.

Mapping relations
In 6.6.1, “Domain Model and POJO-based programming” on page 381, we
explained about entity relation concepts and in “Relationships between entities”
on page 387 the annotations rules for each relationship type. Now we finish using
the object relational annotation mapping to make a whole example.

One-to-one
One-to-one relationships are mapped using a parent and foreign key approach.
There are two types for this approach, depending on where the foreign key
exists: using @JoinColumn and @PrimaryKeyJoinColumn annotations.

� @JoinColumn

Use this approach when an entity has its primary key but contains the foreign
key reference to the table which the referenced entity child is mapped. From
Example 6-36 on page 387 we changed the example, doing a resume and
adding @JoinColumn annotation. The result is shown in Example 6-61.

 Chapter 6. Integration layer 403

Example 6-61 @JoinColum example usage

@Entity
@Table(name="CUSTOMER")
public class Customer {
 @Id
 @Column(name="CUSTOMER_ID", nullable=false)
 protected Long customerId;

 @Column(name="FIRSTNAME", nullable=false)
 protected String firstname;

 //Another fields mapping

 @OneToOne
 @JoinColumn(name="CUST_INFO_ID",
 referencedColumnName="CUSTOMER_INFO_ID, updatable=false)
 protected CustomerInfo customerInfo;
}

@Entity
@Table(name="CUSTOMER_INFO")
public class CustomerInfo {
 @Id
 @Column(name="CUSTOMER_INFO_ID")
 protected Long customerinfoId;

 @Column(name="STREET", nullable=false)
 protected String street;

 @Column(name="CITY", nullable=false)
 protected String city;
 //....
}

The name parameter of @JoinColumn annotation refers to the foreign key in
CUSTOMER table. Then CUST_INFO_ID is a column in CUSTOMER table
that refers CUSTOMER_INFO_ID in table CUSTOMER_INFO. If you omit the
second parameter referencedColumnName, the JPA processor uses the @Id
of CustomerInfo object automatically. It means that it uses column
CUSTOMER_INFO_ID automatically if not declared in the
referencedColumnName parameter in the @JoinColumn annotation.

404 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

� @PrimaryKeyJoinColumn

In Example 6-62, two entity instances share the same primary key. However,
one is a foreign key and the other is a primary key. In Example 6-62, the
CUSTOMER_INFO table has a foreign key CUSTOMER_INFO_ID pointing to
the CUSTOMER_ID that is the primary key of the CUSTOMER table. Also,
CUSTOMER_INFO_ID is the primary key of the CUSTOMER_INFO table.

Example 6-62 @PrimaryKeyJoinColumn usage

@Entity
@Table(name="CUSTOMER")
public class Customer {
 @Id
 @Column(name="CUSTOMER_ID", nullable=false)
 protected Long customerId;

 @Column(name="FIRSTNAME", nullable=false)
 protected String firstname;

 //Another fields mapping

 @OneToOne
 @PrimaryKeyJoinColumn(name="CUSTOMER_ID",
 referencedColumnName="CUSTOMER_INFO_ID, updatable=false)
 protected CustomerInfo customerInfo;
}

@Entity
@Table(name="CUSTOMER_INFO")
public class CustomerInfo {
 @Id
 @Column(name="CUSTOMER_INFO_ID")
 protected Long customerId;

 @Column(name="STREET", nullable=false)
 protected String street;

 @Column(name="CITY", nullable=false)
 protected String city;
 //....
}

 Chapter 6. Integration layer 405

One-to-many and many-to-one
As we described in “@OneToMany and @ManyToOne” on page 389, this relation
is more common in our domain model and by consequence in our systems. This
relation is implemented as a primary-key and foreign-key association in the
underlying database. See Figure 6-18.

Figure 6-18 One-to-many bidirectional O/R mapping example

Looking from the source in “One-to-many bidirectional example” on page 390, we
changed to the example shown in Example 6-63.

Example 6-63 One-to-many bidirectional example using O/R mapping

@Entity
public class Account {
 @Id
 @Column(name="ACCOUNT_ID")
 protected Long accountId;

 //...

 @OneToMany(mappedBy="account")
 protected Set<Transrecord> transrecord;
 //...
}

Account

ACCOUNT

(Primary Key)
ACCOUNT_ID

BALANCE

Mapped and stored

One-to-many bidirectional

Transrecord

Mapped and stored

TRANSRECORD

(Primary Key)
TRANSRECORD_ID

TYPE
DETAILS
AMOUNT

DATE
TRANSRECORD_ACCOUNT_ID

(Foreign Key)

406 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

@Entity
@Table(name="TRANSRECORD")
public class TransRecord{
 @Id
 @Column(name="TRANSRECORD_ID")
 protected Long transrecordId;

 //...
 @ManyToOne
 @JoinColumn(name="TRANSRECORD_ACCOUNT_ID",
 referencedColumnName="ACCOUNT_ID")
 protected Account account;
 //...
}

In the foregoing case, several instances of TransRecord refer to one Account. At
the same time, several instances of TRANSRECORD records refer to the same
record in the ACCOUNT table. The TRANSRECORD table has a foreign key,
which is TRANSRECORD_ACCOUNT_ID referring to the ACCOUNT_ID in table
ACCOUNT. To define the described relation, @JoinColumn annotation is used.
Moreover the mappedBy parameter in @OneToMany annotation defines the
owner of relation that is account attribute in TransRecord. In short, in a
bidirectional relation of one-to-many, the owner of relation is in the entity side that
is, the many side of the relation, and keeps the foreign key.

Many-to-many
Many-to-many relations can be split in two relations of one-to-many stored in an
association or join table. In the database world, we map each primary key in both
of the relation sides in the foreign keys pair in a join table. See Figure 6-19.

Note: JPA does not support unidirectional one-to-many relationships.
However, these relationships are not so common. When you use such
relationships, you must do the navigability yourself. Then, for easier
maintenance, we recommend that you change to bidirectional one-to-many,
many-to-one in your model.

 Chapter 6. Integration layer 407

Figure 6-19 Many-to-many relationship database modeling

To represents this relationship in O/R mapping, we use the @JoinTable
annotation. See Example 6-64.

Example 6-64 Many-to-many relationship mapping

@Entity
public class Book {
 @Id
 protected String isbn;
 protected String title;
 //...
 @ManyToMany
 @JoinTable(name=BOOKS_AUTHORS,
 joinColumns=
 @joinColumn(name="BA_ISBN",
 referenceColumnName="ISBN"),
 inverseJoinColumns=
 @joinColumn(name="BA_AUTHOR_ID",
 referenceColumnName="AUTHOR_ID"))
 protected Set<Author> authors;
 //...
}

@Entity

Book

BOOK

ISBN
TITLE

Mapped and stored

Many-to-many bidirectional

Author

Mapped and stored

AUTHOR

AUTHOR_ID
NAME

BA_ISBN
BA_AUTHOR_ID

Join table

408 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

public class Author{
 @Id
 protected Long authorId;
 protected String name;

 //....
 @ManyToMany(mappedBy="authors")
 protected Set<Book> books;
}

The @JoinTable in Book class specifies the association or join table. In our
example this is the BOOKS_AUTHORS table, which contains two columns. The
first column is BA_ISBN, which is a foreign key mapped to the ISBN column in
table BOOK. The second column is BA_AUTHOR_ID, which is a foreign key
mapped to the AUTHOR_ID column in the AUTHOR table. This rule is described
in joinColumns and inverseJoinColumns on both sides of relation. joinColumns
represents the owning of relation, and inverseJoinColumns represents the
subordinate side of the relation. The mappedBy element on the Author.books
attribute points to Book.authors. This sentence also indicates that Author.books
is a subordinate element and Book.author is the owner of the relation.

Inheritance
To start this approach, consider the domain model example shown in
Figure 6-20.

Figure 6-20 Domain model for inheritance example

In this example, we have Checking and Savings inheriting from Account. We can
see this model in the following inheritance approaches that are supported: single
table, joined tables, and table per class.

Inheritance

Checking Savings

Account

Inheritance

 Chapter 6. Integration layer 409

� Single table:

All classes in inheritance schema are mapped to only one table where one
field value identify a specific subclass. See Figure 6-21.

Figure 6-21 Single table approach

In this table, one field called ACCOUNT_TYPE is a discriminator column with
value ‘C’ that represents checking type and ‘S’ that represents savings. This
is the main point to represent a single table in the inheritance approach.
ACCOUNT_ID and BALANCE have values that are common to all accounts.
When the persistence provider persists Checking type, it fills all columns
except MINAMOUNT, which is left with a NULL value because Checking type
does not require this column to be filled. In Example 6-65 we can see this
approach implemented in annotations inside the code.

Example 6-65 Code with inheritance mapping using single table

@Entity
@Table(name="ACCOUNT")
@Inheritance(strategy=InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(name="ACCOUNT_TYPE",
 discriminatorType=DiscriminatorType.STRING,lengh=1)
public abstract class Account{
 @Id
 @Column(name="ACCOUNT_ID", nullable=false)
 protected Long accountId;
 @Column(name="BALANCE", nullable=false)
 protected double balance;
 @Column(name="ACCOUNT_TYPE", nullable=false)
 protected char accountType;
}

@Entity
@DiscriminatorValue(value="C")
public class Checkings extends Account{
 @Column(name="OVERDRAFT")

ACCOUNT_ID

1996524342

BALANCE ACCOUNT_TYPE OVERDRAFT MINAMOUNT

1244126063

5,000

7,000

C

V

200

NULL

NULL

500

410 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

 protected double overdraft;
}

@Entity
@DiscriminatorValue(value="S")
public class Savings extends Account{
 @Column(name="MINAMOUNT")
 protected double minamount;
}

In this coding example, the @Inheritance annotation with parameter
strategy.SINGLE_TABLE represents this inheritance type.
@DiscriminatorColumn points to a field that indicates the branch to the two
types of inheritance and @DiscriminatorValue the value types. Also note that
the common values stay and abstract class and are not null. On the other
hand, the optional values are in the subclasses.

� Joined tables:

The inheritance root is represented by a table and each subclass is
represented to a separated table that contains specific fields to subclass and
columns that represents its primary keys. The relation with root and
descendants in the hierarchy is with a one-to-one relationship. In the
joined-tables strategy, the parent of the hierarchy has the common fields and
the children’s specific fields. See Figure 6-22.

Figure 6-22 Joined-tables strategy

ACCOUNT_ID

1996524342

BALANCE ACCOUNT_TYPE

1244126063

5,000

7,000

C

V

MINAMOUNT

NULL

500

ACCOUNT_ID

1996524342

1244126063

OVERDRAFT

200

NULL

ACCOUNT_ID

1996524342

1244126063

 Chapter 6. Integration layer 411

The code below represents the implementation in JPA. The unique difference
from one table is that the relation between parent and children tables are
implemented using @PrimaryKeyJoinColumn annotations. In this case
ACCOUNT_ID represents the foreign key. See the code in Example 6-66.

Example 6-66 Joined-table strategy

@Entity
@Table(name="ACCOUNT")
@Inheritance(strategy=InheritanceType.JOINED)
@DiscriminatorColumn(name="ACCOUNT_TYPE",
 discriminatorType=DiscriminatorType.STRING,lengh=1)
public abstract class Account{
 @Id
 @Column(name="ACCOUNT_ID", nullable=false)
 protected Long accountId;
 @Column(name="BALANCE", nullable=false)
 protected double balance;
 @Column(name="ACCOUNT_TYPE", nullable=false)
 protected char accountType;
}

@Entity
@DiscriminatorValue(value="C")
@PrimaryKeyJoinColumn(name="CUSTOMER_ID")
public class Checkings extends Account{
 @Column(name="OVERDRAFT")
 protected double overdraft;
}

@Entity
@DiscriminatorValue(value="S")
@PrimaryKeyJoinColumn(name="CUSTOMER_ID")
public class Savings extends Account{
 @Column(name="MINAMOUNT")
 protected double minamount;
}

This approach is better for design but worse for performance as compared to
the single table approach because of polymorphic queries that require joining
of multiples tables.

412 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

� Table per class:

Each class in the inheritance schema is mapped to a separated table where
all properties of each class are mapped to database columns including
inherited properties. This is simpler than other approaches but worse from a
relational and OO point of view. See Figure 6-23.

Figure 6-23 Tables-per-class approach

Notice that some columns such as BALANCE are repeated using this
approach.

This type of inheritance is implemented in the superclass and each subclass
as in your own table has the @Table annotation. See Example 6-67.

Example 6-67 Table-per-class approach

@Entity
@Table(name="ACCOUNT")
@Inheritance(strategy=InheritanceType.TABLE_PER_CLASS)
public abstract class Account{
 @Id
 @Column(name="ACCOUNT_ID", nullable=false)
 protected Long accountId;
 @Column(name="BALANCE", nullable=false)
 protected double balance;

ACCOUNT_ID

1996524342

BALANCE

1244126063

5,000

7,000

ACCOUNT_ID

1996524342

BALANCE OVERDRAFT

5,000 200

ACCOUNT_ID

1244126063

BALANCE MINAMOUNT

7,000 500

 Chapter 6. Integration layer 413

}

@Entity
@Table(name="CHECKINGS")
public class Checkings extends Account{
 @Id
 @Column(name="ACCOUNT_ID", nullable=false)
 protected Long accountId;
 @Column(name="OVERDRAFT", nullable=false)
 protected double overdraft;
}

@Entity
@Table(name="SAVINGS")
public class Savings extends Account{
 @Id
 @Column(name="ACCOUNT_ID", nullable=false)
 protected Long accountId;
 @Column(name="MINAMOUNT", nullable=false)
 protected double minamount;
}

In this coding example, notice that @Id annotation is repeated between
subclasses. The problem using this approach is that it does not offer good
support of polymorphic queries because each subclass is mapped to its own
table.

Now that we know the three types of inheritance strategies, the best approach is
single-table, which is simple and has good performance because it avoids joins
in multiple tables in polymorphic queries. However, single-table does not manage
a large amount of data very well, because of NULL-values columns. In that case,
consider the joined-table approach. The worst approach is the table-per-class
approach because it uses almost no relational database features. Also, this
approach is more difficult to implement reliability in JPA and it was made optional
for providers in the EJB 3.0 specification. It is not recommended to use.

Polymorphism
We can consider a polymorphic relation between entities when a relation can
refer to instances of a subclass in some side of the relation. For instance,
consider an example between Transrecord and Account that is a one-to-many
bidirectional relationship. When we retrieve the relation from TransRecord, the
retrieved instance can be Savings or Checking instance. This is an advantage of
JPA that you make a relation between superclass (Account) and another class
(Transrecord) and the relation is polymorphic automatically.

414 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

6.6.5 JPQL overview

JPQL is considered an evolution from EJB Query Language (EJBQL), which is
the query language from EJB 2.x. The important point here is that JPQL, as is
EJBQL, is a superset of SQL query to work with objects. Moreover, each JPQL
query is translated to an SQL query by a JPQL query processor that is supplied
by a JPA provider and executed in the database.

Improvements from EJBQL
The improvements from EJBQL are shown next.

Group by/ having sentences
Group by/ having sentences from EJBQL are shown in Example 6-68 and
Example 6-69 respectively.

Example 6-68 Group by example

SELECT t.accountId, COUNT(t.transrecordId) FROM Transrecord t GROUP BY
t.accountId

Example 6-69 Having example

SELECT t.accountId, COUNT(t.transrecordId) FROM Transrecord t GROUP BY
t.accountId HAVING COUNT(t.transrecordId) > 10

Subqueries
A subquery is a query inside a query, and EJBQL did not have this support. The
syntax of a subquery is shown in Example 6-70.

Example 6-70 Syntax of subquery

[NOT] IN/ [NOT] EXISTS / ALL / ANY / SOME (subquery)

The code in Example 6-71 shows how to use this query.

Example 6-71 Subquery example

SELECT a FROM Account a WHERE EXISTS (SELECT t FROM Transrecord t WHERE
t.accountId = a.ccountId)

SQL additional functions
The following functions were included in JPQL: UPPER, LOWER, TRIM,
CURRENT_DATE

 Chapter 6. Integration layer 415

Joins
The join operator can be used to create a Cartesian product between two
entities. See Example 6-72.

Example 6-72 Join example

SELECT a FROM Account a INNER JOIN a.Transrecord t WHERE a.accountId
LIKE ?1

Polymorphic queries
This means that if a JPQL query retrieves a parent entity in an entity hierarchy, it
is not limited to the entity, but all subclasses.

Dynamic queries
In Example 6-73, we are using a JPQL dynamic query, and the parameter is
passed using the setParameter method in the Query object.

Example 6-73 Dynamic query using JPQL

public List findWithAccount (Long id) {
 Query query = em.CreateQuery (“SELECT a FROM Account a” +
 “WHERE a.accountId LIKE :accId”);
 query.setParameter(“accId”, id);
 query.setMaxResults(10);

 return query.getResultList();
}

The same example using native SQL query is shown in Example 6-74.

Example 6-74 Dynamic query using native SQL

public List findWithAccount (Long id) {
 Query query = em.CreateNativeQuery (“SELECT * FROM ACCOUNT
 WHERE ACCOUNT_ID LIKE ”+id.longValue());

 return query.getResultList();
}

Comparing the two examples, we can note that the unique difference in dynamic
queries using JPQL and native SQL is that the named parameter in SQL query is
not required by the JPA specification.

416 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

We use native SQL query in the next example, and we define what result you
want to return dynamically using @SqlResultSetMapping annotation. See
Example 6-75.

Example 6-75 Dynamic using @SqlResultSetMapping

@SqlResultSetMapping(name = "AccountResults",
 entities = @EntityResult(entityClass =
com.ibm.itso.jpa.Savings.class))
public List findWithAccount (Long id) {
 Query query = em.createNativeQuery("SELECT * FROM ACCOUNT WHERE
ACCOUNT_ID = "+id.longValue(),"AccountResults");

 return query.getResultList();
}

Named queries
The main difference between named queries and dynamic queries is the use of
annotations (@NamedQuery or @NamedNativeQuery). The named queries as
dynamic queries has the same two types using JPQL(@NamedQuery) or using
native SQL(@NamedNativeQuery). See Example 6-76.

Example 6-76 Named query using JPQL

@NamedQuery(
name=“findWithAccount”,
queryString=“SELECT a FROM Account a” +
“WHERE a.accountId LIKE :accId”
)

@PersistenceContext public EntityManager em;
public List findWithAccount(Long id){
 Query query =
 em.createNamedQuery(“findWithAccount”);
 query.setParameter(“accId”, id);

 return query.getResultList();
}

In Example 6-77 you can see the same query using native SQL. Also, notice in
this example, the type of Account in the result using @SqlResultSetMapping
annotation.

 Chapter 6. Integration layer 417

Example 6-77 Named query using native SQL

@NamedNativeQuery(
name=“findWithAccount”,
query=“SELECT * FROM ACCOUNT
 WHERE ACCOUNT_ID = ?”,
resultSetMapping = "AccountResults")
)
@SqlResultSetMapping(name = "AccountResults",
 entities = @EntityResult(entityClass =
com.ibm.itso.jpa.Savings.class))

@PersistenceContext public EntityManager em;
public List findWithAccount(Long id){
 Query query =
 em.createNamedQuery(“findWithAccount”);
 query.setParameter(1, id.longValue());

 return query.getResultList();
}

6.6.6 Best practices for scalability and improved performance

Following are some JPA best practices for scalability and improved performance.

Handling locking issues
This feature is an important issue to consider when planning for concurrent
issues in our program. Understanding the approaches can guide you during
development of an application. If necessary, refer to “Database isolation level” on
page 370 and “Locking strategy” on page 371 for information on transaction
types (Dirty read, Nonrepeatable read, Phantom read) and locking strategies
(optimistic and pessimistic locking) before proceeding.

Optimistic locking and versioning of entities
In terms of resources usage, but only at the expense of reliability, optimistic
transactions consume less resources than pessimistic/datastore transactions.
Considering that optimistic transactions do not lock datastore records, two
transactions might change the same persistent information at the same time, and

Details of JPAQL capabilities can be found at the following link from Apache:

http://openjpa.apache.org/docs/latest/manual/manual.html#jpa_query_a
pi

418 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://openjpa.apache.org/docs/latest/manual/manual.html#jpa_query_api

the conflict is not detected until the second transaction attempts to flush or
commit. Despite their drawbacks, the best choice for most applications are
optimistic transactions. They offer better performance, better scalability, and
lower risk of hanging due to deadlock.

If you have concurrency access to your entities or there are merging of detached
entities (an instance is consider detached after a unit of work completed and the
persistence context is closed), then the best choice is to enable optimistic locking
for those entities. In JPA you sign this approach using a version attribute in an
Entity class. This is mandatory in the specification. There are some requirements
to do this, such as, we have to put @javax.persistance.Version on a field or
property. Also, the persistence field has to be a numeric field such as Long, long,
Integer or int. Moreover, this field has to be mapped to a database column in the
primary table to which the entity is mapped. See Example 6-78.

Example 6-78 Optimistic locking configuration in annotations

@Entity
@Table(name="ACCOUNT")
public class Account implements Serializable {
 @Id
 @Column(name="ACCOUNT_ID")
 protected Long accountId;

 //...

 @Version
 @Column(name= "OPT_LOCK")
 private Long version;

 //...
}

Entity manager and locking modes
There are two types of locking modes, READ (LockModeType.READ) and
WRITE (LockModeType.WRITE). This feature is used rarely and the
EntityManage lock method does the explicit entity lock approach. However, the
read locking can be used, for example, when you do reporting data, and the write
locking can be used when no one can UPDATE or DELETE an entity when this
lock is on, even if another separated transaction is trying to modify the locked
write entity. See Example 6-79 and Example 6-80.

 Chapter 6. Integration layer 419

Example 6-79 LockModeType.WRITE

Author author = em.find(Author.class,authorId);
em.lock(author, LockModeType.WRITE);
author.addBook(book);
book.addAuthor(author);

Example 6-80 LockModeType.READ

em.lock(account, LockModeType.READ);
//...
Double amount = account.getMinamount();
System.out.println("Minimum amount report");
System.out.println("Name : "+account.getName()+ " Minumum amount: " +
amount.doubleValue());

Some tips to improve performance
The following sections briefly describe tips to gain performance in JPA. However,
some tips can be considered generic no matter what persistence technology you
are using.

Setting up the connection pool
If you do not set up the connection pool properly, this can have a negative impact
on performance. Depending on the access volume, you can have more
concurrent users than connections available. You have to measure with your
capacity planning team which parameters best fit for your application such as
MaxConnections, MinConnections, unused timeout, and so on.

Choosing the right inheritance
As we have seen in “Inheritance” on page 409, there are three strategies to
implement inheritance. Depending on your point of view, each has advantages
and disadvantages. However, for performance, the best approach is single-table
because you avoid joins between tables.

Avoid using transactions for read-only queries
If you use a query in which results are not going to be updated, we recommend
that you do not use a transaction because it is unnecessary.

Avoid using flush manually
The persistence provider in general optimizes the flush mode at the end of
transaction, and by default the flush mode in EJB 3.0/JPA is AUTO. Avoid, if
possible, the use of EntityManager’s flush method. Its heavy use can be a
performance drawback because using flush several times can lead to multiple
SQL statements.

420 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Using the best lock strategy
As EJB 3.0 specification says, pessimistic locking is optional and you should use
this approach only if absolutely required because, depending on the database
provider, you lock the record or page during the transaction. Using optimistic lock
is preferred using the lowest lock (READ lock) if it satisfies your requirements.

Use read-only entities
We recommend, if possible, using read-only entities. In general, read-only
entities are loaded by the persistence provider into the persistence unit cache
and are not discarded. When this feature is used, the persistence provider does
not have to calculate changes set and no clone or merge operations have to
occur.

Use indexes in queries
This is a general best practice. This task is for your DBA team. Primary keys
always have an indexed scan and no additional indexes are required. However,
depending on your query design, you can use use additional indexes to improve
performance.

Use named queries
As named queries are prepared once and are reused and cached by the
persistence provider, we recommend using named queries instead of dynamic
queries.

Avoid full table scan
Full table scans are detected, for example, when you use the “SELECT *...”
sentence. Unless your table is very small, it consumes a lot of memory because
it loads many rows that might not be required. Moreover, it causes a FULL
TABLE SCAN in your database and results in a very slow query. Specify the
fields that you actually require, and use SELECT * only as a last resort.

Consider redesigning your schema if possible
Do not hesitate to change your schema if you find some performance drawbacks.
This might be possible if this schema is not used by other existing applications.
For example, you can merge two small tables into one. On the other hand, you
can divide a table into multiple tables. Consider a CUSTOMER table that has
fields such as a joining date that is not used frequently and can be marked as
lazy loaded. This could be a good candidate to create another table such as
CUSTOMER_INFO and remodeling your domain model.

 Chapter 6. Integration layer 421

6.6.7 JPA adoption considerations

All this simplification does come with a slight cost. Due to the major shift in the
programming model, existing EJB 2.x applications have to be rewritten to take
advantage of the new JPA features. Also, the new JPA specification does not
include automatic Container Managed Relationship (CMR) maintenance.
Relationship maintenance is now application-managed.

There are some products that implement full EJB 3.0. Other products implement
only JPA. Keep in mind that the goal of JPA is to be plugabble. This means that it
would be plugabble even if an EJB container has a existing JPA installed.
Another goal is that JPA can be used outside an EJB container.

6.7 iBATIS

Today we have several object relational mappers (ORMs) that come in different
types. In Java, most of the popularity goes to those that implement full domain
model mapping, the goal of which is to map a whole layer of objects and
behaviors to database tables. Some popular ORMs include:

� Hibernate
� Java Data Objects (JDO)
� Java Persistence API (JPA, EJB Entities 3)
� EJB Entity Beans 2.x

Each of these is classified as a full domain model mapper, where tables are
mapped to objects, object state is maintained, objects follow a connected model
(as client components interact with the object, underlying database operations
are implied) either all or some of the time, and an abstract query language works
against the object model. In turn, these frameworks generate Java Database
Connectivity (JDBC) or SQL code under the covers.

There are some cases, though, when you might decide to use straight JDBC
instead. Some reasons might be:

� Developer's knowledge and comfort of SQL. Object query languages still do
not relieve you from having to know SQL, since you often have to know how to
fine tune query languages.

� Object relational mappers are heavyweight for certain types of applications.
For example, batch applications that must execute many update operations
serially are often better off executing SQL statement in sequence without all
the extra object hydration.

422 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

� Stored procedures are required or already exist. There are many valid
reasons for using stored procedures. In some scenarios, they reduce the
amount of network IO because SQL statements can be executed in sequence
at the database.

� The DBA is king. Many development organizations have strict rules about
SQL and who might define it. Sometimes only database administrators are
authorized to create and fine tune SQL for performance.

� Former environment. For example, applications are being migrated from a
platform where SQL queries are already fined tuned and tested.

The general solution in these cases seems to be: Use JDBC. Developers
frequently require guidance when building JDBC code; bad JDBC code often
results in having scattered data access code all over the place. To achieve what
they have to, developers often end up developing some kind of custom JDBC
framework or wrapper. This can occur when, for example:

� Applications are running in a J2EE platform. Java objects still have to be
passed as Data Transfer Objects from the business logic layer to the view
layer, so there has to be some code that moves Result Set Data to Data
Transfer Objects and from Data Transfer Objects to SQL updates, inserts, or
deletes.

� Applications still want a layer of abstractions. Just because you use JDBC, it
does not absolve you from having to layer code correctly.

� Applications want to externalize SQL from their Java code for fine tuning.

� Redundancy is inevitable. When writing JDBC, developers often find
themselves writing the same mundane code over and over again such as
acquiring connections, preparing statements, looping through results sets,
and various other JDBC specific elements.

Solution
There is an object relational mapper that is currently available. Instead of
creating a full domain model, its job is to map Java objects directly to SQL
statements. This framework is called iBATIS, and its goal is to implement 80% of
the JDBC boilerplate code you would otherwise have to do yourself. In addition, it
provides a simple mapping and API layer that lets developers quickly develop
data access code.

While the O/R approach offered by technologies such as JPA and Hibernate
make available an automated persistence, on the other hand, SQL with JDBC
offers a hands-on approach allowing more control and flexibility. For these cases,
iBATIS offers a good choice for abstracting low-level jobs while keeping intact the
SQL/database centric of persistence.

 Chapter 6. Integration layer 423

6.7.1 iBATIS basic concepts

iBATIS is an open source object relational mapper whose job is to map objects to
SQL statements. Using a simple concept called SQL maps, the goal is to map
Java objects to SQL statements.

Simply put, iBATIS consists of two separate frameworks. You use the Data
Mapper framework specifically for O/R mapping, which is the mapping of your
Java domain objects to relational tables in a database. The DAO framework gives
your application a clean and consistent way to access underlying data.

iBATIS Data Mapper framework (Data Mapper)
The Data Mapper is the framework that executes your SQL and maps the results
back to objects, saving you from having to do this manually.

The Data Mapper framework does not require you to make any special version of
your Java objects. You do not have to implement any interfaces or generate any
code. You do not have to subclass some other base object or perform any
strange rituals. And you do not have to learn a secondary query language
specific to the framework.

You use a simple and straightforward XML format to define the manner in which
iBATIS maps your Java objects to the database. You can define the exact query
you require directly in SQL and optionally use any proprietary SQL that is specific
to the database engine you're using. This capability lets you map your objects
exactly the way you want and perform joins exactly the way you want.

iBATIS Data Access Objects framework (DAO framework)
The DAO framework's main goal is to abstract the how and where of your
application's data-access or persistence layer from the application's business
logic. The DAO framework lets you define interfaces in your application that are
responsible for data-centric operations.

For example, if your application uses straight-up Java Database Connectivity
(JDBC) for persistence, the DAO framework's goal is to abstract the use of
classes and interfaces, such as Connection, PreparedStatement, and ResultSet,
away from your application and move it down into a persistence layer instead.

If your application for some reason uses HTTP GETs and POSTs to get and
store data, then the DAO framework's purpose becomes to abstract the use of
classes, such as HttpUrlConnection, away from your application's business layer.
Your application can then use the DAO interfaces to perform operations on your
data, and the implementations of these interfaces are abstracted away from your
business logic. The implementations can retrieve data from a database, a Web
service, or any other source.

424 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

The DAO framework does not depend on the use of the Data Mapper framework.
You can use both frameworks in a project should you choose (and they pair quite
nicely), or you can use each one independently. This tutorial series shows the
advantages of using the frameworks alone and together.

Advantages of iBATIS
iBATIS has some advantages over other O/R mapping tools:

� iBATIS does not use its own proprietary query language; it just uses SQL.
Some O/R mapping tools, such as Hibernate, use their own query languages
in addition to SQL.

� All the queries and updates you want to perform are written in SQL (and
stored in .xml files). Some people might consider this a disadvantage, wanting
the database abstracted from them completely to avoid having to write any
SQL code. This is one reason a lot of developers like Hibernate. But you
might prefer to have fine-grained control over exactly what SQL is being
executed when you access your objects, rather than having it unpredictably
generated for you in a manner dependent on the underlying O/R mapping
framework. You can fine-tune your queries and other statements based on
recommendations by a database administrator (DBA) or by access plans or
query optimizers provided by the tools supplied with your Relational Database
Management System (RDBMS). Another benefit of having direct access over
the SQL that is written for this layer is that you can take advantage of any
proprietary SQL offered by your database.

� iBATIS is easy to use.

� The project is well documented.

� It has no external dependencies. Some of the other O/R mapping frameworks
ship with 15 to 20 .jar files and are dependent on specific versions of these
files just to let the framework run. You do not want that kind of a headache
when developing applications, so the fact that you can use iBATIS without any
external dependencies is a huge plus. (Note that some optional
configurations let you enable things like an external connection pool or
bytecode enhancement, but none of them are required.)

6.7.2 iBATIS Data Mapper framework

In the following sections we talk about these topics that are core of the iBATIS
Data Mapper:

� Mapped Statements
� Parameter Maps and inline parameters
� Result Maps
� TransactionManager
� SQLMap example

 Chapter 6. Integration layer 425

Mapped Statements
The Data Mapper's core functionality revolves around the concept of Mapped
Statements. A Mapped Statement can have what are called Parameter Maps
(basically, data input) and Result maps (data output). So a Mapped Statement is
essentially an XML element that contains an SQL statement responsible for
performing some action and mapping input/output parameters to Java objects.
Example 6-81 shows a simple SQL Mapped Statement

Example 6-81 Simple SQL Mapped Statement

<select id="getUsernameList"
 resultClass="string"
 parameterClass="account">
 select USERNAME as value from CUSTOMER_INFO
</select>

The Mapped Statement in the foregoing example is responsible for querying for
all values of the USERNAME column from the CUSTOMER_INFO table. There
are several different types of Mapped Statements. As you can see, this particular
mapped statement is a <select>. In addition to <select>, you can take advantage
of <statement>, <insert>, <update>, <delete>, and <procedure> Mapped
Statement elements when using the iBATIS framework. To see more details of
Mapped Statements, go to the following link:

http://iBATIS.apache.org/

Parameter Maps and inline parameters
Parameter Maps in the iBATIS framework provide data-input parameters to a
Mapped Statement. Parameter Maps are not often used. Otherwise, inline
parameters are more frequently used. Example 6-82 shows how a Parameter
Map and a Mapped Statement are used.

Example 6-82 Parameter Map usage

<parameterMap id="insert-product-param" class="com.domain.Product">
 <parameter property="id" jdbcType="NUMERIC"
 javaType="int" nullValue="-9999999"/>
 <parameter property="description" jdbcType="VARCHAR"
 nullValue="NO_ENTRY"/>
</parameterMap>

<statement id="insertProduct" parameterMap="insert-product-param">
 insert into PRODUCT (PRD_ID, PRD_DESCRIPTION) values (?,?);
</statement>

426 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://iBATIS.apache.org/

We can see that the Mapped Statement, <statement> tag, in Example 6-82
references the Parameter Map by name, called insert-product-param, and that it
contains two placeholder question marks. We recognize these as standard
placeholders for JDBC PreparedStatements. It applies the values it retrieves
from the Parameter Map, in the order in which they are defined, to these
placeholders.

The Parameter Map in Example 6-82 on page 426 defines that the
com.domain.Product class's id property — getId() — maps to the first
placeholder (question mark) in any Mapped Statement that uses this Parameter
Map. It goes on (with the next parameter element) to state that the
com.domain.Product class's description property — getDescription() — maps to
the second placeholder, question mark, in any Mapped Statement that uses it.
Within a parameterMap, the order in which parameter elements appear is the
same order in which they are applied to the placeholder question marks within
the Mapped Statement that uses the parameterMap.

More commonly, input parameters are mapped with inline parameters. See
Example 6-83.

Example 6-83 Inline parameter usage

<statement id="insertProduct"
parameterClass="com.ibm.itso.ibatis.Product">
 insert into PRODUCT (PRD_ID, PRD_DESCRIPTION)
 values (#id#, #description#);
</statement>

This syntax replaces #id# with the value returned by getId() from the
com.ibm.itso.ibatis.Product class, while #description# is replaced by the value
returned by getDescription() of com.domain.Product. You can take a look at the
iBATIS documentation for how to specify null values.

Result Maps
Result Maps are like Parameter Maps but are used for output. Result Maps let
you define the manner in which you would like your Mapped Statements, typically
queries, mapped back into a Java object. Example 6-84 provides a quick look at
an example from the iBATIS documentation.

Example 6-84 Result Maps example

<resultMap id="get-product-result" class="com.domain.Product">
 <result property="id" column="PRD_ID"/>
 <result property="description" column="PRD_DESCRIPTION"/>
</resultMap>
<statement id="getProduct" resultMap="get-product-result">

 Chapter 6. Integration layer 427

 select * from PRODUCT
</statement>

As we can see that the Mapped Statement with the id of getProduct specifically
references the Result Map entitled get-product-result and tells the Mapped
Statement to map the PRD_ID database column to the Java id property of the
com.ibm.itso.ibatis.Product class, and also states to map the
PRD_DESCRIPTION database column to the Java description property of the
com.ibm.itso.ibatis.Product class.

It is a good practice always to specify the exact columns that we are selecting
rather than use SELECT * FROM, for example.

TransactionManager
The TransactionManager element within the Data Mapper framework lets you
configure what you want the transaction services to be like for a given
configuration. The currently supported types for this element are:

� JDBC: The JDBC transaction manager controls transactions internally via
Initial configuration, semantics, and a simple test the java.sql.Connection
interface's commit() and rollback() methods.

� JTA: A global Java Transaction API (JTA) transaction is used and requires a
UserTransaction to be available via the Java Naming and Directory Interface
(JNDI), or whatever other means.

� EXTERNAL: You manage transactions on your own. This is also a fine option
for nontransactional data sources for which you must manage any
transactions yourself anyway.

SQLMap complete example
See the complete SQLMap in Example 6-85, which represents a complete
configuration.

Example 6-85 SQLMap complete example

<sqlMap namespace="Product">
 <typeAlias alias="product"
 type="net.humandoing.invoicing.domain.Product"/>
 <resultMap id="productResult" class="product">
 <result property="productId" column="PRODUCT_ID"/>
 <result property="productName" column="PRODUCT_NAME"/>
 <result property="productDesc" column="PRODUCT_DESC"/>
 <result property="quantity" column="QUANTITY"/>
 </resultMap>
 <update id="updateProduct" parameterClass="product">

428 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

 update PRODUCT set PRODUCT_NAME = #productName#,
 PRODUCT_DESC = #productDesc#,
 QUANTITY = #quantity# where
 PRODUCT_ID = #productId#
 </update>
 <select id="getProduct" resultMap="productResult"
 parameterClass="product">
 select PRODUCT_ID, PRODUCT_NAME, PRODUCT_DESC, QUANTITY
 from PRODUCT where PRODUCT_ID = #productId#
 </select>
 <insert id="insertProduct" parameterClass="product">
 insert into PRODUCT (product_id, product_name, product_desc,
quantity)
 values (#productId#, #productName#, #productDesc#, #quantity#)
 </insert>
</sqlMap>

6.7.3 SQL map config file

SqlMapConfig.xml is the deployment descriptor for SQLMaps. See
Example 6-86.

Example 6-86 SqlMapConfig file

<sqlMapConfig>
 <settings useStatementNamespaces="false" />
 <transactionManager type="JDBC">
 <dataSource type="SIMPLE" >
 <property name="JDBC.Driver"
 value="COM.ibm.db2.jdbc.app.DB2Driver"/>
 <property name="JDBC.ConnectionURL"
 value="jdbc:db2:SAMPLE"/>
 <property name="JDBC.Username"
 value="db2admin"/>
 <property name="JDBC.Password"
 value="admin2db"/>
 </dataSource>
 </transactionManager>
 <sqlMap resource="Customer.xml"/>
</sqlMapConfig>

 Chapter 6. Integration layer 429

Analyzing the foregoing example, we find it contains the following elements:

� <sqlMapConfig> is the root element of the file. The <settings> element is
used for defining application-level settings. The useStatementNamespaces
defines whether you want to use the fully qualified name of the prepared
statement.

� The <transactionManager> element is used to define what kind of transaction
management you want to use in your application. We are using JDBC as the
transaction manager. It contains <dataSource> as a child element, which
defines the type of Connection management you want to use. Also we are
using a data source of type SIMPLE. SQLMaps requires information such as
the JDBC driver name, URL, and password in order to create the connection
pool, so we are using <property> elements for passing that information.

� The <sqlMap> element is used to declare sqlmap config files. These files, as
we discussed in “iBATIS Data Mapper framework” on page 425, list the SQL
queries that you wish to execute.

Now we discuss the related elements.

Related elements from SQLMap config
From the example of SQLConfig map file in Example 6-86 on page 429, we have
to create a Customer.xml file where we list all Contact-table-related SQL queries
that we want to execute. See Example 6-87.

Example 6-87 Customer.xml file

<sqlMap namespace="Customer">
 <typeAlias alias="customer"
 type="com.ibm.itso.ibatis.Customer"/>
 <select id="getContact"
 parameterClass="int" resultClass="customer"">
 select CUSTOMERID as customerId,
 FIRSTNAME as firstName,
 LASTNAME as lastName,
 TITLE as title from
 ITSO.CUSTOMER where CUSTOMERID = #id#
 </select>
</sqlMap>

We also have to create a Java bean for Customer as described in Example 6-88.

430 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Example 6-88 Customer.class

public class Customer {
 protected Integer customerId;
 protected String firstname;
 protected String lastname;
 protected String title;
 //gets and sets methods
}

Now we can consider the usage of these elements in Java as shown in
Example 6-89.

Example 6-89 Simple Java code usage of SQLMapConfig and resources related

Reader configReader =
 Resources.getResourceAsReader("SqlMapConfig.xml");
SqlMapClient sqlMap =
 SqlMapClientBuilder.buildSqlMapClient(configReader);
Customer customer = (Customer)
 sqlMap.queryForObject("getCustomer",new Integer(1234));

To use the SELECT query described in Customer.xml, we use queryForObject.
Also we have specified int as parameterClass class passing contactId as an
integer, along with the name of the query using getCustomer. SQLMaps then
returns an object of the Customer class.

6.7.4 The DAO framework

The DAO framework gives you a consistent way to access your application's
underlying data structures. It abstracts how data is accessed and lets your
business-logic tier communicate with a consistent and predictable set of APIs
instead of worrying about the semantics of accessing data via JDBC or HTTP. In
essence, the DAO framework acts as a proxy or a facade between your
application's business-logic tier and its data tier.

To use the DAO framework, implement the com.ibatis.dao.client.Dao interface.
This is just a marker interface that does not contain any methods. Rather, it acts
as an identifier to the DaoManager (part of the DAO framework) as an object that
can be used to access data.

Note: However, our recommendation is to be careful about the use of this
feature because the DAO framework is deprecated after iBATIS 2.3.0. The
iBATIS site says that it is to be available separately.

 Chapter 6. Integration layer 431

6.7.5 Transactions in the Data Mapper framework

Within the iBATIS Data Mapper framework, the sql-map-config.xml file that you
use to configure the Data Mapper contains a <transactionManager/> XML
element. Built into the Data Mapper are three types of transaction managers:
JDBC, JTA, and EXTERNAL as we have seen in “TransactionManager” on
page 428. The JTA transaction manager provides transactions through the use of
the Java Transaction API (JTA). To use JTA transactions, you must tell the
<transactionManager /> element where it can find a UserTransaction
implementation in the Java Naming and Directory Interface (JNDI).

You use the EXTERNAL transaction manager if you want to manage transactions
on your own for example, if you have a nontransactional data source, such as flat
files. We cover only the JDBC transaction manager in Example 6-90 using the
configuration of the Data Mapper < transactionManager /> element.

Example 6-90 TransactionManager element configuration in DataMapper

<transactionManager type='JDBC'>
 <dataSource type='SIMPLE'>
 <property value='${driver}' name='JDBC.Driver'/>
 <property value='${url}' name='JDBC.ConnectionURL'/>
 <property value='${username}' name='JDBC.Username'/>
 <property value='${password}' name='JDBC.Password'/>
 <property value='15' name='Pool.MaximumActiveConnections'/>
 <property value='15' name='Pool.MaximumIdleConnections'/>
 <property value='1000' name='Pool.MaximumWait'/>
 </dataSource>
</transactionManager>

The JDBC transaction manager manages transactions by turning off auto commit
and using the java.sql.Connection interface's commit() and rollback() methods.
The only nested elements within the <transactionManager.../> element belongs
to the configuration of the database connectivity properties and the connection
pool. This demonstrates how easy it is to set up the Data Mapper to deal with
JDBC-style transactions for you. Now we see how a transaction might look in the
Java language, as shown in Example 6-91.

Example 6-91 Simple example of Transaction in iBATIS/Java

//In some part of your program instantiate a SqlMapClient

 Reader reader =
Resources.getResourceAsReader("properties/sql-map-config.xml");
 SqlMapClient client = SqlMapClientBuilder.buildSqlMapClient (reader);

432 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

 //In another method execute some transaction

 int amount = 50;
 Account acctFrom = (Account)
 sqlMap.queryForObject("getAccount",new Integer(1234));
 Account acctTo = (Account)
 sqlMap.queryForObject("getAccount",new Integer(1335));

 try {
 sqlMap.startTransaction()
 acctFrom.setAmount(new Integer(acct1.getAmount()-amount));
 acctTo.setAmount(new Integer(acct1.getAmount()+amount));
 sqlMap.update("updateAccount", acctFrom);
 sqlMap.update("updateAccount", acctTo);

 sqlMap.commitTransaction();
 } finally {
 sqlMap.endTransaction();
 }

You can see in the foregoing coding that sqlMap.startTransaction() does exactly
what you expect it to: It starts a transaction. sqlMap.commitTransaction() call
commits the transaction. After that, you also want to look at the finally{...} block
sqlMap.endTransaction() that cleans up. You must always make the call to
endTransaction(). That is why you put it in a finally block. If the transaction was
not committed previously, endTransaction() rolls back the transaction. No matter
what, it is also responsible for cleaning up the underlying resources, such as
ResultSet and PreparedStatement, as well as closing your Connection object or
returning it to the pool.

6.7.6 Caching in iBATIS

Caching is critical for large applications to scale under heavy load. Within iBATIS,
caching specifically relates to the Data Mapper framework, so you configure it in
data map definition XML files. We can then apply a given cache configuration to
a given Mapped Statement. This section describes the different types of caching
the Data Mapper framework provides.

Cache types
The iBATIS framework offers a myriad of cache types. They include:

� A memory-based cache that is managed by the Java Virtual Machine's
garbage collector

 Chapter 6. Integration layer 433

� Least Recently Used (LRU)

� First In, First Out (FIFO)

� Various caching options available in the iBATIS site documentation:

http://ibatis.apache.org/

Under the LRU algorithm, the object that has been used the least is the first
object to be expelled from the cache when the cache reaches its maximum
capacity. Example 6-92 shows a cache model definition, which is an LRU cache
in SQLMap file that is flushed every 24 hours and has a maximum size of 1,000
objects.

Example 6-92 LRU cache model definition in SQLMap file

<cacheModel id='product-cache' type='LRU'>
 <flushInterval hours='24'/>
 <flushOnExecute statement='insertProduct'/>
 <flushOnExecute statement='updateProduct'/>
 <flushOnExecute statement='deleteProduct'/>
 <property name='size' value='1000' />
</cacheModel>

To change this cache to a FIFO cache, you only have to change the type attribute
from LRU to FIFO. In a FIFO cache, the object that has been in the cache for the
longest period of time is expelled from the cache when it reaches capacity. The
cache model XML snippet in the foregoing example also indicates that you wish
to have the cache flushed any time the Mapped Statement with an ID of
insertProduct, updateProduct, or deleteProduct has been executed. This helps to
minimize or eliminate problems that are due to stale data creeping into the
cache.

For more advanced configuration information and discussion of caches, you can
check out the iBATIS documentation.

6.7.7 Dynamic SQL in iBATIS

You might run into a situation where a static PreparedStatement does not do
what you require, and you have to generate ad hoc SQL dynamically. By taking
advantage of dynamic SQL, you can write, say, five to 10 lines of XML rather than
200 lines of difficult-to-maintain if/else Java code.

434 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://ibatis.apache.org/

Dynamic mapped statements
Suppose your Web application has a search form to let you search for accounts
and that you can enter multiple search criteria. Perhaps you are on the phone
with a customer who has forgotten his or her account ID. This is not a problem,
because your search screen lets you type in the customer's account ID, first
name, last name, or e-mail address, and all combinations and permutations of
those pieces of data, to retrieve the account record. Using iBATIS, you can write
a Mapped Statement that dynamically constructs the SQL based on whatever
parameters are present (and even the values of those parameters).

For more information, see the iBATIS documentation.

http://ibatis.apache.org/

6.8 Java Data Objects

The Java Data Objects (JDO) API is a standard interface-based Java model
abstraction of persistence to directly store Java domain model instances into a
data store. JDO is developed as a part of a Java Specification Request. With
JDO, developers can easily access persistent data that can be stored in various
types of back-ends, such as databases, file systems or other transaction
processing systems. Similar to Service Data Objects, Java Data Objects also
provide a common API to simplify and unify the data access.

The main difference between SDOs and JDOs, however, is that JDOs only solve
the persistence issue, whereas SDOs use a more general approach that also
includes data representation and data flow between the J2EE tiers. Compared to
EJBs, most of the former advantages of JDOs more or less disappeared with the
introduction of local interfaces (EJB 2.0). At the moment it is questionable if the
Java Community Process intends any further investigation into JDO 2.0, because
of the fact that it apparently overlaps with existing Java technologies and with the
EJB 3.0 specification. Nevertheless, currently there are a lot of open source
frameworks available that implement JDOs.

6.8.1 Advantages: JDO

Here are some advantages of JDO:

� Universal data access for different kinds of data sources
� Transparent persistence layer, full transaction support, such as CMP EJBs
� Good performance, even for large amounts of data
� Lightweight technology — JDO is based on Java objects

 Chapter 6. Integration layer 435

http://ibatis.apache.org/

There is no EJB container necessary for the “Entity Beans” themselves, but
you might want to implement the business logic using EJB session beans.

6.8.2 Disadvantages: JDO

Here are some disadvantages of JDO:

� No built-in security (compared to EJBs).
� Not part of J2EE specification.
� Unsure future mainly with EJB 3.0 specification
� No built-in support for JDO in WebSphere Application Server.
� Limited tooling support available.

6.8.3 Alternatives: JDO

Here are some alternatives to JDO:

� EJB 3.0 with Java Persistence API (JPA)
� Stateless Session Beans with iBATIS, if the first alternative is not available.
� For more information about JDO, see the following URLs:

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0506bho
gal/

https://www6.software.ibm.com/dw/education/dm/dm0604balani/

6.8.4 Best practices

With EJB 3.0 specification and JPA adoption, we not recommend use of this
technology. Even if you have existing projects with JDO technology, we
recommend migrating to technologies aligned with J2EE specification.

6.9 Service Data Objects

Service Data Objects (SDOs) is a data programming architecture — in contrast
to all other technologies currently available — that unifies data programming
across data source types, helping to simplify and unify data access across
different data source types, which is becoming more and more crucial in the IT
industry. Monolithic applications are not built as often anymore and information is
often stored in various types of sources (database, Web service, Lightweight
Directory Access Protocol (LDAP), legacy, and so forth). This complexity requires
developers to become skilled in many APIs — Java database connectivity
(JDBC), Java APIs for XML-Based Remote Procedure Call (JAX-RPC), or J2EE
Connector Architecture (JCA), to name a few.

436 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0506bhogal/
https://www6.software.ibm.com/dw/education/dm/dm0604balani/

SDO simplifies and complements the Java 2 Platform, Enterprise Edition (J2EE)
development mode, providing one unique API to access heterogeneous data
sources including relational databases, XML data sources, Web Services, and
Enterprise Information Systems. Now we go on to SDO objectives in more depth.

6.9.1 SDO objectives

The goals of SDO are numerous. Basically, there are five main topics in SDO and
related technologies address. We discuss these in the next sections.

Data access simplification
The first goal is to provide uniform data access to a wide variety of Enterprise
Information Systems (EIS). This comprises databases, legacy (using JCA), XML,
or Web Services sources. By using a unique and simple model, applications get
rid of the complexity of several data access APIs and frameworks with SDO.

To realize this simple and unified way to handle data, Service Data Objects add a
new abstraction layer that is placed on top of existing data access frameworks
like EJBs, JDO, or direct JDBC data access. Therefore, Service Data Objects
does not replace existing frameworks, instead, they use them as data mediators
under the covers. In fact, Service Data Objects are becoming a standard way to
implement the Business Delegate and Data Transfer Object patterns
(Figure 6-24).

Figure 6-24 Flexibility of Service Data Objects

SDO DataGraph

XML
Data

Source

RDBMS

Web
Service

JCA

Virtual
Data

Mediator
Service

Client

 Chapter 6. Integration layer 437

Data abstraction
Data representation is independent from its source using SDO. This is an
implementation of a J2EE pattern called Domain Store. This level of abstraction
has several advantages, such as making data manipulation easier and promoting
loose coupling between different layers.

Data manipulation
Once the information is retrieved, SDO also wants to offer a uniformed
programming language for data manipulation. In short, using the API and its
interfaces, an SDO client must be able to read data and perform changes. SDO
features both a connected and disconnected model.

Data transport
One part of the SDO concept is based on the Transfer Object and the Transfer
Object Assembler patterns. SDO objects are independent from the underlying
data sources. They encapsulate information in a Plain Old Java Object (POJO)
and they are not related to specific technologies like JPA, JDO, EJB or Servlet.

Consequently, SDO objects are perfect candidates to cross tiers in a J2EE
architecture. They can be the by-value Java objects that are created by the
integration layer before being sent to the business layer. Additionally, an SDO
object can be used to carry information between the presentation layer and the
business layer.

438 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Figure 6-25 shows Service Data Objects usage between layers.

Figure 6-25 SDO usage between J2EE layers

Design patterns adoption
A key objective of SDO is to also encourage the adoption of common J2EE
patterns. That is why SDO architecture is based on well-known patterns such as
Transfer Object, Data Access Object, Transfer Object Assembler, and Domain
Store (see Resources). Using SDO, an application takes advantage of these
proven design strategies. It fosters layering and loose coupling.

6.9.2 SDO architecture

The SDO architecture (Figure 6-26) consists of three major components:

� Data object
� Data graph
� Data mediator

EIS
layer

Client
layer

Html / Http

Web service

Browser

Wml / Wap

PDA /
cellular

Presentation
layer

JSP

UI
management

Servlet

Business
layer

Integration
layer

EJB

S
D

O

SDO objects

JDBC

JCA

JAX-RPC

JMS

DB

Legacy

Web service

Message
queue

ERP

Note: For more information about design patterns related to SDO, see
Chapter 2, “Application planning and design” on page 23.

 Chapter 6. Integration layer 439

Figure 6-26 SDO architecture

Data object
The data object is designed to be an easy way for a Java programmer to access,
traverse, and update structured data. Data objects have a rich variety of strongly
and loosely-typed interfaces for querying and updating properties. The
implementation of the data object also handles data conversions if required.
Data objects store the data using a disconnected, optimistic model, meaning the
data is available locally without an active connection to the EIS. Therefore, the
data object can be easily used to transfer data between the different application
layers. This enables a simple programming model without sacrificing the dynamic
model required by tools and frameworks. A data object can also be a composite
of other data objects.

Data graph
SDO is based on the concept of disconnected data graphs. A data graph is a
collection of tree-structured or graph-structured data objects. Under the
disconnected data graphs architecture, a client retrieves a data graph from a
data source, mutates the data graph, then applies the data graph changes to the
data source. The data graph also contains some metadata about the data object
including change summary and metadata information. The metadata API allows
applications, tools, and frameworks to introspect the data model for a data graph,
enabling applications to handle data from heterogeneous data sources in an
uniform way.

Data mediator
The task of connecting applications to data sources is performed by a data
mediator. Client applications query a data mediator and get a data graph in
response. Client applications send an updated data graph to a data mediator to

Model

Presentation
Layer

Data Graph

Data Object

Data Graph

Data Object

Data
Mediator

Data
Source

Read

Update

440 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

have the updates applied to the original data source. This architecture allows
applications to deal principally with data graphs and data objects, providing a
layer of abstraction between the business data and the data source.

This means that mediators are components that provide access to a specific data
source type. For example, a Siebel® mediator knows how to mediate between
changes made to an SDO and the necessary calls to the Siebel API to persist
changes to the underlying Siebel records.

Disconnected data architecture
One interesting feature of the SDO model is that it allows a disconnected
programming model. As a matter of fact, when an SDO client claims a Data
Graph and receives it, it is then disconnected from the DMS. This prevents the
DMS from holding locks on the data source. The client can work with the Data
Objects without any time constraints, and the changes are applied back to the
data source using an optimistic concurrency scenario.

This disconnected model is particularly adapted to n-tier Web-based
architectures, because it respects layering techniques, provides ease of use, and
a high level of concurrency access.

Enterprise JavaBeans Data Mediator Service
The Enterprise JavaBeans (EJB) Data Mediator Service (DMS) is the Service
Data Objects (SDO) Java interface that, given a request in the form of EJB
queries, returns data as a DataGraph containing DataObjects of various types.
This differs from a normal EJB finder or ejbSelect method, which also takes an
EJB query but returns a collection of EJB objects (all of the same type) or a
collection of container managed persistence (CMP) values.

Important: Update processing is not dependent on how the DataGraph was
originally retrieved. In other words, it is possible to retrieve a DataGraph
directly from the data source but to have the deferred updates applied through
an EJB or vice versa.

Regardless of which update approach you use, an optimistic concurrency
control algorithm is used. Fields designated as consistency fields are read
during update to insure that the current value is still equal to the old value of
the field in the DataObject.

Note: For more information on this service, go to the following URL.

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topi
c=/com.ibm.websphere.base.doc/info/aes/ae/rejb_ejbmedpcon.html

 Chapter 6. Integration layer 441

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/rejb_ejbmedpcon.html

JDBC Data Mediator Service
The Java Database Connectivity (JDBC) DMS is the SDO component that
connects to any database that supports JDBC connectivity. It provides the
mechanism to move data between a DataGraph and a database. A regular JDBC
call returns a result set in a tabular format. This format does not directly
correspond to the object-oriented data model of Java, and can complicate
navigation and update operations. When a client sends a query for data through
the JDBC DMS, the JDBC result set of tabular data is transformed into a
DataGraph composed of related DataObjects. This enables clients to navigate
through a graph to locate relevant data rather than iterating through rows of a
JDBC result set.

6.9.3 Others SDO perspectives

So far, an SDO appears to be much more than an API. It is also a design and
programming model. That is why SDO can be involved in multiple enterprise
application concepts. Let us take a look at some of them now.

Persistence mechanisms
SDO is not meant to replace existing persistence mechanisms, but instead to
leverage their use providing a uniform programming interface. Instead of learning
multiple APIs and frameworks, a programmer typically concentrates on one
unique programming model (SDO). Behind the scenes, SDO-capable tools and
DMS deals with all the specific and cumbersome data source semantics. So
without even knowing it, an SDO client, through DMS, could interact with XML,
JDBC, Java Data Objects (JDO), Hibernate, Entity Enterprise JavaBeans (EJBs),
Web Services, or any other data source.

XML document access
Since that XML represents another form of data access that can be standardized
by SDO, the SDO 2.0 specification had several improvements to create and then
read an XML document compliant to XML Schema (XSD). To accomplish the

Note: For more information on this service, go to the following URL.

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topi
c=/com.ibm.websphere.base.doc/info/aes/ae/cdat_jdbcmed.html

For best practices usage of JDBC DMS, see the following links.

http://www.ibm.com/developerworks/webservices/library/ws-bestjdbc/in
dex.html
http://www.ibm.com/developerworks/webservices/library/ws-bestjdbc2/i
ndex.html

442 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/cdat_jdbcmed.html
http://www.ibm.com/developerworks/webservices/library/ws-bestjdbc/index.html
http://www.ibm.com/developerworks/webservices/library/ws-bestjdbc2/index.html

same goal without using the SDO 2.0 would require the developer to understand
how the XML parser works and tightly integrate the data parsing logic with the
application. Later, if the XSD has to change, the application would have to be
touched everywhere, which would jeopardize the quality of the code. This is true
for solutions such as JAXB or XMLBeans.

The following link includes a good example of using this SDO feature:

http://www.ibm.com/developerworks/webservices/library/ws-sdoxmlschema/

IBM tools
SDO is not just a specification. You can find tools that leverage SDO technology
to access a heterogeneous EIS.

WebSphere Application Server Version 6.x, which is J2EE 1.4 compliant,
provides a set of programming model extensions to fulfill specific enterprise
requirements not yet covered by the specification. In order to foster SOAs,
Application Server Version 6.x supports SDO and provides some DMS
implementations.

There has been some support for SDO in development world since WebSphere
Studio Application Developer 5.1.2. Rational Application Developer V6 and V7
provide support for developing to WebSphere 6.0 and WebSphere 6.1 SDO
features respectively.

Open source runtimes and tools
There is an open source project that provides runtime implementations of
Service Data Objects, which you can use to build applications and which has
some basic tools which assist the use of SDOs. This project is called Tuscany,
currently under incubation at Apache. See the Tuscany Web site at Apache:

http://incubator.apache.org/tuscany/

There is also an Eclipse open source project that aims to provide tools to enable
developers to build solutions using a service oriented architecture, which uses
Service Component Architecture as its core model. This is the Eclipse SOA Tools
Platform project, which you can find in the following link:

http://www.eclipse.org/stp/

Service Oriented Architecture
Service Oriented Architecture (SOA) is an industry-standard framework that is
interchangeable, adaptive, and flexible. It is all about on demand business;
however, SOA is just a concept or blueprint for IT infrastructure. The industry has
already adopted Web Services standards to realize SOA applications. A Web
service represents a self-contained and self-describing piece of functionality that

 Chapter 6. Integration layer 443

http://incubator.apache.org/tuscany/
http://www.eclipse.org/stp/
http://www.ibm.com/developerworks/webservices/library/ws-sdoxmlschema/

can be found and accessed by other applications using open standards. The
Java community can rely on a set of APIs and technologies to publish, discover,
or consume services. It means you can interact with external applications using
well-defined protocols like Simple Object Access Protocol (SOAP).

Services Component Architecture: Overview
Services Component Architecture (SCA) fills a major gap in SOA standards; it
defines a comprehensive model and architecture for building, composing, and
deploying SOA applications on heterogeneous platforms. SCA enables
peer-to-peer interactions between services in a distributed SOA architecture.
While benefits of SOA have been extensively marketed and recognized as
valuable, when it comes to materializing an SOA based IT landscape, the current
standards such as Web Services and J2EE are either not sufficient or just too
complex.

Web Services define a rich technology stack aimed at wire level interoperability
but have very little to offer regarding creation and composition of SOA
applications. SCA attempts to fill this gap. It defines a broad suite of
specifications that address various different aspects of complex SOA
environments including programming of reusable components in various different
languages, configuring the components with scenario specific settings,
assembling the components into high level composites, and so on.

Web Services standards primarily involve the wire level interoperability of
endpoints and does not focus on how the applications behind the endpoint are
constructed. One of the major benefits of SOA is reuse. While Web Services
enable ubiquitous access of endpoints and promote reuse of endpoints, Web
Services do not provide much help when it comes to reuse of implementation
artifacts, and so on.

In SOA applications, SCA fills a critical gap and compliments Web Services. Now
that we understand what SOA and SCA are, next we explain SDO usage in the
SOA world.

SDO usage for SOA
As we explained in the previous section, Web Services does not address all
requirements for SOA. SCA helps in some part, however, there is no standard
way to carry information within your application. Of course, this can be achieved
by developing your homemade Java objects or taking advantage of XML binding
frameworks such as JAXB, Castor, XMLBeans, or any other solution from a
plethora of technologies available today.

SDO complements the strength that SCA offers for simplifying development of
SOAbased solutions. SCA handles the composition of service networks and
SDO focuses on simplifying data handling. SDO provides flexible data structures

444 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

that allow data to be organized as graphs of objects (called data objects) that are
composed of properties. SDO delivers unified and consistent access to data from
heterogeneous sources. This provides both a simple programming model for the
application programmer and lets tools and frameworks work consistently across
those heterogeneous data sources. SDO offers a single model for data across
the enterprise.

6.9.4 Advantages: SDO

Service Data Objects have the following advantages:

� Uniform access to data across heterogeneous sources:

As we said, Service Data Objects can access data from a variety of sources,
including relational databases, custom data access layers, Web Services,
XML data stores, JMS messages, and Enterprise Information Systems.

� Becoming a standard way to implement the Business Delegate/DTO:

Actually, Service Data Objects are basically Data Transfer Object (DTOs). The
Data Mediator Services are part of the specification, but they are not a
standard yet. Thus, the Business Delegate with a DTO is the key pattern.

� Support for disconnected programming models:

Many presentation frameworks, such as Struts or JavaServer Faces, use a
disconnected usage pattern of data access. They use some kind of Data
Transfer Object, to pass application data between the layers. Service Data
Objects perfectly support this model, the disconnected data objects required
are automatically generated and an optimistic concurrency model is used.

� Service Data Objects support both static and dynamic data APIs:

Static data APIs are much easier to use and therefore preferred by application
programmers. In some cases however, static Java interfaces for data are not
sufficient, for example when it comes to dynamic queries where the shape of
the resulting data is not known.

� Good tooling support available for Service Data Objects:

Although Service Data Objects are very flexible, development tools can easily
support them because they provide simple introspection APIs. Also, Service
Data Objects can easily be integrated into existing presentation frameworks.

� A good pattern for developing SOA (Service Oriented Architecture):

Besides WebServices as a key technology for SOA, SDO allows to abstract
access to heterogeneous resources being a value technology for SOA
demanding. It is true too because as the SDO API concepts are programming
language neutral and there is another implementations such as C++ and PHP
for example. This feature for SOA to integrate resources is very valuable.

 Chapter 6. Integration layer 445

6.9.5 Disadvantages: SDO

But there are also some disadvantages to using Service Data Objects:

� Performance overhead:

Service Data Objects add another layer on top of existing persistence or data
access frameworks, which on the one hand, increases flexibility and simplifies
integration of heterogeneous data sources. Even with SDO adopting J2EE
best practices patterns in your building, this approach has a cost: It adds
some performance overhead.

� Not part of J2EE Specification:

Service Data Objects are not part of any J2EE Specification. IBM and BEA
Systems submitted a Java Specification Request - JSR 235 in
December 2003. However, SDO was submitted besides SCA to OASIS
(which is concerned with the SOA specification).

6.9.6 Best practices: SDO

If you are developing a traditional (non-SOA) application, you only have relational
data, and you are only developing in Java, then EJB 3.0 is a good choice.

If you are developing using a SOA, if you have to access multiple types of data,
then SDO is a good choice.

6.9.7 Resource information

� JSR 235: Service Data Objects:

http://www.jcp.org/en/jsr/detail?id=235

� Introduction to Service Data Objects:

http://www.ibm.com/developerworks/java/library/j-sdo/

� SDO specifications:

http://www-128.ibm.com/developerworks/webservices/library/specificat
ion/ws-sdo/

� SDO and SCA specifications submitted to OASIS:

http://www.ibm.com/developerworks/webservices/library/specification/
ws-scasdo/

446 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://www-128.ibm.com/developerworks/webservices/library/specification/ws-sdo/
http://www.jcp.org/en/jsr/detail?id=235
http://www.ibm.com/developerworks/java/library/j-sdo/
http://www.ibm.com/developerworks/webservices/library/specification/ws-scasdo/
http://www.ibm.com/developerworks/webservices/library/specification/ws-scasdo/

6.10 Java 2 Connector Architecture

This section gives advice on how the J2EE Connector Architecture (JCA or J2C)
should be used to access Enterprise Information Systems such as Customer
Information Control System (CICS) and Information Management System (IMS).

6.10.1 Re-use of objects

Caching the ConnectionFactory is probably the biggest single performance
enhancement that can be made, because it avoids JNDI lookups and reduces
the I/O. The ConnectionFactory can be cached on the call into a static variable:

(ConnectionFactory)ic.lookup(fqndiName)

This gives a significant path length reduction by avoiding the lookup to JNDI each
time a connection is required. The main benefit is in the CPU utilization
reduction. Caching the initial context javax.naming.Context into a static variable
also provides some path length reduction, which improves performance.

Figure 6-27 shows the path length in milliseconds of CPU per CICS transaction
when re-using the initial context (IC), the ConnectionFactory (CF), both, and
neither, with different communication area (COMMAREA) sizes.

 Chapter 6. Integration layer 447

Figure 6-27 Path length using caching of objects

Figure 6-28 shows the throughput as the CICS transaction rate, that is,
transactions per second, when re-using the initial context, the
ConnectionFactory, both, and neither, with different COMMAREA sizes.

cached

100 Byte Commarea
4 KB Commarea

IC & CF
cached

IC
cached

CF
neither

448 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Figure 6-28 Throughput using caching of objects

Both graphs are based on a measurement of a two-phase commit using the local
mode of CICS Transaction Gateway.

The JNDI lookup as well as obtaining the connection should not be done within
the ejbCreate() method. The usage of unspecified transaction contexts is one of
the biggest holes in the EJB specification and assures non-portability.

6.10.2 Managed environment

In a managed environment, the application components and the resource
adapter are connected with the application server through contracts. This means
that the application server manages the connection pooling, transactionality, and
security for the application. In contrast to a non-managed environment, the
implementation of the ConnectionManager interface happens within the
application server. The access on the resource adapter is regulated by the
application server via system contracts.

The use of the managed environment is a key benefit because it is one way to
exploit XA and RRS transactions for two-phase commit and JCA connection
pooling functions in WebSphere. The exploitation is achieved by defining a
ConnectionFactory within the WebSphere Application Server Administrative
Console or through WebSphere Admin (wsadmin) scripting. ConnectionFactory
can be looked up through a resource reference within the JCA code:

cfA = (ConnectionFactory) ic.lookup(cfRefA);

cached

100 Byte Commarea
4 KB Commarea

IC & CF
cached

IC
cached

CF
neither

 Chapter 6. Integration layer 449

6.10.3 Use of transactions

A big advantage of using the managed environment is that all transaction
management can be delegated to the Web/EJB containers.

Resource Recovery Services (RRS) transactions provide better performance
than XA transactions. This is because the resource adapters using RRS
transactions normally use native z/OS® calls and resource-specific interfaces
instead of TCP/IP connectivity used with XA resource managers. They avoid the
overhead that comes with XA transactions.

Resource Recovery Services is used when connecting locally (not using TCP/IP)
between WebSphere Application Server on z/OS and:

� IMS using the IMS Connector for Java and IMS Connect
� IMS using the IMS JDBC connector
� CICS using CICS Transaction Gateway
� DB2 for z/OS using a Type 2 driver
� WebSphere MQ using bindings mode

All RRS compliant resource adapters are required to support the property
RRSTransactional in their ManagedConnectionFactory and must support a getter
method for the property.

Example 6-93 shows an example of using RSS transactions.

Example 6-93 Using RRS transactions

java.lang.Boolean.RRSTransactional=true;

java.lang.Boolean getRRSTransactional(){
 // Determine if the adapter can run RRSTransactional based
 // on it's configuration, and set the RRSTransactional property
 // appropriately to true or false.

return RRSTransactional;
}

RRS support is only applicable in a “local” environment, where the back-end
must reside on the same system image. CICS and IMS resources adapters can
use RRSTransactional support only when these adapters are configured to use
local interfaces to their back-end resource manager, which, as stated above,
must reside on the same system image as the IBM WebSphere Application
Server for z/OS.

These adapters are also capable of being configured to a remote instance of
their back-end resource manager. In this case, the adapters respond “false”
when the getRRSTransactional() method is invoked and instead of running as

450 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

RRSTransactional, they use whichever one of the three types of J2EE
Transaction support they have chosen to support. With the CICS TG in local
mode, the RRS transactional mode is automatically exploited.

Another point to look at to improve performance is the commit mode during a
transaction. It should be proved if it is necessary to run your commit modes with
SyncLevel Confirm for a one-phase commit or SyncPoint for a two-phase
commit. This is not necessary for read-only transactions. Using SyncLevel
Confirm or SyncPoint blocks the IMS until your WebSphere Application Server
application commits or until WebSphere Application Server has finished waiting
for all other units of work involved.

More detailed information about the usage of RRS in WebSphere connectivity
can be found in Chapter 8, “WebSphere Application Server for z/OS”, of Systems
Programmer's Guide to Resource Recovery Services (RRS), SG24-6980.

6.10.4 Connection pooling

Connection pooling is perhaps the key benefit of the JCA managed environment.
All actual socket connections can be managed by the WebSphere Application
Server Pool Manager and configurable limits can be set and monitored within
WebSphere Application Server. Therefore, the application developer only has to
obtain a connection handle and the underlying managed connection is handled
by the JCA infrastructure. The connection is acquired using the following
statement:

eciConn = (Connection) cf.getConnection(ecf);

The first use of each connection in the pool might take longer, because the
physical socket is established. To prevent this, you can write a simple application
that primes the pool to establish each connection. With the CICS TG
implementation, the getConnection() method does no I/O and this does not occur
until the first usage of the connection by an interaction execute. The behavior of a
specific implementation apart from CICS TG has to be determined.

For more information, refer to Chapter 10 in Performance Monitoring and Best
Practices for WebSphere on z/OS, SG24-7497.

6.10.5 Connection usage

When using the J2EE Connector Architecture (JCA) Version 1.0 in WebSphere
Application Server Version 5.x, the connection usage should follow the
“get-use-close” model. This means that an application always obtains a new
connection when it requires one, then uses it and then closes it again when the
work is done.

 Chapter 6. Integration layer 451

This might sound inefficient, but the connection pooling the application server
implements makes the get() operation cheap. Also, different instances or parts of
the application can reuse the connection because the application holds on to the
connection for only as long as it is required. Therefore, the total resource usage
is reduced.

When using the J2EE Connector Architecture (JCA) Version 1.5 in WebSphere
Application Server Version 6.x, the connection usage should follow the
“cached-handle” model. This means that an application obtains the connection
once up-front and caches a reference to it in an instance field. This allows the
programmer to delay the close() method on a connection. Instead, the J2C
infrastructure disassociates the managed connection from the connection handle
when the transaction scope ends, thus letting the JCA infrastructure efficiently
handle lazy use of connections. Furthermore, it frees up the developer from the
concern of worrying about connection handles.

IBM WebSphere Application Server Version 5.x addressed the drawbacks of the
cached-handle connection model with an extension to the JCA 1.0 specification
known as “smart connection handles”.

With the CICS TG implementation, the advantages of connection pooling are
only evident when a remote gateway is used, because the local mode of the
CICS TG does not use any I/O for access.

6.10.6 Lazy association

Rather than re-associating the connection handle with the managed connection
the next time a method is called, the optimization uses lazy association. If the
method does not use the connection, or it only calls simple methods on the
connection handle that do not require access to the back-end, a managed
connection is not removed from the pool unnecessarily.

Instead, when the connection handle determines that it does have to be
reassociated to a managed connection, it can cast the connection manager to a
LazyAssociatableConnectionManager and call the associateConnection method.

This method takes the connection handle as the first parameter, followed by the
managed ConnectionFactory, and requests information passed on the initial call
to allocateConnection. The connection manager then finds another suitable
managed connection from the pool and uses the managed connection's
associateConnection method to tie it to the connection handle. See
Example 6-94.

452 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Example 6-94 Interfaces for dissociation and lazy association

public interface DissociatableManagedConnection {

 void dissociateConnections() throws ResourceException;

}

public interface LazyAssociatableConnectionManager {

 void associateConnection(Object connection,
 ManagedConnectionFactory mcf,
 ConnectionRequestInfo cxReqInfo)
 throws ResourceException

}

This allows the application developer to forget about closing down connections.

6.10.7 Lazy enlistment

Transactions, particularly XA and RRS (global) transactions, are expensive. This
makes it more important for a transaction not to do more work than necessary.
Interfaces in JCA 1.5 prevent unnecessary enlistment of XAResource objects.
You should not enlist in the transaction unless absolutely necessary. The solution
therefore is a lazy enlistment. See Example 6-95.

Example 6-95 Interfaces for lazy enlistment

public interface LazyEnlistableManagedConnection {

}

public interface LazyEnlistableConnectionManager {

 void lazyEnlist(ManagedConnection mc)
 throws ResourceException;

}

The LazyEnlistableManagedConnection interface is a marker interface
implemented by the managed connection to indicate to the connection manager
that it does not have to eagerly enlist the managed connection in an existing
transaction when a new connection is created in a transaction or in a new
transaction started when a connection already exists.

 Chapter 6. Integration layer 453

If a connection handle is about to perform some work that should be part of any
transaction, and its managed connection has not already been enlisted, it should
determine whether the connection manager implements the
LazyEnlistableConnectionManager interface. If it does, it should call the
lazyEnlist method passing the managed connection. This method returns
nothing, but if a transaction is associated with the calling thread, the XAResource
from the managed connection is enlisted at that point. If the connection is not
enlisted, it has to call lazyEnlist again before each subsequent piece of work in
order to check that a transaction has not been started since the last time it called
the method.

Lazy Connection Enlistment applies when a ConnectionFactory is referenced in
a resource reference but is not used in a transaction. This means that no
interactions are sent to it and so it is not enlisted.

This kind of enlistment only applies to XA transactions and not to transactions
created in a CICS TG local mode.

6.10.8 Best practices for CICS Transaction Gateway

The CICS Transaction Gateway uses the J2EE Connector Architecture to work
with CICS, and the information provided in 6.10, “Java 2 Connector Architecture”
on page 447 applies here as well. In addition, there are some additional key
points that apply to the usage of the CICS Transaction gateway specifically. We
go over these in the following sections.

Transmitting data in a COMMAREA
The CICS TG, in combination with CICS Transaction Server, provides built-in
data compression for ECI flows. Any trailing nulls in the COMMAREA payload
sent between the JCA resource adapter, the Gateway daemon, and CICS are
automatically removed when sent over any of the supported network
connections. This compression is dynamic and is not visible to either the J2EE
client application or the CICS application.

To best exploit the functionality, there are two suggested approaches:

1. If the length of the input and output data structures are known, then we
suggest that the J2EE client application builds a record containing just the
required input information, and then sets the specified COMMAREA length to
the length of the COMMAREA data structure to be used in CICS. This
COMAREA structure should be equal to the size of the data to be returned by
CICS. In addition, if the J2EE client application has to override how much data
is returned, the payload should specify this ahead of time using the
setReplyLength method to receive a truncated amount of data.

454 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

2. If the length of the input or output data structure cannot be determined, then
we suggest that the J2EE client application builds a record containing the
required input information, and then sets the specified COMMAREA length to
be the maximum possible (that is, 32 KB). The CICS application must then be
made capable of handling a full 32 KB of payload and should ensure this data
structure is initialized to binary zeroes. The CICS application should then
return as much information as necessary, making sure to efficiently utilize the
space within the COMMAREA payload, leaving any empty data as trailing
binary zeroes. The J2EE client application receives the returned data, but all
trailing nulls are removed from the data sent across any network connections.

Data conversion
When writing Java applications to invoke CICS programs, data conversion is a
key issue, because CICS evolved in an EBCDIC world, while Java is based on
Unicode. Normally, you would convert Java Strings that are stored in Unicode
within the JVM to an EBCDIC byte array, which is required by CICS. The
alternative is to convert the data to ASCII within the JVM and then convert from
ASCII to EBCDIC within CICS. Data conversion from Unicode to ASCII is an
efficient operation in Java, as it involves only the removal of the high-order byte,
while conversion to EBCDIC requires a table lookup. This means that the high
cost of EBCDIC conversion can be transferred to CICS, therefore potentially
improving performance within the JVM.

In this case you would use an ASCII code page, such as 8859_1, when creating
the byte array:

byte abCommarea[] = new byte[27];
abCommarea = "abcd".getBytes("8859_1");

After receiving the byte array back from CICS, convert it to a String as follows:

String strCommarea = new String(abCommarea,"8859_1");

Refer to Chapter 10 in Performance Monitoring and Best Practices for
WebSphere on z/OS, SG24-7497 for more information on settings and
parameters related to the CICS Transaction Gateway.

6.10.9 IMS Connect

If you want to have a closer look at your IMS connections, there is a tool to do
performance analysis for IMS Connect called IMS Connect Extensions for z/OS:

http://www.ibm.com/software/data/db2imstools/imstools/imsconnectext.htm
l

 Chapter 6. Integration layer 455

http://www.ibm.com/software/data/db2imstools/imstools/imsconnectext.html
http://www.ibm.com/software/data/db2imstools/imstools/imsconnectext.html

The interpretation from data collected by the IMS Connect Extensions for z/OS
can be done with the IMS Performance Analyzer for z/OS:

http://www.ibm.com/software/data/db2imstools/imstools/imspa.html

Refer to Chapter 10 in Performance Monitoring and Best Practices for
WebSphere on z/OS, SG24 7497 for more information on settings and
parameters related to IMS Connect.

6.11 Java Message Service

In this section we cover introductory concepts and define the scope of JMS. After
that we discuss best practices.

6.11.1 Basic concepts

The Java Message Service (JMS) was developed by Sun Microsystems to
provide a means for Java programs to access enterprise messaging systems.
Before we discuss JMS, let us take a look at enterprise messaging systems.

Enterprise messaging systems, often known as message oriented middleware
(MOM), provide a mechanism for integrating applications in a loosely coupled,
flexible manner. They provide asynchronous delivery of data between
applications on a store and forward basis; that is, the applications do not
communicate directly with each other, but instead communicate with the MOM,
which acts as an intermediary.

The MOM provides assured delivery of messages (or at least makes its best
effort) and relieves application programmers from knowing the details of remote
procedure calls (RPC) and networking/communications protocols.

Messaging flexibility
Using MOM's application programming interface (API) makes possible an
application A communicating with application B in asynchronous form. See
Figure 6-29.

456 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://www.ibm.com/software/data/db2imstools/imstools/imspa.html

Figure 6-29 MOM functionality (overview)

The MOM routes the message to Application B, which can exist on a completely
different computer; the MOM handles the network communications. If the
network connection is not available, the MOM stores the message until the
connection becomes available, and then forward it to Application B.

Another aspect of flexibility is that Application B might not even be executing
when Application A sends its message. The MOM holds the message until
Application B begins execution and attempts to retrieve its messages. This also
prevents Application A from blocking while it waits for Application B to receive the
message.

This asynchronous communication requires applications to be designed
somewhat differently from the way most are designed today, but it can be an
extremely useful method for time-independent or parallel processing.

Loose coupling
The real power of enterprise messaging systems lies in the loose coupling of the
applications. In Figure 6-29, Application A sends its messages indicating a
particular destination, for example “order processing.” Today, Application B
provides order-processing capabilities. But, in the future, we can replace
Application B with a different order-processing program, and Application A is
none the wiser. It continues to send its messages to “order processing” and the
messages continue to be processed.

Likewise, we could replace Application A, and as long as the replacement
continues to send messages for “order processing,” the order-processing
program would not have to know there is a new application sending orders.

Application
A

Application
B

Application Programming Interface

Message Oriented Middleware/
Enterprise Messaging System

 Chapter 6. Integration layer 457

Point to point / Publish and subscribe
Originally, enterprise messaging systems were developed to implement a
point-to-point model (PTP) in which each message produced by an application is
received by one other application. In recent years, a new model has emerged,
called publish and subscribe (or pub/sub).

Pub/sub replaces the single destination in the PTP model with a content
hierarchy, known as topics. Sending applications publish their messages,
indicating that the message represents information about a topic in the hierarchy.

Applications wishing to receive those messages subscribe to that topic.
Subscribing to a topic in the hierarchy that contains subtopics allows the
subscriber to receive all messages published to the topic and its subtopics.

Figure 6-30 illustrates the publish and subscribe model.

Figure 6-30 Publish-Subscribe model

Multiple applications can both subscribe and publish messages to a topic, and
the applications remain anonymous to one another. The MOM acts as a broker,
routing the published messages for a topic to all subscribers for that topic.

Broker

Publisher
"stockquotes/

Acme"

Publisher
"stockquotes/

MyCo"

Subscriber
"stockquotes/

Acme"

Subscriber
"stockquotes"

Subscriber
"stockquotes/

MyCo"

458 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

6.11.2 What the Java Message Service is

Java Message Service (JMS) is a set of interfaces and associated semantics that
define how a JMS client accesses the facilities of an enterprise messaging
product.

Prior to JMS, each MOM vendor provided application access to its product
through a proprietary API, often available in multiple languages, including the
Java language. JMS provides a standard, portable way for Java programs to
send and receive messages through a MOM product. Programs written with JMS
can run on any MOM that implements the JMS standard.

The key to JMS portability is the fact that the JMS API is provided by Sun as a set
of interfaces. Products that provide JMS functionality do so by supplying a
provider that implements these interfaces.

As a developer, you build a JMS application by defining a set of messages and a
set of client applications that exchange those messages.

JMS objectives
To better understand JMS, it helps to know the objectives set by the authors of
the JMS specification.

There are many enterprise messaging products on the market today, and several
of the companies that produce these products were involved in the development
of JMS.

These existing systems vary in capability and functionality. The authors knew that
JMS would be too complicated and unwieldy if it incorporated all of the features
of all existing systems. Likewise, they believed that they could not limit
themselves to only the features that all of the systems had in common.

The authors believed that it was important that JMS include all of the functionality
required to implement “sophisticated enterprise applications.”

The objectives of JMS, as stated in the specification, are to:

� Define a common set of messaging concepts and facilities.

� Minimize the concepts a programmer must learn to use enterprise
messaging.

� Maximize the portability of messaging applications.

� Minimize the work required to implement a provider.

 Chapter 6. Integration layer 459

� Provide client interfaces for both point-to-point and pub/sub domains.
“Domains” is the JMS term for the messaging models discussed earlier.
(Note: A provider does not have implement both domains.)

What JMS does not provide
The following features, common in MOM products, are not addressed by the JMS
specification. Although acknowledged by the JMS authors as important for the
development of robust messaging applications, these features are considered
JMS provider-specific.

JMS providers are free to implement these features in any manner they want, if at
all:

� Load balancing and fault tolerance
� Error and advisory system messages and notification
� Administration
� Security
� Wire protocol
� Message type repository

Three sets of interfaces
Basically, in JMS, the three channel interfaces — Destination, Queue, and Topic
— have the unfortunate consequence of tripling the number of interfaces in the
API. To send or receive messages, a client uses a ConnectionFactory to get a
connection, which it uses to create a session and obtain message producers and
consumers on the desired queues and topics. The only problem is that each kind
of destination has its own factory, connection, session, producer, and consumer
interfaces (basically, its own domain of interfaces), as summarized in Table 6-9.

Table 6-9 Relationship of point-to-point and publish/subscribe interfaces

JMS common Point to point domain Pub/sub domain

ConnectionFactory QueueConnectionFactory TopicConnectionFactory

Connection QueueConnection TopicConnection

Destination Queue Topic

Session QueueSession TopicSession

MessageProducer QueueSender TopicPublisher

MessageConsumer QueueReceiver TopicSubscriber

460 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Furthermore, JMS provides another set of interfaces for compatibility with XA
(distributed) transactions. This means that besides the 18 interfaces shown in the
table, JMS has yet another nine interfaces — XA versions of the factory,
connection, and session types — three times as many types as are really
required.

Of those 27 interfaces, only the six common interfaces (those in the first column)
are truly required to send and receive messages. Queue and Topic are
sometimes useful for distinguishing the point-to-point and publish/subscribe
approaches. The other ten interfaces in the table and at least six of the nine XA
interfaces are not really required, at least not for writing client code.

Domain unification
The major change after JMS 1.1 specification from J2EE (Java 2 Enterprise
Edition 1.4) that WebSphere Application Server 6.1 implements is the addition of
new APIs to support client code that works simultaneously with either the
point-to-point or publish/subscribe domains. Specifically, the latest release adds
methods to the common interfaces to make the queue and topic extensions
polymorphic.

For example, MessageProducer now implements send, so a client can send a
message to a destination without knowing whether the destination is a queue or
a topic. Likewise, MessageConsumer declares the receive method so that the
same client code works whether it's using an implementation of a queue receiver
or a topic subscriber.

These new APIs enable the developer to write JMS client code that is much more
reusable. It simply accesses destinations and uses them without having to know
which destinations are queues and which are topics. Code written to access a
queue can also be reused, unchanged, to access a topic in the same way, and
vice versa. This was not possible with JMS 1.0.2, for example.

Because the common interfaces are now able to perform almost all of the same
tasks as their domain-specific extensions (for example, MessageProducer can
do just about everything QueueSender and TopicPublisher can), the
domain-specific subinterfaces are really no longer required.

For more information on developing a JMS application step by step in basic
concepts, go to the following URLs:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/
com.ibm.websphere.express.doc/info/exp/ae/tmj_devap.html

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/
com.ibm.websphere.express.doc/info/exp/ae/tmj_devcl.html

 Chapter 6. Integration layer 461

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.express.doc/info/exp/ae/tmj_devap.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.express.doc/info/exp/ae/tmj_devcl.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.express.doc/info/exp/ae/tmj_devcl.html

6.11.3 JMS connection considerations

Before discussing connection considerations, we first explain some basic
concepts about connections.

ConnectionFactory
ConnectionFactory is an administered object that is retrieved from JNDI to create
a connection to a provider. It contains a createConnection() method, which
returns a Connection object.

Connection
Connection encapsulates an active connection to a provider. These are some of
its methods:

� createSession(boolean, int);

Returns a Session object. The boolean parameter indicates whether the
Session is transacted or not; the int indicates the acknowledgment mode
(see Acknowledgment).

� start();

Activates the delivery of messages from the provider.

� stop();

Temporarily stops delivery of messages; delivery can be restarted with start().

� close();

Closes the connection to the provider and releases all resources held in its
behalf.

Start the connection when appropriate
If you start a connection before starting the subscriber/receiver (consumer), then
the messages have to wait in the JMS server, or they persist if they are durable
messages. This can be unnecessary overhead and to avoid this, ensure that the
consumer is ready to accept messages before starting its connection.

Start consumers before producers
If you are starting a system, it can help to start the consumers first. This avoids
the possibility of excess buffering/persisting of messages during the interval
between a producer starting and the corresponding consumer starting. This is
most likely to happen with point-to-point or with durable subscriptions.The
solution is to use a container-managed transaction.

462 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Process messages concurrently
JMS provides a facility to process incoming messages concurrently by using a
ConnectionConsumer that pools session objects and handles the distribution of
work among them. You can create ConnectionConsumer using the methods in
Example 6-96 and Example 6-97.

Remember that Queue encapsulates a point-to-point destination. It is an
administered object that is retrieved from JNDI.

Example 6-96 ConnectionConsumer for queues

public ConnectionConsumer createConnectionConsumer(Queue queue,
String messageSelector, ServerSessionPool sessionPool, int
maxMessages) throws JMSException

Remember that Topic encapsulates a pub/sub destination. It is an administered
object that is retrieved from JNDI.

Example 6-97 ConnectionConsumer for topics

public ConnectionConsumer createConnectionConsumer(Topic topic,
String messageSelector, ServerSessionPool sessionPool, int
maxMessages) throws JMSException

In these methods, the main parameters are maxMessages and
ServerSessionPool. maxMessages denote the maximum number of messages
that can be simultaneously assigned to a server session. ServerSessionPool is
an administered object that you configure in a vendor specific manner.

Close the connection when finished
Always call the close() method on JMS connection and session objects when
they are no longer required. This approach works with other JMS objects such as
MessageProduction/ MessageConsumer, QueueSender/QueueReceiver,
TopicPublisher/TopicSubscriber. This topic is a reference to other JMS objects
related to this chapter.

This releases the underlying resource handle. It is especially important for the
publish-subscribe model, where clients have to deregister from their
subscriptions. Closing the objects allows the queue manager to release the
corresponding resources in a timely fashion. Failure to do so can affect the
capacity of the queue manager for large numbers of applications or threads. It is
important to be aware that close of any resources can throw an exception.

 Chapter 6. Integration layer 463

See the closing code snippet in Example 6-98.

Example 6-98 Close resources best practices snippet

Connection connection = null;
 MessageProducer sender= null;
 Session session = null;

 try {
 //Usage of JMS Resouces

 } catch (Exception e) {
 e.printStackTrace();
 System.exit(1);
 }
 finally{
 //it is important to close all the JMS resources used. To do this,
 //you call the close() method on the various used classes
 //(QueueConnection, QueueSession, QueueSender, QueueReceiver ,
 //MessageProducer ,Message Consumer, TopicPublisher,
 //TopicSubscriber)
 //when the resources are no longer required.

 try{
 try{
 //This example explain MessageProducer
 //but place your queueSender.close(),
 //subcriber.close() and so on, if you are using.
 sender.close();
 }
 finally{
 try{
 session.close();
 }
 finally{
 connection.close();
 }
 }
 }
 } catch (Exception e){
 //Make a handling of exception or throw to the class
 //that called this method
 }
 }
}

464 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

At the first impression, it can be difficult to understand the nested try...finally
blocks, but the objective here is delivery of resources no matter what occurs in
previous close execution. In fact, it is more complicated, but more safe.

6.11.4 JMS session considerations

Session is the single-threaded context for sending and receiving messages.
Some of its methods are:

� createProducer(Destination)

Returns a MessageProducer object to send messages to the specified
Destination.

� createConsumer(Destination)

Returns a MessageConsumer object to receive messages from the specified
Destination.

� commit()

Commits all consumed or produced messages for the current transaction.

� rollback()

Rolls back all consumed or produced messages for the current transaction.

� create<MessageType>Message(...)

A variety of methods that return a <MessageType>Message — for example,
MapMessage, TextMessage, and so on.

A session is used to create multiple producers and consumers. A session can be
a QueueSession for a point-to-point or a TopicSession for a
publish-subscribemodel.

Choose proper acknowledgement mode
When you create a session object, you can choose any one of the three
acknowledgement modes: AUTO_ACKNOWLEDGE,
CLIENT_ACKNOWLEDGE, or DUPS_OK_ACKNOWLEDGE.

� CLIENT_ACKNOWLEDGE mode is not a feasible option (when you have the
freedom to choose from the other two options), because the JMS server
cannot send subsequent messages until it receives an acknowledgement
from the client.

� AUTO_ACKNOWLEDGE mode follows the policy of delivering the message
once-and-only once, but this incurs an overhead on the server to maintain this
policy.

 Chapter 6. Integration layer 465

� DUPS_OK_ACKNOWLEDGE mode has a different policy of sending the
message more than once, thereby reducing the overhead on the server
(imposed when using the AUTO_ACKNOWLEDGE), but imposes an
overhead on the network traffic by sending the message more than once.

But, the AUTO_ACKNOWLEDGE mode cleans up resources early from the
persistent storage/memory, which reduces the overhead because of that.

Control transaction
In the code shown in Example 6-99 and Example 6-100, the first parameter
indicates the session is a transactional session. The session objects have
commit(), rollback(), and isTransacted() methods to deal with transactional
messages.

Example 6-99 Transaction messages for topics

topicSession =
tConnect.createTopicSession(true,Session.AUTO_ACKNOWLEDGE);

Example 6-100 Transaction messages for queues

queueSession =
qConnect.createQueueSession(true,Session.AUTO_ACKNOWLEDGE);

The problem here is that a transaction starts implicitly when a session is created
and ends when a commit() or rollback() method is called. At this stage, after
calling a commit() or rollback() method, one more transaction starts implicitly,
because there is no explicit method (begin() method) to start a transaction. So,
there are a chain of transactions that depend upon commit() or rollback() method
calls. Transactional messages are cumulated in the JMS server until the
transaction is committed or rolled back. This imposes significant overhead on a
JMS server.

Close the session when finished
The reasons for closing sessions are described in “Close the connection when
finished” on page 463

6.11.5 JMS destination considerations

The destination is a virtual channel between producers and consumers.

Producers send messages to the destination which in turn deliver messages to
consumers. To get the destination object, you have to perform a JNDI lookup.
The code snippet in Example 6-101 shows a Destination usage.

466 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Example 6-101 Destination usage code snippet

//Look up administered objects
//destinationName and factoryName are java.lang.String Objects
InitialContext initContext = new InitialContext();
ConnectionFactory factory =
(ConnectionFactory) initContext.lookup(factoryName);
Destination destination = (Destination)
initContext.lookup(destinationName);
initContext.close();

If you require specific access to queues and topics, you can use the commands
shown in Example 6-102.

Example 6-102 Lookup of Queues or Topics instead of generic destinations

Topic topic = (Topic) initContext.lookup(topicName);

Queue queue = (Queue) initContext.lookup(queueName);

For non-durable messages, the time that messages take to deliver to the
destination depends upon its number and destination size. If a large number of
messages collect in a destination, they take more time to deliver. Set a smaller
destination size and smaller number of maximum messages to the destination to
improve performance.

Redelivery delay time defines when to redeliver a message if a failure occurs. If
this is less, the frequency of redelivery of a message is high, thus increasing
network traffic and vice versa. So, high redelivery delay time gives better
performance. Redelivery limit defines the number of times a message should be
redelivered. Although the probability of guaranteed messaging is less, if the
Redelivery limit is less, then the performance is better because the memory
overhead for non-durable messages and persistent overhead for durable
messages is reduced.

6.11.6 JMS message producer / consumer considerations

The producer sends messages to the destination where a consumer consumes
messages from the destination. The message producer/consumer is created by
the session object.

You send the messages using the producer. Example 6-103 and Example 6-104
provide two samples of sending a message using a topic and a queue
respectively.

 Chapter 6. Integration layer 467

Example 6-103 Publishing messages to a topic

publisher.publish(Message message);
// or
publisher.publish(Topic topic, Message message, int deliveryMode,

int priority, long timeToLive);

Example 6-104 Sending messages to a queue

sender.send(Message message);
// or
sender.send(Queue queue, Message message, int deliveryMode,

int priority, long timeToLive);

The parameters DeliveryMode and TimeToLive are important from a
performance perspective. You can provide values for these parameters when you
configure ConnectionFactory or destination or when you send a message.

Choose non-persistent messages where appropriate
Delivery mode defines whether the message can be persistent or non-persistent.
This parameter ensures that message delivery is guaranteed.

For persistent messages, if you use MessageProducer, the methods is:

setDeliveryMode(int)

This sets the delivery mode for subsequent messages sent. Valid values are
Deliverymode.PERSISTENT for persistent messages and
Deliverymode.NON_PERSISTENT for non-persistent messages.

If you define the delivery mode as persistent, then the message is stored by the
JMS server before delivering it to the consumer, as shown in Figure 6-31.

Figure 6-31 Persistent message flow

Persistent
Storage

JMS Message
Producer

JMS Message
Consumer

1

2

3

4

5

6

JMS Server

468 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

If you define the delivery mode as non-persistent, then the message is delivered
to the consumer without being saved by the JMS server, as shown in
Figure 6-32.

Figure 6-32 Non-persistent message flow

The foregoing figures clearly show the difference between the two delivery
modes. When using the persistent delivery mode, each message has to be
stored by the JMS server either in the database or the file system before delivery
of message to consumer and removed after delivery of message. So as far as
possible, restrict the use of persistent delivery mode unless and until absolutely
necessary.

The code snippet in Example 6-105 gives a further explanation of this approach.

Example 6-105 SetDeliverMode code snippet usage

//Create JMS objects
Connection connection = factory.createConnection();
Session session = connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);
MessageProducer sender = session.createProducer(destination_queue);
sender.setDeliveryMode(DeliveryMode.NON_PERSISTENT);

Set Time to live value properly
You can set the age of the message by setting the Time to live parameter after
which the message expires. By default, the message never expires, so you
should set the optimal message age so as to reduce memory overhead.

If you use MessageProducer, the methods is:

setTimeToLive(long)

This sets the duration before expiration, in milliseconds, of subsequent
messages sent. See the code snippet in Example 6-106 for usage.

JMS Message
Producer

JMS Message
Consumer

1

2

3

4
JMS Server

 Chapter 6. Integration layer 469

Example 6-106 SetTimeToLive code snippet usage

//Create JMS objects
Connection connection = factory.createConnection();
Session session = connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);
MessageProducer sender = session.createProducer(destination_queue);
sender.setDeliveryMode(DeliveryMode.NON_PERSISTENT);
sender.setTimeToLive(1000L);

Receive messages asynchronously
You can receive messages synchronously or asynchronously. To receive
asynchronous messages, you have to implement the MessageListener interface
and onMessage() method. For receiving synchronous messages, you have to
use any of the following methods of MessageConsumer:

� receive()

Returns the next message that arrives; this method blocks until a message is
available.

� receive(long)

Receives the next message that arrives within long milliseconds; this method
returns null if no message arrives within the time limit.

� receiveNoWait

Receives the next message if one is immediately available; this method
returns null if no message is available.

In short, the first method blocks the call until it receives the next message, the
second method blocks until a timeout occurs, and the last method never blocks.

Normally, when using asynchronous messaging, the calls are never blocked, so a
better option to improve performance is to receive messages asynchronously by
implementing MessageListener.

The implementation for WebSphere MQ actually does a receive(5000) in a loop
under the covers so it is not true asynchronous and might actually increase the
number of MQ operations if a larger number would have been chosen.

Close producer/consumer when finished
When not required anymore the message producers and consumers should be
closed. See the topic about JMS connections in “Close the connection when
finished” on page 463

470 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

6.11.7 JMS message considerations

A Message object contains information that is passed between applications. It
contains information as payload, headers, and properties. From the performance
perspective, you mainly have to consider the type of message, whether it is a
Text, Object, Byte, Stream, or Map message.

The higher level message types such as Map, Stream, and Object require more
processing to convert them to and from the internal transmission format. These
types should not be used unless they provide exactly the functionality the
application requires. ObjectMessage carries a serialized Java object and when
you choose ObjectMessage, you have to use “transient” keyword for variables
that must not be sent over the network to reduce overhead. Also, ByteMessage
takes less processing in the JMS client than a TextMessage, because it is the
simplest format.

6.11.8 JMS performance testing

If you want to have a closer look at your JMS connections, there is a tool to do
performance analysis for JMS called IBM Performance Harness for Java
Message Service:

http://alphaworks.ibm.com/tech/perfharness

Also refer to the following Redbooks publications for information about tuning as
well as learning more about JMS and WebSphere MQ.

� WebSphere MQ V6 Fundamentals, SG24-7128

� Performance Monitoring and Best Practices for WebSphere on Z/OS,
SG24-7269

� WebSphere Scalability and Performance Handbook, SG24-6392

6.12 Web Services

As mentioned at the beginning of this chapter, we have several levels of
integration. Web Services are placed in Level 2 and 3 of integration, concerning
business integration as a key point for Service Oriented Architecture (SOA).

In this section, we cover some basic concepts that are used in Web Services;
starting with what a Web Service is. We present an overview of WSDL,
JAX-RPC, and SOAP, as well as technologies that make up part of the Web
Services feature pack for WebSphere 6.1 such as JAX-WS and JAXB 2.0 to
make a basic alignment. After that, we go on to describe some best practices.

 Chapter 6. Integration layer 471

http://alphaworks.ibm.com/tech/perfharness

6.12.1 Some concepts

In the following sections we explain some basic concepts around Web Services.

What is a Web service?
It is probably fair to say that the initial hype surrounding Web Services has
reached astronomical proportions, so much so that the language used to
describe what Web Services are, and how to go about implementing them, is
becoming entirely too overloaded and muddled. In fact, one of the most difficult
tasks the recently formed W3C Web Services Architecture Working Group has
faced so far has been to determine the answer to what seems like an easy
question: What is the generic definition of a Web service? Given all the hype, one
might think that such a definition would not be hard to come by. The challenge,
however, is to overcome the abundance of definitions, most of which are
contradictory and only reveal a fragment of what Web Services can be or might
become.

When distilling a collection of best practices, one of the most important first steps
is to ensure that the language used to describe the various core concepts is
clear, concise, and accurate. Unfortunately, you also have to work within the
bounds of already existing and accepted vernacular (regardless of how much
confusion an existing name or term might cause). The Simple Object Access
Protocol (SOAP) itself, for instance, is an improperly named technology in the
Web Services world: though the acronym stands for Simple Object Access
Protocol, it describes a messaging protocol specification that has little to do with
objects and is far from simple to implement.

The working definition of a Web service that the W3C Web Services Architecture
group managed to agree on is as follows:

A Web service is a software application identified by a URI, whose interfaces and
binding are capable of being defined, described, and discovered by XML
artifacts, and supports direct interactions with other software applications using
XML-based messages via Internet-based protocols.

For those who think that Web Services are limited to SOAP messages used to
invoke the methods of an application over an HTTP connection (as the traditional
SOAP stock-quote service does), this definition might be a bit surprising.
However, it tells us a couple of interesting things pertinent to our goal of a
common vernacular:

� Web Services do not require SOAP
� Web Services do not require HTTP

472 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

However, a Web service (as defined by the W3C) does require an XML-based
description mechanism of some kind (such as WSDL) that can be used to
describe the service's form and function. Remember, the backdrop framework for
this industry-wide initiative around Web service technologies is a
service-oriented architecture (SOA); for more information, see the Resources
section below. As such, a non-XML based description mechanism (such as IDL)
would make an SOA implementation more complex and less open.

Note also that the W3C's definition, while mentioning service discovery, does not
mention UDDI or any other specific discovery mechanism. This fact becomes
important as we walk through the various business scenarios and explore how
and why certain service discovery mechanisms are used. Specifically, while early
literature on the Web Services architecture asserted that UDDI had a core,
essential role to play, real-life implementation of business solutions with Web
Services have demonstrated that UDDI's most significant role is actually quite
specialized at this time; in fact, many Web Services solutions are built that do not
use UDDI in any way. In the vast majority of current business cases, it would be
safe to say that these discovery mechanisms are not yet a core component for
integrating processes between business partners.

Artifacts used to develop Web Services
With development artifacts you can develop an enterprise bean or a Java bean
module into a Web service. This topic describes artifacts used to develop Web
Services that are based on the Web Services for Java 2 Platform, Enterprise
Edition (J2EE) specification.

To create a Web service from an enterprise bean or a Java bean module, the
following files are added to the respective Java archive (JAR) file or Web archive
(WAR) modules at assembly time:

� Web Services Description Language (WSDL) Extensible Markup Language
(XML) file:

The WSDL XML file describes the Web service that is implemented. We talk
more about WSDL in “WSDL” on page 474.

� Service Endpoint Interface:

A Service Endpoint Interface is the Java interface corresponding to the Web
service port type implemented. The Service Endpoint Interface is defined by
the Java API for XML Web Services (JAX-WS) or Java API for XML-Based
RPC (JAX-RPC) Web Services runtime that you are using:

– For more about JAX-RPC, see “JAX-RPC” on page 478.
– For more about JAX-WS, see “JAX-WS” on page 479.

 Chapter 6. Integration layer 473

� webservices.xml (JAX-RPC applications only):

For JAX-RPC applications, the webservices.xml file contains the J2EE
deployment descriptor of the Web service specifying how the Web service is
implemented. The webservices.xml file is defined in the Web Services for the
J2EE specification. For JAX-WS applications, deployment descriptors are not
supported and have been replaced by the use of annotations.

� ibm-webservices-bnd.xmi (JAX-RPC applications only):

This file contains WebSphere product-specific deployment information and is
defined in ibm-webservices-bnd.xmi assembly properties.

� Java API for XML-based remote procedure call (JAX-RPC) mapping file:

The JAX-RPC mapping deployment descriptor specifies how Java elements
are mapped to and from WSDL file elements.

The following files are added to an application client, enterprise beans, or Web
module to permit J2EE client access to Web Services:

� WSDL file:

The WSDL file is provided by the Web service implementer.

� Java interfaces for the Web service:

The Java interfaces are generated from the WSDL file as specified by the
JAX-WS or JAX-RPC specification. These bindings are the Service Endpoint
Interface based on the WSDL port type, or the service interface, which is
based on the WSDL service.

� ibm-webservicesclient-bnd.xmi (JAX-RPC applications only):

This file contains WebSphere product-specific deployment information, such
as security information for JAX-RPC applications. For JAX-WS applications,
deployment descriptors are not supported and have been replaced by the use
of annotations.

� Other JAX-RPC binding files:

Additional JAX-RPC binding files that support the client application in
mapping SOAP to the Java language are generated from WSDL by the
WSDL2Java command tool.

WSDL
Web Services Description Language (WSDL) is an Extensible Markup Language
(XML)-based description language. This language was submitted to the
World-Wide Web Consortium (W3C) as the industry standard for describing Web
Services. The power of WSDL is derived from two main architectural principles:
the ability to describe a set of business operations, and the ability to separate the
description into two basic units. These units are a description of the operations,
and the details of how the operation and the information associated with it are
packaged.

474 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

A WSDL document defines services as collections of network endpoints, or
ports. In WSDL, the abstract definitions of endpoints and messages are
separated from their concrete network deployment or data format bindings. This
separation supports the reuse of abstract definitions: messages, which are
abstract descriptions of exchanged data, and port types, which are abstract
collections of operations. The concrete protocol and data format specifications
for a particular port type constitutes a reusable binding. A port is defined by
associating a network address with a reusable binding, and a collection of ports
defines a service. Therefore, a WSDL document is composed of several
elements.

WSDL architecture
This section explains the architecture of a Web Services Description Language
file. The WSDL files are written in Extensible Markup Language. To learn more
about XML, see the following URLs:

http://www.ibm.com/developerworks/xml/library/x-contain.html
http://www.ibm.com/developerworks/xml/library/x-toptenjul2007.html
http://www.ibm.com/developerworks/xml/library/xml-schema/

Figure 6-33 shows the structure of the information in a WSDL file:

Figure 6-33 WSDL architecture

A WSDL file contains the following main parts:

� Web service interface definition:

This part contains the elements, as well as the namespaces.

 Chapter 6. Integration layer 475

http://www.ibm.com/developerworks/xml/library/x-contain.html
http://www.ibm.com/developerworks/xml/library/x-toptenjul2007.html
http://www.ibm.com/developerworks/xml/library/xml-schema

� Web service implementation:

This part contains the definition of the service and ports.

A WSDL file describes a Web service with the following elements:

� portType:

This represents a description of the operations and associated messages.
The portType element defines abstract operations. See Example 6-107.

Example 6-107 Port type snippet xml code inside wsdl file

<portType name="EightBall">
 <operation name="getAnswer">
 <input message="ebs:IngetAnswerRequest"/>
 <output message="ebs:OutgetAnswerResponse"/>
 </operation>
</portType>

� message:

This represents the description of input and output parameters and return
values. See Example 6-108.

Example 6-108 message type snippet inside wsdl file

<message name="IngetAnswerRequest">
 <part name="meth1_inType" type="ebs:questionType"/>
</message>
<message name="OutgetAnswerResponse">
 <part name="meth1_outType" type="ebs:answerType"/>
</message>

� types:

This represents the schema for describing XML types used in the messages.
See Example 6-109.

Example 6-109 xml type snippet inside wsdl file

<types>
 <xsd:schema targetNamespace="...">
 <xsd:complexType name="questionType">
 <xsd:element name="question" type="string"/>
 </xsd:complexType>
 <xsd:complexType name="answerType">
 <xsd:element name="answer" type="boolean"/>
 </xsd:complexType>
 </xsd:schema>
</types>

476 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

� binding:

The bindings describe the protocol that is used to access a portType, as well
as the data formats for the messages that are defined by a particular portType
element. See Example 6-110.

Example 6-110 binding snippet inside wsdl file

<binding name="EightBallBinding" type="ebs:EightBall">
 <soap:binding style="rpc"
transport="schemas.xmlsoap.org/soap/http">
 <operation name="ebs:getAnswer">
 <soap:operation soapAction="urn:EightBall"/>
 <input>
 <soap:body namespace="urn:EightBall" ... />
 <!--...

The services and ports define the location of the Web service.

� Service:

The service contains the Web service name and a list of ports.

� Ports:

The ports contain the location of the Web service and the binding used for
service access. See Example 6-111.

Example 6-111 Services and port section inside wsdl file

<service name="EightBall">
 <port binding="ebs:EightBallBinding" name="EightBallPort">
 <soap:address location="localhost:8080/axis/EightBall"/>
 </port>
</service>

Multipart WSDL best practices
WebSphere Application Server supports deployment of Web Services using a
multipart Web Services Description Language (WSDL) file. In multipart WSDL
files, an implementation WSDL file contains the wsdl:service. This
implementation WSDL file imports an interface WSDL file, which contains the
other WSDL constructs. This supports multiple Web Services using the same
WSDL interface definition.

The <wsdl:import> element indicates a reference to another WSDL file. If the
<wsdl:import> element location attribute does not contain a URL, that is, it
contains only a file name, and does not begin with http://, https:// or file://, the
imported file must be located in the same directory and must not contain a
relative path component. For example, if META-INF/wsdl/A_Impl.wsdl is in your

 Chapter 6. Integration layer 477

module and contains the <wsdl:import="A.wsdl" namespace="..."/> import
statement, the A.wsdl file must also be located in the module META-INF/wsdl
directory.

We recommend that you place all WSDL files in either the META-INF/wsdl
directory, if you are using Enterprise JavaBeans (EJB), or the WEB-INF/wsdl
directory, if you are using JavaBeans components, even if relative imports are
located within the WSDL files. Otherwise, implications exist with the WSDL
publication when you use a path like
<location="../interfaces/A_Interface.wsdl"namespace="..."/>. Using a path like
this example fails because the presence of the relative path, regardless of
whether the file is located at that path or not. If the location is a Web address, it
must be readable at both deployment and server startup.

WSDL publication
You can publish the files located in the META-INF/wsdl or the WEB-INF/wsdl
directory through either a URL address or file, including WSDL or XML Schema
Definition (XSD) files. For example, if the file referenced in the <wsdl-file>
element of the webservices.xml deployment descriptor is located in the
META-INF/wsdl or the WEB-INF/wsdl directory, it is publishable. If the files
imported by the <wsdl-file> are located in the wsdl/ directory or its subdirectory,
they are publishable.

If the WSDL file referenced by the <wsdl-file> element is located in a directory
other than wsdl, or its subdirectories, the file and its imported files, either WSDL
or XSD files, which are in the same directory, are copied to the wsdl directory
without modification when the application is installed. These types of files can
also be published.

If the <wsdl-file> imports a file located in a different directory (a directory that is
not -INF/wsdl or a subdirectory), the file is not copied to the wsdl directory and is
not available for publishing.

In the following sections, we discuss the concepts of JAX-WS and JAX-RPC.

JAX-RPC
JAX-RPC stands for Java API for XML-Based RPC, also known as JSR 101. It is
a specification that describes Java Application Programming Interfaces (APIs)

Note: For JAX-WS Web Services, there is an annotation that can be used to
specify the location of the WSDL. This is the @webservice annotation and the
attribute is WSDLLocation. The WSDLLocation attribute is optional. If it is not
specified, then WSDL is generated and published from the information that is
found in the Web service classes.

478 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

and conventions for building Web Services and Web service clients that use
remote procedure calls (RPC) and XML. It standardizes the Java to WSDL and
WSDL to Java mappings, and provides the core APIs for developing Web
Services and Web service clients on the Java platform. Often used in a
distributed client/server model, an RPC mechanism enables clients to execute
procedures on other systems.

The current release of JAX-RPC requires the support of SOAP over HTTP for
interoperability purposes. The SOAP specification defines message structure,
encoding rules, and conventions for exchanging information in the RPC
programming model. These calls and responses are transmitted as SOAP
messages over HTTP. In this release, JAX-RPC supports SOAP 1.1 and HTTP
1.1. For more information on SOAP, refer to SOAP.

Although the underlying run-time mechanisms (for example, Java to WSDL
serialization, WSDL to Java deserialization, protocol and transport) are very
complex, the API hides this complexity from the application developer. On the
server side, the developer can provide a Service Endpoint Interface (SEI);
alternately an SEI can be created using the Web Services wizards. An SEI is an
interface written in the Java programming language that specifies the remote
procedures of a Web service. The developer also provides the implementation of
a Web service, in the form of one or more Java classes that implement methods
of the same signature as those on the SEI. Client programs are also easy to
code. A client creates a proxy, a local object representing the service
implementation and the SEI, and then simply invokes methods on the proxy.

JAX-RPC is highly interoperable: a JAX-RPC client can access a Web service
that is not running on the Java platform and vice versa. This flexibility is possible
because JAX-RPC uses SOAP over HTTP, and the Web Service Description
Language (WSDL). JAX-RPC was designed to support WS-I.

JAX-WS
Java API for XML-Based Web Services (JAX-WS), which is also known as
JSR-224, is the next generation Web Services programming model that extends
the foundation provided by the Java API for XML-based RPC (JAX-RPC)
programming model. Using JAX-WS, developing Web Services and clients is
simplified with greater platform independence for Java applications by the use of
dynamic proxies and Java annotations.

The WebSphere Application Server Version 6.1 Feature Pack for Web Services
extends the capabilities of this product to introduce support for the JAX-WS 2.0
programming model. JAX-WS 2.0 is a new programming model that simplifies
application development through support of a standard, annotation-based model
to develop Web Service applications and clients.

 Chapter 6. Integration layer 479

The JAX-WS 2.0 programming standard strategically aligns itself with the current
industry trend toward a more document-centric messaging model and replaces
the remote procedure call programming model as defined by JAX-RPC. Although
this product still supports the JAX-RPC programming model and applications,
JAX-RPC has limitations and does not support many current document-centric
services. JAX-WS is the strategic programming model for developing Web
Services and is a required part of the Java EE 5 platform.

Implementing the JAX-WS programming standard provides the enhancements
for developing Web Services and clients that are explained in following sections.

Better platform independence for Java applications
Using JAX-WS APIs, developing Web Services and clients is simplified with
better platform independence for Java applications. JAX-WS takes advantage of
dynamic proxies whereas JAX-RPC uses generated stubs. The dynamic proxy
client invokes a Web service based on a Service Endpoint Interface (SEI) which
is generated or provided. The dynamic proxy client is similar to the stub client in
the JAX-RPC programming model.

Although the JAX-WS dynamic proxy client and the JAX-RPC stub client are both
based on the Service Endpoint Interface (SEI) that is generated from a WSDL
file, there is a major difference. The dynamic proxy client is dynamically
generated at run time using the Java 5 dynamic proxy functionality, while the
JAX-RPC-based stub client is a non-portable Java file that is generated by
tooling. Unlike the JAX-RPC stub clients, the dynamic proxy client does not
require you to regenerate a stub prior to running the client on an application
server for a different vendor because the generated interface does not require
the specific vendor information. Refer to Chapter 4 of the JAX-WS 2.0
specification for more information on using dynamic proxy clients.

Annotations
JAX-WS introduces support for annotating Java classes with metadata to
indicate that the Java class is a Web service. JAX-WS supports the use of
annotations based on the Metadata Facility for the Java Programming Language
(JSR 175) specification, the Web Services Metadata for the Java Platform
(JSR 181) specification and annotations that are defined by the JAX-WS 2.0
specification. Using annotations in the Java source and in the Java class
simplifies development of Web Services by defining some of the additional
information that is typically obtained from deployment descriptor files, WSDL
files, or mapping metadata from XML and WSDL files into the source artifacts.

We can embed a simple @WebService tag in the Java source to expose the
bean as a Web service as described in Example 6-112.

480 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Example 6-112 @WebService annotation usage

@WebService

public class QuoteBean implements StockQuote {

 public float getQuote(String sym) { ... }

}

The annotation @WebService tells the server runtime environment to expose all
public methods on that bean as a Web service. Additional levels of granularity
can be controlled by adding additional annotations on individual methods or
parameters. Using annotations makes it much easier to expose Java artifacts as
Web Services. In addition, as artifacts are created from using some of the
top-down mapping tools starting from a WSDL file, annotations are included
within the source and Java classes as a way of capturing the metadata along
with the source files.

Invoking Web Services asynchronously
With JAX-WS, Web Services can be called both synchronously and
asynchronously. JAX-WS adds support for both a polling mechanism and
callback mechanism when calling Web Services asynchronously. Using a polling
model, a client can issue a request, get a response object back, which is polled
to determine whether the server has responded. When the server responds, the
actual response is retrieved. Using the polling model, the client can continue to
process other work without waiting for a response to return. Using the callback
model, the client provides a callback handler to accept and process the inbound
response object. Both the polling and callback models enable the client to focus
on continuing to process work while providing for a more dynamic and efficient
model to invoke Web Services.

A Web service interface has methods for both synchronous and asynchronous
requests. Asynchronous requests are identified in bold in Example 6-113.

Example 6-113 WebService interface with sync and async operations

@WebService
public interface CreditRatingService {

Note: For more information about Java annotations, see the following URL:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topi
c=/com.ibm.websphere.wsfep.multiplatform.doc/info/ae/ae/rwbs_jaxwsan
notations.html

 Chapter 6. Integration layer 481

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.wsfep.multiplatform.doc/info/ae/ae/rwbs_jaxwsannotations.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.wsfep.multiplatform.doc/info/ae/ae/rwbs_jaxwsannotations.html

 // sync operation
 Score getCreditScore(Customer customer);
 // async operation with polling
 Response<Score> getCreditScoreAsync(Customer customer);
 // async operation with callback
 Future<?> getCreditScoreAsync(Customer customer,
 AsyncHandler<Score> handler);
}

The asynchronous invocation that uses the callback mechanism requires an
additional input by the client programmer. The callback handler is an object that
contains the application code to be executed when an asynchronous response is
received. Example 6-114 is a code example for an asynchronous callback
handler.

Example 6-114 Asynchronous callback handler

Future<?> invocation = svc.getCreditScoreAsync(customerFred,
 new AsyncHandler<Score>() {
 public void handleResponse (
 Response<Score> response)
 {
 Score score = response.get();
 // do work here...
 }
 });

Example 6-115 is a code example for an asynchronous polling client.

Example 6-115 Asynchronous polling client

CreditRatingService svc = ...;
Response<Score> response = svc.getCreditScoreAsync(customerFred);

while (!response.isDone()) {
 // do something while we wait
}
// no cast needed, thanks to generics
Score score = response.get();

Data binding with JAXB 2.0
JAX-WS leverages the JAXB 2.0 API and tools as the binding technology for
mappings between Java objects and XML documents. JAX-WS tooling relies on
JAXB tooling for default data binding for two-way mappings between Java objects
and XML documents. JAXB 2.0 data binding replaces the data binding described

482 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

by the JAX-RPC specification. For more information about JAXB, see “JAXB” on
page 484.

Dynamic and static clients
The dynamic client programming API for JAX-WS is called the dispatch client
(javax.xml.ws.Dispatch). The dispatch client is an XML messaging oriented
client. The data is sent in either PAYLOAD or MESSAGE mode. When using the
PAYLOAD mode, the dispatch client is only responsible for providing the contents
of the <soap:Body> element and JAX-WS adds the <soap:Envelope> and
<soap:Header> elements. When using the MESSAGE mode, the dispatch client
is responsible for providing the entire SOAP envelope including the
<soap:Envelope>, <soap:Header>, and <soap:Body> elements and JAX-WS
does not add anything additional to the message. The dispatch client supports
asynchronous invocations using a callback or polling mechanism,
</soap:Body></soap:Header></soap:Envelope></soap:Header></soap:Envelop
e></soap:Body>

The static client programming model for JAX-WS is the called the proxy client.
The proxy client invokes a Web service based on a Service Endpoint interface
(SEI) which is generated or provided.

Message Transmission Optimization Mechanism support
Using JAX-WS, you can send binary attachments such as images or files along
with Web Services requests. JAX-WS adds support for optimized transmission of
binary data as specified by Message Transmission Optimization Mechanism
(MTOM).

Multiple payload structures
JAX-WS exposes the following binding technologies to the user: XML Source,
SOAP Attachments API for Java (SAAJ) 1.3, and Java Architecture for XML
Binding (JAXB) 2.0. XML Source enables a user to pass a
javax.xml.transform.Source into the runtime which represents the data in a
Source object to be passed to the runtime. SAAJ 1.3 now has the ability to pass
an entire SOAP document across the interface rather than just the payload itself.
This is done by the client passing the SAAJ SOAPMessage object across the
interface. JAX-WS leverages the JAXB 2.0 support as the data binding
technology of choice between Java and XML.

SOAP 1.2 support
Support for SOAP 1.2 has been added to JAX-WS 2.0. JAX-WS supports both
SOAP 1.1 and SOAP 1.2 so that you can send binary attachments such as
images or files along with Web Services requests. JAX-WS adds support for
optimized transmission of binary data as specified by MTOM.

 Chapter 6. Integration layer 483

JAX-WS and EJB 3.0
JAX-WS also works with EJB 3.0 to simplify the programming model. For
example, the code in Example 6-116 shows how easy it is to make an EJB 3.0
POJO into a Web service.

Example 6-116 Stateless bean expose as a web service

@WebService public interface StockQuote {
 public float getQuote(String sym);
}

@Stateless public class QuoteBean implements StockQuote {
 public float getQuote(String sym) { ... }
}

In “Using Web services” on page 277, you can see more about stateless session
beans exposed as Web services.

JAXB
Java Architecture for XML Binding (JAXB) is a Java technology that provides an
easy and convenient way to map Java classes and XML schema for simplified
development of Web Services. JAXB leverages the flexibility of platform-neutral
XML data in Java applications to bind XML schema to Java applications without
requiring extensive knowledge of XML programming.

WebSphere Application Server Version 6.1 Feature Pack for Web Services
provides JAXB 2.0 standards.

JAXB is an XML to Java binding technology that supports transformation
between schema and Java objects and between XML instance documents and
Java object instances. JAXB consists of a runtime application programming
interface (API) and accompanying tools that simplify access to XML documents.
JAXB also helps to build XML documents that both conform and validate to the
XML schema.

JAXB provides the xjc schema compiler tool, the schemagen schema generator
tool, and a runtime framework. You can use the xjc schema compiler tool to start
with an XML schema definition (XSD) to create a set of JavaBeans that map to
the elements and types defined in the XSD schema. You can also start with a set
of JavaBeans and use the schemagen schema generator tool to create the XML

Note: For more information on JAX-WS, refer to the official JSR-224
specification at the following link:

http://jcp.org/en/jsr/detail?id=224

484 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://jcp.org/en/jsr/detail?id=224

schema. When the mapping between XML schema and Java classes exists,
XML instance documents can be converted to and from Java objects through the
use of the JAXB binding runtime API. Data stored in XML documents can be
accessed without having to understand the data structure. You can then use the
resulting Java classes to assemble a Web Services application.

JAXB annotated classes and artifacts contain all the information required by the
JAXB runtime API to process XML instance documents. The JAXB runtime API
supports marshaling of JAXB objects to XML and unmarshaling the XML
document back to JAXB class instances. Optionally, you can use JAXB to provide
XML validation to enforce both incoming and outgoing XML documents to
conform to the XML constraints defined within the XML schema.

JAXB is the default data binding technology used by the Java API for XML Web
Services (JAX-WS) 2.0 tooling and implementation within this product. You can
develop JAXB objects for use within JAX-WS applications.

You can also use JAXB independently of JAX-WS when you want to leverage the
XML data binding technology to manipulate XML within your Java applications.

Figure 6-34 illustrates the JAXB architecture.

Figure 6-34 JAXB architecture

Figure 6-34 shows that we can generate from a schema the class to be used or
from class the schema. When, for example, we generated the class from
schema, this class allows the mapping between an XML and objects that is done
in unmarshal (XML to Object) and marshal (Object to XML) operations. We
explain more about usage of JAXB in the next section.

 Chapter 6. Integration layer 485

Using JAXB for XML data binding
You can use JAXB APIs and tools to establish mappings between Java classes
and XML schema. An XML schema defines the data elements and structure of
an XML document. JAXB technology provides tooling to enable you to convert
your XML documents to and from Java objects. Data stored in an XML document
is accessible without the requirement to understand the XML data structure.

JAXB annotated classes and artifacts contain all the information that the JAXB
runtime API has to process XML instance documents. The JAXB runtime API
enables marshaling of JAXB objects to XML files and unmarshaling the XML
document back to JAXB class instances. The JAXB binding package,
javax.xml.bind, defines the abstract classes and interfaces that are used directly
with content classes. In addition the package defines the marshal and unmarshal
APIs.

You can optionally use JAXB binding customizations to customize generated
JAXB classes by overriding or extending the default JAXB bindings when the
default bindings do not meet your business application requirements. In most
cases, the default binding rules are sufficient to generate a robust set of
schema-derived classes. JAXB supports binding customizations and overrides to
the default binding rules that you can make through various ways. For example,
you can the overrides inline as annotations in a source schema, as declarations
in an external bindings customization file that is used by the JAXB binding
compiler, or as Java annotations within Java class files used by the JAXB
schema generator. See the JAXB specification for information regarding binding
customization options in the following link:

http://jcp.org/en/jsr/detail?id=222

Using JAXB, you can manipulate data objects in the following ways:

� Use the schema generator schemagen command to generate an XML
schema from Java classes. See more information in the following URL:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.
websphere.wsfep.multiplatform.doc/info/ae/ae/twbs_jaxbjava2schema.ht
ml

� Use the schema compiler xjc command to create a set of JAXB-annotated
Java classes from an XML schema. See more information in the following
URL:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.
websphere.wsfep.multiplatform.doc/info/ae/ae/twbs_jaxbschema2java.ht
ml

486 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://jcp.org/en/jsr/detail?id=222
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.wsfep.multiplatform.doc/info/ae/ae/twbs_jaxbjava2schema.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.wsfep.multiplatform.doc/info/ae/ae/twbs_jaxbschema2java.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.wsfep.multiplatform.doc/info/ae/ae/twbs_jaxbschema2java.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.wsfep.multiplatform.doc/info/ae/ae/twbs_jaxbschema2java.html

� After the mapping between XML schema and Java classes exists, use the
JAXB binding runtime to convert XML instance documents to and from Java
objects. See more information in the following URL:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.
websphere.wsfep.multiplatform.doc/info/ae/ae/twbs_jaxbmarshalxml.htm
l

JAXB and Plain Old Java Objects
Beyond other features, JAXB provides a standard mapping between POJOs
(Example 6-117) and XML schemas (Example 6-118), using annotations on
POJOs.

Example 6-117 POJOs example referring to xml using JAXB

@XmlType
public class Trade {
 @XmlElement(name="tickerSymbol")
 public String symbol;
 @XmlAttribute
 int getQuantity() {...}
 void setQuantity() {...}
}

Example 6-118 Schema correlation

<xs:complexType name="trade">
 <xs:sequence>
 <xs:element
 name="tickerSymbol"
 type="xs:string"/>
 </xs:sequence>
 <xs:attribute name="quantity"
 type="xs:int"/>
</xs:complexType>

SOAP
SOAP (formerly known as Simple Object Access Protocol) is a lightweight
protocol for the exchange of information in a decentralized, distributed
environment. A SOAP message is a transmission of information from a sender to
a receiver. SOAP messages can be combined to perform request/response
patterns.

SOAP is transport independent but is most commonly carried over HTTP in order
to run with the existing Internet infrastructure. SOAP enables the binding and

 Chapter 6. Integration layer 487

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.wsfep.multiplatform.doc/info/ae/ae/twbs_jaxbmarshalxml.html

usage of discovered Web Services by defining a message path for routing
messages. SOAP is used to query UDDI for Web Services. The workbench
supports SOAP 1.1.

SOAP is an XML-based protocol that defines three parts to every message:

� Envelope. The envelope defines a framework for describing what is in a
message and how to process it. A SOAP message is an envelope containing
zero or more headers and exactly one body. The envelope is the top element
of the XML document, providing a container for control information, the
address of a message, and the message itself. Headers transport any control
information such as quality-of-service attributes. The body contains the
message identification and its parameters. Both the headers and the body are
child elements of the envelope.

� Encoding rules. The set of encoding rules expresses instances of
application-defined data types. Encoding rules define a serialization
mechanism that can be used to exchange instances of application-defined
data types. SOAP defines a programming language-independent data type
scheme based on XSD plus encoding rules for all data types defined
according to this model. SOAP encoding is not WS-I compliant and thus the
Literal use (which is no encoding) is suggested for interoperable Web
Services and required for WS-I compliance.

� Communication styles. Communications can follow a remote procedure call
(RPC) or message-oriented (Document) format. These are discussed below.

Binding styles
SOAP supports two different communication styles:

� Remote procedure call (RPC): Invocation of an operation returning a result.
Typically used with SOAP encoding, which is not WS-I compliant.

� Document Style: Also known as document-oriented or message-oriented
style. This style provides a lower layer of abstraction, and requires more
programming work.

Encoding styles
In distributed computing environments, encoding styles define how data values
defined in the application can be translated to and from a particular protocol
format. The translation process is know as serialization and deserialization.

The SOAP specification defines the SOAP encoding style:

� SOAP encoding: The SOAP encoding style allows you to serialize/deserialize
values of data types from the SOAP data model. This encoding style is
defined in the SOAP 1.1 standard, and is not WS-I compliant.

488 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

WSDL defines the Literal XML encoding style:

� Literal XML: Literal refers to the fact that the document should be read as-is,
or unencoded. The document is serialized as XMI, meaning that the message
XML complies with the Schema in the WSDL. When using Literal encoding,
each message part references a concrete schema definition. Literal encoding
is WS-I compliant.

Data model
The purpose of the SOAP data model is to provide a language-independent
abstraction for data types used by common programming language types. It
consists of:

� Simple XSD types. For example int, string, and date.

� Compound types. There are two kinds of compound types, structs and arrays.
Structs are named aggregate types in which each element has a unique
name or XML tag. Arrays have elements that are identified by position, not by
name.

All elements and identifiers comprising the SOAP data model are defined in the
namespace URI. The SOAP standard defines the rules for how data types can
be constructed. A project specific XML schema must define the actual data
types. The elements of the SOAP specification are defined in
http://schemas.xmlsoap.org/soap/envelope/ and
http://schemas.xmlsoap.org/soap/encoding/

SOAP implementations
Different implementations of the SOAP protocol are available today. For example,
the Apache Foundation provides Apache SOAP, which grew out of an IBM project
called SOAP4J, as well as Apache Axis and the IBM WebSphere run-time
environment. The provided Web Services tools support Apache SOAP 2.3, Axis
1.0, and IBM WebSphere implementations.

Mappings
A mapping defines an association between a qualified XML element name, a
Java class name, and an encoding style. The mapping specifies how, under the
given encoding, an incoming XML element with a fully qualified name is
converted to a Java class and vice versa.

For more information on Apache SOAP, refer to:

http://xml.apache.org/soap

For more information on SOAP, refer to:

http://www.w3.org/TR/SOAP

 Chapter 6. Integration layer 489

http://xml.apache.org/soap
http://www.w3.org/TR/SOAP

SAAJ
The SOAP with Attachments API for Java (SAAJ) interface is used for SOAP
messaging that provides a standard way to send XML documents over the
Internet from a Java programming model. SAAJ is used to manipulate the SOAP
message to the appropriate context as it traverses through the runtime
environment.

The WebSphere Application Server V6.1 Feature Pack for Web Services
introduces the Java API for XML Web Services (JAX-WS) programming model,
which adds more enhancements to the use of Web Services applications. These
enhancements include support for SOAP 1.2 messages, which are supported by
SAAJ 1.3.

The Java API for XML-Based RPC (JAX-RPC) programming model supports
SAAJ 1.2 to manipulate the XML.

New or updated for this feature pack, the JAX-WS programming model supports
SAAJ 1.2 and 1.3.

You can review the differences in the SAAJ 1.2 and SAAJ 1.3 specifications at
the following link:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.web
sphere.wsfep.multiplatform.doc/info/ae/ae/cwbs_saajverdiffs.html

How messages are used in Web Services
Web Services use XML technology to exchange messages. These messages
conform to XML schema. When developing Web Services applications, there are
limited XML APIs to work with, for example, Document Object Model (DOM). It is
more efficient to manipulate the Java objects and have the serialization and
deserialization completed during run time.

Web Services uses SOAP messages to represent remote procedure calls
between the client and the server. Typically, the SOAP message is deserialized
into a series of Java value-type business objects that represent the parameters
and return values. In addition, the Java programming model provides APIs that
support applications and handlers to manipulate the SOAP message directly.
Because there are a limited number of XML schema types that are supported by
the programming models, the specification provides the SAAJ data model as an
extension to manipulate the message.

To manipulate the XML schema types, you have to map the XML schema types
to Java types with a custom data binder.

490 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.wsfep.multiplatform.doc/info/ae/ae/cwbs_saajverdiffs.html

The SAAJ interface
The SAAJ-related classes are located in the javax.xml.soap package. SAAJ
builds on the interfaces and abstract classes and many of the classes begin by
invoking factory methods to create a factory such as SOAPConnectionFactory
and SOAPFactory.

The most commonly used classes are:

� SOAPMessage: Contains the message, both the XML and non-XML parts

� SOAPHeader: Represents the SOAP header XML element

� SOAPBody: Represents the SOAP body XML element

� SOAPElement: Represents the other elements in the SOAP message

Other parts of the SAAJ interface include:

� MessageContext: Contains a SOAP message and related properties

� AttachmentPart: Represents a binary attachment

� SOAPPart: Represents the XML part of the message

� SOAPEnvelope: Represents the SOAP envelope XML element

� SOAPFault: Represents the SOAP fault XML element

The primary interface in the SAAJ model is javax.xml.soap.SOAPElement, also
referred to as SOAPElement. Using this model, applications can process an
SAAJ model that uses pre-existing DOM code. It is also easier to convert
pre-existing DOM objects to SAAJ objects.

Messages created using the SAAJ interface follow SOAP standards. A SOAP
message is represented in the SAAJ model as a javax.xml.soap.SOAPMessage
object. The XML content of the message is represented by a
javax.xml.soap.SOAPPart object. Each SOAP part has a SOAP envelope. This
envelope is represented by the SAAJ javax.xml.SOAPEnvelope object. The
SOAP specification defines various elements that reside in the SOAP envelope;
SAAJ defines objects for the various elements in the SOAP envelope.

The SOAP message can also contain non-XML data that is called attachments.
These attachments are represented by SAAJ AttachmentPart objects that are
accessible from the SOAPMessage object.

A number of reasons exist as to why handlers and applications use the generic
SOAPElement API instead of a tightly bound mapping:

� The Web service might be a conduit to another Web service. In this case, the
SOAP message is only forwarded.

 Chapter 6. Integration layer 491

� The Web service might manipulate the message using a different data model,
for example a Service Data Object (SDO). It is easier to convert the message
from a SAAJ DOM to a different data model.

� A handler, for example, a digital signature validation handler, might want to
manipulate the message generically.

You might have to go a step further to map your XML schema types, because the
SOAPElement interface is not always the best alternative for legacy systems. In
this case you might want to use a generic programming model, such as SDO,
which is more appropriate for data-centric applications.

The XML schema can be configured to include a custom data binding that pairs
the SDO or data object with the Java object. For example, the run time renders
an incoming SOAP message into a SOAPElement interface and passes it to the
customer data binder for more processing. If the incoming message contains an
SDO, the run time recognizes the data object code, queries its type mapping to
locate a custom binder, and builds the SOAPElement interface that represents
the SDO code. The SOAPElement is passed to the SDOCustomBinder.

For more information about the process of developing applications with
SOAPElement, SDO, and custom binders, see the following URL:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.web
sphere.wsfep.multiplatform.doc/info/ae/ae/cwbs_custombinders.html

WSIF
The Web Services Invocation Framework (WSIF) provides a Java API for
invoking Web Services, independent of the format of the service or the transport
protocol through which it is invoked.

Goals of WSIF
WSIF aims to extend the flexibility provided by SOAP services into a general
model for invoking Web Services, irrespective of the underlying binding or access
protocols.

SOAP bindings for Web Services are part of the WSDL specification, therefore
when most developers think of using a Web service, they immediately think of
assembling a SOAP message and sending it across the network to the service
endpoint, using a SOAP client API. For example: using Apache SOAP the client
creates and populates a Call object that encapsulates the service endpoint, the
identification of the SOAP operation to invoke, parameters to send, and so on.

While this process works for SOAP, it is limited in its use as a general model for
invoking Web Services for the following reasons:

492 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.wsfep.multiplatform.doc/info/ae/ae/cwbs_custombinders.html

� Web Services are more than just SOAP services.

You can deploy as a Web service any application that has a WSDL-based
description of its functional aspects and access protocols. If you are using the
Java 2 platform, Enterprise Edition (J2EE) environment, then the application
is available over multiple transports and protocols.

For example, you can take a database-stored procedure, expose it as a
stateless session bean, then deploy it into a SOAP router as a SOAP service.
At each stage, the fundamental service is the same. All that changes is the
access mechanism: from Java DataBase Connectivity (JDBC) to Remote
Method Invocation over Internet Inter-ORB Protocol (RMI-IIOP) and then to
SOAP.

The WSDL specification defines a SOAP binding for Web Services, but you
can add binding extensions to the WSDL so that, for example, you can offer
an enterprise bean as a Web service using RMI-IIOP as the access protocol.
You can even treat a single Java class as a Web service, with in-thread Java
method invocations as the access protocol. With this broader definition of a
Web service, you require a binding-independent mechanism for service
invocation.

� Tying client code to a particular protocol implementation is restricting.

If your client code is tightly bound to a client library for a particular protocol
implementation, it can become hard to maintain.

For example, if you move from Apache SOAP to Java Message Service (JMS)
or enterprise bean, the process can take a lot of time and effort. To avoid
these problems, you require a protocol implementation-independent
mechanism for service invocation.

� Incorporating new bindings into client code is hard.

If you want to make an application that uses a custom protocol work as a Web
service, you can add extensibility elements to WSDL to define the new
bindings. But in practice, achieving this capability is hard.

For example, you have to design the client APIs to use this protocol. If your
application uses just the abstract interface of the Web service, you have to
write tools to generate the stubs that enable an abstraction layer. These tasks
can take a lot of time and effort. What you require is a service invocation
mechanism that allows you to update existing bindings, and to add new
bindings.

� Multiple bindings can be used in flexible ways.

To take advantage of Web Services that offer multiple bindings, you require a
service invocation mechanism that can switch between the available service
bindings at run time, without having to generate or recompile a stub.

 Chapter 6. Integration layer 493

Imagine that you have successfully deployed an application that uses a Web
service which offers multiple bindings. For example, suppose that you have a
SOAP binding for the service and a local Java binding that lets you treat the
local service implementation (a Java class) as a Web service.

The local Java binding for the service can only be used if the client is
deployed in the same environment as the service. In this case, it is more
efficient to communicate with the service by making direct Java calls than by
using the SOAP binding.

If your clients could switch the actual binding used based on run-time
information, they could choose the most efficient available binding for each
situation.

� A freer Web Services environment enables intermediaries.

Web Services offer application integrators a loosely-coupled paradigm. In
such environments, intermediaries can be very powerful.

Intermediaries are applications that intercept the messages that flow between
a service requester and a target Web service, and perform some mediating
task (for example logging, high-availability or transformation) before passing
on the message. The Web Services Invocation Framework (WSIF) is
designed to make building intermediaries both possible and simple. Using
WSIF, intermediaries can add value to the service invocation without requiring
transport-specific programming.

WSIF architecture
A diagram depicting the Web Services Invocation Framework architecture, and a
description of each of the major components of the architecture.

The Web Services Invocation Framework architecture is shown in Figure 6-35.

Figure 6-35 WSIF architecture

494 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

The components of this architecture include:

� WSDL document:

The Web service WSDL document contains the location of the Web service.
The binding document defines the protocol and format for operations and
messages defined by a particular portType.

� WSIF service:

The WSIFService interface is responsible for generating an instance of the
WSIFOperation interface to use for a particular invocation of a service
operation. For more information, see Finding a port factory or service at the
following URL:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.
websphere.wsfep.multiplatform.doc/info/ae/ae/rwsf_serv.html

� WSIF operation:

The run-time representation of an operation, called WSIFOperation is
responsible for invoking a service based on a particular binding. For more
information, see WSIF API reference: Using ports in the following URL:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.
websphere.wsfep.multiplatform.doc/info/ae/ae/rwsf_ports.html

� WSIF provider:

A WSIF provider is an implementation of a WSDL binding that can run a
WSDL operation through a binding-specific protocol. WSIF includes SOAP
providers, JMS providers, Java providers and EJB providers. For more
information, see Linking a WSIF service to the underlying implementation of
the service in the following URL:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.
websphere.wsfep.multiplatform.doc/info/ae/ae/twsf_pr.html

WSIF usage scenarios
This topic describes two brief scenarios that illustrate the role WSIF plays in the
emerging Web Services environment:

� Scenario: Redevelopment and redeployment:

When you first implement a Web service, you create a simple prototype.
When you want to move a prototype Web service into production, you often
have to redevelop and redeploy it.

The Web Services Invocation Framework (WSIF) uses the same API calls
irrespective of the underlying technologies, therefore if you use WSIF:

– You can reimplement and redeploy your services without changing the
client code.

 Chapter 6. Integration layer 495

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.wsfep.multiplatform.doc/info/ae/ae/rwsf_serv.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.wsfep.multiplatform.doc/info/ae/ae/rwsf_ports.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.wsfep.multiplatform.doc/info/ae/ae/twsf_pr.html

– You can use existing reliable and high-performance infrastructures like
Remote Method Invocation over Internet Inter-ORB Protocol (RMI-IIOP)
and Java Message Service (JMS) without sacrificing the
location-independence that the Web service model offers.

� Scenario: Service flow composition:

A service flow typically invokes a Web service, then passes the response
from one Web service to the next Web service, perhaps performing some
transformation in the middle.

There are two key aspects to this flow that WSIF provides:

– A representation of the service invocation based on the metadata in
WSDL.

– The ability to build invocations based solely on the portType, which can
therefore be used in any implementation.

For example, imagine that you built a meta-service that uses a number of
services to build a process. Initially, several of those services are simple Java
bean prototypes that are written and exposed through SOAP, but you plan to
reimplement some of them as EJB components, and to out-source others.

If you use SOAP, it ties up multiple threads for every onward invocation,
because they pass through the Web server and servlet engine and on to the
SOAP router. If you use WSIF to call the beans directly, you get much better
performance compared to SOAP and you do not lose access or location
transparency. Using WSIF, you can replace the Java bean implementations
with EJB implementations without changing the client code. To move some of
the Web Services from local implementations to external SOAP services, you
just update the WSDL.

We have concluded some basic concepts around Web Services, including some
concepts related to new features in WebSphere Application Server 6.1. Now we
go on to the best practices.

6.12.2 Web Services architectures and best practices

In this section we consider some best practices in applying Web Services for
solving tough architectural problems.

Some Web Services do’s and don'ts
There is a common set of emotions that go along with adopting any new
technology. First, when you begin to hear the buzz about a technology, you start
to think that it might be useful in solving your particular problems, and feel
positively inclined toward it. As you learn more, your excitement grows —
perhaps a short proof-of-concept is successful and leads you to jump in with both

496 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

feet and adopt the new technology for a big new project. Then, the reality of the
state of the technology begins to set in, and you start to find the limitations of the
new technology. At this point, you might be able to muddle through and make the
project successful despite the technology's limitations, or the project might simply
crash. The old adage “all panaceas become poison” applies to most new
technologies, and it applies no less to Web Services.

In the past two or three years since Web Services have started to be used in
practical applications, a number of basic dos and don'ts have emerged about
when Web Services are practical, and when they are not. Next, we'll examine
some of these basic principles, and discuss some situations where disregarding
them have made projects go awry.

Principle: Try not to use XML-based Web Services between the
layers of a logical application

Web Services function best where they complement other J2EE technologies,
not replace them. For instance, a wonderful way to use Web Services is when
connecting from an application client running out on the global internet to
business logic written in EJBs inside WebSphere Application Server. Here you
get a nice, clean separation of communication between the Controller and
Domain layers of your application. This is the same place in which you would use
EJBs and so, if you consider Web Services as another object distribution
mechanism, then you can see why this would be appropriate. SOAP over HTTP
can work in places where RMI over IIOP cannot, and so this allows the
XML-based Web Services to complement the existing EJBs.

However, where people often go wrong with this is to assume that if this works
between one pair of layers, it would work well between another. For instance, a
common anti-pattern that we have seen far too often is a design where a
persistence layer is wrapped inside an XML API and then placed in a process
separate from the business logic that has to invoke the persistence layer. In
versions of this design, we have seen people actually serialize JavaTM objects
into XML, send them over the network, deserialize them, perform a database
query with the objects thus sent in as an argument, convert the database result
set to XML, and then send the result set back across the network, only to be
converted into Java objects and finally operated on. There are several major
problems with this approach:

1. Persistent objects should ALWAYS remain local to the business object that
operates on them. The overhead of serialization and deserialization is
something you want to avoid whenever possible.

2. There is not yet a workable, fully-implemented transaction specification for
Web Services. In EJBs with RMI-IIOP you have the option (although you are
not required to) of including persistence operations in an outer transaction

 Chapter 6. Integration layer 497

scope if you use Entity Beans or Session beans with Mapper objects if you so
choose. If you introduce a layer of Web Services between the persistent
objects and the business objects operating on them, then you lose that ability.

In general, XML Web Services are not appropriate for fine grained interactions,
even less so than RMI-IIOP. For instance, do not put it between the view layer
and the controller layer of an application. The overhead of the parsing/XML
generation and the garbage generation overhead kills the performance of your
overall application.

Principle: Be very careful when using Web Services between
application servers

In many ways, interoperability between systems is the raison d'etre of Web
Services. So, if you are connecting to a system written using Microsoft® .NET,
then the use of Web Services is almost a given. While you could use other
mechanisms like WebSphere Application Server's COM support, the best
solution for interoperability going forward for both the Microsoft and IBM
platforms is probably Web Services.

Sometimes it makes sense as when connecting disparate Java application
servers from different vendors, but this is a less common occurrence. It is
possible (for instance) to connect to EJBs written in WebSphere from a JBoss or
WebLogic server by using the WebSphere Thin Application Client. This would be
a much better performing solution than one using HTTP and SOAP based Web
Services. On the other hand, a more common occurrence is when you want
asynchronous invocation of business logic written either in another application
server or in some sort of legacy server. In this case, sending XML over JMS
makes a lot of sense, and if you wrap your document-oriented XML in a SOAP
envelope then it makes even more sense; you can take advantage of the header
structure of SOAP and even possibly gain some out-of-the box features like
WS-Security support.

Addressing the limitations of Web Services
Web Services have proven to be a useful approach for addressing some of the
interesting problems of distributed objects. Since its introduction, SOAP over
HTTP has become nearly the de facto standard for application-to-application
communication over the Internet. With major Web sites such as UPS, Amazon,
and Google supporting the Web Services standards, this technology has become
quite entrenched in the corporate I/T world.

However, when we look at using Web Services in an intranet environment, the
issues are not quite as clearly defined as they are when discussing systems
made available over the global Internet. Web Services provide a number of
advantages when using them over the global Internet. For instance:

498 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

� Since the most common transport protocol for Web Services is HTTP, which
is also the protocol that most of the Internet infrastructure is built around
handling, managing, load-balancing, and allowing access to applications
through HTTP is often much less troublesome than allowing access through
other protocols. For instance, most corporations already employ a “DMZ”
firewall policy that allows a set of protected servers to receive incoming traffic
on HTTP or HTTPs but over no other protocols. This is rather an ironic
situation; most businesses allow HTTP because it is believed to be a “safe”
protocol for accessing web content. Now with Web Services, all sorts of
business traffic can now flow through the corporate firewall. Simply assuming
that because you Web Services traffic flows over HTTP that it is “safe” is
inappropriate. Instead, you have to open a dialogue with your security
organization on what business functions should be exposed over the internet,
and what precautions should be taken to protect them.

� Web Services are quickly becoming ubiquitous. This is due to the curious
historical occurrence that for the first time, both Microsoft and the Java
industry have backed a single distributed technology. Since SOAP engines
and tools that understand the basic protocols are now common, there is no
requirement that a Web Services client be written using the same tool as a
Web Services server. This enables communication between companies over
the global Internet since business partners do not have to assume anything
about the way in which either side of the conversation is implemented.

However, when we are considering a system in which the majority of users are
working within a corporate intranet, some of the following hurdles to overcome
with Web Services and SOAP become more crucial. They are:

� First and foremost, we have found that with the current SOAP engines that
there is literally an order-of-magnitude performance difference between Web
Services calls and equivalent calls using the remote EJB protocol (RMI-IIOP).
While a very large-grained approach with Web Services might be applicable
to infrequent communication between business partners, using them in tightly
coupled, high-volume internal applications is likely to be inappropriate. For
instance, a call-center application where there are dozens or hundreds of
requests per minute from each user, is probably not a good candidate for Web
Services. In a situation like that the overhead of generating and parsing XML
is problematic.

� Even though the industry is making progress with standardized authentication
and authorization for Web Services, unfortunately most of the current set of
J2EE products do not yet provide full support for this to the extent that they do
for the J2EE protocols (like RMI-IIOP).

Looking forward into time, many of these problems could be addressed in a very
elegant way by an expansion of the promised multi-protocol support for Web
Services. For instance, if a standard RMI-IIOP binding for WSDL was available

 Chapter 6. Integration layer 499

through JAX-RPC or JAX-WS, then you could simply choose the right port for the
job in your WSDL. However, pending standardization of this approach, these
problems are still real issues.

So, since no one distribution approach solves all problems, what many
organizations have concluded is that they have to support multiple
distributed-object protocols and access mechanisms within their enterprise. A
single application API might have to be available as an external Web Service
using SOAP over HTTP, over RMI-IIOP for internal remote clients, using Local
EJB references within an application server, and potentially even using SOAP
over MQ for asynchronous interaction. There are two pieces to solving this
puzzle; first, how do we provide access to business logic over multiple
distribution protocols, and then what client programming model do we use to
provide access to the remote business logic.

WSDL and WSIF
You would think that a pattern that (in retrospect) is as obvious as this one would
have managed to find its way into one or more open-source projects or
commercial products. In fact, that has happened, although it has appeared to
have “slipped under the radar screen” of most developers. The key difference
here is that WSIF is designed around using WSDL as a “normalized description”
of a piece of software using a protocol. If you have a WSDL document with
different bindings for a set of technologies (such as SOAP over HTTP or EJBs)
then you could use WSIF providers to connect to remote objects implemented
using different distribution technologies. More about WSIF see at , “WSIF” on
page 492.

6.12.3 Best practices while developing Web Services

In this section we go over best practices for Web Services.

Use simple data types
Even though Web Services were designed with interoperability in mind, it is best
to use simple data types where possible. By simple, we mean integers and
strings. In addition, compound data types (comparable with structs in C, or
records in Pascal) and arrays of simple types are simple.

Anything that does not fall into this pattern should be used carefully. In particular,
the Java collection classes and similarly complex data types should be avoided
altogether because there might be no proper counterparts at the client side.

500 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Avoid fine-grained Web Services
Web Services use a very simple, yet powerful format for their main protocol:
XML. While being able to read and structure XML documents with just any simple
text editor eases the use of SOAP, the process of automatically creating and
interpreting XML documents is more complex.

Therefore, there is always a point where the complexity of dealing with the

protocol is higher than performing the actual computation. To avoid this problem,
design Web Services that perform more complex business logic. This can also
mean that your Web service allows for bulk processing instead of multiple
invocations with one parameter only.

Avoid Web Services for intra-application communication
This best practice is closely related to the previous practice. Intra-application
communication (that is, communication within an application) is generally not
exposed to any third-party clients. Therefore, it is not necessary to allow for an
interoperable interface in this case. However, try to take into consideration that
this might change in the future.

Use short attribute, property, and tag names
This is another practice that is closely related to the previous practices. As each
attribute, property, and tag name is transmitted verbatim, the length of a
message is directly dependent on the length on the attribute and property
names. The general guideline is the shorter the attribute, property, and tag
names are, the shorter the transmitted message and the faster the
communication and processing.

Avoid deep nesting of XML structures
This is yet another practice that is closely related to the previous practices.
Because parsing of deeply nested XML structures increases processing time,
deeply nested compound data types should be avoided. This also increases
comprehension of the data type itself.

Apply common sense (also known as being defensive)
If a standard or specification is not clear enough, try to implement your Web
service such that it can handle any of the interpretations you can think of. An
example from a different, although not less instructive, domain is the following
excerpt from the TCP/IP specification (RFC 793):

http://www.ietf.org/rfc/rfc0793.txt?number=793

Postel's Law: Be conservative in what you do, be liberal in what you accept from
others.

 Chapter 6. Integration layer 501

Use caching of Web Services as provided by the platform
WebSphere Application Server provides an excellent caching framework that
allows for caching of information at various levels. Among these, you can also
cache Web service requests, thus save processing time. The cache is easy to set
up and can be used on any existent Web service. In addition, caching can be
also turned on at the client, thus allowing for even more performance
improvements.

Minimize parsing of XML data
If a business function is to be exposed as an XML Web service that leverages
SOAP for both internal consumption (EAI) and for external consumption by
business partners (B2B), intermediaries such as gateways or service agents
should avoid or minimize parsing of the SOAP Body. If a gateway component is
used to centralize access of Web Services to the Internet, but no network
transport or message manipulation is required (such as SOAP/HTTP to
RMI/IIOP), then the gateway should not perform parsing of the SOAP body.

Many system management vendors today provide service agents that front-end
the actual Web Services. These components rely on business context
information within the SOAP body, such as business partner IDs, transaction
correlators, message IDs, and authorization codes in providing their system
management capabilities. Using the business context, the service agents provide
statistics on business events, enforce business policies, and route requests to
meet quality of service commitments. Recently, the Web Services Gateway in
WebSphere Application Server V5.1 supports partial parsing of SOAP
messages. Likewise, system management vendors have recently started to
provide the capability to partially parse SOAP messages to minimize their impact
on performance, so it's vital that these capabilities be utilized.

JavaBean versus EJB components
You must now choose whether to use JavaBeans or EJB components for your
Web service providers. This decision is no different than when you're architecting
your other J2EE applications. If your solution does not require the J2EE runtime
support for transaction, security, and management that are enabled through the
use of EJB components and the EJB container, then JavaBeans can suffice and
provide better performance. If you are using EJB components and deploying
them locally within the same JVM as the SOAP engine, then ensure that you
deploy them such that they are called using pass by reference. By enabling pass
by reference, the parameters of the method are not copied to the stack with every
remote call, which can be expensive. Enabling pass by reference can improve
performance up to 50%, when the SOAP engine (EJB client) and the Web
service provider (EJB Server) are installed in the same application server
instance, and remote interfaces are used.

502 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Retrieval of service bindings from a UDDI registry
UDDI registries are used to publish Web Services information for dynamic
discovery. Late binding of a service's access point is one use of an UDDI registry
that is common today. During the client's service invocation, the UDDI registry is
queried to obtain the access point (URL) of the service. This approach is often
used to enable the use of backup servers in performing fail-over support for
improving service availability. Likewise, it affords the service provider the ability to
migrate service requests from one system to another for the purpose of
maintenance without disrupting the processing of existing service requests.

However, the UDDI query can add significant path length to a request and, if
done for every request, can degrade a client's performance. One approach is to
front-end the local service proxy created from the service provider's WSDL with a
general proxy that queries the UDDI registry and caches the access points for a
given period of time. The client application calls the general proxy that calls the
service proxy to invoke the service provider.

If the call to the Service proxy fails due to a non-HTTP Status code of 200, then
the general proxy queries the UDDI registry again to see if an alternative address
is available for use on a follow-up call to the service proxy. This allows the client
application code to be simpler, the UDDI registry queries to be minimized, and
the client to bind dynamically to the service in order to ensure higher availability
with optimal performance.

Summary
Successfully optimizing performance for Web Services is part experience, part
art, and part discipline in being systematic in your approach to measuring
criteria, analyzing information, and making sound adjustments. Once you have a
solution that is operational, it is an iterative process to fine tune your solution by
capturing measurements from simulated loads and making adjusting and
measuring again to understand their influence.

6.12.4 Web Services performance best practices

This topic presents best practices for the performance of Web Services
applications.

Web Services are developed and deployed based on standards provided by the
Web Services for Java 2 Platform, Enterprise Edition (J2EE) specification and
the Java API for XML-Based Web Services (JAX-WS) and Java Architecture for
XML Binding (JAXB) programming models, and is the mechanism used to
access a Web service. We’ll explain performance considerations for Web
Services supported by this specification.

 Chapter 6. Integration layer 503

When you develop or deploy a Web service, several artifacts are required,
including a Web Services Description Language (WSDL) file. The WSDL file
describes the format and syntax of the Web service input and output SOAP
messages. When a Web service is implemented in the WebSphere Application
Server runtime, the SOAP message is translated based on the J2EE request.
The J2EE-based response is then translated back to a SOAP message.

The most critical performance consideration is the translation between the
XML-based SOAP message and the Java object. Performance is high for a Web
service implementation in WebSphere Application Server, however, application
design, deployment and tuning can be improved. See Monitoring the
performance of Web Services applications for more information about analyzing
and tuning Web Services in the following URL:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/
com.ibm.websphere.wsfep.multiplatform.doc/info/ae/ae/twbs_performance.h
tml

If you are using a Web service application that was developed for a WebSphere
Application Server version prior to Version 6, you can achieve better performance
by running the wsdeploy command. The wsdeploy command regenerates Web
Services artifact classes to increase the serialization and deserialization
performance.

New or updated for this feature pack The wsdeploy command is supported by
JAX-RPC applications that are used with the Feature Pack for Web Services
product. The Java API for XML-Based Web Services (JAX-WS) programming
model that is introduced in the Feature Pack for Web Services product does not
support the wsdeploy command. JAX-WS applications do not require and should
not run the wsdeploy command.

Basic considerations for a high-performance Web Services
application

The following are basic considerations you should know when designing a Web
Services application:

� Reduce the Web Services requests by using a few highly functional APIs,
rather than several simple APIs.

� Design your WSDL file interface to limit the size and complexity of SOAP
messages.

� Use the document/literal style argument when you generate the WSDL file.

� Leverage the caching capabilities offered for WebSphere Application Server.

� Test the performance of your Web service.

504 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.wsfep.multiplatform.doc/info/ae/ae/twbs_performance.html

Additional Web Services performance features that you can
leverage

� In-process optimizations for Web Services to optimize the communication
path between a Web Services client application and a Web container that are
located in the same application server process. For details and enabling this
feature, see Web Services client to Web container optimized communication
in following URL:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.
websphere.wsfep.multiplatform.doc/info/ae/ae/rrun_inbound.html

� Access to Web Services over multiple transport protocols extends existing
Java API for XML-based remote procedure call (JAX-RPC) capabilities to
support non-SOAP bindings such as RMI/IIOP and JMS. These alternative
transports can improve performance and quality of service aspects for Web
Services. For more detailed information see RMI-IIOP using JAX-RPC in the
following URL:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.
websphere.wsfep.multiplatform.doc/info/ae/ae/cwbs_multijaxrpc.html

� SOAP with Attachments API for Java (SAAJ) Version 1.2 provides a
programming model for Web Services relative to JAX-RPC. The SAAJ API
provides features to create and process SOAP requests using an XML API.
SAAJ supports just-in-time parsing and other internal algorithms. For
information about SAAJ or Web Services programming, see SOAP with
Attachments API for Java in the following URL:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.
websphere.wsfep.multiplatform.doc/info/ae/ae/cwbs_saaj.html

� The Web Services tooling generates higher performance custom
deserializers for all JAX-RPC beans. Redeploying a V5.x application into the
V6 runtime can decrease the processing time for large messages.

� Serialization and deserialization runtime is enhanced to cache frequently
used serializers and deserializers. This can decrease the processing time for
large messages.

� The performance of WS-Security encryption and digital signature validation is
improved because of the use of the SAAJ implementation.

Note: SAAJ 1.3 provides support for Web Services that are developed and
implemented based on the Java API for XML Web Services (JAX-WS)
programming model.

 Chapter 6. Integration layer 505

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.wsfep.multiplatform.doc/info/ae/ae/rrun_inbound.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.wsfep.multiplatform.doc/info/ae/ae/cwbs_multijaxrpc.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.wsfep.multiplatform.doc/info/ae/ae/cwbs_saaj.html

IBM provides considerable documentation and best practices for Web Services
application design and development that details these items and more.

For a list of key Web sites that discuss performance best practices, see the
following URL:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.web
sphere.wsfep.multiplatform.doc/info/ae/ae/rwbs_resourceslearning2.html

6.13 References

The following sections list the references in this chapter divided by sections.

6.13.1 EIS access layer

Managing Information Access to an Enterprise Information System Using J2EE
and Services Oriented Architecture, SG24-6371

http://www.redbooks.ibm.com/abstracts/sg246371.html?Open

6.13.2 JDBC and SQLJ

� Advanced DAO programming:

http://www.ibm.com/developerworks/java/library/j-dao/

� Performance tips for the IBM Developer Kit for Java JDBC driver:

http://publib.boulder.ibm.com/iseries/v5r1/ic2924/index.htm?info/rza
ha/jdbcperf.htm

� Java theory and practice: Good housekeeping practices:

http://www.ibm.com/developerworks/library/j-jtp03216.html

� What's new in JDBC 3.0:

http://www.ibm.com/developerworks/java/library/j-jdbcnew/

� Performance Monitoring and Best Practices for WebSphere on Z/OS,
SG24-7269:

http://www.redbooks.ibm.com/abstracts/sg247269.html?Open

506 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://www.ibm.com/developerworks/java/library/j-dao/
http://publib.boulder.ibm.com/iseries/v5r1/ic2924/index.htm?info/rzaha/jdbcperf.htm
http://publib.boulder.ibm.com/iseries/v5r1/ic2924/index.htm?info/rzaha/jdbcperf.htm
http://www.ibm.com/developerworks/library/j-jtp03216.html
http://www.ibm.com/developerworks/library/j-jtp03216.html
http://www.redbooks.ibm.com/abstracts/sg247269.html?Open
http://publib.boulder.ibm.com/iseries/v5r1/ic2924/index.htm?info/rzaha/jdbcperf.htm
http://publib.boulder.ibm.com/iseries/v5r1/ic2924/index.htm?info/rzaha/jdbcperf.htm
http://www.ibm.com/developerworks/java/library/j-jdbcnew/
http://www.ibm.com/developerworks/java/library/j-jdbcnew/
http://www.redbooks.ibm.com/abstracts/sg246371.html?Open
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.wsfep.multiplatform.doc/info/ae/ae/rwbs_resourceslearning2.html

6.13.3 iBATIS

� Improve persistence with Apache Derby and iBATIS, Part 1: Initial
configuration, semantics, and a simple test:

http://www.ibm.com/developerworks/edu/os-dw-os-ad-ibatis1.html

� Improve persistence with Apache Derby and iBATIS, Part 2: Data definition in
Derby:

http://www.ibm.com/developerworks/edu/os-dw-os-ad-ibatis2.html

� Improve persistence with Apache Derby and iBATIS, Part 3: Transactions,
caching, and dynamic SQL:

http://www.ibm.com/developerworks/edu/os-dw-os-ad-ibatis3.html

6.13.4 JPA

� Get to know Java EE 5:

http://www.ibm.com/developerworks/websphere/library/techarticles/070
7_barcia/0707_barcia.html

� Design enterprise applications with the EJB 3.0 Java Persistence API:

http://www.ibm.com/developerworks/java/library/j-ejb3jpa.html

� IBM WebSphere software early programs:

https://www14.software.ibm.com/iwm/web/cc/earlyprograms/websphere/wa
s61ejb3/

� Leveraging OpenJPA with WebSphere Application Server V6.1:

http://www.ibm.com/developerworks/websphere/techjournal/0612_barcia/
0612_barcia.html

6.13.5 Entity Beans

� IBM WebSphere Developer Technical Journal: Understanding WebSphere
Application Server EJB access intents:

http://www.ibm.com/developerworks/websphere/techjournal/0406_persson
/0406_persson.html

� Access intent service in WebSphere Info Center:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topi
c=/com.ibm.websphere.wsfep.multiplatform.doc/info/ae/ae/cejb_axiover
.html

 Chapter 6. Integration layer 507

http://www.ibm.com/developerworks/websphere/techjournal/0406_persson/0406_persson.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.wsfep.multiplatform.doc/info/ae/ae/cejb_axiover.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.wsfep.multiplatform.doc/info/ae/ae/cejb_axiover.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.wsfep.multiplatform.doc/info/ae/ae/cejb_axiover.html
http://www.ibm.com/developerworks/java/library/j-ejb3jpa.html
http://www.ibm.com/developerworks/websphere/techjournal/0612_barcia/0612_barcia.html
http://www.ibm.com/developerworks/edu/os-dw-os-ad-ibatis1.html
http://www.ibm.com/developerworks/edu/os-dw-os-ad-ibatis2.html
http://www.ibm.com/developerworks/edu/os-dw-os-ad-ibatis3.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0707_barcia/0707_barcia.html
https://www14.software.ibm.com/iwm/web/cc/earlyprograms/websphere/was61ejb3/

� Defining WebSphere extensions and bindings for EJB modules:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.
etools.j2ee.ui.ws.ext.doc/topics/cebindejb.html

6.13.6 SDO

� Simplify and unify data with a Service Data Objects architecture:

http://www.ibm.com/developerworks/webservices/library/ws-sdoarch/

� Service Components Architecture (SCA) and Service Development Objects
(SDO) Submitted to OASIS:

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-scasd
o/SCA_SDO_to_OASIS.pdf

6.13.7 JMS

� Introducing the Java Message Service:

https://www6.software.ibm.com/developerworks/education/j-jms/index.h
tml

� MS 1.1 simplifies messaging with unified domains:

http://www.ibm.com/developerworks/java/library/j-jms11/

� SG24-7269 Performance Monitoring and Best Practices for WebSphere on
Z/OS:

http://www.redbooks.ibm.com/abstracts/sg247269.html?Open

6.13.8 Web Services

� Web Services resource for learning in WebSphere Application Server 6.1
infocenter:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topi
c=/com.ibm.websphere.wsfep.multiplatform.doc/info/ae/ae/rwbs_resourc
eslearning2.html

� IBM WebSphere Developer Technical Journal: Web Services Architectures
and Best Practices:

http://www.ibm.com/developerworks/websphere/techjournal/0310_brown/b
rown.html

508 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

https://www6.software.ibm.com/developerworks/education/j-jms/index.html
https://www6.software.ibm.com/developerworks/education/j-jms/index.html
http://www.ibm.com/developerworks/java/library/j-jms11
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.etools.j2ee.ui.ws.ext.doc/topics/cebindejb.html
http://www.ibm.com/developerworks/webservices/library/ws-sdoarch/
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-scasdo/SCA_SDO_to_OASIS.pdf
https://www6.software.ibm.com/developerworks/education/j-jms/index.html
https://www6.software.ibm.com/developerworks/education/j-jms/index.html
http://www.redbooks.ibm.com/abstracts/sg247269.html?Open
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.wsfep.multiplatform.doc/info/ae/ae/rwbs_resourceslearning2.html
http://www.ibm.com/developerworks/websphere/techjournal/0310_brown/brown.html
http://www.ibm.com/developerworks/websphere/techjournal/0310_brown/brown.html

Chapter 7. Environmental performance
considerations

This chapter discusses factors that are critical for high-performance WebSphere
Application Server based applications. However, a prerequisite is to ensure that
your application has a good design and architecture. The techniques and
strategies outlined here can assist you in optimizing the performance of your
applications. However, they cannot compensate for a poorly designed or
architected application. You should apply the best practices after verifying that
the basic design and architecture are appropriate for the application and
scalable.

The chapter is organized into the following major sections:

� 7.1, “What is new in V6.1” on page 510
� 7.2, “Application environment tuning” on page 510
� 7.3, “Tuning a Web server” on page 567
� 7.4, “DB2 tuning parameters” on page 570
� 7.5, “Workload Management” on page 575

7

© Copyright IBM Corp. 2008. All rights reserved. 509

7.1 What is new in V6.1

WebSphere Application Server V6.1 has a new Java Virtual Machine (JVM)
designed to improve stability and performance. It provides a Java language
compiler and execution environment to support the Java 2 Standard Edition
(J2SE) 5 specification. This new JVM is supported on all platforms that ship with
an IBM JDK. This new JVM includes a new garbage collection scheme and a
new Just-In-Time (JIT) compiler. The IBM Java 5.0 JVM provides major
improvements in virtual machine technology to provide significant performance
and serviceability enhancements over the earlier IBM Java execution technology.

WebSphere Application Server V6.1 also includes support for running Java
Specification Request (JSR) 168 compliant Portlets and JSR 116 Session
Initiation Protocol (SIP) Servlets. A Portlet is a Java class and a Web component,
similar to a Servlet. It implements javax.portlet.* interfaces and it is packed in a
Web ARchive (WAR) File. Portlets accept incoming requests, and return markup
fragments. Markup fragments is a part of a document, rather than a complete
document (typically HTML, XHTML or WML). SIP is a signaling protocol. The SIP
application-layer protocol allows for the creation and management of multimedia
communication sessions between devices.

7.2 Application environment tuning

Within the WebSphere Application Server environment, there are many settings
that can increase application performance. Many components in WebSphere
Application Server have an impact on performance and tuning is highly
application-dependent. The purpose of this section is to discuss those tuning
parameters. Figure 7-1 shows that WebSphere has several J2EE components
such as Servlets, JSPs, and EJBs, and each component has a container.

There are two main aspects to tuning:

� Tuning of code: Code tuning is covered in other chapters of this book.

� Tuning of services: In this chapter we consider the tuning of products that run
Java Virtual Machines, J2EE components, or back-end systems, such as
databases and Message Queue Servers, for example.

510 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Figure 7-1 Some components and containers to WebSphere Application Server

Inside WebSphere, for example, we have several containers that belong to the
J2EE specification. To get better performance, tuning of each container is very
important. The access to the back-end system, such as a database, has to be
tuned also.

It is important to stress once again that performance tuning is not an exact
science. Factors that influence testing vary from application to application, and
also from platform to platform. This section is designed to provide a primer for the
reader, describing areas that can be tuned to increase performance.

The latest performance tuning information can be found in the WebSphere
Application Server V6.1 Info Center.

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

Select the appropriate version of the Info Center you wish to read. Then navigate
to the Tuning performance section in the contents pane on the left side.

7.2.1 Tuning the Java Virtual Machine
WebSphere Application Server is a Java based server and requires a Java
Virtual Machine (JVM) environment to run and support the Java and J2EE
applications that run on it. As part of configuring WebSphere Application Server,
you can configure the Java runtime environment to tune performance and system
resource usage.

A Java runtime environment provides the execution environment for Java based
applications and servers such as WebSphere Application Server. Therefore the

Database

Web container

Servlet JSP

EJB container

EJB

J2EE J2EE

WebSphere Application Server

 Chapter 7. Environmental performance considerations 511

Java configuration plays a significant role in determining performance and
system resource consumption for WebSphere Application Server and the
applications that run on it.

The following tasks provide specific instructions on how to perform the following
types of tuning for each JVM. The tasks do not have to be performed in any
specific order:

� Java memory or heap tuning
� Garbage collection tuning
� Start up versus runtime performance optimization

Other significant tuning options not described here can be found in the Java
technology guides from each vendor.

Configuring the heap size
Java memory or heap tuning controls the amount of memory that is allocated for
use by individual application server instances. The following command line
parameters are used to adjust the minimum and maximum heap size for each
application server instance. The IBM Developer Kit and Runtime Environment,
Java2 Technology Edition, Version 5.0 Diagnostics Guide provides additional
information on tuning the heap size. It is available on the developerWorks® Web
site:

http://www.ibm.com/developerworks/java/jdk/diagnosis/

Heap size setting can set the maximum and initial heap sizes for the JVM.

In general, increasing the size of the Java heap improves throughput until the
heap no longer resides in physical memory. After the heap begins swapping to
disk, Java performance drastically suffers. Therefore, the maximum heap size
must be low enough to contain the heap within physical memory.

The physical memory usage must be shared between the JVM and other
applications running on the system, such as the database. For assurance, use a
smaller heap, for example 64 MB, on machines with less memory.

Try a maximum heap of 128 MB on a smaller machine, that is, less than 1 GB of
physical memory. Use 256 MB for systems with 2 GB memory, and 512 MB for
larger systems. The starting point depends on the application.

If performance runs are being conducted and highly repeatable results are
required, set the initial and maximum sizes to the same value. This setting
eliminates any heap growth during the run. For production systems where the
working set size of the Java applications is not well understood, an initial setting
of one-fourth the maximum setting is a good starting value. The JVM then tries to
adjust the size of the heap to the working set of the Java application.

512 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://www.ibm.com/developerworks/java/jdk/diagnosis/

To use the administrative console to configure the heap size:

1. In the administrative console, click Servers → Application Servers →
server.

2. Under Server Infrastructure, click Java and Process Management →
Process Definition → Java Virtual Machine.

3. Specify a new value in either the Initial heap size or the Maximum heap size
field. You can also specify values for both fields if you have to adjust both
settings. See Figure 7-2.

4. Click OK.

5. Save your changes to the master configuration.

6. Stop and restart the application server.

Figure 7-2 JVM Configuration

 Chapter 7. Environmental performance considerations 513

Tuning garbage collection
You can use JVM settings to configure the type and behavior of garbage
collection. When the JVM cannot allocate an object from the current heap
because of lack of contiguous space, the garbage collector is invoked to reclaim
memory from Java objects that are no longer being used.

To adjust your JVM garbage collection settings:

1. In the administrative console, click Servers → Application Servers →
server.

2. Under Server Infrastructure, click Java and Process Management →
Process Definition → Java Virtual Machine.

3. Enter the –X option you want to change in the Generic JVM arguments field.
See Figure 7-3 on page 516.

4. Click OK.

5. Save your changes to the master configuration.

6. Stop and restart the application server.

The following steps describe the specific –X options that JVM garbage collectors
support:

1. Use the Java -X option to view a list of memory options:

– -Xgcpolicy

Starting with Java 5.0, the IBM JVM provides four policies for garbage
collection. Each policy provides unique benefits:

• optthruput, which is the default, provides high throughput but with
longer garbage collection pause times. During a garbage collection, all
application threads are stopped for mark, sweep and compaction,
when compaction is required. optthruput is sufficient for most
applications.

• optavgpause, which reduces garbage collection pause time by
performing the mark and sweep phases of garbage collection, does so
concurrently with application execution. This concurrent execution
cause a small performance impact to overall throughput.

• gencon, which is new in IBM Java 5.0, is a generational garbage
collector for the IBM JVM. The generational scheme attempts to
achieve high throughput along with reduced garbage collection pause
times. To accomplish this goal, the heap is split into new and old
segments. Long lived objects are promoted to the old space while
short-lived objects are garbage collected quickly in the new space. The
gencon policy provides significant benefits for many applications, but is
not suited to all applications and is generally more difficult to tune.

514 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

• subpool, which can increase performance on multiprocessor systems,
that commonly use more than 8 processors, is a policy that is only
available on IBM System p™ and System z™ processors. The subpool
policy is similar to the optthruput policy except that the heap is divided
into subpools that provide improved scalability for object allocation.

The recommended value of gcpolicy is optthruput. The usage is
Xgcpolicy:optthruput. Setting gcpolicy to optthruput disables
concurrent mark. You should get the best throughput results when you use
the optthruput policy unless you are experiencing erratic application
response times, which is an indication that you might have pause time
problems.

Setting gcpolicy to optavgpause enables concurrent mark with its default
values. This setting alleviates erratic application response times that
normal garbage collection causes. However, this option might decrease
overall throughput.

– -Xnoclassgc

By default, the JVM unloads a class from memory whenever there are no
live instances of that class left. Class unloading can degrade performance.
The recommended value of this property is disable. Turning off class
garbage collection eliminates the overhead of loading and unloading the
same class multiple times.

 Chapter 7. Environmental performance considerations 515

Figure 7-3 Tuning JVM garbage collector

516 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

2. Share classes in a cache.

The share classes option of the IBM Java 2 Runtime Environment (J2RE)
Version 1.5.0 lets you share classes in a cache. Sharing classes in a cache
can improve startup time and reduce memory footprint. Processes, such as
application servers, node agents, and deployment managers, can use the
share classes option. By default, the share classes in a cache option is
enabled and the recommended value is enabled.

If you use this option, you should clear the cache when the process is not in
use. To clear the cache, either call the
<app_server_root>/bin/clearClassCache.bat/sh utility or stop the process
and then restart the process.

If you have to disable the share classes option for a process, specify the
generic JVM argument -Xshareclasses:none for that process:

a. In the administrative console, click Servers → Application Servers →
server.

b. Under Server Infrastructure, click Java and Process Management →
Process Definition → Java Virtual Machine.

c. Enter -Xshareclasses:none in the Generic JVM arguments field.

d. Click OK.

e. Save your changes to the master configuration.

f. Stop and restart the application server.

A complete guide to the IBM Java garbage collector is provided in the IBM
Developer Kit and Runtime Environment, Java2 Technology Edition, Version 5.0
Diagnostics Guide. This document is available on the developerWorks Web site:

http://www.ibm.com/developerworks/java/jdk/diagnosis/

7.2.2 Java memory tuning tips
Enterprise applications written in the Java language involve complex object
relationships and utilize large numbers of objects. Although the Java language
automatically manages memory associated with object life cycles, understanding
the application usage patterns for objects is important.

Important: The IBM J2RE 1.5.0 is currently not used on:

� Solaris
� HP-UX

 Chapter 7. Environmental performance considerations 517

http://www.ibm.com/developerworks/java/jdk/diagnosis/
http://www.ibm.com/developerworks/java/jdk/diagnosis/

In particular, verify the following conditions:

� The application is not over utilizing objects.
� The application is not leaking objects.
� Java heap parameters are set properly to handle an object usage pattern.

Understanding the effect of garbage collection is necessary to apply these
management techniques.

The garbage collection bottleneck
Examining Java garbage collection gives insight to how the application is utilizing
memory. Garbage collection is a Java strength. By taking the burden of memory
management away from the application writer, Java applications are more robust
than applications written in languages that do not provide garbage collection.
This robustness applies as long as the application is not abusing objects.
Garbage collection normally consumes from 5% to 20% of total execution time of
a properly functioning application. If not managed, garbage collection is one of
the biggest bottlenecks for an application.

Monitoring garbage collection
You can use garbage collection to evaluate application performance health. By
monitoring garbage collection during the execution of a fixed workload, you gain
insight as to whether the application is over-utilizing objects. Garbage collection
can even detect the presence of memory leaks.

You can monitor garbage collection statistics using object statistics in the Tivoli
Performance Viewer, or using the verbose:gc JVM configuration setting. The
verbose:gc format is not standardized between different JVMs or release levels.

For this type of investigation, set the minimum and maximum heap sizes to the
same value. Choose a representative, repetitive workload that matches
production usage as closely as possible, user errors included.

To ensure meaningful statistics, run the fixed workload until the application state
is steady. It usually takes several minutes to reach a steady state.

Detecting memory leaks
Memory leaks in the Java language are a dangerous contributor to garbage
collection bottlenecks. Memory leaks are more damaging than memory overuse,
because a memory leak ultimately leads to system instability. Over time, garbage
collection occurs more frequently until the heap is exhausted and the Java code
fails with a fatal out-of-memory exception. Memory leaks occur when an unused
object has references that are never freed. Memory leaks most commonly occur
in collection classes, such as Hashtable, because the table always has a
reference to the object, even after real references are deleted.

518 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

High workload often causes applications to crash immediately after deployment
in the production environment. This is especially true for leaking applications
where the high workload accelerates the magnification of the leakage and a
memory allocation failure occurs.

Memory leak testing
The goal of memory leak testing is to magnify numbers. Memory leaks are
measured in terms of the amount of bytes or kilobytes that cannot be garbage
collected. The delicate task is to differentiate these amounts between expected
sizes of useful and unusable memory. This task is achieved more easily if the
numbers are magnified, resulting in larger gaps and easier identification of
inconsistencies. The following list contains important conclusions about memory
leaks:

� Long-running test:

Memory leak problems can manifest only after a period of time, therefore,
memory leaks are found easily during long-running tests. Short running tests
can lead to false alarms. It is sometimes difficult to know when a memory leak
is occurring in the Java language, especially when memory usage has
seemingly increased either abruptly or monotonically in a given period of time.
The reason it is hard to detect a memory leak is that these kinds of increases
can be valid or might be the intention of the developer. You can learn how to
differentiate the delayed use of objects from completely unused objects by
running applications for a longer period of time. Long-running application
testing gives you higher confidence for whether the delayed use of objects is
actually occurring.

� Repetitive test:

In many cases, memory leak problems occur by successive repetitions of the
same test case. The goal of memory leak testing is to establish a big gap
between unusable memory and used memory in terms of their relative sizes.
By repeating the same scenario over and over again, the gap is multiplied in a
very progressive way. This testing helps if the number of leaks caused by the
execution of a test case is so minimal that it is hardly noticeable in one run.

You can use repetitive tests at the system level or module level. The
advantage with modular testing is better control. When a module is designed
to keep the private module without creating external side effects such as
memory usage, testing for memory leaks is easier. First, the memory usage
before running the module is recorded. Then, a fixed set of test cases are run
repeatedly. At the end of the test run, the current memory usage is recorded
and checked for significant changes. Remember, garbage collection must be
suggested when recording the actual memory usage by inserting System.gc()
in the module where you want garbage collection to occur, or using a profiling
tool, to force the event to occur.

 Chapter 7. Environmental performance considerations 519

� Concurrency test:

Some memory leak problems can occur only when there are several threads
running in the application. Unfortunately, synchronization points are very
susceptible to memory leaks because of the added complication in the
program logic. Careless programming can lead to kept or unreleased
references. The incident of memory leaks is often facilitated or accelerated by
increased concurrency in the system. The most common way to increase
concurrency is to increase the number of clients in the test driver.

Consider the following points when choosing which test cases to use for
memory leak testing:

– A good test case exercises areas of the application where objects are
created. Most of the time, knowledge of the application is required. A
description of the scenario can suggest creation of data spaces, such as
adding a new record, creating an HTTP session, performing a transaction
and searching a record.

– Look at areas where collections of objects are used. Typically, memory
leaks are composed of objects within the same class. Also, collection
classes such as Vector and Hashtable are common places where
references to objects are implicitly stored by calling corresponding
insertion methods. For example, the get method of a Hashtable object
does not remove its reference to the retrieved object.

Using Tivoli Performance Viewer to help find memory leaks
Tivoli Performance Viewer helps to find memory leaks. For the best results,
repeat experiments with increasing duration, like 1000, 2000, and 4000 page
requests. The Tivoli Performance Viewer graph of used memory should have a
sawtooth shape. Each drop on the graph corresponds to a garbage collection.
There is a memory leak if one of the following events occurs:

� The amount of memory used immediately after each garbage collection
increases significantly. The sawtooth pattern looks more like a staircase.

� The sawtooth pattern has an irregular shape.

Also, look at the difference between the number of objects allocated and the
number of objects freed. If the gap between the two increases over time, there is
a memory leak.

Heap consumption indicating a possible leak during a heavy workload (the
application server is consistently near 100% CPU utilization), yet appearing to
recover during a subsequent lighter or near-idle workload, is an indication of
heap fragmentation. Heap fragmentation can occur when the JVM can free
sufficient objects to satisfy memory allocation requests during garbage collection
cycles, but the JVM does not have the time to compact small free memory areas
in the heap to larger contiguous spaces.

520 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Another form of heap fragmentation occurs when small objects (less than 512
bytes) are freed. The objects are freed, but the storage is not recovered, resulting
in memory fragmentation until a heap compaction has been run.

Heap fragmentation can be reduced by forcing compactions to occur, but there is
a performance penalty for doing this. Use the Java -X command to see the list of
memory options.

Java heap parameters
The Java heap parameters also influence the behavior of garbage collection.
Increasing the heap size supports more object creation. Because a large heap
takes longer to fill, the application runs longer before a garbage collection occurs.
However, a larger heap also takes longer to compact and causes garbage
collection to take longer.

For performance analysis, the initial and maximum heap sizes should be equal,
as this eliminates heap growing and shrinking delays. Equating initial with
maximum heapsize without previous heap size tuning, in most cases, creates an
inefficiently used heap: when it is sized too big, the heap is not used by the
application entirely and thus memory resources are wasted.

When tuning a production system where the working set size of the Java
application is not understood, a good starting value for the initial heap size is
25% of the maximum heap size. The JVM then tries to adapt the size of the heap
to the working set size of the application.

Figure 7-4 represents three CPU profiles, each running a fixed workload with
varying Java heap settings. In the middle profile, the initial and maximum heap
sizes are set to 128MB. Four garbage collections occur. The total time in garbage
collection is about 15% of the total run. When the heap parameters are doubled
to 256MB, as in the top profile, the length of the work time increases between
garbage collections. Only three garbage collections occur, but the length of each
garbage collection is also increased. In the third profile, the heap size is reduced
to 64MB and exhibits the opposite effect.

Important: We do not recommend that you set the initial and maximum heap
sizes equal in a production environment. For details, refer to the following
technote:

http://www.ibm.com/support/docview.wss?rs=180&uid=swg21160795

 Chapter 7. Environmental performance considerations 521

http://www.ibm.com/support/docview.wss?rs=180&uid=swg21160795

With a smaller heap size, both the time between garbage collections and the time
for each garbage collection are shorter. For all three configurations, the total time
in garbage collection is approximately 15%. This example illustrates an important
concept about the Java heap and its relationship to object utilization. There is
always a cost for garbage collection in Java applications.

Figure 7-4 Java heap settings

Run a series of test experiments that vary the Java heap settings. For example,
run experiments with 128MB, 192MB, 256MB, and 320MB. During each
experiment, monitor the total memory usage. If you expand the heap too
aggressively, paging can occur. Use the vmstat command or the Windows
2000/2003 Performance Monitor to check for paging. If paging occurs, reduce the
size of the heap or add more memory to the system.

When all the runs are finished, compare the following statistics:

� Number of garbage collection calls
� Average duration of a single garbage collection call
� Average time between calls
� Ratio between the average length of a single garbage collection call and the

average time between calls

100
80
60
40
20

0

-ms256M, -mx256M Time spent in Garbage Collection

Processor #1

Processor #2

100
80
60
40
20
0

-ms128M, -mx128M Time spent in Garbage Collection

Time

Time

C
PU

%
C

PU
%

100
80
60
40
20
0

-ms64M, -mx64M Time spent in Garbage Collection

Processor #1

Processor #2

Time

C
PU

%

Varying Java Heap Settings

Processor #1

Processor #2

Important: Make sure that the heap never pages, as that would introduce a
enormous performance loss.

522 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

If the application is not over utilizing objects and has no memory leaks, the state
of steady memory utilization is reached. Garbage collection also occurs less
frequently and for shorter duration.

If the heap free space settles at 85% or more, consider decreasing the maximum
heap size values because the application server and the application are
under-utilizing the memory allocated for heap.

Configuration update performance in a large cell configuration
In a large cell configuration, you might have to determine which of the two is
more important: Configuration update performance or configuration consistency
checking. When configuration consistency checking is of concern, a large
amount of time might be required to save a configuration change or to deploy a
large number of applications.

The following factors influence how much time is required:

� The more application servers or clusters there are defined in cell, the longer it
takes to save a configuration change.

� The more applications there are deployed in a cell, the longer it takes to save
a configuration change.

If the amount of time required to update a configuration change is unsatisfactory,
you can add the config_consistency_check custom property to your JVM
settings and set the value of this property to false, as follows:

1. In the administrative console, click System administration → Deployment
manager.

2. Under Server Infrastructure, select Java and Process Management, and
then click Process Definition.

3. Under Additional Properties, click Java Virtual Machine → Custom
Properties → New.

4. Enter config_consistency_check in the Name field and false in the Value
field. Figure 7-5

5. Click OK.

6. Save the configuration and restart the deployment manager for the change
take effect.

 Chapter 7. Environmental performance considerations 523

Figure 7-5 Add custom property to your JVM settings for large cell configuration

Additional JVM and garbage collection related resources
� Java technology, IBM style: Garbage collection policies, Part 1 and 2 from

developerWorks:

http://www.ibm.com/developerworks/java/library/j-ibmjava2/index.html
http://www.ibm.com/developerworks/java/library/j-ibmjava3/index.html

� Real-time Java, Part 4: Real-time garbage collection from developerWorks:

http://www.ibm.com/developerworks/java/library/j-rtj4/

� A brief history of garbage collection, from developerWorks:

http://www.ibm.com/developerworks/java/library/j-jtp10283/

� Sensible Sanitation: Understanding the IBM Java Garbage Collection, Parts
1, 2, and 3, from developerWorks:

http://www.ibm.com/developerworks/ibm/library/i-garbage1/
http://www.ibm.com/developerworks/ibm/library/i-garbage2/
http://www.ibm.com/developerworks/ibm/library/i-garbage3.html

� Java theory and practice: Garbage collection and performance from
DeveloperWorks

http://www.ibm.com/developerworks/java/library/j-jtp01274.html

� Fine-tuning Java garbage collection performance from developerWorks

http://www.ibm.com/developerworks/ibm/library/i-gctroub/

� IBM JVM Diagnostics Guides 5.0 from developerWorks

http://www.ibm.com/developerworks/java/jdk/diagnosis/

524 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://www.ibm.com/developerworks/ibm/library/i-garbage1/
http://www.ibm.com/developerworks/ibm/library/i-garbage3.html
http://www.ibm.com/developerworks/java/library/j-jtp10283/
http://www.ibm.com/developerworks/ibm/library/i-garbage2/
http://www.ibm.com/developerworks/ibm/library/i-gctroub/
http://www.ibm.com/developerworks/java/jdk/diagnosis/
http://www.ibm.com/developerworks/java/library/j-ibmjava2/index.html
http://www.ibm.com/developerworks/java/library/j-ibmjava3/index.html
http://www.ibm.com/developerworks/java/library/j-rtj4/
http://www.ibm.com/developerworks/java/library/j-jtp01274.html

7.2.3 Tuning Web container

The WebSphere Application Server Web container manages all HTTP requests
to servlets, JavaServer Pages, and Web Services. Requests flow through a
transport chain to the Web container. The transport chain defines the important
tuning parameters for performance for the Web container. There is a transport
chain for each TCP port that WebSphere Application Server is listening on for
HTTP requests. For example, the default HTTP port 9080 is defined in Web
container inbound channel chain. Use the following parameters to tune the Web
container:

� HTTP requests are processed by a pool of server threads. The minimum and
maximum thread pool size for the Web container can be configured for
optimal performance. Generally, 5 to 10 threads per server CPU provides the
best throughput. The number of threads configured does not represent the
number of requests WebSphere can process concurrently. Requests are
queued in the transport chain when all threads are busy. To specify the thread
pool settings:

a. Click Servers → Application Servers → server.

b. In the Container Settings section expand Web Container Settings and
click Web container transport chains.

c. Select the normal inbound chain for serving requests. This is usually
named WCInboundDefault, on port 9080.

d. Click TCP Inbound Channel (TCP_2).

e. Under Related Items, click Thread Pools.

f. Select WebContainer. See Figure 7-6.

g. Set the value of Maximum size to configure the maximum pool size.
The default value is 50. The recommended value depends on your
configuration of your other infrastructure such as the Web server, EJB
container, and so on.

h. Click OK.

i. Save the configuration and restart the affected application server for the
change take effect.

 Chapter 7. Environmental performance considerations 525

Figure 7-6 Web container thread pool setting

� The HTTP 1.1 protocol provides a keep-alive feature to enable the TCP
connection between HTTP clients and the server to remain open between
requests. By default, WebSphere Application Server closes a given client
connection after a number of requests or a timeout period. After a connection
is closed, it is recreated if the client issues another request. Early closure of
connections can reduce performance. Enter a value for the maximum number
of persistent requests to (keep-alive) to specify the number of requests that
are allowed on a single HTTP connection. Enter a value for persistent
timeouts to specify the amount of time, in seconds, that the HTTP transport
channel allows a socket to remain idle between requests. To specify values
for Maximum persistent requests and Persistent timeout:

a. Click Servers → Application Servers → server.

b. Then, in the Container Settings section, expand Web Container Settings
and click Web container transport chains.

Important: Checking the Allow thread allocation beyond maximum
thread size box on the Thread Pool Configuration page (see Figure 7-6)
allows for an automatic increase of the number of threads beyond the
maximum size configured for the thread pool. As a result of this, the system
can become overloaded because too many threads are allocated.

526 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

c. Select the normal inbound chain for serving requests. This is usually
named WCInboundDefault, on port 9080.

d. Click HTTP Inbound Channel (HTTP_2).

e. Enter Value for Persistent timeout.

f. In the Persistent connection setting, select the check box next to Use
persistent (keep-alive) connections (if not already there).

g. Select the radio button next to Maximum persistent requests per
connection.

h. Enter value for Maximum persistent requests per connection.

i. Click OK.

j. Save the configuration and restart the affected application server for the
change take effect.

Figure 7-7 HTTP transport channel maximum persistent requests setting

 Chapter 7. Environmental performance considerations 527

7.2.4 Tuning the EJB container

An Enterprise JavaBeans (EJB) container is automatically created when you
create an application server. After the EJB container is deployed, you can use
the following parameters to make adjustments that improve performance.

Set the cleanup interval and the cache size
Use this setting to configure and manage the cache for a specific EJB container.
To avoid errors from attempting to overload the cache, determine the cache
absolute limit. Multiply the number of enterprise beans active in any given
transaction by the total number of concurrent transactions expected. Then, add
the number of active session bean instances. This value is the limit that the
cache can hold.

To view this administrative console page:

1. Click Servers → Application Servers → server.

2. Then in the Container Settings section expand EJB Container Settings and
click EJB cache settings. See Figure 7-8.

Figure 7-8 EJB cache settings

528 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Cleanup interval
The cleanup interval property specifies the interval at which the container
attempts to remove unused items from the cache in order to reduce the total
number of items to the value of the cache size. This property unit is milliseconds,
the range is from 0 to 2,147,483,647. The default value is 3000.

The cache manager tries to maintain some unallocated entries that can be
allocated quickly as required. A background thread attempts to free some entries
while maintaining some unallocated entries. If the thread runs while the
application server is idle, when the application server has to allocate new cache
entries, it does not pay the performance cost of removing entries from the cache.
In general, increase this parameter as the cache size increases. See Figure 7-9.

Cache size
The cache size property specifies the number of buckets in the active instance
list within the EJB container. This property unit is buckets in the hash table; the
range is greater than 0. The container selects the next largest prime number
equal to or greater than the specified value. The default value is 2053.

A bucket can contain more than one active enterprise bean instance, but
performance is maximized if each bucket in the table has a minimum number of
instances assigned to it. When the number of active instances within the
container exceeds the number of buckets, that is, the cache size, the container
periodically attempts to reduce the number of active instances in the table by
passivating some of the active instances. For the best balance of performance
and memory, set this value to the maximum number of active instances expected
during a typical workload. See Figure 7-9.

Figure 7-9 Cleanup interval and cache size

 Chapter 7. Environmental performance considerations 529

Set EJB container pool size
When the application is using the majority of the instances in the EJB Container
Pool, the size of those bean pools that are being exhausted should be increased.
This can be done by adding the following parameter in the JVM’s custom
properties tag.

-Dcom.ibm.websphere.ejbcontainer.poolSize=<application_name>#<module_na
me>#<bean_name>=<minSize>,<maxSize>

Where:

<application_name> is the J2EE application name as defined in the application
archive (.ear) file deployment descriptor, for the bean whose pool size is being
set.

<module_name> is the .jar file name of the EJB module, for the bean whose pool
size is being set.

<bean_name> is the J2EE Enterprise Bean name as defined in the EJB module
deployment descriptor, for the bean whose pool size is being set.

<minSize> is the number of bean instances the container maintains in the pool,
irrespective of how long the beans have been in the pool (beans greater than this
number are cleared from the pool over time to optimize memory usage).

<maxSize> is the number of bean instances in the pool where no more bean
instances are placed in the pool after they are used (that is, once the pool is at
this size, any additional beans are discarded rather than added into the pool —
this ensures that the number of beans in the pool has an upper limit so memory
usage does not grow in an unbounded fashion).

To keep the number of instances in the pool at a fixed size, minSize and maxSize
can be set to the same number. Note that there is a separate instance pool for
every EJB type running in the application server, and that every pool starts out
with no instances in it — that is, the number of instances grows as beans are
used and then placed in the pool. When a bean instance is required by the
container and no beans are available in the pool, the container creates a new
bean instance, uses it, then places that instance in the pool (unless there are
already maxSize instances in the pool).

To add the parameter in the administrative console page:

1. Click Servers → Application Servers → server.

2. In the Server Infrastructure section expand Java and Process Management
and click Process Definition.

530 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

3. Under Additional Properties, click Java Virtual Machine → Custom
Properties → New.

4. Enter -Dcom.ibm.websphere.ejbcontainer.poolSize in the Name field and
<application_name>#<module_name>#<bean_name>=<minSize>,<maxSize> the
Value field. For example, if the application that you use is Plant By
WebSphere, then you can specify parameter below for the Value field:
PlantsByWebSphere#PlantsByWebSphereEJB.jar#PlantsByWebSphereEJBObject
=125,1327. The <minSize> and <maxSize> can be adjusted based on demand.
See Figure 7-10.

Figure 7-10 Adding custom property for setting the EJB Container Pool size

5. Click OK.

6. Save the configuration and restart the affected application server for the
change take effect

Break CMP enterprise beans into several modules
To increase performance, break Container Managed Persistence (CMP)
enterprise beans into several enterprise bean modules during assembly. The
load time for hundreds of beans is improved by distributing the beans across
several JAR files and packaging them to an EAR file. Load time is faster when
the administrative server attempts to start the beans, for example, 8-10 minutes
versus more than one hour when one JAR file is used.

You can use an assembly tool such as the Application Server Toolkit (AST) or
Rational Application Developer to assemble an EJB module in any of the
following ways:

� Import an existing EJB module (EJB JAR file).

 Chapter 7. Environmental performance considerations 531

� Create a new EJB module.

� Copy code artifacts (such as entity beans) from one EJB module into a new
EJB module.

7.2.5 Tuning Object Request Broker
An Object Request Broker (ORB) manages the interaction between clients and
servers, using the Internet InterORB Protocol (IIOP). It supports client requests
and responses received from servers in a network-distributed environment.
Several settings are available for controlling internal Object Request Broker
(ORB) processing. You can use these to improve application performance in the
case of applications containing enterprise beans.

You can change these settings for the default server or any application server
configured in the administrative domain from the Administrative Console or by
using a java command on a command line.

To use the administrative console to set ORB custom properties, in the
administrative console, click Servers → Application Servers → server. Then in
the Container Settings section expand Container Services and click ORB
Service. See Figure 7-11.

Figure 7-11 ORB Service

532 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

You can then change the setting of one of the listed custom properties or click
New to add a new property to the list. Then click Apply to save your change.
When you finish making changes, click OK and then click Save to save your
changes.

To use the java command on a command line, use the -D option. For example:

Set pass by reference
For EJB 1.1 beans, the EJB 1.1 specification states that method calls are to be
Pass by value. For every remote method call, the parameters are copied onto the
stack before the call is made. This can be expensive. The Pass by reference,
which passes the original object reference without making a copy of the object,
can be specified.

For EJB 2.0 beans, interfaces can be local or remote. For local interfaces,
method calls are Pass by reference, by default.

If the EJB client and EJB server are installed in the same WebSphere Application
Server instance, and the client and server use remote interfaces, specifying Pass
by reference can improve performance up to 50%.

Note that Pass by reference helps performance only when non-primitive object
types are being passed as parameters. Therefore, int and float are always
copied, regardless of the call model.

The use of this option for enterprise beans with remote interfaces violates EJB
Specification, Version 2.0 section 5.4. Object references passed to EJB methods
or to EJB home methods are not copied and can be subject to corruption.

In Example 7-1, a reference to the same MyPrimaryKey object passes into
WebSphere Application Server with a different ID value each time. Running this
code with Pass by reference enabled causes a problem within the application
server because multiple enterprise beans are referencing the same
MyPrimaryKey object. To avoid this problem, set the
com.ibm.websphere.ejbcontainer.allowPrimaryKeyMutation system property to
true when Pass by reference is enabled. Setting allowPrimaryKeyMutation to true
causes the EJB container to make a local copy of the PrimaryKey object. As a

java -Dcom.ibm.CORBA.propname1=value1
-Dcom.ibm.CORBA.propname2=value2 ... application name

Important: Pass by reference can be dangerous and can lead to unexpected
results. If an object reference is modified by the remote method, the change
might be seen by the caller.

 Chapter 7. Environmental performance considerations 533

result, however, a small portion of the performance advantage of setting Pass by
reference is lost.

Example 7-1 Pass by reference problem demonstration

Iterator iterator = collection.iterator();
MyPrimaryKey pk = new MyPrimaryKey();
while (iterator.hasNext()) {
 pk.id = (String) iterator.next();
 MyEJB myEJB = myEJBHome.findByPrimaryKey(pk);
}

Use the Administrative Console to set allowPrimaryKeyMutation:

1. Click Servers → Application Servers → server.

2. Then in the Container Settings section expand Container Services and click
ORB Service.

3. Select Custom Properties.

4. Create a new property by clicking New.

5. Specify com.ibm.websphere.ejbcontainer.allowPrimaryKeyMutation in the
Name field and true in the Value field. See Figure 7-12.

6. Click OK and save the changes.

Figure 7-12 Add new custom property in ORB service setting

As a general rule, any application code that passes an object reference as a
parameter to an enterprise bean method or to an EJB home method must be
scrutinized to determine if passing that object reference results in loss of data
integrity or in other problems.

534 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Use the Administrative Console to set this value:

1. Click Servers → Application Servers → server.

2. Then in the Container Settings section expand Container Services and click
ORB Service.

3. Select the check box Pass by reference. See Figure 7-13.

4. Click OK and Apply to save the changes.

5. Stop and restart the application server.

Figure 7-13 Enable pass by reference property

If you use command line scripting, the full name of this system property is
com.ibm.CORBA.iiop.noLocalCopies.

 Chapter 7. Environmental performance considerations 535

The default is Pass by value for remote interfaces and Pass by reference for EJB
2.0 local interfaces.

If the application server expects a large workload for enterprise bean requests,
the ORB configuration is critical. Take note of the following properties.

Set connection cache
Depending on an application server's workload, and throughput or response-time
requirements, you might have to adjust the size of the ORB's connection cache.
Each entry in the connection cache is an object that represents a distinct TCP/IP
socket endpoint, identified by the hostname or TCP/IP address, and the port
number used by the ORB to send a General Inter-ORB Protocol (GIOP) request
or a GIOP reply to the remote target endpoint. The purpose of the connection
cache is to minimize the time required to establish a connection by reusing ORB
connection objects for subsequent requests or replies. (The same TCP/IP socket
is used for the request and corresponding reply.)

For each application server, the number of entries in the connection cache
relates directly to the number of concurrent ORB connections. These
connections consist of both the inbound requests made from remote clients and
outbound requests made by the application server. When the server-side ORB
receives a connection request, it uses an existing connection from an entry in the
cache, or establishes a new connection and adds an entry for that connection to
the cache.

The ORB Connection cache maximum and Connection cache minimum
properties are used to control the maximum and minimum number of entries in
the connection cache at a given time. When the number of entries reaches the
value specified for the Connection cache maximum property, and a new
connection is required, the ORB creates the requested connection, adds an entry
to the cache and searches for and attempts to remove up to five inactive
connection entries from the cache. Because the new connection is added before
inactive entries are removed, it is possible for the number of cache entries to
temporarily exceed the value specified for the Connection cache maximum
property.

An ORB connection is considered inactive if the TCP/IP socket stream is not in
use and there are no GIOP replies pending for any requests made on that
connection. As the application workload diminishes, the ORB closes the
connections and removes the entries for these connections from the cache. The
ORB continues to remove entries from the cache until the number of remaining
entries is at or below the value specified for the Connection cache maximum
property. The number of cache entries is never less then the value specified for
the Connection cache minimum property, which must be at least five connections
less than the value specified for the Connection cache maximum property.

536 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Adjustments to the connection cache in the client-side ORB are usually not
necessary because only a small number of connections are made on that side.

Connection cache maximum
This property has two names and corresponds to the size of the ORB connection
table. The property sets the standard for the number of simultaneous ORB
connections that can be processed.

If there are many simultaneous clients connecting to the server-side ORB, this
parameter can be increased to support the heavy load up to 1000 clients. The
default value is 240.

Use the Administrative Console to set this value:

1. Click Servers → Application Servers → server.

2. Then in the Container Settings section expand Container Services and click
ORB Service

3. Update the Connection cache maximum field. See Figure 7-14.

4. Click OK and save the changes.

5. Stop and restart the application server.

Figure 7-14 Set connection cache maximum property

If you use command line scripting, the full name of this system property is
com.ibm.CORBA.MaxOpenConnections.

 Chapter 7. Environmental performance considerations 537

Set server socket queue depth
This property corresponds to the length of the TCP/IP stack listen queue and
prevents WebSphere Application Server from rejecting requests when there is no
space in the listen queue.

If there are many simultaneous clients connecting to the server-side ORB, this
parameter can be increased to support the heavy load up to 1000 clients. The
default value is 50.

If you see a “connection refused” message in a trace log, usually either the port
on the target machine is not open, or the server is overloaded with queued-up
connection requests. Increasing the value specified for this property can help
alleviate this problem if there does not appear to be any other problem in the
system.

To set the property (in our example we set it to 200), follow these steps:

1. Click Servers → Application Servers → server.

2. Then in the Container Settings section expand Container Services and click
ORB Service.

3. Click Custom Properties → New.

4. Specify com.ibm.CORBA.ServerSocketQueueDepth in the Name field and 200
in the Value field.

5. Click OK and Apply to save the changes. See Figure 7-15.

6. Stop and restart the application server.

Figure 7-15 Add custom property com.ibm.CORBA.ServersocketQueueDepth

If you use command line scripting, the full name of this system property is
com.ibm.CORBA.ServerSocketQueueDepth.

538 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Set ORB thread pool size
Method invocations to enterprise beans are only queued for requests coming
from remote clients going through the RMI activity service. An example of such a
client is an EJB client running in a separate Java Virtual Machine (another
address space) from the enterprise bean. In contrast, no queuing occurs if the
EJB client (either a servlet or another enterprise bean) is installed in the same
JVM that the EJB method runs on and the same thread of execution as the EJB
client.

Remote enterprise beans communicate by using the RMI/IIOP protocol. Method
invocations initiated over RMI/IIOP are processed by a server-side ORB. The
thread pool acts as a queue for incoming requests. However, if a remote method
request is issued and there are no more available threads in the thread pool, a
new thread is created. After the method request completes, the thread is
destroyed. Therefore, when the ORB is used to process remote method
requests, the EJB container is an open queue, due to the use of unbounded
threads.

Tivoli Performance Viewer can help tune the ORB thread pool size settings. Use
a standard workload that represents a typical number of incoming client
requests, use a fixed number of iterations, and use a standard set of
configuration settings. Watch the PercentMaxed counter of the Thread Pools
module. If the value of this counter is consistently in the double digits, then the
ORB could be a bottleneck and the number of threads in the pool should be
increased.

The degree to which the ORB thread pool value has to be increased is a function
of the number of simultaneous servlets (that is, clients) calling enterprise beans
and the duration of each method call. If the method calls are longer or the
applications spend a lot of time in the ORB, consider making the ORB thread
pool size equal to the Web container size. If the servlet makes only short-lived or
quick calls to the ORB, servlets can potentially reuse the same ORB thread. In
this case, the ORB thread pool can be small, perhaps even one-half of the thread
pool size setting of the Web container.

The ORB thread pool size is configured from the Administrative Console using
these steps:

To change these settings:

1. Click Servers → Application Servers → server.

2. Then in the Container Settings section expand Container Services and click
ORB Service.

3. Select Use the thread pool settings directly associated with the ORB
service, and then click thread pool settings.

 Chapter 7. Environmental performance considerations 539

4. Use the Maximum Size field to configure the maximum pool size. Note that
this only affects the number of threads held in the pool (the actual number of
ORB threads can be higher). See Figure 7-16.

5. Save the configuration and restart the affected application server for the
change to take effect.

Figure 7-16 ORB thread pool settings

Set fragment size
The ORB separates messages into fragments to send over the ORB connection.
You can configure this fragment size through the com.ibm.CORBA.FragmentSize
parameter.

To determine and change the size of the messages that transfer over the ORB
and the number of required fragments, perform the following steps:

1. In the administrative console, enable ORB tracing in the ORB Properties
page.

a. Click Servers → Application Servers → server.

b. Then in the Container Settings section expand Container Services and
click ORB Service.

c. Select the check box ORB tracing. See Figure 7-17.

d. Click OK and save the configuration.

540 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Figure 7-17 Enable ORB tracing

2. Enable ORBRas tracing from the logging and tracing page.

a. Click Troubleshooting → Logs and Trace → server → Change Log
Detail Levels.

b. Click ORBRas → Message and Traces Levels → Fine. It is
recommended that you select fine instead of finest.

c. After that you can see ORBRas=fine in the text box. See Figure 7-18.

d. Click OK and save the configuration.

3. Increase the trace file sizes because tracing can generate a lot of data.

a. Click Troubleshooting → Logs and Trace → server → Diagnostic
Trace.

b. In the trace output section, you can edit the Maximum File Size property
or Maximum Number of Historical Files property.

c. Click OK and save the configuration. See Figure 7-19.

 Chapter 7. Environmental performance considerations 541

Figure 7-18 Enable ORBRas tracing

Figure 7-19 Increase the trace file sizes

542 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

4. Restart the affected application server and run at least one iteration
(preferably several) of the case that you are measuring.

5. Look at the traceable file and do a search for Fragment to follow: Yes.

This message indicates that the ORB transmitted a fragment, but it still has at
least one remaining fragment to send before the entire message arrives. A
Fragment to follow: No value indicates that the particular fragment is the
last in the entire message. This fragment can also be the first, if the message
fit entirely into one fragment.

If you go to the spot where Fragment to follow: Yes is located, you find a
block that looks similar to the following example:

Fragment to follow: Yes
Message size: 4988 (0x137C)
--
Request ID: 1411

This example indicates that the amount of data in the fragment is 4988 bytes
and the Request ID is 1411. If you search for all occurrences of Request ID:
1411, you can see the number of fragments that are used to send that
particular message. If you add all the associated message sizes, you have
the total size of the message that is being sent through the ORB.

If you use command line scripting, the full name of this system property is
com.ibm.CORBA.FragmentSize property.

Remove interceptors
Interceptors are ORB extensions that can set up the context before the ORB runs
a request. For example, the context might include transactions or activity
sessions to import. If the client creates a transaction, and then flows the
transaction context to the server, then the server imports the transaction context
onto the server request through the interceptors.

Most clients do not start transactions or activity sessions, so most systems can
benefit from removing the interceptors that are not required.

To remove the interceptors, manually edit the server.xml file in folder
<AppServer_Root>\profiles\<profile>\config\cells\<cell>\nodes\<node>\
servers\<server> and remove the interceptor lines that are not required from the
ORB section. For example, remove line below:

<interceptors xmi:id="xxxx" name="com.ibm.xxxxx.xxxxxx"/>

Java Native Interface (JNI) reader threads
By default, the ORB uses a Java thread for processing each inbound connection
request it receives. As the number of concurrent requests increases, the storage

 Chapter 7. Environmental performance considerations 543

consumed by a large number of reader threads increases and can become a
bottleneck in resource-constrained environments. Eventually, the number of Java
threads created can cause out-of-memory exceptions if the number of concurrent
requests exceeds the system's available resources.

To help address this potential problem, you can configure the ORB to use JNI
reader threads where a finite number of reader threads, implemented using
native OS threads instead of Java threads, are created during ORB initialization.
JNI reader threads rely on the native OS TCP/IP asynchronous mechanism that
enables a single native OS thread to handle I/O events from multiple sockets at
the same time. The ORB manages the use of the JNI reader threads and assigns
one of the available threads to handle the connection request, using a
round-robin algorithm. Ordinarily, JNI reader threads should only be configured
when using Java threads is too memory-intensive for your application
environment.

The number of JNI reader threads you should allocate for an ORB depends on
many factors and varies significantly from one environment to another,
depending on available system resources and workload requirements. The
following potential benefits might be achieved if you use JNI threads:

� Because a fixed number of threads is allocated, memory usage is reduced.
This reduction provides significant benefit in environments with unusually
large and sustained client-request workloads.

� The time required to dynamically create and destroy Java threads is
eliminated because a fixed number of JNI threads is created and allocated
during ORB initialization.

� Each JNI thread can handle up to 1024 socket connections and interacts
directly with the asynchronous I/O native OS mechanism, which might provide
enhanced performance of network I/O processing.

7.2.6 Tuning XML parser selection
Add XML parser definitions to the jaxp.properties file and xerces.properties
file found in the <AppServer_Root> \java\jre\lib directory to help facilitate
server startup. The XMLParserConfiguration value might have to be changed as
new versions of Xerces are provided.

Important: Because JSSE2 does not provide the file descriptor that
JNIReader Threads require, you cannot use JNIReader Threads with the
default IBMJSSE2 SSL security provider setting. If you attempt to use both of
these settings, the server does not start and logs a ClassCast exception on
the com.ibm.jsse2.c class.

544 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

In both files, insert the lines shown in Example 7-2.

Example 7-2 XML parser definitions

javax.xml.parsers.SAXParserFactory=org.apache.xerces.jaxp.SAXParserFactoryImpl
javax.xml.parsers.DocumentBuildFactory=org.apache.xerces.jaxp.DocumentBuilder
FactoryImpl
org.apache.xerces.xni.parser.XMLParserConfiguration=org.apache.xerces.parsers.
StandardParserConfiguration

7.2.7 Tuning the URL invocation cache
Each JavaServer Page is a unique URL. If you have more than 50 unique URLs
that are actively being used, increase the value specified for the
invocationCacheSize JVM custom property. This property controls the size of the
URL invocation cache.The URL invocation cache holds information for mapping
request URLs to servlet resources. A cache of the requested size is created for
each worker thread that is available to process a request. The default size of the
invocation cache is 50. If more than 50 unique URLs are actively being used
(each JavaServer Page is a unique URL), you should increase the size of the
invocation cache.

A larger cache uses more of the Java heap, so you might also have to increase
the maximum Java heap size. For example, if each cache entry requires 2KB,
maximum thread size is set to 25, and the URL invocation cache size is 100; then
5MB of Java heap are required.

The invocation cache is now Web container based instead of thread-based, and
shared for all Web container threads.

You can follow this step to change the setting.

1. In the administrative console, click Servers → Application servers →
server.

2. Under Server Infrastructure section, expand Java and Process
Management and click Process Definition

3. Under Additional Properties, click Java Virtual Machine → Custom
Properties → New.

4. Specify invocationCacheSize in the Name field and the size of the cache in
the Value field. The default size for the invocation cache is 500 entries. Since
the invocation cache is no longer thread-based, the invocation cache size
specified by the user is multiplied by ten to provide similar function from
previous releases. For example, if you specify an invocation cache size of 50,
the Web container creates a cache size of 500. See Figure 7-20.

 Chapter 7. Environmental performance considerations 545

5. Click Apply and then Save to save your changes.

6. Stop and restart the affected application server.

Figure 7-20 Tuning URL Invocation cache size

7.2.8 Tuning transport channel services

The transport channel services manage client connections and I/O processing
for HTTP and JMS requests. These I/O services are based on the non-blocking
I/O (NIO) features that are available in Java. These services provide a highly
scalable foundation to WebSphere Application Server request processing. Java
NIO based architecture has limitations in terms of performance, scalability and
end user usability. Therefore, integration of true asynchronous I/O is
implemented. This implementation provides significant benefits in usability,
reduces the complexity of I/O processing and reduces that amount of
performance tuning you have to perform.

Key features of the new transport channel services include:

� Scalability, which enables the WebSphere Application Server to handle many
concurrent requests

� Asynchronous request processing, which provides a many-to-one mapping of
client requests to Web container threads

� Resource sharing and segregation, which enables thread pools to be shared
between the Web container and a messaging service

� Improved usability

� Incorporation of autonomic tuning and configuration functions

546 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Changing the default values for settings on one or more of the transport channels
associated with a transport chain can improve the performance of that chain.

Figure 7-21 Transport Channel Service

Adjust TCP transport channel settings
In the administration console, click Servers → Application servers → server.
Then in the communication section click Ports. Then click View associated
transports for the appropriate port.

1. Select the transport chain whose properties you are changing.

2. Click on the TCP transport channel defined for that chain.

3. Leave the Maximum open connections parameter set to the default value.
This parameter controls the maximum number of connections that are
available for a server's use. It should be left at the default value of 20000,
which is the maximum number of connections allowed. The transport channel
service by default manages high client connection counts and requires no
tuning. See Figure 7-22.

4. If client connections are being closed without data being written back to the
client, change the value specified for the Inactivity timeout parameter. This
parameter controls the maximum number of connections available for a

TCP Channel

HTTP Channel

WebContainer
Channel

Request 1 Request 2 Request N.

The WebContainer Channel provides a
dispatching layer between the channel
and the servlet/JSP container

.
Thread 1 Thread X

WebContainer

The HTTP Channel provides a HTTP
protocol support for the WebSphere Web
serving capabilities.

The TCP Channel manages client
connections providing an
asynchronous I/O layer between
clients and WebSphere threads. The
mapping of client connections to
threads is generally many to one.

 Chapter 7. Environmental performance considerations 547

server's use. Upon receiving a new connection, the TCP transport channel
waits for enough data to arrive to dispatch the connection to the protocol
specific channels above the TCP transport channel. If not enough data is
received during the time period specified for the Inactivity timeout parameter,
the TCP transport channel closes the connection.

The default value for this parameter is 60 seconds, which is adequate for most
applications. You should increase the value specified for this parameter if your
workload involves a lot of connections and all of these connections can not be
serviced in 60 seconds. See Figure 7-22.

Figure 7-22 TCP transport channel setting

548 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

5. Assign a thread pool to a specific HTTP port. Each TCP transport channel is
assigned to a particular thread pool. Thread pools can be shared between
one or more TCP transport channels as well as with other components. The
default settings for a TCP transport channel is to have all HTTP based traffic
assigned to the WebContainer thread pool and all other traffic assigned to the
Default thread pool. Use the Thread pool pull-down to assign a particular
thread pool to each TCP transport channel. The default settings for this
parameter has all HTTP based traffic assigned to the WebContainer thread
pool and all other traffic is assigned to the Default thread pool. (Thread pool
collection describes how to create additional thread pools.)

6. Tune the size of your thread pools. By default, a thread pool can have a
minimum of 10 threads and a maximum of 50 maximum threads. To adjust
these values, click on Thread pools → threadpool_name and adjust the
values specified for the Minimum Size and Maximum Size parameters for that
thread pool. See Figure 7-23.

Figure 7-23 Thread pool setting

Typical applications usually do not require more than 10 threads per
processor. One exception is if there is some off server condition, such as a
very slow backend request, that causes a server thread to wait for the
backend request to complete. In such a case, CPU usage is usually low and
increasing the workload does not increase CPU throughput. Thread dumps
show nearly all threads in a call out to the backend resource. If this condition
exists, and the backend is tuned correctly, try increasing the minimum number

 Chapter 7. Environmental performance considerations 549

of threads in the pool until you see improvements in throughput and thread
dumps show threads in other areas of the runtime besides the backend call.

The setting for the Grow as needed parameter should not be changed unless
your backend is prone to hanging for long periods of time. This condition
might indicate that all of your runtime threads are blocked waiting for the
backend instead of processing other work that does not involve the hung
backend.

Adjust HTTP transport channel settings
In the administration console, click Servers → Application servers → server →
Ports. Then click View associated transports for the appropriate port.

1. Select the transport chain whose properties you are changing.

2. Click on the HTTP transport channel defined for that chain.

3. Tune HTTP keep-alive. The Use persistent (keep-alive) connections setting
controls whether or not connections are left open between requests. Leaving
the connections open can save setup and tear down costs of sockets if your
workload has clients that send multiple requests. The default value is true and
is the optimal setting in most cases. See Figure 7-24.

If your clients only send single requests over substantially long periods of
time, it is probably better to disable this option and close the connections right
away rather than to have the HTTP transport channel setup the timeouts to
close the connection at some later time.

4. Change the value specified for the Maximum persistent requests parameter to
increase the number of requests that can flow over a connection before it is
closed. When the Use persistent connections option is enabled, the Maximum
persistent requests parameter controls the number of requests that can flow
over a connection before it is closed. The default value is 100. This value
should be set to a value such that most, if not all, clients always have an open
connection when they make multiple requests during the same session. A
proper setting for this parameter helps to eliminate unnecessary setting up
and tearing down of sockets. See Figure 7-24.

For test scenarios in which the client never closes a socket or where sockets
are always proxy or Web servers in front of your application server, a value of
-1 disables the processing, which limits the number of requests over a single
connection. The persistent timeout still shuts down some idle sockets and
protect your server from running out of open sockets.

5. Change the value specified for the Persistent timeout parameter to increase
the length of time that a connection is held open before being closed due to
inactivity. The Persistent timeout parameter controls the length of time that a
connection is held open before being closed because there is no activity on
that connection. The default value is 30 seconds.

550 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

This parameter should be set to a value that keeps enough connections open
so that most clients can obtain a connection available when they have to
make a request. See Figure 7-24.

Figure 7-24 HTTP transport channel setting

6. If clients are having trouble completing a request because it takes them more
than 60 seconds to send their data, change the value specified for the Read
timeout parameter. Some clients pause more than 60 seconds while sending
data as part of a request. To ensure they are able to complete their requests,
change the value specified for this parameter to a length of time in seconds
that is sufficient for the clients to complete the transfer of data. Be careful
when changing this value that you still protect the server from clients who
send incomplete data and thereby utilize resources (sockets) for an excessive
amount of time.

 Chapter 7. Environmental performance considerations 551

7. If some of your clients require more than 60 seconds to receive data being
written to them, change the value specified for the Write timeout parameter.
Some clients are slow and require more than 60 seconds to receive data that
is sent to them. To ensure they are able to obtain all of their data, change the
value specified for this parameter to a length of time in seconds that is
sufficient for all of the data to be received. Be careful when changing this
value that you still protect the server from malicious clients.

Adjust Web container transport channel settings
In the administration console, click Servers → Application servers → server →
Ports. Then click View associated transports for the appropriate port.

1. Select the transport chain whose properties have to be changed.

2. Click on the Web container transport channel defined for that chain.

3. If multiple writes are required to handle responses to the client, change the
value specified for the Write buffer size parameter to a value that is more
appropriate for your clients. The Write buffer size parameter controls the
maximum amount of data per thread that the Web container buffers before
sending the request on for processing. See Figure 7-25, the default value is
32768 bytes, which is sufficient for most applications. If the size of a response
is greater than the size of the write buffer, the response is chunked and
written back in multiple TCP writes.

If you have to change the value specified for this parameter, make sure the
new value enables most requests to be written out in a single write. To
determined an appropriate value for this parameter, look at the size of the
pages that are returned and add some additional bytes to account for the
HTTP headers.

Figure 7-25 Web container transport channel settings

552 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Adjust the settings for the bounded buffer
Even though the default bounded buffer parameters are optimal for most of the
environments, you might have to change the default values in certain situations
and for some operating systems to enhance performance. Changing the
bounded buffer parameters can degrade performance. Therefore, make sure that
you tune the other related areas, such as the Web container and ORB thread
pools, before deciding to change the bounded buffer parameters.

To change the bounded buffer parameters:

1. In the administrative console, click Servers → Application Servers →
server.

2. Under Server Infrastructure, click Java and Process Management →
Process Definition → Java Virtual Machine.

3. Specify one of the following parameters in the Generic JVM arguments field.

4. Click Apply or OK.

5. Enter one of the following custom properties in the Name field and an
appropriate value in the Value field, and then click Apply to save the custom
property and its setting.

– com.ibm.ws.util.BoundedBuffer.spins_take=value

This parameter specifies the number of times a Web container thread is
allowed to attempt to retrieve a request from the buffer before the thread is
suspended and enqueued. This parameter enables you to trade off the
cost of performing possibly unsuccessful retrieval attempts, with the cost
to suspending a thread and activating it again in response to a put
operation.

The default value of this parameter is 4. However, in practice an integer
between 2 and 8 have shown the best performance results. To usage is
com.ibm.ws.util.BoundedBuffer.spin_take=5. It means that five
attempts are made before the thread is suspended.

– com.ibm.ws.util.BoundedBuffer.yield_take=true or false

Specifies that a thread yields the CPU to other threads after a set number
of attempts to take a request from the buffer. Typically a lower number of
attempts is preferable. The default value is false. However, the
recommended value is true, but the effect of yields is implementation
specific for individual platforms.

 Chapter 7. Environmental performance considerations 553

– com.ibm.ws.util.BoundedBuffer.spins_put=value

Specifies the number of attempts an InboundReader thread makes to put
a request into the buffer before the thread is suspended and enqueued.
This value allows to trade off between the cost of repeated, possibly
unsuccessful, attempts to put a request into the buffer with the cost to
suspend a thread and reactivate it in response to a take operation.

The default value of this parameter is 4. However, in practice an integer
between 2 and 8 have shown the best performance results. To usage is
com.ibm.ws.util.BoundedBuffer.spin_put=5. It means that five attempts
are made before the thread is suspended.

– com.ibm.ws.util.BoundedBuffer.yield_put=true or false

Specifies that a thread yields the CPU to other threads after a set number
of attempts to put a request into the buffer. Typically a lower number of
attempts is preferable.

The default value is false. However, the recommended value is true, but
the effect of yields is implementation specific for individual platforms.

– com.ibm.ws.util.BoundedBuffer.wait=number of milliseconds

Specifies the maximum length of time, in milliseconds, that a request
might unnecessarily be delayed if the buffer is completely full or if the
buffer is empty. The default value is 10000 milliseconds or 10 seconds. A
value of 10000 milliseconds usually works well. In rare instances when the
buffer becomes either full or empty, a smaller value guarantee a more
timely handling of requests, but there is usually a performance impact to
using a smaller value.

7.2.9 Tuning data sources and associated connection pools
For better application performance, you can tune some data access resources
through the WebSphere Application Server administrative console. Tune these
properties of data sources and connection pools to optimize the performance of
transactions between your application and datastore.

Data source tuning
To view the administrative console page where you configure the following
properties, click Resources → JDBC → Data sources → data_source_name.
Then in the additional properties section click WebSphere Application Server
data source properties.

Important: Click Apply and then Save to save these changes after you have
made any changes.

554 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Statement cache size
Specifies the number of statements that can be cached per connection. The
WebSphere Application Server data source optimizes the processing of prepared
statements and callable statements by caching those statements that are not
being used in an active connection. Both statement types help reduce overhead
for transactions with backend data.

� A prepared statement is a precompiled SQL statement that is stored in a
PreparedStatement object. Application Server uses this object to run the SQL
statement multiple times, as required by your application run time, with values
that are determined by the run time.

� A callable statement is an SQL statement that contains a call to a stored
procedure, which is a series of precompiled statements that perform a task
and return a result. The statement is stored in the CallableStatement object.
Application Server uses this object to run a stored procedure multiple times,
as required by your application run time, with values that are determined by
the run time. See Figure 7-26.

Figure 7-26 WebSphere Application Server data source properties

 Chapter 7. Environmental performance considerations 555

In general, the more statements your application has, the larger the cache should
be. Be aware, however, that specifying a larger statement cache size than
required wastes application memory and does not improve performance.

Determine the value for your cache size by adding the number of uniquely
prepared statements and callable statements (as determined by the SQL string,
concurrency, and the scroll type) for each application that uses this data source
on a particular server. This value is the maximum number of possible statements
that can be cached on a given connection over the life of the server.

Connection pool tuning
To view the administrative console page where you configure the following
properties, click Resources → JDBC → Data sources → data_source_name.
Then in the additional properties section click Connection pool properties.

Maximum connections
Specifies the maximum number of physical connections that can be created in
this pool. These are the physical connections to the backend datastore. When
this number is reached, no new physical connections are created; requestors
must wait until a physical connection that is currently in use is returned to the
pool.

The default value of this properties is 10. For optimal performance, set the value
for the connection pool lower than the value for the Web container threadpool
size. Lower settings, such as 10 to 30 connections, might perform better than
higher settings, such as 100. See Figure 7-27.

Minimum connections
Specifies the minimum number of physical connections to maintain. Until this
number is exceeded, the pool maintenance thread does not discard physical
connections.

The default value of this properties is 1. If you set this property for a higher
number of connections than your application ultimately uses at run time, you do
not waste application resources. WebSphere Application Server does not create
additional connections to achieve your minimum setting. Of course, if your
application requires more connections than the value you set for this property,
application performance diminishes as connection requests wait for fulfillment.

Default: For most databases the default is 10. Zero means there is no cache
statement.

556 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Figure 7-27 Connection pools tuning

7.2.10 Tuning session management

WebSphere Application Server session support has features for tuning session
performance and operating characteristics, particularly when sessions are
configured in a distributed environment. These options support the administrator
flexibility in determining the performance and failover characteristics for their
environment.

Performance tuning for session management persistence consists of defining the
following characteristics:

� How often session data is written (write frequency settings).

� How much data is written (write contents settings).

� When the invalid sessions are cleaned up (session cleanup settings).

 Chapter 7. Environmental performance considerations 557

To view the administrative console page where you configure the following
properties, click Servers → Application Servers → server → Session
Management → Distributed environment settings → Custom tuning
parameters. See Figure 7-28.

Figure 7-28 Tuning parameters for session management

Several combinations of these settings are predefined and available for selection,
or you can customize them by click Custom settings. You can set each tuning
parameter explicitly. See Figure 7-29.

Note: Remember that session management options can also be set at the
enterprise application level or at the Web module level.

558 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Figure 7-29 Custom tuning parameters

Writing frequency settings
You can select from three different settings that determine how often session
data is written to the persistent data store:

� End of servlet service:

If the session data has changed, it is written to the persistent store after the
servlet finishes processing an HTTP request.

� Manual update:

The session data is written to the persistent store when the sync() method is
called on the IBMSession object.

� Time-based:

The session data is written to the persistent store based on the specified write
interval value.

 Chapter 7. Environmental performance considerations 559

Consider an example where the Web browser accesses the application once
every five seconds:

� In End of servlet service mode, the session would be written out every five
seconds.

� In Manual update mode, the session would be written out whenever the
servlet issues IBMSession.sync(). It is the responsibility of the servlet writer
to use the IBMSession interface instead of the HttpSession Interface and the
servlets/JSPs must be updated to issue the sync().

� In Time-based mode, the servlet or JSP does not have to use the IBMSession
class nor issue IBMSession.sync(). If the write interval is set to 120 seconds,
then the session data is written out at most every 120 seconds.

End of servlet service
When the write frequency is set to the end of servlet service option, WebSphere
writes the session data to the persistent store at the completion of the
HttpServlet.service() method call. The write content settings determine
output.

Manual update
In manual update mode, the session manager only sends changes to the
persistent data store if the application explicitly requests a save of the session
information.

Note: The last access time attribute is always updated each time the session
is accessed by the servlet or JSP, whether the session is changed or not. This
is done to make sure the session does not time out:

� If you choose the end of servlet service option, each servlet or JSP access
results in a corresponding persistent store update of the last access time.

� If you select the manual update option, the update of the last access time
in persistent store occurs on sync() call or at later time.

� If you use time-based updates, the changes are accumulated and written
in a single transaction. This can significantly reduce the amount of I/O to
the persistent store.

Note: Manual updates use an IBM extension to HttpSession that is not part of
the Servlet 2.4 API.

560 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Manual update mode requires an application developer to use the IBMSession
class for managing sessions. When the application invokes the sync() method,
the session manager writes the modified session data and last access time to the
persistent store. The session data written to the persistent store is controlled by
the write contents option selected.

If the servlet or JSP terminates without invoking the sync() method, the session
manager saves the contents of the session object into the session cache (if
caching is enabled), but does not update the modified session data in the
session database. The session manager only updates the last access time in the
persistent store asynchronously, at later time. Example 7-3 shows how the
IBMSession class can be used to manually update the persistent store.

Example 7-3 Using IBMSession for manual update of the persistent store

public void service (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException

{
// Use the IBMSession to hold the session information
// We need the IBMSession object because it has the manual update
// method sync()
com.ibm.websphere.servlet.session.IBMSession session =

(com.ibm.websphere.servlet.session.IBMSession)req.getSession(true);

Integer value = 1;

//Update the in-memory session stored in the cache
session.putValue("MyManualCount.COUNTER", value);

//The servlet saves the session to the persistent store
session.sync();

}

This interface gives the Web application developer additional control of when and
if session objects go to the persistent data store. If the application does not
invoke the sync() method, and manual update mode is specified, the session
updates go only to the local session cache, not the persistent data store. Web
developers use this interface to reduce unnecessary writes to the session
database, and thereby to improve overall application performance.

All servlets in the Web application server must perform their own session
management in manual update mode.

 Chapter 7. Environmental performance considerations 561

Time-based writes to the session database
Using the time-based write option writes session data to the persistent store at a
defined write interval. The reasons for implementing time-based write lies in the
changes introduced with the Servlet 2.2 API. The Servlet 2.2 specification
introduced two key concepts:

� It limits the scope of a session to a single Web application.

� It both explicitly prohibits concurrent access to an HttpSession from separate
Web applications, and allows for concurrent access within a given JVM.

Because of these changes, WebSphere provides the session affinity mechanism
that assures an HTTP request is routed to the Web application handling its
HttpSession. This assurance still holds in a WLM environment when using
persistent HttpSessions. This means that the necessity to immediately write the
session data to the persistent store can now be relaxed somewhat in these
environments, as well as non-clustered environments, because the persistent
store is used now only for failover and session cache full scenarios.

With this in mind, it is now possible to gain potential performance improvements
by reducing the frequency of persistent store writes.

The following details apply to time-based writes:

� The expiration of the write interval does not necessitate a write to the
persistent store unless the session has been touched
(getAttribute/setAttribute/removeAttribute was called since the last
write).

� If a session write interval has expired and the session has only been retrieved
(request.getSession() was called since the last write), then the last access
time is written to the persistent store regardless of the write contents setting.

� If a session write interval has expired and the session properties have been
either accessed or modified since the last write, then the session properties
are written in addition to the last access time. Which session properties get
written is dependent on the write contents settings.

� Time-based write allows the servlet or JSP to issue IBMSession.sync() to
force the write of session data to the database.

� If the time between session servlet requests for a particular session is greater
than the write interval, then the session effectively gets written after each
service method invocation.

Note: Time-based writes requires session affinity for session data integrity.

562 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

� The session cache should be large enough to hold all of the active sessions.
Failure to do this results in extra persistent store writes, because the receipt of
a new session request can result in writing out the oldest cached session to
the persistent store. To put it another way, if the session manager has to
remove the least recently used HttpSession from the cache during a full
cache scenario, the session manager writes that HttpSession using the Write
contents settings upon removal from the cache.

� The session invalidation time must be at least twice the write interval to
ensure that a session does not inadvertently get invalidated prior to getting
written to the persistent store.

� A newly created session is always written to the persistent store at the end of
the service method.

Writing content settings
The options available are:

� Only update attributes are written to the persistent store.

� All session attributes are written to the persistent store.

Session cleanup settings
WebSphere allows the administrator to defer (to off hours) the clearing of
invalidated sessions from the persistent store. Invalidated sessions are sessions
that are no longer in use and timed out. This can be done either once or twice a
day. The fields available are:

� First time of day (0-23) is the first hour during which the invalidated persistent
sessions are cleared from the persistent store. This value must be a positive
integer between 0 and 23.

� Second time of day (0-23) is the second hour during which the invalidated
persistent sessions are cleared from the persistent store. This value must be
a positive integer between 0 and 23.

� Select Schedule sessions cleanup to enable this option.

Also, consider using schedule invalidation for intranet-style applications that have
a somewhat fixed number of users wanting the same HTTP session for the whole
business day.

Session performance considerations
This section includes guidance for developing and administering scalable,
high-performance Web applications using WebSphere Application Server
session support.

 Chapter 7. Environmental performance considerations 563

Session size
Large session objects pose several problems for a Web application. If the site
uses session caching, large sessions reduce the memory available in the
WebSphere instance for other tasks, such as application execution.

For example, assume a given application stores 1 MB of information for each
user session object. If 100 users arrive over the course of 30 minutes, and
assume the session timeout remains at 30 minutes, the application server
instance must allocate 100 MB just to accommodate the newly arrived users in
the session cache:

1 MB for each user session * 100 users = 100 MB

Note this number does not include previously allocated sessions that have not
timed out yet. The memory required by the session cache could be considerably
higher than 100 MB.

Web developers and administrators have several options for improving the
performance of session management:

� Reduce the size of the session object.
� Reduce the size of the session cache.
� Add additional application servers.
� Invalidate unnecessary sessions.
� Increase the memory available.
� Reduce the session timeout interval.

Reducing session object size
Web developers must consider carefully the information kept by the session
object:

� Removing information easily obtained or easily derived helps keep the
session object small.

� Rigorous removal of unnecessary, unnecessary, or obsolete data from the
session.

� Consider whether it would be better to keep a certain piece of data in an
application database rather than in the HTTP session. This gives the
developer full control over when the data is fetched or stored and how it is
combined with other application data. Web developers can leverage the
power of SQL if the data is in an application database.

564 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Reducing object size becomes particularly important when persistent sessions
are used. Serializing a large amount of data and writing it to the persistent store
requires significant WebSphere performance overhead. Even if the Write
contents option is enabled, if the session object contains large Java objects or
collections of objects that are updated regularly, there is a significant
performance penalty in persisting these objects. This penalty can be reduced by
using time-based writes.

Session cache size
The session manager allows administrators to change the session cache size to
alter the cache’s memory footprint. By default, the session cache holds 1000
session objects. By lowering the number of session objects in the cache, the
administrator reduces the memory required by the cache.

However, if the user’s session is not in the cache, WebSphere must retrieve it
from either the overflow cache, for local caching, or the session database, for
persistent sessions. If the session manager must retrieve persistent sessions
frequently, the retrievals can impact overall application performance.

WebSphere maintains overflowed local sessions in memory. Local session
management with cache overflow enabled allows an unlimited number of
sessions in memory. To limit the cache footprint to the number of entries
specified in session manager, use persistent session management, or disable
overflow.

Notes: In general, you can obtain the best performance with session objects
that are less than 2 KB in size. When the session object exceeds 4-5 KB, you
can expect a significant decrease in performance.

Even if session persistence is not an issue, minimizing the session object size
helps to protect your Web application from scale-up disasters as user
numbers increase. Large session objects require more and more JVM
memory, leaving no room to run servlets.

Note: When using local session management without specifying the Allow
overflow property, a full cache results in the loss of user session objects.

 Chapter 7. Environmental performance considerations 565

Creating additional application servers
WebSphere also gives the administrator the option of creating additional
application servers. Creating additional instances spreads the demand for
memory across more JVMs, thus reducing the memory burden on any particular
instance. Depending on the memory and CPU capacity of the machines involved,
the administrator can add additional instances within the same machine.
Alternatively, the administrator can add additional machines to form a hardware
cluster, and spread the instances across this cluster.

Invalidating unnecessary sessions
If the user no longer requires the session object, for example, when the user has
logged out of the site, it should be invalidated. Invalidating a session removes it
from the session cache, as well as from the session database.

Increasing available memory
WebSphere allows the administrator to increase an application server’s heap
size. By default, WebSphere allocates 256 MB as the maximum heap size.
Increasing this value allows the instance to obtain more memory from the
system, and thus hold a larger session cache.

A practical limit exists, however, for an instance heap size. The machine memory
containing the instance has to support the heap size requested. Also, if the heap
size grows too large, the length of the garbage collection cycle with the JVM
might impact overall application performance. This impact has been reduced with
the introduction of multi-threaded garbage collection.

Session timeout interval
By default, each user receives a 30 minute interval between requests before the
session manager invalidates the user’s session. Not every site requires a session
timeout interval this generous. By reducing this interval to match the
requirements of the average site user, the session manager purges the session
from the cache and the persistent store, if enabled, more quickly.

Avoid setting this parameter too low and frustrating users. The administrator
must take into account a reasonable time for an average user to interact with the
site when setting the interval. User activities include reading returned data, filling
out forms, and so on. Also, the interval must represent any increased response
time during peak times on the site, such as heavy trading days on a brokerage
site, for example.

Note: When configuring a session cluster, session affinity routing provides the
most efficient strategy for user distribution within the cluster, even with session
persistence enabled. With cluster members, the Web server plug-in provides
affinity routing among cluster member instances.

566 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Finally, in some cases where the persistent store contains a large number of
entries, frequent execution of the timeout scanner reduces overall performance.
In cases where the persistent store contains many session entries, avoid setting
the session timeout so low it triggers frequent, expensive scans of the persistent
store for timed-out sessions. Alternatively, the administrator should consider
schedule-based invalidation where scans for invalid object can be deferred to a
time that normally has low demand.

7.3 Tuning a Web server

WebSphere Application Server provides plug-ins for several Web server brands
and versions. Each Web server operating system combination has specific
tuning parameters that affect the application performance.

This section discusses some of the performance tuning settings associated with
the Web servers. In addition to the settings mentioned in this section, additional
information about Web server tuning can be found in the WebSphere Info Center
article called “Tuning Web servers”.

Following is a list of tuning parameters specific to Web servers. The listed
parameters might not apply to all of the supported Web servers. Check your Web
server documentation before using any of these parameters.

� Tune the IBM HTTP Server 2.0.47.1, Apache 2.0.48, IBM HTTP Server 6.0,
and IBM HTTP Server 6.1:

Monitoring the CPU utilization and checking the IBM HTTP Server error_log
and http_plugin.log files can help you diagnose Web server performance
problems.

You can also configure the IBM HTTP Server to show a status page:

a. Edit the IBM HTTP Server httpd.conf file and remove the comment
character (#) from the following lines in this file (Example 7-4).

Example 7-4 Remove comments from httpd.conf

#LoadModule status_module, modules/ApacheModuleStatus.dll,
#<Location/server-status>
#SetHandler server-status
#</Location>

 Chapter 7. Environmental performance considerations 567

b. Save the changes and restart the IBM HTTP Server.

c. In a Web browser, go to: http://yourhost/server-status. Alternatively, click
Reload to update status.

d. Optionally, if the browser supports refresh, go to
http://your_host/server-status?refresh=5 to refresh every five seconds.

All of these Web servers allocate a thread to handle each client connection.
Ensuring that enough threads are available for the maximum number of
concurrent client connections helps prevent this tier from being a bottleneck.
The settings for these Web servers can be tuned by making changes to the
httpd.conf file on the Web server system.

You can check the IBM HTTP Server error_log file to see if there are any
warnings about having reached the maximum number of clients (MaxClients).
There are several parameters, depending on the specific operating system
platform, that determine the maximum number of clients the Web server
supports. See the URL:

http://httpd.apache.org/docs-2.0/mod/mpm_common.html#maxclients

� Support thousands of concurrent clients:

It is not unusual for a single IBM HTTP Server system to support thousands of
concurrent clients. If your requirements are to support more concurrent clients
than the number of threads that are supported by the Web server operating
system and hardware, consider using multiple Web servers.

� Respond to a Connection Refused error message:

Some clients might receive a Connection Refused error message if there is a
sudden increase in the number of clients. Increasing the ListenBacklog and
StartServer parameters can reduce or eliminate this error.

– The ListenBacklog parameter indicates to the operating system the
maximum allowed number of pending connections. Although the IBM
HTTP Server default is 511, the actual value can be much higher or lower
depending on the corresponding operating system parameter. To handle
large numbers of simultaneous connections, this parameter and the
corresponding OS parameter might have to be set to the number (possibly
thousands) of expected simultaneous connections.

– The StartServers parameter indicates the number of IBM HTTP Server
processes to initially start. Pre-starting these IBM HTTP Server
threads/processes reduces the chance of a user having to wait for a new
process to start. You should set this parameter to a value equal to the
MinSpareServers parameter so that the minimum number of IBM HTTP
Server processes required for this client load is started immediately.

568 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://httpd.apache.org/docs-2.0/mod/mpm_common.html#maxclients

� Prevent the frequent creation and destruction of client threads/processes as
the number of users change.

You can a use the MinSpareServers and MaxSpareServers to specify the
minimum and maximum number of servers (client threads/processes) that
can exist in an idle state. To prevent frequent creation and destruction of client
threads/processes as the number of users change, set this range large
enough to include the maximum number of simultaneous users.

� Change the setting on the Web server's Access logging parameter to reduce
the load on the Web server. If you do not have to log every access to the
Application Server, change the default value of the Web server's Access
logging parameter. This change reduces the load on the Web server.

� Modify the settings of the Load balancing option and Retry interval Web
server plug-in properties to improve performance. You can improve the
performance of IBM HTTP Server (with the WebSphere Web server plug-in)
by modifying the following Web server plug-in configuration properties:

– Load balancing option, which specifies the load balancing option that the
plug-in uses in sending requests to the various application servers
associated with that Web server.

The goal of the default load balance option, Round Robin, is to provide an
even distribution of work across cluster members. Round Robin works
best with Web servers that have a single process sending requests to the
Application Server. If the Web server is using multiple processes to send
requests to the Application Server, the Random option can sometimes
yield a more even distribution of work across the cluster.

– Retry interval. which specifies the length of time to wait before trying to
connect to a server that has been marked temporarily unavailable.

The plug-in marks a server temporarily unavailable if the connection to the
server fails. Although a default value is 60 seconds, you might have to
lower this value in order to increase throughput under heavy load
conditions. Lowering the RetryInterval might help when the IBM HTTP
Server is configured to have fewer than 10 threads per process.

How can lowering the RetryInterval affect throughput? If the plug-in
attempts to connect to a particular application server while the application
server threads are busy handling other connections, which happens under
heavy load conditions, the connection might time out, causing the plug-in
to mark the server temporarily unavailable. If the same plug-in process
has other connections open to the same server and a response is
received on one of these connections, the server is marked again. If there
are only a few threads per IBM HTTP Server process, there might not be
an established connection to this application server. When this situation
occurs, the plug-in must wait for the entire retry interval.

 Chapter 7. Environmental performance considerations 569

Making these changes can help the IBM HTTP Server to support more
WebSphere Application Server users. To modify these properties, in the
administrative console, click Servers → Web Servers →
Web_server_name → Plug-in properties → Request routing.

7.4 DB2 tuning parameters

DB2 has many parameters that you can configure to optimize database
performance. This section explain only few parameters in the DB2 that can be
tuned for improving application performance in WebSphere Application Server
v6.1. For complete DB2 tuning information, refer to DB2 UDB Administration
Guide: Performance, SC09-4821-01.

http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss?CTY=US&FN
C=SRX&PBL=SC09-4821-01

7.4.1 DB2 logging

DB2 has corresponding log files for each database that provides services to
administrators, including viewing database access and the number of
connections. For systems with multiple hard disk drives, you can gain large
performance improvements by setting the log files for each database on a
different hard drive from the database files.

You can set this parameter at a DB2 command prompt, issue the following
command.

db2 update db cfg for [database_name] using newlogpath
[fully_qualified_path]

The default of this parameter is logs reside on the same disk as the database.
However the recommended value is use a separate high-speed drive, preferably
performance enhanced through a redundant array of independent disk (RAID)
configuration.

Note: Although lowering the RetryInterval can improve performance, if
all the application servers are running, a low value can have an adverse
affect when one of the application servers is down. In this case, each
IBM HTTP Server process attempts to connect and fail more frequently,
resulting in increased latency and decreased overall throughput.

570 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=SC09-4821-01

7.4.2 DB2 configuration advisor

Located in the DB2 Control Center, this advisor calculates and displays
recommended values for the DB2 buffer pool size, the database, and the
database manager configuration parameters, with the option of applying these
values. See more information about the advisor in the online help facility within
the Control Center.

7.4.3 DB2 - MaxAppls and MaxAgents

When configuring the data source settings for the databases, confirm the DB2
MaxAppls setting is greater than the maximum number of connections for the
data source. If you are planning to establish clones, set the MaxAppls value as
the maximum number of connections multiplied by the number of clones. The
same relationship applies to the session manager number of connections. The
MaxAppls setting must be equal to or greater than the number of connections. If
you are using the same database for session and data sources, set the
MaxAppls value as the sum of the number of connection settings for the session
manager and the data sources.

For example, MaxAppls = (number of connections set for the data source +
number of connections in the session manager) multiplied by the number of
clones.

After calculating the MaxAppls settings for the WebSphere Application Server
database and each of the application databases, verify that the MaxAgents
setting for DB2 is equal to or greater than the sum of all of the MaxAppls values.
For example, MaxAgents = sum of MaxAppls for all databases.

7.4.4 DB2 buffpage

This parameter is used to improve database system performance. Buffpage is a
database configuration parameter. It defines the amount of memory that is
allocated to a new define bufferpool. A buffer pool is a memory storage area
where database pages containing table rows or index entries are temporarily
read and changed. Data is accessed much faster from memory than from disk.

To view the current value of buffpage for database <dbname>, issue the DB2
command get db cfg for <dbname> and look for the value Buffer pool size
(page). To set buffer pool size to a value of n, issue the DB2 command update db
cfg for <dbname> using BUFFPAGE n and set NPAGES to -1 as follows.

 Chapter 7. Environmental performance considerations 571

You can collect a snapshot of the database while the application is running and
calculate the buffer pool hit ratio as follows:

1. Collect the snapshot:

a. Issue the update monitor switches using bufferpool on command.

b. Make sure that bufferpool monitoring is on by issuing the get monitor
switches command.

c. Clear the monitor counters with the reset monitor all command.

2. Run the application.

3. Issue the get snapshot for all databases command before all applications
disconnect from the database, otherwise statistics are lost.

4. Issue the update monitor switches using bufferpool off command.

5. Calculate the hit ratio by looking at the following database snapshot statistics:

– Buffer pool data logical reads
– Buffer pool data physical reads
– Buffer pool index logical reads
– Buffer pool index physical reads

The default value for buffpage parameter is 250, and the recommended value is
depend on the snapshot, you can continue increasing the value until the
snapshot shows a satisfactory hit rate.

The buffer pool hit ratio indicates the percentage of time that the database
manager did not have to load a page from disk to service a page request. That is,
the page is already in the buffer pool. The greater the buffer pool hit ratio, the
lower the frequency of disk input and output. Calculate the buffer pool hit ratio as
follows:

P = buffer pool data physical reads + buffer pool index physical reads
L = buffer pool data logical reads + buffer pool index logical reads
Hit ratio = (1-(P/L)) * 100%

db2 <-- go to DB2 command mode, otherwise the following "select"
does not work as is

connect to x <-- (where x is the particular DB2 database name)
select * from syscat.bufferpools

(and note the name of the default, perhaps: IBMDEFAULTBP)
(if NPAGES is already -1, there is no need to issue following
command)

alter bufferpool IBMDEFAULTBP size -1
(re-issue the above "select" and NPAGES now equals -1)

572 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

7.4.5 DB2 query optimization level

DB2 query optimization level sets the amount of work and resources that DB2
puts into optimizing the access plan. When a database query runs in DB2,
various methods are used to calculate the most efficient access plan. The range
is from 0 to 9. An optimization level of 9 causes DB2 to devote a lot of time and all
of its available statistics to optimizing the access plan.

The optimization level is set on individual databases and can be set with either
the command line or with the DB2 Control Center. Static SQL statements use the
optimization level that is specified on the prep and bind commands. If the
optimization level is not specified, DB2 uses the default optimization as specified
by the dft_queryopt setting. Dynamic SQL statements use the optimization class
that is specified by the current query optimization special register, which is set
using the SQL Set statement. For example, the following statement sets the
optimization class to 1:

Set current query optimization = 1

If the current query optimization register is not set, dynamic statements are
bound using the default query optimization class. The default value of this
parameter is 5 and the recommended value is depend on the requirements of the
application. High levels should only be used when there are very complicated
queries.

7.4.6 DB2 reorgchk

The performance of the SQL statements can be deteriorate after many updates,
deletes, or inserts have been made. Use this parameter to obtain the current
statistics for data and rebinding.

Use the DB2 reorgchk update statistics on table all command to perform
the runstats operation on all user and system tables for the database to which
you are currently connected. After that you have to rebind packages using the
bind command. If statistics are available, issue the following command on DB2
CLP:

db2 -v "select tbname, nleaf, nlevels, stats_time from
sysibm.sysindexes"

If no statistic updates exist, the value of nleaf and nlevels are -1, and
stats_time has an empty entry (for example: “-”). If the runstats command was
previously run, the real-time stamp from completion of the runstats operation also
displays under stats_time. If you think the time shown for the previous runstats
operation is too old, run the runstats command again.

 Chapter 7. Environmental performance considerations 573

7.4.7 DB2 locktimeout

This parameter specifies the number of seconds that an application waits to
obtain a lock. Setting this property helps avoid global deadlocks for applications.

To view the current value of the lock timeout property for database <dbname>
issue the DB2 get db cfg for <dbname> command and look for the value, Lock
timeout (sec). To set lock timeout to a value of n, issue the DB2 update db cfg
for <dbname> using LOCKTIMEOUT n command, where <dbname> is the name of
the database and n is a value between 0 and 30 000 inclusive.

The default value of this parameter is -1, meaning lock timeout detection is
turned off. In this situation, an application waits for a lock if one is not available at
the time of the request, until either of the following events occurs:

� The lock is granted.
� A deadlock occurs.

The recommended value for this parameter is depend on your database access
pattern, if your database access pattern tends toward a majority of writes, set this
value so that it gives you early warning when a timeout occurs. A setting of 30
seconds suits this purpose. If your pattern tends toward a majority of reads,
either accept the default lock timeout value, or set the property to a value greater
than 30 seconds.

7.4.8 DB2 maxlocks

This parameter specifies the percentage of the lock list that is reached when the
database manager performs escalation, from row to table, for the locks held by
the application. Although the escalation process does not take much time,
locking entire tables versus individual rows decreases concurrency, and
potentially decreases overall database performance for subsequent attempts to
access the affected tables.

To view the current value of the maxlocks property for database <dbname>, issue
the DB2 get db cfg for <dbname> command and look for the Percentage of
lock lists per application value. To set maxlock to a value of n, issue the
DB2 update db cfg for <dbname> using MAXLOCKS n command, where
<dbname> is the name of the database and n is a value between 1 and 100
inclusive.

Default value of this parameter is referring to the current database information for
property default values per operating system. The recommended value is
depend on the frequency of lock escalations. If lock escalations are causing
performance concerns, you might have to increase the value of this parameter or
the locklist parameter, which is described in the following paragraph.

574 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

7.4.9 DB2 locklist

This parameter specifies the amount of storage that is allocated to the lock list.

To view the current value of the locklist property for database <dbname> issue the
DB2 get db cfg for <dbname> command and look for the Max storage for
lock list value. To set locklist to a value of n, issue the DB2 update db cfg for
<dbname> using LOCKLIST n command, where <dbname> is the name of the
database and n is a value between 4 and 60 000 inclusive.

Default value of this parameter is referring to the current database information for
property default values per operating system. The recommended value is
depend on the frequency of lock escalations. If lock escalations are causing
performance concerns, you might have to increase the value of this parameter or
the maxlocks parameter, which is described in the previous paragraph. You can
use the database system monitor to determine if lock escalations are occurring.

7.5 Workload Management

Workload Management is the concept of sharing requests across multiple
instances of a resource. Workload Management techniques are implemented
expressly for providing scalability and availability within a system. These
techniques allow the system to serve more concurrent requests. Workload
Management allows for better use of resources by distributing load more evenly.
Components that are overworked, and therefore, perhaps a potential bottleneck,
can be routed around with Workload Management algorithms. Workload
Management techniques also provide higher resiliency by routing requests
around failed components to duplicate copies of that resource.

In WebSphere Application Server, Workload Management is achieved by sharing
requests across one or more application servers, each running a copy of the
Web application. In more complex topologies, Workload Management is
embedded in load balancing technologies that can be used in front of Web
servers.

Workload Management (WLM) is a WebSphere facility to provide load balancing
and affinity between nodes in a WebSphere clustered environment. WLM can be
an important facet of performance. WebSphere uses WLM to send requests to
alternate members of the cluster if the current member is too busy to process the
request in a timely fashion. WebSphere routes concurrent requests from a user
to the same application server to maintain session state.

 Chapter 7. Environmental performance considerations 575

Workload Management optimizes the distribution of client processing tasks.
Incoming work requests are distributed to the application servers, enterprise
beans, servlets, and other objects that can most effectively process the requests.
Workload Management also provides failover when servers are not available,
improving application availability.

Workload Management provides the following benefits to WebSphere Application
server applications:

� It balances client workloads, allowing processing tasks to be distributed
according to the capacities of the different machines in the system.

� It provides failover capability by redirecting client requests if one or more
servers is unable to process them. This improves the availability of
applications and administrative services.

� It enables systems to be scaled up to serve a higher client load than provided
by the basic configuration. With clustering, additional instances of servers,
servlets, and other objects can easily be added to the configuration.

� It enables servers to be transparently maintained and upgraded while
applications remain available for users.

� It centralizes the administration of servers and other objects.

This section only discusses the concept of clustering application servers for
balancing workloads as product functionality to improve performance. This
section does not explain how to set up and configure cluster, however, in this
section we discuss tuning of the Workload Management.

576 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

7.5.1 Clustering application servers

Clustering application servers that host Web containers automatically enables
plug-in Workload Management for the application servers and the servlets they
host. Routing of servlet requests occurs between the Web server plug-in and the
clustered application servers using HTTP or HTTPS, as shown in Figure 7-30.

Figure 7-30 Plug-in (Web container) Workload Management

This routing is based on weights associated with the cluster members. If all
cluster members have identical weights, the plug-in sends equal requests to all
members of the cluster, assuming no strong affinity configurations. If the weights
are scaled in the range from 0 to 20, the plug-in routes requests to those cluster
members with the higher weight value more often. No requests are sent to
cluster members with a weight of 0 unless no other servers are available.
Weights can be changed dynamically during runtime by the administrator.

A guideline formula for determining routing preference is:

% routed to Server1 = weight1 / (weight1+weight2+...+weightn)

Where there are n cluster members in the cluster.

The Web server plug-in temporarily routes around unavailable cluster members.

App Server

Web-
Container

App Server

Web-
Container

App Server

Web-
Container

Plug-in

HTTP
Server

Servlet
Requests

 Chapter 7. Environmental performance considerations 577

Workload Management for EJB containers can be performed by configuring the
Web container and EJB containers on separate application servers. Multiple
application servers with the EJB containers can be clustered, enabling the
distribution of EJB requests between the EJB containers, as shown in
Figure 7-31.

Figure 7-31 EJB Workload Management

In this configuration, EJB client requests are routed to available EJB containers
in a round-robin fashion based on assigned server weights. The EJB clients can
be servlets operating within a Web container, stand-alone Java programs using
RMI/IIOP, or other EJBs.

The server-weighted, round-robin routing policy ensures a distribution based on
the set of server weights that have been assigned to the members of a cluster.
For example, if all servers in the cluster have the same weight, the expected
distribution for the cluster is that all servers receive the same number of requests.
If the weights for the servers are not equal, the distribution mechanism sends
more requests to the higher weight value servers than the lower weight value
servers. The policy ensures the desired distribution based on the weights
assigned to the cluster members.

You can also choose to have requests sent to the node on which the client
resides as the preferred routing. In this case, only cluster members on that node
are chosen (using the round-robin weight method). Cluster members on remote
nodes are chosen only if a local server is not available.

App Server

EJB
Container

App Server

EJB
Container

EJB
Requests

Java
Client

App Server

Web-
Container

App Server

Web-
Container

App Server

EJB
Container

App Server

EJB
Container

EJB
Requests

578 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

When planning for clustering, determine the number of application servers and
their physical location. Determine the server weights to assign for application
servers based on considerations such as system stability and speed. When
creating the cluster, consider using the prefer local setting to ensure that when a
client (for example, a servlet) calls an EJB, WLM attempts to select the EJB on
the same system as the client, eliminating network communication.

7.5.2 Tuning a Workload Management configuration

You can set values for several Workload Management client properties to tune
the behavior of the Workload Management runtime. To change the property
values, you can use the Java Virtual Machine page of the administrative console
or use the wsadmin tool. In cases such as where a servlet is a client to an
enterprise bean, use the administrative console page for the application server
where the servlet is running to configure the properties. The steps below
describe how to change the values using the console.

1. In the administrative console, click Servers → Application Servers →
server_name → Java and Process Management → Process Definition.

2. On the Process Definition page, click Java Virtual Machine.

3. specify one or more of the following command-line arguments in the Generic
JVM arguments field:

– -Dcom.ibm.CORBA.RequestTimeout=timeout_interval

If your application is experiencing problems with timeouts, this argument
changes the value for the com.ibm.CORBA.RequestTimeout property,
which specifies the timeout period for responding to requests sent from the
client. This argument uses the -D option. timeout_interval is the timeout
period in seconds. If your network experiences extreme latency, specify a
large value to prevent timeouts. If you specify a value that is too small, an
application server that participates in Workload Management can time out
before it receives a response.

– -Dcom.ibm.websphere.wlm.unusable.interval=interval

If the Workload Management state of the client is refreshing too soon or
too late, this argument changes the value for the
com.ibm.websphere.wlm.unusable.interval property, which specifies the
time interval that the Workload Management client runtime waits after it
marks a server as unavailable before it attempts to contact the server

Important: Be careful when specifying this property; it has no
recommended value. Set it only if your application is experiencing
problems with timeouts.

 Chapter 7. Environmental performance considerations 579

again. This argument uses the -D option. interval is the time in seconds
between attempts. The default value is 300 seconds. If the property is set
to a large value, the server is marked as unavailable for a long period of
time. This prevents the Workload Management refresh protocol from
refreshing the Workload Management state of the client until after the time
period has ended.

7.5.3 Tuning Web server plug-in for balancing workloads

During normal operation, the backlog of connections pending to an application
server is bound to grow. Therefore, balancing workloads among application
servers in a network fronted by a Web server plug-in helps improve request
response time. You can limit the number of connections that can be handled by
an applications server. To do this:

1. Go to the Servers → Application Servers → server_name.

2. Under Additional Properties, click Web Server Plug-in properties.

3. Select Set limit for the Maximum number of connections that can be
handled by the Application Server field.

4. Specify in the Connections field the maximum number of connections you
want to allow.

5. Then click Apply and Save.

When this maximum number of connections is reached, the plug-in, when
establishing connections, automatically skips that application server, and tries
the next available application server. If no application servers are available, an
HTTP 503 response code is returned to the client. This code indicates that the
server is currently unable to handle the request because it is experiencing a
temporary overloading or because maintenance is being performed.

The capacity of the application servers in the network determines the value you
specify for the maximum number of connections. The ideal scenario is for all of
the application servers in the network to be optimally utilized. For example, if you
have the following environment:

� There are 10 application servers in a cluster.

� All of these application servers host the same applications (that is,
Application_1 and Application_2).

� This cluster of application servers is fronted by five IBM HTTP Servers.

� The IBM HTTP Servers get requests through a load balancer.

� Application_1 takes approximately 60 seconds to respond to a request

� Application_2 takes approximately 1 second to respond to a request.

580 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Depending on the request arrival pattern, all requests to Application_1 might be
forwarded to two of the application servers, say Appsvr_1 and Appsvr_2. If the
arrival rate is faster than the processing rate, the number of pending requests to
Appsvr_1 and Appsvr_2 can grow.

Eventually, Appsvr_1 and Appsvr_2 are busy and are not able to respond to
future requests. It usually takes a long time to recover from this overloaded
situation.

If you want to maintain 2500 connections, and optimally utilize the Application
Servers in this example, set the number of maximum connections allowed to 50.
(This value is arrived at by dividing the number of connections by the result of
multiplying the number of Application Servers by the number of Web servers; in
this example, 2500/(10x5)=50.)

Limiting the number of connections that can be established with an application
server works best for Web servers that follow the threading model instead of the
process model, and only one process is started.

The IBM HTTP Server V6.1 follows the threading model. To prevent the IBM
HTTP Server from starting more than one process, change the following
properties in the Web server configuration file (httpd.conf) to the indicated
values:

7.5.4 Improving performance in a high stress environment

If you use the default settings for a Microsoft Windows operating system, you
might encounter Web server plug-in performance problems if you are running in
a high stress environment. To avoid these problems, consider tuning the TCP/IP
setting for this operating system. Two of the keys setting to tune are
TcpTimedWaitDelay and MaxUserPort.

ServerLimit 1
ThreadLimit 4000
StartServers 1
MaxClients 1024
MinSpareThreads 1
MaxSpareThreads 1024
ThreadsPerChild 1024
MaxRequestsPerChild 0

 Chapter 7. Environmental performance considerations 581

To tune the TcpTimedWaitDelay setting, change the value of the
tcp_time_wait_interval parameter from the default value of 240 seconds, to 30
seconds:

1. Locate in the Windows Registry:

If this entry does not exist in your Windows Registry, create it by editing this
entry as a new DWORD item.

2. Specify, in seconds, a value between 30 and 300 inclusive for this entry. (It is
recommended that you specify a value of 30.)

To tune the MaxUserPort setting:

1. Locate in the Windows Registry:

If this entry does not exist in your Windows Registry, create it by editing this
entry as a new DWORD item.

2. Set the maximum number of ports to a value between 5000 and 65534 ports,
inclusive. (It is recommended that you specify a value of 65534,)

See the Microsoft site for further information about these settings.

http://www.microsoft.com

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\tcpip\Para
meters\TcpTimedWaitDelay

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\tcpip\Para
meters\MaxUserPort

582 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://www.microsoft.com

Appendix A. Additional best practices for SQLJ

This appendix provides information and best practices when using Structured
Query Language for Java (SQLJ).

See 6.4, “JDBC and SQLJ” on page 317 for additional discussions.

A

© Copyright IBM Corp. 2008. All rights reserved. 583

Additional best practices for SQLJ

The following sections discuss the possibilities to improve the performance of a
J2EE application accessing a DB2 database using Structured Query Language
for Java (SQLJ).

Use positioned iterators, not named iterators
Iterators are the SQLJ equivalent to JDBC result sets. There are two ways to
define iterators:

� By column name = named iterator

� By position in the select statement = positioned iterator

Named iterators are implemented as a wrapper around positioned iterators, with
an associated hash table that maps column names to column numbers. Named
iterators are more convenient to use, but more expensive than positioned
iterators.

Example A-1 and Example A-2 show an example of the usage of a named
iterator and a positioned iterator, respectively.

For best performance, the use of positioned iterators is recommended, as they
do not have as much overhead.

Example: A-1 Named iterator

// Named Iterator
#sql iterator TestCase001A (short Fkeycr, Time Ftime, BigDecimal Fnum);
....
short wfkeycr;
Time wftime;
BigDecimal wfnum;
...
#sql [myconn] cursor002 = {SELECT FKEY, FTIME, FNUM FROM WRKTB01};
while (cursor002.next()) {
 wfkeycr = cursor002.Fkeycr();
 wftime = cursor002.Ftime();
 wfnum = cursor002.Fnum();
}

584 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Example: A-2 Positioned iterator

// Positioned Iterator
#sql iterator TestCase001(short, Time, BigDecimal);
....
short wfkeycr;
Time wftime;
BigDecimal wfnum;
...
#sql [myconn] cursor001 = {SELECT FKEY, FTIME, FNUM FROM WRKTB01};
#sql {FETCH :cursor001 INTO :wfkeycr, :wftime, :wfnum};

Always customize with online checking enabled
We strongly recommend customizing the SQLJ profile using the online checker.
The online checker is called by:

db2profc ... -online=<db2_location_name>

The online checker accesses the DB2 catalog to check JDBC/SQLJ-supported
compatibility and convertibility processing and to determine the length of string
columns. Java String objects do not have a concept of length, and can only be
obtained from the catalog. In order to have the predicates considered for index
access, the information in the Database Request Module (DBRM) must match
definition in the DB2 catalog by data type and length. Online checking adds that
information to the DBRM.

Not only are CHARACTER columns affected, but so are numeric columns. The
optimizer will choose a non-matching index scan when the use of a host variable
of type LONG to match a column of type INTEGER.

The serialized profile should be recustomized after each run of the SQLJ
translator and available via the CLASSPATH at runtime.

If the SQLJ serialized profile is not customized, the Java application will execute
dynamically using JDBC.

 Appendix A. Additional best practices for SQLJ 585

Explicit connection context objects
The default connection context object for a program is stored in a static variable
of the default connection context class. In a multi-context environment (like
WebSphere Application Server), the use of a default connection context is not
thread-safe and must not be used.

An additional risk is the usage of the default connection context, which implicates
a throughput bottleneck. Closing the context releases the resources maintained
by the connection context (like statement handles) and closes the underlying
database connection. When the constant KEEP_CONNECTION is passed as an
argument, the context will be closed, but the database connection will be
retained. This avoids new effort to get the connection when it is needed again.

Example A-3 gives the explicit connection context.

Example: A-3 Explicit connection context

// Connection context declaration
#sql context ctx;
...
//get context
myconn=new ctx(Conn1);
...
//use context in SQL
#sql [myconn] {set transaction isolation level read committed};
...
#sql [myconn] cursor001 = {SELECT FKEY,FSMALLINT,FINT FROM WRKTB01
WHERE FKEY >= :wfkey};
...
//close context but keep database connection
myconn.close(ConnectionContext.KEEP_CONNECTION);

586 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Figure A-1 shows a simple performance measurement. With an explicit context,
the number of transactions per second is nearly two times higher than with a
default context.

Figure A-1 Explicit context compared to default context

Check explain tables
Whenever DB2 data is read or written, an SQL statement is executed. Once DB2
accepts a statement, an execution plan is created. The execution plan defines
how the DBMS finds and writes data. For example, the DBMS has to decide
whether an index is used or not and which index is used. To discover this
information, the execution plan can be read out. Therefore the SQL statement
EXPLAIN PLAN is used.

EXPLAIN PLAN [SET STATEMENT_ID=<id>;INTO <table>] FOR <SQL-Statment>

When EXPLAIN PLAN is executed, DB2 writes the results into the
PLAN_TABLE.

It is a good idea to always bind with EXPLAIN(YES) and to check the
PLAN_TABLE for potential performance problems, for example, table space
scan, merge scan join, and non-matching index scan.

See Chapter 26, “Using EXPLAIN to improve SQL performance”, in the
Application Programming and SQL Guide, SC26-9933, for information about how
to set up and interpret a PLAN_TABLE.

 Appendix A. Additional best practices for SQLJ 587

Alternatively or additionally, you can use DB2 Visual Explain Version 8, which is a
free feature of DB2 for z/OS. It lets you graphically analyze the access paths that
DB2 chooses, which eliminates the need to manually interpret the plan_table
output. You can download Visual Explain at:

http://www.ibm.com/software/data/db2/zos/osc/ve/

Rebind packages regularly
We do not recommend to rebind static plans and packages after each and every
REORG. Instead, statistic data, RUNSTATS, should be collected with a REORG.
The recommendation is to rebind all plans/packages at least once within the life
of any given release and when the RUNSTATS have changed significantly, that
is, over 10%.

588 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://www.ibm.com/software/data/db2/zos/osc/ve/

Appendix B. EJB 3 Feature Pack for WebSphere V6.1

In this appendix we introduce a sample application using JPA, which is part of the
EJB 3.0 specification. It is included in the EJB 3.0 Feature Pack for WebSphere
Application Server V6.1.

This appendix is organized into the following major sections:

� “Installation of prerequisites” on page 590
� “Application sample” on page 606
� “Configuring Eclipse for application sample development” on page 612
� “Understanding some parts of the sample code” on page 632

B

© Copyright IBM Corp. 2008. All rights reserved. 589

Installation of prerequisites

The prerequisite components to install the EJB 3.0 Feature Pack for WebSphere
Application Server 6.1 are as follows:

� IBM WebSphere Update Installer V6.1, if not installed in your environment

� WebSphere Application Server V6.1.0.7 or above

� EJB 3.0 Feature Pack beta code

Note: You can find more information about these prerequisites at the following
URL:

https://www14.software.ibm.com/iwm/web/cc/earlyprograms/websphere/wa
s61ejb3/download.shtml

590 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

https://www14.software.ibm.com/iwm/web/cc/earlyprograms/websphere/was61ejb3/download.shtml

Update Installer V6.1 and WebSphere FP installation:
Overview

This section provides an overview of the Update Installer V6.1 and WebSphere
Application Server Feature Pack installation.

Follow these steps:

1. Execute the <UPDATE INSTALL ROOT>\UpdateInstaller\install.exe. This is
located in the Update Installer V6.1 code downloaded from the URL listed
above. After following the installation steps, the final panel is displayed as
shown in Figure B-1.

Figure B-1 Success panel of update installer

Click Finish. If you checked the option to Launch IBM Update Installer for
WebSphere Software, you are taken to the next step automatically.

 Appendix B. EJB 3 Feature Pack for WebSphere V6.1 591

2. Execute the upgrade to V6.1.0.7 or the latest version available. In our
example we are upgrading to WebSphere V6.1.0.9. The requirement here is
that you have WebSphere Application Server V6.1 already installed. If not,
download and install WebSphere Application Server V6.1 first. In Figure B-2,
click Next to begin start of installation of WebSphere Application Server
V6.1.0.9.

Figure B-2 Update installer for WebSphere software for V6.1.0.9

592 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

We are using WebSphere V6.1.0.9, however, the latest version of the EJB
Feature Pack includes WebSphere V6.1.0.7 in the home installation directory
at the same directory level as the EJB3 directory. See Figure B-3 for more
information.

Figure B-3 Location of fix pack V6.1.0.7 inside EJB 3.0 Feature Pack install

 Appendix B. EJB 3 Feature Pack for WebSphere V6.1 593

3. The panel shown in Figure B-4 is displayed after Next has been clicked as
described in list item 2 on page 592. Choose the fixpack location.

Figure B-4 Maintenance package selection

594 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

4. Select the fixpack location as shown in Figure B-5 and click Next.

Figure B-5 Selected packages to install for WebSphere upgrade

5. Keep all selected options as shown in Figure B-5 and click Next.

 Appendix B. EJB 3 Feature Pack for WebSphere V6.1 595

6. You see the installation summary as shown in Figure B-6.

Figure B-6 Installation summary choices

7. Click Next in Figure B-6.

596 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

8. The installation results are shown in Figure B-7.

Figure B-7 Installation completion

 Appendix B. EJB 3 Feature Pack for WebSphere V6.1 597

EJB 3.0 Feature Pack installation

The general flow to install the EJB 3.0 Feature Pack is as follows:

1. Download the Feature Pack install image from:

https://www14.software.ibm.com/iwm/web/cc/earlyprograms/websphere/wa
s61ejb3/

It is named fep.61.ejb3.<os>.<platform>.[zip,tar,tar.gz] where <os> is
the operating system and <platform> is the hardware platform.

2. Make a new directory to extract the install image into and change to that
directory.

3. Expand the image into the new directory.

4. Change directory to the EJB3 sub-directory and execute install.exe.

5. Following the steps, you select the WebSphere Application Server home
directory as shown in Figure B-8.

Figure B-8 Setting WebSphere location to install EJB 3.0 Feature Pack

598 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

https://www14.software.ibm.com/iwm/web/cc/earlyprograms/websphere/was61ejb3/

6. The panel in Figure B-9 shows the summary of installation.

Figure B-9 Installation results

7. Run the Profile Management Tool (PMT) to create a new profile, application
server instance, for installing EJB 3.0 based applications. All profiles have
been enabled to use the Feature Pack beta (though we highly recommend
that a new profile be created for Feature Pack exploitation). To do this, scroll
down in the installation results step shown in Figure B-9 and enable the
option to Launch the Profile management tool. See Figure B-10.

 Appendix B. EJB 3 Feature Pack for WebSphere V6.1 599

Figure B-10 Enable the Launch the Profile management tool option

8. From the panel shown in Figure B-10, you are guided to create a Profile. For
more information about profile creation using the Profile Management Tool,
see the following URL:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topi
c=/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/tpro_instancess
aappserv.html

We give a short description of these steps only as an overview.

600 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/tpro_instancessaappserv.html

Using PMT: Overview

Next we provide an overview of using PMT:

1. As we described in step 8 on page 600, if you enable Launch the Profile
management tool option, the panel shown in Figure B-11 is displayed.

Figure B-11 Profile Management Tool first panel

 Appendix B. EJB 3 Feature Pack for WebSphere V6.1 601

2. In the panel shown in Figure B-12, we select a typical profile creation and
click Next.

Figure B-12 Profile creation options

602 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

3. In the panel shown in Figure B-13, we enable administrative security and
supply the required userid and password.

Figure B-13 Administrative security setup for profile

 Appendix B. EJB 3 Feature Pack for WebSphere V6.1 603

4. The panel shown in Figure B-14 gives a summary of choices before we begin
the profile creation process. Click Create to begin the process.

Figure B-14 Profile Creation Summary

Install verification

You can check if the EJB Feature Pack is installed in your environment using the
following command:

<WAS_HOME>\bin\versionInfo.bat

In our environment, the command is in C:\Program
Files\IBM\WebSphere\AppServer\profiles\AppSrv03\bin\versionInfo.bat.
See Figure B-15 for an example of the output.

604 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Figure B-15 VersionInfo command showing EJB 3.0 Feature Pack

You can see in this report that the EJB 3.0 Feature Pack is an installed product.

 Appendix B. EJB 3 Feature Pack for WebSphere V6.1 605

Application sample

In this section we install the application sample and test the application to
validate EJB 3.0 Feature Pack installation.

Install application sample

The first step in this topic is to start the application server.

1. To start application server, go to <WAS_HOME>\profiles\<PROFILE_NAME>\bin
and execute startServer.sh server1 if not already started.

2. The next step is to open the console. For new users, this can be done using
the firstSteps application that is on
<WAS_HOME>\profiles\firststeps\firststeps.bat. See Figure B-16.

Figure B-16 First steps application

606 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

3. Selecting the Administrative console option shows the WebSphere console
browser. If you configured security, you have to type user ID and password
and click Log in. See Figure B-17.

Figure B-17 WebSphere Application Server V6.1 console log in

4. On the console, display the Enterprise Applications panel by selecting
Applications → Enterprise Applications.

 Appendix B. EJB 3 Feature Pack for WebSphere V6.1 607

Figure B-18 Enterprise applications view

5. Click Install in the panel shown in Figure B-18.

6. Select the Local file system radio button under Path to the new
application.

7. Select the Browse button to the right side of the Full path label. Browse your
file system path to the WAS_HOME/installableApps directory and select
the EJB3CounterSample.ear file. Following this, you do not have to provide
any additional data to the application install process.

8. Select Next at the bottom of the current panel.

9. Again, select Next at the bottom of the current panel.

10.Again, select Next at the bottom of the current panel (for a total of three Next
selections).

11.If you see the message Application EJB3CounterSample installed
successfully then click the Save option to save your configuration changes
back to the master configuration.

12.The panel shown in Figure B-19 is displayed.

608 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Figure B-19 EJB3CounterSample installed

13.To finish this step, select the check box just to the left of this application and
select the Start button above the application.

Executing the sample

The sample can be executed either locally from the servlet or remotely using the
client container. For our example, we focus on executing the sample using the
servlet. For more details on client container execution, see the EJB 3.0 Feature
Pack documentation.

Executing the sample from the servlet

The counter sample's web application is accessed by opening a web browser at
URL http://localhost:9080/ejb3sample/counter on the system where you
installed the Feature Pack.

 Appendix B. EJB 3 Feature Pack for WebSphere V6.1 609

You should see the sample's Web page as follows.

Figure B-20 EJB sample initial panel

Note: The port number in your configuration might different than 9080.
However, 9080 is typical.

610 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Click the Increment button to cause the servlet to access the EJB. See
Figure B-21.

Figure B-21 Executing EJB Counter sample

To see what the sample application is doing within the WebSphere Application
Server, navigate your file system to view the SystemOut.log file in the directory
WAS_HOME/profiles/<your profile name>/logs/<your server name>/. See
Figure B-22.

 Appendix B. EJB 3 Feature Pack for WebSphere V6.1 611

Figure B-22 Analyzing application logs to view application actions

Configuring Eclipse for application sample development

These instructions assume that you have installed the WebSphere Application
Server V6.1 Feature Pack for EJB 3.0 using the default location of C:/Program
Files/IBM/WebSphere/AppServer. If you have used an alternate location, one
small change is necessary in the build.xml file.

Setting up the workspace

The following steps document the requirements to set up the workspace:

1. Start Eclipse.

Note: These instructions are using Eclipse V3.2 with a Java SE 5.0 compiler
as the default. The Java SE 5.0 environment is a requirement for the EJB 3.0
and JPA programming models. Eclipse v3.3 was tested as well.

612 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

a. Open either a new or existing workspace. See Figure B-23.

Figure B-23 Workspace launcher

b. Close the Welcome panel if it exists.

c. Switch to the Java Perspective as shown in Figure B-24.

Figure B-24 Open perspective

 Appendix B. EJB 3 Feature Pack for WebSphere V6.1 613

2. Your Eclipse might be set up to use a Java 1.4 JDK and JRE™ by default. You
have to update the preferences in order to compile Java 5 code. EJB 3.0 and
JPA rely on Java 5 annotations and features:

a. Select Window from the main menu, and then Preferences.

b. Expand the Java section and select Compiler. Switch the Compiler
compliance level to 5.0 as shown in Figure B-25.

Figure B-25 Setting up compiler preferences

614 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

c. Select Apply. The following prompt in Figure B-26 might appear. If it does,
just click Yes and continue.

Figure B-26 Compiler settings change confirmation

d. Next, switch to the Installed JREs and add the JRE that shipped with
WebSphere Application Server V6.1 as shown in Figure B-27.

Figure B-27 Add JRE panel

 Appendix B. EJB 3 Feature Pack for WebSphere V6.1 615

e. Select OK in Figure B-28.

Figure B-28 Result of install was 6.1 JRE

f. Select OK to save the changes and select Yes to do a build. The prompt
shown in Figure B-29 might appear. If so, select Yes and continue.

Figure B-29 Compiler settings confirmation changes

616 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Creating a java project

In this section we walk through creating the sample Java Project.

1. First you have to create the Java Project via File → New → Project. Select
Java Project and click Next. See Figure B-30.

Figure B-30 Creating a new project

 Appendix B. EJB 3 Feature Pack for WebSphere V6.1 617

2. In Figure B-31, fill in the name for your project. Depending on the defaults for
your Eclipse environment, you might also want to select the options as
outlined below. Click Next.

Figure B-31 Creating a java project

618 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

3. The panel shown in Figure B-32 shows the default values for the project. After
reviewing these choices, click Finish. You have to adjust some of these
project settings after you import the sample source. Your Eclipse project has
been created.

Figure B-32 Java settings for new java project

 Appendix B. EJB 3 Feature Pack for WebSphere V6.1 619

Adding Java EE Runtime Jar files to your project

In order to compile cleanly within Eclipse, the Java EE runtime jars from the
Feature Pack installation have to be included as external jars for your Eclipse
project.

1. Open your Project's Properties → Java Build Path and open the Libraries
tab as shown in Figure B-33.

Figure B-33 EJBCounterSample library settings

620 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

2. Click Add External JARs… and navigate to the plugins directory within the
install location for the WebSphere Application Server. In our example, it is
within C:\Program Files\IBM\WebSphere\AppServer\plugins. Here, you have
to select the com.ibm.ws.jpa_7.0.0.jar and com.ibm.ws.runtime_6.1.0.jar
files. These files give you access to the JPA and EJB 3.0 runtime classes
necessary for building your projects. See Figure B-34.

Figure B-34 EJB3CounterSample after addiction of JPA libraries

3. You also have to include the j2ee.jar from the lib directory; in our example,
C:\Program Files\IBM\WebSphere\AppServer\lib.

 Appendix B. EJB 3 Feature Pack for WebSphere V6.1 621

Importing the sample source

Now that you have the workspace and project properly configured, you can
import the source from the EJB3CounterSample.

1. Highlight your EJB3CounterSample project within Eclipse, right mouse click,
and select Import… On the first Import panel, select File System and click
Next. See Figure B-35.

Figure B-35 Import example files

2. On the next panel (shown in Figure B-36), use the Browse function to find the
samples subdirectory within your WebSphere Application Server installation.
Only select the src directory, because the lib directory contains binaries that
are not required for the Eclipse import. Click Finish to complete the import
process.

622 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Figure B-36 Import process

 Appendix B. EJB 3 Feature Pack for WebSphere V6.1 623

3. After the import, you might notice some red x marks indicating build failures
as shown in Figure B-37.

Figure B-37 Building failures

624 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

4. We have to configure the project's source directories. Once again, open the
Properties panel for your EJB3CounterSample project and select the Java
Build Path. This time, open the Source tab. See Figure B-38.

Figure B-38 Configuring project source

 Appendix B. EJB 3 Feature Pack for WebSphere V6.1 625

5. Click Add Folder… Expand the src folder and select the EJB3Counter
directory and click OK. See Figure B-39.

Figure B-39 Correcting the source file directory

626 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

6. You see an error about nesting source folders. Since you do not have any
source files in the src directory, you have to remove this directory from the
source folders. See Figure B-40.

Figure B-40 Nested source errors in EJB3CounterSample

 Appendix B. EJB 3 Feature Pack for WebSphere V6.1 627

7. When you click OK after removing src directory on the panel shown in
Figure B-40, your project should automatically re-build and the red x marks
should disappear. See Figure B-41.

Figure B-41 Result of correct build sources

Note: If some of the error codes do not disappear, rename only the package
client. Rename com.ibm.websphere.ejb3sample.counter.client to
com.ibm.websphere.ejb3sample.counter.client

628 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Building the EJB3CounterSample Application

With the above configuration, basic compiling and building can be done via
Eclipse. But, the packaging of the application into an enterprise application
archive (ear) requires the use of an ant build.xml script. See the code snippet of
build.xml in Example B-1.

Example: B-1 Build.xml code snippet

<?xml version="1.0"?>
<!--
 "This program may be used, executed, copied, modified and distributed
without
 royalty for the purpose of developing, using, marketing, or
distributing."
-->

<project name="EJB3" default="all" basedir=".">
<echo message="basedir ${basedir}"/>
 <!--
 Need to update was.home to point at your WebSphere install location.
 Default value is "c:/Program Files/IBM/WebSphere/AppServer"
 -->
 <property name="was.home" location="c:/Program
Files/IBM/WebSphere/AppServer"/>

If you have installed WebSphere Application Server in a different directory from
the default (c:/Program Files/IBM/WebSphere/AppServer), you have to update
the was.home property to the appropriate value.

 Appendix B. EJB 3 Feature Pack for WebSphere V6.1 629

After the changes, it is necessary to kick off the build to create the ear file.
Highlight the build.xml, right mouse click, select Run As.. → Ant Build. Your
Console window should look similar to Figure B-42.

Figure B-42 Results of build.xml execution

Go back to your Package Explorer (Figure B-41 on page 628), highlight the
EJB3CounterSample, and select Refresh. We now notice that the
EJB3Beans.jar, WebApplication.war, and EJB3CounterSample.ear files have
been created in the lib directory. See Figure B-43.

630 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Figure B-43 Files generated after build.xml running with Ant

The EJB3CounterSample.ear file can now be installed into your WebSphere
Application Server environment.

Known limitations with sample

The EJBCounterSample application is known to have installation and
configuration problems with WAS ND due to the embedded database being
located in a different location on the filesystem.

 Appendix B. EJB 3 Feature Pack for WebSphere V6.1 631

The Derby database, which is used in Embedded mode, does not permit removal
of the database files with the WebSphere Application Server process is active.
If you uninstall and reinstall the sample application using the admin console
support (that is, while the server process is started) you see a warning message
in the SystemOut.log, concerning Derby database files that are locked and
cannot be deleted. Then, when you reactivate the sample, the counter value in
the Derby database table is still at the value left over from any previous execution
of the sample.

Understanding some parts of the sample code

In this section we explain some parts of the EJB3Counter code sample.

JPACounterEntity

This class represents the EntityBean of code. See Figure B-44.

Figure B-44 JPACounterEntity

632 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Consider the JPACounterEntity code in Example B-2.

Example: B-2 JPAConterEntity

// This program may be used, executed, copied, modified and distributed
// without royalty for the purpose of developing, using, marketing, or
distributing.

package com.ibm.websphere.ejb3sample.counter;

import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.Table;

@Entity
@Table(name="EJB3COUNTERTABLE")

public class JPACounterEntity {

 @Id
 private String primarykey = "PRIMARYKEY";

 private int value = 0;

 public void setValue(int newValue)
 {
 System.out.println ("JPACounterEntity:setValue = " + newValue);
 value = newValue;
 }

 public int getValue()
 {
 System.out.println ("JPACounterEntity:getValue = " + value);
 return value;
 }

 public void setPrimaryKey(String newKey)
 {
 System.out.println ("JPACounterEntity:setPrimaryKey = '" +
newKey + "'");
 primarykey = newKey;
 }

 public String getPrimaryKey()
 {

 Appendix B. EJB 3 Feature Pack for WebSphere V6.1 633

 System.out.println ("JPACounterEntity:getPrimaryKey = '" +
primarykey + "'");
 return primarykey;
 }
}

In the foregoing example, before the class declaration, we have the annotation
@Entity that describes class as an Entity, and the table name that represents the
O/R mapping to the table EJB3COUNTERTABLE. The @id annotation assigns a
value of PRIMARYKEY to the attribute private String primarykey. The attribute
called value is persisted by default and no special annotation is required. Also
note the sets and gets for each Entity field. Now note the persistence.xml located
in EJB3Beans\META-INF. See Figure B-45.

Figure B-45 Persistence.xml location

634 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Study the persistence.xml code in Example B-3.

Example: B-3 Persistence.xml code

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="1.0"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd">
 <persistence-unit name="Counter">
<jta-data-source>jdbc/EJB3SampleDatasource</jta-data-source>
<class>com.ibm.websphere.ejb3sample.counter.JPACounterEntity</class>
<exclude-unlisted-classes>true</exclude-unlisted-classes>
 </persistence-unit>
</persistence>

You can see that JPACounterEntity is mapped to a data source called
jdbc/EJB3SampleDatasource. This configuration is required for JPA run. The
configuration of data source alias is mapped to resouces.xml that is deployed in
EAR file of application. You can find resouce.xml in the project. See Figure B-46.

 Appendix B. EJB 3 Feature Pack for WebSphere V6.1 635

Figure B-46 resouces.xml location in java project

See the code snippet of resources.xml in Example B-4.

Example: B-4 resource.xml code snippet

<?xml version="1.0" encoding="UTF-8"?>
....
<resources.jdbc:JDBCProvider xmi:id="builtin_jdbcprovider" name="Derby
JDBC Provider (XA)" description="Built-in Derby JDBC Provider (XA)"
providerType="Derby JDBC Provider (XA)"
implementationClassName="org.apache.derby.jdbc.EmbeddedXADataSource"
xa="true">
 <classpath>${DERBY_JDBC_DRIVER_PATH}/derby.jar</classpath>

636 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

 <factories xmi:type="resources.jdbc:DataSource"
xmi:id="DataSource_1163624113079" name="EJB3SampleDatasource"
jndiName="jdbc/EJB3SampleDatasource" description="Derby datasource for
EJB3 sample application" category=""
relationalResourceAdapter="builtin_rra" statementCacheSize="10"
datasourceHelperClassname="com.ibm.websphere.rsadapter.DerbyDataStoreHe
lper">
 <propertySet xmi:id="J2EEResourcePropertySet_1163624113079">
 <resourceProperties xmi:id="J2EEResourceProperty_1163624113086"
name="databaseName" type="java.lang.String"
value="${APP_INSTALL_ROOT}/${CELL}/EJB3CounterSample.ear/database/EJB3S
ampleDB" description="adminRequired=true - This is a required property.
This property must be set and it identifies which database to access.
For example, g:/db/wombat." required="true"/>

Note in the snippet that the data source alias is mapped to Derby Embedded
database, which is distributed in the EAR file of the application.

Stateless Counter Bean

In this example, we use a session bean façade to reach the EntityBean
JPACounterEntity. The application has to be reached using servlets and a client
in a remote JVM using J2EE Client container. Two interfaces are defined:
LocalCounter and RemoteCounter. See the code in Example B-5.

Example: B-5 LocalCounter interface

package com.ibm.websphere.ejb3sample.counter;

import javax.ejb.Local;

@Local
public interface LocalCounter {
 public int increment();
 public int getTheValue();
}

 Appendix B. EJB 3 Feature Pack for WebSphere V6.1 637

In this coding example, the important feature is to define Session Bean methods
to be reached by Servlets in the same JVM as EntityBean. To accomplish this,
we have to declare @Local annotation (Example B-6).

Example: B-6 RemoteCounter interface

package com.ibm.websphere.ejb3sample.counter;

import javax.ejb.Remote;

@Remote
public interface RemoteCounter {
 public int increment();
 public int getTheValue();
}

This coding is required for access by another JVM environment using client code
inside a J2EE Client Container. Also, we see the methods of SessionBean and
the @Remote annotation for EJBContainer as a remote interface. Note that the
main difference between the interfaces is the annotation setup.

Finally, we can see the session bean code in Example B-7.

Example: B-7 StatelessCounterBean code

package com.ibm.websphere.ejb3sample.counter;

import javax.ejb.Stateless;
import javax.interceptor.Interceptors;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;

@Stateless
@Interceptors (Audit.class)

public class StatelessCounterBean implements LocalCounter,
RemoteCounter {

 private static final String CounterDBKey = "PRIMARYKEY";

 // Use container managed persistence - inject the EntityManager
 @PersistenceContext (unitName="Counter")
 private EntityManager em;

 public int increment()
 {

638 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

 int result = 0;

 try {

 JPACounterEntity counter = em.find(JPACounterEntity.class,
CounterDBKey);

 if (counter == null) {
 counter = new JPACounterEntity();
 counter.setPrimaryKey(CounterDBKey);
 em.persist(counter);
 }

 counter.setValue(counter.getValue() + 1);
 em.flush();
 em.clear();

 result = counter.getValue();

 } catch (Throwable t) {
 System.out.println("StatelessCounterBean:increment - caught
unexpected exception: " + t);
 t.printStackTrace();
 }

 return result;
 }

 public int getTheValue()
 {
 int result = 0;

 try {
 JPACounterEntity counter = em.find(JPACounterEntity.class,
CounterDBKey);

 if (counter == null) {
 counter = new JPACounterEntity();
 em.persist(counter);
 em.flush();
 }

 em.clear();

 Appendix B. EJB 3 Feature Pack for WebSphere V6.1 639

 result = counter.getValue();
 } catch (Throwable t) {
 System.out.println("StatelessCounterBean:increment - caught
unexpected exception: " + t);
 t.printStackTrace();
 }

 return result;
 }
}

Analyzing this coding, we note that the @Stateless annotation before class
declaration is required to indicate that is a session bean. The session bean also
implements LocalCounter and RemoteCounter at the same time. As the
interfaces use the same method signature, there is no necessity to duplicate
increment() and getTheValue() methods.

Note in the declaration of EntityManager that there is an annotation
@PersistanceContext (unitName=”Counter”) that maps to persistence.xml
<persistence-unit name=”Counter”> described in Example B-3 on page 635.
Also note that EntityManager is not created by the code, however the container
creates the EntityManager automatically doing an injection approach. If you use
EntityManager out of a EJB Container, the main difference is that you have to
instantiate the EntityManager.

And finally, the EntityBean instance is not created in each access. To increment
the counter, EntityManager gets the same EntityBean instance doing a
em.find(JPACounterEntity.class,counterDBKey) where counterDBKey uses the
same value of primarykey that is “PRIMARYKEY” value.

640 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Appendix C. WebSphere Application
Server Toolkit 6.1

The WebSphere Application Server Toolkit helps you create, test, and deploy
applications with WebSphere Application Server Version 6.1.x. All the tools are
integrated into a workbench to simplify the development process, but you can
also use command line tools. Wizards for creating Java, J2EE, EJB, and Portlet
applications help you quickly get started by creating projects with a basic set of
files. Editors provide code assist and validation to improve productivity.
Integration with WebSphere Application Server enables you to quickly test and
deploy applications from the workbench.

The information in this appendix is a subset of material from the WebSphere
Application Server InfoCenter. For more information, go to the following URL:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

C

© Copyright IBM Corp. 2008. All rights reserved. 641

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

Application Server Toolkit

Here we describe a typical scenario for developing large applications using
WebSphere Application Server Toolkit:

A team of Application Developers write code on their personal workstation.
WebSphere Application Server Toolkit supports a variety of technologies such as
J2EE 1.4, Enterprise JavaBeans 2.1, Web Services, XML, and portlets.

Application Developers check their code into a source control system allowing
them to manage, share, and synchronize resources. The workbench can be
configured to work with CVS, Clearcase, or other source control systems.

Application Developers deploy Web applications to a unit test server where they
can test and debug their code.

A Build Engineer generates scripts for building, packaging, and deploying the
application. They run daily or weekly builds of the application. A Jython editor
simplifies the development and maintenance of wsAdmin scripts.

Test Engineers perform functional testing on the application.

The Solution Deployer deploys the completed application onto a production
server.

If you have used previous versions of WebSphere Application Toolkit, you should
read What's New, to understand what features have been added this release. If
you are new to WebSphere Application Toolkit, you should familiarize yourself
with the Navigating and customizing the workbench topics in the online help
before learning more advanced programming tasks.

Starting WebSphere Application Server Toolkit

Before you can assemble code artifacts into modules, you must install
Application Server Toolkit. The Application Server Toolkit is available on
CD-ROM in the WebSphere Application Server CD-ROM package. To install
Application Server Toolkit, follow the installation instructions that is on its
CD-ROM. Install Application Server Toolkit on either one of the supported
operating systems: Linux® Intel® or Windows platform.

Install WebSphere Application Server Toolkit using the installation guide. The
installation guide for WebSphere Application Server Toolkit is available at
x:/readme/readme_install_ast.html where x is the installation directory of
WebSphere Application Server Toolkit.

642 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

After that perform the following procedures:

1. Run the executable of the application:

– From a command prompt, change to the installation directory of
WebSphere Application Server toolkit directory and type ast.

– In Windows: Click Start → Programs → IBM WebSphere → Application
Server Toolkit Vx → Application Server Toolkit.

– In Linux: If you are using the GNOME desktop environment, open the main
menu and click Programming → Application Server Toolkit Vx. If you
are using the K Desktop Environment, open the main menu and click IBM
WebSphere → Application Server Toolkit Vx → Application Server
Toolkit.

2. In the Workspace Launcher dialog, specify the workspace directory and click
OK to launch the integrated development environment (IDE).

In the Project Explorer view of the J2EE perspective, Window → Open
Perspective → Other → J2EE → OK displays a hierarchical structure used to
build the contents of a new module, or to work with the contents of an existing
module.

Configuring Application Server Toolkit

When you first start WebSphere Application Server Toolkit, menu choices for the
J2EE Perspective might not be enabled. To assemble code artifacts into J2EE
modules that can be deployed onto an application server, you must work in the
J2EE Perspective. This topic explains how to configure your assembly tool for
work on J2EE modules and specify a target server supported by WebSphere
Application Server.

 Appendix C. WebSphere Application Server Toolkit 6.1 643

Prerequisites

Install and start WebSphere Application Server Toolkit. See “Starting WebSphere
Application Server Toolkit” on page 642.

Configuring WebSphere Application Server Toolkit consists of ensuring that
menu choices for the J2EE Perspective are enabled and specifying a target
server supported by WebSphere Application Server. When you first start an
assembly tool, menu choices for the J2EE Perspective might not be enabled,
meaning that you cannot assemble code artifacts into deployable J2EE modules.
You perform the steps in this task when you cannot work in the J2EE Perspective
or when you need to specify a new target server for your modules.

Enable menu choices for the J2EE perspective:

1. Click Window → Customize Perspective.

2. In the Customize Perspective dialog, select J2EE. Also select EJB, Web,
and any other categories that you might need. Then, click OK.

3. Click Window → Open Perspective → Other → J2EE → OK.

4. Select the Project Explorer view for your work.

5. Click Window → Show View → Other → General → Project Explorer →
OK. The Project Explorer view is displayed in a panel of the workbench.

6. Define a target server for your modules.

To work on Version 6.1.1 modules, select WebSphere Application Server v6.1 as
the target server runtime.

644 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

acronyms
AJAX Asynchronous JavaScript and XML

ANSI American National Standards Institute

API application programming interface

APPC Advanced Program to Program
Communication

ASCII American Standard Code for
Information Interchange

AST Application Server Toolkit

AWT Abstract Window Toolkit

BLOB binary large object

BMP Bean Managed Persistence

BPEL Business Process Execution
Language

CCF Common Connector Framework

CD-ROM compact-disc read-only memory

CF ConnectionFactory

CGI Common Gateway Interface

CICS Customer Information Control System

CLOB character large object

CLP command line processor

CMP Container Managed Persistence

CMR Container Managed Relationship

COBOL Common Business Oriented
Language

COMMAREA communication area

CORBA Common Object Request Broker
Architecture

CPU central processing unit

CSS cascading style sheet channel
subsystem

CVS Concurrent Versions System

DAO Data Access Object

DB database

Abbreviations and

© Copyright IBM Corp. 2008. All rights reserved.
DBA database administrator

DBMS Database Management System

DBRM Database Request Module

DMS Data Mediator Service

DTO Data Transfer Object

DWORD double word

EAI Enterprise Application Integration

EAR enterprise archive

EBCDIC Extended Binary Coded Decimal
Interchange Code

ECI external call interface

EGL Enterprise Generation Language

EIS Enterprise Information System

EJB Enterprise JavaBeans

EJBQL EJB Query Language

EL Expression Language

ERP Enterprise Resource Planning

FIFO First In, First Out

GB gigabyte

GC garbage collector

GIOP General Inter-ORB Protocol

GNOME GNU Network Object Model
Environment

GNU GNU’s Not Unix

GUI graphical user interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS HTTP over SSL Hypertext Transfer
Protocol Secure

I/O input/output

IBM International Business Machines
Corporation

IC initial context

 645

ID identifier

IDE integrated development environment

IIOP Internet InterORB Protocol

IMS Information Management System

IO input/output

IP Internet Protocol

IT information technology

ITSO International Technical Support
Organization

JAR Java archive

JAX-RPC Java API for XML-based RPC

JAX-WS Java API for XML Web Services

JCA J2EE Connector Architecture

JDBC Java Database Connectivity

JDK Java Development Kit

JDO Java Data Objects

JIT Just-In-Time

JMS Java Message Service

JNDI Java Naming and Directory Interface

JNI Java Native Interface

JPA Java Persistence API

JPQL EBJ Query Language

JRE Java Runtime Environment

JSF JavaServer Faces

JSP JavaServer Pages

JSR Java Specification Request

JSTL JSP Standard Tag Library

JTA Java Transaction API

JTS Java Transaction Service

JVM Java Virtual Machine

JVMPI Java virtual machine profiler interface

KB kilobyte

LDAP Lightweight Directory Access Protocol

LRU Least Recently Used

LT line transmission termination logical
terminal

MB megabyte

MDB message-driven beans

MOM message oriented middleware

MQ managers and queues

MS message store management services

MVC Model View Controller

ND network deployment

NIO new input/output

OASIS Organization for the Advancement of
Structured Information Systems

OO opportunity ownership

ORB Object Request Broker

ORM object relational mappers

OS operating system

PM project manager project management

PMT Profile Management Tool

POJO Plain Old Java Object

POST power-on self test

PTP point-to-point model

RAD rapid application development

RAID redundant array of independent disk

RDBMS Relational Database Management
System

RFC Request for Comments

RMI Remote Method Invocation

RMI/IIOP Remote Method Invocation over
Internet InterORB Protocol

RPC remote procedure calls

RRD Remote Request Dispatcher

RRS Resource Recovery Services

RSS rich site summary

RUP Rational Unified Process

SAM Software Asset Management

SAP service access point

SAR SIP archive

SCA Service Components Architecture

646 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

SCM Source Code Management

SDK software development kit

SDO Service Data Objects

SE Support Element IBM systems
engineer

SIP Session Initiation Protocol

SNA Systems Network Architecture

SOA service-oriented architecture

SOAP Simple Object Access Protocol

SQL Structured Query Language

SQLJ Structured Query Language for Java

SSL Secure Sockets Layer

SWT Standard Widget Toolkit

TCP Transmission Control Protocol

TCP/IP Transmission Control
Protocol/Internet Protocol

TG transmission group

TLD tag library descriptor

UCM Unified Change Management

UDB Universal Database

UDDI Universal Description Discovery and
Integration Universal Description,
Discovery, and Integration

UI User Interface

UML Unified Modeling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

VO virtual origin

VOB versioned object base

VRMF version, release, modification, fix

WAR Web ARchive

WLM Workload Management

WML Wireless Markup Language

WSDL Web Services Description Language

XA extended architecture

XHTML Extensible Hypertext Markup
Language

XML Extensible Markup Language

XSD XML Schema

XSL Extensible Stylesheet Language

XSLT Extensible Stylesheet Language
Transformation

 Abbreviations and acronyms 647

648 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this book.

IBM Redbooks

For information about ordering these publications, see “How to get Redbooks” on
page 651. Note that some of the documents referenced here may be available in
softcopy only.

� WebSphere Application Server V6 Scalability and Performance Handbook,
SG24-6392

� Rational Application Developer V6 Programming Guide, SG24-6449

� WebSphere Application Server - Express V6 Developers Guide and
Development Examples, SG24-6500

� Performance Monitoring and Best Practices for WebSphere on z/OS,
SG24-7269

� WebSphere Application Server V6.1: System Management and
Configuration, SG24-7304

� WebSphere Application Server V6.1: Planning and Design, SG24-7305

� Performance Monitoring and Best Practices for WebSphere on z/OS,
SG24-7269

Other publications

These publications are also relevant as further information sources:

� Design Patterns: Elements of Reusable Object-Oriented Software,
ISBN:0201633612

� Core J2EE Patterns: Best Practices and Design Strategies.
ISBN:0131422464

� EJB Design Patterns

ISBN:0471208310

© Copyright IBM Corp. 2008. All rights reserved. 649

Online resources

These Web sites are also relevant as further information sources:

� EJB Best Practices:

http://www.ibm.com/developerworks/java/library/j-ejbcol.html

� Core J2EE Design Patterns:

http://java.sun.com/blueprints/corej2eepatterns/Patterns/index.html

� Core J2EE Patterns, Best Practice and Design Strategies:

http://www.corej2eepatterns.com/Patterns2ndEd/

� IBM WebSphere Developer Technical Journal: The top Java EE best
practices:

http://www.ibm.com/developerworks/websphere/techjournal/0701_botzum/
0701_botzum.html

� Five common PHP design patterns:

http://www.ibm.com/developerworks/opensource/library/os-php-designpt
rns

� Developing and Deploying Modular J2EE Applications with WebSphere
Studio Application Developer and WebSphere Application Server:

http://www.ibm.com/developerworks/websphere/library/techarticles/020
6_robinson/robinson.html

� Writing efficient thread-safe classes:

http://www.ibm.com/developerworks/java/library/j-threadsafe/

� IBM WebSphere Developer Technical Journal: Leveraging OpenJPA with
WebSphere Application Server V6.1:

http://www.ibm.com/developerworks/websphere/techjournal/0612_barcia/
0612_barcia.html

� OpenJPA User’s Guide:

http://openjpa.apache.org/docs/openjpa-0.9.7-incubating/manual/manua
l.html

� IBM WebSphere Application Server 6.1 Info center:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

650 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

http://www.ibm.com/developerworks/java/library/j-ejbcol.html
http://java.sun.com/blueprints/corej2eepatterns/Patterns/index.html
http://www.ibm.com/developerworks/opensource/library/os-php-designptrns
http://www.ibm.com/developerworks/websphere/library/techarticles/0206_robinson/robinson.html
http://www.ibm.com/developerworks/java/library/j-threadsafe/
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp
http://openjpa.apache.org/docs/openjpa-0.9.7-incubating/manual/manual.html
http://www.ibm.com/developerworks/websphere/techjournal/0612_barcia/0612_barcia.html
http://www.corej2eepatterns.com/Patterns2ndEd/
http://www.ibm.com/developerworks/websphere/techjournal/0701_botzum/0701_botzum.html

How to get Redbooks

You can search for, view, or download Redbooks, Redpapers, Technotes, draft
publications and Additional materials, as well as order hardcopy Redbooks, at
this Web site:

ibm.com/redbooks

Help from IBM

IBM Support and downloads:

ibm.com/support

IBM Global Services:

ibm.com/services

 Related publications 651

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

652 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Index

Symbols
+DisableExplicitGC 62
@Activation Config Property 287
@ActivationConfigProperty 288
@EJB 272, 275
@Local 261–262
@Message Driven 287
@MessageDriven 287
@PostActivate 263
@PostConstruct 263
@PreDestroy 263, 285
@PrePassivate 263, 271
@Remote 261–262
@Remove 271
@Resource 269, 275
@Stateful 262
@Stateless 262
@TransactionAttribute 298
@TransactionManagement 298
@WebMethod 278
@WebService 270, 277–278, 481

Numerics
80/20 rule 3

A
abstract parent class 172
Abstract Window Toolkit 247
acceptance test environment 16
access intent 352
accessing EIS

DB2
connection context object 586
data type mapping 319
dynamic statement caching 321
EXPLAIN PLAN 587
KEEP_CONNECTION 586
PLAN, rebinding 588
serialized profile 585
SQLJ 320

J2EE Connector Architecture
ConnectionFactory, caching 447

© Copyright IBM Corp. 2008. All rights reserved.
transactions 450
JCA

connection pooling 451
connection usage, in JCA 1.0 451
connection usage, in JCA 1.5 452
connection usage, lazy association 452
CTG

data conversion 455
Java Message Service

delivery mode value 468
destination 466
message object 471
MessageConsumer object 470
MessageListener interface 470
onMessage method 470
type of message 471

managed environment 449
non-managed environment 449
transactions, lazy enlistment 453

JCA, IMS Connect 455
ACID

principles 259
properties 292, 327

Action 203, 206–207, 214
action handler 219
ActionErrors 205
ActionForm 203, 205, 214
actions 117
activation control 269
addAlt() 79
addMember() 79
Advanced Program to Program Communication
310
AJAX 233–240

advantages 233
disadvantages 233
with JavaServer Faces 235

annotation-based programming 19
annotations 101

JAX-WS,JAX-WS
annotations 480

Apache Ant 11
Apache JMeter 3, 24
application

 653

80/20 rule 3
architecture 2, 509
caching technologies 3
design 2, 509

layered 3–5
life cycle 3
performance 2, 509
performance bottleneck 2
performance optimization 3
scalable 2

application development
high-volume Web sites 110
memory allocation 60
memory deallocation 60
Performance target 2
Reclaim memory 60

application maintenance 313
application profiling 352
Application Server Toolkit 17

overview 19
Application Service pattern 35
architectural patterns 27–31

Model View Controller 28
Service Oriented Architecture 29
three tier architecture 27

array copy 71
artifacts 473
asynchronous

Web Services 481
asynchronous I/O 90–93
Asynchronous JavaScript and XML

See AJAX
asynchronous messages 470
atomicity 327
auto-boxing 101
automated build process 10
automated functional tests 12
auto-unboxing 101
availability 25
AWT

See Abstract Window Toolkit

B
backing bean 221–222
BEA Systems 446
bean instance pooling 257
Bean Managed Persistence 348

entity beans 348

advantages 349
disadvantages 348

bean-managed transactions 297
beanName 122
beans.instantiate() 122
best practice

Web Services performance 503
best practices

business logic layer 304
CICS Transaction Gateway 454
coding 103
control layer 172
developing Web Services 500
Enterprise JavaBeans 291
Enterprise JavaBeans transactions 296
HttpSession 173
Java Data Objects 436
JavaServer Faces 230, 249
JavaServer Pages 168, 249
message-driven beans 291
planning and design 51
scripting elements 117
Service Data Objects 446
servlets 172, 250
session beans 279
Struts 230, 250
variables usage in servlets 194
Web Services 496
Web Services Description Language 477

bill of materials file 6
BLOB 174
BMP

See Bean Managed Persistence
Borland OptimizeIt 76
bottleneck 539
Business Delegate pattern 40, 104, 437
business facade 5
business facade layer 4–5
business interface 262
Business Layer patterns 35

Application Service 35
Business Delegate 40, 104
Page-by-Pate Iterator 42
Service Locator 38
Session Facade 36
Transfer Object 41

business logic layer 170
no form bean 219

business process 311

654 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Business Process Choreographer 311
Business Process Execution Language 311

C
cache 73, 563, 565–566

flushing 59
cache policy 241
callback listener classes 263
callback methods 263
canonicalize objects 69
capacity 15
casting 58
CCF

See Common Connector Framework
channel 89
CICS Transaction Gateway 454
class

Structure 58
class attribute 121
class or static variables 194
ClearCase 8
ClearCase LT 8
cluster 566, 577–578

vertical 61
cluster considerations 48

concurrent data access 50
keep session state to a minimum 51
leverage the caching capabilities 50
mutable configuration data 49
objects cannot be shared across a cluster 49
use provided workload management and
replication 50

CMP
See Container Managed Persistence

code versioning 7
coding best practices 2
collaboration 7
collection size 72
com.ibm.CORBA.MaxOpenConnections 536
com.ibm.CORBA.ServerSocketQueueDepth 538
com.ibm.websphere.ant.tasks 11
COMMAREA 454
Common Connector Framework 311
compose servlets 188
composed JavaServer Pages 167
concurrent data access 50
Concurrent Versions System 8–9, 19
conditional check 58

connection pool 85
ConnectionFactory 38–39, 282, 289, 448, 454, 460

caching 447
defined 462
lazy association 452
managed environment 449

consistency 327
Container Managed Persistence 347

entity beans 347
advantages 348
disadvantages 349

container-managed transactions 296
contextInitialized() method 187
controller 172
controller layer 4–5
controller object 170
controller servlets 172
cookie 173
cookies 186
Crystal Reports 20
Customer Information Control System 310, 447
CVS

See Concurrent Versions System

D
data

caching 59
data access 4–5
data access frameworks 437
data access layer 313–314
data access logic 349
Data Access Object pattern 43
Data Access Objects 5
Data Mediator Services 445

Enterprise JavaBeans 441
Java Database Connectivity 442

data mediators 437
Data Replication Service 174
data source 440
Data Transfer Object 5, 219
Data Transfer Objects 445

Extensible Markup Language 170
pattern 437

database access 85
database connection 85, 87
Database Request Module (DBRM) 585
DatagramChannel 90
datasource 85

 Index 655

declarations 115
declarative transaction management 352
default no arg 263
delaying object creation 63
Dependency Injection 272, 281

using 272
vs Java Naming and Directory Interface 272

dependent value classes 350
deployment descriptor 348, 352
design

layers 3
review 59

design pattern 31
Destination Name 288
Destination Type 288
destroy() method 187
development environment 14
development life cycle 241
development tools 18–22

Application Server Toolkit 19
Rational Application Developer 20

DI
See Dependency Injection

directives 114
DisableExplicitGC 62
dispatch client 483
doGet method 187
domain layer 4–5
doPost method 187
double-checked locking 83
DTO 5

See Data Transfer Object
durability 327
dynamic cache service 59, 156
dynamic caching 156, 240

overview 241
dynamic inclusion 154

E
EbXML BPSS

See Electronic Business XML Business Process
Specification Schema

Eclipse V3.2 612
ECMAScript 158
EIS

See Enterprise Information System
EIS integration

Level 1 312

Level 2 313
Level 3 313
levels 310

EJB
See Enterprise JavaBeans

EJB container
pool size 530
tuning 528

ejbCreate() 263
EJBHome 254, 260
ejbLoad() 348
EJBLocalHome 260
EJBLocalObject 260
EJBObject 254, 260
ejbStore() 348
EJS

See Enterprise Java Server
EL

See Expression Language
Electronic Business XML Business Process Specifi-
cation Schema 255
end of servlet service 559–560
enhanced EAR 19
Enterprise Information System 310, 313, 437
Enterprise Java Beans

benefits 254–255
container 256–258
server 256

Enterprise Java Server 256
Enterprise JavaBean

container 285
Enterprise JavaBeans

1.0 253
1.1 253
2.0 350
3.0 Feature pack 589

installation 598
sample application 606

best practices 291
caching options 352
client 352, 539, 578
container 348, 358, 578
entity beans 350

coding guidelines 350
design guidelines 350

inheritance 351
isolation levels 352
local interface 435
Service Oriented Architecture 255

656 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

session bean 350, 379
direct access to back end 379

Advantages 380
Alternatives 380
Disadvantages 380

specification 253
transactions 291

best practices 296
transactions support 293

Enterprise JavaBeans session beans 171
Enterprise Resource Planning 310
entity bean 347
Entity Beans 2.x 347–380
Entity Beans 3.0 380–422
Entity Enterprise JavaBeans

manipulation of data 351
result sets 351

enumerated types
 96
EnumMap 98
EnumSet 97

EnumMap 98
EnumSet 97
escapeXml 165
event-driven processing 88
exception

Action 214
Struts 214

exception objects 88
Expression Language 158–167

accessors 162
arithmetic operators 160
compared to scriptlets 166
conditional operator 162
implicit objects 159
JSP Standard Tag Library 158, 163
logical operators 161
relational operators 161
syntax 160

expression languages
ECMAScript 158
XPath 158

expressions 116
Extensible 216
Extensible Markup Language 108, 168, 474–475

data source 437
Data Transfer Objects 170
parser 544

Extensible Stylesheet Language standard 168

Extensible Stylesheet Language Transformation
168–170

processing
server-sided 169

Struts 216
transformation 169

Extensible Stylesheet Language Transformation
compiled 170
externalization 178

F
facade 352
facade layer 4
Factory pattern 46
failover 15
fat client 171
field

static 75
file locking 89
FileChannel 90
FileInputStream 89
fillInStackTrace() 88
final modifier 58
final variable 72
finalize() 76
finalizers 76
flexibility 26
form bean 202, 219
forms 4
forwarding 156
frequency settings 559
Front Controller pattern 31

G
garbage collection 60–61, 67, 76, 182, 566

bottleneck 518
explicit 62
Java 5 103
monitoring 518
time 61
tuning 514

garbage collection call
duration of 522
length of 522
number of 522
time between calls 522

garbage collector 60
GC See garbage collection

 Index 657

general patterns
Factory 46
Singleton 46

generic types 93

H
heap

compaction 61
fragmentation 521
number of objects in heap 61
parameters 521
size 566

initial 521
maximum 521

heap size 61
configure 512

hidden form fields 186
high-volume Web sites

application development 110
HTML 4
HTML frames 185
HTTP 171
HTTP requests 59
HTTP session 173

caching 184
invalidation 182
references 184
security 181
size 174

HTTPS 171
HttpServlet 111
HttpServlet destroy() 187
HttpServlet.init() method 187
HttpSession 115, 560, 562–563

best practices 173–186
externalization 178
smart serialization 175
vs stateful session bean 173

HttpSessionBindingListener 186

I
iBATIS 422–435

defined 424
IBM DB2 UDB 348
IBMSession

sync 560–561
IDE

See integrated development environment

if-then 58
implicit objects 148–151, 160

Expression Language 159
Web components 148

implicit synchronization 84
IMS Connect 455
IMS Connect Extensions for z/OS 455
IMS Performance Analyzer for z/OS 456
Information Management System 310, 447
initial heap size 521
input/output library 89
InputStream 89
instance variables 195
integrated development environment 7
Integration Layer patterns 43

Data Access Object 43
Message Facade 44

integration test environment 14
interface

local 350
IO streams 73
isolation 327
isThreadSafe 114
iterative development 54

J
J2C

See J2EE Connector Architecture
J2EE 4

security 173
J2EE Connector Architecture 73

adapter 349
EIS Level 1 312

J2EE specification 446
JAAS

See Java Authentication and Authorization
Service

Jacl 19
jacl2jython 19
Jakarta Commons Logging 85
Java

access to synchronized resources 77
buffered I/O classes 58
casting 58
channel 89
class structure 58
conditional check 58
data streams 89

658 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

externalization 178
final modifier 58
I/O libraries 84
if-then 58
monitors 77
performance

swapping 512
reflection 58
strings 67
synchronization 77
using ? for conditional check 58

Java 2 Connector Architecture 447–456
Java 5 19, 93–103, 510

auto-boxing 101
auto-unboxing 101
enumerated types 96
garbage collection 103
generic types 93
meta data 101
static import 98
variable arguments 99

Java API for XML Web Services 473
Java API for XML-Based RPC 473

defined 478
See also JAX-RPC

Java API for XML-Based Web Services
defined 479
See also JAX-WS

Java Architecture for XML Binding 483
defined 484

Java Architecture for XML binding 278
Java Authentication and Authorization Service 258
Java client programming 246–248
Java Community Process 253–254
Java Connector Architecture 73
Java Data Objects 435–436

advantages 435
data access 435
disadvantages 436

Java Database Connectivity 5, 73, 85, 351
driver 88

Java Message Service 45, 73, 171, 456–471
ConnectionFactory 38, 462
defined 459
destination considerations 466
EIS Level 1 312
message considerations 471
message consumer considerations 467
message producer considerations 467

message-driven beans 283
non-persistent messages 468
performance testing 471
session considerations 465
tuning for message-driven beans 291

Java Naming and Directory Interface 38, 58, 85,
272

lookup 187
using 275
vs Dependency Injection 272

Java Native Interface 247, 543
Java object serialization 315–317
Java Persistence API 380–422
Java Specification Request 446
Java Specification Requests 253
Java Transaction API 252
Java Virtual Machine 352
java.io.Serializable 176, 265
java.lang.string 67
java.lang.StringBuffer 67
java.sql.connection 86
java.sql.PreparedStatement 87
java.sql.ResultSet 86
java.sql.statement 86–87
java.util.ArrayList 84
java.util.Hashtable 72, 84
java.util.Vector 84
java.util.vector 72
JavaBeans 5

component model 118
components 118–125
JavaServer Pages setProperty 123
jsp useBean 119

Javadoc 102
JavaScript 4
JavaServer Faces 20, 110, 171, 220–240, 445

architecture 223
backing bean 221–222
compared to Struts 230
data conversion 221
features 221
Internationalization support 221
JSP tag library 221
lifecycle 226
Model View Controller 223
page component 228
Page navigation 221
UI component

JavaServer Pages 4, 108–168

 Index 659

actions 117
compiler 109
composed 167
compositional 156
directives 114
HttpServlet 111
implicit objects 148–151
include 154
include tag 156
JavaServer Faces 220
JSP forward 156
Model View Controller 109
processor phases 110
request phase 112
scripting elements 115
servlet caching 241
setProperty 123
Struts 216
syntax elements 113
template content 113
translation phase 111
useBean

beanName 122
class attribute 121
scope attribute 120
type attribute 121

javax.faces.webapp.FacesServlet 226
javax.jms.MessageListener 284
javax.rmi.RemoteException 285
javax.servlet.Servlet.init() method 187
JAXB

See Java Architecture for XML binding
JAX-RPC 277, 473

See also Java API for XML-Based RPC
JAX-WS 277, 473

dispatch client 483
See also Java API for XML-Based Web Services

JCA
See J2EE Connector Architecture

JCP
See Java Community Process

JDBC
See Java Database Connectivity

JDO
See Java Data Objects

JMeter 3, 24
JMS

See Java Message Service
JNDI

See Java Naming and Directory Interface
JNI

See Java Native Interface
JSF

See JavaServer Faces
JSP

See JavaServer Pages
JSP custom tag libraries 204
JSP Standard Tag Library 110, 114, 130–147, 158

Expression Language 158, 163
JSR

See Java Specification Requests
JSR 116 specification 18
JSR 168 17, 19
JSTL

See JSP Standard Tag Library
JTA

See Java Transaction API
JUNIT 305
Just-In-Time (JIT) compiler 510
Jython 19

K
keep session state to a minimum 51

L
layered application design 3–5
layers 3

business facade 4–5
controller 4–5
data access 4–5, 313
domain 4–5
presentation 4, 108

lazy association 452
lazy enlistment 453
lazy instantiation 63–64
lazyEnlist method 454
LazyEnlistableManagedConnection interface 453
leverage the caching capabilities 50
load-performance modeling 24
load-testing 24
local interface

vs remote interface 280
local variables 64, 195
locking

double-checked 83
file 89
synchronization 79–80

660 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

locking mechanism 79–80
logging 84–85

reduction of 85
logout functionality 182
loitering object 73
lookup 85
loop 58
loop iteration 58

M
manageability 26
manager 5
mapping 489
maximum heap size 521
maximum size 540
MDB

See message-driven beans
mediation 172
memory

leak 60, 73, 75, 87, 187
detecting 518, 520
Rational Application Developer 76
testing 519

Message Facade pattern 44
Message Transmission Optimization Mechanism
483
message-driven bean

Destination Name 288
Destination Type 288

message-driven beans 58, 252, 283–291
annotations 287, 290
best practices 291
characteristics 284
defined 283
lifecycle 285
Plan Old Java Object 284
programming rules 284

meta data 101
metadata API 440
Model View Control 52
Model View Controller 2, 28, 199

architecture 223
JavaServer Faces 223
JavaServer Pages 109
Struts 200
Struts Web application 199

MS Connect Extensions for z/OS 456
MTOM

See Message Transmission Optimization
Mechanism

multimedia 4
multi-threaded garbage collection 566
mutable configuration data 49
MVC

See Model View Controller

N
naming conventions 6–7

applications 6
resources 6

non-persistent messages 468

O
object

canonicalize 69
collection 73
exception 88
loitering 73
pool 64
Reference 73
singleton 70
synchronization 79–80

object creation 63
object graphs 315
object instantiation 69
Object Request Broker 532, 539

Service 539
Thread pool size 538

objects cannot be shared across a cluster 49
OpenSTA 3, 24
optimistic concurrency control 441
ORB

See Object Request Broker
OutputStream 89

P
Page-by-Page Iterator pattern 42
pass by reference 352, 533
passivation control 269
pattern 31–48

Application Service 35
Business Delegate 40, 104
Business layer 35
Data Access Object 43
Factory 46

 Index 661

Front Controller 31
general 46
Integration Layer 43
Message Facade 44
Page-by-Page Iterator 42
Presentation Layer 31
Service Locator 38
Session Facade 36
Singleton 46
Transfer Object 41
View Dispatcher 34

PercentMaxed 539
performance 15

availability 25
caching of data 59
connection pool 85
flexibility 26
manageability 26
overhead 77
scalability 26
Service Data Objects 446
strings 67
targets 24
vertical scaling 61

performance tuning
Object Request Broker 532
pass by reference 533
XML parser selection 544

pervasive computing 170
Plain Old Java Object 34, 38, 252, 254, 273, 382

domain model 381
Enterprise JavaBeans components 259
Entity Bean 364
Entity Beans 381
Java Architecture for XML Binding,Java
Architecture for XML Binding

Plain Old Java Object 487
Java Persistence API 381–383
message-driven beans 284
Service Oriented Architecture 255

polling 88
polymorphism 414
pool size

EJB container 530
portlet container 17
PPlain Old Java Objects 305
presentation layer 4, 108, 170

avoid servlets 191
Presentation Layer patterns 31

Front Controller 31
View Dispatcher 34

profiling tools 3, 76
Project

Life cycle 3

Q
QueueConnectionFactory 289

R
Rational Application Developer 20, 234, 348

overview 20
Rational ClearCase 8, 20
Rational ClearCase LT 8
Rational ClearQuest 8
Rational Enterprise Suite Tools 8
Rational Performance Tester 3, 24
Rational Purify 76
Rational RequisitePro 8
Rational Rose 8
Rational Software Development Platform 5
Rational Unified Process 8, 10
Redbooks Web site 651

Contact us xviii
reference

static 75
reflection 58, 219
relational database 437
remote interface

vs local interface 280
Remote Method Invocation 258, 539
Remote Method Invocation over Internet InterORB
Protocol 539, 578
Remote Request Dispatcher 191
request phase 112

reloading 112
runtime support 112

request sequence 202
request/response model 173
Resource Recovery Services 450
retrieveAll() 80
reuse

business logic 313
RMI/IIOP 171
round-robin routing policy 578
RRD

See Remote Request Dispatcher
RRS

662 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

See Resource Recovery Services
RRS transactional property 450
RUNSTATS 588

S
SAAJ

See SOAP with Attachments API for Java
SAM

See Software Asset Management
scalability 26
scaling

vertical 61
SCM

See source code management
scope attribute 120
scripting elements 115

best practices 117
declarations 115
expressions 116
scriptlets 116

scriptlets 116
compared to Expression Language 166

See Model View Controller
serialized profile 585
serializing 174
server weighted routing policy 578
server-sided XSLT processing 169
ServerSocketChannel 90
Service Data Objects 170, 435–446

abstraction layer 437
advantages 445
Architecture

components
data object 440

architecture 439
components

data graph 440
data mediator 440

best practices 446
data mediators 437
disadvantages 446
performance 446

Service Development Objects 436–446
Service Endpoint Interface 473
Service Locator pattern 38
Service Oriented Architecture 29, 443

Enterprise JavaBeans 255
Services Component Architecture 444

servlets 172–199
class or static variables 194
compose 188
instance variables 195
local variables 195
SingleThreadModel 193
synchronization 196
thread safe 192

session
affinity 59
defined 258
performance 563

session affinity 566
session beans 174, 258–283

best practices 279
Enterprise JavaBeans 171, 252
format 259
programming rules 262–265, 272
Session Facade 37
stateful 173
stateful or stateless 280
types 259

See also stateful session beans
See also stateless session beans
stateful 259
stateless 259

session cleanup settings 563
Session Facade

with EJB 55
with Enterprise JavaBeans 281

Session Facade pattern 36
Session Initiation Protocol 18, 510
session invalidation time 563
session management

invalidating sessions 566
last access time 560
overflow cache 565
session cache size 565
session object size 564
session size 564
session timeout 566
time-based write frequency 562

session manager 566
session object size 564
session persistence

database 173
session write interval 562
shared resources 77
Siebel 441

 Index 663

Siebel API 441
Sikatra JProbe 76
Simple Object Access Protocol 472

communication styles 488
defined 487
encoding rules 488
envelope 488

single threaded 61
SingleThreadModel 193
singleton

object 70, 72
singleton classes

vs static 71
Singleton pattern 46
SIP

See Session Initiation Protocol
SIP archive (SAR) files 18
smart serialization 175
SOAP

See Simple Object Access Protocol
SOAP with Attachments API for Java 490
SOAP/HTTP 171
SOAP/HTTPS 171
SocketChannel 90
Software Asset Management 8
Source Code Management 6–7, 11, 14
source code management 7–10

selection 9
spawned threads 58
spawning 58
SQL

statement 348
SQLJ

See Structured Query Language for Java
SQLJ profile 585
stack trace 88
Standard Widget Toolkit 247
stateful session beans 173–174, 268–271

annotations 270
or stateless session beans 280
performance considerations 271
tuning 282
vs HttpSession 173

stateless session beans 265–267
annotations 267
lifecycle 266, 269
or stateful session beans 280
tuning 282

static classes 69

vs singleton 71
static field 75
static import 98
static inclusion 152
static reference 75
static variable 72
stdout 84
stored procedures 88, 348
string concatenation 67
StringBuffer 67–69
strings 67

manipulation operation 67
Structured Query Language for Java

best practices 584
Struts 5, 20, 110, 171, 199–219, 445

action handlers 172
actions 5
caching 243
compared to JavaServer Faces 230
components 203
configuration 243
controller 200
Extensible Stylesheet Language Transformation
216
introduction 199
JavaServer Pages 216
model 200
Model View Controller 200
performance considerations 202
validation framework 208
view 200

Struts Faces 232
Integration Library 232

swapping 512
swing 247
SWT

See Standard Widget Toolkit
synchronization 77–84

implicit 84
java.util.Hashtable 84
java.util.Vector 84
method 80
object 79–80
overhead 84
servlets 196

system test environment 15
System.arraycopy() 71
System.gc() 62
System.out.println() 84

664 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

Systems Network Architecture 310

T
tag extensions 125–126
tag handlers 126
tag library 125–147

descriptor 126–127
elements

directive 128
overview 126
tag handlers 126
tag library descriptor 127
taglib map 128–129

using 128–130
taglib map 128–129
team collaboration 7
template content 113
test environment 12–17

acceptance test environment 16
development environment 14
integration test environment 14
system test environment 15

thread local variables 64–65
thread pool 539
thread safe servlets 192
ThreadLocal 64–65
ThreadLocalUser 65–66
threads 539

spawned 58
three tier architecture 27
threshold 62
Tiles 216–219

caching 243
configuration 245
overview 216

time-based write 562
time-based writes 562
timeout

session 566
Tivoli Management Solutions 27
Tivoli Performance Viewer 520, 539
TLD

See tag library
descriptor

transaction
attributes 295
boundaries 294
boundary 350

context 350
defined 292
models 293

Transfer Object pattern 41
translation phase 111

Java source code compilation 112
Java source code generation 112
validation 111

type attribute 121

U
UI 3–4
UML modeling 20
Unified Change Management 8, 10
Unified Modeling Language 8
Update Installer V6.1 591
use provided workload management and replication
50
user interface 3
User Interface component See UI component
utility JAR 6

V
value object 104, 170, 172, 178
valueUnBound() 186
variable arguments 99
Versioned Object Bases 8
vertical cluster 61
vertical scaling 61
View Dispatcher pattern 34
view-helper class 219
VOB

See Versioned Object Bases

W
Web 1.0 234
Web 2.0 233–234
Web components 148

best practices 152
caching 240–246
dynamic caching 156
dynamic inclusion 154
forwarding 156
static inclusion 152

Web container 109, 148, 151, 187, 577–578
defined 192
Struts 243

 Index 665

tuning 525
Web pages 4
Web server plug-in 566, 577
Web Services 437, 471–506

artifacts 473
asynchronous 481
best practices 496
best practices for developing 500
concepts 472
example 277
limitations 498
performance best practices 503
Service Endpoint Interface 473
using 277
Web Services Description Language 473

Web Services Business Process Execution Lan-
guage 255
Web Services Choreography Description Language
255
Web Services Description Language 277, 473

architecture 475
best practices 477
config file 278
defined 474
publication 478

Web Services Invocation Framework 492
architecture 494
usage scenarios 495

WebSphere Application Server
application development 2, 509
enhancements 17

WebSphere Information Center 511
WebSphere rapid deployment 19
WebSphere Studio 5
weights 577
workload management 62, 575, 578
WS-BPEL

See Web Services Business Process Execution
Language

WS-CDL
See Web Services Choreography Description
Language

WSDL
See Web Services Description Language

WSIF
See Web Services Invocation Framework

X
XML

See Extensible Markup Language
XPath 158
XSL

See Extensible Stylesheet Language
XSL stylesheets 170
XSLT

See Extensible Stylesheet Language
Transformation

XSLTC
See Extensible Stylesheet Language
Transformation compiled

666 Designing and Coding Applications for Performance and Scalability in WebSphere Application Server

(1.0” spine)
0.875”<

->
1.498”

460 <
->

 788 pages

Designing and Coding Applications for Perform
ance

and Scalability in W
ebSphere Application Server

®

SG24-7497-00 ISBN 073848864X

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

®

Designing and Coding Applications
for Performance and Scalability in
WebSphere Application Server

Application design

Performance
considerations

Best practices

In many WebSphere Application Server environments, support
personnel often get more questions on application performance
and tuning than on WebSphere Application Server tuning.

While there is much documentation and guidance for installing,
monitoring, and tuning the performance and scalability aspects of
WebSphere Application Server, not a lot of guidance and
recommendations are given for performance and scalability
considerations when designing and coding applications that
execute in the WebSphere Application Server environment.

This IBM Redbooks publication provides performance and
scalability considerations to keep in mind when developing and
coding WebSphere Application Server applications. In this book,
we take a layered approach to application development covering
performance and coding considerations for each layer in a
separate chapter.

In addition, various application development tools and strategies
are compared within each layer along with best practices to keep
in mind when designing and developing applications.

The target audience for this book includes the application
development team, especially architects and developers. It also
includes developers with experience using various application
development techniques and tools for the different layers in the
application architecture.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this book
	Become a published author
	Comments welcome

	Chapter 1. Introduction
	1.1 Introduction
	1.2 Layered application design
	1.2.1 Presentation layer
	1.2.2 Controller layer
	1.2.3 Business facade layer
	1.2.4 Domain layer
	1.2.5 Data access layer

	1.3 Naming conventions
	1.3.1 Naming for applications
	1.3.2 Naming for resources

	1.4 Source code management
	1.4.1 Rational ClearCase
	1.4.2 Concurrent Versions System
	1.4.3 Which source code management to use

	1.5 Automated build process
	1.6 Automated functional tests
	1.7 Test environments
	1.7.1 Development environment
	1.7.2 Integration test environment
	1.7.3 System test environment
	1.7.4 Acceptance test environment

	1.8 New in WebSphere Application Server V6.1
	1.9 Development and deployment tools
	1.9.1 Application Server Toolkit V6.1
	1.9.2 Rational Application Developer V7.0

	Chapter 2. Application planning and design
	2.1 System capabilities and qualities
	2.1.1 Availability
	2.1.2 Scalability
	2.1.3 Flexibility
	2.1.4 Manageability

	2.2 Architectural patterns
	2.2.1 Three tier architecture
	2.2.2 Model View Controller
	2.2.3 Service Oriented Architecture

	2.3 Design patterns
	2.3.1 Presentation Layer patterns
	2.3.2 Business Layer patterns
	2.3.3 Integration Layer patterns
	2.3.4 General patterns

	2.4 Cluster considerations
	2.5 Best practices
	2.5.1 Set performance goals early
	2.5.2 Validate your architecture and design early
	2.5.3 Always use the Model View Controller architecture pattern
	2.5.4 Do not “reinvent the wheel”
	2.5.5 Develop to the specifications, not the application server
	2.5.6 Employ iterative development
	2.5.7 Always use Session Facades whenever you use EJB components
	2.5.8 Acquire shared resources late and release early
	2.5.9 Put the processing closer to the resources it requires
	2.5.10 Embrace Java EE, rather than faking it

	Chapter 3. General coding considerations
	3.1 General considerations
	3.1.1 Reviews and testing

	3.2 Garbage collection
	3.2.1 Vertical clustering
	3.2.2 Explicit garbage collection
	3.2.3 Lazy instantiation
	3.2.4 Object pools
	3.2.5 Thread local variables
	3.2.6 String concatenations
	3.2.7 Canonicalize objects
	3.2.8 Array copy
	3.2.9 Collection sizing
	3.2.10 Static and final variables
	3.2.11 Object references
	3.2.12 Finalizers

	3.3 Synchronization
	3.3.1 Synchronized keyword
	3.3.2 Synchronized object lock
	3.3.3 Synchronized method decomposition
	3.3.4 Double-checked locking
	3.3.5 Implicit synchronization

	3.4 Logging
	3.5 Database access
	3.6 Event-driven processing
	3.7 Exceptions
	3.8 New input/output library
	3.8.1 Buffered read and writes using channels
	3.8.2 File locking
	3.8.3 Asynchronous I/O

	3.9 Java 5 features
	3.9.1 Ease of development
	3.9.2 Garbage collection

	3.10 General coding best practices
	3.10.1 Do not put business logic in your client
	3.10.2 Always clean up after yourself
	3.10.3 Plan for version updates
	3.10.4 Follow rigorous procedures for development and testing

	Chapter 4. Presentation and control layer
	4.1 Presentation layer
	4.2 JavaServer Pages
	4.2.1 Use JSPs as your first choice of presentation technology
	4.2.2 JSP processor phases
	4.2.3 JSP basic syntax
	4.2.4 Template content
	4.2.5 Directives
	4.2.6 Scripting elements
	4.2.7 Scripting elements: Best practices
	4.2.8 Actions
	4.2.9 Tag libraries
	4.2.10 Implicit objects
	4.2.11 Best practices to use composed Web components
	4.2.12 Expression Language
	4.2.13 Use composed JSPs to optimize caching and code re-use
	4.2.14 Best practices summary for JSPs

	4.3 XML/XSLT processing
	4.3.1 Server-sided XSLT processing

	4.4 Control layer
	4.4.1 General best practices for the control layer

	4.5 Servlets
	4.5.1 General best practices for servlets
	4.5.2 HttpSession best practices
	4.5.3 Use webcontainer approaches to create/deliver resources
	4.5.4 Compose your servlets
	4.5.5 Avoid presentation layer servlets
	4.5.6 Implement thread safe servlets
	4.5.7 Optimizing service
	4.5.8 Use a framework that implements a controller

	4.6 Struts
	4.6.1 Model View Controller model 2 pattern with Struts
	4.6.2 General performance considerations
	4.6.3 Overview of Struts components
	4.6.4 Reuse data across multiple ActionForms
	4.6.5 Design guidelines for Actions
	4.6.6 Use the Action class to handle requests
	4.6.7 Use Struts validation framework
	4.6.8 Do not make direct JDBC calls from Actions
	4.6.9 Use ActionForm to work on session data
	4.6.10 Handle exceptions effectively
	4.6.11 Choose JSP instead of XSLT for rendering the view in Struts
	4.6.12 Using Tiles
	4.6.13 Do not use form beans to transfer data to business logic layer
	4.6.14 Use servlet/controller best practices to implement action handlers

	4.7 JavaServer Faces
	4.7.1 JavaServer Faces features and benefits
	4.7.2 JavaServer Faces architecture
	4.7.3 FrameWork responsibilities
	4.7.4 JavaServer Faces life cycle
	4.7.5 JavaServer Faces page components
	4.7.6 Use JSF from an application example
	4.7.7 Best practices to use JSF and/or Struts
	4.7.8 JSF and AJAX integration

	4.8 Caching Web components
	4.8.1 Configuring cache policy for your servlet and JSP
	4.8.2 Configuring cache policy for your Struts and Tiles

	4.9 Java client programming
	4.9.1 Abstract Window Toolkit
	4.9.2 Swing
	4.9.3 Standard Widget Toolkit
	4.9.4 Java components providing a GUI

	4.10 References
	4.10.1 JSP best practices
	4.10.2 JSF best practices
	4.10.3 Servlets best practices
	4.10.4 Struts best practices

	Chapter 5. Business logic layer
	5.1 Introduction
	5.2 EJB 3.0 for business logic
	5.2.1 History of Enterprise Java Beans
	5.2.2 Enterprise Java Beans: Reasons to use
	5.2.3 EJB server and EJB container: Overview
	5.2.4 Session beans
	5.2.5 Message-driven beans
	5.2.6 Best practices for advanced concepts of EJBs

	5.3 General best practices considerations for business logic
	5.3.1 Choose a Web application framework that can work with or without using EJBs
	5.3.2 Apply automated unit tests in the business logic layer
	5.3.3 Prefer to develop core business logic in POJOs
	5.3.4 Build a better exception-handling framework
	5.3.5 Central coding and DAO
	5.3.6 Embrace the qualities of service provided by the application server environment
	5.3.7 Plan for using Java EE security from day one

	5.4 References

	Chapter 6. Integration layer
	6.1 The integration layer: EIS integration
	6.1.1 Levels of EIS integration

	6.2 Data access layer
	6.3 Java object serialization
	6.3.1 Serialization drawbacks

	6.4 JDBC and SQLJ
	6.4.1 Driver types: Overview
	6.4.2 Data type mapping
	6.4.3 Using static SQL
	6.4.4 Use a data source to get connections
	6.4.5 Control your transactions
	6.4.6 Using JTA
	6.4.7 Releasing resources best practices
	6.4.8 Optimization with Statements
	6.4.9 Optimization with ResultSet
	6.4.10 Optimization with SQL Query
	6.4.11 Fetch small amounts of data iteratively

	6.5 Entity Beans 2.x
	6.5.1 Container Managed versus Bean Managed Persistence
	6.5.2 Considerations on the techniques used
	6.5.3 General tips for EJB Entity Beans performance
	6.5.4 Developing a read-only Entity Bean
	6.5.5 EJB QL enhancements from EJB 2.1 specification
	6.5.6 Tuning the Entity Bean container pools
	6.5.7 Understanding caching options to improve performance
	6.5.8 Defining data cache settings for a bean for performance
	6.5.9 Improving passivation behavior
	6.5.10 Applying lightweight local model to an Entity Bean
	6.5.11 Using partial column updates for CMP beans
	6.5.12 Understanding EJB access intents for best practices
	6.5.13 Enterprise JavaBeans Data Mediator Service
	6.5.14 EJB session bean: direct access to back-end

	6.6 Java Persistence API: Entity Beans 3.0
	6.6.1 Domain Model and POJO-based programming
	6.6.2 JPA programming model
	6.6.3 Introducing entity manager and persistence life cycle
	6.6.4 Object/relational mapping
	6.6.5 JPQL overview
	6.6.6 Best practices for scalability and improved performance
	6.6.7 JPA adoption considerations

	6.7 iBATIS
	6.7.1 iBATIS basic concepts
	6.7.2 iBATIS Data Mapper framework
	6.7.3 SQL map config file
	6.7.4 The DAO framework
	6.7.5 Transactions in the Data Mapper framework
	6.7.6 Caching in iBATIS
	6.7.7 Dynamic SQL in iBATIS

	6.8 Java Data Objects
	6.8.1 Advantages: JDO
	6.8.2 Disadvantages: JDO
	6.8.3 Alternatives: JDO
	6.8.4 Best practices

	6.9 Service Data Objects
	6.9.1 SDO objectives
	6.9.2 SDO architecture
	6.9.3 Others SDO perspectives
	6.9.4 Advantages: SDO
	6.9.5 Disadvantages: SDO
	6.9.6 Best practices: SDO
	6.9.7 Resource information

	6.10 Java 2 Connector Architecture
	6.10.1 Re-use of objects
	6.10.2 Managed environment
	6.10.3 Use of transactions
	6.10.4 Connection pooling
	6.10.5 Connection usage
	6.10.6 Lazy association
	6.10.7 Lazy enlistment
	6.10.8 Best practices for CICS Transaction Gateway
	6.10.9 IMS Connect

	6.11 Java Message Service
	6.11.1 Basic concepts
	6.11.2 What the Java Message Service is
	6.11.3 JMS connection considerations
	6.11.4 JMS session considerations
	6.11.5 JMS destination considerations
	6.11.6 JMS message producer / consumer considerations
	6.11.7 JMS message considerations
	6.11.8 JMS performance testing

	6.12 Web Services
	6.12.1 Some concepts
	6.12.2 Web Services architectures and best practices
	6.12.3 Best practices while developing Web Services
	6.12.4 Web Services performance best practices

	6.13 References
	6.13.1 EIS access layer
	6.13.2 JDBC and SQLJ
	6.13.3 iBATIS
	6.13.4 JPA
	6.13.5 Entity Beans
	6.13.6 SDO
	6.13.7 JMS
	6.13.8 Web Services

	Chapter 7. Environmental performance considerations
	7.1 What is new in V6.1
	7.2 Application environment tuning
	7.2.1 Tuning the Java Virtual Machine
	7.2.2 Java memory tuning tips
	7.2.3 Tuning Web container
	7.2.4 Tuning the EJB container
	7.2.5 Tuning Object Request Broker
	7.2.6 Tuning XML parser selection
	7.2.7 Tuning the URL invocation cache
	7.2.8 Tuning transport channel services
	7.2.9 Tuning data sources and associated connection pools
	7.2.10 Tuning session management

	7.3 Tuning a Web server
	7.4 DB2 tuning parameters
	7.4.1 DB2 logging
	7.4.2 DB2 configuration advisor
	7.4.3 DB2 - MaxAppls and MaxAgents
	7.4.4 DB2 buffpage
	7.4.5 DB2 query optimization level
	7.4.6 DB2 reorgchk
	7.4.7 DB2 locktimeout
	7.4.8 DB2 maxlocks
	7.4.9 DB2 locklist

	7.5 Workload Management
	7.5.1 Clustering application servers
	7.5.2 Tuning a Workload Management configuration
	7.5.3 Tuning Web server plug-in for balancing workloads
	7.5.4 Improving performance in a high stress environment

	Appendix A. Additional best practices for SQLJ
	Additional best practices for SQLJ

	Appendix B. EJB 3 Feature Pack for WebSphere V6.1
	Installation of prerequisites
	Update Installer V6.1 and WebSphere FP installation: Overview
	EJB 3.0 Feature Pack installation
	Using PMT: Overview
	Install verification

	Application sample
	Install application sample
	Executing the sample
	Executing the sample from the servlet

	Configuring Eclipse for application sample development
	Setting up the workspace
	Creating a java project
	Adding Java EE Runtime Jar files to your project
	Importing the sample source
	Building the EJB3CounterSample Application
	Known limitations with sample
	Understanding some parts of the sample code
	JPACounterEntity

	Stateless Counter Bean

	Appendix C. WebSphere Application Server Toolkit 6.1
	Application Server Toolkit
	Starting WebSphere Application Server Toolkit
	Configuring Application Server Toolkit
	Prerequisites

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get Redbooks
	Help from IBM

	Index
	Back cover

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

