
ibm.com/redbooks

Front cover

The IBM Rational 
Unified Process
for System z

Cécile Péraire
Mike Edwards

Angelo Fernandes
Enrico Mancin

Kathy Carroll

RUP for System z includes a succinct 
end-to-end process for z practitioners

RUP for System z includes many 
examples of various deliverables

RUP for System z is available 
as an RMC/RUP plug-in

 

 

 

 

http://www.redbooks.ibm.com/ 
http://www.redbooks.ibm.com/


 

 

 

 



International Technical Support Organization

The IBM Rational Unified Process for System z

July 2007

SG24-7362-00

 

 

 

 



© Copyright International Business Machines Corporation 2007. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (July 2007)

This edition applies to the IBM Rational Method Composer Version 7.1

Note: Before using this information and the product it supports, read the information in “Notices” on 
page vii.

 

 

 

 



 

Contents

Notices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Trademarks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Preface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
The team that wrote this IBM Redbooks publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .x
Become a published author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
Comments welcome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Part 1.  Introduction to the IBM Rational Unified Process for System z . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 1.  Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1  Purpose. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2  Audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3  Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4  Scope  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5  Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Part 2.  The IBM Rational Unified Process for System z for Beginners  . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Chapter 2.  Introduction to the IBM Rational Unified Process and its extension to 
Service-Oriented Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1  Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2  Introduction to RUP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1  The heart of RUP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2  The IBM Rational Method Composer (RMC) platform  . . . . . . . . . . . . . . . . . . . . . 13

2.3  Key principles for successful software development. . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1  Adapt the process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2  Balance competing stakeholder priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3  Collaborate across teams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.4  Demonstrate value iteratively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.5  Elevate level of abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.6  Focus continuously on quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4  RUP lifecycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.1  Inception Phase  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2  Elaboration Phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.3  Construction Phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.4  Transition Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5  Developing service-oriented solutions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5.1  Service Identification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5.2  Service Specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.3  Service Realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.4  Service Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Chapter 3.  Why the IBM Rational Unified Process for System z. . . . . . . . . . . . . . . . . . 31
3.1  Mainframe software development: A key business capability . . . . . . . . . . . . . . . . . . . . 32
3.2  System z application development: A tradition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3  What is different  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4  Iterative compared to waterfall: Differences and benefits . . . . . . . . . . . . . . . . . . . . . . . 35
3.5  Evolution of RUP for System z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

 

 

 

© Copyright IBM Corp. 2007. All rights reserved. iii



 

Chapter 4.  IBM Rational Unified Process for System z roadmap . . . . . . . . . . . . . . . . . 37
4.1  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2  Inception Phase overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1  Inception objectives  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.2  Typical inception iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.3  Lifecycle objectives milestone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3  Elaboration Phase overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.1  Elaboration objectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.2  Typical elaboration iteration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.3  Lifecycle architecture milestone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4  Construction Phase overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4.1  Construction objectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4.2  Typical construction iteration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.3  Initial operational capability milestone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5  Transition Phase overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5.1  Transition objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5.2  Typical transition iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5.3  Product release milestone  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.6  Note on maintenance projects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Part 3.  The IBM Rational Unified Process for System z for Advanced Practitioners . . . . . . . . . . . . . . 51

Chapter 5.  Process essentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1  Inception essentials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2  Elaboration essentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3  Construction essentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4  Transition essentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Chapter 6.  End-to-end lifecycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Chapter 7.  Content elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.1  Artifact: Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.2  Task: Module Design  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.3  Artifact: Installation Verification Procedures (IVPs). . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.4  Task: Define Installation Verification Procedures (IVPs). . . . . . . . . . . . . . . . . . . . . . . . 85
7.5  Task: Implement Installation Verification Procedures (IVPs)  . . . . . . . . . . . . . . . . . . . . 87
7.6  Artifact: Analysis Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.7  Task: Service Analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Chapter 8.  Catalog Manager case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.1  Overview of the Catalog Manager application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.2  Catalog Manager iterative development process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.3  Catalog Manager RUP phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.3.1  Catalog Manager Inception Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.3.2  Catalog Manager Elaboration Phase  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.3.3  Catalog Manager Construction Phase  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.3.4  Catalog Manager Transition Phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Chapter 9.  EGL Web Service consumption case study . . . . . . . . . . . . . . . . . . . . . . . . 123
9.1  Introduction to Enterprise Generation Language  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
9.2  Development approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
9.3  Inception Phase  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
9.4  Elaboration Phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

9.4.1  Web Service invocation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

 

 

 

iv The IBM Rational Unified Process for System z



 

9.4.2  Error handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
9.4.3  Configure application prototype  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
9.4.4  Data formatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

9.5  Construction Phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
9.5.1  Simple response pages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
9.5.2  Web Service request pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
9.5.3  HTML intensive pages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
9.5.4  Test scenario  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

9.6  Transition Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
9.7  Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Part 4.  IBM RUP for System z for Method Designers and Project Managers  . . . . . . . . . . . . . . . . . . . 199

Chapter 10.  IBM RUP for System z Work Breakdown Structure . . . . . . . . . . . . . . . . . 201
10.1  Inception Phase  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
10.2  Elaboration Phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
10.3  Construction Phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
10.4  Transition Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Chapter 11.  How to customize the IBM Rational Unified Process for System z . . . . 207
11.1  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
11.2  How to create a project plan specific to your project. . . . . . . . . . . . . . . . . . . . . . . . . 209

11.2.1  Identify the phase iterations, activities, and tasks to execute . . . . . . . . . . . . . . 209
11.2.2  Creating a project plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

11.3  How to customize the RUP for System z using RMC . . . . . . . . . . . . . . . . . . . . . . . . 212
11.3.1  Method development work products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
11.3.2  Method development tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Chapter 12.  Conclusions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Part 5.  Appendixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

Appendix A.  Catalog Manager case study: Inception Phase Work Products . . . . . . 227

Appendix B.  Catalog Manager case study: Elaboration Phase Work Products  . . . . 229

Appendix C.  Catalog Manager case study: Construction Phase Work Products . . . 231

Appendix D.  Catalog Manager case study: Transition Phase Work Products. . . . . . 233

Appendix E.  Terminology mapping between IBM RUP and System z . . . . . . . . . . . . 235

Appendix F.  Additional material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Locating the Web material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Using the Web material  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

System requirements for downloading the Web material . . . . . . . . . . . . . . . . . . . . . . . 242
How to use the Web material  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

Related publications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
IBM Redbooks publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Other publications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Online resources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
How to get IBM Redbooks publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
Help from IBM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

 

 

 

 Contents v



 

 

 

 

vi The IBM Rational Unified Process for System z



 

Notices

This information was developed for products and services offered in the U.S.A. 

IBM may not offer the products, services, or features discussed in this document in other countries. Consult 
your local IBM representative for information on the products and services currently available in your area. Any 
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, 
program, or service may be used. Any functionally equivalent product, program, or service that does not 
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to 
evaluate and verify the operation of any non-IBM product, program, or service. 

IBM may have patents or pending patent applications covering subject matter described in this document. The 
furnishing of this document does not give you any license to these patents. You can send license inquiries, in 
writing, to: 
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such 
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION 
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR 
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, 
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of 
express or implied warranties in certain transactions, therefore, this statement may not apply to you. 

This information could include technical inaccuracies or typographical errors. Changes are periodically made 
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make 
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time 
without notice. 

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any 
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the 
materials for this IBM product and use of those Web sites is at your own risk. 

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring 
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published 
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the 
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the 
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them 
as completely as possible, the examples include the names of individuals, companies, brands, and products. 
All of these names are fictitious and any similarity to the names and addresses used by an actual business 
enterprise is entirely coincidental. 

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming 
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in 
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application 
programs conforming to the application programming interface for the operating platform for which the sample 
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, 
cannot guarantee or imply reliability, serviceability, or function of these programs. 

 

 

 

© Copyright IBM Corp. 2007. All rights reserved. vii



 

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States, 
other countries, or both: 

Redbooks (logo) ®
developerWorks®
iSeries®
z/OS®
zSeries®
CICS®
Electronic Service Agent™

IBM®
IMS™
Rational Summit®
Rational Unified Process®
Rational®
Redbooks®
RequisitePro®

RUP®
SoDA®
Summit Ascendant™
Summit®
System i™
System z™
WebSphere®

The following terms are trademarks of other companies:

Java, JavaScript, JavaServer, JSP, J2EE, RSM, and all Java-based trademarks are trademarks of Sun 
Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, 
other countries, or both.

Pentium, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel 
Corporation or its subsidiaries in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others. 

 

 

 

viii The IBM Rational Unified Process for System z



 

Preface

This IBM® Redbooks® publication describes the new Rational® Unified Process® (RUP®) 
for System z™ method, which has been especially created for use by organizations that are 
involved in developing application software in the System z environment.

Developing application software in the System z environment has been going on for many 
decades and generally during this time, traditional development lifecycle methodologies have 
been applied to the development process. With the current environment of businesses 
needing to be more agile, on demand, and flexible to user needs, pressure is on IT 
organizations to respond in as agile and flexible a manner as possible in order to satisfy user 
needs with precision and quality.

RUP is based on proven development principles and contains best practices for developing 
software. This specific adaptation of a modern best-of-breed methodology, that is, RUP for 
System z, provides you with a development process that has already yielded much valued 
benefits to software development practitioners in other platform environments.

This IBM Redbooks publication demonstrates the use of the RUP for System z method by 
using a case study of an application development example. It provides you with actual 
example work products produced during the various lifecycle iterations and phases, so that 
you are able to more easily understand the iterative and incremental nature of application 
development and its associated benefits.

The new RUP for System z is also available as a Web site for easy reference, through a 
Rational Method composer (RMC) plug-in. This IBM Redbooks publication shows you how to 
download and install the new RUP for System z plug-in. Furthermore, it helps you configure it 
if necessary, to suit your own application development environment in order to enable your 
team to derive the utmost benefit and add value to your development activities.

This IBM Redbooks publication is intended for the whole of the System z application 
development community from beginners to advanced practitioners, for roles ranging from 
project managers, architects and designers, to programmers and testers alike, because it 
covers the full end-to-end development lifecycle for the System z environment. In addition, 
System z Development Managers and Method Designers in particular might find this book 
useful as a ready reference guide.

For convenience and to suit different levels of user expertise, this book is broken down into 
the following parts:

Part 1. Introduction to the IBM Rational Unified Process for System z

Part 2. The IBM Rational Unified Process for System z for Beginners

Part 3. The IBM Rational Unified Process for System z for Advanced Practitioners

Part 4. The IBM Rational Unified Process for System z for Method Designers and Project 
Managers

Part 5. Appendixes

 

 

 

© Copyright IBM Corp. 2007. All rights reserved. ix



 

The team that wrote this IBM Redbooks publication 
This IBM Redbooks publication was produced by a team of specialists from around the world 
working at the International Technical Support Organization Raleigh Center, in San Jose, 
California. Figure 0-1 and Figure 0-2 show the IBM Rational Unified Process for System z 
team.

Figure 0-1   From left, Enrico Mancin, Cécile Péraire, Angelo Fernandes, and Mike Edwards

Figure 0-2   Kathy Carroll

 

 

 

x The IBM Rational Unified Process for System z



 

Enrico Mancin is a Master Certified IT Architect on the Technical Sales Rational Team for 
IBM SWG. He joined IBM in 2003 as a result of the Rational Software company acquisition. 
He is the author of some articles on RUP, SOA, and Open Source. Before joining IBM, Enrico 
worked as a senior software specialist with Rational, assisting clients adopting Rational 
methods and tools. He also covered the role of Chief Architect in important Italian companies 
and has about 20 years of experience in the field of software engineering.

Cécile Péraire is a method architect and author with IBM US, contributing to the definition of 
IBM software development methods, including the Rational Unified Process (RUP) and some 
of its most significant extensions. Before joining the IBM Rational Unified Process team, 
Cécile worked as a senior consultant with Rational, assisting clients adopting Rational 
methods and tools.  She has about 16 years of experience in the field of software 
engineering. Cécile holds a Ph.D. in software testing from the Swiss Federal Institute of 
Technology in Lausanne (EPFL).

Angelo Fernandes is a Quality and Support Lead for System z development at the 
Australian Development Laboratory in IBM Australia.  He has more than 28 years of System z 
development and support experience, having worked in both client and IBM software 
development environments.  Over the years, he has fulfilled roles spanning the complete 
end-to-end lifecycle of software development and has project managed a number of IBM 
System z software product development and support projects.

Mike Edwards is a Software Engineer on the development team for Electronic Service 
Agent™ for zSeries® in IBM Canada. He holds a Master’s Degree in Engineering from the 
University of Toronto and has worked in the IT Industry for more than 20 years. Before joining 
IBM, Mike worked in a number of industries as an independent consultant.

Kathy Carroll is a Software Engineer in Research Triangle Park, North Carolina.  She has 
more than 15 years experience with application development software from development to 
consulting. Her current role is the lead developer for the VAGen to EGL Migration team.  She 
holds a Computer Science degree from Wake Forest University.

Thanks to the following people for their contributions to this project:

Per Kroll, STSM, Manager RUP/RMC, IBM Software Group, Rational, Raleigh.

Bruce MacIsaac, Manager RUP/OpenUP Content, IBM Software Group, Rational, San Jose.

Bob Cancilla, Product Market Manager - Rational Tools for System i™ and System z, IBM 
Software Group, Rational, Costa Mesa.

Alessandro di Bari, IBM Rational, Italy.

Gregory Hodgkinson, IBM Business Partner 7irene, UK.

Joe Vincens, IBM Rational, Raleigh

Dan Bruce, IBM Rational, Raleigh

Bob Haimowitz, IBM International Technical Support Organization, Raleigh

Jonathan Sayles, IBM Rational, Raleigh

Mark Evans, IBM Rational, Raleigh

Sanjay Chandru, IBM Rational, Raleigh

Alex Lui, IBM Rational, Raleigh

 

 

 

 Preface xi



 

James Conover, IBM SWG-AIM, Buffalo

William Deason, IBM SWG-AIM, San Jose

Chris Rayns, IBM International Technical Support Organization, Poughkeepsie

Richard  M. Conway, IBM International Technical Support Organization, Poughkeepsie

and

Joe DeCarlo, Manager for Special Projects, International Technical Support Organization, 
Raleigh Center via San Jose, California.

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbooks Publication 
dealing with specific products or solutions, while getting hands-on experience with 
leading-edge technologies. You'll have the opportunity to team with IBM technical 
professionals, IBM Business Partners, and Clients. 

Your efforts will help increase product acceptance and customer satisfaction. As a bonus, 
you'll develop a network of contacts in IBM development labs, and increase your productivity 
and marketability. 

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our IBM Redbooks publications to be as helpful as possible. Send us your 
comments about this or other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review IBM Redbooks publication form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

 

 

 

xii The IBM Rational Unified Process for System z

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html


 

Part 1 Introduction to the 
IBM Rational 
Unified Process 
for System z

This part introduces the IBM Rational Unified Process for System z (RUP for System z).

Part 1
 

 

 

© Copyright IBM Corp. 2007. All rights reserved. 1



 

 

 

 

2 The IBM Rational Unified Process for System z



 

Chapter 1. Introduction

In this chapter, we discuss the purpose, the target audience, the rationale for the book, and 
the scope of the method. We also provide an overview of the contents, including case study 
examples we used during the researching and writing of this book.

1
 

 

 

© Copyright IBM Corp. 2007. All rights reserved. 3



 

1.1  Purpose

The purpose of this book is to introduce the System z software development community to 
the newly developed Rational Unified Process (RUP) for the System z environment.

Its aim is to describe the key fundamental principles and best practices of RUP and to 
demonstrate the value of applying these very same principles and practices to development 
activities within the System z environment by using Rational Unified Process for System z.

By using a real System z CICS® TS application written in COBOL as a case study, the aim is 
to demonstrate the key elements and steps involved in adopting the RUP for System z 
process to application development in the System z environment.

The book also describes how to obtain and install the new RUP for System z plug-in created 
for the Rational Method Composer (RMC), so that you can publish the method as a Web site 
and further customize the method, if necessary, to suit your own organization’s needs and 
preferences.

1.2  Audience

This IBM Redbooks publication is intended for the whole of the System z application 
development community from project managers, architects and designers, to programmers 
and testers alike, because it covers the full end-to-end development lifecycle for the System z 
environment.

In addition, System z Development Managers and Method Designers in particular, that is, 
people who are responsible for implementing methods, standards, and procedures within 
their teams or organizations, might find this book more useful as a reference guide to assist 
them in adapting RUP for System z to their own development environments. The intent is for 
you to be able to implement RUP for System z in a manner that is most appropriate to your 
own specific development environment, so that you might reap the vast benefits that are 
associated with it.

1.3  Rationale

Although in the recent past since the 1990s, there have been several changes in methods 
and processes used in the System z application development environment, they have all 
largely been related to the traditional waterfall development lifecycle model. So far, it has 
been a common belief that modern development methodologies, such as RUP, are 
applicable only to the Object-Oriented programming world.

However, given the current frequently changing, on demand business climate in which we 
live, businesses are required to be nimble, flexible, and responsive to ever changing business 
needs. Therefore, we thought it timely to investigate and document how a modern, popular, 
and integrated development methodology, such as RUP, can be applied to application 
development in the System z environment in order to add value to the applications and 
products developed for System z.

The result is this IBM Redbooks publication. This book leverages the best elements of RUP 
with a specific focus on the System z development environment.

 

 

 

4 The IBM Rational Unified Process for System z



 

1.4  Scope

The RUP for System z method addresses green field development and system evolution with 
architectural changes (including turning an existing capability into a Web service, for 
instance) or with significant impact on existing user business processes. 

Pure maintenance is out of our scope. For more information about maintenance, refer to 4.6, 
“Note on maintenance projects” on page 49 for a brief discussion about maintenance projects 
and refer to the RUP for Maintenance Projects plug-in at:

http://www.ibm.com/developerworks/rational/downloads/06/plugins/rmc_prj_mnt/ 

The RUP for Maintenance Projects plug-in provides a delivery process, tasks, and guidance 
for avoiding pitfalls during a maintenance cycle and successfully delivering a product with 
higher quality than the previous release.

1.5  Overview

The main topics of this IBM Redbooks publication are:

� Introduction to RUP and its extension to Service-Oriented Architecture (SOA)

� Why RUP for System z

� RUP for System z roadmap

� RUP for System z process essentials

� RUP for System z end-to-end lifecycle

� RUP for System z content elements

� Catalog Manager case study

� Enterprise Generation Language (EGL)

� RUP for System z Work Breakdown Structure (WBS)

� How to customize RUP for System z

The main topics are followed by an appendix, which contains work products of the Catalog 
Manager application development case study that were generated during various iterations of 
the RUP development phases. There is an appendix that provides a terminology mapping 
between RUP and System z terms and another that provides information about where to 
download the RUP for System z Rational Method Composer (RMC) plug-in.

Introduction to RUP and its extension to Service-Oriented Architecture
This chapter introduces you to the key underlying principles of RUP and its framework of 
reusable method content and process building blocks. It provides an overview of the RUP 
lifecycle, describing its various phases, iterations, and the purpose and goal behind each of 
the phases. This chapter also describes a roadmap through the RUP when developing 
service-oriented solutions.

Why RUP for System z
The System z environment has been around for a long time. Over the years, its developers 
have been pioneers in formulating and using various application development methodologies. 
So why RUP for System z? This chapter provides you with compelling reasons for why we 
undertook this project of producing a RUP for System z and the value proposition that comes 
with it. The RUP key principles are commercially proven approaches to software 

 

 

 

Chapter 1. Introduction 5

http://www.ibm.com/developerworks/rational/downloads/06/plugins/rmc_prj_mnt/


 

development, obtained from industry experts and from thousands of clients and development 
projects. So why not expose RUP to benefit the System z environment too?

RUP for System z roadmap
This chapter provides a roadmap, walking through each phase (inception, elaboration, 
construction, and transition) of a typical System z development project.

RUP for System z process essentials
This chapter provides the process essentials: A brief definition of each project phase 
(inception, elaboration, construction, and transition) in terms of the main goals, activities, and 
milestones. For each activity, the chapter lists the corresponding key roles, tasks, output work 
products, and available examples from the Catalog Manager case study. The corresponding 
section of the RUP for System z Web site provides advanced System z practitioners with all 
the links necessary to perform specific activities or tasks.

RUP for System z end-to-end lifecycle
This chapter describes the RUP for System z process from an end-to-end lifecycle 
perspective. The end-to-end lifecycle can be used as a template for planning and running a 
project. It provides a complete model with predefined phases, iterations, activities, and tasks.

RUP for System z content elements
The RUP for System z includes a large number of content elements (roles, tasks, and 
artifacts). Most of these elements come from the Rational Unified Process (RUP) and its 
Service-Oriented Architecture (SOA) extension. However, some content elements have been 
added to the RUP for System z because they are specific to the System z environment. This 
chapter presents these new content elements.

Catalog Manager case study
It is common knowledge that the use of a new technology is best shown by real working 
examples. In this chapter, you will find a real-life case study as an example of how we put 
RUP for System z into practice. The case study walks you through our development of a 
COBOL CICS application, showing you actual work products and deliverables at various 
levels of incremental progress and achievement, as derived during the different phases and 
iterations of the method. Reading this chapter will allow you to visualize how RUP for System 
z can be put into practice during application development projects in your own organization.

Enterprise Generation Language (EGL)
This chapter introduces the Enterprise Generation Language (EGL) and the value that this 
programming language can bring to you and your organization. EGL is a high-level 
procedural language that developers unfamiliar to Java™ can use to quickly develop Web, 
TUI, and batch applications with data-driven business logic. EGL can also be used to 
generate COBOL for your System z. EGL was designed for developers who need to focus on 
the business logic of an application rather than the technology or platform on which the 
application needs to run. The result is higher productivity. We used EGL in this IBM 
Redbooks publication project to develop a Web client application that consumes COBOL 
CICS Web Services.

RUP for System z Work Breakdown Structure (WBS)
The RUP for System z includes a Work Breakdown Structure that covers the whole 
development lifecycle from beginning to end. This Work Breakdown Structure can be used as 
a template for planning and running a project. This chapter presents the Work Breakdown 
Structure for each project phase (inception, elaboration, construction, and transition).

 

 

 

6 The IBM Rational Unified Process for System z



 

How to customize RUP for System z
Finally, for any method to be practical and applicable to your own organization’s environment, 
it needs to be flexible and customizable. This chapter shows you how to customize RUP for 
System z to suit your own organization’s needs and preferences in order to allow you to 
implement the method or parts of the method in a manner that helps you derive the most 
benefit out of it.

 

 

 

Chapter 1. Introduction 7



 

 

 

 

8 The IBM Rational Unified Process for System z



 

Part 2 The IBM Rational 
Unified Process 
for System z for 
Beginners

This part includes learning material related to the IBM Rational Unified Process for System z 
(RUP for System z). This part is targeted toward beginners.

Part 2
 

 

 

© Copyright IBM Corp. 2007. All rights reserved. 9



 

 

 

 

10 The IBM Rational Unified Process for System z



 

Chapter 2. Introduction to the IBM Rational 
Unified Process and its 
extension to Service-Oriented 
Architecture

The IBM Rational Unified Process for System z (RUP for System z) is based on the IBM 
Rational Unified Process (RUP) and its Service-Oriented Architecture (SOA) extension (RUP 
for SOA). This chapter introduces RUP and RUP for SOA. 

Most of the content in this chapter comes directly from RUP and RUP for SOA where you can 
obtain additional introductory information.

2
 

 

 

© Copyright IBM Corp. 2007. All rights reserved. 11



 

2.1  Overview

The IBM Rational Unified Process (RUP) is a software engineering process framework. It 
provides best practices and guidance for successful software development and a disciplined 
approach to assigning tasks and responsibilities within a development organization. Its goal is 
to ensure the production of high-quality software that meets the needs of its users within a 
predictable schedule and budget. Figure 2-1 illustrates the overall architecture of RUP.

Figure 2-1   Overall Architecture of RUP

As shown in Figure 2-1, RUP has two dimensions: 

� The horizontal axis represents time and shows the lifecycle aspects of the process as it 
unfolds. The lifecycle is divided into four phases: inception, elaboration, construction, and 
transition. Each phase is divided into one or more iterations. For instance, in Figure 2-1, 
inception has one iteration, elaboration has two iterations, construction has n iterations, 
and transition has two iterations. The right number of iterations per phase varies from 
project to project.

� The vertical axis represents disciplines, such as requirements, analysis, and design, or 
implementation, which logically group activities by nature. 

The graph shows that most iterations cover all disciplines; however, the emphasis varies over 
time. For example, in early iterations you spend more time on requirements; in later iterations, 
you spend more time on implementation. 

This introduction to RUP and its SOA extension includes the following content: 

� Introduction to RUP
This section answers fundamental questions about the nature and purpose of RUP. 

 

 

 

12 The IBM Rational Unified Process for System z



 

� Key principles for successful software development
This section presents key principles characterizing the industry’s best practices in the 
creation, deployment, and evolution of software-intensive systems. RUP is based on 
these principles. 

� RUP lifecycle
This section describes the phases and milestones of a typical RUP project lifecycle. 

� Developing service-oriented solutions
This section describes a roadmap through RUP when developing service-oriented 
solutions. 

2.2  Introduction to RUP

This section introduces the IBM Rational Unified Process (RUP) by describing the heart of 
RUP and the IBM Rational Method Composer (RMC) platform.

2.2.1  The heart of RUP 

At its heart, the IBM Rational Unified Process (RUP) is about successful software 
development. There are three central elements that define RUP: 

� An underlying set of philosophies and principles for successful software 
development
These philosophies and principles are the foundation on which RUP has been developed. 
See 2.3, “Key principles for successful software development” on page 14 for more on the 
topic.

� A framework of reusable method content and process building blocks 
Defined and improved on an ongoing basis by Rational Software, the RUP family of 
method plug-ins defines a method framework from which you create your own method 
configurations and tailored processes. 

� The underlying method and process definition language 
Underlying it all is a unified method architecture meta-model. This model provides a 
language for describing method content and processes. This new language is a unification 
of different method and process engineering languages, such as the SPEM extension to 
the Unified Modeling Language (UML) for software process engineering, the languages 
used for RUP v2003, Unified Process, IBM Global Services Method, as well as IBM 
Rational Summit® Ascendant. 

One of the core practices behind RUP is iterative and incremental development. This practice 
is also good to keep in mind as you start with RUP: Do not try to “do” all of RUP at once. 
Adopt an approach to implementing, learning, and using RUP that is itself iterative and 
incremental. Start by assessing your existing process and selecting one or two key areas that 
you want to improve. Begin using RUP to improve these areas first and then, in later 
iterations or development cycles, make incremental improvements in other areas.

2.2.2  The IBM Rational Method Composer (RMC) platform 

Over many years of development effort, RUP has evolved into a rich process engineering 
platform called IBM Rational Method Composer (RMC). RMC enables teams to define, 
configure, tailor, and practice a consistent process. 

 

 

 

Chapter 2. Introduction to the IBM Rational Unified Process and its extension to Service-Oriented Architecture 13



 

The key elements of the platform are: 

� Method delivery tool 
RUP is delivered to practitioners as an interactive Web site using industry-standard 
browser technology. A RUP Web site is a Rational Method Composer-published process 
presentation configured for your project and tailored to your specific needs. The Web site 
is created using dynamically generated HTML pages, which RMC enables you to publish 
in the form of multiple RUP Web sites, each representing a configured and tailored 
process definition. 

� Method configuration tool 
IBM Rational Method Composer (RMC) supports the fine-grained publish-time 
configuration of method content and processes to meet the varied needs of different 
projects and users. RMC allows the optional inclusion of method and process extensions 
using Method Composer’s plug-in technology. It also allows you to configure variants on 
processes, which are published differently depending on user-specific selections. 

� Method authoring tool 
The IBM Rational Method Composer (RMC) tool is specifically designed for method 
content management and process authoring with functions, such as form-based 
authoring, breakdown structure-based authoring, content browsing, content search, and 
import and export of method content. RMC also provides mechanisms for rapid process 
assembly using process patterns and reusable method elements. It supports the creation 
of method plug-ins that provide powerful ways of extending and modifying existing 
content, simplifying method content, process management, and maintenance. 

� A marketplace for process extensions 
The RMC/RUP section of the developerWorks® Rational Web site provides a place for 
process engineers in the software development community to share their method 
extensions as consumable plug-ins and provides a rich source of method extensions for 
the project manager. The RMC/RUP section of the developerWorks Rational Web site can 
be found at:

http://www.ibm.com/developerworks/rational/products/rup/

More information about RMC can be found at:

http://www.ibm.com/software/awdtools/rmc/

2.3  Key principles for successful software development

This section presents key principles characterizing the industry’s best practices in the 
creation, deployment, and evolution of software-intensive systems. RUP is based on these 
principles, and they are the following:

� Adapt the process. 

� Balance competing stakeholder priorities. 

� Collaborate across teams. 

� Demonstrate value iteratively. 

� Elevate the level of abstraction. 

� Focus continuously on quality. 

Each principle is presented through: 

� The benefits derived from applying the principle. 

� The pattern of behavior that best embodies the principle.

 

 

 

14 The IBM Rational Unified Process for System z

http://www.ibm.com/developerworks/rational/products/rup/
http://www.ibm.com/software/awdtools/rmc/


 

� The most recognizable “anti-patterns” or behaviors contrary to the principle that can harm 
software development projects. 

2.3.1  Adapt the process

This principle states that it is critical to rightsize the development process to the needs of the 
project. More is not better, less is not better: Instead, the amount of ceremony, precision, and 
control present in a project must be tailored according to a variety of factors, including the 
size and distribution of teams, the amount of externally imposed constraints, and the phase 
the project is in. 

Benefits:

� Lifecycle efficiency 

� Increased project agility 

� Realistic plans and estimates 

Pattern:

� Rightsize the process to project needs, including: 

– The size and distribution of the project team 

– The complexity of the application 

– The need for compliance 

� Adapt process ceremony to the lifecycle phase (allow formality to evolve from light to 
heavy as uncertainties are resolved). 

� Improve the process continuously. 

� Balance plans and estimates with the level of uncertainty. 

Anti-patterns:

� Always see more process and more detailed up front planning as better: 

– Force early estimates and stick to those estimates. 

– Develop precise plans, and manage the project by tracking against a static plan. 

2.3.2  Balance competing stakeholder priorities 

This principle articulates the importance of balancing often conflicting business and 
stakeholder needs, as well as balancing custom development against asset reuse in the 
satisfaction of these needs.

Benefits: 

� Align applications with business and user needs. 

� Reduce custom development. 

� Optimize business value. 

Pattern:

� Define, understand, and prioritize business and user needs. 

� Prioritize projects and requirements and couple the needs with the software capabilities. 

� Understand what assets we can leverage.

� Balance asset reuse with user needs. 

 

 

 

Chapter 2. Introduction to the IBM Rational Unified Process and its extension to Service-Oriented Architecture 15



 

Anti-patterns: 

� Thoroughly document precise requirements at the outset of the project and force 
stakeholder acceptance of requirements: 

– Negotiate any changes to the requirements where each change can increase the cost 
or duration of the project.

– Lock down requirements up front, thereby reducing the ability to leverage existing 
assets. 

– Primarily perform custom development. 

� Architect a system only to meet the needs of the most vocal stakeholders.

2.3.3  Collaborate across teams

This principle stresses the importance of fostering optimal project-wide communication. This 
is achieved through proper team organization and the setting up of effective collaborative 
environments.

Benefits: 

� Team productivity 

� Better coupling between business needs and the development and operations of software 
systems 

Pattern: 

� Motivate people to perform at their best. 

� Create self-managed teams. 

� Encourage cross-functional collaboration (for example, analysts, developers, and testers). 

� Provide effective collaborative environments.

� Manage evolving artifacts and tasks to enhance collaboration, progress, and quality 
insight with integrated environments. 

� Integrate business, software, and operation teams. 

Anti-patterns: 

� To nurture heroic developers willing to work extremely long hours, including weekends 

� Have highly specialized people equipped with powerful tools for doing their jobs, with 
limited collaboration between different team members, and limited integration between 
different tools. The assumption is that if just everybody does his or her job, the end result 
will be good.

2.3.4  Demonstrate value iteratively 

This principle explains why software development greatly benefits from being iterative. An 
iterative process makes it possible to easily accommodate change, to obtain feedback and 
factor it into the project, to reduce risk early, and to adjust the process dynamically.

Benefits: 

� Early risk reduction 

 

 

 

16 The IBM Rational Unified Process for System z



 

� Higher predictability throughout the project 

� Trust among stakeholders

Pattern: 

� Enable feedback by delivering incremental user value in each iteration. 

� Adapt your plans using an iterative process. 

� Embrace and manage change. 

� Attack major technical, business, and programmatic risks early. 

Anti-patterns: 

� Plan the whole lifecycle in detail and track variances against plan (can actually contribute 
to project failure). 

� Assess status in the first two thirds of the project by relying on reviews of specifications, 
rather than assessing status of test results and demonstrations of working software. 

2.3.5  Elevate level of abstraction 

Complexity is a central issue in software development. Elevating the level of abstraction helps 
reduce complexity as well the amount of documentation required by the project. This can be 
achieved through reuse, the use of high-level modeling tools, and stabilizing the architecture 
early.

Benefits: 

� Productivity 

� Reduced complexity 

Pattern: 

� Reuse existing assets. 

� Use higher-level tools and languages to reduce the amount of documentation produced. 

� Focus on architecture first. 

� Architect for resilience, quality, understandability, and complexity control.

Anti-patterns: 

� To go directly from vague, high-level requirements to custom-crafted code: 

– Because few abstractions are used, a lot of the discussions are made at the code level 
compared to a more conceptual level, which misses many opportunities for reuse, 
among other things. 

– Informally captured requirements and other information require decisions and 
specifications to be revisited repeatedly. 

– Limited emphasis on architecture causes major rework late in the project. 

2.3.6  Focus continuously on quality 

This principle emphasizes that to achieve quality, it must be addressed throughout the project 
lifecycle. An iterative process is particularly adapted to achieving quality, because it offers 
many measurement and correction opportunities.

 

 

 

Chapter 2. Introduction to the IBM Rational Unified Process and its extension to Service-Oriented Architecture 17



 

Benefits: 

� Higher quality 

� Earlier insight into progress and quality 

Pattern: 

� Ensure team ownership of quality for the product.

� Test early and continuously in step with integration of demonstrable capabilities. 

� Incrementally build test automation. 

Anti-patterns: 

� To peer-review all artifacts and complete all unit testing before integration testing

� To conduct in-depth peer review of all intermediate artifacts, which is counterproductive 
because it delays application testing and hence identification of major issues 

� To complete all unit testing before doing integration testing, again delaying identification of 
major issues 

2.4  RUP lifecycle

This section describes the phases of a typical RUP project lifecycle. 

2.4.1  Inception Phase

The overriding goal of the Inception Phase is to achieve concurrence among all stakeholders 
on the lifecycle objectives for the project. The Inception Phase is of significance primarily for 
new development efforts, in which there are significant business and requirement risks, which 
must be addressed before the project can proceed. For projects focused on enhancements to 
an existing system, the Inception Phase is shorter but is still focused on ensuring that the 
project is both worth doing and possible to do. 

Objectives 
The primary objectives of the Inception Phase include: 

� Establishing the project’s software scope and boundary conditions, including an 
operational vision, acceptance criteria, and what is intended to be in the product and what 
is not 

� Discriminating the critical use cases of the system, the primary scenarios of operation that 
will drive the major design trade-offs 

� Exhibiting, and maybe demonstrating, at least one candidate architecture against some of 
the primary scenarios 

� Estimating the overall cost and schedule for the entire project (and more detailed 
estimates for the Elaboration Phase) 

� Estimating potential risks (the sources of unpredictability)

� Preparing the supporting environment for the project 

 

 

 

18 The IBM Rational Unified Process for System z



 

Essential activities 
The essential activities of the Inception Phase include: 

� Formulating the scope of the project. This involves capturing the context and the most 
important requirements and constraints to such an extent that you can derive acceptance 
criteria for the end product. 

� Planning and preparing a business case. Evaluating alternatives for risk management, 
staffing, the project plan, and cost, schedule, and profitability trade-offs. 

� Synthesizing a candidate architecture, evaluating trade-offs in design, and in make, 
buy, and reuse, so that cost, schedule, and resources can be estimated. The aim here is 
to demonstrate feasibility through a proof of concept. This might take the form of a model, 
which simulates what is required or an initial prototype, which explores what are 
considered to be the areas of high risk. The prototyping effort during inception needs to be 
limited to gaining confidence that a solution is possible and that the solution is realized 
during elaboration and construction. 

� Preparing the environment for the project, assessing the project and the organization, 
selecting tools, and deciding which parts of the process to improve. 

A typical iteration in inception is illustrated in Figure 2-2 on page 20.

 

 

 

Chapter 2. Introduction to the IBM Rational Unified Process and its extension to Service-Oriented Architecture 19



 

Figure 2-2   Typical iteration in the Inception Phase

Milestone 

At the end of the Inception Phase is the first major project milestone or Lifecycle Objectives 
Milestone. At this point, you examine the lifecycle objectives of the project and decide either 
to proceed with the project or to cancel it. 

Evaluation criteria: 

� Stakeholder concurrence on scope definition and cost/schedule estimates. 

� Agreement that the right set of requirements has been captured and that there is a shared 
understanding of these requirements. 

� Agreement that the cost/schedule estimates, priorities, risks, and development process 
are appropriate. 

� All risks have been identified and a mitigation strategy exists for each risk. 

The project might be canceled or considerably rethought if it fails to reach this milestone. 

 

 

 

20 The IBM Rational Unified Process for System z



 

2.4.2  Elaboration Phase

The goal of the Elaboration Phase is to baseline the architecture of the system to provide a 
stable basis for the bulk of the design and implementation effort in the Construction Phase. 
The architecture evolves out of a consideration of the most significant requirements (those 
that have a great impact on the architecture of the system) and an assessment of risk. The 
stability of the architecture is evaluated through one or more architectural prototypes. 

Objectives 
The primary objectives of the Elaboration Phase include: 

� To ensure that the architecture, requirements, and plans are stable enough, and the risks 
sufficiently mitigated to be able to predictably determine the cost and schedule for the 
completion of the development. For most projects, passing this milestone also 
corresponds to the transition from a light-and-fast, low-risk operation to a high cost, high 
risk operation with substantial organizational inertia. 

� To address all architecturally significant risks of the project.

� To establish a baseline architecture derived from addressing the architecturally significant 
scenarios, which typically expose the top technical risks of the project. 

� To produce an evolutionary prototype of production-quality components, as well as 
possibly one or more exploratory, throwaway prototypes to mitigate specific risks, such as: 
design/requirement trade-offs, component reuse, and product feasibility or 
demonstrations to investors, clients, and users. 

� To demonstrate that the baseline architecture will support the requirements of the system 
at a reasonable cost and in a reasonable time. 

� To establish a supporting environment. 

In order to achieve these primary objectives, it is equally important to set up the supporting 
environment for the project. This includes tailoring the process for the project, preparing 
templates, guidelines, and setting up tools. 

Essential activities 
The essential activities of the Elaboration Phase include: 

� Defining, validating, and baselining the architecture as rapidly as practical. 

� Refining the vision, based on new information obtained during the phase, establishing a 
solid understanding of the most critical use cases that drive the architectural and planning 
decisions. 

� Creating and baselining detailed iteration plans for the Construction Phase. 

� Refining the development process and putting in place the development 
environment, including the process, tools, and automation support required to support 
the construction team. 

� Refining the architecture and selecting components. Potential components are 
evaluated and the make, buy, and reuse decisions sufficiently understood to determine 
the Construction Phase cost and schedule with confidence. The selected architectural 
components are integrated and assessed against the primary scenarios. Lessons learned 
from these activities might well result in a redesign of the architecture, taking into 
consideration alternative designs or reconsideration of the requirements. 

A typical iteration in elaboration is illustrated in Figure 2-3 on page 22.

 

 

 

Chapter 2. Introduction to the IBM Rational Unified Process and its extension to Service-Oriented Architecture 21



 

Figure 2-3   Typical iteration in Elaboration Phase

Milestone 
At the end of the Elaboration Phase is the second important project milestone, the Lifecycle 
Architecture Milestone. At this point, you examine the detailed system objectives and scope, 
the choice of architecture, and the resolution of the major risks. 

Evaluation criteria: 

� The product vision and requirements are stable. 

� The architecture is stable. 

� The key approaches to be used in test and evaluation are proven. 

� Test and evaluation of executable prototypes have demonstrated that the major risk 
elements have been addressed and have been credibly resolved. 

� The iteration plans for the Construction Phase are of sufficient detail and fidelity to allow 
the work to proceed. 

� The iteration plans for the Construction Phase are supported by credible estimates. 

� All stakeholders agree that the current vision can be met if the current plan is executed to 
develop the complete system in the context of the current architecture. 

� Actual resource expenditure as opposed to planned expenditure is acceptable. 

The project may be aborted or considerably rethought if it fails to reach this milestone. 

 

 

 

22 The IBM Rational Unified Process for System z



 

2.4.3  Construction Phase

The goal of the Construction Phase is clarifying the remaining requirements and completing 
the development of the system based upon the baseline architecture. The Construction 
Phase is in some sense a manufacturing process, where emphasis is placed on managing 
resources and controlling operations to optimize costs, schedules, and quality. In this sense, 
the management mindset undergoes a transition from the development of intellectual 
property during inception and elaboration, to the development of deployable products during 
construction and transition. 

Objectives 
The primary objectives of the Construction Phase include: 

� Minimizing development costs by optimizing resources and avoiding unnecessary scrap 
and rework. 

� Achieving adequate quality as rapidly as practical. 

� Achieving useful versions (alpha, beta, and other test releases) as rapidly as practical. 

� Completing the analysis, design, development, and testing of all required functionality. 

� To iteratively and incrementally develop a complete product that is ready to transition to its 
user community. This implies describing the remaining use cases and other requirements, 
fleshing out the design, completing the implementation, and testing the software. 

� To decide if the software, the sites, and the users are all ready for the application to be 
deployed. 

� To achieve some degree of parallelism in the work of development teams. Even on 
smaller projects, there are typically components that can be developed independently of 
one another, allowing for natural parallelism between teams (resources permitting). This 
parallelism can accelerate the development activities significantly, but it also increases the 
complexity of resource management and workflow synchronization. A robust architecture 
is essential if any significant parallelism is to be achieved. 

Essential activities 
The essential activities of the Construction Phase include: 

� Resource management, control, and process optimization 

� Complete component development and testing against the defined evaluation criteria

� Assessment of product releases against acceptance criteria for the vision 

A typical iteration in construction is illustrated in Figure 2-4 on page 24.

 

 

 

Chapter 2. Introduction to the IBM Rational Unified Process and its extension to Service-Oriented Architecture 23



 

Figure 2-4   Typical iteration in Construction Phase

Milestone

At the Initial Operational Capability Milestone, the product is ready to be handed over to the 
Transition Team. All functionality has been developed and all alpha testing (if any) has been 
completed. In addition to the software, a user manual has been developed, and there is a 
description of the current release. 

Evaluation criteria 
The evaluation criteria for the Construction Phase involve the answers to these questions: 

� Is this product release stable and mature enough to be deployed in the user community? 

� Are all the stakeholders ready for the transition into the user community? 

� Are actual resource expenditures as opposed to planned still acceptable? 

Transition might have to be postponed by one release if the project fails to reach this 
milestone. 

2.4.4  Transition Phase

The focus of the Transition Phase is to ensure that software is available for its users. The 
Transition Phase can span several iterations and includes testing the product in preparation 
for release and making minor adjustments based on user feedback. At this point in the 
lifecycle, user feedback needs to focus mainly on fine-tuning the product, configuring, 

 

 

 

24 The IBM Rational Unified Process for System z



 

installing, and usability issues, all the major structural issues need to have been worked out 
much earlier in the project lifecycle. 

Objectives 
By the end of the Transition Phase, lifecycle objectives should have been met and the project 
should be in a position to be closed out. In some cases, the end of the current lifecycle might 
coincide with the start of another lifecycle on the same product, leading to the next generation 
or version of the product. For other projects, the end of transition can coincide with a 
complete delivery of the artifacts to a third party, who might be responsible for operations, 
maintenance, and enhancements of the delivered system. 

This Transition Phase ranges from being very straightforward to extremely complex, 
depending on the kind of product. A new release of an existing desktop product might be very 
simple, whereas the replacement of a nation’s air-traffic control system can be exceedingly 
complex. 

Activities performed during an iteration in the Transition Phase depend on the goal. For 
example, when fixing bugs, implementation and test are usually enough. If, however, new 
features have to be added, the iteration is similar to one in the Construction Phase requiring 
analysis, design, and so forth. 

The Transition Phase is entered when a baseline is mature enough to be deployed in the user 
domain. This typically requires that some usable subset of the system has been completed 
with acceptable quality level and user documentation so that transitioning to the user provides 
positive results for all parties. 

The primary objectives of the Transition Phase include: 

� Beta testing to validate the new system against user expectations 

� Beta testing and parallel operation relative to an existing system that it is replacing 

� Converting operational databases 

� Training users and those who will maintain the new system

� Rollout to the marketing, distribution, and sales forces 

� Deployment-specific engineering, such as cutover, commercial packaging and production, 
sales rollout, and field personnel training 

� Tuning activities, such as bug fixing, enhancement for performance, and usability 

� Assessment of the deployment baselines against the complete vision and the acceptance 
criteria for the product 

� Achieving user self-supportability 

� Achieving stakeholder concurrence that deployment baselines are complete 

� Achieving stakeholder concurrence that deployment baselines are consistent with the 
evaluation criteria of the vision 

Essential activities 
The essential activities of the Transition Phase include: 

� Executing deployment plans 

� Finalizing user support material 

� Testing the deliverable product at the development site 

� Creating a product release 

 

 

 

Chapter 2. Introduction to the IBM Rational Unified Process and its extension to Service-Oriented Architecture 25



 

� Getting user feedback 

� Fine-tuning the product based on feedback 

� Making the product available to users 

A typical iteration in transition is illustrated in Figure 2-5.

Figure 2-5   Typical iteration in the Transition Phase

Milestone
At the end of the Transition Phase is the fourth important project milestone, the Product 
Release Milestone. At this point, you decide if the objectives were met, and if you need to start 
another development cycle. In some cases, this milestone might coincide with the end of the 
Inception Phase for the next cycle. The Product Release Milestone is the result of the 
customer reviewing and accepting the project deliverables. 

 

 

 

26 The IBM Rational Unified Process for System z



 

The primary evaluation criteria for the Transition Phase involve the answers to these 
questions: 

� Is the user satisfied? 

� Are actual resource expenditures compared to planned expenditures acceptable? 

At the Product Release Milestone, the product is in production and the post-release 
maintenance cycle begins. This might involve starting a new cycle or additional maintenance 
release. 

2.5  Developing service-oriented solutions

This section describes a roadmap through RUP when developing service-oriented solutions 
as defined in RUP for SOA. The presented method is called RUP/SOMA. 

The SOMA (Service-Oriented Modeling and Architecture) method was developed as an 
engagement model within the IBM Global Business Services group, and while public papers 
and descriptions were available, it was primarily a method used by consultants in the field and 
not available to IBM clients. However, the RUP is a commercial product offering from IBM that 
clients use to develop their own software development processes. This integrated method 
offering, RUP/SOMA, has been developed to bring the unique aspects of SOMA to the RUP 
commercial method and make these available to commercial clients. 

The framework for RUP/SOMA is described in Figure 2-6, which demonstrates the key 
phases of the method, including the influences driving each phase and the artifacts produced. 
Note that the key artifact manipulated by the method is the Service Model in 2.5.4, “Service 
Model” on page 29. 

Figure 2-6   The RUP/SOMA framework

2.5.1  Service Identification 

Service Identification is primarily an Elaboration time set of activities, focused on the 
identification of candidate services from the set of assets from both business and IT. The 
workflow for Service Identification is shown in Figure 2-7 on page 28. 

 

 

 

Chapter 2. Introduction to the IBM Rational Unified Process and its extension to Service-Oriented Architecture 27



 

Figure 2-7   Service Identification workflow

The tasks identified within this set of activities are: 

� Task: Functional Area Analysis 

� Task: Refine a Business Use Case 

� Task: Business Process Analysis 

� Task: Business Use-Case Analysis (SOA) 

� Task: Identify Business Goals and key performance indicators (KPIs) 

� Task: Identify and Associate Services to Goals 

� Task: Existing Asset Analysis 

� Task: Data Model Analysis 

� Task: Business Rule Analysis 

� Task: Construct Architectural Proof-of-Concept (SOA) 

2.5.2  Service Specification 

Service Specification is primarily an Elaboration time set of activities, focused on the selection 
of candidate services that will be developed into full services. These services are then 
allocated to subsystems also identified above and then decomposed into sets of components 
for implementation. The workflow for Service Specification is shown in Figure 2-8.

Figure 2-8   Service Specification workflow

The tasks identified within this set of activities are: 

� Task: Apply Services Litmus Tests 

� Task: Service Specification 

� Task: Message Design 

� Task: Identify Security Patterns 

� Task: Subsystem Design (SOA) 

� Task: Component Specification (SOA) 

2.5.3  Service Realization 

Service Realization is primarily a Construction time set of activities, focused on the 
completion of component design being ready for component implementation. The workflow 
for Service Realization is shown in Figure 2-9 on page 29.

 

 

 

28 The IBM Rational Unified Process for System z



 

Figure 2-9   Service Realization workflow

The tasks identified within this activity are: 

� Task: Document Service Realization Decisions 

� Task: Component Specification (SOA) 

� Task: Construct Architectural Proof-of-Concept (SOA) 

2.5.4  Service Model 

In SOMA, the Service Model is described using Figure 2-10; it is a single, document-based, 
work product that encompasses the different technical and lifecycle views of the services 
identified and specified during a project. The different sections of the service model are listed 
in more detail in the Artifact: Service Model in RUP/SOMA. 

Figure 2-10   Service Model

The RUP Artifact: Service Model is described in both a document form and a Unified 
Modeling Language (UML) form (Template: Service Model in Word and Template: Service 
Model in UML) though it is more likely that a project will use elements of both of these forms 
in presenting the results of their work. 

 

 

 

Chapter 2. Introduction to the IBM Rational Unified Process and its extension to Service-Oriented Architecture 29



 

 

 

 

30 The IBM Rational Unified Process for System z



 

Chapter 3. Why the IBM Rational Unified 
Process for System z

In this chapter, we discuss the reasons and the rationale behind the creation of a RUP for 
System z. We also describe the main differences between the older waterfall development 
model and the RUP iterative development model. And finally, we describe the evolution of 
RUP for System z.

3
 

 

 

© Copyright IBM Corp. 2007. All rights reserved. 31



 

3.1  Mainframe software development: A key business 
capability

More and more businesses today rely on mainframe servers to power their transformation 
into on demand enterprises. System z provides business integration and business resilience: 
much desired and necessary capabilities in today’s on demand world. It provides businesses 
the capability to dynamically respond to changing business conditions by being more flexible 
and responsive to change.

With the demand for flexibility and responsiveness comes the need and responsibility to 
provide supportive applications and systems to meet user needs. Delivery of applications and 
systems must be both timely and of a consistent quality. In addition, applications that we build 
must accurately satisfy requirements, so that the users get precisely what they need to be 
able to achieve their business objectives optimally.

3.2  System z application development: A tradition

System z and its application developers have been around for arguably more years than their 
counterparts in other environments. System z and its application developers have long been 
pioneers in creating and following application development methodologies, recognizing that 
process is a required and important element to producing quality software consistently. 
Traditionally, and even today, methods and processes used in the System z development 
environment are generally based on a waterfall lifecycle model. For example, we generally 
adopt a workflow that progresses sequentially from Requirements gathering, on to Analysis, 
and then through Design, Code and Unit Testing, through to Testing and Deployment, for 
example, General Availability (GA). 

The waterfall model, as the name suggests, is derived from the cascading effects of a 
waterfall with a distinct start and end, with an ordered number of phases in between, from 
requirements gathering and analysis, design, implementation and integration, concluding with 
testing at the very end. A phase is not started until a prior stage is completed.

With the waterfall model approach, there are generally only two user interaction points: the 
first during the Requirements gathering stage and the other at the final Deployment stage 
when the application solution or product is handed over to the users. Obviously, there can be 
and generally there are surprises at the end in that user needs have been accurately met. 
Figure 3-1 on page 33 shows a traditional waterfall model diagram.

 

 

 

32 The IBM Rational Unified Process for System z



 

Figure 3-1   Waterfall development model

So is it time for the System z development world to be introduced to a more modern and 
thoroughly tested development approach? We think so.

Today, as software development is becoming a key business capability, our best practices 
are maturing within the larger context of business-driven development. We think RUP for 
System z is the method to adopt to take System z development and its resulting application 
products to the next higher level of quality and consumerability.

3.3  What is different

With the passage of time and changing business demands, older methods and processes are 
beginning to show shortcomings. Several of the main deficiencies of the waterfall model are 
in the areas of requirements gathering and product deployment. Both deficiencies are related 
to the fact that the waterfall model is a linear model, which means that when one phase or 
discipline is completed, the project moves on to the next phase.

The problem with the requirements discipline in the waterfall model is that it is usually 
performed one time at the beginning of the project based on which product or application is 
built. A considerable amount of time elapses between interaction and input from the user 
toward deriving the requirements, to the time the product is built, tested, and delivered. By 
then, more likely than not, user needs have changed in order to keep pace with the current 
climate of frequently changing business conditions. The primary problem here is the inability 
to easily adapt to changing user requirements.

The problem with deployment in the waterfall model is that there is generally only one 
deliverable handed over to the user in the form of the final product, which is delivered at the 
very end of the development cycle. This practice, as alluded to earlier, creates cause for 
surprises because user needs are not accurately met.

RUP addresses these same deficiencies and provides many more other benefits. Rather than 
prescribing a plan-build-assemble sequence of activities for a software project, RUP is an 
iterative, incremental process that steers development teams toward results more quickly.

 

 

 

Chapter 3. Why the IBM Rational Unified Process for System z 33



 

An iteration, indicated by the circular arrows in 
Figure 3-2 is defined as “executing the same set of 
activities a certain number of times or until a specified 
result is obtained.”

But what in fact are these activities, how many times 
(iterations) must these activities be executed, and how 
long must each iteration be?

Well, the activities as applied to the iterative model are 
related to the development disciplines: requirements 
analysis, design, implementation, integration, and 
testing, all together comprising a single iteration in the 
RUP paradigm as illustrated in Figure 3-3.

Figure 3-2   Waterfall and Iterative process

Figure 3-3   What is an iteration

An iteration typically spans two to three weeks, but the number and size of the iterations are 
project specific. The iteration interval after it has been decided must remain constant 
throughout the project. Furthermore, the iterations are divided into four phases: Inception, 
Elaboration, Construction, and Transition as illustrated in Figure 3-4 on page 35.

Kurt Bitnner, IBM Communities of Practice Architect, in his paper Driving Iterative 
Development With Use Cases, March 2006, states that each iteration concludes in a minor 
milestone being met and each phase concludes in a major milestone being met.

Furthermore, each iteration produces a partial working implementation of the final system 
with each implementation building on the previous implementation until the final product is 
complete, states Per Kroll, Manager of Methods, IBM Rational, in Transitioning from waterfall 
to iterative development, April 2004.

 

 

 

34 The IBM Rational Unified Process for System z



 

Figure 3-4   Iterations and Phases

3.4  Iterative compared to waterfall: Differences and benefits

With the practices advocated by RUP, software requirements management is a more 
user-interactive activity. Product requirements are continually and frequently tracked and 
validated against stakeholder needs. Also, the product is built incrementally, with the most 
complex and riskiest components designed and built first in order to validate with the user that 
their requirements and the product being built are in sync. Besides, because of the iterative 
practice of RUP, other development activities, such as test and product documentation are 
implemented from early on in the development, thereby ensuring quality and documentation 
support of the early deliverable.

So, in summary, the key differences between the waterfall and RUP’s iterative process are:

� Requirements is done not only at the beginning but continues throughout the process, 
because requirements by nature change over time and development efforts need to be 
aligned to stakeholder needs.

� Implementation starts earlier to enable early stakeholder feedback, which is key to 
ensure that we build the right system.

� Test starts earlier. Because the later the discovery of defects, the more costlier it is to put 
things right.

� Project plans are refined throughout the project based on a continuous re-evaluation (at 
least one time per iteration) of risks and priorities.

3.5  Evolution of RUP for System z

The evolution of the activities involved in software development has occurred over the last 
several decades, and it has evolved as per the demands of the times. However, in recent 
times, there have been significant changes in the scope and speed of developing software, 
as well as the tools and languages used to develop software. The RUP, being a proven 
method based on principles that characterize the industry’s best practices in the creation, 
deployment, and evolution of software-intensive systems, is recognized as being the modern 
day method to address and cope with all the current demands and pressures placed on 
software development organizations.

 

 

 

Chapter 3. Why the IBM Rational Unified Process for System z 35



 

RUP by itself is a vast repository or knowledge base of best practices. Its method content is 
comprised of tasks, roles, and work products that pertain to software development in general 
and is applicable to all development environments. 

RUP is an all-encompassing modern process framework. It is generic in nature, because it 
applies to any software development environment: big or small, old or new. However, there is 
a common belief that its practices are applicable to more modern and newer technologies 
and their associated programming languages, for example, Object-Oriented development 
and programming JAVA, and so forth.

As we all know, the System z environment is still the powerhouse of the industry, powering 
and driving all the mission-critical systems and applications that keep the largest modern day 
enterprises up and running, ready to adapt quickly and efficiently to the next round of 
changes that future innovation will bring.

For this reason, we thought it necessary to produce a development method specifically for 
System z practitioners, a method that depicts software development practices currently in use 
in the System z environment while still leveraging some of the modern best practices 
encompassed in RUP.

RUP for System z provides practitioners with specific software development guidance and a 
succinct end-to-end process dedicated to the System z environment. RUP for System z 
includes a large set of work product examples taken from an application created in CICS 
Cobol and turned into Web services. The end-to-end lifecycle is available in the form of a 
Work Breakdown Structure (WBS).

 

 

 

36 The IBM Rational Unified Process for System z



 

Chapter 4. IBM Rational Unified Process for 
System z roadmap

The IBM Rational Unified Process for System z (RUP for System z) roadmap walks through 
each phase (inception, elaboration, construction, and transition) of a typical system z 
development project. 

The RUP for System z roadmap addresses green field development and system evolution 
with architectural changes (including turning an existing capability into a Web service for 
instance) or with significant impact on existing user business processes. Refer to 4.6, “Note 
on maintenance projects” on page 49 for a discussion about pure maintenance projects.

4
 

 

 

© Copyright IBM Corp. 2007. All rights reserved. 37



 

4.1  Introduction 

The IBM Rational Unified Process for System z (RUP for System z) roadmap is illustrated in 
Figure 4-1. The roadmap provides an overview for each of the elements in the figure. 

Figure 4-1   RUP for System z lifecycle

 

 

 

38 The IBM Rational Unified Process for System z



 

The activities forming each iteration in Figure 4-1 on page 38 can be executed in sequence or 
in any order. Indeed, in RUP, an iteration is not necessarily a sequence of activities but a 
more complex combination of activities, including possible parallelism among activities.

4.2  Inception Phase overview 

The overriding goal of the Inception Phase is to achieve concurrence among all stakeholders 
on the lifecycle objectives for the project. The Inception Phase is of significance primarily for 
new development efforts, in which there are significant business and requirement risks, which 
must be addressed before the project can proceed. For projects focused on enhancements to 
an existing system, the Inception Phase is brief but is still focused on ensuring that the project 
is both worth doing and possible to do. The Inception Phase consists of a number of iterations 
culminating in the Lifecycle Objectives Milestone. 

4.2.1  Inception objectives 

The primary objectives of the Inception Phase include: 

� Establishing the project’s software scope and boundary conditions, including an 
operational vision, acceptance criteria, what is intended to be in the product, and what is 
not. 

� Discriminating the critical use cases of the system, which are the primary scenarios of 
operation that will drive the major design trade-offs. 

� Exhibiting, and maybe demonstrating, at least one candidate architecture against some of 
the primary scenarios. 

� Estimating the overall cost and schedule for the entire project (and more detailed 
estimates for the Elaboration Phase). 

� Estimating potential risks, which are the sources of unpredictability. 

� Preparing the supporting environment for the project. This can include tailoring the 
process for the project, preparing templates, guidelines, and setting up tools if necessary. 

4.2.2  Typical inception iteration 

This section provides an overview of the activities performed in a typical iteration of the 
Inception Phase, as illustrated in Figure 4-2. 

Figure 4-2   Typical iteration in the Inception Phase

The Conceive New Project activity brings a project from the initial germ of an idea to a point at 
which a reasoned decision can be made to continue or abandon the project. During this 
activity, an economic analysis, the Business Case, is produced and the risks are assessed. 
The Business Case, Risk List, and initial Vision are reviewed. If found satisfactory, the project 
is formally set up and is given limited sanction (and budget) to begin the planning effort. An 
initial draft of the Software Development Plan is created. 

 

 

 

Chapter 4. IBM Rational Unified Process for System z roadmap 39



 

The Prepare Project Environment activity prepares the development environment for a 
project, where the development environment includes both process and tools. This activity 
includes establishing an environment where the overall product can be developed, built, and 
made available for stakeholders. 

The Define Requirements activity covers the definition of the project Vision. It gains 
agreement on the scope of the system and outlines the key requirements. The requirements 
can be described in terms of a Use-Case Model, which includes Use Cases and Actors. The 
primary purpose of a use case is to capture the required system behavior from the perspective 
of the user in achieving one or more desired goals. A use case represents one or more 
sequences of actions that a system performs that yield an observable result of value to a 
particular actor, such as a user. In inception, the main use cases are identified and briefly 
described. The requirements (functional and non-functional), which do not fit appropriately 
within the use cases, must be documented in the Supplementary Specifications. After several 
use cases and supplementary requirements are identified, they are prioritized so that their 
order of development can be decided. For instance, use cases that represent some 
significant functionality, have a substantial architectural coverage (that exercises many 
architectural elements), or stress or illustrate a specific and delicate point of the architecture, 
will be developed first. In addition, the project terms must be defined in a Glossary, which will 
be maintained throughout the life of the project. This activity also kicks off the test effort by 
providing a first draft of the Test Plan. 

The Perform Architectural Proof-of-Concept activity aims at demonstrating the solution 
feasibility by building an Architectural Proof-of-Concept and assessing the viability of this 
architectural proof-of-concept. An architectural proof-of-concept can take many forms, such 
as a sketch of a conceptual model of a solution using a notation, such as Unified Modeling 
Language (UML), a simulation of a solution, or an executable prototype. The architectural 
proof-of-concept is assessed against the architecturally significant requirements. 
Requirements that are typically architecturally significant include performance, scaling, 
process and thread synchronization, and distribution. 

The Plan the Project activity starts with an assessment of the current iteration and a 
reevaluation of the risks. It refines the Software Development Plan (covering all project 
phases and iterations) and creates a fine-grained Iteration Plan for the next iteration or 
iterations. This activity also acquires the necessary resources (including staff) to perform the 
coming iteration or iterations. 

4.2.3  Lifecycle objectives milestone 

At the end of the Inception Phase is the first major project milestone or Lifecycle Objectives 
Milestone. At this point, you examine the lifecycle objectives of the project and decide either 
to proceed with the project or to cancel it. At the end of the Inception Phase, the project is 
evaluated against the following criteria: 

� Stakeholder concurrence on scope definition and cost/schedule estimates. 

� Agreement that the right set of requirements has been captured and that there is a shared 
understanding of these requirements. 

� Agreement that the cost/schedule estimates, priorities, risks, and development process 
are appropriate. 

� All risks have been identified and a mitigation strategy exists for each risk. 

The project might be canceled or considerably rethought if it fails to reach this milestone. 

 

 

 

40 The IBM Rational Unified Process for System z



 

A summary of essential work products and their state at the end of the Inception Phase: 

� Business Case (100% complete) 

� Vision (about 100% complete) 

� Glossary (about 40% complete) 

� Software Development Plan (about 80% complete) 

� Iteration Plan for the first elaboration iteration (about 100% complete) 

� Risk List (about 25% complete) 

� Use-Case Model (about 20% complete) 

� Supplementary Specifications (about 20% complete) 

� Test Plan (about 10% complete) 

� Software Architecture Document (about 10% complete) 

� Architectural Proof-of-Concept (one or more proof of concept prototypes available to 
address very specific risks) 

4.3  Elaboration Phase overview 

The goal of the Elaboration Phase is to baseline the architecture of the system to provide a 
stable basis for the bulk of the design and implementation effort in the Construction Phase. 
The architecture evolves out of a consideration of the most significant requirements (those 
that have a great impact on the architecture of the system) and an assessment of risk. The 
stability of the architecture is evaluated through one or more architectural prototypes. The 
Elaboration Phase consists of a number of iterations culminating in the Lifecycle Architecture 
Milestone. 

4.3.1  Elaboration objectives 

The primary objectives of the Elaboration Phase include: 

� Ensuring that the architecture, requirements, and plans are stable enough and the risks 
are sufficiently mitigated to be able to predictably determine the cost and schedule for the 
completion of the development. For most projects, passing this milestone also 
corresponds to the transition from a light-and-fast, low-risk operation to a high cost, high 
risk operation with substantial organizational inertia. 

� Addressing all architecturally significant risks of the project. 

� Establishing a baseline architecture derived from addressing the architecturally significant 
scenarios, which typically expose the top technical risks of the project. 

� Producing an evolutionary prototype of production-quality components, as well as possibly 
one or more exploratory, throw-away prototypes to mitigate specific risks such as: 
design/requirements trade-offs, component reuse, and product feasibility or 
demonstrations to investors, clients, and users. 

� Demonstrating that the baseline architecture will support the requirements of the system 
at a reasonable cost and in a reasonable amount of time. 

� Refining the supporting environment. 

 

 

 

Chapter 4. IBM Rational Unified Process for System z roadmap 41



 

4.3.2  Typical elaboration iteration 

This section provides an overview of the activities performed in a typical iteration of the 
Elaboration Phase, as illustrated in Figure 4-3. 

Figure 4-3   Typical iteration in the Elaboration Phase

The Refine Requirements activity addresses detailing the requirements of the system in 
terms of its use cases. Only the use cases that are in the scope of the current iteration are 
detailed in order to reach the goal of the iteration. The remaining use cases will be detailed in 
later iterations. Detailing a use case involves describing its flow of events (see Guideline: Use 
Case for guidance about how to detail a use-case flow of events). The requirements 
(functional and non-functional) that do not fit appropriately within the use cases need to be 
detailed in the supplementary specifications. Use cases and supplementary requirements 
continue to be prioritized, so that their order of development can be decided. The project 
terms continue to be defined or refined in the Glossary. 

The Define Architecture activity starts by creating an initial sketch of the software architecture 
in Define Candidate Architecture. This sub-activity defines a candidate architecture (initial 
system organization), leverages existing assets, defines the architectural patterns, identifies 
the architecturally significant use cases, and perform a use-case analysis (also called a 
use-case realization) on each candidate architecture. This includes identifying the Analysis 
Elements necessary to express the behavior of each use case. These analysis elements will 
be later refined into design elements, such as Modules and Design Classes, and source 
code. After a candidate architecture has been defined, the Define Architecture activity 
completes the architecture for an iteration in Refine the Architecture. This sub-activity 
provides the natural transition from analysis activities to design activities by identifying 
appropriate design elements from analysis elements. It also describes the organization of the 
system’s run-time and deployment architecture and maintains the consistency and integrity of 
the architecture. The activity ends with a review of the resulting architecture, as documented 
in the Software Architecture Document. 

The Design Components activity addresses the detailed design of one or more components 
within the scope identified in the iteration plan. The main goals are (see Perform Component 
Design): 

� Refine the definition of each component behavior with interactions of design elements 
(modules, classes, interfaces, events, and so forth) or remaining Analysis Elements. 

� Identify new design elements by analyzing these interactions. 

� Partition the design elements into subsystems and document the internal structure and 
behavior of the subsystems, their interfaces, and their dependencies. These subsystems 
can now be refined and implemented separately from each other. 

� Refine the definitions of design elements by working out the “details” of how they realize 
the behavior required of them. 

When services are involved, the Design Components activity refines the design with service 
elements (see Design Services). When databases are involved, this activity identifies the 
design elements to be persisted in a database and designs the corresponding database 
structures (see Design Databases). When a user-interface is involved, this activity models 

 

 

 

42 The IBM Rational Unified Process for System z



 

and prototypes the user interface (see Design User Interface). This activity ends with a review 
of the resulting design (see Review the Design), as documented in the Design Model, and 
optionally other supporting models, such as the Service Model. 

The Code and Unit Test Components activity completes a part of the implementation so that 
it can be delivered for integration. This activity implements the elements in the design model 
by writing source code, adapting existing source code, and compiling, linking, and performing 
unit tests. If defects in the design are discovered, rework feedbacks on the design are 
submitted. The activity also involves fixing code defects and performing unit tests to verify the 
changes. The code is reviewed to evaluate quality and compliance with the programming 
guidelines. 

The Integrate and Test activity covers the integration and test of the product. The Integrate 
sub-activity integrates changes from multiple implementers to create a new consistent 
version of an Implementation Subsystem (this is done for any implementation subsystem 
within the scope of the iteration) and integrates implementation subsystems to create a new 
consistent version of the overall system when appropriate. The integrator integrates the 
system, in accordance with the Integration Build Plan, by adding the delivered 
implementation subsystems into the system integration workspace and creating Builds. Each 
build is then integration-tested by a tester. After the last increment, the build can be 
completely system-tested. The Test sub-activity includes the tasks required for testing within 
a particular scope. The scope could be a specific level or type of test, such as Functional 
Verification Test (FVT) or System Verification Test (SVT). It might also be limited to the 
components, or portions thereof, that have been implemented or are planned to be 
implemented during the iteration. The Test sub-activity includes the refinement of the Test 
Plan, the definition of Test Cases and their implementation into Test Scripts (a test script is a 
step-by-step instruction enabling the execution of a test case), the execution and evaluation 
of the tests (by a group of tests called Test Suite created to exercise a category of tests, such 
as FVT or SVT), and the corresponding reporting of incidents that are encountered. It also 
includes the definition and implementation of the Installation Verification Procedures (IVPs). 

The Plan the Project activity starts with an assessment of the current iteration and a 
re-evaluation of the risks. It refines the Software Development Plan (covering all project 
phases and iterations) and creates a fine-grained Iteration Plan for the next iteration or 
iterations. This activity also acquires the necessary resources (including staff) to perform the 
coming iteration or iterations. 

4.3.3  Lifecycle architecture milestone 

At the end of the Elaboration Phase is the second important project milestone, the Lifecycle 
Architecture Milestone. At this point, you examine the detailed system objectives and scope, 
the choice of architecture, and the resolution of the major risks. At the end of the Elaboration 
Phase, the project is evaluated against the following criteria: 

� The product vision and requirements are stable. 

� The architecture is stable. 

� The key approaches to be used in test and evaluation are proven. 

� Test and evaluation of executable prototypes have demonstrated that the major risk 
elements have been addressed and have been credibly resolved. 

� The iteration plans for the Construction Phase are of sufficient detail and fidelity to allow 
the work to proceed. 

� The iteration plans for the Construction Phase are supported by credible estimates. 

 

 

 

Chapter 4. IBM Rational Unified Process for System z roadmap 43



 

� All stakeholders agree that the current vision can be met if the current plan is executed to 
develop the complete system in the context of the current architecture. 

� The actual resource expenditure compared to the planned expenditure is acceptable. 

The project might be canceled or considerably rethought if it fails to reach this milestone. 

Summary of essential work products and their state at the end of the Elaboration Phase: 

� Glossary (about 80% complete) 

� Software Development Plan (about 95% complete) 

� Iteration Plans for the construction iterations (about 100% complete, at least for first 
iteration) 

� Risk List (about 50% complete) 

� Use-Case Model (about 80% complete) 

� Supplementary Specifications (about 80% complete) 

� Software Architecture Document (about 100% complete) 

� Design Model (about 60% complete) 

� Service Model (about 60% complete) 

� Test Plan (about 30% complete) 

� Test Cases (about 40% complete) 

� Test Scripts (about 40% complete) 

� Implementation Elements, including source code (about 40% complete) 

� Builds are available (one or more per iteration, for instance) 

� One or more executable architectural prototypes are available (to explore critical 
functionality and architecturally significant scenarios) 

� Installation Verification Procedures (IVPs) (about 80% complete) 

4.4  Construction Phase overview 

The goal of the Construction Phase is completing the development of the system based upon 
the baseline architecture. The Construction Phase is in some sense a manufacturing 
process, where emphasis is placed on managing resources and controlling operations to 
optimize costs, schedules, and quality. In this sense, the management mind-set undergoes a 
transition from the development of intellectual property during inception and elaboration, to 
the development of deployable products during construction and transition. The Construction 
Phase consists of a number of iterations culminating in the Initial Operational Capability 
Milestone. 

4.4.1  Construction objectives 

The primary objectives of the Construction Phase include: 

� Minimizing development costs by optimizing resources and avoiding unnecessary scrap 
and rework. 

� Achieving adequate quality as rapidly as practical. 

� Achieving useful versions (alpha, beta, and other test releases) as rapidly as practical. 

� Completing the analysis, design, development, and testing of all required functionality. 

 

 

 

44 The IBM Rational Unified Process for System z



 

� Iteratively and incrementally developing a complete product that is ready to transition to its 
user community. This implies describing the remaining use cases and other requirements, 
filling out the design, completing the implementation, and testing the software. 

� Deciding if the software, the sites, and the users are all ready for the application to be 
deployed. 

� Achieving some degree of parallelism in the work of development teams. Even on smaller 
projects, there are typically components that can be developed independently of one 
another, allowing for natural parallelism among teams (resources permitting). This 
parallelism can accelerate the development activities significantly, but it also increases the 
complexity of resource management and workflow synchronization. A robust architecture 
is essential if any significant parallelism is to be achieved. 

4.4.2  Typical construction iteration 

This section provides an overview of the activities performed in a typical iteration of the 
Construction Phase, as illustrated in Figure 4-4. 

Figure 4-4   Typical Iteration in the Construction Phase

The Refine Requirements activity completes detailing the requirements of the system in terms 
of Use Cases. The requirements (functional and non-functional) that do not fit appropriately 
within the use cases must be detailed in the Supplementary Specifications. The project terms 
continue to be defined or refined in the Glossary. 

The Design Components activity completes the detailed design of the components within the 
scope identified in the iteration plan. This activity ends with a review of the resulting design 
(see Review the Design) as documented in the Design Model and optionally other supporting 
models, such as the Service Model. 

The Code and Unit Test Components activity completes most parts of the implementation so 
that they can be delivered for integration. This activity implements the elements in the design 
model by writing source code, adapting existing source code, compiling, linking, and 
performing unit tests. The code is reviewed to evaluate quality and compliance with the 
programming guidelines. 

The Integrate and Test activity covers the integration and test of the product. The Integrate 
sub-activity integrates changes from multiple implementers to create a new consistent 
version of an Implementation Subsystem (this is done for any implementation subsystem 
within the scope of the iteration) and integrates implementation subsystems to create a new 
consistent version of the overall system when appropriate. The Test sub-activity includes the 
tasks required for testing within a particular scope, such as Functional Verification Test (FVT) 
of the components implemented during the iteration or System Verification Test (SVT). It 
includes the refinement of the Test Plan, definition of Test Cases and their implementation 
into Test Scripts (a test script is a step-by-step instruction enabling the execution of a test 
case), the execution and evaluation of the tests (by a group of tests called the Test Suite 
created to exercise a category of tests, such as FVT or SVT), and the corresponding 
reporting of incidents that are encountered. It also includes the definition and implementation 
of the Installation Verification Procedures (IVPs). 

 

 

 

Chapter 4. IBM Rational Unified Process for System z roadmap 45



 

The Prepare Deployment activity defines the Deployment Plan. Its purpose is to ensure that 
the system successfully reaches its users. The Deployment Plan provides a detailed 
schedule of events, persons responsible, and event dependencies required to ensure 
successful cutover to the new system. The activity also includes the definition of a first draft of 
User Support Materials and other collateral materials covering the full range of information 
required by the user to learn, install, operate, use, and maintain the system. 

The Plan the Project activity starts with an assessment of the current iteration and a 
reevaluation of the risks. It refines the Software Development Plan (covering all project 
phases and iterations) and creates a fine-grained Iteration Plan for the next iteration or 
iterations. This activity also acquires the necessary resources (including staff) to perform the 
coming iteration or iterations. 

4.4.3  Initial operational capability milestone 

At the Initial Operational Capability Milestone, the product is ready to be handed over to the 
Transition Team. All functionality has been developed and all alpha testing (if any) has been 
completed. In addition to the software, a user manual has been developed, and there is a 
description of the current release. The evaluation criteria for the Construction Phase involve 
the answers to these questions: 

� Is this product release stable and mature enough to be deployed in the user community? 

� Are all the stakeholders ready for the transition into the user community? 

� Are the actual resource expenditures compared to the planned resource expenditures still 
acceptable? 

Transition might have to be postponed by one release if the project fails to reach this 
milestone. 

Summary of essential work products and their state at the end of the Construction Phase: 

� Glossary (about 100% complete) 

� Software Development Plan (about 100% complete) 

� Iteration Plans for the transition iterations (about 100% complete, at least for first iteration) 

� Risk List (about 75% complete) 

� Use-Case Model (about 100% complete) 

� Supplementary Specifications (about 100% complete) 

� Design Model (about 100% complete) 

� Service Model (about 100% complete) 

� Test Plan (about 90% complete) 

� Test Cases (about 80% complete) 

� Test Scripts (about 80% complete) 

� Implementation Elements, including source code (about 90% complete) 

� Builds are available (one or more per iteration, for instance) 

� The executable system is available 

� Installation Verification Procedures (IVPs) (about 90% complete) 

� User Support Material (about 40% complete) 

 

 

 

46 The IBM Rational Unified Process for System z



 

4.5  Transition Phase overview 

The focus of the Transition Phase is to ensure that software is available for its users. The 
Transition Phase can span several iterations and includes testing the product in preparation 
for release and making minor adjustments based on user feedback. At this point in the 
lifecycle, user feedback needs to focus mainly on fine-tuning the product, configuration, 
installation, and usability issues. All the major structural issues must have been worked out 
much earlier in the project lifecycle. The Transition Phase consists of a number of iterations 
culminating in the Product Release Milestone. 

4.5.1  Transition objectives 

The Transition Phase is entered when a baseline is mature enough to be deployed in the user 
domain. This deployment typically requires that some usable subset of the system has been 
completed with acceptable quality level and user documentation so that transitioning to the 
user provides positive results for all parties. The primary objectives of the Transition Phase 
include: 

� Beta testing to validate the new system against user expectations. 

� Beta testing and parallel operation relative to a system that it is replacing. 

� Converting operational databases. 

� Training users and those who will maintain the system. 

� Rolling out to the marketing, distribution, and sales forces. 

� Deployment-specific engineering, such as cutover, commercial packaging and production, 
sales rollout, and field personnel training. 

� Tuning activities, such as fixing bugs and enhancing for performance and usability. 

� Assessing the deployment baselines against the complete vision and the acceptance 
criteria for the product. 

� Achieving user self-supportability. 

� Achieving stakeholder concurrence that deployment baselines are complete. 

� Achieving stakeholder concurrence that deployment baselines are consistent with the 
evaluation criteria of the vision. 

The Transition Phase ranges from being straightforward to extremely complex, depending on 
the type of product. A new release of an existing desktop product might be simple, whereas 
the replacement of a nation’s air-traffic control system might be exceedingly complex. 
Activities performed during an iteration in the Transition Phase depend on the goal. For 
example, when fixing bugs, implementation and test are usually enough. If, however, new 
features have to be added, the iteration is similar to one in the Construction Phase requiring 
analysis and design and so forth. 

4.5.2  Typical transition iteration 

This section provides an overview of the activities performed in a typical iteration of the 
Transition Phase, as illustrated in Figure 4-5 on page 48. 

 

 

 

Chapter 4. IBM Rational Unified Process for System z roadmap 47



 

Figure 4-5   Typical Iteration in Transition

In transition, in some cases, it might be necessary to update the system requirements and 
design. Any significant changes, however, should be deferred to a future generation of the 
solution to maintain the stability necessary to field capability that is useful to the users and 
establish a foundation for building future solutions (or decisions made at the Initial 
Operational Capability Milestone might have to be revisited). Refer to Refine Requirements 
and Design Components for more information about how to refine the requirements and 
design if necessary. 

The Code and Unit Test Components activity completes all remaining parts of the system 
implementation so that they can be delivered for integration. This activity implements the 
elements in the design model by writing source code, adapting existing source code, 
compiling, linking, and performing unit tests. The code is reviewed to evaluate quality and 
compliance with the programming guidelines. 

The Integrate and Test activity completes the integration and test of the product. The 
Integrate sub-activity integrates changes from multiple implementers to create a new 
consistent version of an Implementation Subsystem and integrates implementation 
subsystems to create a new consistent version of the overall system. The Test sub-activity 
includes the tasks required for testing within a particular scope, such as System Verification 
Test (SVT). It includes the refinement of the Test Plan, definition of Test Cases and their 
implementation into Test Scripts (a test script is a step-by-step instruction enabling the 
execution of a test case), the execution and evaluation of the tests (by a group of tests called 
Test Suite created to exercise a category of tests, such as SVT), and the corresponding 
reporting of incidents that are encountered. It also completes the definition and 
implementation of the Installation Verification Procedures (IVPs). 

The Perform Beta and Acceptance Test activity covers beta and acceptance testing of the 
product. The Perform Beta Test sub-activity solicits feedback on the product from a subset of 
the intended users while it is still under active development. A beta test gives the product a 
controlled, real-world test, so that feedback from potential users can be used to shape the 
final product. It also provides a preview of the next release to interested clients. The Perform 
Acceptance Test sub-activity ensures that the product is deemed acceptable to the client 
prior to its general release. 

The Package Product activity builds and packages the product for release. It produces any 
remaining User Support Material and any artifact needed to effectively deploy the product to 
its users, such as Training Materials or Release Notes. It also produces a Deployment Unit 
that enables the software product to be effectively installed and used. The Deployment Unit 
package consists of a Build (an executable collection of components), documents, such as 
User Support Material, and Installation Verification Procedures (IVPs). A Deployment Unit is 
sufficiently complete to be downloaded and run on a node. This definition fits the cases where 
the product is available over the Internet and the Deployment Unit can be downloaded 
directly and installed by the user. In the case of “shrinkwrap” software, the Deployment Unit is 
adorned with distinct packaging consisting of artwork and messaging (Product Artwork) and 
sold as a Product. 

 

 

 

48 The IBM Rational Unified Process for System z



 

The Plan the Project activity starts with an assessment of the current iteration and a 
reevaluation of the risks. When more iterations are coming, it refines the fine-grained Iteration 
Plan for the next iteration or iterations. During the last project iteration, a final Status 
Assessment is prepared for the Project Acceptance Review, which, if successful, marks the 
point at which the client formally accepts ownership of the software product. The project 
manager then completes the closeout of the project by disposing of the remaining assets and 
reassigning the remaining staff. 

4.5.3  Product release milestone 

At the end of the Transition Phase is the fourth important project milestone, the Product 
Release Milestone. At this point, you decide if the objectives were met, and if you should start 
another development cycle. The Product Release Milestone is the result of the client 
reviewing and accepting the project deliverables. The primary evaluation criteria for the 
Transition Phase involve the answers to these questions: 

� Ιs the user satisfied? 

� Are the actual resource expenditures compared to planned expenditures acceptable? 

At the Product Release Milestone, the product is in production and the post-release 
maintenance cycle begins. This can involve starting a new cycle or an additional maintenance 
release. 

Summary of essential work products completed during the Transition Phase: 

� Risk List 

� Test Plan 

� Test Cases 

� Test Scripts 

� Implementation Elements, including source code 

� Deployment Unit 

� Build 

� User Support Material 

� Installation Verification Procedures (IVPs) 

� Product 

By the end of the Transition Phase, the project should be in a position to be closed out. In 
some cases, the end of the current lifecycle might coincide with the start of another lifecycle 
on the same product, leading to the next generation or version of the product. For other 
projects, the end of the Transition Phase might coincide with a complete delivery of the 
artifacts to a third party, who might be responsible for operations, maintenance, and 
enhancements of the delivered system.

4.6  Note on maintenance projects

The RUP for System z roadmap presented in this chapter addresses green field development 
and system evolution with architectural changes (including turning an existing capability into a 
Web service, for instance) or significant impact on existing user business processes. Pure 
maintenance is out of the scope of this book. 

 

 

 

Chapter 4. IBM Rational Unified Process for System z roadmap 49



 

The main characteristics of a maintenance product cycle compared to a regular development 
product cycle are: 

� The Inception and Elaboration phases are merged into a single iteration called 
Inception/Elaboration. 

� There are no architectural changes in the product cycle, or the changes have a certifiably 
trivial impact on existing design and user business processes. 

� The process is driven by change requests rather than by requirements or new product 
scope. 

� Attention is paid to re-factoring code, design, and requirements to reduce long-term 
increases in system complexity. This is known as making perfective changes. 

� The product scope is not changed or increased. 

� The product cycle has the same business drivers as the previous product cycle. 

� The lifecycle is informal, particularly in regard to project artifacts.

For more information about maintenance, refer to the RUP for Maintenance Projects plug-in 
at:

http://www.ibm.com/developerworks/rational/downloads/06/plugins/rmc_prj_mnt/ 

The RUP for Maintenance Projects plug-in provides a delivery process, tasks, and guidance 
for understanding the purpose of a maintenance development cycle, avoiding pitfalls during a 
maintenance cycle, and successfully delivering a product with higher quality than the 
previous release.

 

 

 

50 The IBM Rational Unified Process for System z

http://www.ibm.com/developerworks/rational/downloads/06/plugins/rmc_prj_mnt/


 

Part 3 The IBM Rational 
Unified Process 
for System z for 
Advanced 
Practitioners

This part includes material handy to implement the IBM Rational Unified Process for System 
z (RUP for System z) on your project. This part is targeted toward advanced practitioners.

Part 3
 

 

 

© Copyright IBM Corp. 2007. All rights reserved. 51



 

 

 

 

52 The IBM Rational Unified Process for System z



 

Chapter 5. Process essentials

This chapter provides the process essentials: A brief definition of each project phase 
(inception, elaboration, construction, and transition) in terms of main goals, activities, and 
milestones. For each activity, the chapter lists the corresponding key roles, tasks, output work 
products, and available examples from the Catalog Manager Case Study. The corresponding 
section of the RUP for System z Web site provides advanced System z practitioners with all 
of the links (underlined terms) necessary to perform specific activities or tasks.

5
 

 

 

© Copyright IBM Corp. 2007. All rights reserved. 53



 

5.1  Inception essentials 

The primary goal of the Inception Phase is to achieve concurrence among all stakeholders on 
the project scope and to ensure that the project is both worth doing and possible to do. The 
Inception Phase consists of a number of iterations culminating in the Lifecycle Objectives 
Milestone. A typical inception iteration includes the activities presented in Table 5-1. The 
milestone is described right after the table.

Table 5-1   Activities of a typical inception iteration

Activities Roles Tasks Output work 
products 

Catalog 
Manager 
examples 

Conceive New 
Project 

- Project 
Manager 
- Management 
Reviewer 

- Develop 
Business Case
- Identify and 
Assess Risks
- Initiate Project
- Project 
Approval Review 

- Business Case
- Software 
Development 
Plan
- Risk List
- Review Record 

- Business Case 

Prepare Project 
Environment 

- Process 
Engineer
- Tool Specialist 
- Configuration 
Manager 

- Tailor the 
Development 
Process for the 
Project 
- Select and 
Acquire Tools
- Set Up Tools
- Set Up 
Configuration 
Management 
(CM) 
Environment 

- Development 
Process
- Tools
- Project 
Repository

None 

Define 
Requirements 

- System Analyst
- Software 
Architect
- Test Designer 

- Develop Vision
- Find Actors and 
Use Cases
- Develop 
Supplementary 
Specifications
- Capture a 
Common 
Vocabulary
- Prioritize Use 
Cases 
- Define Test 
Approach 

- Vision
- Use-Case 
Model
- Supplementary 
Specifications
- Glossary
- Software 
Architecture 
Document
- Test Strategy
- Test Plan
- Test 
Environment 
Configuration 

- Vision
- Use-Case 
Model
- Supplementary 
Specification
- Glossary
- Software 
Architecture 
Document
- Test Plan 

Perform 
Architectural 
Proof-of-Concept 
(optional) 

- Software 
Architect 

- Architectural 
Analysis
- Construct 
Architectural 
Proof-of-Concept
- Assess Viability 
of Architectural 
Proof-of-Concept 

- Software 
Architecture 
Document 
- Analysis Model
- Design Model
- Deployment 
Model
- Architectural 
Proof-of-Concept
- Review Record 

None 

 

 

 

54 The IBM Rational Unified Process for System z



 

Lifecycle Objectives Milestone 
At the end of the Inception Phase, the project is evaluated against the following criteria: 

� Stakeholder concurrence on the scope definition. 

� Agreement that the right set of requirements has been captured. 

� Agreement that the cost/schedule estimates, priorities, risks, and development process 
are appropriate. 

� All risks have been identified and a mitigation strategy exists for each risk. 

The state of several essential work products at the Inception Phase milestone are: 

� Business Case (100% complete) 

� Vision (about 100% complete) 

� Glossary (about 40% complete) 

� Software Development Plan (about 80% complete) 

� Iteration Plan for the first elaboration iteration (about 100% complete) 

� Risk List (about 25% complete) 

� Use-Case Model (about 20% complete) 

� Supplementary Specifications (about 20% complete) 

� Test Plan (about 10% complete) 

� Software Architecture Document (about 10% complete) 

� Architectural Proof-of-Concept (one or more proof of concept prototypes available to 
address very specific risks) 

5.2  Elaboration essentials 

The primary goal of the Elaboration Phase is to baseline the architecture of the system to 
provide a stable basis for the bulk of the design and implementation effort in the Construction 
Phase. The stability of the architecture is evaluated through one or more architectural 
prototypes. The Elaboration Phase consists of a number of iterations culminating in the 
Lifecycle Architecture Milestone. A typical elaboration iteration includes the activities 
presented in Table 5-2 on page 56. The milestone is described right after the table. 

Plan the Project - Project 
Manager 

- Assess Iteration
- Identify and 
Assess Risks
- Plan Phases 
and Iterations
- Develop 
Iteration Plan
- Acquire Staff 

- Iteration 
Assessment
- Risk List
- Software 
Development 
Plan
- Iteration Plan 

- Risk List
- Software 
Development 
Plan
- E1 Iteration Plan 

Activities Roles Tasks Output work 
products 

Catalog 
Manager 
examples 

 

 

 

Chapter 5. Process essentials 55



 

Table 5-2   Activities of a typical elaboration iteration

Activities Roles Tasks Output work 
products 

Catalog 
Manager 
examples 

Refine 
Requirements 

- Requirements 
Specifier
- System Analyst
- Software 
Architect 

- Detail a Use 
Case
- Develop 
Supplementary 
Specifications
- Capture a 
Common 
Vocabulary
- Prioritize Use 
Cases 

- Use Case
- Supplementary 
Specifications
- Glossary
- Software 
Architecture 
Document 

- Use-Case 
Specifications
- Unified 
Modeling 
Language (UML) 
Models 
- Supplementary 
Specification 

Define 
Architecture 

- Software 
Architect
- Designer
- Technical 
Reviewer 

- Architectural 
Analysis
- Service 
Analysis
- Existing Asset 
Analysis
- Use-Case 
Analysis
- Identify Design 
Elements
- Describe the 
Run-time 
Architecture
- Describe 
Distribution
- Review the 
Architecture 

- Software 
Architecture 
Document 
- Analysis Model
- Design Model
- Design Class
- Design 
Subsystem
- Design Package
- Interface
- Module
- Signal
- Event
- Deployment 
Model
- Service Model
- Service 
Component
- Review Record 

- Software 
Architecture 
Document
- Unified 
Modeling 
Language (UML) 
Models 

Design 
Components 

- Designer
- Software 
Architect
- Database 
Designer
- User-Interface 
Designer
- Technical 
Reviewer 

- Use-Case 
Design
- Identify Design 
Elements
- Subsystem 
Design
- Module Design
- Class Design
- Subsystem 
Design (SOA)
- Component 
Specification 
(SOA)
- Database 
Design
- Design the User 
Interface
- Prototype the 
User-Interface
- Review the 
Design 

- Design Model
- Design Class
- Design 
Subsystem
- Design Package
- Interface
- Module
- Signal
- Event
- Service Model
- Service 
Component
- Data Model
- Navigation Map
- User-Interface 
Prototype
- Review Record 

- Unified 
Modeling 
Language (UML) 
Models 

 

 

 

56 The IBM Rational Unified Process for System z



 

Lifecycle Architecture Milestone 
At the end of the Elaboration Phase, the project is evaluated against the following criteria: 

� The product requirements and architecture are stable. 

� The key approaches to be used in test and evaluation are proven. 

� Test and evaluation of executable prototypes have demonstrated that the major risk 
elements have been addressed and have been credibly resolved. 

� The iteration plans for the Construction Phase are of sufficient detail to allow the work to 
proceed and are supported by credible estimates. 

� All stakeholders agree that the vision can be met if the current plan is executed to develop 
the complete system in the context of the current architecture. 

� Actual resource expenditures compared to planned expenditures are acceptable. 

Code and Unit 
Test 
Components 

- Implementer
- Technical 
Reviewer 

- Implement 
Design Elements
- Implement 
Developer Test
- Execute 
Developer Tests
- Review Code 

- Implementation 
Subsystem
- Implementation 
Element
- Developer Test
- Test Log
- Review Record 

None 

Integrate and 
Test 

- Integrator
- Test Designer 
- Test Analyst
- Tester 

- Integrate 
Subsystem
- Integrate 
System
- Define Test 
Approach
- Define Test 
Details
- Implement Test
- Define 
Installation 
Verification 
Procedures 
(IVPs)
- Implement 
Installation 
Verification 
Procedures 
(IVPs) 
- Execute Test 
Suite
- Analyze Test 
Failure 

- Build
- Implementation 
Subsystem
- Test Strategy
- Test Plan
- Test 
Environment 
Configuration
- Test Case
- Test Script
- Test Log
- Installation 
Verification 
Procedures 
(IVPs)
- Change 
Request 

- Test Plan 
- Test Cases 
- Installation 
Verification 
Procedures 
(IVPs) 

Plan the Project - Project 
Manager 

- Assess Iteration
- Identify and 
Assess Risks
- Plan Phases 
and Iterations
- Develop 
Iteration Plan
- Acquire Staff 

- Iteration 
Assessment
- Risk List
- Software 
Development 
Plan
- Iteration Plan 

- Risk List 
- Software 
Development 
Plan 

Activities Roles Tasks Output work 
products 

Catalog 
Manager 
examples 

 

 

 

Chapter 5. Process essentials 57



 

State of several essential work products at the Elaboration Phase milestone: 

� Glossary (about 80% complete) 

� Software Development Plan (about 95% complete) 

� Iteration Plans for the construction iterations (about 100% complete, at least for the first 
iteration) 

� Risk List (about 50% complete) 

� Use-Case Model (about 80% complete) 

� Supplementary Specifications (about 80% complete) 

� Software Architecture Document (about 100% complete) 

� Design Model (about 60% complete) 

� Service Model (about 60% complete) 

� Test Plan (about 30% complete) 

� Test Cases (about 40% complete) 

� Test Scripts (about 40% complete) 

� Implementation Elements, including source code (about 40% complete) 

� Builds are available (one or more per iteration, for instance) 

� One or more executable architectural prototypes are available (to explore critical 
functionality and architecturally significant scenarios) 

� Installation Verification Procedures (IVPs) (about 80% complete) 

5.3  Construction essentials 

The main goal of the Construction Phase is to complete the development of the system based 
upon the baseline architecture. The Construction Phase consists of a number of iterations 
culminating in the Initial Operational Capability Milestone. A typical construction iteration 
includes the activities presented in Table 5-3. The milestone is described right after the table. 

Table 5-3   Activities of a typical construction iteration

Activities Roles Tasks Output work 
products 

Catalog 
Manager 
examples 

Refine 
Requirements 

- Requirements 
Specifier
- System Analyst
- Software 
Architect 

- Detail a Use 
Case
- Develop 
Supplementary 
Specifications
- Capture a 
Common 
Vocabulary
- Prioritize Use 
Cases 

- Use Case
- Supplementary 
Specifications
- Glossary
- Software 
Architecture 
Document 

- Use-Case 
Specifications
- Unified 
Modeling 
Language (UML) 
Models
- Supplementary 
Specification 

 

 

 

58 The IBM Rational Unified Process for System z



 

Design 
Components 

- Designer
- Software 
Architect
- Database 
Designer
- User-Interface 
Designer
- Technical 
Reviewer 

- Use-Case 
Design
- Identify Design 
Elements
- Subsystem 
Design
- Module Design
- Class Design
- Subsystem 
Design (SOA)
- Component 
Specification 
(SOA)
- Database 
Design
- Design the User 
Interface
- Prototype the 
User Interface
- Review the 
Design 

- Design Model
- Design Class
- Design 
Subsystem
- Design Package
- Interface
- Module
- Signal
- Event
- Service Model
- Service 
Component
- Data Model
- Navigation Map
- User Interface 
Prototype
- Review Record 

- Unified 
Modeling 
Language (UML) 
Models

Code and Unit 
Test 
Components 

- Implementer
- Technical 
Reviewer 

- Implement 
Design Elements
- Implement 
Developer Test
- Execute 
Developer Tests
- Review Code 

- Implementation 
Subsystem
- Implementation 
Element
- Developer Test
- Test Log
- Review Record 

- Source Code 

Integrate and 
Test 

- Integrator
- Test Designer 
- Test Analyst
- Tester 

- Integrate 
Subsystem
- Integrate 
System
- Define Test 
Approach
- Define Test 
Details
- Implement Test
- Define 
Installation 
Verification 
Procedures 
(IVPs)
- Implement 
Installation 
Verification 
Procedures 
(IVPs) 
- Execute Test 
Suite
- Analyze Test 
Failure 

- Build
- Implementation 
Subsystem
- Test Strategy
- Test Plan
- Test 
Environment 
Configuration
- Test Case
- Test Script
- Test Log
- Installation 
Verification 
Procedures 
(IVPs)
- Change 
Request 

- Test Plan
- Test Cases 

Activities Roles Tasks Output work 
products 

Catalog 
Manager 
examples 

 

 

 

Chapter 5. Process essentials 59



 

Initial Operational Capability Milestone 
The evaluation criteria for the Construction Phase involve the answers to these questions: 

� Is this product release stable and mature enough to be deployed in the user community? 

� Are all the stakeholders ready for the transition into the user community? 

� Are actual resource expenditures compared to planned resource expenditures still 
acceptable? 

The state of several essential work products at the Construction Phase milestone are: 

� Glossary (about 100% complete) 

� Software Development Plan (about 100% complete) 

� Iteration Plans for the transition iterations (about 100% complete, at least for first iteration) 

� Risk List (about 75% complete) 

� Use-Case Model (about 100% complete) 

� Supplementary Specifications (about 100% complete) 

� Design Model (about 100% complete) 

� Service Model (about 100% complete) 

� Test Plan (about 90% complete) 

� Test Cases (about 80% complete) 

� Test Scripts (about 80% complete) 

� Implementation Elements, including source code (about 90% complete) 

� Builds are available (one or more per iteration, for instance) 

Prepare 
Deployment

- Deployment 
Manager
- Technical Writer
- Implementer
- Course 
Developer
- Graphic Artist 

- Develop 
Deployment Plan
- Define Bill of 
Materials
- Develop 
Support Materials
- Develop 
Installation Work 
Products 
- Develop 
Training 
Materials
- Create Product 
Artwork 

- Deployment 
Plan
- Bill of Materials
- User Support 
Material
- Installation 
Artifacts
- Training 
Materials
- Product Artwork 

None 

Plan the Project - Project 
Manager 

- Assess Iteration
- Identify and 
Assess Risks
- Plan Phases 
and Iterations
- Develop 
Iteration Plan
- Acquire Staff 

- Iteration 
Assessment
- Risk List
- Software 
Development 
Plan
- Iteration Plan 

- Risk List 
- Software 
Development 
Plan 

Activities Roles Tasks Output work 
products 

Catalog 
Manager 
examples 

 

 

 

60 The IBM Rational Unified Process for System z



 

� The executable system is available 

� Installation Verification Procedures (IVPs) (about 90% complete) 

� User Support Material (about 40% complete) 

5.4  Transition essentials 

The primary goal of the Transition Phase is to ensure that software is available for its users. It 
includes testing the product in preparation for release, making minor adjustments based on 
user feedback, and focusing mainly on fine-tuning the product, configuration, installation, and 
usability issues. The Transition Phase consists of a number of iterations culminating in the 
Product Release Milestone. A typical transition iteration includes the activities presented in 
Table 5-4. The milestone is described right after the table. 

Table 5-4   Activities of a typical transition iteration

Activities Roles Tasks Output work 
products 

Catalog 
Manager 
examples 

Code and Unit 
Test 
Components 

- Implementer
- Technical 
Reviewer 

- Implement 
Design Elements
- Implement 
Developer Tests
- Execute 
Developer Tests
- Review Code 

- Implementation 
Subsystem
- Implementation 
Element
- Developer Test
- Test Log
- Review Record 

- Source Code 

Integrate and 
Test 

- Integrator
- Test Designer 
- Test Analyst
- Tester 

- Integrate 
Subsystem
- Integrate 
System
- Define Test 
Approach
- Define Test 
Details
- Implement Test
- Define 
Installation 
Verification 
Procedures 
(IVPs)
- Implement 
Installation 
Verification 
Procedures 
(IVPs) 
- Execute Test 
Suite
- Analyze Test 
Failure 

- Build
- Implementation 
Subsystem
- Test Strategy
- Test Plan
- Test 
Environment 
Configuration
- Test Case
- Test Script
- Test Log
- Installation 
Verification 
Procedures 
(IVPs)
- Change 
Request 

- Test Plan
- Test Cases
- Installation 
Verification 
Procedures 
(IVPs) 

 

 

 

Chapter 5. Process essentials 61



 

Perform Beta and 
Acceptance Test

- Deployment 
Manager
- Project 
Manager
- Tester 

- Develop 
Product 
Acceptance Plan
- Execute Test 
Suite
- Analyze Test 
Failure 
- Manage Beta 
Test
- Manage 
Acceptance Test 

- Product 
Acceptance Plan
- Test Log
- Change 
Request 

None 

Package Product - Deployment 
Manager
- Technical Writer
- Implementer
- Course 
Developer
- Graphic Artist 
- Configuration 
Manager 

- Write Release 
Notes
- Define Bill of 
Materials
- Develop 
Support Materials
- Develop 
Installation Work 
Products 
- Develop 
Training 
Materials 
- Create Product 
Artwork 
- Create 
Deployment Unit
- Release to 
Manufacturing
- Verify 
Manufactured 
Product
- Provide Access 
to Download Site 

- Release Notes
- Bill of Materials
- User Support 
Material
- Installation 
Artifacts
- Training 
Materials
- Product Artwork
- Deployment 
Unit
- Product 

None 

Plan the Project - Project 
Manager 
- Management 
Reviewer 

- Assess Iteration
- Identify and 
Assess Risks
- Plan Phases 
and Iterations
- Develop 
Iteration Plan
- Acquire Staff
- Prepare for 
Project Closeout
- Project 
Acceptance 
Review 

- Iteration 
Assessment
- Risk List
- Software 
Development 
Plan
- Iteration Plan
- Issues List
- Status 
Assessment
- Review Record 

- Risk List 

Activities Roles Tasks Output work 
products 

Catalog 
Manager 
examples 

 

 

 

62 The IBM Rational Unified Process for System z



 

Product release milestone 
The primary evaluation criteria for the Transition Phase involve the answers to these 
questions: 

� Is the user satisfied? 

� Are actual resource expenditures compared to planned resource expenditures 
acceptable? 

At the Product Release Milestone, the product is in production and the post-release 
maintenance cycle begins. 

Summary of several essential work products completed at the Transition Phase milestone: 

� Risk List 

� Test Plan 

� Test Cases 

� Test Scripts 

� Implementation Elements, including source code 

� Deployment Unit 

� Build 

� User Support Material 

� Installation Verification Procedures (IVPs) 

� Product

 

 

 

Chapter 5. Process essentials 63



 

 

 

 

64 The IBM Rational Unified Process for System z



 

Chapter 6. End-to-end lifecycle

The IBM Rational Unified Process for System z (RUP for System z) includes a delivery 
process that covers the whole development lifecycle from beginning to end. This delivery 
process can be used as a template for planning and running a project. It provides a complete 
lifecycle model with predefined phases, iterations, activities, and tasks. It includes a Work 
Breakdown Structure.

The RUP for System z delivery process is available on the RUP for System z Web site, as 
illustrated in Figure 6-1 on page 66. Refer to the RUP for System z Web site for a detailed 
presentation of the delivery process and to Chapter 10, “IBM RUP for System z Work 
Breakdown Structure” on page 201 for a presentation of the Work Breakdown Structure.

The RUP for System z Web site can be generated out of the RUP for System z RMC plug-in 
from IBM developerWorks at:

http://www.ibm.com/developerworks/rational/downloads/06/rmc_plugin7_1/

6
 

 

 

© Copyright IBM Corp. 2007. All rights reserved. 65

http://www.ibm.com/developerworks/rational/downloads/06/rmc_plugin7_1/


 

Figure 6-1   The RUP for System z End-to-end Lifecycle

 

 

 

66 The IBM Rational Unified Process for System z



 

Chapter 7. Content elements

The IBM Rational Unified Process for System z (RUP for System z) includes a large number 
of content elements (roles, tasks, and artifacts) that form the core of the method. Most of 
these elements come from the Rational Unified Process (RUP) and its Service-Oriented 
Architecture (SOA) extension. However, several content elements have been added to RUP 
for System z, because they are specific to the System z environment. This chapter presents 
these new content elements.

7
 

 

 

© Copyright IBM Corp. 2007. All rights reserved. 67



 

7.1  Artifact: Module

Figure 7-1, Figure 7-2 on page 69, and Figure 7-3 on page 70 show the Module artifact as 
defined in the RUP for System z Web site.

Figure 7-1   Module Artifact (Purpose and Relationships)

 

 

 

68 The IBM Rational Unified Process for System z



 
Figure 7-2   Module Artifact (Description)

 

 

 

Chapter 7. Content elements 69



 

Figure 7-3   Module Artifact (Tailoring)

7.2  Task: Module Design

Figure 7-4 on page 71 shows the Module Design task as defined in the RUP for System z 
Web site.

 

 

 

70 The IBM Rational Unified Process for System z



 

Figure 7-4   Module Design Task 

 

 

 

Chapter 7. Content elements 71



 

Figure 7-5 to Figure 7-19 on page 82 show the Module Design task steps as defined in the 
RUP for System z Web site.

Figure 7-5   Module Design Task - Step: Decide Whether to Generate Code

Figure 7-6   Module Design Task - Step: Use Design Patterns and Mechanisms

 

 

 

72 The IBM Rational Unified Process for System z



 
Figure 7-7   Module Design Task - Step: Ensure Appropriate UML Definition Usage (Part 1)

 

 

 

Chapter 7. Content elements 73



 

Figure 7-8   Module Design Task - Step: Ensure Appropriate UML Definition Usage (Part 2)

 

 

 

74 The IBM Rational Unified Process for System z



 

Figure 7-9   Module Design Task - Step: Ensure Appropriate UML Definition Usage (Part 3)

 

 

 

Chapter 7. Content elements 75



 

Figure 7-10   Module Design Task - Step: Create Initial Design Modules (Part 1)

 

 

 

76 The IBM Rational Unified Process for System z



 

Figure 7-11   Module Design Task - Step: Create Initial Design Modules (Part 2)

Figure 7-12   Module Design Task - Step: Create Initial Design Modules (Part 3)

 

 

 

Chapter 7. Content elements 77



 

Figure 7-13   Module Design Task - Step: Create Initial Design Modules (Part 4)

Figure 7-14   Module Design Task - Step: Identify Persistent Modules

 

 

 

78 The IBM Rational Unified Process for System z



 

Figure 7-15   Module Design Task - Step: Define Operations (Part 1)

 

 

 

Chapter 7. Content elements 79



 

Figure 7-16   Module Design Task - Step: Define Operations (Part 2)

 

 

 

80 The IBM Rational Unified Process for System z



 

Figure 7-17   Module Design Task - Step: Define Attributes

 

 

 

Chapter 7. Content elements 81



 

Figure 7-18   Module Design Task - Step: Define Dependencies

Figure 7-19   Module Design Task - Step: Evaluate your Results

 

 

 

82 The IBM Rational Unified Process for System z



 

7.3  Artifact: Installation Verification Procedures (IVPs) 

Figure 7-20 on page 84 shows the Installation Verification Procedures (IVPs) artifact as 
defined in the RUP for System z Web site.

 

 

 

Chapter 7. Content elements 83



 

Figure 7-20   Installation Verification Procedures (IVPs) Artifact

 

 

 

84 The IBM Rational Unified Process for System z



 

7.4  Task: Define Installation Verification Procedures (IVPs)

Figure 7-21 and Figure 7-22 on page 86 show the Define Installation Verification Procedures 
(IVPs) task as defined in the RUP for System z Web site.

Figure 7-21   Define Installation Verification Procedures Task (Purpose and Relationships)

 

 

 

Chapter 7. Content elements 85



 

Figure 7-22   Define Installation Verification Procedures Task (Steps)

 

 

 

86 The IBM Rational Unified Process for System z



 

7.5  Task: Implement Installation Verification Procedures (IVPs) 

Figure 7-23 shows the Implement Installation Verification Procedures (IVPs) task as defined 
in the RUP for System z Web site.

Figure 7-23   Implement Installation Verification Procedures Task 

 

 

 

Chapter 7. Content elements 87



 

7.6  Artifact: Analysis Element

RUP analysis and design activities start by identifying conceptual classes, which are called 
analysis classes. Analysis classes specify early conceptual “things” in the system, which have 
responsibilities and behavior. They are refined later on into detailed design classes or other 
design elements. In order to generalize this approach to non object-oriented development 
environments in RUP for System z, analysis class is renamed analysis element so that an 
analysis element can be used to identify conceptual things that can be turned later on into 
modules, classes, or any other design element. Figure 7-24 shows the Analysis Element 
artifact as defined in the RUP for System z Web site.

Figure 7-24   Analysis Element Artifact

 

 

 

88 The IBM Rational Unified Process for System z



 

7.7  Task: Service Analysis

Figure 7-25 and Figure 7-26 on page 90 show the Service Analysis task as defined in the 
RUP for System z Web site.

Figure 7-25   Service Analysis Task (Purpose, Relationships, and Main Description)

 

 

 

Chapter 7. Content elements 89



 

Figure 7-26   Service Analysis Task (Steps)

 

 

 

90 The IBM Rational Unified Process for System z



 

Chapter 8. Catalog Manager case study

The purpose of this chapter is to apply the knowledge acquired from the previous chapters in 
this IBM Redbooks publication and use it to develop a sample application. 

This chapter provides a reference to assist practitioners in developing an application 
iteratively in the System z environment. By identifying the similarities between the case study 
and a development exercise in your environment, you can use this chapter as a guide to 
estimate time intervals, identify tasks involved, and better understand the development 
methodology with a concrete example.

The case study uses a CICS catalog manager application to provide an implementation 
example of Rational Unified Process for System z (RUP for System z). This application is a 
working COBOL application that is shipped with CICS TS 3.1 and is designed to illustrate 
best practices for exposing CICS applications as Web services.

We will review the RUP for System z steps employed in the development of this sample 
application to demonstrate the agility of iterative development as compared to the traditional 
waterfall model used ubiquitously in development environments.

We realize that for any z/OS® development effort, there is normally a group of professionals 
spanning the software development dispersion. All information provided by this chapter must, 
therefore, only be used as a project guide and not an official solution.

8
 

 

 

© Copyright IBM Corp. 2007. All rights reserved. 91



 

8.1  Overview of the Catalog Manager application

The Catalog Manager application is a catalog-management, purchase order style application 
that accesses an order catalog stored in a VSAM file. 

It provides the following functions:

� List the details of an item in a catalog.
� Order a quantity of a certain item.
� Replenish items in a catalog that have been depleted.

After an item is ordered, the catalog is automatically updated to reflect the new stock levels. 
Replenished items in the catalog are reset to a stock amount of 100.

The application is accessed from both a 3270 terminal interface and a Web-based interface 
using a commercially available Internet browser as illustrated in Figure 8-1. SOAP and Web 
services are used to expose the CICS-controlled information (catalog manager functions) as 
service-oriented architecture (SOA) service providers, which in turn are accessed using SOA 
service requestors from a browser.

Because the focus of this chapter is on the iterative development process applied to specific 
functions of the Catalog Manager application, much of the details concerning the CICS TS 
configuration and Web services are omitted. You can find additional information about these 
topics in Application Development for CICS Web Services, SG24-7126-00.

Figure 8-1   Catalog Manager System Architecture overview

 

 

 

92 The IBM Rational Unified Process for System z



 

8.2  Catalog Manager iterative development process

Applying the iterative process to our case study, the Catalog Manager development schedule 
is divided into eight iterations with each iteration spanning three weeks. The iteration cycle, 
as discussed in Chapter 3, “Why the IBM Rational Unified Process for System z” on page 31, 
typically spans two to three weeks with the total number of iterations dispersed among the 
four RUP phases: Inception, Elaboration, Construction, and Transition. The iteration cycle is 
the heartbeat of the project and after it has been selected, it remains constant for the duration 
of the project. Both the iteration cycle and the number of iterations are project dependent with 
the latter directly relating to the complexity of the project. 

The Catalog Manager iterative development plan has one iteration in the Inception Phase, 
three iterations in the Elaboration Phase, two iterations in the Construction Phase, and two 
iterations in the Transition Phase. We assess and mitigate the risks during each iteration with 
each iteration culminating in a minor milestone for the project and facilitating successful 
achievement of the phase’s objectives. 

Table 8-1 illustrates the Catalog Manager project plan broken down into iterations and 
phases. It depicts the relationship between the iterations and their respective phase, the 
relationship of the phases to each other, and the major milestone that marks the conclusion of 
each phase.

Table 8-1   Catalog Manager project plan

Task Name Days Start Finish

Catalog Manager Project Plan 125 Mon 10/02/06 Fri 03/23/07

Inception 15 Mon 10/02/06 Fri 10/20/06

Inception Iteration I1- Preliminary Iteration 15 Mon 10/02/06 Fri 10/20/06

Lifecycle Objectives Milestone 0 Fri 10/20/06 Fri 10/20/06

Elaboration 45 Mon 10/23/06 Fri 12/22/06

Elaboration Iteration E1 - Architectural Prototype for CICS Application 15 Mon 10/23/06 Fri 11/10/06

Elaboration Iteration E2 - Architectural Prototype for Web Services 
Connectivity

15 Mon 11/13/06 Fri 12/01/06

Elaboration Iteration E3 - Architectural Prototype for Web Services 
Catalog Access 

15 Mon 12/04/06 Fri 12/22/06

Lifecycle Architecture Milestone 0 Fri 12/22/06 Fri 12/22/06

Construction 29 Tue 01/02/07 Fri 02/09/07

Construction Iteration C1 - Develop Ordering Capability 14 Tue 01/02/07 Fri 01/19/07

Construction Iteration C2 - Develop Replenish Inventory Capability 
and Beta Release

15 Mon 01/22/07 Fri 02/09/07

Initial Operational Capability Milestone 0 Fri 02/09/07 Fri 02/09/07

Transition 30 Mon 02/12/07 Fri 03/23/07

Transition Iteration T1 - R1 Release 15 Mon 02/12/07 Fri 03/02/07

Transition Iteration T2 - R2 Release 15 Mon 03/05/07 Fri 03/23/07

Product Release Milestone 0 Fri 03/23/07 Fri 03/23/07

 

 

 

Chapter 8. Catalog Manager case study 93



 

8.3  Catalog Manager RUP phases

The activities in each phase primarily focus on addressing a specific set of risks with the aim 
of reducing the risks and ensuring that the project is moving forward. The milestones at the 
end of each phase serve a dual process: 

� The milestone serves to act as a driving force to attain a specific target by providing 
development status to our stakeholders, whose decisions are key to moving to the next 
phase. 

� The milestones are checkpoints for the project as a whole, because they allow developers 
and management to track the progress of the work as they complete key points in the 
project lifecycle.

Table 8-2 further describes these phases in more detail as well as the associated major 
milestone that concludes the phase.

Table 8-2   Phases and milestones

Phase Description Milestone

Inception Phase The Inception Phase will develop 
the product requirements and 
establish the business case for 
the system. The major use cases 
will be identified and a high level 
Software Development Plan will 
be developed. At the end of the 
Inception Phase, we will decide 
whether to fund and proceed with 
the project based upon the 
business case.

The Lifecycle Objectives 
Milestone at the end of the 
Inception Phase and marks the 
Go/No Go decision for the 
project.

Elaboration Phase The Elaboration Phase will refine 
the requirements and develop a 
stable architecture. At the 
completion of the Elaboration 
Phase, all high risk use cases will 
have been analyzed and 
designed. An executable system 
called an architectural 
prototype will test the feasibility 
and performance of the 
architecture.

The Lifecycle Architectural 
Milestone marks the end of the 
Elaboration Phase. The major 
architectural components are in 
place and stable.

Construction Phase During the Construction Phase, 
the remaining use cases will be 
analyzed and designed. The Beta 
release will be developed and 
distributed for evaluation. The 
implementation and test activities 
to support the R1.0 and R2.0 
releases will be completed.

The Initial Operational 
Capability Milestone 
(completion of the beta) marks 
the end of the Construction 
Phase.

Transition Phase The Transition Phase will prepare 
the R1.0 and R2.0 releases for 
distribution. It provides the 
required support to ensure a 
smooth installation.

The Product Release 
Milestone (completion of the 
R2.0 release) marks the end of 
the Transition Phase. At this 
point, all capabilities defined in 
the Vision document are installed 
and available for the users.

 

 

 

94 The IBM Rational Unified Process for System z



 

8.3.1  Catalog Manager Inception Phase

The Inception Phase addresses business risks so that we focus on mitigating the risk that the 
project might be either economically undesirable or technically infeasible. During this phase, 
it is crucial that we discuss with stakeholders their needs and the problems that our solution is 
attempting to solve. We scrutinize all aspects of the project as well as identify the major use 
cases.

One of the risks identified in building the Catalog Manager application is the software 
development team’s unfamiliarity with Web services architecture and technology, which might 
preclude them from delivering the Web services component on time. To mitigate this, we 
decide to provide early training on Web services to the team members in Iteration one of the 
Elaboration Phase, prior to developing the Web services component.

Identifying the major use cases for a catalog order system, such as the Catalog Manager, 
entails getting everyone’s agreement that a client needs to be able to list the items in a 
catalog as well as order a certain quantity of a specific item. Moreover, a customer service 
representative must be able to replenish (restock) depleted items in the catalog. The Catalog 
Manager application is illustrated in Figure 8-2.

Figure 8-2   Catalog Manager application

Concluding the Inception Phase
The Inception Phase for the Catalog Manager concludes with the Lifecycle Objective 
Milestone, which indicates whether to proceed or abandon the project. At this stage, we 
propose a single solution that:

� Solves the right problem
� Is technically feasible
� Is economically viable

All stakeholders agree on these points prior to taking the project to the next step, that is,  
developing the architecture approach in the Elaboration Phase. If all stakeholders do not 
agree on these points, a decision to cancel the project is made. This can in fact be a desirable 
outcome of the Inception Phase, because terminating a project at this stage is the least 
expensive option of all the phases. 

 

 

 

Chapter 8. Catalog Manager case study 95



 

The following sections outline the Catalog Manager Inception Phase iteration details, work 
product deliverables, and the use of different tools to develop the project.

Iterations in the Inception Phase 
The inception Phase has only one iteration that is summarized as shown in Table 8-3.

Table 8-3   Inception iteration

Work products produced in the Inception Phase 
Table 8-4 summarizes the work products produced during the Inception Phase and their state 
of completion. After the decision is made to move on to the next Phase, in our case, the 
Elaboration Phase, then we must also create the plan for the first iteration of the Elaboration 
Phase (E1 Iteration Plan).

Table 8-4   Inception Phase work products

Inception iteration Description Risks addressed

I1 Iteration

(Preliminary 
Iteration)

(weeks 1-3)

Define and approve Business Case. 

Define high-level product requirements.
The Vision document contains key features and 
constraints.

Define project scope. 
A Use-Case Diagram includes key Actors and Use Cases. 
Only a brief description is provided for each Actor and 
Use Case.

Plan the overall project and next iteration. 
A high-level Software Development Plan, a Risk List, and 
an Iteration Plan for the first elaboration iteration are 
created.

Create a very first draft of the Test Plan.

Define application-specific terminology.
Important terms are defined in the Glossary.

Clarifies user requirements 
up front. 

Develops realistic Software 
Development Plans and 
scope.

Determines feasibility of the 
project from a business 
point of view.

Inception Phase work products Percent 
completion

Business Case 100

Vision 100

Glossary 40

Software Development Plan 80

Risk List 25

Use-Case Model 20

Supplementary Specification 20

Software Architecture Document 10

Catalog Manager Test Plan 10

E1 Iteration Plan 100

 

 

 

96 The IBM Rational Unified Process for System z



 

Tools used in the Inception Phase
The following tools are used to develop the work products in the Inception Phase:

� IBM Rational Software Architect/Modeler
We use the Rational Software Architect (RSA) tool to create the Unified Modeling 
Language (UML) models, but the Rational Software Modeler (RSM™) tool can just as 
easily be used.

� IBM Rational Software Architect/Modeler and IBM Rational SoDA®
We generate a use-case model survey report from RSA by employing a Rational SoDA 
template.

� IBM Rational RequisitePro®
We manage our requirements by using Rational RequisitePro.

� IBM Rational Method Composer and IBM Rational Portfolio Manager
We use Rational Method Composer to export the RUP for System z work breakdown 
structure into a Rational Portfolio Manager Software Development Plan. We then use 
Rational Portfolio Manager to tailor the Software Development Plan for the Catalog 
Manager Project and to detail the E1 Iteration Plan.

� IBM Rational Clear Case
We use Rational Clear Case for configuration management.

8.3.2  Catalog Manager Elaboration Phase

The Elaboration Phase addresses architectural and technical risks. It spans three iterations 
culminating in a Lifecycle Architectural Milestone, which is an executable architecture. This is 
a partial implementation of the system to verify that we have a stable architecture to support 
the significant Functionality, Usability, Reliability, Performance, and Scalability (FURPS) 
requirements.

During this phase, we outline the basic and alternate flows of each use case as well as 
identify the most critical (important) use cases. For each critical use case, we identify the 
architecturally significant (most important) scenarios for the Catalog Manager and use them 
to create the executable architecture; that is, we design, implement, and test these scenarios. 
We also document these architectural scenarios in our Software Architecture Document.

For each of these scenarios: 

1. We create a use-case realization, which is a sequence or interaction diagram identifying 
the components to fulfill the behavior specified by the scenario. 

2. We develop test cases that validate the scenarios so that we know what the desired 
behavior is. Test cases during the Elaboration Phase focus more on identifying problem 
areas, such as load testing and performance, rather than validating that the desired 
behavior is correct.

But how do we determine these scenarios? Per Kroll, Manager of Methods, IBM Rational, 
suggests the following approaches:

� The functionality is the core of the application, or it exercises key interfaces.
The system’s key functionality must determine the architecture. Analyze factors such as: 
redundancy management strategies, resource contention risks, performance risks, data 
security strategies, and so on. 

� Choose use cases describing the functionality that must be delivered.
Delivering an application without its key functionality is fruitless.

 

 

 

Chapter 8. Catalog Manager case study 97



 

� Choose use cases describing functionality for an area of the architecture not covered by 
another critical use case.
Even if a certain area of the architecture does not appear to be high risk, it might conceal 
technical difficulties that can be exposed only by designing, implementing, and testing 
some of the functionality within that area.

Iterations in the Elaboration Phase
The Elaboration Phase has three iterations that can be summarized as shown in Table 8-5.

Table 8-5   Elaboration iterations

Elaboration 
iteration

Description Risks addressed

E1 Iteration

Architectural 
Prototype for 
CICS Application

(week 4-6)

Complete analysis and design for high risk 
requirements related to CICS.

Create Use-Case Specification for the List 
Catalog Items use case, derive an Analysis 
Model, and refine it into a Design Model.

Document the architecture (high-level design) in 
the Software Architecture Document.

Develop the architectural prototype for CICS 
application.

Code the part of the application implementing 
the List Catalog Items use case. 

Demonstrate feasibility and performance 
through testing.

Architectural issues 
related to CICS clarified. 

Technical risks related 
to CICS mitigated.

Early prototype for user 
review.

Performance risks 
related to high volume of 
requests mitigated on 
the CICS side.

E2 Iteration 

Architectural 
Prototype for 
Web Services 
Connectivity

(week 7-9)

Train the team on Web Services. 

Complete analysis and design for high risk 
requirements related to Web Services.

Create Use-Case Specification for the 
Configure Catalog use case, derive analysis 
elements, 
and refine the Design Model.

Refine the architecture (high-level design) in the 
Software Architecture Document.

Refine the architectural prototype for Web 
Services, so it establishes the connectivity 
between CICS and Web Services.

Code the Web service elements related to the 
Configure Catalog use case. 

Demonstrate feasibility through testing 
(integrate as necessary).

Risks of low skills 
related to Web Services 
and unknown 
technology mitigated.

Architectural issues 
related to Web Services 
partially clarified. 

Technical risks related 
to Web Services 
partially mitigated.

 

 

 

98 The IBM Rational Unified Process for System z



 

Iteration one of the Elaboration Phase - E1
The first iteration, E1, of the Elaboration Phase focuses on implementing an architectural 
prototype for the Catalog Manager application on the z/OS host. Consequently, we chose to 
implement the List Items use case for the 3270 interface. This is a core use case, because it 
validates the 3270 interface of the Catalog Manager application. It is also critical from a 
performance and load perspective, because it accesses the VSAM repository that lists all the 
items retrieved from the catalog.

Figure 8-3 shows the Catalog Manager user interface, which is a basic interface to fulfill the 
List Catalog Items use case and to exit the application. Options 2 and 3 are not implemented 
at this time but serve as placeholders for functionality to be implemented during later phases.

Figure 8-3   Catalog Manager 3270 user interface

After the List Items function is selected, a list of items, descriptions, and costs displays (see 
Figure 8-4 on page 100).

E3 Iteration 

Architectural 
Prototype for 
Web Services 
Catalog Access 

(week 10-12)

Complete analysis and design for all remaining 
high risk requirements related to Web Services.

Derive analysis elements from the List Catalog 
Items use-case specification in the context 
of Web services and refine the Design Model.
Refine the architecture (high-level design) in the 
Software Architecture Document.

Develop the architectural prototype for Web 
Services, so the Catalog Manager is available as 
a Web service.

Code the Web services elements related to the 
List Catalog Items use case.

Demonstrate feasibility and performance 
through testing (integrate as necessary).

Define and Implement Installation Verification 
Procedures (IVPs) for the List Catalog Item use 
case.

Architectural issues 
related to Web Services 
fully clarified. 

Technical risks related 
to Web Services fully 
mitigated.

Early prototype for user 
review.

Performance risks 
related to high volume of 
requests mitigated on 
the Web Services side.

Browser Incompatibility 
Risk mitigated.

CICS EXAMPLE CATALOG APPLICATION  - Main Menu   
                                                
Select an action, then press ENTER              
                                                
Action . . . .     1. List Items                
                   2. Order Item Number
                   3. Replenish Inventory
                   4. Exit                      
                                                

                                                
                                                
F3=EXIT    F12=CANCEL 

Elaboration 
iteration

Description Risks addressed 

 

 

Chapter 8. Catalog Manager case study 99



 

Figure 8-4   Catalog Manager List Items

In order to fulfill the behavior of the List Catalog use case, we designed and implemented the 
modules in Figure 8-5 on page 101. We followed best practices by employing a Model View 
Controller (MVC) design pattern separating the data (model) and user interface (view) 
concerns.

The data (Model) in the VSAM file is handled by module DFH0XVDS, the user interface (View) 
is handled by module DFH0XGUI, and the Controller module is DFH0XCMN.

CICS EXAMPLE CATALOG APPLICATION  - Inquire Catalog               
                                                                  

Item    Description                                 Cost 
----------------------------------------------------------------- 
0010    Ball Pens Black 24pk                        2.90          
0020    Ball Pens Blue 24pk                         2.90          
0030    Ball Pens Red 24pk                          2.90          
0040    Ball Pens Green 24pk                        2.90          
0050    Pencil with eraser 12pk                     1.78          
0060    Highlighters Assorted 5pk                   3.89          
0070    Laser Paper 28-lb 108 Bright 500/ream       7.44          
0080    Laser Paper 28-lb 108 Bright 2500/case     33.54          
0090    Blue Laser Paper 20-lb 500/ream 5.35          
0100    Green Laser Paper 20-lb 500/ream 5.35          
0110    IBM Network Printer 24 - Toner cart       169.56          
0120    Standard Diary: Week to view 8 1/4x5 3/4   25.99          
0130    Wall Planner: Erasable 36x24 18.85          
0140    70 Sheet Hard Back wire bound notepad       5.89          
0150    Sticky Notes 3x3 Assorted Colors 5pk        5.35          
                                                                  
                                                                  
F3=EXIT    F7=BACK   F8=FORWARD   F12=CANCEL 

 

 

 

100 The IBM Rational Unified Process for System z



 

Figure 8-5   List Catalog Items module diagram

Iteration two of the Elaboration Phase - E2
The second iteration, E2, of the Elaboration Phase focuses on implementing an architectural 
prototype for the Catalog Manager Web services component. We chose to first implement the 
Configure Catalog use case for reasons similar to those we used for the List Items use case 
in iteration E1 of the Elaboration Phase. This is a core use case for the Web services 
component in that it exercises the Web services interface for the Catalog Manager and allows 
us to configure the Web services interface to communicate with the Catalog Manager Web 
services components on the z/OS host.

The Catalog Manager application on the z/OS host is really unaware that it is communicating 
with a Web service, because this communication is handled by the CICS Transaction Server 
(CICS TS) housing the Catalog Manager.

The Configure Catalog use case is implemented by first invoking the CONFIGURE option 
from a Web services client welcome panel as seen in Figure 8-6 on page 102. 

 

 

 

Chapter 8. Catalog Manager case study 101



 

Figure 8-6   Catalog Manager Web services client welcome panel 

Figure 8-7 shows the Configure Application panel that displays after selecting the Configure 
option from the panel in Figure 8-6. This panel allows you to specify the connection endpoints 
of the Catalog Manager service provider on the z/OS host. The other options (LIST ITEMS, 
INQUIRE, ORDER ITEM, and REPLENISH) have not been implemented at this stage. They 
are placeholders to allow for additional Web services functionality during a later iteration and 
phase.

Figure 8-7   Catalog Manager Web services client configure panel

We again use an MVC design pattern to implement getting and setting the Web services 
configuration endpoints as seen in Figure 8-8 on page 103.

 

 

 

102 The IBM Rational Unified Process for System z



 

Figure 8-8   Configure Catalog Manager class diagram

Iteration three of the Elaboration Phase - E3
Iteration three, E3, is the final iteration in the Elaboration Phase. Our purpose here is to 
complete analysis and design for all remaining high risk requirements relating to Web 
services. If you recall, the List Catalog use case is implemented in iteration E1 of the 
Elaboration Phase for the Catalog Manager z/OS component. Therefore, for the same 
reasons that we described earlier, it makes sense to also first implement the List Catalog 
use-case Web service for the Catalog Manager Web services client interface.

Because we already have a placeholder (see Figure 8-7 on page 102) for the Web services 
List Items use case, we now develop the Web services client code to support this use case. 
However, we also need to enable the previously implemented List Items function (Elaboration 
E1) of the Catalog Manager on the z/OS host as a Web services provider. This is a necessary 
requirement, because the List Items Web services requester will be communicating with the 
List Items Web services provider in CICS.

There are two methods of converting a CICS COBOL program into a Web service provider:

� Use the CICS TS 3.1 Web services assistant program DFHLS2WS.

� Use the Web services enablement components wizard of WebSphere® Developer for 
zSeries (see pages 122-133 of Application Development for CICS Web Services, 
SG24-7126-00).

For our purposes, we utilize the CICS Web Services assistant program DFHLS2WS. There 
are, of course, a number of resource definition and configuration steps that we perform in the 
CICS environment to allow the Catalog Manager through CICS to act as a service provider. 
For a discussion about this topic, refer to Application Development for CICS Web Services, 
SG24-7126-00. We will discuss this topic in more detail during the implementation of the 
Replenish Inventory use case in the Construction Phase.

 

 

 

Chapter 8. Catalog Manager case study 103



 

After we have enabled the List Items function as a Web services provider in CICS, we 
concentrate on developing the List Items Web services requester to invoke this function.

The implementation of this use case will enable our Web services client to request the 
Catalog Manager on the z/OS host to list the items in the catalog, just as though it were 
performing this function natively on a 3270 workstation. In this capacity, the Catalog Manager 
utilizing the services of CICS TS 3.1 is acting as a Web services provider. The items are 
retrieved and returned to the Web services client to be displayed.

After selecting the List Items option in Figure 8-6 on page 102, Figure 8-9 is displayed. On 
submitting this request, it sends the result of the List Items back to the Web services client 
interface to be displayed. The results are exactly the same as in Figure 8-4 on page 100.

Figure 8-9   Catalog Manager Web service client List Items panel

Figure 8-10 depicts the model elements that we use to implement the List items use case. As 
before, we use a MVC design pattern for the implementation. For the CICSProvider interface, 
we only implement the inquireCatalog() function to support the use case, but we include the 
other placeholder functions for additional use cases in later iterations and phases.

Figure 8-10   Catalog Manager List Items Class/Module Diagram

 

 

 

104 The IBM Rational Unified Process for System z



 

Concluding the Elaboration Phase
The Elaboration Phase for the Catalog Manager concludes with the Lifecycle Architectural 
Milestone. Our aim at this point is to:

� Bring architectural and technical risks under control.
� Establish and demonstrate a sound architectural foundation.
� Establish a credible plan for developing the product.

This means that we need to have a stable, proven architecture to handle the technical risks 
that we identify. In other words, the test scenarios for the use cases developed in the 
Elaboration Phase have not caused the system to fail. At this point, we have a partially 
completed design model, test cases, and executable code.

The decision to proceed to the Construction Phase is made based on us mitigating the 
technical risks that we identify. 

The following sections outline the Catalog Manager Elaboration Phase iteration details, work 
product deliverables, and the use of different tools to develop the project.

Work products produced in the Elaboration Phase
Table 8-6 summarizes the work products produced during the Elaboration Phase and their 
state of completion. 

Table 8-6   Elaboration Phase work products

Elaboration Phase work products Percent 
completion

Glossary 80

Software Development Plan 95

E2, E3, and C1 Iteration Plans 100

C2 Iteration Plan 80

Risk List 50

Use-Case Model, including Use-Case 
specifications

80

Supplementary Specification 80

Software Architecture Document 100

Analysis Model 50

Design Model 60

Service Model 60

Test Plan 30

Test Cases, including Test Scripts 40

Test Evaluation Summary Created

Source Code 40

Builds for E1, E2, and E3 Created

Installation Verification Procedures (IVPs) 80

 

 

 

Chapter 8. Catalog Manager case study 105



 

Tools used in the Elaboration Phase
The following tools are used to develop the work products in the Elaboration Phase:

� IBM Rational Software Architect/Modeler
We use the Rational Software Architect (RSA) tool to create the Unified Modeling 
Language (UML) models, but the Rational Software Modeler (RSM) tool can just as easily 
be used.

� IBM Rational Software Architect/Modeler and IBM Rational SoDA
We generate a use-case model survey report from RSA by employing a Rational SoDA 
template.

� IBM Rational RequisitePro
We manage our requirements by using Rational RequisitePro.

� IBM WebSphere Developer for zSeries (WDz)
We use this tool to test the Catalog Manager Web service client.

� IBM Rational Portfolio Manager
We use Rational Portfolio Manager to refine the Software Development Plan and to detail 
Iteration Plans.

� IBM Rational Clear Case
We use Rational Clear Case for configuration management.

8.3.3  Catalog Manager Construction Phase

The Construction Phase addresses logistical risks, that is, completing the remaining work in 
the allotted time. It spans two iterations culminating in an Initial Operational Capability 
Milestone, which is assessing that the product is suitable to be delivered to the users. 

During this phase, we do most of the work and implement all functionality. The remaining 
scenarios are detailed, designed, implemented, and tested, following a pattern not unlike that 
of the Elaboration Phase.

Up until this point, our testing has been focused on proving the suitability (Inception) and 
technical feasibility (Elaboration) of the solution. We switch gears now to concentrate more on 
testing the user interface of the solution, but we also need to ensure that prior architectural 
tests continue to work as the new functionality is implemented. Because the number of test 
cases has now grown, we make use of an automation tool to alleviate the manual testing 
effort.

Iterations in the Construction Phase
The Construction Phase has two iterations that can be summarized as shown in Table 8-7 on 
page 107.

 

 

 

106 The IBM Rational Unified Process for System z



 

Table 8-7   Construction iterations

Iteration one of the Construction Phase - C1
The first iteration, C1, of the Construction Phase focuses on implementing the Order Item use 
case for both the 3270 interface and the Web client interface. Because we planned ahead 
and included placeholders for these functions (see Figures 8-8 and 8-11) on the main menu 
of the 3270 interface and the Web interface, we now concentrate on writing the supporting 
code.

The order item selection (for the 3270 interface) is made from the main menu as seen in 
Figure 8-11. 

Figure 8-11   3270 interface order item

We develop the PLACE-ORDER() function to support the order item use case as seen in 
Figure 8-12 on page 108. Also, we have to Web enable this function in CICS using the CICS 
TS Web services assistant program DFHLS2WS, as we did before for the List Catalog 
function.

Construction iteration Description Risks addressed

C1 Iteration 

Develop Ordering 
Capability

(week 13-15)

Implement and test key user 
requirements.

Create Use-Case Specification 
for the Order Catalog Item use 
case, derive analysis elements, 
refine the Design Model, and 
implement.

Integrate and Test.

All important features from a user 
perspective are implemented. 

C2 Iteration

Develop
Inventory 
Replenishing 
Capability

Beta Release 

(week 16-18)

Implement and test remaining
requirements.

Create Use-Case Specification 
for the Replenish Inventory use 
case, derive analysis elements, 
refine the Design Model, and 
implement.

Integrate and Test. 

Prepare deployment.

Assess if release is ready to go for 
beta testing.

All required features are 
implemented in the Beta. 

CICS EXAMPLE CATALOG APPLICATION  - Main Menu   
                                                
Select an action, then press ENTER              
                                                
Action . . . .   2 1. List Items                
                   2. Order Item Number  20     
                   3. Replenish Inventory       
                   4. Exit 

 

 

 

Chapter 8. Catalog Manager case study 107



 

Figure 8-12   Catalog Manager order item module diagram

However, for the Web services interface, another panel is provided from the main menu as 
shown in Figure 8-13 that allows you to specify additional attributes, such as user name and 
department name, when placing the order.

Figure 8-13   Catalog Manager Web services client order item panel

 

 

 

108 The IBM Rational Unified Process for System z



 

In Figure 8-14 on page 109, we add functionality in the Web services interface for the order 
item use case.

Figure 8-14   Catalog Manager order item class/module diagram

Iteration two of the Construction Phase - C2
The second iteration, C2, of the Construction Phase focuses on implementing the Replenish 
Inventory use case for both the 3270 interface and the Web client interface. Because we 
planned ahead and included placeholders for these functions (see Figure 8-3 on page 99 and 
Figure 8-1 on page 92) on the main menu of the 3270 interface and the Web interface, we 
now concentrate on writing the supporting code.

The Replenish Inventory selection (for the 3270 interface) is made from the main menu as 
seen in Figure 8-15, and the supporting functionality is illustrated in Figure 8-16 on page 110.

Figure 8-15   Catalog Manager Replenish Inventory

CICS EXAMPLE CATALOG APPLICATION  - Main Menu 
                                              
Select an action, then press ENTER            
                                              
Action . . . .   3 1. List Items              
                   2. Order Item Number       
                   3. Replenish Inventory     
                   4. Exit 

 

 

 

Chapter 8. Catalog Manager case study 109



 

Figure 8-16   Catalog Manager Replenish Inventory module diagram

For the Web services interface, we also select the REPLENISH option from the Web 
interface main menu as shown in Figure 8-6 on page 102. The supporting modules/classes to 
implement this function are illustrated in Figure 8-17 on page 111. Again, we also need to 
Web enable the Replenish function in CICS as a Web services provider to communicate with 
our Replenish Web services requester client. The next section discusses this approach in 
more detail.

 

 

 

110 The IBM Rational Unified Process for System z



 

Figure 8-17   Catalog Manager Replenish Inventory class/module diagram

Enabling Replenish function as a Web service provider in CICS
There are three development approaches for creating Web services in CICS:

� Top-down approach: Creates a service from an existing Web Services Description 
Language (WSDL) and is used for new applications with existing WSDL or new WSDL.
WSDL uses eXtensible Markup Language (XML) to specify the characteristics of a Web 
service: name of the Web service, what it can do, and how it is invoked.

� Bottom-up approach: Creates a WSDL from an existing application and is used for an 
existing application.

� Meet-in-the-middle-approach: Used for an existing application with existing WSDL.

Because we already have an existing COBOL application for the Replenish function, we 
employ the Bottom-up-approach.

We now execute the following steps to enable the Replenish function as a Web service 
provider in CICS:

1. Run CICS Web Services assistant DFHLS2WS passing it as input; our replenish function 
data structure as shown in Figure 8-18 on page 112. This does the following tasks:

a. Creates a WSDL for the replenish function.

b. Creates a WSBIND file. The WSBIND file is used by CICS to:

i. Transform Simple Object Access Protocol (SOAP) messages to application data on 
input. 

SOAP is the protocol that is used to communicate among the three actors in an 
SOA, as shown in Figure 8-19 on page 112: the service provider (Catalog Manager 
via CICS), the service requester (Web services client), and the service broker. The 

 

 

 

Chapter 8. Catalog Manager case study 111



 

service broker (also known as a service registry) makes the Web service access 
and interface information available to any potential service requester. A service 
broker is not used in the Catalog Manager example.

ii. Transform application data to SOAP messages on output.

Figure 8-18   Replenish Inventory function data structure

Figure 8-19   Service-oriented architecture (SOA) components and operations

Example 8-1 on page 113 shows the input parameters passed to DFHLS2WS for the 
Replenish Inventory function.

Catalogue COMMAREA structure                     
03 CA-REQUEST-ID            PIC X(6).            
03 CA-RETURN-CODE           PIC 9(2) DISPLAY.    
03 CA-RESPONSE-MESSAGE      PIC X(79).           
Fields used in Replenish Inventory               
03 CA-ORDER-REQUEST.                             
    05 CA-USERID                PIC X(8).        
    05 CA-CHARGE-DEPT           PIC X(8).        
    05 CA-ITEM-REF-NUMBER       PIC 9(4) DISPLAY.
    05 CA-QUANTITY-REQ          PIC 9(3) DISPLAY.
    05 FILLER                   PIC X(888). 

 

 

 

112 The IBM Rational Unified Process for System z



 

Example 8-1   Input parameters

//LS2WS     EXEC DFHLS2WS,                               
//  JAVADIR='/usr/lpp/java/J1.4/',                       
//  USSDIR='cicsts31',                                   
//  PATHPREF=''                                          
//INPUT.SYSUT1 DD *                                      
PDSLIB=//RUP4Z.SDFHSAMP                                  
PGMNAME=DFH0XCMN                                         
LANG=COBOL                                               
PGMINT=COMMAREA                                          
REQMEM=DFHRUP4Z                                          
RESPMEM=DFHRUP4Z                                         
LOGFILE=/u/rup4z/provider/wsbind/replenishInventory.log  
WSBIND=/u/rup4z/provider/wsbind/replenishInventory.wsbind
WSDL=/u/rup4z/provider/wsdl/replenishInventory.wsdl      
URI=exampleApp/replenishInventory 

The input parameters have the following meanings:

PDSLIB The library containing the Replenish Inventory program 
that is exposed as a Webservice.

PGMNAME The name of the program for the CICS Catalog Manager 
example application DFH0XCMN.

LANG Specifies the language in which the program is written (in 
this example, COBOL).

PGMINT Describes the program input. DFH0XCMN uses a 
COMMAREA.

REQMEN and RESPMEM Define the copybooks for request and response.

LOGFILE, WSBIND, and WSDL Specify the fully qualified hierarchical file system (HFS) file 
names of the files to be generated.

URI Stands for the URIMAP that is used to map a Web services 
request to a Web service.

2. Copy the generated WSBIND file to a UNIX® directory on z/OS that will act as a Web 
service pickup directory for the PIPELINE (see next step). For our 
example, we define a pickup directory called 
/u/rup4z/provider/wsdir.

3. Define a service provider PIPELINE in CICS using the following CICS transaction:

CEDA DEFINE PIPELINE(RUP4ZPIP)

The output of this transaction is illustrated in Figure 8-20 on page 114.

 

 

 

Chapter 8. Catalog Manager case study 113



 

Figure 8-20   PIPELINE definition for Replenish Web services provider

A PIPELINE is a sequence of programs arranged so that the output from one program is 
used as input to the next program. There are pipelines that support service providers and 
pipelines that support service requesters. 

In our example, we are creating a service provider PIPELINE, which is a pipeline of 
user-provided and system-provided programs that receives an inbound SOAP message, 
processes the contents, and sends a response.

4. Install the PIPELINE in CICS, which will subsequently create the WEBSERVICE definition 
in CICS:

CEDA INSTALL PIPELINE(RUP4ZPIP) GROUP(SOADEVWS)

5. We check if the WEBSERVICE is installed. Note that the Web service definition is 
required to map the incoming SOAP body to the COMMAREA interface of the program.

CEMT INQUIRE WEBSERVICE

The replenishInventory Web service definition is displayed in Figure 8-21 on page 115.

DEFINE PIPELINE(RUP4ZPIP)                                                        
OVERTYPE TO MODIFY                                        CICS RELEASE = 0640
 CEDA  DEFine PIpeline( RUP4ZPIP )                                           
  PIpeline     ==> RUP4ZPIP 
  Group        ==> SOADEVWS 
  Description  ==> RUP4Z PIPELINE for Catalog Manager Replenish Web services
  STatus       ==> Enabled            Enabled | Disabled                     
  Configfile   ==> /usr/lpp/cicsts/cicsts31/samples/pipelines/basicsoap11prov 
  (Mixed Case) ==>  ider.xml 
               ==>                                                           
               ==>                                                           
               ==>                                                           
  SHelf        ==> /var/cicsts/                                              
  (Mixed Case) ==>                                                           
               ==>                                                           
               ==>                                                           
               ==>                                                           
  Wsdir          :/u/rup4z/provider/wsdir 
  (Mixed Case)   :                                                           
                 : 

 

 

 

114 The IBM Rational Unified Process for System z



 

Figure 8-21   Catalog Manager replenishInventory Web service 

6. The URIMAP $309050 in Figure 8-21 is created dynamically by CICS. It is used to map an 
incoming request to the associated Web service and pipeline. CICS bases the definition 
on the URI specified in the input to DFHLS2WS in step 1 and stored by DFHLS2WS in the 
WSBIND file. We list the contents of the URIMAP by issuing the following command:

CEMT I URIMAP($309050)

The output is displayed in Figure 8-22.

Figure 8-22   URIMAP for replenishInventory

Notice that the PATH attribute is set to the URI that will be found in the HTTP request issued 
by our Web client.

7. We use WebSphere Developer for zSeries to import our WSDL 
/u/rup4z/provider/wsdl/replenishInventory/wsdl into our Software Development Platform 
(SDP) as shown in Figure 8-23 on page 116.

INQUIRE WEBS                                               
RESULT - OVERTYPE TO MODIFY                                
  Webservice(replenishInventory)                           
  Pipeline(RUP4ZPIP)                                       
  Validationst( Novalidation )                             
  State(Inservice)                                         
  Urimap($309050)                                          
  Program(DFH0XCMN)                                        
  Pgminterface(Commarea)                                   
  Container()                                              
  Datestamp(20061102)                                      
  Timestamp(13:09:05)                                      
  Wsdlfile()                                               
  Wsbind(/u/rup4z/provider/wsdir/replenishInventory.wsbind)
  Endpoint()                                               
  Binding(DFH0XCMNHTTPSoapBinding) 

INQUIRE URIMAP($309050)                                                    
STATUS:  RESULTS - OVERTYPE TO MODIFY                                      
 Uri($309050 ) Pip Ena     Http                                            
    Host(*                         ) Path(/exampleApp/replenishInventory  )

 

 

 

Chapter 8. Catalog Manager case study 115



 

Figure 8-23   Importing our replenishInventory wsdl file

8. We are ready to test our Web services, so we utilize the WSDL editor in WDz as shown in 
Figure 8-24:

a. In WDz, right-click your WSDL file and select Open With WSDL Editor.

b. In the WSDL editor, click the Graph tab.

c. In the Services pane, expand services → port → soap:address.

d. Click the Properties tab to specify the Web service endpoint.

Figure 8-24   replenishInventory Web services endpoint

Notice that the Web services address is: 

http://host ip address:host port/URI for replenishInventory.

This URI corresponds to the URI path defined earlier in CICS for the replenishInventory Web 
services provider.

1. Start up WebSphere Developer for zSeries v6.
2. Create a new project as follows: File, New, Project, “My-WSDL”
3. Copy WSDL file to workstation: File, Import, FTP
4. Host=myzOS or 9.9.9.9
(CEMT I TCPIPS, then expand output to get your IP address)
5. Folder=/u/rup4z/provider/wsdl/
6. login=userlogon
7. password=userpass
8. finish

 

 

 

116 The IBM Rational Unified Process for System z



 

9. We now test the Web service by:

a. Right-clicking on the WSDL file

b. Selecting Web Services Test with Web Services Explorer

c. Right-clicking on the DFH0XCMNOperation link

Web Services Explorer provides a form where you enter your request-specific data. All 
values must be entered according to the WSDL specification as shown in Figure 8-25.

a. Enter 01REPL for ca_request_id.

b. Enter 0 for other fields.

c. Click Go.

Figure 8-25   Invoking the replenishInventory Web service in WdZ

10.The results of the replenishInventory request are displayed in the status panel as shown in 
Figure 8-26 on page 118.

 

 

 

Chapter 8. Catalog Manager case study 117



 

Figure 8-26   Response from replenishInventory Web service request

Concluding the Construction Phase
The Construction Phase for the Catalog Manager concludes with the Initial Operational 
Capability Milestone. Our aim at this point is to:

� Ensure that the solution is developed according to the requirements.

� Ensure that the solution is ready to be delivered to the users and stakeholders.

� Achieve adequate quality as rapidly as possible.

We are now ready to deploy the solution as a beta release to be evaluated by users and 
stakeholders. This takes us to the Transition Phase.

The following sections outline the Catalog Manager Construction Phase iteration details, work 
product deliverables, and the use of different tools to develop the project.

Work products produced in the Construction Phase 
Table 8-8 on page 119 summarizes the work products produced during the Construction 
Phase and their state of completion.

 

 

 

118 The IBM Rational Unified Process for System z



 

Table 8-8   Construction Phase work products

Tools used in Construction
The following tools are used to develop the work products in the Construction Phase:

� IBM Rational Software Architect/Modeler
We use the Rational Software Architect (RSA) tool to create the Unified Modeling 
Language (UML) models, but the Rational Software Modeler (RSM) tool can just as easily 
be used.

� IBM Rational Software Architect/Modeler and IBM Rational SoDA
We generate a use-case model survey report from RSA by employing a Rational SoDA 
template.

� IBM Rational RequisitePro
We manage our requirements by using Rational RequisitePro.

� IBM WebSphere Developer for zSeries (WDz)
We use this tool to test the Catalog Manager Web services client.

� IBM Rational Manual Tester
We use this tool to exercise our test cases.

� IBM Rational Functional Tester
We use this tool to automate our testing suites.

� IBM Rational Portfolio Manager
We use Rational Portfolio Manager to refine the Software Development Plan and to detail 
Iteration Plans.

Construction Phase work products Percent 
completion

Glossary 90

Software Development Plan 100 

C2 and T1 Iteration Plans 100

T2 Iteration Plan 80

Risk List 75

Use-Case Model, including Use-Case 
specifications

100

Supplementary Specification 100

Analysis Model 100

Design Model 95

Service Model 95

Test Plan 90

Test Cases, including Test Scripts 80

Deployment Plan Created

Source Code 95

Builds for C1, C2, and Beta Created

Installation Verification Procedures (IVPs) 90

 

 

 

Chapter 8. Catalog Manager case study 119



 

� IBM Rational Clear Case
We use Rational Clear Case for configuration management.

8.3.4  Catalog Manager Transition Phase

The Transition Phase addresses solution rollout (delivery) risks and brings these risks under 
control. It spans two iterations culminating in a Product Release Milestone, which marks the 
product completion. During this phase, we are mostly concerned about deployment and fixing 
defects identified in the released product. We decide to deliver the Catalog Manager as two 
releases: R1 containing only the 3270 components and R2 containing the Web services 
components.

Iterations in Transition
The Transition Phase has two iterations that can be summarized as shown in Table 8-9.

Table 8-9   Transition Phase iterations

Iteration one of the Transition Phase - T1
The first iteration, T1, of the Transition Phase focuses on deploying the beta release and 
fixing the associated defects. After these defects are addressed and our users and 
stakeholders are satisfied, we package and deploy R1 of the product, which contains only the 
3270 components.

The span between R1 and R2 allows us to address any interdependent defects in the Web 
services components that might arise from user testing of R1 of the product.

Iteration two of the Transition Phase - T2
The second iteration, T2, of the Transition Phase focuses on deploying the second release, 
R2, which contains only the Web services components. We ensure that sufficient training 
material is provided, because this release is more comprehensive. It requires prerequisite 
products on the workstation as well as the host.

Concluding the Transition Phase
The Transition Phase for the Catalog Manager concludes with the Product Release 
Milestone. Our aim at this point is to:

Transition iteration Description Risks addressed

T1 Iteration 

R1 Release

(week 12-21)

Refine the Installation Verification 
Procedures (IVPs). 

Deploy Beta.

Fix defects from Beta and 
incorporate feedback. 

Package, distribute, and install R1 
Release at our business partner 
sites.

User feedback prior to release of 
R1.
High Product quality.
Defects minimized.
Quality of service (QOS) 
improved.
R1 fully reviewed by user 
community.

T2 Iteration

R2 Release 

(week 22-24)

Fix defects from R1 and incorporate 
feedback. 

Package and distribute R2 Release 
through the Web.

Two-stage release minimizes 
defects and provides easier 
transition for users.

 

 

 

120 The IBM Rational Unified Process for System z



 

� Deliver the solution to its users.
� Achieve user self-sufficiency.

Successful deployment of the product indicates that the Product Release Milestone has been 
achieved. Of course, Product Release milestone assessment is based on the satisfaction of 
our users and stakeholders.

The following sections outline the Catalog Manager Transition Phase iteration details, work 
product deliverables, and the use of different tools to develop the project.

Work products produced in the Transition Phase
The table in Table 8-10 summarizes the work products produced during the Transition Phase 
and their state of completion.

Table 8-10   Transition Phase work products

Tools used in the Transition Phase
The following tools are used in the Transition Phase:

� IBM Rational Software Architect/Modeler
We use the Rational Software Architect (RSA) tool to create the Unified Modeling 
Language (UML) models, but the Rational Software Modeler (RSM) tool can just as easily 
be used.

� IBM Rational Manual Tester
We use this tool to exercise our test cases.

� IBM Rational Functional Tester
We use this tool to automate our testing suites.

� IBM Rational Portfolio Manager
We use Rational Portfolio Manager to detail Iteration Plans.

� IBM Rational Clear Case
We use Rational Clear Case for configuration management.

Transition Phase work products Percent 
completion

Glossary 100

Iteration Plans T2 100

Risk List 100

Design Model 100

Service Model 100

Test Plan 100

Test Cases 100

Test Scripts 100

Source Code (Implementation Elements) 100

Installation Verification Procedures (IVPs) 100

Builds for R1 and R2 Created

 

 

 

Chapter 8. Catalog Manager case study 121



 

 

 

 

122 The IBM Rational Unified Process for System z



 

Chapter 9. EGL Web Service consumption 
case study

The purpose of this chapter is to provide an introduction to the Enterprise Generation 
Language (EGL) and illustrate how quickly and simply it can be used to develop the Web 
interface of the Catalog Manager case study application introduced in the previous chapter. 
This chapter does not attempt to explain Web development concepts. For an introduction to 
these concepts in the context of EGL, refer to the excellent EGL tutorials on developerWorks:

http://www-128.ibm.com/developerworks/rational/products/egl/egldoc.html

9
 

 

 

© Copyright IBM Corp. 2007. All rights reserved. 123

http://www-128.ibm.com/developerworks/rational/products/egl/egldoc.html


 

9.1  Introduction to Enterprise Generation Language

Enterprise Generation Language (EGL) is a highly productive and intuitive high level 
programming language, which allows the developer to focus on business-logic rather than 
target platform runtime nuances. For example, a System z developer can quickly develop a 
Web client without extensive knowledge of middleware programming or JAVA/J2EE™. The 
EGL source code is generated into either COBOL or Java depending on the desired target 
execution environment. The same source code can be deployed to various execution 
platforms. The target environment specifics are limited to the build descriptor files, which 
control the generation process. Build descriptor files and record definitions also isolate 
datastore specifics allowing the EGL developer to use the simplified coding constructs to 
access data regardless of the underlying datastore, such as relational database, DL/I 
database, MQ Series, and serial file. As a result, the EGL developer has to handcraft very 
little EGL code in order to deploy code that is optimally built for the target datastores and 
target execution platform.

EGL is a feature that is bundled with the following version 6.0.x WebSphere and Rational 
design and construction products:

� Rational Software Developer Platform (RAD)

� Rational Software Architect (RSA)

� WebSphere Developer for zSeries (WDz)

� WebSphere Developer Studio Client (for iSeries®)

Both platforms integrate rapid development technologies, such as Java Server Faces (JSF), 
within the Eclipse framework, which produce a highly productive development environment. 
JSF is a server-side user interface component framework, which is graphical, consistent, and 
easy to use. The framework provides a simple model for the development of Java-based 
dynamic Web pages. EGL integration into these IBM and Rational products exploits drag and 
drop development (for example, Web page development) and declarative programming to 
specify properties (for example, data element properties). These simplified development 
styles result in high quality code generated and compiled by EGL rather than crafted by the 
developer. The EGL perspective provides EGL specific editors and a debugger, which 
provide a common look and feel for both Web-centric and data-intensive programs. The EGL 
editor has the following functionality: 

� Standard editing operations

� 4GL macro statements

� Drag and drop rapid development techniques

� Context-based Content Assist

� Colorized language elements

� Code Templates

� Code Snippets

� Editor view preferences (colors, fonts, hide/show line numbers, and so forth)

� Integration with the syntax compiler to display compile errors

These features of the EGL editor contribute to EGL’s goal to provide a simplified approach to 
application development. The EGL and JSF aware editors facilitate the ease of learning the 
language syntax and programming paradigm. The technology neutral specification of the 
EGL language, EGL code generation, and EGL-based debugging provides complete, 
end-to-end isolation from the complexity of the deployment environment. Therefore, existing 
System z procedural programmers can quickly utilize the EGL and JSF framework to develop 

 

 

 

124 The IBM Rational Unified Process for System z



 

a Web application without extensive J2EE training. The RAD EGL/JSF tooling quickly 
produces production quality functionality, thereby shifting more development cycles from 
construction to analysis and design. 

9.2  Development approach

The Catalog Manager case study involved using EGL to develop a Web interface to request 
CICS Web Services. The pervious chapter concentrates on the application of RUP for Z 
development during the case study. This chapter emphasizes the construction of the code. 
For details concerning the CICS TS configuration and Web services, refer to Application 
Development for CICS Web Services, SG24-7126-00. Note, EGL could have easily been 
used to implement the Web services and the 3270 client as well. However, it was decided to 
exploit the existing CICS code in order to concentrate on the Web client development in EGL. 

System requirement to recreate and execute this sample code is version 6.0.x of Rational 
Software Developer, Rational Software Architect, or WebSphere Developer for zSeries at the 
latest level of maintenance with features EGL and IBM WebSphere Application Server V6.0 
Test Environment installed. Configuration of the development workspace will be covered in 
the elaboration section. 

Parallel development was used to develop this Web client application. The page template 
was developed independently of the Elaboration Phase use cases (that is, the List Catalog 
Items and the Configure Catalog use cases). An experienced Web developer was assigned 
the page template, because it required HTML and JavaScript™ knowledge. The page 
template has a navigational link to all the pages in the application. JavaScripts were used to 
suppress the navigational link to the currently rendered page. Thus, the replenish page will 
not have the replenish navigational link. The new EGL Web developer was able to 
concentrate on how to achieve the use-case functionality rather than be obsessed with the 
appearance of the pages. The key concepts utilized during the Elaboration Phase were: 

� Web Services Explorer to test the WSDL file

� Project Explorer view Create EGL Interfaces and Binding Library. Menu option to EGL 
artifacts from WSDL files

� Page Data View Insert New control for select objects menu option to get visual 
components on the page and bind it to data in the pageHandler

� EGL pageHandler onPageLoad function to initialize page values

� EGL forward statement to transfer control to another page

� EGL system functions j2eeLib.getSessionAttr and j2eeLib.setSessionAttr to cache 
session data

� EGL system function serviceLib.setWebEndpoint to dynamically alter the Web service 
endpoint

� EGL system function mathLib.stringAsDecimal to format the cost column

� EGL record/dataItem specification to assist with data formatting

During the Construction Phase, the EGL developer incorporated the Catalog Manager Page 
Template to unify the page layouts and navigation. To facilitate development, an EGL code 
template was defined to provide a shortcut for the functions required to invoke a Web service. 
The most significant decision of the Construction Phase was where to invoke the Web 
service. The page that gathered the request data could request the Web service then 
determine whether the response page or the error page is the next page. An alternate 
approach is to send the request parameter to the response page, which would request the 

 

 

 

Chapter 9. EGL Web Service consumption case study 125



 

service in the onPageLoad function. However, the onPageLoad function can neither forward 
control to another page nor cause an error message to be displayed when the page is first 
presented to the user. As a result, invocation of Web services will occur on the page that 
gathers the request data, so the program can handle error conditions.

9.3  Inception Phase

In accordance with the Catalog Manager Software development plan, no EGL specific 
activities occurred during the Inception Phase.

9.4  Elaboration Phase

This section gives a detailed account of how to recreate the executable architecture 
developed during the Elaboration Phase. The main activities are invoking a Web service, 
caching session data, and formatting data.

9.4.1  Web Service invocation

The development environment is WebSphere Developer for zSeries Version 6.0.1.1 with Fix 
4. The workbench capabilities for EGL Developer and Web Service Development must be 
enabled. The EGL Developer capability provides the EGL development perspective and its 
associated development tools. The Web Service Developer capability enables validation of 
wsdl files through the Web Services Explorer. The menu option Window → Preferences 
launches the dialog in Figure 9-1 on page 126. 

Figure 9-1   WDz Workbench Preference View on Capabilities

 

 

 

126 The IBM Rational Unified Process for System z



 

Expand Workbench, select Capabilities, and ensure EGL Developer and Web Service 
Developer are checked. Select OK and reopen the preference dialog to modify the Default 
EGL Web Project Feature Choices to include EGL support with JSF Component 
Interfaces. This project feature will enable direct manipulation of the user interface elements 
using EGL server-side logic rather than client-side JavaScripts. Development will be done in 
EGL and Web perspectives. Use the menu option Window → Open Perspective → Other 
and select EGL to change the current perspective. Figure 9-2 on page 127 shows the default 
layout of the EGL perspective.

Figure 9-2   EGL Perspective

The default perspective layout has the Project Explorer view in the upper left corner. It 
provides the means to navigate to development artifacts using a hierarchical containment 
structure. This view shows the relationships among the EGL projects, packages, and source 
files. All other open views are updated with content when an element is selected or opened in 
an editor. The Console view, in the lower right, shows the output of your program execution 
and enables you to enter data for a running program. The Console view can show standard 
output text, standard error text, and standard input text in three colors: by default, standard 
output text is blue, standard error text is red, and standard input text is green. The Outline 
view, in the lower left, displays an outline of the structured file that is currently open in the 
editor area in the upper right. The content of the Outline view is editor specific. Syntax errors 
will be detailed in the Problems view in the lower right. 

These are the high level development steps that we followed to inquire about the catalog:

1. Create EGL Web Project.

2. Import WSDL file.

3. Test WSDL file.

4. Generate EGL artifacts from WSDL file.

 

 

 

Chapter 9. EGL Web Service consumption case study 127



 

5. Create the JSP™ page.

6. Customize the EGL pageHandler.

7. Start the server.

8. Test page.

The detailed steps are:

1. On the Project Explorer view, select New → Other and select EGL Web Project on the 
dialog shown in Figure 9-3.

Figure 9-3   Selection page for the New Wizard

2. Select Next and enter the project name EzcCatalogWebProj. The EGL case study 
application acronym is ezc (EGL RUP for z Catalog Manager). Every development artifact 
will have this acronym as a prefix to its name. Figure 9-4 on page 129 shows the 
appropriate settings for the New EGL Web Project Wizard.

 

 

 

128 The IBM Rational Unified Process for System z



 

Figure 9-4   New EGL Web Project Wizard

3. On the first page of the new EGL Web Project wizard, specify the project name and 
ensure that Create new project build descriptor(s) automatically is selected. Use Next 
to advance to the next page shown in Figure 9-5 on page 130.

 

 

 

Chapter 9. EGL Web Service consumption case study 129



 

Figure 9-5   New EGL Web Project Wizard’s Features page

4. Deselect the WDO Relational database runtime Web project feature, because the data 
access will occur using the Web services. Select Finish to create the Web project. Accept 
the Confirm Perspective Switch prompt.

5. Navigate to the WEB-INF source folder under the newly created Web project’s 
WebContent folder, select the folder, then select New → Folder from the Project Explorer 
context menu. If that option is not available, select New → Other and expand Simple on 
the New Wizard. Name the folder wsdl. Import the wsdl files from the workspace where 
you imported the sample application. Figure 9-6 on page 131 illustrates the file Import 
dialog.

 

 

 

130 The IBM Rational Unified Process for System z



 

Figure 9-6   File System File Wizard 

6. Locate the inquireCatalog.wsdl file in the Project Explorer view and use the context menu 
option Web Services → Test with Web Services Explorer. If this menu option is 
missing, you do not have the Web Services Developer Capability selected in the 
workbench preferences. Figure 9-7 on page 132 shows the resulting browser.

 

 

 

Chapter 9. EGL Web Service consumption case study 131



 

Figure 9-7   Web Services Explorer WSDL Binding Details

7. On the Web Services Explorer view, add a new endpoint and modify it to reference the 
location of your Web services. Select the check box beside the new service endpoint and 
click Go. Recheck the new endpoint and select the Operation DFH0XCMN. The Web 
Explorer will show the request parameters for the Web service. Ensure the status 
message says the endpoints were updated successfully. Initialize ca_request_id to 
01INQC, ca_list_start_ref to 50 (or any integer value less than 70), and all the remaining 
fields to zero. You might want to validate your connectivity to the Web services by using 
inquireSingle.wsdl, because it has fewer fields to initialize. Figure 9-8 on page 133 
shows the Web Services Explorer with entry fields for the request data.

 

 

 

132 The IBM Rational Unified Process for System z



 

Figure 9-8   Web Services Explorer: Invoke a WSDL Action 

After all the data fields have been initialized, click Go. If the status message is “IWAB0383E 
Error validate RequestPart”, look for any request fields marked with a red asterisk (*). Most 
likely, it is an unsignedShort field that was not initialized to zero. If successful, the status looks 
like Figure 9-9 on page 134.

 

 

 

Chapter 9. EGL Web Service consumption case study 133



 

Figure 9-9   Web Services Explorer Status content for successful WSDL action

If you modify the ca_list_start_ref to 75 and request the service, you get the soap error 
shown in Figure 9-10 on page 135.

 

 

 

134 The IBM Rational Unified Process for System z



 

Figure 9-10   Web Services Explorer Status content for SOAP error

Using the Web Services Explorer quickly lets you validate that you have access to the 
service, lets you validate that the service is up and running, and allows you to validate the 
request data. 

8. The next step is to create the EGL service binding library and the EGL interfaces that are 
necessary to invoke the inquire catalog Web service. Select the inquireCatalog.wsdl file 
in the Project Explorer view, select the menu option Create EGL Interfaces and Binding 
Library, and accept the wizard defaults by selecting Finish. Figure 9-11 on page 136 
shows the EGL perspective after the EGL service components have been generated.

 

 

 

Chapter 9. EGL Web Service consumption case study 135



 

Figure 9-11   EGL Perspective after generation from the WSDL file

9. The EGL editor is opened on the file that defines the Web service request variables. The 
Outline view shows the structural list of the data elements and records defined to 
represent the Web service request. Switch to the Web perspective and create a Java 
Server Page (JSP) to gather request data and invoke the service. From the Project 
Explorer view, highlight the WebContent folder and select New → Faces JSP File. If that 
option is not available, select New → Other and expand EGL on the New Wizard. On the 
new Faces JSP wizard, name the file ezcInquirePrototypePage and accept the default 
properties. Verify that you are editing the JSP file in the Web perspective. Figure 9-12 on 
page 137 shows the development environment.

 

 

 

136 The IBM Rational Unified Process for System z



 

Figure 9-12   Web Perspective editing ezcInquirePrototypePage.jsp

The new Faces JSP file wizard will create the JSP file and an associated EGL pageHandler 
file of the same name. The pageHandler is written in EGL and controls a user’s runtime 
interaction with a Web page. From a pageHandler, you can assign data values for submission 
to a JSP file, change the data returned from the user or from a called program, and forward it 
to another JSP file. The PageHandler includes:

� An OnPageLoad function, which is invoked the first time that the JSP renders the Web 
page

� A set of event handler functions, each of which is invoked in response to a specific user 
action, such as clicking a button

� Optionally, validation functions that are used to validate Web page input fields

� Private functions that can be invoked only by the PageHandler functions

It is important to note that the OnPageLoad function can neither forward control to another 
page nor cause an error message to be displayed when the page is first presented to the 
user. For more details, use the Help → Search toolbar menu option and search on 
“PageHandler runtime scenarios”.

In Figure 9-12, the content area shows the Page Designer editor opened on the newly 
created JSP file in design mode. The Page Data view, the Properties view, and the Palette 

 

 

 

Chapter 9. EGL Web Service consumption case study 137



 

view are the most commonly used auxiliary views to declaratively code the JSP. The Page 
Data view shows all the data objects available on the JSP. The Properties view is used to 
update the properties of the selected object. The Palette view contains drawers of items that 
can be dragged and dropped onto the Page Designer. In Figure 9-12 on page 137, the EGL 
drawer is open to reveal that EGL provides record, new field, and service items for a JSP. Use 
“Page Designer support for EGL” as the help search key for a detailed introduction to the 
Page Designer.

10.To continue developing the prototype, select the Service item and drag it over the Design 
tab of the Page Designer. Save the modified JSP, which triggers an automatic generation 
of its pageHandler. The generation launched the Generation Results view to display the 
results of each generated file. Unfortunately, the pageHandler failed to generate cleanly. 
Figure 9-13 has the generation errors associated with the pageHandler.

Figure 9-13   Generation Errors for ezcInquirePrototypePage.egl

11.Double-click on any error message in the generation results. The offending file will be 
opened to the line of source code that produced the problem. Double-click on the 
message “The type ca_request_id is ambiguous”, which opens the pageHandler view 
with the reference to ca_request_id highlighted. Press F3 to open the definition of the 
type. Because the type is ambiguous, you will get the dialog in Figure 9-14 on page 139.

 

 

 

138 The IBM Rational Unified Process for System z



 

Figure 9-14   Open Part selection dialog for ca_request_id

12.Figure 9-14 shows that ca_request_id is defined in the request and the response 
packages. The pageHandler must use both the request and the response definition of 
ca_request_id. Without fully qualifying the type definitions, the pageHandler will have 
compiler errors as shown in Figure 9-15 on page 140.

 

 

 

Chapter 9. EGL Web Service consumption case study 139



 

Figure 9-15   Source code and compiler messages for ezcInquirePrototypePage.egl

13.Now you have enough information to realize that the Web service used the same data 
structure for the request and the response. The generated code produces a request 
package and a response package with the same data item names. Therefore, the types 
need to be fully qualified in the pageHandler. For clarity and simplicity, the generated 
variable names have been altered to start with input_ and output_ rather than 
DFH0XCMNPort_DFH0XCMN. The name of the generated function has also been modified to 
reflect the Web service that is being invoked. Figure 9-16 on page 141 shows the modified 
pageHandler, which resolves the ambiguous references.

 

 

 

140 The IBM Rational Unified Process for System z



 

Figure 9-16   Source code for ezcInquirePrototypePage.egl without ambiguous references

14.Set the initial values for the required input fields in the OnPageLoad function. Take 
advantage of code assist to get correct names without typographical errors. To invoke 
code assist, start typing a variable name, press Ctrl+Spacebar, and code assist prompts 
you with possible completions. If code assist does not offer suggestions, you might have 
syntax errors. Add a new function, requestInquireCatalogAction, that will set the 
endpoint and request the Web service. The new function and the modified onPageLoad 
function are shown in Figure 9-17.

Figure 9-17   New source code for ezcInquirePrototypePage.egl to invoke the Web service

 

 

 

Chapter 9. EGL Web Service consumption case study 141



 

15.The first version of this function will have the endpoint hardcoded with the appropriate 
endpoint. The function uses the system library function named sysLib.writeStdout to write 
out information to the console. This provides a simple means to get trace and debug 
information without the time required to run the Web page in debug mode. EGL provides 
the system function, serviceLib.setWebEndpoint, to dynamically alter the Web service 
endpoint. Note the application is making no attempt to handle any error conditions. The 
remaining steps are to update the JSP with the input data, invoke the Web service, and 
display the results. Open the Page Designer on the JSP file; the editor needs to be on the 
Design view in order to drag and drop elements onto the editor. Select the text Place 
content here, replace it with a header Inquire Catalog Prototype, and press Enter. To 
add the list start reference input field, a label, and a submit button, go to the Page Data 
view (usually found in the lower left corner of the Web perspective) and select the 
necessary data object as illustrated in Figure 9-18.

Figure 9-18   Page Data View with the service request variable selected

16.Select the Insert New Controls for “ca_list_start_ref” from the Page Data view context 
menu. On the insert control wizard, you can change labels and the order of the 
components. Select Creating a new record to render a submit button. Verify that the 
options dialog has Create submit button checked and append a colon to each label not 
selected. Figure 9-19 on page 143 shows the wizard settings used to create the Catalog 
Manager EGL example.

 

 

 

142 The IBM Rational Unified Process for System z



 

Figure 9-19   Insert Control Wizard for service request variable

17.This action will create an HTML table to control the layout of the JSP user-interface 
components themselves and the EGL bindings, which are relationships between 
components and data or logic. In this case, one input text field is added to the page and it 
has been bound to the originally selected EGL data variable. Figure 9-20 shows the 
Design tab of the Page Designer.

Figure 9-20   Page Designer’s Design tab for ezcInquirePrototypePage.jsp

 

 

 

Chapter 9. EGL Web Service consumption case study 143



 

18.Select the Preview tab to preview what the page will look at run time. In Figure 9-21, the 
dashed lines around the user-interface components no longer appear, because they are 
an editing convenience.

Figure 9-21   Page Designer’s Preview tab for ezcInquirePrototypePage.jsp

19.Select the Source tab to see the raw source code as shown in Figure 9-22.

Figure 9-22   Page Designer’s Source tab for ezcInquirePrototypePage.jsp

20.The submit button needs to be bound to an action. This is done by highlighting the 
function in the Page Data view and dropping it on the submit button. Select 
requestInquireCatalogAction from the Page Data view and drag it to the Submit button 
and drop it. Now, when the button is selected by the user, the bound pageHandler function 

 

 

 

144 The IBM Rational Unified Process for System z



 

will be executed. Use the insert controls menu option to add the output data on the page. 
Figure 9-23 shows the ca_cat_item and output_ca_response_message selected in the 
Page Data view.

Figure 9-23   Page Data View with the service response variables selected

21.Make sure that Displaying an existing record (read-only) is selected, so that all fields 
have the control type of output. Figure 9-24 shows the setting for the Insert Control dialog 
for the response variables.

Figure 9-24   Insert Control Wizard for service response variable

 

 

 

Chapter 9. EGL Web Service consumption case study 145



 

Figure 9-25 shows the current layout of the ezcInquirePrototypePage.

Figure 9-25   Completed ezcInquirePrototypePage.jsp

22.Save your changes and test the page. Select the JSP in the Project Explorer view and 
select Run on Server. Select Finish on the Select Server dialog if you are prompted. If 
you are required to define a server, you do not have the integrated WebSphere test 
environment feature installed.

23.Be patient while the server starts. Watch the status of the server in the Servers view. The 
starting status looks like Figure 9-26.

Figure 9-26   Servers view while starting a server

24.Do not attempt to do anything else in WDz until the server has started. Figure 9-27 on 
page 147 shows the started status.

 

 

 

146 The IBM Rational Unified Process for System z



 

Figure 9-27   Servers view with server in Started state

25.Here is the content of the Console view after the server starts. The console has 
informational (blue) messages as well as error (red) messages. This is the first place to 
look if your server does not start. If your server status is started, do not worry about red 
messages. Figure 9-28 shows the Console content.

Figure 9-28   Console messages while starting the server

26.It is helpful to clear the console before using the Web page so that the console content is 
limited to the execution of the application. Recall that the writeStdout statements included 
in the pageHandler show here. Figure 9-29 show the runtime rendering of the JSP page.

Figure 9-29   Runtime rendering of ezcInquirePrototypePage.jsp

 

 

 

Chapter 9. EGL Web Service consumption case study 147



 

27.The data item initialized in the pageHandler has been rendered onto the page. Test with 
the default value 50 by selecting Submit. Figure 9-30 is the state of the page after a 
successful invocation of the Web service.

Figure 9-30   Response data and console output for inquire catalog service

28.Now, enter 75 as the next test. The invocation of the Web service results in an exception 
that EGL logs into the console, and the page is rendered in its initial state as shown in 
Figure 9-31 on page 149.

 

 

 

148 The IBM Rational Unified Process for System z



 

Figure 9-31   Inquire catalog response and console output with exception

Figure 9-30 on page 148 and Figure 9-31 illustrate the default rendering of the Web service 
data to the page and tracing messages to the console. EGL did the majority of the work. The 
JSP and pageHandler need to be tweaked to handle error conditions and to resolve cosmetic 
issues, specifically the format of the cost data and zero numeric data. With very little 
development effort, the prototype validates that the Web application can gather request 
parameters, change the Web service endpoint, and display the response data. Error 
handling, data movement between pages, and data formatting need to be resolved in order to 
complete the elaboration prototype use cases.

9.4.2  Error handling

At this point, the configured endpoint is hardcoded in the inquire catalog pageHandler and the 
user interface is limited to a single page. The prototype needs to handle error and exception 
conditions, to be extended to handle basic navigation between pages, and to cache the 
user-provided Web service endpoint. These are the steps: 

1. For error handling, you need to create a simple JSP page to display application errors and 
one page to show system exception details. Create a JSP page named 
ezcErrorDetailsPrototypePage with the header An Error Has Occurred. Add a string 
variable named errorDetails to the pageHandler. Modify the onPageLoad function to 
accept a string parameter named inError and initialize the pageHandler variable 
errorDetails to the parameter. Figure 9-32 on page 150 is the content of the 
pageHandler.

 

 

 

Chapter 9. EGL Web Service consumption case study 149



 

Figure 9-32   Source code for ezcErrorDetailsPrototypePage.egl

2. The layout of the page must be modified to emphasize the header. The Properties view is 
the primary means for modifying the elements on the page. Figure 9-33 shows the 
Properties view when the header text is highlighted (that is, the static text: An Error Has 
Occurred). 

Figure 9-33   Properties view for text on a JSP page

3. Use the first and fourth Format buttons to make the header font larger and bolder. The 
optional format toolbar can also be used to make these font changes. When editing a JSP 
page, you will have a Toolbar menu. Ensure that the Format menu has a check mark 
beside it. The format toolbar will appear below the workspace menu bar. The toolbars are 
readily available and easy to use. The “hover help” makes it easy to determine what the 
tools do.

4. Use the Page Data view Insert Controls for “errorDetails” menu options. Now, you 
need to make the output field for the error message as large as possible. Modify the width 
of the HTML table that contains the field. An easy way to find this table is to use the 
Outline view, which is usually found in the lower left corner of the EGL or Web 
perspective. Figure 9-34 on page 151 is the Outline view of the prototype configure page 
with the HTML table selected.

 

 

 

150 The IBM Rational Unified Process for System z



 

Figure 9-34   Page Outline View for ezcErrorDetailsPrototypePage

5. After the HTML table is selected, open the Properties view, which looks like Figure 9-35.

Figure 9-35   HTML Table properties

6. On the Properties view, change the width to 100 percent of its container. Set the width of 
the first cell to 104 pixels. Make the text in this field bold. Figure 9-36 on page 152 shows 
the element selected in the Outline view and the Design tab.

 

 

 

Chapter 9. EGL Web Service consumption case study 151



 

Figure 9-36   Web Perspective with an HTML cell selected

7. Because the first two columns have a specified width, only the third column grows when 
the table grows with the page. The error pages also need a backward navigational link. To 
add the BACK link, open the HTML Tags palette drawer and drag and drop a link on the 
bottom of the page. Select the type Others, set the URL to javaScript:history.back(), 
and set the Link text to Back. The completed dialog for this hyperlink is shown in 
Figure 9-37.

Figure 9-37   Insert Link dialog for backwards link

 

 

 

152 The IBM Rational Unified Process for System z



 

8. Instead of a hardcoded URL, JavaScript is used to determine the last page rendered. The 
runtime version of this error page is shown in Figure 9-38.

Figure 9-38   Application error page at run time

The EGL online documentation indicates that the runtime processing of a Web service can 
generate an EGL system exception, notably SysLib.ServiceInvocationException. The 
documentation reveals that all exceptions have a code and a description, and the service 
invocation exception has several more descriptive fields. It is helpful to have a separate error 
page for the details of an EGL system exception.

9. Create a separate error page to show the details of an EGL system exception detail. 
Name the page ezcExceptionDetailsPrototypePage with the header EGL System 
Exception Details. Adjust the header text so that it has a larger, bolder font than the 
default. Select Edit Page Code from the Page Designer Design tab context menu to 
modify the pageHandler. Define an EGL record, eglExceptionDetailsPrototypeRec, in 
the pageHandler to hold all six fields associated with a service invocation exception. Add 
the variable declaration for details of type eglExceptionDetailsPrototypeRec. Modify the 
onPageLoad function to accept an eglExceptionDetailsPrototypeRec parameter named 
inDetails and initialize the pageHandler variable details to the parameter. Figure 9-39 on 
page 154 shows the content of the exception pageHandler.

 

 

 

Chapter 9. EGL Web Service consumption case study 153



 

Figure 9-39   Source code for ezcExceptionDetailsPrototypePage.egl

10.The displayName property for the record items is used for labels and column headings 
when the record is dropped on the JSP page. Now, drop the details data object onto the 
JSP page. Modify the HTML table, so its width is 100%. Make all the labels bold and adjust 
the first cell to a pixel width of 104. Add the BACK hyperlink.

11.This exception details page will be launched from a try-onException block, which needs to 
surround any Web service invocation. The EGL system function, sysLib.currentException, 
provides access to the exception fields. The forward statement transfers control to the 
named page. It is helpful to verify that the JSP name was entered correctly, because no 
runtime error message is issued if the page does not exist. Highlight the page name in the 
forward statement and press F3. If the editor opens on the page, the name was typed 
correctly. Figure 9-40 on page 155 shows the exception handling in the modified 
invokeInquireCatalogServiceAction function.

 

 

 

154 The IBM Rational Unified Process for System z



 

Figure 9-40   Service invocation exception handling code in ezcInquirePrototypePage.egl

12.Retest the inquire catalog function with item ref value 75. Now, the exception is handled 
and the runtime exception page shows in Figure 9-41.

Figure 9-41   EGL System Exception Details page at run time

13.Do not forget to try out the BACK hyperlink. Now that the application can handle system 
exceptions, it will be easier to test the configure application use case.

9.4.3  Configure application prototype

To configure the application prototype: 

1. Create the prototype configure page ezcConfigurePrototypePage by selecting New → 
Faces JSP File with the WebContent folder selected. Watch the lower right corner of the 
WDz window for the status of the workbench. From the Page Designer’s Design tab, 

 

 

 

Chapter 9. EGL Web Service consumption case study 155



 

modify the default contents of the page by changing Place your page content here. to 
show a page header Configure Prototype. Open the context menu and select Edit Page 
Code to open the EGL editor on the associated pageHandler. Modify the pageHandler to 
have two string variables: one string variable for the current endpoint variable name and 
one string variable to hold the new endpoint. Modify the onPageLoad function to properly 
initialize the two variables. If the session variable has not been set, the system library is 
used to get the endpoint name from the service binding library. You have to add an import 
statement to this library, so your code can reference it. You need a function to save the 
new endpoint and a second function to navigate to the inquire page. The pageHandler 
code looks like Figure 9-42.

Figure 9-42   Source code for ezcConfigurePrototypePage.egl

2. Modify ezcInquireCatalogPrototype.egl’s requestInquireCatalogAction to retrieve the 
cached endpoint variable from the session object. If the variable has not been set, issue 
an application error requesting configuration of the application. An application error 
message will be issued if the Web service returns a nonzero return code. Figure 9-43 on 
page 157 has the second version of this function.

 

 

 

156 The IBM Rational Unified Process for System z



 

Figure 9-43   Code to retrieve cached endpoint

3. Switch back to the Page Designer on the prototype configure page. Add the 
currentEndpoint and newEndpoint pageHandler variables to the JSP page using the 
Insert New Controls for selected objects context menu option on the Page Data tab. 
Ensure that the Update an existing record radio button is selected so that a submit 
button can be added. The currentEndpoint needs a control type of Output, and the 
newEndpoint needs a control type of Input. Bind the requestConfigureEndpointAction to 
the submit button. Open the faces component drawer on the palette and drop a command 
button after the submit button. Use the Properties view to change the Button label to 
Inquire as shown in Figure 9-44. 

Figure 9-44   Command button Properties view on the Display options tab

4. Bind each action function to its appropriate command button. Add another command 
button to the inquire page and a function to its pageHandler to invoke the configure page. 
Figure 9-45 on page 158 shows a preview of the configure page.

 

 

 

Chapter 9. EGL Web Service consumption case study 157



 

Figure 9-45   Page Designer’s Preview of the ezcConfigurePrototypePage.jsp

5. The default field size does not show the entire value of the Web service endpoint. The 
layout of the page must be modified to emphasize the header and make the endpoint text 
field large enough to show the entire value just like the error pages (see Figure 9-33 on 
page 150). Make sure the HTML consumes 100% of the panel (see Figure 9-35 on 
page 151). Adjust the width of the first column to 104 pixels (see Figure 9-36 on 
page 152). To ensure that the input text field will take the majority of its column, adjust the 
width of the input text field to a percentage. Figure 9-46 shows the Properties view of the 
input text field, and it is not obvious how to modify its width.

Figure 9-46   Input text field Properties view

6. Select the push button after the Style: Props: field and modify the dialog to resemble 
Figure 9-47 on page 159.

 

 

 

158 The IBM Rational Unified Process for System z



 

Figure 9-47   Add Style Properties Dialog

7. The modified layout width attribute will allow the entire text of the endpoint to be visible. 
This information is required to invoke the Web service. To make the field required, select 
the new endpoint value input text field and modify its validation properties to make it a 
required field (check Value is required) as shown in Figure 9-48.

Figure 9-48   Validation Properties for input text field

8. Now, you can test the ezcConfigurePrototypePage page. Start the server and then select 
Run on Server for ezcConfigurePrototypePage.jsp. Figure 9-49 on page 160 shows the 
runtime version of the prototype configure page.

 

 

 

Chapter 9. EGL Web Service consumption case study 159



 

Figure 9-49   Runtime rendering of ezcConfigurePrototypePage.jsp

9. Replace the new endpoint input field with the appropriate endpoint, select Submit, then 
select Inquire, and select the Submit button on the inquire page. Figure 9-50 shows the 
result of this test scenario.

Figure 9-50   Console content after successful execution of prototype

Even if you do not code specific trace entries to the console, you need to review the console 
frequently. 

9.4.4  Data formatting

The final activity of the elaboration stage is to clean up the data format issues. Figure 9-51 on 
page 161 shows the default data table.

 

 

 

160 The IBM Rational Unified Process for System z



 

Figure 9-51   Results from inquire catalog Web service with default format

The production version of this data table needs better column labels, a properly formatted 
monetary value, center or right alignment for numeric values, and zeros showing for numeric 
values rather than blanks. The easiest way to achieve these changes is by using an EGL 
Record. 

The steps are: 

1. Define a new EGL record in the inquire pageHandler. Use the response record as the 
starting template. Locate and copy the record definition for 
mixedcase.com.Response.DFH0XCP3.DFH0XCMN.www.ca_cat_item. Paste the record 
definition below the import statements in the inquire pageHandler. Make the following 
changes to the record definition:

a. Change the record name to catalogItemPrototypeRec.

b. Rename the dataItems and remove ca_department.

c. Change the dataItem types to int, string, and money{6,2}.

d. Delete all the old dataItem properties.

e. For each dataItem, add the displayName property, which will be used as the column 
label for each dataItem.

f. For each numeric dataItem, add the zeroFormat property set to yes.

g. For the money dataItem, add the currency and numericSeparator properties set to yes.

The resulting record definition is shown in Figure 9-52.

Figure 9-52   EGL record definition for catalogItemPrototypeRec

2. Additional modifications need to be made to the pageHandler to get the correctly 
formatted data to the Web page. Add a variable, prettyList, declared as an array of 

 

 

 

Chapter 9. EGL Web Service consumption case study 161



 

catalogItemPrototypeRecs to the pageHandler. Add a new function to the inquire 
pageHandler named formatResults to move the data values from the response record to 
the formatting EGL record. Invoke this function if the Web service request was successful. 
Figure 9-53 shows the final version of the function necessary to display the formatted 
data.

Figure 9-53   Source code for formatResults function in ezcInquirePrototypePage.egl

3. Several EGL-provided functions are utilized to get the data into the new record. The 
function getSize returns how many catalog items are in the ca_cat_item field. The EGL 
system library mathLib handles the conversion of the string ca_cost field to the decimal 
value required by the money field. The remaining formatting issue is whether to have right 
or center alignment on the numeric fields. The alignment needs to be modified on the 
visual component. Use the Insert New Controls for “prettyList” menu option to add 
visual components for the newly added prettyList array. Change the HTML table 
properties, so that its width is 100% of the page width (reference Figure 9-35 on page 151). 
Modify the horizontal alignment property (Alignment: Horizontal) to Right for the cost 
column. The modified Properties view is shown in Figure 9-54 on page 163.

 

 

 

162 The IBM Rational Unified Process for System z



 

Figure 9-54   Properties view for table column

4. Change the ItemRef, In Stock, and On Order columns to have the Alignment: Horizontal 
property set to Center. Test the application and verify the data formatting. Figure 9-55 
illustrates the data formatting capabilities of the EGL dataItem declarations.

Figure 9-55   Formatted results from inquire catalog Web service

The prototype provides an executable architecture that validates the invocation of Web 
services, storage and retrieval of session data, error handling, passing data between pages, 
and page to page navigation. Due to the ease of construction, the elaboration was a 
throwaway prototype rather an executable architecture that gets extended during the 
Construction Phase. 

 

 

 

Chapter 9. EGL Web Service consumption case study 163



 

9.5  Construction Phase

In the Construction Phase, the EGL developers incorporated the results of the Web 
developers’ Elaboration Phase. The Web developers determined the look-and-feel as well as 
the navigation of the application by specifying the page template, style sheets, and graphics. 
These artifacts are imported into the WebContent\theme folder. If you are recreating the 
Catalog Manager Web client, you will need to import the content of this directory from the 
sample code. The navigationShell.jtpl page template will be used to create the pages in the 
application. The rendering of the navigational buttons depends on the value of the page ID 
variable. The Page Designer Source tab should be used to modify this line of code: <c:set 
var=”pageID”>xxx</c:set> where xxx is the page identifier. It is important to use the same 
pageID and JSP file names used in navigationShell.jtpl so that the navigation will work 
correctly. Figure 9-56 has the name-sensitive parts of the page handler in bold.

Figure 9-56   Name-sensitive sections of the page template

The simplest pages are built first, then you move in complexity to the layout intensive pages.

9.5.1  Simple response pages

Build the simple response pages first, remembering to use the navigationShell.jtpl as the 
page template.

To create the welcome page:

1. Verify you have the page template navigationShell.jtpl in your WebContent\theme folder.

2. Select the folder EzcCatalogWebProj\WebContent in the Project Explorer view.

3. Create a new Faces JSP File named ezcWelcomePage, select the option Create with page 
template and select User-defined page template and navigationShell.jtpl on the 
second page.

4. Switch to the Page Designer’s Source tab.

5. Change the page title to Welcome to RUPz Catalog Application.

6. Change the page ID to welcome.

7. Switch to the Page Designer’s Design tab.

8. Change the header text to Welcome to the CICS RUPz Catalog Example Application.

9. Change the body content to static text: Please select an option from the menu.

 

 

 

164 The IBM Rational Unified Process for System z



 

10.Save the JSP file.

To create the application error details page, you follow the same steps:

1. Select the folder EzcCatalogWebProj\WebContent in the Project Explorer view.

2. Create a new Faces JSP File named ezcErrorDetailsPage using navigationShell.jtpl.

3. Switch to the Page Designer’s Source tab.

4. Change the page title to EGL RUPz Catalog Application Error.

5. Change the page ID to appError.

6. Switch to the Page Designer’s Design tab.

7. Change the header to An Error Has Occurred.

8. Select the Edit Page Code context menu option.

9. Add variable declaration errorDetails string to the pageHandler.

10.Add parameter inDetails string to the function onPageLoad and use it to initialize the 
pageHandler variable.

11.Save the modifications to the pageHandler.

12.Add controls for errorDetails, check the option Display an existing record (read-only), 
and change the label to Error using page designer.

13.Change the first column cell size to 104 pixels as referenced in Figure 9-36.

14.Make the text in the first column cell bold.

15.Make the HTML table grow with the page as referenced in Figure 9-35.

16.Save the JSP file.

Figure 9-57 on page 166 is the completed application error page defined with the page 
template.

 

 

 

Chapter 9. EGL Web Service consumption case study 165



 

Figure 9-57   Completed Application Error page 

To create the system exception details page, you follow the similar steps. Reference 9.4.2, 
“Error handling” on page 149 for more details:

1. Select the folder EzcCatalogWebProj\WebContent in the Project Explorer view.

2. Creates Faces JSP File named ezcExceptionDetailsPage using navigationShell.jtpl.

3. Switch to the Page Designer’s Source tab.

4. Change the page title to EGL RUPz System Exception.

5. Change the page ID to sysError.

6. Switch to the Page Designer’s Design tab.

7. Change the header to An EGL System Exception Has Occurred.

8. Select the Edit Page Code context menu option.

9. Add the EGL record definition for the details as shown in Figure 9-39 on page 154.

10.Add variable declaration errorDetails eglExceptionDetailsRec to the pageHandler.

11.Add parameter inDetails eglExceptionDetailsRec to the function onPageLoad and use 
it to initialize the pageHandler variable.

12.Save the modifications to the pageHandler.

13.Add controls for errorDetails and check the option Display an existing record 
(read-only) using the page editor.

14.Change the first column cell size to 104 pixels as referenced in Figure 9-36 on page 152.

15.Make all the label text bold.

16.Make the HTML table grow with the page as referenced in Figure 9-35 on page 151.

17.Save the JSP file.

 

 

 

166 The IBM Rational Unified Process for System z



 

The order response and the replenish Inventory response pages are the same as the 
application error page:

1. Select folder EzcCatalogWebProj\WebContent in the Project Explorer view.

2. Create a new Faces JSP File named ezcOrderResponsePage using the template.

3. Switch to the Page Designer’s Source tab.

4. Change the page title to EGL RUPz Order Results.

5. Change the page ID to orderResponse.

6. Switch to the Page Designer’s Design tab.

7. Change the header to Order Placed.

8. Select the Edit Page Code context menu option.

9. Add variable declaration orderDetails string to the pageHandler.

10.Add parameter inDetails string to the function onPageLoad and use it to initialize the 
pageHandler variable.

11.Save the modifications to the pageHandler.

12.Add controls for orderDetails, check the option Display an existing record (read-only), 
and change the label to Order Details using the page editor.

13.Change the first column cell size to 104 pixels as referenced in Figure 9-36 on page 152.

14.Make all label text bold. Toggle off the automatic wrap option.

15.Make the HTML table grow with the page as referenced in Figure 9-35 on page 151.

16.Save the JSP file.

To create the replenish inventory response page:

1. Select the folder EzcCatalogWebProj\WebContent in the Project Explorer view.

2. Create a new Faces JSP File named ezcReplenishResponsePage using the template.

3. Switch to the Page Designer’s Source tab.

4. Change the page title to EGL RUPz Replenish Inventory Results.

5. Change the page ID to replenishResponse.

6. Switch to the Page Designer’s Design tab.

7. Change the header to Replenish Inventory.

8. Select the Edit Page Code context menu option.

9. Add variable declaration replenishDetails string to the pageHandler.

10.Add parameter inDetails string to the function onPageLoad and use it to initialize the 
pageHandler variable.

11.Save the modifications to the pageHandler.

12.Add controls for orderDetails, check the option Display an existing record (read-only), 
and change the label to Replenish Details using the page editor.

13.Change the first column cell size to 120 pixels as referenced in Figure 9-36 on page 152.

14.Make all label text bold. Toggle off the automatic wrap option.

15.Make the HTML table grow with the page as referenced in Figure 9-35 on page 151.

16.Save the JSP file.

 

 

 

Chapter 9. EGL Web Service consumption case study 167



 

9.5.2  Web Service request pages

Next, create the pages that request a Web service and display either the error page or a 
simple response page depending on the results. To improve productivity, define an EGL 
template to abbreviate the process of coding the Web service invocation. To define an EGL 
template, open the preferences dialog and navigate to EGL → Editor → Templates and 
select new. Figure 9-58 shows the creation dialog for the ezcWebCall template.

Figure 9-58   EGL Template creation dialog for ezcWebCall template

This template will provide the functions required to retrieve the configured endpoint, set the 
Web service endpoint, invoke the service, and handle the results. After the onPageLoad 
function, type ezc and hold down the Ctrl+Spacebar keys (which invoke content assist). 
Select ezcWebCall from the pop-up list and press Enter. Figure 9-59 on page 169 is the 
source code that is added to the pageHandler.

 

 

 

168 The IBM Rational Unified Process for System z



 

Figure 9-59   Code added by the ezcWebCall EGL template

The variable parts of the code will be contained in a blue box. The Tab key will navigate 
between the variables. When the text is highlighted, you can type over the value. After the 
four variables are customized, copy the generated function invocation into the try block, and 
then the code to invoke the Web service is completed. Figure 9-60 on page 170 show the 
complete code to invoke the place order Web service.

 

 

 

Chapter 9. EGL Web Service consumption case study 169



 

Figure 9-60   Customized ezcWebCall template code to invoke place order service

To create a Web service requesting page, you start with the basic steps outlined in the 
previous section and then take additional steps to interface with the Web service.

To create the place order page:

1. From the Project Explorer view, select the placeOrder.wsdl file and select menu choice 
Create EGL Interfaces and Binding Library.

2. Select the folder EzcCatalogWebProj\WebContent in the Project Explorer view.

3. Create a new Faces JSP File named ezcPlaceOrderPage using the template.

4. Switch to the Page Designer’s Source tab.

5. Change the page title to EGL RUPz Place Order.

6. Change the page ID to placeOrder.

7. Switch to the Page Designer’s Design tab.

8. Change the header to Enter Order Details.

9. Open the EGL palette drawer and drop service on the page. Select the service with the 
binding placeOrder_ServiceBindingLib.

10.Save the JSP file.

 

 

 

170 The IBM Rational Unified Process for System z



 

11.Remove the compiler errors by modifying the pageHandler variable declarations to 
resemble Figure 9-16 on page 141. Qualify the type definitions with the package name 
and shorten the variable name with the input/output prefixes.

12.Add the parameter inDetails int to the onPageLoad function and initialize the request 
parameters:

– input_ca_request_id = “01ORDR;

– input_ca_order_request.ca_quantity_req = 1;

– input_ca_order_request.ca_item_ref_number = inDetails;

– if (inDetails == 0) input_ca_order_request.ca_item_ref_number = 10; end

13.Use the ezcWebCall EGL template with the following customizations:

– PlaceOrder

– orderEP

– placeOrder

– ezcOrderResponsePage

14.Replace the comment // Added generated function invocation statement with the 
appropriate code reference (see Figure 9-60 on page 170).

15.Save the pageHandler file.

16.Edit the JSP to remove the default body content from the page.

17.In the Page Data view, expand ezcPlaceOrderPage and input_ca_order_request. 
Then, add controls for ca_item_ref_number, ca_quantity_req, ca_userid, and 
ca_charge_dept. On the Insert Controls dialog, check Create a new record, order the 
fields, and change the labels to Reference Number; Quantity; User name; and Department 
name, and ensure the Submit button checkbox is checked on the Options dialog.

18.Reformat the resulting HTML table containing the new visual components:

a. Select one of the text fields in the third column in the fourth row.

b. Use the context menu Table → Add Column to Right.

c. Use the context menu Table → Add Row Below.

d. Drag and drop each display error text field to the column to its right.

e. Drag and drop the submit button to third column, fifth row.

f. Set the horizontal alignment property for the Submit button and add its image.

g. Update the width of all the input fields to 15 characters and require input.

h. Change the integer fields’ text layout horizontal alignment property to Right-justified.

i. Select the table cell at the first column, fifth row. Use the Properties view to change its 
width to 200 pixels.

19.From the Page Data view, expand Actions and drag requestPlaceOrderAction to the 
Submit button.

20.Save the JSP file.

To create the replenish inventory page:

1. From the Project Explorer view, select the replenishInventory.wsdl file and select menu 
choice Create EGL Interfaces and Binding Library.

2. Select the folder EzcCatalogWebProj\WebContent in the Project Explorer view.

3. Create a new Faces JSP File named ezcReplenishPage using the template.

 

 

 

Chapter 9. EGL Web Service consumption case study 171



 

4. Switch to the Page Designer’s Source tab.

5. Change the page title to EGL RUPz Replenish Inventory.

6. Change the page ID to replenish.

7. Switch to the Page Designer’s Design tab.

8. Change the header to Enter Replenish Details.

9. Open the EGL palette drawer and drop service on the page. Select the service with the 
binding replenishInventory_ServiceBindingLib.

10.Save the JSP file.

11.Remove the compiler errors by modifying the pageHandler variable declarations to 
resemble Figure 9-16. Qualify the type definitions with the package name and shorten the 
variable name with the input/output prefixes.

12.Initialize the request parameters in the onPageLoad function:

– input_ca_request_id = “01REPL”;

– input_ca_order_request.ca_quantity_req = 100;

– input_ca_order_request.ca_item_ref_number = 10;

13.Use the ezcWebCall EGL template with the following customizations:

– ReplenishInventory

– replenishEP

– replenishInventory

– ezcReplenishRepsonsePage

14.Replace the comment // Added generated function invocation statement with the 
appropriate code reference (see Figure 9-60 on page 170).

15.Save the pageHandler file.

16.Edit the JSP to remove the default body content from the page.

17.In the Page Data view, expand ezcPlaceOrderPage and input_ca_order_request. 
Then, add controls for ca_item_ref_number, ca_quantity_req, ca_userid, and 
ca_charge_dept. On the Insert controls dialog, check Create a new record, order the 
fields, and change the labels to Reference Number; Quantity; User name; and Department 
name, and ensure the Submit button checkbox is checked on the options dialog.

18.Reformat the resulting HTML table containing the new visual components:

a. Select one of the text fields in the third column in the fourth row.

b. Use the context menu Table → Add Column to Right.

c. Use the context menu Table → Add Row Below.

d. Drag and drop each display error text field to the column to its right.

e. Drag and drop the submit button to third column, fifth row.

f. Set the horizontal alignment property for the Submit button and add its image.

g. Update the width of all the input fields to 15 characters and require input.

h. Change the integer fields’ text layout horizontal alignment property to Right-justified.

i. Select the table cell at the first column, fifth row. Use the Properties view to change its 
width to 200 pixels.

19.From the Page Data view, expand Actions and drag requestReplenishInventoryAction 
to the Submit button.

 

 

 

172 The IBM Rational Unified Process for System z



 

20.Save the JSP file.

Eventually, you might need to verify that a button actually has a function bound to it. Select 
the button and toggle to the Source tab. The definition of the button should be highlighted. 
The following text indicates the function requestReplenishAction has been bound to the 
submit button action="#{ezcReplenishPage.EGLrequestReplenishAction}".

The inquire catalog and inquire single pages have the same general layout as the replenish 
and place order pages. The inquire pageHandlers need additional coding to populate the 
formatting EGL record, which will be passed to the inquire response page. To create the 
inquire single item page:

1. From the Project Explorer view, select the inquireSingle.wsdl file and select menu 
choice Create EGL Interfaces and Binding Library.

2. Select the folder EzcCatalogWebProj\WebContent in the Project Explorer view.

3. Create a new Faces JSP File named ezcInquireSinglePage using navigationShell.jtpl.

4. Switch to the Page Designer’s Source tab.

5. Change the page title to EGL RUPz Inquire Catalog Item.

6. Change the page ID to inquireONE.

7. Switch to the Page Designer’s Design tab.

8. Change the header to Enter Catalog Item Reference Number.

9. Open the EGL palette drawer and drop service on the page. Select the service with the 
binding inquireSingle_ServiceBindingLib.

10.Save the JSP file.

11.Remove the compiler errors by modifying the pageHandler variable declarations to 
resemble Figure 9-16. Qualify the type definitions with the package name and shorten the 
variable name with the input/output prefixes.

12.Initialize the request parameters in the onPageLoad function:

– input_ca_request_id = “01INQS”;

– input_ca_inquire_single.ca_item_ref_req = 10;

13.Use the ezcWebCall EGL template with the following customizations:

– InquireSingle

– oneEP

– inquireSingle

– formatResults()

14.Change the true block forward statement to just the invocation of formatResults.

15.Code the formatResults function as shown in Figure 9-61 on page 174.

 

 

 

Chapter 9. EGL Web Service consumption case study 173



 

Figure 9-61   Source code formatResults function in ezcInquireSinglePage.egl

16.Define record catalogItemRec as shown in Figure 9-62.

Figure 9-62   Source code catalogItemRec record in ezcInquireSinglePage.egl

17.Add the variable definition prettyList catalogItemRec[]; to the pageHandler.

18.Save the pageHandler file.

19.Edit the JSP to remove the default body content from the page.

20.In the Page Data view, expand ezcInquireSinglePage and input_ca_inquire_single. 
Then, add controls for ca_item_ref_req. On the Insert controls dialog, check Create a new 
record, change the label to Part Item Reference and ensure the Submit button checkbox 
is checked on the Options dialog.

21.Reformat the resulting HTML table containing the new visual components:

a. Select one of the text fields in the third column in the first row.

b. Use the context menu Table → Add Column to Right.

c. Use the context menu Table → Add Row Below.

d. Drag and drop display error text field to the column to its right.

e. Drag and drop the Submit button to third column, second row.

f. Set the horizontal alignment property for the Submit button and add its image.

g. Update the width of the input fields to 15 characters and require input.

h. Change the integer field text layout horizontal alignment property to Right-justified.

i. Select the table cell at the first column, third row. Use the Properties view to change its 
width to 200 pixels.

22.From the Page Data view, expand Actions and drag requestInquireSingleAction to the 
Submit button.

23.Save the JSP file.

The inquire catalog implementation is basically the inquire single implementation with an 
extra pageHandler variable to handle validation for the input parameter. Recall the 

 

 

 

174 The IBM Rational Unified Process for System z



 

Elaboration Phase resulted in the discovery that the inquire catalog Web service produced a 
soap error if the part reference number is greater than 70. To create the inquire catalog page:

1. From the Project Explorer view, select the inquireCatalog.wsdl file and select menu 
choice Create EGL Interfaces and Binding Library.

2. Select the folder, EzcCatalogWebProj\WebContent, in the Project Explorer view.

3. Create a new Faces JSP File named ezcInquireCatalogPage using navigationShell.jtpl.

4. Switch to the Page Designer’s Source tab.

5. Change the page title to EGL RUPz Inquire Catalog using the source tab.

6. Change the page ID to inquireALL using the source tab.

7. Switch to the Page Designer’s Design tab.

8. Change the header to Enter Catalog Item Reference Number.

9. Open the EGL palette drawer and drop service on the page. Select the service with the 
binding inquireCatalog_ServiceBindingLib.

10.Save the JSP file.

11.Remove the compiler errors by modifying the pageHandler variable declarations to 
resemble Figure 9-16. Qualify the type definitions with the package name and shorten the 
variable name with the input/output prefixes.

12.Add pageHandler variable declaration prettyList catalogItemRec[];.

13.Initialize the request parameters in the onPageLoad function:

– input_ca_request_id = “01INQC”;

– input_ca_inquire_request.ca_list_start_ref = 10;

14.Use the ezcWebCall EGL template with the following customizations:

– InquireCatalog

– allEP

– inquireCatalog

– formatResults()

15.Change the true block forward statement to just invocation of formatResults.

16.Add the variable definition, prettyList catalogItemRec[];, to the pageHandler.

17.Code the formatResults function as shown in Figure 9-53. Include the forward statement 
to the inquire response page.

18.Save the pageHandler file.

19.Edit the JSP to remove the default body content from the page.

20.In the Page Data view, expand ezcInquireCatalogPage and input_ca_inquire_request. 
Then, add controls for ca_list_start_ref. On the Insert controls dialog, check Create a new 
record, change the label to Start List from Item Reference and ensure the Submit 
button checkbox is checked on the Options dialog.

21.Reformat the resulting HTML table containing the new visual components:

a. Select one of the text fields in the third column in the first row.

b. Use the context menu Table → Add Column to Right.

c. Use the context menu Table → Add Row Below.

d. Drag and drop display error text field to the column to its right.

e. Drag and drop the Submit button to third column, second row.

 

 

 

Chapter 9. EGL Web Service consumption case study 175



 

f. Set the horizontal alignment property for the Submit button and add its image.

g. Update the width of the input field to 15 characters and require input.

h. Change the integer field text layout horizontal alignment property to Right-justified.

i. Select the table cell at the first column, third row. Use the Properties view to change its 
width to 200 pixels.

22.From the Page Data view, expand Actions and drag requestInquireCatalogAction to 
the Submit button.

23.Save the JSP file.

All four pages that invoke Web services are very similar. The page template and the EGL 
code template allow the pages to be quickly developed. The only remaining pages are the 
HTML intensive pages. 

9.5.3  HTML intensive pages

To create the inquire response page:

1. Select the folder EzcCatalogWebProj\WebContent in the Project Explorer view.

2. Create a new Faces JSP File named ezcInquireResponsePage using 
navigationShell.jtpl.

3. Switch to the Page Designer’s Source tab.

4. Change the page title to EGL RUPz Inquire Results.

5. Change the page ID to inquireResponse.

6. Switch to the Page Designer’s Design tab.

7. Change the header to Item Details - Select Item to Place Order.

8. Select Edit Page Code context menu option.

9. Add the pageHandler variable declaration catalogList catalogItemRec[];.

10.Add the pageHandler variable declaration selected int[] 
{selectFromListItem="catalogList", selectType = index};.

11.Add the parameter inputList catalogItemRec[] to the onPageLoad function and 
initialize the pageHandler variable with the parameter:

– catalogList = inputList;

12.Add the function requestPlaceOrderAction as specified in Figure 9-63 on page 177.

 

 

 

176 The IBM Rational Unified Process for System z



 

Figure 9-63   Source code for ezcInquireResponsePage.egl

13.Save the pageHandler file.

14.Edit the JSP to remove the default body content from the page.

15.Open the HTML Tags drawer and drop an HTML table into the body of the page. The table 
should have 3 rows, 1 column, 100% width, and no border.

16.In the Page Data view, expand ezcInquireResponsePage and add controls for 
catalogList into the first row of the table. EGL will use the record definition to get the 
column labels and column order, so just accept the defaults.

17.Change the HTML table properties, so it takes 100% of the page width.

18.Drag and drop the Submit button from the Faces Component drawer into the third row. Set 
the horizontal alignment property to Right and add its image.

19.From the Page Data view, expand Actions and drag requestPlaceOrderAction to the 
Submit button.

20.Select the data table, go to its Properties view, shown in Figure 9-64 on page 178, select 
the Row Action tab, and click Add Selection Column to the table.

 

 

 

Chapter 9. EGL Web Service consumption case study 177



 

Figure 9-64   Row actions Properties view

21.Select the h:dataTable tab, shown in Figure 9-65, to change the order of the columns and 
add the Select label to the new column.

Figure 9-65   DataTable property view on the h:dataTable tab

22.In the Page Data view, expand ezcInquireResponsePage, select selected, and drag the 
data variable to checkbox in the newly added selected column.

23.You must modify the value property of this column from 
#{ezcinquireResponsPage.EGLselected.nullAsIntegerArray to 
#{ezcInquireResponsePage.EGLselectedAsIntegerArray. Figure 9-66 shows the view 
used to make this change.

Figure 9-66   Column property view on the hx:inputRowSelect tab

24.Change the horizontal alignment of the column data. Cost is right-aligned. Item Ref, In 
Stock, On Order, and Select are centered.

25.Save the JSP file.

 

 

 

178 The IBM Rational Unified Process for System z



 

The last page to develop is the configure page. It has the most involved page layout as well 
as the longest pageHandler. To create the configure page:

1. Select the folder EzcCatalogWebProj\WebContent in the Project Explorer view.

2. Create a new Faces JSP File named ezcConfigurePage using navigationShell.jtpl.

3. Switch to the Page Designer’s Source tab.

4. Change the page title to EGL RUPz Catalog Management Configuration.

5. Change the page ID to configure.

6. Switch to the Page Designer’s Design tab.

7. Change the header to Configure Application.

8. Select the Edit Page Code context menu option.

9. Add the variable declarations specified in Figure 9-67 to the pageHandler.

Figure 9-67   Import statements and variable declarations for ezcConfigurePage

10.Add the new functions specified in Figure 9-68 on page 180 to the pageHandler.

 

 

 

Chapter 9. EGL Web Service consumption case study 179



 

Figure 9-68   Action functions for ezcConfigurePage.egl

11.Modify the onPageLoad function to initialize the endpoint variables such as Figure 9-69.

Figure 9-69   Source code for the onPageLoad function in ezcConfigurePage.egl

12.Save the pageHandler changes.

13.Open the HTML Tags drawer and drop an HTML table on the JSP page. Figure 9-70 on 
page 181 shows the creation parameters.

 

 

 

180 The IBM Rational Unified Process for System z



 

Figure 9-70   HTML table creation dialog

14.To make the labels span the entire table, you will have to join together two cells. Select 
two adjacent cells in the first row while holding down the Ctrl key. Figure 9-71 shows the 
result of this selection.

Figure 9-71   HTML table with two cells selected

15.Using the context menu, select Table → Join Selected Cells to create one cell.

16.Do this for rows 4, 7, and 10.

17.Use the Ctrl key to select rows 1, 4, 7, and 10. Modify the background color to lime on the 
Properties view.

 

 

 

Chapter 9. EGL Web Service consumption case study 181



 

18.Enter static text into these cells:

– Inquire Catalog Service Endpoint

– Inquire Item Service Endpoint

– Place Order Service Endpoint

– Replenish Inventory Service Endpoint

19.Change column width to 15% of the second row, first column.

20.Enter static text of Current into column 1 of rows 2, 5, 8, and 11.

21.Enter static text of New into column 1 of rows 3, 6, 9, and 12.

22.Now the page looks like Figure 9-72.

Figure 9-72   Configure Page with basic table layout

23.Open the Faces Components drawer on the palette. For column 2 on rows 2, 5, 8, and 11, 
drop output text.

24.In the Page Data view, expand ezcConfigurePage. Drag the currentXXX page data 
variables and bind them to the appropriate output text field.

25.From the Faces Components drawer, drop input text. For column 2 on rows 3, 6, 9, and 
12, drop input text.

26.In the Page Data view, expand ezcConfigurePage. Drag the newXXX page data 
variables and bind them to the appropriate input text field.

27.Also, modify the input text component to have borders of 0 thickness. Figure 9-73 on 
page 183 shows where to make this modification on the Set Style Properties dialog.

 

 

 

182 The IBM Rational Unified Process for System z



 

Figure 9-73   Set Style Properties dialog to modify border width

28.For each of the input fields, change the validation so that a value is required and make the 
cell width 100%.

29.Drag the Command button from the Faces Component drawer to each of the last two 
rows, center their horizontal alignment, and add graphics. The top button is the SUBMIT. 
The bottom button is RESET.

30.Bind the action requestConfigureEndpointsAction to the top button and 
requestResetEndpointsAction to the bottom button, which results in Figure 9-74 on 
page 184.

 

 

 

Chapter 9. EGL Web Service consumption case study 183



 

Figure 9-74   Completed preview of ezcConfigurePage.jsp

31.Save the page.

The application is complete and ready for testing. 

9.5.4  Test scenario

The steps to test the scenario are: 

1. Go to the Server view, select a server, and select Start from the context menu. After the 
server status is Started, select the ezcWelcomePage.jsp in the Project Explorer view 
and select Run on Server. Figure 9-75 on page 185 shows the welcome page for the 
application.

 

 

 

184 The IBM Rational Unified Process for System z



 

Figure 9-75   Welcome to the CICS RUPz Catalog Application Page

2. Before invoking any service, the Web service endpoints must be configured. Select the 
CONFIGURE button to get to the configuration page shown in Figure 9-76 on page 186.

 

 

 

Chapter 9. EGL Web Service consumption case study 185



 

Figure 9-76   EGL RUPz Catalog Management Configuration Page

3. Notice the CONFIGURE navigational button is not available, because the configure page 
is active. Update all the New text fields with the location of your Web services and select 
the SUBMIT button. Test the inquire catalog service by selecting LIST ITEMS and enter 
50 in the input field as shown in Figure 9-77 on page 187.

 

 

 

186 The IBM Rational Unified Process for System z



 

Figure 9-77   EGL RUPz Inquire Catalog Page

4. Verify that the LIST ITEMS navigation button is not available and select Submit. The 
results are shown in Figure 9-78 on page 188.

 

 

 

Chapter 9. EGL Web Service consumption case study 187



 

Figure 9-78   EGL RUPz Inquire Results Page for catalog inquire

5. Verify the alignment of all the column data. Verify the format of the Cost column. Select 
the SUBMIT button without selecting a part to verify that you get an application error 
message indicating a part must be selected. Use the BACK button to retry the SUBMIT 
button after selecting part item number 50. Enter values in the place order page similar to 
those values shown in Figure 9-79 on page 189.

 

 

 

188 The IBM Rational Unified Process for System z



 

Figure 9-79   EGL RUPz Place Order Page

6. Leave any field empty to see a validation error message. Entering character data in the 
numeric fields will also result in a validation error. With all the fields filled with appropriately 
formatted data, the SUBMIT button will result in the informational page shown in 
Figure 9-80 on page 190.

 

 

 

Chapter 9. EGL Web Service consumption case study 189



 

Figure 9-80   EGL RUPz Order Results Page

7. Select the INQUIRE button to test the inquire single Web service. Figure 9-81 on 
page 191 shows the inquire item request page.

 

 

 

190 The IBM Rational Unified Process for System z



 

Figure 9-81   EGL RUPz Inquire Catalog Item Page

8. Verify that the INQUIRE button is not available. Enter 50 as the part item reference in 
order to verify that the in stock and on order amounts have been properly adjusted by the 
quantity ordered. Reference Figure 9-78 on page 188 for the original amounts and 
Figure 9-79 on page 189 for the quantity ordered. Figure 9-82 on page 192 shows the 
result of the inquire of a single part.

 

 

 

Chapter 9. EGL Web Service consumption case study 191



 

Figure 9-82   EGL RUPz Inquire Results Page for inquire single

9. Verify the data table content and data format. You should verify that you get an error 
message if you use the SUBMIT button without the part selected. Use the BACK button to 
try the SUBMIT button with the item selected to verify that the application navigates to the 
place order page. Select the REPLENISH button to get to the page shown in Figure 9-83 
on page 193.

 

 

 

192 The IBM Rational Unified Process for System z



 

Figure 9-83   EGL RUPz Replenish Inventory Page

10.Leave any field empty to see a validation error message. Entering character data in the 
numeric fields will also result in a validation error. With all the fields filled with appropriately 
formatted data, the SUBMIT button will result in the informational page shown in 
Figure 9-84 on page 194.

 

 

 

Chapter 9. EGL Web Service consumption case study 193



 

Figure 9-84   EGL RUPz Replenish Inventory Results Page

11.Test the application using invalid Web service endpoints. Navigate to the configure 
application page and modify the inquire single Web service endpoint to have an invalid 
server address. Invoke the inquire single Web service to verify the system exception 
details page shown in Figure 9-85 on page 195.

 

 

 

194 The IBM Rational Unified Process for System z



 

Figure 9-85   EGL RUPz System Exception Page for invalid server address

12.Go back to the configure page and set the inquire single endpoint to the valid host and 
strip several characters from the end of the valid endpoint. Retry the inquire single request 
and verify the system exception page resembles Figure 9-86 on page 196.

 

 

 

Chapter 9. EGL Web Service consumption case study 195



 

Figure 9-86   EGL RUPz System Exception for invalid service location

13.Now, verify that the replenish inventory Web service did adjust all the in stock values to 
100. Use 10 as the starting part reference number. Figure 9-87 on page 197 reveals that 
the in stock values were reset to 100.

 

 

 

196 The IBM Rational Unified Process for System z



 

Figure 9-87   EGL RUPz Inquire Results for catalog inquire after replenish inventory

14.When you can successfully invoke each Web service, you should explore the affects of 
stopping and starting the server as well as stopping the application. If you close the Web 
browser and reselect the Run on Server menu option, you can immediately issue an 
inquire Web service because the server is still holding on to the cached endpoints. To 
relinquish the endpoints, you must stop the server. 

9.6  Transition Phase

In accordance with the Catalog Manager Software development plan, no EGL specific 
activities occurred in the Transition Phase.

9.7  Summary

This chapter is a step-by-step guide to help you recreate the EGL portion of the RUP for z 
Catalog Manager sample application. If you work through this chapter, you will discover how 
EGL enables you to develop a Web application very quickly.

 

 

 

Chapter 9. EGL Web Service consumption case study 197



 

 

 

 

198 The IBM Rational Unified Process for System z



 

Part 4 IBM RUP for 
System z for 
Method Designers 
and Project 
Managers

This part includes material handy to customize the IBM Rational Unified Process for System z 
(RUP for System z) to better address your project needs. This part is targeted toward project 
managers and method designers. 

Part 4
 

 

 

© Copyright IBM Corp. 2007. All rights reserved. 199



 

 

 

 

200 The IBM Rational Unified Process for System z



 

Chapter 10. IBM RUP for System z Work 
Breakdown Structure

The IBM Rational Unified Process for System z (RUP for System z) includes a Work 
Breakdown Structure that covers the whole development lifecycle from beginning to end, as 
illustrated in Figure 10-1. This Work Breakdown Structure can be used as a template for 
planning and running a project. This chapter presents the Work Breakdown Structure for each 
project phase (inception, elaboration, construction, and transition). Refer to the RUP for 
System z Web site for more details about the topic. The RUP for System z Web site can be 
generated out of the RUP for System z RMC plug-in from IBM developerWorks at:

http://www.ibm.com/developerworks/rational/downloads/06/rmc_plugin7_1/

Figure 10-1   The RUP for System z Workflow and Work Breakdown Structure

10
 

 

 

© Copyright IBM Corp. 2007. All rights reserved. 201

http://www.ibm.com/developerworks/rational/downloads/06/rmc_plugin7_1/


 

10.1  Inception Phase

Figure 10-2 presents the Work Breakdown Structure for a typical iteration in inception. This 
Work Breakdown Structure includes activities and tasks with predecessors. The number of 
steps per task is shown with blue dots.

Figure 10-2   Inception Work Breakdown Structure

 

 

 

202 The IBM Rational Unified Process for System z



 

10.2  Elaboration Phase

Figure 10-3 presents the Work Breakdown Structure for a typical iteration in elaboration. This 
Work Breakdown Structure includes activities and tasks with predecessors. The number of 
steps per task is shown with blue dots.

Figure 10-3   Elaboration Work Breakdown Structure

 

 

 

Chapter 10. IBM RUP for System z Work Breakdown Structure 203



 

10.3  Construction Phase

Figure 10-4 presents the Work Breakdown Structure for a typical iteration in construction. 
This Work Breakdown Structure includes activities and tasks with predecessors. The number 
of steps per task is shown with blue dots.

Figure 10-4   Construction Work Breakdown Structure

 

 

 

204 The IBM Rational Unified Process for System z



 

10.4  Transition Phase

Figure 10-5 presents the Work Breakdown Structure for a typical iteration in transition. This 
Work Breakdown Structure includes activities and tasks with predecessors. The number of 
steps per task is shown with blue dots.

Figure 10-5   Transition Work Breakdown Structure

 

 

 

Chapter 10. IBM RUP for System z Work Breakdown Structure 205



 

 

 

 

206 The IBM Rational Unified Process for System z



 

Chapter 11. How to customize the IBM 
Rational Unified Process for 
System z

One of the most common needs related to the implementation of a process is its 
customization. Typically, people don’t like to invent a brand new process; indeed, they prefer 
to adopt an existing one that permits them to avoid spending time and money creating 
something new from scratch. Since there is no process that fits everybody, you need to 
customize your RUP for System z. In this chapter we discuss the purpose and the target of 
customization explaining how to create a project plan specific to your project and how to 
customize the RUP for System z using Rational Method Composer. 

11
 

 

 

© Copyright IBM Corp. 2007. All rights reserved. 207



 

11.1  Introduction

The Rational Unified Process framework provide guidance on a rich set of software 
engineering principles. It is applicable to projects of different sizes and complexities, but this 
means that no single project will benefit from using all of RUP. This concept is also applicable 
to an already tailored process (for example, you can think about how to introduce further 
customization to RUP for Small Projects) that can be tailored in order to meet some specific 
project needs. This concept is also valid for RUP for System z, that is, you can begin to plan 
your project starting from activities and tasks already defined in the delivery process, but you 
can also realize that some specific project needs might drive you to add, modify, and 
customize certain process elements. In particular, the Prepare Project Environment activity in 
the Inception Phase of the RUP for System z, shown in Figure 11-1, prepares the 
development environment for a project, where the development environment includes both 
process and tools, primarily affected by the results obtained from the Tailor the Development 
Process for the Project task.

Figure 11-1   Prepare Project Environment activity in Inception Phase

It is crucial for the success of the project that the delivery process is relevant for the current 
project, its size, and the formality of its requirements. 

Because the Rational Unified Process provides guidance on a wide range of software 
engineering principles, you typically need to understand which parts of the process 
framework can be fully adopted and which parts can be modified or even excluded. Tailoring 
the process is just one part of implementing a process for a project. After the process has 
been tailored, the project manager instantiates and executes it for the specific project. An 
instantiated process is an enactable project plan (it includes actual iterations, activities, tasks, 
and work products for an actual project). Instantiation is done as part of project planning. 

We recommend tailoring the Rational Unified Process using Rational Method Composer 
(RMC). By using RMC, the resulting process Web site has the exact same functionality, look, 
and feel as the classic RUP Web site. Also, if RMC is used, a Delivery Process can be 
instantiated by exporting it from RMC and then importing it into a project management tool, 
such as Rational Portfolio Manager, where actual work products can be identified, actual 
resources can be assigned to roles, and so forth. Before starting a plug-in project, we highly 

 

 

 

208 The IBM Rational Unified Process for System z



 

recommend that you spend time looking at existing plug-ins on both the RMC and IBM 
sponsored RUP Web sites, because you might find new already available methods and 
processes that fit your project:

RMC:

http://www.ibm.com/developerworks/rational/downloads/06/rmc_plugin7_1/

RUP: 

http://www-128.ibm.com/developerworks/rational/library/4686.html

In this chapter, we will examine two tailoring scenarios:

� Create a project plan specific to your project outside of RMC

� Customize the RUP for System z within RMC 

11.2  How to create a project plan specific to your project

This section covers the creation of a project plan specific to your project by identifying the 
phase iterations, activities, and tasks to execute and then creating a project plan accordingly.

11.2.1  Identify the phase iterations, activities, and tasks to execute

In order to fully understand what you need to include in your Project Plan (or Iteration Plan), 
we recommend that you focus on which phase iterations, activities, and tasks to execute. 
More specifically, in order to create a development plan that enables your team to produce 
the appropriate work products for your project, you need to identify the following:

� How many iterations per phase are necessary on your project?

� What are the activities that need to be performed in each iteration? 

� What are the tasks that need to be performed in each activity?

For example, the RUP for System z Inception Iteration has five activities as shown in 
Figure 11-2 on page 210. You have to decide if you need to perform them all. For instance, it 
might not be necessary to perform the Perform Architectural Proof-of-Concept activity on your 
project.

Tip: Refer to Rational Unified Process Concept: Tailoring RUP for a detailed description of 
a variety of tailoring scenarios.

Note: The recommended method development process and the directions for using RMC 
to customize the RUP for System z are discussed in the next section. 

Tip: Refer to Rational Unified Process RUP Lifecycle page for information about how to 
identify how many iterations per phase are necessary for your project.

 

 

 

Chapter 11. How to customize the IBM Rational Unified Process for System z 209

http://www.ibm.com/developerworks/rational/downloads/06/rmc_plugin7_1/
http://www-128.ibm.com/developerworks/rational/library/4686.html


 

Figure 11-2   The five Inception Iteration activities of RUP for System z

By acknowledging that this is the start and end of the iteration, and not the project, we can 
encourage more parallel work and study the dependencies between tasks. Therefore, these 
activity diagrams drive iterative project planning. For example, if you look at Figure 11-3, 
which depicts the tasks of Define Requirements activity, you can see how most of them can 
be executed in parallel. Obviously, this parallelism will reflect on your project planning. 

Figure 11-3   The detail of the Define Requirements activity 

 

 

 

210 The IBM Rational Unified Process for System z



 

Let us look at the detail of the Define Requirements activity for an example. Because the 
Inception Phase involves establishing the problem space and designing the first version of a 
usage model of the solution idea but not gathering the detailed requirements, you need to ask 
yourself which of the tasks shown in Figure 11-3 will you need. 

It is not only the project manager’s job to decide which activities and tasks to perform in each 
iteration of the RUP Phases; it is the team’s decision. Basically, the project manager takes 
into account the directions provided by team’s members and subsequently plans, tracks, and 
manages the risks accordingly.

After the team decides what iterations, activities, and tasks need to be performed (by using a 
Development Case, for instance, or any other artifact), the project manager should create the 
plan accordingly. The last step after determining the activities and tasks is to include key input 
or output work products. The work products affect your plan in terms of milestones and the 
evidence of deliverables. 

11.2.2  Creating a project plan

We can now assume that you have a Development Case or a well-defined process in place 
for your project. It is now time to create your Project (or Iteration) Plan. This can be done by 
exporting the RUP for System z Delivery Process from RMC, then importing it into a project 
management tool, such as IBM Rational Portfolio Manager or Microsoft® Project, and finally, 
modifying it to reflect your own specific process as defined in the previous section.

To export an existing process to a planning tool using RMC is fairly simple. You need to 
select File → Export, select Project Template, and follow the prompts for the planning tool 
that you use, Rational Portfolio Manager or MS Project. For step-by-step guidance to export a 
process using RMC, see the “Publishing and exporting Method Content” online help topic. 
After you export the WBS to an xml file, the next step is opening the exported file with the 
planning tool that you are going to use. 

Using a planning tool, such as IBM Rational Portfolio Manager or Microsoft Project, you see it 
is simple to tailor your plan according to your own process defined in the previous section. 
The Gantt charts in Figure 11-4 on page 212 show an example of the RUP for System z 
delivery process exported into a project plan and modified to suit the needs of a particular 
project. 

 

 

 

Chapter 11. How to customize the IBM Rational Unified Process for System z 211



 

Figure 11-4   Example of Project Plan for RUP for System z

The plan in Figure 11-4 is clearly organized by time, but you can also identify disciplines by 
color (as coded in the overall architecture diagram of RUP in Figure 2-1 on page 12). For 
example, the first four tasks are in the project manager discipline, the Set Up Tools is in the 
environment discipline, the Develop Vision is in the requirements discipline, and finally, the 
Define Test Approach task is in the test discipline. In this way, all the team members can 
clearly identify their own tasks according the identification of the discipline, and the project 
manager can look for a clear single point of view of dependent tasks.

11.3  How to customize the RUP for System z using RMC

This section presents an approach to method development with IBM Rational Method 
Composer (RMC) that you can use to customize RUP for System z for a specific project team 
or organization:

http://www.ibm.com/developerworks/rational/products/rup/

This section presents and defines the essential work products produced during a method 
development project, as well as the typical tasks performed to produce these work products. 

You can read more information about method development in the Rational Edge article “A 
Roadmap to Method Development” by Cécile Péraire, February 2007, at:

http://www.ibm.com/developerworks/rational/library/feb07/peraire/index.html

 

 

 

212 The IBM Rational Unified Process for System z

http://www.ibm.com/developerworks/rational/products/rup/
http://www.ibm.com/developerworks/rational/library/feb07/peraire/index.html


 

Specific detailed information about how to perform these tasks using RMC can be obtained in 
the IBM training material: PRJ350, Essentials of IBM Rational Method Composer v7.1:

http://www-304.ibm.com/jct03001c/services/learning/ites.wss/us/en?pageType=course_
description&courseCode=RP522

11.3.1  Method development work products

A method is primarily defined in terms of Method Elements. A Method Element can be a 
Content Element (Role, Task, Work Product, or Content Guidance), or a Process Element 
(Activity, Capability Pattern, Delivery Process, or Process Guidance). Refer to Table 11-1 for 
a definition of the types of Method Elements.

Table 11-1   The different types of Method Elements and their definition

A Method Element can be seen from two different and important perspectives: From the 
perspective of the Method Designer, who defines the method structure and hence identifies 
Method Elements and their relationships, or from the perspective of the Method Author, who 
writes the description (that is, textual and graphical content) of the Method Elements. This 
second perspective is particularly significant, because a large proportion of the method 
development effort is spent authoring Method Elements. For this reason, a separate work 
product called Method Element Description is used to refer to the content of a Method 
Element (even though the Method Element Description work product is included into the 
Method Element work product). 

The other essential work products specific to method development are summarized in 
Table 11-2 on page 214 (together with the role responsible for each work product) and further 
presented in the paragraphs that follow. 

Method Element

Content Element Process Element

� Role. Set of related skills, competencies, 
and responsibilities of an individual or 
individuals.

� Task. Assignable unit of work. Every task is 
assigned to a specific role.

� Work Product. Anything used, produced, or 
modified by a task.

� Content Guidance. Supplemental 
information added to a content element 
(such as a template, example, tool mentor, or 
white paper).

� Activity. Grouping of tasks (together with 
their related roles and work products). 
Represents the key building blocks for 
processes. Can be used to compose 
capability patterns or delivery processes.

� Capability Pattern. A reusable cluster of 
activities. Can also be used to compose 
delivery processes and other capability 
patterns.

� Delivery Process. End-to-end project 
lifecycle.

� Process Guidance. Supplemental 
information added to a process element 
(such as a roadmap).

 

 

 

Chapter 11. How to customize the IBM Rational Unified Process for System z 213

http://www-304.ibm.com/jct03001c/services/learning/ites.wss/us/en?pageType=course_description&courseCode=RP522
http://www-304.ibm.com/jct03001c/services/learning/ites.wss/us/en?pageType=course_description&courseCode=RP522


 

Table 11-2   Essential work products and their responsible role

Early in the project, we recommend that you outline the method using a Method Sketch. The 
goal of the Method Sketch is to help the team identify candidate Method Elements and some 
of their relationships and to propose an early description for some of the key elements. To do 
so, and depending on the project type (creation of a new method from scratch, extension of 
an existing method with content elements only, extension of an existing method with content 
and process elements, and so forth), the Method Sketch might take various forms. For 
instance, it might include one or more of the following elements: A walkthrough of the 
lifecycle; a brief description of candidate roles, tasks, and work products, and their 
relationships; a list of candidate method guidance (templates, examples, white papers, and 
so forth); an early Work Breakdown Structure (WBS); a mock-up of the method Web site. The 
Method Sketch can be documented on a white board, in a word document, a spreadsheet, a 
visual model, or using any other support. This free framework is meant to encourage creative 
thinking and allow the team to define and review several first sketches of the method using 
the content, format, notation, and support that best fit their needs and skills. After the new 

Work product Role

Method sketch
Outline of the method, identifying candidate method elements, and 
possibly including some of their relationships and early description.

Method designer
Oversees the definition 
of the overall method.

Synonyms: 
Method Architect, 
Method Engineer, or 
Process Engineer.

Method definition
Well-formed definition of a method in terms of its Method Elements 
(including their descriptions), their relationships, and characterization of 
one or more Method Configurations.
In RMC, a Method Definition is a composite work product encompassing 
all Method Plug-ins and Method Configurations relevant to the method 
under construction.
Method plug-in
Well-formed definition of a component of a method (or of the entire method 
if the method is defined using only one component) in terms of its Method 
Elements (including their description) and their relationships. 
In RMC, a Method Plug-in is a container for Method Packages:
� Method Package

In RMC, a Method Package is a container for Method Elements (and 
other Method Packages).

� Method Element
Content Element (Role, Task, Work Product, or Content Guidance) or 
Process Element (Activity, Capability Pattern, Delivery Process, or 
Process Guidance). Refer to Table 11-1 for definitions.

Method configuration 
Characterization of a method configuration or version of the method. 
In RMC, a Method Configuration defines how to compose a Method Web 
site based on the Method Elements included in a selection of Method 
Plug-ins and Method Packages, as well as the views that will be presented 
in the Method Web site tree browser.

Method Web site
Main outcome of a method development project. It makes the method, or 
method framework, available through a set of interconnected Web pages.
In RMC, a Method Web site is automatically generated from a Method 
Definition (one Method Web site can be generated per Method 
Configuration).

Method element description 
Description (that is, textual and graphical content) of a Content Element.

Method author
Writes the content of a 
method element.

 

 

 

214 The IBM Rational Unified Process for System z



 

method, or part of the method, starts to emerge from the Method Sketch, it is time to launch 
Rational Method Composer (RMC), where the method is more formally and completely 
defined. The Method Sketch can be abandoned at this point, kept to explore other ideas, 
evolve into a method roadmap (process guidance), or simply evolve into the list of all the 
method elements to be authored, for instance. In that case, it can be used to assign 
responsibility and track progress.

The method is well-defined within a Method Definition. A Method Definition is a well-formed 
definition of a method in terms of its Method Elements (including their description) and their 
relationships. A Method Definition also characterizes one or more configurations, or versions, 
of the method by identifying, for each configuration, which elements are presented to the 
practitioners and how. In RMC, as illustrated in Figure 11-5 on page 216, a Method Definition 
is a composite work product encompassing all Method Plug-ins and Method Configurations 
relevant to the method under construction. In other words, a Method Definition corresponds to 
the subset of the RMC Library relevant to the method under construction.

A Method Configuration is a characterization of a version of the method, such as RUP for 
Small Projects and RUP for Large Projects. In RMC, a Method Configuration defines how to 
compose a Method Web site based on the Method Elements included in a selection of 
Method Plug-ins and Method Packages (because you might not want to publish all the 
Method Elements defined in the method in the context of a specific configuration). The 
Method Configuration also defines the views that will be presented in the Method Web site 
tree browser.

The Method Web site is the main outcome of a method development project. It makes the 
newly defined method, or method framework, available to the practitioners through a set of 
interconnected Web pages. In RMC, a Method Web site is automatically generated from the 
Method Definition (one Method Web site can be generated per Method Configuration). 
Figure 11-6 on page 217 provides an example of the Method Web site.

To summarize the role of the different constituents of a Method Definition, we can use the 
analogy of a bookstore specialized in selling book sets at a discounted price. A Method 
Plug-in can be compared to a bookstore department (travel, comics, children, and so forth). 
A Method Package can be compared to a set of books packaged to be sold together, the 
Method Element to an individual book, the Method Configuration to your shopping list, and 
the Method Web Site to the shopping bag full of books that you take home after shopping.

 

 

 

Chapter 11. How to customize the IBM Rational Unified Process for System z 215



 

Figure 11-5   Example of Method Definition for the RUP for System z in RMC and selection of elements to be published in 
the RUP for System z Web site

Figure 11-5 provides a simplified example of RMC Method Definition for the RUP for System 
z, including three Method Plug-ins (rup, rup_for_soa, and rup_for_z, because the rup_for_z is 
defined by extending rup and rup_for_soa, plus other plug-ins not shown in Figure 11-5) and 
one Method Configuration (RUP for System z Configuration). The RUP for System z 
Configuration determines the content of the RUP for System z published Web site. In this 
simplified example, the Web site will include the content elements of the Method Content 
package of rup (the Processes package of rup has been filtered out), the content elements of 
the Method Content package of rup_for_soa (the Processes package of rup_for_soa has 
been filtered out), as well as all the method elements (from both Method Content and 
Processes packages) of rup_for_z. The practitioners will be able to navigate the Web site 
through the navigation tree shown on the View column of Figure 11-5.

Figure 11-6 on page 217 provides an example of the Method Web site for the RUP for System 
z (early version), generated out of the Method Definition presented on Figure 11-5.

 

 

 

216 The IBM Rational Unified Process for System z



 

Figure 11-6   Example of Method Web site for the RUP for System z

In the case of a new method built from scratch, the Method Definition is empty at the 
beginning of the project. In the case of a method customization, the Method Definition already 
contains the plug-ins relevant to the existing method (not the existing configurations, 
however, because a configuration is specific to a particular method and consequently is not a 
reusable asset). For instance, in order to create a customized version of the RUP for System 
z, you start with a Method definition, including the Plug-ins shown in Figure 11-5 on 
page 216. 

Then, you add at least one new Method Plug-in (referencing the existing plug-ins) in order to 
define the Method Elements specific to your new method and add one new Method 
Configuration in order to configure your new Method Web site. Your new Method Elements 
can be built from scratch or by leveraging elements of the existing method using variability 
relationships, such as contribute, extend, or replace. For more information about variability 
relationships, refer to the IBM training: PRJ350, Essentials of IBM Rational Method 
Composer v7.1.

11.3.2  Method development tasks

The work products specific to method development and presented in the previous section are 
produced by performing the tasks shown in Figure 11-7 on page 218. Note that other tasks 
and work products might be applicable in order to test the Web site and distribute the method, 
for instance, but this is the minimum recommended set of work products. The execution of the 
tasks in Figure 11-3 needs to be driven by a clear project vision and project plan (whatever 
their level of formality). The Method Reviewers include primarily peers and other Subject 

Note: The complete list of plug-ins included in the RUP for System z Method Definition is: 
rup, base_concepts, formal_resources, informal_resources, rup_soa_plugin, 
rup_legacy_evolution_plugin, rup_ibm, and rup_for_z.

 

 

 

Chapter 11. How to customize the IBM Rational Unified Process for System z 217



 

Matter Experts (SMEs). However, we recommend that you involve other stakeholders in the 
evaluation of the method, such as practitioners and clients, to make sure that the method is 
consumable and meets the stakeholders’ expectations.

Figure 11-7   Essential tasks together with the role that performs the task and input/output work products

Table 11-3 provides the description of the Sketch Method task. The task is independent from 
the actual strategy adopted by the project team to define the method, such as top-down (the 
definition of the overall lifecycle in terms of phases and their objectives drives the 
identification of the content elements) or bottom-up (the identification of the content elements 
drives the definition of the lifecycle). In practice, project teams generally use a combination of 
the two strategies. However, whenever applicable, we recommend favoring a top-down 
strategy, which tends to produce more cohesive methods, because each content element is 
more clearly tied to one or more phase objectives.

Table 11-3   Description of the Sketch Method task

Task: 
Sketch Method

This task outlines the method within a Method Sketch. It identifies 
candidate method elements and some of their relationships and proposes 
an early description for some of the key elements. 
Some indicative steps to perform this task are proposed below (no specific 
order):

Identify the method development strategy, such as top-down or bottom-up.

Review existing assets, such as RUP for System z, and identify reuse 
opportunities.

Identify candidate method elements (content and processes) that are relevant to 
the new method. If applicable, distinguish the elements that are in the project 
scope from the elements outside of the project scope (because they are already 
present in existing methods and can be reused as-is for instance).

Identify candidate relationships between candidate method elements (for 
example, which role is responsible for a work product).

Draft an early description for some key candidate method elements.

 

 

 

218 The IBM Rational Unified Process for System z



 

Table 11-4 provides the description of the Structure Method Task.

Table 11-4   Description of the Structure Method Task

Get feedback on the Method Sketch from stakeholders.

Task: 
Structure 
Method

This task structures the method, in terms of Method plug-ins, Method 
packages, Method elements, Method configurations, and the relationships 
among them. 
Some indicative steps to perform this task are proposed below (no specific 
order):

If applicable, review the structure of the existing Method plug-ins forming the 
foundation of the new method, such as the rup and rup_for_z plug-ins. 

Define Method plug-ins relevant to the new method and their dependencies to 
other plug-ins if applicable.

Define Method packages within the appropriate plug-ins. 

Define Method elements within the appropriate packages and their relationships, 
including variability relationships to leverage existing assets.

Logically categorize the Method elements using RMC Standard or Custom 
Categories.

Define navigation views using RMC Custom Categories.

Define Method configurations by selecting the set of Method plug-ins and 
Method packages to be published, as well as the navigation views to be 
published.

Get feedback on the Method Structure from stakeholders.

Task: 
Sketch Method

This task outlines the method within a Method Sketch. It identifies 
candidate method elements and some of their relationships and proposes 
an early description for some of the key elements. 
Some indicative steps to perform this task are proposed below (no specific 
order):

 

 

 

Chapter 11. How to customize the IBM Rational Unified Process for System z 219



 

 

 

 

220 The IBM Rational Unified Process for System z



 

Chapter 12. Conclusions

When we first set out on the Rational Unified Process (RUP) for System z project, there were 
several primary questions on our minds:

� Is RUP really applicable to the System z environment?

� Are there any parts of RUP that do not apply to the System z environment?

� How is iterative development implemented in the System z environment?

� Are there real benefits for System z practitioners?

We were determined to discover the answers to these questions. The result of our quest for 
answers has been documented in this book.

The materials in this book have predominantly been derived from actually performing RUP 
prescribed functions. Applying RUP practices to the development of a real System z CICS 
COBOL application gave us the insight we sought.

In Chapter 1, we introduced the RUP for System z IBM Redbooks publication project: its 
purpose, intended audience, and the rationale behind it.

In Chapter 2, we provided a brief introduction to the Rational Unified Process and to its 
extension to service-oriented architecture (SOA). What it is and what it contains.

In Chapter 3, we expanded on the question, “Why RUP for z?” We explored the traditions 
behind System z application development and the differences between the old and new 
development methodologies. We summarized the key differences and associated benefits of 
the RUP compared to the waterfall model-based methodologies.

In Chapter 4, we provided a RUP for System z roadmap. The roadmap walks through each 
phase (inception, elaboration, construction, and transition) of a typical System z development 
project. The roadmap also describes the overriding goal of each of the four phases and its 
associated objectives. It describes typical iterations within each phase and provides 
information about phase milestones and essential work products.

In Chapter 5, we provided RUP for System z process essentials: A brief definition of each 
project phase (inception, elaboration, construction, and transition) in terms of main goals, 
activities, and milestones. For each activity, the process essentials list the corresponding key 

12
 

 

 

© Copyright IBM Corp. 2007. All rights reserved. 221



 

roles, tasks, output work products, and available examples from the Catalog Manager case 
study. The corresponding section of the RUP for System z Web site provides advanced 
System z practitioners with all the links necessary to perform specific activities or tasks.

In Chapter 6, we introduced an end-to-end System z development lifecycle, which is 
essentially a System z application delivery process example. It contains detailed descriptions 
of all the elements of the RUP for System z method and also includes a depiction of the 
lifecycle in the form of a Work Breakdown Structure (WBS).

In Chapter 7, we presented the RUP for System z content elements (roles, tasks, and 
artifacts) that are specific to the System z environment. The RUP for System z includes a 
large number of content elements. Most of these elements come from the Rational Unified 
Process (RUP) and its service-oriented architecture (SOA) extension. However, we had to 
add some content elements to the RUP for System z, because these content elements are 
specific to the System z environment. In this chapter, we presented these new content 
elements.

In Chapter 8, we provided the details of our case study: the Catalog Manager application. It 
introduces the CICS COBOL Catalog Manager application and provides details about the 
RUP practices, activities, and tasks with which we were involved during the development of 
the application.

In Chapter 9, we provided an overview of the Enterprise Generation Language (EGL) and its 
Web application development paradigm. Chapter 9 provides information about how EGL was 
used to develop a Web client application in order to provide a Web interface into the CICS 
COBOL Catalog Manager application. The Web client accesses the Web services exposed 
from within the CICS COBOL Catalog Manager application.

In Chapter 10, we provided the RUP for System z Work Breakdown Structure (WBS) that 
covers the whole development lifecycle from beginning to end. This WBS can be used as a 
template for planning and running a project. In this chapter, we presented the WBS for each 
project phase (inception, elaboration, construction, and transition).

And finally in Chapter 11, we provided a practical approach to customize RUP for System z to 
suit your own organization’s needs if required. It illustrates the flexibility of the RUP for 
System z method, acknowledging the fact that your own environment might differ in some 
parts to the environment used in our project and therefore the importance of having the ability 
to customize the method to your own needs and preferences in order to derive maximum 
benefit.

Equally important are all the elements gathered in the Appendixes of this book. They are 
intended to provide you with key actual work products that were generated at various phases 
of our project, so that you can see and appreciate the incremental nature and benefits of the 
RUP for System z method.

In summary, our main conclusions are:

� By developing iteratively, we were quickly able to build and demonstrate an application 
architecture baseline. Because the architecture baseline was built while taking into 
consideration the riskiest and high priority parts of the project, we were able to 
demonstrate a stable application foundation framework very early to our stakeholders and 
to ourselves. We demonstrated an environment that we can easily improve and expand 
upon in later iterations. This stable framework ensures that we are building the right 
system.

� Furthermore with each subsequent iteration, we were able to constantly ensure and verify 
by actual testing and implementation of the application portions we had built so far that the 
application was aligned with existing or changed user needs.

 

 

 

222 The IBM Rational Unified Process for System z



 

� Beginning to verify work products and test application components right from the very 
early iterations enabled us to identify and fix defects early rather than later. As we all 
know, identifying and fixing defects earlier is far less costly than fixing defects later in the 
lifecycle. We wound up building a more robust and stable application as iterations 
progressed.

� The end of the iteration project reviews helped show the development team and our 
project sponsors precisely what we achieved and what remained to be achieved for each 
iteration and phase. The project planning activity of RUP helps define clear goals and 
assessment criteria for each iteration within a phase so that assessment of what has been 
achieved and what remains to be done is an easy process. Project plans were 
continuously reviewed and refined based on risk and priority assessments.

In exploring RUP, we found that it was certainly highly applicable to application development 
in the System z environment. We hope this book and its associated elements, for example, 
the RMC method plug-in and the example work products, assist you in utilizing RUP for 
System z to your organization’s best advantage.

 

 

 

Chapter 12. Conclusions 223



 

 

 

 

224 The IBM Rational Unified Process for System z



 

Part 5 Appendixes

The appendixes that follow present work products of the Catalog Manager case study. This 
case study uses a CICS Catalog Manager application to provide an implementation example 
of the IBM Rational Unified Process for System z (RUP for System z). 

Also, the appendixes include a terminology mapping between RUP and z, which maps RUP 
terminology to equivalent terms used in the System z software development process, to 
mitigate the learning process when transitioning to RUP.

Finally, the appendixes refer to additional material that you can download from the Internet. 

Part 5
 

 

 

© Copyright IBM Corp. 2007. All rights reserved. 225



 

 

 

 

226 The IBM Rational Unified Process for System z



 

Appendix A. Catalog Manager case study: 
Inception Phase Work Products

The contents of Appendix A are contained in the Additional Material link from the IBM 
Redbooks publications Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG247362

and choose:

SG24-7362-00-AppendixA.zip

After you have downloaded AppendixA.zip and unpacked the file, the contents of Appendix A 
are:

� Catalog Manager - Business Case I1 v 1.0.doc

� Catalog Manager - Vision.doc

� Catalog Manager - Glossary.doc

� Catalog_Manager_Software_Development_Plan.doc

� Catalog_Manager_Risk_List.doc

� Catalog Manager UseCaseModelSurveyRpt.pdf

� Catalog_Manager_Supplementary_Specification_V1.1.doc

� Catalog Manager Software Architecture Document V1.1.doc

� Catalog_Manager_Test_Plan_V1.0.doc

� Catalog_Manager_Iteration_Plan_E1.doc

A
 

 

 

© Copyright IBM Corp. 2007. All rights reserved. 227

ftp://www.redbooks.ibm.com/redbooks/SG247362


 

 

 

 

228 The IBM Rational Unified Process for System z



 

Appendix B. Catalog Manager case study: 
Elaboration Phase Work 
Products

The contents of Appendix B are contained in the Additional Material link from the IBM 
Redbooks publication Web server. Point your Web browser to: 

ftp://www.redbooks.ibm.com/redbooks/SG247362

and choose: SG24-7362-00-AppendixB.zip

After you download AppendixB.zip and unpack the file, the contents of Appendix B are:

� Catalog_Manager_Software_Development_Plan.doc

� Elaboration Catalog_Manager_Risk_List.doc

� Catalog Manager UseCaseModelSurveyRpt.pdf

� List Catalog Item.UCS

� Configure Catalog.UCS

� Replenish Inventory.UCS

� Order Item.UCS

� Supplementary Specification.SUP

� Catalog Manager Software Architecture Document V1.2.doc

� Catalog_Manager_Test_Plan_V1.1.doc

� TestScenarioMatrixListCatalog.xls

� TestScenarioMatrixConfigureCatalog.xls

� TestCaseMatrixConfigureCatalog.xls

� TestCaseMatrixListCatalog.xls

� TestEvaluationSummary.doc

B
 

 

 

© Copyright IBM Corp. 2007. All rights reserved. 229

ftp://www.redbooks.ibm.com/redbooks/SG247362


 

 

 

 

230 The IBM Rational Unified Process for System z



 

Appendix C. Catalog Manager case study: 
Construction Phase Work 
Products

The contents of Appendix C are contained in the Additional Material link from the IBM 
Redbooks publication Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG247362

and choose:

SG24-7362-00-AppendixC.zip

After you have downloaded AppendixC.zip and unpacked the file, the contents of Appendix C 
are:

� Construction Catalog_Manager_Software_Development_Plan.doc

� Construction Catalog_Manager_Risk_List.doc

� Order Item.UCS

� Replenish Inventory.UCS

� Catalog_Manager_Test_Plan_V1.2.doc

� TestScenarioMatrixOrderItem.xls

� TestScenarioMatrixReplenishInventory.xls

� TestCaseMatrixOrderItem.xls

� TestCaseMatrixReplenishInventory.xls

� TestEvaluationSummary.doc

C
 

 

 

© Copyright IBM Corp. 2007. All rights reserved. 231

ftp://www.redbooks.ibm.com/redbooks/SG247362


 

 

 

 

232 The IBM Rational Unified Process for System z



 

Appendix D. Catalog Manager case study: 
Transition Phase Work Products

The contents of Appendix D are contained in the Additional Material link from the IBM 
Redbooks publication Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG247362

and choose:

SG24-7362-00-AppendixD.zip

After you have downloaded AppendixD.zip and unpacked the file, the contents of Appendix D 
are:

� Transition Catalog_Manager_Risk_List.doc

� TestEvaluationSummary.doc

D
 

 

 

© Copyright IBM Corp. 2007. All rights reserved. 233

ftp://www.redbooks.ibm.com/redbooks/SG247362


 

 

 

 

234 The IBM Rational Unified Process for System z



 

Appendix E. Terminology mapping between 
IBM RUP and System z

This Appendix maps RUP terminology and concepts used throughout this book to equivalent 
terms used in the System z software development process to mitigate the learning process 
when transitioning to RUP.

Table E-1 maps RUP terms to equivalent System z development terms.

Table E-1   RUP and System z terminology comparison table

E

RUP terminology System z terminology

Analysis and Design Model
Analysis provides a rough sketch or 
generalization of the solution, omitting most of 
the detail. Design provides the details. 

The Design Model is the major blueprint for the 
implementation of the solution. It captures the 
results of analysis and design into a single 
model. 

High Level Design
This is the second stage in the Software 
Development Lifecycle (SDLC). The stages are 
Requirements gathering, Design, Coding, and 
Testing. Design is further broken down into two 
stages: 1) High Level Design and 2) Low Level 
Design, which is also called Detailed Design.

High Level Design is the process of designing 
an overall solution architecture for an 
application to meet both functional and 
non-functional requirements. It involves the 
following activities:
1. Design of the Solution Architecture for the 
project
2. Design of the technical Architecture for the 
project
3. Development of the Logical model for the 
project
4. Development of the Physical Data Model for 
the project 

 

 

 

© Copyright IBM Corp. 2007. All rights reserved. 235



 

Data Model
Describes the logical and physical 
representations of persistent data used by the 
application.

High Level Design
See definition above.

Design Elements 
Are part of the design model, such as design 
classes, interfaces, and design subsystems, 
that evolve from the analysis classes.

Low Level Design
Also called Detailed design, is the process of 
refining and expanding the high level design of 
a system or component to the extent that the 
design is sufficiently complete to be 
implemented. Low level design can also involve 
the writing of pseudo-code.

Design Subsystem
The design subsystem encapsulates behavior 
by packaging other model elements (classes or 
other design subsystems) that provide its 
behavior. It also exposes a set of interfaces, 
which defines the behavior it can perform.

Low Level Design
See definition above.

Implementation Model
Represents the physical composition of the 
implementation in terms of Implementation 
Subsystems and Implementation Elements 
(directories and files, including source code, 
data, and executable files).

Low Level Design
See definition above.

Installation Artifacts
Describes how someone should install a 
solution. Installation Artifacts refer to the 
software and documented instructions required 
to install the release. 

Program Directory
A document shipped with each release of a 
product. It contains information concerning the 
materials and procedures associated with the 
installation of the product.

Iteration Assessment
Captures the results of an iteration, including 
the degree to which the iteration’s objectives 
were met, lessons learned, and recommended 
changes.

Project Milestones Review
A project is divided into milestones with each 
milestone representing important parts or steps 
to perform and culminating in a deliverable. 
Milestones are reviewed to ensure that the 
project is on time and on track to meeting its 
goals and deadlines.

Iteration Plan (one per iteration)
A time-sequenced set of activities and tasks, 
with assigned resources, containing task 
dependencies for the iteration; a fine-grained 
plan.

Project Schedule
A time-sequenced set of activities and tasks, 
with assigned resources, containing task 
dependencies and sequenced in a logical 
order. The most common representation of a 
project schedule is a Gantt Chart.

RUP terminology System z terminology 

 

 

236 The IBM Rational Unified Process for System z



 

Product
Actual product or solution to be delivered to the 
client. It includes: Product Artwork, 
Installation Artifacts, Deployment Unit, and 
Bill of Materials.

Product
The Product is the actual product or solution to 
be delivered to the customer. It includes: 
Installation Artifacts such as Program 
Directory, User Manuals, Program (A program 
consists of elements such as modules, macros, 
and other types of data).
For z/OS systems, a product called System 
Modification Program Extended (SMP/E) is 
normally used to install a product, install 
changes (service, user modifications, or new 
functions) to the product and track the current 
status of each of the elements of the product. 

Release Notes
Describes a release of a solution. Release 
Notes identify changes and known bugs in a 
version of a build or deployment unit that has 
been made available for either internal or 
external use.

Release Notes and Announcement Letter
Describes a release of a solution. Highlights 
new features and enhancements. Identifies 
known bugs and troubleshooting tips in a 
version of a build or deployment unit that has 
been made available for either internal or 
external use.

Run-Time Architecture
Process architecture for the system in terms of 
active classes and their instances and the 
relationship of these to operating system 
threads and processes.

Program Modules and their relationships
A set of rules that defines how software 
operates and how to interact with the software. 
It dictates how code and data are addressed, 
the form of generated code, how applications 
are handled, and how to enable system calls. 
There are several examples of run-time 
architectures in system z, such as CICS, 
IMS™, Unix System Services, Linux/z, WAS/z, 
HTTP Server, and so forth. 

Service Model
An abstraction of the IT services implemented 
within an enterprise and supporting the 
development of one or more service-oriented 
solutions. It is used to conceive and document 
the design of the software services. It is a 
comprehensive, composite work product 
encompassing all services, providers, 
specifications, partitions, messages, 
collaborations, and the relationships between 
them. 
It is needed to: 
- Identify candidate services and capture 
decisions about which services will actually be 
exposed 
- Specify the contract between the service 
provider and the consumer of the services 
(Service Specification)
- Associate Services with the components 
needed to realize these services

Service Model
See RUP definition.

Service Component
Provide the implementation of the services 
identified within the Service Model.

Service Component
See RUP definition.

RUP terminology System z terminology 

 

 

Appendix E. Terminology mapping between IBM RUP and System z 237



 

Software Architecture Document
A comprehensive architectural overview of the 
system, using a number of different 
architectural views to depict different aspects of 
the system:

� Use-Case View
Captures architecturally significant subset 
of the requirements, including use cases.

� Logical View 
Basis for understanding the structure and 
organization of the design of the system.

� Implementation View
Captures the architectural decisions made 
for the implementation. Typically, the 
implementation view contains: an 
enumeration of all subsystems in the 
implementation model, component 
diagrams illustrating how subsystems are 
organized in layers and hierarchies, and 
illustrations of import dependencies 
between subsystems.

� Deployment View
Captures the physical distribution of the 
system across a set of processing nodes. 

� Process View
Illustrates the distribution of processing 
across a set of nodes in the system, 
including the physical distribution of 
processes and threads.

High Level Design
See definition above.

Software Development Plan
A comprehensive, composite artifact that 
gathers all information required to manage the 
project. It encloses a number of artifacts 
developed during the Inception Phase and is 
maintained throughout the project.

Project Plan
The Project Plan is a comprehensive artifact 
that gathers all information required to manage 
the project.

Task: Implement Test
This task covers the development of tests that 
can be executed. 

Task: Code Test
This task covers the development of tests that 
can be executed. 

Task: Execute Test
This task covers the execution of tests. 

Task: Implement Test
This task covers the execution of tests. 

� Test Case
A Test Case is a set of test inputs, 
execution conditions, and expected results, 
identified for the purpose of making an 
evaluation of some particular aspect of a 
target test item.

� Test Script
A Test Script is a step-by-step instruction 
that realizes a test, enabling its execution.

Test Case
Test Cases in System z refer to both RUP Test 
Cases and RUP Test Scripts.

RUP terminology System z terminology 

 

 

238 The IBM Rational Unified Process for System z



 

Test Suite
A collection of related Test Scripts. Test Scripts 
can be grouped together into Test Suites to 
perform different types of activities, such as unit 
test, integration test, system test, or 
acceptance test. 

Test Suite
Collection of related test cases. Test cases can 
be grouped together to perform different types 
of activities, such as unit test, integration test, 
system test, or acceptance test, for instance. 

Requirements
Requirements are captured in the Use-Case 
Model and Supplementary Specifications. 
The Use-Case Model is a model of the system’s 
intended functions and its environment. It 
serves as a contract between the client and the 
developers. It is used as an essential input to 
activities in analysis, design, and test. 
The Supplementary Specifications capture 
system requirements that are not readily 
captured in behavioral requirements artifacts, 
such as use-case specifications. 

Requirements Section in High Level Design 
Document or in the Software Requirements 
Specifications (SRS) Document. An SRS is a 
document that captures functional and 
nonfunctional requirements. It has a 
Requirements Traceability Matrix (RTM) that 
defines business rules for contingencies and 
responsibilities. The RTM traces requirements 
to their sources, such as a specific need, a use 
case, industry standard, or government 
regulation. 

Vision
Defines the stakeholders’ view of the product 
to be developed, specified in terms of the 
stakeholders’ key needs and features. It 
contains an outline of the envisioned core 
requirements, so it provides a contractual basis 
for the more detailed technical requirements.

Statement Of Work (SOW)
Describes the stakeholders’ view of the product 
to be developed. It outlines generally at a high 
level all work required to complete the project, 
the scope of work, deliverables, terms, and 
conditions. it provides a contractual basis for 
the more detailed technical requirements.

RUP terminology System z terminology 

 

 

Appendix E. Terminology mapping between IBM RUP and System z 239



 

 

 

 

240 The IBM Rational Unified Process for System z



 

Appendix F. Additional material

This book refers to additional material that you can download from the Internet as described 
below. 

Locating the Web material
The Web material associated with this IBM Redbooks publication is available in softcopy on 
the Internet from the IBM Redbooks publications Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG247362

and choose:

SG24-7362-00-CobolCode.zip
SG24-7362-00-EGLCode.zip
SG24-7362-00-RMCPlugin.zip
SG24-7362-00-AppendixA.zip
SG24-7362-00-AppendixB.zip
SG24-7362-00-AppendixC.zip
SG24-7362-00-AppendixD.zip

Alternatively, you can go to the IBM Redbooks publications Web site at:

ibm.com/redbooks

Select Additional materials and open the directory that corresponds with the IBM Redbooks 
publication form number, SG24-7362-00.

You can also download the RUP for System z RMC plug-in from IBM developerWorks at:

http://www.ibm.com/developerworks/rational/downloads/06/rmc_plugin7_1/

Using the Web material
The additional Web material that accompanies this book includes the following files:

F
 

 

 

© Copyright IBM Corp. 2007. All rights reserved. 241

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/developerworks/rational/downloads/06/rmc_plugin7_1/
ftp://www.redbooks.ibm.com/redbooks/SG247362


 

File name Description

SG24-7362-00-CobolCode.zip Zipped COBOL code sample for the Catalog
Manager application (Replenish Inventory use case). 

SG24-7362-00-EGLCode.zip Zipped EGL code sample for the Web interface 
of the Catalog Manager application. 

SG24-7362-00-RMCPlugin.zip Zipped RUP for System z RMC plug-in, including the 
entire RUP for System z method. The RUP for System 
z Web site can be generated out of RMC.

SG24-7362-00-AppendixA.zip Zipped Catalog Manager Case Study Inception Phase 
Work Products.

SG24-7362-00-AppendixB.zip Zipped Catalog Manager Case Study Elaboration 
Phase Work Products.

SG24-7362-00-AppendixC.zip Zipped Catalog Manager Case Study Construction 
Phase Work Products.

SG24-7362-00-AppendixD.zip Zipped Catalog Manager Case Study Transition Phase 
Work Products.

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 1 GB
Operating System: Windows® Professional 2000 or XP Professional
Processor: Pentium® 4 or higher
Memory: 2 GB or more

How to use the Web material
Create a subdirectory (folder) on your workstation and unzip the contents of the Web material 
zip file into this folder. 

 

 

 

242 The IBM Rational Unified Process for System z



 

Related publications

The publications listed in this section are considered particularly suitable for a more detailed 
discussion of the topics covered in this IBM Redbooks publication.

IBM Redbooks publications 
For information about ordering these publications, see “How to get IBM Redbooks 
publications” on page 244. Note that some of the documents referenced here might be 
available in softcopy only: 

� WebSphere Studio 5.1.2 JavaServer Faces and Service Data Objects, SG24-6361

� Exploring WebSphere Studio Enterprise Developer V5.1.2, SG24-6483

� Implementing CICS Web Services, SG24-7206

� Application Development for CICS Web Services, SG24-7126

� Implementing CICS Web Services, SG24-7206

Other publications
These publications are also relevant as further information sources:

� Per Kroll and Philippe Kruchten, The Rational Unified Process Made Easy: A 
Practitioner’s Guide to Rational Unified Process. Addison Wesley 2003.

� Per Kroll and Walker Royce, “Key principles for business-driven development,” The 
Rational Edge, October 2005:

http://www-128.ibm.com/developerworks/rational/library/oct05/kroll/index.html

� Per Kroll, “Introducing IBM Rational Method Composer,” The Rational Edge, November 
2005:

http://www-128.ibm.com/developerworks/rational/library/nov05/kroll/index.html

� Peter Haumer, “IBM Rational Method Composer (RMC): Part 1: Key Concepts,” The 
Rational Edge, December 2005:

http://www-128.ibm.com/developerworks/rational/library/dec05/haumer/

� Peter Haumer, “IBM Rational Method Composer (RMC): Part 2: Authoring Method 
Content and Processes,” The Rational Edge, January 2006:

http://www-128.ibm.com/developerworks/rational/library/jan06/haumer/

� Cécile Péraire, “A Roadmap to Method Development,” The Rational Edge, February 2007:

http://www.ibm.com/developerworks/rational/library/feb07/peraire/index.html

� Ivar Jacobson, Grady Booch, and James Rumbaugh. The Unified Software Development 
Process. Addison Wesley Longman, 1998

� Philippe Kruchten. The Rational Unified Process, An Introduction, Second Edition. 
Addison Wesley Longman. 2000

� Kurt Bittner, March 2006. “Driving Iterative Development With Use Cases”:

http://www-128.ibm.com/developerworks/rational/library/4029.html

 

 

 

© Copyright IBM Corp. 2007. All rights reserved. 243

http://www-128.ibm.com/developerworks/rational/library/oct05/kroll/index.html
http://www-128.ibm.com/developerworks/rational/library/nov05/kroll/index.html
http://www-128.ibm.com/developerworks/rational/library/dec05/haumer/
http://www-128.ibm.com/developerworks/rational/library/jan06/haumer/
http://www.ibm.com/developerworks/rational/library/feb07/peraire/index.html
http://www-128.ibm.com/developerworks/rational/library/4029.html


 

Online resources
These Web sites are also relevant as further information sources:

� IBM Rational Method Composer on the IBM Web site:

http://www.ibm.com/software/awdtools/rmc/index.html

� IBM Rational Method Composer and RUP on IBM Rational developerWorks:

http://www.ibm.com/developerworks/rational/products/rup/

� IBM Rational Method Composer (RMC) Special Interest Group (SIG) Home Page:

http://techworks.dfw.ibm.com/rational/cop.nsf/doc/RCOP-6NHT7R?OpenDocument

� IBM Rational Method Composer (RMC) Special Interest Group (SIG) Resource Guide:

http://techworks.dfw.ibm.com/rational/cop.nsf/doc/RCOP-6NHT7Z?OpenDocument

� IBM Rational Software Training - Process and Portfolio Management:

http://www-304.ibm.com/jct03001c/services/learning/ites.wss/us/en?pageType=cour
se_list&subChapter=1129&subChapterInd=S&region=us&subChapterName=Process+and+po
rtfolio+management&country=us

� Creating and consuming Web services with EGL using WebSphere Developer for zSeries:

http://www-128.ibm.com/developerworks/websphere/library/tutorials/0609_barosa.h
tml/

� V6.0.1 Tutorial Exploring Enterprise Generation Language (EGL) and learn how to write 
business logic with EGL:

http://www-128.ibm.com/developerworks/rational/products/egl/egldoc.html

� V6.0.1 EGL and Java Server Faces (JSF) component and JSP page development 
techniques:

http://www-128.ibm.com/developerworks/rational/products/egl/egldoc.html

� EGL Web Services: Create and Consume -- A how to tutorial, V6.0.1:

http://www-128.ibm.com/developerworks/rational/products/egl/egldoc.html

� EGL/JSPF Component tree access and manipulation -- A how to tutorial, V6.0.1:

http://www-128.ibm.com/developerworks/rational/products/egl/egldoc.html

� RMC V7.1 Plug-Ins on IBM developerWorks:

http://www-128.ibm.com/developerworks/rational/downloads/06/rmc_plugin7_1/

� RMC Plug-In on RUP for Maintenance Projects on IBM developerWorks:

http://www.ibm.com/developerworks/rational/downloads/06/plugins/rmc_prj_mnt/

� IBM training: PRJ350, Essentials of IBM Rational Method Composer V7.1:

http://www-304.ibm.com/jct03001c/services/learning/ites.wss/us/en?pageType=cour
se_description&courseCode=RP522

How to get IBM Redbooks publications
You can search for, view, or download IBM Redbooks publications, Redpapers, Hints and 
Tips, draft publications and Additional materials, as well as order hardcopy IBM Redbooks 
publications or CD-ROMs, at this Web site: 

ibm.com/redbooks

 

 

 

244 The IBM Rational Unified Process for System z

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/software/awdtools/rmc/index.html
http://www.ibm.com/developerworks/rational/products/rup/
http://techworks.dfw.ibm.com/rational/cop.nsf/doc/RCOP-6NHT7R?OpenDocument
http://techworks.dfw.ibm.com/rational/cop.nsf/doc/RCOP-6NHT7Z?OpenDocument
http://www-304.ibm.com/jct03001c/services/learning/ites.wss/us/en?pageType=course_list&subChapter=1129&subChapterInd=S&region=us&subChapterName=Process+and+portfolio+management&country=us
http://www-128.ibm.com/developerworks/websphere/library/tutorials/0609_barosa.html/
http://www-128.ibm.com/developerworks/rational/products/egl/egldoc.html/
http://www-128.ibm.com/developerworks/rational/products/egl/egldoc.html/
http://www-128.ibm.com/developerworks/rational/products/egl/egldoc.html/
http://www-128.ibm.com/developerworks/rational/products/egl/egldoc.html/
http://www-128.ibm.com/developerworks/rational/downloads/06/rmc_plugin7_1/
http://www.ibm.com/developerworks/rational/downloads/06/plugins/rmc_prj_mnt/
http://www-304.ibm.com/jct03001c/services/learning/ites.wss/us/en?pageType=course_description&courseCode=RP522


 

Help from IBM
IBM Support and downloads:

ibm.com/support

IBM Global Services:

ibm.com/services

 

 

 

 Related publications 245

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/


 

 

 

 

246 The IBM Rational Unified Process for System z



 

Index

A
adapt process ceremony to lifecycle phase   15
adapt the process   14–15
adapt your plans using an iterative process   17
align applications with business and user needs   15
Analysis and Design Model   235
anti-patterns   15
architect a system only to meet the needs   16
architect for resilience   17
artifact

analysis element   88
installation verification procedures (IVPs)   83
module   68

assess status in the first two thirds   17
attack major technical, business and programmatic risks 
early   17
audience

Rational Unified Process for System z   4

B
balance asset reuse with user needs   15
balance competing stakeholder priorities   14–15

anti-patterns   16
benefits   15

balance plans and estimates with level of uncertainty   15
benefits   18
benefits derived from applying the principle   14

C
case study   91
Catalog Manager application   92
Catalog Manager case study   91

concluding the Construction phase   118
concluding the Elaboration phase   105
concluding the Inception phase   95
concluding the Transition phase   120
enabling Replenish function as a web service provider 
in CICS   111
iteration one of the Construction phase - C1   107
iteration one of the Elaboration phase - E1   99
iteration one of the Transition phase - T1   120
iteration three of the Elaboration phase - E3   103
iteration two of the Construction phase - C2   109
iteration two of the Elaboration phase - E2   101
iterations in Construction   106
iterations in Elaboration   98
iterations in Inception   96
iterations in Transition   120
Rational Unified Process for System z   6
tools used in Construction   119
tools used in Elaboration   106
tools used in Inception   97
tools used in Transition   121

 

 

 

© Copyright IBM Corp. 2007. All rights reserved.
work products produced in Construction   118
Analysis Model   119
Builds for C1, C2, Beta   119
C2 and T1Iteration Plans   119
Deployment Plan   119
Design Model   119
Glossary   119
Installation Verification Procedures (IVPs)   119
Risk List   119
Service Model   119
Software Development Plan   119
Source Code   119
Supplementary Specification   119
T2 Iteration Plan   119
Test Cases including Test Scripts   119
Test Plan   119
Use Case Model including Use Case specifica-
tions   119

work products produced in Elaboration   105
Analysis Model   105
Builds for E1, E2 and E3   105
C2 Iteration Plan   105
Design Model   105
E2, E3 and C1Iteration Plans   105
Glossary   105
Installation Verification Procedures (IVPs)   105
Risk List   105
Service Model   105
Software Architecture Document   105
Software Development Plan   105
Source Code   105
Supplementary Specification   105
Test Cases including Test Scripts   105
Test Evaluation Summary   105
Test Plan   105
Use Case Model including Use Case specifica-
tions   105

work products produced in Inception   96
business case   96
Catalog Manager Test Plan   96
E1 Iteration Plan   96
glossary   96
risk list   96
software architecture document   96
software development plan   96
supplementary specification   96
use case model   96
vision   96

work products produced in Transition   121
Builds for R1 and R2   121
Design Model   121
Glossary   121
Installation Verification Procedures (IVPs)   121
Iteration Plans T2   121
Risk List   121
 247



 

Service Model   121
Source Code (Implementation Elements)   121
Test Cases   121
Test Plan   121
Test Scripts   121

Catalog Manager case study - Construction Phase Work 
Products   231
Catalog Manager case study - Elaboration Phase Work 
Products   229
Catalog Manager case study - Inception Phase Work 
Products   227
Catalog Manager case study - Transition Phase Work 
Products   233
Catalog Manager Construction phase   106
Catalog Manager Elaboration phase   97
Catalog Manager Inception phase   95
Catalog Manager iterative development process   93
Catalog Manager RUP phases   94
Catalog Manager Transition Phase   120
Choose use cases describing functionality for an area of 
the architecture not covered by another critical use case   
98
Choose use cases describing functionality that must be 
delivered   97
collaborate across teams   14, 16

anti-patterns   16
benefits   16
pattern   16

complete all unit testing before doing integration testing   
18
complete all unit testing before integration testing   18
conclusions   221
conduct in-depth peer-review of all intermediate artifacts   
18
construction essentials   58

activities   58
Code and Unit Test Components   59
Design Components   59
Integrate and Test   59
Plan the Project   60
Prepare Deployment   60
Refine Requirements   58

construction objectives   44
construction phase   23

essential activities   23
assessment of product releases against accep-
tance criteria for the vision   23
complete component development and testing 
against the defined evaluation criteria   23
resource management, control and process opti-
mization   23

milestone   24
objectives   23

achieve some degree of parallelism in the work of 
development teams   23
achieving adequate quality   23
achieving useful versions   23
completing the analysis, design, development and 
testing of all required functionality   23
decide if the software, the sites, and the users are 

all ready   23
iteratively and incrementally develop a complete 
product   23
minimizing development costs   23

construction phase overview   44
content elements   67

Rational Unified Process for System z   6
coupling between business needs and the development 
and operations of software systems   16
create a project plan specific to your project   209
create self-managed teams   16
creating a project plan   211
customize RUP for System z

Rational Unified Process for System z   7
customize the IBM Rational Unified Process for System z   
207

creating a project plan   211
how to create a project plan specific to your project   
209
identify the phase iterations, activities, and tasks to ex-
ecute   209
method development tasks   217
method development work products   213

customize the RUP for System z using RMC   212

D
Data Model   236
define, understand, and prioritize business and user 
needs   15
demonstrate value iteratively   14, 16

anti-patterns   17
benefits   16
pattern   17

Design Elements   236
Design Subsystem   236
differences between the waterfall and RUP’s iterative pro-
cess   35
document precise requirements at the outset of the 
project, force stakeholder acceptance of requirements   16

lock down requirements up-front   16
negotiate any changes to the requirements   16
primarily perform custom development   16

E
earlier insight into progress and quality   18
early risk reduction   16
EGL Web Service consumption case study   123

configure application prototype   155
construction phase   164
data formatting   160
development approach   125
elaboration phase   126
error handling   149
inception phase   126
simple response pages   164
test scenario   184
transition phase   197
Web Service invocation   126
Web Service request pages   168

 

 

 

248 The IBM Rational Unified Process for System z



 

elaboration essentials   55
activities   56

Code and Unit Test Components   57
Define Architecture   56
Design Components   56
Integrate and Test   57
Plan the Project   57
Refine Requirements   56

elaboration objectives   41
elaboration phase   21

essential activities   21
creating and baselining detailed iteration plans for 
the construction phase   21
defining, validating and baselining the architecture   
21
refining the architecture and selecting components   
21
refining the development process and putting in 
place the development environment   21
refining the vision   21

milestone   22
objectives   21

address all architecturally significant risks   21
demonstrate that the baselined architecture will 
support the requirements   21
ensure that the architecture, requirements and 
plans are stable enough   21
establish a baselined architecture   21
establish a supporting environment   21
produce an evolutionary prototype of produc-
tion-quality components   21

elaboration phase overview   41
elevate level of abstraction   14, 17

anti-patterns   17
benefits   17
pattern   17

embrace and manage change   17
enable feedback by delivering incremental user value in 
each iteration   17
encourage cross-functional collaboration   16
end-to-end lifecycle   65

Rational Unified Process for System z   6
ensure team ownership of quality for the product   18
Enterprise Generation Language   124
Enterprise Generation Language (EGL)

Rational Unified Process for System z   6
evolution of RUP for System z   35

F
focus continuously on quality   14, 17

anti-patterns   18
pattern   18

focus on architecture first   17
framework reusable method content and process building 
blocks

RUP   13
functionality is the core of the application, or it exercises 
key interfaces   97

H
have highly specialized people equipped with powerful 
tools   16
heart of RUP   13
High Level Design   235–236, 238
higher predictability throughout the project   17
higher quality   18

I
IBM Rational Clear Case   97
IBM Rational Functional Tester   121
IBM Rational Manual Tester   121
IBM Rational Method Composer   97
IBM Rational Portfolio Manager   97
IBM Rational RequisitePro   97
IBM Rational Software Architect/Modeler   97
IBM Rational Software Architect/Modeler and IBM Ratio-
nal SoDA   97
identify phase iterations, activities, and tasks to execute   
209
Implementation Model   236
improve the process continuously   15
inception essentials   54

activities   54
Conceive New Project   54
Define Requirements   54
Perform Architectural Proof-of-Concept (option-
al)   54
Plan the Project   55
Prepare Project Environment   54

inception objectives   39
inception phase   18

essential activities   19
formulating the scope of the project   19
planning and preparing a business case   19
preparing the environment for the project   19
synthesizing a candidate architecture   19

milestone   20
objectives   18

discriminating the critical use cases of the system   
18
establishing the project’s software scope   18
estimating potential risks   18
estimating the overall cost and schedule for the 
entire project   18
exhibiting, and maybe demonstrating, at least one 
candidate architecture against some of the prima-
ry scenarios   18
preparing the supporting environment   18

inception phase overview   39
increased project agility   15
incrementally build test automation   18
initial operational capability milestone   46
Installation Artifacts   236
integrate business, software, and operation teams   16
introduction   3
introduction to RUP   13
Iteration Assessment   236
Iteration Plan   236

 

 

 

 Index 249



 

iterative   33
iterative over waterfall   35

L
lifecycle   6
lifecycle architecture milestone   43
lifecycle efficiency   15
lifecycle objectives milestone   40
locating Web material   241

zipped Catalog Manager Case Study Construction 
Phase Work Products   242
zipped Catalog Manager Case Study Elaboration 
Phase Work Products   242
zipped Catalog Manager Case Study Inception Phase 
Work Products   242
zipped Catalog Manager Case Study Transition 
Phase Work Products   242
zipped COBOL code sample for the Catalog Manager 
application (Replenish Inventory use case)   242
zipped EGL code sample for the Web interface of the 
Catalog Manager application   242

Low Level Design   236

M
maintenance projects   49
manage evolving artifacts   16
marketplace for process extensions   14
method and process definition language

RUP   13
Method Authoring Tool   14
method configuration tool   14
Method delivery tool   14
method development tasks   217
method development work products   213
motivate people to perform at their best   16

N
nurture heroic developers   16

O
optimize business value   15
overview

Rational Unified Process for System z
   5

P
pattern of behavior that best embodies the principle   14
peer-review all artifacts   18
plan the whole lifecycle in detail   17
plug-in   5
principles for successful software development   14
prioritize projects and requirements and couple needs 
with software capabilities   15
process essentials   53

Rational Unified Process for System z   6
process framework

Rational Unified Process   12

Product   237
product release milestone   49
productivity   17
Program Directory   236
Program Modules and their relationships   237
Project milestones review   236
Project Plan   238
Project Schedule   236
provide effective collaborative environments   16
purpose of Rational Unified Process for System z   4

Q
quality, understandability, complexity control.   17

R
Rational Method Composer   5
Rational Method Composer (RMC)   13
Rational Unified Process   12

architecture   12
process framework   12
three central elements   13

framework of reusable method content and pro-
cess building blocks   13
method and process definition language   13
set of philosophies and principles for successful 
software development   13

Rational Unified Process for System z   4

rationale   4
audience   4
Catalog Manager case study   6
content elements   6
customize RUP for System z   7
end-to-end lifecycl   6
Enterprise Generation Language (EGL)   6
introduction   3
overview   5
process essentials   6
purpose   4
roadmap   6
RUP for System z Work Breakdown Structure (WBS)   
6
scope   5
Why RUP for System z?   5

Rational Unified Process for System z roadmap   37
rationale

Rational Unified Process for System z   4
realistic plans and estimates   15
Redbooks Web site   244

Contact us   xii
reduce custom development   15
reduce the amount of documentation produced   17
reduced complexity   17
Release Notes   237
Release Notes/Announcement Letter   237
Replenish function as a web service provider in CICS   
111

bottom-up approach   111
meet-in-the-middle-approach   111

 

 

 

250 The IBM Rational Unified Process for System z



 

top-down approach   111
Requirements   239
Requirements Section   239
reuse existing assets   17
right-size the process to project   15

complexity of the application   15
need for compliance   15
size and distribution of the project team   15

RMC   13
Rational Method Composer   5

roadmap   37
Rational Unified Process for System z   6

Run-Time Architecture   237
RUP   4

introduction   13
Rational Unified Process   4
the heart   13

RUP and its extension to Service Oriented Architecture   5
RUP and Service Oriented Architecture (SOA)   12
RUP for System z   4
RUP for System z Work Breakdown Structure (WBS)

Rational Unified Process for System z   6
RUP lifecycle   18

construction phase   23
elaboration phase   21
inception phase   18
transition phase   24

RUP principles   14

S
scope

Rational Unified Process for System z
   5

see more process and more detailed up front planning as 
better   15

develop precise plans and manage project by tracking 
against static plan   15
force early estimates stick to those estimates   15

Service Component   237
Service Model   237
Service Oriented Architecture   5, 11
service-oriented solutions   5
set philosophies and principles for successful software 
development

RUP   13
SOA

Service Oriented Architecture   5
SOA and Rational Unified Process   12
Software Architecture Document   238
Software Development Plan   238
Statement Of Work (SOW)   239

T
Task

Code Test   238
Execute Test   238
Implement Test   238

task
define installation verification procedures (IVPs)   85

implement installation verification procedures (IVPs)   
87
module design   70
service analysis   89

team productivity   16
terminology mapping between the Rational Unified Pro-
cess and System z   235
test early and continuously in step with integration of de-
monstrable capabilities   18
Test Suite   239
track variances against plan   17
transition essentials   61

activities   61
Code and Unit Test Components   61
Integrate and Test   61
Package Product   62
Perform Beta and Acceptance Test   62
Plan the Project   62

transition objectives   47
transition phase   24

essential activities   25
creating a product release   25
executing deployment plans   25
finalizing end-user support material   25
fine-tuning the product based on feedback   26
getting user feedback   26
making the product available to users   26
testing the deliverable product at the development 
site   25

objectives   25
achieving stakeholder concurrence   25
achieving user self-supportability   25
assessment of the deployment baselines   25
beta testing and parallel operation   25
beta testing to validate   25
converting operational databases   25
deployment-specific engineering   25
roll-out to the marketing, distribution and sales 
forces   25
training of users and maintainers   25

transition phase overview   47
trust among stakeholders   17
typical construction iteration   45
typical elaboration iteration   42
typical inception iteration   39
typical transition iteration   47

U
understand what assets we can leverage   15
use higher-level tools and languages   17

V
Vision   239

W
Work Breakdown Structure   201

construction phase   204
elaboration phase   203

 

 

 

 Index 251



 

inception phase   202
transition phase   205

 

 

 

252 The IBM Rational Unified Process for System z



(0.5” spine)
0.475”<

->
0.873”

250 <
->

 459 pages

The IBM
 Rational Unified Process for System

 z

The IBM
 Rational Unified Process for 

System
 z

The IBM
 Rational Unified Process 

for System
 z

The IBM
 Rational Unified Process for System

 z

 

 

 

 



The IBM
 Rational Unified Process 

for System
 z

The IBM
 Rational Unified Process 

for System
 z

 

 

 

 



 

 

 

 



®

SG24-7362-00 ISBN 073848900X

INTERNATIONAL 
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL 
INFORMATION BASED ON 
PRACTICAL EXPERIENCE

IBM Redbooks are developed 
by the IBM International 
Technical Support 
Organization. Experts from 
IBM, Customers and Partners 
from around the world create 
timely technical information 
based on realistic scenarios. 
Specific recommendations 
are provided to help you 
implement IT solutions more 
effectively in your 
environment.

For more information:
ibm.com/redbooks

The IBM Rational Unified 
Process for System z 

RUP for System z 
includes a succinct 
end-to-end process 
for z practitioners

RUP for System z 
includes many 
examples of various 
deliverables

RUP for System z is 
available as an 
RMC/RUP plug-in

Faced with the growing need for the System z development community 
to continue to produce world class quality applications, while at the 
same time precisely fulfilling user needs and demands, there is a 
requirement now more than ever before, for System z developers to 
adopt more modern and agile development principles and 
methodologies.

The IBM world renown Rational Unified Process (RUP) is a modern 
software development methodology based on proven development 
principles and current best practices.

This IBM Redbooks publication focuses on applying the very same key 
principles and best practices on which RUP is based to application 
development in the System z environment.

No matter which facet of System z application development you are 
involved with, this IBM Redbooks publication is an invaluable reference 
that describes, in System z appropriate language, the RUP for System z 
method along with elements and workflows specifically created and 
delivered for the System z environment. In addition, it provides as a 
case study example, a COBOL CICS application developed using the 
RUP for System z methodology. The case study provides you an 
iteration-by-iteration walkthrough, from requirements gathering, right 
through to analysis, design, code, testing, and deployment of the 
application.

This IBM Redbooks publication also shows you how to obtain the RUP 
for System z plug-in for the Rational Method Composer (RMC). The 
RMC plug-in allows you to publish the method as a Web site for your 
own organization’s use and to further customize the method to your 
own specific needs and preferences, if necessary.

Back cover

 

 

 

 

http://www.redbooks.ibm.com/ 
http://www.redbooks.ibm.com/ 
http://www.redbooks.ibm.com/ 

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this IBM Redbooks publication
	Become a published author
	Comments welcome

	Part 1 Introduction to the IBM Rational Unified Process for System z
	Chapter 1. Introduction
	1.1 Purpose
	1.2 Audience
	1.3 Rationale
	1.4 Scope
	1.5 Overview

	Part 2 The IBM Rational Unified Process for System z for Beginners
	Chapter 2. Introduction to the IBM Rational Unified Process and its extension to Service-Oriented Architecture
	2.1 Overview
	2.2 Introduction to RUP
	2.2.1 The heart of RUP
	2.2.2 The IBM Rational Method Composer (RMC) platform

	2.3 Key principles for successful software development
	2.3.1 Adapt the process
	2.3.2 Balance competing stakeholder priorities
	2.3.3 Collaborate across teams
	2.3.4 Demonstrate value iteratively
	2.3.5 Elevate level of abstraction
	2.3.6 Focus continuously on quality

	2.4 RUP lifecycle
	2.4.1 Inception Phase
	2.4.2 Elaboration Phase
	2.4.3 Construction Phase
	2.4.4 Transition Phase

	2.5 Developing service-oriented solutions
	2.5.1 Service Identification
	2.5.2 Service Specification
	2.5.3 Service Realization
	2.5.4 Service Model


	Chapter 3. Why the IBM Rational Unified Process for System z
	3.1 Mainframe software development: A key business capability
	3.2 System z application development: A tradition
	3.3 What is different
	3.4 Iterative compared to waterfall: Differences and benefits
	3.5 Evolution of RUP for System z

	Chapter 4. IBM Rational Unified Process for System z roadmap
	4.1 Introduction
	4.2 Inception Phase overview
	4.2.1 Inception objectives
	4.2.2 Typical inception iteration
	4.2.3 Lifecycle objectives milestone

	4.3 Elaboration Phase overview
	4.3.1 Elaboration objectives
	4.3.2 Typical elaboration iteration
	4.3.3 Lifecycle architecture milestone

	4.4 Construction Phase overview
	4.4.1 Construction objectives
	4.4.2 Typical construction iteration
	4.4.3 Initial operational capability milestone

	4.5 Transition Phase overview
	4.5.1 Transition objectives
	4.5.2 Typical transition iteration
	4.5.3 Product release milestone

	4.6 Note on maintenance projects

	Part 3 The IBM Rational Unified Process for System z for Advanced Practitioners
	Chapter 5. Process essentials
	5.1 Inception essentials
	5.2 Elaboration essentials
	5.3 Construction essentials
	5.4 Transition essentials

	Chapter 6. End-to-end lifecycle
	Chapter 7. Content elements
	7.1 Artifact: Module
	7.2 Task: Module Design
	7.3 Artifact: Installation Verification Procedures (IVPs)
	7.4 Task: Define Installation Verification Procedures (IVPs)
	7.5 Task: Implement Installation Verification Procedures (IVPs)
	7.6 Artifact: Analysis Element
	7.7 Task: Service Analysis

	Chapter 8. Catalog Manager case study
	8.1 Overview of the Catalog Manager application
	8.2 Catalog Manager iterative development process
	8.3 Catalog Manager RUP phases
	8.3.1 Catalog Manager Inception Phase
	8.3.2 Catalog Manager Elaboration Phase
	8.3.3 Catalog Manager Construction Phase
	8.3.4 Catalog Manager Transition Phase


	Chapter 9. EGL Web Service consumption case study
	9.1 Introduction to Enterprise Generation Language
	9.2 Development approach
	9.3 Inception Phase
	9.4 Elaboration Phase
	9.4.1 Web Service invocation
	9.4.2 Error handling
	9.4.3 Configure application prototype
	9.4.4 Data formatting

	9.5 Construction Phase
	9.5.1 Simple response pages
	9.5.2 Web Service request pages
	9.5.3 HTML intensive pages
	9.5.4 Test scenario

	9.6 Transition Phase
	9.7 Summary

	Part 4 IBM RUP for System z for Method Designers and Project Managers
	Chapter 10. IBM RUP for System z Work Breakdown Structure
	10.1 Inception Phase
	10.2 Elaboration Phase
	10.3 Construction Phase
	10.4 Transition Phase

	Chapter 11. How to customize the IBM Rational Unified Process for System z
	11.1 Introduction
	11.2 How to create a project plan specific to your project
	11.2.1 Identify the phase iterations, activities, and tasks to execute
	11.2.2 Creating a project plan

	11.3 How to customize the RUP for System z using RMC
	11.3.1 Method development work products
	11.3.2 Method development tasks


	Chapter 12. Conclusions
	Part 5 Appendixes
	Appendix A. Catalog Manager case study: Inception Phase Work Products
	Appendix B. Catalog Manager case study: Elaboration Phase Work Products
	Appendix C. Catalog Manager case study: Construction Phase Work Products
	Appendix D. Catalog Manager case study: Transition Phase Work Products
	Appendix E. Terminology mapping between IBM RUP and System z
	Appendix F. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material


	Related publications
	IBM Redbooks publications
	Other publications
	Online resources
	How to get IBM Redbooks publications
	Help from IBM

	Index
	Back cover


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


