
ibm.com/redbooks

IBM® Information Management Software

High Availability and Disaster
Recovery Options for DB2 for
Linux, UNIX, and Windows

Stanislaw Bartkowski
Ciaran De Buitlear

Adrian Kalicki
Michael Loster

Marcin Marczewski

Anas Mosaad
Jan Nelken

Mohamed Soliman
Klaus Subtil

Marko Vrhovnik
Karol Zimnol

Learn DB2 HADR setup, administration,
monitoring, and preferred practices

Use PowerHA, MSWFC, Tivoli SA
MP with DB2, and DB2 HADR

Protect data with DB2
disaster recovery options

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

High Availability and Disaster Recovery Options for
DB2 for Linux, UNIX, and Windows

October 2012

International Technical Support Organization

SG24-7363-02

© Copyright International Business Machines Corporation 2007, 2012. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Third Edition (October 2012)

This edition applies to DB2 for Linux, UNIX, and Windows Version 10.1.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xi.

Contents

Notices . xi
Trademarks . xii

Preface . xiii
The team who wrote this book . xiii
Now you can become a published author, too! . xvi
Comments welcome. xvii
Stay connected to IBM Redbooks . xvii

Summary of changes . xix
October 2012, Third Edition . xix

Chapter 1. DB2 high availability and disaster recovery overview 1
1.1 Introduction . 2

1.1.1 High availability . 2
1.1.2 Disaster recovery . 5

1.2 High availability solutions with DB2. 6
1.2.1 High Availability Disaster Recovery (HADR). 6
1.2.2 DB2 high availability (HA) feature . 7
1.2.3 High availability through disk mirroring . 10
1.2.4 High availability through log shipping . 10
1.2.5 Automatic client reroute . 11

1.3 Disaster recovery solutions with DB2 . 11
1.3.1 Backup and recovery options . 11
1.3.2 High Availability Disaster Recovery (HADR). 13
1.3.3 Replication . 14
1.3.4 InfoSphere Change Data Capture (CDC) . 17
1.3.5 Remote disk mirroring . 18

Chapter 2. DB2 with IBM Tivoli System Automation for Multiplatforms . 19
2.1 Overview . 20

2.1.1 Tivoli SA MP components . 20
2.1.2 Terminology of Tivoli SA MP. 22

2.2 How DB2 works with Tivoli SA MP . 24
2.2.1 How Tivoli SA MP detects failures . 24

2.3 Planning the high availability cluster . 27
2.4 Setting up Tivoli SA MP with DB2 10.1 on AIX . 29

2.4.1 Planning the cluster domain . 30
2.4.2 Installing Tivoli SA MP . 31
© Copyright IBM Corp. 2007, 2012. All rights reserved. iii

2.4.3 Configuration of Tivoli SA MP and DB2 . 34
2.5 Administration . 56

2.5.1 The node maintenance scenario. 56
2.6 Cluster maintenance . 59

2.6.1 Deleting a domain . 61
2.7 Testing. 62

2.7.1 Operating system failure . 62
2.7.2 Power failure . 65
2.7.3 Network failure . 65
2.7.4 DB2 instance failure . 68

Chapter 3. DB2 and PowerHA SystemMirror . 71
3.1 Overview . 72
3.2 How DB2 works with PowerHA . 73
3.3 Planning the PowerHA cluster. 76
3.4 Setting up the PowerHA cluster . 76

3.4.1 PowerHA cluster setup planning . 77
3.4.2 PowerHA configuration . 79

3.5 Considerations for db2nodes.cfg file . 90
3.5.1 Modifying the file entry in the start script . 91
3.5.2 Running the db2start command with the restart option. 92
3.5.3 Running the db2gcf command with the -u option 93
3.5.4 Using an alias in the hosts file. 94

3.6 Tuning tips for quick failover . 95
3.6.1 Failover of the resources. 95

Chapter 4. DB2 with Microsoft Windows Failover Cluster. 101
4.1 Failover Cluster concepts . 102

4.1.1 Failover Cluster overview . 102
4.1.2 Windows Failover Cluster definitions . 104
4.1.3 Managing Failover Cluster . 105

4.2 Minimal steps to cluster a DB2 instance . 106
4.3 Creating a server cluster . 107

4.3.1 Validating your system . 107
4.3.2 Creating a cluster in the domain . 115

4.4 Installing DB2 . 120
4.5 Creating a DB2 instance . 121
4.6 Manually configuring a DB2 instance . 122

4.6.1 Adding the DB2 resource type . 123
4.6.2 Creating cluster resources . 125
4.6.3 Migrating the DB2 instance to the cluster environment. 139
4.6.4 Adding a reference to the instance in the other nodes 141
4.6.5 Configuring security settings . 142
iv High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

4.7 Using db2mscs to configure a DB2 instance. 144
4.8 Testing a cluster . 148

4.8.1 Creating a SAMPLE database . 149
4.8.2 Verifying the DB2 instance communication settings 149
4.8.3 Connecting to the database using Data Studio. 150
4.8.4 Testing failover . 153

4.9 Upgrading your instance . 155

Chapter 5. DB2 HADR introduction . 157
5.1 HADR overview . 158

5.1.1 HADR topology . 160
5.1.2 HADR synchronization modes . 164

5.2 HADR architecture . 165
5.3 Terminology. 167

Chapter 6. HADR setup . 173
6.1 Requirements for setting up HADR . 174

6.1.1 Requirements . 174
6.1.2 Parameters . 175

6.2 Setup and configuration . 175
6.2.1 Preparing the environment . 175
6.2.2 Configuration using the HADR setup wizard. 178
6.2.3 Command-line setup . 194
6.2.4 Setting up HADR with multiple standby servers 197
6.2.5 HADR log spooling . 201

6.3 Basic operation . 201
6.3.1 Starting and shutting down . 202
6.3.2 Planned takeover . 207
6.3.3 Takeover by force . 209

6.4 Troubleshooting. 212
6.4.1 During setup . 213
6.4.2 After setup or during normal execution . 214
6.4.3 After an HADR disconnects or server failure occurs. 215
6.4.4 Considerations while running HADR. 215
6.4.5 Re-establishing HADR after failure . 217

Chapter 7. HADR with clustering software . 223
7.1 Overview: Why clustering software is needed. 224

7.1.1 What is clustering software . 224
7.1.2 How HADR works in an environment with clustering software 226
7.1.3 What resources should be taken over. 227

7.2 db2haicu . 228
7.2.1 Prerequisites . 228
7.2.2 Usage . 229
 Contents v

7.2.3 Considerations . 232
7.2.4 Troubleshooting . 232

7.3 DB2 HADR with Tivoli SA MP configuration for automatic failover on an AIX
system . 233

7.3.1 Architecture . 233
7.3.2 Configuration. 236
7.3.3 Administration . 249
7.3.4 Unplanned outages . 255

7.4 DB2 HADR with Tivoli SA MP configuration for automatic failover on a Linux
system . 266

7.4.1 Architecture . 266
7.4.2 Configuration. 268
7.4.3 Testing . 277
7.4.4 Administration . 299

7.5 Automating HADR takeover with PowerHA. 306
7.5.1 PowerHA and HADR planning . 306
7.5.2 Step-by-step configuration overview . 310
7.5.3 HADR setup . 311
7.5.4 PowerHA configuration . 312
7.5.5 Preparing the application server scripts . 326
7.5.6 Joint test for HADR and PowerHA . 329

Chapter 8. HADR monitoring . 337
8.1 Introduction to HADR monitoring. 338
8.2 The db2pd command . 340
8.3 The MON_GET_HADR table function. 343
8.4 HADR monitoring information . 345

Chapter 9. DB2 and system upgrades. 353
9.1 General steps for upgrades in a HADR environment 354
9.2 DB2 fix pack rolling upgrades . 354

9.2.1 Rolling upgrade on Linux . 355
9.3 DB2 upgrade . 364

9.3.1 DB2 version upgrade on Linux . 365
9.4 Rolling operating system and DB2 configuration parameter updates . . . 375

9.4.1 Procedure . 376

Chapter 10. Automatic client reroute. 377
10.1 ACR overview . 378

10.1.1 ACR with HADR . 378
10.1.2 ACR in action . 380

10.2 ACR tuning . 382
10.3 ACR limitations . 385
10.4 ACR configuration examples. 387
vi High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

10.4.1 ACR with a non-HADR database . 387
10.4.2 ACR with a HADR database . 389
10.4.3 ACR with a HADR database and PowerHA 390

10.5 Application programming to handle ACR . 392
10.5.1 ACR support for Java applications . 392
10.5.2 Implementing ACR on the DataSource interface with JDBC 393
10.5.3 ACR exception handling in Java applications 396

Chapter 11. HADR configuration parameters and registry variables . . . 399
11.1 DB2 HADR configuration parameters . 400

11.1.1 Basic configuration parameters. 400
11.1.2 Automatic client reroute configuration parameters 405

11.2 DB2 HADR registry variables . 405
11.3 Considerations . 407

11.3.1 DB2 transaction performance . 408
11.3.2 How to reduce takeover time . 409
11.3.3 Seamless takeover . 410
11.3.4 Performance implications of HADR_TIMEOUT 410
11.3.5 Applications with a high logging rate. 410
11.3.6 Network considerations. 411
11.3.7 Network performance tips . 413
11.3.8 Avoiding transaction loss in a HADR with HA cluster software. . . 416
11.3.9 Avoiding transaction loss by using the peer window. 422
11.3.10 Index logging. 427
11.3.11 Backup from standby image with FlashCopy 428
11.3.12 Replicating load data. 429
11.3.13 Log archive and HADR . 431
11.3.14 Database restore considerations . 431

Chapter 12. Backup and recovery . 433
12.1 Single system view backup . 434

12.1.1 Using single system view backup . 434
12.1.2 Considerations . 441

12.2 Backup and restore database with snapshot backup 442
12.3 Recover database command . 444

12.3.1 Feature summary . 444
12.4 Recovery object management. 445

Chapter 13. Q replication . 447
13.1 Introduction to Q replication . 448
13.2 Unidirectional setup. 449

13.2.1 Starting Q capture . 484
13.2.2 Start Q Apply. 487
 Contents vii

Chapter 14. IBM InfoSphere Change Data Capture 491
14.1 Introduction . 492
14.2 Architectural overview . 492

14.2.1 InfoSphere CDC architecture . 493
14.2.2 Transactional integrity and reliability . 496

14.3 InfoSphere CDC topologies. 497
14.3.1 Unidirectional replication . 499
14.3.2 Bidirectional replication . 500
14.3.3 Replication to other destinations . 501
14.3.4 High availability and disaster recovery with InfoSphere CDC 502

14.4 Features and functionality . 503
14.4.1 Transformations . 503
14.4.2 Replication modes. 505
14.4.3 Filtering . 507
14.4.4 Conflict detection and resolution . 508

Chapter 15. Geographically dispersed high availability and disaster
recovery solutions . 511

15.1 PowerHA over extended distances . 512
15.2 PowerHA data replication components . 515

15.2.1 PowerHA with SAN Volume Controller mirroring 515
15.2.2 PowerHA with Geographical Logical Volume Manager 515
15.2.3 Geographical Logical Volume Manager . 516
15.2.4 Synchronous and asynchronous data mirroring 517

15.3 Configuring a stand-alone GLVM . 519
15.4 Manual failover . 530
15.5 Configuring PowerHA with GLVM . 531

Appendix A. PowerHA application server scripts 533
A.1 hadr_primary_takeover.ksh . 534
A.2 hadr_primary_stop.ksh . 536
A.3 hadr_monitor.ksh . 539

Appendix B. IBM Tivoli System Automation for Multiplatforms takeover
scripts . 541

B.1 env file. 542
B.2 hadr_start.ksh . 543
B.3 hadr_stop.ksh . 548
B.4 hadr_monitor.ksh . 549
B.5 planned_takeover.ksh. 552
B.6 get_hadr_info.fnc . 553

Related publications . 555
IBM Redbooks . 555
viii High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Other publications . 555
Online resources . 557
Help from IBM . 557
 Contents ix

x High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your
local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and
verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the
information herein; these changes be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the materials
for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any
obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the results
obtained in other operating environments may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements be the same on generally
available systems. Furthermore, some measurements may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them as
completely as possible, the examples include the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is
entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any
form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for which the sample programs are
written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy, modify, and distribute these sample
programs in any form without payment to IBM for the purposes of developing, using, marketing, or distributing
application programs conforming to IBM's application programming interfaces.
© Copyright IBM Corp. 2007, 2012. All rights reserved. xi

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. These and other IBM trademarked
terms are marked on their first occurrence in this information with the appropriate symbol (® or ™),
indicating US registered or common law trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common law trademarks in other countries. A current
list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
DataStage®
DB2 Connect™
DB2 Universal Database™
DB2®
ECKD™
Enterprise Storage Server®
FlashCopy®

HACMP™
IBM®
Informix®
InfoSphere®
LiveAudit™
PowerHA®
pureScale®
Redbooks®

Redbooks (logo) ®
System p®
System Storage®
System z®
SystemMirror®
Tivoli®
WebSphere®
z/OS®

The following terms are trademarks of other companies:

Intel, Intel logo, Intel
Inside logo, and Intel
Centrino logo are
trademarks or registered
trademarks of Intel
Corporation or its
subsidiaries in the United
States and other
countries.

Linux is a trademark of
Linus Torvalds in the
United States, other
countries, or both.

Microsoft, Windows, and
the Windows logo are
trademarks of Microsoft
Corporation in the United
States, other countries, or
both.

Java, and all Java-based
trademarks and logos are
trademarks or registered
trademarks of Oracle
and/or its affiliates.

UNIX is a registered
trademark of The Open
Group in the United States
and other countries.

Other company, product, or service names may be trademarks or service marks of others.
xii High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

http://www.ibm.com/legal/copytrade.shtml

Preface

As organizations strive to do more with less, IBM® DB2® for Linux, UNIX, and
Windows provides various built-in high availability features. DB2 further provides
high availability solutions by using enterprise system resources with broad
support for clustering software, such as IBM PowerHA® SystemMirror®, IBM
Tivoli® System Automation for Multiplatforms (Tivoli SA MP), and Microsoft
Windows Cluster Server.

This IBM Redbooks® publication describes the DB2 high availability functions
and features, focusing on High Availability Disaster Recovery (HADR) in the
OLTP environment. The book provides a detailed description of HADR, including
setup, configuration, administration, monitoring, and preferred practices.

This book explains how to configure Cluster software PowerHA, Tivoli SA MP,
and MSCS with DB2 and show how to use these products to automate
HADR takeover.

DB2 also provides unprecedented enterprise-class disaster recovery capability.
This book covers single system view backup, backup and restore with snapshot
backup, and the db2recovery command, in detail.

This book is intended for database administrators and information management
professionals who want to design, implement, and support a highly available
DB2 system.

The team who wrote this book

This book was produced by a team of specialists from around the world working
at the International Technical Support Organization, San Jose Center.

Stanislaw Bartkowski is a Senior Software Engineer at IBM Poland. He joined
IBM in 2006. Ha has been working as a DB2 Solution Migration Consultant for 2
years. He has an extensive experience in software development and database
solution development.
© Copyright IBM Corp. 2007, 2012. All rights reserved. xiii

Ciaran De Buitlear is a DB2 Solutions Consultant with the Software Group in the
IBM Innovation Centre in Dublin, Ireland. Ciaran has a degree in Computer
Applications from Dublin City University and has 20 years of industry experience
with several relational databases. His main experience is in delivering
mission-critical solutions that involve database backed websites, database
performance, and high availability.

Adrian Kalicki is a DB2 Solution Migration Consultant at IBM Software Lab in
Krakow, Poland. He has over 12 years of experience in the field of Information
Management. His areas of expertise cover the full application development
lifecycle, including database and application design and performance tuning. He
holds a number of certificates for both Oracle and
IBM databases.

Michael Loster is a Software Engineer with IBM Research & Development,
Böblingen. He is a member of the IBM Information Management Technical
Ecosystems Team focusing on the migration of database systems and
applications from other database products to DB2. In this role, he is frequently
involved in projects that are related to customer database installations and the
corresponding application deployments. His areas of expertise include
information systems, software engineering, and computer engineering. He holds
a Master's degree in Computer Science from the Technical University
of Braunschweig.

Marcin Marczewski has been an IBM employee since 2005. He is DB2
Solutions Migration Consultant and Team Leader of the Information
Management Technology Ecosystem team in CEE, which is a part of IBM
Krakow Software Laboratory in Poland. He focuses on various conversion
projects to DB2 database by supporting IBM customers and IBM Business
Partners in such projects (porting assessments and porting assistance). As part
of his job, he also delivers various DB2 training. He is an IBM certified DB2 for
Linux, UNIX, and Windows Advanced Database Administrator.

Anas Mosaad is an IT specialist at the IBM Egypt technology development
center. He has over 6 years of experience in the software development industry.
His expertise includes portal and J2EE development, web content management,
and database application development. He is assigned to the IBM Information
Management Technology Ecosystem working on database migrations and
database tools development.

Jan Nelken is a DB2 Solution Migration Consultant working in IBM Software Lab
in Krakow, Poland. Before his current position, he worked at IBM Toronto Lab in
Canada in DB2 for Linux, UNIX, and Windows support. He has 40 years of
experience in data processing. His areas of expertise include relational and
non-relational databases and DB2 problem determination.
xiv High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Mohamed Soliman is an IT specialist at IBM Egypt Technology Development
Center and is a certified DB2 database administrator. Mohamed is a member of
IBM Information Management Technology Ecosystem (IMTE). During his five
years with IBM, he has worked on infrastructure technology systems, application
development, and database administration.

Klaus Subtil is an IT Specialist within the IBM Information Management
Technical Ecosystem team. He has more than 25 years experience in the IT
industry focusing on relational database technology and application
development. Klaus is an IBM Certified Solution Expert on DB2 10.1 Database
administration and holds a Master's degree in Business Administration from the
Open University Business School, Milton Keynes, UK. In his current position,
Klaus enables independent software vendors, clients, and system integrators for
IBM Information Management software.

Marko Vrhovnik is a DB2 migration consultant in the IBM Information
Management Technology Ecosystem (IMTE) organization working in Germany.
He has over two years of experience in the field of DB2. He works closely with
IBM Business Partners and clients regarding DB2, from strategy to
implementation, including database migrations and DB2 skill transfer. Marko
worked for 5 years as a database researcher in the area of SQL optimization in
data-intensive workflows. He holds both a PhD and M.Sc. in Computer Science
from the University of Stuttgart, Germany.

Karol Zimnol is a Solution Migration Specialist at IBM, where most of his time is
spent on helping IBM customers enable their applications on DB2 and IBM
Informix®. The rest of his time is spent on delivering training for IBM Business
Partners. He has experience with helping IBM Business Partners to implement
high availability applications. Karol has years of experience with DBMS and is
certified for DB2, Informix, and Oracle.

Thanks to the following people for their contributions to this project:

Lui Tang
IBM Canada

Slawomir Ksiazek and Daniel Tarasek
IBM Poland

Eugene Melody, Mark Dennehy, Sasa Kajic
IBM Ireland

Whei-Jen Chen
International Technical Support Organization, San Jose Center
 Preface xv

Thanks to the authors of the previous editions of this book.

� Authors of the first edition, High Availability and Disaster Recovery Options
for DB2 for Linux, UNIX, and Windows, published in October 4th, 2007, were:

Whei-Jen Chen
Chandramouli Chandrasekaran
Don Gneiting
Gustavo Castro
Paul Descovich
Tomohiro Iwahashi

� Authors of the second edition, High Availability and Disaster Recovery
Options for DB2 for Linux, UNIX, and Windows, published in February 8th,
2009, were:

Whei-Jen Chen
Masafumi Otsuki
Paul Descovich
Selvaprabhu Arumuggharaj
Toshihiko Kubo
Yong Jun Bi

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a
published author—all at the same time! Join an ITSO residency project and help
write a book in your area of expertise, while honing your experience using
leading-edge technologies. Your efforts help to increase product acceptance and
customer satisfaction, as you expand your network of technical contacts and
relationships. Residencies run from two to six weeks in length, and you can
participate either in person or as a remote resident working from your home
base.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html
xvi High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about
this book or other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the
IBM Redbooks weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
 Preface xvii

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://twitter.com/ibmredbooks
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://www.linkedin.com/groups?home=&gid=2130806
http://www.redbooks.ibm.com/rss.html

xviii High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Summary of changes

This section describes the technical changes that were made in this edition of the
book and in previous editions. This edition might also include minor corrections
and editorial changes that are not identified.

Summary of Changes
for SG24-7363-02
for High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and
Windows
as created or updated on October 18, 2012.

October 2012, Third Edition

This revision reflects the addition, deletion, or modification of new and changed
information described below.

New information
� The DB2 HADR multiple-standbys feature is described.

� New DB2 HADR parameters are described.

� DB2 10.1 HADR enhancements are covered.

� A new chapter that describes Change Data Capture is added.

� Geographically dispersed options are added.

Changed information
� All examples are adjusted to DB2 10.1 for Linux, UNIX, and Windows, IBM

Tivoli System Automation for Multiplatforms (Tivoli SA MP), and PowerHA.

� All Control Center examples are replaced with Data Studio 3.1.1.

� The HADR monitoring methods description is updated to DB2 10.1.

� Out-of-date examples are dropped.
© Copyright IBM Corp. 2007, 2012. All rights reserved. xix

xx High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Chapter 1. DB2 high availability and
disaster recovery overview

DB2 supports a number of software and hardware offerings from IBM and other
vendors that you can use with DB2 to strengthen high availability in your
environment. The decision about what products or DB2 features to use depends
on the specific challenges of the environment, budget, complexity, and time
to implement.

This book describes multiple options for implementing high availability and
disaster recovery solutions with DB2. It covers topics such as the integration of
various kinds of clustering software with DB2 and the DB2 High Availability and
Disaster Recovery (HADR) Feature, and different backup and recovery
strategies, including Q replication and IBM InfoSphere® Change Data Capture
(CDC).

This chapter provides an overview of those different high availability and disaster
recovery options, where it briefly describes some features and products that can
help you increase the availability of your applications that are running
on DB2.

This chapter covers the following topics:

� Introduction
� High availability solutions with DB2
� Disaster recovery solutions with DB2

1

© Copyright IBM Corp. 2007, 2012. All rights reserved. 1

1.1 Introduction

This section introduces and explains high availability and disaster
recovery terminology.

1.1.1 High availability

The availability of a database solution is a measure of how successful user
applications are at performing their required database tasks. If user applications
cannot connect to the database, or if their transactions fail because of errors or
time out because of load on the system, the database solution is not available.

It does not matter to a user why the database request failed. Whether a
transaction timed out because of bad performance, a component of the solution
failed, or an administrator took the database offline to perform maintenance, the
result is the same to the user: the database is unavailable to process requests.

Unexpected system failures that could affect the availability of your database
solution to users include power interruption, network outage, hardware failure,
operating system or other software errors, and complete system failure in the
event of a disaster. If such a failure occurs at a time when users expect to be
able to do work with the database, a highly available database solution must:

� Shield user applications from the failure without appreciable performance
degradation (or even loss of availability), so the user applications are not
aware of the failure.

� Respond to the failure to contain its effect. For example, if a failure occurs on
one machine in a cluster, the cluster manager can remove that machine from
the cluster so that no further transactions are routed to be processed on the
failed machine.

� Recover from the failure to return the system to normal operations. For
example, if a standby database takes over database operations for a failed
primary database, the failed database might restart, recover, and take over
once again as the primary database.

These three tasks must be accomplished with a minimal effect on the availability
of the solution to user applications.

In addition, in a highly available database solution, the impact of maintenance
activities on the availability of the database to user applications must be
minimized as well.
2 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

For example, if the database solution serves a traditional store front that is open
for business between the hours of 9 a.m. - 5 p.m., then maintenance activities
can occur offline, outside of those business hours without affecting the
availability of the database for user applications. If the database solution serves
an online banking business that is expected to be available for customers to
access through the Internet 24 hours per day, then maintenance activities must
be run online, or scheduled for off-peak activity periods to have minimal impact
on the availability of the database to the customers.

When you are making business decisions and design choices about the
availability of your database solution, you must weigh the following two factors:

� The cost to your business of the database being unavailable to customers.
� The cost of implementing a certain degree of availability.

For example, consider an Internet-based business that makes a certain amount
of revenue every hour the database solution is serving customers. A high
availability strategy that saves 10 hours of downtime per year earn the business
10 times extra revenue per year. If the cost of implementing this high availability
strategy is less than the expected extra revenue, it can be worth implementing.

High availability versus continuous availability
Availability is about ensuring that a database system or other critical server
functions remain operational both during planned or unplanned outages, such as
maintenance operations, or hardware or network failures. If there is no downtime
during planned or unplanned outages, a system is said to be continuously
available; otherwise, it is said to be highly available. With DB2 10.1, it is
possible to implement continuously and highly available database applications.

You can use the IBM DB2 pureScale® Feature to implement a continuously
available database application. You can use the DB2 pureScale Feature to scale
a database across a set of servers in an active/active approach: Traffic that is
intended for a failed node is either passed on to an existing node or load
balanced across the remaining nodes. This technology is similar to the proven
data-sharing architecture found in DB2 for IBM z/OS®. For the first time, the
benefits of transparency, continuous availability, and scalability are available at a
much lower operational cost than ever before. The DB2 pureScale system is run
on multiple hosts that access shared data simultaneously, without the need to
explicitly modify the application. You can use this transparency to perform
maintenance operations on hosts, add more hosts, and remove unnecessary
hosts, without impacting your application.

This book describes how to implement a highly available database application
with DB2.
 Chapter 1. DB2 high availability and disaster recovery overview 3

For more information about the DB2 pureScale Feature, see:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.i
bm.db2.luw.qb.server.doc%2Fdoc%2Fc0056035.html

Increasing high availability
To increase the availability of a database solution, all of the following issues
should be considered:

� Redundancy: Having secondary copies of each component of your solution
that can take over workload in the event of failure. If a component of the
system is not redundant, that component could be a single point of failure for
the system.

� System monitoring: Collecting statistics about the components of your
solution to facilitate workload balancing or detect that components failed.

� Load balancing: Transferring some workload from an overloaded component
of your solution to another component of your solution that has a lighter load.

� Failover: Transferring all workload from a failed component of your solution to
a secondary component. When workload is transferred this way, the
secondary system is said to take over the workload of the failed
primary system.

� Maximizing performance: Reducing the chance that transactions take a long
time to complete or time out.

� Minimizing the impact of maintenance: Scheduling automated maintenance
activities and manual maintenance activities to impact user applications as
little as possible.

� Clustering: A cluster is a group of connected machines that work together as
a single system. When one machine in a cluster fails, cluster managing
software transfers the workload of the failed machine onto other machines.

� Database logging: Database logging is an important part of your highly
available database solution design because database logs make it possible to
recover from a failure, and they make it possible to synchronize primary and
secondary databases.

Section 1.2, “High availability solutions with DB2” on page 6 introduces important
features and products you can use with DB2 10.1 to implement a highly available
DB2 application.

For more information about increasing the high availability of database
solutions, see:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.i
bm.db2.luw.admin.ha.doc%2Fdoc%2Fc0051337.html
4 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.qb.server.doc%2Fdoc%2Fc0056035.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.qb.server.doc%2Fdoc%2Fc0056035.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.ha.doc%2Fdoc%2Fc0051337.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.ha.doc%2Fdoc%2Fc0051337.html

1.1.2 Disaster recovery

The term disaster recovery is used to describe the activities that need to be done
to restore a database in the event of a fire, earthquake, vandalism, or other
catastrophic events that lead to a destruction of the complete database server.

A plan for disaster recovery can include:

� A remote site to be used in the event of an emergency.

� A different machine on which to recover the database.

� Offsite storage of either database backups, table space backups, or both, and
archived logs.

In addition, you should answer the following questions to choose a correct
disaster recovery solution:

� How much time can be spent recovering the database (defines the recovery
time objective (RTO)).

� How much data can you afford to lose after recovery (defines the recovery
point objective (RPO)).

� How much time can pass between backup operations?

� How much storage space can be allocated for backup copies and
archived logs?

� How many backup copies and archived logs should be kept?

� Are table space level backups sufficient, or are full database
backups necessary?

� Is there a need for a hot site for disaster recovery?

� Should a standby system be configured manually or automatically by using,
for example, HADR?

DB2 provides several options when you plan disaster recovery. Based on your
business needs, you might decide to use table space or full database backups as
a safeguard against data loss, or you might decide that your environment is
better suited to a solution like HADR. Section 1.3, “Disaster recovery solutions
with DB2” on page 11 introduces functionality that you can use with DB2 10.1 to
implement a disaster recovery solution.

For more information about disaster recovery, see:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.i
bm.db2.luw.admin.ha.doc%2Fdoc%2Fc0005945.html
 Chapter 1. DB2 high availability and disaster recovery overview 5

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.ha.doc%2Fdoc%2Fc0005945.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.ha.doc%2Fdoc%2Fc0005945.html

1.2 High availability solutions with DB2

This section introduces important functionality that you can use with DB2 10.1 to
implement highly available DB2 applications.

1.2.1 High Availability Disaster Recovery (HADR)

The High Availability Disaster Recovery (HADR) feature provides a high
availability solution for both partial and complete site failures. In a HADR
environment, log data is shipped continuously from a primary database to one or
more standby databases and reapplied to the standby databases. When the
primary database fails, applications are redirected to a standby database that
automatically takes over the role of the primary database.

A partial site failure can be caused by a hardware, network, or software (DB2 or
operating system) failure. Without HADR, a partial site failure requires restarting
the database management system server that contains the database. The length
of time that it takes to restart the database and the server where it is located is
unpredictable. It can take several minutes before the database is brought back to
a consistent state and made available. With HADR, a standby database can take
over in seconds. Further, you can redirect the clients that used the original
primary database to the new primary database by using DB2 automatic client
reroute (see Chapter 10, “Automatic client reroute” on page 377) or try logic
again in the application.

This book introduces the DB2 HADR feature in detail, covering setup,
administration, and monitoring of an HADR environment and HADR preferred
practices. In addition, it describes how to combine HADR with clustering software
to increase the availability of a database application that is running on DB2.

For more information about HADR, see the Information Center at
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.i
bm.db2.luw.admin.ha.doc%2Fdoc%2Fc0011267.html and Data Recovery and High
Availability Guide and Reference, SC27-3870-00.
6 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.ha.doc%2Fdoc%2Fc0011267.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.ha.doc%2Fdoc%2Fc0011267.html

1.2.2 DB2 high availability (HA) feature

The DB2 high availability (HA) feature enables integration between DB2 and
cluster managing software.

The idea of clustering is to present to the users a single machine, when in fact
the system has multiple nodes to serve client applications. Many clusters act in
an active/passive configuration where only one node performs work, with the
other nodes that are standing by as the backup if there is a failure. Some cluster
solutions are sophisticated enough to allow load balancing between the nodes in
an active/active configuration, thus maximizing the performance of the
applications, and providing more cost-effective use of the resources.

When you stop a database manager instance in a clustered environment, you
must make your cluster manager aware that the instance is stopped. The DB2
High Availability Feature provides infrastructure for enabling the database
manager to communicate with your cluster manager when instance configuration
changes, such as stopping a database manager instance, which require changes
to the cluster.

The DB2 High Availability Feature is composed of the following elements:

� IBM Tivoli System Automation for Multiplatforms (Tivoli SA MP) is bundled
with DB2 10.1 on IBM AIX® and Linux as part of the DB2 HA Feature, and
integrated with the DB2 installer. On Windows operating systems, Tivoli SA
MP is bundled with DB2 10.1 as well, but it is not integrated with the DB2
database product installer.

� In a clustered environment, some database manager instance configuration
and administration operations require related cluster configuration changes.
The DB2 HA Feature enables the database manager to automatically request
cluster manager configuration changes whenever you perform certain
database manager instance configuration and administration operations.

� DB2 High Availability Instance Configuration Utility (db2haicu) is a text-based
utility that you can use to configure and administer your highly available
databases in a clustered environment.

� The DB2 cluster manager API defines a set of functions that enable the
database manager to communicate configuration changes to the
cluster manager.

Clustering solutions that you can use with DB2 10.1 can be broadly categorized
into two types:

� Operating system dependent
� Operating system independent
 Chapter 1. DB2 high availability and disaster recovery overview 7

Operating system-dependent solutions
Most operating systems provide tools or products to create clusters. The
techniques and concepts are similar, and the intention is always to present to the
world a single virtual server, although the services can be spread among the
nodes or members of the cluster.

If there is a service or resource failure, cluster processes try to restart the
resource in the affected node, and if that is not possible, then resources on
another node take their place.

Regardless of cluster implementation, database applications require embedded
logic to detect lost connections and to try again those operations that were in
doubt or unfinished. The advantage of the cluster is that the clustering software
often provides features for the applications to continue working effectively with
no transactional data loss when the transfer of services between the nodes is
automated. This situation reduces downtime and human intervention.

DB2 10.1 supports the following operating system-dependent cluster
managing software:

� IBM PowerHA SystemMirror for AIX (formerly known as High Availability
Cluster Multi-Processing for AIX or IBM HACMP™)

� Microsoft Cluster Server for Windows

� Multi-Computer/ServiceGuard, for Hewlett-Packard

� Sun Cluster for Solaris

The advantage of the operating system-dependent clustering software is that it is
highly integrated with the operating system.

If you have a homogeneous architecture, and you also use operating
system-dependent clustering software to manage other applications, then the
operating system-dependent clustering software is a good choice.

Chapter 3, “DB2 and PowerHA SystemMirror” on page 71 explains how to
integrate PowerHA SystemMirror with DB2 on AIX. Chapter 4, “DB2 with
Microsoft Windows Failover Cluster” on page 101 describes the procedure to
implement DB2 cluster with Microsoft Windows.

For more information about operating system-dependent clustering
solutions, see:

� IBM PowerHA SystemMirror for AIX:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fco
m.ibm.db2.luw.admin.ha.doc%2Fdoc%2Fc0007500.html
8 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.ha.doc%2Fdoc%2Fc0007500.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.ha.doc%2Fdoc%2Fc0007500.html

� Microsoft Clustering support for Windows:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fco
m.ibm.db2.luw.admin.ha.doc%2Fdoc%2Fc0007402.html

� Sun Cluster for Solaris:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fco
m.ibm.db2.luw.admin.ha.doc%2Fdoc%2Fc0007302.html

Operating system independent solutions
Operating system independent solutions have characteristics similar to the
operating system-dependent clustering software. This type of clustering software
can work with various operating systems. They usually provide more
sophisticated features to manage and control the clusters. Some solutions allow
frameworks that manage and interchange resources among groups of clusters.

Because these solutions are highly specialized, they offer typically more
functionality than their operating system-dependent counterparts. DB2 10.1
supports the following operating system independent cluster managing software:

� Tivoli SA MP
� Veritas Cluster Server

Operating system independent clustering software are platform independent,
and they offer a single interface across different platforms.

You can use operating system independent clustering software:

� When you have a heterogeneous environment with different
hardware providers.

� If platform change is a possibility.

� If your operating system does not offer a cluster solution or has restrictions
that can be avoided with an operating system independent
clustering software.

� Suppose that you must centrally manage a complex set of existing base-level
clusters on differing platforms, which individually comprise only part of a
larger overall application. In this case, a multitiered cluster management
solution, such as Tivoli SA MP, can plug in to existing base-level clusters
without any requirement to swap architecture or vendors.

Tivoli SA MP components are bundled with DB2 10.1 on Linux and AIX.
Chapter 2, “DB2 with IBM Tivoli System Automation for Multiplatforms” on
page 19 explains how to implement a DB2 cluster with Tivoli SA MP. Chapter 7,
“HADR with clustering software” on page 223 has details about using DB2 10.1
HA Feature to use clustering software on DB2 with HADR.
 Chapter 1. DB2 high availability and disaster recovery overview 9

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.ha.doc%2Fdoc%2Fc0007402.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.ha.doc%2Fdoc%2Fc0007402.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.ha.doc%2Fdoc%2Fc0007302.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.ha.doc%2Fdoc%2Fc0007302.html

For more information about operating system independent clustering
solutions, see:

� IBM Tivoli System Automation for Multiplatforms (Linux and AIX):

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fco
m.ibm.db2.luw.admin.ha.doc%2Fdoc%2Fc0024553.html

� Veritas Cluster Server:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fco
m.ibm.db2.luw.admin.ha.doc%2Fdoc%2Fc0007308.html

1.2.3 High availability through disk mirroring

Mirroring is the process of writing data to two separate hard disks at the same
time. One copy of the data is called a mirror of the other mirror. You can use disk
mirroring to maintain a secondary copy of your primary database.

You can use DB2 10.1 suspended I/O functionality to split the primary and
secondary mirrored copies of the database without taking the database offline.
After the primary and secondary databases copies are split, the secondary
database can take over operations if the primary database fails.

For more information about disk mirroring, see:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.i
bm.db2.luw.admin.ha.doc%2Fdoc%2Fc0006356.html

1.2.4 High availability through log shipping

Log shipping is the process of copying log files from a primary to a secondary
database copy either from an archive device, or through a user exit program that
is running against the primary database.

When the production machine fails, a failover occurs and the following actions
must take place:

� The remaining logs are transferred over to the standby machine.
� The standby database rolls forward to the end of the logs.
� The clients reconnect to the standby database and resume operations.

When you use this approach, the primary database is restored to the standby
machine by using the DB2 10.1 restore utility or the split mirror function.
10 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.ha.doc%2Fdoc%2Fc0024553.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.ha.doc%2Fdoc%2Fc0024553.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.ha.doc%2Fdoc%2Fc0006356.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.ha.doc%2Fdoc%2Fc0006356.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.ha.doc%2Fdoc%2Fc0007308.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.ha.doc%2Fdoc%2Fc0007308.html

To ensure that you are able to recover your database in a disaster recovery
situation, consider the following items:

� The archive location should be geographically separate from the primary site.

� Remotely mirror the log at the standby database site. Mirroring log files helps
protect a database from accidental deletion of an active log and data
corruption that is caused by hardware failure.

For more information about log shipping and mirroring, see:

� Log shipping:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fco
m.ibm.db2.luw.admin.ha.doc%2Fdoc%2Fc0007190.html

� Log mirroring:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fco
m.ibm.db2.luw.admin.ha.doc%2Fdoc%2Fc0006077.html

1.2.5 Automatic client reroute

Automatic client reroute (ACR) is a DB2 10.1 feature that you can use in a high
available database solution to redirect client applications from a failed server to
an alternate server so the applications can continue their work with minimal
interruption. ACR can be accomplished only if an alternate server is specified
before the failure.

Chapter 10, “Automatic client reroute” on page 377 describes ACR in detail.

For more information about automatic client reroute, see:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.i
bm.db2.luw.admin.ha.doc%2Fdoc%2Fr0023392.html

1.3 Disaster recovery solutions with DB2

This section introduces important functionality that you can use with DB2 10.1 to
implement disaster recovery solutions.

1.3.1 Backup and recovery options

Backup and recovery is the fundamental technology for a disaster
recovery solution.
 Chapter 1. DB2 high availability and disaster recovery overview 11

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.ha.doc%2Fdoc%2Fr0023392.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.ha.doc%2Fdoc%2Fr0023392.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.ha.doc%2Fdoc%2Fc0007190.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.ha.doc%2Fdoc%2Fc0007190.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.ha.doc%2Fdoc%2Fc0006077.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.ha.doc%2Fdoc%2Fc0006077.html

DB2 provides flexible backup methods to meet various business requirements.
You can back up a whole database or selected table spaces, either offline or
online. Furthermore, you can back up a database incrementally, which means
that you have to back up only changed data since your last backup; it is faster
than a full backup. DB2 also provides automatic backup functionality; you define
your backup policy and DB2 back ups your database automatically.

In a partitioned database environment, DB2 supports Single System View (SSV)
backups, which you can use to back up a database on all database partitions or
a subset of database partitions with one backup command. All backup images
have the same timestamps and include the necessary logs to roll forward to a
consistent point. Section 12.1, “Single system view backup” on page 434
provides details about SSV backups.

DB2 Advanced Copy Service (ACS) supports snapshot functionality, which is
based on the IBM FlashCopy® technology of the IBM Tivoli Storage Manager
solution. When you use this functionality, you can make nearly instantaneous
point in time copies of entire logical volumes or data sets with minimal impact on
your production system. DB2 ACS is bundled with DB2 starting in Version 10.1.
Chapter 12, “Backup and recovery” on page 433 provides an overview of
snapshot backups and restores.

The recreation of the database is called recovery. Version recovery is the
restoration of a previous version of the database, using an image that was
created during a backup operation. Rollforward recovery is the reapplication of
transactions that are recorded in the database log files after a database or a
table space backup image is restored. Both recovery types are fundamental for a
disaster recovery solution.

If your plan for disaster recovery is to restore the entire database on another
machine, have at least one full database backup and all the archived logs for the
database. Although it is possible to rebuild a database if you have a full table
space backup of each table space in the database, this method might involve
numerous backup images and be more time-consuming than recovery using a
full database backup.

You can choose to keep a standby database up to date by applying the logs to it
as they are archived. Or, you can choose to keep the database or table space
backups and log archives in the standby site, and perform restore and rollforward
operations only after a disaster occurs. (In the latter case, recent backup images
are preferable.) In a disaster situation, however, it is generally not possible to
recover all of the transactions up to the time of the disaster.
12 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

The usefulness of a table space backup for disaster recovery depends on the
scope of the failure. Typically, disaster recovery is less complicated and
time-consuming if you restore the entire database; therefore, a full database
backup should be kept at a standby site. If the disaster is a damaged disk, a table
space backup of each table space on that disk can be used to recover. If you
lose access to a container because of a disk failure (or for any other reason), you
can restore the container to a different location.

For more information about how to develop a backup and recovery strategy, see:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.i
bm.db2.luw.admin.ha.doc%2Fdoc%2Fc0005945.html

1.3.2 High Availability Disaster Recovery (HADR)

Another way that you can protect your data from complete site failures is to
implement the DB2 high availability disaster recovery (HADR) feature that is
described in 1.2.1, “High Availability Disaster Recovery (HADR)” on page 6. After
it is set up, HADR protects against data loss by replicating data changes from a
primary database to one or more standby databases. By using HADR, you can
improve the performance of a disaster recovery operation in comparison to
conventional methods.

A complete site failure can occur when a disaster, such as a fire, causes the
entire site to be destroyed. However, because HADR uses TCP/IP for
communication between the primary and standby databases, they can be
situated in different locations. For example, the primary database might be at
your head office in one city, and a standby database might be at your sales office
in another city. If a disaster occurs at the primary site, data availability is
maintained by having the remote standby database take over as the primary
database with full DB2 functionality. After a takeover operation occurs, you can
bring the original primary database back up and return it to its primary database
status; this action is known as failback. You can initiate a failback if you can
make the old primary database consistent with the new primary database. After
you reintegrate the old primary database into the HADR setup as a standby
database, you can switch the roles of the databases to enable the original
primary database to once again be the primary database.

This section describes the DB2 HADR Feature in detail, covering setup,
administration, and monitoring of an HADR environment, and HADR preferred
practices. In addition, it describes how to combine HADR with clustering software
to increase the availability of a database application that is running on DB2.
 Chapter 1. DB2 high availability and disaster recovery overview 13

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.ha.doc%2Fdoc%2Fc0005945.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.ha.doc%2Fdoc%2Fc0005945.html

For more information about HADR, see the Information Center at
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.i
bm.db2.luw.admin.ha.doc%2Fdoc%2Fc0011267.html and Data Recovery and High
Availability Guide and Reference, SC27-3870-00.

1.3.3 Replication

You can also protect your data from partial or complete site failures by using
replication. You can use replication to copy data regularly to multiple remote
databases. DB2 database provides a number of replication tools that you can
use to specify what data should be copied, which database tables the data
should be copied to, and how often the updates should be copied.

Data replication is the process of capturing data changes from data sources on a
source server and reapplying these changes to corresponding data sources on a
target server. In this way, you can use data replication as an alternate technology
to build a hot standby server, especially in a heterogeneous environment.

For this purpose, IBM InfoSphere Replication Server provides two different data
replication solutions that are integrated into DB2 to replicate data from and to
relational data sources: SQL replication and Q replication.

SQL replication
SQL replication is a solution that captures changes to source tables and views
and uses staging tables to store data changes of committed transactions. The
changes are then read from the staging tables and replicated to the
corresponding target tables.
14 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.ha.doc%2Fdoc%2Fc0011267.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.ha.doc%2Fdoc%2Fc0011267.html

Figure 1-1 illustrates the infrastructure for a simple configuration in
SQL replication.

Figure 1-1 Infrastructure for a simple configuration in SQL replication

The Capture program that is running on the source server scans the DB2 log
files for changes that belong to a source table and then places this information in
staging tables that are known as change-data (CD) tables. The Apply program
that is running on the target server reads the CD tables and replicates the data
changes to corresponding target tables. Inside the source server are a set of
DB2 relational tables that are called Capture control tables that contain
information about source tables. The Capture program uses this information to
know what data it is supposed to capture. Information about target tables goes in
to the Apply control tables, which are typically on a target server. The Apply
program uses this information to know which targets it is supposed to write data
to. A subscription set defines the mapping between source and target tables.

Target ServerSource Server

Subscription set

Subscription-set member

Capture
control tables

DB2 process

Apply
control tables

Source
table

Target
table

Log

CD table

Apply
program

Capture
program
 Chapter 1. DB2 high availability and disaster recovery overview 15

Q replication
Q replication is a solution that captures changes to source tables and converts
data changes of committed transactions to messages. In contrast to SQL
replication, the data is not staged in tables. As soon as the data is committed at
the source and read by Q replication, the data is sent to the target location
through IBM WebSphere® MQ message queues. At the target location, the
messages are read from the queues and converted back into transactional data
that is applied to the target tables. With Q replication, you can configure three
different types of replication: unidirectional, bidirectional, and peer-to-peer.

Figure 1-2 illustrates the infrastructure for a simple unidirectional configuration in
Q replication, where changes that occur to a source table on a source server are
replicated to a target table on a target server.

Figure 1-2 Infrastructure for a simple configuration in Q replication

Target ServerSource Server

Q Capture
program

Q Capture
control tables

Administration
queue

DB2 process

Q Apply
control tables

Source
table

Target
tableQ subscription

Log

Replication
queue map

Q Apply
program
16 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

The Q Capture program that is running on the source server reads the log files
for changed source data and writes the changes to WebSphere MQ queues. The
Q Apply program that is running on a target server retrieves the captured
changes from the queues and writes the changes to a target table. The Q
Capture and Apply program use a set of control tables that is called Q Capture
and Apply control tables that contain information about the replication sources
and targets, and which WebSphere MQ queues to use. A Q subscription defines
the mapping between the source and target tables.

Chapter 13, “Q replication” on page 447 describes in detail how to set up a
unidirectional configuration in Q replication.

For more information about replication solutions with DB2 10.1, see:

� IBM InfoSphere Replication Server:

http://www-01.ibm.com/software/data/infosphere/replication-server/fe
atures.html?S_CMP=rnav

� SQL replication:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fco
m.ibm.swg.im.iis.db.repl.sqlrepl.doc%2Ftopics%2Fiiyrscncsqlreplovu.h
tml

� Q replication:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fco
m.ibm.swg.im.iis.db.repl.intro.doc%2Ftopics%2Fiiyrcintrsqr0.html

1.3.4 InfoSphere Change Data Capture (CDC)

InfoSphere CDC is a replication solution that captures and delivers database
changes as they happen. InfoSphere CDC allows replication between
heterogeneous environments, supporting various operating systems and
databases. Destinations for InfoSphere CDC replication include databases
(which can be different from the source database), message queues, or an ETL
solution such as IBM InfoSphere DataStage®.

What gets replicated depends on table mappings that are configured in the
InfoSphere CDC. InfoSphere CDC employs a non-invasive approach to
capturing changes that take place on the source database, reading changes
directly from database logs. No changes are required to the source application.
The capture mechanism (log scraping) is a lightweight process that runs on the
source server and avoids significant impact on production systems.

Chapter 14, “IBM InfoSphere Change Data Capture” on page 491 describes
InfoSphere CDS in detail.
 Chapter 1. DB2 high availability and disaster recovery overview 17

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.swg.im.iis.db.repl.sqlrepl.doc%2Ftopics%2Fiiyrscncsqlreplovu.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.swg.im.iis.db.repl.sqlrepl.doc%2Ftopics%2Fiiyrscncsqlreplovu.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.swg.im.iis.db.repl.sqlrepl.doc%2Ftopics%2Fiiyrscncsqlreplovu.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.swg.im.iis.db.repl.intro.doc%2Ftopics%2Fiiyrcintrsqr0.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.swg.im.iis.db.repl.intro.doc%2Ftopics%2Fiiyrcintrsqr0.html
http://www-01.ibm.com/software/data/infosphere/replication-server/features.html?S_CMP=rnav
http://www-01.ibm.com/software/data/infosphere/replication-server/features.html?S_CMP=rnav

For more information about InfoSphere CDC, see:

http://publib.boulder.ibm.com/infocenter/cdc/v6r5m1/index.jsp

1.3.5 Remote disk mirroring

The concept behind remote disk mirroring is to have two or more disk arrays in
boxes (also referred to as storage enclosures), in geographically dispersed
locations. These boxes are connected using dark fiber or similar technologies
and implement algorithms to replicate the data between the boxes.

Remote disk mirroring replicates all disk writes with minimal delay, including the
log information. There are specific ways to update the remote disk change from
brand to brand. In general, synchronous and asynchronous are two typical
modes to update the remote disk. Some examples of remote storage mirroring
products are:

� IBM Peer-to-Peer Remote Copy (PPRC) and IBM Peer-to-Peer Remote Copy
over eXtended Distances (PPRC-XD) on IBM Enterprise Storage Server®

� IBM Metro Mirror and IBM Global Mirror on IBM System Storage® Disk
Storage and IBM TotalStorage SAN Volume Controller

� Hitachi TrueCopy

� EMC Symmetrix Remote Data Facility (SRDF)

Remote disk mirroring seamlessly integrates with DB2, allowing the enterprise to
have a disaster recovery site that provides continuous service. Additional
technology, such as clustering, is required to automate the process of starting
DB2 at the new site.
18 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

http://publib.boulder.ibm.com/infocenter/cdc/v6r5m1/index.jsp

Chapter 2. DB2 with IBM Tivoli System
Automation for
Multiplatforms

This chapter explains how to integrate DB2 in an IBM Tivoli System Automation
for Multiplatforms (Tivoli SA MP) environment. It provides the basic management
concepts with considerations to reduce the time that is consumed for failover.

This chapter covers the following topics:

� Overview
� How DB2 works with Tivoli SA MP
� Planning the high availability cluster
� Setting up Tivoli SA MP with DB2 10.1 on AIX
� Administration
� Cluster maintenance
� Testing

2

© Copyright IBM Corp. 2007, 2012. All rights reserved. 19

2.1 Overview

Tivoli SA MP provides a framework to manage automatically the availability of
components that are known as resources. Some examples of resources include:

� Any piece of software for which start, monitor, and stop scripts can be written
to control.

� Any Network Interface Card (NIC) to which Tivoli SA MP is granted access.
That is, Tivoli SA MP manages the availability of any IP address that a user
wants by floating that IP address among NICs to which it is access.

For example, both a DB2 instance and the file systems that are used by DB2
have start, stop, and monitor commands. Therefore, Tivoli SA MP scripts can be
written to manage these resources automatically. Scripts, and other attributes of
a resource, are required by Tivoli SA MP to manage that resource. Tivoli SA MP
stores a resource’s attributes in an object container, much like the attributes of a
Java class. In fact, Tivoli SA MP manages a resource by instantiating a class for
that resource.

You can use Tivoli SA MP to manage related resources in resource groups. If
you use Tivoli SA MP, you can ensure that all resources within a resource group
are online at only one physical node at any point in time. Also, all of those
resources are on the same physical node. Examples of resource groups (such as
related resources) are a DB2 instance, its IP address, and all of the databases
that
it manages.

Finally, Tivoli SA MP provides high availability (HA) for any resource group that it
manages, by restarting all of its resources if it fails. The resource group is
restarted on an appropriate node in the currently online cluster domain. An
appropriate node must contain a copy of all of the resources, which are defined
in the failing resource group, to be selected as a node to restart on.

2.1.1 Tivoli SA MP components

Since V2.1, Tivoli SA MP consists of these components:

� End-to-end automation component

This is the second-tier-enabling technology, which gives Tivoli SA MP a rare
ability to provide control over heterogeneous environments of multiple
base-level clusters. The low-level clustering software that is installed is
not replaced.
20 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Tivoli SA MP end-to-end automation can control an existing PowerHA on AIX,
Heartbeat on Linux, or MSCS as though it were controlling a Tivoli SA MP
base component cluster on these same platforms. Tivoli SA MP software
interfaces that are called End-to-End Automation Adapters operate between
Tivoli SA MP and the base-level clustering software.

� Base component

This Tivoli SA MP component provides base-level cluster functionality. It acts
as an equivalent to PowerHA or other clustering software, on AIX and Linux.
The Tivoli SA MP base component consists of the following parts:

– Automation adapter

At the base component level, a first level automation adapter is used to
directly control resources on nodes inside the base-level cluster.

At the end-to-end automation component level, an end-to-end automation
adapter provides an interface between the automation layer that exists
within a single base-level cluster, and the end-to-end automation layer that
spans multiple clusters.

– Operations console of the base component

The Tivoli SA MP Operations Console is a web browser accessed feature
(no client software installation is required), based on the WebSphere
Portal Server Integrated Solutions Console. Because it spans all Tivoli
SA MP domains, and provides the same interface, there is no interface
discrepancy between platforms.

Although the Operations Console is there to help monitor the automation
and current states of various resources, it also allows manual resource
state changes (for example, if a server is required to be taken offline for
maintenance), and performs takeovers accordingly. The Operations
Console can operate in three different modes:

• End-to-end automation mode: Where end-to-end automation is active.

• First-level automation mode: Where end-to-end automation is
installed, but is not active.

• Direct-access mode: Where you are essentially running the console
directly on a system that is part of a base-level cluster. Tivoli SA MP
end-to-end automation itself is not generally installed here. There is
just an automation adapter plug-in on base-level cluster nodes for
interfacing to non-Tivoli SA MP clustering software.

For more information, see Tivoli System Automation for Multiplatforms Version
3.2.2 Administrator's and User's Guide, SC34-2583-03.
 Chapter 2. DB2 with IBM Tivoli System Automation for Multiplatforms 21

2.1.2 Terminology of Tivoli SA MP

The following terms are common between Tivoli SA MP and other
clustering solutions:

� Resource: This can be a physical device, such as a disk, a network adapter,
or software, from the Operating System itself, middle ware and DBMS, or
WebSphere Administration Server and web server daemons. Regarding
up/down status monitoring and automation (and end-to-end automation),
resources can also exist at multiple tiers, for example, grouping granular
resources and base-level cluster environments to create an
application environment.

� Critical resource: This is a resource that must not be active on more than one
node at the same time. A primary example is a static IP address that is
shared between the nodes that clients use to connect to server resources. By
this definition, the HADR primary role database would also be a
critical resource.

� Cluster/peer domain: This is a group of host systems or nodes. Resources
are part of these domains, so if groups of resources become unavailable, a
node or subcluster is unavailable. This situation leads to automated actions
designed to maintain availability by establishing quorum, and to attempt
restoration of the failed nodes without conflicting with resources on
available nodes.

� Quorum: The level of operational nodes that are required before certain
operations can be performed within a cluster. Tivoli SA MP splits this
definition into:

– Configuration quorum: Determines whether cluster configuration changes
are accepted.

– Operational quorum: Determines whether state changes of resources are
accepted (so as not to cause conflicts).

� Tiebreaker: Where equal number of nodes exist in a subcluster, this
determines which of those subclusters can have the quorum. There are six
types of the tiebreaker, depending on the platform and devices available:

– Operator: Requires human intervention for a decision to reach a quorum.

– Fail: A default/pseudo tie-breaker in which neither subcluster
attains quorum.

– SCSI: Shared SCSI disk implementation on certain Linux platforms. The
SCSI reserve or persistent reserve command is used to achieve
tie-breaker exclusive status.

– IBM ECKD™: Shared ECKD disk on Linux on IBM System z®. The
ECKD reserve command is used to achieve tie-breaker exclusive status.
22 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

– Disk: A shared SCSI-like disk on AIX. An equivalent or pseudo-SCSI
reserve or persistent reserve command is used to achieve tie-breaker
exclusive status on SCSI-like or emulated disk.

– EXEC: Network implementation that calls a custom executable to achieve
a Reliable Scalable Cluster Technology (RSCT) exec tie-breaker. Internet
Control Message Protocol (ICMP) ping echo requests are sent to an
external IP instance to determine tie-breaker exclusive status in the case
of subcluster nodes that fail. This method relies on the failure of an ICMP
response to indicate subcluster/node failure and is unable to determine if
communication is still working between the subcluster peer nodes.

In Tivoli SA MP specific terminology, the hierarchy in which Tivoli System
Automation coordinates resources in a clustered environment consists of an
Automation Manager, which consists of a Binder and a Logic Deck.

� Binder: Has resources that are assigned (bound) to a particular node. If the
resource cannot be accessed on any node, then it is placed in a sacrificed
state. If it can be accessed, then it is placed in a bound state to that node.
Resources in a bound state are started only if resource dependencies
are met.

� If Tivoli SA MP has not tried to access a resource, it is by default in an
unbound state. Conflicts between multiple available resources are managed
by a priority value. The resource with lower priority is placed in a
sacrificed state.

� Logic deck: Sends orders to start and stop resources according to the rules
set out by the Automation Policy.

� Automation Policies: An abstract business rules-based set of dependencies
and relationships between resources, rather than hard and fast scripts. The
Automation Policies determine what should occur when values change in the
monitored states of resources, specifically when differences occur between a
desired state (Online/Offline) and an observed state.

� Resource relationships: A critical part of the automation policy:

– Stop-start relationships determine which resources should be stopped or
started in a scenario.

– Location relationships determine whether related resources should be
started on the same or on separate nodes.

� Equivalency: A group of resources that can be said to provide the same
function. Tivoli SA MP can choose any of these resources to provide a
function in the required definition of availability. For example, if you have a
number of redundant network adapters, if one fails, that IP address can be
mapped by Tivoli SA MP to another adapter in the equivalency.
 Chapter 2. DB2 with IBM Tivoli System Automation for Multiplatforms 23

Understanding the interaction between the components within this hierarchy is
beyond the scope of this book. For more information, see:

� Tivoli System Automation for Multiplatforms Version 3.2.2 Administrator's and
User's Guide, SC34-2583-03.

� Tivoli System Automation for Multiplatforms Version 3.2.2 Installation and
Configuration Guide, SC34-2584-03

� End-to-end Automation with IBM Tivoli System Automation for Multiplatforms,
SG24-7117.

� Getting Started Guide on IBM developerWorks:

http://www.ibm.com/developerworks/tivoli/library/tv-tivoli-system-au
tomation/index.html

� Tivoli System Automation manuals:

http://publib.boulder.ibm.com/tividd/td/IBMTivoliSystemAutomationfor
Multiplatforms3.1.html

� Tivoli SA MP introduction:

http://www.ibm.com/software/tivoli/products/sys-auto-multi/index.htm
l

2.2 How DB2 works with Tivoli SA MP

Technically, Tivoli SA MP Automation Policies themselves do not entail scripting.
These policies are in the form of business rules or heuristics that dictate, at a
high level, how resources on various nodes should behave and interact. This
situation enables attribution of priorities so that for any given partial or total
resource failure scenario, the appropriate action is taken.

2.2.1 How Tivoli SA MP detects failures

Tivoli SA MP controls the DB2 instance and DB2 data objects resources as
application resources. For the application resources, Tivoli SA MP detects the
failure by using monitor scripts. When you create the application resource, you
must register the monitor script to the application resource with a valid argument
to detect the failure with a correct return code.
24 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

http://www.ibm.com/developerworks/tivoli/library/tv-tivoli-system-automation/index.html
http://www.ibm.com/developerworks/tivoli/library/tv-tivoli-system-automation/index.html
http://publib.boulder.ibm.com/tividd/td/IBMTivoliSystemAutomationforMultiplatforms3.1.html
http://publib.boulder.ibm.com/tividd/td/IBMTivoliSystemAutomationforMultiplatforms3.1.html
http://www.ibm.com/software/tivoli/products/sys-auto-multi/index.html
http://www.ibm.com/software/tivoli/products/sys-auto-multi/index.html

The monitor script is run by Tivoli SA MP regularly and returns the return code
(RC) to Tivoli SA MP. Tivoli SA MP decides on the next action that is based on
this return code. Table 2-1 and Table 2-2 on page 26 list the meanings of the
return codes and the actions that Tivoli SA MP takes when the nominal state is
online. If RC=1, this resource is recognized to be “Online,” and Tivoli SA MP
takes no action. If the monitor script returns a RC=2, this resource is considered
to be “Offline,” and Tivoli SA MP first stops the related resources, then start this
resource again.

Table 2-1 Return codes from the monitor script and actions that are taken by Tivoli SA MP

DB2 HA Feature and Tivoli SA MP: If you use the DB2 High Availability (HA)
Feature with Tivoli SA MP as your cluster manager, the database manager
uses scripts to support automated failover solutions. These scripts are
installed or updated automatically when you use the DB2 installer to install or
update Tivoli SA MP. When you install or update Tivoli SA MP using the
installSAM utility, you must then manually install or update these scripts

RC OpState Meaning First action of Tivoli
SA MP
(nominal state=online)

Second action of
Tivoli SA MP
(nominal state=online)

0 Unknowna

a. The script cannot use return code 0; this return code is used by Tivoli SA MP when the monitor script
timeout occurs.

Unknown (monitor
script timed out).

Kill the monitor script. Nothing.

1 Online Running. Nothing. Nothing.

2 Offline Not running. After stopping the
related resources, start
the resource. b

b. If there are any resources that are related to the failed resource, Tivoli SA MP stops the related
resources in advance.

Nothing.

3 Failed Offline Failed (cannot
recover).

Stop the related
resources.

Perform takeover.c

c. The Mandatory attribute value of this resource should be true.

4 Stuck Online The start or stop
command times out.
User intervention is
needed.

Nothing. Nothing.

5 Pending Online Now starting. Nothing. Nothing.

6 Pending Offline Now stopping. Nothing. Nothing.
 Chapter 2. DB2 with IBM Tivoli System Automation for Multiplatforms 25

Table 2-2 Return code from the start/stop script and Tivoli SA MP actions

Figure 2-1 illustrates the typical behavior when a resource in one node failed.
The return codes are from the start script. The return codes from the monitor
script are not shown. When the monitor script detects a resource failed on
node1, it returns RC=2 (offline). Tivoli SA MP runs the start script. After this
resource is started, the monitor script returns RC=1 (online) in the next check.
When the resources failed again, the monitor script returns RC=2 (offline). Tivoli
SA MP runs the start script. However, if the start script cannot start the resource,
it returns RC=1, which triggers the failover action. Tivoli SA MP then tries to stop
the resource on node1. After the stop, Tivoli SA MP fails the resource groups on
node1 over to node2.

Figure 2-1 The failed resource and recovery

This is a typical recovery behavior. The DB2 resource, the mount point
resources, and LVM resource all operate this way.

RC Meaning First action of Tivoli
SA MP
(nominal state=online)

Second action of
Tivoli SA MP
(nominal state=online)

0 The start or stop command completed
successfully.

Move to the next
start/stop sequence.

Nothing.

Not 0 The start command failed (Failed Offline). Stop the resource. Perform takeover.

Not 0 The stop command failed. Nothing. Nothing.
M

o
n

it
o

r

online

offline

Start

Command

Start

Command
Stop

Command

Start

Command

Fail Over

Node1

Node2

TIME

M
o

n
it

o
r

M
o

n
it

o
r

M
o

n
it

o
r

M
o

n
it

o
r

M
o

n
it

o
r

M
o

n
it

o
r

M
o

n
it

o
r

M
o

n
it

o
r

M
o

n
it

o
r

M
o

n
it

o
r

RC=0 RC=1FailFail

online online online onlineonline

offline offline offline offline
26 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

2.3 Planning the high availability cluster

When you plan the high availability cluster, you can choose the configurations
that best fit your system environment:

� Active/standby

The typical configuration is an active/standby configuration, where one node
is active and the other is on standby. One resource group is shared between
the nodes. This configuration is simple and easy to manage, but one node is
not used for service.

� Active/active

The active/active configuration is also referred to as mutual takeover. In an
active/active configuration, a database is usually running under each node.

Figure 2-2 illustrates the mutual takeover configuration.

Figure 2-2 Mutual takeover

Database
AResource Group

A

Database
B

IP A IP B

Resource Group
B

IP AIP B

Database
A

Database
B

Resource Group
A

Resource Group
B

 Chapter 2. DB2 with IBM Tivoli System Automation for Multiplatforms 27

Database_A is running on node_A and database_B is running on node_B. If
node_A fails, the resource group for database_A is taken over by node_B.
Both database_A and database_B are then running on one node, that is,
node_B. If node_B crashes, the same operation happens, just in the
opposite direction.

This configuration is called active/active because each node has its own
database that is running and both are active at the same time. In the
meantime, both nodes play the standby role for the other one and can take
over each other’s resources, which is why this configuration is also called a
mutual takeover configuration. With this configuration, you can use both
machine resources for services, but this setup is more complicated compared
to active/standby.

For this configuration, you must plan carefully so that each node has enough
machine resources (processor or physical memory) to carry two databases
while it is running. For example, you have 1 GB physical memory on each
node and allocated 600 MB for a DB2 buffer pool in each database. After
node_A fails, database_A is moved to node_B. The total memory
requirement now exceeds what node_B has. What happens next is a huge
page out to paging space, which sometimes causes the system to hang, and
at the least, impacts performance to a degree where no work is possible.
28 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

� Other variations

There are some variations of cluster configurations for more than three nodes
in a cluster (Figure 2-3).

Figure 2-3 Variations of cluster configuration for multiple nodes

For more details about the DB2 highly available data store, see “IBM DB2
Universal Database™ and the Highly Available Data Store” at:

http://www.ibm.com/developerworks/db2/library/techarticle/0310melnyk/03
10melnyk.html

2.4 Setting up Tivoli SA MP with DB2 10.1 on AIX

This section focuses on the setup procedure for one active/standby cluster with a
shared disk. It starts from the planning of the cluster domain, then proceed to the
installation, configuration, and, at the end, administration and testing.

Two main steps for setting up the system environment of a cluster domain are:

� Planning the cluster domain
� Configuration of Tivoli SA MP and DB2

Idle

ActiveActive

Active

Fail-over

to Node 1

Active

Active Active

Active

Idle Standby Mutual Takeover

Active

ActiveActive

Active

Fail-over

to Node 1

Active Standby Balanced Mutual Takeover

Active

ActiveActive

Active
 Chapter 2. DB2 with IBM Tivoli System Automation for Multiplatforms 29

http://www.ibm.com/developerworks/db2/library/techarticle/0310melnyk/0310melnyk.html
http://www.ibm.com/developerworks/db2/library/techarticle/0310melnyk/0310melnyk.html

2.4.1 Planning the cluster domain

Use the following resources to create a sample cluster domain:

� Two servers, node1 and node2, running AIX V7.1 TL0 SP03-1115.

� An external storage that can be accessed from both servers.

� A public network that both servers can communicate through.

� Each server can reach the third machine as a tiebreaker.

� DB2 10.1 with no fix packs with Tivoli SA MP installed on both servers.

Figure 2-4 shows the architecture of this cluster domain. This cluster is a simple
one on two nodes. During normal operation, one server in the cluster domain
owns all the resources to run the DB2 instance. This server is the owner node.
When the cluster software detects a failure on the owner node, the cluster
software fails the resources over to the other server to continue DB2 service. The
server that takes over the resources is called the failover node.

Figure 2-4 The architecture of the sample cluster domain

After the node’s role in the cluster domain is decided, you can plan the Tivoli SA
MP configuration. The SA MP configuration includes resource groups,
resources, equivalencies, relationships, and scripts to control the
application resources.

Service
9.156.47.199

/home/db2inst/db2home

/home/db2inst/db2

Shared Disk

TYCHY
9.156.47.80

TYCHY KRAKOW

KRAKOW
9.156.47.81

Failover nodeOwner node

db2_db2inst_0-rg
30 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Configure the db2_db2inst2_0-rg resource group and define the resources that
are listed in Table 2-3 as the members of this resource group.

Table 2-3 Resources

In our cluster domain, when Tivoli SA MP starts the DB2 instance, the mount
points and LVM and the service IP address must be started.

2.4.2 Installing Tivoli SA MP

Tivoli SA MP is integrated with IBM Data Server as part of the DB2 High
Availability Feature on AIX, Linux, and Solaris operating systems. You can
install, upgrade, or uninstall Tivoli SA MP using either the DB2 installer or the
installSAM and uninstallSAM scripts that are included in the IBM Data Server
installation media. On Windows operating systems, the Tivoli SA MP is bundled
as part of the DB2 High Availability Feature, but it is not integrated with the
DB2 installer.

DB2 installer
There are three methods for using the DB2 installer to install or uninstall:

1. DB2 Setup wizard (install, upgrade, or uninstall)

2. Silent installation by using a response file with db2setup (install or upgrade) or
db2unins (for uninstall)

3. The db2_install command (for installation), installFixPack command (for
upgrade), or db2_deinstall command (for uninstall)

Resource Description

db2_db2inst_0-rs DB2 instance

db2mnt-home_db2inst_db2hom
e-rs

DB2 instance directory mount point in shared disk

db2mnt-home_db2inst_db2-rs DB2 data directory mount point in shared disk

db2ip_9_156_47_199-rs Service IP address
 Chapter 2. DB2 with IBM Tivoli System Automation for Multiplatforms 31

The examples that are described in 2.4.3, “Configuration of Tivoli SA MP and
DB2” on page 34 are based on a fresh DB2 10.1 installation on AIX. DB2 is
installed with DB2 Setup and two screen captures were taken during the process,
as shown in Figure 2-5 and Figure 2-6 on page 33.

For more information, see:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.i
bm.db2.luw.qb.server.doc%2Fdoc%2Ft0051289.html

Figure 2-5 DB2 installation - features
32 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.qb.server.doc%2Fdoc%2Ft0051289.html

Figure 2-6 DB2 installation - summary

The information about your system that the DB2 installer collects determines
which windows open in the graphical interface of the DB2 Setup wizard during
installation. For example, if you already have Tivoli SA MP installed, then the
DB2 Setup wizard does not display a window to install Tivoli SA MP.

installSAM script
The installSAM script is on the IBM DB2 installation media in
db2/platform/tsamp, where platform refers to the appropriate hardware platform.
Example 2-1 shows the installSAM location on AIX.

Example 2-1 installSAM location

root@TYCHY # cd aese/db2/aix/tsamp
root@TYCHY # ls
 Chapter 2. DB2 with IBM Tivoli System Automation for Multiplatforms 33

AIX db2cktsa installSAM license prereqSAM
uninstallSAM

If you use the DB2 High Availability (HA) Feature with Tivoli SA MP as your
cluster manager, the database manager uses scripts to support automated
failover solutions. These scripts are installed or updated automatically when you
use the DB2 installer to install or update SA MP. When you install or update SA
MP using the installSAM utility, you must then manually install or update
these scripts.

For more information, see:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.i
bm.db2.luw.qb.server.doc%2Fdoc%2Ft0051289.html

2.4.3 Configuration of Tivoli SA MP and DB2

This section explains the configuration procedure for a shared disk HA cluster
with DB2 10.1 and Tivoli SA MP. It describes a step-by-step procedure for
configuring a cluster domain using the db2haicu utility with an XML file. For the
setup example using db2haicu interactive mode, see 7.3, “DB2 HADR with Tivoli
SA MP configuration for automatic failover on an AIX system” on page 233.

The procedure to configure a highly available DB2 environment with shared
storage has the following steps:

1. Check prerequisites.
2. Check the network interface.
3. Set up the storage for sharing.
4. Create a DB2 instance.
5. Cluster preparation.
6. System clock synchronization.
7. Creating an XML configuration file for db2haicu.
8. Setting up a cluster domain using db2haicu with an XML file.
9. Verifying the created cluster domain.

This section describes each step in detail in the following sections.

Checking prerequisites
The first configuration step is checking the prerequisites for db2haicu. The details
are described in 7.2, “db2haicu” on page 228.
34 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.qb.server.doc%2Fdoc%2Ft0051289.html

To check the prerequisites, set the environment variable. In our example, we set
the environment variable to use the Tivoli SA MP environment. The
CT_MANAGEMENT_SCOPE environment variable must be set for all users of Tivoli SA
MP on all nodes. Add the following entry to /etc/profile:

export CT_MANAGEMENT_SCOPE=2

For Linux environment, add the entry to /etc/profile.local.

Verify the environment variable settings (Example 2-2).

Example 2-2 Checking value of environment variables

(O)1(F)2 root@TYCHY # cat /etc/profile
..
add for TSA/DB2 HA Configuration
export CT_MANAGEMENT_SCOPE=2
(O)(F) root@TYCHY # echo $CT_MANAGEMENT_SCOPE
2

Checking the network interface.
Assign the following static IP addresses to the en0 adapters on the owner and
failover nodes:

� Owner node (TYCHY):

en0: 9.156.47.80 (255.255.255.0)

� Failover node (KRAKOW):

en0: 9.156.47.81 (255.255.255.0)

All cluster nodes must have static IP addresses. Ensure that the /etc/hosts file
of every cluster node contains entries of the owner node and the failover node
names. Example 2-3 shows the entries in the /etc/hosts file of both servers.

Example 2-3 The entries in /etc/hosts on node1 and node2

9.156.47.80 TYCHY.kraklab.pl.ibm.com
9.156.47.81 KRAKOW.kraklab.pl.ibm.com

1 (O)- Owner node
2 (F)- Failover node
 Chapter 2. DB2 with IBM Tivoli System Automation for Multiplatforms 35

Two servers must be able to communicate with each other through a public
network. Confirm this situation by running ping. Run the following commands on
both nodes and ensure that they complete successfully:

� (O)(F) $ ping TYCHY
� (O)(F) $ ping KRAKOW

Now, confirm the broadcast addresses. Tivoli SA MP uses the broadcast
address to check the heartbeat. An incorrect broadcast address can cause
unexpected failover. Usually a broadcast address is set automatically, so verify
that the configuration of the broadcast address is correct (Example 2-4).

Example 2-4 Checking the broadcast address

(O) root@TYCHY # ifconfig -a
en0:
flags=1e080863,480<UP,BROADCAST,NOTRAILERS,RUNNING,SIMPLEX,MULTICAST,GR
OUPRT,64BIT,CHECKSUM_OFFLOAD(ACTIVE),CHAIN>
 inet 9.156.47.80 netmask 0xffffff00 broadcast 9.156.47.255
 tcp_sendspace 262144 tcp_recvspace 262144 rfc1323 1

(F) root@KRAKOW # ifconfig -a
en0:
flags=1e080863,480<UP,BROADCAST,NOTRAILERS,RUNNING,SIMPLEX,MULTICAST,GR
OUPRT,64BIT,CHECKSUM_OFFLOAD(ACTIVE),CHAIN>
 inet 9.156.47.81 netmask 0xffffff00 broadcast 9.156.47.255
 tcp_sendspace 262144 tcp_recvspace 262144 rfc1323 1

You can calculate the correct broadcast address from the IP address and the
netmask. The broadcast address is computed by the bitwise OR operation
between IP address and the reversed netmask. The reversed netmask is the
reverse bit sequence of the netmask. For example, the reversed netmask of
255.255.255.0 is 0.0.0.255. Table 2-4 shows a sample calculation of the
broadcast address.

Table 2-4 The calculation of the broadcast address

IP address IP address by binary

IP address 9.188.198.119 00001001.10111100.11000110.01110111

Reversed
netmask

0.0.0.255 00000000.00000000.00000000.11111111

Broadcast
address

9.188.198.255 00001001.10111100.11000110.11111111
36 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

If the broadcast address is not correct, you can change it by running smit and
completing the following steps.

1. Start the smit menu by running smitty tcpip.

2. Select Further Configuration  Network Interfaces  Network Interface
Selection  Change / Show Characteristics of a Network Interface.

3. Select the network interface whose configuration you want to change.

If your platform is Linux, you can use the ip command instead.

Setting up the storage for sharing
Before you proceed with the steps to set up the storage for sharing between two
nodes, each node of the cluster domain must be able to access the shared
volume groups. The owner node keeps the ownership of the shared volume
groups during the normal operation. The failover node takes over the ownership
and varies on the volume groups automatically if there is a takeover. Therefore,
ensure that both servers can vary on the volume groups.

For the details about storage configuration, see the documents that are provided
by your storage vendors, for example, IBM System Storage DS4000 and Storage
Manager V10.30, SG24-7010.

To complete the shared storage setup, complete the following steps:

1. Ensure that your share storage is accessible from both nodes by running lspv
(Example 2-5).

Example 2-5 List volume group

(0)(F) root@TYCHY # lspv
hdisk0 00cca5e4801553cf rootvg
active
hdisk2 none None

In our example, hdisk2 is the new storage server.

2. Create a volume group on your share disk by running mkvg (Example 2-6).

Example 2-6 Create volume group

(0) root@TYCHY # mkvg -y'sharevg2' hdisk2
0516-1254 mkvg: Changing the PVID in the ODM.
sharevg2
 Chapter 2. DB2 with IBM Tivoli System Automation for Multiplatforms 37

3. Check the volume group major numbers on the owner node.

Ensure that the major numbers of all volume groups on the failover node are
the same as the ones on the owner node. You can run the following
command to obtain the volume group major number:

(O) # ls -al /dev/<volume group name>

The volume group major number is equivalent to the major device number of
the special device file.

Example 2-7 shows a command sample and output. In this example, the
output shows that the volume group major number of “sharevg” is 35. Repeat
these steps for all the volume groups.

Example 2-7 Sample output of special device file

(0) root@TYCHY # ls -la /dev/sharevg2
crw-rw---- 1 root system 35, 0 Jul 20 18:40
/dev/sharevg2

4. Create a logical volume and file system.

When you create a journaled file system, AIX creates the corresponding
logical volume. Therefore, you do not need to define a logical volume.

Run lspv <disk name> to determine how much free space you can use. As
shown in Example 2-8, there is 10,224 MB of free space to use.

Example 2-8 Check free space

(0) root@TYCHY # lspv hdisk2
PHYSICAL VOLUME: hdisk2 VOLUME GROUP:
sharevg2
PV IDENTIFIER: 00cca5e4a543407d VG IDENTIFIER
00cca5e400004c0000000138a54340ba
PV STATE: active
STALE PARTITIONS: 0 ALLOCATABLE: yes
PP SIZE: 16 megabyte(s) LOGICAL VOLUMES: 0
TOTAL PPs: 639 (10224 megabytes) VG DESCRIPTORS: 2
FREE PPs: 639 (10224 megabytes) HOT SPARE: no
USED PPs: 0 (0 megabytes) MAX REQUEST: 256
kilobytes
FREE DISTRIBUTION: 128..128..127..128..128
USED DISTRIBUTION: 00..00..00..00..00
MIRROR POOL: None
38 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Create two file systems on this disk. You can create a file system using either
smit or the command-line interface (CLI). In our scenario, we create two file
systems:

– /home/db2inst/db2home

– /home/db2inst/db2

To use smit in the graphical mode, you must to set up the DISPLAY system
variable first (Example 2-9).

Example 2-9 Set display

(0) root@TYCHY # export DISPLAY=localhost:10.0
(0) root@TYCHY # echo $DISPLAY
localhost:10.0

If you connect to Linux through SSH, you must use the -X option
(Example 2-10).

Example 2-10 SSH connection with X forwarding

ssh -X 9.156.47.80 -l root

If you connect to PuTTY through SSH, you must enable X11 forwarding and
set the X display location. You can find those options by selecting
Connection  SSH  X11.

Under Windows OS, you must also install an X Window System server, such
as Xming.

Example 2-11 Sample configuration for X Window System server

AIX server:
(0) root@TYCHY # export DISPLAY=localhost:10.0
Xming server:
multiple windows
display number = 10
no access control - checked
Putty:
Session > Connection type: SSH
connection > ssh > X11: Enable X11 forwarding- checked
connection > ssh > X11 > X display location: localhost:10.0

As the root user, run smit crfs, and select Add an Enhanced Journaled 
File System Add an Enhanced Journaled File System  sharevg2.
 Chapter 2. DB2 with IBM Tivoli System Automation for Multiplatforms 39

Set the fields Number of units and MOUNT POINT. As shown in Figure 2-7,
set MOUNT POINT to home/db2inst/db2home. If you want to place your
second file system on the same share disk as we did, do not use the whole
empty space for the first file system.

Figure 2-7 Create a file system with smit

When you click Select, the status window opens and shows the command
execution status.

In our scenario, the second file system is created with the CLI
(Example 2-12). In the example, both file systems are also checked
and listed.

Example 2-12 Create a file system with the CLI

(0) root@TYCHY # crfs -v jfs2 -m /home/db2inst/db2 -g sharevg2 -a
size=7200M
File system created successfully.
7372368 kilobytes total disk space.
40 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

New File System size is 14745600
(0) root@TYCHY # fsck /home/db2inst/db2
The current volume is: /dev/fslv02
Primary superblock is valid.
*** Phase 1 - Initial inode scan
*** Phase 2 - Process remaining directories
*** Phase 3 - Process remaining files
*** Phase 4 - Check and repair inode allocation map
*** Phase 5 - Check and repair block allocation map
File system is clean.
(0) root@TYCHY # fsck /home/db2inst/db2home
The current volume is: /dev/fslv02
Primary superblock is valid.
*** Phase 1 - Initial inode scan
*** Phase 2 - Process remaining directories
*** Phase 3 - Process remaining files
*** Phase 4 - Check and repair inode allocation map
*** Phase 5 - Check and repair block allocation map
File system is clean.
(0) root@TYCHY # lsfs | grep db2inst/
/dev/fslv02 -- /home/db2inst/db2home jfs2 4915200 --
no no
/dev/fslv03 -- /home/db2inst/db2 jfs2 14745600 --
no no

5. Determine if the same major number shown in Example 2-7 on page 38 is
available on the failover node. Run the following command to determine the
available major numbers:

(F) # lvlstmajor

Example 2-13 shows the output of the lvlstmajor command. This output
means that the failover node can use the volume group major number “35” for
“sharevg2”.

Example 2-13 Sample output of the lvlstmajor command

(F) root@KRAKOW # lvlstmajor
35...

6. Import the volume group from the owner node to the failover node.

After you create the logical volumes on the owner node, you must refresh the
volume group’s device files on the failover node. The device files are special
files that are stored in the /dev directory and are used for device control. Use
the exportvg and importvg commands to refresh these device files.
 Chapter 2. DB2 with IBM Tivoli System Automation for Multiplatforms 41

To import volume group and file system settings from the owner node to the
failover node, run the following commands:

a. varyoffvg and exportvg on the owner node

b. rmdev, cfgmgr, and importvg on the failover node

Example 2-14 shows how to move volume group settings from the owner
node to the failover node.

Example 2-14 Export and import logical volume settings

(0) root@TYCHY # lspv | grep hdisk2
hdisk2 00cca5e4a543407d sharevg2
active
(0) root@TYCHY # varyoffvg sharevg2
(0) root@TYCHY # exportvg sharevg2
(0) root@TYCHY # lspv | grep hdisk2
hdisk2 00cca5e4a543407d None
(F) root@KRAKOW # lspv | grep hdisk2
hdisk2 none None
(F) root@KRAKOW # rmdev -l hdisk1 -Rd
hdisk1 deleted
(F) root@KRAKOW # cfgmgr
(F) root@KRAKOW # lspv | grep hdisk2
hdisk2 00cca5e4a543407d None

Import the volume group, specifying the required major numbers as follows:

(F) #importvg -y <volume group name> -V <first major number>
<pv name>

Example 2-15 shows how to import the volume group sharevg2.

Example 2-15 Sample output of the importvg command

(F) root@KRAKOW # lspv |grep hdisk2
hdisk2 00cca5e4a543407d None
(F) root@KRAKOW # importvg -y sharevg2 -V 35 hdisk2
sharevg2
(F) root@KRAKOW # lspv |grep hdisk2
hdisk2 00cca5e4a543407d sharevg2 active
(F) root@KRAKOW # lsfs
...
/dev/fslv02 -- /home/db2inst/db2home jfs2 4915200 --
no no
/dev/fslv03 -- /home/db2inst/db2 jfs2 14745600 --
no no
42 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Example 2-16 shows how to make hdisk2 active again on the owner node.

Example 2-16 Make share disk active

(F) root@KRAKOW # varyoffvg sharevg2
(0) root@TYCHY # importvg -y sharevg2 -V 35 hdisk2

Creating a DB2 instance
To create a DB2 instance on a shared disk, complete the following steps:

1. Check the user ID and group ID of the DB2 instance owner on the nodes:

If there is no DB2 instance owner user, you must create a DB2 instance
owner user and you might need to create a group. The DB2 instance owner
should have the same user ID and group ID on all the nodes in the cluster
domain. The DB2 instance owner should have the same password on all
cluster nodes.

Example 2-17 shows how to create an instance owner user with a home
directory on the share disk. The example assumes that the db2iadm1 group
exists and shows that the user ID of DB2 instance owner db2inst is 216 and
its group ID is 102. Ensure that they are same in every node.

Example 2-17 Create an instance owner

(0) root@TYCHY # mount /home/db2inst/db2home
(0) root@TYCHY # useradd -d /home/db2inst/db2home -g db2iadm1
db2inst
(0) root@TYCHY # lsuser -a id pgrp db2inst
db2inst id=216 pgrp=db2iadm1
(0) root@TYCHY # lsgroup -a id db2iadm1
db2iadm1 id=102
(0) root@TYCHY # chown db2inst:db2iadm1 /home/db2inst/db2home
(0) root@TYCHY # lsfs | grep /home/db2inst/db2home/dev/fslv02 --
/home/db2inst/db2home jfs2 4915200 -- no no
(0) root@TYCHY # chown db2inst:db2iadm1 /dev/fslv02

Row devices: If you use row devices for a DMS table space container, you
should check the access permission of the character device files after
import. The importvg command resets the ownership of the device files to
the original state “root:system”. If the DB2 instance ID should be the
owner, you must change them manually.
 Chapter 2. DB2 with IBM Tivoli System Automation for Multiplatforms 43

Example 2-18 shows how to create an instance owner user on a
failover node.

Example 2-18 Create an instance owner user on a failover node

(F) root@KRAKOW # useradd -d /home/db2inst/db2home -g db2iadm1 -u
216 db2inst
(F) root@KRAKOW # lsuser -a id pgrp db2inst
db2inst id=216 pgrp=db2iadm1

2. Create the DB2 instance.

Run db2icrt to create the DB2 instance. The command is in the instance
directory on the DB2 installation path.

(O) # <DB2 install path>/instance/db2icrt -u <fenced user name>
<instance owner name>

Example 2-19 shows how to create the DB2 instance.

Example 2-19 DB2 instance creation

(0) root@TYCHY # cd /opt/IBM/db2/V10.1/instance
(0) root@TYCHY # ./db2icrt -u db2fenc1 db2inst
DBI1446I The db2icrt command is running, please wait.
DB2 installation is being initialized.

 Total number of tasks to be performed: 4
Total estimated time for all tasks to be performed: 309 second(s)

Task #1 start
Description: Setting default global profile registry variables
Estimated time 1 second(s)
Task #1 end

Task #2 start
Description: Initializing instance list
Estimated time 5 second(s)
Task #2 end

Task #3 start
Description: Configuring DB2 instances
Estimated time 300 second(s)
Task #3 end

Task #4 start
Description: Updating global profile registry
Estimated time 3 second(s)
Task #4 end

The execution completed successfully.
44 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

For more information see the DB2 installation log at
"/tmp/db2icrt.log.11403434".
DBI1070I Program db2icrt completed successfully.
(0) root@TYCHY # ./db2ilist
db2inst

Example 2-20 shows how to change the password for the instance owner.

Example 2-20 Change the password

(0) root@TYCHY # passwd -a db2inst
(F) root@KRAKOW # passwd -a db2inst

There is a file named .profile in /home/db2inst/db2home. This file was
created during user creation. Later on, during instance creation, the .profile
file was updated. This file should contain a call to the db2profile procedure
(Example 2-21).

Example 2-21 Content of .profile

(0) root@TYCHY # cd /home/db2inst/db2home
(0) root@TYCHY # cat .profile
...
The following three lines have been added by IBM DB2 instance
utilities.
if [-f /home/db2inst/db2home/sqllib/db2profile]; then
 . /home/db2inst/db2home/sqllib/db2profile
fi
...

Example 2-22 shows how to configure TCP/IP communication. Create a
connection and log on as the db2inst user. You might be asked to change
your password the first time you do this task.

Example 2-22 Configuration of TCP/IP communication

(0) db2inst@TYCHY $ db2start
07/22/2012 23:30:12 0 0 SQL1063N DB2START processing was
successful.
SQL1063N DB2START processing was successful.
(0) db2inst@TYCHY $ db2set db2comm=tcpip
(0) db2inst@TYCHY $ db2 update dbm cfg using svcename DB2_db2inst
DB20000I The UPDATE DATABASE MANAGER CONFIGURATION command completed
successfully.
(0) db2inst@TYCHY $ cat /etc/services |grep DB2_db2inst
DB2_db2inst 60012/tcp
 Chapter 2. DB2 with IBM Tivoli System Automation for Multiplatforms 45

DB2_db2inst_1 60013/tcp
DB2_db2inst_2 60014/tcp
DB2_db2inst_END 60015/tcp
(0) db2inst@TYCHY $ db2stop
07/22/2012 23:46:43 0 0 SQL1064N DB2STOP processing was successful.
SQL1064N DB2STOP processing was successful.
(0) db2inst@TYCHY $ db2start
07/22/2012 23:47:10 0 0 SQL1063N DB2START processing was successful.
SQL1063N DB2START processing was successful.

3. Create the SAMPLE database:

Create the SAMPLE database to test the cluster domain in the
/home/db2inst/db2 directory (Example 2-23).

Example 2-23 Create SAMPLE database

(0) root@TYCHY # mount /home/db2inst/db2
(0) root@TYCHY # chown db2inst:db2iadm1 /home/db2inst/db2
(0) db2inst@TYCHY $ db2 create database sample on /home/db2inst/db2
DB20000I The CREATE DATABASE command completed successfully.
(0) db2inst@TYCHY $ mkdir /home/db2inst/db2/actlog
(0) db2inst@TYCHY $ mkdir /home/db2inst/db2/arclog
(0) db2inst@TYCHY $ db2 update db cfg for sample using NEWLOGPATH
/home/db2inst/db2/actlog
DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.
(0) db2inst@TYCHY $ db2 update db cfg for sample using LOGARCHMETH1
disk:/home/db2inst/db2/arclog
DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.
(O) db2inst@TYCHY $ db2 backup db sample to /dev/null

Backup successful. The timestamp for this backup image is : 20120722235729

(O) db2inst@TYCHY $ db2 connect to sample

 Database Connection Information

 Database server = DB2/AIX64 10.1.0
 SQL authorization ID = DB2INST
 Local database alias = SAMPLE

Configuring shared disk HA: If you want to configure shared disk HA on
an existing DB2 instance, you must move DB2 objects to the shared
volume group. DB2 objects include the instance home directory, diagpath,
and audit path, and all the database objects.
46 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

4. Edit the /etc/services file.

The SVCENAME database manager configuration parameter defines the TCP/IP
service name of the service port number to which the DB2 instance listens.
The /etc/services file on both nodes should have same DB2 service port
name entries to run the DB2 instance correctly. The db2icrt command adds
the entries to the /etc/services file on the owner node automatically, but you
must add them on the failover node manually. Example 2-24 shows the
sample of node1 and node2.

Example 2-24 The entries of /etc/services file on owner and failover nodes

(0) root@TYCHY $ cat /etc/services |grep db2inst
DB2_db2inst 60012/tcp
DB2_db2inst_1 60013/tcp
DB2_db2inst_2 60014/tcp
DB2_db2inst_END 60015/tcp

(F) root@KRAKOW # cat /etc/services |grep db2inst
DB2_db2inst 60012/tcp
DB2_db2inst_1 60013/tcp
DB2_db2inst_2 60014/tcp
DB2_db2inst_END 60015/tcp

5. Confirm that the DB2 instance can move to another node manually.

If the DB2 instances are not configured properly, the cluster domain might
have unexpected behavior after you include the DB2 instances.

Example 2-25 shows the process to shut down the owner node.

Example 2-25 Shutdown process on owner node “TYCHY”

(0) db2inst@TYCHY $ db2_ps
Node 0
 UID PID PPID C STIME TTY TIME CMD
 db2inst 9699342 14352570 1 23:47:09 - 0:33 db2sysc 0
 root 6815794 9699342 0 23:47:09 - 0:00 db2ckpwd 0
 root 7864512 9699342 0 23:47:09 - 0:00 db2ckpwd 0
 root 10092640 9699342 0 23:47:09 - 0:00 db2ckpwd 0
(0) db2inst@TYCHY $ db2stop
07/23/2012 09:22:20 0 0 SQL1064N DB2STOP processing was successful.
SQL1064N DB2STOP processing was successful.
(0) db2inst@TYCHY $ db2_ps
Node 0
 UID PID PPID C STIME TTY TIME CMD
(0) db2inst@TYCHY $ exit
(0) root@TYCHY # df |grep db2inst
/dev/fslv02 4915200 3912760 21% 209 1% /home/db2inst/db2home
/dev/fslv03 14745600 14220368 4% 84 1% /home/db2inst/db2
 Chapter 2. DB2 with IBM Tivoli System Automation for Multiplatforms 47

(0) root@TYCHY # umount /home/db2inst/db2home
(0) root@TYCHY # umount /home/db2inst/db2
(0) root@TYCHY # df |grep db2inst
(0) root@TYCHY # lspv |grep sharevg2
hdisk2 00cca5e4a543407d sharevg2 active
(0) root@TYCHY # varyoffvg sharevg2
(0) root@TYCHY # lspv |grep sharevg2
hdisk2 00cca5e4a543407d sharevg2

6. The db2nodes.cfg file and the starting instance on the failover node.

The db2nodes.cfg file should contain the host name that is bound to the local
IP address. When the failover node takes over the DB2 instance, you must
change the host name in the db2nodes.cfg file or have DB2 change the file by
starting the DB2 instance with db2gcf. In our example, we use db2gcf during
the instance start operation.

Example 2-26 shows the process to start DB2 on the failover node.
Remember to ensure that the /etc/services files on both nodes have the
same entries for the DB2 instance.

Example 2-26 Start process on failover node “KRAKOW”

(F) root@KRAKOW # lspv |grep sharevg2
hdisk2 00cca5e4a543407d sharevg2
(F) root@KRAKOW # varyonvg sharevg2
(F) root@KRAKOW # lspv |grep sharevg2
hdisk2 00cca5e4a543407d sharevg2
active
(F) root@KRAKOW # mount /home/db2inst/db2home
(F) root@KRAKOW # mount /home/db2inst/db2
(F) root@KRAKOW # exit
(F) db2inst@KRAKOW # echo "0 "$(hostname)" 0 "$(hostname)
0 KRAKOW.kraklab.pl.ibm.com 0 KRAKOW.kraklab.pl.ibm.com
(F) db2inst@KRAKOW # echo "0 "$(hostname)" 0 "$(hostname)
>~/sqllib/db2nodes.cfg
(F) db2inst@KRAKOW # db2gcf -u -i db2inst

Instance : db2inst
DB2 Start : Success

In our scenario, we manually move an instance to failover node and now we
have a situation where:

a. The owner node becomes the failover node.

b. The failover node becomes the owner node.
48 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Example 2-27 shows how to switch the owner and failover nodes back.

Example 2-27 Switch owner and failover nodes

(F) db2inst@KRAKOW $ db2stop
(F) db2inst@KRAKOW $ db2_ps
(F) db2inst@KRAKOW $ exit
(F) root@KRAKOW # umount /home/db2inst/db2home
(F) root@KRAKOW # umount /home/db2inst/db2
(F) root@KRAKOW # varyoffvg sharevg2
(O) root@TYCHY # varyonvg sharevg2
(O) root@TYCHY # mount /home/db2inst/db2home
(O) root@TYCHY # mount /home/db2inst/db2
(O) db2inst@TYCHY $ db2gcf -s -i db2inst
(O) db2inst@TYCHY $ echo "0 "$(hostname)" 0 "$(hostname)
>~/sqllib/db2nodes.cfg
(O) db2inst@TYCHY $ db2gcf -u -i db2inst

Cluster preparation
Two tasks on the nodes are required before you start node clustering:

1. Preparing the nodes to use db2haicu.

Before you use the db2haicu utility, run preprpnode on every node that is a
part of the cluster domain. The command syntax is:

(O)(F) # preprpnode <node name> <node name>...

2. In our environment, as a root user, we issue the command that is shown in
Example 2-28 on both nodes, TYCHY and KRAKOW. You do not have to run
this command for every DB2 instance, only once per node. Ensure that this
command completes without any error.

Example 2-28 Sample command of preprpnode command

(O) root@TYCHY # preprpnode TYCHY KRAKOW
(F) root@KRAKOW # preprpnode TYCHY KRAKOW

System clock synchronization
Synchronizing the date and time among nodes on a cluster is not required, but
do this task, because synchronized clocks can make your problem determination
more straightforward. When you analyze the logs on different nodes, you can
see the time sequence of the events without any adjustment. You can use the
network time protocol (NTP) for this purpose. For more information about how to
configure NTP for your system, see your operating system documentation.
 Chapter 2. DB2 with IBM Tivoli System Automation for Multiplatforms 49

Creating an XML configuration file for db2haicu
Example 2-29 shows a sample XML file for the DB2 shared storage HA
configuration that is used in our scenario. This XML file contains all the
information that db2haicu needs.

Example 2-29 XML configuration file for db2haicu

<?xml version="1.0" encoding="UTF-8"?>
<DB2Cluster xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="db2ha.xsd" clusterManagerName="TSA"
version="1.0">
 <ClusterDomain domainName="db2HAdomain">
 <Quorum quorumDeviceProtocol="network"
quorumDeviceName="9.156.47.82"/>
 <PhysicalNetwork physicalNetworkName="db2_public_network_0"
physicalNetworkProtocol="ip">
 <Interface interfaceName="en0" clusterNodeName="TYCHY">
 <IPAddress baseAddress="9.156.47.80" subnetMask="255.255.255.0"
networkName="db2_public_network_0"/>
 </Interface>
 <Interface interfaceName="en0" clusterNodeName="KRAKOW">
 <IPAddress baseAddress="9.156.47.81" subnetMask="255.255.255.0"
networkName="db2_public_network_0"/>
 </Interface>
 </PhysicalNetwork>
 <ClusterNode clusterNodeName="TYCHY"/>
 <ClusterNode clusterNodeName="KRAKOW"/>
 </ClusterDomain>
 <FailoverPolicy>
 <Mutual></Mutual>
 </FailoverPolicy>
 <DB2PartitionSet>
 <DB2Partition dbpartitionnum="0" instanceName="db2inst">

<VirtualIPAddress baseAddress="9.156.47.199"
subnetMask="255.255.255.0" networkName="db2_public_network_0"/>
 <MutualPair systemPairNode1="TYCHY" systemPairNode2="KRAKOW" />
 </DB2Partition>
 </DB2PartitionSet>

<HADBSet instanceName="db2inst">
<HADB databaseName="SAMPLE" />

</HADBSet>
</DB2Cluster>
50 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Where:

� The <ClusterDomain> element

This element covers all cluster-wide information, including quorum, cluster
node, and cluster domain name.

The <PhysicalNetwork> subelement has all network-related information,
including the network name and the network interface.

You must define all network interfaces in this element whether you use the
definition or not. Define a public network on network interface en1 and a
private network on en1.

� The <FailoverPolicy> element

This element specifies the failover type of the cluster nodes. Mutual means an
active/passive policy.

� The <DB2PartitionSet> element

This element covers the DB2 instance information, including the current DB2
instance name, the DB2 partition number, and the virtual IP address that is
associated with the instance.

The <MutualPair> is the node pair that is joined to the cluster domain. The
systemPairNode1 attribute is the active (owner) node, and the
systemPairNode2 attribute is the passive (failover) node.

� The <HADBSet> element

This element specifies the database name to be configured to be highly
available. It includes the current DB2 instance name.

Setting up a cluster domain using db2haicu with an XML file
Before you run db2haicu, ensure that the DB2 instance is started. db2haicu
needs a running DB2 instance.

Run db2haicu as the DB2 instance owner. Here is the db2haicu
command syntax:

(O) $ db2haicu -f <XML file name>

Running db2haicu: Run db2haicu on the owner node. The owner node here
is the node that is specified in the systemPairNode1 attribute. If you run
db2haicu on the failover node (the node that is specified in the
systemPairNode2 attribute), Tivoli SA MP tries to take over the DB2 resource
group to the owner node as soon as db2haicu execution is complete.
 Chapter 2. DB2 with IBM Tivoli System Automation for Multiplatforms 51

Example 2-30 shows a successful completion of the command execution.

Example 2-30 Sample output of db2haicu execution using XML setup up mode

(O) db2inst@TYCHY $ db2haicu -f db2ha_sharedstorage_mutual_.xml
Welcome to the DB2 High Availability Instance Configuration Utility
(db2haicu).

You can find detailed diagnostic information in the DB2 server
diagnostic log file called db2diag.log. Also, you can use the utility
called db2pd to query the status of the cluster domains you create.

For more information about configuring your clustered environment using
db2haicu, see the topic called 'DB2 High Availability Instance
Configuration Utility (db2haicu)' in the DB2 Information Center.

db2haicu determined the current DB2 database manager instance is
'db2inst'. The cluster configuration that follows apply to this
instance.

db2haicu is collecting information on your current setup. This step may
take some time as db2haicu need to activate all databases for the
instance to discover all paths ...
Creating domain 'db2HAdomain' in the cluster ...
Creating domain 'db2HAdomain' in the cluster was successful.
Configuring quorum device for domain 'db2HAdomain' ...
Configuring quorum device for domain 'db2HAdomain' was successful.
Adding network interface card 'en0' on cluster node 'TYCHY' to the
network 'db2_public_network_0' ...
Adding network interface card 'en0' on cluster node 'TYCHY' to the
network 'db2_public_network_0' was successful.
Adding network interface card 'en0' on cluster node 'KRAKOW' to the
network 'db2_public_network_0' ...
Adding network interface card 'en0' on cluster node 'KRAKOW' to the
network 'db2_public_network_0' was successful.
Adding DB2 database partition '0' to the cluster ...
Adding DB2 database partition '0' to the cluster was successful.
Adding database 'SAMPLE' to the cluster domain ...
Adding database 'SAMPLE' to the cluster domain was successful.
All cluster configurations have been completed successfully. db2haicu
exiting ...
52 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Verifying the created cluster domain
The Tivoli SA MP issam command and the DB2 command db2pd are useful for
verifying DB2 clustering with Tivoli SA MP. lssam lists all the resource groups
and resources that are contained in the resource groups and the information
about operational states of these objects. The command syntax is as follows:

(O)(F) # lssam

Example 2-31 shows that the resource group, db2_db2inst_0-rg, is online and
the active node is TYCHY, which owns all resources in this cluster domain.

Example 2-31 Sample output of lssam command

(O) db2inst@TYCHY $ lssam
Online IBM.ResourceGroup:db2_db2inst_0-rg Nominal=Online
 |- Online IBM.Application:db2_db2inst_0-rs
 |- Offline IBM.Application:db2_db2inst_0-rs:KRAKOW
 '- Online IBM.Application:db2_db2inst_0-rs:TYCHY
 |- Online IBM.Application:db2mnt-home_db2inst_db2-rs
 |- Offline
IBM.Application:db2mnt-home_db2inst_db2-rs:KRAKOW
 '- Online
IBM.Application:db2mnt-home_db2inst_db2-rs:TYCHY
 |- Online IBM.Application:db2mnt-home_db2inst_db2home-rs
 |- Offline
IBM.Application:db2mnt-home_db2inst_db2home-rs:KRAKOW
 '- Online
IBM.Application:db2mnt-home_db2inst_db2home-rs:TYCHY
 '- Online IBM.ServiceIP:db2ip_9_156_47_199-rs
 |- Offline IBM.ServiceIP:db2ip_9_156_47_199-rs:KRAKOW
 '- Online IBM.ServiceIP:db2ip_9_156_47_199-rs:TYCHY
Online IBM.Equivalency:db2_db2inst_0-rg_group-equ
 |- Online IBM.PeerNode:TYCHY:TYCHY
 '- Online IBM.PeerNode:KRAKOW:KRAKOW
Online IBM.Equivalency:db2_public_network_0
 |- Online IBM.NetworkInterface:en0:TYCHY
 '- Online IBM.NetworkInterface:en0:KRAKOW

In DB2 10, the db2pd command option -ha provides data of the cluster domain:

db2pd -ha
 Chapter 2. DB2 with IBM Tivoli System Automation for Multiplatforms 53

Example 2-32 shows the output of this command.

Example 2-32 Sample output for the db2pd -ha command

(O) db2inst@TYCHY $ db2pd -ha
 DB2 HA Status
Instance Information:
Instance Name = db2inst
Number Of Domains = 1
Number Of RGs for instance = 1

Domain Information:
Domain Name = db2HAdomain
Cluster Version = 3.1.2.2
Cluster State = Online
Number of nodes = 2

Node Information:
Node Name State
--------------------- -------------------
TYCHY Online
KRAKOW Online

Resource Group Information:
Resource Group Name = db2_db2inst_0-rg
Resource Group LockState = Unlocked
Resource Group OpState = Online
Resource Group Nominal OpState = Online
Number of Group Resources = 4
Number of Allowed Nodes = 2
 Allowed Nodes

 TYCHY
 KRAKOW
Member Resource Information:
 Resource Name = db2mnt-home_db2inst_db2-rs
 Resource State = Online
 Resource Type = Mount
 Mount Resource Path = /home/db2inst/db2
 Number of Allowed Nodes = 2
 Allowed Nodes

 TYCHY
 KRAKOW
54 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

 Resource Name = db2ip_9_156_47_199-rs
 Resource State = Online
 Resource Type = IP

 Resource Name = db2_db2inst_0-rs
 Resource State = Online
 Resource Type = DB2 Member
 DB2 Member Number = 0
 Number of Allowed Nodes = 2
 Allowed Nodes

 TYCHY
 KRAKOW

 Resource Name = db2mnt-home_db2inst_db2home-rs
 Resource State = Online
 Resource Type = Mount
 Mount Resource Path = /home/db2inst/db2home
 Number of Allowed Nodes = 2
 Allowed Nodes

 TYCHY
 KRAKOW

Network Information:
Network Name Number of Adapters
----------------------- ------------------
db2_public_network_0 2

 Node Name Adapter Name
 ----------------------- ------------------
 TYCHY.kraklab.pl.ibm.com en0
 KRAKOW.kraklab.pl.ibm.com en0

Quorum Information:
Quorum Name Quorum State
------------------------------------ --------------------
Fail Offline
db2_Quorum_Network_9_156_47_82:16_6_29 Online
Operator Offline
 Chapter 2. DB2 with IBM Tivoli System Automation for Multiplatforms 55

2.5 Administration

You must perform regularly some maintenance tasks on the node in the shard
disk HA cluster domain, such as upgrading software. This section demonstrates
how to detach one node from the cluster domain and how to stop the cluster
domain for system maintenance.

2.5.1 The node maintenance scenario

You can use the idle state of the failover node to perform the maintenance tasks
on that node without stopping the entire cluster domain. In this process, you
detach the failover node from the cluster, perform the maintenance work, and
then reattach the node back to the cluster. If the maintenance work is performed
on the owner node, you must swap the role of the node first.

Complete the following steps:

1. Swap the owner node.

If the node to be maintained is the owner node, switch its role to failover. Use
the rgreq command to move the resource groups on the owner node:

(O) # rgreq -o move <resource group>

Verify that all resource groups are moved to the new owner node by
running lssam.

2. Detach the failover node.

Run samctrl to detach the maintenance node:

(O) # samctrl -u a <node to detach>

Example 2-33 shows how to swap the owner node and detach it
for maintenance.

Example 2-33 Sample of the samctrl command and its output

(O) root@TYCHY # lssam
Online IBM.ResourceGroup:db2_db2inst_0-rg Nominal=Online
 |- Online IBM.Application:db2_db2inst_0-rs
 |- Offline IBM.Application:db2_db2inst_0-rs:KRAKOW
 '- Online IBM.Application:db2_db2inst_0-rs:TYCHY
 |- Online IBM.Application:db2mnt-home_db2inst_db2-rs
 |- Offline IBM.Application:db2mnt-home_db2inst_db2-rs:KRAKOW
 '- Online IBM.Application:db2mnt-home_db2inst_db2-rs:TYCHY
 |- Online IBM.Application:db2mnt-home_db2inst_db2home-rs
 |- Offline IBM.Application:db2mnt-home_db2inst_db2home-rs:KRAKOW
 '- Online IBM.Application:db2mnt-home_db2inst_db2home-rs:TYCHY
56 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

 '- Online IBM.ServiceIP:db2ip_9_156_47_199-rs
 |- Offline IBM.ServiceIP:db2ip_9_156_47_199-rs:KRAKOW
 '- Online IBM.ServiceIP:db2ip_9_156_47_199-rs:TYCHY
Online IBM.Equivalency:db2_db2inst_0-rg_group-equ
 |- Online IBM.PeerNode:TYCHY:TYCHY
 '- Online IBM.PeerNode:KRAKOW:KRAKOW
Online IBM.Equivalency:db2_public_network_0
 |- Online IBM.NetworkInterface:en0:TYCHY
 '- Online IBM.NetworkInterface:en0:KRAKOW
(O) root@TYCHY # rgreq -o move db2_db2inst_0-rg
Action on resource group "db2_db2inst_0-rg" returned Token
"0x4a6b13a868cf47e3500eaa940003b95b" .
(O) root@TYCHY # lssam
Online IBM.ResourceGroup:db2_db2inst_0-rg Nominal=Online
 |- Online IBM.Application:db2_db2inst_0-rs
 |- Online IBM.Application:db2_db2inst_0-rs:KRAKOW
 '- Offline IBM.Application:db2_db2inst_0-rs:TYCHY
 |- Online IBM.Application:db2mnt-home_db2inst_db2-rs
 |- Online IBM.Application:db2mnt-home_db2inst_db2-rs:KRAKOW
 '- Offline IBM.Application:db2mnt-home_db2inst_db2-rs:TYCHY
 |- Online IBM.Application:db2mnt-home_db2inst_db2home-rs
 |- Online IBM.Application:db2mnt-home_db2inst_db2home-rs:KRAKOW
 '- Offline IBM.Application:db2mnt-home_db2inst_db2home-rs:TYCHY
 '- Online IBM.ServiceIP:db2ip_9_156_47_199-rs
 |- Online IBM.ServiceIP:db2ip_9_156_47_199-rs:KRAKOW
 '- Offline IBM.ServiceIP:db2ip_9_156_47_199-rs:TYCHY
Online IBM.Equivalency:db2_db2inst_0-rg_group-equ
 |- Online IBM.PeerNode:TYCHY:TYCHY
 '- Online IBM.PeerNode:KRAKOW:KRAKOW
Online IBM.Equivalency:db2_public_network_0
 |- Online IBM.NetworkInterface:en0:TYCHY
 '- Online IBM.NetworkInterface:en0:KRAKOW
(O) root@TYCHY # samctrl -u a TYCHY
(O) root@TYCHY # lssam
Online IBM.ResourceGroup:db2_db2inst_0-rg Nominal=Online
 |- Online IBM.Application:db2_db2inst_0-rs
 |- Online IBM.Application:db2_db2inst_0-rs:KRAKOW
 '- Offline IBM.Application:db2_db2inst_0-rs:TYCHY Node=Excluded
 |- Online IBM.Application:db2mnt-home_db2inst_db2-rs
 |- Online IBM.Application:db2mnt-home_db2inst_db2-rs:KRAKOW
 '- Offline IBM.Application:db2mnt-home_db2inst_db2-rs:TYCHY
Node=Excluded
 |- Online IBM.Application:db2mnt-home_db2inst_db2home-rs
 |- Online IBM.Application:db2mnt-home_db2inst_db2home-rs:KRAKOW
 Chapter 2. DB2 with IBM Tivoli System Automation for Multiplatforms 57

 '- Offline IBM.Application:db2mnt-home_db2inst_db2home-rs:TYCHY
Node=Excluded
 '- Online IBM.ServiceIP:db2ip_9_156_47_199-rs
 |- Online IBM.ServiceIP:db2ip_9_156_47_199-rs:KRAKOW
 '- Offline IBM.ServiceIP:db2ip_9_156_47_199-rs:TYCHY Node=Excluded
Online IBM.Equivalency:db2_db2inst_0-rg_group-equ
 |- Online IBM.PeerNode:TYCHY:TYCHY Node=Excluded
 '- Online IBM.PeerNode:KRAKOW:KRAKOW
Online IBM.Equivalency:db2_public_network_0
 |- Online IBM.NetworkInterface:en0:TYCHY Node=Excluded
 '- Online IBM.NetworkInterface:en0:KRAKOW

3. Perform maintenance tasks.

You can perform the maintenance tasks on the failover node after it is
detached from the cluster domain. For example, you can reboot the OS or
upgrade software.

Example 2-34 shows the resource status when the owner node is down.

Example 2-34 Resource status when the owner node is turned off

(F) root@KRAKOW # lssam
Online IBM.ResourceGroup:db2_db2inst_0-rg Control=MemberInProblemState Nominal=Online
 |- Online IBM.Application:db2_db2inst_0-rs Control=MemberInProblemState
 |- Online IBM.Application:db2_db2inst_0-rs:KRAKOW
 '- Failed offline IBM.Application:db2_db2inst_0-rs:TYCHY Node=Offline
 |- Online IBM.Application:db2mnt-home_db2inst_db2-rs Control=MemberInProblemState
 |- Online IBM.Application:db2mnt-home_db2inst_db2-rs:KRAKOW
 '- Failed offline IBM.Application:db2mnt-home_db2inst_db2-rs:TYCHY Node=Offline
 |- Online IBM.Application:db2mnt-home_db2inst_db2home-rs Control=MemberInProblemState
 |- Online IBM.Application:db2mnt-home_db2inst_db2home-rs:KRAKOW
 '- Failed offline IBM.Application:db2mnt-home_db2inst_db2home-rs:TYCHY
Node=Offline
 '- Online IBM.ServiceIP:db2ip_9_156_47_199-rs Control=MemberInProblemState
 |- Online IBM.ServiceIP:db2ip_9_156_47_199-rs:KRAKOW
 '- Failed offline IBM.ServiceIP:db2ip_9_156_47_199-rs:TYCHY Node=Offline
Online IBM.Equivalency:db2_db2inst_0-rg_group-equ
 |- Offline IBM.PeerNode:TYCHY:TYCHY Node=Offline
 '- Online IBM.PeerNode:KRAKOW:KRAKOW
Online IBM.Equivalency:db2_public_network_0
 |- Offline IBM.NetworkInterface:en0:TYCHY Node=Offline
 '- Online IBM.NetworkInterface:en0:KRAKOW

Node status: When you shut down the RSCT or Tivoli SA MP on the
detached node, the output of the lssam command shows Failed Offline for the
node. There is no impact to the cluster node, but the output is changed.
58 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

4. Reintegration in to the cluster domain.

When you want to reintegrate the detached node, run samctrl again:

(O) # samctrl -u d <node to detach>

After you run samctrl, ensure that there is no Excluded mode in the output of
the lssam command. Example 2-35 shows how to run samctrl.

Example 2-35 Attaching an owner node back to the cluster and swapping the owner node to be back online

(F) root@KRAKOW # lssam
Online IBM.ResourceGroup:db2_db2inst_0-rg Nominal=Online
 |- Online IBM.Application:db2_db2inst_0-rs
 |- Online IBM.Application:db2_db2inst_0-rs:KRAKOW
 '- Offline IBM.Application:db2_db2inst_0-rs:TYCHY Node=Excluded
...
(F) root@KRAKOW # samctrl -u d TYCHY
(F) root@KRAKOW # lssam
Online IBM.ResourceGroup:db2_db2inst_0-rg Nominal=Online
 |- Online IBM.Application:db2_db2inst_0-rs
 |- Online IBM.Application:db2_db2inst_0-rs:KRAKOW
 '- Offline IBM.Application:db2_db2inst_0-rs:TYCHY
...
(F) root@KRAKOW # rgreq -o move db2_db2inst_0-rg

2.6 Cluster maintenance

When you must work on DB2 instances or all the resources, you must stop the
cluster domain. For example, you must stop the cluster domain when you
migrate DB2 to a later version. Run chrg and stoprpdomain to stop the
cluster domain.

To stop the cluster domain, complete the following steps:

1. Change the nominal state of the resource groups to offline.

Changing the nominal status of the resource group to offline causes Tivoli SA
MP to try to stop the all resources in the resource group. After that, you can
stop the cluster domain. Run the following command to make this change:

(O) # chrg -o offline <resource group>

After you run chrg, ensure that all resource group and resources in this
domain are offline by running lssam.
 Chapter 2. DB2 with IBM Tivoli System Automation for Multiplatforms 59

2. Stop the cluster domain.

Run stoprpdomain to stop the cluster domain:

(O) # stoprpdomain <domain>

Example 2-36 shows that the shared_disk_domain cluster domain is stopped.

Example 2-36 Sample command of stopping the cluster domain

(O) root@TYCHY # chrg -o offline db2_db2inst_0-rg
(O) root@TYCHY # lssam
Offline IBM.ResourceGroup:db2_db2inst_0-rg Nominal=Offline
 |- Offline IBM.Application:db2_db2inst_0-rs
 |- Offline IBM.Application:db2_db2inst_0-rs:KRAKOW
 '- Offline IBM.Application:db2_db2inst_0-rs:TYCHY
...
(O) root@TYCHY # lsrpdomain
Name OpState RSCTActiveVersion MixedVersions TSPort GSPort
db2HAdomain Online 3.1.2.2 No 12347 12348
(O) root@TYCHY # stoprpdomain db2HAdomain
(O) root@TYCHY # lsrpdomain
Name OpState RSCTActiveVersion MixedVersions TSPort GSPort
db2HAdomain Offline 3.1.2.2 No 12347 12348

3. Perform maintenance.

You can perform maintenance tasks on these nodes, for example, to migrate
the DB2 or Tivoli SA MP.

4. Start the cluster domain.

After the maintenance, restart the cluster domain by running startrpdomain:

(O) # startrpdomain <domain>

5. Change the nominal state of the resource groups to online.

Run chrg to change the nominal state of the resource groups:

(O) # chrg -o online <resource group>

After you run chrg, verify that the resource groups and all resources in this
domain are online.

Example 2-37 shows that the db2HAdomain is back online.

Example 2-37 Sample command of stopping the cluster domain

(O) root@TYCHY # startrpdomain db2HAdomain
(O) root@TYCHY # lsrpdomain
Name OpState RSCTActiveVersion MixedVersions TSPort GSPort
60 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

db2HAdomain Online 3.1.2.2 No 12347 12348
(O) root@TYCHY # chrg -o online db2_db2inst_0-rg
(O) root@TYCHY # lssam
Online IBM.ResourceGroup:db2_db2inst_0-rg Nominal=Online
 |- Online IBM.Application:db2_db2inst_0-rs
 |- Offline IBM.Application:db2_db2inst_0-rs:KRAKOW
 '- Online IBM.Application:db2_db2inst_0-rs:TYCHY
...

2.6.1 Deleting a domain

If you want to delete resource groups for the current database manager instance,
run the following command:

(O)(F) # db2haicu -delete <resource group>

If there are no resource groups that are left in the cluster domain after db2haicu
removes the resource groups, then db2haicu also removes the cluster domain.

Running db2haicu with the -delete parameter causes the current database
manager instance to cease to be configured for high availability. If the database
manager instance is no longer configured for high availability, then the database
manager does not coordinate with the cluster manager if you perform any
database manager administrative operations that require related cluster
configuration changes.

To reconfigure a database manager instance for high availability, you can run
db2haicu again.

Example 2-38 shows how to delete a high availability configuration and create it
one more time from an XML file.

Example 2-38 Command to delete a high availability configuration

(O) db2inst@TYCHY $ db2haicu -delete
Welcome to the DB2 High Availability Instance Configuration Utility (db2haicu).

You can find detailed diagnostic information in the DB2 server diagnostic log file
called db2diag.log. Also, you can use the utility called db2pd to query the status of
the cluster domains you create.

For more information about configuring your clustered environment using db2haicu, see
the topic called 'DB2 High Availability Instance Configuration Utility (db2haicu)' in
the DB2 Information Center.
 Chapter 2. DB2 with IBM Tivoli System Automation for Multiplatforms 61

db2haicu determined the current DB2 database manager instance is 'db2inst'. The
cluster configuration that follows apply to this instance.

When you use db2haicu to configure your clustered environment, you create cluster
domains. For more information, see the topic 'Creating a cluster domain with
db2haicu' in the DB2 Information Center. db2haicu is searching the current machine
for an existing active cluster domain ...
db2haicu found a cluster domain called 'db2HAdomain' on this machine. The cluster
configuration that follows apply to this domain.

Removing DB2 database partition '0' from the cluster ...
Removing DB2 database partition '0' from the cluster was successful.
Deleting the domain 'db2HAdomain' from the cluster ...
Deleting the domain 'db2HAdomain' from the cluster was successful.
All cluster configurations have been completed successfully. db2haicu exiting ...
(O) db2inst@TYCHY $ db2haicu -f db2ha_sharedstorage_mutual_.xml

2.7 Testing

This section shows some resource failure tests that you can use to verify the HA
cluster setup:

� Operating system failure
� Power failure
� Network failure
� DB2 instance failure

We suggest that you perform similar tests before you deploy the HA
configuration to production.

2.7.1 Operating system failure

Use the operating system restart command shutdown -Fr to simulate the
operating system failure situation. When the owner node restart happens, the
failover node takes over the resource group and all resources. If the failover
node fails, the resource group and all resources remain in the owner node. After
the failover node is recovered, the cluster domain reintegrates the failover node
again automatically.

The next four examples show the transition of the cluster domain in the case of
owner node failure.
62 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Example 2-39 shows the state of the cluster domain before shutdown starts.
TYCHY is online and owns the resources.

Example 2-39 Cluster domain state before shutdown starts

(O) db2inst@TYCHY $ lssam
Online IBM.ResourceGroup:db2_db2inst_0-rg Nominal=Online
 |- Online IBM.Application:db2_db2inst_0-rs
 |- Offline IBM.Application:db2_db2inst_0-rs:KRAKOW
 '- Online IBM.Application:db2_db2inst_0-rs:TYCHY
 |- Online IBM.Application:db2mnt-home_db2inst_db2-rs
 |- Offline IBM.Application:db2mnt-home_db2inst_db2-rs:KRAKOW
 '- Online IBM.Application:db2mnt-home_db2inst_db2-rs:TYCHY
 |- Online IBM.Application:db2mnt-home_db2inst_db2home-rs
 |- Offline IBM.Application:db2mnt-home_db2inst_db2home-rs:KRAKOW
 '- Online IBM.Application:db2mnt-home_db2inst_db2home-rs:TYCHY
 '- Online IBM.ServiceIP:db2ip_9_156_47_191-rs
 |- Offline IBM.ServiceIP:db2ip_9_156_47_191-rs:KRAKOW
 '- Online IBM.ServiceIP:db2ip_9_156_47_191-rs:TYCHY
Online IBM.Equivalency:db2_db2inst_0-rg_group-equ
 |- Online IBM.PeerNode:TYCHY:TYCHY
 '- Online IBM.PeerNode:KRAKOW:KRAKOW
Online IBM.Equivalency:db2_public_network_0
 |- Online IBM.NetworkInterface:en0:TYCHY
 '- Online IBM.NetworkInterface:en0:KRAKOW

The shutdown -Fr command is run on the TYCHY owner node to simulate an
operating system failure. Example 2-40 shows that the failover is taking place at
the cluster domain and starting a failover after the shutdown starts.

Example 2-40 Failover is taking place

(O) root@TYCHY # shutdown -Fr
(O) root@KRAKOW # lssam
'Pending online IBM.ResourceGroup:db2_db2inst_0-rg Control=MemberInProblemState
Nominal=Online
 |- Pending online IBM.Application:db2_db2inst_0-rs
Control=MemberInProblemState
 |- Pending online IBM.Application:db2_db2inst_0-rs:KRAKOW
 '- Failed offline IBM.Application:db2_db2inst_0-rs:TYCHY Node=Offline
 |- Online IBM.Application:db2mnt-home_db2inst_db2-rs
Control=MemberInProblemState
 |- Online IBM.Application:db2mnt-home_db2inst_db2-rs:KRAKOW
 '- Failed offline IBM.Application:db2mnt-home_db2inst_db2-rs:TYCHY
Node=Offline
 Chapter 2. DB2 with IBM Tivoli System Automation for Multiplatforms 63

 |- Online IBM.Application:db2mnt-home_db2inst_db2home-rs
Control=MemberInProblemState
 |- Online IBM.Application:db2mnt-home_db2inst_db2home-rs:KRAKOW
 '- Failed offline
IBM.Application:db2mnt-home_db2inst_db2home-rs:TYCHY Node=Offline
 '- Online IBM.ServiceIP:db2ip_9_156_47_191-rs Control=MemberInProblemState
 |- Online IBM.ServiceIP:db2ip_9_156_47_191-rs:KRAKOW
 '- Failed offline IBM.ServiceIP:db2ip_9_156_47_191-rs:TYCHY
Node=Offline
Online IBM.Equivalency:db2_db2inst_0-rg_group-equ
 |- Offline IBM.PeerNode:TYCHY:TYCHY Node=Offline
 '- Online IBM.PeerNode:KRAKOW:KRAKOW
Online IBM.Equivalency:db2_public_network_0
 |- Offline IBM.NetworkInterface:en0:TYCHY Node=Offline
 '- Online IBM.NetworkInterface:en0:KRAKOW

Example 2-41 shows that Tivoli SA MP failed over the resources to the KRAKOW
failover node.

Example 2-41 Failover completed

(O) root@KRAKOW # lssam
Online IBM.ResourceGroup:db2_db2inst_0-rg Control=MemberInProblemState Nominal=Online
 |- Online IBM.Application:db2_db2inst_0-rs Control=MemberInProblemState
 |- Online IBM.Application:db2_db2inst_0-rs:KRAKOW
 '- Failed offline IBM.Application:db2_db2inst_0-rs:TYCHY Node=Offline
 |- Online IBM.Application:db2mnt-home_db2inst_db2-rs Control=MemberInProblemState
 |- Online IBM.Application:db2mnt-home_db2inst_db2-rs:KRAKOW
 '- Failed offline IBM.Application:db2mnt-home_db2inst_db2-rs:TYCHY Node=Offline
 |- Online IBM.Application:db2mnt-home_db2inst_db2home-rs Control=MemberInProblemState
 |- Online IBM.Application:db2mnt-home_db2inst_db2home-rs:KRAKOW
 '- Failed offline IBM.Application:db2mnt-home_db2inst_db2home-rs:TYCHY
Node=Offline
 '- Online IBM.ServiceIP:db2ip_9_156_47_191-rs Control=MemberInProblemState
 |- Online IBM.ServiceIP:db2ip_9_156_47_191-rs:KRAKOW
 '- Failed offline IBM.ServiceIP:db2ip_9_156_47_191-rs:TYCHY Node=Offline
Online IBM.Equivalency:db2_db2inst_0-rg_group-equ
 |- Offline IBM.PeerNode:TYCHY:TYCHY Node=Offline
 '- Online IBM.PeerNode:KRAKOW:KRAKOW
Online IBM.Equivalency:db2_public_network_0
 |- Offline IBM.NetworkInterface:en0:TYCHY Node=Offline
 '- Online IBM.NetworkInterface:en0:KRAKOW
64 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Example 2-42 shows that the cluster domain completes reintegrating the old
owner node.

Example 2-42 Old owner node is reintegrated

(O) root@KRAKOW # lssam
Online IBM.ResourceGroup:db2_db2inst_0-rg Nominal=Online
 |- Online IBM.Application:db2_db2inst_0-rs
 |- Online IBM.Application:db2_db2inst_0-rs:KRAKOW
 '- Offline IBM.Application:db2_db2inst_0-rs:TYCHY
 |- Online IBM.Application:db2mnt-home_db2inst_db2-rs
 |- Online IBM.Application:db2mnt-home_db2inst_db2-rs:KRAKOW
 '- Offline IBM.Application:db2mnt-home_db2inst_db2-rs:TYCHY
 |- Online IBM.Application:db2mnt-home_db2inst_db2home-rs
 |- Online IBM.Application:db2mnt-home_db2inst_db2home-rs:KRAKOW
 '- Offline IBM.Application:db2mnt-home_db2inst_db2home-rs:TYCHY
 '- Online IBM.ServiceIP:db2ip_9_156_47_191-rs
 |- Online IBM.ServiceIP:db2ip_9_156_47_191-rs:KRAKOW
 '- Offline IBM.ServiceIP:db2ip_9_156_47_191-rs:TYCHY
Online IBM.Equivalency:db2_db2inst_0-rg_group-equ
 |- Online IBM.PeerNode:TYCHY:TYCHY
 '- Online IBM.PeerNode:KRAKOW:KRAKOW
Online IBM.Equivalency:db2_public_network_0
 |- Online IBM.NetworkInterface:en0:TYCHY
 '- Online IBM.NetworkInterface:en0:KRAKOW

2.7.2 Power failure

The power failure can be simulated by unplugging the power cable. The failover
process is similar to the operating system failure. The lssam output is similar as
well. This test can reassure you that the failover behavior of the cluster domain is
as expected.

2.7.3 Network failure

A network failure test checks the HA configuration of the service IP address.
Simulate the network failure by unplugging the network cable of the public
network in the owner node. In our environment, it is the cable of the en0 network
interface in TYCHY.

The next three examples show the transition of the cluster domain upon
network failure.
 Chapter 2. DB2 with IBM Tivoli System Automation for Multiplatforms 65

Example 2-43 shows the cluster domain state before the network failure
test starts.

Example 2-43 Cluster domain before the network failure test starts

(O) root@KRAKOW # lssam
Online IBM.ResourceGroup:db2_db2inst_0-rg Nominal=Online
 |- Online IBM.Application:db2_db2inst_0-rs
 |- Offline IBM.Application:db2_db2inst_0-rs:KRAKOW
 '- Online IBM.Application:db2_db2inst_0-rs:TYCHY
 |- Online IBM.Application:db2mnt-home_db2inst_db2-rs
 |- Offline IBM.Application:db2mnt-home_db2inst_db2-rs:KRAKOW
 '- Online IBM.Application:db2mnt-home_db2inst_db2-rs:TYCHY
 |- Online IBM.Application:db2mnt-home_db2inst_db2home-rs
 |- Offline IBM.Application:db2mnt-home_db2inst_db2home-rs:KRAKOW
 '- Online IBM.Application:db2mnt-home_db2inst_db2home-rs:TYCHY
 '- Online IBM.ServiceIP:db2ip_9_156_47_191-rs
 |- Offline IBM.ServiceIP:db2ip_9_156_47_191-rs:KRAKOW
 '- Online IBM.ServiceIP:db2ip_9_156_47_191-rs:TYCHY
Online IBM.Equivalency:db2_db2inst_0-rg_group-equ
 |- Online IBM.PeerNode:TYCHY:TYCHY
 '- Online IBM.PeerNode:KRAKOW:KRAKOW
Online IBM.Equivalency:db2_public_network_0
 |- Online IBM.NetworkInterface:en0:TYCHY
 '- Online IBM.NetworkInterface:en0:KRAKOW

Unplug the network cable. Example 2-44 shows the cluster domain that is
starting to fail over the resource from the owner node to the failover node.

Example 2-44 Cluster domain starts the failover process

(O) root@KRAKOW # lssam
Pending offline IBM.ResourceGroup:db2_db2inst_0-rg Binding=Sacrificial
Control=MemberInProblemState Nominal=Online
 |- Offline IBM.Application:db2_db2inst_0-rs Binding=Sacrificial
 |- Offline IBM.Application:db2_db2inst_0-rs:KRAKOW
 '- Offline IBM.Application:db2_db2inst_0-rs:TYCHY
 |- Pending offline IBM.Application:db2mnt-home_db2inst_db2-rs
Binding=Sacrificial
 |- Offline IBM.Application:db2mnt-home_db2inst_db2-rs:KRAKOW
 '- Pending offline IBM.Application:db2mnt-home_db2inst_db2-rs:TYCHY
 |- Pending offline IBM.Application:db2mnt-home_db2inst_db2home-rs
Binding=Sacrificial
 |- Offline IBM.Application:db2mnt-home_db2inst_db2home-rs:KRAKOW
66 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

 '- Pending offline
IBM.Application:db2mnt-home_db2inst_db2home-rs:TYCHY
 '- Offline IBM.ServiceIP:db2ip_9_156_47_191-rs Binding=Sacrificial
Control=MemberInProblemState
 |- Offline IBM.ServiceIP:db2ip_9_156_47_191-rs:KRAKOW
 '- Failed offline IBM.ServiceIP:db2ip_9_156_47_191-rs:TYCHY
Online IBM.Equivalency:db2_db2inst_0-rg_group-equ
 |- Online IBM.PeerNode:TYCHY:TYCHY
 '- Online IBM.PeerNode:KRAKOW:KRAKOW
Online IBM.Equivalency:db2_public_network_0
 |- Offline IBM.NetworkInterface:en0:TYCHY
 '- Online IBM.NetworkInterface:en0:KRAKOW

Example 2-45 shows that the cluster domain completes the failover process.
KRAKOW is now the owner node.

Example 2-45 Cluster domain completes the failover process

(O) root@KRAKOW # lssam
Online IBM.ResourceGroup:db2_db2inst_0-rg Control=MemberInProblemState Nominal=Online
 |- Online IBM.Application:db2_db2inst_0-rs
 |- Online IBM.Application:db2_db2inst_0-rs:KRAKOW
 '- Offline IBM.Application:db2_db2inst_0-rs:TYCHY
 |- Online IBM.Application:db2mnt-home_db2inst_db2-rs
 |- Online IBM.Application:db2mnt-home_db2inst_db2-rs:KRAKOW
 '- Offline IBM.Application:db2mnt-home_db2inst_db2-rs:TYCHY
 |- Online IBM.Application:db2mnt-home_db2inst_db2home-rs
 |- Online IBM.Application:db2mnt-home_db2inst_db2home-rs:KRAKOW
 '- Offline IBM.Application:db2mnt-home_db2inst_db2home-rs:TYCHY
 '- Online IBM.ServiceIP:db2ip_9_156_47_191-rs Control=MemberInProblemState
 |- Online IBM.ServiceIP:db2ip_9_156_47_191-rs:KRAKOW
 '- Online IBM.ServiceIP:db2ip_9_156_47_191-rs:TYCHY
Online IBM.Equivalency:db2_db2inst_0-rg_group-equ
 |- Online IBM.PeerNode:TYCHY:TYCHY
 '- Online IBM.PeerNode:KRAKOW:KRAKOW
Online IBM.Equivalency:db2_public_network_0
 |- Offline IBM.NetworkInterface:en0:TYCHY
 '- Online IBM.NetworkInterface:en0:KRAKOW
 Chapter 2. DB2 with IBM Tivoli System Automation for Multiplatforms 67

2.7.4 DB2 instance failure

This test checks the DB2 instance failure by stopping the DB2 process. When
Tivoli SA MP detects the failure of the resources, Tivoli SA MP tries to start the
resource on the same node once. So, expect that this failure is recovered on the
same node in this case.

When db2haicu creates the cluster domain, it registers the scripts for starting,
stopping, and monitoring resources. Tivoli SA MP detects the failure by the
return code (RC) of the monitor script that is run by Tivoli SA MP. Tivoli SA MP
acts based on the RC. If the start script completes successfully with RC=0 and the
next return code from the monitor script is RC=1 (online), Tivoli SA MP
determines that the node recovered by itself successfully. If the start script
returns a non-zero return code (RC<>0) or the next monitor script return code is
RC=2 (offline), Tivoli SA MP starts the standby node takeover process
immediately. In this test case, the monitor script returns RC=2 (offline), which
triggers the Tivoli SA MP to start the failed resource (DB2 processes).

To simulate a DB2 instance failure, stop the DB2 process by running kill:

(O) # kill <process ID of DB2>

The next three examples show the recovery progress of the TYCHY.

Example 2-46 shows the cluster domain state before the DB2 process failed.

Example 2-46 Initial cluster domain state

(O) root@KRAKOW # lssam
Online IBM.ResourceGroup:db2_db2inst_0-rg Nominal=Online
 |- Online IBM.Application:db2_db2inst_0-rs
 |- Offline IBM.Application:db2_db2inst_0-rs:KRAKOW
 '- Online IBM.Application:db2_db2inst_0-rs:TYCHY
 |- Online IBM.Application:db2mnt-home_db2inst_db2-rs
 |- Offline IBM.Application:db2mnt-home_db2inst_db2-rs:KRAKOW
 '- Online IBM.Application:db2mnt-home_db2inst_db2-rs:TYCHY
 |- Online IBM.Application:db2mnt-home_db2inst_db2home-rs
 |- Offline IBM.Application:db2mnt-home_db2inst_db2home-rs:KRAKOW
 '- Online IBM.Application:db2mnt-home_db2inst_db2home-rs:TYCHY
 '- Online IBM.ServiceIP:db2ip_9_156_47_196-rs
 |- Offline IBM.ServiceIP:db2ip_9_156_47_196-rs:KRAKOW
 '- Online IBM.ServiceIP:db2ip_9_156_47_196-rs:TYCHY
Online IBM.Equivalency:db2_db2inst_0-rg_group-equ
 |- Online IBM.PeerNode:TYCHY:TYCHY
 '- Online IBM.PeerNode:KRAKOW:KRAKOW
Online IBM.Equivalency:db2_public_network_0
68 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

 |- Online IBM.NetworkInterface:en0:TYCHY
 '- Online IBM.NetworkInterface:en0:KRAKOW

Stop a DB2 process by running the following commands:

� # ps -ef|grep db2sysc |grep db2inst
� db2inst 10420290 10354752 1 18:13:20 - 0:00 db2sysc 0
� # kill -9 10420290

Example 2-47 shows that the recovery is started on the same node (TYCHY).

Example 2-47 The recovery is started on TYCHY

(O) root@KRAKOW # lssam
Pending online IBM.ResourceGroup:db2_db2inst_0-rg Nominal=Online
 |- Pending online IBM.Application:db2_db2inst_0-rs
 |- Offline IBM.Application:db2_db2inst_0-rs:KRAKOW
 '- Pending online IBM.Application:db2_db2inst_0-rs:TYCHY
 |- Online IBM.Application:db2mnt-home_db2inst_db2-rs
 |- Offline IBM.Application:db2mnt-home_db2inst_db2-rs:KRAKOW
 '- Online IBM.Application:db2mnt-home_db2inst_db2-rs:TYCHY
 |- Online IBM.Application:db2mnt-home_db2inst_db2home-rs
 |- Offline IBM.Application:db2mnt-home_db2inst_db2home-rs:KRAKOW
 '- Online IBM.Application:db2mnt-home_db2inst_db2home-rs:TYCHY
 '- Online IBM.ServiceIP:db2ip_9_156_47_196-rs
 |- Offline IBM.ServiceIP:db2ip_9_156_47_196-rs:KRAKOW
 '- Online IBM.ServiceIP:db2ip_9_156_47_196-rs:TYCHY
Online IBM.Equivalency:db2_db2inst_0-rg_group-equ
 |- Online IBM.PeerNode:TYCHY:TYCHY
 '- Online IBM.PeerNode:KRAKOW:KRAKOW
Online IBM.Equivalency:db2_public_network_0
 |- Online IBM.NetworkInterface:en0:TYCHY
 '- Online IBM.NetworkInterface:en0:KRAKOW

Example 2-48 shows that the restart is successful on TYCHY.

Example 2-48 Self node restart successful

(O) root@KRAKOW # lssam
Online IBM.ResourceGroup:db2_db2inst_0-rg Nominal=Online
 |- Online IBM.Application:db2_db2inst_0-rs
 |- Offline IBM.Application:db2_db2inst_0-rs:KRAKOW
 '- Online IBM.Application:db2_db2inst_0-rs:TYCHY
 |- Online IBM.Application:db2mnt-home_db2inst_db2-rs
 |- Offline IBM.Application:db2mnt-home_db2inst_db2-rs:KRAKOW
 '- Online IBM.Application:db2mnt-home_db2inst_db2-rs:TYCHY
 Chapter 2. DB2 with IBM Tivoli System Automation for Multiplatforms 69

 |- Online IBM.Application:db2mnt-home_db2inst_db2home-rs
 |- Offline IBM.Application:db2mnt-home_db2inst_db2home-rs:KRAKOW
 '- Online IBM.Application:db2mnt-home_db2inst_db2home-rs:TYCHY
 '- Online IBM.ServiceIP:db2ip_9_156_47_196-rs
 |- Offline IBM.ServiceIP:db2ip_9_156_47_196-rs:KRAKOW
 '- Online IBM.ServiceIP:db2ip_9_156_47_196-rs:TYCHY
Online IBM.Equivalency:db2_db2inst_0-rg_group-equ
 |- Online IBM.PeerNode:TYCHY:TYCHY
 '- Online IBM.PeerNode:KRAKOW:KRAKOW
Online IBM.Equivalency:db2_public_network_0
 |- Online IBM.NetworkInterface:en0:TYCHY
 '- Online IBM.NetworkInterface:en0:KRAKOW
70 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Chapter 3. DB2 and PowerHA
SystemMirror

This chapter explains how to integrate DB2 in a PowerHA SystemMirror
(formerly known as HACMP) environment. The DB2 in the cluster is in a shared
disk. It provides the basic management concepts with considerations to reduce
the time that is taken for failover.

This chapter covers the following topics:

� Overview
� How DB2 works with PowerHA
� Planning the PowerHA cluster
� Setting up the PowerHA cluster
� Considerations for db2nodes.cfg file
� Tuning tips for quick failover

3

© Copyright IBM Corp. 2007, 2012. All rights reserved. 71

3.1 Overview

PowerHA for AIX provides a highly available computing environment. PowerHA
facilitates the automatic switching of users, applications, and data from one
system to another in the cluster after a hardware or software failure. The primary
reason to create PowerHA clusters is to provide a highly available environment
for mission-critical applications. In an PowerHA cluster, to ensure the availability
of these applications, the applications are placed under PowerHA control.
PowerHA ensures that the applications remain available to client processes even
if a component in a cluster fails. To ensure availability if there is a component
failure, the PowerHA software moves the application along with resources to
another node in the cluster.

Here are some common PowerHA terms:

� Topology

The layout of physical components and connections that are defined
in PowerHA.

� Cluster

The group of nodes that work together closely for enhancing availability
of services.

� Node

Each server within the cluster definition. A Service (or Primary) node is
designated as active to provide service to applications. A Standby node sits
ready to take over if the service node fails.

� Resource

A resource is an object that is protected and controlled by PowerHA. It might
include the IP address that clients access, file systems, or raw devices on
shared volume groups, and the start and stop scripts to control applications.

� Resource group

This is a group of all the resources that must be failed over from one server to
the other. These resources include, but are not limited to, the following items:

– The shared disks as defined in the volume groups. Raw devices or file
systems are defined on them.

– The IP address (Service Address) that the clients connect to.

– The applications to be started to provide services. DB2 instance start and
stop scripts are included in this definition.
72 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

� Service address

The IP address that provides services to clients. The service IP address is
included in the resource group.

� Shared disk

Shared disk is a group of storage devices and volume groups that is
connected to multiple nodes. Raw devices and file systems that are required
to provide services are placed on them. From the perspective of DB2 in a
non-HADR implementation of PowerHA, this group would include the
database directory, table space containers, and database logs.

� Application server

The application server is a set of scripts that are used to start and stop the
applications that are running on a PowerHA node. One of the scripts is an
application server start script that starts the applications that are a
prerequisite to a provision of client services. The other script is an application
server stop script that stops applications before you release resource groups.
From the perspective of DB2, this set includes scripts to start and stop the
database instance.

Although there is only one main script to provide stop and start functionality
for all applications and services, these functions can easily be made modular
by splitting the tasks into many subscripts, which are called from the main
script. For example, with the appropriate logic in the main calling script,
subscripts can be called in a specific order according to file name, and can be
dynamically added or removed from a subdirectory as required without
changing the main calling script.

For more information about HACM terminology, see PowerHA SystemMirror:
Master Glossary, SC23-6757.

3.2 How DB2 works with PowerHA

This section focuses on the PowerHA cluster with databases created on shared
disks. High availability is enabled by moving these disk resources (changing
which node has control over them) and restarting the database instance on a
standby node when the service node has an outage. This classic type of cluster
is a shared disk cluster. This sections explains how DB2 works in a shared disk
cluster that is controlled by PowerHA with an example of a simple single
partitioned instance.
 Chapter 3. DB2 and PowerHA SystemMirror 73

Figure 3-1 illustrates a PowerHA topology and related DB2 database
components. PowerHA manages the group of resources that are required to
provide a service, including shared disks where database components are, the
IP address for client service, and the application server that handles the starting
and stopping of the applications (including the DB2 database instance).

Figure 3-1 PowerHA topology and related DB2 database components

PowerHA continuously sends heartbeats between the nodes in the cluster to
identify if and when the other one is down. PowerHA handles resource group
takeover from one system to the other as necessary after a failure or fallback
after the failed node is repaired. In a DB2 single-partitioned environment, the
cluster takes the following actions:

� Failover (unplanned takeover)

If the service node fails, the PowerHA standby node detects the service node
outage. When the keepalive packets from all network routes are not received
from the other node, the standby node starts to take over the resource group.
This action means that the standby node acquires the shared storage devices
and the volume group where database components are created, and the
service IP address through which clients communicate with the server. After
the resources are taken over, the start script is defined in the application
server is issued, which starts the DB2 instance along with other critical
services and applications.

Cluster

Node

Application
server

Network
Interface

Shared
disk

Database

DB2 instance

Resource Group

Stop script

Start script

Service
address
74 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Figure 3-2 shows how the resource group was moved to a standby node
during failover.

Figure 3-2 Failover (unplanned takeover)

� Switch over (planned takeover for maintenance)

You can switch over the resource group intentionally to the standby node for
machine maintenance. This action is done by performing two PowerHA
management operations:

– Stop PowerHA in takeover mode on the service node.

The application server stop script on the node that must release the
resource group is run. The stop script gracefully stops all the applications
and processes that access the shared disk.

– Move the resource group from the service node to the standby node.

The PowerHA process is still running on both nodes. PowerHA releases
all resources, including shared disks and any service IP address that is
related to the resource group. After it is released by the service node, the
resource group is acquired on the standby node’s side.

Cluster

Node

Application
server

Reconnect

DB2 instance

Service
address

Resource Group

Start script
(db2start)

Shared
disk

Database
 Chapter 3. DB2 and PowerHA SystemMirror 75

Figure 3-3 illustrates how the resource group moves during the switchover.

Figure 3-3 Switchover (planned takeover for maintenance)

3.3 Planning the PowerHA cluster

Planning a PowerHA cluster is similar to planning a high availability cluster with
IBM Tivoli System Automation for Multiplatforms (Tivoli SA MP). For more
information, see 2.3, “Planning the high availability cluster” on page 27.

3.4 Setting up the PowerHA cluster

Setting up PowerHA usually requires the following steps:

1. Define the cluster and add nodes to the cluster.

2. Configure the PowerHA network and decide which method is used for IP
address takeover.

3. Configure the communication interface and devices. A heart-beating disk can
be used as the heart-beat device. To configure the heart-beating disk, the
shared disk should be in an enhanced concurrent volume group.

Cluster

Node

Resource Group

Application
server

Reconnect

Application
server

Service
address

Start script
(db2start)

Shared
disk

Database

Start script
(db2start)

DB2 instance
76 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

4. Configure the high availability service IP.

5. Configure the application server.

It is useful to replace the start and stop script entry with a test script (dummy
script) to test the basic functions of PowerHA. After verifying that the
PowerHA environment functions correctly, modify the start and stop script
to work.

6. Configure the High Availability (HA) resource group.

This step groups the HA service IP, shared volume groups and files systems,
the application server, and all the resources that are required by the
application in to one resource group. If there is a node failure, the PowerHA
moves the resource group that is running on the failed node to the surviving
node in the cluster.

7. Verify and synchronize the PowerHA configuration.

After you configure PowerHA, you must verify and synchronize the topology
and resource group using the facility that is provided by PowerHA (for
example, through SMIT command panels). Every time the PowerHA
configuration is changed, you must resynchronize the cluster from the node
where the change is made.

After the verification and synchronization is successful, you can start the
PowerHA service.

3.4.1 PowerHA cluster setup planning

Before you set up an PowerHA environment, you must plan the cluster
environment. Consider the following list of items:

� Physical nodes
� Network
� Application back-end/services software (for example, DB2)
� PowerHA configuration
� Application server start/stop scripts

Next, examine the planning of these items briefly in a sample environment
specific to a disk sharing configuration. Detailed information and instructions for
each item can be found in the links that are provided in 3.4.2, “PowerHA
configuration” on page 79.
 Chapter 3. DB2 and PowerHA SystemMirror 77

Sample environment
Figure 3-4 shows the sample configuration of an active/standby PowerHA cluster
configuration, with a normal DB2 instance in a shared disk configuration.

Figure 3-4 PowerHA disk shared cluster

Here is the planning we did for this sample environment:

� Physical node configuration:

Two physical nodes named Node1 and Node2 are defined in the cluster:

– Node1 is designated as the service node, which normally provides service
for clients. A single partitioned DB2 instance is running on this node.

– Node2 is the standby node, which normally stands by for any service node
outage. No DB2 instance runs on the standby node. The role of both
nodes changes in response to system failover, or to planned takeover
issued by administrators.

� Network configuration:

– Two Ethernet network interfaces on each node are provided for client
connectivity. These interfaces are both under the control of PowerHA. The
service address for clients is added on one of these network interfaces.

– One Serial (RS-232C) network is configured for PowerHA keepalive. Use
a serial network (non-TCP/IP network), because it makes PowerHA failure
detection more reliable.

NODE2NODE1

node2_boot2
192.168.20.102

node1_boot2
192.168.20.101

node1_boot1
192.168.10.101

node2_boot1
192.168.10.102

rs-232

Service
9.43.86.111

� Tablespaces
� Logs
� db directory
� Instance home

db2inst1

Resource Group

Catalog DB
(service)

Shared Disk/home/db2inst1

Application
server

Start script

Stop script
78 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

� DB2 configuration:

The DB2 product libraries are installed on the local disk of each server. A
single partitioned instance named db2inst1 and its database named SAMPLE
are created on a shared disk. If table spaces or logs are placed in different
devices within the shared disk, those devices all must be included in a single
resource group.

� PowerHA configuration:

– A resource group named shared_rg is configured in the cluster, which has
a service IP address, application server, and file systems on a shared disk
as resources.

– A service address is defined in the resource group. Each DB2 client has
the entry for this service address in its catalog node directory and
connects to the Service node through this IP address.

– An application server is also defined in resource group. The application
server start script starts the database instance and restarts the database.
The application server stop script stops the instance.

3.4.2 PowerHA configuration

The last section briefly described the planning stage before PowerHA
implementation. This section introduces an outline of actually setting up
PowerHA in a shared disk cluster configuration.

Checking the network connection
Before you configure PowerHA, the network must be configured properly. To
check the network configurations for the cluster, complete the following steps:

1. Check that the IP addresses are configured on network interfaces on
both nodes.

2. Check that the /etc/hosts file has all the entries of the IP addresses and their
labels are the ones that are used by PowerHA.

3. Verify that the name resolution is working well by running host. If something
is wrong, check and modify the /etc/hosts file.

4. Check the serial network connection. Use the subsidiary network for
PowerHA keepalive to make PowerHA failure detection more secure. For
more information, see Administrating PowerHA SystemMirror, found at:

http://pic.dhe.ibm.com/infocenter/aix/v7r1/index.jsp?topic=%2Fcom.ib
m.aix.powerha.admngd%2Fha_admin_kickoff.htm
 Chapter 3. DB2 and PowerHA SystemMirror 79

http://pic.dhe.ibm.com/infocenter/aix/v7r1/index.jsp?topic=%2Fcom.ibm.aix.powerha.admngd%2Fha_admin_kickoff.htm
http://pic.dhe.ibm.com/infocenter/aix/v7r1/index.jsp?topic=%2Fcom.ibm.aix.powerha.admngd%2Fha_admin_kickoff.htm

Configuring the shared disk
This requirement is specific to an PowerHA shared disk configuration. Because
shared disks are an important part of the PowerHA setup, this section lists the
high-level steps that are needed to set up shared disk resources.

Here are some of the terms for AIX Logical Volume Manager, which are used in
this section:

� Volume group (VG)
� Logical volume (LV)
� Journaled file system (JFS or JFS2)
� File system (FS)
� Log that maintains a consistent JFS (JFSLog or JFS2LOG)

To set up shared disk drives and the logical volume manager, complete the
following steps:

1. Check the disk drives.

Check that the external disk is configured and recognized from both nodes.

2. Create the VG.

Create the VG on the service node. The VG must have a unique name and
major number (serial ID of VG) for all nodes in the cluster. You can check
available major numbers on both nodes by running lvlstmajor:

root@node1:/# lvlstmajor
58...

To add a volume group, you can use the smit menu:

#smitty vg

Select Volume Groups  Add a Volume Group  Add an Original Volumes
Group. Enter VOLUME GROUP name, and the available Volume group
MAJOR NUMBER, as shown in Example 3-1.

Example 3-1 Add volume group

Add an Original Volume Group

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

 [Entry
Fields]
 VOLUME GROUP name [db2vg]
 Physical partition SIZE in megabytes
+

80 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

* PHYSICAL VOLUME names [hdisk1]
+
 Force the creation of a volume group? no
+
 Activate volume group AUTOMATICALLY yes
+
 at system restart?
 Volume Group MAJOR NUMBER []
+#
 Create VG Concurrent Capable? no
+

Activate the VG by running the following command:

varyonvg db2vg

3. Create the JFS or JFS2 log.

Create the JFS or JFS2 log with a unique name on the new VG. When you
create the first file system on a new VG, AIX automatically creates a JFS or
JFS2 log, with the name of loglv00, loglv01, and so on, for each new JFS or
JFS2 log on the machine. By default, AIX creates only one JFS and JFS2 log
per VG. Because a unique name is needed for the JFS or JFS2 log, it is best
to define the JFS or JFS2 log by running mklv before you create the first
file system.

To create a JFS2 log with the name db2vgjfslog in the db2vg VG, run the
following command:

mklv -t jfs2log -y db2vgjfslog db2vg 1

To format the JFS2 Log, run the following command, and select y when
asked whether to destroy the LV:

logform /dev/db2vgjfslog
logform: destroy /dev/db2vgjfslog (y)? y

4. Create a file system.

Create any LVs and JFSs that are needed, and ensure that they have unique
names and are not currently defined on any node. Set the FSs so that they
are not mounted on restart. Verify the current LV and JFS names.

To create the JFS2 LV for the /home/db2inst1 file system, run the
following command:

smit lv
 Chapter 3. DB2 and PowerHA SystemMirror 81

In the Add a Logical Volume menu, select a VG name and press Enter. The
Add a Logical Volume menu opens. Complete the fields (Example 3-2).

Example 3-2 Add logical volume

Add a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry
Fields]
 Logical volume NAME [homelv01]
* VOLUME GROUP name db2vg
* Number of LOGICAL PARTITIONS [16]
#
 PHYSICAL VOLUME names []
+
 Logical volume TYPE [jfs2]
 POSITION on physical volume middle
+
 RANGE of physical volumes minimum
+
 MAXIMUM NUMBER of PHYSICAL VOLUMES []
#
 to use for allocation
 Number of COPIES of each logical 1
+
 partition
 Mirror Write Consistency? active
+
 Allocate each logical partition copy yes
+
 on a SEPARATE physical volume?
 RELOCATE the logical volume during yes
+
 reorganization?
[MORE...9]

After the LV is created, create a file system that is associated with this LV. In
this example, we create a JFS2 file system. To add a JFS2 file system on the
previously defined LV, run the following command:

smitty jfs2
82 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Select Add an Enhanced Journaled File System on a Previously Defined
Logical Volume and complete the fields (Example 3-3).

Example 3-3 Adding a JFS2 file system

Add an Enhanced Journaled File System

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

 [Entry
Fields]
* LOGICAL VOLUME name homelv01
+
* MOUNT POINT
[/home/db2inst1]
 Mount AUTOMATICALLY at system restart? no
+
 PERMISSIONS read/write
+
 Mount OPTIONS []
+
 Block Size (bytes) 4096
+
 Logical Volume for Log
+
 Inline Log size (MBytes) []
#
 Extended Attribute Format Version 1
+
 ENABLE Quota Management? no
+

After a file system is created, it is not automatically mounted. Check that the
file system can be mounted manually by running the following command:

#mount /home/db2inst1

5. Unmount all of the FSs and deactivate the VG by running the
following commands:

– #unmount /home/db2inst1
– #varyoffvg db2vg
 Chapter 3. DB2 and PowerHA SystemMirror 83

6. Import the VG.

Import the VG on the standby node (node2) with the same major number, and
change the VG so that it is not activated on restart. When the VG is imported
on the node2, the definitions of the FSs and LVs are imported to node2. If you
ever need to NFS export the file system, the major number for the VG must
be identical on both nodes. Ensure that the VG is defined not to be activated
automatically on reboot because it can be activated and controlled
by PowerHA.

To import a VG, run the following command:

smit vg

Select Import a Volume Group and complete the fields (Example 3-4).

Example 3-4 Importing a volume group

Import a Volume Group

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

 [Entry
Fields]
 VOLUME GROUP name [db2vg]
* PHYSICAL VOLUME name [hdisk1]
+
 Volume group MAJOR NUMBER [58]
+#

Next, change the VG so that it is not activated on reboot by running the
following command:

smit vg

Select Set Characteristics of a Volume Group  Change a Volume Group.
Then, select VOLUME GROUP name. In the Change a Volume Group menu,
select no on Activate volume group AUTOMATICALLY.

7. Move the VG back to the service node.

Move the file system and VG back to node1 for the next step, where you
create a DB2 instance user on node1. To accomplish this task, run the
following commands:

– # unmount /home/db2inst1
– # varyoffvg db2vg
84 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Next, run the following commands on node1:

– # varyonvg db2vg
– # mount /home/db2inst1

User/group setup and DB2 installation
Now that the shared disk is set up, you can create the DB2 instance and
database on the shared disk. On node1, complete the following the steps:

1. Create the group for the DB2 instance.

Run mkgroup to create the group.

2. Create the user for the DB2 instance.

Run mkuser and passwd.

3. Change the ownership of the FSs and LVs.

4. Install DB2 and set up the license key. The DB2 product must be installed on
the local disk of both nodes.

5. Create the DB2 instance.

6. Create a database in the shared file system.

7. Fail the instance home directory over to node2.

Unmount all the FSs on the shared disk and varyoff the VG on node1.
Activate the VG and mount all the FSs on node2.

Next, on node2, delete the /home/db2inst1/sqllib directory so that you can
create the instance and control files on node 2, then repeat steps 1 - 5. Using this
procedure allows DB2 to automatically perform steps such as adding service
entries and modifying the db2nodes.cfg file for you. Then, recatalog the
database by running the following command:

db2 catalog database dbname on <DBPATH>

Instead of deleting /home/db2inst1/sqllib, you can repeat steps 1 - 4 on node2,
then manually create the Instance user IDs and group IDs on the second node,
specifying the existing home directory in the shared file system. Make sure that
/etc/services contains the correct DB2 port assignments and update the
db2nodes.cfg file with an alias known to both nodes. This alias must be added to
the /etc/hosts file on each node.

Preparing application server scripts
The application server is composed of a start script and a stop script. This
section explains what must be included in these application server scripts.
 Chapter 3. DB2 and PowerHA SystemMirror 85

In the start scripts, restart the DB2 instance and activate the databases to run
crash recovery:

� DB2 Enterprise Server Edition (ESE) instance has the db2nodes.cfg file in the
sqllib subdirectory of the instance home. This file must contain the correct
host name and IP address when you restart the DB2 instance on the other
node. DB2 single partition instances also have this file. We explain this topic
in more detail in 3.5, “Considerations for db2nodes.cfg file” on page 90.

� Set the database configuration parameter AUTORESTART to ON. The database
manager automatically calls the restart database utility, if required, when an
application connects to a database or a database is activated. The default
setting is ON.

In the stop scripts, you must stop all applications and processes that access the
shared disk to ensure that the node can release the shared disk successfully. In
DB2 terms, this means you must run force application all, deactivate for all
databases, terminate to stop the back-end process, and db2stop to stop the
dbm/instance. Escalation commands such as db2stop force and db2_kill may
be necessary to get applications disconnected in a reasonable period.

A sample script file is packaged with DB2 ESE for AIX to help configure
PowerHA failover or recovery in either hot standby or mutual takeover nodes.
The script file is called rc.db2pe.ee for a single node (other than ESE) and
rc.db2pe.eee for multiple nodes. They are in the sqllib/samples/hacmp/es
subdirectory of the DB2 Instance home. The appropriate file can be copied and
customized for your system. When customized and renamed, rename
rc.db2pe.ee to rc.db2pe. For example, these sample scripts are called by
running rc.db2pe db2inst1 start and rc.db2pe db2inst1 stop.

For more information about PowerHA events, see Data Recovery and High
Availability Guide and Reference, SC27-3870-00. This topic is also available in
the DB2 Information Center at:

http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2
.luw.admin.ha.doc/doc/c0007500.html

Parallel System Support Programs (PSSP): rc.db2pe.eee is based on
PSSP for an AIX environment; you cannot use it directly if there is no PSSP
environment. However, you can customize it to adapt your requirements.
86 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.admin.ha.doc/doc/c0007500.html
http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.admin.ha.doc/doc/c0007500.html

Configuring PowerHA
smitty for AIX provides PowerHA configuration interfaces. The main steps are:

1. Add nodes to the PowerHA cluster.
2. Add a service IP label/address.
3. Configure application servers.
4. Add a resource group.
5. Add resources to the resource group.
6. Define the serial network and serial network device.
7. Verify and synchronize PowerHA configurations.
8. Basic verification of PowerHA configuration.

Here we expand upon each step:

1. Add nodes to PowerHA cluster by running the following command

#smitty sysmirror

You can run smitty hacmp as well.

From the PowerHA SystemMirror menu, select Cluster Nodes and
Networks  Manage Nodes  Add a Node.

Enter the node name.

2. Add a service IP address by running the following command:

smitty sysmirror

From the PowerHA SystemMirror menu, select Cluster Applications and
Resources  Resources  Configure Service IP Labels/Addresses  Add a
Service IP Label/Address.

In the Add a Service IP Label/Address menu, enter the IP label and
network name.

3. Configure application servers.

To access this menu, run the following command:

smitty sysmirror

From the PowerHA SystemMirror menu, select Cluster Applications and
Resources  Resources  Configure User Applications (Scripts and
Monitors)  Application Controller Scripts  Add Application Controller
Scripts.

In the Add Application Controller Scripts menu, enter the controller name, and
the complete paths of the start and stop scripts.

Start and stop scripts: The start and stop scripts that are called from the
application controller must exist in the local directory on both nodes and
have the same name.
 Chapter 3. DB2 and PowerHA SystemMirror 87

4. Add a resource group.

To add a resource group, run the following command:

smitty sysmirror

From the PowerHA SystemMirror menu, select Cluster Applications and
Resources  Resource Groups  Add a Resource Group.

In the Add a Resource Group menu, enter the resource group name and
participating node names.

5. Add resources to the resource group by running the following command:

smitty sysmirror

From the PowerHA SystemMirror menu, select Cluster Applications and
Resources  Resource Groups  Change/Show Resources and Attributes
for a Resource Group.

In the Change/Show Resources for a Resource Group menu (Example 3-5),
enter the service IP label/address, application server name, volume groups,
and file system information.

The resource group policies that we set in this example are shown in
Example 3-5. These settings correspond to the Rotating resource group in
former PowerHA versions, which means there is no priority for resource
groups between nodes. For more information, see PowerHA SystemMirror
Version 7.1 for AIX Standard Edition: Planning PowerHA SystemMirror,
found at:

http://pic.dhe.ibm.com/infocenter/aix/v6r1/topic/com.ibm.aix.powerha
.plangd/hacmpplangd_pdf.pdf

Example 3-5 Adding a resource to a resource group

Change/Show All Resources and Attributes for a Resource Group

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

 [Entry
Fields]
 Resource Group Name db2_rg
 Participating Nodes (Default Node Priority) node1_bt
node2_bt

 Startup Policy Online Using
Distribution Policy
 Fallover Policy Fallover To
Next Priority Node In The List
88 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

http://pic.dhe.ibm.com/infocenter/aix/v6r1/topic/com.ibm.aix.powerha.plangd/hacmpplangd_pdf.pdf

 Fallback Policy Never
Fallback>

 Service IP Labels/Addresses [service]
+
 Application Servers [db2_server]
+
 Volume Groups [db2vg]
+
 Use forced varyon of volume groups, if necessary false

Automatically Import Volume Groups false +

 Filesystems (empty is ALL for VGs specified) [/home/db2inst1
] +

6. Define the serial network and serial network device.

If you have a serial network as the subsidiary keepalive network, you can
configure this network from the smit menu.

7. Verify and synchronize PowerHA configurations.

After you define the PowerHA configuration from one node, you must verify
and synchronize the cluster topology to the other node. Run the
following command:

smitty sysmirror

From the PowerHA SystemMirror menu, select Cluster Nodes and
Networks  Verify and Synchronize Cluster Configuration.

The PowerHA verification utility checks that the cluster definitions are the
same on all nodes and provides diagnostic messages if errors are found.

The PowerHA configuration details can be found in the following publications:

� PowerHA SystemMirror for AIX PDF manual links:

http://pic.dhe.ibm.com/infocenter/aix/v7r1/index.jsp?topic=%2Fcom.ib
m.aix.powerha.navigation%2Fpowerha_pdf.htm

� PowerHA SystemMirror Version 7.1 for AIX Standard Edition: Administering
PowerHA SystemMirror, found at:

http://pic.dhe.ibm.com/infocenter/aix/v7r1/topic/com.ibm.aix.powerha
.admngd/hacmpadmngd_pdf.pdf
 Chapter 3. DB2 and PowerHA SystemMirror 89

http://pic.dhe.ibm.com/infocenter/aix/v7r1/index.jsp?topic=%2Fcom.ibm.aix.powerha.navigation%2Fpowerha_pdf.htm
http://pic.dhe.ibm.com/infocenter/aix/v7r1/topic/com.ibm.aix.powerha.admngd/hacmpadmngd_pdf.pdf
http://pic.dhe.ibm.com/infocenter/aix/v7r1/topic/com.ibm.aix.powerha.admngd/hacmpadmngd_pdf.pdf

� PowerHA SystemMirror Version 7.1 for AIX Standard Edition: Planning
PowerHA SystemMirror, found at:

http://pic.dhe.ibm.com/infocenter/aix/v6r1/topic/com.ibm.aix.powerha
.plangd/hacmpplangd_pdf.pdf

� Data Recovery and High Availability Guide and Reference, SC27-3870-00

3.5 Considerations for db2nodes.cfg file

From Version 8 onwards, DB2 Enterprise Server Edition (ESE) single and
partitioned instances have a db2nodes.cfg file in the sqllib subdirectory of the
Instance home. The db2nodes.cfg file is used to define the database partition
servers that participate in a DB2 instance. In the cluster environment, you must
consider the entry of this file to start DB2 instances on different nodes.

Suppose that a DB2 ESE single partition instance is running in a cluster that is
composed of a service node named node1 and a standby node named node2.
When a takeover occurs, the DB2 instance must be started on node2. If the
Instance home directory is configured on the shared disk, the entry in
db2nodes.cfg file on the shared directory does not match the host name of the
standby node. Then, the db2start command fails with error codes like -6048 or
-6031 when the application start script tries to start the DB2 instance.

Example 3-6 shows a case where db2start fails when db2nodes.cfg does not
match the host name.

Example 3-6 Error messages that are caused by an invalid db2nodes.cfg entry

$hostname
host2

$cat /home/db2inst1/sqllib/db2nodes.cfg
0 host1 0

$ db2start
SQL6048N A communication error occurred during START or STOP DATABASE
MANAGER processing.

You have several options to avoid this error, some of which are listed here:

1. Modify the file entry in the start script.
2. Run the db2start command with the restart option.
3. Run the db2gcf command with the -u option.
4. Use an alias in the hosts files.
90 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

http://pic.dhe.ibm.com/infocenter/aix/v6r1/topic/com.ibm.aix.powerha.plangd/hacmpplangd_pdf.pdf
http://pic.dhe.ibm.com/infocenter/aix/v6r1/topic/com.ibm.aix.powerha.plangd/hacmpplangd_pdf.pdf
http://pic.dhe.ibm.com/infocenter/aix/v6r1/topic/com.ibm.aix.powerha.plangd/hacmpplangd_pdf.pdf
http://pic.dhe.ibm.com/infocenter/aix/v6r1/topic/com.ibm.aix.powerha.plangd/hacmpplangd_pdf.pdf

Options 1, 2, and 3 modify the db2nodes.cfg file manually or automatically, while
options 4 does not. Option 2 requires permission for remote execution, while
options 1, 3, and 4 do not.

Next, we describe each of these options in further detail. The following DB2
Information web page also contains information about the format of the DB2
node configuration file for DB2 10.1:

http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2
.luw.qb.server.doc/doc/r0006351.html

3.5.1 Modifying the file entry in the start script

Perhaps the simplest of the listed methods, this method entails modifying the
db2nodes.cfg file before you start the DB2 instance, or preparing another
configuration file with the correct entry and overwriting the existing db2nodes.cfg
file. In our example, a DB2 instance, on the PowerHA Service node named
node1 (node2 as standby), has a db2nodes.cfg file with the following content:

0 node1 0

If there is a takeover on node2, this db2nodes.cfg file is invalid. Therefore, the
application start script can include a process to modify db2nodes.cfg to have the
following content, or prepare a local file that already has the following entry and
that copies or overwrites this file to the db2nodes.cfg file before actually starting
the DB2 instance on node2:

0 node2 0
 Chapter 3. DB2 and PowerHA SystemMirror 91

http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.qb.server.doc/doc/r0006351.html

Figure 3-5 shows this concept graphically, with states shown before, during, and
after the takeover by node 2 occurred.

Figure 3-5 Modifying the db2nodes.cfg entry before starting DB2 on node2

3.5.2 Running the db2start command with the restart option

Starting the DB2 instance with the restart option gives you the ability to specify
the new host name as the node that is taking over the resource groups
(Example 3-7). DB2 automatically modifies the db2nodes.cfg file with the host
name you specified in the restart option.

Example 3-7 Restart option of the db2start command

db2start dbpartitionnum 0 restart hostname node2

db2start
/home/db2Inst1

node1 node2

Normal state

Service Standby

0 node1 0

db2nodes.cfg db2nodes.cfg

Modify the file entry

node1 node2

Fail over

db2start
CRASH!

0 node1 0

0 node2 0

/home/db2Inst1
92 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Considerations
Because the restart option requires the permission of remote execution, you
must configure remote shell (rsh) or Secure Shell (SSH) to be available in the
cluster. This setting is required for both single and multiple node partitions.

� rsh configuration

Add entries of a reliable host name and user to the .rhosts file or hosts.equiv
file. This option is often not viewed favorably because of the security risks that
the remote shell might present.

� SSH configuration (available since DB2 8.2):

Install SSH, and set the public key and private key for the usage of the DB2
instance. Set the full path of the ssh command in the DB2RSHCMD registry value
as follows:

db2set DB2RSHCMD=/usr/bin/ssh

3.5.3 Running the db2gcf command with the -u option

This option uses the db2gcf command. When you run the db2gcf command with
the -u option, the db2nodes.cfg file is automatically modified and the DB2
instance starts on the standby node. With this method, rsh or ssh are not
required, so the method is useful if you have a site or company policy against
using any .rhosts files for security reasons, or if you cannot have ssh installed.

See Example 3-8 for a db2gcf command example and Example 3-9 for the
db2nodes.cfg file that is modified by this command. You might notice in
Example 3-9 that a fourth parameter is appended to db2nodes.cfg. This
parameter is used for interconnect for Fast Communications Manager
(FCM) communication.

Example 3-8 db2gcf command that is issued with the -u option

$ db2gcf -u -p 0 -i db2inst1

Instance : db2inst1
DB2 Start : Success
Partition 0 : Success

Example 3-9 Entry of db2nodes.cfg file that is modified by the db2gcf command

0 node2 0 node2
 Chapter 3. DB2 and PowerHA SystemMirror 93

For more information about db2gcf, see DB2 10.1 Command Reference,
SC27-3868-00, or the DB2 Information Center at:

http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2
.luw.admin.cmd.doc/doc/r0010986.html

3.5.4 Using an alias in the hosts file

This option uses an alias in the /etc/hosts file. The entry of the db2nodes.cfg file
never changes during takeover. With this method, rsh or ssh are not required, so
the method is useful if you have a site or company policy against using any
.rhosts files for security reasons, or if you cannot have SSH installed.

You must create an alias entry in the /etc/hosts file on both systems with the
following format:

ip_address short_name long_name alias

On node1 (primary system), the entry looks similar to Example 3-10.

Example 3-10 /etc/hosts file of node1

192.168.10.101 node1 node1.itsosj.sanjose.ibm.com db2host

On node2 (standby system), the entry looks similar to Example 3-11.

Example 3-11 /etc/hosts file on node2

192.168.10.102 node2 node2.itsosj.sanjose.ibm.com db2host

The IP address and domain name for both files should match network definitions
for the primary and standby systems, that is, the alias goes against the actual
local host name entry, as DB2 uses the host name as the basis for what should
be in db2nodes.cfg before it starts.

Next, the hosts entry in the /etc/netsvc.conf file must contain local as the first
parameter. The hosts entry on both primary and standby systems then looks
similar to Example 3-12.

Example 3-12 Entry of etc/netsvc.conf file

hosts=local,bind

By putting local as the first parameter, this forces the system to look in the
/etc/hosts file for a host name entry before it goes to the Domain Name
Server (DNS).
94 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.admin.cmd.doc/doc/r0010986.html

Finally, parameter/column two in the db2nodes.cfg file is changed to the alias
defined on both systems. The new db2nodes.cfg file then resembles
Example 3-13, where db2host is the name that is defined in the hosts file on
both systems.

Example 3-13 Entry of db2nodes.cfg file

0 db2host 0

After you complete these steps, fallover and fallback testing should be done to
ensure that the HA computing environment is working correctly.

3.6 Tuning tips for quick failover

When an outage on a primary database occurs, the steps that are required for
continuing database services are as follows:

1. Failure detection
2. Resource failover required to provide service
3. Restart applications and services

To speed up the recovery time, you must reduce the time that is taken in each
step. This section describes the considerations for each step, which are shown
in Figure 3-6.

Figure 3-6 Time that is consumed by failover process

3.6.1 Failover of the resources

This section describes several options to speed up resource failover time.

1. Failure detection 2. Failover resources 3. Restart
Resume
services

Cluster software DB2

Outage
 Chapter 3. DB2 and PowerHA SystemMirror 95

IP address takeover
In previous versions of PowerHA, network interfaces were directly overwritten by
the service address. From HACMP/ES V4.5, an IP alias takeover is available,
which reduces time for adding the service IP address to the standby node. As
stated in the PowerHA SystemMirror Version 7.1 for AIX Standard Edition:
Administering PowerHA SystemMirror, the reduced time is because of fewer
commands that are required when you move addresses.

For more information about IP Aliases in PowerHA, see the following
PowerHA manuals:

� PowerHA SystemMirror Version 7.1 for AIX Standard Edition: Administering
PowerHA SystemMirror, found at:

http://pic.dhe.ibm.com/infocenter/aix/v7r1/topic/com.ibm.aix.powerha
.admngd/hacmpadmngd_pdf.pdf

� PowerHA SystemMirror Version 7.1 for AIX Standard Edition: Planning
PowerHA SystemMirror, found at:

http://pic.dhe.ibm.com/infocenter/aix/v6r1/topic/com.ibm.aix.powerha
.plangd/hacmpplangd_pdf.pdf

Disk resource failover
During a failover, PowerHA moves shared disks that are defined in the resource
group from one server to another. This migration includes the following activities:

� Varyon (activate) VG By running varyonvg.
� Mount FSs (if the FSs are defined in the resource group).

The delay in a DB2 failover mostly stems from the necessity to move control of
the shared disks and resources from one server to another. An integrity check of
file systems (fsck) consumes a tremendous amount of time when the shared VG
contains huge FSs. The more FSs that are in the resource group, the longer it
takes to failover. Therefore, the basic way to speed up disk resource takeover is
to reduce the number of FSs in the resource group. This task can be
accomplished by using raw device containers instead of FSs. With DB2
database managed space (DMS) on the raw device, you can decrease the disk
resource failover time, because it is not necessary to mount and check
consistency of FSs during failover.
96 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

http://pic.dhe.ibm.com/infocenter/aix/v7r1/topic/com.ibm.aix.powerha.admngd/hacmpadmngd_pdf.pdf
http://pic.dhe.ibm.com/infocenter/aix/v6r1/topic/com.ibm.aix.powerha.plangd/hacmpplangd_pdf.pdf

You can also have a concurrent access resource group for the raw disk, reducing
failover time even further. Concurrent access volume group with PowerHA
enables both nodes to activate a VG simultaneously. This configuration reduces
time for takeover resources because a shared disk is then always activated on
standby nodes and it is not necessary to activate/varyon the VGs either. Using
concurrent access with PowerHA requires the installation of an additional
PowerHA file set.

For example:

cluster.es.clvm.rte for 5.3.0.0 COMMITTED ES for AIX Concurrent
Access

Concurrent access mode is not supported for JFSs. Instead, you must use only
raw logical volumes or physical disks for concurrent access resource groups.

Another consideration for the concurrent access resource group concerns the
logistics of ensuring that no processes on the standby node (for example, DB2
instances) are actively using any shared disks. Concurrent VGs are activated
from all the nodes in the cluster. This situation means that they can be accessible
from all nodes in the cluster simultaneously and there is a possibility of
unintentional data corruption or loss. In this situation, software with data on a
shared disk must ensure consistent data access, whether that be performed from
within the software, or controlled externally through the application
start/stop scripts.

Although DB2 databases do not tolerate concurrent access from multiple
servers, in mixed/hybrid PowerHA/HADR mode, as described in Chapter 7,
“HADR with clustering software” on page 223, DB2 databases use a shared disk
on the primary cluster pair, and HADR writes to the standby on a third server
node.Only one DB2 instance can actively use this shared disk at once.

To improve performance of failover/takeover, use a raw device for data storage.
Then, the next question is a matter of what is created on the raw device and what
is not:

� User table spaces

If your database is huge, user table spaces should take up most of the shared
disks, so using a DMS raw device for the table space container can improve
failover performance.

� Catalog table space

You can specify the characteristics of the DB2 system catalog table space
when you create databases by running CREATE DATABASE. Because the DB2
SYSCATSPACE is small in most cases, it is unlikely to contribute to reduction
of failover time.
 Chapter 3. DB2 and PowerHA SystemMirror 97

� Other database components

Other database components, such as database directory files, instance home
and subdirectories, and archive log directories, must be created on FSs. The
archive logs also can use Tivoli Storage Manager and avoid the issue
altogether.

Because you still have FSs for some database components, PowerHA fast disk
takeover can help fail over these file system resources. This feature enables
faster resource group takeover using AIX Enhanced Concurrent Volume Groups
(ECVG). Enhanced concurrent VG of AIX supports active and passive mode
varyon, can be included in a non-concurrent resource group, and the fast disk
takeover is set up automatically by the PowerHA software.

For all shared VGs created in enhanced concurrent mode that contain FSs,
PowerHA activates the fast disk takeover feature. When PowerHA starts, all
nodes in a resource group that share enhanced volume group varyons this VG in
passive mode. When the resource group is brought online, the node that
acquires the resources varyons the VG in active mode. This action reduces the
time to varyon VGs, even though it still requires time to mount FSs.

For more information about fast disk takeover, see PowerHA SystemMirror
Version 7.1 for AIX Standard Edition: Planning PowerHA SystemMirror, found at:

http://pic.dhe.ibm.com/infocenter/aix/v6r1/topic/com.ibm.aix.powerha.pl
angd/hacmpplangd_pdf.pdf

There is another PowerHA option to speed up mounting FSs: parallel mount of
FSs. You can use this feature to specify how FSs are mounted during disk
resource takeover. Parallel mount can be faster than sequential (default). This
option can be used if you do not have nested FSs.

You can also change the method of the file system integrity check from the
default fsck to logredo. Although logredo can speed up mounting FSs, this
option does not ensure that all the errors in the FSs can be fixed if the node fails
in the middle of file system I/O.

Starting and activating the database
After the resources are taken over by the standby node, re-enable the DB2
database for client use, which includes the following activities:

� Restart the DB2 instance (run db2start).
� Activate the database, including buffer pool activation and crash recovery.

If crash recovery is required, it might be some time before the database can be
opened up for client access. From the perspective of high availability, it is
imperative to reduce crash recovery time and restart the database more rapidly.
98 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

http://pic.dhe.ibm.com/infocenter/aix/v6r1/topic/com.ibm.aix.powerha.plangd/hacmpplangd_pdf.pdf

Crash recovery is the process by which the database is moved back to a
consistent and usable state. This task is done by rolling back incomplete
transactions and completing committed transactions that were still in memory
when the crash occurred. In other words, crash recovery updates the data in
table space containers to match what is stored in any unprocessed log records.
This situation means that the time that is consumed by crash recovery depends
on how large the gap is between the log records and the actual data in
database containers.

Here, the gap equates to the amount of log records:

� Records to be rolled forward: The amount of log records that are committed,
but are not written from the buffer pool to the disk.

� Records to be rolled back: The amount of log records that are not committed,
but are written to disk.

To make crash recovery fast, you must reduce these amounts:

� Records to be rolled forward

You can synchronize memory and database pages more frequently by writing
the dirty pages on buffer pool to the database pages. Here are some relevant
tuning parameters:

– NUM_IOCLEANERS:

The page cleaner DB2 process (I/O cleaner) is in charge of writing dirty
pages on the buffer pool to the database pages on disk. The number of
the processes that are activated is determined by the NUM_IOCLEANERS
database configuration parameter. When you increase this parameter, the
contents of the database are updated more on disk, because the page
cleaner cleans dirty pages from buffer pools to data pages and therefore
reduces the crash recovery time. Increase this parameter based on the
number of the processor cores on the server.

– SOFTMAX and CHNGPGS_THRESH:

The page cleaners are started according to the settings of the SOFTMAX and
CHNGPGS_THRESH database configuration parameters. Tuning these
parameters lower than the default values reduces the crash recovery time,
with the trade-off of increasing the load on certain system resources.

When the SOFTMAX parameter is set lower, it can cause the database
manager to trigger the page cleaners more often and take more frequent
soft checkpoints. The log control file is then written to disk more often and
can reduce crash recovery time.
 Chapter 3. DB2 and PowerHA SystemMirror 99

The lower that the CHNGPGS_THRESH parameter is set, the lower the
percentage of changed pages is required to be kept in the buffer pool. This
setting triggers the asynchronous page cleaners to start cleaning the
buffer pool more often. Committed data is written to the disk more often
and less recovery time is needed in case of crash recovery.

Theoretically, spreading out smaller but more frequent writes to disk from
buffer pool pages should reduce peak write I/O load, and reduce the
frequency of synchronous write I/O, frequent writes to storage by page
cleaners might still sometimes lead to adverse performance impacts.
Consider the performance impacts to system load and transaction
throughput and tune for the best values to suit your system.

For even further improved and proactive page cleaner activity, consider
using the DB2_USE_ALTERNATE_PAGE_CLEANING registry variable. This
registry variable makes CHNGPGS_THRESH redundant, as it no longer controls
page cleaning.

� Records to be rolled back

It is important to frequently issue commits from the applications. This matter
cannot be stressed enough; issues of transactional performance,
concurrency, and ease of recoverability are heavily dependent on how
applications are coded.

Despite giving the appearance of a continuous connection to a database back
end, a coded online transaction performs most of its work without even
holding locks on data. It needs only to gain locks momentarily before
immediately committing to process requests after the user confirms an action.

Batch processing is also a frequently abused target from users who expect to
be able to issue logged updates of millions of rows at a time, and then get
upset when a logical failure or timeout occurs halfway through their input files,
and their transaction then takes time to roll back. These uses are often the
same ones who complain when told that the answer is to commit as
frequently as possible, meaning that they must code retry and restart logic
into their batch jobs, or pursue alternatives such as unlogged loads with copy
yes options.
100 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Chapter 4. DB2 with Microsoft Windows
Failover Cluster

This chapter explains a sample setup of a highly available DB2 environment with
Microsoft Windows Server 2008 R2 Failover Cluster. It explains the fundamental
concepts of Microsoft Failover Cluster to help you understand its architecture
and the basic configuration procedures.

This chapter describes how to configure a DB2 instance and other cluster
resources to become the highly available resources in the Failover Cluster. It
demonstrates the configuration steps using both the automatic utility db2mscs and
the manual steps. It also demonstrates a sample test scenario using IBM Data
Studio, where you can see the cluster in action.

Finally, this chapter explains the steps that you must follow to upgrade your
servers with minimal downtime.

This chapter covers the following topics:

� Failover Cluster concepts
� Minimal steps to cluster a DB2 instance
� Creating a server cluster
� Installing DB2
� Creating a DB2 instance
� Manually configuring a DB2 instance
� Using db2mscs to configure a DB2 instance

4

© Copyright IBM Corp. 2007, 2012. All rights reserved. 101

� Testing a cluster
� Upgrading your instance

4.1 Failover Cluster concepts

Microsoft Windows Server 2008 provides two techniques for clustering: Windows
Server Failover Cluster and Network Load Balancing (NLB). Failover Cluster
helps setting up highly available environments for stateful applications. NLB
provides scalability and increases availability for stateless applications (such as
proxy or web servers). In this chapter, you are concerned only with
Failover Clusters.

This chapter is not intended to give a detailed explanation of Microsoft Failover
Cluster, but rather to introduce its fundamental concepts so that you can
consider using this feature with DB2 when you select a clustering product for a
DB2 application.

This section introduces some concepts that are specific to Failover Cluster. You
might want to review some of general high availability concepts that were
introduced in Chapter 1, “DB2 high availability and disaster recovery overview”
on page 1.

4.1.1 Failover Cluster overview

Windows Server 2008 and Windows Server 2008 R2 Failover Cluster (formerly
know as Microsoft Server Clusters) introduce some new features and
enhancements. The new improvements include easier cluster setup and
management, enhanced security and stability, improved networking, and how
the cluster communicates with the storage. The cluster can now support up to
16 nodes instead of eight nodes.1

Failover Cluster availability: The Failover Clustering feature is included in
Windows Server 2008 Enterprise and Windows Server 2008 Datacenter. It is
not included in Windows Server 2008 Standard or Windows Web Server 2008.

1 For 32-bit operating system, you still have only eight nodes.
102 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

New quorum model
For a cluster that supports up to 16 nodes, the shared quorum model can be a
single point of failure. To eliminate this single point of failure, the quorum model
was changed to a majority model. A cluster can continue running if the majority of
nodes can communicate to each other. Every node on the cluster has a vote and
in some cases a disk or a file share can also vote. The voting majority continues
running as a cluster. The minority stops running as a cluster. Quorum is about
controlling who you want to have a vote. Windows Server 2008 Failover Cluster
supports four quorum modes:

� Node Majority

Each node that is available and in communication can vote. The cluster
functions only with a majority of the votes, that is, more than half. This mode
is best suited for clusters with an odd number of nodes.

� Node and Disk Majority

All nodes and the witness disk that are available and in communication can
vote. The cluster functions only with a majority of the votes, that is, more than
half. This mode is best suited for clusters with an even number of nodes.

� Node and File Share Majority

The same as Node and Disk Majority, except for using a file share instead of
a shared disk.

� No Majority: Disk Only

The cluster has quorum if one node is available and in communication with a
specific disk in the cluster storage. This mode is the same as the previous
shared quorum disk in Microsoft Windows Server 2003. For more
information, see:

http://technet.microsoft.com/en-us/library/cc731739.aspx

This new quorum model introduced some new terminology: disk witness, file
share witness, and vote. The witness concept represents a dedicated resource
for use by the cluster as an arbitration point when nodes lose communication
with each other. It is a new name that represents the old quorum concept.

Here is an overview of these new terms:

Disk Witness A dedicated small NTFS disk (not less than 512 MB) that
is on the cluster group. It can vote to the quorum. It stores
an updated version of the cluster database to maintain the
cluster state and configurations independently of node
failures. It helps avoid split-brain scenarios in the cluster.
 Chapter 4. DB2 with Microsoft Windows Failover Cluster 103

http://technet.microsoft.com/en-us/library/cc731739.aspx
http://technet.microsoft.com/en-us/library/cc731739.aspx
http://technet.microsoft.com/en-us/library/cc731739.aspx

File Share Witness A file share available to all nodes in the cluster. It also can
vote to the quorum. It does not store a version of the
cluster database. It helps avoid split-brain scenarios.

Vote Majority (quorum) is calculated based on votes. Cluster
nodes, disk witness, or file share witness can have a vote
that is based on your selected quorum mode.

4.1.2 Windows Failover Cluster definitions

This section introduces a few concepts that are necessary to understand how
Failover Clusters work in Windows Server.

Resource type
In Failover Cluster, a resource type is a service, such as web service, IP
address, or a device, such as a shared disk, that must be made highly available.

For every type of resource to be manipulated, you need a handler, which is an
interface that manipulates this resource. For example, if what you want to make
highly available is a shared disk, you need a mechanism to:

� Detect that the resource is working properly
� Detect the availability of the disk from each node
� Failover or failback the resource among the nodes as necessary

In the case of Failover Cluster, this handler is implemented as a Dynamic Link
Library (DLL) that must be provided by the provider of the service or resource. In
the case of basic operating systems or resources (such as disks), Failover
Cluster provides a default DLL that can handle them.

In the case of DB2, a new type of resource that is known as DB2 should be
created. We show how to add the DB2 resource type to Server Cluster in 4.6.1,
“Adding the DB2 resource type” on page 123.

Resource
A resource is any element that you want to make highly available in the system.
Common resources that you can find are:

� IP addresses
� DB2 instances
� Shared disks
104 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Groups
A cluster group is a set of resources that are interdependent with each other.
They are logically linked together for a specific purpose, for example, to make a
DB2 instance highly available.

Groups also make it possible to establish ownership of the resources to each
node. After a group is successfully created, you can select the preferred owner
node for this group. Failover and failback always act on groups.

4.1.3 Managing Failover Cluster

This section briefly describes how to install the Failover Cluster feature and what
are the tools that you can use to manage this functionality.

Installing the Failover Cluster feature
As of Windows Server 2008, clustering software is not installed by default. It is
included as a pluggable feature in the operating system. You must add the
Failover Cluster feature to all servers that you want to include in the cluster. To
add the Failover Clustering feature, complete the following steps:

1. Click Start  Administrative Tools  Server Manager and, under
Features Summary, click Add Features.2

2. In the Add Features wizard, click Failover Clustering and then click Install.

Available tools to manage Failover Cluster
Failover Cluster can be managed by using a GUI or a a command-line interface
(CLI). The GUI interface is a snap-in for Microsoft Management Console (MMC).
You can use the Failover Cluster Manager snap-in to validate failover cluster
configurations, create and manage existing failover clusters, and migrate some
resource settings to a cluster that is running Windows Server 2008 R2. For CLI
management, run Cluster. Windows Server 2008 R2 introduces a new
PowerShell Cmdlets feature for Failover Clusters. Windows PowerShell provides
a scripting interface for actions that you might otherwise perform with the
Failover Cluster Manager snap-in. For more information about this topic, see:

http://technet.microsoft.com/en-us/library/ee619751(v=ws.10).aspx

2 You can also open the Add Features dialog ox by clicking Initial Configuration Tasks and, under
Customize This Server, click Add features.
 Chapter 4. DB2 with Microsoft Windows Failover Cluster 105

http://technet.microsoft.com/en-us/library/ee619751(v=ws.10).aspx

4.2 Minimal steps to cluster a DB2 instance

To set up your cluster using Windows Server 2008 R2 Failover Cluster, you need,
at minimum, the following resources:

� A Windows 2008 domain.

� Two machines to work as the nodes in the cluster using the Windows Server
2008 R2 editions that support the Failover Cluster.

� Two shared disks that can be accessed simultaneously from all the nodes.

� Two network cards in each node (not mandatory, but a good idea).

In our lab example, we set up VMWare images with the following resources:

� Two machines named winNode101 and winNode102, running Windows
Server 2008 R2 Enterprise at the torolab.ibm.com domain.

� Each node has two network cards, one for the private network and the other
for the public network.

� Three shared disks were created:

– Drive Q: This disk was created to be the quorum of the cluster.

– Drives E and S: These disks are used for DB2 table spaces and instance
profile storage.

Here is the procedure to set up a highly available DB2 environment with Failover
Cluster. We provide detailed steps for creating a Windows Server Failover
Cluster and how to configure it with IBM DB2 in the next few sections.

1. Install a Windows Server 2008 R2 edition that supports Failover Clustering on
each cluster node.

2. Configure the shared disks devices and ensure that each node has access to
the shared resources.

3. Add your nodes to a Windows Domain.

4. Add the Failover Cluster feature to all nodes.

5. Use the Validate a Cluster wizard to validate your system configurations.

6. Create a cluster using the Failover Cluster Create a Cluster wizard.

7. Install DB2.

8. Create a DB2 instance.

9. Make the DB2 instance highly available.

10.Test your cluster.
106 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

4.3 Creating a server cluster

To create a cluster, a Windows Domain is required. The Failover Cluster creates
the needed objects on the domain and assigns them specific permissions.
Before proceeding, assume that you completed the following steps:

1. Added your servers to a domain.

2. Added the Failover Cluster feature to all nodes, as described in “Installing the
Failover Cluster feature” on page 105.

3. Properly configured and connected your networks and storage on all nodes.

After successfully completing these steps, you can proceed with:

� Validating your system compliance with Failover Cluster
� Creating the cluster in the domain

Subsequent sections explain the remaining steps to configure your DB2 instance
to make it highly available.

4.3.1 Validating your system

Microsoft Failover Cluster provides a validation wizard from which you can
validate your system. If your system does not pass the validation tests, your
cluster is not supported by Microsoft. In addition, your hardware must be marked
as “Certified for Windows Server 2008 R2”. Your two machines should have the
same operating system version, batch level, hardware configurations, and
settings. For more information about these requirements, see:

http://technet.microsoft.com/en-us/library/cc771404.aspx
 Chapter 4. DB2 with Microsoft Windows Failover Cluster 107

http://technet.microsoft.com/en-us/library/cc771404.aspx
http://technet.microsoft.com/en-us/library/cc771404.aspx

To start validating your system, click Start  Administrative Tools  Failover
Cluster Manager. The Failover Cluster Manager snap-in window opens
(Figure 4-1).

Figure 4-1 Failover Cluster Manager snap-in window

To validate your system configuration for Microsoft Failover Cluster, complete
the following steps:

1. From the Failover Cluster Manager window (Figure 4-1), click Validate a
Configuration in the Management section to start the validation wizard.

Logging in: If you are not logged in to this machine using a domain user, you
get a warning message, and the Failover Cluster Management tasks
become unavailable.
108 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

2. The Before You Begin window opens (Figure 4-2). This window displays some
helpful information about the current wizard and provides some links to the
Microsoft website. Click Next.

Figure 4-2 Validate a Configuration wizard
 Chapter 4. DB2 with Microsoft Windows Failover Cluster 109

3. From the Select Servers window (Figure 4-3), enter the names of your
servers to be validated and press the Enter key. You can add more than one
server at once by separating them with semicolons (;). In this window, you
cannot add a node that is already a member of another cluster. Your nodes
can be a member of only one cluster. After you add your nodes, click Next.

Figure 4-3 Select Servers or a Cluster window
110 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

4. The next window prompts you to choose the tests to run. You can choose to
run all the tests or run only certain tests (Figure 4-4). We selected Run all
tests (recommended). Click Next.

Figure 4-4 Select validations tests
 Chapter 4. DB2 with Microsoft Windows Failover Cluster 111

5. A confirmation window opens and lists the selected tests (Figure 4-5). You
can get back and add or remove some specific tests. After you are done, click
Next to start the validation process.

Figure 4-5 Selected validation tests confirmation
112 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

The validation tests are running (Figure 4-6). Wait for them to complete.

Figure 4-6 Validation tests that are running
 Chapter 4. DB2 with Microsoft Windows Failover Cluster 113

6. After successfully completing the system validation, a window opens with the
summary report of the validation results (Figure 4-7). If you receive errors, try
to correct these errors first. You might need to view the detailed report by
clicking View Report to obtain more details about the failing tests.

Figure 4-7 Validation summary report
114 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Now you have completed the validation of your environment and are ready to
create a cluster.

4.3.2 Creating a cluster in the domain

To create a cluster in the domain, complete the following steps. To create a
cluster, a shared disk resource must exist. The supported types of storage are
Serial Attached SCSI (SAS), iSCSI, and Fibre Channel.

1. Open Failover Cluster Manager, as described in 4.3.1, “Validating your
system” on page 107

Virtualized environments: If you are using a virtualized environment -and
cloned your machines from each other or used the same template, you might
get an error with the network configurations. For example, you might get “An
item with the same key has already been added.” error.

What happened is that your network adapters have the same GUID on both
nodes (because they are clones). The validation tools expect this Globally
Unique Identifier to be unique. You can check the GUIDs by validating the
output of this power shell command:

Get-WmiObject Win32_NetworkAdapter | fl Name,GUID

Compare the output on both nodes to verify GUID uniqueness. If the GUIDs
match, delete the network adapter from one of the nodes and rescan for
hardware changes to obtain the new network adapter that is installed with the
new GUID.
 Chapter 4. DB2 with Microsoft Windows Failover Cluster 115

2. Under Features from the left navigation tree, right-click Failover Cluster
Management and click Create a Cluster. The Create Cluster wizard
introductory window opens (Figure 4-8). Click Next.

Figure 4-8 Create Cluster wizard

3. In the Select Servers window, add your cluster nodes as you did in Figure 4-3
on page 110. Select your validated servers and click Next.
116 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

4. If you have not run the Validate Cluster wizard before or your validation did
not completely pass all the tests, you are prompted to run Cluster Validation.
If your system passed all tests successfully, you do not get this dialog box.
Instead, the Access Point for Administering the Cluster window opens
(Figure 4-9). It asks you for the cluster name and access point (IP address)
for administering the cluster. Input you cluster name (DB2Clust) and Access
point IP (9.26.20.103) and click Next.

Figure 4-9 Access Point for Administering the Cluster

New computer object: After successful completion, Failover Cluster
creates a computer object in the domain (DB2Clust) and assigns it an IP
address (9.26.20.103). Remember this object, as you need to assign
certain permissions to it later in this chapter. If you forgot this step, your
cluster does not work properly.
 Chapter 4. DB2 with Microsoft Windows Failover Cluster 117

5. A confirmation window opens with the selected configurations you provided
(Figure 4-10). Click Next to start creating the cluster.

Figure 4-10 Cluster configurations confirmation
118 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

6. The Creating New Cluster window opens. It shows the creation process’
progress (Figure 4-11).

Figure 4-11 Creating cluster progress
 Chapter 4. DB2 with Microsoft Windows Failover Cluster 119

7. After the cluster creation completes, a window opens and shows a summary
report (Figure 4-12).

Figure 4-12 Create cluster summary

4.4 Installing DB2

DB2 should be installed on all the nodes in the cluster. For the DB2 installation
procedure, see the DB2 Information Center at:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.i
bm.db2.luw.qb.server.doc%2Fdoc%2Ft0008099.html

While you are installing DB2, ensure that you enable extended security using
domain groups. If you have DB2 installed, see 4.6.5, “Configuring security
settings” on page 142 for the steps to correctly configure DB2 security for
the cluster.
120 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.qb.server.doc%2Fdoc%2Ft0008099.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.qb.server.doc%2Fdoc%2Ft0008099.html

4.5 Creating a DB2 instance

DB2 creates a default instance during the DB2 installation on Windows.
However, we create an instance to configure the DB2 cluster in this example.

We create a single partition ESE instance using the db2icrt utility in the node to
be used as the initial resource owner in the cluster. In our example, we create a
DB2 instance in winNode102. The instance name is DB2HA and the owner of the
instance is the domain user anas.mosaad.

Figure 4-13 shows the command that is used to create the instance and the
result of the command. db2icrt requests the password of the domain user ID
specified in the -u option.

The second db2ilist command in the same panel lists the instances in the local
machine. Use the -w flag with the db2icrt command to set the type of instance
to a Workgroup server or Enterprise Server Edition. Additionally, you can use the
-p option to assign a port to the instance, if necessary.

Figure 4-13 Create an instance DB2HA

If you open Windows Services (by clicking Start  Administrative Tools 
Services), you should see a new service that represents the instance.

In the case of an ESE instance, the name of the service has the suffix
<INSTANCE-NAME>-<NODE NUMBER>, for example, DB2 - DB2COPY1 -
DB2HA-0.

In the case of a WSE instance, the name of the service has the suffix
<INSTANCE-NAME>. If you created a WSE instance, the service is similar to
DB2 - DB2COPY1 -DB2HA.
 Chapter 4. DB2 with Microsoft Windows Failover Cluster 121

This name is important because it becomes the Windows Registry Key Name of
the service. The following entries must exist in the Windows registry:

� ESE instance:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DB2HA-0

� WSE instance:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DB2HA

The cluster software looks to this entry to start a highly available DB2 instance.
This setup usually leads to the second most common problem in setting up DB2
with Windows Failover Cluster: If you name the DB2 resource with a name that is
different from this entry, the resource does not find the DB2 server and does
not start.

In the following sections, we describe two different methods to make the DB2
instance highly available with Windows Cluster: the manual method and the
semi-automatic method using db2mscs. We show only a hot standby
configuration for a single partition database here. For more information about
mutual takeover and multiple partition configuration, see the DB2 Information
Center at:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.i
bm.db2.luw.admin.ha.doc%2Fdoc%2Fc0007402.html

4.6 Manually configuring a DB2 instance

Although there is a utility named db2mscs that can do most of the configuration of
a DB2 instance, you should understand what steps are involved in making a DB2
instance highly available in a Failover Cluster environment so that you are able
to diagnose any problem that occurs.

To configure a DB2 instance in a Failover Cluster to provide high availability,
complete the following steps:

1. Add a DB2 resource type to the cluster.

2. Create cluster resources:

a. Create a Cluster Service or Application to group all the resources for
the instance.

b. Create or add the supporting resources to the DB2 group:

i. A highly available IP address is mandatory.

ii. A highly available shared disk to store an instance profile is mandatory.
122 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.ha.doc%2Fdoc%2Fc0007402.html

iii. If this database is a multi-partitioned database, the instance profile
directory must be shared and made highly available.

c. Add a DB2 Server resource to the cluster.

3. Link a DB2 Server resource with the DB2 instance.

4. Add the instance to the remaining nodes.

4.6.1 Adding the DB2 resource type

After DB2 is installed, you must create a DB2 resource type in Failover Cluster. If
you want Windows Server Failover Cluster to manage the DB2 instance, the DB2
instance must be a resource in the cluster.

If you click Failover Cluster Management  Properties, and then click
Resource Type tab, you can view the current resource types that can be
managed by the Failover Cluster (Figure 4-14). After you add a DB2 resource
type, you can find it under the user-defined resource types.

Figure 4-14 Cluster resource types
 Chapter 4. DB2 with Microsoft Windows Failover Cluster 123

The DB2 resource type can be added to this list by running db2wolfi. This utility
accepts one parameter:

db2wolfi u | i

Where:

� u: Unregister the DB2 resource type.
� i: Install the resource type.

After db2wolfi is run successfully, the resource type “DB2 Server” is added. You
can view the cluster resource types from the command line by running cluster
(Figure 4-15).

Figure 4-15 DB2Wolfi utility execution - adding the DB2 Server resource type
124 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

If you click DB2Clust  Properties  Resource Types, you can find the same
objects that you viewed by running cluster restype (Figure 4-16).

Figure 4-16 Resource types with DB2 Server resource type added

4.6.2 Creating cluster resources

To configure an application or service to be highly available, Failover Cluster
creates a resource group for that application to hold all the needed resources.
Failover and failback act on that group. You can add every resource
independently or use the Configure a Service or Application wizard to create
them all for you. For simplicity, we use the Configure a Service or Application
wizard for our example. From the right side bar, under Actions, click Configure a
Service or Application.
 Chapter 4. DB2 with Microsoft Windows Failover Cluster 125

The wizard takes you through a few simple steps to configure an application or
service (DB2 in your case) to be highly available:

1. After you click Configure a Service or Application, a window opens
(Figure 4-17) with an introduction about this wizard. Click Next.

Figure 4-17 Configuring a service or application wizard
126 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

2. The wizard prompts you for the Service or Application you want to make
highly available. DB2 Server is not in the list, as it is a user-defined resource
type. You can find Other Server in the list (Figure 4-18). Click Other Server
and click Next.

Figure 4-18 Select Service or Application

Other Server selection: After you select Other Server from the list, the
number of wizard steps that are shown on the left jumped from two
(Figure 4-17) to eight (Figure 4-18).

� The Client Access Point step is equivalent to creating a group and
adding a highly available IP address to that group. Your client can later
use this IP or access point name to connect to the application (DB2).

� The Select Storage step is equivalent to adding storage to your Service
or Application group.

� The Select Resource Types step is where you tell Failover Cluster to
create a resource of the DB2 Server type.
 Chapter 4. DB2 with Microsoft Windows Failover Cluster 127

3. Now the Client Access Point window opens and prompts you for the access
point name and IP address (Figure 4-19). Ensure that the name and address
you select are not reserved by any other resource in the network. Otherwise,
you get an error message and you must correct the error to proceed.
Click Next.

Figure 4-19 Client Access Point
128 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

4. Select the shared disk to store your data (Figure 4-20). By data, we mean the
instance profile and your database files. Click Next.

Figure 4-20 Select Storage
 Chapter 4. DB2 with Microsoft Windows Failover Cluster 129

5. After this wizard completes successfully, Failover Cluster creates a resource
of the resource type you select under this service or application group. Here
we tell Failover Cluster to create a resource of type DB2 Server (Figure 4-21).
If you have other user-defined resource types, you can find them in the list.
Ensure that you select the DB2 Server resource type. Click Next.

Figure 4-21 Select DB2 Server resource type
130 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

6. Now you have provided all the necessary information. A confirmation window
opens and lists all the information (Figure 4-22). Verify that this information is
correct. If you must correct something, click Previous and make the
corrections. After you are done, click Next to start configuring
your application.

Figure 4-22 Confirmation window
 Chapter 4. DB2 with Microsoft Windows Failover Cluster 131

7. The wizard configures the resources for you and shows you the progress
(Figure 4-23).

Figure 4-23 Configuring High Availability
132 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

8. After the previous step completes successfully, the wizard presents a
summary report (Figure 4-24).

Figure 4-24 Summary report
 Chapter 4. DB2 with Microsoft Windows Failover Cluster 133

Failover Cluster is not able to bring all resources online because more
configuration is needed. Click Finish to see your created resource
(Figure 4-25).

Figure 4-25 Newly configured service

The DB2 Server resource has the name “New DB2 Server”. You make the
correct configurations to this resource later. Now you create a shared folder that
is the instance profile directory to the server.

Multiple partition instances: When a multiple partition instance is running on
a Windows Failover Cluster, the INSTPROF path must be set to a network path
(for example, \\NetName\DB2MSCS-DB2\DB2PROFS). If you are using a single
partition ESE instance, set the instance profile to a network path. This action is
done automatically if you use the db2mscs command to cluster the DB2
database system.
134 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

9. To add a shared folder, complete the following steps:

a. Create a folder named DB2HA-0-Prof under the shared disk added to your
group.

b. Right-click your cluster (DB2Clust) and click Add a shared folder.
Failover Cluster examines your storage in the group and opens the
Provision a Shared Folder wizard (Figure 4-26).

Figure 4-26 Provision A Shared Folder wizard

c. Select the location of folder to be shared (E:\DB2HA-0-Prof) and
click Next.

d. Set the NTFS Permissions and click Next. In our example, we use:

• TOROLAB\db2admns: Full control

• TOROLAB\db2users: Change and Read
 Chapter 4. DB2 with Microsoft Windows Failover Cluster 135

• Administrators: Full control

• CREATOR OWNER: Full control

• SYSTEM: Full control

• LOCAL SERVICE: Full control

• NETWORK SERVICES: Full control

e. Under share name for SMB, enter DB2HA-0-Prof and click Next
(Figure 4-27).

Figure 4-27 Select Share protocol and share name
136 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

f. Click Next multiple times in the windows that open until you get a
successful confirmation window (Figure 4-28). You are not required to
make changes except in the SBM permissions window. You must set the
correct permissions as we did in the NTFS permission. Without the correct
permissions, you cannot migrate your instance to
the cluster.

Figure 4-28 Successfully added shared folder
 Chapter 4. DB2 with Microsoft Windows Failover Cluster 137

Now configure the DB2 Server resource (“New DB2 Server”). Open its properties
by selecting it and clicking Properties from the bottom badge in the right side
bar. Alternatively, you may right-click it and click Properties. From the Properties
window, change the resource name to DB2HA-0 (Figure 4-29).

Figure 4-29 DB2 Server Resource Properties
138 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

By default, the Configure a Service or Application wizard set the dependencies of
the DB2 Server resource. It adds all the resources except for the file server.
Ensure all the dependencies, including the file server, are set correctly
(Figure 4-30).

Figure 4-30 DB2 Server resource (DB2HA-0) dependencies

Section 4.5, “Creating a DB2 instance” on page 121 shows how to create a
sample ESE instance. If you do not have a DB instance yet, you should create
it now.

4.6.3 Migrating the DB2 instance to the cluster environment

The instance is in only one node in the cluster. If there is a failure, the other node
cannot find information about this instance. The same situation applies to any
other resource in the cluster. Windows Failover Cluster maintains information
about the status, resources, resource types, and nodes of the cluster in the
cluster database. This database exists in each node and the witness disk. It is
synchronized constantly by the Failover Cluster software.
 Chapter 4. DB2 with Microsoft Windows Failover Cluster 139

The process of migrating a DB2 instance to the cluster includes two steps:

1. Moving the DB2 instance profile directory to a highly available disk where it
can be found by any node.

2. Creating a Windows registry key in the cluster section of the
Windows registry.

These two tasks are accomplished by running db2iclus, which must be run in
the node where the DB2 instance was created.

In Figure 4-31, you can see a series of commands:

� db2ilist shows you that there is one instance in the system and it is not
available in the cluster.3

� db2iclus MIGRATE /i:DB2HA /c:DB2Clust /p:\\DB2HA-Group\DB2HA-0-Prof
/u:TOROLAB\anas.mosaad: The db2iclus command moves the DB2HA
instance to the DB2Clust cluster and places the DB2 instance profile directory
in to the R:\DB2HAProf directory.

� db2ilist again shows you that the instance is now available in the
DB2Clust cluster.

Figure 4-31 Manually configuring a DB2 instance

3 We manually dropped the DB2 instance on to both nodes, which is why it is not showing in the
command’s output.
140 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

4.6.4 Adding a reference to the instance in the other nodes

The db2iclus migrate command places the DB2 instance profile directory in to
the shared drive and adds the instance to the shared part of the Windows
registry. However, the instance was created in one node only (winNode102 in our
example). The instance creation process modifies several Windows registry keys
and creates the service to be started in Windows. All these elements are missing
from the other nodes in the cluster. If a failure occurs, Failover Cluster can
correctly fail over to the other node (winNode101), but Windows does not find the
Windows Service for the DB2 instance DB2HA. The failover process
is ended.

Run db2iclus with the ADD clause to create references to the instance in the
remaining nodes. In our example, the second node is winNode101. The
command must be run from the node that has the instance to be referenced
(winNode102) and is as follows:

db2iclus ADD /i:DB2HA /c:DB2Clust /p:\\DB2HA-Group\DB2HA-0-Prof
/u:TOROLAB\anas.mosaad /m:winNode101

Figure 4-32 shows that the db2list command is run twice in winNode101. The
second execution is after you run the db2iclus ADD command, which shows that
the instance is now in this node.

Figure 4-32 DB2 instances list on winNode101

Ensure that the correct ports are added in the ~system32/drivers/etc/
services file.
 Chapter 4. DB2 with Microsoft Windows Failover Cluster 141

4.6.5 Configuring security settings

By now, we have added to the cluster all the resources needed and the
configured DB2 instance on the cluster. The files under the DB2 instance profile
are protected by DB2 Access Control List. If the DB2_EXTSECURITY registry
variable is set to YES on a Windows Failover Cluster, the DB2ADMNS and
DB2USERS groups must be domain groups. You can review your DB2 global
security configurations can under the
HKEY_LOCAL_MACHINE\SOFTWARE\IBM\DB2\GLOBAL_PROFILE Windows registry key.
Ensure that DB2_ADMINGROUP and DB2_USERSGROUP are domain groups,
not local groups.

Using the db2extsec utility
db2extsec is used to set up the permissions for DB2 database objects (for
example, files, directories, network shares, registry keys, and services) on
updated DB2 database system installations. Use the utility to configure DB2
extended security. The command is used on the DB2 users and DB2
administrators groups (Figure 4-33).

Figure 4-33 Configuring DB2 extended security

Setting the correct cluster permission
Failover Cluster uses your cluster name to create a computer object in the active
directory of the domain. In our example, it is DB2Clust. This Cluster object
(DB2Clust) must access DB2 files. Therefore, for the DB2 Server resource
(DB2HA-0) to successfully start the instance on both nodes, this domain object
(DB2Clust) must be added to the DB2ADMNS group on the domain.

Extended security: You must configure the extended security on both nodes
of the cluster. Otherwise, the cluster may start on one machine and fails to
start on the other one.
142 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Lastly, after you add the computer object to the DB2ADMNS group, you must
reboot both nodes in the cluster. After reboot, your cluster is ready (Figure 4-34).

Figure 4-34 Cluster group DB2HA Group up and running

Domain changes: The domain changes are not replicated to the local
machines until you restart it, which is why you must reboot both nodes you
add the Cluster object to the DB2ADMNS group.
 Chapter 4. DB2 with Microsoft Windows Failover Cluster 143

4.7 Using db2mscs to configure a DB2 instance

The db2mscs utility automates most of the steps of creating a highly available
DB2 instance in the Failover Cluster environment. The prerequisite is that the
shared disk where the instance profile is moved to must be made highly available
before you run the utility. All other steps, such as creating the highly available IP
address and network name, are automated by the tool.

db2mscs uses a configuration file that defines the user and password to create
the services, the name and value of the resources, such as IP addresses and
network names. db2mscs accepts three parameters:

db2mscs -f:<config_file> -u:<instance name> -d:<debug_file>

Where:

� -f: This option specifies the configuration file. The default value of this
parameter is db2mscs.cfg.

� -u: This option reverts all changes in the specified instance and returns it to
its unclustered form.

� -d: This option specifies the debug file name. The utility writes debugging
information in to the text file specified in this option.

The configuration file accepts parameters in the following format:

PARAMETER=VALUE

DB2 provides some sample configuration files under the %DB2Dir%\sqllib\
cfg directory:

� db2mscs.das (Clusters a DAS instance.)
� db2mscs.ee (Clusters an EE instance.)
� db2mscs.eee (Clusters a DPF instance.)

Because we created an ESE instance in 4.5, “Creating a DB2 instance” on
page 121, we demonstrate using db2mscs to configure a Workgroup Server
Edition (WSE) instance.

� Figure 4-35 on page 145 shows the commands to create a DB2 WSE
instance named DB2WSE. If you are concerned about saving you password
in a local text file, you can drop or comment out the DB2_LOGON_PASSWORD
property and db2mscs prompts you for the user password at run time. For
more information, see the DB2 Information Center at
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fco
m.ibm.db2.luw.admin.cmd.doc%2Fdoc%2Fr0002078.html and or DB2 10.1
Command Reference, SC27-3868-00.
144 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.cmd.doc%2Fdoc%2Fr0002078.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.cmd.doc%2Fdoc%2Fr0002078.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.cmd.doc%2Fdoc%2Fr0002078.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.cmd.doc%2Fdoc%2Fr0002078.html

Figure 4-35 Creating Workgroup instance DB2WSE

The sample configuration file that we use is shown in Example 4-1. The
DB2_LOGON_PASSWORD property is commented out.

Example 4-1 Sample Failover Cluster configuration file

DB2_LOGON_USERNAME=torolab\anas.mosaad
#DB2_LOGON_PASSWORD=xxxxxxxxxx
CLUSTER_NAME=DB2Clust
GROUP_NAME=DB2WSE Group
DB2_INSTANCE=DB2WSE

IP_NAME=DB2WSE IP Address
IP_ADDRESS=9.26.20.107
IP_SUBNET=255.255.255.0
IP_NETWORK=Cluster Network 2

NETNAME_NAME=DB2WSE Net
NETNAME_VALUE=DB2WSE-Public
NETNAME_DEPENDENCY=DB2WSE IP Address

DISK_NAME=Disk S
INSTPROF_PATH=S:\DB2WSEProf

Here are some points to notice in this example:

� The value of IP_NAME is arbitrary. Use the instance name for the IP_NAME.

� The value of NETNAME_DEPENDENCY must be the same as the one in IP_NAME,
because the network name depends on the IP_NAME.

� The value of DISK_NAME must be a physical disk resource that exists in
the cluster.
 Chapter 4. DB2 with Microsoft Windows Failover Cluster 145

Before you run db2mscs, you must set the environment variable DB2INSTANCE to
be the same value as the db2mscs.cfg parameter DB2_INSTANCE. If you fail to do
this task, the operation fails because db2mscs tries to start the instance that is
specified by DB2INSTANCE.

Changing the instance name solves the problem (Figure 4-36).

Figure 4-36 Configuring the DB2 instance using db2mscs
146 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Your Workgroup DB2 instance DB2WSE is now clustered on your DB2Clust
cluster. If you open the Failover Cluster management console, you find the
resources that are created and configured: a group, the highly available IP
address, storage added, and the DB2 Server resource. It also starts the group
and starts all its resources (Figure 4-37).

Figure 4-37 DB2WSE instance clustered using db2mscs

Important: Ensure that you complete the steps in 4.6.5, “Configuring security
settings” on page 142. Those steps must be applied whether you configured
the instance manually or by using the db2mscs utility.
 Chapter 4. DB2 with Microsoft Windows Failover Cluster 147

4.8 Testing a cluster

Generally, you do clustering to eliminate single points of failure. Testing such a
setup requires a good testing plan to test all possible points of failure. We are not
going to describe a test plan here, but do tell you how to test the DB2 part. Here
are the general steps:

1. Create a database and ensure that it is stored on the shared storage. If you
put your database on a new shared disk, ensure to add this disk to your
cluster group for your database instance.

2. From your application, connect to the database using the highly available IP.

3. Run some SQL statements. They should run successfully.

4. Fail over your DB2 group (DB2HA-Group) to the second node.

5. Using the same connection, try to issue the same SQL statements again. If
the queries failed, reconnect again using the same IP address. Issue the
statements and the failover should succeed.

6. Fail back the group to the primary node.

7. From your application, using the current connection, run the SQL statements.
If the statements fail, reconnect and try again. They should succeed.

8. Repeat the previous steps many times while you simulate various hardware
and software failures.
148 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

4.8.1 Creating a SAMPLE database

First, create a sample database by using the db2sampl utility. Before you run the
db2sampl utility, ensure that you are running it from the current owner of DB2
cluster group, the group is online, you specified the dbpath on the shared
storage, and you set the DB2INSTANCE environment variable with the correct
instance name (Figure 4-38).

Figure 4-38 Creating the SAMPLE database on the shared storage

4.8.2 Verifying the DB2 instance communication settings

Before you try to connect to the database from a remote client, you must ensure
that TCP/IP communication is enabled on the instance and a valid
communication port is configured on both nodes. Here are the checklist items
that you must verify:

� Verify that the instance is configured to start listening on the appropriate
protocol by running db2set -all. Look for the DB2COMM parameter.

� Verify that the appropriate protocol-specific parameters are set in the
database manager configuration settings so that DB2 knows what values to
listen on. For example, run db2 get dbm cfg | find /i “SVCENAME”.

� If the previous step resulted in a service name instead of a port number for
the SVCENAME field in your environment, then confirm that the value listed there
is mapped to a unique port number in the operating system’s
%windir%\system32\drivers\etc\services file. The configuration must be
the same on both nodes.
 Chapter 4. DB2 with Microsoft Windows Failover Cluster 149

Figure 4-39 shows a series of commands to verify the communication settings.

Figure 4-39 Verify communication settings

4.8.3 Connecting to the database using Data Studio

Connect to this SAMPLE database using the highly available IP address from
Data Studio. Configure Data Studio 3.1.1 on Linux to connect to the sample
database we created under the DB2HA instance. In Figure 4-19 on page 128, we
assigned IP address 9.26.20.105 as the access point for this instance.
150 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Open Data Studio and from the Administration Explorer view4, click New  New
Connection to a database. A window opens (Figure 4-40). Enter the database
connection parameters.

Figure 4-40 Creating a connection to the cluster database

4 If the Administration Explorer view is not already open, open the Show view window by clicking
Window  Show view  Other. In the Show view window, select the view by clicking Data
Management  Administration Explorer and clicking OK.
 Chapter 4. DB2 with Microsoft Windows Failover Cluster 151

Ensure that your database connection parameters are correct and click Test
Connection. You should get a successful connection message (Figure 4-41).
Click Finish to add this database to your database list.

Figure 4-41 Connection successful
152 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

4.8.4 Testing failover

Data Studio added the database to your databases list and connected to it. You
can run some SQL statements against the database to make sure that it is
working correctly. Run an SQL query “select deptno, deptname from
"ANAS.MOSAAD".DEPARTMENT;” to confirm that you can run queries successfully.
You should get a successful result (Figure 4-42).

Figure 4-42 Successful query execution
 Chapter 4. DB2 with Microsoft Windows Failover Cluster 153

Now move your cluster groups from the primary node to the secondary node.
Data Studio automatically detects that your instance stopped. It displays a
notification that automatic reconnection failed (Figure 4-43).

Figure 4-43 Data Studio automatic reconnection failure notification

This notification message automatically disappears after Data Studio is able to
reconnect again to your database. Now try to run the same SQL statement
again. It should succeed and you get the result shown in Figure 4-42 on
page 153.

Repeat the same scenario after you move the cluster group to the primary node
again. Run the same statement again; it should succeed.

If you have a long running transaction in your database, moving the group from
one node the other might fail. To ensure that such scenario is avoided, set the
DB2 registry variable DB2_FALLBACK to on. To set DB2_FALLBACK ON, run db2set
DB2_FALLBACK=ON.

Now you have a clustered DB2 instance up and running. You tested that it is
working correctly on both nodes. You can use this environment to upgrade your
DB2 instance.
154 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

4.9 Upgrading your instance

A clustered environment is ideal for performing a rolling upgrade to your servers.
You are able to upgrade your database instance fix pack with minimal downtime.
To do rolling upgrades of your servers, complete the following steps:

1. Have winNode101 as the active node and winNode102 as idle.

2. Stop the cluster server service on the idle node (winNode102).

3. Apply your fixes on winNode102. In our case, we apply a DB2 fix pack.

4. Take all DB2 Server resources offline.

5. Start the cluster service on the winNode102 node.

6. Move your clustered instance group to winNode102.

7. Bring the group online. winNode101 is now idle.

8. Repeat steps 2 - 5, but on winNode101 instead.

9. Move the group back to winNode101.

If you plan to upgrade your database version, see the Information Center at:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.i
bm.db2.luw.qb.upgrade.doc%2Fdoc%2Ft0022647.html

DPF environment: In a DPF environment, ensure that all active partitions are
running the same db2level.
 Chapter 4. DB2 with Microsoft Windows Failover Cluster 155

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.qb.upgrade.doc%2Fdoc%2Ft0022647.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.qb.upgrade.doc%2Fdoc%2Ft0022647.html

156 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Chapter 5. DB2 HADR introduction

Organizations face a tough challenge in choosing an appropriate high availability
solution that meets their business requirements and IT budgets.

Until recently, such solutions were based on proprietary systems, and involved
significant investment in capital, time, and resources to assemble, integrate, test,
manage, and support. This scenario was changed dramatically with the
introduction of software-based high availability solutions.

In this chapter, we provide a general overview of an IBM software-based high
availability solution: DB2 High Availability Disaster Recovery (HADR).

This chapter covers the following topics:

� HADR overview
� HADR architecture
� Terminology

5

© Copyright IBM Corp. 2007, 2012. All rights reserved. 157

5.1 HADR overview

The HADR feature provides a high availability solution for both partial and
complete site failures. HADR protects against data loss by replicating data
changes from a source database, called the primary database, to one or more
target databases, called the standby databases.

A partial site failure can be caused by a hardware, network, or software (DB2
database system or operating system) failure. Without HADR, a partial site
failure requires restarting the database management system (DBMS) server that
contains the database. The length of time that it takes to restart the database and
the server where it is located is unpredictable. It can take several minutes before
the database is brought back to a consistent state and made available. With
HADR, a standby database can take over in seconds. Further, you can redirect
the clients that used the original primary database to the new primary database
by using automatic client reroute or retry logic in the application. This redirection
is also possible using software solutions that are described in Chapter 10,
“Automatic client reroute” on page 377, which can manage IP
address redirection.

A complete site failure can occur when a disaster, such as a fire, causes the
entire site to be destroyed. However, because HADR uses TCP/IP for
communication between the primary and standby databases, these databases
can be in different locations. For example, the primary database might be at your
head office in one city, and a standby database might be at your sales office in
another city. If a disaster occurs at the primary site, data availability is maintained
by having the remote standby database take over as the primary database with
full DB2 functionality. After a takeover operation occurs, you can bring the
original primary database back up and return it to its primary database status;
this concept is known as failback. You can initiate a failback if you can make the
old primary database consistent with the new primary database. After you
reintegrate the old primary database into the HADR setup as a standby
database, you can switch the roles of the databases to enable the original
primary database to once again be the primary database.

DB2 HADR includes all the following functions:

� Fast failover capability
� Negligible impact on performance
� Easy to set up and monitor
� Rolling upgrades with no downtime for running applications
� Transparent failover and failback for applications
� Easy integration with high availability clustering software
� Improved disaster recovery compared to conventional methods
158 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Figure 5-1 illustrates the concept of HADR.

Figure 5-1 HADR overview

All changes that take place at the primary database server are written into log
records. These log records are then shipped to the secondary database server
where the recorded changes are replayed to the local copy of the database. This
procedure ensures that the primary and the secondary database servers are in a
synchronized state. From this point on, the standby server is in a continuous
rollforward mode and is always in a state of near-readiness, so the takeover to
the standby is fast. In DB2 10.1, it is also possible to use the reads on standby
capability to run read-only operations on the standby database in your HADR
solution. Read operations that are running on a standby do not affect the
standby’s main role of replaying logs that are shipped from the primary database.

Using two dedicated TCP/IP communication ports and a heartbeat, the primary
and the standby databases track where they are processing currently, the
current state of replication, and whether the standby database is up to date with
the primary database (known as a HADR Peer state). When a log record is being
written to disk on the primary, it is sent to HADR to be routed to the standby at
the same time.

Primary connection
Alternate connection

(failover, client reroute)

PRIMARY SERVER STANDBY SERVER

TCP/IP

DB2 Engine
(other components)

DB2 Engine
(other components)

HADR HADR

Tables
Indexes

Tables
Indexes

New
logs

Log writer Log reader

Old
logs

Log reader

Old
logs

New
logs

Replay Master
Shredder

Redo Master
Redo Workers
 Chapter 5. DB2 HADR introduction 159

As mentioned, the HADR communication between the primary and the standby
takes place over TCP/IP, which enables the database to be replicated to a
remote geographical site. This setup allows the database to be recovered either
locally or at the remote site if there is a disaster at the primary database server
site. The HADR solution thus provides both High Availability and Disaster
Recoverability. HADR provides an incomparable improvement on conventional
methods for DB2 disaster recovery, which otherwise could mean losses in hours
of committed transaction data.

If the primary system is not available, a HADR takeover by a force operation
converts the standby system to be the new primary system. After the
maintenance or repair of the old primary system is done, you can start the
original primary server and return both servers to their primary and standby roles.
This action can be done after the reintegration of HADR, and after the original
primary catches up with any work that was done while it was unavailable.

In a DB2 ready environment, HADR is easy to set up and configure. HADR is an
efficient method of supporting high availability and disaster recovery.

5.1.1 HADR topology

With HADR, you base the level of protection from potential loss of data on your
configuration and topology choices. Some of the key choices that you must make
are as follows:

� What level of synchronization do you use?

Standby databases are synchronized with the primary database through log
data that is generated on the primary and shipped to the standbys. The
standbys constantly roll forward through the logs. You can choose from four
different synchronization modes. In order of most to least protection, these
modes are synchronous (SYNC), near-synchronous (NEARSYNC),
asynchronous (ASYNC), and super-asynchronous (SUPERASYNC). For
more information, see 5.1.2, “HADR synchronization modes” on page 164.

� Do you use a peer window?

The peer window feature specifies that the primary and standby databases
are to behave as though they are still in the Peer state for a configured
amount of time if the primary loses the HADR connection in the Peer state. If
the primary database fails in the Peer state or this “disconnected peer” state,
the failover to standby has zero data loss. This feature provides the greatest
protection.
160 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

� How many standbys do you deploy?

With HADR, you can use either single standby mode or multiple standby
mode. With multiple standbys, you can achieve both your high availability and
disaster recovery objectives with a single technology.

There are many ways that you can use your HADR standby databases
beyond their HA or DR purposes:

– Reads on standby feature

You can use the reads on standby feature to direct read-only workload to
one or more standby databases without affecting the HA or DR
responsibility of the standby database. This feature can reduce the
workload on the primary database without affecting the main responsibility
of the standby database.

Unless you have reads on standby enabled, applications can access the
current primary database only. If you have reads on standby enabled,
read-only applications can be redirected to the standby database.
Applications connecting to the standby database do not affect the
availability of the standby database if there is a failover.

– Delayed replay feature

You can use the delayed replay feature to specify that a standby database
should remain at an earlier point in time than the primary database, in
terms of log replay. If data is lost or corrupted on the primary database,
you can recovery this data on the time delayed standby database.

– Rolling updates and upgrades feature

Using an HADR setup, you can make various types of upgrades and DB2
fix pack updates to your databases without an outage. If you have multiple
standby modes that are enabled, you can perform an upgrade while you
keep the protection provided by HADR.

HADR might be your best option if most or all data in your database requires
protection or if you perform DDL operations that must be automatically replicated
on a standby database. However, HADR is only one of several replication
solutions that are offered in the DB2 Product Family. The InfoSphere Federation
Server software and the DB2 database system include SQL replication and Q
replication solutions that you can also use, in some configurations, to provide
high availability. These solutions maintain logically consistent copies of database
tables at multiple locations. In addition, they provide flexibility and complex
functionality, such as support for column and row filtering, data transformation,
and updates to any copy of a table. You can also use these solutions in
partitioned database environments.
 Chapter 5. DB2 HADR introduction 161

The standard topology is one primary and one standby database. This topology
makes up the most commonly seen layout. This setup consists of a pair of
servers, one with a single DB2 instance and a single database that acts as the
primary database, and another with a single DB2 instance and a single database
that acts as the standby database.

However, this situation is by no means the only ways in which multiple pairs of
HADR databases can be implemented on multiple server nodes.

HADR replication takes place at a database level, not at the instance level.
Therefore, a standby server can have multiple databases from multiple primaries
on it. Another configuration option is to implement two servers in an active/active
cluster mode (Figure 5-2). Here the HADR primary databases are spread across
both servers in a load-sharing configuration. The advantage with this option is
that it makes more efficient use of available processor cycles, and other valuable
server resources.

Figure 5-2 HADR takes place at the database level and not the DB2 instance level

Database E Database E

HADR HADRTCP/IP

Primary Standby

Database A

HADR HADRTCP/IP

Standby Primary

Database A

Database B

Database C

Database D
162 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Since DB2 10.1, the HADR feature also supports multiple standby databases.
This feature enables an advanced topology where you deploy HADR in multiple
standby mode. In this scenario, you can have up to three standby databases in
your setup. You designate one of these databases as the principal HADR
standby database; any other standby database is an auxiliary HADR standby
database. As with the standard HADR deployment, both types of HADR standbys
are synchronized with the HADR primary database through a direct TCP/IP
connection. Furthermore, both types support the reads on standby feature, and
you can configure both types for time-delayed log replay. In addition, you can
issue a forced or non-forced takeover on any standby.

This scenario is illustrated by Figure 5-3.

Figure 5-3 HADR scenario with multiple standby servers

There are many benefits to using a multiple HADR standby setup. Instead of
employing the HADR feature to achieve your high availability objectives and
another technology to achieve your disaster recovery objectives, you can use
HADR for both. You can deploy your principal standby in the same location as
the primary. If there is an outage on the primary, the principal standby can take
over the primary role within your recovery time objectives (RTOs). You can also
deploy auxiliary standbys in a distant location, which provides protection against
a widespread disaster that affects both the primary and the principal standby.

Primary

Principal
standby

Auxiliary
standby

Auxiliary
standby

super async mode only

Any sync
mode
 Chapter 5. DB2 HADR introduction 163

When you work with multiple standby databases, all of the HADR sync modes
are supported on the principal standby, but the auxiliary standbys can be only in
SUPERASYNC mode.

Another point to consider while you set up an HADR environment is the new
HADR delayed replay feature. This feature prevents data loss because of errant
transactions. Delayed replay intentionally keeps the standby database at a point
in time that is earlier than the point in time of the primary database by delaying
replay of logs on that standby. If an errant transaction is run on the primary, you
have until the configured time delay elapses to prevent the errant transaction
from being replayed on the standby. To recover the lost data, you can either copy
this data back to the primary, or you can have the standby take over as the new
primary database.

You can use this feature in either single standby mode or multiple standby mode.
In multiple standby mode, typically one or more standbys stays current with the
primary for high availability or disaster recovery purposes, and one standby is
configured with delayed replay for protection against errant transactions. If you
use this feature in single standby mode, you should not enable IBM Tivoli
System Automation for Multiplatforms (Tivoli SA MP) because the takeover fails.

5.1.2 HADR synchronization modes

With HADR, you can choose the level of protection you want from potential loss
of data by specifying one of the three synchronization modes:

� Synchronous

Log write is considered successful only when the log buffers are written to the
primary’s log files and after an acknowledgement is received that it is also
written to the standby’s log files. There can be no data loss in this mode if
HADR is in the Peer state.

� Near-synchronous

This option is the default option. Log write is successful only when the
primary’s log buffer is written to log files on the primary and an
acknowledgement is received that the log buffer is received on the standby.

� Asynchronous

Log write is successful when logs are written to the disk on the primary and
log data is sent through TCP/IP to the standby. Data loss can occur in
this mode.
164 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

� Super-asynchronous

The log writes are considered successful when the log records are written to
the log files on the primary database. Because the primary database does not
wait for acknowledgements from the standby database, transactions are
considered committed regardless of the state of the replication of
that transaction.

Figure 5-4 illustrates these HADR synchronization modes, and the point at which
DB2 considers itself able to commit a transaction while in the Peer state.

Figure 5-4 Synchronization modes

5.2 HADR architecture

HADR technology is tightly coupled to the DB2 logging and recovery strategy.
The main design goal of DB2 HADR is to quickly fail over the failed system to a
standby server if there is a failure on the primary server.

The basic architecture of HADR is simple. It is based on the shipping of log
records from the primary database to a standby database. Thus, in DB2 the
HADR implementation can be used by the database administrator (DBA) to
decide which databases should be replicated.

Synchronous
New
logs

Log writer

HADR

New
logs

HADR
TCP/IP socket

Commit succeeded

A
syn

ch
ro

n
o
u
s

receive()send()

Super-asynchronous

N
ea

r
sy

n
ch

ro
n
o
u
s

 Chapter 5. DB2 HADR introduction 165

To start HADR, the corresponding commands must be entered on both the
standby and primary databases. The HADR system starts as soon as the primary
database becomes active.

Regarding a HADR system, DB2 has two special engine dispatchable units
(EDUs) to handle all HADR work. The one on the primary database is called
db2hadrp. Its counterpart on the standby database is called db2hadrs. They are
in charge of sending log records from the primary to the standby, processing
system messages, and receiving log files on the standby system.

At the database activation of the primary, the db2hadrp is created; this thread
then reads the database configuration file and opens a port to listen for a
connection from the standby. The relevant HADR database configuration
parameters are described in 11.1, “DB2 HADR configuration parameters” on
page 400. During this time, no client connections are allowed. The primary waits
for the number of seconds set in the configuration parameter HADR_TIMEOUT for
the standby connection. If the primary does not receive any communication from
the standby database, then the primary concludes that the connection with the
standby is lost. If the corresponding primary and standby are in the Peer state
when the connection is lost, they move into the disconnected Peer state if the
hadr_peer_window database configuration parameter is greater than zero, or into
the remote catchup pending state if hadr_peer_window is not greater than zero.

If the BY FORCE clause is used when you run the START HADR command, the
primary does not wait for the standby to connect. The primary creates a listener
and listens on the HADR port. The standby initiates the connection to the
primary. If the standby's connection attempt fails, it tries to connect to the primary
again. DB2 clients are always able to connect to an active HADR primary
database, and whenever the standby is ready, the actual HADR functionality
becomes operative.

The downside of using the BY FORCE clause is that the database does not respect
the setting of the AUTORESTART parameter and if a crash occurs, crash recovery is
performed regardless of the current setting. Any other methods to start HADR,
including ACTIVATE DATABASE and the first client connection, do respect the
AUTORESTART settings.

After the connection is established, the status and “health” of the HADR system
is monitored by a mechanism that is known as heartbeats. Heartbeats verify that
both the primary and the standby can see each other. Heartbeats are special
short messages that are sent over the HADR connection from the primary to the
standby, which are acknowledged and sent back by the standby. The heartbeat
messages are spaced at known time intervals so each end can know how many
heartbeats are missed and take appropriate actions.
166 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Upon successful connection of the standby database to the primary, the HADR
system enters the catchup phase. During the catchup phase, the size of the
logical log gap from the standby to the primary is determined and the primary
starts sending all log files that are required for the standby to reach the same
sync point as the primary.

The db2lfr EDU captures changes that are made on the primary server either by
reading the log buffer or by reading the log files. It then relays the log records to
the db2hadrp thread, that in turn forwards the records to the db2hadrs thread on
the standby. Finally, the db2hadrs thread passes the received log data to the
local log system.

After all the logs in the disk and the memory in the primary are relayed to the
standby, the HADR system enters the Peer state.

5.3 Terminology

Here we list and describe some of the more common terms that are used
specifically with HADR. Most of these terms can be found in various DB2
manuals or the DB2 Information Center, where you can search and see them
being used in context.

Generic definitions can be found in the DB2 10.1 Information Center Glossary at:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.gl
ossary.doc/doc/glossary.html

Use the search field in the DB2 Information Center to find in-context usage of
these terms:

� Catchup phase

HADR initialization always starts in the catchup phase, in which the standby
tries to catch up to in-memory logs on the primary by replaying logs that are
written to the disk or the archive. During catchup, the standby can retrieve log
files locally, or remotely from the primary through the HADR
network connection.

� Cluster

A cluster is a system that is based on two or more nodes. Nodes are
connected to each other and to shared storage. Each of these items is
considered a cluster resource. A clustering software is used to logically
connect these resources to appear as a single system to the clients.
 Chapter 5. DB2 HADR introduction 167

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.glossary.doc/doc/glossary.html

� Cluster resource

An object that can be managed by a clustering software. Clustering software
supports many resource types. These resource types include Disks, IP
addresses, File Share, DB2 instance, and so on.

� Failover

In the context of HADR, this term refers to changing the status of the standby
in an HADR pair to become the primary, with full DB2 functionality, because
the original primary fails. The original primary can start then in the role of
standby. Care must be taken to ensure that the original primary is truly
non-functional at the time of failover. If both databases are functioning as the
primary, there is a conflict in the data update that HADR cannot resolve. The
result is two incorrect versions of the database, which might be impossible
to reconcile.

Failover is also often used in the context of a cluster, where resources on an
active node that failed are made active on a previously passive or inactive
node. This situation is nearly indistinguishable as a concept from failover
in HADR.

� Failback

In the context of HADR, after a failover occurs, which made the original
standby into a primary, failback is the act of reverting this database back to a
standby and bringing the original primary back as a primary once again. That
means, switching the roles of the primary and the standby, while both are
alive and healthy.

Failback is not a mandatory operation. A customer can choose to leave the
databases in their reversed roles until another failover is necessary because
the failure of the new primary. This situation is especially likely in cases where
the HA goal is ultra-fast failover, as failback can be viewed as a needless
interruption in service.

Customers who choose this option must ensure that all DB2 related objects
and processes, which HADR does not replicate, are the same on both the
servers. This situation is especially true for things such as batch schedule
tasks, which must be deactivated while the database is in the standby mode,
and activated while it is in the primary mode.

In the context of a cluster, failback has effectively the same meaning as
with HADR.
168 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

� Failure

Failure is an event where any database service prerequisite component
(DB2, operating system, server machine, or network) is no longer able to
provide the service it is supposed to. HADR maintains data availability if there
is a failure of any single component. If the failure affects only the standby
system or the communication between the primary and the standby, data
remains fully available on the primary without any disruption or required
user action.

If the failure prevents the primary itself from providing DB2 functionality, the
user can take the primary DB2 instance, the server, or both down (if it is not
already) and initiate failover, which rapidly changes the standby system into a
primary, making the data available again after only a brief outage.

Some failures can be detected and reported by HADR and DB2 to assist the
user in deciding whether failover is needed or whether certain database
components simply require attention. The HADR database processes report
a failure when they are unable to communicate. The DB2 database
processes report a failure when they detect a fault. These components are
the only DB2 database components that report failures as provided by the
DB2 software.

� Out of band

In this book, out of band refers to operations that can be performed on the
primary database, and which must be replicated at the standby, but cannot be
repeated solely based on log records. Such operations are non-logged or not
completely logged at the primary. To replicate such an operation, its results (a
copy of the new or modified object, for example) must be passed to the
standby by some other means. This “other means” is considered to be out of
band regarding the log stream. The usage of the term is different from the
meaning of out of band in TCP/IP. Thus, it is preferable to refer to the specific
operations or to non-logged or not completely logged operations to avoid any
confusion.

� Outage period

The outage period is the amount of time it takes to fail over DB2 functionality
from a broken DB2 primary database to the standby. This period starts from
the point at which failover is initiated to the point that DB2 functionality is
restored. To a client that connecting to the DB2 database, it is seen as a
connection failure, at which point retry logic should be working to ensure that
the transaction is not lost.
 Chapter 5. DB2 HADR introduction 169

� Peer state

After the standby catches up with in-memory logs on the primary, HADR
enters the Peer state, in which the primary ships the log records to the
standby whenever it flushes a log record to the disk. The log records are
replayed on the standby as they arrive. The records are also written to local
log files on the standby so that the primary and the standby have identical log
file sequences. Transaction commits on the primary wait for acknowledgment
messages from the standby or at least for a successful return of log send
calls, depending on the user-specified log shipping mode level.

� Primary (database)

The principal (master) copy of the database. Applications apply updates to
the primary database and those updates are propagated to the standby
server through log shipping.

� Primary reintegration

In some cases, the old primary database can rejoin the HADR pair after a
failover. Because the old standby is now the primary, the old primary can join
only as a standby. This concept is called primary reintegration. After
reintegration, a failback can optionally be performed.

� Reads on standby feature

The reads on standby capability can be used to run read-only operations on
the standby database in your HADR solution. You can use this expanded role
of the standby database to use the standby in new ways, such as running
some of the workload that would otherwise be running on your
primary database.

� Standby (database)

A copy of the primary database. It is not updated directly by the application.
All updates occur by rolling forward log data that is generated on the
primary database.

� Auxiliary standby (database)

When you deploy the HADR feature in multiple standby mode, you can have
up to three standby databases in your setup. You designate one of these
databases as the principal HADR standby database; any other standby
database is an auxiliary HADR standby database. The auxiliary standbys can
be only in SUPERASYNC mode.
170 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

� Split brain

This term refers to the condition of having both databases in an HADR pair
acting as primaries simultaneously. Such a situation leads to the databases
becoming inconsistent with each other and should be avoided at all costs.
HADR never automatically makes state transitions that result in two
primaries, and when the pair can communicate with each other (that is, the
network connection between them is operating properly), they also prevent a
user from creating this situation in an unforced takeover. HADR also does not
allow an inactive primary database to be activated without a successful
connection to a standby within the HADR_TIMEOUT period.

However, split brain is still possible in a situation where the user instructs the
current standby to become a primary while the communications link between
the pair is down, if either the current primary is still active or if it is brought
back to the non-HADR, or standard mode. But, this command is a manual
one that runs only in the most dire cases.

� Standard (database)

In the context of HADR, standard means a normally operating non-HADR
database, that is, a database not using the HADR feature, and therefore not
operating in either the primary or the standby mode.

� Synchronous mode

In the Peer state, the primary does not consider a transaction as committed
until it receives an acknowledgment message from the standby confirming
that the relevant log data is received and written to the disk on the standby.
Therefore, if a transaction is committed on the primary, it is guaranteed to be
persistently stored in the standby's log file. Even if the standby crashes before
it is able to replay the log, it can still replay it from its own log file when it
restarts. There is no transaction loss in a synchronous mode failover if the
primary was in a Peer state at the time of the failure.

� Near-synchronous mode

In the Peer state, the primary does not consider a transaction as committed
until it gets an acknowledgment message from the standby confirming that
the relevant log data is received and written to the main-memory of the
standby.

� Asynchronous mode

In the Peer state, the primary does not consider a transaction as committed
until it successfully submits the relevant log data to the network. The primary
does not wait for any acknowledgment message that the log data
was received.
 Chapter 5. DB2 HADR introduction 171

� Super-asynchronous mode

In this mode, the HADR pair can never be in the Peer state or disconnected
Peer state. The log writes are considered successful when the log records are
written to the log files on the primary database. Because the primary
database does not wait for acknowledgement from the standby database,
transactions are considered committed regardless of the state of the
replication of that transaction.

� Takeover

Takeover is the act of the HADR standby taking control of the database from
the old primary server and becoming the new HADR primary. Takeover is
always initiated from the standby. If the primary can be reached over the
network as in an unforced takeover, the standby asks it to switch to standby,
performing cooperative role switching. Otherwise, the standby acts
unilaterally (with the risk of dual primary/split brain). Failover is a unilateral
takeover. Failback is a form of cooperative role switching performed after first
reintegrating the repaired server as a standby. HADR takeover can be
performed outside the context of failover and failback. A user might want to
switch HADR roles for rolling upgrade, which does not involve a failure at all.

� Engine dispatchable unit (EDU)

The DB2 database server must perform many different tasks, such as
processing database application requests or ensuring that log records are
written out to disk. Each task is typically performed by a separate engine
dispatchable unit (EDU). The engine dispatchable units (EDUs) are
implemented as threads on all platforms. DB2 agents are the most common
type of EDU. These agents perform most of the SQL and XQuery processing
on behalf of applications. Prefetchers and page cleaners are other
common EDUs.
172 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Chapter 6. HADR setup

In this chapter, we describe the steps to set up a High Availability Disaster
Recovery (HADR) environment using both the DB2 command line and IBM Data
Studio V3.1.1. We cover the basic operations, including the START HADR, STOP
HADR, and TAKEOVER HADR commands. We also provide some
troubleshooting tips.

This chapter covers the following topics:

� Requirements for setting up HADR
� Setup and configuration
� Basic operation
� Troubleshooting

6

© Copyright IBM Corp. 2007, 2012. All rights reserved. 173

6.1 Requirements for setting up HADR

Before you set up HADR, you must know the requirements for a HADR setup.
We provide a basic outline of what you need to get started (for more information,
see Data Recovery and High Availability Guide and Reference, SC27-3870-00).

6.1.1 Requirements

To set up HADR, you must have the following requirements in place:

� HADR is a DB2 feature available in all DB2 editions except for DB2
Express-C. For the standby and auxiliary standby databases, DB2 licensing
takes place according to usage as hot warm or cold standby. For more
information, consult with an IBM Information Management
marketing representative.

� The operating system on the primary and standby databases should be the
same version, including the patches. You can violate this rule for a short time
during a rolling upgrade, but take extreme caution.

� A TCP/IP interface must be available between the HADR host machines.

� The DB2 version and level must be identical on both the primary and the
standby databases.

� The DB2 software for both the primary and the standby databases must be
the same bit size (32-bit or 64-bit).

� Buffer pool sizes on the primary and the standbys should be the same. If you
build the standby database by restoring the database using the backup copy
from the primary, the buffer pool sizes are the same because this information
is included in the database backup. If you are using the reads on standby
feature, you must configure the buffer pool on the primary so that the active
standby can accommodate log replay and read applications.

� The primary and standby databases must have the same database name,
which means they must be in different instances.

� Table spaces must be identical on the primary and standby
databases, including:

– Table space type (DMS or SMS)
– Table space size
– Container path
– Container size
– Container file type (raw device or file system)

� The amount of space that is allocated for log files should also be the same on
both the primary and standby databases.
174 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

6.1.2 Parameters

Use the following parameters to set up HADR:

� Use identical host computers for the HADR primary and standby database
servers. They should be from the same vendor and have the
same architecture.

� Use a high-speed and high-capacity network for the TCP/IP interface.

� Ensure that the primary and standby database servers have equal amounts
of memory.

� Have identical database (DB) and database management (DBM)
configuration parameters.

6.2 Setup and configuration

Here we perform the steps to set up HADR on an existing installation of DB2.
Our lab example uses 64-bit DB2 10.1 for SUSE Linux Enterprise Server 11 on
Intel (kernel 3.0.34-0.7). However, these steps are applicable to all
supported environments.

6.2.1 Preparing the environment

To prepare a real-world, pre-change window environment to set up HADR, there
are a few things that you can plan for so that you are ready beforehand. Unless
you are still using circular logging, the only downtime that is required for setting
up HADR is for updating database configuration parameters. This downtime can
be avoided by scheduling the work in a regular maintenance window. There
should be no pressure to minimize your change window, but avoid periods of
heavy logging if you want to avoid a long wait for the standby to catch up before
you reach the Peer state.

If you still use circular logging in your environment, you might want to set aside a
separate change window before you start the HADR setup to plan for the
changeover to archival logging, and all the associated considerations for log
archival, overflow scenarios, log file size, and retry on failure. If you are testing
the HADR setup in a sandbox environment, circular logging is only a minor
consideration, and no planning phase is required.

As basic components for this lab, you need at least two DB2 instances of the
same fix pack level.If you plan to set up a HADR environment with multiple
standby databases, you must have at least three DB2 instances of the same fix
pack level.
 Chapter 6. HADR setup 175

HADR works even if both instances are on the same server (or LAPRs), but a
real-world environment has separate servers, as we used in our examples.

Determine whether you intend to use the IBM Data Studio or the DB2 command
line processor (CLP) to configure HADR. IBM Data Studio is perfect for
introducing people who are unfamiliar with the HADR concept.

The DB2 CLP environment is suitable for experienced administrators or for
repeated configurations on multiple HADR server-pairs. It is also suitable for
environments where it is impractical to get a GUI working, whether locally or
remotely, such as AIX with telnet-only access, or systems without Java, or
systems with limited administrative network bandwidth.

If you work in a high-security environment where people that are performing DB2
installations and maintenance are not given sesu/sudo root or Windows
Administrator authority other than in a special change window, take the
necessary steps to request that authority.

If you are running the HADR setup from IBM Data Studio as the DB2 instance
owner, this situation specifically requires that the DB2 instance owner have the
authority to update the /etc/services file
(%Systemroot%\system32\drivers\etc\services on Windows), unless these
ports are registered. You might also have to manually update the /etc/hosts file
if you do not have a reliable Domain Name System (DNS) in place, but still want
to use host names rather than IP addresses.

The servers that you use in a real-world implementation must be connected by a
reliable TCP/IP connection. The servers, or at least the main port for each DB2
instance, must not have a firewall between them, and the two ports you set aside
for HADR communication must be left open.

Depending on your environment, and your choice of HADR SYNCMODE, you
might be working with physically separate servers:

� Over an intranet WAN with a slow connection (use SUPERASYNC)

� Over an intranet WAN (use ASYNC or NEARSYNC, but use them more for
disaster recovery functionality instead of high availability)

� On a LAN (use NEARSYNC)

� On servers that are physically next to each other in the same rack
(use SYNC)

Our example uses the last configuration.
176 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

If your environment does not tolerate frequent backups, even if they are online,
then take whatever steps are necessary to get in a maintenance window to
perform a backup as a starting point for the HADR change window.

If you want to reduce the number of steps that are performed inside IBM Data
Studio, in addition to changing from circular to archival logging, catalog entries
for the remote system on both the servers beforehand:

� Use TCPIP NODE for the DB2 instance.
� Use a DATABASE alias for the DB2 database.

Example 6-1 and Example 6-2 show the commands to catalog the database
server and database.

Example 6-1 Commands to catalog remote entries on the primary server (NODE1)

db2 catalog tcpip node DB2_NODE2 remote x.x.x.x server 60004
remote_instance db2inst1 system NODE2
db2 catalog database SAMPLE as SAMPL_NODE2 at node DB2_NODE2

Example 6-2 Commands to catalog remote entries on the standby server (NODE2)

db2 catalog tcpip node DB2_NODE1 remote x.x.x.x server 60004
remote_instance db2inst1 system NODE1
db2 catalog database SAMPLE as SAMPL_NODE1 at node DB2_NODE1

For our lab example, we use HADR ports 55001 for NODE1 and 55002 for
NODE2. You can also arrange to have the unqualified remote host name
registered in the /etc/hosts file on both the servers so that you do not have to
rely on IP addresses. Because they are not generally dynamic values, it is
acceptable in IBM Data Studio to enter the physical port number for the local and
remote DB2 instances rather than the service name (port 60004 for both
instances in our lab). For administrative and documentation reasons, it is still
important to register the port numbers for the local services in each server’s
/etc/services file.

You are now ready to perform an HADR setup.
 Chapter 6. HADR setup 177

6.2.2 Configuration using the HADR setup wizard

Figure 6-1 illustrates the basic intended high-level architecture of our
lab environment.

Figure 6-1 Lab environment high-level overview

Figure 6-1 shows two example instances both, called DB2INST1 on the server
host names NODE1 (9.162.141.44) and NODE2 (9.162.141.48), in a
non-clustered configuration, with basic TCP/IP Ethernet network adapter
connectivity. NODE1 is initially set up as the HADR primary, and NODE2 is
initially the HADR standby.

The ACR box in Figure 6-1 means automatic client reroute, which is built into the
DB2 client and configured on the DB2 server. After it is configured, ACR is
responsible for routing the client connections to whichever DB2 instance is set as
the primary. For more information about ACR, see Chapter 10, “Automatic client
reroute” on page 377.

In our lab, clients can communicate with the DB2 instance through port 60004,
and DB2 HADR servers communicate with each other through ports 55001
and 55002.

The database that is set up in a HADR configuration is called SAMPLE; we
catalog this database on each remote server, so that it is accessible from the
Administration Explorer view in IBM Data Studio, and for general remote
takeover, stop, and start commands.

Sample Sample

db2inst1 db2inst1

Node1 Node2

ACR

Primary server Standby server

DB2

Client

Port 55001

60004

port

60004

Port 55002
HADR
178 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

In our lab, we start out with only one SAMPLE database, which is in the
DB2INST1 instance on one of the servers (NODE1).

We finish with SAMPLE acting as the HADR primary on the DB2INST1 instance
on NODE1, and as the HADR standby in the DB2INST1 instance on NODE2.

In the descriptions that follow, the term remote is used in the context of the server
that we configure as the standby database, and the term local is used
interchangeably with primary. We are running the setup locally on the server that
becomes the primary. Initially, we do not have a primary or a standby, just the
local server where IBM Data Studio is running (NODE1 for our example) and the
remote server that has a database restored on it (NODE2).

After the configuration is complete, the primary and standby roles can be
switched if you want, so these descriptions are temporary at best. To help with
establishing a more permanent frame of reference, we included in our lab
example the server names (NODE1 and NODE2) in parentheses when we listed
a server, so you can substitute your own server names for each situation.

Beginning HADR configuration
For beginners, the preferred way to achieve a working HADR environment is to
use IBM Data Studio. Complete the following steps:

1. Start IBM Data Studio, and expand the All Databases tree that is located in
the Administration Explorer view to show your databases.

2. Connect to the database you want to set up HADR for by right-clicking the
database in the Administration Explorer and select Connect. If prompted for
connection parameters, enter your connection parameters and click OK.
 Chapter 6. HADR setup 179

3. Right-click the database that you want to set up and select Set Up and
Configure  Setup HADR... (Figure 6-2).

Figure 6-2 Starting the HADR Setup wizard
180 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

4. Check the logging mode of the primary database (Figure 6-3). This message
points out that HADR requires the database to use archival logging.

Figure 6-3 Configure the primary database to use archival logging

If the database is still using circular logging, click Configure..., and complete
the steps to configure archival logging.

If the database is already in archival logging mode, you can skip the next
several substeps (steps a - j on page 182) and go straight to step 5 on
page 182.

a. If the database is in circular logging mode, the first window that opens
after you click Configure is Configure your logging type. Select Archive
as the database logging type.

b. Choose how you would like to handle your archived logs: Click Automatic
DB2 archive and specify a location, such as /usr/db2/archlog (for Linux)
or C:\db2archlog (Windows) for the primary’s archive log files. Click
Logging Size in the right pane of the window.

c. Choose the number and size of your log files: You can accept the defaults,
as we do in our example, but if you have different requirements, see
Chapter 5, “Databases”, in DB2 10.1 Database Administration Concepts
and Configuration Reference, SC27-3871-00. Click Logging Location.

d. Specify the location of your log files: Specify a location such as
/usr/db2/actlog (Linux) or C:\db2actlog (Windows). Click
Backup Image.

e. Specify where to store your backup image: This action is required as part
of the conversion to archival logging, as the database is placed in a
backup pending state after you change the critical database configuration
parameters. The logging recommences in the new archival format from
that point in time. Here we specify a location such as /usr/db2/backup
(Linux) or C:\db2backup (Windows). Click Backup Options.
 Chapter 6. HADR setup 181

f. Specify options for the backup: Accept the defaults, and choose to
compress the backup image if you want to save time to transfer the file to
the standby server later on. Click Preview Command in the upper pane of
the Settings window.

g. Review the actions that take place when you click Run: Here you can see
a summary of the commands that are run when you click Run. Click Run
or go back to one of the previous steps to fix any incorrect settings
as necessary.

h. A warning message is displayed in the SQL Results window, warning you
that the database is going to be deactivated and reactivated before the
changes to one or more of the configuration parameters be effective.

i. The progress of the backup is indicated by the progress bar in the
message section. Wait for it to complete.

j. The SQL Results pane in the lower section of the window gives you a
summary of the results. Close the Configure Database Logging window.

5. Identify a standby database. After your database logging is in a state where
you can start the HADR configuration and the configuration is deactivated,
you can proceed with the next step which is choosing your standby database
(Figure 6-4 on page 183). For this step, it is not relevant if you have a
database on another server; have a DB2 instance running there.
182 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Figure 6-4 Choosing a database to use as a standby database
 Chapter 6. HADR setup 183

If you have not done so, catalog the standby server by providing the IP/host
name, Instance name, and either specify a backup image of the primary
server, or an existing remote database. To create a connection profile for your
standby database, click Add.... Add the host name/IP address and port
number for the remote system and the name of the instance that is running on
the standby system. You must provide a user name and password to connect
to the remote instance; use any SYSADM user name from the remote
instance (NODE2).

In the Add dialog box, the three fields for the details of the remote server
(Host, Port, and Instance name) are described as follows:

– Host name: Specify the host name or TCP/IP address of the standby
database server.

– Port number: Specify the TCP/IP connection port for the selected
database on the host.

– Instance name: Specify the name of the DB2 instance that is running on
the standby system.

For the field that specifies the port number, we used port 60004 for both
DB2INST1 on the primary and DB2INST1 on the standby, that is, the DB2
port for the DB2 service for the instance on each server. This port is the one
with which clients connect to DB2.

HADR itself uses two different ports, one for each server. We use 55001 and
55002 for our example; these ports are for log transmission and HADR
administrative traffic.

Figure 6-5 on page 185 shows the dialog box that prompts you for the details
about the standby database. Enter the required information and click either
Test connection to test the connection or Finish to create your connection
profile.
184 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Figure 6-5 Catalog an instance node name for the remote server’s DB2 instance

6. To set up HADR, you can use either of the two options that are shown in the
Standby database initialization options for connection profile section in
Figure 6-4 on page 183 to initialize the database on the standby system. You
can either use an existing database or create a database on the standby
system using a backup of the database that is located on the primary. The
second one (Create a database by using a backup image) should provide a
simple HADR setup, which is what we used in our example.

7. Specify a backup image of the primary database (see Figure 6-4 on
page 183). If you previously set up your database for archival logging, you
must have created a backup, which is perfect for a HADR configuration.

If you were already using archival logging, this point is when you must make a
backup of your primary database. You can accomplish this task by selecting
the Primary Database section and clicking Backup. After the backup is
complete, you can use this backup to restore the database on the standby
database.
 Chapter 6. HADR setup 185

In the Configure standby database window, you have two methods you can
use to restore the database on the standby database. In the Method for
selecting a backup image pane, you can either select Enter the backup
image information manually or Select the image from a table. We choose
to click select the backup image from a table as shown in Figure 6-4 on
page 183.

After you make your choice, a pane opens where you can select one of the
previously made backup images. Because we made a backup while we
changed the database logging from circular to archival mode, we choose the
latest backup in the Backup image section of the window.

IBM Data Studio is able to use DB2 ports to transfer the backup image on the
local system to the remote system. To accomplish this task, you must provide
a path on the standby where the backup image is to be copied to. You can
accomplish this task by using the Standby system directory for backup image
pane, which is the last pane in the window. Specify a path where the backup
image should be copied to.

If the backup image that you intend to restore from is not listed in the table (for
example, if the backup image is being transferred to the remote server over
FTP or through file sharing), then select Enter the backup image
information manually and specify the subdirectory and the date and time for
the backup image you are using, as found in the backup file name. Click
Copy Objects to proceed.
186 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

8. Copy objects to the standby system (Figure 6-6). If you have DB2 objects that
are not copied inside a database backup file, such as external code for UDFs
and stored procedures, you can identify those objects in this window and
have DB2 move them for you. Because we have none of those objects in our
example, we leave the window blank and click TCP/IP Parameters
to proceed.

Figure 6-6 Copy “special” objects across to the standby system
 Chapter 6. HADR setup 187

9. Specify TCP/IP communication parameters. Figure 6-7 shows the settings
that are required for the HADR-specific host name and service/port number
for the primary and standby databases. The HADR feature establishes a
connection between the primary and the standby databases. The TCP/IP
parameters (service name/port number and host name) for both databases
are retrieved from the database configuration information. Enter unique
values (as required) and click Client Reroute to proceed.

Figure 6-7 Specify host address and port numbers for both HADR communication channels
188 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

10.Configure databases for automatic client reroute. Figure 6-8 shows where we
set up the IP address redirect facility. Each client connection to a DB2 server
stores the IP address and port number of the primary and standby server.
When you switch roles, or force a takeover, the other IP address is then used
by the client; all a client sees is an SQL message that informs him that the
connection is changed and the transaction or database connection should be
tried again. For more information about ACR, see Chapter 10, “Automatic
client reroute” on page 377.

The port number refers to the main port number for the DB2 instance, not to
the HADR port. Match the port number with the correct server name/IP
address, and remember that the “alternate” for the primary is the standby
server, and vice versa. Click Synchronization to proceed.

Figure 6-8 Configuring the automatic client reroute server and port information
 Chapter 6. HADR setup 189

11.Specify synchronization mode for Peer state log writing. In Figure 6-9, you
can choose whether you want synchronous, near-synchronous,
asynchronous, or super-asynchronous mode for HADR. In our example, we
choose synchronous. For more information about the four available
synchronization modes, see 5.2, “HADR architecture” on page 165. Specify
values for the time-out period and the peer window time length. In our
example, we accept the default values. For details about choosing the
synchronization mode and how to speed up takeover time, see Chapter 11,
“HADR configuration parameters and registry variables” on page 399. Click
Options to proceed.

Figure 6-9 Choose an HADR syncmode - SYNC, NEARSYNC, or ASYNC
190 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

12.Choose the Setup HADR options. Figure 6-10 shows the HADR options
window. Here you can choose to either start the HADR services immediately
after the setup is complete, or to start them later on your own. For our
example, we choose to start the HADR services immediately. Furthermore,
you can set some registry variables. For example, you can enable the
standby database to accept read-only workloads.

Figure 6-10 Choose option parameters
 Chapter 6. HADR setup 191

13.Review the actions that take place when you click Run (Figure 6-11). By
clicking the Preview Command link, you can review the command-line
statements that are run when you hit the Run button. These commands are
worth saving in a text file for subsequent configurations. To start the setup
process, click Run.

Figure 6-11 Reviewing the commands before you start the final HADR setup

14.Execution of steps. After you click Run, the steps of the previously generated
script are run. Figure 6-11 shows a summary of those commands. If any
issues are encountered, IBM Data Studio informs you about what went wrong
and what must be corrected to successfully complete the corresponding step.
192 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Figure 6-12 shows the completed step, which is what you see when the script
runs successfully. The standard HADR setup with one primary and one
standby is now complete. Close the HADR setup window to complete the
setup process.

Figure 6-12 SQL Results window - the completed steps for a scripted HADR setup

15.Verify the HADR setup. You can check if your HADR setup is working
correctly by using IBM Data Studio.
 Chapter 6. HADR setup 193

Right-click the corresponding database in the Administration Explorer and
select Manage Database  Manage HADR. A window similar to the one
shown in Figure 6-13 opens.

Among other things, you can see here that the databases are running in the
Peer state, with the appropriate synchronization mode, and that they are in a
connected state. In addition, you can also see the log information. You can
get similar information by using the MON_GET_HADR table function or the
db2pd command.

Figure 6-13 IBM Data Studio - manage the HADR window

6.2.3 Command-line setup

DB2 provides both a command line and a GUI setup for HADR. In this section,
we demonstrate how to set up HADR using the command-line interface (CLI). In
our lab environment, we set up the NODE1 server as the primary server, and
NODE2 server as the standby server with the database SAMPLE on
both servers.
194 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

To set up HADR through the CLI, complete the following steps:

1. Set the required database configuration parameters.

If archive logging is not already turned on, then update the LOGARCHMETH1
parameter by running the following command:

db2 update database configuration for sample using LOGARCHMETH1
disk:/dbuser/archived_logs

Also, set the LOGINDEXBUILD parameter so that index creation, recreation, or
reorganization operations are logged, by running the following command:

db2 update database configuration for sample using LOGINDEXBUILD ON

2. Back up your database on the primary by running the following command:

db2 backup database sample to /usr/db2/backup

3. Move a copy of the backup to the standby server.

4. Restore the database on your standby server.

In our example, we restore the SAMPLE database on the NODE2 server by
running the following command:

db2 restore database sample from /usr/db2/backup taken at
20120716101759 replace history file

5. Configure databases for ACR. This step is optional, but is a good idea. To
configure ACR, update the ALTERNATE SERVER database configuration
parameter on both the primary and the standby server by completing the
following steps:

a. On the primary server, NODE1 in our test case, set the standby server as
the alternate server by running the following command:

db2 update alternate server for database sample using hostname
NODE2 port 60004

b. On the standby server, NODE2 in our test case, set the primary server as
the alternate server by running the following command:

db2 update alternate server for database sample using hostname
NODE1 port 60004

6. Update the following fields in the services file on the primary (NODE1) and
standby (NODE 2) server for HADR communication:

– Service name: DB2_HADR_1
– Port number: 55001
– Service name: DB2_HADR_2
– Port number: 55002
 Chapter 6. HADR setup 195

7. Update the HADR database configuration parameters on the primary
database (NODE1) by running the following commands:

– db2 update db cfg for SAMPLE using HADR_LOCAL_HOST NODE1

– db2 update db cfg for SAMPLE using HADR_LOCAL_SVC DB2_HADR_1

– db2 update db cfg for SAMPLE using HADR_REMOTE_HOST NODE2

– db2 update db cfg for SAMPLE using HADR_REMOTE_SVC DB2_HADR_2

– db2 update db cfg for SAMPLE using HADR_REMOTE_INST db2inst1

– db2 update db cfg for SAMPLE using HADR_SYNCMODE SYNC

– db2 update db cfg for SAMPLE using HADR_TIMEOUT 3

– db2 update db cfg for SAMPLE using HADR_PEER_WINDOW 120

– db2 connect to SAMPLE

– db2 quiesce database immediate force connections

– db2 unquiesce database

– db2 connect reset

8. Update the HADR database configuration parameters on the standby
database, NODE2 in our test case, by running the following commands:

– db2 update db cfg for SAMPLE using HADR_LOCAL_HOST NODE2

– db2 update db cfg for SAMPLE using HADR_LOCAL_SVC DB2_HADR_2

– db2 update db cfg for SAMPLE using HADR_REMOTE_HOST NODE1

– db2 update db cfg for SAMPLE using HADR_REMOTE_SVC DB2_HADR_1

– db2 update db cfg for SAMPLE using HADR_REMOTE_INST db2inst1

– db2 update db cfg for SAMPLE using HADR_SYNCMODE SYNC

– db2 update db cfg for SAMPLE using HADR_TIMEOUT 3

– db2 update db cfg for SAMPLE using HADR_PEER_WINDOW 120

9. If you want to use the reads on standby feature, you must set the
corresponding registry variables on the standby server by running the
following commands (this step is optional):

– db2set DB2_HADR_ROS=ON

– db2set DB2_STANDBY_ISO=UR

10.Start the standby database first by running the following commands
on NODE2:

– db2 deactivate database SAMPLE

– db2 start hadr on database SAMPLE as standby
196 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

11.Start HADR on the primary database on NODE1 by running the
following commands:

– db2 deactivate database SAMPLE

– db2 start hadr on database SAMPLE as primary

6.2.4 Setting up HADR with multiple standby servers

This section describes how to initialize HADR in multiple standby mode.
Initializing a HADR system in multiple standby mode is similar to single standby
mode. The main difference is that multiple standby mode requires the
hadr_target_list configuration parameter to be set on all
participating databases.

This parameter lists the standby servers in a scenario where the database
becomes a primary. It is required even on a standby. Mutual inclusion is required
(that is, if server A has server B in its target list, B must have A in its target list).
This setup ensures that after a takeover from any standby, the new primary can
always keep the old primary as its standby. The first standby that you specify in
the target list is designated as the principal standby database. Additional
standbys are auxiliary standby databases. Working out the target list for each
database is an important step.

To initialize HADR in multiple standby mode, complete the following steps:

1. Set the required database configuration parameters.

If archival logging is not already activated, update the LOGARCHMETH1
parameter by running the following command:

db2 update db cfg for sample using LOGARCHMETH1
disk:/dbuser/archived_logs

Also, set the LOGINDEXBUILD parameter so that index creation, recreation, or
reorganization operations are logged, by running the following command:

db2 update database configuration for sample using LOGINDEXBUILD ON

2. Back up your database on the primary by running the following command:

db2 backup database sample to /usr/db2/backup compress

3. Move a copy of the backup to each of the standby servers.
 Chapter 6. HADR setup 197

4. Restore the database on each of the standby servers.

In our example, we restore the SAMPLE database on NODE2 (the principal
standby) and on NODE3 (the auxiliary standby) by running the
following command:

db2 restore database sample from /usr/db2/backup taken at
20120716153706 replace history file

5. Configure the databases for ACR. This step is optional, but is a good idea.
Because each database server can have only one alternate server that is
defined, you must select one standby database (usually the principal standby)
as the alternate server of the primary. To configure ACR, update the
ALTERNATE SERVER database configuration parameter on both the primary and
each standby by completing the following steps:

a. On the primary server, NODE1 in our test case, set the standby server as
the alternate server by running the following command:

db2 update alternate server for database sample using hostname
NODE2 port 60004

b. On the principal standby server, NODE2 in our test case, set the primary
server as the alternate server by running the following command:

db2 update alternate server for database sample using hostname
NODE1 port 60004

c. On the auxiliary standby server, NODE3 in our test case, set the primary
server as the alternate server by running the following command:

db2 update alternate server for database sample using hostname
NODE1 port 60004

6. Add the following fields in the services file on the primary (NODE1) and each
standby (NODE 2, NODE3) server to set up the HADR communication:

– Service name: DB2_HADR_1
– Port number: 55001
– Service name: DB2_HADR_2
– Port number: 55002
– Service name: DB2_HADR_3
– Port number: 55003

7. Update the HADR database configuration parameters on the primary
database (NODE1) by running the following commands:

– db2 update db cfg for SAMPLE using HADR_LOCAL_HOST NODE1

– db2 update db cfg for SAMPLE using HADR_LOCAL_SVC DB2_HADR_1

– db2 update db cfg for SAMPLE using HADR_REMOTE_HOST NODE2

– db2 update db cfg for SAMPLE using HADR_REMOTE_SVC DB2_HADR_2
198 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

– db2 update db cfg for SAMPLE using HADR_REMOTE_INST db2inst1

– db2 update db cfg for SAMPLE using HADR_TARGET_LIST
NODE2:55002|NODE3:55003

– db2 update db cfg for SAMPLE using HADR_SYNCMODE SYNC

– db2 update db cfg for SAMPLE using HADR_TIMEOUT 3

– db2 update db cfg for SAMPLE using HADR_PEER_WINDOW 120

– db2 connect to SAMPLE

– db2 quiesce database immediate force connections

– db2 unquiesce database

– db2 connect reset

8. Update the HADR database configuration parameters on the principal
standby database, NODE2 in our test case, by running the
following commands:

– db2 update db cfg for SAMPLE using HADR_LOCAL_HOST NODE2

– db2 update db cfg for SAMPLE using HADR_LOCAL_SVC DB2_HADR_2

– db2 update db cfg for SAMPLE using HADR_REMOTE_HOST NODE1

– db2 update db cfg for SAMPLE using HADR_REMOTE_SVC DB2_HADR_1

– db2 update db cfg for SAMPLE using HADR_REMOTE_INST db2inst1

– db2 update db cfg for SAMPLE using HADR_TARGET_LIST
NODE1:55001|NODE3:55003

– db2 update db cfg for SAMPLE using HADR_SYNCMODE SYNC

– db2 update db cfg for SAMPLE using HADR_TIMEOUT 3

– db2 update db cfg for SAMPLE using HADR_PEER_WINDOW 120

9. Update the HADR database configuration parameters on the auxiliary
standby database, NODE3 in our test case, by running the
following commands:

– db2 update db cfg for SAMPLE using HADR_LOCAL_HOST NODE3

– db2 update db cfg for SAMPLE using HADR_LOCAL_SVC DB2_HADR_3

– db2 update db cfg for SAMPLE using HADR_REMOTE_HOST NODE1

– db2 update db cfg for SAMPLE using HADR_REMOTE_SVC DB2_HADR_1

– db2 update db cfg for SAMPLE using HADR_REMOTE_INST db2inst1

– db2 update db cfg for SAMPLE using HADR_TARGET_LIST
NODE1:55001|NODE2:55002

– db2 update db cfg for SAMPLE using HADR_SYNCMODE SUPERASYNC
 Chapter 6. HADR setup 199

– db2 update db cfg for SAMPLE using HADR_TIMEOUT 3

– db2 update db cfg for SAMPLE using HADR_PEER_WINDOW 120

10.If you want to use the reads on standby feature, you must set the
corresponding registry variables on each standby by running the following
commands (this step is optional):

– db2set DB2_HADR_ROS=ON

– db2set DB2_STANDBY_ISO=UR

11.Start the standby databases first by running the following commands on
NODE2 and NODE3:

– db2 deactivate database SAMPLE

– db2 start hadr on database SAMPLE as standby

12.Start HADR on the primary database on NODE1 by running the
following commands:

– db2 deactivate database SAMPLE

– db2 start hadr on database SAMPLE as primary

13.To verify that HADR is running, you can query the status of the databases
from the primary on NODE1 by running the db2pd command, which returns all
information about the HADR setup, including the standbys.

db2pd -db sample -hadr

The standby databases start in the local catchup state, in which locally available
log files are read and replayed. After all local logs are replayed, the databases
enter the remote catchup pending state. After the primary starts, the standbys
enter remote catchup state, in which log pages are received from the primary
and replayed. After all of the log files that are on the disk of the primary database
are replayed on the standbys, what happens next depends on the type of
synchronization mode. A principal standby in SUPERASYNC and any auxiliary
standby stay in remote catchup mode. A principal standby with a SYNC,
NEARSYNC, or ASYNC mode enter peer mode.

The previous steps describe how the set up a HADR scenario with multiple
standbys from scratch. If you have a working HADR environment (consisting of
one primary and one standby) and want to add an additional auxiliary standby,
you can find more information in the Information Center at:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=/com.ibm
.db2.luw.admin.ha.doc/doc/t0060257.html
200 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=/com.ibm.db2.luw.admin.ha.doc/doc/t0060257.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=/com.ibm.db2.luw.admin.ha.doc/doc/t0060257.html

6.2.5 HADR log spooling

The HADR log spooling feature is a new feature of DB2 10.1. It allows
transactions on a primary to progress without having to wait for the log replay on
the standby. When this feature is enabled, log data that is sent by the primary is
spooled, or written, to disk on the standby, and that log data is later read by
log replay.

The log spooling feature represents an improvement to the HADR feature. When
replay is slow, it is possible that new transactions on the primary can be blocked
because it is not able to send log data to the standby system if there is no room
in the buffer to receive the data. The log spooling feature means that the standby
is not limited by the size of its buffer. When there is an increase in data received
that cannot be contained in the buffer, the log replay reads the data from disk.
This situation allows the system to better tolerate either a spike in transaction
volume on the primary, or a slow down of log replay (because of the replay of
particular type of log records) on the standby.

This feature could potentially lead to a larger gap between the log position on the
primary and the log replay on standby, which can lead to longer takeover time.
You should consider your spool limit setting carefully, because the standby
cannot start as the new primary and receive transactions until the replay of the
spooled logs finishes.

The log spooling feature is activated by setting the hadr_spool_limit database
configuration parameter.

db2 update db cfg for sample using HADR_SPOOL_LIMIT -1

The default value of 0 means no spooling. A value of -1 means unlimited
spooling (as much as supported by the disk space available). If you are using a
high value for hadr_spool_limit, and if there is a large gap between the log
position of the primary and log replay on the standby, this setup might lead to a
longer takeover time. The standby cannot assume the role of the new standby
until the replay of the spooled logs finishes.

6.3 Basic operation

This section gives you the basic details about the start, stop, and takeover
operations that are preformed for HADR. We give examples for both the
command-line environment and IBM Data Studio.
 Chapter 6. HADR setup 201

6.3.1 Starting and shutting down

This section covers the startup and shutdown procedures for HADR in IBM Data
Studio and the command-line environment.

Startup
Before you start HADR, ensure that your database manager (instance) on both
the primary and standby databases is started. Run db2start to start the instance
one each side, primary and standby. The instances can be started in any order.

When you start HADR, start the standby database before the primary database.
The reason for starting the standby first is that the primary HADR startup, without
the BY FORCE option, requires the standby to be active within the HADR_TIMEOUT
period. Otherwise, the startup process fails to prevent a split-brain scenario.

Running the start command
Here is the syntax for the start command:

START HADR ON DATABASE database-alias [USER username [USING password]]
AS {PRIMARY [BY FORCE] | STANDBY}

When you start the primary, the BY FORCE option specifies that the HADR primary
database does not wait for the standby database to connect to it. After you run
start BY FORCE, the primary database still accepts valid connections from the
standby database whenever the standby later becomes available.

For example, to start HADR on the primary, run the following command:

db2 start hadr on database sample as primary

It is important to note which database you are on when you start HADR.

You can find details for the START HADR command in DB2 10.1 Command
Reference, SC27-3868-00.
202 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Starting HADR from IBM Data Studio
HADR can also be started from the Manage HADR window in the IBM Data
Studio by completing the following steps:

1. From IBM Data Studio, expand the All Databases tree in the Administration
Explorer down to the wanted database object. Right-click the database that
you plan to start HADR on and select Manage Database  Manage HADR
(Figure 6-14).

Figure 6-14 Select Manage HADR
 Chapter 6. HADR setup 203

2. From the Manage High Availability Disaster Recovery (HADR) window, check
the Manage primary/standby database check box and select the Start
HADR service option in each pane (Figure 6-15). Click Run to start HADR.

Figure 6-15 Start HADR from the Manage HADR window
204 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Shutdown
Although the STOP HADR command can be used to stop HADR on the primary or
the standby, or both, it should be used with caution. If you want to stop the
specified database but still want it to maintain its role as either an HADR primary
or a standby database, do not run STOP HADR. If you run STOP HADR, the database
becomes a standard database and might require reinitialization to resume
operations as an HADR database. Instead, run DEACTIVATE DATABASE.

If you want to shut down only the HADR operation, this is the preferred way of
shutting down the HADR pair:

1. Deactivate the primary database.
2. Stop DB2 on the primary database.
3. Deactivate the standby database.
4. Stop DB2 on the standby database

Using the STOP HADR command
You can stop HADR from the command line or IBM Data Studio. When you want
to bring your database to a standard database, run STOP HADR.

The shutdown command has the following syntax:

STOP HADR ON DATABASE database-alias [USER username [USING password]]

For example:

db2 stop hadr on database sample

You can find the details for the STOP HADR command in DB2 10.1 Command
Reference, SC27-3868-00.

Stopping HADR from IBM Data Studio
You can stop HADR from IBM Data Studio by completing the following steps:

1. From IBM Data Studio, expand the All Databases tree in the Administration
Explorer down to the wanted database object. Right-click the database that
you plan to stop HADR on and select Manage Database  Manage HADR
(Figure 6-14 on page 203).
 Chapter 6. HADR setup 205

2. From the Manage High Availability Disaster Recovery (HADR) window, check
the Manage primary database check box and select the Stop HADR
service option (Figure 6-16). You can also stop just the standby, or both the
primary and the standby, by repeating the process for the standby section of
the HADR window (Figure 6-17 on page 207). Click Run to stop HADR.

Figure 6-16 Stop HADR from the Manage HADR window
206 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Figure 6-17 Manage standby database section of the HADR window

6.3.2 Planned takeover

Planned takeover is also referred to as switching roles or role exchange. You run
TAKEOVER when you want to switch roles of the databases. For example, during
an upgrade, you switch roles, making the standby the new primary. Remember
to reroute your clients either manually or by using ACR after you run TAKEOVER.

Switching roles is done only from the standby when the databases are in the
Peer state. The TAKEOVER command fails if the databases are in any other state.

The takeover procedure is to run TAKEOVER HADR. For example, run the takeover
command on the standby database by running the following command:

db2 takeover hadr on database sample

The details for the TAKEOVER HADR command are found in DB2 10.1 Command
Reference, SC27-3868-00.

After you run the TAKEOVER HADR command from the standby, the following steps
are carried out in the background:

1. The standby tells the primary that it is taking over.

2. The primary forces off all client connections and refuses new connections.

3. The primary rolls back any open transactions and ships the remaining log, up
to the end of the log, to standby.
 Chapter 6. HADR setup 207

4. The standby replays the received log, up to the end of the log.

5. The primary becomes the new standby.

6. The standby becomes the new primary.

Using IBM Data Studio
In our example, we start out with the SAMPLE database on NODE2 as the
primary database. To perform a takeover in IBM Data Studio, complete the
following steps:

1. From IBM Data Studio, expand the All Databases tree in the Administration
Explorer down to the wanted database object. Right-click the database that
you plan to take over HADR and select Manage Database  Manage HADR
as shown in Figure 6-14 on page 203.

2. In the HADR window, check the Manage standby database check box and
select the Takeover as primary radio button (Figure 6-18).

Figure 6-18 Manage HADR Takeover
208 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

3. Clicking the Preview Command link shows the commands DB2 that runs for
the takeover operation (Figure 6-19).

Figure 6-19 Command windows shows the Takeover HADR script

4. Click Run to cause the standby to take over as primary.

The primary and the standby roles are swapped. Run the same command again
to swap the roles back. This action can be done as often as necessary, assuming
that the databases are in the Peer state.

6.3.3 Takeover by force

A takeover by force is also referred to as failover, which is issued from the
standby database with the TAKEOVER command BY FORCE option included. You
should use takeover by force only if your primary database is not functional. The
BY FORCE option tells the standby to become the new primary without
coordinating with the original primary, as it does with a planned takeover. When
the PEER WINDOW ONLY suboption is specified, there is no committed transaction
loss if the command succeeds and the primary database is stopped before the
end of the peer window period.
 Chapter 6. HADR setup 209

The procedure for failover includes the following steps:

1. Ensure that the primary is down to minimize the chances of data loss. If a
takeover by force is run and the primary is not down, this action can result in
both the databases becoming primary databases. This situation is referred to
as split-brain.

2. Run TAKEOVER HADR with the BY FORCE and PEER WINDOW ONLY options on the
standby database. Here is an example of this command for the
SAMPLE database:

db2 takeover hadr on database sample by force

After you run TAKEOVER HADR with the BY FORCE option from the standby, the
following steps are carried out in the background:

1. The standby sends a notice that tells the primary to shut down.

2. The standby does not wait for any acknowledgement from the primary to
confirm that it received the takeover notification or that it shut down.

3. The standby stops receiving logs from the primary, finishes replaying the logs
that it received, and then becomes a primary.

Data loss is possible when a takeover by force is issued. Your chance of data
loss depends on your configuration and circumstances. The following list shows
the general settings and the result of a failure on the primary:

� If the primary database is in the Peer state when it fails:

– With syncmode set to SYNC, the standby does not lose any transactions
that were reported committed to the application before the primary failed.

– With syncmode set to NEARSYNC, the standby loses only transactions
that are committed by the primary if the primary and standby databases
fail at the same time. This scenario is highly unlikely.

– With syncmode set to ASYNC or SUPERASYNC, the standby database
can lose transactions that are committed on the primary if the standby did
not receive all of the log records for those particular transactions before
the takeover operation was performed. As with the NEARSYNC mode, if
the primary and the standby fail at the same time, transactions can be lost.

� If the primary is in the remote catchup pending state or any other non-Peer
state when it fails, for all the four syncmodes (SYNC, NEARSYNC, ASYNC,
and SUPERASYNC), transactions that are not received and processed by the
standby database are lost.

When you run TAKEOVER BY FORCE PEER WINDOW ONLY and it succeeds, then there
is not any transaction information on the primary database that is not copied to
the standby database. This situation ensures a greater degree of
data consistency.
210 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

For more information about ways to prevent data loss in a forced takeover, see
Chapter 7, “Developing a backup and recovery strategy”, in DB2 10.1 Data
Recovery and High Availability Guide and Reference, SC27-3870-00.

Following a takeover by force because of a failure at the primary database, after
the old primary is recovered and you bring it back online, you can reintegrate the
old primary as the standby database.

To reintegrate the old primary, complete the following steps:

1. Recover the failed primary, and bring it back online.

2. Restart the failed primary as the new standby by running START HADR.
For example:

db2 start hadr on database sample as standby

If the two databases have incompatible log streams, for example, because of
logs not being received from the standby before takeover, then the reintegration
of the old primary with the new standby fails. You must restore a backup of the
current primary to your failed primary to start it as the new standby. For more
information about reintegration, see 6.4.5, “Re-establishing HADR after failure”
on page 217.

Example of takeover by force in IBM Data Studio
To perform a takeover by force in IBM Data Studio, complete the following steps:

1. From the IBM Data Studio, expand the All Databases tree in the
Administration Explorer down to the wanted database object. Right-click the
database that you plan to execute a takeover HADR on and select Manage
Database  Manage HADR, as shown in Figure 6-14 on page 203.
 Chapter 6. HADR setup 211

2. In the HADR window, check the Manage standby database check box and
select the Takeover as primary radio button (Figure 6-20). Check the By
force check box.

Figure 6-20 Takeover HADR by force

3. Click Run to force the standby to take over as the primary.

6.4 Troubleshooting

Here we examine some of the possible issues you might encounter while you set
up and run HADR, and while you attempt to resume the HADR operation after a
server failure, or another unanticipated interruption to DB2 HADR
communication. In most cases, the solutions and workarounds are
straightforward, but are not often immediately obvious from the error messages
you might be getting at the time.

An additional source of material to review in case you run into trouble when you
set up HADR are the platform-specific prerequisites and maintenance
dependencies, which are dynamically updated online at the following website:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=/com.ibm
.db2.luw.qb.server.doc/doc/r0025127.html
212 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=/com.ibm.db2.luw.qb.server.doc/doc/r0025127.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=/com.ibm.db2.luw.qb.server.doc/doc/r0025127.html

6.4.1 During setup

Here is a list of issues and their possible fixes that might be encountered
during setup:

� Symptom

On Windows, various error messages are claiming that the user ID does not
have the authority to run a command, even though the user ID is both the DB2
instance owner with implicit SYSADM authority and a
Windows Administrator.

– Fix

As a prerequisite, ensure that if you are in a permanently connected
domain, have the DB2ADMNS group with the DB2 instance user ID
created at least on the domain and optionally replicated onto the local
servers as a security policy. Ensure that you are logged on to Windows as
the same user ID type when DB2 was installed. In an Active Directory
configured server, this user is most likely the domain user ID rather than
the local user ID. Ensure that the user ID you log on with is part of the
Administrator’s group. You can also encounter issues with the DB2
instance user ID’s implicit authority if you change the SYSADM_GROUP
db cfg parameter from the default blank value, even if the DB2 instance
owner is connected to the SYSADM_GROUP.

If you are running DB2 on a server that is configured in a domain, but is
not permanently connected to that domain and does not have a security
policy periodically overwriting the local registry, then it might be better to
install everything using the local user ID.

A final consideration is to check the value of the DB2 registry variable
DB2_GRP_LOOKUP, which is specific to the Windows environment. Users who
log on as the domain user ID have their group connections in Windows
checked against the domain groups by default, rather than local groups.
Setting the DB2_GRP_LOOKUP parameter to LOCAL overrides this behavior.

� Symptom

You cannot see the remote server or DB2 objects on the standby server when
you attempt to discover DB2 instances and databases.
 Chapter 6. HADR setup 213

– Fix

Manually catalog the administrative TCP/IP node, the instance TCP/IP
node, and the remote database on the command line, as shown in
Example 6-3.

Example 6-3 Catalog the TCP/IP node and database

db2 catalog tcpip node db2_NODE2 remote x.x.x.x server 60004
remote_instance db2inst1 system NODE2
db2 catalog database sample as sampl_NODE2 at node db2_NODE2

6.4.2 After setup or during normal execution

The following common issues and possible fixes are encountered after setup and
when HADR is operating:

� Symptom

A SQL30081N communication error is detected when you attempt to connect to
the database on the remote server, even though there was no issue
previously, and the relevant DB2 instance is definitely up and running on the
remote server.

– Fix:

This issue is a common one on a dynamic network environment, and
could be caused by any number of reasons, including firewall issues, IP
address or port number mismatches or conflicts, incorrect /etc/hosts or
/etc/hosts.allow/deny content, incorrect host name, or DNS issues. The
first thing to do is see Chapter 26, “” in DB2 10.1 Message Reference
Volume 2, SC27-3880-00 and perform any actions that it provides for any
protocol-specific error codes. Then, you might stop using DNS addresses
and service names, and temporarily use the direct IP address and port
numbers instead, which you know to be correct and open in the firewall. If
this issue persists, ask whomsoever supports the network architecture to
check that the firewall ports are open and whatever else might be causing
the described communication error symptoms, providing them with all the
protocol-specific error message information.

� Symptom

After you change db cfg parameters on both servers and perform
deactivation and reactivation on the standby, HADR still does not reconnect,
so roles cannot be switched for the second database
deactivation/reactivation.
214 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

– Fix

If you are changing certain parameters, such as any of the HADR_
prefixed db cfg parameters, the currently active values must match on
both sides for HADR connectivity to work. You require downtime on the
primary after you change the db cfg parameter on both the servers to
establish the new value as the current value. Plan for an outage window to
accomplish this task, or you risk rendering your standby inoperative and
disconnected until you change the db cfg value back again to match the
current value on the primary.

6.4.3 After an HADR disconnects or server failure occurs

Here is an issue and possible fix that is encountered after HADR is disconnected
or a server failure.

� Symptom

As an example, let us say an operating system fix is carried out, and the
server is recycled without any warning sent to DB2 support about it. As a
result, HADR becomes disconnected, and attempts to restart it
continually fail.

– Fix

In this case, most likely the cause is mismatched or lost log records on the
standby, such that it cannot reintegrate successfully with the primary. You
can discover if this is the case by looking at the output in the db2diag.log
file for the times you attempt to start HADR on either the primary or the
standby. The error messages for this situation are clear. Subsequent
corrective actions are straightforward.

You have no choice but to re-establish HADR by backing up the primary,
transferring it to the standby, and restoring it there. Instructions for this
task can be found in 6.4.5, “Re-establishing HADR after failure” on
page 217.

6.4.4 Considerations while running HADR

When the HADR is configured and running, consider these situations:

� If you schedule backup and maintenance tasks through the DB2 tools
database, you should consider managing it through HADR in parallel with
your application database. In the case where an extended outage of the
primary server carries over through a critical batch window, you want it to be
working and running the same tasks as on the original primary server.
 Chapter 6. HADR setup 215

� The db cfg parameter AUTORESTART should be turned off if you do not want the
standby database to attempt to roll forward through logs while HADR is
stopped and the DB2 instance is recycled while that database is still in
STANDARD mode.

� If you use ACR rather than a clustering solution to control IP addressing and
takeover for remote clients, db2iauto should be turned off for the DB2
instances that control HADR databases. To explain this situation using an
example of server A and server B, the situation is that DB2 on a broken
primary server A does not automatically restart when server A is later fixed
and started, causing a split-brain scenario.

Fortunately, DB2 HADR is able to protect itself from split-brain scenarios
where an HADR primary database is deactivated while it is in HADR primary
mode. If a client attempts to connect to such a database, it goes through an
attempt to activate the database in HADR primary mode, and connect to an
HADR standby. After the HADR_TIMEOUT interval, DB2 returns an SQL1768N
with reason code 7:

The primary database failed to establish a connection to its standby
database within the HADR timeout interval.

This is also why it is easier from an administrative perspective to start the
HADR standby database first and then the primary, as there is no pressure to
get the other database started before the HADR_TIMEOUT interval lapses and
the database is left inactive again.

Split brain in the context of HADR can still occur in other ways:

– Where the broken HADR primary server was never deactivated (for
example, the failure is with the network rather than with the server), and
after a db2 takeover hadr on database ... by force command is run
by the standby server B, the broken primary server A unexpectedly comes
back online.

A proper clustering solution should be able to solve this problem by using
resource group takeover actions. This situation is where a primary server
that finds itself isolated knows to relinquish ownership of resources and
run shutdown scripts to critical resources on that server, but there is no
easy fix in a non-clustering scenario. This scenario can occur regardless
of any temporary failure, for example, when the forced takeover
command is issued on server B but the HADR primary on server A is
never stopped.
216 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

– Where the broken HADR PRIMARY on server A has a db2 stop hadr on
database command run on it, is now in STANDARD mode, and clients can
once again connect to it instead of the correct HADR primary database
that is running on server B. As with the previous scenario, this should not
be possible in a proper clustering solution that manages IP addressing.
Remote clients in this case can connect to only a single server that has the
role of the active node.

For more information about clustered environments, see Chapter 2, “DB2 with
IBM Tivoli System Automation for Multiplatforms” on page 19, Chapter 3, “DB2
and PowerHA SystemMirror” on page 71, and Chapter 4, “DB2 with Microsoft
Windows Failover Cluster” on page 101.

6.4.5 Re-establishing HADR after failure

Also referred to as reintegration of HADR, this process is similar to the initial
setup of HADR, but without configuring the db cfg parameters.

There are two ways to successfully get HADR working again in a paired primary
and standby relationship; both should require no downtime, and the first is a
rapid and low complexity solution.

For our example, we use the SAMPLE HADR database on both Server A as
primary and Server B as standby, where Server A suffers a failure, followed by a
takeover hadr by force command on server B, such that server B becomes the
new primary.

The first way works only if the primary and the standby were in the Peer state at
the time of server A’s failure. In this scenario, the DB2 instance is eventually
restarted on server A after you correct whatever failure occurred. DB2 HADR
protects itself from a split-brain scenario by not allowing activation of the
database on server A, returning SQL1768N with RC 7 if any database activation or
remote client connection attempts are made now.

The next thing to do is run db2 start hadr on database sample as standby on
Server A. The SAMPLE database cannot have a db2 stop hadr on database
sample command that is run on it beforehand, as the database then contains log
records that server B does not know about, making it effectively unusable as a
standby for server B. Attempts to restart HADR on it as a standby result in
SQL1767N RC 1. Attempting to start HADR as standby on server A’s SAMPLE
database naturally fail for the same reason if the databases were not in a Peer
state at the time of server A’s failure.
 Chapter 6. HADR setup 217

In an ideal situation, the Peer state should be continually tracked on the HADR
primary server. If any failure occurs while not in the Peer state, consider this
situation before you run a db2 hadr takeover database sample by force
command on the standby server B. In this situation, every effort should be made
to correct issues on Server A and have that database restarted rather than run a
takeover by force command on Server B’s STANDBY database. The Peer state
is the only guarantee you have that no data is lost from the
committed transactions.

The second way works regardless of whether the HADR pair was in a Peer state
at the time of a server failure. This method is relatively less complex, and saves
time compared to the initial setup of HADR, because the db cfg parameters are
stored separately from the physical data containers, in a non-user-readable file
called SQLDBCONF. This file is not replaced by a restore command unless that
database is dropped before the restore.

If you must drop your standby database before you run the restore from primary
backup, you must change the following db cfg parameters:

� HADR_LOCAL_HOST = <hostname>
� HADR_LOCAL_SVC = <this server’s HADR port# >
� HADR_REMOTE_HOST = <the remote server hostname
� HADR_REMOTE_SVC = <the remote server’s HADR port#>
� HADR_REMOTE_INST = <the remote server’s DB2 Instance name>

Normally, you would never need to drop your standby database before the
restore. However, DB2 does not let you restore over the top of a database that is
in an HADR standby or primary state. In some cases, DB2 does not let you stop
HADR and put that database into a standard mode; this situation can happen if
HADR was not stopped on a database before the DB2 instance is migrated from
Version 9.7 to Version 10.1, for example.

Apart from not having to change your db cfg parameters after a restore, you do
not want to drop the database before the restore if you have a database with
large containers, regardless of the amount of data that is contained within them.
DB2 needs time to pre-format at the time of database creation. Large containers
take more time. The time that is needed depends on the storage and system
capacity. Restoring the database without dropping the database beforehand
would save on the pre-format time.
218 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

If you are concerned about scheduling a downtime window for re-establishing
HADR, be assured that you should not need one; at most, you might experience
some read-only impact for a short duration while the online backup takes place
on the primary database. As stated in Chapter 3, “Command line processor plus
(CLPPlus)”, in DB2 10.1 Command Reference, SC27-3868:

“During an online backup, DB2 obtains IN (Intent None) locks on all tables that
exist in SMS table spaces as they are processed. S (share locks) are no longer
held on LOB data in SMS table spaces during online backup.“

Command-line steps
Re-establishing (reintegrating) the standby with the primary can be achieved
through a few command-line steps that are issued by the DB2 instance user ID:

1. Prepare a database backup to restore the broken standby.

Back up your primary database. You might want to compress the backup to
save time when you transfer it to the remote (standby) server, or use a Tivoli
Storage Manager target that the remote server is authorized to read from. In
our example on Linux, we make a compressed backup of the SAMPLE
database on the local server (NODE1) to local disk, then use scp to transfer
the backup file to the remote server (NODE2):

db2 backup database sample online to /usr/db2/backup compress
Backup successful. The timestamp for this backup image is :
20120716153706

2. Transfer your primary database backup file to the remote server.

For our example, we must discover the name of the backup file; the
destination of the backup step was /usr/db2/backup. The backup file name
on Windows matches Linux/UNIX, a long file name in a single subdirectory.

Example 6-4, shows the results of running ls -l on the /usr/db2/backup in
the Linux server.

Example 6-4 List database backup files

b2inst1@node1:/usr/db2/backup> ls -l
-rw-r----- 1 db2inst1 db2grp1 12079104 2012-07-16 15:37
SAMPLE.0.db2inst1.NODE0000.CATN0000.20120716153706.001

The backup file name that we want contains a matching timestamp with the
output of the example backup command. The matching file for us is:

SAMPLE.0.db2inst1.NODE0000.CATN0000.20120716153706.001

The timestamp (20120716153706 in our example), is also used in the restore
command later, so note it.
 Chapter 6. HADR setup 219

Now, we actually run the transfer command. We use scp in our example, but
you could use sftp or a similar command:

scp SAMPLE.0.db2inst1.NODE0000.CATN0000.20120716153706.001
db2inst1@node2:/usr/db2/backup

3. We log on to the remote server (NODE2 in our example) and run the restore
database command. HADR is not able to re-establish a connection if the
standby database is rolled forward after the restore.

db2 restore db sample from /usr/db2/backup taken at 20120716153706

As you can see, we use the timestamp in the restore command. Respond
with y to any prompt to overwrite an existing database.

4. The final step involves starting HADR on both the primary and standby, and
checking that HADR is connecting successfully. You can wait until the
standby database reaches the Peer state, or leave it in the catchup-pending
state, where it eventually catches up and reaches the Peer state.

Complete the following steps:

a. In our example, the primary database never left the HADR primary state,
so we need only to start HADR on the standby by running the
following command:

db2 start hadr on db sample as standby

If HADR is not started on the primary server database, we could achieve
this start by logging on there and running the following command:

db2 start hadr on db sample as primary

b. To check that HADR is connected and working, run either db2diag.log
or db2pd:

db2pd -db sample -hadr

The output of these commands for our example is shown in Example 6-5.

Example 6-5 Checking HADR using the db2pd output

Database Member 0 -- Database SAMPLE -- Active -- Up 6 days
00:07:31

HADR_ROLE = STANDBY

Restarting HADR: If HADR is stopped on both servers for a database,
restart the standby first, then the primary, or you end up with this
error message:

SQL1768N Unable to start HADR. Reason code = "7".
220 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

HADR_STATE = PEER
HADR_SYNCMODE = SYNC

HADR_CONNECT_STATUS = CONNECTED
HADR_CONNECT_STATUS_TIME = 11/07/2012 12:49:59.216304
(1342007399)
HADR_TIMEOUT (seconds) = 120

PRIMARY_MEMBER_HOST = NODE2
PRIMARY_INSTANCE = db2inst1

STANDBY_MEMBER_HOST = NODE1
STANDBY_INSTANCE = db2inst1

PRIMARY_LOG_FILE,PAGE,POS = S0000004.LOG, 900, 60732812
STANDBY_LOG_FILE,PAGE,POS = S0000004.LOG, 900, 60732812

c. Optionally, after you reach the Peer state, you can switch roles. For
example, if you just restored the database on a broken server that was
originally the primary system, and is now running as the standby, log on to
that standby server and run the non-forced takeover command:

db2 takeover hadr on db sample

In our example environment, a subsequent running of db2pd shows the
results in Example 6-6.

Example 6-6 db2pd output - HADR is in the Peer state

Database Member 0 -- Database SAMPLE -- Active -- Up 6 days
00:07:31

HADR_ROLE = PRIMARY
HADR_STATE = PEER
HADR_SYNCMODE = SYNC

HADR_CONNECT_STATUS = CONNECTED
HADR_CONNECT_STATUS_TIME = 11/07/2012 12:49:59.216304
(1342007399)
HADR_TIMEOUT (seconds) = 120

PRIMARY_MEMBER_HOST = NODE1
PRIMARY_INSTANCE = db2inst1

STANDBY_MEMBER_HOST = NODE2
STANDBY_INSTANCE = db2inst1
 Chapter 6. HADR setup 221

PRIMARY_LOG_FILE,PAGE,POS = S0000004.LOG, 903, 60744782
STANDBY_LOG_FILE,PAGE,POS = S0000004.LOG, 903, 60744782

d. If you are managing HADR from IBM Data Studio, you would catalog the
remote node and database aliases, so alternatively, you can run the
takeover command remotely by specifying the remote database alias and
the explicit DB2 instance user ID and password. For example, if we now
want to switch the roles again so that SAMPLE database on the NODE1
server becomes the primary, we can run the following command from the
NODE2 server:

db2 takeover hadr on db sampl_NODE1 user db2inst1

e. If you cataloged only the nodes and database alias from the primary
server side when initially setting up HADR, there are not any equivalent
entries on the standby server. You can catalog them on the standby by
using the command line processor (CLP).

In summary, re-establishing (reintegrating) HADR should be as simple as
restoring a backup from the primary over the top of the broken standby, running
the appropriate start HADR commands, and downtime is not required.
222 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Chapter 7. HADR with clustering
software

Clustering software, such as PowerHA SystemMirror (PowerHA) and IBM Tivoli
System Automation for Multiplatforms (Tivoli SA MP), are system high availability
options. Combining high availability disaster recovery (HADR) with clustering
software strengthens the high availability for the computing environment. In this
chapter, we describe how to configure HADR with PowerHA or Tivoli SA MP to
enable automating HADR takeover.

This chapter covers the following topics:

� Overview: Why clustering software is needed

� db2haicu

� DB2 HADR with Tivoli SA MP configuration for automatic failover on an AIX
system

� DB2 HADR with Tivoli SA MP configuration for automatic failover on a Linux
system

� Automating HADR takeover with PowerHA

7

© Copyright IBM Corp. 2007, 2012. All rights reserved. 223

7.1 Overview: Why clustering software is needed

The present version of HADR does not monitor the environment of the primary
database server for outages such as a down network. As illustrated in Figure 7-1,
in the Remote Catchup Pending state, the standby database keeps waiting for
log records to be transferred even though the primary database is no longer
active. It is necessary to monitor the HADR pair and manually run the
appropriate takeover commands if there is a primary database server failure.
This situation is where clustering software is required to automate
HADR takeover.

Figure 7-1 Takeover HADR does not happen automatically

7.1.1 What is clustering software

Clustering software automates the failover of resources, such as processes,
applications, storages, and IP addresses. Clustering software monitors the
health of the network, hardware, and software processes, detects and
communicates any fault, and automatically fails the service and associated
resources over to a healthy host in the cluster.

In a cluster environment, the terms failover, fallover, and takeover are often
used interchangeably, referring to the action where system activities are moved
from the failed system to the healthy one. Specifically, failover refers to the
activity of the broken node/server handing over responsibility to a backup or
standby node/server. Fallover is similar, but a more general term for moving
resources, including planned move operations for maintenance. Takeover refers
to the activity of the backup node/server making resources active after the
original primary server breaks/fails.

STANDBY is
still

"STANDBY"
HADR PAIR

HADR ONLY

Remote catch
up pending?

PRIMARY
224 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

There are several types of clustering software you can choose from, depending
on the platforms where the databases are running. Here we list a few of them:

� Tivoli SA MP

Tivoli System Automation is a solution that is designed to provide a
multitiered architecture of clustering in a heterogeneous environment. This
architecture can be realized either through the Tivoli SA MP base component
on various platforms, or through existing base-level cluster solutions from
other vendors, which are coupled with the Tivoli SA MP end-to-end
component, which interfaces with all the base-level clustering software (with
adapters for non Tivoli SA MP products). This setup enables central control of
all clusters, and facilitates the grouping of interdependent base-level clusters
into applications. Tivoli SA MP provides a consistent, single monitoring and
control interface for these disparate servers and clusters within a
mission-critical business environment, and can truly be considered an
integrated and automated highly available solution.

For detailed information about Tivoli System Automation, see Chapter 2,
“DB2 with IBM Tivoli System Automation for Multiplatforms” on page 19.

� IBM PowerHA SystemMirror for AIX

PowerHA offers robust high availability and disaster recovery for IBM
customers with mission-critical applications. PowerHA provides base services
for cluster node membership, system management, configuration integrity
and control, and failover and recovery for applications. PowerHA clusters with
both non-concurrent and concurrent access can be an IBM System p®, or a
logical partition (LPAR) of an applicable System p.

For detailed information about PowerHA, see the following website:

http://www-03.ibm.com/systems/power/software/availability/aix/index.
html

� Microsoft Cluster Service for Windows operating systems

Microsoft Cluster Service (MSCS) was introduced in Windows 2003. The new
replacement for MSCS has improved capabilities: You can use it to connect
up to eight nodes in a cluster; more technology is added to make
geographically remote clusters possible.

For information about MSCS, see the white paper Implementing IBM DB2
Universal Database V8.1 Enterprise Server Edition with Microsoft Cluster
Server, found at:

http://ibm.com/software/data/pubs/papers/
 Chapter 7. HADR with clustering software 225

http://ibm.com/software/data/pubs/papers/
http://www-03.ibm.com/systems/power/software/availability/aix/index.html

� LifeKeeper for Linux/Windows

LifeKeeper for Linux/Windows is a clustering software that is provided by
SteelEye Technology, Inc. LifeKeeper provides features and functions to
monitor system and application health, maintaining client connectivity and
providing uninterrupted data access. By maintaining the system uptime,
LifeKeeper ensures high availability for Linux/Windows applications.

For more information about this product, go to:

http://www.steeleye.com/products/

DB2 UDB and SteelEye LifeKeeper for Linux - A High Availability Database,
introduces a sample configuration of integrating DB2 into a LifeKeeper cluster
environment. This article is available at:

ftp://ftp.software.ibm.com/software/data/pubs/papers/lk.pdf

7.1.2 How HADR works in an environment with clustering software

When a primary database server outage occurs, clustering software detects the
failure and fails the resources from the primary over to the standby node. You
can configure the failover scripts to start HADR takeover on the standby
database with the resource failover. Figure 7-2 shows a typical failover flow in the
HADR cluster that is automated by the clustering software.

Figure 7-2 Why clustering software is needed to automate HADR takeover

STANDBYPRIMARY

HADR+ CLUSTERING
SOFTWARE

Clustering
software

PRIMARY

Clustering
software

PRIMARY

Clustering
software

Clustering
software

TAKEOVER

Failure detection
of primary
database

TAKEOVER HADR ON
DB BY FORCE
226 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

ftp://ftp.software.ibm.com/software/data/pubs/papers/lk.pdf
http://www.steeleye.com/products/

In the cluster environment, the typical failover flow is as follows:

1. Under normal operations, users connect to the primary server and run
transactions against the database on this server. HADR continuously
transfers the changes from the DB2 log from the primary to the standby
server. In the standby, the logs are continuously replayed, therefore
replicating the primary database. The standby database is in rollforward
pending and no user can access this database.

2. If there is an outage on the primary server, clustering software detects the
fault, starts to fail over the defined resources, such as an IP address, and run
takeover scripts. Clustering software can be configured to detect not only the
server outage but also an instance crash by monitoring instance process.

3. The takeover scripts run an HADR takeover command against the standby
database to change its role to primary. The old standby server can now serve
users as the primary server.

4. Although HADR takes care of synchronization of data between a primary and
standby pair, there is still a need for applications to dynamically access the
new primary server after an outage. This access is achieved by the DB2
automatic client reroute (ACR) feature. Whenever the client fails to connect to
the original server, the DB2 client attempt to reroute the connection to the
alternate server. If the reroute succeeds, the application can continue.

5. When the failed server comes back online, it can then be started as the
standby server, reversing the roles to the ones that existed before the outage.

7.1.3 What resources should be taken over

The resources that must be taken over to automate HADR takeover with
clustering software are as follows:

� Storage devices

In a disk shared cluster, you must configure the shared storage device and
create all database resources on it.

In an HADR environment, it is not necessary to share storage resources for
fallover because the primary and standby databases are independent
databases that are on separate storage devices.

� IP address

IP address takeover is optional. When you use ACR, you do not always have
to have a fallover IP address because switching the IP address is handled on
the client side. But be aware that for the clients or other servers that
communicate with the database server and do not support ACR, you must
switch the definition of the IP address to the new primary database server.
 Chapter 7. HADR with clustering software 227

� Takeover scripts

Takeover scripts must be configured as a resource of the clustering software,
and must be issued on the standby database by the clustering software at the
time of takeover of resources after you detect an outage on the
primary database.

7.2 db2haicu

DB2 High Availability Instance Configuration Utility (db2haicu) is a text-based
utility that can be used to configure and administer your highly available
databases in a clustered environment. It collects information about the database
instance, cluster environment, and cluster manager by querying the system.
Information can be supplied through parameters to the db2haicu call, an input
file, or run time at db2haicu prompts.

7.2.1 Prerequisites

Before you run db2haicu, there is a set of tasks that must be performed by a user
with root authority and that database manager instance owner.

A user with root authority must initialize db2haicu on all machines that are added
to the cluster domain by running the following command:

preprpnode

This command prepares security on the node on which the command is run so it
can be defined in a peer domain. It allows peer domain operations to be
performed on the node and must be run before the node can join a peer domain.

For example:

/usr/sbin/preprpnode <nodename>

This command needs only to be run once per node and not for every DB2
instance that is made highly available.

A database manager instance owner must perform the following tasks:

� Synchronize /etc/services files on all machines that are added to
the cluster.

� Run the db2profile script for the database manager instance to be used to
create the cluster domain.

� Start the database manager by running db2start.
228 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

There are some tasks specific to HADR. If HADR is already configured on your
system, perform the following tasks:

� Ensure that all HADR databases are started in their respective primary and
standby database roles, and that all HADR primary-standby database pairs
are in the Peer state.

� Configure the HADR_PEER_WINDOW database configuration parameter for all
HADR databases with a value of at least 120 seconds.

� Disable the DB2 fault monitor.

For a partitioned database environment, before you configure it for high
availability, configure the DB2_NUM_FAILOVER_NODES registry variable on all
machines that are added to the cluster domain. This variable specifies the
number of additional database partitions that might need to be started on a
machine in the event of failover.

When all of these tasks are done, a database manager instance owner can use
db2haicu to perform cluster configuration and administration operations.

7.2.2 Usage

The db2haicu utility takes in user input regarding the software and hardware
environment of a DB2 instance, and configures the instance for high availability
using the Tivoli SA MP Cluster Manager. During this configuration process, all
necessary resources, dependencies, and equivalencies are automatically
defined to Tivoli SA MP.

Syntax
The syntax for db2haicu is as follows:

db2haicu [-f <XML-input-file-name>]
 [-disable]
 [-delete [dbpartitionnum <db-partition-list> |
 hadrdb <database-name>]]

The parameters that you pass to the db2haicu command are case-sensitive, and
must be in lowercase.

� -f <XML-input-file-name>

You can use the -f parameter to specify your cluster domain details in an
XML input file. For example, if you have an XML file that is called DPF.xml that
has all cluster definitions, you can run the following command to create
a cluster:

db2haicu -f DPF.xml
 Chapter 7. HADR with clustering software 229

� -disable

Use this option to disable the HA configuration for an instance. After you run
the command, the system does not respond to any failures and all resource
groups for the instance are locked.

� -delete

You can use the -delete parameter to delete resource groups for the current
database manager instance. If you do not use either the dbpartitionnum
parameter or the hadrdb parameter, then db2haicu removes all the resource
groups that are associated with the current database manager instance.

– dbpartitionnum <db-partition-list>

You can use the dbpartitionnum parameter to delete resource groups that
are associated with the database partitions listed in <db-partition-list>.
It is a comma-separated list of numbers that identify the
database partitions.

– hadrdb <database-name>

You can use the hadrdb parameter to delete resource groups that are
associated with a specific HADR database <database-name>. If there are
no resource groups that are left in the cluster domain after db2haicu
removes the resource groups, then db2haicu also removes the
cluster domain.

After a cluster domain is removed, you can reconfigure a database
manager instance for HA by running db2haicu again either in interactive
mode or batch mode.

For example, to remove all the resource groups that are associated with
the current database manager instance, run the following command:

db2haicu -delete

Modes
To configure a database manager instance for high availability, you can run
db2haicu in one of the following modes:

� Interactive mode

When you run db2haicu without specifying an XML input file with the -f
parameter, it runs in interactive mode, displays information, and prompts for
information in a text-based format.

To run db2haicu in interactive mode, run db2haicu without the -f
<input-file-name> parameter.
230 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

� Batch mode with an XML input file

When you specify an XML input file with the db2haicu command, it runs in
batch mode and uses the configuration details that are provided in the file.
This option is useful when you must perform configuration for multiple
database partitions for high availability.

To configure your clustered environment for the current database manager
instance using db2haicu and an input file that you create called
db2haicu-sample.xml, run the following command:

db2haicu -f db2haicu-sample.xml

There is a set of sample XML input files that are in the samples subdirectory of
the sqllib directory that you can modify and use with db2haicu to configure
your clustered environment.

� Startup mode

When db2haicu is run for the first time for a database manager instance,
db2haicu operates in startup mode. It examines your database manager
instance and your system configuration, and searches for an existing cluster
domain. If there is no cluster domain that is created and configured for the
instance, db2haicu begins the process of creating and configuring a cluster
domain. While creating the domain, db2haicu prompts you for information,
such as a name for the new cluster domain and the host name of the
current machine.

If you create a cluster domain, but do not complete the task of configuring the
cluster domain, then the next time you run db2haicu, it resumes the task of
configuring the cluster domain. After a cluster domain is configured, db2haicu
runs in maintenance mode.

A cluster domain is a model that contains information about your database
and cluster elements, such as databases, mount points, and failover policies.
db2haicu uses the information in the cluster domain to manage configuration
and maintenance of database and cluster elements.

� Maintenance mode

When db2haicu is run and there is already a cluster domain that is created for
the current database manager instance, db2haicu operates in maintenance
mode. In this mode, it presents you with a list of configuration and
administration tasks that you can perform, including the following tasks:

– Add or remove cluster nodes.

– Add or remove a network interface.

– Add or remove a highly available database.

– Add or remove a mount point.
 Chapter 7. HADR with clustering software 231

– Add or remove an IP address.

– Add or remove a non-critical path.

– Move DB2 database partitions and HADR databases for
scheduled maintenance.

– Change the failover policy for this instance.

– Create a quorum device for the domain.

– Destroy the domain.

– Exit.

7.2.3 Considerations

Consider the following list of practices for configuring your cluster and your
database manager instances when you use db2haicu:

� Network time protocol (NTP): In the case of HADR and DPF cluster
configurations, the time and dates on all nodes should be synchronized as
closely as possible. This synchronization is critical to ensure a
smooth failover.

For an automatic instance failover, it is a preferred practice (but it is not
mandatory) that the time and dates on cluster nodes be synchronized.

For information about how to configure NTP for your system, see your
operating system documentation.

� For an automatic instance failover cluster configuration, when you add mount
points for the cluster by adding entries to /etc/fstab on all cluster nodes,
use the noauto option to prevent the mount points from being automatically
mounted on more than one machine in the cluster. For example:

LUN Mount Point FileSystem Type Automount
/dev/sdd /shared_home ext3 noauto

� Any maintenance work can be performed by disabling the HA configuration
by running db2haicu -disable without worrying about cluster manager
intervention. After you run this command, the system does not respond to any
failures, and all resource groups for the instance are locked.

7.2.4 Troubleshooting

You can investigate and diagnose db2haicu errors using the database manager
diagnostic log, db2diag.log, and the db2pd tool. There is no separate diagnostic
log that db2haicu uses to log all errors and warnings.
232 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

If db2haicu fails with an error while you are creating and configuring a new
cluster domain, you must complete the following steps:

� Remove the resource groups of the partially created cluster domain by
running db2haicu with the -delete parameter.

� Re-create the cluster domain by calling the db2haicu utility again.

7.3 DB2 HADR with Tivoli SA MP configuration for
automatic failover on an AIX system

This section describes how to configure automatic DB2 HADR takeover with
Tivoli SA MP using the db2haicu command in an AIX environment.

In an HADR with Tivoli SA MP environment, Tivoli SA MP facilitates the detection
of failures and automatically executes HADR takeover from one system to
another in the cluster after a hardware or software failure. In a Tivoli SA MP
cluster, HADR is placed under Tivoli SA MP control. For more information about
Tivoli SA MP, see Chapter 2, “DB2 with IBM Tivoli System Automation for
Multiplatforms” on page 19.

7.3.1 Architecture

Before you set up an HADR with Tivoli SA MP environment, you must plan the
cluster environment. Consider the following items:

� Physical nodes:

– Decide on the primary and the secondary nodes. The primary node (or
service node) provides regular service to clients. The HADR primary
database runs on this node. The role of both nodes can be changed in
response to system failover or planned takeover that is issued
by administrators.

– Confirm the software requirements on each node.

� Network:

– A network interface that provides client access on each node. This
interface is one of the Tivoli SA MP controlled resources.

– Have one network card for a Tivoli SA MP tiebreaker. Have a separate
network for HADR to avoid interference by the HADR log transfer.
 Chapter 7. HADR with clustering software 233

� Tivoli SA MP configuration:

Define a cluster domain name that includes the resources of a virtual IP
(service IP), a DB2 instance, and a HADR database. The db2haicu
commands automatically create the cluster domain and resource groups.

� HADR configuration:

Define the HADR configuration. The db2haicu command does not
automatically create the HADR configuration. To define the HADR
configuration, see Chapter 10, “Automatic client reroute” on page 377.

� Scripts:

DB2 10.1 automatically installs the Tivoli SA MP scripts that are used for
start, stop, and monitoring DB2 resources.

Lab environment
Figure 7-3 shows the configuration of HADR with Tivoli SA MP in our
lab environment.

Figure 7-3 HADR with Tivoli SA MP lab environment

ZaireBaltic

Baltic_mnt:eno
9.43.86.48

Baltic:en1
192.168.10.48

Zaire:en1
192.168.10.45

Standby

Service
192.168.10.111

hadr_rg

Primary

Baltic_int:en2
192.168.20.48

Zaire_int:en2
192.168.20.45

Zaire_mnt:en0
9.43.86.45
234 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

The planning for our lab environment is as follows:

� Physical node configurations:

– Two physical nodes named Baltic and Zaire are defined in the cluster.

– Baltic is designated as a service node and has the HADR
primary database.

– Zaire is the standby node on which the HADR standby database is.

– The software configuration that is used to set up the lab
environment includes:

• AIX 7.1 Technology Level 1
• DB2 10.1 Advanced Enterprise Server Edition
• Tivoli SA MP Base Component V3.2

� Network configurations:

– One Ethernet network interface (en1) on each node is provided for client
access, under the control of Tivoli SA MP. The service address for the
clients is added on one network interface as follows:

Primary node (Baltic)
en1: 192.168.10.48 (255.255.252.0)
Standby node (Zaire)
en1: 192.168.10.45 (255.255.252.0)

– One Ethernet network interface (en2) is dedicated to
HADR communications:

Primary node (Baltic)
en2: 192.168.20.48 (255.255.252.0)
Standby node (Zaire)
en2: 192.168.20.45 (255.255.252.0)

– One Ethernet network is configured for a Tivoli SA MP tiebreaker. For a
detailed description about the Tivoli SA MP tiebreaker, see 2.1.2,
“Terminology of Tivoli SA MP” on page 22.

� Tivoli SA MP configuration:

– A Cluster Domain named hadr_domain is configured, which includes the
virtual IP (service IP), DB2 instance, and HADR database.

– In our lab, we configured a virtual IP in the Tivoli SA MP cluster domain.

Shared disks: For HADR in a Tivoli SA MP cluster, shared disks are not
necessary because the primary and standby databases are independent
databases, which can be in separate storage devices.
 Chapter 7. HADR with clustering software 235

� HADR configuration:

– Each node has the DB2 instance named db2inst1. Instance names do not
have to be identical on both the nodes.

– Each instance has the database named SAMPLE.

– A configured dedicated network for HADR communication.

7.3.2 Configuration

In this section, we provide the steps to configure an automated HADR takeover
environment with Tivoli SA MP. HADR setup must be done before you
run db2haicu.

HADR setup
To configure the HADR database pair, complete the following steps:

1. For new systems, create a DB2 instance on both nodes. We created
db2inst1.

2. Check that the correct entries are configured in the /etc/hosts and
/etc/services files.

3. For new systems, create a database on the primary node. We
created SAMPLE.

4. Back up the primary database and restore the image on the standby node.

5. Configure the HADR parameters correctly on both the databases.

6. Start HADR on the standby database, and then start HADR on the
primary database.

7. Check that both databases can communicate with each other in the Peer
state by running db2pd.

For a step-by-step configuration of HADR, see Chapter 6, “HADR setup” on
page 173.
236 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Figure 7-4 shows the entries of the services and hosts of the HADR configuration
in our lab environment.

Figure 7-4 Configuration of HADR

Checking the Internet Protocol network connection
Before you configure Tivoli SA MP, check that the network is configured
correctly. To check network configurations for the cluster, complete the
following steps.

In our examples, we use the notations (P) and (S) proceeding a command to
designate on which node that command is to be issued to properly set up the
topology that is shown in Figure 7-4. The order of the notation also designates
the sequence of the command execution on the nodes.

db2c_db2inst1 50000/tcp
hadrp_db2inst1 60004/tcp
hadrs_db2inst1 60005/tcp

/etc/hosts
192.168.10.111 Service
192.168.10.48 Baltic
192.168.20.48 Baltic_int
9.43.86.48 Baltic_mnt
192.168.10.45 Zaire
192.168.20.45 Zaire_int
9.43.86.45 Zaire_mnt

instance: db2inst1

Sample

Baltic(primary)

/etc/services

/etc/hosts

Zaire(standby)

instance: db2inst1

Sample

/etc/services

db2c_db2inst1 50000/tcp
hadrp_db2inst1 60004/tcp
hadrs_db2inst1 60005/tcp

192.168.10.111 Service
192.168.10.48 Baltic
192.168.20.48 Baltic_int
9.43.86.48 Baltic_mnt
192.168.10.45 Zaire
192.168.20.45 Zaire_int
9.43.86.45 Zaire_mnt
 Chapter 7. HADR with clustering software 237

The notations are:

� (P): Primary database node (Baltic)

� (S): Standby database node (Zaire)

� (P)(S): Command that is issued on the primary node first, then the
secondary node

1. Check whether the IP addresses are configured on network interfaces by
running the following command:

netstat -in | grep -v link

Example 7-1 shows the configuration of the IP addresses on Baltic.

Example 7-1 IP address configuration

(P)(S) #netstat -in | grep -v link
Name Mtu Network Address
en0 1500 9.43.84 9.43.86.48
en1 1500 192.168.8 192.168.10.48
en2 1500 192.168.20 192.168.20.48
lo0 16896 127 127.0.0.1

2. Check whether the /etc/hosts file has all the entries of IP addresses.

Example 7-2 shows the content of our hosts files.

Example 7-2 hosts file content

(P)(S)#vi /etc/hosts

192.168.10.111 Service ## Virtual IP address

192.168.10.48 Baltic ## SA MP N/W interface for Virtual IP on
Baltic
192.168.20.48 Baltic_int ## HADR N/W interface on Baltic
9.43.86.48 Baltic_mnt ## For Maintenance N/W interface on
Baltic

192.168.10.45 Zaire ## SAMP N/W interface for Virtual IP on
Zaire
192.168.20.45 Zaire_int ## HADR N/W interface on Zaire
9.43.86.45 Zaire_mnt ## For Maintenance N/W interface on
Zaire
238 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

3. Verify that name resolution is working by running host. If something is wrong,
check and modify the /etc/hosts file:

(P)(S)#host Baltic
Baltic is 192.168.10.48

Setting up the cluster domain of Tivoli SA MP by using
db2haicu
The main steps for this setup are as follows:

1. Complete the Initial configuration.
2. Configure the cluster domain and resource by using db2haicu.

Next, we provide the detailed steps for this setup.

Initial configuration
On both nodes, run preprpnode as root to prepare the local node to join
the domain:

(P)(S) # preprpnode Baltic Zaire

Configuring the cluster domain and resource by using db2haicu
In this section, we demonstrate the cluster configuration by using the db2haicu
XML file setup mode. For information about configuring with db2haicu interactive
setup mode, see 7.4, “DB2 HADR with Tivoli SA MP configuration for automatic
failover on a Linux system” on page 266.

Ensure that all the nodes to be configured in the SAMP cluster domain can see
each other in the network and can communicate with each other.

Run db2haicu to create the cluster domain and resource group on either node:

1. Create the XML file:

The db2haicu XML file contains all the information that db2haicu needs to
make a DB2 HADR instance cooperate with Tivoli SA MP. DB2 provides
sample XML files that are in the sqllib/samples/ha/xml directory. These
sample XML files can also be found at:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw
.admin.ha.doc/doc/r0052514.html
 Chapter 7. HADR with clustering software 239

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.admin.ha.doc/doc/r0052514.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.admin.ha.doc/doc/r0052514.html

Example 7-3 illustrates a sample db2haicu XML file.

Example 7-3 The example of XML file on standby node

<?xml version="1.0" encoding="UTF-8"?>
<DB2Cluster xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="db2ha.xsd" clusterManagerName="TSA"
version="1.0">
 <ClusterDomain domainName="hadr_dom">
 <Quorum quorumDeviceProtocol="network"
quorumDeviceName="192.168.10.51"/>
 <PhysicalNetwork physicalNetworkName="db2_public_network_0"
physicalNetworkProtocol="ip">
 <Interface interfaceName="en1" clusterNodeName="Baltic">
 <IPAddress baseAddress="192.168.10.48"
subnetMask="255.255.252.0" networkName="db2_public_network_0"/>
 </Interface>
 <Interface interfaceName="en1" clusterNodeName="Zaire">
 <IPAddress baseAddress="192.168.10.45"
subnetMask="255.255.252.0" networkName="db2_public_network_0"/>
 </Interface>
 </PhysicalNetwork>
 <PhysicalNetwork physicalNetworkName="db2_private_network_0"
physicalNetworkProtocol="ip">
 <Interface interfaceName="en2" clusterNodeName="Baltic">
 <IPAddress baseAddress="192.168.20.48"
subnetMask="255.255.252.0" networkName="db2_private_network_0"/>
 </Interface>
 <Interface interfaceName="en2" clusterNodeName="Zaire">
 <IPAddress baseAddress="192.168.20.45"
subnetMask="255.255.252.0" networkName="db2_private_network_0"/>
 </Interface>
 </PhysicalNetwork>
 <ClusterNode clusterNodeName="Baltic"/>
 <ClusterNode clusterNodeName="Zaire"/>
 </ClusterDomain>
 <FailoverPolicy>
 <HADRFailover></HADRFailover>
 </FailoverPolicy>
 <DB2PartitionSet>
 <DB2Partition dbpartitionnum="0" instanceName="db2inst1">
 </DB2Partition>
 </DB2PartitionSet>
 <HADRDBSet>
240 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

 <HADRDB databaseName="SAMPLE" localInstance="db2inst1"
remoteInstance="db2inst1" localHost="Zaire" remoteHost="Baltic" />
values for local and remote hosts remain the same or they msut be
swapped inside xml file for priamry node??????
 <VirtualIPAddress baseAddress="192.168.10.111"
subnetMask="255.255.252.0" networkName="db2_public_network_0"/>
 </HADRDBSet>
</DB2Cluster>

The existing values in this XML file can be replaced to reflect your own
configuration and environment. The XML elements in the configuration files
are as follows:

– The <ClusterDomain> element covers all cluster-wide information. This
information includes the nodes in the cluster domain, the network
equivalencies (groups of networks that can fail over for one another), and
the quorum device (tie-breaking mechanism).

• The <Quorum> subelement of the ClusterDomain element specifies
the quorum device for the cluster domain.

• The <PhysicalNetwork> subelement of the ClusterDomain element
includes all network information. This information includes the name of
the network and the network interface cards that are contained in it. We
define our single public network and private network using
this element.

• The <ClusterNode> subelement contains information about a particular
node in the cluster.

– The <FailoverPolicy> element specifies the failover policy that the cluster
manager should use with the cluster domain. Select one of the following
failover polices for the cluster manager to follow if there is a failure in the
cluster domain (we define HADRFailover in our case):

• RoundRobin: When you are using a round robin failover policy, if there
is a failure that is associated with one computer in the cluster domain,
the database manager restarts the work from the failed cluster domain
node on any other node in the cluster domain.

• Mutual: To configure a mutual failover policy, you associate a pair of
computers in the cluster domain as a system pair. If there is a failure on
one of the nodes in the pair, the database partitions on the failed node
fail over to the other node in the pair. Mutual failover is only available
when you have multiple database partitions (DPF).
 Chapter 7. HADR with clustering software 241

• NPlusM: When you are using an N Plus M failover policy, if there is a
failure that is associated with one computer in the cluster domain, the
database partitions on the failed node fail over to any other node that is
in the cluster domain. N Plus M failover is only available when you
have multiple database partitions (DPF).

• LocalRestart: When you use a local restart failover policy, if there is a
failure on one of the computers in the cluster domain, the database
manager restarts the database in place (or locally) on the same node
that failed.

• HADRFailover: When you configure an HADR failover policy, you are
enabling the HADR feature to manage failover. If an HADR primary
database fails, the database manager moves the workload from the
failed database to the HADR standby database.

• Custom: When you configure a custom failover policy, you create a list
of nodes in the cluster domain onto which the database manager can
fail the resources over. If a node in the cluster domain fails, the
database manager moves the workload from the failed node to one of
the nodes in the list that you specified

– The <DB2PartitionSet> element covers the DB2 instance information. This
information includes the current DB2 instance name and the DB2
partition number.

– The <HADRDBSet> element covers the HADR database information. This
information includes the primary node name, standby node name, primary
instance name, standby instance name, and the virtual IP address that is
associated with the database.

For a more detailed description of the XML files, see:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw
.admin.ha.doc/doc/r0053130.html

2. Run db2haicu.

db2haicu must be run first on the standby instance and then on the primary
instance for the configuration to complete, as follows:

db2haicu -f XMLfilepath

Example 7-4 shows the sample output of db2haicu with XML on the
standby node.

Example 7-4 Sample output of db2haicu with XML on the standby node

(S) $ db2haicu -f db2hadr.xml
Welcome to the DB2 High Availability Instance Configuration Utility
(db2haicu).
242 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.admin.ha.doc/doc/r0053130.html

You can find detailed diagnostic information in the DB2 server
diagnostic log file called db2diag.log. Also, you can use the
utility called db2pd to query the status of the cluster domains you
create.

For more information about configuring your clustered environment
using db2haicu, see the topic called 'DB2 High Availability Instance
Configuration Utility (db2haicu)' in the DB2 Information Center.

db2haicu determined the current DB2 database manager instance is
db2inst1. The cluster configuration that follows apply to this
instance.

db2haicu is collecting information on your current setup. This step
may take some time as db2haicu need to activate all databases for
the instance to discover all paths ...
Creating domain hadr_dom in the cluster ...
Creating domain hadr_dom in the cluster was successful.
Configuring quorum device for domain hadr_dom ...
Configuring quorum device for domain hadr_dom was successful.
Adding network interface card en1 on cluster node Baltic to the
network db2_public_network_0 ...
Adding network interface card en1 on cluster node Baltic to the
network db2_public_network_0 was successful.
Adding network interface card en1 on cluster node Zaire to the
network db2_public_network_0 ...
Adding network interface card en1 on cluster node Zaire to the
network db2_public_network_0 was successful.
Adding network interface card en2 on cluster node Baltic to the
network db2_private_network_0 ...
Adding network interface card en2 on cluster node Baltic to the
network db2_private_network_0 was successful.
Adding network interface card en2 on cluster node Zaire to the
network db2_private_network_0 ...
Adding network interface card en2 on cluster node Zaire to the
network db2_private_network_0 was successful.
Adding DB2 database partition 0 to the cluster ...
Adding DB2 database partition 0 to the cluster was successful.
The HADR database SAMPLE has been determined to be valid for high
availability. However, the database cannot be added to the cluster
from this node because db2haicu detected this node is the standby
for the HADR database SAMPLE. Run db2haicu on the primary for the
HADR database SAMPLE to configure the database for automated
failover.
 Chapter 7. HADR with clustering software 243

All cluster configurations have been completed successfully.
db2haicu exiting ...

Example 7-5 shows the sample output of db2haicu with XML on the
primary node.

Example 7-5 Sample output of db2haicu with XML on the primary node

(P) $ db2haicu -f db2hadr.xml
Welcome to the DB2 High Availability Instance Configuration Utility
(db2haicu).

You can find detailed diagnostic information in the DB2 server
diagnostic log file called db2diag.log. Also, you can use the
utility called db2pd to query the status of the cluster domains you
create.

For more information about configuring your clustered environment
using db2haicu, see the topic called 'DB2 High Availability Instance
Configuration Utility (db2haicu)' in the DB2 Information Center.

db2haicu determined the current DB2 database manager instance is
db2inst1. The cluster configuration that follows apply to this
instance.

db2haicu is collecting information on your current setup. This step
may take some time as db2haicu need to activate all databases for
the instance to discover all paths ...
Configuring quorum device for domain hadr_dom ...
Configuring quorum device for domain hadr_dom was successful.
The network adapter en1 on node Baltic is already defined in network
db2_public_network_0 and cannot be added to another network until it
is removed from its current network.
The network adapter en1 on node Zaire is already defined in network
db2_public_network_0 and cannot be added to another network until it
is removed from its current network.
The network adapter en2 on node Baltic is already defined in network
db2_private_network_0 and cannot be added to another network until
it is removed from its current network.
The network adapter en2 on node Zaire is already defined in network
db2_private_network_0 and cannot be added to another network until
it is removed from its current network.
Adding DB2 database partition 0 to the cluster ...
Adding DB2 database partition 0 to the cluster was successful.
Adding HADR database SAMPLE to the domain ...
244 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Adding HADR database SAMPLE to the domain was successful.
All cluster configurations have been completed successfully.
db2haicu exiting ...

The HADR configuration is completed right after db2haicu runs the XML file
on the primary instance. Run lssam, lsrpdomain, and lsrpnode to see the
resources that are created during this process.

Example 7-6 shows the domain cluster resource status that is listed by
running lssam.

Example 7-6 List domain cluster resource status with lssam

(P) #lssam
Online IBM.ResourceGroup:db2_db2inst1_Baltic_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst1_Baltic_0-rs
 '- Online
IBM.Application:db2_db2inst1_Baltic_0-rs:Baltic
Online IBM.ResourceGroup:db2_db2inst1_Zaire_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst1_Zaire_0-rs
 '- Online
IBM.Application:db2_db2inst1_Zaire_0-rs:Zaire
Online IBM.ResourceGroup:db2_db2inst1_db2inst1_SAMPLE-rg
Nominal=Online
 |- Online IBM.Application:db2_db2inst1_db2inst1_SAMPLE-rs
 |- Online
IBM.Application:db2_db2inst1_db2inst1_SAMPLE-rs:Baltic
 '- Offline
IBM.Application:db2_db2inst1_db2inst1_SAMPLE-rs:Zaire
 '- Online IBM.ServiceIP:db2ip_192_168_10_111-rs
 |- Online
IBM.ServiceIP:db2ip_192_168_10_111-rs:Baltic
 '- Offline
IBM.ServiceIP:db2ip_192_168_10_111-rs:Zaire

Primary node messages: The messages regarding the networks (bold
text) encountered on the primary node can be safely ignored. These
messages appear because we already defined the public network to
db2haicu through the standby node.
 Chapter 7. HADR with clustering software 245

Example 7-7 shows the cluster domain status that is listed by
running lsrpdomain.

Example 7-7 List cluster domain status

(P) # lsrpdomain
Name OpState RSCTActiveVersion MixedVersions TSPort GSPort
hadr_domain Online 3.1.2.2 No 12347 12348

Example 7-8 shows the nodes in the cluster that are listed by
running lsrpnode.

Example 7-8 List of nodes in the cluster

(P) # lsrpnode
Name OpState RSCTVersion
baltic Online 3.1.2.2
zaire Online 3.1.2.2
246 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Resource groups topology
After the db2haicu tool is run successfully on both the standby and primary
instances, the setup is complete. The relationships among the resources are
shown in Figure 7-5.

Figure 7-5 Resource groups that are created for a multiple network HADR topology

The following list shows how the resources illustrated in this figure correspond to
the resources listed in the lssam command that is shown in Example 7-6 on
page 245:

� Primary DB2 instance resource group: db2_db2inst1_Baltic_0-rg (lssam)

– Member resources:

• Primary DB2 resource: db2_db2inst1_Baltic_0-rs (lssam)

en2:Baltic_int
192.168.20.48

en2:Zaire_int
192.168.20.45

en1:Baltic
192.168.10.48

en1:Zaire
192.168.10.45

Node:Baltic Node:Zaire

HADR resource
DB Name:
SAMPLE

Virtual IP
192.168.10.111

Private network equivalency

Public network equivalency

HADR resource group

Cluster node equivalency

DB2 resource
Instance: db2inst1
Partition#: 0

DB2 Primary Resource Group

DB2 resource
Instance: db2inst1
Partition#: 1

DB2 Standby Resource Group
 Chapter 7. HADR with clustering software 247

� Standby DB2 instance resource group: db2_db2inst1_Zaire_0-rg (lssam)

– Member resources:

• Standby DB2 resource: db2_db2inst1_Zaire_0-rs

� HADR database resource group: db2_db2inst1_db2inst1_SAMPLE-rg
(lssam)

– Member resources:

• HADR DB resource: db2_db2inst1_db2inst1_SAMPLE-rs (lssam)
• Virtual IP address resource: db2ip_192_168_10_111-rs (lssam)

Deleting the domain
The db2haicu option -delete removes an entire HA configuration from a system
and deletes all resources in the cluster. If the other instances are using the
domain at the time, the domain is deleted as well.

Run db2haicu with the -delete option on an instance before it is made highly
available. This action ensures that the setup is started from scratch and there are
no residuals from the previous build. For example, when you run db2haicu with
an XML file, any invalid attribute in the file causes db2haicu to exit with a
non-zero error code. Before db2haicu is run again with the corrected XML file,
you can run the -delete option to ensure that any temporary resources created
during the initial run are cleaned up.

The db2haicu -delete option leaves the DB2 instances and the HADR
replication unaffected. It does not stop the DB2 instances of HADR replications.
However, any IP addresses that were highly available are removed and are no
longer presented after the db2haicu -delete command completes.

Example 7-9 shows a sample output of the db2haicu -delete command.

Example 7-9 Output of db2haicu -delete

(P)(S) $db2haicu -delete
Welcome to the DB2 High Availability Instance Configuration Utility
(db2haicu).

You can find detailed diagnostic information in the DB2 server
diagnostic log file called db2diag.log. Also, you can use the utility
called db2pd to query the status of the cluster domains you create.

For more information about configuring your clustered environment using
db2haicu, see the topic called 'DB2 High Availability Instance
Configuration Utility (db2haicu)' in the DB2 Information Center.
248 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

db2haicu determined the current DB2 database manager instance is
db2inst1. The cluster configuration that follows apply to this
instance.

When you use db2haicu to configure your clustered environment, you
create cluster domains. For more information, see the topic 'Creating a
cluster domain with db2haicu' in the DB2 Information Center. db2haicu
is searching the current node for an existing active cluster domain ...
db2haicu found a cluster domain called Baltic on this node. The cluster
configuration that follows apply to this domain.

Deleting the domain Baltic from the cluster ...
Deleting the domain Baltic from the cluster was successful.
All cluster configurations have been completed successfully. db2haicu
exiting ...

7.3.3 Administration

From time to time, you must plan for a system outage for some maintenance
activities, such as a software upgrade or recycling a DB2 instance to change
non-dynamic database manager parameters. In this section, we demonstrate
how to perform some DB2, OS, and SAMP operations manually for a planned
outage or maintenance.

When you complete the DB2 HADR with SAMP setup, you can perform these
operations as some simple tests to verify your configuration.

Manual DB2 instance operations
Here we describe how to stop and start DB2 on the primary and the standby
nodes for a planned outage or maintenance.

Running db2stop and db2start on the standby
You can run db2stop and db2start on the standby node without impacting the
activities that are taking place on the primary database.

The db2stop force command stops the instance and causes HADR replication
to halt:

(S) $db2stop force
 Chapter 7. HADR with clustering software 249

After that, the resource group of the standby instance (db2_db2inst1_Zaire_0-rg)
is in the Pending Online state. The LOCK status is placed on the HADR
resource group and the standby instance resource group. This lock indicates that
the HADR databases are no longer in the Peer state. Example 7-10 illustrates
the effect of the db2stop force command that is issued on the
standby instance.

Example 7-10 lssam output after you stop DB2 on the standby instance

(P)(S) #lssam
Online IBM.ResourceGroup:db2_db2inst1_Baltic_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst1_Baltic_0-rs
 '- Online
IBM.Application:db2_db2inst1_Baltic_0-rs:Baltic
Pending online IBM.ResourceGroup:db2_db2inst1_Zaire_0-rg Request=Lock
Nominal=Online
 '- Offline IBM.Application:db2_db2inst1_Zaire_0-rs

Control=StartInhibitedBecauseSuspended
 '- Offline
IBM.Application:db2_db2inst1_Zaire_0-rs:Zaire
Online IBM.ResourceGroup:db2_db2inst1_db2inst1_SAMPLE-rg Request=Lock
Nominal=Online
 |- Online IBM.Application:db2_db2inst1_db2inst1_SAMPLE-rs

Control=SuspendedPropagated
 |- Online
IBM.Application:db2_db2inst1_db2inst1_SAMPLE-rs:Baltic
 '- Offline
IBM.Application:db2_db2inst1_db2inst1_SAMPLE-rs:Zaire
 '- Online IBM.ServiceIP:db2ip_192_168_10_111-rs

Control=SuspendedPropagated
 |- Online IBM.ServiceIP:db2ip_192_168_10_111-rs:Baltic
 '- Offline IBM.ServiceIP:db2ip_192_168_10_111-rs:Zaire

To recover from this state, start the standby DB2 instance and activate the
database again by running the following command:

(S) $db2start;db2 activate db sample

Running the db2stop and db2start commands on the primary
Running db2stop force on the primary instance breaks the connection from the
client and halts HADR:

(P) $db2stop force
250 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Example 7-11 illustrates the effect of the db2stop force command that is issued
on the primary instance. The takeover does not occur because that is a planned
operation.

Example 7-11 lssam output after you stop DB2 on the primary instance

(P)(S) #lssam
Pending online IBM.ResourceGroup:db2_db2inst1_Baltic_0-rg Request=Lock
Nominal=Online
 '- Offline IBM.Application:db2_db2inst1_Baltic_0-rs

Control=StartInhibitedBecauseSuspended
 '- Offline
IBM.Application:db2_db2inst1_Baltic_0-rs:Baltic
Online IBM.ResourceGroup:db2_db2inst1_Zaire_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst1_Zaire_0-rs
 '- Online IBM.Application:db2_db2inst1_Zaire_0-rs:Zaire
Pending online IBM.ResourceGroup:db2_db2inst1_db2inst1_SAMPLE-rg
Request=Lock Nominal=Online
 |- Offline IBM.Application:db2_db2inst1_db2inst1_SAMPLE-rs

Control=StartInhibitedBecause Suspended
 |- Offline
IBM.Application:db2_db2inst1_db2inst1_SAMPLE-rs:Baltic
 '- Offline
IBM.Application:db2_db2inst1_db2inst1_SAMPLE-rs:Zaire
 '- Online IBM.ServiceIP:db2ip_192_168_10_111-rs

Control=SuspendedPropagated
 |- Online IBM.ServiceIP:db2ip_192_168_10_111-rs:Baltic
 '- Offline IBM.ServiceIP:db2ip_192_168_10_111-rs:Zaire

To recover from this state, start the primary DB2 instance and activate the
database again by running the following command:

(P) $db2start;db2 activate db sample

Running takeover hadr on the standby instance
There might be situations when a DBA wants to perform a manual takeover to
switch database roles. The safest way to accomplish this task is to run takeover
hadr without the by force option.

Log on to the standby node and run takeover hadr on db dbname to perform a
manual takeover. For example:

(S) $db2 takeover hadr on db sample
 Chapter 7. HADR with clustering software 251

After the takeover completes successfully, running the lssam commands shows
the changes. The virtual IP (service IP) address is also moved to the new primary
node as part of the takeover process (Example 7-12).

Example 7-12 lssam output after takeover

(P)(S)#lssam
Online IBM.ResourceGroup:db2_db2inst1_Baltic_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst1_Baltic_0-rs
 '- Online
IBM.Application:db2_db2inst1_Baltic_0-rs:Baltic
Online IBM.ResourceGroup:db2_db2inst1_Zaire_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst1_Zaire_0-rs
 '- Online IBM.Application:db2_db2inst1_Zaire_0-rs:Zaire
Online IBM.ResourceGroup:db2_db2inst1_db2inst1_SAMPLE-rg Nominal=Online
 |- Online IBM.Application:db2_db2inst1_db2inst1_SAMPLE-rs
 |- Offline
IBM.Application:db2_db2inst1_db2inst1_SAMPLE-rs:Baltic
 '- Online
IBM.Application:db2_db2inst1_db2inst1_SAMPLE-rs:Zaire
 '- Online IBM.ServiceIP:db2ip_192_168_10_111-rs
 |- Offline IBM.ServiceIP:db2ip_192_168_10_111-rs:Baltic
 '- Online IBM.ServiceIP:db2ip_192_168_10_111-rs:Zaire

Manual OS operations
Here we describe OS and Tivoli SA MP operations for a planned outage
or maintenance.

Stopping the standby node
If you need to stop Tivoli SA MP on the standby node for maintenance, complete
the following steps:

1. Run db2stop force on the standby instance:

(S) $db2stop force

2. Run stoprpnode hostname command as the root user on the primary node. If
you run stoprpnode on the standby node, you cannot issue any Tivoli SA MP
or RSCT operations on the standby node. So, run these commands on the
primary node:

(P) #stoprpnode Zaire
(P) #lsrpnode
Name OpState RSCTVersion
Zaire Offline 3.1.2.2
Baltic Online 3.1.2.2
252 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

3. Run lssam to observe the state of the resources (Example 7-13).

Example 7-13 lssam output after stoprpnode

(P) #lssam
Online IBM.ResourceGroup:db2_db2inst1_Baltic_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst1_Baltic_0-rs
 '- Online
IBM.Application:db2_db2inst1_Baltic_0-rs:Baltic
Failed offline IBM.ResourceGroup:db2_db2inst1_Zaire_0-rg
Request=Lock Nominal=Online
 '- Failed offline IBM.Application:db2_db2inst1_Zaire_0-rs

Control=SuspendedPropagated
 '- Failed offline
IBM.Application:db2_db2inst1_Zaire_0-rs:Zaire Node=Offline
Online IBM.ResourceGroup:db2_db2inst1_db2inst1_SAMPLE-rg
Request=Lock Nominal=Online
 |- Online IBM.Application:db2_db2inst1_db2inst1_SAMPLE-rs

Control=SuspendedPropagated
 |- Online
IBM.Application:db2_db2inst1_db2inst1_SAMPLE-rs:Baltic
 '- Failed offline
IBM.Application:db2_db2inst1_db2inst1_SAMPLE-rs:Zaire Node=Offline
 '- Online IBM.ServiceIP:db2ip_192_168_10_111-rs

Control=SuspendedPropagated
 |- Online
IBM.ServiceIP:db2ip_192_168_10_111-rs:Baltic
 '- Failed offline
IBM.ServiceIP:db2ip_192_168_10_111-rs:Zaire Node=Offline

4. You can perform the maintenance operations on the standby node, such as
rebooting the OS. After the maintenance work is complete, run startrpnode
hostname for the standby node on the primary node. For example:

(P) #startrpnode Zaire
(P) #lsrpnode
Name OpState RSCTVersion
Zaire Online 3.1.2.2
Baltic Online 3.1.2.2

5. Run db2start on the standby instance:

(S) $db2start;db2 activate db sample

6. Run lssam to observe the state of the resources. Confirm that the resource of
the instance on Zaire is online.
 Chapter 7. HADR with clustering software 253

Stopping the primary node
If you must stop Tivoli SA MP on the primary node for the planned outage or
maintenance, complete the following steps:

1. Switch the roles. Have the standby (Zaire) take over the services so you can
stop the primary node (Baltic) by running the following command:

(S) $db2 takeover hadr on db sample

If the takeover completes successfully, the client should be able to access the
new primary node (Zaire).

2. Run db2stop force on the new standby node (Baltic):

(S) $db2stop force

3. Run stoprpnode as the root user for the new standby node. You run this
command on the new primary node (Zaire):

(P) #stoprpnode Baltic
(P) #lsrpnode
Name OpState RSCTVersion
Baltic Offline 3.1.2.2
Zaire Online 3.1.2.2

4. Run lssam to observe the state of the resources.

5. Now you can perform the maintenance operations on the new standby node,
such as rebooting the OS. After the maintenance work is complete, run
startrpnode for the new standby node (Baltic) on the new primary
node (Zaire):

(P) #startrpnode Baltic
(P) #lsrpnode
Name OpState RSCTVersion
Baltic Online 3.1.2.2
Zaire Online 3.1.2.2

6. Run db2start on the new standby instance:

(S) $db2start;db2 activate db sample

7. Run lssam to observe the state of the resources and confirm that the
resources of the instance on Baltic are online.

8. Have the old primary node (Baltic) take over the services again by running the
following command:

(S) $db2 takeover hadr on db sample

After the takeover completes successfully, check that the client can access
the primary node without any problems.
254 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

7.3.4 Unplanned outages

The purpose of having HA systems is to minimize system downtime that is
caused by unplanned outages, such as a power failure, a network failure, a DB2
failure, and so on. In this section, we simulate a DB2 system failure, a system
crash, and a network failure to verify our setup, and show the transition states of
the takeover process that Tivoli SA MP performs.

DB2 instance failure
We simulate the DB2 instance failure on the primary node by stopping the
DB2 processes.

Stopping the DB2 instance on the primary
Run db2_kill on the primary instance to stop the DB2 processes. Now all DB2
clients cannot connect to the database.

Run lssam to examine the resources. The HADR resource and the DB2 resource
on the primary node are in the Pending Online state (Example 7-14).

Example 7-14 lssam output after you stop DB2

(P)(S) #lssam
Pending online IBM.ResourceGroup:db2_db2inst1_Baltic_0-rg
Nominal=Online
 '- Pending online IBM.Application:db2_db2inst1_Baltic_0-rs
 '- Pending online

IBM.Application:db2_db2inst1_Baltic_0-rs:Baltic
Online IBM.ResourceGroup:db2_db2inst1_Zaire_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst1_Zaire_0-rs
 '- Online IBM.Application:db2_db2inst1_Zaire_0-rs:Zaire
IBM.ResourceGroup:db2_db2inst1_db2inst1_SAMPLE-rg Nominal=Online
 |- Pending online
IBM.Application:db2_db2inst1_db2inst1_SAMPLE-rs
 |- Pending online

IBM.Application:db2_db2inst1_db2inst1_SAMPLE-rs:Baltic
 '- Offline
IBM.Application:db2_db2inst1_db2inst1_SAMPLE-rs:Zaire
 '- Online IBM.ServiceIP:db2ip_192_168_10_111-rs
 |- Online IBM.ServiceIP:db2ip_192_168_10_111-rs:Baltic
 '- Offline IBM.ServiceIP:db2ip_192_168_10_111-rs:Zaire

Tivoli SA MP restarts the DB2 instance on the same node automatically. Tivoli
SA MP does not execute takeover because the failed DB2 instance is recovered.
All DB2 clients can connect to the database again.
 Chapter 7. HADR with clustering software 255

Preventing a restart of the DB2 instance on primary node
In this test, we rename the DB2 start executable file so Tivoli SA MP cannot
restart the DB2 instance. Run the following commands on the primary node to
stop and break the DB2 instance:

(P) $mv ./sqllib/adm/db2star2 db2star2.mv ; db2_kill

The output of the lssam command shows that the HADR resource and the DB2
resource on the primary node are in the Pending Online state (Example 7-15).
Now all DB2 clients cannot connect to the database.

Example 7-15 lssam output after you run db2_kill

(P)(S) #lssam
Pending online IBM.ResourceGroup:db2_db2inst1_Baltic_0-rg
Nominal=Online
 '- Pending online IBM.Application:db2_db2inst1_Baltic_0-rs
 '- Pending online

IBM.Application:db2_db2inst1_Baltic_0-rs:Baltic
Online IBM.ResourceGroup:db2_db2inst1_Zaire_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst1_Zaire_0-rs
 '- Online IBM.Application:db2_db2inst1_Zaire_0-rs:Zaire
Pending online IBM.ResourceGroup:db2_db2inst1_db2inst1_SAMPLE-rg
Nominal=Online
 |- Pending online
IBM.Application:db2_db2inst1_db2inst1_SAMPLE-rs
 |- Pending online

IBM.Application:db2_db2inst1_db2inst1_SAMPLE-rs:Balti
c

 '- Offline
IBM.Application:db2_db2inst1_db2inst1_SAMPLE-rs:Zaire

 '- Online IBM.ServiceIP:db2ip_192_168_10_111-rs
 |- Online IBM.ServiceIP:db2ip_192_168_10_111-rs:Baltic
 '- Offline IBM.ServiceIP:db2ip_192_168_10_111-rs:Zaire

Tivoli SA MP tries to start the DB2 instance but fails because the DB2 executable
was renamed. Tivoli SA MP then executes a failover. The virtual IP address is
moved to the standby node, and the takeover operation causes the standby
database to assume the primary role.
256 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Shortly after the failover, the HADR resource group
(db2_db2inst1_db2inst1_SAMPLE-rg) is successfully placed in the online state.
The resource on the old primary node is still in the Pending Online state
(Example 7-16).

Example 7-16 lssam output after the takeover

(P)(S) #lssam
Pending online IBM.ResourceGroup:db2_db2inst1_Baltic_0-rg
Nominal=Online
 '- Pending online IBM.Application:db2_db2inst1_Baltic_0-rs
 '- Pending online
IBM.Application:db2_db2inst1_Baltic_0-rs:Baltic
Online IBM.ResourceGroup:db2_db2inst1_Zaire_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst1_Zaire_0-rs
 '- Online IBM.Application:db2_db2inst1_Zaire_0-rs:Zaire
Online IBM.ResourceGroup:db2_db2inst1_db2inst1_SAMPLE-rg Request=Lock
Nominal=Online
 |- Online IBM.Application:db2_db2inst1_db2inst1_SAMPLE-rs
Control=SuspendedPropagated
 |- Failed offline
IBM.Application:db2_db2inst1_db2inst1_SAMPLE-rs:Baltic
 '- Online
IBM.Application:db2_db2inst1_db2inst1_SAMPLE-rs:Zaire
 '- Online IBM.ServiceIP:db2ip_192_168_10_111-rs
Control=SuspendedPropagated
 |- Offline IBM.ServiceIP:db2ip_192_168_10_111-rs:Baltic
 '- Online IBM.ServiceIP:db2ip_192_168_10_111-rs:Zaire

Tivoli SA MP continues trying to bring the DB2 instance resource online on what
is now the old primary node. The timeout occurs 4 - 5 minutes afterward, and this
Pending Online state is changed to the Failed Offline state (Example 7-17).

Example 7-17 lssam output after timeout

(P)(S) #lssam
Failed offline IBM.ResourceGroup:db2_db2inst1_Baltic_0-rg
Control=MemberInProblemState Nominal=Online
 '- Failed offline IBM.Application:db2_db2inst1_Baltic_0-rs
 '- Failed offline

IBM.Application:db2_db2inst1_Baltic_0-rs:Baltic
Online IBM.ResourceGroup:db2_db2inst1_Zaire_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst1_Zaire_0-rs
 '- Online IBM.Application:db2_db2inst1_Zaire_0-rs:Zaire
 Chapter 7. HADR with clustering software 257

Online IBM.ResourceGroup:db2_db2inst1_db2inst1_SAMPLE-rg Request=Lock
Nominal=Online
 |- Online IBM.Application:db2_db2inst1_db2inst1_SAMPLE-rs

Control=SuspendedPropagated
 |- Failed offline

IBM.Application:db2_db2inst1_db2inst1_SAMPLE-rs:Balti
c

 '- Online
IBM.Application:db2_db2inst1_db2inst1_SAMPLE-rs:Zaire
 '- Online IBM.ServiceIP:db2ip_192_168_10_111-rs

Control=SuspendedPropagated
 |- Offline IBM.ServiceIP:db2ip_192_168_10_111-rs:Baltic
 '- Online IBM.ServiceIP:db2ip_192_168_10_111-rs:Zaire

To recover from this scenario, rename the db2start executable to its original
name on the old primary node (Baltic) by running the following command:

(S) $mv ./db2star2.mv ./sqllib/adm/db2star2

You must reset the HADR and DB2 resources on the old primary node to remove
the Failed Offline flag. You accomplish this task by running resetrsrc
commands (with root authority) in the following order on either the standby or the
primary nodes:

� resetrsrc -s 'Name like "instance resource name on old primary" &&
NodeNameList={"old primary node name"}' IBM.Application

� resetrsrc -s 'Name like "HADR resource name" && NodeNameList=
{"old primary node name"}' IBM.Application

Example 7-18 shows the commands that we chose to run.

Example 7-18 Reset the resources

(P)(S) #CT_MANAGEMENT_SCOPE=2
(P)(S) #export CT_MANAGEMENT_SCOPE

(P)(S) #resetrsrc -s 'Name like "db2_db2inst1_Baltic_0-rs" &&
NodeNameList={"Baltic"}' IBM.Application

(P)(S) #resetrsrc -s 'Name like "db2_db2inst1_db2inst1_SAMPLE-rs" &&
NodeNameList={"Baltic"}' IBM.Application
258 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

These commands result in the DB2 instance starting in the old primary.
Reintegration occurs automatically, and the old primary database assumes the
new standby role. After the system reaches the Peer state, the Lock status from
the HADR resource group is removed. You can run these procedures without
impacting the activities taking place at the new primary database and
DB2 clients.

Primary node crash and reintegration of the old primary node
Here we describe node failure by simulating a node crash on the primary node.
We simulate this crash by performing a power off or running shutdown on
the node.

Node crash
Figure 7-6 illustrates the cluster behavior if there is a primary (service)
node crash.

Figure 7-6 Automatic failover to a standby node

Baltic

Baltic_mnt:eno
9.43.86.48

Baltic:en1
192.168.10.48

Zaire:en1
192.168.10.45

Baltic_int:en2
192.168.20.48

Zaire_int:en2
192.168.20.45

Zaire_mnt:en0
9.43.86.45

Service
192.168.10.111

Zaire

db2_db2inst1_
db2inst1_SAMPLE

Primary

Takeover hadr
by force

peer window only
 Chapter 7. HADR with clustering software 259

When the primary node crashes, the clients cannot connect to the database.
Tivoli SA MP detects the primary node’s outage and starts the failover process
as follows:

1. The db2_db2inst1_db2inst1_SAMPLE-rg resource group is acquired by the
standby node (Zaire).

2. The standby node pings and acquires quorum.

3. The virtual IP address (192.168.10.111) is assigned to the en1 NIC on the
standby node.

4. The start script in the Tivoli SA MP, which is related to the resource group, is
run on the standby node. The script includes the TAKEOVER HADR command,
which changes the role of the standby database to primary.

After the failover, the resources are in the states that are shown in Example 7-19:

� The db2_db2inst1_db2inst1_SAMPLE-rg HADR resource group is online on
the new primary (Zaire). However, the HADR resource group is locked.

� The resources on the old primary node (Baltic) assume the Failed
Offline state.

Example 7-19 lssam output after the primary node crash

(S) #lssam
Failed offline IBM.ResourceGroup:db2_db2inst1_Baltic_0-rg
Control=MemberInProblemState Nominal=Online
 '- Failed offline IBM.Application:db2_db2inst1_Baltic_0-rs

Control=MemberInProblemState
 '- Failed offline

IBM.Application:db2_db2inst1_Baltic_0-rs:Baltic
Node=Offline

Online IBM.ResourceGroup:db2_db2inst1_Zaire_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst1_Zaire_0-rs
 '- Online IBM.Application:db2_db2inst1_Zaire_0-rs:Zaire
Online IBM.ResourceGroup:db2_db2inst1_db2inst1_SAMPLE-rg Request=Lock
Nominal=Online
 |- Online IBM.Application:db2_db2inst1_db2inst1_SAMPLE-rs

Control=SuspendedPropagated
 |- Failed offline

IBM.Application:db2_db2inst1_db2inst1_SAMPLE-rs:Balti
c Node=Offline

 '- Online
IBM.Application:db2_db2inst1_db2inst1_SAMPLE-rs:Zaire
 '- Online IBM.ServiceIP:db2ip_192_168_10_111-rs

Control=SuspendedPropagated
260 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

 |- Failed offline
IBM.ServiceIP:db2ip_192_168_10_111-rs:Baltic
Node=Offline

 '- Online IBM.ServiceIP:db2ip_192_168_10_111-rs:Zaire

The HADR resource group is placed in the Lock status after the failover. This
lock indicates that the HADR databases are no longer in the Peer state.
Therefore, no further actions are taken on this resource group if there are
more failures.

Clients who address the service IP address succeed in connecting to the new
primary database on the surviving node, which now has the SAMP
resource group.

Reintegration
Figure 7-7 on page 262 shows the process that is required to reintegrate the old
primary node in to clusters:

1. Baltic recovers from the crash.

2. When the old primary node comes back up, the reintegration
occurs automatically:

a. The DB2 instance is started automatically on the old primary (Baltic).

b. The old primary database is activated as a standby.

c. HADR replication resumes automatically. The old primary database
automatically catches up the log records that are processed only on the
new primary database during the time the old primary node is out of order.

d. When the HADR system reaches the Peer state, the lock from the HADR
resource group is removed. Reintegration of the old primary database
is complete.
 Chapter 7. HADR with clustering software 261

Figure 7-7 Reintegration of the old primary database

Network failure
Here we describe network failures in this section by simulating network interface
malfunctions on the primary and the standby nodes.

Public network interface card failure on the primary node
We unplug the en1 cable on the primary node (Baltic) to break the network, then
run lssam to examine the state of the system resources. You can simulate the
network failure by running chdev:

(P) # chdev -l 'en1' -a state='detach'

The HADR resource (db2_db2inst1_db2inst1_SAMPLE-rg) is in a Pending
Online state (Example 7-20).

Example 7-20 lssam output after a network failure on the primary node

(P)(S) #lssam
Online IBM.ResourceGroup:db2_db2inst1_Baltic_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst1_Baltic_0-rs

Baltic Zaire

Baltic_mnt:eno
9.43.86.48

Baltic:en1
192.168.10.48

Zaire:en1
192.168.10.45

Standby Primary

Baltic_int:en2
192.168.20.48

Zaire_int:en2
192.168.20.45

Zaire_mnt:en0
9.43.86.45

Start hadr
as standby

PEER

Service
192.168.10.111

db2_db2inst1_
db2inst1_SAMPLE
262 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

 '- Online
IBM.Application:db2_db2inst1_Baltic_0-rs:Baltic
Online IBM.ResourceGroup:db2_db2inst1_Zaire_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst1_Zaire_0-rs
 '- Online IBM.Application:db2_db2inst1_Zaire_0-rs:Zaire
PendingonlineIBM.ResourceGroup:db2_db2inst1_db2inst1_SAMPLE-rgControl=M
emberInProblemState Nominal=Online
 |- Pending online

IBM.Application:db2_db2inst1_db2inst1_SAMPLE-rs
 |- Offline

IBM.Application:db2_db2inst1_db2inst1_SAMPLE-rs:Balti
c

 '- Pending online
IBM.Application:db2_db2inst1_db2inst1_SAMPLE-rs:Zaire

 '- Online IBM.ServiceIP:db2ip_192_168_10_111-rs
Control=MemberInProblemStated

 |- Failed offline
IBM.ServiceIP:db2ip_192_168_10_111-rs:Baltic

 '- Online IBM.ServiceIP:db2ip_192_168_10_111-rs:Zaire

Tivoli SA MP starts a failover operation. Run lssam repeatedly to examine the
progress of the failover. The system eventually enters one of the following states:

� The standby HADR database assumes the primary role.

� The virtual IP address comes online on the standby node.

� The resource group of the old primary instance has the Failed Offline status
(Example 7-21).

Example 7-21 lssam output after takeover

(P)(S) #lssam
Failedoffline
IBM.ResourceGroup:db2_db2inst1_Baltic_0-rgControl=MemberInProblemSta
te Nominal=Online
 '- Failed offline IBM.Application:db2_db2inst1_Baltic_0-rs
 '- Failed offline

IBM.Application:db2_db2inst1_Baltic_0-rs:Baltic
Online IBM.ResourceGroup:db2_db2inst1_Zaire_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst1_Zaire_0-rs
 '- Online
IBM.Application:db2_db2inst1_Zaire_0-rs:Zaire
Online IBM.ResourceGroup:db2_db2inst1_db2inst1_SAMPLE-rg
Request=Lock Nominal=Online
 |- Online IBM.Application:db2_db2inst1_db2inst1_SAMPLE-rs

Control=SuspendedPropagated
 Chapter 7. HADR with clustering software 263

 |- Offline
IBM.Application:db2_db2inst1_db2inst1_SAMPLE-rs:Ba
ltic

 '- Online
IBM.Application:db2_db2inst1_db2inst1_SAMPLE-rs:Za
ire

 '- Online IBM.ServiceIP:db2ip_192_168_10_111-rs
Control=SuspendedPropagated

 |- Failed offline
IBM.ServiceIP:db2ip_192_168_10_111-rs:Baltic

 '- Online
IBM.ServiceIP:db2ip_192_168_10_111-rs:Zaire

To recover from this state, we plug the en1 cable back into the old primary node
(Baltic). If you run chdev to simulate the failure, run this command again to
change the state:

(S) # chdev -l 'en1' -a state='up'

For some environments, it might be necessary to restart the network interface.
As root, run smitty network and select Minimum Configuration & Startup. Then,
select en1 interface. Set yes as a value for the “START TCP/IP daemons Now’”
property and press Enter to run the selected command. Afterward, verify if
network interface “en1” is listed as a resource on both nodes under equivalency
for public network by running lsequ (Example 7-22).

Example 7-22 lsequ output after you restart the public network interface

(S) # lsequ -e db2_public_network_0
Displaying Equivalency information:
For Equivalency "db2_public_network_0".

Equivalency 1:
 Name = db2_public_network_0
 MemberClass = IBM.NetworkInterface
 Resource:Node[Membership] = {Unresolved,en1:Zaire}
 SelectString = ""
 SelectFromPolicy = ANY
 MinimumNecessary = 1
 Subscription = {}
 Color = 0
 ActivePeerDomain = hadr_dom
 ConfigValidity =
264 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

If there is a “Unresolved” string in the “Resource:Node[Membership]” field,
modify the existing configuration by running the following command:

(S) # chequ -u r db2_public_network_0
IBM.NetworkInterface:en1:Baltic,en1:Zaire

In this case, the virtual IP resource on the primary node remains in the Failed
Offline status. You must reset the virtual IP resource on the old primary node to
remove the Failed Offline flag. Run the following commands with root authority in
the given order on either the standby or primary nodes:

resetrsrc -s 'Name like "Virtual IP resource name" &&
NodeNameList={"old primary node name"}' IBM.ServiceIP

Before you run resetrsrc, ensure that the CT_MANAGEMENT_SCOPE environment
variable is set to a proper value, for example:

(P)(S) #CT_MANAGEMENT_SCOPE=2
(P)(S) #export CT_MANAGEMENT_SCOPE

(P)(S) #resetrsrc -s 'Name like "db2ip_192_168_10_111-rs" &&
NodeNameList={"Baltic"}' IBM.ServiceIP

(P)(S) #resetrsrc -s "Name like 'db2_db2inst1_Baltic_0-rs'"
IBM.Application

Again, run lssam repeatedly to examine the progress of the failover. The system
eventually reaches the following states:

� The resource group of the old primary instance is Online.
� The old primary virtual IP resource remains Offline.

For more details, see Example 7-23.

Example 7-23 lssam output after you recover the network failure on the old primary

(P)(S) #lssam
Online IBM.ResourceGroup:db2_db2inst1_Baltic_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst1_Baltic_0-rs
 '- Online
IBM.Application:db2_db2inst1_Baltic_0-rs:Baltic
Online IBM.ResourceGroup:db2_db2inst1_Zaire_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst1_Zaire_0-rs
 '- Online
IBM.Application:db2_db2inst1_Zaire_0-rs:Zaire
Online IBM.ResourceGroup:db2_db2inst1_db2inst1_SAMPLE-rg
Request=Lock Nominal=Online
 |- Online IBM.Application:db2_db2inst1_db2inst1_SAMPLE-rs C
 Chapter 7. HADR with clustering software 265

 |- Offline
IBM.Application:db2_db2inst1_db2inst1_SAMPLE-rs:Bal
tic

 '- Online
IBM.Application:db2_db2inst1_db2inst1_SAMPLE-rs:Zai
re

 '- Online IBM.ServiceIP:db2ip_192_168_10_111-rs
Control=SuspendedPropagated

 |- Offline
IBM.ServiceIP:db2ip_192_168_10_111-rs:Baltic
 '- Online
IBM.ServiceIP:db2ip_192_168_10_111-rs:Zaire

7.4 DB2 HADR with Tivoli SA MP configuration for
automatic failover on a Linux system

Here we present a test case that combines the DB2 HA features to automate
failover of HADR databases on Linux. It shows how db2haicu interactive mode
can be used set up the Tivoli SA MP.

7.4.1 Architecture

The example uses the following architecture, and assumes that the following
minimum configuration is already in place:

� Two servers, lepus and mensa, running SUSE Linux Enterprise Server 11
SP1 for AMD64/Intel64

� One network interface card per server

� Common network access to a third gateway device as a tiebreaker

� DB2 10.1 Advanced Enterprise Server Edition with fix pack 1 and Tivoli SA
MP V3.2 installed

� HADR set up on a database
266 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Table 7-1 shows the naming conventions that we used in this example.

Table 7-1 DB2 HADR naming

Server lepus mensa

IP 9.43.86.91 9.43.86.90

Local instance db2inst2 db2inst2

Local DB name SAMPLE SAMPLE

Remote node mensa lepus

Remote DB alias SAMPMENS SAMPLEPU

HADR database role Primary Standby

HADR_LOCAL_HOST lepus mensa

HADR_LOCAL_SVC 55001 55002

HADR_REMOTE_HOST mensa lepus

HADR_REMOTE_SVC 55002 55001

HADR_REMOTE_INST db2inst2 db2inst2

HADR_TIMEOUT 120 120

HADR_SYNCMODE SYNC SYNC

HADR_PEER_WINDOW 120 120

Gateway tiebreaker 9.43.85.1 9.43.85.1

Virtual IP address:
subnet mask

9.43.86.252:
255.255.252.0

9.43.86.252:
255.255.252.0

HADR and the service port number: HADR prefers the actual service port
number to the canonical service name for HADR_LOCAL_SVC and
HADR_REMOTE_SVC. Local and remote host names in HADR_LOCAL_HOST
and HADR_REMOTE_HOST should match the host short-names in /etc/hosts.
 Chapter 7. HADR with clustering software 267

7.4.2 Configuration

In this section, we provide individual configuration steps, followed by the
execution of the db2haicu utility to create a cluster. The steps and tasks that are
involved in setting up a cluster that is integrated with DB2 High Availability
Feature are covered in detail in the section “Configuring for high availability”, in
Chapter 4, “Configuring for high availability”, in Data Recovery and High
Availability Guide and Reference, SC27-3870-00.

Before you run db2haicu
Based on the provided architecture for our example, complete the following
configuration steps before you run db2haicu:

1. Ensure that the matching entries for DB2 instance communication and HADR
ports exist in the /etc/services files for both servers that are added as
cluster nodes. Example 7-24 shows the entries for our configuration.

Example 7-24 Matching DB2 service ports in /etc/services file on each node

db2c_db2inst2 50002
db2_hadr_1 55001
db2_hadr_2 55002

2. Ensure that the matching host name entries exist in the /etc/hosts files for
both servers that are added as cluster nodes. Example 7-25 shows the
entries for our configuration.

Example 7-25 Both host name entries should be in both /etc/hosts files

9.43.86.90 mensa.itsosj.sanjose.ibm.com mensa
9.43.86.91 lepus.itsosj.sanjose.ibm.com lepus

3. Run the ~/sqllib/db2profile script for the DB2 instance that is being used
to create the cluster domain. This command has most likely been added to
the ~/.profile of the user ID by the db2icrt command.

4. Start the database manager on both servers by running db2start.

5. Ensure that all DB2 High Availability Disaster Recovery (HADR) databases
are started in their respective primary and standby database roles, and that
all HADR primary/standby database pairs are in the Peer state.

6. Set the database configuration (db cfg) parameter HADR_PEER_WINDOW to a
value greater than or equal to 120 [seconds] on both servers. Run the
following command with the instance owner ID:

db2 update db cfg for sample using HADR_PEER_WINDOW 120
268 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

7. To prepare each node for clustering:

On both servers, run preprpnode with user ID root:

/usr/sbin/rsct/bin/preprpnode lepus mensa

If this command is not run on both servers, “permission denied” errors occur
when db2haicu is run.

The syntax for the preprpnode command is covered in RSCT for
Multiplatforms: Technical Reference, SA22-7893-19 or in the RSCT
Information Center at:

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/topic/com.ibm
.cluster.rsct.v3r2.rsct700.doc/bl501m_about.htm

RSCT on virtual machines
If the environment is running on cloned virtual images (for example, VMware),
then the RSCT node identifier is not unique, which prevents the creation of
a cluster.

The node ID is a 64-bit number that is created when RSCT is installed. It is
derived using a True Random Number Generator and is used to uniquely identify
a node to the Resource Monitoring and Control (RMC) Subsystem. The node ID
is maintained in the /var/ct/cfg/ct_node_id file. A backup copy is maintained
in the /etc/ct_node_id file. For more information, see the Information Center at:

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/topic/com.ibm.cl
uster.rsct.v3r2.rsct100.doc/bl503_about.htm

This error can be corrected, if there is no cluster present, by running the
following command:

/usr/sbin/rsct/install/bin/recfgct

This command effectively reinitializes the RSCT base, and one feature is to give
each node a unique identifier.

The db2haicu configuration
At this stage, the environment should be ready for the db2haicu command. It
should be first run on the HADR standby node, and then on the HADR primary
node to successfully complete cluster definition with HADR integration.

Cluster definitions: If there is any cluster definition present when the recfgct
command is run, the effects are unpredictable, and symptoms might include
immediate recycling of the operating system.
 Chapter 7. HADR with clustering software 269

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/topic/com.ibm.cluster.rsct.v3r2.rsct100.doc/bl503_about.htm

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/topic/com.ibm.cluster.rsct.v3r2.rsct100.doc/bl503_about.htm

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/topic/com.ibm.cluster.rsct.v3r2.rsct700.doc/bl501m_about.htm

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/topic/com.ibm.cluster.rsct.v3r2.rsct700.doc/bl501m_about.htm

When every prerequisite is met, the assumptions that are made by db2haicu
allow usage of the default response to almost each prompt. We use the defaults
wherever possible, emphasizing places where we made specific entries.

Example 7-26 shows the initial execution of db2haicu on our HADR standby node
after you confirm that HADR is running in the Peer state as the standby.

Example 7-26 db2haicu initial pass on HADR standby node

db2inst2@mensa:~> db2pd -d sample -hadr

Database Member 0 -- Database SAMPLE -- Standby -- Up 2 days 19:03:16
-- Date 2012-08-06-05.37.11.820815

 HADR_ROLE = STANDBY
 REPLAY_TYPE = PHYSICAL
 HADR_SYNCMODE = SYNC
 STANDBY_ID = 0
 LOG_STREAM_ID = 0
 HADR_STATE = PEER
 PRIMARY_MEMBER_HOST = lepus
 PRIMARY_INSTANCE = db2inst2
 PRIMARY_MEMBER = 0
 STANDBY_MEMBER_HOST = mensa
 STANDBY_INSTANCE = db2inst2
 STANDBY_MEMBER = 0
 HADR_CONNECT_STATUS = CONNECTED
 HADR_CONNECT_STATUS_TIME = 08/06/2012 05:30:16.969954
(1344245416)
 HEARTBEAT_INTERVAL(seconds) = 1
 HADR_TIMEOUT(seconds) = 3
 TIME_SINCE_LAST_RECV(seconds) = 0

 PEER_WAIT_LIMIT(seconds) = 0
 LOG_HADR_WAIT_CUR(seconds) = 0.000

 LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.003236
 LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.142
 LOG_HADR_WAIT_COUNT = 44
SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 16384
SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87380
 PRIMARY_LOG_FILE,PAGE,POS = S0000039.LOG, 260, 200785896
 STANDBY_LOG_FILE,PAGE,POS = S0000039.LOG, 260, 200785896
 HADR_LOG_GAP(bytes) = 0
 STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000039.LOG, 260, 200785896
 STANDBY_RECV_REPLAY_GAP(bytes) = 0
 PRIMARY_LOG_TIME = 08/06/2012 05:30:14.000000
(1344245414)
270 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

 STANDBY_LOG_TIME = 08/06/2012 05:30:14.000000
(1344245414)
 STANDBY_REPLAY_LOG_TIME = 08/06/2012 05:30:14.000000
(1344245414)
 STANDBY_RECV_BUF_SIZE(pages) = 512
 STANDBY_RECV_BUF_PERCENT = 0
 STANDBY_SPOOL_LIMIT(pages) = 0
 PEER_WINDOW(seconds) = 120
 PEER_WINDOW_END = 08/06/2012 05:39:11.000000
(1344245951)
 READS_ON_STANDBY_ENABLED = N
db2inst2@mensa:~> db2haicu
Welcome to the DB2 High Availability Instance Configuration Utility
(db2haicu).

You can find detailed diagnostic information in the DB2 server
diagnostic log file called db2diag.log. Also, you can use the utility
called db2pd to query the status of the cluster domains you create.

For more information about configuring your clustered environment using
db2haicu, see the topic called 'DB2 High Availability Instance
Configuration Utility (db2haicu)' in the DB2 Information Center.

db2haicu determined the current DB2 database manager instance is
'db2inst2'. The cluster configuration that follows apply to this
instance.

db2haicu is collecting information on your current setup. This step may
take some time as db2haicu need to activate all databases for the
instance to discover all paths ...
When you use db2haicu to configure your clustered environment, you
create cluster domains. For more information, see the topic 'Creating a
cluster domain with db2haicu' in the DB2 Information Center. db2haicu
is searching the current machine for an existing active cluster domain
...
db2haicu did not find a cluster domain on this machine. db2haicu now
query the system for information about cluster nodes to create a new
cluster domain ...

db2haicu did not find a cluster domain on this machine. To continue
configuring your clustered environment for high availability, you must
create a cluster domain; otherwise, db2haicu exit.

Create a domain and continue? [1]
1. Yes
 Chapter 7. HADR with clustering software 271

2. No

Create a unique name for the new domain:
lepusmensa
Nodes must now be added to the new domain.
How many cluster nodes the domain 'lepusmensa' contain?
2
Enter the host name of a machine to add to the domain:
mensa
Enter the host name of a machine to add to the domain:
lepus
db2haicu can now create a new domain containing the 2 machines that you
specified. If you choose not to create a domain now, db2haicu exit.

Create the domain now? [1]
1. Yes
2. No

Creating domain 'lepusmensa' in the cluster ...
Creating domain 'lepusmensa' in the cluster was successful.

You can now configure a quorum device for the domain. For more
information, see the topic "Quorum devices" in the DB2 Information
Center. If you do not configure a quorum device for the domain, then a
human operator have to manually intervene if subsets of machines in
the cluster lose connectivity.

Configure a quorum device for the domain called 'lepusmensa'? [1]
1. Yes
2. No

The following is a list of supported quorum device types:
 1. Network Quorum
Enter the number corresponding to the quorum device type to be used:
[1]

Interrupt: If your server has some leftover cluster definitions, db2haicu might
halt at this point and return you to the command line. You can either continue
and run db2haicu again, which skips over the next stage of creating a quorum
device, or you can run db2haicu -delete and then try running db2haicu
again. You can add a quorum device later through the db2haicu maintenance
mode menu item 6 “Create a new quorum device for the domain”. Run
db2haicu -delete because it ensures a clean cluster definition.
272 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Specify the network address of the quorum device:
9.43.85.1
Configuring quorum device for domain 'lepusmensa' ...
Configuring quorum device for domain 'lepusmensa' was successful.
The cluster manager found the following total number of network
interface cards on the machines in the cluster domain: '2'. You can
add a network to your cluster domain using the db2haicu utility.

Create networks for these network interface cards? [1]
1. Yes
2. No

Enter the name of the network for the network interface card: 'eth0' on
cluster node: 'mensa.itsosj.sanjose.ibm.com'
1. Create a new public network for this network interface card.
2. Create a new private network for this network interface card.
Enter selection:
1
Are you sure you want to add the network interface card 'eth0' on
cluster node 'mensa.itsosj.sanjose.ibm.com' to the network
'db2_public_network_0'? [1]
1. Yes
2. No

Adding network interface card 'eth0' on cluster node
'mensa.itsosj.sanjose.ibm.com' to the network 'db2_public_network_0'
...
Adding network interface card 'eth0' on cluster node
'mensa.itsosj.sanjose.ibm.com' to the network 'db2_public_network_0'
was successful.
Enter the name of the network for the network interface card: 'eth0' on
cluster node: 'lepus.itsosj.sanjose.ibm.com'
1. db2_public_network_0
2. Create a new public network for this network interface card.
3. Create a new private network for this network interface card.
Enter selection:
1
Are you sure you want to add the network interface card 'eth0' on
cluster node 'lepus.itsosj.sanjose.ibm.com' to the network
'db2_public_network_0'? [1]
1. Yes
2. No
 Chapter 7. HADR with clustering software 273

Adding network interface card 'eth0' on cluster node
'lepus.itsosj.sanjose.ibm.com' to the network 'db2_public_network_0'
...
Adding network interface card 'eth0' on cluster node
'lepus.itsosj.sanjose.ibm.com' to the network 'db2_public_network_0'
was successful.
Retrieving high availability configuration parameter for instance
'db2inst2' ...
The cluster manager name configuration parameter (high availability
configuration parameter) is not set. For more information, see the
topic "cluster_mgr - Cluster manager name configuration parameter" in
the DB2 Information Center. Do you want to set the high availability
configuration parameter?
The following are valid settings for the high availability
configuration parameter:
 1.TSA
 2.Vendor
Enter a value for the high availability configuration parameter: [1]

Setting a high availability configuration parameter for instance
'db2inst2' to 'TSA'.
Adding DB2 database partition '0' to the cluster ...
Adding DB2 database partition '0' to the cluster was successful.
Do you want to validate and automate HADR failover for the HADR
database 'SAMPLE'? [1]
1. Yes
2. No

Adding HADR database 'SAMPLE' to the domain ...
The HADR database 'SAMPLE' has been determined to be valid for high
availability. However, the database cannot be added to the cluster from
this node because db2haicu detected this node is the standby for the
HADR database 'SAMPLE'. Run db2haicu on the primary for the HADR
database 'SAMPLE' to configure the database for automated failover.
All cluster configurations have been completed successfully. db2haicu
exiting ...
db2inst2@mensa:~>

This process brings us almost to the state of a working cluster. The HADR
database pair is not added to the cluster yet because the database on the current
cluster node is in the HADR standby role. db2haicu must now be run on the
primary node to add the SAMPLE database for both nodes in to the cluster.
274 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

On a clean system with no residual cluster definitions, the output of db2haicu in
startup mode resembles Example 7-27. This example shows db2haicu adding
the HADR primary database to the cluster definition to pair with the HADR
standby database cluster definition. It also gives you the option to add in a virtual
IP definition, as an alternative to using Automatic Client Redirection (ACR). We
choose to use a virtual IP address in our test environment, with our remote client
running db2 catalog tcpip node commands to point at that virtual IP address.

Example 7-27 db2haicu on HADR Primary node - first run on a clean system

db2inst2@lepus:~> db2haicu
Welcome to the DB2 High Availability Instance Configuration Utility
(db2haicu).

You can find detailed diagnostic information in the DB2 server
diagnostic log file called db2diag.log. Also, you can use the utility
called db2pd to query the status of the cluster domains you create.

For more information about configuring your clustered environment using
db2haicu, see the topic called 'DB2 High Availability Instance
Configuration Utility (db2haicu)' in the DB2 Information Center.

db2haicu determined the current DB2 database manager instance is
'db2inst2'. The cluster configuration that follows apply to this
instance.

db2haicu is collecting information on your current setup. This step may
take some time as db2haicu need to activate all databases for the
instance to discover all paths ...
When you use db2haicu to configure your clustered environment, you
create cluster domains. For more information, see the topic 'Creating a
cluster domain with db2haicu' in the DB2 Information Center. db2haicu
is searching the current machine for an existing active cluster domain
...
db2haicu found a cluster domain called 'lepusmensa' on this machine.
The cluster configuration that follows apply to this domain.

Retrieving high availability configuration parameter for instance
'db2inst2' ...
The cluster manager name configuration parameter (high availability
configuration parameter) is not set. For more information, see the
topic "cluster_mgr - Cluster manager name configuration parameter" in
the DB2 Information Center. Do you want to set the high availability
configuration parameter?
 Chapter 7. HADR with clustering software 275

The following are valid settings for the high availability
configuration parameter:
 1.TSA
 2.Vendor
Enter a value for the high availability configuration parameter: [1]

Setting a high availability configuration parameter for instance
'db2inst2' to 'TSA'.
Adding DB2 database partition '0' to the cluster ...
Adding DB2 database partition '0' to the cluster was successful.
Do you want to validate and automate HADR failover for the HADR
database 'SAMPLE'? [1]
1. Yes
2. No

Adding HADR database 'SAMPLE' to the domain ...
Adding HADR database 'SAMPLE' to the domain was successful.
Do you want to configure a virtual IP address for the HADR database
'SAMPLE'? [1]
1. Yes
2. No

Enter the virtual IP address:
9.43.86.252
Enter the subnet mask for the virtual IP address '9.43.86.252':
[255.255.255.0]
255.255.252.0
Select the network for the virtual IP '9.43.86.252':
1. db2_public_network_0
2. db2_private_network_0
Enter selection:
1
Adding virtual IP address '9.43.86.252' to the domain ...
Adding virtual IP address '9.43.86.252' to the domain was successful.
All cluster configurations have been completed successfully. db2haicu
exiting ...
db2inst2@lepus:~>
276 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

We now have a fully completed and integrated HADR cluster. You can see what
cluster objects are defined by running the Tivoli SA MP lssam command
(Example 7-28). This output shows us:

� The resource group for the HADR database pair (SAMPLE on lepus, as the
HADR primary, is shown as “Online”, while SAMPLE on mensa, as the HADR
standby, is shown as “Offline”).

� The Application definition of the virtual service IP address (again, lepus, as
the HADR primary, is shown as “Online”, while mensa, as the HADR standby,
is shown as “Offline”).

� Two resource groups (one for each of the db2inst2 DB2 instances on lepus
and mensa). Because both DB2 instances are technically running, both are
shown as “Online”.

Example 7-28 Tivoli SA MP view of cluster objects that are created by db2haicu

db2inst2@lepus:~> lssam
Online IBM.ResourceGroup:db2_db2inst2_db2inst2_SAMPLE-rg Nominal=Online
 |- Online IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs
 |- Online
IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:lepus
 '- Offline
IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:mensa
 '- Online IBM.ServiceIP:db2ip_192_168_145_252-rs
 |- Online IBM.ServiceIP:db2ip_192_168_145_252-rs:lepus
 '- Offline IBM.ServiceIP:db2ip_192_168_145_252-rs:mensa
Online IBM.ResourceGroup:db2_db2inst2_lepus_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs:lepus
Online IBM.ResourceGroup:db2_db2inst2_mensa_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs:mensa

7.4.3 Testing

Here we describe the steps of a standard set of tests to prove that the cluster
controlled by the DB2 High Availability Feature can handle common failure
scenarios in an appropriate manner. These scenarios include unplanned failure
scenarios of the DB2 instance on the HADR primary node, and unplanned failure
of the HADR primary cluster node itself.
 Chapter 7. HADR with clustering software 277

Preparation
Our tests assume that our HADR database pair SAMPLE is active, connected,
and in the Peer state, that our HADR Primary role is held by lepus, and HADR
standby is mensa, as shown by the output of lssam and db2pd commands in
Example 7-29.

Example 7-29 The assumed starting point for our testing scenarios

db2inst2@lepus:~> lssam
Online IBM.ResourceGroup:db2_db2inst2_db2inst2_SAMPLE-rg Nominal=Online
 |- Online IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs
 |- Online
IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:lepus
 '- Offline
IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:mensa
 '- Online IBM.ServiceIP:db2ip_192_168_145_252-rs
 |- Online IBM.ServiceIP:db2ip_192_168_145_252-rs:lepus
 '- Offline IBM.ServiceIP:db2ip_192_168_145_252-rs:mensa
Online IBM.ResourceGroup:db2_db2inst2_lepus_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs:lepus
Online IBM.ResourceGroup:db2_db2inst2_mensa_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs:mensa

db2inst2@lepus:~> db2pd -d sample -hadr

Database Member 0 -- Database SAMPLE -- Active -- Up 2 days 20:52:44 --
Date 2012-08-06-07.26.48.066630

 HADR_ROLE = PRIMARY
 REPLAY_TYPE = PHYSICAL
 HADR_SYNCMODE = SYNC
 STANDBY_ID = 1
 LOG_STREAM_ID = 0
 HADR_STATE = PEER
 PRIMARY_MEMBER_HOST = lepus
 PRIMARY_INSTANCE = db2inst2
 PRIMARY_MEMBER = 0
 STANDBY_MEMBER_HOST = mensa
 STANDBY_INSTANCE = db2inst2
 STANDBY_MEMBER = 0
 HADR_CONNECT_STATUS = CONNECTED
278 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

 HADR_CONNECT_STATUS_TIME = 08/06/2012 05:30:16.970056
(1344245416)
 HEARTBEAT_INTERVAL(seconds) = 1
 HADR_TIMEOUT(seconds) = 3
 TIME_SINCE_LAST_RECV(seconds) = 1
 PEER_WAIT_LIMIT(seconds) = 0
 LOG_HADR_WAIT_CUR(seconds) = 0.000
 LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.002415
 LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.713
 LOG_HADR_WAIT_COUNT = 287
SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 16384
SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87380
 PRIMARY_LOG_FILE,PAGE,POS = S0000039.LOG, 309, 200983920
 STANDBY_LOG_FILE,PAGE,POS = S0000039.LOG, 309, 200983920
 HADR_LOG_GAP(bytes) = 0
 STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000039.LOG, 309, 200983920
 STANDBY_RECV_REPLAY_GAP(bytes) = 0
 PRIMARY_LOG_TIME = 08/06/2012 07:18:53.000000
(1344251933)
 STANDBY_LOG_TIME = 08/06/2012 07:18:53.000000
(1344251933)
 STANDBY_REPLAY_LOG_TIME = 08/06/2012 07:18:53.000000
(1344251933)
 STANDBY_RECV_BUF_SIZE(pages) = 512
 STANDBY_RECV_BUF_PERCENT = 0
 STANDBY_SPOOL_LIMIT(pages) = 0
 PEER_WINDOW(seconds) = 120
 PEER_WINDOW_END = 08/06/2012 07:28:47.000000
(1344252527)

READS_ON_STANDBY_ENABLED = N

Monitoring scripts
During testing, we monitor the status of the cluster with a single-line shell script
that issues lssam repeatedly, echoes an empty line, and sleeps for 5 seconds:

while : ;do lssam;echo “ “;sleep 5;done

We also monitor and test the remote DB2 connectivity of the current HADR
primary database with a simple looping script. Our example runs from a DB2
client also running on Linux, so it uses the following syntax:

while : ;do
db2 connect to testsamp user db2inst2 using passblah
db2 connect reset
echo “ “
 Chapter 7. HADR with clustering software 279

sleep 5
done

The DB2 client script assumes the following catalog TCP/IP node and database
alias definitions are run on the remote client DB2 command line:

� db2 catalog tcpip node testsamp remote 9.43.86.252 server 50002
� db2 catalog db sample as testsamp at node testsamp

We use the Virtual IP address that is defined as part of the db2haicu cluster
definition as the service IP address (that is, the address that external clients use
to connect to the current DB2 HADR primary database.

Planned HADR takeover
A wonderful property of the DB2 High Availability Feature is that appropriate
cluster actions are integrated into DB2 native commands.

For HADR clusters controlled by the new HA feature, rather than needing to su to
the root user and run chrg or the cluster manager command that is normally
required to make a change in the cluster, you can run db2stop, db2start, stop
hadr, start hadr, and takeover hadr commands as required. The cluster reacts
appropriately, rather than fighting against these actions on the assumption that
something is wrong with a resource. The DB2 instance user is also authorized to
run the lssam command to monitor the current Online/Offline state of cluster
resources. There is no requirement to su to the root user.

A complete list of the DB2 native commands that are integrated with the cluster
manager can be found in the DB2 10.1 Information Center at:

http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2
.luw.admin.ha.doc/doc/t0051380.html

Our first test is to issue two unforced HADR takeovers. The first one moves the
HADR primary role from the SAMPLE database on lepus to the SAMPLE
database on mensa, and the second one moves the HADR primary role back
again, to the SAMPLE database on lepus.

We start our looping lssam script on one of the servers, then have the db2inst2
user on mensa (the current HADR standby) run the following command:

db2 takeover hadr on db sample

The step-by-step results for our first takeover command are shown in
Example 7-30 on page 281 to Example 7-35 on page 283.
280 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.admin.ha.doc/doc/t0051380.html

The first change is a Request=Lock state on the HADR resource group
(Example 7-30).

Example 7-30 Unforced takeover - step 1 of 6

Online IBM.ResourceGroup:db2_db2inst2_db2inst2_SAMPLE-rg Request=Lock
Nominal=Online
 |- Online IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs
 |- Online
IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:lepus
 '- Offline
IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:mensa
 '- Online IBM.ServiceIP:db2ip_192_168_145_252-rs
 |- Online IBM.ServiceIP:db2ip_192_168_145_252-rs:lepus
 '- Offline IBM.ServiceIP:db2ip_192_168_145_252-rs:mensa
Online IBM.ResourceGroup:db2_db2inst2_lepus_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs:lepus
Online IBM.ResourceGroup:db2_db2inst2_mensa_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs:mensa

The next noticeable change is a Request=Move, and the virtual IP address is set
Offline (Example 7-31).

Example 7-31 Unforced takeover - step 2 of 6

Online IBM.ResourceGroup:db2_db2inst2_db2inst2_SAMPLE-rg Request=Move
Nominal=Online
 |- Online IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs
 |- Online
IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:lepus
 '- Offline
IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:mensa
 '- Offline IBM.ServiceIP:db2ip_192_168_145_252-rs
 |- Offline IBM.ServiceIP:db2ip_192_168_145_252-rs:lepus
 '- Offline IBM.ServiceIP:db2ip_192_168_145_252-rs:mensa
Online IBM.ResourceGroup:db2_db2inst2_lepus_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs:lepus
Online IBM.ResourceGroup:db2_db2inst2_mensa_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs:mensa
 Chapter 7. HADR with clustering software 281

In Example 7-32, the HADR resource for the primary is set to Pending Offline.

Example 7-32 Unforced takeover - step 3 of 6

Pending offline IBM.ResourceGroup:db2_db2inst2_db2inst2_SAMPLE-rg
Request=Move Nominal=Online
 |- Pending offline
IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs
 |- Pending offline
IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:lepus
 '- Offline
IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:mensa
 '- Offline IBM.ServiceIP:db2ip_192_168_145_252-rs
 |- Offline IBM.ServiceIP:db2ip_192_168_145_252-rs:lepus
 '- Offline IBM.ServiceIP:db2ip_192_168_145_252-rs:mensa
Online IBM.ResourceGroup:db2_db2inst2_lepus_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs:lepus
Online IBM.ResourceGroup:db2_db2inst2_mensa_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs:mensa

The virtual IP address for mensa is set to Online, and the HADR database
resource for mensa is Pending Online (Example 7-33).

Example 7-33 Unforced takeover - step 4 of 6

Pending online IBM.ResourceGroup:db2_db2inst2_db2inst2_SAMPLE-rg
Request=Move Nominal=Online
 |- Pending online
IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs
 |- Offline
IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:lepus
 '- Pending online
IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:mensa
 '- Online IBM.ServiceIP:db2ip_192_168_145_252-rs
 |- Offline IBM.ServiceIP:db2ip_192_168_145_252-rs:lepus
 '- Online IBM.ServiceIP:db2ip_192_168_145_252-rs:mensa
Online IBM.ResourceGroup:db2_db2inst2_lepus_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs:lepus
Online IBM.ResourceGroup:db2_db2inst2_mensa_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs:mensa
282 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

The HADR database resource for mensa is now set to Online. Apart from the
Request=Lock, the DB2 HADR pair should now be available again for
communication (Example 7-34).

Example 7-34 Unforced takeover - step 5 of 6

Online IBM.ResourceGroup:db2_db2inst2_db2inst2_SAMPLE-rg Request=Lock
Nominal=Online
 |- Online IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs
 |- Offline
IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:lepus
 '- Online
IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:mensa
 '- Online IBM.ServiceIP:db2ip_192_168_145_252-rs
 |- Offline IBM.ServiceIP:db2ip_192_168_145_252-rs:lepus
 '- Online IBM.ServiceIP:db2ip_192_168_145_252-rs:mensa
Online IBM.ResourceGroup:db2_db2inst2_lepus_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs:lepus
Online IBM.ResourceGroup:db2_db2inst2_mensa_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs:mensa

Control of the DB2 command line returns to the administrator. The SAMPLE
database on lepus now has the HADR standby role (Example 7-35), which is
confirmed by running db2pd. With the SAMPLE database on mensa having the
HADR primary role, the Service IP address resource is assigned to mensa.

Example 7-35 Unforced takeover - step 6 of 6

Online IBM.ResourceGroup:db2_db2inst2_db2inst2_SAMPLE-rg Nominal=Online
 |- Online IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs
 |- Offline
IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:lepus
 '- Online
IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:mensa
 '- Online IBM.ServiceIP:db2ip_192_168_145_252-rs
 |- Offline IBM.ServiceIP:db2ip_192_168_145_252-rs:lepus
 '- Online IBM.ServiceIP:db2ip_192_168_145_252-rs:mensa
Online IBM.ResourceGroup:db2_db2inst2_lepus_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs:lepus
Online IBM.ResourceGroup:db2_db2inst2_mensa_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs:mensa
 Chapter 7. HADR with clustering software 283

db2inst2@lepus:~> db2pd -d sample -hadr

Database Member 0 -- Database SAMPLE -- Active -- Up 2 days 21:51:16 --
Date 2012-08-06-08.25.11.518820

 HADR_ROLE = PRIMARY
 REPLAY_TYPE = PHYSICAL
 HADR_SYNCMODE = SYNC
 STANDBY_ID = 1
 LOG_STREAM_ID = 0
 HADR_STATE = PEER
 PRIMARY_MEMBER_HOST = mensa
 PRIMARY_INSTANCE = db2inst2
 PRIMARY_MEMBER = 0
 STANDBY_MEMBER_HOST = lepus
 STANDBY_INSTANCE = db2inst2
 STANDBY_MEMBER = 0
 HADR_CONNECT_STATUS = CONNECTED
 HADR_CONNECT_STATUS_TIME = 08/06/2012 05:30:16.969954
(1344245416)
 HEARTBEAT_INTERVAL(seconds) = 1
 HADR_TIMEOUT(seconds) = 3
 TIME_SINCE_LAST_RECV(seconds) = 0
 PEER_WAIT_LIMIT(seconds) = 0
 LOG_HADR_WAIT_CUR(seconds) = 0.000
 LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.000000
 LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.000
 LOG_HADR_WAIT_COUNT = 0
SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 16384
SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87380
 PRIMARY_LOG_FILE,PAGE,POS = S0000039.LOG, 309, 200986141
 STANDBY_LOG_FILE,PAGE,POS = S0000039.LOG, 309, 200986141
 HADR_LOG_GAP(bytes) = 0
 STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000039.LOG, 309, 200986141
 STANDBY_RECV_REPLAY_GAP(bytes) = 0
 PRIMARY_LOG_TIME = 08/06/2012 07:29:58.000000
(1344252598)
 STANDBY_LOG_TIME = 08/06/2012 07:29:58.000000
(1344252598)
 STANDBY_REPLAY_LOG_TIME = 08/06/2012 07:29:58.000000
(1344252598)
 STANDBY_RECV_BUF_SIZE(pages) = 512
 STANDBY_RECV_BUF_PERCENT = 0
 STANDBY_SPOOL_LIMIT(pages) = 0
 PEER_WINDOW(seconds) = 120
284 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

 PEER_WINDOW_END = 08/06/2012 08:27:10.000000
(1344256030)

READS_ON_STANDBY_ENABLED = N

The output from our looping remote DB2 client script in Example 7-36 shows that
for a brief period during the cluster manager’s resource switching actions, the
Service IP address is pointing to the HADR Standby database, then is
unavailable, and then connectivity returns to normal.

Example 7-36 Brief outage of remote DB2 connectivity during takeover

Database Connection Information

 Database server = DB2/LINUXX8664 10.1.1
 SQL authorization ID = DB2INST2
 Local database alias = TESTSAMP

DB20000I The SQL command completed successfully.

SQL1776N The command cannot be issued on an HADR standby database.
Reason
code = "1".
SQL1024N A database connection does not exist. SQLSTATE=08003

SQL1776N The command cannot be issued on an HADR standby database.
Reason
code = "1".
SQL1024N A database connection does not exist. SQLSTATE=08003

SQL30081N A communication error has been detected. Communication
protocol
being used: "TCP/IP". Communication API being used: "SOCKETS".
Location
where the error was detected: "9.43.86.145.252". Communication
function
detecting the error: "connect". Protocol specific error code(s):
"113", "*",
"*". SQLSTATE=08001
SQL1024N A database connection does not exist. SQLSTATE=08003

 Database Connection Information

 Database server = DB2/LINUXX8664 10.1.1
 SQL authorization ID = DB2INST2
 Chapter 7. HADR with clustering software 285

 Local database alias = TESTSAMP

DB20000I The SQL command completed successfully.

The only reason that we are even seeing the SQL1776N messages in
Example 7-36 on page 285 is that for this particular test environment we did not
configure DB2 automatic client reroute (ACR) between the two HADR databases.
This setup provides a useful contrast with the output from testing that we perform
in 7.4, “DB2 HADR with Tivoli SA MP configuration for automatic failover on a
Linux system” on page 266, where we configure ACR in addition to the Virtual IP
resource. Use ACR in addition to a cluster managed virtual IP address, as a
useful means of avoiding remote DB2 connections that point at an HADR
standby database.

Return the HADR Primary role back to the SAMPLE database on lepus by
running the following command as the db2inst2 user on lepus:

db2 takeover hadr on db sample

The process of unforced HADR takeover from mensa back to lepus shows much
the same output when you run lssam, only with the other resources in a given
resource group pair doing the Pending Offline, Offline, Pending Online, and
Online status changes.

Unplanned failure of the HADR primary DB2 instance
Because the DB2 High Availability Feature integrated the db2stop command into
cluster management, you must use a technique that effectively stops the DB2
instance outside of the cluster manager.

The db2_kill command is an excellent way to achieve this task. To test it, start
the looping lssam monitor script on either one of the cluster nodes, and the IBM
DB2 Connect™ script on the remote client, then have the DB2 instance user
perform the db2_kill command on the HADR primary node lepus, and capture
the results.

The db2_kill command works as shown in Example 7-37.

Example 7-37 db2_kill performs its function

db2inst2@lepus:~> db2_kill
ipclean: Removing DB2 engine and client's IPC resources for db2inst2.
286 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

The looping lssam script output from Example 7-38 shows that the first preferred
action of the cluster manager in this situation is to simply attempt to restart the
DB2 instance that failed. This situation exemplifies the importance of ensuring
that if you want to make DB2 resources unavailable for maintenance purposes,
use commands that the cluster manager is aware of so that it does not
automatically attempt to override your actions.

Example 7-38 shows the first noticeable change from nominal resource states, to
the cluster manager noticing that something is wrong, placing the DB2 instance
resource group for lepus into a Pending Online state.

Example 7-38 Unplanned failure - lssam output 1 of 3

Online IBM.ResourceGroup:db2_db2inst2_db2inst2_SAMPLE-rg Nominal=Online
 |- Online IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs
 |- Online
IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:lepus
 '- Offline
IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:mensa
 '- Online IBM.ServiceIP:db2ip_192_168_145_252-rs
 |- Online IBM.ServiceIP:db2ip_192_168_145_252-rs:lepus
 '- Offline IBM.ServiceIP:db2ip_192_168_145_252-rs:mensa
Online IBM.ResourceGroup:db2_db2inst2_lepus_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs:lepus
Online IBM.ResourceGroup:db2_db2inst2_mensa_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs:mensa
. .
Online IBM.ResourceGroup:db2_db2inst2_db2inst2_SAMPLE-rg Nominal=Online
 |- Online IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs
 |- Online
IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:lepus
 '- Offline
IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:mensa
 '- Online IBM.ServiceIP:db2ip_192_168_145_252-rs
 |- Online IBM.ServiceIP:db2ip_192_168_145_252-rs:lepus
 '- Offline IBM.ServiceIP:db2ip_192_168_145_252-rs:mensa
Pending online IBM.ResourceGroup:db2_db2inst2_lepus_0-rg Nominal=Online
 '- Pending online IBM.Application:db2_db2inst2_lepus_0-rs
 '- Pending online
IBM.Application:db2_db2inst2_lepus_0-rs:lepus
Online IBM.ResourceGroup:db2_db2inst2_mensa_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs:mensa
 Chapter 7. HADR with clustering software 287

Example 7-39 shows the momentary lapse in the cluster manager’s
determination of the resource state for the HADR Primary database. All resource
states first appear nominal, but this lapse is picked up in the next iteration, where
the HADR primary database resource on lepus is shown with a state of
Unknown. This situation is where the HADR Primary database is not yet
activated, and DB2 must perform crash recovery.

Example 7-39 Unplanned failure - lssam output 2 of 3

Online IBM.ResourceGroup:db2_db2inst2_db2inst2_SAMPLE-rg Nominal=Online
 |- Online IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs
 |- Online
IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:lepus
 '- Offline
IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:mensa
 '- Online IBM.ServiceIP:db2ip_192_168_145_252-rs
 |- Online IBM.ServiceIP:db2ip_192_168_145_252-rs:lepus
 '- Offline IBM.ServiceIP:db2ip_192_168_145_252-rs:mensa
Online IBM.ResourceGroup:db2_db2inst2_lepus_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs:lepus
Online IBM.ResourceGroup:db2_db2inst2_mensa_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs:mensa
. .
Online IBM.ResourceGroup:db2_db2inst2_db2inst2_SAMPLE-rg Nominal=Online
 |- Unknown IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs
 |- Unknown
IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:lepus
 '- Offline
IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:mensa
 '- Online IBM.ServiceIP:db2ip_192_168_145_252-rs
 |- Online IBM.ServiceIP:db2ip_192_168_145_252-rs:lepus
 '- Offline IBM.ServiceIP:db2ip_192_168_145_252-rs:mensa
Pending online IBM.ResourceGroup:db2_db2inst2_lepus_0-rg Nominal=Online
 '- Pending online IBM.Application:db2_db2inst2_lepus_0-rs
 '- Pending online
IBM.Application:db2_db2inst2_lepus_0-rs:lepus
Online IBM.ResourceGroup:db2_db2inst2_mensa_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs:mensa
288 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Example 7-40 shows the final range of actions that are taken by the cluster
manager. The HADR database resource for lepus is set to Pending Online while
DB2 performs crash recovery, then all resource states are back to nominal. DB2
connectivity is working again after the HADR Primary database is activated.

Example 7-40 Unplanned failure - lssam output 3 of 3

Pending online IBM.ResourceGroup:db2_db2inst2_db2inst2_SAMPLE-rg
Nominal=Online
 |- Pending online
IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs
 |- Pending online
IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:lepus
 '- Offline
IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:mensa
 '- Online IBM.ServiceIP:db2ip_192_168_145_252-rs
 |- Online IBM.ServiceIP:db2ip_192_168_145_252-rs:lepus
 '- Offline IBM.ServiceIP:db2ip_192_168_145_252-rs:mensa
Online IBM.ResourceGroup:db2_db2inst2_lepus_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs:lepus
Online IBM.ResourceGroup:db2_db2inst2_mensa_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs:mensa
. .
Online IBM.ResourceGroup:db2_db2inst2_db2inst2_SAMPLE-rg Nominal=Online
 |- Online IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs
 |- Online
IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:lepus
 '- Offline
IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:mensa
 '- Online IBM.ServiceIP:db2ip_192_168_145_252-rs
 |- Online IBM.ServiceIP:db2ip_192_168_145_252-rs:lepus
 '- Offline IBM.ServiceIP:db2ip_192_168_145_252-rs:mensa
Online IBM.ResourceGroup:db2_db2inst2_lepus_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs:lepus
Online IBM.ResourceGroup:db2_db2inst2_mensa_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs:mensa
 Chapter 7. HADR with clustering software 289

Our output from the looping DB2 Connect script shows that the DB2 connectivity
is lost, then returns. Because we did not enable ACR, this output also indicates
that the HADR database role and the Virtual IP address are never switched by
the cluster manager for our test scenario. The only action the cluster manager
takes is to simply restart the failed DB2 instance and to activate the database as
HADR primary. This action matches the behavior of the Tivoli SA MP cluster we
test in 7.4, “DB2 HADR with Tivoli SA MP configuration for automatic failover on
a Linux system” on page 266.

When the cluster returns all resources to their nominal state, run db2pd
(Example 7-41), which confirms that the SAMPLE database on lepus retains the
HADR Primary role.

Example 7-41 Return of the HADR primary

db2inst2@lepus:~> db2pd -d sample -hadr

Database Member 0 -- Database SAMPLE -- Active -- Up 0 days 00:02:07 --
Date 2012-08-06-12.54.52.362268

 HADR_ROLE = PRIMARY
 REPLAY_TYPE = PHYSICAL
 HADR_SYNCMODE = SYNC
 STANDBY_ID = 1
 LOG_STREAM_ID = 0
 HADR_STATE = PEER
 PRIMARY_MEMBER_HOST = lepus
 PRIMARY_INSTANCE = db2inst2
 PRIMARY_MEMBER = 0
 STANDBY_MEMBER_HOST = mensa
 STANDBY_INSTANCE = db2inst2
 STANDBY_MEMBER = 0
 HADR_CONNECT_STATUS = CONNECTED
 HADR_CONNECT_STATUS_TIME = 08/06/2012 12:52:49.336918
(1344271969)
 HEARTBEAT_INTERVAL(seconds) = 1
 HADR_TIMEOUT(seconds) = 3
 TIME_SINCE_LAST_RECV(seconds) = 0
 PEER_WAIT_LIMIT(seconds) = 0
 LOG_HADR_WAIT_CUR(seconds) = 0.000
 LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.000000
 LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.000
 LOG_HADR_WAIT_COUNT = 0
SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 16384
SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87380
290 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

 PRIMARY_LOG_FILE,PAGE,POS = S0000039.LOG, 402, 201366148
 STANDBY_LOG_FILE,PAGE,POS = S0000039.LOG, 402, 201366148
 HADR_LOG_GAP(bytes) = 0
 STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000039.LOG, 402, 201366148
 STANDBY_RECV_REPLAY_GAP(bytes) = 0
 PRIMARY_LOG_TIME = 08/06/2012 11:28:53.000000
(1344266933)
 STANDBY_LOG_TIME = 08/06/2012 11:28:53.000000
(1344266933)
 STANDBY_REPLAY_LOG_TIME = 08/06/2012 11:28:53.000000
(1344266933)
 STANDBY_RECV_BUF_SIZE(pages) = 512
 STANDBY_RECV_BUF_PERCENT = 0
 STANDBY_SPOOL_LIMIT(pages) = 0
 PEER_WINDOW(seconds) = 120
 PEER_WINDOW_END = 08/06/2012 12:56:51.000000
(1344272211)

READS_ON_STANDBY_ENABLED = N

Unplanned failure of the primary cluster node
Our final test in this environment is to completely remove the primary node, and
see what actions are taken by the cluster manager on the remaining node.
Effectively, the primary node is in a suspended state, unable to be restarted by
the cluster manager on either node. We manually restart this node ourselves and
see how easily it can be reintegrated back into the cluster, and into the HADR
database pair.

After you start the remote DB2 Connect script on the client, and the lssam script
on the HADR standby node mensa, our next action is to stop the primary cluster
node in an unplanned manner. The most generic way to achieve this task is to
run shutdown -h now as the root user.

The output from our lssam script in Example 7-42 on page 292 and
Example 7-43 on page 293 shows the range of actions from when the cluster
manager notices that DB2 is unavailable, until it assigns the HADR primary role
to the SAMPLE database on our mensa node. Now our lepus node is
powered off.
 Chapter 7. HADR with clustering software 291

Example 7-42 shows the cluster manager is setting the resources for our lepus
node to Offline and Failed Offline. At this stage, to preserve integrity while it
decides what appropriate action to take, the cluster manager also sets the
resource group state for the mensa DB2 instance db2inst2 to Offline, although it
detects that the actual DB2 instance resource is still Online.

Example 7-42 Cluster manager is setting the resources for our lepus node to Offline and Failed Offline

Online IBM.ResourceGroup:db2_db2inst2_db2inst2_SAMPLE-rg Nominal=Online
 |- Online IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs
 |- Online IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:lepus
 '- Offline IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:mensa
 '- Online IBM.ServiceIP:db2ip_192_168_145_252-rs
 |- Online IBM.ServiceIP:db2ip_192_168_145_252-rs:lepus
 '- Offline IBM.ServiceIP:db2ip_192_168_145_252-rs:mensa
Online IBM.ResourceGroup:db2_db2inst2_lepus_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs:lepus
Online IBM.ResourceGroup:db2_db2inst2_mensa_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs:mensa
. .
Offline IBM.ResourceGroup:db2_db2inst2_db2inst2_SAMPLE-rg Nominal=Online
 |- Offline IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs
 |- Failed offline
IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:lepus Node=Offline
 '- Offline IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:mensa
 '- Offline IBM.ServiceIP:db2ip_192_168_145_252-rs
 |- Failed offline IBM.ServiceIP:db2ip_192_168_145_252-rs:lepus
Node=Offline
 '- Offline IBM.ServiceIP:db2ip_192_168_145_252-rs:mensa
Offline IBM.ResourceGroup:db2_db2inst2_lepus_0-rg Nominal=Online
 '- Failed offline IBM.Application:db2_db2inst2_lepus_0-rs
 '- Failed offline IBM.Application:db2_db2inst2_lepus_0-rs:lepus
Node=Offline
Offline IBM.ResourceGroup:db2_db2inst2_mensa_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs:mensa
292 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Example 7-43 shows that the cluster manager is progressing from noticing that
the primary node is gone, and is not going to be coming back any time soon
(Failed Offline). It then sets the HADR Resource group to Pending Online, and
then to Online as it successfully performs an HADR forced takeover, giving the
HADR primary role to the SAMPLE database on mensa. Of particular interest in
a node failure scenario is the Control=MemberInProblemState flag that is issued
against the DB2 instance resource group for lepus. This flag protects the integrity
of the cluster if lepus comes online again. Before lepus allows any external
connectivity, it must perform the appropriate cluster actions to satisfy the
requirements to overcome the Control=MemberInProblemState flag.

Example 7-43 Cluster manager notices that the primary node is in the Failed Offline state

Pending online IBM.ResourceGroup:db2_db2inst2_db2inst2_SAMPLE-rg
Control=MemberInProblemState Nominal=Online
 |- Pending online IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs
Control=MemberInProblemState
 |- Failed offline
IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:lepus Node=Offline
 '- Pending online
IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:mensa
 '- Online IBM.ServiceIP:db2ip_192_168_145_252-rs
 |- Failed offline IBM.ServiceIP:db2ip_192_168_145_252-rs:lepus
Node=Offline
 '- Online IBM.ServiceIP:db2ip_192_168_145_252-rs:mensa
Failed offline IBM.ResourceGroup:db2_db2inst2_lepus_0-rg Control=MemberInProblemState
Nominal=Online
 '- Failed offline IBM.Application:db2_db2inst2_lepus_0-rs
 '- Failed offline IBM.Application:db2_db2inst2_lepus_0-rs:lepus
Node=Offline
Online IBM.ResourceGroup:db2_db2inst2_mensa_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs:mensa
. .
Online IBM.ResourceGroup:db2_db2inst2_db2inst2_SAMPLE-rg Request=Lock Nominal=Online
 |- Online IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs
Control=SuspendedPropagated
 |- Failed offline
IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:lepus Node=Offline
 '- Online IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:mensa
 '- Online IBM.ServiceIP:db2ip_192_168_145_252-rs Control=SuspendedPropagated
 |- Failed offline IBM.ServiceIP:db2ip_192_168_145_252-rs:lepus
Node=Offline
 '- Online IBM.ServiceIP:db2ip_192_168_145_252-rs:mensa
 Chapter 7. HADR with clustering software 293

Failed offline IBM.ResourceGroup:db2_db2inst2_lepus_0-rg Control=MemberInProblemState
Nominal=Online
 '- Failed offline IBM.Application:db2_db2inst2_lepus_0-rs
Control=MemberInProblemState
 '- Failed offline IBM.Application:db2_db2inst2_lepus_0-rs:lepus
Node=Offline
Online IBM.ResourceGroup:db2_db2inst2_mensa_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs:mensa

The output from our DB2 client connect script in Example 7-44 shows no point
where DB2 displays lost connectivity. A forced takeover and Virtual IP switch that
is managed by our cluster manager are effective and rapid.

Example 7-44 DB2 Connect output

db2inst1@itso:~/script> ./conntest.sh

 Database Connection Information

 Database server = DB2/LINUXX8664 10.1.1
 SQL authorization ID = DB2INST2
 Local database alias = TESTSAMP

DB20000I The SQL command completed successfully.

...

The second part of our test consists of manually restoring power to our lepus
node, and continuing to capture the results as it automatically reintegrates into
the cluster.

Example 7-45 shows when the cluster manager detects that the lepus node is
back and available for cluster activity.

Example 7-45 The lepus node is available for cluster activity

Online IBM.ResourceGroup:db2_db2inst2_db2inst2_SAMPLE-rg Request=Lock Nominal=Online
 |- Online IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs
Control=SuspendedPropagated
 |- Offline IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:lepus
 '- Online IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:mensa
 '- Online IBM.ServiceIP:db2ip_192_168_145_252-rs Control=SuspendedPropagated
 |- Offline IBM.ServiceIP:db2ip_192_168_145_252-rs:lepus
 '- Online IBM.ServiceIP:db2ip_192_168_145_252-rs:mensa
294 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Failed offline IBM.ResourceGroup:db2_db2inst2_lepus_0-rg Control=MemberInProblemState
Nominal=Online
 '- Failed offline IBM.Application:db2_db2inst2_lepus_0-rs
 '- Offline IBM.Application:db2_db2inst2_lepus_0-rs:lepus
Online IBM.ResourceGroup:db2_db2inst2_mensa_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs:mensa
. .
Online IBM.ResourceGroup:db2_db2inst2_db2inst2_SAMPLE-rg Request=Lock Nominal=Online
 |- Online IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs
Control=SuspendedPropagated
 |- Offline IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:lepus
 '- Online IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:mensa
 '- Online IBM.ServiceIP:db2ip_192_168_145_252-rs Control=SuspendedPropagated
 |- Offline IBM.ServiceIP:db2ip_192_168_145_252-rs:lepus
 '- Online IBM.ServiceIP:db2ip_192_168_145_252-rs:mensa
Pending online IBM.ResourceGroup:db2_db2inst2_lepus_0-rg Nominal=Online
 '- Pending online IBM.Application:db2_db2inst2_lepus_0-rs
 '- Pending online IBM.Application:db2_db2inst2_lepus_0-rs:lepus
Online IBM.ResourceGroup:db2_db2inst2_mensa_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs:mensa

Example 7-46 shows that the lepus node is now fully reintegrated in to the cluster
with a DB2 HADR standby role. The DB2 instance resource group for lepus is set
to Online, the DB2 HADR database resource for lepus is set to Offline, and
SuspendedPropagated and Lock flags are removed, meaning that the lepus
node successfully started as an HADR Standby database.

Example 7-46 The lepus node is fully reintegrated and HADR is standing by

Online IBM.ResourceGroup:db2_db2inst2_db2inst2_SAMPLE-rg Request=Lock Nominal=Online
 |- Online IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs
Control=SuspendedPropagated
 |- Offline IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:lepus
 '- Online IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:mensa
 '- Online IBM.ServiceIP:db2ip_192_168_145_252-rs Control=SuspendedPropagated
 |- Offline IBM.ServiceIP:db2ip_192_168_145_252-rs:lepus
 '- Online IBM.ServiceIP:db2ip_192_168_145_252-rs:mensa
Online IBM.ResourceGroup:db2_db2inst2_lepus_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs:lepus
Online IBM.ResourceGroup:db2_db2inst2_mensa_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs:mensa
 Chapter 7. HADR with clustering software 295

. .
Online IBM.ResourceGroup:db2_db2inst2_db2inst2_SAMPLE-rg Nominal=Online
 |- Online IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs
 |- Offline IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:lepus
 '- Online IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:mensa
 '- Online IBM.ServiceIP:db2ip_192_168_145_252-rs
 |- Offline IBM.ServiceIP:db2ip_192_168_145_252-rs:lepus
 '- Online IBM.ServiceIP:db2ip_192_168_145_252-rs:mensa
Online IBM.ResourceGroup:db2_db2inst2_lepus_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs:lepus
Online IBM.ResourceGroup:db2_db2inst2_mensa_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs:mensa

For DB2 Connect output, see Example 7-44 on page 294. DB2 connectivity is
never lost. Example 7-47 shows that DB2 HADR is connected and in the Peer
state, and that the SAMPLE database has the standby role on lepus.

Example 7-47 SAMPLE database is on standby on lepus

db2inst2@lepus:~> db2pd -d sample -hadr

Database Member 0 -- Database SAMPLE -- Standby -- Up 0 days 00:11:16
-- Date 2012-08-06-13.32.16.605775

 HADR_ROLE = STANDBY
 REPLAY_TYPE = PHYSICAL
 HADR_SYNCMODE = SYNC
 STANDBY_ID = 0
 LOG_STREAM_ID = 0
 HADR_STATE = PEER
 PRIMARY_MEMBER_HOST = mensa
 PRIMARY_INSTANCE = db2inst2
 PRIMARY_MEMBER = 0
 STANDBY_MEMBER_HOST = lepus
 STANDBY_INSTANCE = db2inst2
 STANDBY_MEMBER = 0
 HADR_CONNECT_STATUS = CONNECTED
 HADR_CONNECT_STATUS_TIME = 08/06/2012 13:21:00.654849
(1344273660)
 HEARTBEAT_INTERVAL(seconds) = 1
 HADR_TIMEOUT(seconds) = 3
 TIME_SINCE_LAST_RECV(seconds) = 0
296 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

 PEER_WAIT_LIMIT(seconds) = 0
 LOG_HADR_WAIT_CUR(seconds) = 0.000
 LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.002259
 LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.998
 LOG_HADR_WAIT_COUNT = 470
SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 16384
SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87380
 PRIMARY_LOG_FILE,PAGE,POS = S0000040.LOG, 0, 203800046
 STANDBY_LOG_FILE,PAGE,POS = S0000040.LOG, 0, 203800046
 HADR_LOG_GAP(bytes) = 0
 STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000040.LOG, 0, 203800046
 STANDBY_RECV_REPLAY_GAP(bytes) = 0
 PRIMARY_LOG_TIME = 08/06/2012 11:28:53.000000
(1344266933)
 STANDBY_LOG_TIME = 08/06/2012 11:28:53.000000
(1344266933)
 STANDBY_REPLAY_LOG_TIME = 08/06/2012 11:28:53.000000
(1344266933)
 STANDBY_RECV_BUF_SIZE(pages) = 512
 STANDBY_RECV_BUF_PERCENT = 0
 STANDBY_SPOOL_LIMIT(pages) = 0
 PEER_WINDOW(seconds) = 120
 PEER_WINDOW_END = 08/06/2012 13:34:14.000000
(1344274454)

READS_ON_STANDBY_ENABLED = N

Our final step to bring our cluster back to its initial state by running an unforced
HADR takeover command from lepus. The results are shown in the db2pd output
in Example 7-48. The output from our remote DB2 Connect script during this
process mirrors Example 7-36 on page 285 exactly.

Example 7-48 Bringing a cluster back to its initial state through an unforced takeover

db2inst2@lepus:~> db2 takeover hadr on db sample
DB20000I The TAKEOVER HADR ON DATABASE command completed successfully.
db2inst2@lepus:~> db2pd -d sample -hadr

Database Member 0 -- Database SAMPLE -- Active -- Up 0 days 00:12:40 --
Date 2012-08-06-13.33.40.774711

 HADR_ROLE = PRIMARY
 REPLAY_TYPE = PHYSICAL
 HADR_SYNCMODE = SYNC
 STANDBY_ID = 1
 Chapter 7. HADR with clustering software 297

 LOG_STREAM_ID = 0
 HADR_STATE = PEER
 PRIMARY_MEMBER_HOST = lepus
 PRIMARY_INSTANCE = db2inst2
 PRIMARY_MEMBER = 0
 STANDBY_MEMBER_HOST = mensa
 STANDBY_INSTANCE = db2inst2
 STANDBY_MEMBER = 0
 HADR_CONNECT_STATUS = CONNECTED
 HADR_CONNECT_STATUS_TIME = 08/06/2012 13:21:00.654849
(1344273660)
 HEARTBEAT_INTERVAL(seconds) = 1
 HADR_TIMEOUT(seconds) = 3
 TIME_SINCE_LAST_RECV(seconds) = 1
 PEER_WAIT_LIMIT(seconds) = 0
 LOG_HADR_WAIT_CUR(seconds) = 0.000
 LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.000000
 LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.000
 LOG_HADR_WAIT_COUNT = 0
SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 16384
SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87380
 PRIMARY_LOG_FILE,PAGE,POS = S0000040.LOG, 0, 203800046
 STANDBY_LOG_FILE,PAGE,POS = S0000040.LOG, 0, 203800046
 HADR_LOG_GAP(bytes) = 0
 STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000040.LOG, 0, 203800046
 STANDBY_RECV_REPLAY_GAP(bytes) = 0
 PRIMARY_LOG_TIME = 08/06/2012 11:28:53.000000
(1344266933)
 STANDBY_LOG_TIME = 08/06/2012 11:28:53.000000
(1344266933)
 STANDBY_REPLAY_LOG_TIME = 08/06/2012 11:28:53.000000
(1344266933)
 STANDBY_RECV_BUF_SIZE(pages) = 512
 STANDBY_RECV_BUF_PERCENT = 0
 STANDBY_SPOOL_LIMIT(pages) = 0
 PEER_WINDOW(seconds) = 120
 PEER_WINDOW_END = 08/06/2012 13:35:40.000000
(1344274540)

READS_ON_STANDBY_ENABLED = N

This concludes our testing of HADR integrated into a managed cluster with the
DB2HA feature.
298 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

7.4.4 Administration

Here we provide a brief overview about how to perform maintenance activities on
DB2 resources without the cluster manager attempting to restart them when they
need to be offline.

We mentioned in “Planned HADR takeover” on page 280 how DB2 commands
are now integrated into the cluster manager. This integration makes
administration and maintenance of DB2 objects intuitive.

For our examples here, we use the same test environment and initial cluster
state that is used in 7.4.3, “Testing” on page 277.

Our first example is to run db2stop on the DB2 instance with the HADR standby
database. We measure the results using our looping lssam script from
“Monitoring scripts” on page 279.

Example 7-49 shows the output from the db2stop command. We must run a DB2
deactivate database command against an HADR standby database.

Example 7-49 db2stop on the HADR standby instance

db2inst2@mensa:~> db2 deactivate db sample
DB20000I The DEACTIVATE DATABASE command completed successfully.
db2inst2@mensa:~> db2stop
08/06/2012 13:47:39 0 0 SQL1064N DB2STOP processing was
successful.
SQL1064N DB2STOP processing was successful.

Example 7-50 shows the lssam output. After the cluster manager accepts the
request, the resource group for the DB2 instance is set to Offline, and the HADR
Standby database resource and virtual IP resource remain as Offline. This state
does not change until you decide to manually restart the DB2 instance.

Example 7-50 DB2 stopped with the DB2 High Availability Feature

Online IBM.ResourceGroup:db2_db2inst2_db2inst2_SAMPLE-rg Nominal=Online
 |- Online IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs
 |- Online IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:lepus
 '- Offline IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:mensa
 '- Online IBM.ServiceIP:db2ip_192_168_145_252-rs
 |- Online IBM.ServiceIP:db2ip_192_168_145_252-rs:lepus
 '- Offline IBM.ServiceIP:db2ip_192_168_145_252-rs:mensa
Online IBM.ResourceGroup:db2_db2inst2_lepus_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs:lepus
 Chapter 7. HADR with clustering software 299

Online IBM.ResourceGroup:db2_db2inst2_mensa_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs:mensa
. .
Online IBM.ResourceGroup:db2_db2inst2_db2inst2_SAMPLE-rg Request=Lock Nominal=Online
 |- Online IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs
Control=SuspendedPropagated
 |- Online IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:lepus
 '- Offline IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:mensa
 '- Online IBM.ServiceIP:db2ip_192_168_145_252-rs Control=SuspendedPropagated
 |- Online IBM.ServiceIP:db2ip_192_168_145_252-rs:lepus
 '- Offline IBM.ServiceIP:db2ip_192_168_145_252-rs:mensa
Online IBM.ResourceGroup:db2_db2inst2_lepus_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs:lepus
Pendingonline IBM.ResourceGroup:db2_db2inst2_mensa_0-rg Request=Lock Nominal=Online
 '- Offline IBM.Application:db2_db2inst2_mensa_0-rs
Control=StartInhibitedBecauseSuspended
 '- Offline IBM.Application:db2_db2inst2_mensa_0-rs:mensa

Example 7-51 shows that we are manually restarting the DB2 instance, and the
output of a db2pd command confirms that the HADR standby database is
automatically activated. We perform the db2pd test primarily because it is difficult
to tell from output of the lssam command whether the HADR resource is in
standby or is offline.

Example 7-51 DB2 starts and the HADR standby is activated automatically

db2inst2@mensa:~> db2start
08/06/2012 13:50:01 0 0 SQL1063N DB2START processing was
successful.
SQL1063N DB2START processing was successful.
db2inst2@mensa:~> db2 start hadr on db sample as standby
DB20000I The START HADR ON DATABASE command completed successfully.
db2inst2@mensa:~> db2pd -d sample -hadr

Database Member 0 -- Database SAMPLE -- Standby -- Up 0 days 00:00:22
-- Date 2012-08-06-13.42.47.375474

 HADR_ROLE = STANDBY
 REPLAY_TYPE = PHYSICAL
 HADR_SYNCMODE = SYNC
 STANDBY_ID = 0
 LOG_STREAM_ID = 0
300 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

 HADR_STATE = PEER
 PRIMARY_MEMBER_HOST = lepus
 PRIMARY_INSTANCE = db2inst1
 PRIMARY_MEMBER = 0
 STANDBY_MEMBER_HOST = mensa
 STANDBY_INSTANCE = db2inst1
 STANDBY_MEMBER = 0
 HADR_CONNECT_STATUS = CONNECTED
 HADR_CONNECT_STATUS_TIME = 08/06/2012 13:42:26.923441
(1344274946)
 HEARTBEAT_INTERVAL(seconds) = 1
 HADR_TIMEOUT(seconds) = 3
 TIME_SINCE_LAST_RECV(seconds) = 0
 PEER_WAIT_LIMIT(seconds) = 0
 LOG_HADR_WAIT_CUR(seconds) = 0.000
 LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.000000
 LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.000
 LOG_HADR_WAIT_COUNT = 0
SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 16384
SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87380
 PRIMARY_LOG_FILE,PAGE,POS = S0000040.LOG, 0, 203800046
 STANDBY_LOG_FILE,PAGE,POS = S0000040.LOG, 0, 203800046
 HADR_LOG_GAP(bytes) = 0
 STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000040.LOG, 0, 203800046
 STANDBY_RECV_REPLAY_GAP(bytes) = 0
 PRIMARY_LOG_TIME = 08/06/2012 11:28:53.000000
(1344266933)
 STANDBY_LOG_TIME = 08/06/2012 11:28:53.000000
(1344266933)
 STANDBY_REPLAY_LOG_TIME = 08/06/2012 11:28:53.000000
(1344266933)
 STANDBY_RECV_BUF_SIZE(pages) = 512
 STANDBY_RECV_BUF_PERCENT = 0
 STANDBY_SPOOL_LIMIT(pages) = 0
 PEER_WINDOW(seconds) = 120
 PEER_WINDOW_END = 08/06/2012 13:44:48.000000
(1344275088)
 READS_ON_STANDBY_ENABLED = N
 Chapter 7. HADR with clustering software 301

Example 7-52 shows the lssam output with a simple transition between the DB2
instance that is being stopped (Offline), and restarting it to be automatically
reintegrated into the cluster (Online). According to the cluster manager, there is
no change in state for the HADR standby database resource, although we know
that it must track internally the exact state of an HADR standby database for the
cluster to function correctly. The Online/Offline state limitation is an appropriate
peculiarity of cluster managers and resource dependencies.

Example 7-52 Reintegration is smooth with the DB2 High Availability Feature

Online IBM.ResourceGroup:db2_db2inst2_db2inst2_SAMPLE-rg Request=Lock Nominal=Online
 |- Online IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs
Control=SuspendedPropagated
 |- Online IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:lepus
 '- Offline IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:mensa
 '- Online IBM.ServiceIP:db2ip_192_168_145_252-rs Control=SuspendedPropagated
 |- Online IBM.ServiceIP:db2ip_192_168_145_252-rs:lepus
 '- Offline IBM.ServiceIP:db2ip_192_168_145_252-rs:mensa
Online IBM.ResourceGroup:db2_db2inst2_lepus_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs:lepus
Pendingonline IBM.ResourceGroup:db2_db2inst2_mensa_0-rg Request=Lock Nominal=Online
 '- Offline IBM.Application:db2_db2inst2_mensa_0-rs
Control=StartInhibitedBecauseSuspended
 '- Offline IBM.Application:db2_db2inst2_mensa_0-rs:mensa
. .
Online IBM.ResourceGroup:db2_db2inst2_db2inst2_SAMPLE-rg Nominal=Online
 |- Online IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs
 |- Online IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:lepus
 '- Offline IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:mensa
 '- Online IBM.ServiceIP:db2ip_192_168_145_252-rs
 |- Online IBM.ServiceIP:db2ip_192_168_145_252-rs:lepus
 '- Offline IBM.ServiceIP:db2ip_192_168_145_252-rs:mensa
Online IBM.ResourceGroup:db2_db2inst2_lepus_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs:lepus
Online IBM.ResourceGroup:db2_db2inst2_mensa_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs:mensa
302 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

If a planned outage is required on the DB2 instance where the HADR primary
database is active, even without a cluster, the appropriate action for a DB2
administrator to follow is to first issue an unforced takeover to switch the HADR
primary role across to the database on the other node. After a successful
unforced takeover, the database can be deactivated, and the instance is stopped
to perform administration or maintenance activities.

You see in “Unplanned failure of the HADR primary DB2 instance” on page 286
how the cluster manager reacts to a db2_kill command issued outside its
control. For our next example, we attempt to run db2stop against the DB2
instance with the HADR primary database.

Example 7-53 is the output from our attempt to stop a DB2 HADR primary
database and instance.

Example 7-53 Stopping an HADR primary resource

db2inst2@lepus:~> db2 list applications
SQL1611W No data was returned by Database System Monitor.
db2inst2@lepus:~> db2 deactivate db sample
DB20000I The DEACTIVATE DATABASE command completed successfully.
db2inst2@lepus:~> db2stop
08/06/2012 13:54:05 0 0 SQL1064N DB2STOP processing was
successful.
SQL1064N DB2STOP processing was successful.

Example 7-54 to Example 7-56 on page 305 shows what we suspected might
happen. The cluster acts to restart the DB2 instance and reactivate the HADR
primary database.

Example 7-54 Stopping HADR primary - part 1 of 3

Online IBM.ResourceGroup:db2_db2inst2_db2inst2_SAMPLE-rg Nominal=Online
 |- Online IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs
 |- Online IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:lepus
 '- Offline IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:mensa
 '- Online IBM.ServiceIP:db2ip_192_168_145_252-rs
 |- Online IBM.ServiceIP:db2ip_192_168_145_252-rs:lepus
 '- Offline IBM.ServiceIP:db2ip_192_168_145_252-rs:mensa
Online IBM.ResourceGroup:db2_db2inst2_lepus_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs:lepus
Online IBM.ResourceGroup:db2_db2inst2_mensa_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs:mensa
. .
 Chapter 7. HADR with clustering software 303

Pending online IBM.ResourceGroup:db2_db2inst2_db2inst2_SAMPLE-rg Request=Lock
Nominal=Online
 |- Offline IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs
Control=StartInhibitedBecauseSuspended
 |- Offline IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:lepus
 '- Offline IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:mensa
 '- Online IBM.ServiceIP:db2ip_192_168_145_252-rs Control=SuspendedPropagated
 |- Online IBM.ServiceIP:db2ip_192_168_145_252-rs:lepus
 '- Offline IBM.ServiceIP:db2ip_192_168_145_252-rs:mensa
Pending online IBM.ResourceGroup:db2_db2inst2_lepus_0-rg Request=Lock Nominal=Online
 '- Offline IBM.Application:db2_db2inst2_lepus_0-rs
Control=StartInhibitedBecauseSuspended
 '- Offline IBM.Application:db2_db2inst2_lepus_0-rs:lepus
Online IBM.ResourceGroup:db2_db2inst2_mensa_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs:mensa

Example 7-55 shows the progression from the DB2 instance that is restarted and
set back to the Online state, to where the HADR database resource for lepus is
optimistically set to Pending Online.

Example 7-55 Stopping HADR primary - part 2 of 3

db2inst2@lepus:~> db2 activate db sample
DB20000I The ACTIVATE DATABASE command completed successfully.
db2inst2@lepus:~> lssam
Pending online IBM.ResourceGroup:db2_db2inst2_db2inst2_SAMPLE-rg
Nominal=Online
 |- Offline IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs
 |- Offline
IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:lepus
 '- Offline
IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:mensa
 '- Online IBM.ServiceIP:db2ip_192_168_145_252-rs
 |- Online IBM.ServiceIP:db2ip_192_168_145_252-rs:lepus
 '- Offline IBM.ServiceIP:db2ip_192_168_145_252-rs:mensa
Online IBM.ResourceGroup:db2_db2inst2_lepus_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs:lepus
Online IBM.ResourceGroup:db2_db2inst2_mensa_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs:mensa
. .
Pending online IBM.ResourceGroup:db2_db2inst2_db2inst2_SAMPLE-rg
Nominal=Online
304 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

 |- Pending online
IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs
 |- Pending online
IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:lepus
 '- Offline
IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:mensa
 '- Online IBM.ServiceIP:db2ip_192_168_145_252-rs
 |- Online IBM.ServiceIP:db2ip_192_168_145_252-rs:lepus
 '- Offline IBM.ServiceIP:db2ip_192_168_145_252-rs:mensa
Online IBM.ResourceGroup:db2_db2inst2_lepus_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs:lepus
Online IBM.ResourceGroup:db2_db2inst2_mensa_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs:mensa

In Example 7-56, we see that the cluster reports that the HADR database
resource group and resource for lepus are set to Online, and all is back
to nominal.

Example 7-56 Stopping HADR primary - part 3 of 3

Online IBM.ResourceGroup:db2_db2inst2_db2inst2_SAMPLE-rg Nominal=Online
 |- Online IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs
 |- Online
IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:lepus
 '- Offline
IBM.Application:db2_db2inst2_db2inst2_SAMPLE-rs:mensa
 '- Online IBM.ServiceIP:db2ip_192_168_145_252-rs
 |- Online IBM.ServiceIP:db2ip_192_168_145_252-rs:lepus
 '- Offline IBM.ServiceIP:db2ip_192_168_145_252-rs:mensa
Online IBM.ResourceGroup:db2_db2inst2_lepus_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs
 '- Online IBM.Application:db2_db2inst2_lepus_0-rs:lepus
Online IBM.ResourceGroup:db2_db2inst2_mensa_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs
 '- Online IBM.Application:db2_db2inst2_mensa_0-rs:mensa
 Chapter 7. HADR with clustering software 305

7.5 Automating HADR takeover with PowerHA

This section describes how to automate DB2 HADR takeover in an PowerHA
environment. The section also describes the failover test procedure for HADR
controlled by the PowerHA facility.

PowerHA for AIX provides a highly available computing environment. PowerHA
facilitates the automatic switching of users, applications, and data from one
system to another in the cluster after a hardware or software failure. The primary
reason to create PowerHA clusters is to provide a highly available environment
for mission-critical applications.

In a PowerHA cluster, to ensure the availability of these applications, the
applications are placed under PowerHA control. PowerHA ensures that the
applications remain available even when a component in a cluster fails. To
ensure availability if there is a component failure, the PowerHA software moves
the application, along with the resources, to another node in the cluster. For
more information about PowerHA, see Chapter 3, “DB2 and PowerHA
SystemMirror” on page 71.

7.5.1 PowerHA and HADR planning

Before you set up an HADR and PowerHA environment, you must plan the
cluster environment. The following items must be considered:

� Physical nodes
� Network
� PowerHA configuration
� HADR configuration
� Scripts
306 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Lab environment
Figure 7-8 shows the configuration of PowerHA and HADR in our
lab environment.

Figure 7-8 Lab environment

Our planned lab environment is as follows:

� Physical node configurations:

– Two physical nodes named Node1 and Node2 are defined in the cluster.

– Node1 is designated as the service node, which regularly provides service
to clients. The HADR primary database runs on this node.

– Node2 is the standby node, where the HADR standby database is. The
role of both of these nodes changes in response to system failover or
planned takeover that is issued by administrators.

� Network configurations:

– Two Ethernet network interfaces on each node are provided for the client’s
access, which are under the control of PowerHA. The service address for
the clients is added on one of these network interfaces.

NODE2NODE1

node1_boot2
192.168.20.101

node1_boot1
192.168.10.101

node2_boot1
192.168.10.102

rs-232

Standby

Service
9.43.86.111

hadr_rg

Primary

node1_hadr
192.168.30.101

node2_hadr
192.168.30.102

node2_boot2
192.168.20.102
 Chapter 7. HADR with clustering software 307

– One Ethernet network interface is dedicated to HADR communications.
Have a separate network for HADR if you want to avoid interference by
HADR log transfer.

– One serial (RS-232C) network is configured for PowerHA keep-alive.
Having a serial network (non-TCP/IP network) makes PowerHA failure
detection more reliable.

� PowerHA configuration:

– A resource group named hadr_rg is configured, which includes a service
address and an application server.

– In our lab, we configured a service address in the PowerHA resource
group. IP address takeover is optional if you use ACR, where clients can
automatically switch the nodes that they connect to.

� HADR configuration:

– Each node has the DB2 instance named hadrinst. Instance names do not
always have to be identical on both the nodes.

– Each instance has the database named SAMPLE. The database name
should be identical on both the nodes.

– Configured dedicated network for HADR communication.

Shared disks: It is not necessary to have shared disks for HADR in an
PowerHA cluster because the primary and standby databases are
independent databases, which can be in separate storage devices.
308 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Failover after a primary node crash
Figure 7-9 shows the steps that the cluster performs if there is a primary
(service) node crash:

1. PowerHA detects the primary nodes outage and starts the failover process.
The resource group hadr_rg is acquired by the standby node (Node2).

2. The Service IP address that is related to the resource group is added to the
standby node.

3. The Start script in the PowerHA application server, which is related to the
resource group, is issued on the standby node. The script includes the
TAKEOVER HADR command to change the role of the standby database
to primary.

4. Clients who address the service address succeed in connecting to the new
primary database on the surviving node, which has the PowerHA resource
group now.

Figure 7-9 Automatic failover to standby node

NODE2NODE1

node2_boot2
192.168.20.102

node1_boot2
192.168.20.101

node1_boot1
192.168.10.101

node2_boot1
192.168.10.102

rs-232

Primary Primary

Service
9.43.86.111

hadr_rg
Takeover hadr

by force

node1_hadr
192.168.30.101

node2_hadr
192.168.30.102
 Chapter 7. HADR with clustering software 309

Reintegration of the old primary node
Figure 7-10 shows the process that is required to reintegrate the old primary
node into clusters:

1. After Node1 recovers from a hardware crash, you can start the instance and
start HADR as the standby database on this node by running start hadr with
the as standby option.

2. The standby database automatically catches up the log records that are
processed only on the new primary database during the time the old primary
node is out of order.

3. After the standby database catches up all the log gaps, the HADR primary
and standby again return to the Peer state. Reintegration of the old primary
database is complete.

Figure 7-10 Reintegration of the old primary database

7.5.2 Step-by-step configuration overview

You can configure automated HADR takeover environment with PowerHA by
completing the following operations:

1. Perform the HADR setup.

NODE2NODE1

node2_boot2
192.168.20.102

node1_boot2
192.168.20.101

node1_boot1
192.168.10.101

node2_boot1
192.168.10.102

rs-232

Standby Primary

Service
9.43.86.111

hadr_rg
Start hadr
as standby

PEER

node1_hadr
192.168.30.101

node2_hadr
192.168.30.102
310 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

2. Perform the PowerHA setup. Here we test only the PowerHA configuration
and function with dummy scripts.

3. Prepare the scripts that are required to control the HADR database
from PowerHA.

4. Perform a joint test of HADR and PowerHA:

– Normal start of cluster
– Planned takeover
– Unplanned takeover
– Normal stop of cluster

7.5.3 HADR setup

To configure the HADR database pair, complete the following steps:

1. For new systems, create a DB2 instance on both the nodes. We
created hadrinst.

2. Check that the correct entries are configured in the /etc/hosts and
/etc/services files.

3. For new systems, create a database on the primary node. We
created SAMPLE.

4. Back up the primary database and restore the image on the standby node.

5. Configure the HADR parameters correctly on both databases.

6. Start HADR on the standby database, and then start HADR on the
primary database.

7. Check that both the databases can communicate with each other in the
Peer state.

For more information about the step-by-step configuration of HADR, see
Chapter 6, “HADR setup” on page 173.
 Chapter 7. HADR with clustering software 311

Figure 7-11 shows the entries for the services and hosts of the HADR
configuration in our lab environment.

Figure 7-11 Instance, services, and hosts entries for HADR configuration

7.5.4 PowerHA configuration

Here we describe the procedure to configure an PowerHA cluster for automatic
failure detection of the primary node.

Checking the Internet Protocol network connection
PowerHA relies on a Internet Protocol network connection to communicate
between nodes. Before you configure PowerHA, check that the network is
configured correctly. To check network configurations for the cluster, complete
the following steps:

1. Check that the IP addresses are configured in the network interfaces by
running the following command:

#netstat -in | grep -v link

DB2_HADRP 50010/tcp
DB2_HADRS 50020/tcp
CLNT_HADR 50050/tcp

hosts

192.168.30.101 node1
192.168.30.102 node2

instance: HADRINST

Sample

node1(PRIMARY) node2(STANDBY)

services
DB2_HADRP 50010/tcp
DB2_HADRS 50020/tcp
CLNT_HADR 50050/tcp

hosts

192.168.30.101 node1
192.168.30.102 node2

instance: HADRINST

Sample

services
312 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Example 7-57 shows the configuration of the IP addresses on both nodes.

Example 7-57 netstat output

- node1 -
en0 192.168.10.101
en1 192.168.20.101

- node2 -
en0 192.168.10.102
en1 192.168.20.102

2. Check that the /etc/hosts file has all the entries of the IP addresses and that
their labels are the same ones that are used by PowerHA:

#vi /etc/hosts

Example 7-58 shows an example of a hosts file.

Example 7-58 IP entries in hosts file

9.43.86.111 service ## Service IP address

192.168.10.101 node1_boot1 ## PowerHA N/W interface on node1
192.168.20.101 node1_boot2 ## PowerHA N/W interface on node1
192.168.30.101 node1_hadr ## HADR N/W interface on node1

192.168.10.102 node2_boot1 ## PowerHA N/W interface on node2
192.168.20.102 node2_boot2 ## PowerHA N/W interface on node2
192.168.30.102 node2_hadr ## HADR N/W interface on node2

3. Verify that name resolution is working by running host. If something is wrong,
check and modify the /etc/hosts file.

#host node1_boot1

node1_boot1 is 192.168.10.101.

4. Check the serial network connection:

a. Check that both machines are connected by an RS232 cable.

b. Configure the tty device on machine #1 and machine #2 by running the
following command:

smitty tty
 Chapter 7. HADR with clustering software 313

Select Add a TTY  tty rs232 Asynchronous Terminal  sa0 Available
01-S1 Standard I/O Serial Port. In the Add a TTY panel (Figure 7-12),
press F4 to show the list of available port numbers. Select the port number
that is displayed in the list.

Figure 7-12 Add a TTY

c. Check that the tty device is available by running the following command:

lsdev -Cc tty
tty0 Available 01-S1-00-00 Asynchronous Terminal

Configuring PowerHA
The AIX smitty interface provides PowerHA configuration interfaces. The main
steps to configure PowerHA are as follows:

1. Add nodes to an PowerHA cluster.
2. Add a service IP label/address.
3. Configure the application servers.
4. Add a resource group.
5. Add resources to the resource group.
6. Configure the persistent IP alias for HADR communication.
7. Define the serial network and the serial network device.
8. Verify and synchronize PowerHA configurations.
9. Conduct a basic verification of the PowerHA configuration.

[MORE...30]
314 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Here are these steps in detail:

1. Add nodes to an PowerHA cluster by running the following command:

#smitty sysmirror

You can run smitty hacmp instead.

From the PowerHA SystemMirror menu, select Cluster Nodes and
Networks  Manage Nodes  Add Nodes to an PowerHA Cluster.

In Configure Nodes to an PowerHA Cluster (standard) menu (Figure 7-13),
enter the cluster name and new nodes.

Figure 7-13 Add node to PowerHA cluster

2. Add a service address to the resource group by running the
following command:

smitty sysmirror

From the PowerHA SystemMirror menu, select Cluster Applications and
Resources  Resources  Configure Service IP Labels/Addresses  Add a
Service IP Label/Address.
 Chapter 7. HADR with clustering software 315

In the Add a Service IP Label/Address (standard) menu, enter the IP label
and the network name (Figure 7-14).

Figure 7-14 Add a service IP label

3. Prepare the application server start/stop scripts.

In this example, we use dummy start and stop scripts to test the PowerHA
setup. We provide the full functional start and stop scripts to control the
HADR database in a PowerHA environment in 7.5.5, “Preparing the
application server scripts” on page 326.

Example 7-59 is a dummy start/stop script that records the time when the
scripts are run. We place the scripts in the /home/hadrinst/scripts directory.
Copy this dummy script and change its name as follows:

– Start script of PowerHA application server:

/home/hadrinst/scripts/hadr_primary_takeover.ksh

– Stop script of PowerHA application

server:/home/hadrinst/scripts/hadr_primary_stop.ksh

Example 7-59 Dummy application server start/stop script

#!/usr/bin/ksh -x

exec >> /tmp/`basename $0`.log
exec 2>&1

echo "##"
date
echo "##"

exit 0
316 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Ensure that these scripts have execution permissions by running the
following command:

#ls -l /home/hadrinst/scripts

4. Configure the application server.

To access this menu, run the following command:

smitty sysmirror

From the PowerHA SystemMirror menu, select Cluster Applications and
Resources  Resources  Configure User Applications (Scripts and
Monitors)  Application Controller Scripts  Add Application Controller
Scripts.

In the Add Application Controller Scripts menu, enter the application controller
name, and complete the paths of the start and stop scripts (Figure 7-15).

Figure 7-15 Adding an application controller

5. Add a resource group.

To add a resource group, run the following command:

smitty sysmirror

From the PowerHA SystemMirror menu, select Cluster Applications and
Resources  Resource Groups  Add a Resource Group.
 Chapter 7. HADR with clustering software 317

In the Add a Resource Group menu, enter the Resource group name and the
participating node names (Figure 7-16). This information corresponds to a
Rotating resource group in the earlier PowerHA versions, which means that
there is no priority for a resource group between nodes. For more information,
see PowerHA SystemMirror Version 7.1 for AIX Standard Edition: Planning
PowerHA SystemMirror, found at:

http://pic.dhe.ibm.com/infocenter/aix/v6r1/topic/com.ibm.aix.powerha
.plangd/hacmpplangd_pdf.pdf

Figure 7-16 Adding a resource group

6. Add resources to the resource group by running the following command:

smitty sysmirror

From the PowerHA SystemMirror menu, select Cluster Applications and
Resources  Resource Groups  Change/Show Resources and Attributes
for a Resource Group.
318 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

http://pic.dhe.ibm.com/infocenter/aix/v6r1/topic/com.ibm.aix.powerha.plangd/hacmpplangd_pdf.pdf

In the Change/Show Resources for a Cascading Resource Group menu,
enter the service IP label/address, service, as shown in Figure 7-17.

Figure 7-17 Adding resource to a resource group

7. Define the subsidiary network and serial network device.

A subsidiary network for PowerHA keep-alive makes PowerHA failure
detection more secure. For more details, see PowerHA SystemMirror Version
7.1 for AIX Standard Edition: Administering PowerHA, found at:

http://pic.dhe.ibm.com/infocenter/aix/v7r1/topic/com.ibm.aix.powerha
.admngd/hacmpadmngd_pdf.pdf

Run the following command:

smitty sysmirror

From the PowerHA SystemMirror menu, select Cluster Nodes and
Networks  Discover Networks Interfaces and Disks.
 Chapter 7. HADR with clustering software 319

http://pic.dhe.ibm.com/infocenter/aix/v7r1/topic/com.ibm.aix.powerha.admngd/hacmpadmngd_pdf.pdf

In the list of Discovered Communication Devices, choose the tty device on
each node you connected with an RS-232C cable. In our example, we select
node1 tty2 and node2 tty2.

8. Verify and synchronize PowerHA configurations.

After you define the PowerHA configuration on one node, you must verify and
synchronize the cluster topology on the other node. Run the
following command:

smitty sysmirror

From the PowerHA for SystemMirror menu, select Cluster Nodes and
Networks  Verify and Synchronize Cluster Configuration.

The PowerHA verification utility checks that the cluster definitions are the
same on all the nodes and provides diagnostic messages if errors are found.

Starting PowerHA
The PowerHA configuration is now complete. Now start the PowerHA cluster by
completing the following steps:

1. Start PowerHA on the service node Node1.

To start PowerHA from the smit menu, run the following command:

smitty clstart

In the Start Cluster Services menu, select “now” for “*Start now, on system
restart or both”. Select true for “Startup Cluster Information Daemon?” and
leave the default for all the other fields (Figure 7-18).

Figure 7-18 Starting cluster services
320 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Check the cluster.log file to see if PowerHA started successfully by running
the following command:

tail -f /usr/es/adm/cluster.log

The message EVENT COMPLETED: node_up_complete xxx indicates that
PowerHA started successfully, where xxx is the node number. Figure 7-19
shows the output of cluster.log.

Figure 7-19 Cluster.log output

2. Start PowerHA on standby node Node2.

After the PowerHA service node is started, you can use the same procedure
to start the standby node.

After PowerHA is started on both nodes, check the following items:

� Check the status of the resource group by the PowerHA command clRGinfo.
You can run this command on either node. Example 7-60 shows the out put of
this command. You can see that resource group hadr_rg is OFFLINE on
node1 and ONLINE on node2, which means that the resource group hadr_rg
is now acquired by node2.

/usr/es/sbin/cluster/utilities/clRGinfo

Example 7-60 Check resource group status

/usr/es/sbin/cluster/utilities/clRGinfo
--
 Chapter 7. HADR with clustering software 321

Group Name State Node
--
hadr_rg OFFLINE node1
 ONLINE node2

� Check if the service address is added on service node Node1 by running the
following command:

#netstat -i | grep -v link

Example 7-61 shows the output of the netstat command. The service IP
should be in the output list.

Example 7-61 Check service address

root@node1:/home/hadrinst/scripts# netstat -i | grep -v link
Name Mtu Network Address Ipkts Ierrs Opkts
Oerrs Coll
en0 1500 192.168.10 node1_boot1 3268881 0 2956143
0 0
en0 1500 9.43.86 service 3268881 0 2956143
0 0
en1 1500 192.168.20 node1_boot2 793555 0 1671197
0 0

� On the service node, ensure that the application server is started.

When the PowerHA is started, the application server start script is executed.
Check the log written by the start script. In our example, it is
hadr_primary_takeover.ksh.log.

cat /tmp/hadr_primary_takeover.ksh.log

Example 7-62 shows the example output. Because now we set a dummy
script, nothing happens on HADR databases. The script records only the time
when the script is issued to the log file.

Example 7-62 Check application server

hadr_rg:[6] echo
##
##
hadr_rg:[7] date
Tue Jun 17 20:04:10 CDT 2012
322 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

PowerHA takeover test
You can test the PowerHA takeover function by stopping PowerHA on the
service node in takeover mode. The standby node should take over the resource
group after the takeover operation. To stop PowerHA in the takeover mode, run
smitty in service node (Node1 in our example):

#smitty clstop

In the Stop Cluster Services menu, select “now” for “Stop now, on system restart
or both”. Select the node where PowerHA is to be stopped, and select “takeover”
for “Shutdown mode” (Figure 7-21 on page 325).

Figure 7-20 Stop PowerHA with takeover

� Check whether the PowerHA takeover process stopped the service node. To
check if this task is complete, run the following command:

tail -f /var/hacmp/adm/cluster.log

The PowerHA takeover process writes a message to cluster.log. The
node_down_complete xxx event message in the log indicates that the takeover
event is now complete in the service node Node1 (Example 7-63).

Example 7-63 Check takeover result

tail -f /var/hacmp/adm/cluster.log
............
Aug 05 20:59:55 AIX: EVENT COMPLETED: node_down_complete node1
...........
 Chapter 7. HADR with clustering software 323

� Check that the application server is stopped on service node Node1.

View the application server stop script log to see whether the application
server stopped successfully by running the following command:

cat /tmp/hadr_primary_stop.ksh.log

� On the service node Node1, check if the service address is released by
running the following command:

netstat -i

� On standby node Node2, check that the node_down_complete Node1 event
is completed by running the following command:

tail -f /usr/es/adm/cluster.log

Example 7-64 shows a snippet of the cluster.log file.

Example 7-64 Check node_down_complete event from Node 2

tail -f /var/hacmp/adm/cluster.log
........
Aug 05 20:59:55 AIX: EVENT COMPLETED: node_down_complete node1
........

� Check that Node2 owns the resource group by running the clRGinfo
command (Example 7-65).

Example 7-65 Checking if Node2 took over the resource

/usr/es/sbin/cluster/utilities/clRGinfo
--

Group Name State Node
--

hadr_rg OFFLINE node1
 ONLINE node2

� Check that Node2 took over the service IP address by running netstat in
Node2 (Example 7-66).

Example 7-66 Check service IP address

root@node2:/home/hadrinst/scripts# netstat -i | grep -v link
Name Mtu Network Address Ipkts Ierrs Opkts
Oerrs Coll
en0 1500 192.168.10 node2_boot1 3268881 0 2956143
0 0
324 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

en0 1500 9.43.86 service 3268881 0 2956143
0 0
en1 1500 192.168.20 node2_boot2 793555 0 1671197
0 0

� Check that the application server is started on Node2.

Because our start/stop scripts are still dummies, HADR takeover is not issued
yet. Here we check if PowerHA functions work correctly by running the
following command:

cat /tmp/hadr_primary_takeover.ksh.log

Stopping PowerHA
To stop PowerHA, run smitty on both Node1 and Node 2:

#smitty clstop

In the Stop Cluster Services menu, select “now” for “Stop now, on system restart
or both”. Select the node to be stopped and select “graceful” for “Shutdown
mode” (Figure 7-21).

Figure 7-21 Stop PowerHA
 Chapter 7. HADR with clustering software 325

7.5.5 Preparing the application server scripts

To automate HADR takeover with PowerHA, use the PowerHA application server
start/stop scripts. By including the HADR commands in the start/stop scripts,
PowerHA can handle HADR operations with the resource group. The application
scripts for HADR can be placed in the directory of your choice. We place our
scripts in the /home/hadrinst/scripts directory. The sample scripts can be
found in Appendix A, “PowerHA application server scripts” on page 533.

Here we explain some of these PowerHA controlled scripts and how they work.

hadr_primary_takeover.ksh (start script)
We define a shell script hadr_primary_takeover.ksh as the start script for the
PowerHA application server. This script is run in the following situations when the
node acquires the resource group:

� Normal start of PowerHA on the first (service) node in the cluster.

� Unplanned takeover that is triggered by failure detection of PowerHA.

� Planned takeover by stopping PowerHA in takeover mode, or moving the
resource group by running an administrative command.

This script is run not only when the resource group fails over to the standby
node, but also when the first node in the cluster is started and acquires the
resource group. This script checks which is the starting trigger by running the
PowerHA command clRGinfo.
326 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Figure 7-22 shows the flow chart of the script, hadr_primary_takeover.ksh. If
the trigger initiates a normal PowerHA start, then this script simply exits. If the
starting trigger is takeover, which means that this script is run on the standby
node with the resource group fallover, then this script checks the HADR role. If
the HADR role is standby, it runs the takeover hadr command with the by force
option.

Figure 7-22 hadr_primary_takeover.ksh script flow

In circumstances where the standby database cannot communicate with the
primary database, the takeover hadr command needs the by force option to
change its role to primary. But for planned takeover, the by force option is not
preferable, so in our example, the normal takeover hadr command (without the
by force option) is issued from the stop script by a remote command before this
script is issued on the standby node.

PRIMARY

Start trigger of HACMP

TAKEOVER

HADR TAKEOVER
BY FORCE

NORMAL EXIT

NORMAL

HADR_ROLE
OTHERS EXIT with

WARNING
STANDBY

HACMP start scripts
 Chapter 7. HADR with clustering software 327

hadr_primary_stop.ksh (stop script)
We define hadr_primary_stop.ksh as the stop script for the PowerHA application
server. Figure 7-23 shows the script logic flow. This script is run on the service
node and when the node releases the resource group, that is, when you stop
PowerHA in takeover mode or move the resource group from one server to the
other intentionally for planned takeover. For planned takeover, it is preferable to
run the takeover hadr command as soon as possible. In our example, this script
runs a remote command to the standby node to run the
takeover hadr command.

Figure 7-23 hadr_primary_stop.ksh script flow

Additional information for PowerHA commands
You can use the output of the PowerHA command clRGinfo to define the start
trigger of the application server:

/usr/es/sbin/cluster/utilities/clRGinfo -a

HACMP stop scripts

TAKEOVER

Takeover hadr
(remote execution
on standby db)

NORMAL EXIT

NORMAL

HADR_ROLE

PRIMARY

OTHERS

EXIT with
WARNING

STANDBY

Remote shell

Stop trigger of HACMP
328 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

In the Resource Group Movement column, you can see just one node when the
start trigger is a normal start (Example 7-67), and two nodes when the start
trigger is a takeover (Example 7-68).

Example 7-67 Normal start on node1

/usr/es/sbin/cluster/utilities/clRGinfo -a

Group Name Type Resource Group Movement

hadr_rg non-concurrent PRIMARY=" :node1"

Example 7-68 Takeover from node1 to node2

/usr/es/sbin/cluster/utilities/clRGinfo -a

Group Name Type Resource Group Movement

hadr_rg non-concurrent PRIMARY="node1:node2"

7.5.6 Joint test for HADR and PowerHA

After the functional scripts replace the dummy scripts, you can test the
combination of HADR automatic takeover in an PowerHA environment. We
implement the joint test for the following scenarios:

� Planned failover:

In the first scenario, we use the facility that is provided by the PowerHA
application to test the failover between the two nodes.

� Unplanned failover:

For the unplanned failover scenario, we halt the primary system to simulate a
real system outage and verify that the failover occurs properly.
 Chapter 7. HADR with clustering software 329

Starting HADR and PowerHA in the cluster
To carry out the test scenarios, complete the following steps to start HADR
and PowerHA:

1. Start the standby database on node2.

Start the HADR databases that you set up in 7.5.3, “HADR setup” on
page 311. Start the standby database on Node2 first:

– Check that HADR role is standby on node2 by running the
following command:

$db2 get db cfg for sample

– Start the standby database by running the following command:

$db2 activate db sample

2. Start the primary database on Node1:

– Check that HADR role is primary on node1 by running the
following command:

$db2 get db cfg for sample

– Start the standby database by running the following command:

$db2 activate db sample

– Check if the HADR status is in the Peer state by running the
following command:

$db2pd -hadr -db sample

3. Start PowerHA on Node1. For details, see “Starting PowerHA” on page 320.

4. Start PowerHA on Node2. For details, see “Starting PowerHA” on page 320.

5. Check the HADR and PowerHA status to see if they are ready for the test:

– Check if HADR is in the Peer state by running the following command:

$db2pd -hadr -db sample

– Check if the resource group is ONLINE on node1 by running the
following command:

/usr/es/sbin/cluster/utilities/clRGinfo

Tip: When you start the HADR process, you do not have to run start hadr
or stop hadr every time. After you start an HADR database in a primary or
standby role, an activate and deactivate database command can be used
to start and stop the HADR database.
330 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Configuring the client node
To check the client access after takeover, configure the client machine by
completing the following steps:

1. Create an instance on the client node by running the following command:

$db2icrt -u clntinst clintinst

2. Catalog a node directory by specifying the service address service by
running the following command:

$db2 catalog tcpip node SERVICE remote service server 50030

3. Catalog the database by running the following command:

$ db2 catalog database sample at node SERVICE

4. Connect to database server by running the following command:

$ db2 connect to sample user hadrinst using hadrinst

5. Run the query that is shown in Example 7-69 to check which server you are
connecting to. You can see that we are now connected to Node1.

We configured the client machine on Node3.

Example 7-69 Check the server connected

$ db2 "select substr(host_name,1,8) as hostname from table
(db_partitions()) as t"

HOSTNAME

node1

 1 record(s) selected.

Planned failover and fallback
In the first scenario, we use the facility that is provided by the PowerHA
application to test the failover between the two nodes. Complete the
following steps:

1. Stop PowerHA in takeover mode on service node Node1 by running the
following command:

#smitty clstop

In Stop Cluster Services menu, select “now” on “Stop now, on system restart
or both”. Select the node where PowerHA is to be stopped. Select “takeover”
on “Shutdown mode”.
 Chapter 7. HADR with clustering software 331

2. Check if the PowerHA takeover process stopped the service node. You can
accomplish this task by running the following command:

tail -f /usr/es/adm/cluster.log

The PowerHA takeover process writes a message to cluster.log. The
node_down_complete xxx event message in the log indicates that the
takeover event is completed in the service node Node1.

3. Check that the stop script is run on Node1 and that TAKEOVER HADR is issued
remotely on Node2 by running the following command:

#cat hadr_primary_stop.ksh.log

You see the output in Example 7-70 in the log file of this script.

Example 7-70 Output of stop script

....
HADR takeover is issued on remote node
.....
node2: DB20000I The TAKEOVER HADR ON DATABASE command completed
successfully.

4. Check the status of PowerHA on Node2. The resource group should be taken
over to Node2 (Example 7-71).

Example 7-71 Check who owns resource group

/usr/es/sbin/cluster/utilities/clRGinfo
--
Group Name State Node
--
hadr_rg OFFLINE node1
 ONLINE node2

5. Check the status of the HADR database on both nodes by running the
following command:

$db2pd -hadr -db sample

Now the primary database is running on Node2 and the standby database is
running on Node1.
332 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

6. Reconnect from the client node Node3, and run the query that is shown in
Example 7-72. You can see that you connected to node2. In this case, you
must reconnect to the server after you receive a communication error. If the
alternate server is set, reconnection is automatically done by ACR.

Example 7-72 Check the reconnected node

$ db2 "select substr(host_name,1,8) as hostname from table
(db_partitions()) as t"

HOSTNAME

node2

 1 record(s) selected.

7. Start PowerHA on Node1 again. Check that there is no change in the HADR
status and the resource group is still ONLINE on Node2.

8. Fallback from Node2 to Node1.

To fall back the resource group from Node2 to Node1, you can stop PowerHA
in takeover mode on Node2.

9. Start PowerHA on Node2.

The primary database is running on Node1 and the standby database in
running on Node2. Now the cluster returns to the state we started with.

Unplanned failover for a system crash
In this scenario, we test failover by halting the system intentionally. We check
that PowerHA detects the failure and that the standby database is switched to
the primary database with the PowerHA resource group takeover.

Complete the following steps:

1. Check the PowerHA and HADR status of the two nodes:

– PowerHA service is started on both nodes.
– HADR is in the Peer state.

2. Connect from the client and issue some queries by completing the steps in
“Configuring the client node” on page 331.

3. On Node1, run the following command as root:

#sync;sync;sync;halt -q

Node1 terminates processing immediately. PowerHA detects the outage and
starts failover of the resource group to Node2.
 Chapter 7. HADR with clustering software 333

4. Check that the resource group is taken over by Node2 by running the
following command:

/usr/es/sbin/cluster/utilities/clRGinfo

5. Check that the start script is issued on Node2 by running the
following command:

view /tmp/hadr_primary_takeover.ksh.log

6. Check that the primary HADR database is now on Node2 by running the
following command:

$ db2pd -hadr -db sample

If the HADR primary database in on Node2, the failover is successful.

Next, we want to fail back the resource group to the original node, as the failed
system situation is repaired. Power on Node1 and start DB2 instance by running
the following command:

$db2start

You must reintegrate the old primary database to the current state by using the
HADR function. In the old primary system (Node1), complete the following steps:

1. Check the HADR role on Node1. The HADR role on Node1 should still show
as primary (Example 7-73).

Example 7-73 Check HADR role

$ db2 get db cfg for sample | grep "HADR database role"

 HADR database role = PRIMARY

2. Check the db2diag.log file by running one of the following commands to see
the HADR catching up process. After you start the HADR database as
standby on Node1, the catching up process starts.

– $ db2diag -f

– $ tail -f /home/hadrinst/sqllib/db2dump/db2diag.log
334 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

3. Restart the HADR database as standby on Node1.

To reintegrate the database on Node1 into the HADR pair as a standby
database, complete the following steps:

a. To switch the role of the database from primary to standby, you must run
start hadr instead of activate database (Example 7-74). Check the
messages in the db2diag.log until they return to the peer status.

Example 7-74 Start database as HADR standby

$db2 "start hadr on db sample as standby"
DB20000I The START HADR ON DATABASE command completed
successfully.

b. Check if the HADR status came back to the Peer state after it catches up
the log from the primary on Node1 as follows:

• The db2pd command shows the current HADR status.
• In the db2diag.log file, you see the messages that are shown in

Example 7-75.

Example 7-75 db2diag.log message

2012-08-05-22.06.03.317330-240 E23808E369 LEVEL: Event
PID : 9634 TID : 47103946516800PROC :
db2sysc
INSTANCE: hadrinst1 NODE : 000
EDUID : 27 EDUNAME: db2hadrp (SAMPLE)
FUNCTION: DB2 UDB, High Availability Disaster Recovery,
hdrSetHdrState, probe:10000
CHANGE : HADR state set to S-Peer (was S-NearlyPeer)

4. Start PowerHA on Node1 again. Check that there is no change in the HADR
status and that the resource group is still ONLINE on Node2.

5. Fall back from Node2 to Node1. To fall back the resource group from Node2
to Node1, you can stop the PowerHA in takeover mode on Node2.

6. Start PowerHA on Node2.

After the primary database is running on Node1 and the standby database is
running on Node2, you can start PowerHA on Node2. The cluster now returns
to the state we started from.
 Chapter 7. HADR with clustering software 335

Stopping PowerHA and HADR
Complete the following steps to stop the PowerHA system for a
maintenance operation:

1. Stop PowerHA on the Service node and the standby node by following the
steps in “Stopping PowerHA” on page 325.

2. Stop HADR.

– Stop HADR on the primary database on the service node by running the
following command:

$db2 deactivate db sample

– Stop the instance on the service node by running the following command:

$db2stop

– Stop HADR on the standby database on the standby node by running the
following command:

$db2 deactivate db sample

– Stop the instance on the standby node by running the following command:

$db2stop

Stopping the HADR process: The deactivate database command can be
used to stop the HADR process instead of the stop hadr command. When
you run deactivate database, the HADR database role stays in the database
configuration. If you run stop hadr, the HADR database role changes to
STANDARD, which makes it hard for you to know which node was primary
and which node was standby.
336 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Chapter 8. HADR monitoring

Monitoring is a part of setting up and maintaining a high availability disaster
recovery (HADR) setup. The DB2 monitoring interfaces provide a detailed picture
of the configuration and health of a HADR environment.

This chapter describes two methods of acquiring the status of a HADR
environment: the db2pd command and the MON_GET_HADR table function.

This chapter covers the following topics:

� Introduction to HADR monitoring
� The db2pd command
� The MON_GET_HADR table function
� HADR monitoring information

8

© Copyright IBM Corp. 2007, 2012. All rights reserved. 337

8.1 Introduction to HADR monitoring

Starting with DB2 10.1, there are two ways to monitor a HADR environment:

� The db2pd command.
� The MON_GET_HADR table function.

In DB2 10.1, the MON_GET_HADR table function is introduced to report information
about HADR functionality. Also, the db2pd command is changed to report new
HADR information. The HADR information reported by these interfaces includes
details about new functionality, such as the HADR multiple standby mode.

The information that is returned by these interfaces depends on where they are
issued. For example, monitoring on a standby database returns information
about that standby and the primary database only; no information is provided
about any other standbys. Monitoring on the primary database returns
information about all of the standbys if you are using the db2pd command or the
MON_GET_HADR table function. Even standbys that are currently not connected, but
are configured in the primary’s hadr_target_list configuration parameter, are
displayed.

The db2pd command and the MON_GET_HADR table function return essentially the
same information, but the db2pd command does not require reads on standby to
be enabled (for reporting from a standby). The db2pd command is preferred
during takeover because there could be a time window where the primary or the
standby does not allow client connections.

The following methods can also be used to monitor a HADR environment, but
starting with DB2 10.1, they are deprecated, and they might be removed in a
future release:

� The GET SNAPSHOT FOR DATABASE command: This command collects status
information and formats the output. The information that is returned is a
snapshot of the database manager operational status at the time that you run
the command. HADR information is displayed in the output under the heading
HADR status.

� The db2GetSnapshot API: This API collects database manager monitor
information and writes it to a user-allocated data buffer. The information that
is returned is a snapshot of the database manager operational status when
the API was called.

� The SNAPHADR administrative view and the SNAP_GET_HADR table function: This
administrative view and this table function return information about HADR
from a database snapshot, in particular, the HADR logical data group.
338 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

� Other snapshot administrative views and table functions: You can use the
following snapshot administrative views and table functions, which are not
HADR specific and return a wider set of information, to query a subsection of
the HADR information:

– ADMIN_GET_STORAGE_PATHS
– MON_GET_TRANSACTION_LOG
– SNAPDB
– SNAPDB_MEMORY_POOL
– SNAPDETAILLOG
– SNAP_GET_DB
– SNAP_GET_DB_MEMORY_POOL

You can still use all these deprecated methods, but the HADR information that is
reported does not include all of the details about new functionality. For example,
if you call the SNAPHADR administrative view or SNAP_GET_HADR table function from
a primary database, they do not report information about any auxiliary
standby databases.

In the following subsections, we describe the db2pd command and the
MON_GET_HADR table function in detail.

For more information about deprecated methods for monitoring a HADR
environment, see:

� The GET SNAPSHOT FOR DATABASE command:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fco
m.ibm.db2.luw.admin.cmd.doc%2Fdoc%2Fr0001945.html

� The db2GetSnapshot API:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fco
m.ibm.db2.luw.apdv.api.doc%2Fdoc%2Fr0001449.html

� The SNAPHADR administrative view and the SNAP_GET_HADR table function:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fco
m.ibm.db2.luw.sql.rtn.doc%2Fdoc%2Fr0021981.html

� Other snapshot administrative views and table functions:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/nav/3_6_1_3_12
 Chapter 8. HADR monitoring 339

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.cmd.doc%2Fdoc%2Fr0001945.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.cmd.doc%2Fdoc%2Fr0001945.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/nav/3_6_1_3_12
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.cmd.doc%2Fdoc%2Fr0001945.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.cmd.doc%2Fdoc%2Fr0001945.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.apdv.api.doc%2Fdoc%2Fr0001449.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.apdv.api.doc%2Fdoc%2Fr0001449.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.sql.rtn.doc%2Fdoc%2Fr0021981.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.apdv.api.doc%2Fdoc%2Fr0001449.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.apdv.api.doc%2Fdoc%2Fr0001449.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/nav/3_6_1_3_12
http://en.wikipedia.org/wiki/High_Availability_Cluster_Multiprocessing

8.2 The db2pd command

The db2pd command retrieves information from the DB2 memory sets. In a
HADR environment, it can be run from either a primary or a standby database. If
there are multiple standby databases and this command is run from a standby, it
does not return any information about the other standbys. If this command is
issued from the primary, it returns information about all standbys.

To view information about primary and standby databases in a HADR
environment, run the following command:

db2pd -db <databasename> -hadr

In the following example, the db2pd -hadr command is run in a HADR
environment on a primary database called “Sample” (node1) with three standbys
(node2, node3, and node4). Example 8-1 shows the resulting output. Three sets
of data are returned, with each one representing a primary-standby log
shipping channel.

Example 8-1 Sample db2pd output for a HADR setup with three standby databases

db2pd -db Sample -hadr

Database Member 0 -- Database Sample -- Active -- Up 0 days 00:23:17 --
Date 10/07/2012 13:57:23

 HADR_ROLE = PRIMARY
 REPLAY_TYPE = PHYSICAL
 HADR_SYNCMODE = SYNC
 STANDBY_ID = 1
 LOG_STREAM_ID = 0
 HADR_STATE = PEER
 PRIMARY_MEMBER_HOST = node1.ibm.com
 PRIMARY_INSTANCE = db2inst1
 PRIMARY_MEMBER = 0
 STANDBY_MEMBER_HOST = node2.ibm.com
 STANDBY_INSTANCE = db2inst2
 STANDBY_MEMBER = 0
 HADR_CONNECT_STATUS = CONNECTED
 HADR_CONNECT_STATUS_TIME = 10/07/2012 13:38:10.199479
 HEARTBEAT_INTERVAL(seconds) = 30
 HADR_TIMEOUT(seconds) = 120
 TIME_SINCE_LAST_RECV(seconds) = 3
 PEER_WAIT_LIMIT(seconds) = 0
 LOG_HADR_WAIT_CUR(seconds) = 0.000
 LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.006298
340 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

 LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.516
 LOG_HADR_WAIT_COUNT = 82
 SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 50772
 SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87616
 PRIMARY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
 STANDBY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
 HADR_LOG_GAP(bytes) = 0
 STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
 STANDBY_RECV_REPLAY_GAP(bytes) = 0
 PRIMARY_LOG_TIME = 10/07/2012 13:49:19.000000
 STANDBY_LOG_TIME = 10/07/2012 13:49:19.000000
 STANDBY_REPLAY_LOG_TIME = 10/07/2012 13:49:19.000000
 STANDBY_RECV_BUF_SIZE(pages) = 16
 STANDBY_RECV_BUF_PERCENT = 0
 STANDBY_SPOOL_LIMIT(pages) = 0
 PEER_WINDOW(seconds) = 0
 READS_ON_STANDBY_ENABLED = Y
 STANDBY_REPLAY_ONLY_WINDOW_ACTIVE = N

 HADR_ROLE = PRIMARY
 REPLAY_TYPE = PHYSICAL
 HADR_SYNCMODE = SUPERASYNC
 STANDBY_ID = 2
 LOG_STREAM_ID = 0
 HADR_STATE = REMOTE_CATCHUP
 PRIMARY_MEMBER_HOST = node1.ibm.com
 PRIMARY_INSTANCE = db2inst1
 PRIMARY_MEMBER = 0
 STANDBY_MEMBER_HOST = node3.ibm.com
 STANDBY_INSTANCE = db2inst3
 STANDBY_MEMBER = 0
 HADR_CONNECT_STATUS = CONNECTED
 HADR_CONNECT_STATUS_TIME = 10/07/2012 13:35:51.724447
 HEARTBEAT_INTERVAL(seconds) = 30
 HADR_TIMEOUT(seconds) = 120
 TIME_SINCE_LAST_RECV(seconds) = 16
 PEER_WAIT_LIMIT(seconds) = 0
 LOG_HADR_WAIT_CUR(seconds) = 0.000
 LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.006298
 LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.516
 LOG_HADR_WAIT_COUNT = 82
 SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 16384
 SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87380
 PRIMARY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
 STANDBY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
 Chapter 8. HADR monitoring 341

 HADR_LOG_GAP(bytes) = 0
 STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
 STANDBY_RECV_REPLAY_GAP(bytes) = 0
 PRIMARY_LOG_TIME = 10/07/2012 13:49:19.000000
 STANDBY_LOG_TIME = 10/07/2012 13:49:19.000000
 STANDBY_REPLAY_LOG_TIME = 10/07/2012 13:49:19.000000
 STANDBY_RECV_BUF_SIZE(pages) = 16
 STANDBY_RECV_BUF_PERCENT = 0
 STANDBY_SPOOL_LIMIT(pages) = 0
 PEER_WINDOW(seconds) = 0
 READS_ON_STANDBY_ENABLED = Y

 HADR_ROLE = PRIMARY
 REPLAY_TYPE = PHYSICAL
 HADR_SYNCMODE = SUPERASYNC
 STANDBY_ID = 3
 LOG_STREAM_ID = 0
 HADR_STATE = REMOTE_CATCHUP
 PRIMARY_MEMBER_HOST = node1.ibm.com
 PRIMARY_INSTANCE = db2inst1
 PRIMARY_MEMBER = 0
 STANDBY_MEMBER_HOST = node4.ibm.com
 STANDBY_INSTANCE = db2inst4
 STANDBY_MEMBER = 0
 HADR_CONNECT_STATUS = CONNECTED
 HADR_CONNECT_STATUS_TIME = 10/07/2012 13:46:51.561873
 HEARTBEAT_INTERVAL(seconds) = 30
 HADR_TIMEOUT(seconds) = 120
 TIME_SINCE_LAST_RECV(seconds) = 6
 PEER_WAIT_LIMIT(seconds) = 0
 LOG_HADR_WAIT_CUR(seconds) = 0.000
 LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.006298
 LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.516
 LOG_HADR_WAIT_COUNT = 82
 SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 16384
 SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87380
 PRIMARY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
 STANDBY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
 HADR_LOG_GAP(bytes) = 0
 STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
 STANDBY_RECV_REPLAY_GAP(bytes) = 0
 PRIMARY_LOG_TIME = 10/07/2012 13:49:19.000000
 STANDBY_LOG_TIME = 10/07/2012 13:49:19.000000
 STANDBY_REPLAY_LOG_TIME = 10/07/2012 13:49:19.000000
 STANDBY_RECV_BUF_SIZE(pages) = 16
342 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

 STANDBY_RECV_BUF_PERCENT = 0
 STANDBY_SPOOL_LIMIT(pages) = 0
 PEER_WINDOW(seconds) = 0
 READS_ON_STANDBY_ENABLED = N

The HADR_ROLE field represents the role of the database on which db2pd is run, so
it is listed as PRIMARY in all sets. The HADR_STATE for the two auxiliary
standbys (node3 and node4) is REMOTE_CATCHUP because they
automatically run in SUPERASYNC mode (which is also reflected in the db2pd
output). The STANDBY_ID differentiates the standbys. It is system generated
and the ID-to-standby mapping can change from query to query; however, the ID
“1” is always assigned to the principal standby.

Fields that are not relevant to the current settings are omitted in the output. For
example, in Example 8-1 on page 340, information about the replay-only window
(like start time and transaction count) is not included because reads on standby
is
not enabled.

Section 8.4, “HADR monitoring information” on page 345 describes all HADR
monitoring information that is returned by the db2pd -hadr command.

For more information about the db2pd -hadr command, see:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.i
bm.db2.luw.admin.cmd.doc%2Fdoc%2Fr0011729.html

8.3 The MON_GET_HADR table function

As an alternative to the db2pd command, you can use the MON_GET_HADR table
function to monitor a HADR environment. Both commands essentially return the
same information.

With the MON_GET_HADR table function, you can query for particular HADR
monitoring information for a specific database member of a HADR environment.
For the input argument of the MON_GET_HADR table function, you provide the
number of the database member you want to monitor. Specify -1 for the current
database member, or -2 for all database members. If the null value is specified,
-1 is set implicitly. As a result, the MON_GET_HADR table function provides
monitoring information for the specified member according to the parameter list
defined in the select clause of the query from which the MON_GET_HADR table
function is run.
 Chapter 8. HADR monitoring 343

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.cmd.doc%2Fdoc%2Fr0011729.html

If you run this query on the primary database, it return information about all the
standbys. If you want to run the MON_GET_HADR function against a standby
database, be aware of the following points:

� You must enable reads on standby.

� Even if your HADR setup is in multiple standby mode, the table function does
not return any information about any other standbys.

In Example 8-2, a DBA calls the MON_GET_HADR table function on a primary
database (node1) with three standbys (node2, node3, and node4). Three rows
are returned. Each row represents a primary-standby log shipping channel. The
HADR_ROLE column represents the role of the database to which the query is
issued. Therefore, it is PRIMARY on all rows. The HADR_STATE for the two
auxiliary standbys (node3 and node4) is REMOTE_CATCHUP because they
automatically run in SUPERASYNC mode.

Example 8-2 Sample using the MON_GET_HADR table function

db2 "select HADR_ROLE, STANDBY_ID, HADR_STATE,
varchar(PRIMARY_MEMBER_HOST,20)
as PRIMARY_MEMBER_HOST, varchar(STANDBY_MEMBER_HOST,20) as
STANDBY_MEMBER_HOST from table (mon_get_hadr(NULL))"

HADR_ROLE STANDBY_IDHADR_STATE PRIMARY_MEMBER_HOST
STANDBY_MEMBER_HOST

PRIMARY 1 PEER node1.ibm.com node2.ibm.com
PRIMARY 2 REMOTE_CATCHUP node1.ibm.com node3.ibm.com
PRIMARY 3 REMOTE_CATCHUP node1.ibm.com node4.ibm.com

3 record(s) selected.

Section 8.4, “HADR monitoring information” on page 345 describes in detail all
the information that is returned by the MON_GET_HADR table function.

For more information about the MON_GET_HADR table function, see:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.i
bm.db2.luw.sql.rtn.doc%2Fdoc%2Fr0059275.html
344 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.sql.rtn.doc%2Fdoc%2Fr0059275.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.sql.rtn.doc%2Fdoc%2Fr0059275.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.sql.rtn.doc%2Fdoc%2Fr0059275.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.sql.rtn.doc%2Fdoc%2Fr0059275.html

8.4 HADR monitoring information

This section describes the HADR monitoring information that is provided by the
db2pd -hadr command and the MON_GET_HADR table function. In particular, all the
following elements can be reported:

� HADR_ROLE:

The current HADR role of the local database. Possible values are:

– PRIMARY

– STANDBY

� REPLAY_TYPE

The type of HADR replication of the database. The possible value
is PHYSICAL.

� HADR_SYNCMODE

The current HADR synchronization mode of the local database. Possible
values are:

– ASYNC

In this mode, log writes are considered successful only when the log
records are written to the log files on the primary database and are
delivered to the TCP layer of the primary system's host machine. Because
the primary system does not wait for acknowledgement from the standby
system, transactions might be considered committed while they are still on
their way to the standby database.

– NEARSYNC

In this mode, log writes are considered successful only when the log
records are written to the log files on the primary database and when the
primary database receives an acknowledgement from the standby system
that the logs are written to main memory on the standby system. Loss of
data occurs only if both sites fail simultaneously and if the target site does
not transfer all of the log data that it received to nonvolatile storage.

– SUPERASYNC

In this mode, the HADR pair can never be in a Peer state or disconnected
Peer state. The log writes are considered successful when the log records
are written to the log files on the primary database. Because the primary
database does not wait for acknowledgement from the standby database,
transactions are considered committed regardless of the state of the
replication of that transaction.
 Chapter 8. HADR monitoring 345

– SYNC: In this mode, log writes are considered successful only when logs
are written to log files on the primary database and when the primary
database receives an acknowledgement from the standby database that
the logs are written to log files on the standby database. The log data is
guaranteed to be stored at both sites.

In multiple standby mode, the HADR_SYNCMODE value of the standby is
shown as an empty string (a zero-length string) until the primary connects
to the standby database.

� STANDBY_ID

The identifier for all the standbys in the current setup. This value has meaning
only when the command is run on the primary. If you run it on a standby, it
always returns 0 because, even in multiple standby mode, other standbys are
not visible to each other. The 1 identifier is always assigned to the standby in
single standby mode, while in multiple standby mode, 1 indicates the
principal standby.

� LOG_STREAM_ID

The identifier for the log stream that is being shipped from the
primary database.

� HADR_STATE

The current HADR state of the standby database. Possible values are:

– DISCONNECTED

The primary and standby databases are disconnected.

– DISCONNECTED_PEER

If you configure a peer window and the primary database loses its
connection with the standby database in the Peer state, the primary
database continues to behave as though the primary and standby
databases are in the Peer state for the configured amount of time (called
the peer window), or until the standby reconnects, whichever happens
first. When the primary database and standby database are disconnected
but behave as though in they are in the Peer state, this state is called
disconnected peer.

– LOCAL_CATCHUP

With the HADR feature, when a standby database is started, it enters a
local catchup state and the log files in its local log path are read to
determine what logs are available locally. In this state, logs are not
retrieved from the archive even if you configure a log archiving method.
346 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Also, in this state, a connection to the primary database is not required;
however, if a connection does not exist, the standby database tries to
connect to the primary database. When the end of local log files is
reached, the standby database enters a remote catchup pending state.

– PEER

In a Peer state, log data is shipped directly from the primary’s log write
buffer to the standby whenever the primary flushes its log pages to disk.
The HADR synchronization mode specifies whether the primary waits for
the standby to send an acknowledgement message that log data is
received. The log pages are always written to the local log files on the
standby database. This behavior guards against a crash and allows a file
to be archived on the new primary in case of takeover, if it is not archived
on the old primary. After they are written to local disk, the received log
pages can then be replayed on the standby database. If log spooling is
disabled (the default), replay reads logs only from the log receive buffer.

– REMOTE_CATCHUP

In a remote catchup state, the primary database reads log data from its log
path or a log archiving method and the log data is sent to the standby
database. The primary and standby databases enter the Peer state when
the standby database receives all the on-disk log data of the primary
database. If you are using the SUPERASYNC synchronization mode, the
primary and standby never enter the Peer state. They permanently stay in
remote catchup state, which prevents the possibility of blocking primary
log writing in the Peer state.

– REMOTE_CATCHUP_PENDING

When a standby enters a remote catchup pending state, if a connection to
the primary is not established, the standby waits for a connection. After a
connection is established, the standby obtains the primary's current log
chain information. This information enables the standby, if a log archive is
configured, to retrieve log files from the archive and verify that the log files
are valid.

� PRIMARY_MEMBER_HOST

The local host of the primary member that is processing the log stream.

� PRIMARY_INSTANCE

The instance name of the primary member that is processing the log stream.

� PRIMARY_MEMBER

The primary member that is processing the log stream.

� STANDBY_MEMBER_HOST

The local host of the standby member that is processing the log stream.
 Chapter 8. HADR monitoring 347

� STANDBY_INSTANCE

The instance name of the standby member that is processing the log stream.

� STANDBY_MEMBER

The standby member that is processing the log stream.

� HADR_CONNECT_STATUS

The current HADR connection status of the database. Possible values are:

– CONGESTED

The database is connected to its partner node, but the connection is
congested. A connection is congested when the TCP/IP socket
connection between the primary-standby pair is still alive, but one end
cannot send to the other end. For example, the receiving end is not
receiving from the socket connection, resulting in a full TCP/IP send
space. The reasons for a network connection being congested include the
following ones:

• The network is being shared by too many resources or the network is
not fast enough for the transaction volume of the primary HADR node.

• The server on which the standby HADR node is on is not powerful
enough to retrieve information from the communication subsystem at
the necessary rate.

– CONNECTED

The database is connected to its partner node.

– DISCONNECTED

The database is not connected to its partner node.

� HADR_CONNECT_STATUS_TIME

The time when the current HADR connection status began. Depending on the
HADR_CONNECT_STATUS value, the HADR_CONNECT_STATUS_TIME
value indicates:

– Congestion start time.

– Connection start time.

– Disconnection time.

� HEARTBEAT_INTERVAL

The heartbeat interval in seconds, which is computed from various factors,
such as the values of the hadr_timeout and hadr_peer_window configuration
parameters. The HEARTBEAT_INTERVAL element indicates how often the
primary and standby exchange monitor information.
348 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

� HADR_TIMEOUT

The time, in seconds, by which a HADR database must receive a message
from its partner database. After this period, a HADR database server
considers that the connection between the databases failed and disconnects.

� TIME_SINCE_LAST_RECV

The time, in seconds, that elapsed since the last message was received, so
the larger the number, the longer the delay in message delivery. When the
TIME_SINCE_LAST_RECV value equals the HADR_TIMEOUT value, the
connection between the databases is closed.

� PEER_WAIT_LIMIT

The length of time, in seconds, that the primary database waits before it
breaks out of the Peer state if logging is blocked while it waits for HADR log
shipping to the standby. A value of 0 indicates no timeout.

� LOG_HADR_WAIT_CUR

The length of time, in seconds, that the logger waits on a HADR log shipping
request. A value of 0 is returned if the logger is not waiting. When the wait
time reaches the value that is returned in the PEER_WAIT_LIMIT field, HADR
breaks out of the Peer state to unblock the primary database.

� LOG_HADR_WAIT_RECENT_AVG

The average time, in seconds, for each log flush. This monitoring information
is only reported by the db2pd command.

� LOG_HADR_WAIT_ACCUMULATED

The accumulated time, in seconds, that the logger spent waiting for HADR to
ship logs. This monitoring information is only reported by the
db2pd command.

� LOG_HADR_WAITS_COUNT

The total count of HADR wait events in the logger. The count is incremented
every time the that logger initiates a wait on HADR log shipping, even if the
wait returns immediately. As a result, this count is effectively the number of
log flushes while the databases are in the Peer state. This monitoring
information is only reported by the db2pd command.

� LOG_HADR_WAIT_TIME

The accumulated time, the logger spent, waiting for HADR to ship logs. With
LOG_HADR_WAIT_TIME and LOG_HADR_WAITS_TOTAL, you can
compute the average HADR wait time per log flush in arbitrary interval. The
units are milliseconds. This monitoring information is reported only by the
MON_GET_HADR table function.
 Chapter 8. HADR monitoring 349

� LOG_HADR_WAITS_TOTAL

Total count of HADR wait events in the logger. The count is incremented
every time the that logger initiates a wait on HADR log shipping, even if the
wait returns immediately. This count is effectively the number of log flushes in
the Peer state. With LOG_HADR_WAIT_TIME and
LOG_HADR_WAITS_TOTAL, you can compute the average HADR wait time
per log flush in an arbitrary interval. This monitoring information is reported
only by the MON_GET_HADR table function.

� SOCK_SEND_BUF_REQUESTED,ACTUAL

The requested socket send buffer size (SOCK_SEND_BUF_REQUESTED),
in bytes. A value of 0 indicates no request (the system default is used). The
actual socket send buffer size (SOCK_SEND_BUF_ACTUAL), in bytes.

� SOCK_RECV_BUF_REQUESTED,ACTUAL

The requested socket receive buffer size
(SOCK_RECV_BUF_REQUESTED), in bytes. A value of 0 indicates no
request (the system default is used). The actual socket receive buffer size
(SOCK_RECV_BUF_ACTUAL), in bytes.

� PRIMARY_LOG_FILE,PAGE,POS

The name of the current log file of the log stream on the primary database
(PRIMARY_LOG_FILE). The page number in the current log file that
indicates the current log position on the primary HADR database. The page
number is relative to its position in the log file. For example, page 0 is the
beginning of the file (PRIMARY_LOG_PAGE).The current receive log
position (byte offset) of the log stream on the primary database
(PRIMARY_LOG_POS).

� STANDBY_LOG_FILE,PAGE,POS

The name of the log file corresponding to the standby receive log position on
the log stream (STANDBY_LOG_FILE). The page number (relative to its
position in the log file) corresponding to the standby receive log position
(STANDBY_LOG_PAGE). The current log position of the standby HADR
database (STANDBY_LOG_POS).

� HADR_LOG_GAP

The running average, in bytes, of the gap between the PRIMARY_LOG_POS
value and STANDBY_LOG_POS value.
350 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

� STANDBY_REPLAY_LOG_FILE,PAGE,POS

The name of the log file corresponding to the standby replay log position on
the log stream (STANDBY_REPLAY_LOG_FILE). The page number in the
standby replay log file corresponding to the standby replay log position
(STANDBY_REPLAY_LOG_PAGE). The page number is relative to its
position in the log file. For example, page 0 is the beginning of the file. The
byte offset of the standby replay log position on the log stream
(STANDBY_REPLAY_LOG_POS).

� STANDBY_RECV_REPLAY_GAP

The average, in bytes, of the gap between the standby log receive position
and the standby log replay position. If the value of this gap reaches the
combined value of the standby’s receive buffer size and the standby’s spool
limit, the standby stops receiving logs and blocks the primary if it is in the
Peer state.

� PRIMARY_LOG_TIME

The latest transaction time stamp of the log stream on the primary database.

� STANDBY_LOG_TIME

The latest transaction time stamp of received logs on the log stream on the
standby database.

� STANDBY_REPLAY_LOG_TIME

The transaction time stamp of logs being replayed on the standby database.

� STANDBY_RECV_BUF_SIZE

The standby receive buffer size, in pages.

� STANDBY_RECV_BUF_PERCENT

The percentage of the standby log receive buffer that is being used. Even if
this value is 100, indicating that the receive buffer is full, the standby can
continue to receive logs if you enabled log spooling.

� STANDBY_SPOOL_LIMIT

The maximum number of pages to spool. A value of 0 indicates that log
spooling is disabled; a value of -1 indicates that there is no limit.

� PEER_WINDOW

The value of the hadr_peer_window database configuration parameter.

� READS_ON_STANDBY_ENABLED

An indicator of whether the HADR reads on standby feature is enabled.
 Chapter 8. HADR monitoring 351

Possible values are:

– Y

– N

� STANDBY_REPLAY_ONLY_WINDOW_ACTIVE

An indicator of whether the replay-only window (caused by DDL or
maintenance-operation replay) is in progress on the standby, meaning that
readers are not allowed on the standby. Possible values are:

– Y

– N

� PEER_WINDOW_END

The point in time until which the primary database stays in a Peer or
disconnected Peer state, if the primary database is active. The field is
displayed only if you enabled a peer window.

� STANDBY_REPLAY_DELAY

Indicates the value of the hadr_replay_delay database configuration
parameter.

� TAKEOVER_APP_REMAINING_PRIMARY

The current number of applications still to be forced off the primary during a
non-forced takeover. This field is displayed only if there is a non-forced
takeover in progress.

� TAKEOVER_APP_REMAINING_STANDBY

The current number of applications still to be forced off the read-enabled
standby during a takeover. This field is displayed only if there is a takeover
in progress.

� STANDBY_REPLAY_ONLY_WINDOW_START

The time at which the current replay-only window became active. This field is
displayed only if there is an active replay-only window on the
read-enabled standby.

� STANDBY_REPLAY_ONLY_WINDOW_TRAN_COUNT

The total number of existing uncommitted DDL or maintenance transactions
that are executed in the current replay-only window. This field is displayed
only if there is an active replay-only window on the read-enabled standby.

� INACTIVESTANDBY_REPLAY_ONLY_WINDOW_START

Replay only window start time. This monitoring information is only reported by
the MON_GET_HADR table function.
352 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Chapter 9. DB2 and system upgrades

In this chapter, we focus on applying fix packs and version upgrades to DB2 High
Availability Disaster Recovery (HADR) databases. Fix packs can be applied with
no downtime and DB2 upgrades can be applied with minimal downtime. We also
explore important considerations that relate to any changes to other system
components that might require DB2 or the whole server to be restarted. Lastly,
we provide an overview of what to consider when you update certain database
configuration parameters.

We cover the following topics with techniques for GUI and command-line
interfaces to cater for both styles of DB2 administration on platforms that are
supported by the DB2 Data Server. We use IBM Data Studio as the GUI
where appropriate.

This chapter covers the following topics:

� General steps for upgrades in a HADR environment
� DB2 fix pack rolling upgrades
� DB2 upgrade
� Rolling operating system and DB2 configuration parameter updates

9

© Copyright IBM Corp. 2007, 2012. All rights reserved. 353

9.1 General steps for upgrades in a HADR environment

Here are the general steps to perform a rolling fix pack or version upgrade where
the HADR Primary database is never taken offline and the users experience no
downtime. The specific examples that are presented in this section include a
Primary and Principle Standby, which can be extended only by following these
general steps.

The procedure is essentially the same as with single standby mode, except you
should perform the upgrade on one database at a time and start with an auxiliary
standby. For example, consider the following HADR setup:

� node1 is the primary.

� node2 is the principal standby.

� host 3 is the auxiliary standby.

For this setup, perform the rolling upgrade or update by completing the
following steps:

1. Deactivate node3, make the required changes, activate node3, and start
HADR on node3 (as a standby).

2. After node3 is caught up in log replay, deactivate node2, make the required
changes, activate node2, and start HADR on node2 (as a standby).

3. After node2 is caught up in log replay and in the Peer state with node1, run a
takeover on node2.

4. Deactivate node1, make the required changes, activate node1, and start
HADR on node1 (as a standby).

5. After node1 is in the Peer state with host 2, run a takeover on node1 so that it
becomes the primary again and node2 becomes the principal standby again.

9.2 DB2 fix pack rolling upgrades

HADR gives you high availability while you apply DB2 fix packs through rolling
upgrades. Your database downtime is only minimal while you switch roles
between your database servers. There is no loss of data and no visible downtime
to clients. This situation assumes that your application uses standard retry logic
and handles the reconnect error message (SQL30108N) if you are using automatic
client reroute (ACR).
354 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

In this section, to illustrate the fix pack rolling upgrade procedure through IBM
Data Studio, we provide an example of the application of a rolling upgrade fix
pack on a HADR setup that involves two Linux servers.

9.2.1 Rolling upgrade on Linux

In this section, we describe the procedure to apply a DB2 fix pack with no
downtime on Linux, from DB2 AESE 10.1 fix pack 0 to fix pack 1, using IBM Data
Studio wherever practical.

We use two servers, node1 and node2. Both have the database SAMPLE, as
HADR Primary on node1, and as HADR Standby on node2. Our DB2 instance
name is the default “DB2”. The DB2 instance user ID is db2inst1.

To apply the fix pack, complete the following steps:

1. Extract the DB2 fix pack in to a source location on both servers. This action
minimizes the time that the HADR Standby is down and confirms the integrity
of the fix pack download. We extract our fix pack to /usr/tmp/aese on both
servers by running a command similar to Example 9-1 on both servers.

Example 9-1 Extract the fix pack

db2inst1@node1:/usr/tmp> tar -xvf v10.1fp1_linuxx64_aese.tar.gz

2. Confirm the prerequisite status. The HADR pair should be in the Peer state
before you start the rolling upgrade. The current HADR state can be checked
by running db2pd -d <dbname> -hadr (Example 9-2).

Example 9-2 Check the HADR state

db2inst1@node1:~> db2pd -d sample -hadr

Database Member 0 -- Database SAMPLE -- Active -- Up 9 days 23:23:21
-- Date 21/07/2012 12:13:17

 HADR_ROLE = PRIMARY

IBM Data Studio: IBM Data Studio provides database developers and DBAs
with an integrated, modular environment for productive administration of DB2
for Linux, UNIX, and Windows. It also provides collaborative database
development tools for DB2, Informix, Oracle, and Sybase. It can be
downloaded at no cost at:

http://www.ibm.com/developerworks/downloads/im/data/
 Chapter 9. DB2 and system upgrades 355

http://www.ibm.com/developerworks/downloads/im/data/

 REPLAY_TYPE = PHYSICAL
 HADR_SYNCMODE = NEARSYNC
 STANDBY_ID = 1
 LOG_STREAM_ID = 0
 HADR_STATE = PEER
 PRIMARY_MEMBER_HOST = node1
 PRIMARY_INSTANCE = db2inst1
 PRIMARY_MEMBER = 0
 STANDBY_MEMBER_HOST = node2
 STANDBY_INSTANCE = db2inst1
 STANDBY_MEMBER = 0
 HADR_CONNECT_STATUS = CONNECTED
 HADR_CONNECT_STATUS_TIME = 21/07/2012 12:12:50.120336
(1342869170)
 HEARTBEAT_INTERVAL(seconds) = 30
 HADR_TIMEOUT(seconds) = 120
 TIME_SINCE_LAST_RECV(seconds) = 26
 PEER_WAIT_LIMIT(seconds) = 0
 LOG_HADR_WAIT_CUR(seconds) = 0.000
 LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.000027
 LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.738
 LOG_HADR_WAIT_COUNT = 26493
SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 16384
SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87380
 PRIMARY_LOG_FILE,PAGE,POS = S0000007.LOG, 890, 72920803
 STANDBY_LOG_FILE,PAGE,POS = S0000007.LOG, 890, 72920803
 HADR_LOG_GAP(bytes) = 0
 STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000007.LOG, 890, 72920803
 STANDBY_RECV_REPLAY_GAP(bytes) = 0
 PRIMARY_LOG_TIME = 21/07/2012 12:05:06.000000
(1342868706)
 STANDBY_LOG_TIME = 21/07/2012 12:05:06.000000
(1342868706)
 STANDBY_REPLAY_LOG_TIME = 21/07/2012 12:05:06.000000
(1342868706)
 STANDBY_RECV_BUF_SIZE(pages) = 512
 STANDBY_RECV_BUF_PERCENT = 0
 STANDBY_SPOOL_LIMIT(pages) = 0
 PEER_WINDOW(seconds) = 0
 READS_ON_STANDBY_ENABLED = N
356 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

3. Apply the DB2 fix pack code on the standby server (node2 in our case). For
more information about the actual fix pack application, see the DB2
Information Center at:

http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.
db2.luw.qb.server.doc/doc/t0006352.html

The basic fix pack installation steps for DB2 AESE 10.1 fix pack 1 are
as follows:

a. Deactivate your standby database and stop the DB2 instance. From IBM
Data Studio, expand the object tree down to the database object.
Right-click the database name, and then click Stop. This action stops the
instance and the database. Figure 9-1 shows that the database
is deactivated.

Figure 9-1 Run the command to stop the databases and the instance
 Chapter 9. DB2 and system upgrades 357

http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.qb.server.doc/doc/t0006352.html

b. Open a terminal session and open the folder where the extracted fix pack
files are located. For our DB2 10.1 ESE fp1, the fix pack is installed as
shown in Example 9-3. The text in bold is entered during the fix pack
installation. For practical reasons and simplicity, some of the output in
Example 9-3 is removed (marked as “<removed>”).

Example 9-3 Install the fix pack

db2inst1@node2:~> cd /usr/tmp/aese
db2inst1@node2:~> ./installFixPack /opt/ibm/db2/V10.1/
node2:/usr/tmp/aese # ./installFixPack /opt/ibm/db2/V10.1/

Enter the full path of the base installation directory:

/opt/ibm/db2/V10.1/

Do you want to choose a different installation directory for the
fix pack? [yes/no]

no

DBI1017I installFixPack is updating the DB2 product(s) installed
in
 location /opt/ibm/db2/V10.1/.

DB2 installation is being initialized.
Total number of tasks to be performed: 40
Total estimated time for all tasks to be performed: 1778
second(s)

Task #1 start
Description: Stopping DB2 Fault Monitor
Estimated time 10 second(s)
Task #1 end

<removed>

Task #41 start
Description: Updating existing DB2 instances
Estimated time 60 second(s)
Task #41 end
358 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

The execution completed successfully.

For more information see the DB2 installation log at
"/tmp/installFixPack.log.7037".

c. Activate the HADR Standby database by running the command that is
shown in Example 9-4 on the command line.

Example 9-4 Activate database command

db2inst1@node2:~> db2 activate db sample

d. Confirm that HADR is in a Connected Peer state by running the command
that is shown in Example 9-5.

Example 9-5 Checking the HADR Peer state

db2inst1@node2:~> db2pd -d sample -hadr

Database Member 0 -- Database SAMPLE -- Standby -- Up 0 days
00:00:44 -- Date 2012-07-22-15.55.36.098555

 HADR_ROLE = STANDBY
 REPLAY_TYPE = PHYSICAL
 HADR_SYNCMODE = NEARSYNC
 STANDBY_ID = 0
 LOG_STREAM_ID = 0
 HADR_STATE = PEER
 PRIMARY_MEMBER_HOST = node1
 PRIMARY_INSTANCE = db2inst1
 PRIMARY_MEMBER = 0
 STANDBY_MEMBER_HOST = node2
 STANDBY_INSTANCE = db2inst1
 STANDBY_MEMBER = 0
 HADR_CONNECT_STATUS = CONNECTED
 HADR_CONNECT_STATUS_TIME = 22/07/2012
15:54:53.084960 (1342968893)
 HEARTBEAT_INTERVAL(seconds) = 30
 HADR_TIMEOUT(seconds) = 120
 TIME_SINCE_LAST_RECV(seconds) = 12
 PEER_WAIT_LIMIT(seconds) = 0
 LOG_HADR_WAIT_CUR(seconds) = 0.000
 LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.000027
 LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.738
 LOG_HADR_WAIT_COUNT = 26493
 Chapter 9. DB2 and system upgrades 359

SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 16384
SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87380
 PRIMARY_LOG_FILE,PAGE,POS = S0000008.LOG, 509,
75444907
 STANDBY_LOG_FILE,PAGE,POS = S0000008.LOG, 509,
75444907
 HADR_LOG_GAP(bytes) = 0
 STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000008.LOG, 509,
75444907
 STANDBY_RECV_REPLAY_GAP(bytes) = 0
 PRIMARY_LOG_TIME = 22/07/2012
15:05:17.000000 (1342965917)
 STANDBY_LOG_TIME = 22/07/2012
15:05:17.000000 (1342965917)
 STANDBY_REPLAY_LOG_TIME = 22/07/2012
15:05:17.000000 (1342965917)
 STANDBY_RECV_BUF_SIZE(pages) = 512
 STANDBY_RECV_BUF_PERCENT = 0
 STANDBY_SPOOL_LIMIT(pages) = 0
 PEER_WINDOW(seconds) = 0
 READS_ON_STANDBY_ENABLED = N
360 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

4. Switch HADR roles.

From IBM Data Studio, expand the object tree down to the database object.
Right-click the database name, and then click Manage HADR (Figure 9-2).

Figure 9-2 Select Manage HADR for the Standby database
 Chapter 9. DB2 and system upgrades 361

a. Select Manage Standby database and Takeover a primary (Figure 9-3).

Figure 9-3 Taking over as the primary

b. To confirm the takeover, click Command and review the code to be run
and then click Run (Figure 9-4).

Figure 9-4 Confirm and run the commands
362 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

c. A DB2 message should appear and confirm success.

d. The Manage High Availability Disaster Recovery (HADR) panel should
now show that the standby and primary roles switched servers. In our
example in Example 9-6, node2 is now the primary.

Example 9-6 Confirm a successful takeover

db2inst1@node2:~> db2pd -db sample -hadr

Database Member 0 -- Database SAMPLE -- Active -- Up 0 days
00:27:17 -- Date 2012-07-22-16.22.09.700721

 HADR_ROLE = PRIMARY
 REPLAY_TYPE = PHYSICAL
 HADR_SYNCMODE = NEARSYNC
 STANDBY_ID = 1
 LOG_STREAM_ID = 0
 HADR_STATE = DISCONNECTED
 PRIMARY_MEMBER_HOST = node2
 PRIMARY_INSTANCE = db2inst1
 PRIMARY_MEMBER = 0
 STANDBY_MEMBER_HOST = node1
 STANDBY_INSTANCE = db2inst1
 STANDBY_MEMBER = 0
 HADR_CONNECT_STATUS = DISCONNECTED
 HADR_CONNECT_STATUS_TIME = 22/07/2012
16:06:40.173853 (1342969600)
 HEARTBEAT_INTERVAL(seconds) = 30
 HADR_TIMEOUT(seconds) = 120
 TIME_SINCE_LAST_RECV(seconds) = 0
 PEER_WAIT_LIMIT(seconds) = 0
 LOG_HADR_WAIT_CUR(seconds) = 0.000
 LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.000000
 LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.000
 LOG_HADR_WAIT_COUNT = 0
SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 16384
SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87380
 PRIMARY_LOG_FILE,PAGE,POS = S0000008.LOG, 510,
75447567
 STANDBY_LOG_FILE,PAGE,POS = S0000000.LOG, 0, 0
 HADR_LOG_GAP(bytes) = 0
 STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000000.LOG, 0, 0
 STANDBY_RECV_REPLAY_GAP(bytes) = 0
 PRIMARY_LOG_TIME = 22/07/2012
16:08:36.000000 (1342969716)
 Chapter 9. DB2 and system upgrades 363

 STANDBY_LOG_TIME = NULL
 STANDBY_REPLAY_LOG_TIME = NULL
 PEER_WINDOW(seconds) = 0

HADR supports a standby that runs a newer DB2 level than the primary, but
not the other way around. Therefore, when the takeover is complete, HADR is
in the Disconnected state, and the new standby (old primary) database is
deactivated, because it has an older DB2 level.

5. Apply the DB2 fix pack on the old HADR primary server.

a. Repeat step 3 on page 357 on the new standby server. In our example, we
perform the fix pack application on node1.

b. Post-installation tasks such as package binding for DB2 CLI cannot be
performed from a HADR standby database, so you must connect to the
current HADR primary database (in our example, SAMPLE on node2).
When connected, run the binds appropriate to your environment, as
described in the DB2 10.1 Information Center at:

http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.i
bm.db2.luw.qb.server.doc/doc/c0025015.html

The binds and system catalog updates are logged, so HADR replays them
on the standby to complete the fix pack application.

6. (Optional) Switch the roles back to the original primary if you want to restore
your original server roles.

a. The HADR status must be a Connected Peer state to ensure that all logs
are applied.

b. Repeat step 3 on page 357 to run an unforced HADR takeover.

9.3 DB2 upgrade

A rolling upgrade is not supported between DB2 version or major subversion
upgrades, such as Version 9.1 to 9.5 or 9.7 to 10.1. For these events, plan for a
database outage while the HADR primary database is updated. In this section,
we provide an example of a DB2 upgrade on a Linux operating system, using
IBM Data Studio (where practical) and the CLI.

DB2 installations and upgrades have improved in recent versions by containing
the base code for an installation in the same downloadable package as each fix
pack. This setup reduces downtime, and greatly simplifies installations and
upgrades. Having everything in a single package also avoids many situations
where post-installation steps are neglected.
364 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.qb.server.doc/doc/c0025015.html

For your own reference, documentation about related concepts that are involved
in DB2 upgrades can be found in the DB2 10.1 Information Center at:

http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2
.luw.qb.upgrade.doc/doc/c0023662.html

The initial critical step of DB2 upgrades is running db2ckupgrade. The command
checks if the databases are eligible for an upgrade to the new DB2 version. The
db2ckupgrade command listing dependencies for success are covered in the DB2
Information Center at:

http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2
.luw.admin.cmd.doc/doc/r0002055.html

9.3.1 DB2 version upgrade on Linux

Here we describe a step-by-step upgrade from DB2 Enterprise Server Edition
Version 9.7 fix pack 0 to Version 10.1 fix pack 0, on a pair of Linux servers. Our
example HADR database pair name is SAMPLE.

All steps on Linux are performed by the DB2 instance user (db2inst1 for our
example). We illustrate all the dialog boxes for the DB2 10.1 installation on the
HADR standby server only, as they are the same dialog boxes we see on the
HADR primary server.

To help minimize downtime on the HADR primary server, extract the DB2
compressed package on to both servers before you stop any DB2 instances.
Extract the installation files to a target directory (/usr/tmp/aese, in our example)
to be ready to run db2setup, and db2ckupgrade. Use the following commands to
extract the files:

� /usr/tmp/aese/db2setup

� /usr/tmp/aese/avalanche/pureScale/98_FP3_Build_26652/ese_dsf/db2/linux
amd64/utilities/db2ckupgrade

Do this task beforehand because the extraction process of almost 2000 files
normally takes several minutes to perform. Also, this task must be done so you
can run db2ckupgrade on the DB2 9.7 database to confirm that the migration to
DB2 10.1 works without more structural changes.

Our first set of upgrade steps involves no outage or downtime on the HADR
primary server. Any downtime activity here is limited to the HADR
standby server.
 Chapter 9. DB2 and system upgrades 365

http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.qb.upgrade.doc/doc/c0023662.html
http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.admin.cmd.doc/doc/r0002055.html

Complete the following steps:

1. Upgrade the standby server.

a. Ensure that your HADR server is in the Connected Peer state by running
db2pd, get snapshot, or use the Manage HADR window in IIBM Data
Studio. For details about this command’s usage, see Chapter 8, “HADR
monitoring” on page 337.

Example 9-7 shows the db2pd command output for servers node1
and node2.

Example 9-7 HADR Connected Peer state before upgrade

db2inst2@node1:~> db2pd -db sample -hadr

Database Partition 0 -- Database SAMPLE -- Active -- Up 0 days
03:40:58 -- Date 07/24/2012 10:29:22

HADR Information:
Role State SyncMode HeartBeatsMissed
LogGapRunAvg (bytes)
Primary Peer Nearsync 0 273

ConnectStatus ConnectTime Timeout
Connected Tue Jul 24 06:48:28 2012 (1343108908) 120

LocalHost LocalService
node1 60010

RemoteHost RemoteService
RemoteInstance
node2 60010 db2inst2

PrimaryFile PrimaryPg PrimaryLSN
S0000001.LOG 621 0x0000000002961C62

StandByFile StandByPg StandByLSN
S0000001.LOG 621 0x0000000002961C22

db2pd output: The output from db2pd shown in Example 9-7 on
page 366 is rather different from the earlier examples of output from
db2pd. The command is being run against DB2 9.7, and the earlier
examples were run against DB2 10.1. Some format changes were
made to db2pd between Version 9.7 and Version 10.1.
366 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

b. Run deactivate database on the CLP:

db2inst2@node2:~> db2 deactivate db sample
DB20000I The DEACTIVATE DATABASE command completed successfully.

c. You can reduce downtime further by checking your database structure
and content for eligibility before the upgrade downtime window by running
db2prereqcheck from the extracted installation sources of the new DB2
version. This action avoids added downtime on the primary database in
later steps, at the cost of some added work before downtime.

Before you run db2prereqcheck, you must:

i. Stop HADR on the standby database by running the
following command:

db2inst2@node2:~> db2 stop hadr on db sample

ii. Disable remote user access to prevent split-brain issues (change the
server IP address or DB2 instance communication port number):

db2inst2@node2:~> db2 update dbm cfg using svcename 99999
db2inst2@node2:~> db2stop force
db2inst2@node2:~> db2start

Now you can run db2ckupgrade from the extracted subdirectory:

db2ckupgrade sample

If the output is satisfactory, you can proceed to step d on page 368;
otherwise, corrective action must be taken on the HADR primary database
to make it eligible for upgrade.

After corrective action is taken, either run db2ckupgrade on the HADR
primary, or proceed with the following steps for the HADR standby if you
want to avoid further downtime. Use the command line processor (CLP):

i. Perform an online database backup of HADR Primary with included
logs by running the following command:

db2inst2@node1:~> db2 backup db sample online to
/usr/tmp/backup include logs

ii. Copy the resulting database backup file to the standby server by
running the following command:

db2inst2@node1:/usr/tmp/backup> scp
./SAMPLE.0.db2inst2.NODE0000.CATN0000.20120724150616.001
root@node2:/usr/tmp/backup
 Chapter 9. DB2 and system upgrades 367

iii. Restore the database on the standby server, specifying a destination
for the included log files and roll the database forward (Example 9-8).

Example 9-8 Restoring a database from a backup

db2inst2@node2:~> db2 restore db sample from /usr/tmp/backup
taken at 20120724112114 logtarget /usr/tmp replace history
file
SQL2539W Warning! Restoring to an existing database that is
the same as the backup image database. The database files be
deleted.
Do you want to continue ? (y/n) y
DB20000I The RESTORE DATABASE command completed successfully.

db2 => rollforward database sample to end of logs and complete
overflow log path (/usr/tmp/)

 Rollforward Status

 Input database alias = sample
 Number of nodes have returned status = 1

 Node number = 0
 Rollforward status = not pending
 Next log file to be read =
 Log files processed = S0000001.LOG -
S0000001.LOG
 Last committed transaction =
2012-07-24-14.22.10.000000 UTC

DB20000I The ROLLFORWARD command completed successfully.

Do not run db2ckupgrade yet because the db2ckupgrade command cannot
be run on a database while it is in HADR standby or rollforward pending
mode. Also, replace it with a backup of the HADR primary after you
upgrade the primary to a DB2 10.1 database structure.

d. If you have not done so, stop the DB2 instance from the CLP or IBM Data
Studio, as shown in Example 9-9.

Example 9-9 Stop the DB2 instance from the CLP

db2inst2@node1:/usr/tmp/backup> db2 stop hadr on db sample
db2inst2@node1:/usr/tmp/backup> db2stop

e. Close the IBM Data Studio and any other DB2 GUI tools or windows.
368 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

f. Perform the DB2 10 installation.

Perform the installation of the DB2 Enterprise Server edition software but
do not create an instance during this process. For detailed steps about
how to perform this installation, go to the DB2 Information Center at:

http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.i
bm.db2.luw.qb.server.doc/doc/t0059589.html

g. Perform the instance upgrade.

As shown in the Example 9-10, you can upgrade the instance on the
standby by running db2iupgrade in the new code base.

Example 9-10 Upgrade the instance

db2inst2@node2:~> cd /opt/ibm/db2/V10.1/instance
db2inst2@node2:~> /db2iupgrade
DBI1446I The db2iupgrade command is running.
DB2 installation is being initialized.
 Total number of tasks to be performed: 4
Total estimated time for all tasks to be performed: 309 second(s)
Task #1 start
Description: Setting default global profile registry variables
Estimated time 1 second(s)
Task #1 end
Task #2 start
Description: Initializing instance list
Estimated time 5 second(s)
Task #2 end
Task #3 start
Description: Configuring DB2 instances
Estimated time 300 second(s)
Task #3 end
Task #4 start
Description: Updating global profile registry
Estimated time 3 second(s)
Task #4 end
The execution completed successfully.
For more information see the DB2 installation log at
"/tmp/db2iupgrade.log.31440".
Required: Review the following log file also for warnings or
errors:
"/tmp/db2iupgrade_local.log.*"
DBI1070I Program db2iupgrade completed successfully.
 Chapter 9. DB2 and system upgrades 369

http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.qb.server.doc/doc/t0059589.html

h. Confirm that the new version is installed.

Confirm your new DB2 version by running db2level (Example 9-11).

Example 9-11 Check the DB2 version

db2inst2@node2:~> db2level
DB21085I This instance or install (instance name, where
applicable:
"db2inst2") uses "64" bits and DB2 code release "SQL10011" with
level
identifier "0202010E".
Informational tokens are "DB2 v10.1.0.1", "s120715", "IP23384",
and Fix Pack
"1".
Product is installed at "/opt/ibm/db2/V10.1".

2. Upgrade the primary server:

Log on to the primary server (node1 in our case) with the DB2 instance user.
Because of the different version levels of your two servers, you cannot switch
roles to the standby, so your database downtime for users starts here.

Complete the following steps:

a. Arrange for all DB2 connections (users, applications, and batch) to stop.
This action means that you do not need to run force applications, which
can cause potentially lengthy rollback actions. Removal of connections
can be measured with by running db2 list applications from the CLP.

b. From the CLP, run deactivate database as follows:

db2inst2@node1:~> db2 deactivate database sample

The deactivate database command puts database into a consistent state
in preparation for the migration check and later structural conversion.

c. Perform a backup of your database (use offline mode for ease of
restoration without logs or rolling forward). This backup can be completed
either through IBM Data Studio or CLP. This step is performed in case
migration fallback is needed. Even if the database migration is successful,
there might be application dependencies that require lengthy corrective
action and testing before remigration to the new DB2 version is practical.
Run the following command:

db2inst2@node1:~> db2 backup database sample to /usr/tmp/backup

d. Run db2support with collection level zero to get instance configuration
information and other information for fallback if necessary:

db2inst2@node1:~> db2support /usr/tmp -cl 0
370 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Run db2cfexp to save node and database directory information if the DB2
product code must be uninstalled and reinstalled:

db2inst2@node1:~> db2cfexp /usr/tmp/nodedb.cfg backup

After any fallback requiring reinstallation of DB2 product code, the
db2cfimp command can be used to reimport these definitions
where necessary:

db2inst2@node1:~> db2cfimp /usr/tmp/nodedb.cfg

e. Perform steps 1.d on page 368, through to 1.h on page 370 to install the
new DB2 version on the HADR primary server.

You can perform step f on page 369 to install the DB2 sources beforehand
to save time.

The db2iupgrade command implicitly calls db2ckupgrade on all databases
in that instance, and does not migrate the instance if any errors are found.
This situation emphasizes the need to perform db2ckupgrade well in
advance to ensure that no failures occur at a more critical stage.

The db2iupgrade command is described at:

http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.i
bm.db2.luw.admin.cmd.doc/doc/r0002055.html

f. Run upgrade database on all local databases in the new DB2 10.1
instances. This command also applies to any system tools database (used
by the DB2 Task Scheduler). We migrate our HADR database by running
the following command:

db2inst2@node1:~> db2 upgrade database sample

Successful completion of this command results in the following message:

DB20000I The UPGRADE DATABASE command completed successfully.

The upgrade database command is described at:

http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.i
bm.db2.luw.admin.cmd.doc/doc/r0001959.htmll

At this stage, you can consider the actual DB2 upgrade process as
completed, and application connectivity testing can commence. The next
steps can be performed in parallel with user testing before you consider your
system ready for production.
 Chapter 9. DB2 and system upgrades 371

http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.admin.cmd.doc/doc/r0002055.html
http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.admin.cmd.doc/doc/r0001959.htmll

3. Re-establish HADR database pairing between the standby server (node2)
and the primary server (node1):

a. Perform an online backup of your HADR primary database, which is
copied over to the standby server to re-establish HADR. As in step 2.c on
page 370, you can use the Data Studio Backup wizard, or the CLP, as we
do here:

db2inst2@node1:~> db2 backup database sample online to
/usr/tmp/backup

b. Copy the backup image over to the HADR standby server that is ready
to restore.

c. Log on to the standby server and restore the database from the backup
image that is copied across in step 3.b. You can either use IBM Data
Studio or the restore command on the CLP. Our CLP syntax is:

db2inst2@node2:~> db2 restore database sample from
/usr/tmp/backup taken at yyyymmddhhmmss

Accept the request to overwrite the existing database. A successful output
from this command when run against an existing DB2 8.2 database
includes an extra message:

SQL2555I The restored database was successfully upgraded to the
current release.

This message indicates that your pre-existing standby database is
upgraded as part of the restore.

d. Update the database configuration parameters for the HADR standby.
Normally, if you restored the primary database over the existing
unchanged old HADR standby database, no action would be necessary
here, because the existing database configuration parameters for the
HADR standby are retained.

We experienced that after our DB2 10.1 migration with restore completed
that the database configuration parameters reverted to the HADR primary
settings. This situation is why it is imperative to check that the HADR
standby database configuration parameters are correct, and update any of
the parameters as necessary.

Use this CLP command syntax to get the current settings:

db2 get db cfg for sample | grep “HADR”
372 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

We expect four key HADR primary database and standby database
configuration parameters of our example to be as shown in Table 9-1.

Table 9-1 Expected primary and standby HADR db cfg values

Our standby db cfg values need to be reset by running the
following commands:

• db2 update db cfg for sample using hadr_local_host node2

• db2 update db cfg for sample using hadr_local_svc 60010

• db2 update db cfg for sample using hadr_remote_host node1

• db2 update db cfg for sample using hadr_remote_svc 60010

e. If you disabled remote user access in step 1.c on page 367 by changing
the HADR standby server IP address or DB2 instance communication port
number, then reset it back to the original value. We set the communication
port back to our original setting of 50000 by running the
following commands:

• db2 update dbm cfg using svcename 50000

• db2stop

• db2start

f. Start HADR on the standby and primary databases.

Our standby database was taken out of the HADR role of STANDBY and
rolled forward in step 1.c on page 367 to run db2ckmig. The current HADR
role value is still STANDARD, and we change it back to STANDBY by starting
HADR on that database. The primary database also has the STANDARD
role, and we change it to the PRIMARY role by running another start hadr.

Commands to start HADR can be run remotely through the CLP or IBM
Data Studio if remote database aliases cataloged for the other database in
the HADR pair. Start HADR on the standby first, then the primary, which is
what IBM Data Studio always does, and what you should also do when
you use the CLP unless you can ensure that you are able to start the
standby within the HADR_TIMEOUT value after you start the primary.

Parameter Primary Standby

HADR local host name (HADR_LOCAL_HOST) node1 node2

HADR local service name (HADR_LOCAL_SVC) 60010 60010

HADR remote service name (HADR_REMOTE_HOST) node2 node1

HADR remote service name (HADR_REMOTE_SVC) 60010 60010
 Chapter 9. DB2 and system upgrades 373

We present the following examples for your reference, so you can choose
the technique that you prefer:

i. Using CLP on the standby server by running the following commands:

• db2 deactivate db sample

• db2 start hadr on db sample as standby

• db2 deactivate db samppug user db2inst2 using passblah

• db2 start hadr on db samppug user db2inst2 using passblah as
primary

Starting the HADR primary database remotely from the standby server
is possible when there is a remote database alias cataloged. Our
standby server has a remote database alias for SAMPLE cataloged as
SAMPPUG, pointing at a cataloged node definition for our node1
server. Otherwise, these CLP commands can be split up so that the
first two commands are run against the local SAMPLE database on the
standby server, and then the latter two are run locally from the primary
server, without any need to specify the user and password.

ii. If you use CLP on the primary server, run the following commands:

• db2 deactivate db sampfar user db2inst2 using passblah

• db2 start hadr on db sampfar user db2inst2 using passblah as
standby

• db2 deactivate db sample

• db2 start hadr on db sample as primary

Starting the HADR standby remotely from the primary server is
possible when there is a remote database alias cataloged. Our primary
server has a remote database alias for SAMPLE cataloged as
SAMPFAR, pointing at a cataloged node definition for our
node2 server.

HADR should now be started on the primary and standby servers, and in the
Connected Peer state within a short time frame.

All users and applications can now connect to the migrated database on the
HADR primary server in full production mode, safe in the knowledge that DB2
has a working hot backup with the HADR standby database.
374 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

There is a reason to start HADR on the standby first. A Standard role database
does not normally activate in the HADR primary role without a HADR standby
being activated and successfully communicating within the HADR_TIMEOUT
period. A HADR standby database can be started without a HADR primary being
present or active. An eligible Standard role database can be started only as a
HADR primary without a connection to an active HADR Standby by using the by
force parameter of the start hadr command.

If a database has active connections, and a start hadr command is issued
against it, this task can fail with error code SQL1767N or SQL1768N, depending on
the initial state of the database. This situation is why the deactivate database
command precedes all start hadr commands that are run by IBM Data Studio.
Similarly, error code SQL1769N is issued if the deactivate database command
does not precede a stop hadr command on an active HADR standby database.
The DB2 10.1 Information Center contains a useful table about how a database
in any state behaves when a start hadr command is issued against it:

http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2
.luw.admin.cmd.doc/doc/r0011551.html

Here is the equivalent link for stop hadr:

http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2
.luw.admin.cmd.doc/doc/r0011552.html

9.4 Rolling operating system and DB2 configuration
parameter updates

This section covers high-level instructions for updating database and database
manager configuration parameters, and for any operating system (OS) and
application upgrades. To keep your HADR systems optimal, you should apply
changes to both servers as quickly as possible.

When you update HADR-specific database configuration parameters, DB2 does
not allow you to switch HADR roles. Certain HADR parameters must always
remain matched, such as HADR_TIMEOUT. You must have a short database
outage while you update the parameters on the primary server and recycling the
DB2 instance or deactivating/activating the database.

For the HADR primary, this process of role switching is not required for those
databases or database manager configuration parameters that are dynamic, that
is, which require no recycling of the DB2 database or instance to take
immediate effect.
 Chapter 9. DB2 and system upgrades 375

http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.admin.cmd.doc/doc/r0011551.html
http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.admin.cmd.doc/doc/r0011552.html

The list of database and database manager configuration parameters that are
dynamic are listed under the column heading “Cfg Online” at the DB2 10.1
Information Center at:

http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2
.luw.admin.config.doc/doc/r0005181.html

After the dynamic database manager or database configuration parameter
update is issued on the HADR primary, it should be manually issued against the
HADR standby as well, because parameter configurations are not logged and
not mirrored through HADR log shipping.

9.4.1 Procedure

In our procedure, we use the example environment with node1 and node2. The
DB2 database on node1 is initially the HADR primary and node2 is the standby.

Complete the following steps:

1. On node2 in the HADR standby role:

a. Ensure that your HADR is in a Peer state by using db2pd, a snapshot, or
the HADR Manage window.

b. Run deactivate database.

c. If necessary, stop the DB2 Instance, which is necessary for OS or non
DB2 changes that require a server recycle, in addition to database
manager configuration parameters that require a DB2 instance recycle.

d. Make the necessary changes to the hardware, software, or DB2
configuration parameters.

e. Start the DB2 Instance if it was stopped.

f. Run activate database or explicitly connect to the database.

g. Check HADR to ensure that the server is in the Peer state by using db2pd,
a snapshot, or the HADR Manage window.

h. Switch the roles of the primary and standby by running an unforced
takeover hadr command against the standby database.

i. Redirect clients to the HADR primary database on node2 through ACR or
an IP address switch.

2. On node1 in HADR Standby role, repeat steps 1a to i, but run them
against node1.
376 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.admin.config.doc/doc/r0005181.html

Chapter 10. Automatic client reroute

In this chapter, we describe an important DB2 feature that is known as automatic
client reroute (ACR). ACR enables a DB2 client application to recover from a
loss of communication so that the application can continue its work with
minimal interruption.

This chapter covers the following topics:

� ACR overview
� ACR tuning
� ACR limitations
� ACR configuration examples
� Application programming to handle ACR

For more information about ACR, see:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.i
bm.db2.luw.admin.ha.doc%2Fdoc%2Fr0023392.html

10
© Copyright IBM Corp. 2007, 2012. All rights reserved. 377

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.ha.doc%2Fdoc%2Fr0023392.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.ha.doc%2Fdoc%2Fr0023392.html

10.1 ACR overview

When there is a loss of communication between a DB2 client and a DB2
(database) server, the client receives a communication failure that terminates the
application with an error. If high availability is important, you should implement a
redundant setup with the ability to fail over to the redundant system when the
primary system fails.

ACR is a DB2 feature that enables a DB2 client to recover from a loss of
connection to the DB2 server by rerouting the connection to an alternate server.
This automatic connection rerouting occurs automatically.

10.1.1 ACR with HADR

Figure 10-1 illustrates the ACR implementation in HADR.

Figure 10-1 ACR implementation in HADR

DB2 Engine Primary server Standby server

hostname <nnn>
Port <nnn>

Automatically
stored on client

Prim
ary

 co
nn

ec
tio

n

New connection to standby

automatically established

DB2 Engine
378 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

To enable the ACR feature in HADR, the DB2 server is configured with the name
of an alternative location that the DB2 client can access. The UPDATE ALTERNATE
SERVER FOR DATABASE command is run to define the alternate server location on a
particular database:

db2 update alternate server for database db2 using hostname XYZ
port yyyy

The alternate host name and port number is part of the command. The location is
stored in the system database directory of the instance.

The alternate server location information is propagated to the DB2 client when
the client makes a connection to the DB2 server. If communication between the
client and the server is lost for any reason, the DB2 client attempts to re-establish
the connection by using the alternate server information.

In general, you can use the ACR feature within the following
configurable environments:

� DB2 Enterprise Server Edition (ESE) with the Data Partitioning Feature (DPF)
� DB2 Enterprise Server Edition with the IBM DB2 pureScale Feature
� WebSphere Replication Server
� IBM PowerHA SystemMirror for AIX
� High Availability Disaster Recovery (HADR)
 Chapter 10. Automatic client reroute 379

10.1.2 ACR in action

Figure 10-2 shows ACR in action when there is a connection failure to a primary
database in a HADR environment.

Figure 10-2 ACR implementation in HADR

If an alternate server is specified, ACR is activated when a communication error
(SQLCode -30081) is detected or if the DB2 server is not able to accept new
requests for any other reason (SQLCode -1224).

Primary DB

1. SERVER CRASH

4. Client reroute complete
5. SQLCODE=

-30108

6. Continue
transactions

Standby DB

Client

2. Find Primary database down reroute
starts SQLCODE=-30081

3. TAKEOVER
380 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

When ACR is activated, the DB2 client code first attempts to re-establish the
connection to the original server. If that fails, it tries the alternate server. The DB2
client continues the attempt to connect to the original server and the alternate
server, alternating the attempts between the two servers until it gets a successful
connection for 10 minutes from the moment it detected a communication failure.
The timing of these attempts varies from the initial rapid connection attempts
between the two servers with a gradual lengthening of the intervals between
the attempts (Table 10-1).

Table 10-1 ACR connection intervals

When a connection is successful, the SQLCode -30108 or SQLCode -4498 (for
IBM Data Server Driver for JDBC and SQLJ clients) is returned to the application
to indicate that a database connection is re-established following the
communication failure. The host name or IP address and service name or port
number are returned (Example 10-1) for SQLCode -4498.

Example 10-1 SQLCode -4498

SQLException: com.ibm.db2.jcc.c.ClientRerouteException:
[ibm][db2][jcc][t4][2027][11212] A connection failed but has been
re-established. The host name or IP address is “9.43.86.111” and the
service name or port number is 50,030.Special registers may or may not
be re-attempted (Reason code = 1).SQLCode: -4498

The DB2 client returns only the error for the original communication failure to the
application if the re-establishment of the client communication to either the
original or alternate server is not possible.

Time Interval between attempts

0 - 30 seconds 0 seconds

30 - 60 seconds 2 seconds

1 minute - 2 minutes 5 seconds

2 - 5 minutes 10 seconds

5 - 10 minutes 30 seconds
 Chapter 10. Automatic client reroute 381

10.2 ACR tuning

DB2 client tries to connect to the original server before it connects to the
alternate server when client reroute is triggered. Therefore, to enable fast reroute
to the alternate server, the connection to the original server that failed must
receive a timeout error quickly. There are three options to achieve this goal:

� Tuning Internet Protocol network

To make the ACR perform better, you can tune the Internet Protocol network
parameters of the operating system on which the DB2 application is running.
For example, on the AIX operating system, tune tcp_keepinit. The default
value 150 means that 75 seconds must pass before the connection is routed
to the alternate server.

� Configuring DB2 registry variables

The operating system network parameters affect all the applications on the
system. So, configure the following DB2 client reroute registry variables,
which affect only DB2 applications. You must tune the following parameters
that enable DB2 to quickly figure out that the network connection is not alive:

– DB2TCP_CLIENT_CONTIMEOUT

This registry variable specifies the number of seconds a DB2 client waits
for the completion on a TCP/IP connect operation. If a connection is not
established in the seconds specified, then the DB2 database manager
returns the error code -30081. There is no timeout if the registry variable is
not set or is set to 0.

– DB2TCP_CLIENT_RCVTIMEOUT

This registry variable specifies the number of seconds a DB2 client waits
for data on a TCP/IP receive operation. If data from the server is not
received in the seconds specified, then the DB2 database manager
returns the SQL error code -30081. There is no timeout if the registry
variable is not set or is set to 0.

By default, the ACR feature tries the connection to a database repeatedly for
up to 10 minutes. It is, however, possible to configure the exact retry behavior
using one or both of these two registry variables:

– DB2_MAX_CLIENT_CONNRETRIES
This registry variable specifies the maximum number of connection tries
attempted by the ACR. If this registry variable is not set, but the
DB2_CONNRETRIES_INTERVAL is set, the default value is 10.
382 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

– DB2_CONNRETRIES_INTERVAL
This registry variable specifies the sleep time between consecutive
connection tries, in number of seconds. If this variable is not set, but
DB2_MAX_CLIENT_CONNRETRIES is set, the default value of
DB2_CONNRETRIES_INTERVAL is 30 seconds.

If DB2_MAX_CLIENT_CONNRETRIES or DB2_CONNRETRIES_INTERVAL is not set, the
ACR feature reverts to its default behavior of trying the connection repeatedly
for up to 10 minutes.

ACR tries to connect to both original and alternate servers in a set of trials. In
one set of trials, the client connects four times as follows:

– Two times for the original server
– Two times for the alternate server

Client reroute waits for DB2_CONNRETRIES_INTERVAL after one set of trials, then
repeats the trial process for DB2_MAX_CLIENT_CONNRETRIES. After the trial
reaches DB2_MAX_CLIENT_CONNRETRIES, it waits for
DB2_CONNRETRIES_INTERVAL. Then, ACR fails with SQL error code -30081.

For example, assume that the following registry variables are set as follows:

– DB2_MAX_CLIENT_CONNRETRIES=5
– DB2_CONNRETRIES_INTERVAL=3
– DB2TCP_CLIENT_CONTIMEOUT=10

ACR takes {(10×4)+ 3} × 5 =215 seconds to give up and returns SQL error
code -30081.

For CLI/ODBC, OLE DB, and ADO.NET applications, you can set a
connection timeout value to specify the number of seconds that the client
application waits for a reply when it tries to establish a connection to a server
before it terminates the connection attempt and generating a
communication timeout.

Type 4 connectivity: Users of Type 4 connectivity with IBM Data Server
Driver for JDBC and SQLJ should use the following two DataSource
properties to configure the ACR:

maxRetriesForClientReroute: Use this property to limit the number of tries
if the primary connection to the server fails. This property is used only if the
retryIntervalClientReroute property is also set.

retryIntervalForClientReroute: Use this property to specify the amount
of time (in seconds) to sleep before it tries again. This property is only used
if the maxRetriesForClientReroute property is also set.
 Chapter 10. Automatic client reroute 383

If ACR is activated, you must set the connection timeout value to a value that
is equal to or greater than the maximum time it takes to connect to the server.
Otherwise, the connection might time out and be rerouted to the alternate
server by ACR. For example, if on a normal day it takes about 10 seconds to
connect to the server, and on a busy day it takes about 20 seconds, the
connection timeout value should be set to at least 20 seconds.

In the db2cli.ini file, you can set the ConnectTimeout CLI/ODBC
configuration keyword to specify the time in seconds to wait for a reply when it
tries to establish a connection to a server before it terminates the attempt and
generating a communication timeout. By default, the client waits indefinitely
for a reply from the server when it tries to establish a connection.

If ConnectTimeout is set and ACR is activated, a connection is attempted only
once to the original server and once to the alternate server. Because the
ConnectTimeout value is used when you attempt to connect to each server,
the maximum waiting time is approximately double the specified value for
ConnectTimeout. If neither server can be reached within the time limit that is
specified by the keyword, you receive an error message, as shown in
Example 10-2.

Example 10-2 Communication error message

SQL30081N A communication error has been detected. Communication
protocol being used: "TCP/IP". Communication API being used:
"SOCKETS". Location where the error was detected: "<ip
address>".Communication function detecting the error: "<failing
function>". Protocol specific error code(s): "<error code>", "*",
"*". SQLSTATE=08001

When you make DB2 database connections through the DB2.NET Provider,
you can set the value of the ConnectTimeout property of DB2Connection
when you pass the ConnectionString, as shown in Example 10-3.

Example 10-3 Set ConnectionString for DB2 .NET Provider

String connectString =
"Server=srv:5000;Database=test;UID=adm;PWD=abd;Connect_Timeout=30";
DB2Connection conn = new DB2Connection(connectString);
conn.Open();

In this example, if the connection attempt takes more than 30 seconds, the
connection attempt is terminated. The setting of ConnectionString has higher
priority than the registry variables or db2cli.ini setting.
384 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Similarly, for OLE .NET Data Provider and ODBC .NET Data Provider, you
can also set a ConnectTimeout property for a ConnectionString
(Example 10-4).

Example 10-4 Set ConnectionString for ODBC .NET Data Provider

OleDbConnection con = new
OleDbConnection("Provider=IBMDADB2.DB2;Data
Source=TEST;ConnectTimeout=15");

OdbcConnection con = new
OdbcConnection("DSN=test;ConnectTimeout=15");

The setting of ConnectionString has a higher priority than the settings in the
registry variables or in the db2cli.ini file.

� Using the same cluster manager

The third option for fast failover is to set up an HADR pair where the primary
and standby databases are serviced by the same cluster manager. For more
information about this topic, see 10.4.3, “ACR with a HADR database and
PowerHA” on page 390. In that example, we define a service IP address for
the connection from DB2 clients, and take it over when the primary fails. We
use the service IP address for both “catalog tcpip node” executed on the
client and “update alternate server” executed on the server. This method is
the fastest but requires an HA cluster configuration.

10.3 ACR limitations

There are some limitations when you use the ACR feature:

� The DB2 server that is installed on the alternate host server must be the
same version (but could have a higher or lower fix pack) when compared to
the DB2 version installed on the original host server.

� If the connection is re-established to the alternate server, any new connection
to the same database alias is connected to the alternate server. If you want
any new connection to be established to the original location in case the
problem on the original location is fixed, there are three methods to achieve it:

– You must take the alternate server offline and allow the connections to fail
back over to the original server. This method requires that the original
server be cataloged by running UPDATE ALTERNATE SERVER so that it is set
to be the alternate location as the alternate server.

– You could catalog a new database alias to be used by the
new connections.
 Chapter 10. Automatic client reroute 385

– You could uncatalog the database entry and recatalog it again.

� The alternate server information is always kept in memory. If you do not have
the authority to update the database directory (or because it is a read-only
database directory), other applications are not able to determine and use the
alternate server, because the memory is not shared among applications.

� The client is unable to re-establish the database connection if the alternate
location has a different authentication type than the original location. The
same authentication is applied to all alternate locations.

� When there is a communication failure, all session resources such as global
temporary tables, identity, sequences, cursors, server options (SET SERVER
OPTION) for federated processing and special registers are all lost. The
application is responsible for re-establishing the session resources to
continue processing the work. You do not have to run any of the special
register statements after the connection is re-established, because DB2
replays the special register statements that are issued before the
communication error.

However, some of the special registers are not replayed. They are:

– SET ENCRYPTPW
– SET EVENT MONITOR STATE
– SET SESSION AUTHORIZATION
– SET TRANSFORM GROUP

� Do not run high availability disaster recovery (HADR) commands (START
HADR, STOP HADR, or TAKEOVER HADR) on client reroute-enabled database
aliases. HADR commands are implemented to identify the target database
using database aliases. If the target database has an alternate database that
is defined, it is difficult for HADR commands to determine the database on
which the command is actually operating. A client might need to connect
using a client reroute-enabled alias, but HADR commands must be applied
on a specific database. To accommodate this situation, you can define
aliases specific to the primary and standby databases and run HADR
commands only on those aliases.

� In a HADR multiple standby setup, you must select one standby database
(likely the principal standby) as the alternate server of the primary, because
each database server can have only one alternate server defined.

SQL statements: If the client is using CLI, IBM Data Server Driver for
JDBC Type 2 or Type 4, and SQLJ drivers, after the connection is
re-established, for those SQL statements that are prepared against the
original server, they are implicitly prepared again with the new server.
However, for embedded SQL routines (for example, SQC or SQX
applications), they are not prepared again.
386 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

10.4 ACR configuration examples

ACR is activated by updating the alternate server for the database on the DB2
server. Use the DB2 LIST DATABASE DIRECTORY command to confirm the alternate
server (Example 10-5).

Example 10-5 Check the alternate server setting

db2 list db directory
 System Database Directory
 Number of entries in the directory = 1
 Database 1 entry:
 Database alias = SAMPLE
 Database name = SAMPLE
 Local database directory = /home/hadrinst/dbdir
 Database release level = a.00
 Comment =
 Directory entry type = Indirect
 Catalog database partition number = 0
 Alternate server hostname = 9.43.86.111
 Alternate server port number = 50030

The client applications receive SQLCode -30108 to indicate that the connection
is re-established. The transaction that is executing when the communication
failure occurs is in an unknown state. The client application must be designed so
that it can ignore this error and proceed to the next transaction, or it could try this
transaction after it confirms that it did not succeed.

Let us see how ACR works in the following cases:

� ACR with a non-HADR database
� ACR with a HADR database
� ACR with a HADR database and PowerHA

10.4.1 ACR with a non-HADR database

In this example, we use two DB2 host systems, KANAGA and ATLANTIC. At
KANAGA, the SAMPLE database is created. Furthermore, the SAMPLE
database is also created at the alternate server ATLANTIC with port
number 50030.

At the client machine, the SAMPLE database is cataloged at the KANAGA node.
The KANAGA node references the KANAGA host name and port 50030.
 Chapter 10. Automatic client reroute 387

To activate ACR, you must update the alternate server for SAMPLE database at
the KANAGA server as follows:

db2 update alternate server for database sample using hostname atlantic
port 50030

Without having the ACR feature set up, if there is a communication error when it
runs a transaction, the application receives an SQL error code -30081. With the
ACR feature set up, DB2 tries to establish the connection to the KANAGA host
again. If it is still not working, DB2 tries the alternate server location (the
ATLANTIC host with port 50030). Assuming that there is no communication error
on the connection to the alternate server location, the application can then
continue to run subsequent statements or resubmit the transaction if it failed.
Because we do not have HADR in this case, we must consider how to keep the
two databases in sync and the standby to be online when the primary is down.

From the client machine, if we connect to the SAMPLE database and run a
SELECT query, as in Example 10-6, we see that the queries are run
at KANAGA.

Example 10-6 Run queries at the primary DB2 system

$db2 select id from staff fetch first 1 row only
ID

 10

 1 record(s) selected.

$ db2 "select substr(host_name,1,8) from table(db_partitions()) as t”
1

kanaga

 1 record(s) selected.

If there is a communication error while you run the same query to select one row
from the STAFF table, the ACR function routes the query to the alternate server
(Example 10-7).

Example 10-7 Connection is rerouted

$db2 select id from staff fetch first 1 row only
SQL30108N A connection failed but has been reestablished.
The hostname or IP address is
“192.168.1.20” and the service name or port number
is “50030”. Special registers may or may not be reattempted
388 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

(Reason code = “1”). SQLSTATE=08506

$db2 select id from staff fetch first 1 row only
ID

 10

 1 record(s) selected.

$ db2 "select substr(host_name,1,8) from table (db_partitions()) as t"
1

atlantic

1 record(s) selected.

10.4.2 ACR with a HADR database

In this example, we set up a HADR configuration between KANAGA and
ATLANTIC for the SAMPLE database. At KANAGA, a primary database named
SAMPLE is created. A standby HADR database is also created at the ATLANTIC
host with port 50030.

At the client machine, the SAMPLE database is cataloged at the KANAGA node.
The KANAGA node references the KANAGA host name and port 50030.

To activate ACR, you must update the alternate server for database SAMPLE at
KANAGA by running the following command:

db2 update alternate server for database sample using hostname atlantic
port 50030

To enable an alternate server for the standby server at ATLANTIC, which can fail
back to primary server at KANAGA port 50030, which can be reintegrated into
the HADR pair, you must run the following command on host ATLANTIC:

db2 update alternate server for database sample using hostname kanaga
port 50030

Without having the ACR feature set up, if there is a communication error, the
application receives SQL error code -30081. When the primary database server
fails, applications receive SQL error code -30081 even if HADR successfully
brings up the standby server.
 Chapter 10. Automatic client reroute 389

If the ACR feature is set up, DB2 tries to establish the connection to host
KANAGA again. If it is still not working, DB2 tries the alternate server location
(host ATLANTIC with port 50030). Assuming that there is no communication
error on the connection to the alternate server location, the application can then
continue to run subsequent statements or try only the failed transactions. The
alternate server location is where the HADR standby is located. For client reroute
to succeed, HADR must successfully start the standby server as the primary.
This process must be initiated through the HADR takeover command either
manually or by automating this takeover through some other HA software, such
as IBM PowerHA SystemMirror for AIX.

10.4.3 ACR with a HADR database and PowerHA

In this scenario, we set up an HADR pair on KANAGA and ATLANTIC where the
primary and standby databases are serviced by the same cluster manager.
HADR is established between KANAGA and ATLANTIC for database SAMPLE.
At the server KANAGA, the primary database SAMPLE is created. A standby
HADR database is also created at host ATLANTIC with port 50030.

IBM PowerHA SystemMirror for AIX (PowerHA) detects when the active node is
down and do the IP takeover and run the HADR takeover command to make the
standby the primary server. In this case, PowerHA service IP address is
configured as 9.43.86.111.

To activate ACR, you must update the alternate server for database SAMPLE at
KANAGA using the service IP as the host name by running the
following command:

db2 update alternate server for database sample using hostname
9.43.86.111 port 50030

To enable an alternate server for the standby server ATLANTIC, which can fail
back to primary server at KANAGA port 50030, you must run the following
command on host ATLANTIC. Again, the service IP is used as the host name.

db2 update alternate server for database sample using hostname
9.43.86.111 port 50030

After there is a failback to the old primary server, the old primary server
(KANAGA) should be reintegrated into the HADR pair.

At the client machine, the database SAMPLE is cataloged at service IP address
9.43.86.111 at port 50030.
390 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

In this HADR environment with PowerHA, the service IP address (9.43.86.111)
is used as the alternate server on both the primary and the standby servers. The
service IP address (9.43.86.111) is also used as the host name when you
catalog the database SAMPLE at the client. If the primary database server at
KANAGA goes down, DB2 keeps trying to establish the connection to host
service IP address 9.43.86.111.

Initially, the service IP owner is KANAGA. When the PowerHA detects that the
primary node KANAGA is down, it performs takeover and the standby node
ATLANTIC owns the resource. DB2 continues trying to connect to the service IP
at the alternate server location (host 9.43.86.111 with port 50030). Assuming
that PowerHA completes the IP takeover and moves the resource group to
ATLANTIC and there is no communication error on the connection to the
alternate server location, the application can then continue to run subsequent
statements or try the failed transactions.

In the HADR environment with PowerHA, we could also configure the alternate
servers, as another option, similar to the process listed in 10.4.2, “ACR with a
HADR database” on page 389.

At the client machine, catalog the database SAMPLE at node KANAGA. Node
KANAGA references the host name KANAGA and port 50030.

At host KANAGA, which is the primary HADR database, the alternate server is
specified using the host name instead of the service IP:

db2 update alternate server for database sample using hostname atlantic
port 50030

At host ATLANTIC, which is the standby HADR server, the alternate server name
is also specified using the host name instead of the service IP:

db2 update alternate server for database sample using hostname kanaga
port 50030

Using the service IP address as the alternate server configuration is faster
because PowerHA detects that the node is down and does an IP failover. When
ACR detects a communication failure, it first tries to connect to the original
server. There is a good chance that the PowerHA IP takeover and resource
group transition succeeded, and DB2 could get a successful connection on the
original server address (service IP address 9.43.86.111), which is now
transitioned to host ATLANTIC.
 Chapter 10. Automatic client reroute 391

PowerHA can make it all so seamless that sometimes when the client machine
cataloged the database at a node using the Service IP address, it is not clear
which host machine is the primary server. To discover the primary database
server host name, run the following query:

db2 select substr(host_name,1,8) from table (db_partitions()) as t

10.5 Application programming to handle ACR

In this section, we show how to handle the ACR in application programming by
using a Java application code sample.

10.5.1 ACR support for Java applications

The IBM Data Server Driver for JDBC and SQLJ supports client reroute for
connections that use the javax.sql.DataSource,
javax.sql.ConnectionPoolDataSource, javax.sql.XADataSource, or
java.sql.DriverManager interface. The IBM Data Server Driver for JDBC and
SQLJ supports two types of connectivity, Type 2 and Type 4. Both connectivity
types support client reroute.

Client reroute for a Java application that is connected to a DB2 server operates
in the following way:

� The IBM Data Server Driver for JDBC and SQLJ obtains primary and
alternate server information. For the first connection:

– If the clientRerouteAlternateServerName and
clientRerouteAlternatePortNumber properties are set on the
DriverManager interface, the IBM Data Server Driver for JDBC and SQLJ
loads those values into memory as the alternate server values, along with
the primary server values serverName and portNumber.

– If the clientRerouteAlternateServerName and
clientRerouteAlternatePortNumber properties are not set, and a JNDI
store is configured by setting the property
clientRerouteServerListJNDIName on the DB2BaseDataSource, the IBM
Data Server Driver for JDBC and SQLJ loads the primary and alternate
server information from the JNDI store into memory.
392 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

– If the DriverManager and DataSource properties are not set for the
alternate servers, and JNDI is not configured, the IBM Data Server Driver
for JDBC and SQLJ checks the DNS tables for primary and alternate
server information. If DNS information exists, the IBM Data Server Driver
for JDBC and SQLJ loads those values into memory.

– If primary or alternate server information is not available, a connection
cannot be established, and the IBM Data Server Driver for JDBC and
SQLJ throws an exception.

For subsequent connections, the IBM Data Server Driver for JDBC and SQLJ
obtains primary and alternate server values from driver memory.

� The IBM Data Server Driver for JDBC and SQLJ attempts to connect to the
data source using the primary server name and port number. If the
connection to the primary server fails, the client reroute acts as described in
10.1.2, “ACR in action” on page 380.

For more information about ACR support for Java clients, see the
following reference:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.i
bm.db2.luw.apdv.java.doc%2Fsrc%2Ftpc%2Fimjcc_c0056186.html

10.5.2 Implementing ACR on the DataSource interface with JDBC

In the following section, we use the DataSource interface with JDBC and explain
how to set up the javax.sql.DataSource or javax.sql.ConnectionPoolDataSource
interface with ACR.

Domain Name System: In DB2, Domain Name System (DNS) is
supported as a repository of alternate server information. For client reroute
during connections to DB2 for Linux, UNIX, and Windows servers, you can
use DNS instead of the JNDI directory as a repository of alternate
server information.

You can specify multiple IP addresses in a DNS entry. For client reroute,
you can specify two: one for the primary server and one for the secondary
server. If JNDI is not configured, the IBM Data Server Driver for JDBC and
SQLJ uses the DNS addresses to identify the servers for client reroute.
 Chapter 10. Automatic client reroute 393

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.apdv.java.doc%2Fsrc%2Ftpc%2Fimjcc_c0056186.html

Example 10-8 shows an example of how we get a connection using a DataSource
property file. DB2SimpleDataSource is one of the DB2 implementations of the
DataSource interface.

Example 10-8 Obtaining a database connection using a DataSource interface

DB2SimpleDataSource dataSource = new DB2SimpleDataSource();
Properties prop = new Properties();
FileInputStream dsPropFile = null;
try{

dsPropFile = new FileInputStream(DSname);
}
catch (FileNotFoundException fe)
{

System.out.println (fe.getMessage());
throw fe;

}
prop.load(dsPropFile);
dataSource.setServerName(prop.getProperty("serverName"));
String portNum = prop.getProperty("portNumber");
int portNo = (new Integer(portNum)).intValue();
dataSource.setPortNumber(portNo);
dataSource.setDatabaseName(prop.getProperty("databaseName"));
dataSource.setUser(prop.getProperty("userName"));
dataSource.setPassword (prop.getProperty("password"));
Connection con=dataSource.getConnection();

By using the javax.sql.DataSource interface, alternate server parameters can
be picked up by the Java application and kept in non-volatile storage on the client
machine. The storage can be done by using the JNDI API. If, for example, a local
file system is specified as the non-volatile storage, JNDI creates a .bindings file,
which contains the required alternate server information.

After the current JVM is shut down, the information then persists in that file until a
new JVM is created. The new JVM attempts to connect to the server. If the
alternate server information is updated, it is updated on the client machine
without requiring your intervention. If the server is missing, the .binding file is
read and a new connection attempt is made at the location of the alternate
server. You can use LDAP to provide non-volatile storage for the alternate server
information. You should not use volatile storage, as a client machine failure could
result in the loss of alternate server data that is stored in memory.
394 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

To register the alternate server with JNDI and make it persistent, complete the
following steps:

1. Create an instance of DB2ClientRerouteServerList, and bind that instance to
the JNDI registry. DB2ClientRerouteServerList is a serializable bean with
four properties:

– alternateServerName
– alternatePortNumber
– primaryServerName
– primaryPortNumber

Getter and setter methods for accessing these properties are provided.

2. Assign the JNDI name of the DB2ClientRerouteServerList object to
DataSource property client RerouteServerListJNDIName.

Example 10-9 shows the code sample of registering an alternate server
with JNDI.

Example 10-9 Registering an alternate server with JNDI

// Create a starting context for naming operations
InitialContext registry = new InitialContext();

// Create a DB2ClientRerouteServerList object
DB2ClientRerouteServerList address = new DB2ClientRerouteServerList();

// Set the port number and server name for the primary server
address.setPrimaryPortNumber(50030);
address.setPrimaryServerName("KANAGA.itso.ibm.com");

// Set the port number and server name for the alternate server
int[] port = {50030};
String[] server = {"ATLANTIC.itso.ibm.com"};
address.setAlternatePortNumber(port);
address.setAlternateServerName(server);
registry.rebind("serverList", address);

// Assign the JNDI name for the DB2ClientRerouteServerList object
datasource.setClientRerouteServerListJNDIName("serverList");

Here is how the IBM Data Server Driver for JDBC and SQLJ makes
DB2ClientRerouteServerList persistent:

1. After the database administrator specifies the alternate server location on a
particular database at the server instance, the primary and alternate server
locations are returned to the client at connect time.
 Chapter 10. Automatic client reroute 395

2. The IBM Data Server Driver for JDBC and SQLJ creates an instance of a
referenceable object named DB2ClientRerouteServerList and stores that
instance in its transient memory. If communication is lost, the IBM Data
Server Driver for JDBC and SQLJ tries to re-establish the connection using
the server information that is returned from the server. The
clientRerouteServerListJNDIName DataSource property provides more client
reroute support at the disposal of the client.

The clientRerouteServerListJNDIName has two functions:

– Allows alternate server information to persist across JVMs.

– Provides an alternate server location in case the first connection to the
database server fails.

3. The clientRerouteServerListJNDIName identifies a JNDI reference to a
DB2ClientRerouteServerList instance in a JNDI repository for alternate
server information. After a successful connection to the primary server, the
alternate server information that is provided by
clientRerouteServerListJNDIName is overwritten by the information from
the server.

4. The IBM Data Server Driver for JDBC and SQLJ attempts to propagate
updated information to the JNDI store after a failover if the
clientRerouteServerListJNDIName property is defined. If
clientRerouteServerListJNDIName is specified, the primary server
information that is specified in DB2ClientRerouteServerList is used for
connection. If a primary server is not specified, serverName information that is
specified on the DataSource is used.

5. A newly established failover connection is configured with the original
DataSource properties, except for the server name and port number. In
addition, any DB2 special registers that were modified during the original
connection are re-established in the failover connection by IBM Data Server
Driver for JDBC and SQLJ.

For more information about how to register alternate server with JNDI, see:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.i
bm.db2.luw.apdv.java.doc%2Fsrc%2Ftpc%2Fimjcc_c0056193.html

10.5.3 ACR exception handling in Java applications

After a connection is re-established using ACR, the IBM Data Server Driver for
JDBC and SQLJ throws a java.sql.SQLException to the application with
SQLCODE -4498, to indicate to the application that the connection has been
automatically re-established to the alternate server.
396 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.apdv.java.doc%2Fsrc%2Ftpc%2Fimjcc_c0056193.html

All the work that occurred within the current transaction is rolled back. Thus, in
the application, you must check the reason code that is returned with the error
and run all SQL operations that occurred during the previous transaction.

Example 10-10 shows that the Java application code that is handling the SQL
exception -4498.

Example 10-10 Handing ACR exception in Java

// In retry logic you don't have to retry connection or create
statement or preparestatement again

Connection con = DriverManager.getConnection(url, "USER", "PSWD");
Statement stmt = con.createStatement();
pstmt = con.prepareStatement("SELECT NAME FROM STAFF WHERE ID = ?");

// the statements above do not have to re-tried when we get client
reroute exception

do { // while loop start
try {
// transcation logic
pstmt.setInt(1,10);
int rowsUpdated = stmt.executeUpdate(
 "UPDATE employee SET firstnme = 'SHILI' WHERE empno = '10'");
con.commit();
}catch(SQLException se) { //deal with client reroute exception
 int errorcode = se.getErrorCode();
 System.out.println("MYSQLException: " + se);

 System.out.println("MYSQLCode: " + errorcode);
 if(con != null){

 try{
 con.rollback();

 }catch(Exception e)
 { e.printStackTrace(); }

} //endif
 if((errorcode == -30108) || (errorcode == -4498)){

 System.out.println("connection is re-established, re-executing
the failed transaction."); retry = true
} finally { // close resources}
} //end catch
} while(retry)
 Chapter 10. Automatic client reroute 397

Failover for ACR: Failover for ACR can also be seamless in DB2. In this
case, the SQLException with error code -4498 is suppressed so that the IBM
Data Server Driver for JDBC and SQLJ can indicate that a failed connection
is re-established.

The following conditions must be satisfied for seamless failover to occur:

� The enableSeamlessFailover property is set to DB2BaseDataSource YES.

� The connection is not in a transaction. The failure must occur when the first
SQL statement in the transaction is run.

� All global session data is closed or dropped.

� The application is not a stored procedure.

� There are no open and held cursors.

� Autocommit is not enabled. Seamless failover can occur when autocommit
is enabled. However, the following situation can cause problems.

Suppose that SQL work is successfully run and committed at the data
server, but the connection or server goes down before acknowledgment of
the commit operation is sent back to the client. When the client
re-establishes the connection, it replays the previously committed SQL
statement. The result is that the SQL statement is run twice. To avoid this
situation, turn autocommit off when you enable seamless failover.
398 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Chapter 11. HADR configuration
parameters and registry
variables

In this chapter, we describe the DB2 configuration parameters and registry
variables that affect HADR. We also describe the important factors to consider
when you implement a HADR solution to obtain optimum HADR performance.

This chapter covers the following topics:

� DB2 HADR configuration parameters
� DB2 HADR registry variables
� Considerations

11
© Copyright IBM Corp. 2007, 2012. All rights reserved. 399

11.1 DB2 HADR configuration parameters

Here we explore the relevant database manager configuration parameters
(dbm cfg parm) and database configuration parameters (db cfg parm) that have
some appreciable impact on HADR.

In most cases, it is not necessary to change these parameters manually after you
set up HADR. However, it is always useful to know what to change and why, if an
architectural requirement is changed later.

We do not provide specific performance recommendations in this section,
because each environment requires tuning to match its own unique
characteristics. The information that is provided here, in the DB2 manual pages,
and other references that are listed, are enough to give you a good idea about
which settings can meet your requirements.

11.1.1 Basic configuration parameters

Details about the configuration parameters can be found at:

http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2
.luw.admin.ha.doc/doc/c0011761.html

Configuration parameters
The following parameters are available:

� AUTORESTART

Consider setting this db cfg parm to OFF when you use automatic client
reroute (ACR) so that a broken primary server does not come back online and
restart in HADR primary role, causing a split-brain scenario.

In a non-HADR environment, leave AUTORESTART set to ON, as the database
automatically activates when the instance is started and the first application
connection attempt is made. The database attempts log/crash recovery as
required for any inflight/indoubt transactions that exist at the time the
database is deactivated.

When AUTORESTART is left OFF, any connection attempts receive an
SQL1015N message.

� LOGINDEXBUILD

This db cfg parm should be set to ON so that index creation, recreation, or
reorganization on the primary are logged and replayed on the
standby databases.
400 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.admin.ha.doc/doc/c0011761.html

In some cases, the replication of index activity might not be required, for
example:

a. A large but seldom accessed index.

b. Indexes on temporarily used tables, such as staging tables.

c. Where active log space is not enough to support logging of index builds.

The LOG INDEX build table attribute can be used to override the database
level setting of LOGINDEXBUILD on individual tables.

� LOGARCHMETHn

Circular logging is not supported.

LOGARCHMETHn (1,2) specifies the destination for the primary and mirror
archive logs. This destination can be a disk, IBM Tivoli Storage Manager,
userexit, or a vendor supplied destination driver. Having a value here means
that after an active log is closed by DB2 (no more active transactions refer to
it), it is moved out of the active log directory and sent to the specified
target/destination.

The LOGRETAIN parameter is replaced by LOGARCHMETH1. For more information,
see the information Center at:

http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.
db2.luw.wn.doc/doc/i0058741.html

� HADR_DB_ROLE

This db cfg parm is configurable indirectly through HADR commands, such
as STOP, START, and TAKEOVER HADR. The possible values are:

– STANDARD

The database is not in a HADR role and can be processed normally.

– PRIMARY

The database is the HADR primary, and all client interactions with the
HADR pair occur here.

– STANDBY

The database is the HADR standby, and any client interaction attempts
receive an SQL1776N message. Only the DB2 log replay engine is allowed
to run against this database. You can run the following command against
a HADR standby database to see the log replay application:

db2 list applications all show detail
 Chapter 11. HADR configuration parameters and registry variables 401

http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.wn.doc/doc/i0058741.html
http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.wn.doc/doc/i0058741.html

� HADR_LOCAL_HOST

This db cfg parm refers to the host name or IP address for the current server.
The reason for using a separate host field for HADR is to support the usage of
an HADR-specific network card, which is addressed by its own IP address or
host name, which is different from the “usual” name of the host.

� HADR_LOCAL_SVC

Logically coupled with the HADR_LOCAL_HOST parameter, this db cfg parm
specifies the port number or service name that is used for the local HADR
component of the HADR database. This parameter is separate from the
port/service assigned to a DB2 Instance. The HADR service/port number is
specific to each HADR database.

� HADR_PEER_WINDOW

When you set HADR_PEER_WINDOW to a non-zero time value, the HADR primary
and standby database pair continues to behave as though they are in a Peer
state, for the configured amount of time, if the primary database loses
connection to the standby database. This parameter ensures
data consistency.

� HADR_REMOTE_HOST

This db cfg parm specifies the host name or IP address of the remote server
for the HADR paired databases.

� HADR_REMOTE_INST

This db cfg parm specifies the DB2 Instance name on the remote server for
the HADR paired databases. There is no equivalent db cfg parm value for the
local server; it can be derived from the current instance environment variable.

� HADR_REMOTE_SVC

Combined with HADR_REMOTE_HOST and HADR_REMOTE_INST, this db cfg parm
specifies the port number or service name that is used by the HADR
component for the HADR database on the remote server. As with
HADR_LOCAL_SVC, this value is specific to the database, and any pair of HADR
databases must have two different TCP/IP port numbers.

� HADR_SYNCMODE

This db cfg parm is important. The setting must match on both servers in the
HADR pair. The following values are possible:

– SYNC

In this mode, log writes are successful only when logs are written to log
files on the primary database and when the primary database receives
acknowledgement from the standby database that the logs are written to
log files on the standby database. The log data is stored on both servers.
402 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

– NEARSYNC

In this mode, log writes are successful only when the log records are
written to the log files on the primary database and when the primary
database receives acknowledgement from the standby system that the
logs are written to main memory on the standby system. Loss of data
occurs only if both sites fail simultaneously and if the target site is not
transferred to nonvolatile storage with all of the log data that it received.

– ASYNC

In this mode, log writes are considered successful only when the log
records are written to the log files on the primary database and are
delivered to the TCP layer of the primary system’s host machine. Because
the primary system does not wait for acknowledgement from the standby
system, transactions might be considered committed when they are still on
their way to the standby.

– SUPERASYNC

In this mode, log writes are considered successful when the log records
are written to the log files on the primary database. Because the primary
database does not wait for log send to the standby database, transactions
are considered committed regardless of the state of the replication of the
transaction. Because the transaction commit operations on the primary
are not affected by the relative slowness of the HADR network or the
standby server, the log gap between the primary and standby
might increase.

� HADR_TIMEOUT

This db cfg parm specifies the time in seconds that the DB2 HADR EDU waits for
any response from its HADR partner before it considers communication to
have failed and closing the connection. If HADR was in a Peer state before it
closes the connection, the primary would no longer follow Peer state
semantics when the HADR connection is closed. The response could be
either heartbeat or acknowledgement (ACK) signals. There is no timeout for
an ACK signal wait, and ACK signals are not even used for ASYNC mode.
This value must also match on both sides of the HADR pair.

� HADR_PEER_WINDOW

This db cfg parm specifies how long the primary database suspends the
update of transactions after the HADR connect state changes to disconnect.
This parameter value must be the same between the primary and standby
databases. If HADR_SYNCMODE is set to ASYNC or SUPERASYNC, or
HADR_PEER_WINDOW is set to 0, DB2 ignores this parameter. When you close
the HADR connection by running deactivate database, the HADR state is
changed to disconnected immediately.
 Chapter 11. HADR configuration parameters and registry variables 403

� INDEXREC

Index recreation time is both a dbm and db cfg parm that specifies when, if
necessary, DB2 attempts to rebuild invalid indexes, and specifically for
HADR, whether this action occurs during HADR log replay on the standby.
The dbm cfg parm is meant to be used as the default for all databases for that
instance. The db cfg parm, when not set to SYSTEM, overrides that value.

Possible values are:

– SYSTEM

Applies to db cfg only; accept the value for INDEXREC in the dbm cfg.

– ACCESS

Rebuilds an invalid index when the index is first accessed, and then
rebuilds on HADR standby during log replay.

– ACCESS_NO_REDO

Rebuilds an invalid index when an index is first accessed, but leaves the
invalid index on the HADR standby (there is no rebuild during log replay
on the HADR standby). The index is rebuilt after a HADR takeover and the
first access of the underlying table.

– RESTART

This value is the value. A rebuild of an invalid index occurs after a RESTART
DATABASE or HADR takeover on the normal or primary database, and on
the standby database during log replay. The AUTORESTART db cfg parm
effectively means that RESTART DATABASE is implicitly run at the time an
application attempts to connect to the database. Indexes are rebuilt
asynchronously (no wait) at takeover time, and synchronously (wait) at
restart time.

– RESTART_NO_REDO

A rebuild of an invalid index occurs after a RESTART DATABASE on the
normal or primary database, but not on the standby during HADR replay.
A rebuild occurs only after HADR takeover.

� SELF_TUNING_MEM

This parameter determines whether the memory tuner dynamically distributes
available memory resources as required between memory consumers that
are enabled for self-tuning. The memory consumers that can be enabled for
self-tuning include buffer pools, package cache, lock list, sort heap, and
database shared memory, using this db cfg parm. Self Tuning Memory, even
when set up on both servers, can be active only on a HADR
primary database.
404 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

� LOGFILSIZ

This db cfg parm, which specifies the size of active logs, is taken from the
primary and used by the standby so that the size of active log files on both
servers match (the standby db cfg parm value of LOGFILSZ is ignored). This
value is kept even after a HADR role switch or takeover until the database is
restarted, when the local LOGFILSZ value is used for the active log file size.

11.1.2 Automatic client reroute configuration parameters

Strictly speaking, this subset of DB2 configuration parameters is not part of
HADR, or even a configuration parameter, but it is used by ACR.

The mechanism of ACR, and how it is a separate entity from HADR, is explained
in Chapter 10, “Automatic client reroute” on page 377.

11.2 DB2 HADR registry variables

In this section, we examine the DB2 registry and operating system shell
environment variables that pertain to HADR.

� DB2_HADR_BUF_SIZE

This registry variable is recognized only while the database is in the standby
role. By default, it is the size of the HADR standby log receive buffer. The
value of this variable is calculated as twice the value of LOGBUFSZ.

The standby replay mechanism retrieves logs directly from the log receive
buffer. If the standby is slow in replaying logs, and the primary keeps sending
more logs to the standby, the log receive buffer eventually become “full”,
preventing the standby from receiving more logs. Saturation of the receive
buffer causes transactions on the primary to be blocked until the receive
buffer has more room to receive log pages.

If the synchronization mode is ASYNC, the network pipeline from the primary to
the standby eventually becomes full and the primary may not send any more
logs. This situation is called congestion. In ASYNC mode, network congestion
and saturation of the standby's receive buffer stall the primary log processing.
Hence, transactions on the primary are blocked until congestion is cleared,
provided the standby can send a heartbeat and the primary can receive the
standby's heartbeat.
 Chapter 11. HADR configuration parameters and registry variables 405

If the synchronization mode is SYNC or NEARSYNC, the primary is likely to be
able to send out one more batch of logs after the standby receive buffer is full.
This batch of logs is buffered in the network pipeline between the primary and
the standby. In SYNC and NEARSYNC modes, although the primary is not likely to
encounter congestion when it sends logs, it still must wait for
acknowledgement messages when the standby buffer is full. Thus, the
primary transaction processing is eventually blocked in all the synchronization
modes when the standby receive buffer is full.

A larger standby receive buffer size (set by the registry variable
DB2_HADR_BUF_SIZE) allows the standby to absorb load peaks, reducing the
chance of slowing the primary down. But if the sustained throughput of the
standby log processing is lower than the primary log creation rate, a larger
buffer can still fill up and the primary is slowed down.

If your primary load is uneven, consider a larger standby receive buffer to
absorb the peaks. Consider that in certain scenarios, both SYNC and NEARSYNC
modes see a benefit from a generous increase of the DB2_HADR_BUF_SIZE
variable, while the DB2 product documentation might give the impression that
only ASYNC mode benefits.

In SUPERASYNC mode, because the transaction commit operations on the
primary database are not affected by the relative slowness of the HADR
network or the standby HADR server, the log gap between the primary
database and the standby database might continue to increase. It is important
to monitor the log gap, as it is an indirect measure of the potential number of
transactions that might be lost should a true disaster occur on the primary
system. In disaster recovery scenarios, any transactions that are committed
during the log gap would not be available to the standby database. Therefore,
monitor the log gap by using the HADR_LOG_GAP monitor element; if the log gap
is not acceptable, investigate the network interruptions or the relative speed
of the standby HADR server and take corrective measures to reduce the
log gap.

Perform basic transactional throughput testing using a larger
DB2_HADR_BUF_SIZE value on each of the three synchronization modes to
determine the best solution for your own environment. NEARSYNC is the default
mode, and in many cases provides a solution that is closest in performance to
not running HADR.

� LOAD_COPY_NO_OVERRIDE

This variable is not specific to HADR. However, it can have either an adverse
or beneficial effect on a HADR database, depending on the value you assign
to it. The variable is ignored on the standby databases, but applied on either a
primary or a standard role database. The parameter has two possible values:
NONRECOVERABLE and COPY YES.
406 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

NONRECOVERABLE (the default) leads to the following behavior. When a db2
load...copy no command is run on a HADR primary database, DB2 converts
the standby to NONRECOVERABLE. The table space is placed in a copy pending
(read only) state, and the HADR standby ceases to match the primary. The
table on the standby is marked bad, and logs from the primary are not applied
there. This state can be corrected by running db2 load...copy yes.

COPY YES: If this registry variable is set to COPY YES (with a valid copy
destination as part of the syntax), the load is converted so that it automatically
is used with log replay on the HADR standby to maintain data integrity. The
load command still must have a valid target that the HADR standby database
can access in order for this scenario to be effective (that is, a shared drive
with matching path, or a mutually accessible Tivoli Storage Manager target).

� DB2LOADREC

This registry variable can be used when the db2 load...copy yes backup
image location on the HADR standby does not match the target location it
was sent to from the HADR primary. This situation can happen when shared
disk relative mapping does not match on both servers, or a method of file
transfer outside DB2 control occurs. Essentially, the value of DB2LOADREC is
set to a plain text file that contains all required media information about the
load copy backup image. The structure and required content of this file is fully
described in the Information Center at:

http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.
db2.luw.admin.dm.doc/doc/c0004595.html

As of DB2 10, there are no operating system shell environment variables that are
used to influence the operation of HADR.

11.3 Considerations

In this section, we point out important things to consider when you implement a
HADR solution. There is no one way to configure HADR; everything depends on
your requirements. If transaction performance is critical, then you might have to
sacrifice HADR takeover time. If there is high logging activity and the network
cannot keep up with the logging, you might have to sacrifice transaction
performance. You must weigh the pros and cons of each of the following factors
on the user requirements when you tune the HADR.
 Chapter 11. HADR configuration parameters and registry variables 407

http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.admin.dm.doc/doc/c0004595.html

11.3.1 DB2 transaction performance

A HADR setup could have a slight impact on the performance of the DB2
transactions. With a stricter log shipping mode, the potential performance impact
is higher. The tuning in a HADR setup is like the usual tuning of DB2 parameters
in a non-HADR environment. There are no specific HADR parameters to be
tuned. Each environment requires tuning to match its own unique characteristics.

Depending on the log shipping mode, the performance of the in-flight
transactions on the primary can be affected when the standby goes down.

The primary database continuously polls the network. If the network or the
standby machine goes down, the primary database detects the condition as soon
as the primary host machine operating system detects the condition. If the
standby database crashes, but the standby machine and the network are still up,
in most cases, the primary machine and the primary database can detect the
failure and close the connection quickly. Closing the connection causes the
primary database to change from a Peer state to a Disconnected state, which
unblocks pending transactions. The HADR state changes from Peer
to disconnected.

If the primary machine is unable to report the standby or network failure in time,
DB2 relies on HADR_TIMEOUT to disconnect. If the primary does not receive a
message from the standby for the number of seconds specified in HADR_TIMEOUT
(the default is 120 seconds) since the last heartbeat, it changes the state
to disconnected.

With the SYNC and NEAR SYNC log shipping modes, a commit statement for
in-flight transactions does not complete until the HADR state is changed to
disconnected. This situation occurs because for SYNC and NEARSYNC modes,
the primary must wait for the acknowledgement. With ASYNC log shipping
mode, in-flight transactions do not suffer from a network disconnection or from
the standby being down, and do not need a commit statement for them complete
immediately. In ASYNC mode, when the primary sends logs, the operating
system network layer might return success, but buffers the data in the network
path, or returns a congestion error.

For ASYNC mode, if the primary keeps sending logs, it eventually causes
congestion. If a send returns congestion, the primary transaction processing is
blocked immediately in ASYNC mode. When there is congestion or the receive
buffer is full, the standby knows that it cannot receive heartbeat from the primary
anymore. It updates its heartbeat receive time and continues to send heartbeat
to the primary so that the standby does not drop the connection after the
HADR_TIMEOUT value is exceeded.
408 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

For SUPERASYNCH mode, log writes are considered successful as soon as the
log records are written to the log files on the primary database. Because the
transaction commit operations on the primary are not affected by the failure of
the standby server or the network, the primary is unaffected by the outage. The
log gap between the primary and standby increases while the problem persists.
The longer the outage, the higher number of transactions that might be lost if a
disaster occurs on the primary system.

On the primary side, because the primary is receiving heartbeat from the
standby, the primary does not drop the connection after it reaches the threshold
for HADR_TIMEOUT. Because the standby can send heartbeat and the primary can
receive the standby's heartbeat, the HADR pair stay connected. In the worst
case, an unresponsive standby or network could cause the primary transactions
to be blocked while the primary can receive heartbeat from the standby.

11.3.2 How to reduce takeover time

You want to keep HADR takeover time to a minimum. By reducing the amount of
transaction rollback after takeover on the standby, you can access the
database sooner.

There is not a significant difference in takeover time between the different log
shipping modes. When a primary fails, forced takeover is usually faster than
unforced. But if the standby detects the failure and is already disconnected,
unforced takeover cannot be issued because the standby is no longer in a
Peer state.

If you know with certainty that the primary failed and wants to failover, issue a
forced takeover on the standby. If the standby has not detected the failure and is
still in a Peer state, you can use unforced takeover. But because the primary is
down, unforced takeover does not receive a response from the primary and
hangs for the HADR_TIMEOUT period. So, if you determine that the primary is down,
you should issue forced takeover directly.

Set LOGINDEXBUILD to ON. If the index changes are logged on the primary,
propagated to the secondary, and applied there, they do not need to be rebuilt in
the case of a takeover (for more information, see 11.3.10, “Index logging” on
page 427).
 Chapter 11. HADR configuration parameters and registry variables 409

11.3.3 Seamless takeover

HADR does not automatically detect a failed primary and issue a takeover; this
process is manual. When you determine that the primary is down, you can run
takeover. But manual takeover might not be acceptable in certain situations. In
that case, you can configure HADR with a clustering software such as IBM Tivoli
System Automation for Multiplatforms (Tivoli SA MP), PowerHA, VCS, or MSCS
to make this takeover seamless. The cluster software detects that the primary is
down and issues a HADR takeover. For more information about implementing
this solution, see Chapter 7, “HADR with clustering software” on page 223.

11.3.4 Performance implications of HADR_TIMEOUT

If one database does not receive a message from the other one at the end of the
HADR_TIMEOUT period, the connection is closed.

Try to avoid setting the HADR_TIMEOUT threshold too high. In the Peer state, if the
standby is not responding, transactions on the primary can hang for the
HADR_TIMEOUT period. If a peer window is enabled (meaning that the
HADR_PEER_WINDOW parameter is set to a non-zero value), each disconnection also
leaves the primary in a disconnected Peer state for the configured peer window
size duration, leaving transactions blocked on the primary.

Setting the HADR_TIMEOUT threshold too low can also impact performance. You
get a false alarm on the connection. Frequent disconnecting and reconnecting
are a waste of resources. HA protection also suffers, as disconnection brings the
primary out of the Peer state. Set it to at least 60 seconds.

11.3.5 Applications with a high logging rate

For applications that have a high logging rate, you must ensure that the network
can transmit that load of data. The standby database should also be powerful
enough to replay the logged operations of the database as fast as they are
generated on the primary. Use identical primary and standby hardware.

DB2 HADR does not currently support compression of the log files before you
send them to the standby. However, depending on the synchronization mode
that you are using, the logging rate on the primary can be reduced to the rate of
the transfer in the network by choosing a more strict form of log shipping mode,
such as SYNC mode. This stricter mode forces the primary to wait for the
standby to acknowledge that it received the log record before it can proceed. The
network bandwidth is the limit of the logging rate.
410 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

In most systems, the logging capability is not driven to its limit. Some systems do
not see much difference among the three synchronization modes, or with the
HADR enabled or disabled. This behavior is usually seen in systems where
logging is not the bottleneck of database performance.

11.3.6 Network considerations

The primary database ships the log records to the standby database server over
the Internet Protocol network when the primary does a log flush. In the primary
database, SQL agent EDUs produce logs and write the logs in to the database
log buffer, whose size is controlled by the database configuration parameter
LOGBUFSZ. The db2loggw EDU consumes the logs by writing them to disk. The
write operation is called log flushing. Each write operation (and the logs written)
is called a flush. For HADR primary databases, each flush is also sent to the
standby database. For each write call, there is a matching send call that delivers
the exact block of log data to the TCP layer.

The logger does not wait for the log buffer to be full to flush it. A transaction
commit generates a flush request. If there is no request, db2loggw still flushes the
log buffer periodically. The size of each log flush is non-deterministic. When
there are multiple client sessions, multiple requests can be combined. The logger
is self tuning. If a flush takes a longer time, when the logger completes the flush,
there are more outstanding requests, and therefore a stronger grouping effect on
commit requests, improving performance by reducing the number of writes.

If there is only one client session, each commit causes a log flush. If the
synchronization mode is SYNC or NEARSYNC and the network is not fast, the
round-trip messaging that is required by the synchronization mode can have a
great impact on performance.

If the primary log buffer is large, each flush is likely to be large too. The send
request to TCP can involve large blocks of data. The TCP layer should be tuned
to handle such requests efficiently.
 Chapter 11. HADR configuration parameters and registry variables 411

For HADR to work efficiently, use a high speed, high capacity network between
the primary and standby database. On such a network, the standby can receive
and acknowledge the logs as quickly as possible. Also, ensure that the
bandwidth of the network link is greater than the bandwidth of the logs that are
generated at peak times. The network is vital to the performance of HADR, so it is
important to tune the network. For better performance in a HADR environment,
the network between both databases should be set up correctly. In terms of AIX
TCP tuning, set these two OS parameters that affect the network performance:

� tcp_recvspace

The tcp_recvspace tunable specifies how many bytes of data the receiving
system can buffer in the kernel on the receiving sockets queue. The
tcp_recvspace tunable is also used by the TCP protocol to set the TCP
window size, which the TCP uses to limit how many bytes of data it sends to
the receiver to ensure that the receiver has enough space to buffer the data.

The tcp_recvspace tunable is a key parameter for TCP performance because
TCP must be able to transmit multiple packets into the network to ensure that
the network pipeline is full. If TCP cannot keep enough packets in the
pipeline, then performance suffers. You can set the tcp_recvspace tunable by
running no -o tcp_recvspace=[value]. You can also set interface-specific
values of tcp_recvspace from the smit chinet menu.

� tcp_sendspace

The tcp_sendspace tunable specifies how many bytes of data the sending
application can buffer in the kernel before the application is blocked on a send
call. The TCP-socket send buffer is used to buffer the application data before
it is sent to the receiver by the TCP protocol. The default size of the send
buffer is specified by the tcp_sendspace tunable value. You should set the
tcp_sendspace tunable value to at least as large as the tcp_recvspace value,
and for higher speed adapters, the tcp_sendspace value should be at least
twice the size of the tcp_recvspace value.

Other TCP parameters that can be tuned include:

� rfc1323

� MTU path discovery

� tcp_nodelayack

� sb_max

� Adapter options, such as checksum offload and TCP Large Send
412 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

For more information about TCP tuning parameters, see:

� http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=
/com.ibm.aix.prftungd/doc/prftungd/tcp_streaming_workload_tuning.htm

� http://pic.dhe.ibm.com/infocenter/aix/v7r1/topic/com.ibm.aix.prftungd/
doc/prftungd/tcp_streaming_workload_tuning.htm

11.3.7 Network performance tips

In this section, we focus on network-related settings. You should consider the
following items:

� Use a dedicated network for all HADR connections.

� Consider using multiple network adapters.

Network delays
Network latency affects transaction performance in SYNC and NEARSYNC
modes. The slowdown in system performance as a result of using SYNC mode
can be larger than the slowdown of the other synchronization modes. In SYNC
mode, the primary database sends log pages to the standby database only after
the log pages are successfully written to the primary database log disk.

To protect the integrity of the system, the primary database waits for an
acknowledgement from the standby before it notifies an application that a
transaction was prepared or committed. The standby database sends the
acknowledgement only after it writes the received log pages to the standby
database disk. The resulting impact is the log write on the standby database plus
round-trip messaging.

In NEARSYNC mode, the primary database writes and sends log pages in
parallel. The primary then waits for an acknowledgement from the standby. The
standby database acknowledges as soon as the log pages are received into its
memory. On a fast network, the impact to the primary database is minimal. The
acknowledgement might have arrived by the time the primary database finishes
local log write.

For ASYNC mode, the log write and send are also in parallel; however, in this
mode, the primary database does not wait for an acknowledgement from the
standby. Therefore, network delay is not an issue. The performance impact is
even smaller with ASYNC mode than with NEARSYNC mode.

For SUPERASYNCH mode, log writes are considered successful as soon as the
log records are written to the log files on the primary database. Again, network
delay is not an issue.
 Chapter 11. HADR configuration parameters and registry variables 413

http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.prftungd/doc/prftungd/tcp_streaming_workload_tuning.htm
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.prftungd/doc/prftungd/tcp_streaming_workload_tuning.htm
http://pic.dhe.ibm.com/infocenter/aix/v7r1/topic/com.ibm.aix.prftungd/doc/prftungd/tcp_streaming_workload_tuning.htm
http://pic.dhe.ibm.com/infocenter/aix/v7r1/topic/com.ibm.aix.prftungd/doc/prftungd/tcp_streaming_workload_tuning.htm
http://pic.dhe.ibm.com/infocenter/aix/v7r1/topic/com.ibm.aix.prftungd/doc/prftungd/tcp_streaming_workload_tuning.htm
http://pic.dhe.ibm.com/infocenter/aix/v7r1/topic/com.ibm.aix.prftungd/doc/prftungd/tcp_streaming_workload_tuning.htm

Network down
The primary database is continuously polling the network. If the network goes
down, the primary database detects the condition as soon as the primary host
machine operating system detects the condition. If the primary machine and the
primary database can detect the failure, it closes the connection quickly. Closing
the connection causes the primary database to change from the Peer state to the
disconnected state, which unblocks pending transactions.

If the primary machine is unable to report a network failure in a timely manner,
DB2 relies on the HADR_TIMEOUT parameter to perform a disconnect. If the primary
does not receive a message from the standby for the time that is specified in the
HADR_TIMEOUT parameter, the primary disconnects. In such a scenario,
transactions on the primary are blocked while the primary waits on the timeout.

In ASYNC mode, when the primary sends the logs, the logs could be buffered in
the network path and delay the blocking of transactions on the primary. But as
the primary keeps sending more logs, it eventually causes congestion and the
transactions are blocked.

When there is congestion, the standby knows that it cannot receive heartbeat
from the primary anymore and updates its heartbeat receive time and continues
to send heartbeat to the primary so that the standby does not drop connection
after the HADR_TIMEOUT threshold is reached. On the primary side, because the
primary is receiving heartbeat from the standby, the primary does not drop the
connection either after the HADR_TIMEOUT threshold is reached. Because the
standby can send heartbeat and the primary can receive the standby's heartbeat,
the HADR pair stay connected. In the worst case, an unresponsive network
causes primary transactions to be blocked until the primary does not receive any
heartbeat or messages from the standby for the time that is specified in
HADR_TIMEOUT. If no heartbeat is received by the primary from the standby until
the HADR_TIMEOUT threshold is reached, the HADR state changes to
disconnected.

When the primary state changes to disconnected, the primary gives up the
transfer of the log records to the standby database. The primary database
continues processing transactions even though it cannot transfer logs to the
standby database. There is a possibility of data loss if you run TAKEOVER BY
FORCE when there is a data gap between the primary database and the standby
database. The primary continues to listen on the HADR TCP/IP port that is
waiting for the standby to come online. When the network recovers, the standby
database tries to catch up to the primary until both databases return to the
Peer state.
414 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Figure 11-1 shows what happens when the network is down between the primary
and secondary.

Figure 11-1 Behavior of HADR when the primary cannot transfer logs to the standby

Network congestion
Network congestion can happen when the standby is behind in receiving and
processing log data from the primary. This delay can cause the standby’s log
receive buffer to fill up, preventing the buffer from receiving more log pages. This
situation causes a slowdown on the primary in all modes, including
ASYNC mode.

In SYNC and NEARSYNC modes, if the primary database flushes its log buffer
one more time, the data is likely to be buffered in the network pipeline, which
consists of the primary machine, the network, and the standby database.
Because the standby database does not have free log receive buffer
(DB2_HADR_BUF_SIZE) to receive the data, it cannot acknowledge the data. So the
primary is blocked because it is waiting for the acknowledgement. Congestion is
not likely to occur for SYNC and NEARSYNC modes while this log data is
acknowledged, and no more logs are sent by the blocked primary.

1

HADR STATUS

STANDBY

1. NORMAL STATUS COMMIT returns after log transfer is completed
2. Network Failure Update transaction wait during HADR_TIMEOUT
3. After HADR_TIMEOUT passed Transaction is processed only on primary
4. HADR Network recovery LOG gap is caught up automatically
5. After catch up complete HADR_STATUS turn to PEER

HADR STATUS

HADR STATUS

PRIMARY

HADR N/W

2

COMMIT

1 3

43

4

P E E R

P E E R DISCONNECTED REMOTE CATCH UP P E E R

P E E R REMOTE CATCH UP PENDING REMOTE CATCH UP P E E R

Log is not received

HADR_TIMEOUT

N/W FAILURE

LOG

N/W RECOVER

COMMITCOMMITCOMMIT

2

 Chapter 11. HADR configuration parameters and registry variables 415

In ASYNC mode, the primary continue to send logs until the network pipeline fills
up. The network pipeline consists of the TCP buffers on the primary machine, the
TCP buffers on the standby machine, the network path between the primary and
the standby, and the HADR standby log receive buffer. When the primary cannot
send any more logs, congestion can occur.

In SUPERASYNC mode, log writes are considered successful as soon as the log
records are written to the log files on the primary database. Because the primary
database does not wait for log send to the standby database, network congestion
has no effect on the primary. Slowness of the HADR network can cause the log
gap between the primary and standby to increase.

Large jobs, such as table reorganization, can flood the standby and cause
congestion, because the standby database is replaying log records that take a
long time to replay. If the primary load has sharp peaks, they might be absorbed
by a larger standby buffer.

You can mitigate the congestion problem by tuning the Internet Protocol network
to increase Internet Protocol network buffering and also increase the value of the
DB2_HADR_BUF_SIZE registry variable to increase the log receive buffer on the
standby. But a larger buffer would not help if the primary has a sustained log rate
higher than what the standby can handle. Running snapshot or db2pd reports the
connection status as congested. Congestion is reported by the
hadr_connect_status monitor element.

11.3.8 Avoiding transaction loss in a HADR with HA cluster software

A HADR with an HA cluster software implementation automates the HADR
takeover process. If a network error is detected, the primary database enters the
disconnected state and lets the transactions proceed. This behavior maximizes
the availability of the HADR database. Although the transactions can still be
committed while the database is in a disconnected state, these transactions do
not reach the standby and exist only on the primary database.

If the primary database goes down before the network recovers, the automatic
takeover process starts. Because the primary database is down, the standby
takes over the primary by force. The log gaps are not handled and the log
records that are not transferred to the standby database are lost on the new
primary database.
416 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Figure 11-2 shows the behavior of a HADR database when the primary database
cannot transfer logs to the standby database.

Figure 11-2 HADR behavior when the primary cannot transfer logs to the standby

To avoid data loss, the automated failover should be performed only if the HADR
is in the Peer state when the primary crashes. Before you execute HADR
takeover, ensure that the HADR is in the Peer state, which means that there is
no log gap between databases in SYNC or NSYNC mode. ASYNC mode is not
described here, because this mode does not guarantee the integrity of
databases by its characteristics.

Reducing network errors: To reduce the possibility of network errors, have
duplicate networks for HADR communication.

StandbyPrimary

Network
Error

PEER

DISCONNECTED

WAIT

Transactions proceed
only on primary.

Standby

Network
Error

Primary

TAKEOVER
BY FORCE

Primary
crash

Log
gap

DISCONNECTED

The log
gap is
lost
 Chapter 11. HADR configuration parameters and registry variables 417

By monitoring the HADR status correctly and adding handling logic in an
PowerHA clustered environment, you can ensure that the committed data is not
lost after the standby system takes over the database. Figure 11-3 illustrates the
concept of saving the committed data after the standby takeover.

Figure 11-3 Avoiding data loss in a HADR with HA cluster software

As shown in Figure 11-3, the following steps are completed:

1. Monitor diag.log on the primary database:

You must detect the change of HADR status immediately when it turns into
the disconnected status. The best way to do this task is by monitoring
db2diag.log messages on the primary database.

db2diag.log1. Monitor
db2diag.log

StandbyPrimary

PEER

DISCONNECTED

Primary

TAKEOVER
BY FORCE

DISCONNECTED

2. Send
disconnected

flag

3. Check logic
in takeover script

Standby

NO
418 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Example 11-1 shows a message in db2diag.log when the state changes from
Peer to RemoteCatchupPending, which means that the primary database is
disconnected from the HADR pair and can accept new transactions, leaving
the standby database behind.

Example 11-1 HADR state that is changed from Peer to RemoteCatchupPending

2012-08-04-22.06.01.964755-240 E14817E379 LEVEL: Event
PID : 9634 TID : 47103946516800PROC : db2sysc
INSTANCE: hadrinst NODE : 000
EDUID : 27 EDUNAME: db2hadrp (SAMPLE)
FUNCTION: DB2 UDB, High Availability Disaster Recovery,
hdrSetHdrState, probe:10000
CHANGE : HADR state set to P-RemoteCatchupPending (was P-Peer)

Example 11-2 shows a message in db2diag.log when the state changes from
RemoteCatchupPending to Peer.

Example 11-2 HADR state changed from RemoteCatchupPending to Peer

2012-08-05-22.06.03.304770-240 E23429E378 LEVEL: Event
PID : 9634 TID : 47103946516800PROC : db2sysc
INSTANCE: hadrinst NODE : 000
EDUID : 27 EDUNAME: db2hadrp (SAMPLE)
FUNCTION: DB2 UDB, High Availability Disaster Recovery,
hdrSetHdrState, probe:10000
CHANGE : HADR state set to P-NearlyPeer (was P-RemoteCatchup)

2012-08-05-22.06.03.317330-240 E23808E369 LEVEL: Event
PID : 9634 TID : 47103946516800PROC : db2sysc
INSTANCE: hadrinst NODE : 000
EDUID : 27 EDUNAME: db2hadrp (SAMPLE)
FUNCTION: DB2 UDB, High Availability Disaster Recovery,
hdrSetHdrState, probe:10000
CHANGE : HADR state set to P-Peer (was P-NearlyPeer)
 Chapter 11. HADR configuration parameters and registry variables 419

To keep tracking through db2diag.log, run tail. Example 11-3 shows a
sample script (tail_hadr_status.ksh). When this monitoring script detects
the changes of the HADR state by tracking the messages in db2diag.log, it
writes the state to the file. For example, set “1” when the HADR state is
changed from Peer to non-Peer, and set “0” when the HADR status is
returned from non-Peer to Peer. This state flag file allows the standby system
to know the HADR state when the primary is down.

Example 11-3 tail_hadr_status.ksh

tail -0 -f $DIAGLOG | awk ‘
 /CHANGE \: HADR state set to P-RemoteCatchupPending \(was
P-Peer\)/ {system(“’${WRITE_STATUS}‘ 1”)}
 /CHANGE \: HADR state set to P-Peer \(was P-NearlyPeer\)/
{system("'${WRITE_STATUS}' 0")}

To run this monitoring script at any time, run the script with the nohup option
on the primary node:

#nohup tail_hadr_status.ksh &

We provide a complete HADR monitoring script in Appendix B, “IBM Tivoli
System Automation for Multiplatforms takeover scripts” on page 541.

2. Notify the standby system about the HADR state.

Because the takeover command is run on the standby database, the standby
system must know the HADR state of the primary database to act. This status
flag should be accessible from the standby node even though the primary
node crashed. In our example, the status flag is on the standby node and
updated from the primary node by running a remote command. Especially in
an PowerHA cluster, cl_nodecmd is useful because this command can use
any available network that is defined in the PowerHA cluster, which means
cl_nodecmd can be run over one of the available networks even if a network
interface for HADR is down. PowerHA is configured with multiple network
cards in many cases. For more details, see Chapter 2, “DB2 with IBM Tivoli
System Automation for Multiplatforms” on page 19.
420 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Example 11-4 shows a code snippet of the update flag file script
(write_status.ksh). This script is included in the db2diag.log monitoring
script tail_hadr_status.ksh as a function (write_status.ksh). The
parameter value $1 (0 or 1) is provided by tail_hadr_status.ksh, and
cl_nodecmd writes it in the flag file on the standby node.

Example 11-4 write_status.ksh

.....

usr/es/sbin/cluster/sbin/cl_nodecmd -cspoc ’-n ${REMOTENODE}” “echo
$1 > $STATUS_FLAG”

......

3. Add integrity check logic to the takeover script:

In the takeover script, you must add the logic to check the status flag before
you run TAKEOVER HADR. It should fail over only if the primary database is in the
Peer state before it crashes. If the primary database is not in the Peer state
before the moment it crashes, it does not run takeover automatically and
notifies that user intervention is required only to bring the database online.
You could recover the primary server from the crash, or copy all logs from the
primary node to the standby node, run local catchup, and then takeover on
the standby database.

Figure 11-4 on page 422 shows a summary of the events that occur and the
actions that are taken to prevent data loss:

1. A HADR Network failure occurs.

2. HADR_STATUS turns from Peer to disconnected. The monitoring process
catches the message in db2diag.log on the primary database and sends the
flag file to the standby node.

3. Transactions proceed only on the primary database, and are not transferred
to the standby.

4. The HADR network recovers from the error and log catch up is
automatically run.

5. After the catch up completes, the HADR status returns to a Peer state. The
monitor script catches the message in db2diag.log on the primary database
and sends the flag file to the standby node to notify it that the HADR status is
in the Peer state.
 Chapter 11. HADR configuration parameters and registry variables 421

6. Meanwhile, the flag is set to non-Peer status “1” in event 1 and keeps the
same status until event 5. You do not want to run takeover by force because
there is the possibility of data loss. You can add the logic in the takeover
scripts to check this flag before you run TAKEOVER HADR with the FORCE option.

Figure 11-4 The behavior of the implementation

11.3.9 Avoiding transaction loss by using the peer window

The HADR cluster without the peer window has a small possibility to lose the
updated data. To avoid this issue, adopt the carefully designed architecture that
is described in 11.3.8, “Avoiding transaction loss in a HADR with HA cluster
software” on page 416. Now you can use the peer window to avoid this issue. In
this section, we describe the peer window and show the typical scenarios of
HADR takeover without risking data loss.

The DisconnectedPeer state
The HADR peer window introduces a new HADR state: DisconnectedPeer. If the
HADR peer window is enabled, the HADR state is not changed from the Peer
state to the RemoteCatchPending state directly. Instead, the HADR state is
changed to DisconnectedPeer first. This period is the peer window phase. In this
phase, the primary database does not accept the commit requests. The standby
database can be switched to the primary database without the risk of data loss in
this peer window phase.

STANDBY

PRIMARY

HADR N/W

HADR_TIMEOUT

FLAG: (Peer=0, ! Peer=1)

LOG

1 2 3 4 5

HADR N/W failure HADR N/W receive
REMOTE

CATCH UP

Takeover by force is not executed

1 0

� REMOTE
CATCH UP
PENDING

� Peer

2

2
3

3

422 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Figure 11-5 illustrates what happens during the DisconnectedPeer state:

1. The HADR pair can communicate each other in normal operation.

2. During the peer window phase, all the commit requests are suspended
because the primary database waits for the acknowledgement from the
standby database.

If HADR_PEER_WINDOW is not set, the primary database accepts the commit
request after the expiration of HADR_TIMEOUT.

3. During the DisconnectedPeer state, the primary database cannot accept the
commit requests. Therefore, you can perform HADR takeover without
data loss.

Figure 11-5 The typical behavior of HADR with the peer window

Takeover of HADR without the risk of data loss
To perform the takeover without data loss, you must ensure that the takeover is
taking place only when there is no unsent data in the primary database. Use the
PEER WINDOW ONLY keyword to achieve this task. The TAKEOVER HADR command
with the PEER WINDOW ONLY keyword succeeds only when the HADR pair can take
over without the risk of data loss.

The following two scenarios illustrate how the peer window works when you
perform HADR takeover.

HADR pair

StandbyPrimary

StandbyPrimary

StandbyDISCONNECTEDPEER

DISCONNECT

DISCONNECTEDPEER

DISCONNECT

PEER

DISCONNECT

TAKEOVER HADR ... BY FORCE
PEER WINDOW ONLY

1. Normal operation

2. Network failure occurs

3. Primary failure occurs Primary

Status transition

HADR state

Connection status
 Chapter 11. HADR configuration parameters and registry variables 423

Scenario 1: A successful takeover in the peer window phase
Figure 11-6 illustrates the progress of a successful takeover within the peer
window phase.

Figure 11-6 The successful takeover in the peer window phase

Where:

1. The HADR pair is operating normally and the HADR state is Peer. During the
Peer state, the primary database sends the heartbeat with the
PeerWindowEnd time stamp to the standby database regularly. In this
example, the standby database receives the last heartbeat at 10:00:00 and
recognizes that the PeerWindowEnd time stamp is 10:01:00.

2. A network failure occurs at 10:00:05.

3. The HADR state of the primary database changes to DisconnectedPeer (not
RemoteCatchupPending) after the expiration of HADR_TIMEOUT. The
DisconnectedPeer state is kept until the time specified in the
HADR_PEER_WINDOW db cfg parameter is up.

4. The primary database fails during the peer window phase.

5. Start the takeover by running TAKEOVER HADR ... BY FORCE PEER WINDOW ONLY
on the standby database.

PeerPRIMARY

Primary
Down

1 2 3 6 7

STANDBY

N/W FAILURE

"peer window end"
timestamp is sent.

4

TAKEOVER HADR ... BY FORCE
PEER WINDOW ONLY

HADR_PEER_ WINDOW=60

10:00.05

10:00.00 10:00.05 10:01.3010:01.00

DisconnectedPeer

Heartbeats

10:00.30

HADR_PEER_ WINDOW=60

5

HADR_TIMEOUT=30

The take over is
completed without

lost dataDisconnectedPeerPeer

The update transaction is suspended
424 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

6. Complete the takeover by the time of PeerWindowEnd without the unsent
transaction log occurs.

7. If the primary database did not fail, after the peer window phase on the
primary database expires, the primary database starts to accept the update
transactions from this point.

Scenario 2: A failed takeover outside of the peer window phase
Figure 11-7 illustrates a failed takeover scenario because of the expiration of the
peer window phase.

Figure 11-7 The failed takeover the outside of the peer window phase

Where:

1. The HADR pair is operating normally and the HADR state is Peer. During the
Peer state, the primary database sends the heartbeat with the
PeerWindowEnd time stamp to the standby database regularly. In this
example, the standby database receives the last heartbeat at 10:00:00 and
the standby database recognizes that the PeerWindowEnd time stamp is
10:01:00.

2. A network failure occurs on the HADR communication network at 10:00:05.

STANDBY

Heartbeats

Peer

PRIMARY

1 2 3 4 7

"peer window end"
timestamp is sent.

TAKEOVER HADR ... BY FORCE
PEER WINDOW ONLY

10:00.05

10:00.00 10:00.05 10:01.3010:01.00

DisconnectedPeer

10:00.30

RemoteCatchupPending

5 6

DisconnectedPeerPeer RemoteCatchupPending

Suspend the update transactions

N/W FAILURE

HADR_PEER_ WINDOW=60HADR_TIMEOUT=30

HADR_PEER_ WINDOW=60

Primary
Down

Restart the update transactions

eeeeeeeeeeeeeeeeeeReeeeeeeeee oooooooooooooooooooooomomomomomomomomommmmmmmmmmmmmmmmmmm
 Chapter 11. HADR configuration parameters and registry variables 425

3. The HADR state of the primary database changes to DisconnectedPeer (not
RemoteCatchupPending) after the expiration of HADR_TIMEOUT. The
DisconnectedPeer state is kept until the time specified in the
HADR_PEER_WINDOW db cfg parameter is up.

4. The peer window phase expires on the standby database.

5. The primary database starts to accept the update transactions because the
peer window phase on the primary database expires.

6. The primary database fails.

7. Start the takeover by running TAKEOVER HADR ... BY FORCE PEER WINDOW ONLY
on the standby database. The TAKEOVER HADR command fails because the
peer window phase expired.

Considerations
There are a few considerations regarding the usage of the peer window:

� Both servers should have the same system clock.

A PeerWindowEnd time stamp is generated on the primary database that is
based on the system clock of the primary server. If the standby server has a
different system clock, unexpected results might occur during the takeover.
For example, if the system clock of the primary server is faster than the
system clock of the standby server, the peer window phase on the standby
database can continue longer than the primary database. This situation can
cause the standby database to take over the primary database with unsent
transaction data even if the TAKEOVER HADR ... BY FORCE PEER WINDOW ONLY
command
is run.

� You must incorporate the time of the peer window into the
application timeouts.

In general, the application timeouts should be longer than all the related
timeout values of the database configuration parameters, or the application
can time out faster than the database operations do. Therefore, when you use
the peer window, you must incorporate the peer window time in to the
application timeouts. When the primary database cannot send the transaction
logs to the standby database, the update transactions are suspended at least
the length of time specified in HADR_PEER_WINDOW. Moreover, if the failure is
caused by the network environment, the primary database waits to process
the update transactions up to the total time specified in HADR_TIMEOUT
and HADR_PEER_WINDOW.
426 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

� If the HADR is being used with other cluster software, the time of
HADR_PEER_WINDOW must be longer than the takeover time of the cluster.

When the HADR takeover is performed by the cluster software, your cluster
script should run TAKEOVER HADR ... BY FORCE PEER WINDOW ONLY. The
takeover HADR command with PEER WINDOW ONLY requires the
DisconnectedPeer status. If the HADR status is changed to
RemoteCatchupPending before you run takeover, this script fails with the
message SQL1770N.

� If you run db2haicu to configure the HADR cluster, the value of
HADR_PEER_WINDOW must be larger than 120.

This is one of the prerequisites for db2haicu. For more information about
db2haicu, see Chapter 7, “HADR with clustering software” on page 223.

� If HADR_SYNCMODE is set to the ASYNC mode, DB2 ignores the value
of HADR_PEER_WINDOW.

In the ASYNC mode, the primary database does not wait for the
acknowledgement from the standby database. DB2 assumes that the value of
HADR_PEER_WINDOW is “0”.

11.3.10 Index logging

By default, the index build creates a log “create object” record, but index pages
within the object are not logged. The index is then marked as “pending rebuild”
and is rebuilt after recovery is complete. This situation is undesirable for HADR,
because a standby has pending build indexes that are rebuilt when someone
accesses them. On each takeover, you have indexes that are marked as bad,
and need an index rebuild. Index rebuild can take a long time after failover.

The LOGINDEXBUILD database configuration parameter must be set to ON to
establish a rule at the database level to log all indexes. This rule controls whether
to log an index build or not. An index update is always logged. This parameter
applies to index creation, recreation, and table reorganization. The default is OFF.
Set this parameter to ON for HADR databases.

There is a table level log index attribute that overrides the database level
configuration parameter. This table level parameter is set with the ALTER TABLE
statement LOG INDEX BUILD option, which can be set to the following values:

� ON: Logs an index build.
� OFF: Does not log an index build.
� NULL: Defaults to what LOGINDEXBUILD is set to in the database configuration.
 Chapter 11. HADR configuration parameters and registry variables 427

There might be an impact to transaction performance if LOGINDEXBUILD is ON. The
impact on performance depends on the amount logs generated and number of
indexes that are rebuilt or reorganized, the HADR synchronization mode, and the
network availability and the standby's ability to keep up with the primary. When
the LOGINDEXBUILD is ON, issuing a REORG command on large number of tables
that also involves reorganizing indexes could impact transaction performance.

The database manager and database level configuration parameter INDEXREC
specifies when the invalid index is rebuilt. For more details about the values for
this parameter, see 11.1, “DB2 HADR configuration parameters” on page 400.

11.3.11 Backup from standby image with FlashCopy

With the Storage Copy function, you can back up the HADR standby database
without impacting the performance of the primary database.

To take a backup image from the standby database, complete the
following steps:

1. Complete a database backup on the standby server.

Suppose that you have another storage area for the snapshot of the standby
database, and FlashCopy is configured between the storage area for the
standby database and the snapshot. Complete the following steps:

a. Deactivate the database on the standby database.

b. Stop the database instance.

c. Unmount all the file systems and varyoff volume groups. To ensure the
consistency of the snapshot image, no write activity is allowed during
FlashCopy logical copy. So it is preferable to unmount file systems (and
varyoff volume groups).
428 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

d. Use a Storage Copy function, such as FlashCopy, to take a snapshot of
the storage image from the standby database, which includes the
database directory and table space containers. Basically, the logical copy
completes in a moment before it waits for the physical copy of whole
storage area. With IBM Total Data Storage, after the logical copy is
finished, you can activate the standby image again.

e. Activate (varyon) volume groups, mount file systems, and activate the
database. When the standby database is deactivated, you might not have
the latest standby database.

2. Restore to the primary server.

If you must restore the database from this backup to the primary server,
complete the following steps:

a. Restore all the DB2 related files to the correct original location on the
primary server from this backup image. The restored database should be
in database rollforward pending state.

b. Make all the log files available (including the active log files and archived
log files from the primary server) to be processed.

c. When the backup image is made on the standby server, its HADR status is
on standby mode. Also, the HADR configuration parameters are copied
from the standby database. They should be updated for the
primary database.

d. Apply the log files from the original primary database to the
restored database.

e. Restart the HADR (assuming that the standby database is still running).

3. Restore to the standby server.

If the standby database becomes unusable because of a hardware problem,
the split backup can be restored to the original standby database. No special
configuration is required. After the standby database files are restored, start
HADR as the standby. The standby database should now go into catchup
mode, with the primary database server retrieving the log files and shipping
the log records over to the standby database until it reaches the Peer state.

11.3.12 Replicating load data

When the LOAD utility is used to move data into a table, the data is not included
in the log file. There are some special requirements to replicate load data in the
HADR environment. The basic rule is that the load operation is replicated only if
there is a copy of the loaded data available for the standby to obtain the data.
 Chapter 11. HADR configuration parameters and registry variables 429

The copy device must be available when the standby replays the load operation.
The standby might attempt to access the copy any time after the primary
completes the load. If a load operation is run on the primary database with the
NONRECOVERABLE option, the command runs on the primary database and the
table on the standby database is marked bad. The standby database skips future
log records that pertain to this table. You can run LOAD with the COPY YES and
REPLACE options to bring back the table, or you can drop the table to recover
the space.

The following methods can be used for replicating load data to the
standby database:

� Use a network file system (NFS) shared disk.

You can use an NFS to share the load copy image on both primary and
standby nodes (Figure 11-8). On the standby node, be sure to mount the NFS
shared directory to the same point that the primary can see.

Figure 11-8 Using NFS to share data

� Pause (deactivate) the standby database while you transfer the load copy.

If you transfer the copy image by file copying or physical tape media, stop the
standby (run db2 deactivated db) before the primary runs the load. After the
primary finishes the load and the copy is in place on the standby, restart the
standby (run db2 activate db). The standby reconnects and replays the load.

Standby
database

Primary
database

HADR

/copydir /copydir

COPY
image

COPY
image

LOAD FROM input.txt
OF DEL INSERT INTO
MYTABLE COPY YES

TO /copydir LOG
transfer

NFS mount

HADR

Replay
Create copy im

age

Da
ta

 lo
ad
430 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Ensure that instance owner has the correct access permission to the copy
file. For example, in an AIX system, the permissions of copy image are set to
640 (rw-, r--, ---). The instance owner of the standby database should have
same user ID (uid) or belong to the same group ID (GID) so that the copy
image file generated by the primary instance is also accessible from the
standby instance. If it is not accessible from the standby instance, the table
space that includes the table with loaded data is marked as restore pending
and cannot accept any more updates. You must rebuild the standby database
from the primary.

11.3.13 Log archive and HADR

Log archive happens only on the primary. If the primary and the standby use
independent log archive devices with takeover, some log files are archived on
one device and others on the other device. Log is never archived on the standby
database even if you use USEREXIT, LOGARCHMETH1, or LOGARCHMETH2. The standby
writes logs it receives from the primary in to its local log files. To avoid filling up
the log path, it recycles log files after a file is no longer needed for crash recovery
and takeover readiness.

11.3.14 Database restore considerations

Here are some considerations for database restore:

� Redirected restore is not supported.

“Redirected” here means redirecting table space containers. Database
directory (restore database ... to) and log directory (restore database ...
newlogpath ...) changes are supported. Table space containers that are
created by relative paths are restored to paths relative to the new
database directory.

� Restoring the standby database has certain requirements.

When you create the standby database by restore from the primary database,
the restore commands should leave the database in the rollforward pending
state. Otherwise, starting the HADR standby fails with HADR error SQL1767N
start HADR cannot complete. Reason code = "1". Do not specify the
without rollforward when you rebuild the standby database.
 Chapter 11. HADR configuration parameters and registry variables 431

432 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Chapter 12. Backup and recovery

In this chapter, we describe some advanced data recovery-related functions that
are provided with DB2 for partitioned database environments.

Single System View (SSV) greatly simplifies the backup of multiple-partition
databases. SSV also makes the process of recovery to a single stable point in
time more robust and less error prone.

The snapshot backup provides a solution for many clients who require either
24x7 availability or have such large databases that a conventional backup is not
practical.

Although DB2 provides a complete solution for recovery to a point-in-time or to
end of logs, the restore database and rollforward database commands kept
the process of recovery in two discrete steps. With the introduction of the
recover database command, this situation changed. In addition, a valuable
feature is added to the rollforward database command.

Throughout the evolution of DB2 versions on Linux, UNIX, and Windows
platforms, there have been technical advances in how administrators can
manage backups and archived transaction log files. For more information about
these capabilities, see the topic “Data recovery” in the DB2 Information
Center at:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=/com.ibm
.db2.luw.admin.ha.doc/doc/c0052073.html

12
© Copyright IBM Corp. 2007, 2012. All rights reserved. 433

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=/com.ibm.db2.luw.admin.ha.doc/doc/c0052073.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=/com.ibm.db2.luw.admin.ha.doc/doc/c0052073.html

This chapter covers the following topics:

� Single system view backup
� Backup and restore database with snapshot backup
� Recover database command
� Recovery object management

12.1 Single system view backup

You can use the SSV backup to perform a multi-partitioned database backup
similar to a non-partitioned database. Because clients with large data volume
might use multi-partitioned databases, here is a brief introduction to this feature.

Previously, to take a database backup for a multi-partitioned database, you
either ran backup on each partition one at a time or ran db2_all to run the backup
commands in parallel on all partitions. However, the database backup takes
place on each node independently even with the db2_all command. The result is
that the backup image files have different backup time stamps regardless of how
the database backup commands are performed. When a database restore is
required, identifying all database partition backup images that have different
backup time stamps for the same backup becomes complicated. Besides, the log
files that are required for point-in-time recovery cannot be included in the backup
image. Determining the minimum recovery time for the backup that contains all
those database partitions is also difficult, cumbersome, and error-prone.

These difficulties are removed by the SSV backup. When you perform a backup
operation from the catalog node of a multi-partitioned database, you can specify
one, a few, or all partitions to be included in the backup. Backups for the
specified partitions are taken simultaneously, and the backup time stamp that is
associated with all specified database partitions is the same. In addition, you can
include database logs with an SSV backup. When you restore the database from
an SSV backup image, one backup image can be used for all partitions and the
required log files are included in the backup image for point-in-time recovery.

12.1.1 Using single system view backup

There is no installation or configuration that is required for using SSV backup.
SSV backup is enabled when you specify the keyword ON DBPARTITIONNUM or ON
ALL DBPARTITIONNUMS in the database backup command.

You can use the INCLUDE LOGS option to include the logs in the backup image for
a multi-partitioned database backup. SSV backup packages, into the image, all
the log files required to recover the database to a point-in-time.
434 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Performing the backup task
To create a database backup, you can run backup as usual on the catalog
partition. The syntax for two simple SSV backup commands is shown here:

� BACKUP DB sample ON ALL DBPARTITIONNUMS TO <backup directory>
� BACKUP DB sample ON DBPARTITIONNUMS 0 TO 3 TO <backup directory>

The first command specifies the keyword ON ALL DBPARTITIONNUMS, which
includes all database partitions for a SAMPLE database that is listed in the
db2nodes.cfg file in the backup. The second one specifies the keyword ON
DBPARTITIONNUMS 0 TO 3, which creates a backup for partitions with the database
partition numbers 0 - 3.

When you want to include the log files in an SSV backup for minimum recovery,
all you must do is to set the keyword ONLINE:

BACKUP DB sample ON ALL DBPARTITIONNUMS ONLINE TO <backup directory>

Specifying the ONLINE keyword in the backup command uses the INCLUDE LOGS
option by default, unless it is a non-SSV backup on a partitioned database.

Example 12-1 shows that the SSV database backup for the multi-partitioned
database SAMPLE is taken with a single command and all four database
partition backup files have the same time stamps in the file name.

Example 12-1 An SSV backup

$ db2 "backup db sample ON ALL DBPARTITIONNUMS online to /work/backup"
Part Result
---- ---
0000 DB20000I The BACKUP DATABASE command completed successfully.
0001 DB20000I The BACKUP DATABASE command completed successfully.
0002 DB20000I The BACKUP DATABASE command completed successfully.
0003 DB20000I The BACKUP DATABASE command completed successfully.

Backup successful. The timestamp for this backup image is :
20120717150711

$ ls /work/backup
total 681816
SAMPLE.0.db2inst3.DBPART000.20120717150711.001
SAMPLE.0.db2inst3.DBPART000.20120717150711.001
SAMPLE.0.db2inst3.DBPART000.20120717150711.001
SAMPLE.0.db2inst3.DBPART000.20120717150711.001
 Chapter 12. Backup and recovery 435

Checking the log file status
You can check if a database backup image includes the log files by running
db2ckbkp. This command provides information about the specified database
backup image file.

db2ckbkp -h <database backup file>

Example 12-2 shows the output of the db2ckbkp -h command for the previously
created backup. The line field, Includes Logs, confirms if the backup image
includes the log files or not. The value 1 means that this backup includes the
log files.

Example 12-2 Sample output of the db2chbkp command

$ db2ckbkp -h SAMPLE.0.db2inst3.DBPART000.20120717150711.001

=====================
MEDIA HEADER REACHED:
=====================
Server Database Name -- SAMPLE
 Server Database Alias -- SAMPLE
 Client Database Alias -- SAMPLE
 Timestamp -- 20120717658932
 Database Partition Number -- 0
 Instance -- db2inst3
 Sequence Number -- 1
 Release ID -- C00
 Database Seed -- 88661681
 DB Comment's Codepage (Volume) -- 0
 DB Comment (Volume) --
 DB Comment's Codepage (System) -- 0
 DB Comment (System) --
 Authentication Value -- 255
 Backup Mode -- 1

Includes Logs -- 1
 Compression -- 0
 Backup Type -- 0
 Backup Gran. -- 0
 Status Flags -- 11
 System Cats inc -- 1
 Catalog Partition Number -- 0
 DB Codeset -- UTF-8
 DB Territory --
 LogID -- 1210221761
 LogPath --
/home/db2inst3/db2/db2inst3/NODE0000/SQL00001/SQLOGDIR/
436 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

 Backup Buffer Size -- 3280896
 Number of Sessions -- 1
 Platform -- 14...

Restoring the database and the LOGTARGET keyword
When you change from the default offline backup to online backup, the required
log files are automatically included in the backup image to enable a minimum
forward recovery. However, to use the log files for rollforward recovery, you must
extract these files out of the database backup image (it is not done
automatically). There are two ways to accomplish this task:

� Specify the LOGTARGET keyword in the restore database command. DB2
extracts the log files that are included in the backup image to the target
directory specified by LOGTRAGET during the database restore process. The
directory that is specified in LOGTARGET must be an existing directory.

Each partition should have its own directory or subdirectory because the log
file names can be the same on each database partition.

The syntax for the relevant command is:

RESTORE DB <DB name> FROM <backup dir> TAKEN AT <backup timestamp>
ON <target db path> LOGTARGET <target log restore path>

� Specify the LOGS keyword in the restore database command. When you
specify this keyword, the database restore is not run. This command takes
only the log files out of the backup image to the directory specified in the
LOGTARGET keywords.

The target directory must be created.

The syntax for the relevant command is:

RESTORE DB <DB name> LOGS FROM <backup dir> TAKEN AT <backup
timestamp> ON <target db path> LOGTARGET <target log restore path>

For the complete syntax of the restore database command, see:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=/com.ibm
.db2.luw.admin.cmd.doc/doc/r0001976.html
 Chapter 12. Backup and recovery 437

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=/com.ibm.db2.luw.admin.cmd.doc/doc/r0001976.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=/com.ibm.db2.luw.admin.cmd.doc/doc/r0001976.html

Example 12-3 shows one way to restore a four partition database. The backup
image is taken using SSV backup, as shown in Example 12-1 on page 435. In
this example of a restore, we run restore with the LOGTARGET keyword on each
partition to restore one partition at a time. All the database backup images carry
the same time stamp in each restore on the four nodes. The directory for holding
the log files is created manually on each physical node before restore starts.

Example 12-3 Example of a restore database with the LOGTARGET keyword

$ export DB2NODE=0
$ db2 terminate
DB20000I The TERMINATE command completed successfully.
$ db2 "restore db sample from /work/backup taken at 20120717150711 on
/home/tukiv10/db2 logtarget /work/logs/log0"
DB20000I The RESTORE DATABASE command completed successfully.
$ export DB2NODE=1
$ db2 terminate
DB20000I The TERMINATE command completed successfully.
$ db2 "restore db sample from /work/backup taken at 20120717150711
logtarget /work/logs/log1 without prompting"
SQL2540W Restore is successful, however a warning "2523" was
encountered
during Database Restore while processing in No Interrupt mode.
$ export DB2NODE=2
$ db2 terminate
DB20000I The TERMINATE command completed successfully.
$ db2 "restore db sample from /work/backup taken at 20120717150711
logtarget /work/logs/log2 without prompting"
SQL2540W Restore is successful, however a warning "2523" was
encountered
during Database Restore while processing in No Interrupt mode.
$ export DB2NODE=3
$ db2 terminate
DB20000I The TERMINATE command completed successfully.
$ db2 "restore db sample from /work/backup taken at 20120717150711
logtarget /work/logs/log3 without prompting"
SQL2540W Restore is successful, however a warning "2523" was
encountered
during Database Restore while processing in No Interrupt mode.
$ ls -l /work/logs/log*
/work/logs/log0:
total 24
-rw------- 1 tukiv10 system 12288 July 17 13:25 S0000005.LOG

/work/logs/log1:
438 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

total 24
-rw------- 1 tukiv10 system 12288 July 17 13:25 S0000005.LOG

/work/logs/log2:
total 24
-rw------- 1 tukiv10 system 12288 July 17 13:25 S0000005.LOG

/work/logs/log3:
total 24
-rw------- 1 tukiv10 system 12288 July 17 13:25 S0000005.LOG

Another valuable example for rebuilding all database nodes in a partitioned
environment can be found in the DB2 Information Center at:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=/com.ibm
.db2.luw.admin.ha.doc/doc/t0021537.html

Tips: You also can run db2_all to run restore for all database partitions. The
command syntax is as follows:

� For the restore command for the catalog partition, use:

$ db2_all "\"<<+0< db2 restore db sample from /work/backup taken
at 20120717150711 on /home/tukiv10/db2 logtarget /work/logs/log##
without prompting"

� For the restore command for the other partitions, run:

$ db2_all "\"||<<-0< db2 restore db sample from /work/backup
taken at 20120717150711 logtarget /work/logs/log## without
prompting"

The first command is the restore command for the catalog partition, and the
second one is for all other non-catalog database partitions. You must restore
the catalog partition first. After that, you can run the restore command for
non-catalog database partitions in parallel. The keyword ||<<-0< in front of the
second command means that the db2_all command runs this statement in
parallel on all partitions except for partition number zero, the catalog partition.

The ## is part of the target directory. The \" keyword (a back slash and a
double quotation mark) in front of the command tells DB2 to replace the
keyword ## with the database partition number under which the restore
command is run.
 Chapter 12. Backup and recovery 439

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=/com.ibm.db2.luw.admin.ha.doc/doc/t0021537.html

Rollforward to the minimum recovery time
Individual backups for each partition cause the backup time stamps to be
different for each backup image. To perform a forward recovery, you must
identify the minimum (latest) recovery time stamp from all database partition
backup images. SSV backup has one backup time stamp for all backup images.

Specify the backup time stamp in the keyword TO END OF BACKUP in the
rollforward command:

ROLLFORWARD DATABASE <database name> TO END OF BACKUP ON ALL
DBPARTITIONNUMS AND COMPLETE OVERFLOW LOG PATH (<general overflow
log path> , <overflow log path for each db partition> , ...)

The rollforward database command searches the log files in the log path, the
archive log path, and the failover log path by default. If the log files are in a
directory other than these default directories, specify the log file location in the
OVERFLOW LOG PATH parameter. In a partitioned database environment, the
overflow log path is the default overflow log path for all database partitions. You
must specify one even if you do not use it. The overflow log paths for each
database partition are listed after this path.

Example 12-4 is an example for END OF BACKUP rollforward recovery in a
partitioned database environment. In this example, we specify four directories as
the overflow log path for each database partition.

Example 12-4 Rollforward recovery with the END OF BACKUP keyword

$ export DB2NODE=0
$ db2 terminate
DB20000I The TERMINATE command completed successfully.
$ db2 "rollforward database sample"

 Rollforward Status

 Input database alias = sample
 Number of nodes have returned status = 4

Nodenumber Rollforward Next log Log files processed Last committed
transaction
 status to be read
---------- ------------ ------------- --------------------

 0 DB pending S0000005.LOG -
2012-07-17-12.04.53.000000 UTC
 1 DB pending S0000005.LOG -
2012-07-17-12.04.51.000000 UTC
440 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

 2 DB pending S0000005.LOG -
2012-07-17-12.04.51.000000 UTC
 3 DB pending S0000005.LOG -
2012-07-17-12.04.52.000000 UTC

$ db2 "ROLLFORWARD DATABASE SAMPLE TO END OF BACKUP ON ALL DBPARTITIONNUMS AND
COMPLETE
> OVERFLOW LOG PATH
> (/work/logs,
> /work/logs/log0 on DBPARTITIONNUM 0,
> /work/logs/log1 on DBPARTITIONNUM 1,
> /work/logs/log2 on DBPARTITIONNUM 2,
> /work/logs/log3 on DBPARTITIONNUM 3)"

 Rollforward Status

 Input database alias = sample
 Number of nodes have returned status = 4

 Node number Rollforward Next log Log files processed Last committed
transaction
 status to be read
 ----------- ------------ ------------- -------------------------

 0 not pending S0000005.LOG-S0000006.LOG
2012-07-17-12.04.53.000000 UTC
 1 not pending S0000005.LOG-S0000006.LOG
2012-07-17-12.04.51.000000 UTC
 2 not pending S0000005.LOG-S0000006.LOG
2012-07-17-12.04.51.000000 UTC
 3 not pending S0000005.LOG-S0000006.LOG
2012-07-17-12.04.52.000000 UTC

DB20000I The ROLLFORWARD command completed successfully.

12.1.2 Considerations

Here are a few considerations for using SSV backup:

� The SSV backup command must be run on the catalog partition.

If you run the SSV backup command on two non-catalog partitions, the
backup command might fail with an SQL4976N message.
 Chapter 12. Backup and recovery 441

� SSV backup is not enabled automatically.

Without specifying the keyword ON DBPARTITIONNUM or ON ALL
DBPARTITIONNUMS in the backup command, the backup runs on the current
database partition only.

� Only one backup task can be run in parallel on the database partition.

You must not run multiple database backup on one database partition. If you run
the backup command on the non-catalog partition during the SSV backup, more
backup commands might fail with an SQL1035N message.

12.2 Backup and restore database with snapshot
backup

Many storage subsystems provide FlashCopy or snapshot functions, so you can
make nearly instantaneous point-in-time copies of entire logical volumes or
data sets.

DB2 provides integrated support for snapshot backup through DB2 Advanced
Copy Services (ACS). You can use DB2 ACS to use the fast copying technology
of a storage device to perform the data copying part of backup and restore
operations. To perform snapshot backup and restore operations, you need a
DB2 ACS API driver for your storage device. For a list of supported storage
hardware for the integrated driver, see the Tivoli documentation at:

http://publib.boulder.ibm.com/infocenter/tsminfo/v6r3/topic/com.ibm.its
m.fcm.unx.doc/c_fcmu_ovr_supstorage.html

DB2 ACS is installed during a typical or custom DB2 installation and must be
enabled before it is used. The steps to activate DB2 ACS are described at:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=/com.ibm
.db2.luw.admin.ha.doc/doc/t0052799.html

A backup operation that uses DB2 ACS is called a snapshot backup. To perform
a snapshot backup or restore with DB2 ACS, you must specify use snapshot in
the backup and restore commands.

The default behavior for a snapshot backup is a full database offline backup of all
paths that make up the database, including all containers, database path
(DBPATH), primary log, and mirror log paths INCLUDE LOGS is the default for all
snapshot backups unless EXCLUDE LOGS is explicitly stated.

Complement snapshot backups with regular disk backups to be prepared for
storage failure.
442 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

http://publib.boulder.ibm.com/infocenter/tsminfo/v6r3/topic/com.ibm.itsm.fcm.unx.doc/c_fcmu_ovr_supstorage.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=/com.ibm.db2.luw.admin.ha.doc/doc/t0052799.html

DB2 10.1 does not support the use snapshot parameter in the backup command
with any of the following parameters:

� tablespace
� incremental
� with num-buffers buffers
� buffer
� parallelism
� compress
� util_impact_priority
� sessions

To restore a database from a snapshot backup, run either restore database with
the use snapshot parameter or the db2Restore API. DB2 10.1does not support
the use snapshot parameter in the restore command with any of the
following parameters:

� incremental
� to
� on
� dbpath on
� into
� newlogpath
� with num-buffers buffers
� buffer
� redirect
� replace history file
� compression library
� parallelism
� comprlib
� open num-sessions sessions
� history file
� logs

If you do not specifically include log files in the restore, the logtarget parameter
defaults to exclude.
 Chapter 12. Backup and recovery 443

12.3 Recover database command

The recover database command consolidates a number of steps that are
previously required with the restore database and rollforward
database commands.

While retaining some useful niche functionality, such as initializing an HADR
standby database that must be left in the rollforward pending state, or redirected
restores on SMS or DMS table space containers, the often time-consuming and
effort-intensive pairing of restore database and rollforward database
commands are unnecessary for common situations.

12.3.1 Feature summary

As a feature that is beneficial for common recovery scenarios, the default
behavior for the most simple db2 recover database <dbname> command syntax
is for DB2 to use the most recent backup file for that database in the recovery
history file and then perform rollforward recovery to the end of logs. Even with a
recovery to point-in-time (PIT), DB2 automatically chooses the appropriate
backup file and rolls logs forward from the appropriate log chain to that PIT. It is
no longer necessary to specify a time stamp and physical location to choose the
correct backup file and the time stamp to roll forward to.

For deeper insight, the DB Information Center highlights the features of the
recover database command at:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=/com.ibm
.db2.luw.admin.cmd.doc/doc/r0011703.html

The RECOVER DATABASE command has parameters that you can use to specify the
following items:

� PIT recovery to <isotime> (UTC or local).

� Explicit naming of a recovery history file for partitioned databases.

� Various configurations of single or multiple partition recovery. The recover
database command for partitioned databases must be run from the
catalog node.

� Custom decompression libraries and options.

� A recover operation that follows a previously incomplete recover operation
attempts to continue if possible. The restart option forces a new restore
and rollforward operation. This action avoids lengthy waits for restart logic
to find the appropriate place to commence.
444 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=/com.ibm.db2.luw.admin.cmd.doc/doc/r0011703.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/topic/com.ibm.db2.luw.admin.cmd.doc/doc/r0011703.html

Judging from the foregoing list of features, the recover database command is a
balance between simplicity and versatility.

12.4 Recovery object management

A client environment might accumulate many recovery objects over time, such as
backup images and logs of considerable size. Because storage space is not
unlimited, unneeded objects must be identified and removed without damaging
objects that are still required for a successful recovery.

DB2 provides two options to manage those recovery objects. The topic
“Managing recovery objects” in the DB2 Information Center describes these
options in detail at:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=/com.ibm
.db2.luw.admin.ha.doc/doc/t0051365.html
 Chapter 12. Backup and recovery 445

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=/com.ibm.db2.luw.admin.ha.doc/doc/t0051365.html

446 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Chapter 13. Q replication

Based on client requirements, data replication might be an option to implement
high availability or disaster recovery environments. The IBM InfoSphere
Replication Server provides two approaches for data replication:

� The first approach is called SQL replication because it is based on DB2
tables. Changes are captured in staging tables with SQL and then shipped to
a target database and applied to the target table.

� The second approach is Q replication. It is based on a messaging
infrastructure instead of staging tables. Changes are captured on the source
and placed on message queues. This approach is described in this chapter.

In this chapter, we provide an introduction to Q replication and a simple overview
of its structure. We also give you step-by-step instructions for setting up a
unidirectional Q replication.

More information about replication capabilities can be found in the DB2
Information Center at:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=/com.ibm
.swg.im.iis.db.repl.intro.doc/topics/iiyrcintch100.html

This chapter covers the following topics:

� Introduction to Q replication
� Unidirectional setup

13
© Copyright IBM Corp. 2007, 2012. All rights reserved. 447

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=/com.ibm.swg.im.iis.db.repl.intro.doc/topics/iiyrcintch100.html

13.1 Introduction to Q replication

Q replication is a replication solution that uses WebSphere MQ message queues
to transmit changes from a source table to target tables.

Q replication is divided in to three types:

� Unidirectional

In unidirectional Q replication, changes are captured at the source and
replicated to the target. Unidirectional Q replication can take place from one
source to one or many targets. In unidirectional replication, typically the target
is used for read-only operations.

� Bidirectional

In bidirectional Q replication, tables on two servers replicate to each other.
Changes that are made on either table are replicated to the corresponding
table. You cannot replicate a subset of rows, and each table must have the
same number of columns and data types for those columns, although you can
have different schema and table names.

� Peer-to-peer

In peer-to-peer Q replication, tables are replicated between two or more
servers. As in bidirectional Q replication, the replicated tables must all have
the same structure, though each table can have its own schema and
table name.

Q replication can be set up in many different configurations. You can use Q
replication for replication between databases on the same server or remote
servers. You can set up a one-to-many relationship or many-to-one relationship.

For more information about different Q replication configurations, see the DB2
Information Center at:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=/com.ibm
.swg.im.iis.prod.repl.nav.doc/topics/iiyrqcnccreatesubspubs.html

Here is the basic structure of Q replication:

� A Q Capture program that runs on the source server reads the DB2 recovery
log for changes to the source tables specified for replication. It then places
the messages in a queue that is called the send queue. The Q Capture
program uses a set of DB2 tables called Q Capture Control tables. The
capture control tables store information about the replication sources,
corresponding targets, WebSphere MQ queues being used, and other data.
448 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=/com.ibm.swg.im.iis.prod.repl.nav.doc/topics/iiyrqcnccreatesubspubs.html

� Q subscriptions define the source and target tables to be replicated. Q
subscriptions need a replication queue map to identify the WebSphere MQ
queues used for sending and receiving transactions.

� The Q Apply program runs on the target server, receiving the messages and
applying the transactions to the target tables. The Q Apply program also has
a set of DB2 tables called Q Apply Control tables.

We focus on a unidirectional Q replication setup.

13.2 Unidirectional setup

This section provides a step-by-step example of a unidirectional Q replication
setup between two remote servers (Figure 13-1).

Figure 13-1 Unidirectional setup diagram

Source System Target System

Target queue manager
Source queue manager

Restart
queue

DB2

Administration
queue

Remote
send queue

Source
transmission

queue

R

channel source
from target

channel source
to target

Q Capture

Target to source

channel source
to target

channel source
from target

DB2

R
Target

transmission
queue

Remote
administration

queue

Receive
queue

Spill
queue

Q Apply

Source to target
 Chapter 13. Q replication 449

To set up unidirectional Q replication, complete the following tasks:

1. Set up the database on both the source and target database servers.
2. Set up WebSphere MQ objects on the source server and the target server.
3. Start the listener and the channel on the source and the target.
4. Optional: Test the queues.
5. Create the Q Capture Control tables.
6. Create the Q Apply Control tables.
7. Create a Q subscription.
8. Configure the target to source server connectivity.
9. Start Q Capture.
10.Start Q Apply.

In our example, we use two Windows servers that are running DB2 10.1 and
WebSphere MQ V7.05. The step-by-step process to set up a unidirectional Q
replication with remote servers is as follows:

1. Initial database setup on the source and the target server:

a. The logging method for the source must be changed from the default
circular logging to archival logging. Hence, the source database (SAMPLE
in our test case) must have the database configuration parameter
LOGARCHMETH1 set to LOGRETAIN as follows:

db2 update database configuration for sample using LOGARCHMETH1
LOGRETAIN

A backup is required if you are setting LOGARCHMETH1 to LOGRETAIN for the
first time.

b. Identify your target database. For our example, the target database is
TGTDB.

2. Setup of WebSphere MQ objects on the source server:

a. Create a queue manager QMGR1 from the command window by running
the following command:

crtmqm QMGR1

b. Start the Q manager that you created by running the following command:

strmqm QMGR1
450 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

c. To create the needed WebSphere MQ objects, run the following command
with the example script shown in Example 13-1. Remember to replace the
IP and port number with your required IP and port number.

runmqsc QMGR1 < QMGR1.DEF

Example 13-1 Creating WebSphere MQ objects on the source for QMGR1

**This script creates the following objects within queue manager
QMGR1 **at the source:

**A local administration queue
DEF QLOCAL('SAMPLE_ADMINQ') DESCR('Capture Admin Queue') REPLACE

**A local restart queue
DEF QLOCAL('SAMPLE_RESTARTQ') DESCR('Capture Restart Queue')
REPLACE

**A remote queue definition for Q Capture to put data messages
DEF QREMOTE('SAMPLE2TGTDBQ') XMITQ('QMGR2')
RNAME('SAMPLE2TGTDBQ') RQMNAME('QMGR2') REPLACE

**A local transmission queue
DEF QLOCAL('QMGR2') USAGE(XMITQ) REPLACE

**A sender channel from QMGR1 to queue manager QMGR2 using
transmission **queue. QMGR2 is created in the next step below
**Replace the ip with your ip and the port number with your port
number
DEF CHANNEL('QMGR1.TO.QMGR2') CHLTYPE(SDR) TRPTYPE(TCP)
CONNAME('nnn.nnn.nnn.nnn (1416)') XMITQ('QMGR2') REPLACE

**A receiver channel from QMGR2
DEF CHANNEL('QMGR2.TO.QMGR1') CHLTYPE(RCVR) TRPTYPE(TCP) REPLACE

3. Setup of WebSphere MQ objects on the target server:

a. Create a queue manager with a different name than the source by running
the following command:

crtmqm QMGR2

b. Start the Q manager that you created by running the following command:

strmqm QMGR2
 Chapter 13. Q replication 451

c. To create the needed WebSphere MQ objects, run the following command
with the example script shown in Example 13-2. Remember to replace the
IP and port number with your required IP and port number.

runmqsc QMGR2 < QMGR2.DEF

Example 13-2 Creating WebSphere MQ objects on the target for QMGR2

**This script creates the following objects within queue manager
QMGR2
**at the target:

**A remote queue definition that points to the administration
queue at
**the source
DEF QREMOTE('SAMPLE_ADMINQ') XMITQ('QMGR1') +
RNAME('SAMPLE_ADMINQ') RQMNAME('QMGR1') REPLACE

**A model queue definition for spill queues that hold data
messages
**from Q Capture during the load
DEF QMODEL('IBMQREP.SPILL.MODELQ') DEFSOPT(SHARED) +
 MAXDEPTH(500000) MSGDLVSQ(FIFO) DEFTYPE(PERMDYN) REPLACE

**A local queue for Q Apply to get data messages from the Q
Capture
**program at the source
DEF QLOCAL('SAMPLE2TGTDBQ') REPLACE

**A local transmission queue
DEF QLOCAL('QMGR1') USAGE(XMITQ) REPLACE

**A sender channel from QM2 to queue manager QMGR1 using
transmission
**queue QMGR1
**Replace the ip with your ip and the port number with your port
number
DEF CHANNEL('QMGR2.TO.QMGR1') CHLTYPE(SDR) TRPTYPE(TCP) +
CONNAME('nnn.nnn.nnn.nnn (1415)') XMITQ('QMGR1') REPLACE

**A receiver channel from QMGR1
DEF CHANNEL('QMGR1.TO.QMGR2') CHLTYPE(RCVR) TRPTYPE(TCP) REPLACE
452 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

d. Start both the listener and channel on the source and the target:

i. On the source, from a command window, start the listener by running
the following command:

RUNMQLSR -T TCP -M QMGR1 -P 1415

ii. On the target, from a command window, start the listener by running
the following command:

RUNMQLSR -T TCP -M QMGR2 -P 1416

iii. On the source, from a command window, start the channel:

To start the channel, first run RUNMQSC to start the interactive MQSC
command line:

RUNMQSC QMGR1

This command starts the channel:

START CHANNEL(QMGR1.TO.QMGR2)

This command ends the runmqsc session.

END

iv. On the target from a command window, start the channel by running
the following command:

RUNMQSC QMGR2
START CHANNEL(QMGR2.TO.QMGR1)
END

4. (Optional) Test the queues:

Test the message queue setup by putting a message from the source system
and trying to get the message from the target system. WebSphere MQ
provides two programs for testing the messaging setup: amqsput and amqsget.

In the source in our example, we put a message, Test message to send, into
the message queue (Example 13-3):

a. Press Enter to send the message.

b. Press Enter to end the prompt.

Example 13-3 Sending the test message from the source

>amqsput SAMPLE2TGTDBQ QMGR1
Sample AMQSPUT0 start
target queue is SAMPLE2TGTDBQ
Test message to send
Sample AMQSPUT0 end
 Chapter 13. Q replication 453

c. Example 13-4 shows how to receive the message from the target. Press
Enter to end the prompt.

Example 13-4 Sending the test message from the target

>amqsget SAMPLE2TGTDBQ QMGR2
Sample AMQSGET0 start
message <Test message to send>
no more messages
Sample AMQSGET0 end

If the test message flow between source and target does not work correctly
WebSphere MQ issues the ASN2288W error code.
454 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

5. Creating the Q Capture Control tables:

a. From the Replication Center, click the Replication Center drop-down
menu and click Launchpad. At the top of the Replication Center
Launchpad window, select Q replication from the drop-down box
(Figure 13-2).

Figure 13-2 Replication Center Launchpad
 Chapter 13. Q replication 455

b. Click 1. Create Q Capture Control Tables from the Replication Center
Launchpad. The Create Q Capture Control Tables wizard window opens.
From the first window in the wizard, which is shown in Figure 13-3, you
can choose between Typical or Custom for control table creation. In our
example, we select Typical and then click Next.

Figure 13-3 Create Q Capture Control Tables wizard - Getting started

Creating Q Capture Control tables: When you create the Q Capture
Control tables, clicking the Custom option allows you to define the table
space or table spaces that you want the tables to be in.
456 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

c. In the next window (Figure 13-4), select the Q Capture server from the list
(source server). This action should populate the User ID, Password, and Q
Capture schema. The default schema is ASN, but you can change it
according to your client naming conventions. Click Next to continue.

Figure 13-4 Create Q Capture Control Tables wizard - Specify a Q Capture server and Q Capture schema
 Chapter 13. Q replication 457

d. In the next window (Figure 13-5), enter the Queue manager name for the
source server. In our example, the Queue manager is QMGR1. Enter the
information for the Administration queue and Restart queue, which is
SAMPLE_ADMINQ and SAMPLE_RESTARTQ in our example. Click Next
to proceed to the summary window.

Figure 13-5 Create Q Capture Control Tables wizard - WebSphere MQ objects
458 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

e. Review the Summary window and click Finish (Figure 13-6).

Figure 13-6 Create Q Capture Control Tables wizard - Summary
 Chapter 13. Q replication 459

f. In the Run Now or Save SQL window, save the script for future use, such
as a rebuild. Figure 13-7 shows the script that you created and the
options. After you save the SQL, select Run now and click OK.

Figure 13-7 Run Now or Save SQL window for Q Capture Control Tables
460 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

6. Creating the Q Apply Control tables:

You can accomplish this task on the target or source server. If it is done from
the source, ensure that the target server and database are cataloged on the
source system.

Complete the following steps:

a. Click the Replication Center drop-down menu and select Launchpad. At
the top of the Replication Center Launchpad window, select Q replication
from the drop-down box.

b. Click 2. Create Q Apply Control Tables from the Replication Center
Launchpad. This action opens the Create Q Apply Control Tables wizard.
In the first window in the wizard, in our example, we select Typical
(Figure 13-8). After you make your selection, click Next.

Figure 13-8 Create Q Apply Control Tables wizard - Getting started
 Chapter 13. Q replication 461

c. In the next window (Figure 13-9), select the Q Apply server from the list
(target server). This action populates the User ID, Password, and Q Apply
schema fields. The default schema is ASN, but can be changed. Click
Next to proceed.

Figure 13-9 Create Q Apply Control Tables wizard - Specify a Q Apply server, and a Q Apply schema
462 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

d. In the next window (Figure 13-10), enter the Queue manager name for the
target server. In our example, the Queue manager is QMGR2. Click Next
to proceed to the Summary window.

Figure 13-10 Create Q Apply Control Tables wizard - WebSphere MQ objects
 Chapter 13. Q replication 463

e. Review the Summary window that is shown in Figure 13-11. Click Finish.

Figure 13-11 Create Q Apply Control Tables wizard - Summary
464 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

f. In the Run Now or Save SQL window (Figure 13-12), save the script for
future use, such as a rebuild. After you save the SQL, select Run now and
click OK.

Figure 13-12 Run Now or Save SQL panel for Q Apply Control Tables
 Chapter 13. Q replication 465

7. Create a Q subscription:

a. From the Replication Center, click the Replication Center drop-down
menu and click Launchpad. At the top of the Replication Center
Launchpad window, select Q replication from the drop-down box.

b. Click 3. Create a Q Subscription from the Replication Center Launchpad.
This action opens the Create a Q Subscription wizard shown in
Figure 13-13. Click Next to continue.

Figure 13-13 Create Q Subscriptions
466 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

c. Choose the type of Q replication you require. In our example, we choose
unidirectional replication (Figure 13-14). If you choose anything other than
unidirectional, more WebSphere MQ setup steps might be required. For
more information, see the DB210.1 Information Center:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=/c
om.ibm.swg.im.iis.prod.repl.nav.doc/topics/iiyrqcnccreatesubspubs
.html

Figure 13-14 Create Q Subscriptions - Which type of replication
 Chapter 13. Q replication 467

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=/com.ibm.swg.im.iis.prod.repl.nav.doc/topics/iiyrqcnccreatesubspubs.html

d. Choose the Source and Target servers and schema (if they are not
already populated). In the Queues section, click the button next to the
Replication Q map field to open the Select Replication Queue Map
window (Figure 13-15).

Figure 13-15 Create Q Subscriptions - Which source and target servers
468 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

e. Click New to create an object (Figure 13-16).

Figure 13-16 Select Replication Queue Map
 Chapter 13. Q replication 469

f. In the Create Replication Queue Map window, under the General tab,
insert the created Send queue, Receive queue, and Administration queue.
Figure 13-17 shows the object names that are entered.

Figure 13-17 Create Replication Queue Map - General tab
470 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

g. In the Create Replication Queue Map window, under the Options tab, you
can specify the attributes for the new replication queue map. For our
example, we kept the default values (Figure 13-18).Click OK to finish the
new replication queue map.

Figure 13-18 Create Replication Queue Map - Options tab
 Chapter 13. Q replication 471

h. In the Run Now or Save SQL window (Figure 13-19), save the script for
future use, such as a rebuild. After you save the SQL, select Run now and
click OK.

Figure 13-19 Run Now or Save SQL Queue Map
472 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

i. From the Select Replication Queue Map, highlight your queue map and
click OK (Figure 13-20).

Figure 13-20 Select Replication Queue Map selected
 Chapter 13. Q replication 473

j. Now you should be back at the Create Q Subscription wizard window with
all of the information that is entered for 3. Services (Figure 13-21). Click
Next to continue.

Figure 13-21 Create Q Subscriptions - Complete
474 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

k. Select the tables from the source you want to replicate. In our example,
we chose the EMPLOYEE table to replicate (Figure 13-22). Click Next
to continue.

Figure 13-22 Create Q Subscriptions - Source Tables
 Chapter 13. Q replication 475

l. In the Create Q Subscriptions wizard, select the target type that you want.
For our example, we chose to create a table on the target (Figure 13-23).
Click Next to continue.

Figure 13-23 Create Q Subscriptions - target tables
476 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

m. In the Create Q Subscriptions wizard, you can choose to use granularity
with your columns and rows replicated (Figure 13-24). Click Next
to continue.

Figure 13-24 Create Q Subscriptions - replicated columns and rows
 Chapter 13. Q replication 477

n. In the Create Q Subscriptions wizard, you can specify how you want the Q
Apply program to handle unexpected conditions (Figure 13-25). Click Next
to continue.

Figure 13-25 Create Q Subscriptions - unexpected conditions
478 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

o. Specify how you want your target tables loaded (Figure 13-26). Click Next
to continue.

Figure 13-26 Create Q Subscriptions - loading the target table
 Chapter 13. Q replication 479

p. In the Create Q Subscriptions wizard, observe the settings (Figure 13-27).
If they are correct, click Next to continue. If they are not correct, click Back
and make any necessary changes.

Figure 13-27 Create Q Subscriptions - review Q subscriptions
480 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

q. In the Create Q Subscriptions wizard, the Summary window is the final
window before you create the SQL script (Figure 13-28). Click Finish to
create the SQL script.

Figure 13-28 Create Q Subscriptions - Summary
 Chapter 13. Q replication 481

r. In the Run Now or Save SQL window (Figure 13-29), save the script for
future use, such as a rebuild. After you save the SQL, select Run now and
click OK.

Figure 13-29 Run Now or Save SQL Q Subscriptions
482 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

8. Configure the target to source server connectivity.

If you plan to have the Q Apply program automatically load targets with
source data by using the EXPORT utility, as we did in our example, the Q Apply
program must be able to connect to the Q Capture server. This connection
requires a password file that is created with the asnpwd command.

Complete the following steps:

a. Create a directory on the Q Apply Control server where you plan to run the
Q Apply start command. In our example, we use c:\replwork\.

b. Run the command to create the password file in the directory that you
create (Example 13-5):

asnpwd init

Example 13-5 asnpwd init

C:\replwork> asnpwd init
2012-07-12-16.31.47.671000 ASN1981I “Asnpwd” : “” : “Initial”.
The program completed successfully using password file
“asnpwd.aut”.

c. Run the command to update the asnpwd.aut file with the connection
information (Example 13-6):

asnpwd add alias SAMPLE id db2admin password adminpw

Example 13-6 asnpwd add

C:\replwork> asnpwd add alias SAMPLE id db2admin password adminpw
2012-07-12-16.37.10.535000 ASN1981I “Asnpwd” : “” : “Initial”.
The program completed successfully using password file
“asnpwd.aut”.

The unidirectional configuration is complete. We can start the Q replication
process. When you start the Q replication, start Q Capture first, then Q Apply. To
stop the replication process, stop Q Apply, then Q Capture.
 Chapter 13. Q replication 483

13.2.1 Starting Q capture

This action can be done either from the command line or from the
Replication Center.

Command line
To start Q Capture from the command line, change to the wanted directory and
run start (Example 13-7):

asnqcap capture_server=SAMPLE

Example 13-7 asnqcap

C:\replwork> asnqcap capture_server=SAMPLE
2012-07-12-16.49.51.309000 ASN7000I “Q Capture” : “ASN” :
“WorkerThread” : “1” subscriptions are active. “0” subscriptions are
inactive. “0” subscriptions that were new and were successfully
activated. “0” subscriptions that were new could not be activated and
are now inactive.
2012-07-12-16.49.51.329000 ASN0572I “Q Capture” : “ASN” :
“WorkerThread” : The program initialized successfully.
484 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Replication Center
To start Q Capture, complete the following steps:

1. In the Replication Center, expand Q Replication  Operations  Q
Capture Servers. In the right pane, right-click the server on which you are
starting Q Capture (Figure 13-30).

Figure 13-30 Replication Center - start Q Capture
 Chapter 13. Q replication 485

2. From the Run Now or Save Command window, enter the required information
in to the User ID, Password, and start Directory fields. Click OK to run the
command (Figure 13-31).

Figure 13-31 Run Now or Save Command - Q Capture Start
486 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

13.2.2 Start Q Apply

This action can be done from either the command line or from the
Replication Center.

Command line
To start Q Apply from the command line, change to the wanted directory and run
start (Example 13-8):

asnqapp apply_server=TGTDB

Example 13-8 asnqapp

C:\replwork> asnqapp apply_server=TGTDB
2012-07-12-15.58.20.785000 ASN7526I “Q Apply” : “ASN” : “BR00000” :
The Q Apply program has started processing the receive queue
“SAMPLE2TGTDBQ” for replication queue map “SAMPLE_ASN_TO_TGTDB_ASN”.
 Chapter 13. Q replication 487

Replication Center
To start Q Apply, complete the following steps:

1. In the Replication Center, expand Q Replication  Operations  Q Apply
Servers. In the right pane, right-click the server on which you are starting Q
Apply (Figure 13-32).

Figure 13-32 Replication Center - start Q Apply
488 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

2. From the Run Now or Save Command window, enter the required information
in to the User ID, Password, and start Directory fields. Click OK to run the
command. (Figure 13-33).

Figure 13-33 Run Now or Save Command - start Q Apply
 Chapter 13. Q replication 489

490 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Chapter 14. IBM InfoSphere Change Data
Capture

In this chapter, we provide an introduction to IBM InfoSphere Change Data
Capture (InfoSphere CDC) and an overview of its components and modes
of operation.

This chapter covers the following topics:

� Introduction
� Architectural overview
� InfoSphere CDC topologies
� Features and functionality

14
© Copyright IBM Corp. 2007, 2012. All rights reserved. 491

14.1 Introduction

InfoSphere CDC is a replication solution that captures and delivers database
changes dynamically. InfoSphere CDC allows replication between
heterogeneous environments, supporting various operating systems and
databases. Destinations for InfoSphere CDC replication include databases
(which can be different from the source database), message queues, or an
extract, transform, and load (ETL) solution, such as IBM InfoSphere DataStage.

What is replicated depends on the table mappings that are configured in the
InfoSphere CDC Management Console GUI application. InfoSphere CDC
employs a non-invasive approach to capturing changes that take place on the
source database, reading changes directly from database logs. No changes are
required to the source application. The capture mechanism (log scraping) is a
lightweight process that runs on the source server and avoids significant impact
on production systems.

InfoSphere CDC also helps reduce processing impact and network traffic by
sending only the data that change. Changes are sent from source to target
through a standard Internet Protocol network socket. Replication can be carried
out continuously or periodically. When data is transferred from a source server, it
can be remapped or transformed in the target environment. With a database as
the target for InfoSphere CDC, changes are applied through standard
SQL statements.

In the rest of this chapter, we provide an architectural overview of InfoSphere
CDC, insight into its different implementation topologies, and a closer look at its
features and functionalities.

For more information about InfoSphere CDC, see the InfoSphere CDC
Information Center at:

http://publib.boulder.ibm.com/infocenter/cdc/v6r5m1/index.jsp

14.2 Architectural overview

This section presents the building blocks of InfoSphere CDC, and highlights the
mechanisms that are employed to ensure transaction integrity and
reliable performance.
492 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

http://publib.boulder.ibm.com/infocenter/cdc/v6r5m1/index.jsp

14.2.1 InfoSphere CDC architecture

Figure 14-1 provides an overview of the InfoSphere CDC architecture.
InfoSphere CDC has distinct software editions that are optimized for various
hardware platforms, operating system environments, and database vendors. An
InfoSphere CDC instance can operate as a replication source, replication target,
or simultaneously as a replication source and target. An InfoSphere CDC
instance can connect only to a single database, but more than one InfoSphere
CDC instance can connect to the same database. Sources and targets for
InfoSphere CDC replication are referred to as data stores. Data stores are logical
entities that represent the data files and processes required to accomplish data
replication. Each data store represents the database or target destination to
which you want to connect.

Figure 14-1 InfoSphere CDC architectural overview

Target datastoreSource datastore

Refresh Reader

Log Reader

Single Scrape

Admin API

Comm Layer

Source
transformation

engine

Source capture
engine

Admin Agent

Source instance

Source
database

Source
database

logs

Metadata

Command line
interface

Command line
interface

refresh

mirror

Access
Server

Management
Console

Admin API

Comm Layer

Source
transformation

engine

Target engine

Admin Agent

Target instance

Metadata

Target
database

JMS
messages

DataStage

Apply agent

TCP/IP
 Chapter 14. IBM InfoSphere Change Data Capture 493

The key components of the InfoSphere CDC architecture are:

� Management Console

An administration GUI application that you can use to configure and monitor
replication. You can use Management Console to manage replication on
various servers, specify replication parameters, and initiate refresh and
mirroring operations. Management Console can run only on Microsoft
Windows platforms, and can either be installed on the same server with other
components of the InfoSphere CDC solution (Windows platforms only) or
separately on a client workstation. After you define the data that be replicated
and starting replication, you can close Management Console on the client
workstation without affecting data replication activities between source and
target servers. Without the Management Console, InfoSphere CDC can be
administered through the command-line interface.

� Access Server

A server application that directs communications between Management
Console and replication engine processes, controlling all non-command line
access to the replication environment. When you log in to Management
Console, you are connecting to Access Server. Access Server can be closed
on the client workstation without affecting active data replication activities
between source and target servers.

� Command-line interface (CLI)

You can use the CLI to administer data stores and user accounts, and
perform administration scripting, independent of Management Console.

� Source and target data stores

Represent the data files and InfoSphere CDC instances that are required for
data replication. Each data store represents a database to which you want to
connect and acts as a container for your tables. Tables made available for
replication are contained in a data store.

� Metadata

Represents the information about the relevant tables, mappings,
subscriptions, notifications, events, and other particulars of a data replication
instance that you set up.

� Replication engine

Sends and receives data. The process that sends replicated data is the
Source Capture Engine and the process that receives replicated data is the
Target Engine. An InfoSphere CDC instance can operate as a source capture
engine and a target engine simultaneously.
494 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

� Admin API

Operates as an optional Java based programming interface that you can use
to script operational configurations or interactions.

� Source database logs

Maintained by the source database for its own recovery purposes. The
InfoSphere CDC log reader inspects these logs in the mirroring process, but
filters out the tables that are not in scope
for replication.

� Single scrape

Acts as a source-only log reader and a log parser component. It checks and
analyzes the source database logs for all of the subscriptions on the selected
data store.

� Source transformation engine

Processes row filtering, critical columns, column filtering, encoding
conversions, and other data to propagate to the target data store engine.

� Target transformation engine

Processes data and value translations, encoding conversions, user exits,
conflict detections, and other data on the target data store engine.

� Apply agent

Acts as the agent on the target that processes changes as sent by the source.

There are two replication methods that are supported with InfoSphere CDC:

� Refresh

Performs the initial synchronization of the tables from the source database to
the target. This method is read by the Refresh reader.

� Mirror

Performs the replication of changes to the target table or accumulation of
source table changes used to replicate changes to the target table later.
InfoSphere CDC supports bidirectional replication, which allows mirroring to
occur simultaneously to and from both the source and target tables.

There are three types of target-only destinations for replication that are
not databases:

� JMS Messages

Acts as a JMS message destination (queue or topic) for row-level operations
that are created as XML documents.
 Chapter 14. IBM InfoSphere Change Data Capture 495

� Flat files

Act as an intermediary stage for subsequent ETL processing.

� InfoSphere DataStage

Processes changes delivered from InfoSphere CDC that can be used by
InfoSphere DataStage jobs.

14.2.2 Transactional integrity and reliability

Transactional consistency is maintained by applying changes on the target
database in the same order they are run on the source database. Tables with
referential relationships must be incorporated within the same replication
subscription to ensure that referential integrity is maintained. More information
about table subscriptions is in the next section.

With relational database management systems (RDBMSes), all changes that are
made to the database system are written to the database log, including
uncommitted data that may be committed or rolled back. InfoSphere CDC
monitors these uncommitted changes at the source database, maintaining
changes that are associated with each open transaction in a separate queue.
These InfoSphere CDC queues are called Transaction Queues. Whenever a
commit is seen, associated changes are sent to the target database. If a rollback
is issued instead, associated changes are removed from the Transaction Queue.

Transaction Queues are shown in Figure 14-2.

Figure 14-2 Transaction Queues

Source instance

User B: INSERT INTO T2 ...
User B: INSERT INTO T1 ...
User B: ROLLBACK;

Queue A

Queue B

Dropped

Transaction Queues

Source database logs

Sent to
target Target

database

Source
database

User A: UPDATET1 ...
User B: INSERT INTO T2 ...
User A: DELETE FROM T2 ...
User B: INSERT INTO T1 ...
User A: COMMIT;
User B: ROLLBACK;

User A: UPDATET1 ...
User A: DELETE FROM T2 ...
User A: COMMIT;
496 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Bookmarks
InfoSphere CDC uses bookmarks to be able to recover from network or database
outages. Bookmarks enable InfoSphere CDC to maintain transaction tracking by
regularly storing information about successfully replicated transactions at the
target database.

Bookmarks mark points in the flow of replicated transactions, and contain all the
information InfoSphere CDC needs to continue replication after a normal
(planned) or abnormal (outage) interruption. Successfully received and applied
transactions have their bookmarks stored in a metadata table in the target
database. This metadata table is updated within the same unit of work with the
applied transaction.

Whenever replication is restarted, the target InfoSphere CDC instance
communicates the latest bookmark information to the source instance, and so
replication can continue without resending previously sent changes, and without
any data loss.

14.3 InfoSphere CDC topologies

InfoSphere CDC supports various solution topologies that cater to different
business needs. The flexibility of InfoSphere CDC with regards to database
systems, hardware platforms, and operating system environments is of particular
value for replication solutions that involve existing production systems. In this
section, InfoSphere CDC data stores, subscriptions, and table mappings are
introduced. Next, we cover some of the replication topologies and schemes that
are supported by InfoSphere CDC.

� Data stores

Data stores are logical entities that represent the data files and processes
required to accomplish data replication. Each data store represents the
database or target destination to which you want to connect.

� Subscriptions

A subscription is a connection that is required to replicate data between a
source data store and a target data store. It contains details about the data
that is being replicated and how the source data is applied to the target.
Subscriptions use data stores as the source or target of replicated data.
Multiple subscriptions can be defined for each InfoSphere CDC instance.
Each subscription uses a separate database connection.
 Chapter 14. IBM InfoSphere Change Data Capture 497

� Table mappings

After you define a subscription in Management Console, source and target
tables can be mapped for replication. Subscriptions can contain as many
table mappings as necessary. Management Console provides two
mechanisms for mapping:

– Multiple one-to-one table mappings

Map tables using one-to-one replication when you want to map multiple
source tables to multiple target tables at a time and these tables share a
table structure and similar table names. Using a wizard, Management
Console automatically maps tables that are based on an example
mapping you set up.

– Custom table mappings

Map tables using custom replication when you want to map only one
source table to one target table at a time. Use custom table mappings
when you need more control over the way the table is mapped. For
example, use custom mappings for tables that do not share a table
structure or similar table names, or for mappings where you must filter out
columns for a particular table.

� Column mappings

After you establish table mappings, source and target table individual column
mapping can be customized using Management Console.
498 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

14.3.1 Unidirectional replication

Unidirectional replication is the replication of data changes from source tables to
target tables or another destination that is designated by the administrator
(Figure 14-3).

Figure 14-3 Unidirectional replication

After you create a subscription, table mappings control the unidirectional
replication scheme that is adopted by InfoSphere CDC. In addition to standard
unidirectional replication, there are other types of table mapping setups available
with InfoSphere CDC that can tackle particular business needs.

Mapping using standard replication
Standard replication allows target tables to maintain an updated image of the
data that is contained in the source table. Source and target tables can be of
different types and you can transform the data that you replicate between the
source and the target. Under standard replication, InfoSphere CDC applies the
same operation that occurred on the source table to the target table. For
example, a row update operation on the source table determines a row update
operation on the target table.

Management
console

Source
InfoSphere CDC

instance

Target
database

Source
database

DataStage

JMS
messagesTarget

InfoSphere CDC
instance

TCP/IP

Log scraping
 Chapter 14. IBM InfoSphere Change Data Capture 499

Mapping using IBM LiveAudit
IBM LiveAudit™ allows your target tables to maintain an audit trail of operations
that are applied to the source table. Target tables contain rows that track insert,
update, delete, and truncate operations that are applied to the source tables.
Target tables may be set to maintain before and after values for source
table operations.

Mapping using Adaptive Apply
Adaptive Apply mapping allows error-free replication between source and target
tables that are not synchronized. InfoSphere CDC reacts intelligently to
operations that take place on the source table. For example, if there is an insert
on the source table, but that row exists in your target table, InfoSphere CDC
switches the insert to an update operation. Also, if there is an update on your
source table, and this row does not exist on your target table, then InfoSphere
CDC switches the update into an insert.

14.3.2 Bidirectional replication

Bidirectional replication involves replication from a source data store to a target
data store, and replication in the opposite direction (Figure 14-4). Table
mappings in both directions may be independent, in which case the setup may
be regarded as two independent unidirectional replication schemes.
Alternatively, table mappings may be set up to replicate the same table in both
directions. This bidirectional table replication scheme calls for mechanisms to
prevent recursion, and to detect and resolve conflicts with replicated data.

Figure 14-4 Bidirectional replication

Management
console

TCP/IP

Log scraping

SQL Apply

Log scraping

SQL Apply

InfoSphere CDC
instance A

Database
B

Database
A

InfoSphere CDC
instance B
500 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

If both servers are used to alter the same table data, recursive updates might
occur. A change on the source server is replicated to the target server, which
may be replicated back to the source. This scenario is prevented by setting
Prevent Recursion using the table mapping configuration.

You can use conflict detection and resolution to detect, log, and act on
inconsistent data on the target. This ability ensures that the replication
environment handles data conflicts automatically and in accordance with
business rules. As conflicts are detected and resolved, InfoSphere CDC logs
them in a conflict resolution audit table. More information about conflict detection
and resolution is presented later in 14.4, “Features and functionality” on
page 503.

14.3.3 Replication to other destinations

This section outlines other supported InfoSphere CDC destinations for
replication. For more information, see the Information Center at:

http://publib.boulder.ibm.com/infocenter/cdc/v6r5m1/index.jsp

JMS message queue
InfoSphere CDC can be set up to send XML messages to a JMS message
destination whenever it detects a transaction, boundary, or commit operation on
designated tables on the source database.

Flat files
InfoSphere CDC can replicate data changes to flat files, which can then be used
to feed an existing ETL solution or data warehouse appliance. Settings include
the destination file directory, and when produced files are considered complete
(hardened) for subsequent processing. This setting can be based on a particular
number of sent rows, or by using a time threshold. To maintain transaction
integrity, files can be hardened only on commit boundaries.

InfoSphere DataStage
In addition to using flat files to feed InfoSphere DataStage, the Direct Connect
method may be used to allow InfoSphere CDC to connect directly to InfoSphere
DataStage over a TCP/IP connection
 Chapter 14. IBM InfoSphere Change Data Capture 501

http://publib.boulder.ibm.com/infocenter/cdc/v6r5m1/index.jsp

14.3.4 High availability and disaster recovery with InfoSphere CDC

InfoSphere CDC is an efficient and reliable replication solution that can be used
in high availability or disaster recovery systems. In this section, we outline some
examples of InfoSphere CDC topologies for that purpose. We then list
advantages and limitations of InfoSphere CDC when used in a high availability or
disaster recovery scheme.

� Unidirectional replication to a disaster recovery site

InfoSphere CDC can be used to establish unidirectional replication between a
primary production server and a secondary server.

� Bidirectional replication to establish an active-active setup

InfoSphere CDC can be used to maintain synchronization between two
disparate active servers. InfoSphere CDC recursion prevention, and its
conflict detection and resolution capabilities, maintain data integrity and
consistency across both servers.

InfoSphere CDC has the following advantages:

� Replication can be set up to take place continuously in real time or
periodically using batches, for example, using hourly or nightly batches. More
information about types of replication is presented in 14.4, “Features and
functionality” on page 503.

� Platforms, operating systems, and database servers (or versions) for sources
and targets of replication do not need to be the same. This situation is
suitable for disaster recovery sites that are intended for active outdated
production servers. Furthermore, this situation allows for lower-cost hardware
to be used for secondary sites.

� InfoSphere CDC instances may be installed on the server alongside the
source or target database, or on a separate server that connects remotely to
the database server. Although InfoSphere CDC employs a non-invasive
approach to extracting changed data from production servers, having the
instance on a separate server can avoid resource consumption by InfoSphere
CDC on the production server.

� InfoSphere CDC can be configured to replicate specific tables, or specific
columns within specific tables. Replication of only sensitive or critical data
might suffice in some business cases.

� There is no distance limitation between replicated sources and targets with
InfoSphere CDC.
502 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

InfoSphere CDC has the following limitations:

� Non-logged operations are not mirrored. Examples include LOAD operations
on source tables. With such operations, refresh mode synchronization is
required to propagate changes.

� DB2 Data Description Language (DDL) changes on the source data store are
not captured and are not propagated to the target data store.

� Encrypted data can be replicated only between similar systems and
databases. For example, an encrypted database on a DB2 for Linux, UNIX,
and Windows server can be replicated only to a similar DB2 for Linux, UNIX,
and Windows server.

14.4 Features and functionality

In this section, we present some of the various features and functionalities
available with InfoSphere CDC.

14.4.1 Transformations

Transformations are needed when data is shared between heterogeneous data
stores. InfoSphere CDC incorporates advanced and diverse transformation
capabilities, some of which are:

� Data translations on column mappings

You can use Management Console to translate specific data in source
columns to new data before mapping to target columns. For example, you
may have a source column that is called CITY containing entries like NY, TO,
and CAI, which are codes that you want translated to a target column with
their full names (New York, Toronto, and Cairo). This ability is useful if you
have few data values or symbols that must be mapped to different values. It is
not practical with large data sets.

� Column functions

InfoSphere CDC provides a number of column functions that you can use in
expressions when you are mapping target columns. This capability is suitable
when low-level data manipulation is needed in the replication flow.
 Chapter 14. IBM InfoSphere Change Data Capture 503

The following categories outline the different sets of functions available with
InfoSphere CDC:

– String functions

During replication, you can have InfoSphere CDC concatenate multiple
strings, remove blank characters from a string, change the case of the
characters in a string, replace characters of a string with other characters,
or extract a substring from a string.

– Date and time functions

InfoSphere CDC can manipulate date and time values during replication.
You can add a two-digit century specification to a date, or retrieve the
current date and time.

– Conversion functions

InfoSphere CDC can convert values from one data type to another during
replication. You can convert from any value to a character string or a
numeric value, or from a numeric or character value to a
datetime-type value.

– Conditional and variable functions

InfoSphere CDC can evaluate an expression and return different results
(IF-ELSE behavior). InfoSphere CDC can also declare a new variable,
assign a value to it, or retrieve the value of an existing variable.

– Data functions

InfoSphere CDC can provide before or current values for rows. This
capability is useful if decisions must be made based on previous values
for columns.

User exits
In addition to the translation and transformation functions that are described in
the previous section, the user exit feature can be used to allow external
programs to manipulate data. External functions may be stored procedures or
Java programs. User exits allow InfoSphere CDC to start the defined subroutines
when a predefined event occurs.

Two types of user exits are available:

� Table-level user exits run a set of actions before or after a database event
occurs on a specified table.

� Subscription-level user exits run a set of actions before or after a commit
event occurs on a specified subscription.
504 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

You can use a table-level user exit to define a set of actions that InfoSphere CDC
can run before or after a database event occurs on a specified table. A database
event is defined as either a row-level operation or as a table-level operation.
Row-level operations include an insert, update, or a delete. Table-level
operations include a refresh or a truncate operation. For example, you can
configure a row-level user exit program that sends an alert after InfoSphere CDC
replicates a delete operation on a particular target table.

You can use a subscription-level user exit to define a set of actions that
InfoSphere CDC can run before or after a commit event occurs on a
specified subscription.

14.4.2 Replication modes

After you create subscriptions and mapping on your tables between the source
and target data stores, you can configure replication using the Management
Console. InfoSphere CDC supports two modes of replication:

� Refresh

Refresh replication usually performs the initial synchronization of the tables
from the source database to the target.

� Mirror

Mirroring handles the continuous replication of ongoing changes that take
place at the source data store.

Refresh mode replication
The InfoSphere CDC refresh operation is designed to synchronize source and
target tables. Source table data is read by the Refresh Reader at the source
InfoSphere CDC instance. With replication set up and in operation, tables might
need to be brought out of synchronization for a configuration change or for
maintenance operations.

Suspending replication for a particular table is referred to as parking. For
example, parking a table can be done to update the definition of the source table.
Changes that are taking place on the source during parking are not replicated to
the target.

After configuration changes or maintenance operations are complete, parked
tables can be flagged for a refresh. Tables that are flagged for refresh and have
a replication method of Mirror can be refreshed before mirroring begins.
InfoSphere CDC refreshes all of the flagged tables within a single subscription as
one sequential operation that runs to completion. Each table is refreshed
individually, one at a time, until all flagged tables are finished refreshing.
 Chapter 14. IBM InfoSphere Change Data Capture 505

InfoSphere CDC offers two types of refresh operations:

� Standard refresh

A standard refresh results in a complete copy of the data in a source table
being sent to the target table. This operation truncates or deletes the contents
of the target table and then inserts the new contents that are sent by the
source system.

� Differential refresh

A differential refresh updates the target table by applying only the differences
between it and the source table. Instead of the target table being cleared at
the start of the refresh and repopulated with data, differential refresh
compares each row in the target table with each row in the source table to
identify missing, changed, or additional rows. The primary advantage of a
differential refresh is that the target table stays online during the refresh
operation. A differential refresh can also track all performed changes on the
target during the refresh in a log table that is created in the target replication
engine. Furthermore, a differential refresh can log the necessary changes
without actually performing them on the target.

With tables that have referential integrity constraints, you can set a refresh order
to preserve these constraints during a refresh. For example, you might want
InfoSphere CDC to refresh your DEPARTMENT tables before you refresh your
EMPLOYEE tables, based on the fact that each employee belongs to a specific
department. You can change the order in which InfoSphere CDC refreshes your
table mappings by moving tables into groups. Each table that you decide to
move in to a group is assigned a sequence number that InfoSphere CDC uses to
refresh each table mapping in numerical order. Any remaining table mappings
that you did not add to a group are refreshed in an arbitrary order by InfoSphere
CDC after all groups are refreshed.

Mirror mode replication
InfoSphere CDC mirroring uses change data capture replication through log
scraping. InfoSphere CDC provides two types of mirroring: Continuous and
Scheduled End (Net Change):

� Continuous mirroring

Continuous mirroring replicates changes to the target on a continuous basis.
Use this type of mirroring when business requirements dictate that you need
replication to be running continuously with the source and target
synchronized always and you do not have a clearly defined point-in-time to
end replication. Continuous mirroring is also useful if your environment
experiences frequent changes to large volumes of data. Instead of capturing
these changes using a batch transfer, you can replicate changes to the target
on a continuous basis.
506 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

� Scheduled End (Net Change) mirroring

Scheduled End (Net Change) mirroring replicates changes (to the target) up
to a user-specified point in the source database log and then ends replication.
Use this type of mirroring when business requirements dictate that you
replicate data only periodically and you have a clearly defined end point for
the state of your target database when replication ends. You can use
Scheduled End (Net Change) mirroring to end replication at the following
points in your source database log:

– Current time or “Now”
– User-specified date and time
– User-specified log position

These user specified end points ensure that your target database is in a
known state when replication ends.

14.4.3 Filtering

InfoSphere CDC replication can be set up to filter particular rows or columns for
replication. Furthermore, particular “critical” columns can be set to control
whether rows are replicated when changes take place on the source table.

� Filtering rows

To include or exclude particular rows for replication, you must build a
row-filtering expression. All row-filtering expressions that you define must
return a Boolean result. For example, you might have a source column such
as SALARY that maintains the salary for each employee in your organization.
You might want to replicate only those rows to the target table for those
employees that have a salary greater than $48,000. In this scenario, you must
define a row-filtering expression (SALARY > 48000). You can use column
manipulation functions, basic numeric operators, and SQL SELECT WHERE
clauses in your row-filtering expressions.

� Critical columns

By default, InfoSphere CDC replicates inserts, updates, and deletes to the
target table during replication. However, you can control the updates that
InfoSphere CDC replicates using the select critical column feature. When you
select a column as critical, InfoSphere CDC compares the before and after
image of the row to determine if the critical column value changed during an
update. A row is only replicated for update operations when a critical column
has a value that differs from the before image.
 Chapter 14. IBM InfoSphere Change Data Capture 507

For example, you might have a source table that maintains customer account
information. Instead of receiving every update that is made to the source
table, you might want only the target table to receive the row when the
customer account balance is updated. In this scenario, you mark the
customer account balance column as a critical column. InfoSphere CDC
replicates only this row when there are updates that are made to that column
that result in a changed value. If the column is updated, but the value stays
the same, the row cannot be replicated.

� Filtering columns

By default, InfoSphere CDC replicates all mapped source columns to the
target table. If there is a source column you want to exclude for replication,
then you can filter it out using Management Console. Excluding source
columns for replication might become necessary if the column contains
confidential information that you do not want the target to receive.

14.4.4 Conflict detection and resolution

You can use conflict detection and resolution to detect, log, and act on
inconsistent data on the target. This capability ensures that your replication
environment handles data conflicts automatically and in accordance with your
business rules. This situation is important with bidirectional replication schemes.
As conflicts are detected and resolved, InfoSphere CDC logs them in a conflict
resolution audit table. Conflict resolution is enabled from Management Console
and can be set only for individual columns.

During replication, InfoSphere CDC detects conflicts when you:

� Insert a row and the row's key already exists in the target table. This situation
violates the unique key constraint.

� Update a row and the row's key does not exist in the target table.

� Update a row and the contents of the rows in the source table and target
table, before the update, do not match.

� Delete a row and the row's key does not exist in the target table.

� Delete a row and the contents of the rows in the source table and target table,
before the delete, do not match.

Conflict resolution is set using Management Console. Whenever a conflict is
detected, the following conflict resolution outcomes can be set to take place:

� Source wins

When InfoSphere CDC resolves conflicts so that the source column wins, it
applies the row from the source table to the target table. This ensures that the
target table row matches the data in your source table upon replication.
508 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

� Target wins

When InfoSphere CDC resolves conflicts for target wins, it does not apply any
source changes to the target table. This preserves the row in the target table,
as InfoSphere CDC does not apply data from the source in the event of
a conflict.

� Largest value wins

When InfoSphere CDC resolves conflicts for largest value wins, it applies the
change to the target if the source row has a larger value than the
corresponding row on the target table. InfoSphere CDC treats NULL values
as the smallest possible value. If the row does not exist on the target table,
then InfoSphere CDC uses NULL as the comparison value. If InfoSphere
CDC detects the conflict while it is deleting a row, then it uses the before
image of the source table and compares it to the target value.

� Smallest value wins

When InfoSphere CDC resolves conflicts for smallest value wins, it applies
only the change to the target if the value in the source row is smaller than the
corresponding row on the target table. Like the largest value wins resolution,
InfoSphere CDC treats NULL values as the smallest possible value. If the row
does not exist on the target table, then InfoSphere CDC uses NULL as the
comparison value. If InfoSphere CDC detects the conflict while it is deleting a
row, then it uses the before image of the source table and compares it to the
target value.

� User exit programs

When InfoSphere CDC resolves conflicts with a user exit program, it applies
the value that is returned by the user exit program to the target table to
resolve the conflict. For example, if a conflict occurs between numerical
quantity columns, you can create a user exit program that returns the sum of
both source and target values for the target.
 Chapter 14. IBM InfoSphere Change Data Capture 509

510 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Chapter 15. Geographically dispersed
high availability and disaster
recovery solutions

In this chapter, we concentrate on high availability (HA) scenarios with IBM
PowerHA SystemMirror software, where nodes are in geographically
dispersed locations.

One of the objectives in achieving high availability is to prevent a site from
becoming a single point of failure (SPOF). Using geographically dispersed sites
eliminates this possibility, because you have a standby site some distance from
the primary site.

We describe both storage area network (SAN) SAN Volume Controller mirroring
and Geographical Logical Volume Manager (GLVM) mirroring. We show steps to
configure simple configuration of GLVM with local and remote disks and show
steps to configure and implement GLVM with PowerHA and GLVM.

IBM DB2 pureScale Geographically Dispersed pureScale Cluster (GDPC) is not
described here. For more information about GDPC, see:

http://www.ibm.com/developerworks/data/library/long/dm-1104purescalegdp
c

15
© Copyright IBM Corp. 2007, 2012. All rights reserved. 511

http://www.ibm.com/developerworks/data/library/long/dm-1104purescalegdpc
http://www.ibm.com/developerworks/data/library/long/dm-1104purescalegdpc

This chapter covers the following topics:

� PowerHA over extended distances
� PowerHA data replication components
� Configuring a stand-alone GLVM
� Manual failover
� Configuring PowerHA with GLVM

15.1 PowerHA over extended distances

A single server with one copy of your corporate data is single point of failure. To
improve the availability of mission-critical data and increase data protection, you
must eliminate single points of failure. Several strategies are available to
customers to provide access to data with different levels of data protection
against accidental loss of important information.

One strategy is adding a second volume group with mirrored disks, which
protects against disk failure or disk adapter failure (Figure 15-1). Critical data is
duplicated (mirrored) from a principal volume group to a copy of the principal
volume group (VG) (mirrored volume group). This configuration uses AIX Logical
Volume Manager (LVM) mirroring.

.

Figure 15-1 Single node with single VG

Physical
Volume 1

Physical
Volume 2

Local AIX Node
512 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Mirroring a volume group eliminates a disk (and disk adapter) single point of
failure (Figure 15-2). However, the server is still a potential single point of failure
on the node.

Figure 15-2 Single node with mirrored VG

PowerHA enables a second server to be part of the cluster with the primary
server accessing a mirrored VG and a standby server that can take over the
function of the primary server (failover) if the primary server experiences a failure
(Figure 15-3).

Figure 15-3 PowerHA node with mirrored VG

Both the disk and disk adapter single points of failure can be eliminated by the
AIX LVM mirrored service. A server single point of failure can be eliminated by
using PowerHA cluster technology.

Volume Group

Physical
Volume 1

Physical
Volume 2

Mirrored Volume Group

Physical
Volume 3

Physical
Volume 4

Local AIX Node

Volume Group

Physical
Volume 1

Physical
Volume 2

Mirrored Volume Group

Physical
Volume 3

Physical
Volume 4

Local AIX Node BLocal AIX Node A
 Chapter 15. Geographically dispersed high availability and disaster recovery solutions 513

There is another single point of failure, that is, the site. A disaster, such as a fire,
explosion, a catastrophic power failure, at the primary site can possibly destroy
all the servers at the site. If both the primary and standby servers are at the same
site, all your data could be lost.

You can use PowerHA with GLVM to place servers with mission-critical data in
geographically dispersed sites that are several kilometers apart and use
separate power grids. Two sites, one called the primary site and the other called
the remote site, each host servers, that is, the primary server and remote server
(Figure 15-4). Mission-critical data is on a mirrored VG that spans both sites.
Remote disk access is enabled through a Remote Physical Volume (RPV) device
driver and a corporate Internet Protocol network.

Figure 15-4 PowerHA/GLVM complex

All single points of failure can be eliminated, except for the network itself.

PowerHA with GLVM allows up to four network connections between the primary
and remote sites. Those network connections are used for performance reasons,
but they also add redundancy for remote disk access.

You can use the PowerHA software to ensure continuous operation by enabling
a recovery of failed component within a single node at a single site by using a
primary and standby server.

PowerHA uses this basic capability of PowerHA and allows fallback and failover
between geographically dispersed nodes.

Volume Group 1

Physical
Volume 1

Physical
Volume 2

Mirrored Volume Group

Physical
Volume 3

Physical
Volume 4

Remote AIX NodeLocal AIX Node

TCP/IP WAN

RPV
Client

RPV Server
514 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

GLVM can be configured as a stand-alone solution or it can be combined with
PowerHA. When GLVM is configured as a stand-alone solution, the application
can access the same data regardless of where the application run, whether on
the primary site or on the remote site. The application cannot run on both sites at
the same time.

PowerHA with GLVM manages the failback and failover between primary and
remote sites, automates the failover and failback processes, adds automatic
failure detection and manages resources, for example, the GLVM mirrored
volume group.

The main function of the PowerHA software is to manage data replication
between local and remote nodes in a manner that is transparent to
the application.

15.2 PowerHA data replication components

In this section, we describe various components that can be used to build a
geographically dispersed solution based on PowerHA and GLVM.

15.2.1 PowerHA with SAN Volume Controller mirroring

PowerHA takes advantage of SAN advanced features, such as SAN Volume
Controller mirroring capabilities.

Data is replicated using the SAN Volume Controller data copy services capability
of the SAN subsystem. Copy services protect a mirrored copy from accidental
modification and ensure mirroring.

The PowerHA software provides failover and fallback capabilities and ensures
the integrity of the replicated data.

15.2.2 PowerHA with Geographical Logical Volume Manager

PowerHA/XD with GLVM enables data mirroring and disaster recovery
capabilities for geographically dispersed sites. Remote mirroring protects data
from being lost because of a total failure of one site. Remote mirroring over WAN
does not impose any distance limitation except for data propagation delays that
depend directly on link speeds. Remote mirroring enables access to data that is
replicated from both sites, thus enabling a business application to continue
running at a remote site while the local site is being repaired or serviced.
 Chapter 15. Geographically dispersed high availability and disaster recovery solutions 515

PowerHA automates the process of failover and fallback between local and
remote nodes and allows the inclusion of mirrored volume groups that consist of
a physical volume (PV) and remote physical volume (RPV) in the
PowerHA cluster.

PowerHA with GLVM has two main functions: remote data mirroring and
automated failover and fallback. Remote data mirroring is achieved by using
an RPV

RPV components
An RPV has two components:

� RPV client
� RPV server

An RPV client acts as a device driver, which appears to a source node as a disk
drive, but reroutes all I/O operation over WAN to the RPV server. It runs on the
node where the application issues I/O requests to the physical volumes.

An RPV server runs on the target node and completes I/O to the physical volume
that is replicated from the source node. It acts as a kernel extension and not as
an actual physical device.

For mutual failover and fallback, it is necessary to configure both pairs of the
RPV client and the PV server, with one pair for each site.

An RPV client is configured on the primary site and completes I/O on the remote
site by communicating with the RPV server at the remote site. Geographic
mirroring occurs between the RPV client and the RPV server. To enable
takeover in either direction, an RPV client that is configured at the remote site
must complete I/O on the primary site.

15.2.3 Geographical Logical Volume Manager

GLVM is based on Logical Volume Manager (LVM) concepts and extends the
mirroring capabilities of LVM to remote node by using an RPV client to connect to
an RPV server over a WAN.

LVM data mirroring performs write operations to a primary physical disk and to a
secondary disk (both disks are local) before it returns a notification of success
about the write operation. This classical mirroring technique prevents a single
point of failure when there is a local disk failure.
516 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

GLVM data mirroring performs write operation to a primary disk and to a
secondary disk that is implemented as an RPV client that sends data to be
written to a remote RPV server, which completes a write operation to the remote
server’s physical disk.

GLVM is implemented as a symmetric pair (source to remote and remote to
source) mirroring write operation, thus enabling failover and fallback.

GLVM is not aware that the disk is participating in the mirrored write operation is
at the remote node. During disk write operation, both the RPV client device driver
and LVM perform a single logical write I/O as a pair of physical writes to the local
PV and remote RPV; both the PV and RPV belong to the same VG.

During read I/O, LVM attempts to complete an operation from the local PV rather
than the remote RPV to enhance I/O performance.

A remote RPV can be thought of as an RPV client device driver connected over
WAN with the RPV server; this pair of device drivers implements a physical
remote I/O operation.

A simple local node and remote node cluster with mirrored volumes can be
further extended to become a multinode local cluster with fallback and failover
capabilities to a remote multinode cluster.

To prevent site partitioning and data divergence, in addition to the network that
carries I/O requests to remote site, you must configure a separate network that
sends heartbeats. A heartbeat network prevents node partitioning (split-brain
syndrome) if there is a catastrophic failure, where all the I/O request
networks fail.

15.2.4 Synchronous and asynchronous data mirroring

GLVM can be configured for synchronous and asynchronous mirroring.
Synchronous versus asynchronous choices are dictated by network bandwidth
and network latency.

In synchronous mode, each logical volume write I/O is considered complete
when data is written to both the local and remote mirrors. This mode of operation
ensures that both sites have a current copy of the data. The advantage of using
synchronous mode is that logical volume read I/O is faster, because data is on a
local disk; there is no data loss when either node fails. A limitation of
synchronous mode is that logical write I/O that depends on network throughput is
slower. Logical write operations now depend on both network latency and
network bandwidth.
 Chapter 15. Geographically dispersed high availability and disaster recovery solutions 517

Network saturation happens when data sent over the WAN exceeds the
network’s capacity. If the network operates at capacity, a slowdown in writing
transmitted buffers occurs. This saturation can be remedied by either migrating
to a higher bandwidth network, by adding another network link, or by applying
both strategies. The RPV device driver supports up to four data networks that
carry I/O requests.

Network latency depends mainly on the distance between the RPV client and
RPV server; the speed of the network determines latency. For each I/O request,
the time for a round trip of the I/O request and the corresponding I/O status
effectively limits the distance over which using LVM in synchronous mode
is feasible.

When an application workload and the corresponding requirements for I/O
completion are such that the network latency exceeds those requirements,
asynchronous mirroring is an alternative option. In the asynchronous mode of
data mirroring, the primary site I/O requests complete while the remote site I/O
requests (when you consider primary to remote mirroring) are updated
asynchronously, that is, they are buffered, cached, and transmitted as the
network bandwidth allows. The advantage of asynchronous mode is that logical
write I/O operations depend on local disk write time, thus improving application
response time. Bursts of intense write operations are absorbed by the local
cache. A limitation of this mode is that there is some risk of data loss, because
the remote node has backed up data. There is also possibility of
data divergence.

In addition, when the workload of an application is so large that the local buffers
and the cache become full, there is no advantage to using asynchronous
mirroring. So, the only approach is to use synchronous mirroring with an increase
in network bandwidth or the speed or number of networks that are used in
data mirroring.

Your decision whether to use GLVM or HADR depends on the DB2 workload and
the number of databases. HADR defines a HA relationship between a pair of
databases and achieves its goal by using transaction logs and transaction log
buffers replication. The amount of data that is transferred over the WAN depends
on the transaction log file size, which is controlled by the database configuration
parameter LOGFILSIZ, and on the transaction log buffer size, which is controlled
by the database configuration parameter LOGBUFSIZ, for each of the databases
that participate in the HADR setup. GLVM mirrors disks, and the amount of data
that is transferred over the WAN depends on the number of write I/O operations
that are performed on file systems on the mirrored disks.
518 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

For a single pair of databases, HADR might be more efficient compared to
GLVM. For workloads that are not write intensive, GLVM might be a more
satisfactory solution. Read I/O operations are completed using a local copy of the
data rather than a mirrored remote copy; the read I/O is less dependent on the
throughput of the WAN link. Write I/O operation, in synchronous mode, must be
complete on the local and remote copies for each write operation, and are more
dependent on WAN link throughput.

15.3 Configuring a stand-alone GLVM

GLVM is part of the PowerHA Enterprise Edition. The following examples are
based on PowerHA Enterprise Edition in PowerHA 6.1 EE for AIX V6.1.

Our test environment consists of two nodes:

� NC047089.kraklab.pl.ibm.com (localnode)
� NC047094.kraklab.pl.ibm.com (remotenode)

NC047089 (localnode) has a public IP address of 9.156.47.89 and a private IP
address of 10.1.1.14 (which is used for GLVM data traffic).

NC047094 (remotenode) has a public IP address of 9.156.47.94 and a private IP
address of 10.1.1.16 (which is used for GLVM data traffic).

Our sample starting disk configuration is shown in Example 15-1.

Example 15-1 Sample disk configuration

[root@NC047089.kraklab.pl.ibm.com]:/ # lspv
hdisk0 00cca5e4a4fd37c2 rootvg
active
hdisk1 00cca5e4b9b5ffe1 None
hdisk2 00cca5e4ffa033b7 None

[root@NC047094.kraklab.pl.ibm.com]:/ # lspv
hdisk0 00cca5e4a4fe0209 rootvg
active
hdisk1 00cca5e4b9b5ffe1 None
hdisk2 00cca5e4ff9dd0cb None

Using physical volume identifiers (PVID), hdisk1 is a shared disk between the
two nodes. hdisk1 is not used in the GLVM stand_alone setup. hdisk2 is not
shared between both nodes.
 Chapter 15. Geographically dispersed high availability and disaster recovery solutions 519

To configure GLVM, complete the following steps:

1. Install the GLVM related file sets.

From the PowerHA Enterprise Edition distribution media, install the following
file sets:

– glvm.rpv.client 6.1.0.0 COMMITTED Remote Physical Volume Client

– glvm.rpv.server 6.1.0.0 COMMITTED Remote Physical Volume Server

– glvm.rpv.util 6.1.0.0 COMMITTED Geographic LVM Utilities

You can install these file sets by using either smit (GUI) or smitty (CLI). The
smitty glvm_utils command opens the main menu from which most of the
configuration steps be run, except those steps that use the base AIX LVM
configuration. All configuration steps are performed as the root user.

2. Define node names.

Run smitty glvm_utils and select Remote Physical Volume Servers 
Remote Physical Volume Server Site Name Configuration. Name the nodes
as follows:

– Node NC047089 is named localnode.

– Node NC047094 is named remotenode.

3. Define an RPV server on remotenode.

On remotenode, run smitty glvm_utils and select Remote Physical Volume
Servers  Servers  Add Remote Physical Volume Server. Complete the
following steps:

a. Select hdisk2 from the list of available disks.

b. Select 10.1.1.14 as the Remote Physical Volume Client IP address.

c. Set Configure Automatically at System Restart and Start New Devices
Immediately options are set to no.
520 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Upon successful execution, rpvserver0 is created in a defined state
(Example 15-2).

Example 15-2 Remote Physical Volume Server configuration

Change / Show a Remote Physical Volume Server

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

 [Entry
Fields]
 Remote Physical Volume Server rpvserver0
 Physical Volume Identifier
00cca5e4ff9dd0cb
 Remote Physical Volume Client IP address [10.1.1.14]
+
 Configure Automatically at System Restart? [no]

4. Define an RPV client on localnode.

To define an RPV client on localnode, an RPV server on remotenode must be
in the available state. Complete the following steps:

a. On remotenode, run smitty glvm_utils and select Remote Physical
Volume Servers  Configure Defined Remote Physical Volume Servers.

b. Select rpserver0 and put it in to the available state.

To verify the state of the RPV server, run lsdev -t rpvstype
(Example 15-3).

Example 15-3 Verify RPV server state with rpvstype command

[root@NC047094.kraklab.pl.ibm.com]:/ # lsdev -t rpvstype
rpvserver0 Available Remote Physical Volume Server

c. On localnode, run smitty glvm_utils and select Remote Physical Volume
Clients  Add Remote Volume Clients. Complete the following steps:

i. For Remote Physical Volume Server IP address, enter a private
network address of 10.1.1.16 for remotenode.

ii. For Remote Physical Volume Local IP address, enter a private network
address of 10.1.1.14 for localnode.

iii. Set Start New Devices Immediately to no.
 Chapter 15. Geographically dispersed high availability and disaster recovery solutions 521

Upon successful completion of the command, a “virtual” disk named hdisk3 is
created and put in the defined state. The lsdev -t rpvclient command
shows the RPV client state and virtual disk name. The lsattr -El hdisk3
command shows all the details of the defined virtual disk (Example 15-4).

Example 15-4 RPV virtual disks details

[root@NC047089.kraklab.pl.ibm.com]:/ # lsdev -t rpvclient
hdisk3 Defined Remote Physical Volume Client

[root@NC047089.kraklab.pl.ibm.com]:/ # lsattr -El hdisk3
io_timeout 180 I/O Timeout Interval
True
local_addr 10.1.1.14 Local IP Address
(Network 1) True
local_addr2 none Local IP Address
(Network 2) True
local_addr3 none Local IP Address
(Network 3) True
local_addr4 none Local IP Address
(Network 4) True
pvid 00cca5e4ff9dd0cb0000000000000000 Physical Volume
Identifier True
server_addr 10.1.1.16 Server IP Address
(Network 1) True
server_addr2 none Server IP Address
(Network 2) True
server_addr3 none Server IP Address
(Network 3) True
server_addr4 none Server IP Address
(Network 4) True

You created an RPV client to RPV server definition from localnode to
remotenode. Now you must set up the RPV client to RPV server definition
remotenode to localnode. Complete the following steps:

a. On remotenode, run smitty glvm_utils and select Remote Physical
Volume Servers  Remove Remote Physical Servers

b. Select rpserver0 set Keep definition in database to yes.
522 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Upon successful completion of this command, the RPV server rpserver0 is
in the defined state (Example 15-5).

Example 15-5 Verify RPV server defined - checking

[root@NC047094.kraklab.pl.ibm.com]:/ # lsdev -t rpvstype
rpvserver0 Defined Remote Physical Volume Server

c. On localnode, run smitty glvm_utils and select Remote Physical Volume
Servers  Servers  Add Remote Physical Volume Server:

i. Select hdisk2 from the list of available disks.

ii. Select 10.1.1.16 for Remote Physical Volume Client IP address.

iii. Set Configure Automatically at System Restart and Start New Devices
Immediately to no.

Upon successful execution, rpvserver0 is created in the defined state.

To define an RPV client on remotenode, an RPV server on localnode must be
in the available state. Complete the following steps:

a. On localnode, run smitty glvm_utils  Remote Physical Volume
Servers  Configure Defined Remote Physical Volume Servers.

b. Select rpserver0. Upon successful completion of the command, it is in the
available state.

You can run lsdev -t rpvstype to verify the state of the RPV server
(Example 15-6).

Example 15-6 lsdev -t rpvstype used to verify the state of the RPV server

[root@NC047089.kraklab.pl.ibm.com]:/ # lsdev -t rpvstype
rpvserver0 Available Remote Physical Volume Server

c. On remotenode, run smitty glvm_utils and select Remote Physical
Volume Clients  Add Remote Volume Clients:

i. For Remote Physical Volume Server IP address, enter a private
network address of 10.1.1.14 for localnode.

ii. For Remote Physical Volume Local IP address, enter a private network
address of 10.1.1.16 for remotenode.

iii. Set Start New Devices Immediately to no.

Upon successful completion of the command, a virtual disk named hdisk3
is created and is in the defined state.
 Chapter 15. Geographically dispersed high availability and disaster recovery solutions 523

The lsdev -t rpvclient command shows the RPV client state and virtual
disk name. The lsattr -El hdisk3 command shows all the details of the
defined virtual disk.

The following states should exist for the RPV clients and servers, depending
on the direction of replication:

– localnode to remotenode:

• On localnode, the RPV client is available and the RPV server is
defined.

• On remotenode, the RPV client is defined and the RPV server is
available (Example 15-7).

Example 15-7 lsdev command output

[root@NC047089.kraklab.pl.ibm.com]:/ # lsdev -t rpvclient
hdisk3 Available Remote Physical Volume Client
[root@NC047089.kraklab.pl.ibm.com]:/ # lsdev -t rpvstype
rpvserver0 Defined Remote Physical Volume Server

[root@NC047094.kraklab.pl.ibm.com]:/ # lsdev -t rpvclient
hdisk3 Defined Remote Physical Volume Client
[root@NC047094.kraklab.pl.ibm.com]:/ # lsdev -t rpvstype
rpvserver0 Available Remote Physical Volume Server

– remotenode to localnode:

• On localnode, the RPV client is defined and the RPV server
is available.

• On remotenode, the RPV client is available and the RPV server
is defined.

5. Create volume groups.

To create a volume group, run a SMIT command. On localnode, run the
following command:

smitty mkvg

A scalable volume group named glvm_vg is created. Both the local disk
hdisk2 and virtual disk hdisk3 are selected. The option Activate volume group
AUTOMATICALLY at system restart is set to no.
524 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Volume Group MAJOR NUMBER is set to the first available number in both
localnode and remote node. It can be verified by running lvlstmajor on both
nodes. You should pick one common number as a preferred practice
(Example 15-8).

Example 15-8 Creating volume groups

* VOLUME GROUP name glvm_vg
* Activate volume group AUTOMATICALLY no
+
 at system restart?
* A QUORUM of disks required to keep the volume no
+
 group on-line ?
 Convert this VG to Concurrent Capable? no
+
 Change to big VG format? no
+
 Change to scalable VG format? no
+
 LTG Size in kbytes 256
+
 Set hotspare characteristics n
+
 Set synchronization characteristics of stale n
+
 partitions
 Max PPs per VG in units of 1024 32
+
 Max Logical Volumes 256
+
 Mirror Pool Strictness

QUORUM of disks required should be set to no. You can change this value by
running the following command:

chvg -Q n glvm_vg

You can also change it by running smitty chvg.

After creating the glvm_vg volume group, vary it online by running the
following command:

varyonvg glvm_vg
 Chapter 15. Geographically dispersed high availability and disaster recovery solutions 525

6. Create logical volumes.

Create two logical volumes in glvm_vg volume group by running smitty mklv:

– glvm_lv (JFS2 logical volume).

– glvm_log (JFS2 log logical volume).

a. Set PHYSICAL VOLUME names to local disk hdisk2 only.

b. Set Number of COPIES of each logical partition to 1.

c. Set Allocate each logical partition copy on a SEPARATE physical volume
to superstrict (Example 15-9).

Example 15-9 Creating logical volumes

LOGICAL VOLUME: glvm_lv VOLUME GROUP:
glvm_vg
LV IDENTIFIER: 00cca5e400004c000000013905551887.1
PERMISSION: read/write
VG STATE: active/complete LV STATE:
opened/syncd
TYPE: jfs2 WRITE VERIFY: off
MAX LPs: 512 PP SIZE: 8
megabyte(s)
COPIES: 2 SCHED POLICY:
parallel
LPs: 256 PPs: 512
STALE PPs: 0 BB POLICY:
relocatable
INTER-POLICY: minimum RELOCATABLE: yes
INTRA-POLICY: middle UPPER BOUND: 1
MOUNT POINT: /glvm_fs LABEL:
/glvm_fs
MIRROR WRITE CONSISTENCY: on/ACTIVE
EACH LP COPY ON A SEPARATE PV ?: yes (superstrict)
Serialize IO ?: NO
DEVICESUBTYPE : DS_LVZ
COPY 1 MIRROR POOL: None
COPY 2 MIRROR POOL: None
COPY 3 MIRROR POOL: None

LOGICAL VOLUME: glvm_log VOLUME GROUP:
glvm_vg
LV IDENTIFIER: 00cca5e400004c000000013905551887.2
PERMISSION: read/write
VG STATE: active/complete LV STATE:
opened/syncd
526 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

TYPE: jfs2log WRITE VERIFY: off
MAX LPs: 512 PP SIZE: 8
megabyte(s)
COPIES: 2 SCHED POLICY:
parallel
LPs: 256 PPs: 512
STALE PPs: 0 BB POLICY:
relocatable
INTER-POLICY: minimum RELOCATABLE: yes
INTRA-POLICY: middle UPPER BOUND: 1
MOUNT POINT: N/A LABEL: None
MIRROR WRITE CONSISTENCY: on/ACTIVE
EACH LP COPY ON A SEPARATE PV ?: yes (superstrict)
Serialize IO ?: NO
DEVICESUBTYPE : DS_LVZ
COPY 1 MIRROR POOL: None
COPY 2 MIRROR POOL: None
COPY 3 MIRROR POOL: None

The JFS2 log logical volume is initialized by running the following command:

logform /dev/glvm_log

7. Create file systems.

To create a file system, run smitty crfs and select Add an Enhanced
Journaled File System  Add an Enhanced Journaled File System on a
Previously Defined Logical Volume. The JFS2 file system glvm_fs is created
in our example.

Set Mount AUTOMATICALLY at system restart to no (Example 15-10).

Example 15-10 Configure file systems

File system name /glvm_fs
 NEW mount point [/glvm_fs]
 SIZE of file system
 Unit Size 512bytes
+
 Number of units [4194304]
#
 Mount GROUP []
 Mount AUTOMATICALLY at system restart? no
+
 PERMISSIONS read/write
+

 Chapter 15. Geographically dispersed high availability and disaster recovery solutions 527

 Mount OPTIONS []
+
 Start Disk Accounting? no
+
 Block Size (bytes) 4096
 Inline Log? no
 Inline Log size (MBytes) [0]
#
 Extended Attribute Format [v1]
 Enable Quota Management? no
+
 Allow Small Inode Extents? yes
+
 Enable EFS? no

8. Create a GLVM copy.

Create a GLVM copy for each of the defined logical volumes by running
smitty glvm_utils and selecting Geographically Mirrored Logical
Volumes  Add a Remote Site Mirror Copy to a Logical Volume and set the
following values:

a. Select the appropriate logical volume, the remote location, and the remote
physical volume (virtual disk name).

b. Set NEW TOTAL number of logical partition copy to 2.

c. Set Allocate each logical partition copy on a SEPARATE physical volume
should be set to superstrict (Example 15-11).

Example 15-11 Creating GLVM copy

* LOGICAL VOLUME name glvm_lv
* NEW TOTAL number of logical partition copies 2
+
* REMOTE PHYSICAL VOLUME name hdisk3
 POSITION on physical volume outer_middle
+
 RANGE of physical volumes minimum
+
 Allocate each logical partition copy on a SEPARATE superstrict
 physical volume?
 SYNCHRONIZE the data in the new logical partition no
+
 copies?
528 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

* LOGICAL VOLUME name glvm_log
* NEW TOTAL number of logical partition copies 2
+
* REMOTE PHYSICAL VOLUME name hdisk3
 POSITION on physical volume outer_middle
+
 RANGE of physical volumes minimum
+
 Allocate each logical partition copy on a SEPARATE superstrict
 physical volume?
 SYNCHRONIZE the data in the new logical partition no
+
 copies?

9. Import GLVM Volume groups on to the remote node.

When you finish creating volume groups, logical volumes, file systems, and
the GLVM copy on localnode, import the GLVM volume group imported on to
remotenode. Run the following commands:

– umount /glvm_fs file system

– varyoffvg glvm_vg

On localnode, the RPV client changes from the available state to the
defined state.

Then, on remotenode, the RPV server changes from the available state to the
defined state

Then, on localnode, the RPV server changes from the defined state to the
available state.

FInally, on remotenode, the RPV client changes from the defined state to the
available state.

After you verify that all the resources are in the correct states, import the
GLVM volume group by running the following command:

importvg -y glvm_vg -V 34 hdisk2

If the import is successful, varyon the volume group by running the
following command:

varyonvg glvm_vg

10.Completing the environment setup.

– glvm_vg should be operational on remotenode.
 Chapter 15. Geographically dispersed high availability and disaster recovery solutions 529

– DB2 10.1 is installed and configured on both localnode and remotenode.
Because the location of the DB2 file sets is standard on AIX
(/opt/IBM/db2/V10.1), which is located on the local hdisk0 for both nodes,
the installations can be performed in parallel. Standard installation options
are chosen, and the instance is created and started automatically. DB2 is
not aware of GLVM mirroring and it should not be.

– A SAMPLE database is created on the glvm_fs file system by running the
following command:

db2sampl -dbpath /glvm_fs

When the SAMPLE database is created, you can perform simple tests on
it, such as listing the created tables and listing the contents of the selected
tables to verify that DB2 installed correctly and operates satisfactory.

15.4 Manual failover

In this section, we describe the procedure for the manual failover of the GLVM
mirrored volume group.

Complete the following steps:

1. On remotenode:

a. Stop the DB2 instance and DB2 administration server by running the
following commands:

i. As the instance owner, run the following commands:

db2stop
db2terminate

ii. As DB2 administration server owner, run the following command:

db2admin stop

b. As root, run the following commands:

umount /glvm_fs
varyoffvg glvm_vg

On remotenode, the RPV client changes from the available state to the
defined state.

Then, on localnode, the RPV server changes from the available state to the
defined state.

Then, on the remotenode, the RPV server changes from the defined state to
the available state.
530 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Finally, on the localnode, the RPV client changes from the defined state to the
available state.

2. Run varyonvg glvm_vg.

3. Run mount /glvm_fs.

Now the GLVM volume group belongs to localnode and can be verified by
running using the GLVM commands rpvstat and gmvgstat (Example 15-12).

Example 15-12 Remote Physical Volume Statistics

[root@NC047089.kraklab.pl.ibm.com]:/ # rpvstat

Remote Physical Volume Statistics:

 Comp Reads Comp Writes Comp KBRead Comp KBWrite
Errors
RPV Client cx Pend Reads Pend Writes Pend KBRead Pend KBWrite
------------------ -- ----------- ----------- ------------ ------------

hdisk3 1 100 1140 801 9748
0
 0 0 0 0
[root@NC047089.kraklab.pl.ibm.com]:/ # gmvgstat
GMVG Name PVs RPVs Tot Vols St Vols Total PPs Stale PPs
Sync
--------------- ---- ---- -------- -------- ---------- ----------

glvm_vg 1 1 2 0 2542 0
100%

Because the SAMPLE database is created on the /glvm_fs file system while
glvm_vg was operational on remotenode, the SAMPLE database must be
catalogued on localnode as the instance owner. To accomplish this task, run the
following commands:

� db2start
� db2 catalog database SAMPLE on /glvm_fs

15.5 Configuring PowerHA with GLVM

The manual process of failover is prone to error and requires specific actions to
be taken at both local and remote nodes in a specific order. You should replace
the manual process with scripts.
 Chapter 15. Geographically dispersed high availability and disaster recovery solutions 531

More automatic processing can be achieved by fully using PowerHA and
incorporating the GLVM volume group as a resource controlled by PowerHA.
GLVM volume groups can be part of the PowerHA resources under the control of
PowerHA. GLVM volume groups must be defined, created, and operational
before adding them to a PowerHA resource group. PowerHA recognizes them
correctly and calls the appropriate events for their processing.
532 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Appendix A. PowerHA application server
scripts

In this appendix, we provide application server scripts that are used in an HADR
with PowerHA SystemMirror environment. The application server start and stop
scripts are used to automate the HADR takeover.

This appendix covers the following topics:

� hadr_primary_takeover.ksh
� hadr_primary_stop.ksh
� hadr_monitor.ksh

A

© Copyright IBM Corp. 2007, 2012. All rights reserved. 533

A.1 hadr_primary_takeover.ksh

Example A-1 shows a sample script for HADR takeover in an HADR with
PowerHA environment.

Example: A-1 hadr_primary_takeover.ksh

#!/usr/bin/ksh -x

##
hadr_primary_takeover.ksh
This script is called when Rotating Resource Group starts.
Skip processes in NORMAL PowerHA START UP.
#Issue hadr takeover when fail over case.
##

exec >> /tmp/`basename $0`.log
exec 2>&1

echo "##"
date
echo "##"

set -x

################################
set PARAMETER
################################
. /home/hadrinst/scripts/env

################################
set START_MODE
################################
LOCAL=HOMELOCAL!=HOME
PRE=""NOMALFALLOVER(manual online operation)
PRE!=""FALLBACKFALLOVER

/usr/es/sbin/cluster/utilities/clRGinfo -a >/dev/null 2>&1
if [[$? != 0]]; then
echo PowerHA must be running
exit 1
fi
534 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

/usr/es/sbin/cluster/utilities/clRGinfo -a

/usr/es/sbin/cluster/utilities/clRGinfo -a | grep $R_RG \
| awk -F\" '{print $2}' | awk -F\: '{print $1}' | read PRENODE

if [["$PRENODE" = ""]]; then
 START_MODE="NORMAL"
else
 START_MODE="FALLOVER"
fi

################################
MONITOR HADR ROLE & STATE
################################
#Get HADR State,HADR Role(snapshot/db cfg)
${HADR_MONITOR} ${DB2HADRINSTANCE1} ${DB2HADRINSTANCE2} ${DB2HADRDBNAME} ${VERBOSE}|
read ROLE_CFG_LOCAL STATE_SNP_LOCAL ROLE_SNP_LOCAL

################################
MAIN
################################
case ${START_MODE} in
NORMAL)

echo "Start trigger is Normal startup: Skip HADR operations"
;;
FALLOVER)

echo "Start trigger is Takeover: Check HADRÇÃrole & state"

if [["${ROLE_SNP_LOCAL}" = "Primary"]]; then
already primary
echo "HADR role is already Primary:Skip HADR operations. When you stop PowerHA

in takeover mode, stop script changes HADR role before this script is issued."

elif [["${ROLE_SNP_LOCAL}" = "Standby"]]; then
this instance is standby
try takeover by force
echo "HADR role is Standby: Execute HADR TAKEOVER BY FORCE"
#
${SU_CMD} "db2 takeover hadr on db ${DB2HADRDBNAME} by force"

elif [["${ROLE_SNP_LOCAL}" = "Standby" && "${STATE_SNP_LOCAL}" = "Peer"]]; then
this instance is standby peer
try takeover by force
 Appendix A. PowerHA application server scripts 535

echo "HADR role is Standby and HADR status is Peer: Execute HADR TAKEOVER BY
FORCE:"

${SU_CMD} "db2 takeover hadr on db ${DB2HADRDBNAME} by force"

elif [["${ROLE_SNP_LOCAL}" = "Standby" && "${STATE_SNP_LOCAL}" != "Peer"]]; then
this instance is not standby peer
echo "HADR role is Standby but HADR status is Not Peer: You might lose data by

takeover for inconsistency of databases, Skip HADR operations."

else
echo "HADR role is neithe Primary or Standby: Skip HADR operations "

fi
;;

esac

date

exit 0

A.2 hadr_primary_stop.ksh

Example A-2 shows a sample stop script for HADR takeover in an HADR with
PowerHA environment.

Example: A-2 hadr_primary_stop.ksh

Normal stop operation: No operation is done.
Stop in takeover mode: If HADR Primary & Peer, execute hadr takeover on Standby by
remote command
##

exec >> /tmp/`basename $0`.log
exec 2>&1

echo "##"
date
echo "##"

set -x

################################
536 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

set PARAMETER
################################
. /home/hadrinst/scripts/env

################################
set STOP_MODE
################################
LOCAL=HOMELOCAL!=HOME
PRE=""NOMALFALLOVER(manual online operation)
PRE!=""FALLBACKFALLOVER

/usr/es/sbin/cluster/utilities/clRGinfo -a >/dev/null 2>&1
if [[$? != 0]]; then
echo PowerHA must be running
exit 1
fi

/usr/es/sbin/cluster/utilities/clRGinfo -a

/usr/es/sbin/cluster/utilities/clRGinfo -a | grep $R_RG \
| awk -F\" '{print $2}' | awk -F\: '{print $2}' | read POSTNODE

if [["$POSTNODE" = ""]]; then
STOP_MODE="NORMAL"

else
STOP_MODE="FALLOVER"

fi

################################
MONITOR HADR ROLE & STATE
################################
#Get HADR State, HADR Role (snapshot, db cfg)
${HADR_MONITOR} ${DB2HADRINSTANCE1} ${DB2HADRINSTANCE2} ${DB2HADRDBNAME} ${VERBOSE} |
read ROLE_CFG_LOCAL STATE_SNP_LOCAL ROLE_SNP_LOCAL

################################
MAIN
################################
case ${STOP_MODE} in
NORMAL)

echo "Stop PowerHA in graceful mode"
;;
 Appendix A. PowerHA application server scripts 537

FALLOVER)
echo "Stop PowerHA in takeover mode "

if [["${ROLE_SNP_LOCAL}" = "Primary" && "${STATE_SNP_LOCAL}" = "Peer"]]; then
echo "HADR takeoveris issued on remote node"
/usr/es/sbin/cluster/sbin/cl_nodecmd -cspoc "-n ${REMOTENODE}" ${SU_CMD} "db2

takeover hadr on db ${DB2HADRDBNAME}"
fi

;;

esac

date

exit 0

env.sh

DB2HADRINSTANCE1=hadrinst # replace db2instp with P's instance name
DB2HADRINSTANCE2=hadrinst # replace db2insts with S's instance name
DB2HADRDBNAME=sample # replace hadrdb with HADR db name
VERBOSE=verbose # change to verbose to get more diagnostics logged
R_RG=hadr_rg rotating resource group name
C_RG=db2_rg concurrent resource group name

SU_CMD="su - ${DB2HADRINSTANCE1} -c" #su command
LOCALNODE=`/usr/es/sbin/cluster/utilities/get_local_nodename` #LOCAL NODE
#REMOTENODE=`/usr/es/sbin/cluster/utilities/clrsctinfo -cp cllsif | grep -v
${LOCALNODE} | cut -f 6 -d ":" | uniq` #REMOTE NODE

LANG=C

/usr/bin/env LANG=C /usr/es/sbin/cluster/utilities/clshowres -g "${R_RG}" | grep
"Participating Node Name(s)" | awk '{print $4 " " $5}' | read n1 n2

if [["${n1}" = "${LOCALNODE}"]];then
REMOTENODE=${n2}

else
REMOTENODE=${n1}

fi
538 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

HADR_MONITOR="/home/hadrinst/scripts/hadr_monitor.ksh" # Get HADR State HADR
Role (snapshot, db cfg)
#! /usr/bin/ksh

A.3 hadr_monitor.ksh

Example A-3 shows a sample script for monitoring the HADR state.

Example: A-3 hadr_monitor.ksh

hadr_monitor.ksh
##
hadr_monitor.ksh
This script is called by Concurrent Resource Group start script,
Rotate Resource Group starts/stops script,
and application monitor.
#
1.Get HADR role and state by database snapshot
2.Get HADR role by database configurations
##
set -x

################################
SET PARAMETER
################################
. /home/hadrinst/scripts/env

################################
GET HADR ROLE & STATE
################################

HADR_PROBE=`${SU_CMD} "db2 get snapshot for database on ${DB2HADRDBNAME}" | awk '($1
== "State" && $2 == "=") || ($1 == "Role" && $2 == "=")' | sort | awk '{print $3}'`
echo $HADR_PROBE | read hadr_role hadr_state other

if [["${hadr_state}" = "" || "${other}" != ""]];then
hadr_role=$(${SU_CMD} "db2 get snapshot for database on ${DB2HADRDBNAME}" | awk '

$1 == "Role" && $2 == "=" {print $3}')
hadr_state=$(${SU_CMD} "db2 get snapshot for database on ${DB2HADRDBNAME}" | awk

' $1 == "State" && $2 == "=" {print $3}')
fi
 Appendix A. PowerHA application server scripts 539

hadr_role_cfg=$(${SU_CMD} "db2 get db cfg for ${DB2HADRDBNAME} | grep 'HADR database
role' | awk '{print \$5}'")

echo $hadr_role_cfg $hadr_state $hadr_role

exit 0
540 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Appendix B. IBM Tivoli System
Automation for
Multiplatforms takeover
scripts

In this appendix, we provide custom takeover scripts that can be used in the
HADR with IBM Tivoli System Automation for Multiplatforms (Tivoli SA MP)
environment.

The start, monitor, and stop scripts are used to automate the HADR takeover.

This appendix covers the following topics:

� env file
� hadr_start.ksh
� hadr_stop.ksh
� hadr_monitor.ksh
� planned_takeover.ksh
� get_hadr_info.fnc

B

© Copyright IBM Corp. 2007, 2012. All rights reserved. 541

B.1 env file

Example B-1 shows an env definition file in an HADR with Tivoli
SA MP environment.

Example: B-1 env file

#########################
#
FOR PRIMARY NODE
#
#########################
LANG=C

HADR DEFINITION
DB2HADRINSTANCE1=db2inst1# HADR Primary instance name
DB2HADRINSTANCE2=db2inst1# HADR Standby instance name
DB2HADRDBNAME=sample# HADR database name
HADR_RG=hadr_rg# Resource group name starts on both node

#SU DEFINITION
SU_CMD="su - ${DB2HADRINSTANCE1} -c"# su command to instance owner
SU_CMD2="su - ${DB2HADRINSTANCE2} -c"# su command to instance owner
DATE="`date +"%Y-%m-%d-%H.%M.%S"`"# date command

GET THE NODE NAME OF BOTH NODE
LOCALNODE=`Baltic`
Specify the hostname of the remote node.
REMOTENODE="Zaire"
#REMOTENODE=`lsrpnode | awk '{print $1}' | grep -v $LOCALNODE | grep -v Name`

REMOTE SHELL DEFINITION
RSH="ssh ${REMOTENODE}"# RSH command using SERVICE N/W
RSH_H="ssh ${REMOTENODE}_h"# RSH command using HADR N/W

PROGRAM DEFINITION
PROGDIR=`dirname $0`

#WRITE_STATUS="$PROGDIR/write_status.sh"#The scripts that writes the HADR status to
the standby node by rsh.
#TAIL_HADR_STATUS="$PROGDIR/tail_hadr_status.sh"#The scripts that tails db2diag.log
and monitors the HADR status.

FLAG DEFINITION
FLAGDIR="/tmp"
542 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

#STATUS_FLAG="$FLAGDIR/status.flag"#The flag file of the HADR status
HADR_RG_START_FLAG="$FLAGDIR/hadr_rg_start.flag"#The flag file created when HADR_RG
starts
PLANNED_TKO_FLAG="$FLAGDIR/planned_tko.flag"#This flag should be created by user
before planned takeover

MODIFY DIAGLOG PATH -- You can get it by db2 get dbm cfg | grep "DIAGPATH"
DIAGLOG="/home/${DB2HADRINSTANCE1}/sqllib/db2dump/db2diag.log"

B.2 hadr_start.ksh

Example B-2 shows a sample script for HADR takeover in an HADR with
Tivoli SA MP environment.

Example: B-2 hadr_start.ksh file

#!/bin/ksh -x

##
hadr_start.sh
This script is called when HADR_RG starts.
#
#1. Start the script tails db2diag.log.
2. Execute HADR TAKEOVER if the role is STANDBY judging the status.
##

PROGNAME=`basename $0`

exec >> /tmp/`basename $0`.log
exec 2>&1

echo "##"
date
echo "##"

################################
SET PARAMETER
################################
. `dirname $0`/env
. `dirname $0`/get_hadr_info.fnc

##
GET HADR STATE, HADR ROLE(SNAPSHOT and DB CFG) ON LOCAL NODE
 Appendix B. IBM Tivoli System Automation for Multiplatforms takeover scripts 543

##
F_get_status_by_db2pd

Check PRIMARY_HADR_STATUS Flag file
#PRIMARY_HADR_STATUS=$(tail -n 1 ${STATUS_FLAG} | awk '{print $2}')

################################
MAIN
################################

RC=0

###
START THE SCRIPT THAT TAILS DB2DIAG.LOG
###
Start the script if the tail process is not run.
#ps -ef | grep "tail -n0" | grep -v "grep"
#if [[$? != 0]]; then
echo "Start the script that tails db2diag.log"
logger -i -p info -t $PROGNAME "Start the script that tails db2diag.log"
#
${TAIL_HADR_STATUS} 2>&1 /dev/null &
#fi

###
JUDGING FROM PRIMARY'S HADR STATUS FLAG
###

if [["${ROLE_SNP_LOCAL}" = "Primary"]]; then
HADR ROLE IS PRIMARY

already primary
echo "HADR ROLL is already PRIMARY: Exit."
logger -i -p info -t $PROGNAME "HADR ROLL is already PRIMARY: Exit."

Start the script if the tail process is not run.
ps -ef | grep "tail -n0" | grep -v "grep"
if [[$? != 0]]; then

echo "Start the script that tails db2diag.log"
logger -i -p info -t $PROGNAME "Start the script that tails db2diag.log"

${TAIL_HADR_STATUS} 2>&1 /dev/null &
fi
544 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

elif [["${ROLE_SNP_LOCAL}" = "Standby"]]; then
HADR ROLE IS STANDBY

################################
JUDGING START TRIGGER
################################
TEST ORIGINAL SETTING
#START_TRIGGER="NORMAL"
#START_TRIGGER="TAKEOVER_FORCE"
#START_TRIGGER="TAKEOVER_PLANNED"

if [[-f ${HADR_RG_START_FLAG}]]; then
echo "Resource group is already active"
logger -i -p info -t $PROGNAME "Resource group is already active."
if [[-f ${PLANNED_TKO_FLAG}]]; then

echo "Start trigger is Planned takeover"
logger -i -p info -t $PROGNAME "Start trigger is Planned takeover"
START_TRIGGER="TAKEOVER_PLANNED"

else
echo "Start trigger is Unplanned takeover"
logger -i -p info -t $PROGNAME " Start trigger is Unplanned takeover"
START_TRIGGER="TAKEOVER_FORCE"

fi
else

echo "Resource group is offline"
if [[-f ${PLANNED_TKO_FLAG}]]; then

echo "Start trigger is Planned Takeover"
logger -i -p info -t $PROGNAME "Start trigger is Planned takeover"
START_TRIGGER="TAKEOVER_PLANNED"

else
echo "Resource group is offline"
logger -i -p info -t $PROGNAME "Resource group is offline. Start trigger is

Normal Startup"
START_TRIGGER="NORMAL"

fi
fi

################################
ACTION BY START TRIGGER
################################

case $START_TRIGGER in

NORMAL)
 Appendix B. IBM Tivoli System Automation for Multiplatforms takeover scripts 545

Start trigger is Normal
echo "Start trigger is Normal: Exit."
logger -i -p info -t $PROGNAME "HADR ROLE is STANDBY but start trigger is Normal:

Exit."
exit 1

;;

TAKEOVER_PLANNED)
echo "Planned takeover is executed."

if [["${STATE_SNP_LOCAL}" = "Peer"]]; then
echo "HADR is in PEER state. Takeover(without "BY FORCE") be executed."

Start the script if the tail process is not run before the planned takeover.
ps -ef | grep "tail -n0" | grep -v "grep"
if [[$? != 0]]; then
echo "Start the script that tails db2diag.log before planned takeover."
logger -i -p info -t $PROGNAME "Start the script that tails db2diag.log
before planned takeover."
${TAIL_HADR_STATUS} 2>&1 /dev/null &
fi

logger -i -p info -t $PROGNAME "HADR is in PEER state. Takeover(without "BY
FORCE") be executed."

${SU_CMD} "db2 takeover hadr on db ${DB2HADRDBNAME}"
elif [["${STATE_SNP_LOCAL}" != "Peer"]]; then

echo "HADR isn't in PEER state. Takeover not be executed."
logger -i -p info -t $PROGNAME "HADR isn't in PEER state. Takeover not be

executed."
RC=1

fi
;;

TAKEOVER_FORCE)

In the case of non-scheduled down
echo "In the case of non-scheduled down"

Check the HADR status flag.
if [["${PRIMARY_HADR_STATUS}" != "0"]]; then
echo "Primary hasn't been in PEER state. Execute takeover command under user's
judgement."
logger -i -p info -t $PROGNAME "Primary hasn't been in PEER state. Execute
takeover command under user's judgement."
#

546 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

elif [["${PRIMARY_HADR_STATUS}" = "0"]]; then
try takeover by force
echo "Primary has been in PEER state. HADR TAKEOVER BY FORCE can be excuted

without data inconsistency."
logger -i -p info -t $PROGNAME "Primary has been in PEER state. HADR TAKEOVER

BY FORCE can be excuted without data inconsistency."

${SU_CMD} "db2 takeover hadr on db ${DB2HADRDBNAME} by force"
echo "db2 takeover hadr on db ${DB2HADRDBNAME} by force"

Start the script if the tail process is not run.
ps -ef | grep "tail -n0" | grep -v "grep"
if [[$? != 0]]; then
echo "Start the script that tails db2diag.log"
logger -i -p info -t $PROGNAME "Start the script that tails db2diag.log"
${TAIL_HADR_STATUS} 2>&1 /dev/null &
fi
fi
;;

*)
 # Undetermined situation
 echo "Undetermined situation"

RC=1

;;

esac

else
echo "HADR ROLL is neither PRIMARY or STANDBY. Check HADR ROLL."

fi

##
CREATE THE FLAG FILE INDICATES THAT HADR_RG STARTED
##

WRITE RG_START_FLAG to LOCAL NODE
echo $DATE > ${HADR_RG_START_FLAG}

WRITE RG_START_FLAG to REMOTE NODE
${RSH} "echo $DATE > ${HADR_RG_START_FLAG}"
 Appendix B. IBM Tivoli System Automation for Multiplatforms takeover scripts 547

REMOVE PLANNED_TAKEOVER_FLAG
rm -f ${PLANNED_TKO_FLAG}

date

exit $RC

B.3 hadr_stop.ksh

Example B-3 shows a sample stop script for HADR takeover in an HADR with
Tivoli SA MP environment.

Example: B-3 hadr_stop.ksh

#!/bin/ksh -x

##
hadr_stop.sh
This script is called when HADR_RG stops.
1. Kill processes that tailing the db2diag.log.
2. Remove the flag file that created when HADR_RG started.
##

PROGNAME=`basename $0`
logger -i -p info -t $PROGNAME "Starting hadr_primary_stop.sh"

exec >> /tmp/`basename $0`.log
exec 2>&1

################################
SET PARAMETER
################################
. `dirname $0`/env

##
KILL PROCESSES THAT TAILS DB2DIAG.LOG
##
kill -9 `ps -ef | grep "tail -n0" | grep -v "grep" | awk '{print $2}'`

##
REMOVE THE FLAG FILE
##
#AT LOCAL NODE
548 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

ls -l ${HADR_RG_START_FLAG}

if [[$? = 0]]; then
echo "Removing ${HADR_RG_START_FLAG} at local node"
rm ${HADR_RG_START_FLAG}

else
echo "${HADR_RG_START_FLAG} does not exist at local node"

fi

#AT REMOTE NODE
${RSH} "ls -l ${HADR_RG_START_FLAG}"

if [[$? = 0]]; then
echo "Removing ${HADR_RG_START_FLAG} at remote node"
${RSH} "rm ${HADR_RG_START_FLAG}"

else
echo "${HADR_RG_START_FLAG} does not exist at remote node"

fi

date

exit 0

B.4 hadr_monitor.ksh

Example B-4 shows a sample script for monitoring the HADR state.

Example: B-4 hadr_monitor.ksh

#! /usr/bin/ksh -x

##
hadr_monitor.sh
This script is defined as a monitor script of HADR_RG.

1.Monitor DB2 instance, HADR role and the existence of the flag file.
2.Judge the HADR_RG status.
##

PROGNAME=`basename $0`
 Appendix B. IBM Tivoli System Automation for Multiplatforms takeover scripts 549

logger -i -p info -t $PROGNAME "Starting hadr_monitor.sh"

exec >> /tmp/`basename $0`.log
exec 2>&1

echo "##"
echo `basename $0`
date
echo "##"

################################
SET PARAMETER
################################
. `dirname $0`/env
. `dirname $0`/get_hadr_info.fnc

############################
GET DB2INSTANCE STATUS
############################
${SU_CMD} "db2gcf -i ${DB2HADRINSTANCE1} -s"
RC=$?

if [[$RC = 0]]; then

################################
GET HADR ROLE
################################

F_get_status_by_db2pd
echo ${ROLE_SNP_LOCAL}

#Check if the flag file exists
if [-e ${HADR_RG_START_FLAG}]; then

echo "The flag file exists."

#Check HADR_ROLE
if ["${ROLE_SNP_LOCAL}" != ""];then

case "${ROLE_SNP_LOCAL}" in
Primary)#LOCALNODE is Primary

echo "LOCALNODE is Primary and the flag file exists. RG status is
Online.(RC=1)"

logger -i -p info -t $PROGNAME "LOCALNODE is Primary and the flag file
exists. RG status is Online.(RC=1)"
550 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

exit 1

;;
Standby)#LOCALNODE is Standby

echo "Thouth LOCALNODE is Standby, the flag file exists. RG status is
Offline.(RC=02)"

logger -i -p info -t $PROGNAME "Thouth LOCALNODE is Standby, the flag file
exists. RG status is Offline.(RC=2)"

offline RC=2
exit 2

;;
*) #LOCALNODE STATUS is unknown

echo "No process is done."
;;
esac

else
echo "DB2 instance is started but HADR is stopped. RG status is Stuck

Online.(RC=4)"
logger -i -p info -t $PROGNAME "DB2 instance is started but HADR is stopped.

RG status is Stuck Online.(RC=4)"
stuck online RC=4
exit 4

fi
else

echo "The flag file doesn't exist. RG status is Offline.(RC=2)"
logger -i -p info -t $PROGNAME "The flag file doesn't exist. RG status is

Offline.(RC=2)"

exit 2
fi

else
echo "DB2 instance is stopped."
logger -i -p info -t $PROGNAME "DB2 instance is stopped."

#Check Flag_file
if [-e ${HADR_RG_START_FLAG}]; then

echo "DB2 instance is stopped, and the flag file exists. RG status is Failed
Offline.(RC=3) HADR_RG is taken over to another node."

logger -i -p info -t $PROGNAME "DB2 instance is stopped, and the flag file
exists. RG status is Failed Offline.(RC=3) HADR_RG is taken over to another node."
 Appendix B. IBM Tivoli System Automation for Multiplatforms takeover scripts 551

exit 3
else

echo "DB2 instance is stopped, and the flag file doesn't exists. RG status is
Failed Offline.(RC=3) HADR_RG is taken over to another node."

logger -i -p info -t $PROGNAME "DB2 instance is stopped, and the flag file
doesn't exists. RG status is Failed Offline.(RC=3) HADR_RG is taken over to another
node."

exit 3

fi
fi

date

B.5 planned_takeover.ksh

Example B-5 shows a sample script for performing the takeover if a failure is
detected by the monitor script.

Example: B-5 planned_takeover.sh.ksh

#!/bin/ksh -x

##
planned_takeover.sh
This script moves HADR_RG.
#
1. Create the planned takeover flag.
2. Move the HADR_RG.
##

PROGNAME=`basename $0`

exec >> /tmp/`basename $0`.log
exec 2>&1

echo "##"
date
echo "##"

################################
SET PARAMETER
552 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

################################
. `dirname $0`/env
. `dirname $0`/get_hadr_info.fnc

echo "###@1: Judge the HADR_ROLE"

##
GET HADR ROLE(DB2PD) ON LOCAL NODE
##
F_get_status_by_db2pd

if [["${ROLE_SNP_LOCAL}" = "Primary"]]; then
echo "### HADR_ROLE=PRIMARY"
already primary
echo "HADR ROLL is PRIMARY. This script should be executed on the standby node :

Exit."
logger -i -p info -t $PROGNAME "HADR ROLL is PRIMARY. This script should be

executed on the standby node : Exit."

elif [["${ROLE_SNP_LOCAL}" = "Standby"]]; then
HADR ROLE IS STANDBY
echo "### HADR_ROLE=STANDBY"
date > ${PLANNED_TKO_FLAG}
rgreq -o move $HADR_RG

fi

B.6 get_hadr_info.fnc

Example B-5 on page 552 shows a function for obtaining the HADR role and
state.

Example: B-6 get_hadr_info.fun file

#! /usr/bin/ksh

##
get_hadr_info.fun
This script is called by stard and monitor scripts.

1.Get HADR role and state by db2pd
2.Get HADR role by database configurations
 Appendix B. IBM Tivoli System Automation for Multiplatforms takeover scripts 553

##

################################
GET HADR ROLE & STATE BY db2pd COMMAND
################################

function F_get_status_by_db2pd {

 HADR_PROBE=`${SU_CMD} "db2pd -hadr -db ${DB2HADRDBNAME}" | head -6 | tail -n
1`
 #echo $HADR_PROBE | read ROLE_SNP_LOCAL STATE_SNP_LOCAL OTHER
 ROLE_SNP_LOCAL=$(echo ${HADR_PROBE} | cut -d ' ' -f 1)
 STATE_SNP_LOCAL=$(echo ${HADR_PROBE} | cut -d ' ' -f 2)

 if [["${ROLE_SNP_LOCAL}" = "" || "${STATE_SNP_LOCAL}" = ""]];then
 echo "db2pd command failed !!!"
 return 1
 fi

 return 0
}

################################
GET HADR ROLE & STATE BY db cfg COMMAND
################################

function F_get_role_by_cfg {

 ROLE_CFG_LOCAL=$(${SU_CMD} "db2 get db cfg for ${DB2HADRDBNAME} | grep 'HADR
database role' | awk '{print \$5}'")

 if [["${ROLE_CFG_LOCAL}" = ""]];then
 echo "db2 get db cfg command failed !!!"
 return 1
 fi

return 0
554 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

Related publications

The publications that are listed in this section are considered suitable for a more
detailed discussion of the topics that are covered in this book.

IBM Redbooks

The following IBM Redbooks publications provide more information about the
topic in this document. Some publications that are referenced in this list might be
available in softcopy only.

� IBM System Storage DS4000 and Storage Manager V10.30, SG24-7010

� End-to-end Automation with IBM Tivoli System Automation for Multiplatforms,
SG24-7117

� Unleashing DB2 10 for Linux, UNIX, and Windows, SG24-8032

You can search for, view, download, or order these documents and other
Redbooks, Redpapers, Web Docs, draft and additional materials, at the following
website:

ibm.com/redbooks

Other publications

These publications are also relevant as further information sources for DB2 10.1
for Linux, UNIX, and Windows:

� Administrative API Reference, SC27-3864-0

� Administrative Routines and Views, SC27-3865-00

� Call Level Interface Guide and Reference, Volume 1, SC27-3866-00

� Call Level Interface Guide and Reference, Volume 2, SC27-3867-00

� DB2 10.1 Command Reference, SC27-3868-00

� DB2 10.1 Database Administration Concepts and Configuration Reference,
SC27-3871-00

� DB2 10.1 Message Reference Volume 2, SC27-3880-00
© Copyright IBM Corp. 2007, 2012. All rights reserved. 555

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

� Database Administration Concepts and Configuration Reference,
SC27-3871-00

� Data Movement Utilities Guide and Reference, SC27-3869-00

� Data Recovery and High Availability Guide and Reference, SC27-3870-00

� Database Security Guide, SC27-3872-00

� DB2 Workload Manager Guide and Reference, SC27-3891-00

� Developing ADO.NET and OLE DB Applications, SC27-3873-00

� Developing Embedded SQL Applications, SC27-3874-00

� Developing Java Applications, SC27-3875-00

� Developing Perl, PHP, Python, and Ruby on Rails Applications,
SC27-3876-00

� Developing User-Defined Routines (SQL and External), SC27-3877-00

� Getting Started with Database Application Development, GI13-2046-00

� Getting Started with DB2 Installation and Administration on Linux and
Windows, GI13-2047-00

� Globalization Guide, SC27-3878-00

� Message Reference, Volume 1, SC27-3879-00

� Message Reference, Volume 2, SC27-3880-00

� Net Search Extender Administration and User's Guide, SC27-3895-00

� Partitioning and Clustering Guide, SC27-3882-00

� PowerHA SystemMirror: Master Glossary, SC23-6757

� pureXML Guide, SC27-3892-00

� QL Procedural Languages: Application Enablement and Support
SC27-3896-00

� RSCT for Multiplatforms: Technical Reference, SA22-7893-19

� Spatial Extender User's Guide and Reference, SC27-3894-00

� SQL Reference, Volume 1, SC27-3885-00

� SQL Reference, Volume 2, SC27-3886-00

� Text Search Guide, SC27-3888-00

� Tivoli System Automation for Multiplatforms Version 3.2.2 Administrator's and
User's Guide, SC34-2583-00

� Tivoli System Automation for Multiplatforms Version 3.2.2 Installation and
Configuration Guide, SC34-2584-03
556 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

� Troubleshooting and Tuning Database Performance, SC27-3889-00

� What's New, SC27-3890-00

� XQuery Reference, SC27-3893-00

Online resources

These websites are also relevant as further information sources for DB2 10.1 for
Linux, UNIX, and Windows:

� Database and Information Management home page:

http://www.ibm.com/software/data/

� DB2 developerWorks

http://www.ibm.com/developerworks/db2/

� DB2 Information Center:

http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/

� DB2 for Linux

http://www.ibm.com/software/data/db2/linux/

� DB2 for Linux, UNIX, and Windows Application Development

� http://www.ibm.com/software/data/db2/ad/

� DB2 Product Family Library:

http://www.ibm.com/software/data/db2/library/

� DB2 Technical Support:

http://www.ibm.com/software/data/db2/support/db29/

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
 Related publications 557

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/
http://www.ibm.com/software/data/db2/ad/
http://www.ibm.com/software/data/db2/support/db29/
http://www.ibm.com/developerworks/db2/
http://www.ibm.com/software/data/db2/linux/
http://www.ibm.com/software/data/db2/library/
http://www.ibm.com/software/data/

558 High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows

(1.0” spine)
0.875”<

->
1.498”

460 <
->

 788 pages

High Availability and Disaster Recovery
Options for DB2 for Linux, UNIX, and W

indow
s

®

SG24-7363-02 ISBN 0738437344

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

®

High Availability and Disaster
Recovery Options for DB2 for
Linux, UNIX, and Windows

Learn DB2 HADR
setup,
administration,
monitoring, and
preferred practices

Use PowerHA,
MSWFC, Tivoli SA MP
with DB2, and DB2
HADR

Protect data with
DB2 disaster
recovery options

As organizations strive to do more with less, IBM DB2 for Linux,
UNIX, and Windows provides various built-in high availability
features. DB2 further provides high availability solutions by using
enterprise system resources with broad support for clustering
software, such as IBM PowerHA SystemMirror, IBM Tivoli System
Automation for Multiplatforms (SA MP), and Microsoft Windows
Cluster Server.

This IBM Redbooks publication describes the DB2 high availability
functions and features, focusing on High Availability Disaster
Recovery (HADR) in the OLTP environment. The book provides a
detailed description of HADR, including setup, configuration,
administration, monitoring, and preferred practices.

This book explains how to configure Cluster software PowerHA,
Tivoli SA MP, and MSCS with DB2 and show how to use these
products to automate HADR takeover.

DB2 also provides unprecedented enterprise-class disaster
recovery capability. This book covers single system view backup,
backup and restore with snapshot backup, and the db2recovery
command, in detail.

This book is intended for database administrators and information
management professionals who want to design, implement, and
support a highly available DB2 system.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team who wrote this book
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Summary of changes
	October 2012, Third Edition

	Chapter 1. DB2 high availability and disaster recovery overview
	1.1 Introduction
	1.1.1 High availability
	1.1.2 Disaster recovery

	1.2 High availability solutions with DB2
	1.2.1 High Availability Disaster Recovery (HADR)
	1.2.2 DB2 high availability (HA) feature
	1.2.3 High availability through disk mirroring
	1.2.4 High availability through log shipping
	1.2.5 Automatic client reroute

	1.3 Disaster recovery solutions with DB2
	1.3.1 Backup and recovery options
	1.3.2 High Availability Disaster Recovery (HADR)
	1.3.3 Replication
	1.3.4 InfoSphere Change Data Capture (CDC)
	1.3.5 Remote disk mirroring

	Chapter 2. DB2 with IBM Tivoli System Automation for Multiplatforms
	2.1 Overview
	2.1.1 Tivoli SA MP components
	2.1.2 Terminology of Tivoli SA MP

	2.2 How DB2 works with Tivoli SA MP
	2.2.1 How Tivoli SA MP detects failures

	2.3 Planning the high availability cluster
	2.4 Setting up Tivoli SA MP with DB2 10.1 on AIX
	2.4.1 Planning the cluster domain
	2.4.2 Installing Tivoli SA MP
	2.4.3 Configuration of Tivoli SA MP and DB2

	2.5 Administration
	2.5.1 The node maintenance scenario

	2.6 Cluster maintenance
	2.6.1 Deleting a domain

	2.7 Testing
	2.7.1 Operating system failure
	2.7.2 Power failure
	2.7.3 Network failure
	2.7.4 DB2 instance failure

	Chapter 3. DB2 and PowerHA SystemMirror
	3.1 Overview
	3.2 How DB2 works with PowerHA
	3.3 Planning the PowerHA cluster
	3.4 Setting up the PowerHA cluster
	3.4.1 PowerHA cluster setup planning
	3.4.2 PowerHA configuration

	3.5 Considerations for db2nodes.cfg file
	3.5.1 Modifying the file entry in the start script
	3.5.2 Running the db2start command with the restart option
	3.5.3 Running the db2gcf command with the -u option
	3.5.4 Using an alias in the hosts file

	3.6 Tuning tips for quick failover
	3.6.1 Failover of the resources

	Chapter 4. DB2 with Microsoft Windows Failover Cluster
	4.1 Failover Cluster concepts
	4.1.1 Failover Cluster overview
	4.1.2 Windows Failover Cluster definitions
	4.1.3 Managing Failover Cluster

	4.2 Minimal steps to cluster a DB2 instance
	4.3 Creating a server cluster
	4.3.1 Validating your system
	4.3.2 Creating a cluster in the domain

	4.4 Installing DB2
	4.5 Creating a DB2 instance
	4.6 Manually configuring a DB2 instance
	4.6.1 Adding the DB2 resource type
	4.6.2 Creating cluster resources
	4.6.3 Migrating the DB2 instance to the cluster environment
	4.6.4 Adding a reference to the instance in the other nodes
	4.6.5 Configuring security settings

	4.7 Using db2mscs to configure a DB2 instance
	4.8 Testing a cluster
	4.8.1 Creating a SAMPLE database
	4.8.2 Verifying the DB2 instance communication settings
	4.8.3 Connecting to the database using Data Studio
	4.8.4 Testing failover

	4.9 Upgrading your instance

	Chapter 5. DB2 HADR introduction
	5.1 HADR overview
	5.1.1 HADR topology
	5.1.2 HADR synchronization modes

	5.2 HADR architecture
	5.3 Terminology

	Chapter 6. HADR setup
	6.1 Requirements for setting up HADR
	6.1.1 Requirements
	6.1.2 Parameters

	6.2 Setup and configuration
	6.2.1 Preparing the environment
	6.2.2 Configuration using the HADR setup wizard
	6.2.3 Command-line setup
	6.2.4 Setting up HADR with multiple standby servers
	6.2.5 HADR log spooling

	6.3 Basic operation
	6.3.1 Starting and shutting down
	6.3.2 Planned takeover
	6.3.3 Takeover by force

	6.4 Troubleshooting
	6.4.1 During setup
	6.4.2 After setup or during normal execution
	6.4.3 After an HADR disconnects or server failure occurs
	6.4.4 Considerations while running HADR
	6.4.5 Re-establishing HADR after failure

	Chapter 7. HADR with clustering software
	7.1 Overview: Why clustering software is needed
	7.1.1 What is clustering software
	7.1.2 How HADR works in an environment with clustering software
	7.1.3 What resources should be taken over

	7.2 db2haicu
	7.2.1 Prerequisites
	7.2.2 Usage
	7.2.3 Considerations
	7.2.4 Troubleshooting

	7.3 DB2 HADR with Tivoli SA MP configuration for automatic failover on an AIX system
	7.3.1 Architecture
	7.3.2 Configuration
	7.3.3 Administration
	7.3.4 Unplanned outages

	7.4 DB2 HADR with Tivoli SA MP configuration for automatic failover on a Linux system
	7.4.1 Architecture
	7.4.2 Configuration
	7.4.3 Testing
	7.4.4 Administration

	7.5 Automating HADR takeover with PowerHA
	7.5.1 PowerHA and HADR planning
	7.5.2 Step-by-step configuration overview
	7.5.3 HADR setup
	7.5.4 PowerHA configuration
	7.5.5 Preparing the application server scripts
	7.5.6 Joint test for HADR and PowerHA

	Chapter 8. HADR monitoring
	8.1 Introduction to HADR monitoring
	8.2 The db2pd command
	8.3 The MON_GET_HADR table function
	8.4 HADR monitoring information

	Chapter 9. DB2 and system upgrades
	9.1 General steps for upgrades in a HADR environment
	9.2 DB2 fix pack rolling upgrades
	9.2.1 Rolling upgrade on Linux

	9.3 DB2 upgrade
	9.3.1 DB2 version upgrade on Linux

	9.4 Rolling operating system and DB2 configuration parameter updates
	9.4.1 Procedure

	Chapter 10. Automatic client reroute
	10.1 ACR overview
	10.1.1 ACR with HADR
	10.1.2 ACR in action

	10.2 ACR tuning
	10.3 ACR limitations
	10.4 ACR configuration examples
	10.4.1 ACR with a non-HADR database
	10.4.2 ACR with a HADR database
	10.4.3 ACR with a HADR database and PowerHA

	10.5 Application programming to handle ACR
	10.5.1 ACR support for Java applications
	10.5.2 Implementing ACR on the DataSource interface with JDBC
	10.5.3 ACR exception handling in Java applications

	Chapter 11. HADR configuration parameters and registry variables
	11.1 DB2 HADR configuration parameters
	11.1.1 Basic configuration parameters
	11.1.2 Automatic client reroute configuration parameters

	11.2 DB2 HADR registry variables
	11.3 Considerations
	11.3.1 DB2 transaction performance
	11.3.2 How to reduce takeover time
	11.3.3 Seamless takeover
	11.3.4 Performance implications of HADR_TIMEOUT
	11.3.5 Applications with a high logging rate
	11.3.6 Network considerations
	11.3.7 Network performance tips
	11.3.8 Avoiding transaction loss in a HADR with HA cluster software
	11.3.9 Avoiding transaction loss by using the peer window
	11.3.10 Index logging
	11.3.11 Backup from standby image with FlashCopy
	11.3.12 Replicating load data
	11.3.13 Log archive and HADR
	11.3.14 Database restore considerations

	Chapter 12. Backup and recovery
	12.1 Single system view backup
	12.1.1 Using single system view backup
	12.1.2 Considerations

	12.2 Backup and restore database with snapshot backup
	12.3 Recover database command
	12.3.1 Feature summary

	12.4 Recovery object management

	Chapter 13. Q replication
	13.1 Introduction to Q replication
	13.2 Unidirectional setup
	13.2.1 Starting Q capture
	13.2.2 Start Q Apply

	Chapter 14. IBM InfoSphere Change Data Capture
	14.1 Introduction
	14.2 Architectural overview
	14.2.1 InfoSphere CDC architecture
	14.2.2 Transactional integrity and reliability

	14.3 InfoSphere CDC topologies
	14.3.1 Unidirectional replication
	14.3.2 Bidirectional replication
	14.3.3 Replication to other destinations
	14.3.4 High availability and disaster recovery with InfoSphere CDC

	14.4 Features and functionality
	14.4.1 Transformations
	14.4.2 Replication modes
	14.4.3 Filtering
	14.4.4 Conflict detection and resolution

	Chapter 15. Geographically dispersed high availability and disaster recovery solutions
	15.1 PowerHA over extended distances
	15.2 PowerHA data replication components
	15.2.1 PowerHA with SAN Volume Controller mirroring
	15.2.2 PowerHA with Geographical Logical Volume Manager
	15.2.3 Geographical Logical Volume Manager
	15.2.4 Synchronous and asynchronous data mirroring

	15.3 Configuring a stand-alone GLVM
	15.4 Manual failover
	15.5 Configuring PowerHA with GLVM

	Appendix A. PowerHA application server scripts
	A.1 hadr_primary_takeover.ksh
	A.2 hadr_primary_stop.ksh
	A.3 hadr_monitor.ksh

	Appendix B. IBM Tivoli System Automation for Multiplatforms takeover scripts
	B.1 env file
	B.2 hadr_start.ksh
	B.3 hadr_stop.ksh
	B.4 hadr_monitor.ksh
	B.5 planned_takeover.ksh
	B.6 get_hadr_info.fnc

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	Help from IBM

	Back cover

