Implementing OMEGAMON XE for Messaging V6.0

Implement an end-to-end Messaging monitoring solution

Experiment with real-life scenarios

Learn troubleshooting tips and best practices

Dave Cannon
Michael Greaves
John Vasquez
Mark Verplaetse
Bart Jacob

ibm.com/redbooks
Implementing OMEGAMON XE for Messaging V6.0
February 2007
Note: Before using this information and the product it supports, read the information in “Notices” on page xv.
Contents

Figures ... ix

Notices ... xv
Trademarks ... xvi

Preface .. xvii
The team that wrote this redbook xvii
Become a published author ... xviii
Comments welcome .. xix

Chapter 1. Introduction ... 1
 1.1 WebSphere MQ overview .. 2
 1.1.1 Queue managers and queues 2
 1.1.2 Channels .. 4
 1.1.3 Dead-letter queue ... 5
 1.1.4 Triggering .. 6
 1.2 WebSphere Message Broker overview 7
 1.3 WebSphere InterChange Server overview 10
 1.4 Managing messaging middleware 12
 1.5 OMEGAMON XE for Messaging overview 14
 1.6 OMEGAMON XE for Messaging and ITIL 15
 1.6.1 Service Support ... 18
 1.6.2 Service Delivery 18
 1.7 Our lab environment for the redbook 19

Chapter 2. OMEGAMON XE architecture 21
 2.1 Overview .. 22
 2.2 Terminology .. 23
 2.3 Tivoli Enterprise Portal .. 24
 2.4 Communications ... 25
 2.5 Deployment scenarios ... 25
 2.5.1 Simple deployment with no firewall 26
 2.5.2 Simple deployment with a firewall 27
 2.5.3 Complex deployment: Monitoring Server, remote Monitoring Server, and a firewall ... 30
 2.6 Scalability .. 31

Chapter 3. Installing the OMEGAMON infrastructure 33
 3.1 Planning for the installation 34
3.1.1 Business requirements ... 34
3.1.2 System requirements .. 35
3.1.3 Installation requirements for each product by platform 38
3.2 Tivoli Enterprise Monitoring and Portal Servers 42
3.3 Verifying the installation ... 46

Chapter 4. Installing and configuring WebSphere MQ agents 47
4.1 Installing IBM Tivoli OMEGAMON XE for Messaging agents on z/OS .. 48
 4.1.1 Prerequisites for configuring the component product 49
 4.1.2 Setting up the configuration environment 50
 4.1.3 Setting up the ICAT configuration environment 54
 4.1.4 Selecting a product to configure 56
 4.1.5 Creating a new runtime environment 58
4.2 Installing the WebSphere MQ agents on UNIX/Linux 127
 4.2.1 Installing Tivoli Enterprise Monitoring Agent Framework 127
 4.2.2 Installing the WebSphere MQ agents 130
 4.2.3 Configuring the WebSphere MQ agents 135
 4.2.4 Starting and stopping the WebSphere MQ agents 137
4.3 Installing the WebSphere MQ agents on Windows 139
 4.3.1 Installing the Tivoli Enterprise Monitoring Agent Framework 139
 4.3.2 Installing the WebSphere MQ agents 144
 4.3.3 Configuring the WebSphere MQ agents 150
 4.3.4 Starting and stopping the WebSphere MQ agents 153
4.4 Remote deployment from Tivoli Enterprise Portal 156

Chapter 5. Using OMEGAMON XE for Messaging to configure WebSphere MQ 159
5.1 Setting up the configuration database 161
5.2 WebSphere MQ Configuration overview 162
 5.2.1 Centralized configuration information 163
 5.2.2 A graphical representation of your configuration 163
 5.2.3 Common prototype models for creating WebSphere MQ objects .. 164
 5.2.4 Variables ... 165
 5.2.5 Managing resources from a business perspective 165
 5.2.6 Keeping your actual and defined configurations in sync 165
 5.2.7 Scheduling actions ... 166
 5.2.8 Entering WebSphere MQ commands from the Defined View 166
5.3 WebSphere MQ Configuration scenario 166
 5.3.1 Scheduling an action ... 182
 5.3.2 Connecting queue managers 185
 5.3.3 Creating resources ... 187
5.4 Audit Logging feature .. 190
 5.4.1 Audit Log reports .. 190
9.4 Documentation collection ... 352
9.5 Common issues ... 352
 9.5.1 Installation ... 352
 9.5.2 Configuration ... 353
 9.5.3 Maintenance ... 355
9.6 Miscellaneous tips and tools ... 356
 9.6.1 Mutex and shared memory cleanup 356
 9.6.2 WebSphere MQ Configuration problem determination 357

Appendix A. Tivoli Enterprise Monitoring Server and Portal Server
 installation walkthrough .. 359
Installation ... 360
Verifying the installation ... 375

Related publications .. 377
IBM Redbooks ... 377
Other publications ... 377
Online resources ... 378
How to get IBM Redbooks ... 379
Help from IBM ... 379

Index ... 381
Figures

1-1 E-mail as an analogy of WebSphere MQ ... 2
1-2 MQ application to queue manager interface and message handling 3
1-3 MQ channels .. 4
1-4 MQ triggering .. 6
1-5 WebSphere Business Integrator message handling 7
1-6 WebSphere Business Integrator publish and subscribe 8
1-7 Relationship between WebSphere Business Integrator components 9
1-8 Message Broker components ... 10
1-9 ITIL architecture ... 16
1-10 Our lab environment .. 20
2-1 Simple deployment with no firewall ... 26
2-2 Simple deployment with firewall ... 30
2-3 Complex deployment: Monitoring Server, remote Monitoring Server, and firewalls. ... 31
3-1 Selecting support features to add to Tivoli Enterprise Monitoring Server . 44
3-2 Adding Application Support to Tivoli Enterprise Monitoring Server 45
4-1 Creating a new data set ... 50
4-2 Copying the data sets using ISPF ... 51
4-3 Invoking ICAT through ISPF .. 52
4-4 Main menu .. 53
4-5 Set Up Work Environment panel. ... 54
4-6 Set up configuration environment .. 55
4-7 Set Up Configuration Environment high-level qualifiers 56
4-8 Product Selection Menu .. 57
4-9 Adding a runtime environment ... 58
4-10 Building the runtime environment ... 60
4-11 Configuring the runtime environment ... 61
4-12 Product Component Selection ... 62
4-13 Configure WebSphere MQ Monitoring .. 63
4-14 IBM Tivoli OMEGAMON XE for Messaging MQ parameters 64
4-15 Specify Default Group Configuration Parameters (1 of 2) 66
4-16 Specify Default Group Configuration Parameters (2 of 2) 68
4-17 Specify Queue-Sharing Group Configuration Parameters 70
4-18 Configure WebSphere MQ Monitoring menu 71
4-19 Specify Agent Address Space Parameters 72
4-20 Communication Selection for Monitoring Server 73
4-21 Specify Agent Primary TEMS Values .. 74
4-22 Specify Agent IP.UDP Configuration Values 75
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-18</td>
<td>Connecting queue managers</td>
<td>186</td>
</tr>
<tr>
<td>5-19</td>
<td>Creating local queue</td>
<td>188</td>
</tr>
<tr>
<td>5-20</td>
<td>Viewing the queue object</td>
<td>189</td>
</tr>
<tr>
<td>5-21</td>
<td>Audit Log workspace</td>
<td>191</td>
</tr>
<tr>
<td>5-22</td>
<td>Audit Log</td>
<td>191</td>
</tr>
<tr>
<td>5-23</td>
<td>Selecting log</td>
<td>192</td>
</tr>
<tr>
<td>5-24</td>
<td>Detailed report</td>
<td>192</td>
</tr>
<tr>
<td>5-25</td>
<td>Backup Configuration Database</td>
<td>194</td>
</tr>
<tr>
<td>6-1</td>
<td>Application monitoring example</td>
<td>200</td>
</tr>
<tr>
<td>6-2</td>
<td>Monitoring points for applications</td>
<td>203</td>
</tr>
<tr>
<td>6-3</td>
<td>Configure managed system</td>
<td>207</td>
</tr>
<tr>
<td>6-4</td>
<td>Configure Managed System details</td>
<td>208</td>
</tr>
<tr>
<td>6-5</td>
<td>WebSphere MQ Agent workspaces within the Navigator</td>
<td>211</td>
</tr>
<tr>
<td>6-6</td>
<td>Queue manager setup (Part 1)</td>
<td>217</td>
</tr>
<tr>
<td>6-7</td>
<td>Queue manager setup (Part 2)</td>
<td>218</td>
</tr>
<tr>
<td>6-8</td>
<td>Product-provided situations</td>
<td>219</td>
</tr>
<tr>
<td>6-9</td>
<td>MQSeries_Queue_Manager_Problem situation</td>
<td>221</td>
</tr>
<tr>
<td>6-10</td>
<td>WebSphere queue manager problem alert</td>
<td>222</td>
</tr>
<tr>
<td>6-11</td>
<td>Alert acknowledgement</td>
<td>223</td>
</tr>
<tr>
<td>6-12</td>
<td>Setting alert acknowledgement time frame</td>
<td>224</td>
</tr>
<tr>
<td>6-13</td>
<td>Alert in Acknowledged status</td>
<td>225</td>
</tr>
<tr>
<td>6-14</td>
<td>Queue Full MQ Event</td>
<td>227</td>
</tr>
<tr>
<td>6-15</td>
<td>Predefined MQSeries_Queue_Full situation</td>
<td>228</td>
</tr>
<tr>
<td>6-16</td>
<td>Queue Statistics workspace</td>
<td>229</td>
</tr>
<tr>
<td>6-17</td>
<td>Recent Queue Statistics link</td>
<td>230</td>
</tr>
<tr>
<td>6-18</td>
<td>Create Queue Situation</td>
<td>232</td>
</tr>
<tr>
<td>6-19</td>
<td>Create Situation</td>
<td>233</td>
</tr>
<tr>
<td>6-20</td>
<td>Select condition</td>
<td>233</td>
</tr>
<tr>
<td>6-21</td>
<td>Situation attributes</td>
<td>234</td>
</tr>
<tr>
<td>6-22</td>
<td>Situation Distribution</td>
<td>235</td>
</tr>
<tr>
<td>6-23</td>
<td>Dead-letter queue alert</td>
<td>236</td>
</tr>
<tr>
<td>6-24</td>
<td>Dead-Letter Queue Messages workspace</td>
<td>237</td>
</tr>
<tr>
<td>6-25</td>
<td>Dead-letter queue options</td>
<td>238</td>
</tr>
<tr>
<td>6-26</td>
<td>Create Listener Situation</td>
<td>239</td>
</tr>
<tr>
<td>6-27</td>
<td>Listener Situation conditions</td>
<td>240</td>
</tr>
<tr>
<td>6-28</td>
<td>Missing Item List</td>
<td>241</td>
</tr>
<tr>
<td>6-29</td>
<td>Channel Performance workspace</td>
<td>243</td>
</tr>
<tr>
<td>6-30</td>
<td>Take Action</td>
<td>244</td>
</tr>
<tr>
<td>6-31</td>
<td>Start Channel Take Action</td>
<td>245</td>
</tr>
<tr>
<td>6-32</td>
<td>Application Accounting workspace</td>
<td>247</td>
</tr>
<tr>
<td>6-33</td>
<td>Plot Chart creation</td>
<td>248</td>
</tr>
<tr>
<td>6-34</td>
<td>Select attribute</td>
<td>249</td>
</tr>
<tr>
<td>6-35</td>
<td>Open count plot chart</td>
<td>249</td>
</tr>
</tbody>
</table>
Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United States, other countries, or both:

AIX 5L™, AIX®, Candle®, CICS®, DB2 Universal Database™, DB2®, IBM®, IMS™, Language Environment®, MQSeries®, MVS/ESA™, OMEGAMON®, OS/400®, RACF®, Redbooks (logo)™, Redbooks™, S/390®, Tivoli Management Environment®, Tivoli®, VTAM®, WebSphere®, z/OS®, zSeries®

The following terms are trademarks of other companies:

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its affiliates.

ITIL is a registered trademark, and a registered community trademark of the Office of Government Commerce, and is registered in the U.S. Patent and Trademark Office.

Java, JRE, J2EE, Solaris, Sun, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, MS-DOS, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
Preface

IBM® Tivoli® OMEGAMON® XE for Messaging Version 6.0 is a follow-on product to IBM Tivoli for OMEGAMON XE for WebSphere® Business Integration. It provides the capability to manage IBM WebSphere MQ, WebSphere Message Broker, and WebSphere InterChange Server environments from a single console. It supports distributed and mainframe systems and provides an end-to-end view across all systems. It analyzes application performance and identifies slowdowns and monitors message rates, brokers, message flows, and subflows.

This IBM Redbook describes the installation, configuration, and troubleshooting of IBM Tivoli OMEGAMON XE for Messaging on Microsoft® Windows®, IBM AIX® 5L™, Linux®, and IBM z/OS® platforms. We also describe the OMEGAMON framework architecture with typical deployment scenarios, best practices, and scalability considerations.

This book is an update to Implementing IBM Tivoli OMEGAMON XE for WebSphere Business Integration V1.1, SG24-6768.

This book is essential reading for IT specialists who will implement IBM Tivoli OMEGAMON XE for Messaging.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world working at the International Technical Support Organization, Austin Center.

Dave Cannon is a Senior Consulting IT Specialist at IBM Corp - Tivoli Performance Automation Group, McLean, VA. He has been involved in and instrumental in the success of many IBM messaging middleware implementations worldwide. He has more than 20 years of experience in architecting and building complex distributed systems on a variety of platforms, predominately z/OS, Windows, and UNIX® based. He has extensive experience in the OMEGAMON monitoring software, specifically for WebSphere MQ and WebSphere Broker. He hold several IBM WebSphere MQ certifications at both the administration and application development levels.
Michael Greaves is a Senior Technical Infrastructure Developer at HBOS plc in the U.K. He has three years of experience in WebSphere MQ design, development, implementation, and administration and is a certified IBM WebSphere MQ Administrator. He holds an Economics degree from Leeds University.

John Vasquez is a Senior Software Engineer working in IBM Tivoli Customer Support in Los Angeles, CA. He joined IBM in 2003 and previously worked with Candle® Corporation for seven years in the development and support of the OMEGAMON monitoring products. He has more than 10 years experience in systems management and distributed platform software. John is an IBM Tivoli Certified Professional and is certified in Information Technology Infrastructure Library (ITIL®).

Mark Verplaetse has been working in WebSphere MQ and Message Broker management for more than 10 years. He has worked as Product Manager and Market Manager for OMEGAMON for Messaging, responsible for many of the requirements in this product. Mark has advised many IBM customers in the proper use of monitoring messaging infrastructures and applications. He is a regular speaker at IBM and Tivoli conferences.

Bart Jacob is a Senior Consulting IT Specialist at IBM Corporation - International Technical Support Organization, Austin Center. He has more than 25 years of experience providing technical support across a variety of IBM products and technologies, including communications, object-oriented software development, and systems management. He has more than 14 years of experience at the ITSO, where he has been writing IBM Redbooks™ and creating and teaching workshops around the world on a variety of topics. He holds a master’s degree in Numerical Analysis from Syracuse University.

Thanks to the following person for his contributions to this project:

Budi Darmawan
International Technical Support Organization, Austin Center

Become a published author

Join us for a two- to six-week residency program! Help write an IBM Redbook dealing with specific products or solutions, while getting hands-on experience with leading-edge technologies. You will have the opportunity to team with IBM technical professionals, Business Partners, and Clients.
Your efforts will help increase product acceptance and customer satisfaction. As a bonus, you'll develop a network of contacts in IBM development labs, and increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments about this or other Redbooks in one of the following ways:

- Use the online **Contact us** review redbook form found at:

 ibm.com/redbooks

- Send your comments in an e-mail to:

 redbooks@us.ibm.com

- Mail your comments to:

 IBM Corporation, International Technical Support Organization
 Dept. HYTD Mail Station P099
 2455 South Road
 Poughkeepsie, NY 12601-5400
Chapter 1. Introduction

In this chapter, we first provide a high-level technical overview of the IBM WebSphere MQ, WebSphere Message Broker, WebSphere InterChange Server, and IBM Tivoli OMEGAMON XE for Messaging products. Next, we discuss the benefits of managing your WebSphere MQ environment. Finally, we describe the IBM Tivoli OMEGAMON XE for Messaging relationship to Information Technology Infrastructure Library (ITIL).

In this chapter, we discuss the following topics:

- WebSphere MQ overview
- WebSphere Message Broker overview
- WebSphere InterChange Server overview
- Managing messaging middleware
- OMEGAMON XE for Messaging overview
- OMEGAMON XE for Messaging and ITIL
- Our lab environment for the redbook
1.1 WebSphere MQ overview

WebSphere MQ (MQ) is essentially a transport mechanism. It is a courier service for interapplication messages that does not require the communicating applications to be running at the same time, does not require them to be aware of each other's operating environment, and is communication protocol neutral.¹

Consider this analogy: An e-mail system allows two people to send and receive messages between different systems without the need for each person to be sitting at their computer waiting for the message. It differs from a phone call (and instant messaging) in that it is asynchronous; it uses a store and forward mechanism, as shown in Figure 1-1.

![Figure 1-1 E-mail as an analogy of WebSphere MQ](image)

In Figure 1-1, the person using the e-mail client attached to system A sends a message that is stored by the e-mail server on their local system until it can establish communication with the e-mail server on system B. Then, the message is forwarded and stored by the e-mail server on system B. When the user running the e-mail client attached to system B requests the message, it is retrieved from the storage on system B.

1.1.1 Queue managers and queues

Unlike point-to-point, application-to-application communication mechanisms (such as the Advanced Program-to-Program Communication, or APPC, interface), WebSphere MQ uses queues to store messages temporarily as they are being passed from one place to another. Each system that supports MQ has

¹ Some of the material in this chapter is based on a white paper called “IBM Tivoli OMEGAMON XE for WebSphere Business Integration”, written by Robin Wiley, and an OMEGAMON XE for WebSphere Business Integrator presentation created by Mark Verplaetse.
a *queue manager* running that handles the interface to the application program and the interface with other queue managers in order to propagate messages successfully. It is possible to have a network of several queue managers all communicating with each other and passing messages, from one to another, that are destined for delivery to applications attached to other queue managers elsewhere in the network. Figure 1-2 illustrates this concept.

![Diagram of MQ application to queue manager interface and message handling](image)

In Figure 1-2, application A sends two messages: the first to queue X, and the other to queue Y. It does this by communicating with the queue manager on its local system (queue manager 1) using a mechanism called the *Message Queue Interface* (MQI). There are MQI stubs available for most programming languages on most operating environments.

In this example, queue manager 1 passes both messages to queue manager 2, which recognizes the first message as being addressed to queue X, which is under its control and stores it there. Queue manager 2 then resolves the address of the second message and routes it to queue manager 3, which stores it on queue Y.

Sometime later, applications B and C ask their respective queue managers to retrieve the messages from queues X and Y. In any MQ environment, the phrase *sometime later* can mean milliseconds, minutes, hours, or days.
Clearly in this example, the health of the two queue managers is a key monitoring requirement. The number of messages on the respective application queues is also a key metric to measure, as is the application's interaction with the WebSphere MQ infrastructure. Chapter 6, “Monitoring WebSphere MQ” on page 197 provides a detailed analysis of the key components in a WebSphere MQ infrastructure and how best to monitor them. However, even this very simple example illustrates the fact that understanding an application’s requirements of, and interaction with, WebSphere MQ is key to tailoring a monitoring solution.

1.1.2 Channels

The way the queue managers communicate with each other is through *channels*, which are unidirectional communication links between systems. This is illustrated in Figure 1-3.

![Figure 1-3 MQ channels](image)

In Figure 1-3, queue manager QMA has some messages it has stored that are ready to send to queue manager QMB. These messages are stored in a special queue called a *transmission queue*. A dedicated application called a sender message channel agent (MCA) monitors the transmission queue and, when it
finds messages ready to be sent, initiates a communication session with a partner receiver MCA on the destination system.

After the communication link is established, the sender MCA reads the messages from the transmission queue and sends them through the communication link to the receiver MCA, which stores the messages on the appropriate application queues and is ready for the receiving applications to get and process them.

Monitoring the health of WebSphere MQ channels is a common requirement in any WebSphere MQ infrastructure. If channels are not communicating, messages might not reach target applications within the required time frame and this might translate to lost business.

1.1.3 Dead-letter queue

In the previous illustration, if the receiver MCA was unable to successfully deliver the message to the nominated application queue, it places the message instead into a *dead-letter queue* (DLQ). A DLQ is a special local queue set aside to receive undeliverable messages. The reasons why a message might not be delivered include: The queue name is spelled incorrectly, the queue is full, the message is too big for queue, and so on.

Unlike the application queues mentioned earlier, the DLQ is an example of an infrastructure queue. Monitoring the depth of the DLQ or whether it is open for input can prove to be a key tool in early problem detection.
1.1.4 Triggering

Within MQ, there is a mechanism that allows an application to be triggered when a message arrives on a nominated queue. The mechanism is illustrated in Figure 1-4.

A sending application places a message onto a specific application queue that has been defined as having trigger parameters. When this happens, the queue manager constructs a separate trigger message that is placed on a separate, dedicated *initiation queue*. A dedicated system application called a *trigger monitor* watches the initiation queue and reads the trigger message, which contains the name of the application to be triggered, along with some parameters to be passed to the triggered application. The trigger monitor starts the triggered application running, which in turn opens the original application queue and reads the message from it that caused the trigger to occur.

Note: For more information about WebSphere MQ, refer to *MQSeries Primer*, REDP-0021.
1.2 WebSphere Message Broker overview

At its simplest level, WebSphere Message Broker processes messages on MQ queues and provides the following functions:

- **Message transformation**: This is the main purpose for which most people use WebSphere Message Broker. It can restructure a message from practically any format to any other. For example, you can have a COBOL application that sends messages with fixed-length fields and have WebSphere Message Broker reformat it into XML that will be processed by a Java™ application.

- **Content-based message routing**: This feature allows WebSphere Message Broker to examine the contents of messages and make decisions such as to which queues to send them.

Message transformation and content-based message routing functions are depicted in Figure 1-5.

![Figure 1-5](image-url)
Publish and subscribe: This is a message distribution architecture that uncouples the sending and receiving applications. Essentially, *publisher applications* send messages with an attached *topic* to a queue being monitored by the WebSphere Message Broker. The broker then analyzes the messages and automatically distributes them to *subscriber applications*, that have previously advertised their interest in certain topics. The publish and subscribe mechanism is depicted in Figure 1-6.

![Figure 1-6 WebSphere Business Integrator publish and subscribe](image)
The WebSphere Message Broker system is implemented as a series of message brokers running on different platforms. A group of related message brokers are collectively called a domain and are controlled by a single configuration manager that maintains parameters and configuration status for all brokers under its control. Users and administrators interact with the configuration manager through a desktop toolkit based on Eclipse running as shown in Figure 1-7.

Figure 1-7 Relationship between WebSphere Business Integrator components
Functions to be performed by the broker are coded as *message flows* by developers using the Eclipse Toolkit, and then transferred to the configuration manager, which in turn downloads the parameters to the broker for execution. Message flows are assigned to an execution group that controls the allocation of resources to each message flow. The broker communicates with MQ to get and put messages from and to queues as required by the message flows. This is illustrated in Figure 1-8.

![Message Broker components](image)

Figure 1-8 Message Broker components

1.3 WebSphere InterChange Server overview

WebSphere InterChange Server provides a distributed infrastructure for solving cross-application problems, including the capability to:

- Move business information among diverse sources to perform business exchanges across the Internet
- Process and route business information among disparate applications in the enterprise environment
The IBM WebSphere InterChange Server system uses a central infrastructure (InterChange Server) and modular components in a hub-and-spoke design, as follows:

- Business-process logic resides in InterChange Server **collaborations** at the hub. InterChange Server collaborations are software modules that contain logic that describes a distributed business process. There are different collaborations for different fundamental business processes, for example, a ContactManager collaboration or an InventoryMovement collaboration. Collaborations coordinate the functionality of business processes for disparate applications and enable data exchange between them. Collaborations are the hub; through them, data is exchanged in the form of business objects.

- Data is exchanged between the hub and the spokes in the form of **business objects**. Business objects are the messages used by the IBM WebSphere InterChange Server system for exchanging data. **Data handlers** are used to transform serial application data into business objects, and maps are used between a business object that is structured for the data model of a specific application and a business object that is generically structured for use by collaborations at the hub.

- Application and technology **connectors** supply connectivity to applications (or to Web servers or other programmatic entities) at the spokes. Connectors can be configured to interact either within a network, or across the Internet and beyond firewalls. Each connector consists of two parts: the **connector controller** and the **connector agent**. The connector controller interacts directly with WebSphere InterChange Server collaboration objects and resides on a server that has implemented the IBM WebSphere InterChange Server system (the hub in a hub-and-spoke relationship). The connector agent interacts directly with an application, and can reside with that application on any server. **Remote agent technology** can be used to implement communication between a connector controller at a hub site and an agent that resides at another site across the Internet. Some connectors are designed to interact with specific applications. Other connectors (such as the XML connector) are designed for interactions that conform to specific technology standards.

- The Server Access Interface makes it possible for remote spoke sites that do not implement WebSphere InterChange Server to use access clients, which make calls over the Internet to a hub site that does have InterChange Server. The Server Access Interface is a CORBA-compliant API that accepts synchronous data transfers from either internally networked or external sources. The data is then transformed into business objects that can be manipulated by a collaboration. The Server Access Interface makes it possible to receive calls from external entities, for example, from Web browsers at remote customer sites, that do not come through connector
agents, but instead come through Web servlets into the Server Access Interface.

This book does not cover managing the WebSphere InterChange Server in great detail. However, we provide a short chapter (see Chapter 8, “Monitoring WebSphere Interchange Server” on page 319) that describes some capabilities in this area.

1.4 Managing messaging middleware

Given the increased complexity of e-business infrastructures, intelligent performance and availability management tools are essential for proactive identification and resolution of IT problems before they impact business performance. These tools enable companies to cost effectively monitor individual resource performance while simultaneously ensuring availability across heterogeneous operating environments. Ensuring peak performance and availability helps companies meet and exceed both internal and external service level agreements and reduce total cost of ownership.

Business processes are increasingly dependent on multi-tier composite applications that use business logic and data from multiple resources: Web servers, Java 2 Platform, Enterprise Edition (J2EE™) application servers, integration middleware, and existing systems. As we build new applications and connect to existing applications, transport and mediation across multiple systems must be monitored, configured, and managed to ensure the best possible performing applications. These must be actively managed to support the business. Using traditional tools, these problems are often not even identified until a client complains.

As transactions move from the synchronous nature of the customer-facing application to the asynchronous world of messaging and workflow, tracking business transactions across these composite applications and managing them become even more difficult.

We examine a simple scenario about how Tivoli Monitoring tools help in managing your middleware. Consider Table 1-1 on page 13 a business infrastructure you are managing and problem management with and without Tivoli Monitoring tools.
Table 1-1 Proactive management offered by Tivoli Monitoring tools

<table>
<thead>
<tr>
<th>Process step</th>
<th>How it typically works</th>
<th>IT organization</th>
<th>What Tivoli monitoring solutions enable a client to do</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sense</td>
<td>The help desk is bombarded with calls reporting that purchased items are not shipped after 30 days. IT staff members are paged and emergency meetings are called.</td>
<td>Help desk</td>
<td>Monitoring tools proactively identify the middleware hitches or slowdown in message flow, and route the problem to the correct support person.</td>
</tr>
<tr>
<td>Isolate</td>
<td>In a meeting, the available representatives from the different silos work to determine which assets are causing the problem.</td>
<td>IT operations team</td>
<td>The support person uses resource and transaction-level tools to identify the asset where the problem is occurring.</td>
</tr>
<tr>
<td>Diagnose</td>
<td>The appropriate silo experts test the specific assets that cause the problem to determine which silo is responsible (if the problem falls in between silos, this step becomes more difficult.). The “isolate” and “diagnose” steps are repeated until the root cause is found.</td>
<td>Network operations center</td>
<td>Using interoperable tools and detailed analysis capabilities, the support person drills down seamlessly to pinpoint the root cause.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Database administrators</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Application server administrator</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Application development team</td>
<td></td>
</tr>
<tr>
<td>Take action</td>
<td>The responsible silo expert determines, plans, and implements a course of action to resolve the problem.</td>
<td>Application development team</td>
<td>Still using the same console, the support person triggers another seamlessly integrated tool to take an automated, best practice action. Changes might include creating more threads or provisioning, configuring, and deploying more server capacity. If the support person lacks the skills to resolve the problem, tools route the problem to a domain expert and enable that expert to work on the problem in the exact context where the support person left off.</td>
</tr>
</tbody>
</table>
The proactive management of your business infrastructure helps in:

- Minimizing downtime of your business services
- Efficient utilization of resources
- Capacity planning for On Demand Business environments and the inventory of your business infrastructure
- Problem determination and isolation in a short amount of time
- Ability to develop, test, and deploy your middleware infrastructure
- Monitoring and alerting options that can be customized to suite your needs

Do not forget that you cannot manage what you do not measure.

1.5 OMEGAMON XE for Messaging overview

IBM Tivoli OMEGAMON XE for Messaging Version 6.0 is the new name for, and follow-on version to, IBM Tivoli OMEGAMON XE for WebSphere Business Integration V1.1.0. OMEGAMON XE for Messaging incorporates a number of new product features that we discuss throughout this book. OMEGAMON XE for Messaging takes advantage of the features offered by IBM Tivoli Monitoring V6.1.

IBM Tivoli OMEGAMON XE for Messaging helps to manage and configure your WebSphere MQ, Message Broker, and InterChange Server environments. These solutions provide the most comprehensive suite of tools to manage the performance, connectivity, and configuration of your environment. This enables you to gain an understanding of your environment and determine when your applications are not performing properly. You will then be able to take corrective action to alleviate these problems.

IBM Tivoli Performance and Availability Management products provide the central nervous system for complicated business landscapes: They constantly gather information about hardware, software, and network devices, and, in many cases, cure problems before they actually occur. IBM Tivoli availability products monitor business at the component, business system, and enterprise levels. This
technology identifies critical problems, as well as misleading symptoms, and then either notifies support staff with the appropriate response, or automatically cures the problems, which decreases operating costs and improves staff efficiency.

The out-of-the-box capabilities of IBM Tivoli OMEGAMON XE for Messaging provide auto-discovery and monitoring of these complex environments, providing rapid time to value, ease of use, and improved product quality. Additionally, it identifies common problems and automates corrective actions by monitoring key WebSphere MQ, WebSphere Message Broker, and WebSphere InterChange Server metrics. It sends event notification and provides data collection for real-time and historical data analysis, thus reducing administration costs and maximizing return on investment with increased efficiency of the IT staff.

Before implementing monitoring in a messaging infrastructure, it is vitally important to gain an understanding of what the infrastructure means to the business that it supports. To ensure that the maximum benefit is derived from OMEGAMON XE for Messaging, a requirements gathering exercise needs to be performed with business area application developers and other interested parties. The output of the requirements exercise should be an understanding of how the different components of the applications rely on and interact with the WebSphere MQ, WebSphere Message Broker and WebSphere InterChangeServer infrastructure. After this has been established, monitoring can be configured and tuned accordingly to maximize its ability to support critical business systems. This also means resource utilization is targeted at the right areas.

1.6 OMEGAMON XE for Messaging and ITIL

Information Technology Infrastructure Library (ITIL) is the only comprehensive, non-proprietary source of service management best practices that is publicly available. It was originally created by Office of Government Commerce in United Kingdom, but has rapidly been adopted across the world as the guidelines for best practices in the provision of IT service.

The main focus of IT Service Management is divided into two main areas, Service Support and Service Delivery, and contains an integrated set of well-documented processes including, among others:

- Service Support
 - Service Desk
 - Incident Management
 - Problem Management
 - Change Management
 - Release Management
In recent years, it has become increasingly recognized that information is the most important strategic resource that any organization has to manage. Key to the collection, analysis, production, and distribution of information within an organization is the quality of the Information Communication Technology (ICT) systems and IT services provided to the business. It is essential that we recognize that ICT systems are crucial, strategic, and organizational assets, and
therefore, organizations must invest appropriate levels of resources into the support, delivery, and management of these critical IT services and the ICT systems that underpin them. However, these aspects of IT are often overlooked or only superficially addressed within many organizations. The key issues facing many of today’s senior business managers and IT managers are:

- IT and business strategic planning
- Integrating and aligning IT and business goals
- Acquiring and retaining the right resources and skill sets
- Implementing continuous improvement
- Measuring IT organization effectiveness and efficiency
- Reducing costs and the total cost of ownership (TCO)
- Achieving and demonstrating value for money (VFM) and return on investment (ROI)
- Demonstrating the business value of IT
- Developing business and IT partnerships and relationships
- Improving project delivery success
- Outsourcing, in-sourcing, and smart sourcing
- Using IT to gain competitive advantage
- Delivering the required, business justified IT services (that is, delivering what is required, when required, and at an agreed cost)
- Managing constant business and IT change
- Following the sun and offshore operations
- Demonstrating appropriate IT governance

The challenges for IT managers are to coordinate and work in partnership with the business to deliver high quality IT services. This has to be achieved while reducing the overall TCO and often increasing the frequency, complexity, and volume of change. The main method of realizing this goal is the operation of effective processes and the provision of appropriate, value for money services. To achieve this, the correct processes need to be developed and implemented with built-in assessment and improvement mechanisms.

OMEGAMON XE for Messaging addresses ITIL Services Management areas to help align IT with the requirements of the business, as described in the following sections.
1.6.1 Service Support

Tivoli OMEGAMON XE for Messaging can be used in the following ITIL Service Support processes:

- Problem Management: OMEGAMON XE for Messaging provides for problem isolation in order to turn incidents into known errors. OMEGAMON XE for Messaging provides the capabilities of high level monitoring and alerting, the ability to deep dive into specific OMEGAMON XE for Messaging resources in order to understand where WebSphere MQ and the Message Broker have problems, and the ability to automate responses to fix issues before they become problems lead to effective resolution of problems.

- Release Management: The WebSphere MQ Configuration tool that is part of OMEGAMON XE for Messaging helps define and deploy WebSphere MQ configurations. The WebSphere MQ Configuration database will be able to make changes to queue manager's configuration, verify them, and then stage them for deployment. The database will be backed up in case a restoration is necessary.

- Configuration Management: While not necessarily a component of Configuration Management, OMEGAMON XE for Messaging can provide input to the configuration management database (CMDB) to inventory the queue managers and the objects associated with the queue managers, should this level of detail be required. This information will help feed information change management.

1.6.2 Service Delivery

Tivoli OMEGAMON XE for Messaging addresses or can be used in the following ITIL Services Delivery processes:

- Service Level Management: It is important to retrieve information from OMEGAMON XE for Messaging as input into the service level agreement (SLA). Information here will determine a baseline for response times and message throughput to help draw up the SLA.

- Availability Management: It is important to understand the availability of messaging components and message brokers. OMEGAMON XE for Messaging constantly monitors the availability of these components that will feed into the Availability Management function.
Capacity Management: When monitoring messaging components, it is important to understand the throughput of individual messaging components. This will help us to draw baselines for normal operations and then help plan for peak periods. Trending these results and planning growth based on this input will help determine capacity for the future, and plan for this capacity to be available.

IT Service Continuity Management: OMEGAMON XE for Messaging provides input into the disaster planning process by creating a centrally located backup of the WebSphere MQ configuration of any queue manager in the enterprise. This will facilitate in restoring service for applications affected by service outages.

1.7 Our lab environment for the redbook

For the purposes of this redbook and the examples we provide in later chapters, we installed the following products to manage through OMEGAMON XE for Messaging:

- On Microsoft Windows:
 - WebSphere MQ
 - WebSphere Message Broker
 - WebSphere InterChange Server

- On IBM AIX 5L:
 - WebSphere MQ

- On Linux:
 - WebSphere MQ

- On IBM z/OS:
 - WebSphere MQ

Our OMEGAMON XE for Messaging environment consists of a Tivoli Enterprise™ Monitoring Server on a Windows 2003 system, a Tivoli Enterprise Portal Server on a Windows 2000 system, and several agents on Windows, AIX 5L, Linux, and z/OS platforms. Figure 1-10 on page 20 represents our environment.
In this book, we do not describe the installation of WebSphere MQ, WebSphere Message Broker, and WebSphere InterChange Server products, because we assume that readers are familiar with these products.
OMEGAMON XE architecture

This chapter discusses the deployment of an OMEGAMON XE/DE architecture in a distributed computing environment. It is important to know the best practices for deploying an OMEGAMON XE/DE architecture to successfully implement an IBM Tivoli OMEGAMON XE for Messaging solution in your environment.
2.1 Overview

Although this redbook focuses on OMEGAMON XE for Messaging, it helpful to first understand the OMEGAMON XE architecture.

We discuss the installation and placement of the Tivoli Enterprise Monitoring Server, Tivoli Enterprise Portal, database integration, and Tivoli's built-in Web server, and how to manage devices in DMZs through corporate firewalls.

Let us clarify one thing at this time: The OMEGAMON designations of XE and DE are simple. The OMEGAMON XE product is the base product that everyone starts with when they install a Tivoli Enterprise Monitoring Server. OMEGAMON DE allows the defining of business views rather than just physical views as given in XE. It also allows more combining and linking of data provided by totally different components monitored by different types of agents.

More specifically, OMEGAMON DE extends the capabilities of OMEGAMON XE to include:

- Enterprise-specific navigator views

 The navigator physical view shows the hierarchy of your managed enterprise by operating platform and type of IBM Tivoli OMEGAMON XE agents. The navigator business view offered by OMEGAMON DE shows the hierarchy of any managed objects. You can also define navigator views for any logical grouping, such as a business process or a departmental hierarchy.

- Views of data from different types of monitoring agents in one workspace

 In a single workspace, you can build a table or chart with data from one type of monitoring agent, and another table or chart with data from a different type of agent. Within that workspace, you can show views from as many different agent types as are included on that branch of the navigator.

- Linking application workspaces

 You can define a link from a workspace associated with one type of monitoring agent to a workspace associated with another type of agent. You will understand these additional capabilities better as you follow the example scenarios given throughout this book.
2.2 Terminology

Note: This product was originally acquired from Candle Corporation and many components had Candle as part of their names. During the integration with IBM, most of these have been removed. However, there might still be a few artifacts remaining where the term Candle is still visible.

Note the following OMEGAMON terminology:

- **Tivoli Enterprise Monitoring Server**
 Tivoli Enterprise Monitoring Server gathers data from the OMEGAMON XE agents and acts as a collection and control point for alerts received from the agents. The Tivoli Enterprise Monitoring Server sends the data it receives from the agents to Tivoli Enterprise Portal clients, where it is displayed in tabular or graphic views in a set of predefined or customized workspaces. The Monitoring Server also accepts requests for information or action from Tivoli Enterprise Portal clients and distributes them to the agents for execution.

- **Hub Tivoli Enterprise Monitoring Server (hub Monitoring Server)**
 In scalability solutions, the hub Tivoli Enterprise Monitoring Server communicates with agents and the remote Tivoli Enterprise Monitoring Server, Tivoli Enterprise Portal Server, and warehouse agent.

- **Remote Tivoli Enterprise Monitoring Server (remote Monitoring Server)**
 In large environments, to improve scalability it might be necessary to balance the network loads and configure some agents to connect to remote Tivoli Enterprise Monitoring Servers rather than directly to a primary Tivoli Enterprise Monitoring Server. Too many agents directly connecting to the primary Monitoring Server might cause network traffic congestion.

- **Tivoli Enterprise Portal**
 Tivoli Enterprise Portal is the Java-based interface to the data monitoring and management resources of the OMEGAMON platform. Depending on how it is installed, Tivoli Enterprise Portal can be used as either a desktop or browser-based client.

- **Tivoli Enterprise Portal Server**
 The Tivoli Enterprise Portal Server performs common Tivoli Enterprise Portal functions and serves to lighten the Tivoli Enterprise Portal client.

- **Agent**
 Agents are the processes that collect data on a managed device and return it to the Tivoli Enterprise Monitoring Server or remote Monitoring Server for processing.
Situation
A situation is a logical expression involving one or more system conditions used to monitor the condition of systems in your enterprise network. You can manage situations from Tivoli Enterprise Portal by using the Situation Editor.

Event
Also called an alert. An event is a notification to a console for either manual or automatic actions. Note that in the case of situation firing, you also get an event, but this is for detection only, not for any action.

Warehouse agent
The warehouse agent or warehouse agent proxy takes data from the Tivoli Enterprise Monitoring Server and inserts it into a data warehouse. Supported databases for the warehouse are Microsoft SQL Server, Oracle®, and IBM DB2®. Specific versions of each database vary by version of the OMEGAMON warehouse agent proxy.

2.3 Tivoli Enterprise Portal

The user interface for OMEGAMON XE for Messaging is provided through Tivoli Enterprise Portal. This section provides a high-level overview of this component.

Tivoli Enterprise Portal is the interface for your OMEGAMON XE products. You use Tivoli Enterprise Portal to get a high level overview of your network environment. One section of the window displays the Navigator, a tree-like view of your monitored network, from the top level (ENTERPRISE) down to individual groupings of information collected by Tivoli Enterprise Monitoring Agents. The rest of the window is filled with views pertinent to the chosen item in the Navigator tree. From the top level or from your home workspace, you can navigate to specific locations to check activity and investigate problems.

In summary, the characteristics of Tivoli Enterprise Portal include:

- A Navigator view of your enterprise. When a condition you are monitoring exceeds thresholds you define, an alert appears in the physical navigator view to let you know.
- Workspaces that contain various types of information whose format and content you can customize.
- Attributes you can use to create situations that monitor areas of particular interest and issue alerts when specified conditions are met.
- Predefined situations you can either use as-is to begin monitoring immediately, or you can copy and then modify them to suit your specific environment and needs.
There are two modes of operation for Tivoli Enterprise Portal:

- Desktop mode, in which the Tivoli Enterprise Portal client is installed on your machine and runs as a desktop application.
- Browser mode, in which the thin client software is downloaded from the Tivoli Enterprise Portal Server to your machine the first time you log on to Tivoli Enterprise Portal from your browser, and thereafter when there are software updates. When using Tivoli Enterprise Portal in browser mode, you can start it from any machine by entering the URL for the Web server where the Tivoli Enterprise Portal Server is installed.

Tivoli Enterprise Portal requires TCP/IP. IBM Tivoli products do not require a Domain Name System (DNS). If your Windows systems are running without DNS, make sure the \etc\hosts\ file of the local machine is up to date.

2.4 Communications

Communications between components in the OMEGAMON infrastructure can use several different methods. The terminology is a little nonstandard as described here.

TCP communications uses the User Datagram Protocol (UDP). When UDP is used, Remote Procedure Call (RPC) requests and responses flow as payload in user datagrams. UDP is generally favored for LANs because it is lighter weight.

IP Pipe communications uses full-blown TCP/IP. Using TCP, RPC requests and responses stream between a point-to-point session. All concurrent RPC requests and responses for that instance of the product are multiplexed across this single link.

IP.Spipe uses TCP/IP, RPC requests and responses. The default listening port is 3660.

Systems Network Architecture (SNA) communications, as its name implies, uses standard SNA facilities.

2.5 Deployment scenarios

In this section, we investigate three different deployment scenarios:

- Simple deployment with no firewall
- Simple deployment with a firewall
2.5.1 Simple deployment with no firewall

In a simple deployment of OMEGAMON, there is only one Tivoli Monitoring Server and agents are installed on monitored servers. This scenario assumes all systems have name lookup capability with no port restrictions or firewalls. A typical deployment looks similar to Figure 2-1.

Note: Agent communication ports are configurable; by default, Tivoli Enterprise Monitoring Server listens to agent communication on port 1918. The Tivoli Enterprise Portal Server by default listens on port 1920.

As we can see in Figure 2-1, the agents communicate directly with the Tivoli Enterprise Monitoring Server. The Tivoli Enterprise Monitoring Server in this
scenario communicates with the warehouse agent proxy to store historical data in a SQL database. This is a very simple deployment that can support approximately 400 agents, which supports small businesses well.

A typical Tivoli Enterprise Portal will support approximately 50 users before performance begins to degrade. Keep this in mind when you distribute login IDs to Tivoli Enterprise Portal.

2.5.2 Simple deployment with a firewall

This section describes a few ways that OMEGAMON XE can be deployed in an environment that includes a simple firewall configuration (see Figure 2-2 on page 30).

Basic implementation

At this release, IBM Tivoli OMEGAMON XE for Messaging supports most common firewall configurations, including those that use address translation (application proxy firewall is a notable exception). To enable this support, IBM uses the IP.PIPE socket address family, a TCP-based protocol that opens a single port on the firewall for communication by IBM Tivoli OMEGAMON XE for Messaging components. If your target IBM Tivoli OMEGAMON XE for Messaging environment includes a firewall between any components, you must specify IP.PIPE as your communication protocol during configuration. No other special configuration is needed unless your firewall also uses address translation.

Implementation with address translation

Address translation is an enhanced security feature of some firewall configurations. With this feature, components that must be reached across the firewall have two unique, but corresponding addresses: the external address (valid for components outside the firewall) and the internal address (valid for components inside the firewall).

With IBM Tivoli Monitoring, the component that typically must be reached for connection is the Tivoli Enterprise Monitoring Server. However, the warehouse proxy, which runs on Windows as a server-type application, must also be accessible to clients and also requires an external and internal address. A component on either side of the firewall only knows about the address that is valid for its side (its “partition”).
To accommodate sites with address translation, IBM uses a partition-naming strategy. This strategy requires two steps:

- Creating a text file called a partition file as part of the configuration of a hub or remote Tivoli Enterprise Monitoring Server (or warehouse proxy). The partition file contains an entry that defines that component’s address in the other partition.
- Specifying a partition name (any alphanumeric string up to 32 characters), as part of the configuration of any agent, a hub or remote Tivoli Enterprise Monitoring Server, or warehouse proxy. A partition name must be specified for each component regardless of which side of the firewall it resides in.

Sample scenarios
Assuming that your site has one firewall, there will be two partitions: one outside the firewall, one inside the firewall. In the sample scenarios that follow, we specify the names OUTSIDE and INSIDE, respectively, for these partitions. (If your site’s configuration includes more than one firewall, IBM recommends that you contact IBM Software Support for assistance in configuring IBM Tivoli OMEGAMON XE for Messaging.)

Note: Whatever the platform, the command-line examples in the following scenarios adhere to the UNIX and Windows text formatting conventions for literals and variables.

Scenario 1: Hub Tivoli Enterprise Monitoring Server INSIDE, agents OUTSIDE

As part of the configuration of the hub Tivoli Enterprise Monitoring Server, we specify the name of the partition that it resides in INSIDE. We also create a partition file, parthub.txt, containing the following entry:

OUTSIDE ip.pipe:hub's_external_address

OUTSIDE is the partition name outside the firewall and hub's_external_address is the address of the hub Tivoli Enterprise Monitoring Server that is valid for the agents.

As part of the configuration of each agent, we specify the name of the partition that each resides in OUTSIDE.

When an agent starts, the parthub.txt file is searched for an entry that matches the partition name OUTSIDE and sees the Tivoli Enterprise Monitoring Server address that is valid for the agents (the external address).
Scenario 2: Hub and remote Tivoli Enterprise Monitoring Server
INSIDE, agents OUTSIDE

Note: In scenarios 2 and 3, we assume that all agents report to the remote Monitoring Server.

As part of the configuration of the hub Monitoring Server, we specify the name of the partition that it resides in INSIDE. No partition file is needed because the only component that reports to it (the remote Monitoring Server) is also inside the firewall.

As part of the configuration of the remote Monitoring Server, we specify the name of the partition that it resides in INSIDE. A partition file, partremote.txt, must also be created at the remote Monitoring Server. It contains the following entry:

OUTSIDE ip.pipe:remote's_external_address

When configuring the agents (all of which are outside the firewall, reporting to the remote Monitoring Server), we specify the name of the partition that they reside in OUTSIDE. When the agents start, the partremote.txt file is searched for an entry that matches the partition name OUTSIDE and sees the remote Monitoring Server address that is valid for them (the external address).

Scenario 3: Hub Monitoring Server INSIDE, remote Monitoring Server and agents OUTSIDE

As part of the configuration of the hub Monitoring Server, we specify the name of the partition that it resides in INSIDE. We also create a partition file, parthub.txt, containing the following entry:

OUTSIDE ip.pipe:hub's_external_address

OUTSIDE is the partition name outside the firewall and hub's_external_address is the address of the hub Monitoring Server that is valid for the remote Monitoring Server.

As part of the configuration of both the agents and the remote Monitoring Server, we specify the name of the partition they reside in OUTSIDE.

A partition file, partremote.txt, also must be created at the remote Monitoring Server. It contains the following entry:

INSIDE ip.pipe:remote's_internal_address

If the hub Monitoring Server needs to communicate with the remote Monitoring Server (for example, to issue a report request from an agent that is connected to
the remote Monitoring Server), the partremote.txt file is searched for an entry that matches the partition name INSIDE and sees the remote Monitoring Server address that is valid for it (the internal address).

![Diagram showing simple deployment with a firewall]

Figure 2-2 Simple deployment with firewall

2.5.3 Complex deployment: Monitoring Server, remote Monitoring Server, and a firewall

In order to truly scale OMEGAMON, we must use several remote Monitoring Servers. Each remote Monitoring Server has agents communicating with it, and then the remote Monitoring Server inputs data to the Monitoring Server. Only the Monitoring Server can communicate with the warehouse agent proxy, so presentation needs to occur from the Monitoring Server so that all remote Monitoring Servers can be represented. Figure 2-3 on page 31 illustrates this setup.
2.6 Scalability

Current architectures support monitoring of approximately 5000 agents. To support 5000 agents, the environment includes several remote Monitoring Servers connecting to the Monitoring Server and frequent aggregating of data in the data warehouse. These limits were not tested during the writing of this book, but were conveyed to us by the OMEGAMON support and development staff.

In testing, we found no designed break points. Like any systems management product, the true scale depends on the frequency at which data collection, automated responses, notifications, and cross situation correlation occurs.

Collecting data every minute and performing an action such as running a script is more intensive than doing it every five minutes. However, in certain circumstances, you are required to monitor at such frequent intervals. Put some
thought into your monitors, situations, and automated action routines. Here are some key elements for consideration:

- Always make certain that your monitor is necessary: Many monitors have been deployed for the sake of having a monitor, not because it is needed or makes sense. What are you going to do with the data? If you cannot determine what you will use the data from a monitor for, ask yourself, “Do I need this monitor?”

- Do not monitor too often. If you are monitoring a resource every five minutes, but that resource has 48 hours to be fixed if it is broken, you can reduce your monitoring by hours.

- Finally, do not keep data just to keep it. Just because you can warehouse all of the data you collect does not mean that you should. Every stored data element needs to be managed for presentation and retention; make sure that you have the ability to manage data before storing large amounts.

The warehouse agent proxy is generally not the bottleneck when it comes to data insertion to the warehouse. The agent itself is capable of writing 200 records per second; make certain that your database is tuned accordingly for maximum insert performance.

Average record sizes for data captured during testing ranged from 128 bytes to 500 bytes per record. Use these figures to estimate database sizes. These record sizes are only representative of the OMEGAMON XE for Messaging data. Each agent can produce data for warehousing and needs to be tested for size separately.
Installing the OMEGAMON infrastructure

The IBM Tivoli OMEGAMON infrastructure provides a robust set of tools for monitoring and managing an IT infrastructure and business systems. This chapter provides details about the installation and configuration of the OMEGAMON platform components.

We discuss the following topics:

- Planning for the installation
- Tivoli Enterprise Monitoring and Portal Servers
- Verifying the installation
3.1 Planning for the installation

The successful installation of an enterprise monitoring system takes careful planning. This section provides the steps necessary to plan this installation. There are multiple factors that need to be considered before you begin the installation of the OMEGAMON XE for Messaging infrastructure.

These steps include:

- Business requirements
- Hardware requirements
- Software requirements
- Network requirements

Before you can begin any of the procedures that follow, these IBM Tivoli Monitoring Services Version 6.1.0 components must be installed:

- Agent support:
 - Tivoli Enterprise Monitoring Agent Framework
 - Warehouse proxy (if you intend to use historical reporting or save historical data to a database for reference)

- Tivoli Enterprise Monitoring Server framework

- Tivoli Enterprise Portal Server framework:
 - Tivoli Enterprise Portal desktop client

For instructions, see IBM Tivoli Monitoring installation and configuration guides available at the following Web address:

In addition, review the following Redbooks:

- Certification Guide Series: IBM Tivoli Monitoring V 6.1, SG24-7187
- Deployment Guide Series: IBM Tivoli Monitoring 6.1, SG24-7188

3.1.1 Business requirements

The requirements of the business are of major importance, because these are the components that drive the decision-making process. By business requirements, we mean the demands placed on the system management infrastructure to ensure that the target applications are managed to the satisfaction of the client. Business requirements need to be balanced with other areas, such as system impact.
Some of the topics to consider are:

- Cycle time
- Number of resources being monitored
- Amount of time the data is needed (life of the data)
- Where the systems or applications run

In general, you install and configure an IBM Tivoli OMEGAMON XE for Messaging agent on every machine where the system or application you want to monitor is running. This enables you to define the association between each instance of the monitoring agent and the IBM Tivoli Monitoring components, as well as between instances of the monitoring agent.

3.1.2 System requirements

Note: As part of the installation planning process, consider how the major components of the IBM Tivoli Monitoring products will be distributed across systems. Specifically, the Tivoli Enterprise Monitoring Server, the Tivoli Enterprise Portal Server, and the data warehouse component. Refer to the Tivoli Monitoring documentation and the IBM Redbook *Getting Started with IBM Tivoli Monitoring 6.1 on Distributed Environments*, SG24-7143 for information about capacity planning based on the size of your environment.

The hardware requirements vary based on the component being installed. Each section provides details about the hardware requirements for the individual components. Some items to consider when planning the hardware for the infrastructure server components are the number of managed systems, number of users accessing the system, amount of available storage, longevity of the data, number of processors, and frequency of monitoring activity.

Microsoft Windows prerequisites

Note the following Windows prerequisites:

- **Service packs**
 - Microsoft Windows 2000 Professional: Service Pack 3 or later
 - Microsoft Windows XP Professional: Service Pack 1 or later

- **Communications among components**
 - TCP/IP communications
 - One of these:
 - Microsoft Winsock (Version 1.1 or later)
 - Microsoft TCP/IP protocol stack
• TCP/IP network services (such as NIS, DNS, and the HOSTS file) configured to return the fully qualified host name, for example:
 HostName.ibm.com

– SNA communications

A 32-bit version of one of the following SNA Server or Client products:
• IBM Personal Communications (Version 4.11 or later). Fix IC19970 is required on Windows 2000 Server or Workstation.
• IBM Communications Server (Version 5.0 or later). Fixes JR10466 and JR10368 are required for SNA Server (Version 5.0).
• Microsoft SNA Server (Version 3 or later). Service Pack 1 is required for SNA Server (Version 4.0).
• Walldata RUMBA (Version 5.1 or later). Walldata PTF OPK52002 is required for RUMBA versions earlier than 5.2A.

➤ Disk space

– Tivoli Enterprise Monitoring Server/Tivoli Enterprise Portal Server
 • 450 MB disk space on default installation directory
 • 10 MB disk space on system user directory
 • 150 MB temporary free space for installation files
 • Additional space for log file growth
– Agent
 • 5 MB temporary free space for installation files, in addition to the other requirements listed in this chapter
 • Additional space for log file growth

➤ Memory

– Tivoli Enterprise Monitoring Server
 Minimum 512 MB, recommended 1 GB
– Tivoli Enterprise Portal Server
 Minimum 1GB, recommended 2 GB
– Agent
 • 32 MB RAM
• 150 MB virtual memory, plus 5 MB for each IBM Tivoli OMEGAMON XE for Messaging monitoring agent installed

UNIX prerequisites

Note the following UNIX prerequisites:

► **Communications**
 – Communications (TCP/IP, SNA, or IP.PIPE) among components. Any TCP/IP network services to be used (such as NIS, DNS, and the /etc/hosts file) must be configured to return the fully qualified host name, for example:

 HostName.ibm.com
 – Ethernet or token-ring LAN capability.

► **Hardware for running the installation program**
 – CD-ROM drive
 – Native X-Term monitor for UNIX or Hummingbird Exceed X Window System emulators for PCs only
 – Korn shell command interpreter

► **Disk space**
 – Tivoli Enterprise Monitoring Server/Tivoli Enterprise Portal Server
 • 450 MB disk space on default installation directory
 • 10 MB disk space on system user directory
 • 150 MB temporary free space for installation files
 • Additional space for log file growth
 – Agent
 • 5 MB temporary free space for installation files, in addition to the other requirements listed in this chapter
 • Additional space for log file growth

Solaris requirement

Under Sun™ Solaris™, X Window System Version 11 (X11) support is required. If X11 support has not been installed, you need to add these two modules to your configuration:

► LIBX11.SO.4
► LIBXEXT.SO.4
3.1.3 Installation requirements for each product by platform

Table 3-1 provides the requirements for Windows.

<table>
<thead>
<tr>
<th>Product name</th>
<th>Operating system</th>
<th>Hardware</th>
<th>Other requirements</th>
</tr>
</thead>
</table>
| WebSphere Message Broker monitoring | One of these:
 > Windows 2003 Server
 > Windows XP Professional
 > Windows 2000 Professional | ➤ 18 MB disk space
➤ Additional disk space for historical data | One of the following IBM broker products:
➤ WebSphere MQ Integrator V2.1
➤ WebSphere MQ Integrator Broker V2.1
➤ WebSphere MQ Event Broker V2.1
➤ IBM WebSphere Business Integration Event Broker V5
➤ IBM WebSphere Business Integration Message Broker V5
➤ IBM WebSphere Business Integration Message Broker with Rules and Formatter Extension V5
➤ WebSphere Message Broker V6.0
The monitoring agent must be installed on the same machine as the IBM broker product. |
| WebSphere MQ monitoring | One of these:
 > Windows 2003 Server
 > Windows XP Professional
 > Windows 2000 Professional | ➤ 4 MB disk space
➤ Additional disk space for historical data | ➤ IBM WebSphere MQ V5.3 or V6.0.
The WebSphere MQ Monitoring Agent must be installed on the same machine as the application to be monitored. |
<table>
<thead>
<tr>
<th>Product name</th>
<th>Operating system</th>
<th>Hardware</th>
<th>Other requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>WebSphere MQ Configuration</td>
<td>One of these:</td>
<td>➤ 4 MB disk space</td>
<td>The WebSphere MQ Configuration agent requires a configuration database, which can be either of these:</td>
</tr>
<tr>
<td></td>
<td>✷ Windows 2003</td>
<td>➤ Additional disk space for historical data</td>
<td>➤ The product-provided Internal configuration database, which is installed automatically as part of Tivoli Enterprise Monitoring Server.</td>
</tr>
<tr>
<td></td>
<td>Server</td>
<td></td>
<td>➤ DB2 Universal Database™ Workgroup Server Edition V8.2 installed on the same machine as the hub Tivoli Enterprise Monitoring Server. DB2 UDB can be</td>
</tr>
<tr>
<td></td>
<td>✷ Windows XP</td>
<td></td>
<td>installed from a Workgroup Server Edition V8.2 CD included in the product package. If the Monitoring Server is installed on z/OS and if you want to use the DB2 type of configuration database, DB2 V7.1 or later is required. If DB2 is not already installed on the z/OS machine that hosts the Monitoring Server, purchase and install it separately, or use the Internal type of database.</td>
</tr>
<tr>
<td></td>
<td>Professional</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>✷ Windows 2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Professional</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3-2 provides the requirements for UNIX/Linux.

Table 3-2 UNIX and Linux

<table>
<thead>
<tr>
<th>Product name</th>
<th>Operating system</th>
<th>Hardware</th>
<th>Other requirements</th>
</tr>
</thead>
</table>
| WebSphere Message Broker monitoring | One of these:
 - AIX 5L V5.2 or later (32/64 bit)
 - Solaris V9 or later (32/64 bit)
 - HP-UX V11.x (32/64 bit); POSIX threads only
 - Linux zSeries® SUSE Linux Enterprise Server V8, 2.4x kernel level (31-bit),
 - SUSE Linux Enterprise Server V9, 2.6x kernel level (31-bit) RHEL 4
 - SUSE Linux Enterprise Server V8, 2.4x kernel level (32-bit), SUSE Linux Enterprise Server V9, 2.6x kernel level (32-bit)
 - Red Hat Enterprise Linux AS V3.0, 2.4x kernel level, Red Hat Enterprise Linux AS V4.0, 2.6x kernel level |
 - 10 MB disk space
 - Additional disk space for historical data, depending on configuration | One of the following IBM broker products:
 - WebSphere MQ Integrator V2.1
 - WebSphere MQ Integrator Broker V2.1
 - WebSphere MQ Event Broker V2.1
 - IBM WebSphere Business Integration Event Broker V5
 - IBM WebSphere Business Integration Message Broker V5
 - IBM WebSphere Business Integration Message Broker with Rules and Formatter Extension V5
 - WebSphere Message Broker V6.0
 The monitoring agent must be installed on the same machine as the IBM broker product.
 On Linux Intel®, the level of IBM WebSphere MQ must be Version 5.3, CSD05 or later. |
<table>
<thead>
<tr>
<th>Product name</th>
<th>Operating system</th>
<th>Hardware</th>
<th>Other requirements</th>
</tr>
</thead>
</table>
| **WebSphere MQ Monitoring** | One of these:
- AIX 5L V5.2 or later (32/64 bit)
- HP-UX V11.x (32/64 bit); POSIX threads only
- Solaris V2.7 or later (32/64 bit)
- Linux zSeries:
 - SUSE Linux Enterprise Server V8, 2.4 kernel level (32 bit)
 - Red Hat for S/390®, 2.4 kernel level (32 bit)
- Linux Intel:
 - SUSE, 2.4x kernel level (32-bit)
 - Red Hat, 2.4x kernel level (32-bit) |
- 35 MB disk space
- Additional disk space for historical data, depending on configuration | On all UNIX systems except Linux zSeries:
- IBM WebSphere MQ V5.3 or V6.0
On Linux zSeries:
- IBM WebSphere MQ V5.3 or V6.0
The WebSphere MQ Monitoring Agent must be installed on the same machine as the application to be monitored. |
<table>
<thead>
<tr>
<th>Product name</th>
<th>Operating system</th>
<th>Hardware</th>
<th>Other requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>WebSphere MQ</td>
<td>One of these:</td>
<td>➢ 35 MB disk space</td>
<td>This requires a configuration database, which can be either of these:</td>
</tr>
<tr>
<td>Configuration</td>
<td>➢ AIX 5L V5.2 or later (32/64 bit)</td>
<td>➢ Additional disk space for historical data, depending on configuration</td>
<td>➢ The product-provided Internal configuration database, which is installed automatically as part of Monitoring Server.</td>
</tr>
<tr>
<td></td>
<td>➢ HP-UX V11.x (32/64 bit); POSIX threads only</td>
<td></td>
<td>➢ DB2 Universal Database Workgroup Server Edition V8.2 installed on the same machine as the hub Monitoring Server. DB2 UDB can be installed from a Workgroup Server Edition V8.2 CD included in the product package. If the Monitoring Server is installed on z/OS and if you want to use the DB2 type of configuration database, DB2 V 7.1 or later is required. If DB2 is not already installed on the z/OS machine that hosts the Monitoring Server, purchase and install it separately, or use the Internal type of database.</td>
</tr>
<tr>
<td></td>
<td>➢ Solaris V2.7 or later (32/64 bit)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢ Linux zSeries:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢ SUSE Linux Enterprise Server V8, 2.4 kernel level (32 bit)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢ Red Hat for S/390, 2.4 kernel level (32 bit)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢ Linux Intel:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢ SUSE, 2.4x kernel level (32 bit)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢ Red Hat, 2.4x kernel level (32 bit)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.2 Tivoli Enterprise Monitoring and Portal Servers

Tivoli Enterprise Monitoring Server is the focal point for the reception of alerts, collection of performance and availability data, and as a repository for historical data generated by Tivoli Enterprise Monitoring Agents.

Tivoli Enterprise Portal Server is a repository for all graphical presentation of monitoring data. Tivoli Enterprise Portal Server is responsible for the management of user IDs and user access controls for the monitoring workspaces, situations, and policies. Portal Server provides the core presentation layer that allows for retrieval, manipulation, analysis, and preformatting of data.

Messaging, and therefore, we assume that the IBM Tivoli Monitoring V6.1 environment is already installed. The procedure that we followed to install the Tivoli Monitoring environment is documented for convenience in Appendix A, “Tivoli Enterprise Monitoring Server and Portal Server installation walkthrough” on page 359.

Before you can use a monitoring agent, the Monitoring Server to which it reports must be added with application support, that is, initialized with application data. Application support adds product-provided situations, templates, and other sample data to the Tivoli Enterprise Monitoring Server's Enterprise Information Base (EIB tables).

The Portal Server also requires the addition of application support. This provides the views necessary to administer the messaging products.

Installing OMEGAMON XE for Messaging application support

In our environment, we installed both Tivoli Enterprise Monitoring Server and Portal Server on the same Windows 2003 server. This section describes the installation procedure to add application support for OMEGAMON XE for Messaging on Windows. For a full description of the installation procedures on other platforms, consult *IBM Tivoli OMEGAMON XE for Messaging V6.0 Installation Guide*, GC32-1829. Note the following steps:

1. Log on to Windows using an ID with Administrator authority and close any running applications.

2. Insert the *IBM Tivoli OMEGAMON XE for Messaging* platform product CD into your CD-ROM drive. The installation begins automatically.

3. Read the text that welcomes you to the installation and click Next to continue.

4. For the Software License Agreement window, read the software license agreement and click Accept and then Next.

5. In the Choose Destination Location window, specify the target drive and directory where you want to install the OMEGAMON XE for Messaging software. The recommended default is C:\IBM\ITM. Click Next to continue.

6. Select the installation that suits your needs and click Next to continue. The typical installation installs all available components. The custom installation enables you to isolate and install specific components.
7. If you selected **Custom**, click the + sign next to each main feature to expand the tree. Select the features that you want to install on this Windows machine. In our environment, we selected **Tivoli Enterprise Monitoring Server Application Support** and **Tivoli Enterprise Portal Server Application Support**.

8. In the Remote Deployment window, select the agents that you want to deploy remotely. If you intend to use the Remote Configuration feature for an agent, you must also select the remote deployment feature for this agent.

 Note: For a full description of the IBM Tivoli Monitoring Remote Deployment feature, consult *IBM Tivoli Monitoring 6.1*, GI11-4071. For an example of the Remote Deployment feature, see 4.4, “Remote deployment from Tivoli Enterprise Portal” on page 156.

9. Review your selections and click **Install** (Figure 3-1).

![Figure 3-1 Selecting support features to add to Tivoli Enterprise Monitoring Server](image)
10. The Configuration window enables you to select initial configuration tasks. The specific tasks available for selection depend on the IBM Tivoli Monitoring components installed on the machine. Leave selected the items that you want to configure before completion of the installation. Here, we set up the application support for the Tivoli Enterprise Monitoring Server. Clear the items for which you want to delay until after completion of the installation. Click **Next** to continue (Figure 3-2).

![Figure 3-2 Adding Application Support to Tivoli Enterprise Monitoring Server](image)

11. In the Add application support to the Tivoli Enterprise Monitoring Server window, select the box that confirms the Monitoring Server location is on this computer and click **OK**.

12. In the new window opens that allows specific application support to be added, click **Select All** and then **OK**.

 A window opens that reports the status of the install. Each component should have a return code of 0.

13. Click **Finish**.
3.3 Verifying the installation

You can verify the installation in several ways including:

- Checking the installation logs to verify the outcome of the installation process.

 On Windows, the installation log is located in c:\IBM\ITM\InstallITM and it is named “IBM Tivoli Monitoring $pidstring$.log”.

 Example 3-1 contains a sample from the log. Note that the log varies based on selected components.

 Example 3-1 Installation log on Windows

<table>
<thead>
<tr>
<th>Date</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-15-2006</td>
<td>11:19:14 The following IBM/Tivoli Products are installed:</td>
</tr>
<tr>
<td>3-15-2006</td>
<td>11:19:14 IBM Personal communications installed</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>(Log will show a list of components installed compare to the products</td>
</tr>
<tr>
<td></td>
<td>you selected)</td>
</tr>
</tbody>
</table>

 On UNIX, the installation log is located in install_dir\logs and it is named candle_installation.log.

- The Manage Tivoli Monitoring Services application allows you to start the Tivoli Enterprise Monitoring Server and Portal Server if the installation was successful.
Installing and configuring WebSphere MQ agents

After installing the IBM Tivoli Monitoring Framework, the next step is to install and configure the OMEGAMON XE for Messaging agents. In this chapter, we discuss the installation and configuration steps for IBM Tivoli OMEGAMON XE for Messaging: WebSphere MQ Configuration Agents (configuration agents) and IBM Tivoli OMEGAMON XE for Messaging: WebSphere MQ Monitoring Agents (monitoring agents). In Chapter 7, “Monitoring WebSphere Message Broker” on page 253, we talk about the installation and configuration of the WebSphere Message Broker Monitoring Agent. In addition, for the WebSphere Interchange Server Monitoring Agent, see Chapter 8, “Monitoring WebSphere Interchange Server” on page 319.

We discuss the following topics in this chapter:

- Installing IBM Tivoli OMEGAMON XE for Messaging agents on z/OS
- Installing the WebSphere MQ agents on UNIX/Linux
- Installing the WebSphere MQ agents on Windows
- Remote deployment from Tivoli Enterprise Portal
4.1 Installing IBM Tivoli OMEGAMON XE for Messaging agents on z/OS

In this section, we discuss the installation and configuration of the three agents that are packaged with IBM Tivoli OMEGAMON XE for Messaging on z/OS. There are a couple of differences in the installation of Tivoli OMEGAMON XE for Messaging agents on z/OS and the distributed platforms.

First, the installation on z/OS does not use the installation wizard that is used for the distributed platforms. Instead, two separate tools are used. The first step is to install the IBM Tivoli OMEGAMON XE for Messaging code base and maintenance, which is performed using the System Modification Program/Extended (SMP/E) tool. The second step is to configure Tivoli OMEGAMON XE for Messaging, which is done using the IBM Tivoli OMEGAMON Installation and Configuration Assistant Tool (ICAT).

SMP/E is a tool designed to manage the installation of software products on z/OS systems and to track the modifications made to those products. SMP/E enables you to test new versions of the software or apply maintenance to an existing version on a production system while the old version is being used by the production applications simultaneously. Note that SMP/E is not specific to the IBM Tivoli OMEGAMON products; most of the products on the z/OS platform use SMP/E services.

The ICAT tool, however, is a customization tool shipped with IBM Tivoli OMEGAMON products on z/OS to facilitate customization of the IBM Tivoli OMEGAMON products on the z/OS platform.

Another difference between the installation and configuration of agents on z/OS and distributed platforms is that on the distributed platforms, installation and configuration is usually done by the same person. On z/OS, the SMP/E process can be performed by the z/OS systems programmer and ICAT can be done by the IBM Tivoli OMEGAMON XE for Messaging product specialist.

Finally, as mentioned previously, you can install the following IBM Tivoli OMEGAMON XE for Messaging agents on z/OS separately:

- IBM Tivoli OMEGAMON XE for Messaging WebSphere MQ Configuration Agent
- IBM Tivoli OMEGAMON XE for Messaging WebSphere MQ Monitoring Agent
- IBM Tivoli OMEGAMON XE for Messaging WebSphere Broker Integration Agent

Note: It is not necessary to install all three agents on the z/OS system. Only install the agent or agents that you require and for which you are licensed.
4.1.1 Prerequisites for configuring the component product

Here we provide the prerequisites for configuring IBM Tivoli OMEGAMON XE for Messaging agents on z/OS.

If you have not already done so, verify the following information for the component product you want to configure:

► You must have installed the components product using the System Modification Program/Extended (SMP/E) tool.
► You have the required DASD space.
► You have sufficient RACF®, ACF2, Top Secret authority to create and access the new data sets that will be created during the installation.
► You completed the configuration for a Tivoli Enterprise Monitoring Server.

In addition, the following guides will help you during the installation, available in the IBM Tivoli OMEGAMON XE for Messaging information center:

► IBM Tivoli OMEGAMON XE for Messaging V6.0 Installation Guide, GC32-1829
► IBM Tivoli OMEGAMON XE for Messaging V6.0 Problem Determination, Guide SC32-1831
► IBM Tivoli OMEGAMON XE for Messaging V6.0 WebSphere Message Broker Monitoring Users Guide, SC32-1827
► IBM Tivoli OMEGAMON XE for Messaging V6.0 WebSphere MQ Configuration Users Guide, SC32-1826
► IBM Tivoli OMEGAMON XE for Messaging V6.0 WebSphere MQ Monitoring Users Guide, SC32-1825
► IBM Tivoli OMEGAMON XE for Messaging on z/OS V 6.0 Configuration Guide, SC32-1830
► IBM Tivoli OMEGAMON XE for Messaging V6.0 Program Directory Guide, GI11-4123
4.1.2 Setting up the configuration environment

Perform the following steps to set up the ICAT environment:

1. Use *IBM Tivoli OMEGAMON XE for Messaging V 6.0 Program Directory*, GI11-4123, to assist in loading the following function modification identifiers (FMIDs) into either an existing consolidated software inventory (CSI) or into a new CSI:
 - HKQI600
 - HKMQ600
 - HKMC600
 - HKCF600
 - HCKI310
 - HKDS610
 - HKLV610

2. In our test environment, we install IBM Tivoli OMEGAMON XE for Messaging V6.0 into a new CSI and ICAT environment, as shown in Figure 4-1. The figure shows the attributes for the new INSTLIB data set.

 Note: Because this was the first OMEGAMON product installed on our test system, we created the INSTLIB library.
3. Copy the contents of the SMP/E HLQ.TKCIINST library into the newly created INSTLIB library. You can use the JCL in Example 4-1 for this purpose.

Example 4-1 JCL used for the copy operation

```jcl
//CANNOND1 JOB (ACCOUNT), 'ALLOCATE NEW INSTLIB', CLASS=A
//COPY EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=*
//IN DD DSN=OMEGAXE3.TKCIINST,DISP=SHR
//OUT DD DSN=OMXEMSG.INSTLIB,DISP=SHR
//SYSIN DD *
C O=OUT, I=((IN,R))
```

Note: We used the following high-level qualifiers for our installation:

- OMEGAXE3: For the target library for SMP/E
- OMXEMSG: For the runtime library

Alternatively, you can perform the copy operation through ISPF panels, as shown in Figure 4-2.
4. Start the Configuration tool using the following steps:
 a. Log on to a TSO session.
 b. Invoke ISPF.
 c. Go to a TSO command line. (In most cases, this is done by entering 6 on the ISPF Primary Option Menu.)
 d. Enter the following command (as shown in Figure 4-3):

      ```
      ex 'omxemsg.instlib'
      ```
 Where in our environment omxemsg is the data set high-level qualifier.

![Figure 4-3 Invoking ICAT through ISPF](image)
5. From the main menu, select **Set up work environment** option 1 (Figure 4-4).
6. From the Set Up Work Environment panel (Figure 4-5), perform the following steps:

 a. Select **Specify options** to specify allocation and processing values that will be used to create the work data sets that are needed by the Configuration tool.

 b. Select **Allocate work libraries** to allocate the Configuration tool work libraries.

 c. Review the JCL and submit it. Ensure that it completes successfully.

 ![Figure 4-5 Set Up Work Environment panel](image)

 Important: After creating and submitting the Allocate work libraries job, you must exit the installer and allow the job to run before restarting the installer.

4.1.3 Setting up the ICAT configuration environment

If this is a new ICAT environment (if not skip this step and go to 4.1.4, “Selecting a product to configure” on page 56), you need to set up the ICAT configuration environment by completing the following steps:

 1. Start ICAT again.
2. Select option 3 from the Configure Products main ICAT menu.
3. Select option 1 **Set up configuration environment** (Figure 4-6).

![Figure 4-6 Set up configuration environment](image-url)
4. Complete the requested information, as shown in Figure 4-7.

![Figure 4-7 Set Up Configuration Environment high-level qualifiers]

4.1.4 Selecting a product to configure

You are now ready to configure the runtime environment for the IBM Tivoli OMEGAMON XE for Messaging agents. Perform the following steps:

1. Start ICAT again.
2. Choose option 3 from the Configure Products main ICAT menu.
3. Choose option **2 Select product to configure** (Figure 4-8).

Note: You probably will see a different product selection list in your ICAT environment. Select **IBM Tivoli OMEGAMON XE for Messaging V600**.

![Figure 4-8 Product Selection Menu](image)

Note: In our test environment, because this is the first product configured in the ICAT environment, we needed to create a new RTE. If your ICAT already has existing RTEs, go to “Building RTE for Tivoli OMEGAMON XE for Messaging V600” on page 60.
4.1.5 Creating a new runtime environment

Creating a runtime environment includes adding (if creating a new RTE), building, configuring, and loading. Follow the steps in the following subsections to create a new runtime environment.

Adding a new runtime environment

Perform the following steps:

1. On the Runtime Environments panel, enter A (Add RTE) in the Action field of the first (blank) row in the list (Figure 4-9).

![Figure 4-9 Adding a runtime environment](image)

The runtime environment types are as follows:

- **FULL**: Allocates both private and base libraries. Use this if only one runtime environment will be defined for the environment, or if you add an runtime environment for a unique set of component products.
– BASE: Allocates base libraries only, and does not execute alone. Use this only in conjunction with SHARING runtime environments populated with the same component products.

– SHARING: Allocates private libraries only. This type can share base libraries with a BASE or FULL runtime environment populated with the same component products, or use SMP/E target libraries for its base libraries.

Note: In our test environment, we added an RTE called SC67TS as a FULL RTE. For further information about creating RTEs, refer to IBM Tivoli OMEGAMON XE for Messaging - z/OS Configuration Guide, SC32-1830.

2. After specifying all required values on the Runtime Environments panel, press Enter.
Building RTE for Tivoli OMEGAMON XE for Messaging V600

To build the runtime environment, perform the following steps:

1. On the Runtime Environments panel, enter B (Build libraries) in the Action field of the runtime environment you are going to configure (Figure 4-10).

2. Review or edit the JCL and submit the job.

3. Verify that the job completes successfully. All return codes should be 0.

![Figure 4-10 Building the runtime environment](image.png)
Configuring a new runtime environment
To configure the runtime environment, perform the following steps:

1. On the Runtime Environments panel, enter C (Configure) in the Action field of the runtime environment you are going to configure (Figure 4-11).

![Figure 4-11 Configuring the runtime environment](image)

Note: As previously mentioned, the following steps are to install the IBM Tivoli OMEGAMON XE for Messaging V600 agents only on the z/OS LPAR. The assumption in our test environment is that the Tivoli Enterprise Monitoring Server has been previously installed and configured for OMEGAMON XE for Messaging V600.
2. From the Component Title list, select one of the options to configure (Figure 4-12).

In this section, we describe options 2, 3, and 4. They can be done in any sequence. However, IBM recommends that you complete these in the order listed in this section.

Configuring WebSphere MQ Monitoring Agent

To configure the monitoring agent, perform the following steps:

1. At the Product Component Selection menu (Figure 4-12), select option 3 **WebSphere MQ Monitoring**.

2. At the Configure WebSphere MQ Monitoring menu (Figure 4-13 on page 63), we skip option 1 because Tivoli Enterprise Monitoring Server has already been configured for IBM Tivoli OMEGAMON XE for Messaging. If, however, you have a Monitoring Server in this RTE and you want the Messaging agents to report in to this Monitoring Server, select option 1, review the JCL, and submit the job.
3. Select option 2 from the Configure WebSphere MQ Monitoring menu (Figure 4-13).

Note: You might need to consult with your z/OS WebSphere MQ systems administrator to be able to configure the IBM Tivoli OMEGAMON XE for Messaging agents.

![Configure WebSphere MQ Monitoring](image)

Figure 4-13 Configure WebSphere MQ Monitoring

4. Supply the following information (Figure 4-14 on page 64):
 - IBM-supplied WebSphere MQ authorized load library.
 - IBM-supplied WebSphere MQ language library.
 - Review the agent Sampling interval.
 This is the WebSphere MQ Monitoring data collection interval in seconds. The default is 60 seconds.
- Review the limit for msgs.
 This is the maximum number of messages that can be displayed in the message report. A value of 0 means there is no maximum. The default is 0.

Press Enter to continue.

Figure 4-14 IBM Tivoli OMEGAMON XE for Messaging MQ parameters

5. Supply the following information (Figure 4-15 on page 66):
 - Review the Historical aggregation number of samples.
 Gives the number of history samples to retain in “Recent History” Tivoli Enterprise Portal workspaces for all queue managers. Default is 15 samples.
 - Review the Historical display retention.
 Gives the number of minutes that historical information is retained for queue manager objects (such as channels and queues) that are no longer defined (that is, deleted). The default is 1440 (24 hours).
– Add the authorized Take action users.
Defines which Tivoli Enterprise Portal user IDs are authorized to issue Take Action commands for the agent. Note that there can be multiple entries associated with this attribute. Each entry is separated by a comma, and each entry can be a mask, which can include the “*” and “?” wildcard characters. A Tivoli Enterprise Portal user whose ID matches any mask in this list is authorized to issue a Take Action command. The default is no one can issue Take Action commands in Tivoli Enterprise Portal.

– Add the Take action account.
Defines what user IDs that the agent uses to interact with WebSphere MQ for Take Action commands. It specifies whether WebSphere MQ authorization uses the Tivoli Enterprise Portal user ID, the agent account, or a predefined account. Values can be:

• UIUSER: Use the Tivoli Enterprise Portal user ID as the account for Take Action.
• MQAGENT: Use the agent account for Take Action.
• USER=user-id: Use the given predefined account (“user-id”) for Take Action.

– Review the Event queue access.
Controls the WebSphere MQ Monitoring Agent access to WebSphere MQ event queue messages.

• REMOVE: Allows WebSphere MQ Monitoring to remove messages from the event queues as it processes them. (This is recommended and the default.)
• BROWSE: Allows WebSphere MQ Monitoring to view the event messages, but leaves them in the event queue.
• NO: Tells WebSphere MQ Monitoring to ignore event message processing.

– Review the Command submission.
Determines if commands can be submitted to the queue manager through the Tivoli Enterprise Portal. The default is “Y”.

– Candle queue hilev qualifier.
Specifies the high-level qualifier of queue names created and used by WebSphere MQ Monitoring (usually “Temporary Dynamic” queues). The default is “KMQ”.

– Review the Model queue for reply queues.
Specifies the name of the model queue that will be used for reply queues. The default is “SYSTEM.COMMAND.REPLY.MODEL”.

Chapter 4. Installing and configuring WebSphere MQ agents 65
6. Supply the following information (Figure 4-16 on page 68):

 - Review the Message access level:

 Gives what kind of access to allow users to messages in queues as follows:

 - **NONE**: No access.
 - **DESC**: Allows user to browse the message descriptors (default).
 - **RETRY**: Allows DESC plus retry messages from dead-letter queue.
 - **DATA**: Allows DESC and RETRY plus lets user browse data portion of messages in queues.
 - **DELETE**: Allows DESC, RETRY, and DATA plus lets user delete messages from queues.

 Note: This is recommended unless there are security requirements.
- USEQACCESS: SET QACCESS commands will be used to determine the kind of access based on queue name and user ID, with a default of no access.

If you use Message access level of USEQACCESS, you need to specify additional parameters on this panel. If you are not using USEQACCESS, ignore the rest of the settings on this panel and press Enter to continue.

- Review the queue access name.
 Defines the 1-48 character specific or generic queue name for which to specify access authorization. To specify a generic name, enter a string of characters followed by an asterisk (*). This parameter is required.

- Review the MSGAUTHUSERS parameter.
 Defines which Tivoli Enterprise Portal user IDs are authorized to manipulate messages according to associated MSGACCESS parameter. Note that there can be multiple entries associated with this attribute, each entry is separated by a comma, and each entry can be a mask, which can include the "*" and "?" wildcard characters. A Tivoli Enterprise Portal user whose ID matches any mask in this list is authorized at the MSGACCESS level for messages on the queue. Tivoli Enterprise Portal users IDs are defined within the Monitoring Server and do not necessarily exist on the node on which the agent is running. There is no default for this parameter.

- Review MSGACCOUNT parameter.
 Defines the user ID that the agent uses to interact with WebSphere MQ for NAME queues. It specifies whether WebSphere MQ authorization uses the Tivoli Enterprise Portal user ID, the agent account, or a predefined account. Values can be:
 - UIUSER: Use the Tivoli Enterprise Portal user ID as the account for message manipulation.
 - MQAGENT: Use the agent account for message manipulation.
 - USER=user-id: Use the given predefined account ("user-id") for message manipulation.

- Review the MSGACCESS parameter.
 Provides what kind of access to allow MSGAUTHUSERS user IDs to NAME queues as follows:
 - NONE: No access.
 - DESC: Allows user to browse the message descriptors (default).
 - RETRY: Allows DESC plus retry messages from dead-letter queue.
 - DATA: Allows DESC and RETRY plus lets user browse data portion of messages in queues.
• DELETE: Allows DESC, RETRY, and DATA plus lets user delete messages from queues.

Press Enter to continue.

Figure 4-16 Specify Default Group Configuration Parameters (2 of 2)

7. A feature of WebSphere MQ running on z/OS is for the facility to have queue-sharing groups (QSGs). If your site uses them, you need to configure IBM Tivoli OMEGAMON XE for Messaging to monitor the QSGs. The next panel (Figure 4-17 on page 70) is where you specify the QSG parameters. Supply the following information (Figure 4-17 on page 70):

 - Specify the Queue-Sharing Group name.

 This field can specify the name of a particular queue-sharing group, or the default "**" to cover all QSGs connected to monitored queue managers.
– Review the QSG monitor parameter.
 This field specifies whether the agent monitors the given queue-sharing group. The options are the following:
 • YES: The agent monitors the given queue-sharing group. This is the default.
 • NO: The agent does not monitor the given queue-sharing group.
 • TAKEOVER: The agent takes over monitoring of the given queue-sharing group even if another agent is already monitoring it.

– Review the QSG manager name.
 This field limits the queue managers that are eligible to monitor the QSG. The default “*” means any queue manager that is being monitored by the agent can be chosen as the QSG monitoring queue manager. You generally take the default unless you needed to force the monitoring of QSG to a particular queue manager.

– Review the QSG check interval parameter.
 This field specifies the periodic interval at which KMQ_QSGAgent does QSG subnode initiation/failover processing. The time is in seconds, and the default is 300, a 5 minute interval. This parameter is not allowed to be set to less than 60 seconds, with the exception that it can be set to zero to turn off the KMQ_QSGAgent thread completely.

– Review the QSG group name.
 This field specifies the alternative Sys-Plex XCF group name for the coexistence of multiple collection agents. The default is KMQQSG. This parameter is primarily intended for testing purposes to allow multiple agents to coexist while being tested. Specifying an XCF group name that is in use by other system components can have unexpected consequences and must not be done under any circumstances.

Press Enter to continue.
8. At the Configure WebSphere MQ Monitoring menu (Figure 4-18 on page 71), select option 3.
9. Supply the following information (Figure 4-19 on page 72):

- Review the Agent started task name (STC name for agent).

 Specifies the started task name for the agent. You must copy this started task to your system procedure library.

- If you are connecting the agent to a Monitoring Server in this RTE, set the value for Connect to TEMS in this RTE to “Y”.

 Note: The Monitoring Server in this test environment is running on a distributed server and we will need to specify its location later. The Monitoring Server we connect to is configured for UDP only and is listening on TCP port 1918 (the default port).

- Specify the transports that the Monitoring Server is configured for and the order that you want the agent to try to connect to the Monitoring Server (1-7).

Press Enter to continue.
The following information is needed to define the Agent address space.

Agent started task => **OMXEMO**
Connect to TEMS in this RTE => **N** (Y, N)
Name of Primary TEMS => None

Specify the communication protocols in priority sequence.

- **IP.PIPE** => _ (Non-secure NCS RPC)
- **IP.UDP** => _ (Non-secure NCS RPC)
- **SNA.PIPE** => _ (Non-secure NCS RPC)
- **IP6.PIPE** => _ (IP.PIPE for IPV6)
- **IP6.UDP** => _ (IP.UDP for IPV6)
- **IP6.SPIPE** => _ (Secure IP.PIPE)
- **IP6.SPIPE** => _ (Secure IP.PIPE for IPV6)

Note: Enable only protocol(s) in use by the Primary TEMS.

Enter-Next F1-Help F3-Back F5-Advanced F10-CMS List

Figure 4-19 Specify Agent Address Space Parameters
Chapter 4. Installing and configuring WebSphere MQ agents

Figure 4-20 Communication Selection for Monitoring Server

Note: In our z/OS test environment, we have no Monitoring Servers configured in this ICAT. If there were, a list of Monitoring Servers would be displayed and we could select one of them for our agent to connect to.
10. Because we want to manually add the connection information to the distributed Monitoring Server, we now press the PF5 key to configure this agent.

a. In Figure 4-21, we specify our test environment's IP configuration parameters and press Enter twice.

![Image of specify agent primary TEMS values](image-url)

Figure 4-21 Specify Agent Primary TEMS Values
b. At the Specify Agent IP.UDP Configuration Values, we enter the Hostname and IP Address of this agent's z/OS LPAR.

Note: We obtained these values by issuing a “TSO HOMETEST” command on the LPAR on which this agent will run.
11. At the Configure WebSphere MQ Monitoring menu (Figure 4-23), select option **4 Create runtime members**.
12. Review the JCL and submit the job. Ensure that the job completes successfully (Figure 4-24).

![Image](image.png)

Figure 4-24 Create Run Time Members Job
13. At the Configure WebSphere MQ Monitoring menu (Figure 4-25), select option **5 Configure persistent datastore (in Agent)**.

![Configure WebSphere MQ Monitoring menu](image.jpg)

Figure 4-25 Configure WebSphere MQ Monitoring menu

14. Next, review the following parameters on the Specify Persistent Datastore Values panel (Figure 4-26 on page 79):

- **Maintenance procedure prefix**

 Prefix for the names of the procedures that are used to perform persistent data store maintenance when a persistent data store file is full. Procedure names can be the same for all products in an RTE. Specify the same procedure name prefix for all products. This field defaults to the maintenance procedure prefix you specified during Monitoring Server configuration. If there is no Monitoring Server configured in this RTE, the maintenance procedure prefix defaults to KPDPROC.

- **Allocation volume**

 DASD volume used in the procedure that allocates persistent data store files for this stand-alone agent.
– Allocation unit
 DASD unit used in the procedure that allocates the persistent data store files for this stand-alone agent. Valid unit types are 3380 and 3390.

– Allocation STORCLAS
 SMS storage class to be used in the procedure that allocates persistent data store files for this stand-alone agent.

– Allocation MGMTCLAS
 SMS management class to be used in the procedure that allocates persistent data store files for this stand-alone agent.

Press Enter to continue.

Figure 4-26 Specify Persistent Datastore Values
15. Choose option 1 **Modify and review datastore specifications** (Figure 4-28 on page 82).

![Allocate Persistent Datastore Menu](image)

Figure 4-27 Allocate Persistent Datastore menu

Use this panel to control the size, the placement, and the number of data sets that make up the persistent data store, or press F3 to accept the values displayed.

Each group contains the number of data sets specified in the Group Count field. The Datasets Lowlevel is suffixed with a 1-character value (1-9, A-Z) that indicates the data set number within a group. As an example, if these are the values referenced on the Persistent Datastore Specifications panel:

Group Name = RKMQDAT
Datasets Lowlev = RKMQPDS
In Group Count = 3

Then, the job creates the persistent data store members that make reference to these data store files:

OMXEMSG.SC67TS.RKMQPDS1
OMXEMSG.SC67TS.RKMQPDS2
OMXEMSG.SC67TS.RKMQPDS3
You can use the default values displayed or change them to meet your site's requirements.

Note:
- Three is the recommended minimum setting.
- If you specify one, additional I/O is required to delete records when space is reused.
- If you specify two, data becomes unavailable when a data store file fills up.

The -Est Cyl- Space field allocates the number of data store files you specified for the group. The CT/PDS processing computes how much space is needed to allocate the group data store files, and how much additional required space is needed to hold overhead information. Overhead information includes the product dictionary, table records, index records, and spare room for buffers that need to be reserved for when the data store file fills up.

Review the default values. The fields Backup, Export, and Extract are used for data store maintenance functions. Specify Y to turn on one of these maintenance functions for a group.

The Backup facility is used by users who want to keep old history data. This facility does a z/OS IEBGENER request to make an exact copy of the data set being maintained. It is a simple copy of the data set, either tape or DASD. A backed-up file also has the advantage that nothing has to be done to the file to dynamically make the data available to the persistent data store again.

The Export option converts the PDS file to flat files, which makes it easier to process by third-party applications. This facility writes the data to a flat file in an internal format. This is also used for recovery purposes when the persistent data store program detects potential problems with the data. When the data is exported, all of the indexing information is removed from the resulting file, making it a little smaller. The primary use of the Export facility is to perform recovery operations on the data set. The option to export in the configuration tool is not needed to perform the recovery operation. To make the exported file available to the persistent data store program again requires the restore program (KPDREST) to be run against the exported data.

The Extract option goes much further than the Export option when flattening out the data set. This facility writes the data to a flat file in readable form that is suitable for loading into other database management systems (DBMSs). It creates separate files for each table and converts the internal binary data to EBCDIC. This is a convenient format to load into almost any product. There is no method available to convert the extracted data back to a format that can be used by the persistent data store.
If none of the maintenance options is specified, the data within the data set being maintained is erased.

![Figure 4-28 Allocate Persistent Datastore menu](image-url)
16. Next, set up the persistent data store's maintenance job card. Select option 2 *Create or edit PDS maintenance jobcard*. See Figure 4-29.

![Allocate Persistent Datastore menu](image-url)
Review the job card and press Enter to continue.

Figure 4-30 Create or Edit PDS Maintenance Jobcard
17. Select option 3 **Create runtime members** (Figure 4-31).

![Allocate Persistent Datastore menu](image)

Figure 4-31 Allocate Persistent Datastore menu
18. Review the JCL and submit the job. Ensure that the job completes successfully (Figure 4-32).

![Output from the create PDS runtime member job](image-url)
19. Next, select option **4 Edit and submit datastore allocation job** (Figure 4-33).

![Allocate Persistent Datastore menu](image)

Figure 4-33 Allocate Persistent Datastore menu
20. Review the JCL and submit the job. Ensure that the job completes successfully (Figure 4-34).

![Figure 4-34 Output from edit and submit datastore allocation job](image-url)
21. After pressing PF3 three times, you return to the Runtime Environments (RTEs) panel (Figure 4-35).

Figure 4-35 Runtime Environments

Loading the RTE for IBM Tivoli OMEGAMON XE for Messaging

To load the runtime environment, perform the following steps:

1. On the Runtime Environments panel, enter L (Build libraries) in the Action field of the runtime environment you are going to configure (Figure 4-35).

2. Review the JCL and submit the job. Check that the job completes.

After loading the RTE, you must perform the following procedure outside of the ICAT configuration tool:

1. Copy the following members from the following to your system procedure library (for example, SYS1.PROCLIB):

 HLQ.RTE-Name.RKANSAMU

 Where HLQ = ICAT non-VSAM high-level qualifier (Figure 4-7 on page 56) and RTE-Name = Name of the RTE (Figure 4-9 on page 58).

 - KPDPROC1: Sample PDS maintenance procedure
– KPDPROC2: Batch job procedure to back-up, export, and initialize a PDS
– OMXEMQ: Name of started task (Figure 4-19 on page 72)

Note: In our lab environment, the RKANSAMU data set name was OMXEMSG.SC67TS.RKANSAMU.

2. Provide access to the data store files.

These KPDPROC1 and KPDPROC2 procedures maintain the physical files that constitute the PDS. Data store files are archived, exported, or recycled according to the maintenance strategy that you specified for PDS file groups for this product. The PDS subsystem automatically submits maintenance jobs whenever a data store file becomes full. The maintenance procedures must be available in a system procedure library for this to operate. The procedures are generic, so they can be used by all RTEs using this version of the PDS.

Ensure that these KPDPROC1 and KPDPROC2 procedures have the necessary authority to access the data store files.

3. APF-authorize libraries (if applicable).

Add the following runtime load libraries to your list of APF-authorized libraries.

Load library name:

- HLQ.RTE-Name.RKANMOD
- HLQ.RTE-Name.RKANMODL
- HLQ.RTE-Name.RKANMODU

Where HLQ = ICAT Non VSAM High Level Qualifier (Figure 4-7 on page 56) and RTE-Name = Name of the RTE (Figure 4-9 on page 58).

Note: In our lab environment, the data set names were:

- OMXEMSG.SC67TS.RKANMOD
- OMXEMSG.SC67TS.RKANMODL
- OMXEMSG.SC67TS.RKANMODU

Configuring the IBM Tivoli OMEGAMON XE for Messaging MQ Configuration Agent

The RTE that we will use for the configuration agent is the same (SC67TS) as we used for the IBM Tivoli OMEGAMON XE for Messaging V600 Monitoring Agent. IBM recommends that you configure both the IBM Tivoli OMEGAMON XE for Messaging V600 Monitoring Agent and the IBM Tivoli OMEGAMON XE for Messaging V600 Configuration Agent into the same RTE. This means that at this point we do not need to “allocate” or “build” the RTE for the configuration agent, and can now just start at the configuration of the RTE for this agent.
Perform the following steps:

1. Start ICAT.
2. Select option 3 from the main ICAT Configure Products menu.
3. Select option 2 **Select product to configure** (Figure 4-8 on page 57).

 Note: You probably will see a different product selection list in your ICAT environment. Select **IBM Tivoli OMEGAMON XE for Messaging V600**.

4. On the Runtime Environments panel, enter C (Configure) in the Action field of the runtime environment you are going to configure (Figure 4-11 on page 61).
5. Select option 2 **WebSphere MQ Configuration** (Figure 4-36).
At the WebSphere MQ Configuration menu (Figure 4-37), we skip options 1 and 2 because the Monitoring Server has already been configured for IBM Tivoli OMEGAMON XE for Messaging. If, however, you have a Monitoring Server in this RTE and you want the messaging agents to report to this Monitoring Server, select options 1 and 2, review the JCL, and submit the job.

6. Select option 3 from the WebSphere MQ Configuration menu (Figure 4-36 on page 91).

7. Supply and review the following information (Figure 4-38 on page 93):
 - IBM-supplied WebSphere MQ authorized load library
 - IBM-supplied WebSphere MQ language library
 - Configuration Auditing = Y

Note: When set to Y, configuration auditing will log all configuration changes. Every change will be recorded by saving the before and after state.
– MC agent nodename = **KMC_DEFAULT**

Note: This field specifies the node name the agent uses to connect to the Monitoring Server. The value of this field can be:

- **KMC_HOSTNAME:** The name of the computer on which the agent is running is used to determine the node name. Based on the running platform, the resulting node name is the current system SMFID.
- **KMC_DEFAULT:** The node name is determined from the Monitoring Server to which this agent connects. This is the default value.

Press Enter to continue.

![Specify Configuration Parameters](image-url)

Figure 4-38 Specify Configuration Parameters
8. Next, select option 4 Specify Agent address space parameters (Figure 4-39).

```
Option ==> 4

Perform the appropriate configuration steps in order:

If you have defined a TEMS in this RTE that this Agent will communicate with, select options 1 and 2.
1 Register with local TEMS
2 Configure persistent datastore (in TEMS)

To define an Agent, select option 3, then select the appropriate section(s) below to configure the desired address space.
3 Specify configuration parameters
4 Specify Agent address space parameters
5 Create runtime members
6 Complete the configuration
7 Run migration utility (Optional)
```

Figure 4-39 WebSphere MQ Configuration
9. On the next screen (Figure 4-40), you have the option to configure the IBM Tivoli OMEGAMON XE for Messaging V600 Configuration Agent to run in the same STC as the Monitoring Agent or to define a new one for it to run in. Select the WebSphere MQ Monitoring address space and press Enter to continue.

Note: In our lab environment, we chose to run it in the Monitoring Agent address space because this means that we only have the single STC for the monitoring and configuration agents.

![Figure 4-40 Agent Address Space Selection](image)
10. Select option **5 Create runtime members** (Figure 4-41).
11. Review the JCL and submit the job. Ensure that the job completes successfully (Figure 4-42).

![Figure 4-42 Create runtime members job](image-url)
12. After pressing PF3 three times, you return to the Runtime Environments (RTEs) panel (Figure 4-43).

![Runtime Environments panel](image)

Figure 4-43 Runtime Environments panel

Loading the RTE for IBM Tivoli OMEGAMON XE for Messaging

To load the runtime environment, perform the following steps:

1. On the Runtime Environments panel, enter `L` (Build libraries) in the Action field of the runtime environment you are going to configure (Figure 4-43).

2. Review the JCL and submit the job. Ensure that the job completes successfully.

After loading the RTE, you must perform the following procedure outside of the ICAT configuration tool:

1. Copy the following member from the following to your system procedure library (for example, SYS1.PROCLIB):

 `HLQ.RTE-Name.RKANSAMU`
Where HLQ = ICAT non-VSAM high-level qualifier (Figure 4-7 on page 56) and RTE-Name = name of the RTE (Figure 4-9 on page 58).

- OMXEMQ: Name of started task (Figure 4-19 on page 72)

Note: In our lab environment, the RKANSAMU data set name was:

OMXEMSG.SC67TS.RKANSAMU

2. APF-authorize libraries (if applicable).

Add the following runtime load libraries to your list of APF-authorized libraries.

Load library name:

HLQ.RTE-Name.RKANMOD
HLQ.RTE-Name.RKANMODL
HLQ.RTE-Name.RKANMODU

Where HLQ = ICAT non-VSAM high-level qualifier (Figure 4-7 on page 56) and RTE-Name = name of the RTE (Figure 4-9 on page 58).

Note: In our lab environment, the data set names were:

OMXEMSG.SC67TS.RKANMOD
OMXEMSG.SC67TS.RKANMODL
OMXEMSG.SC67TS.RKANMODU

Configuring the IBM Tivoli OMEGAMON XE for Messaging V600 Message Broker Monitoring Agent

The RTE that we use for the configuration agent is the same (SC67TS) as we used for IBM Tivoli OMEGAMON XE for Messaging V600 Monitoring and Configuration Agent. IBM recommends that you configure the IBM Tivoli OMEGAMON XE for Messaging V600 MQ Monitoring Agent, IBM Tivoli OMEGAMON XE for Messaging V600 MQ Configuration Agent, and IBM Tivoli OMEGAMON XE for Messaging V600 Message Broker Monitoring Agent into the same RTE. This means that at this point we do not need to “allocate” or “build” the RTE for the Message Broker Monitoring Agent, and can now just start at the configuration of the RTE for this agent.

Perform the following steps:

1. Start ICAT.
2. Select option 3 from the main ICAT Configure Products menu.
3. Select option **2 Select product to configure** (Figure 4-8 on page 57).
4. On the Runtime Environments panel, enter C (Configure) in the Action field of the runtime environment you are going to configure (Figure 4-11 on page 61).

5. Select option 4 WebSphere Message Broker Monitoring (Figure 4-44).

![Product Component Selection menu](image)

Figure 4-44 Product Component Selection menu

At the Configure WebSphere Message Broker Monitor menu (Figure 4-45 on page 101), we skip option 1 because the Monitoring Server has already been configured for IBM Tivoli OMEGAMON XE for Messaging. If, however, you have a Monitoring Server in this RTE and you want the Messaging agents to report to this Monitoring Server, select option 1, review the JCL, and submit the job.
6. Select option 2 **Specify configuration parameters** from the Configure WebSphere Message Broker Monitoring menu (Figure 4-45).

![Figure 4-45 Configure WebSphere Message Broker Monitoring Agent](image)
7. Next, specify the HFS directory that the IBM Tivoli OMEGAMON XE for Messaging V600 Message Broker Monitoring Agent will be configured to use (Figure 4-46).

Note: In our test lab, we use /OMEGAMONHome.

![Figure 4-46 WebSphere Message Broker Monitoring Parameters (Part 1)](image)

8. Press Enter to continue to specify the Broker Agent parameters (Figure 4-47 on page 105).

This menu presents the steps needed to configure OMEGAMON XE for WebSphere Integration Brokers. This panel is required to construct the KQIXML parameter member in RKANDATV.

Note: The default values mentioned here are considered best practice values and in most cases do not need to be changed.

- Agent Id: This agent ID attribute provides a optional short identifier (maximum of four characters) for the WebSphere Message Broker Monitoring Agent. The default is no agent ID assigned, represented by NONE on this panel.
– Number of broker events to retain: This attribute determines how many broker events to retain per broker for viewing in reports. These events are always reported as pure events for situations, and if historical situations are active, they can be viewed historically. The default is 10 events.

– Number of flow events to retain: This attribute determines how many message flow events to retain per broker for viewing in reports. These events are always reported as pure events for situations, and if historical situations are active, they can be viewed historically. The default is 10 events.

– Number of product events to retain: This attribute determines the total number of product events to retain for viewing in reports. These events are always reported as pure events for situations, and if historical situations are active, they can be viewed historically. The default is 10 events.

– Number of snapshot samples to retain: This attribute applies to monitoring brokers at Version 5.0 or later. It gives the minimum number of snapshot message flow accounting and statistics samples that will be retained by the agent for viewing in reports (this is a minimum; more are retained as needed to satisfy requirements for historical data collection, and so on). The default is 15 samples.

– Number of archive samples to retain: This attribute applies to monitoring brokers at Version 5.0 or later. It gives the minimum number of archive message flow accounting and statistics samples that will be retained by the agent for viewing in reports (this is a minimum; more are retained as needed to satisfy requirements for historical data collection, and so on). The default is five samples.

– Number of pub/sub samples to retain: This attribute gives the minimum number of publish/subscribe statistics samples that will be retained by the agent for viewing in reports (this is a minimum; more are retained as needed to satisfy requirements for historical data collection, and so on). The default is 15 samples.

– Discovery interval: This attribute determines the period of time in seconds between the agent's rediscovery of brokers created on the system. This parameter can be set to a high value when you are no longer creating new brokers, unless you have a dynamic environment on which new brokers are created frequently. The default is 300 seconds.

– Statistics interval: This attribute determines the minimum period of time in seconds between the collection of broker statistics, such as message flow statistics. The default is 60 seconds.

– Flow event interval: This attribute determines the period of time in seconds for the message flow event sampling interval. This interval does not apply to broker events or product events. The default is 15 seconds.
- Hold time for query: This attribute gives the number of seconds that the agent will retain data samples for more detailed report viewing after a user has selected a report showing data from the samples. This parameter only applies to reports available in archive message flow accounting and snapshot message flow accounting navigator items, which are available for brokers at Version 5.0 or later. The default is 180 seconds.

- Default take action users: This attribute specifies which Tivoli Enterprise Portal users are authorized to issue Take Action commands associated with this agent. Note that there can be multiple entries associated with this parameter, and that each entry can be a “mask” that can include “*” and “?” wildcard characters. A Tivoli Enterprise Portal user whose ID matches any mask in this list is authorized (by the Monitoring Server) to issue the Take Action commands that are handled by the KQIAgent. The default is “*”, which allows all Tivoli Enterprise Portal users to issue Take Action commands associated with this agent.

- Historical accounting type: This attribute applies to monitoring brokers at Version 5.0 or later. It gives the type of message flow accounting and statistics data samples that will be logged historically by the agent if historical data collection is active for this data. Tivoli Enterprise Portal Historical Configuration can be used to activate and deactivate historical data collection. Valid values are Archive, Snapshot, All, or None:
 - Archive: Only archive message flow accounting and statistics data samples will be logged historically. This is the default.
 - Snapshot: Only snapshot message flow accounting and statistics data samples will be logged historically.
 - All: All types of message flow accounting and statistics data samples will be logged historically (both archive and snapshot).
 - None: No message flow accounting and statistics data samples will be logged historically even if historical data collection is active.

- Reply queue name: This attribute specifies the name of the queue that will be used for the agent’s receipt of replies and publications for any queue manager to which the agent connects. Note that the queue will be created as a temporary dynamic queue if it does not already exist. If the given name is less than 33 characters long, the actual name of the temporary queue created will be made unique by the queue manager. This value will be used unless a replyQueueName parameter is specifically name for that queue manager. The default is KQI.AGENT.REPLY.QUEUE.
– Reply queue model: This attribute specifies the name of the queue that will be used as a model for creation of the agent reply queue for any queue manager to which the agent connects. This value will be used unless a replyQueueModel parameter is specifically named for that queue manager. The default is SYSTEM.BROKER.MODEL.QUEUE.

After you have reviewed the parameters, press Enter to continue.

9. This menu (Figure 4-48 on page 106) presents the steps needed to configure the WebSphere Message Broker Monitoring. This panel is required to construct the KQIXML parameter member in RKANDATV:

– Monitor broker name: This parameter applies to a single broker to be monitored by the agent. You can specify one or more of these tags. If no brokers are specified, no brokers will be monitored. All associated attributes are optional except for the name attribute and the componentDirectory attribute.
- Broker alias: Optionally specify an alias name for the monitored broker for use in creating the managed system name for the broker. The name given must not be longer than 22 characters, or it will be truncated in the managed system name.

- Component directory: Specify the directory path created when the broker to be monitored was customized. This is the same as the component directory name required as input to the `mqsc createbroker` command with the `-c` parameter.

Note: To add an additional broker name and component directory, edit member KQIXML in the RKANDATV data set.

Figure 4-48 WebSphere Message Broker Monitoring Parameters (Part 3)
10. After you specifying the configuration parameters, you now need to specify the link-edit libraries by choosing option 3 from the Configure WebSphere Message Broker Monitoring menu (Figure 4-49).

Figure 4-49 Configure WebSphere Message Broker Monitoring Agent

Link-edit jobs must be run in the customer environment for the WebSphere Message Broker Monitoring components to run properly. In order to run the link-edit jobs, the Configuration tool must know the names of the appropriate libraries within your system:

- WebSphere MQ Authorized load: The library described by the SCSQAUTH low-level qualifier in the IBM WebSphere MQ for MVS/ESA™ documentation. This field is required.

- WebSphere MQ Load library: The library described by the SCSQLOAD low-level qualifier in the IBM WebSphere MQ for MVS/ESA documentation. This field is required.

- LE/370 C Dynamic Routines: The library described by the SCEERUN low-level qualifier in the IBM Language Environment® documentation. This field is required.
LE/370 C Static Routines: The library described by the SCEELKED low-level qualifier in the IBM Language Environment documentation. This field is required.

USS CLIST library: The library described by the SBPXEXEC low-level qualifier in the IBM z/OS UNIX System Service documentation. This field is required.

After you verify the library names, press Enter to continue.

11. From the Configure WebSphere Message Broker Monitoring menu (Figure 4-51 on page 109), select option 4 Create configuration parameters. Review the JCL and submit the job. Ensure that the job completes successfully.
12. From the Configure WebSphere Message Broker Monitoring menu (Figure 4-51), you now need to select option **5 Specify Agent address space parameters**.

![Figure 4-51 Configure WebSphere Message Broker Monitoring menu](image_url)
13. After selecting option 5, configure the broker agent (Figure 4-52).

Supply the following information:

- Review the Agent started task name (STC name for agent). You will copy this started task to your system procedure library.

- If you are connecting the agent to a Monitoring Server in this RTE, set the “Connect to TEMS in this RTE” option to “Y”.

Note: The Monitoring Server in this test environment is running on a distributed server and we set up the location for the Monitoring Server previously when we configured the other IBM Tivoli OMEGAMON XE for Messaging V600 agents.

- Specify the transports for which the Monitoring Server is configured and the order that you want the agent to try to connect to the Monitoring Server (1-7).

Press Enter to continue.

Figure 4-52 Specify Agent Address Space Parameters
14. Specify the Hostname and IP Address of the z/OS system on which the agent will run (Figure 4-53).

![Figure 4-53 Specify Agent IP.PIPE Configuration Values](image-url)

* Hostname ==> WISC67
 * Address ==> 9.12.4.22
 * Started task ==> * (Recommended default = *)

Specify Agent IP.PIPE configuration.

Address translation ==> N (Y, N)

Partition name ==>

* Note: See F1=Help for TSO HOMETEST command instructions.

Enter=Next F1=Help F3=Back

Figure 4-53 Specify Agent IP.PIPE Configuration Values
15. You return to the Configure WebSphere Message Broker Monitoring menu (Figure 4-54). Select option **6 Create runtime members**.
16. Review the JCL and submit the JCL. Ensure that the job completes with return codes of 0 (Figure 4-55).

![Figure 4-55 Create runtime members job](image)

17. At the Configure WebSphere Message Broker Monitoring menu, select option 7 Configure persistent datastore (in Agent).

18. Next, review the following parameters on the Specify Persistent Datastore Values panel (Figure 4-56 on page 114):

 - Maintenance procedure prefix: Prefix for the names of the procedures that perform persistent data store maintenance when a persistent data store file is full. Procedure names can be the same for all products in an RTE. Specify the same procedure name prefix for all products. This field defaults to the maintenance procedure prefix you specified during the Monitoring Server configuration. If there is no Monitoring Server configured in this RTE, the maintenance procedure prefix defaults to KPDPROC.
- Allocation volume: DASD volume used in the procedure that allocates persistent data store files for this stand-alone agent.
- Allocation unit: DASD unit used in the procedure that allocates the persistent data store files for this stand-alone agent. Valid unit types are 3380 and 3390.
- Allocation STORCLAS: SMS storage class to be used in the procedure that allocates persistent data store files for this stand-alone agent.
- Allocation MGMTCLAS: SMS management class to be used in the procedure that allocates persistent data store files for this stand-alone agent.

Press Enter to continue.

Figure 4-56 Specify Persistent Datastore Values
19. Select option 1 **Modify and review datastore specifications** (Figure 4-57).

![Allocate Persistent Datastore menu](image)

Figure 4-57 Allocate Persistent Datastore menu

20. Use this panel (Figure 4-58 on page 117) to control the size, the placement, and the number of data sets that make up the persistent data store, or press F3 to accept the values displayed.

Each group contains the number of data sets specified in the Group Count field. The Datasets Lowlevel is suffixed with a 1-character value (1-9, A-Z) that indicates the data set number within a group. As an example, if these are the values referenced on the Persistent Datastore Specifications panel:

Group Name = KQI
Datasets Lowlev = RKQIPDS
In Group Count = 3
Then, the job creates the persistent data store members that make reference to these data store files:

OMXEMSG.SC67TS.RKQIPDS1
OMXEMSG.SC67TS.RKQIPDS2
OMXEMSG.SC67TS.RKQIPDS3

You can use the default values displayed or change them to meet your site's requirements.

Notes:

- Three is the recommended minimum setting for in Group Count.
- If you specify one, additional I/O is required to delete records when space is reused.
- If you specify two, data becomes unavailable when a data store file fills up.
- The -Est Cyl- space field allocates the number of data store files you specified for the group. The CT/PDS processing computes how much space is needed to allocate the group data store files, and how much additional required space is needed to hold overhead information. Overhead information includes the product dictionary, table records, index records, and spare room for buffers that need to be reserved for when the data store file fills up.

Review the default values. The fields Backup, Export, and Extract are for data store maintenance functions. Specify Y to turn on one of these maintenance functions for a group.

The Backup facility is used by clients who want to keep old history data. This facility does a z/OS IEBGENER request to make an exact copy of the data set being maintained. It is a simple copy of the data set, either tape or DASD. A backed-up file also has the advantage that nothing has to be done to the file to dynamically make the data available to the persistent data store again.

The Export option converts the PDS file to flat files, which makes it easier to process by third-party applications. This facility writes the data to a flat file in an internal format. This is also used for recovery purposes when the persistent data store program detects potential problems with the data. When the data is exported, all of the indexing information is removed from the resulting file, making it a little smaller. The primary use of the Export facility is to perform recovery operations on the data set. The option to export in the configuration tool is not needed to perform the recovery operation. To make the exported file available to the persistent data store program again requires the restore program (KPDREST) to be run against the exported data.
The Extract option goes much further than the Export option when flattening out the data set. This facility writes the data to a flat file in readable form that is suitable for loading into other database management systems (DBMSs). It creates separate files for each table and converts the internal binary data to EBCDIC. This is a convenient format to load into almost any product. There is no method available to convert the extracted data back to a format that can be used by the persistent data store.

If none of the maintenance options is specified, the data within the data set being maintained will be erased.

Figure 4-58 Persistent Datastore Specifications

Chapter 4. Installing and configuring WebSphere MQ agents 117
21. Next, you need to set up the persistent data store’s maintenance job card. Select option 2 **Create or edit PDS maintenance jobcard**. See Figure 4-59.

Figure 4-59 Allocate Persistent Datastore menu
22. Review the job card and press Enter to continue.

```
COMMAND ==> _

Specify the job statement for Persistent Datastore jobs:

Job statement for RTE SC67TS:
==> //CANNON1 JOB , PDS MAINT',REGION=QM,NOTIFY=TIVO91,
==> // CLASS=A
==> ///
==> ///
```

Figure 4-60 Create or Edit PDS Maintenance Jobcard
23. Next, select option **3 Create runtime members** (Figure 4-61).
24. Review the JCL and submit the job. Ensure that the job completes successfully (Figure 4-62).

![Job Execution Screenshot](image)

Figure 4-62 Create runtime members job
25. Select option **4 Edit and submit datastore allocation job** (Figure 4-63).

![Figure 4-63 Allocate Persistent Datastore menu](image)
26. Review the JCL and submit the job. Ensure that the job completes successfully (Chapter 4-64, “Edit and submit data store allocation job” on page 123).
27. After pressing PF3 three times, you return to the Runtime Environments (RTEs) panel (Figure 4-65).

![Runtime Environments panel](image)

Figure 4-65 Runtime Environments panel
28. After selecting L (Load all), and pressing the Enter key, the screen shown in Figure 4-65 on page 124 opens.

![Figure 4-66 Load UNIX System Services HFS](image)

Loading RTE for Tivoli OMEGAMON XE for Messaging V600

To load the runtime environment, perform the following steps:

1. On the Runtime Environments panel, enter L (Build libraries) in the Action field of the runtime environment you are going to configure (Figure 4-65 on page 124).

2. Specify Y in the “Do you want to include the USS steps in the load job” option (Figure 4-66).

3. Review the JCL and submit the job. Ensure that the job completes successfully.
After loading the RTE, you must perform the following procedure outside of the ICAT configuration tool:

1. Copy the following members from the following to your system procedure library (for example, SYS1.PROCLIB):

 HLQ.RTE-Name.RKANSAMU

 Where HLQ = ICAT non-VSAM high-level qualifier (Figure 4-7 on page 56) and RTE-Name = name of the RTE (Figure 4-9 on page 58).

 – KPDPROC1: Sample PDS maintenance procedure
 – KPDPROC2: Batch job procedure to back-up, export, and initialize a PDS
 – OMXEQI: Name of started task (Figure 4-52 on page 110)

 Note: In our lab environment, the RKANSAMU data set name was:

 OMXEMSG.SC67TS.RKANSAMU

2. Provide access to the data store files.

 These KPDPROC1 and KPDPROC2 procedures are used to maintain the physical files that constitute the PDS. Data Store files are archived, exported or recycled according to the maintenance strategy that you specified for PDS file groups for this product. The PDS subsystem automatically submits maintenance jobs whenever a Data Store file becomes full. The maintenance procedures must be available in a system procedure library for this to operate. The procedures are generic so they may be used by all RTEs using this version of the PDS.

 Ensure that these KPDPROC1 and KPDPROC2 procedures have the necessary authority to access the Data Store files.

3. APF-authorize libraries (if applicable).

 Add the following runtime load libraries to your list of APF-authorized libraries.

 Load library name:

 HLQ.RTE-Name.RKANMOD
 HLQ.RTE-Name.RKANMODL
 HLQ.RTE-Name.RKANMODU

 Where HLQ = ICAT non-VSAM high-level qualifier (Figure 4-7 on page 56) and RTE-Name = name of the RTE (Figure 4-9 on page 58).
4.2 Installing the WebSphere MQ agents on UNIX/Linux

The Tivoli Enterprise Monitoring Agent Framework must be installed and working properly prior to installing the OMEGAMON XE for Messaging agents. Because of the dependency of the IBM Tivoli OMEGAMON XE for Messaging agents on the 32-bit IBM Tivoli Monitoring V6.1 SDK, you must first install the 32-bit Tivoli Enterprise Monitoring Agent Framework. In addition, you need:

- Ethernet or token-ring LAN capability
- CD-ROM drive
- Native X-Term monitor for UNIX or Hummingbird Exceed X-Windows emulators for PCs only
- On Solaris, X11
- 8 MB of disk space

4.2.1 Installing Tivoli Enterprise Monitoring Agent Framework

In our environment, we installed the Tivoli Enterprise Monitoring Agent on a Linux platform, but the installation mechanism is the same for any UNIX or Linux platform supported by the OMEGAMON XE for Messaging product. Perform the following steps:

1. In the directory where you extracted the installation files, run the following command:

 ./install.sh

2. When prompted for the IBM Tivoli Monitoring home directory, press Enter to accept the default (/opt/IBM/ITM) or type the full path to a different directory.

3. Press Enter to create the /opt/IBM/ITM directory. Type 1 to start the installation and press Enter.

4. Type the number that corresponds to the language in which you want to display the software license agreement and press Enter.

5. Read the software license agreement and type 1 to accept.
6. Press Enter to accept the default 32-character encryption key. This key must be the same as the key that was used during the installation of the monitoring server to which the monitoring agent connects.

7. Type the number of the operating system on which you are installing (Figure 4-67). The default value is your current operating system. Press Enter. Type y to confirm the operating system and press Enter.

![Figure 4-67 IBM Tivoli Monitoring options](image)
8. Type 8 to install the Tivoli Enterprise Monitoring Agent Framework (Tivoli Enterprise Services User Interface).

Your installation is complete (Figure 4-69).
4.2.2 Installing the WebSphere MQ agents

This section describes the process of installing the OMEGAMON XE for Messaging WebSphere MQ agents on UNIX/Linux. We also discuss prerequisites and preinstallation tasks.

The following guides will help you during the installation, which are available at the following URL:

- IBM Tivoli OMEGAMON XE for Messaging V6.0 Installation Guide, GC32-1829
- IBM Tivoli OMEGAMON XE for Messaging V6.0 Problem Determination, Guide SC32-1831
- IBM Tivoli OMEGAMON XE for Messaging V6.0 WebSphere MQ Configuration Users Guide, SC32-1826
- IBM Tivoli OMEGAMON XE for Messaging V6.0 WebSphere MQ Monitoring Users Guide, SC32-1825

Prerequisites
Read 3.1.2, “System requirements” on page 35 and 3.1.3, “Installation requirements for each product by platform” on page 38 for full details.

Preinstallation tasks
Perform the following preinstallation tasks:

- Create an IBM Tivoli account for installing and maintaining the $install_dir directory. Use any valid name. The name Tivoli is recommended. Do not start the installation with the root ID, because it will cause problems with running the product after installation. However, certain IBM Tivoli products might require root authority to properly configure them. In those cases, the installation or configuration command might prompt for a root user ID and password.

- If you are planning to install the product on an AIX 5L machine, you need to perform the following command to check if the default language setting is English:

```
locale
```

If LANG is not set to C, issue the following command:

```
export LANG=C
```
Running the installation program
In this step, you run the setup<platform>.bin installation program through a shell script to install the WebSphere MQ agents. In our environment, we installed it on a Linux platform, but the installation mechanism is the same for any UNIX or Linux platform supported by the OMEGAMON XE for Messaging product.

Follow these steps:

1. Mount the OMEGAMON XE for Messaging product CD at the location you have chosen on the host. Enter the following:
 a. `mount device mount_point`
 b. `cd mount_point`
 Where the following are the variables:
 – device: The device driver for the CD-ROM
 – mount_point: The directory where the device will be mounted

2. From the bin directory under the root directory of the CD-ROM, execute ./setup<platform>.bin by entering the following:
   ```bash
   ./setup<platform>.bin
   ```
 Where <platform> is the platform name on which you are installing the product. For example, if you are installing on a Linux machine, the executable is:
   ```bash
   ./setupLinux.bin
   ```
3. Read the text that welcomes you to the installation, and click **Next** to continue (Figure 4-70).

![Image of the InstallShield Wizard for IBM Tivoli OMEGAMON XE for Messaging](image.png)

Figure 4-70 Installation welcome

4. Read the software license agreement and click **Accept** and then **Next**.
5. Select the target directory for the IBM Tivoli OMEGAMON XE for Messaging software (Figure 4-71). The default directory is /opt/IBM/ITM.

![Figure 4-71 Installation directory](image)

6. Select the installation that suits your needs and click **Next** to continue. The custom installation enables you to isolate and install specific agents.

7. If you selected Custom, click the + sign next to each main feature to expand the tree. Select the features that you want to install on the Linux machine.

 Agents and adaptors:
 - To install all the IBM Tivoli OMEGAMON XE for Messaging agents on this machine, select the **Agents and Adapters** check box.
 - To install only MQ agents, select only the check boxes for those agents.
8. Read the summary and click **Install** (Figure 4-72).
9. Your installation is complete. Click **Finish** (Figure 4-73).

![Figure 4-73 Installation complete](image)

4.2.3 Configuring the WebSphere MQ agents

Both the WebSphere MQ Configuration and WebSphere MQ Monitoring Agents are now installed but both still require configuration in order to communicate with the Monitoring Server. To configure either of the WebSphere MQ agents, start by changing to the $install_dir/bin directory. Agents can be configured either from the command line or through the Manage Tivoli Enterprise Monitoring Services window.

Using Manage Tivoli Enterprise Monitoring Services

Perform the following steps:

1. Enter the following command:

   ```
   ./itmcmd manage
   ```

2. In the Manage Tivoli Enterprise Monitoring Services window, highlight the product that you want to configure and select **Configure** from the Actions menu.

3. Enter the Monitoring Server connection information in the fields.

4. Click **Save** to save your settings.
Using the command line
Execute the following command:

```
./itmcmd config -A [-h install_dir] [-a arch] [-t agent_host_name] pc
```

Table 4-1 explains the functions of the parameters in the previous command.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-A</td>
<td>Used to configure an agent.</td>
</tr>
<tr>
<td>-a</td>
<td>(Optional) Specifies the architecture. This parameter enables you to configure an agent and a Monitoring Server for an architecture other than the one that you are on. For example, if you are on AIX 5L and want to configure for a Solaris computer, this option is required. Otherwise, the default is the computer you are on.</td>
</tr>
<tr>
<td>arch</td>
<td>One of the abbreviations used by IBM Tivoli for the architecture.</td>
</tr>
<tr>
<td>-h</td>
<td>(Optional) Identifies the installation directory if it is not the one in which the script is located. Also use this option to take action on an IBM Tivoli Monitoring installation directory other than the one in the current system.</td>
</tr>
</tbody>
</table>
| -t (when used for agents) | (Optional) Used for specific agent-to-Monitoring Server connectivity. Entering this flag creates a configuration file that is specific for running on the specified host. This option overrides the generic OS configuration file. Only use this option in those instances where an agent configuration requires different parameters for the host OS on which it will run.

Note: When reconfiguring an agent that has been configured using this option, you must use this option again to update the existing configuration. |
| agent_host_name | Host name for the agent. |
| pc | Indicates the product code of the agent you are configuring. The WebSphere MQ Configuration product code is mc; the WebSphere MQ Monitoring product code is mq. |
When configuring agents, some or all of the prompts in Table 4-2 might appear after executing `itmcmd` without optional parameters.

<table>
<thead>
<tr>
<th>Parameters when configuring the agent on UNIX</th>
<th>Our selections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Will this agent connect to a TEMS? [YES or NO] (The default is YES.)</td>
<td>YES</td>
</tr>
<tr>
<td>TEMS Host Name</td>
<td>ALPHA</td>
</tr>
<tr>
<td>Network Protocol 1 [ip, sna, ip.pipe or ip.spipe] (The default is ip.)</td>
<td>ip.pipe</td>
</tr>
<tr>
<td>Network Protocol 2 (The default is none.)</td>
<td>ip</td>
</tr>
<tr>
<td>Network Protocol 3 (The default is none.)</td>
<td></td>
</tr>
<tr>
<td>IP Port Number (The default is 1918.)</td>
<td>1918</td>
</tr>
<tr>
<td>IPPPIPE Port Number (The default is 1918.)</td>
<td>1918</td>
</tr>
<tr>
<td>Enter name of KDC_PARTITION (The default is null.)</td>
<td></td>
</tr>
<tr>
<td>Configure connection for a secondary TEMS? [YES or NO] (The default is NO.)</td>
<td>NO</td>
</tr>
<tr>
<td>Enter Optional Primary Network Name or “none” (The default is none.)</td>
<td></td>
</tr>
</tbody>
</table>

After answering all the questions, a config file is generated for the agent in the `$install_dir/config` directory with the format `pc.config`, where the variable `pc` is the product code of the agent you are configuring.

Note: The WebSphere MQ Monitoring Agent has an additional configuration file called `mq.cfg`. This file stores a default set of monitoring options that are read at agent startup, including the name of the queue manager to be monitored. If the queue manager name is not explicitly entered, an attempt is made to monitor the default queue manager. See 6.2, “WebSphere MQ Monitoring options” on page 203 for a full description.

4.2.4 Starting and stopping the WebSphere MQ agents

Before an agent is started, ensure that it is authorized. The account to be used for starting the agent must have mqm as the primary group.
Using Tivoli Enterprise Monitoring Services
Perform the following steps:

1. Change the directory to install_dir/bin.
2. Enter the following command:

 ./itmcmd manage

3. In The Manage Tivoli Enterprise Monitoring Services window, highlight the product that you want to start or stop.

4. Right-click and select start or stop.

Using the command line
Use the itmcmd command to start and stop WebSphere MQ agents. It must be executed on the architecture for which the agent is installed. Execute the following command:

./itmcmd agent [-l] [-h install_dir] [-c] [-s] start|stop {pc|all}

Table 4-3 explains the functions of the parameters of this command.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-c</td>
<td>(Optional) Indicates that the configuration file used on agent startup must not be updated. By default, this file is updated each time the agent is started.</td>
</tr>
<tr>
<td>-h</td>
<td>(Optional) Identifies the installation directory if it is not the one in which the script is located. Also use this option to take action on an IBM Tivoli Monitoring installation directory other than the one in the current system.</td>
</tr>
<tr>
<td>-s</td>
<td>(Optional) Option to specify safe mode operation. Safe mode invokes the JRE™ with the -nojit option.</td>
</tr>
<tr>
<td>start</td>
<td>stop</td>
</tr>
<tr>
<td>-l</td>
<td>(Optional) Used to delete the log file associated with the agent that is being stopped. By default, the log file is saved when the monitoring agent is stopped.</td>
</tr>
<tr>
<td>pc</td>
<td>The product code of the agent. You can specify one or more products to start or stop. If multiple products, you must separate the product codes with either a space or comma as illustrated earlier. To start or stop all agents on the computer, use the all option.</td>
</tr>
</tbody>
</table>
Multiple WebSphere MQ Monitoring Agents
The WebSphere MQ Monitoring Agent monitors a single WebSphere MQ queue manager. If you want to monitor multiple queue managers, create one instance of the monitoring agent for each queue manager.

The \texttt{-o} option of the \texttt{itmcmd agent} command monitors more than one queue manager, for example:

\texttt{./itmcmd agent -o qmgr1,qmgr2 start | stop mq}

4.3 Installing the WebSphere MQ agents on Windows

The Tivoli Enterprise Monitoring Agent Framework must be installed and working properly prior to installing the OMEGAMON XE for Messaging agents. Because of the dependency of the IBM Tivoli OMEGAMON XE for Messaging agents on the 32-bit IBM Tivoli Monitoring V6.1 SDK, you must first install the 32-bit Tivoli Enterprise Monitoring Agent Framework.

4.3.1 Installing the Tivoli Enterprise Monitoring Agent Framework

To install the framework, perform the following steps:

1. Launch the installation wizard by double-clicking the setup.exe file in the \texttt{\WINDOWS} subdirectory of the installation media.

2. Click \texttt{Next} on the welcome window.

3. Click \texttt{Accept} to accept the license agreement and then click \texttt{Next}.

4. Choose the directory where you want to install the product. Click \texttt{Next}.

5. Click \texttt{Next} and \texttt{OK} to accept the default 32-character encryption key. This key must be the same as the key that was used during the installation of the monitoring server to which the monitoring agent connects.
6. Expand **Tivoli Enterprise Monitoring Agents** (Figure 4-74). Select the **Tivoli Enterprise Monitoring Agent Framework** and click **Next**.

 ![Tivoli Enterprise Monitoring Agents installation](image)

 Figure 4-74 Tivoli Enterprise Monitoring Agents installation

7. Click **Next** to accept the default Program Folder of IBM Tivoli Monitoring.
8. Review your selections and click **Next** to install.
9. Leave selected (checked) the items that you want to configure before completing the installation (Figure 4-75). Clear (uncheck) the items that you want to delay until after completing the installation. Click Next to continue.

Figure 4-75 Tivoli Enterprise Monitoring Agent configuration to Monitoring Server
10. On the next window, the Tivoli Enterprise Monitoring Agent connection to the hub Monitoring Server configuration, select **IP.PIPE** for Protocol1 (Figure 4-76). Click **OK** to continue.

Figure 4-76 Connection to Monitoring Server
11. Enter the host name or IP address of the machine where the primary hub Monitoring Server resides (Figure 4-77). Enter the listening port of the agent. IBM recommends that you use port number 1918; however, if you must change it, enter the new port number (IBM recommends port numbers 1025-65535).

![Hub Monitoring Server connection configuration](image)

Figure 4-77 Hub Monitoring Server connection configuration
12. On the completion window, click **Finish** to complete the Tivoli Enterprise Monitoring Agent Framework installation (Figure 4-78).

![Figure 4-78 Installation complete](image)

After installing the Tivoli Enterprise Monitoring Agent Framework, next install the WebSphere MQ agent.

4.3.2 Installing the WebSphere MQ agents

This section describes the process of installing the OMEGAMON XE for Messaging WebSphere MQ agents on Windows.

The following guides will help you during the installation, which are available at the following URL:

- **IBM Tivoli OMEGAMON XE for Messaging V6.0 Installation Guide**, GC32-182
- **IBM Tivoli OMEGAMON XE for Messaging V6.0 Problem Determination**, Guide SC32-1831
- **IBM Tivoli OMEGAMON XE for Messaging V6.0 WebSphere MQ Configuration Users Guide**, SC32-1826
- **IBM Tivoli OMEGAMON XE for Messaging V6.0 WebSphere MQ Monitoring Users Guide**, SC32-1825
Prerequisites
Read 3.1.2, “System requirements” on page 35 and 3.1.3, “Installation requirements for each product by platform” on page 38 for full details.

Running the installation program
In this step, you start the InstallShield Wizard and specify the target directory for the IBM Tivoli OMEGAMON XE for Messaging software. Perform the following steps:

1. Log on to Windows using an ID with Administrator authority and close any running applications.

2. Insert the IBM Tivoli OMEGAMON XE for Messaging platform product CD into your CD-ROM drive. The installation begins automatically.

3. Read the text that welcomes you to the installation and click Next to continue.

4. On Software License Agreement window, read the software license agreement and click Accept and then Next.

5. On the Choose Destination Location window, specify the target drive and directory where you want to install the OMEGAMON XE for Messaging software. The recommended default is C:\IBM\ITM. Click Next to continue.

6. Select the installation that suits your needs and click Next to continue. The custom installation enables you to isolate and install specific agents.

7. If you selected Custom, click the + sign next to each main feature to expand the tree. Select the features that you want to install on the Windows machine.

Note: If the installer does not start, go to CD-ROM directory WINDOWS and run setupwin32.exe. If the setupwin32.exe initialization fails, you do not have enough disk space to decompress the setup files.
8. Read the summary and click **Install** (Figure 4-79).

Figure 4-79 Installation summary
9. In the Configuration window, you select initial configuration tasks (Figure 4-80). The specific tasks available for selection depend on the IBM Tivoli Monitoring components installed on the machine. Leave selected the items that you want to configure before completing the installation. Here we set up the agents’ default connections to the Tivoli Enterprise Monitoring Server. Clear the items that you want to delay until after completing the installation. Click Next to continue.

![Configuration tasks](image)

Figure 4-80 Configuration tasks

Important: By selecting the **Configure Agent default connection to Tivoli Enterprise Monitoring Server** option, you are asking the wizard to prompt you to configure the agent’s connection to the Monitoring Server (see Figure 4-81 on page 148). *But in this window, this configuration is done only for the MQ Monitoring Agent, not for the MQ Configuration Agent.* The configuration for the Configuration Agent must be done as a separate step (see 4.3.3, “Configuring the WebSphere MQ agents” on page 150).

If you do not select the **Configure Agent default connection to Tivoli Enterprise Monitoring Server** option, you need to configure the connection of the MQ Monitoring Agent to Monitoring Server as a separate step after the installation, just as the MQ Configuration Agent.
10. On the next window, the agent connection to the hub Monitoring Server configuration (Figure 4-81), select **IP.PIPE** for Protocol1 (Figure 4-81). Click **OK** to continue.

![Configuration Defaults for Connecting to a TEMS](image)

Figure 4-81 Connection to Tivoli Enterprise Monitoring Server
11. Enter the host name or IP address of the machine where the primary hub Monitoring Server resides (Figure 4-82). Enter the Monitoring Server listening port for the agent. IBM recommends that you use port number 1918; however, if you must change it, enter the new port number (IBM recommends numbers 1025-65535).

![Configuration Defaults for Connecting to a TEMS](image)

Figure 4-82 Hub Monitoring Server connection configuration
12. Click **Finish** to complete the WebSphere MQ Agent installation (Figure 4-83).

![Installation complete](image)

Figure 4-83 Installation complete

4.3.3 Configuring the WebSphere MQ agents

The WebSphere MQ Monitoring Agent has already been configured as part of the installation. This section describes the configuration of the WebSphere MQ Configuration Agent communication to the Monitoring Server. Perform the following steps:

1. From Tivoli Enterprise Monitoring Services, right-click **WebSphere MQ Configuration Agent** and select **Configure Using Defaults** *(or **Reconfigure** if the agent has already been configured)* (Figure 4-84 on page 151).
2. Select **IP.PIPE** for Protocol1. Click **OK** to continue (Figure 4-85).

Note: The agent we used will not communicate with the Monitoring Server across a firewall.
3. Enter the host name or IP address of the machine where the primary hub Monitoring Server resides. Enter the Monitoring Server listening port for the agent. IBM recommends that you use port number 1918; however, if you must change it, enter the new port number (IBM recommends numbers 1025-65535). Click OK (Figure 4-86).

Figure 4-86 Hub Monitoring Server connection configuration
4. From Manage Tivoli Enterprise Monitoring Services, right-click **WebSphere MQ Configuration Agent** and select **Start** (Figure 4-87).

![Figure 4-87](image)

The WebSphere MQ Monitoring Agent can be reconfigured if necessary, using exactly the same procedure as the one described for the WebSphere MQ Configuration agent.

Note: The WebSphere MQ Monitoring Agent has an additional configuration file called *mq.cfg*. This file stores a default set of monitoring options that are read at agent startup, including the name of the queue manager to be monitored. If the queue manager name is not explicitly entered, an attempt will be made to monitor the default queue manager. See 6.2, “WebSphere MQ Monitoring options” on page 203 for a full description.

4.3.4 Starting and stopping the WebSphere MQ agents

By default, the account of each monitoring agent is set to LocalSystem in Manage Tivoli Enterprise Services. If you want to run the monitoring agent under a user account rather than under the system account, you must first authorize the user account. Only user IDs that are members of group mqm are authorized to start and stop the monitoring agent.
Perform the following steps:

1. Open the Manage Tivoli Enterprise Monitoring Services window by selecting Start → Programs → IBM Tivoli Monitoring → Manage Tivoli Monitoring Services.

2. To start or stop each agent, right-click the agent name and select Start or Stop.

Multiple WebSphere MQ Monitoring Agents
The WebSphere MQ Monitoring Agent monitors a single WebSphere MQ queue manager. If you want to monitor multiple queue managers, create one instance of the monitoring agent for each queue manager.

To create an additional instance of the WebSphere MQ Monitoring Agent:

1. From Manage Tivoli Enterprise Monitoring Services, right-click WebSphere MQ Monitoring Agent (Figure 4-82 on page 149) and select Create Instance.

2. When prompted, supply a name for the new instance (no blanks are allowed), and then click OK.

3. The name you supply appears in the Task/Subsystem column of the Manage Tivoli Enterprise Monitoring Services window.
4. Next, you need to configure the agent. From Tivoli Enterprise Monitoring Services, right-click **WebSphere MQ Monitoring Agent** and select **Configure Using Defaults** (or **Reconfigure** if the agent has previously been configured). See Figure 4-88.

![Figure 4-88 Additional monitoring agents](image)

5. You are prompted to edit the agent's .cfg file. (The primary agent's file is named mq.cfg.)

 If your site does not have a default queue manager specified, or if you are configuring this agent to monitor a queue manager other than the default, click **Yes**. A Notepad session opens. Supply the WebSphere MQ queue manager name in the MANAGER NAME() and MGRNAME() parameters of the .cfg file, and then save and close the Notepad session. Click **Yes** at the next prompt to continue.

You are returned to the Tivoli Enterprise Monitoring Services window. This completes the initial configuration, and the agent is ready to start.
4.4 Remote deployment from Tivoli Enterprise Portal

A powerful feature of IBM Tivoli Monitoring V6.1 is the ability to deploy a monitoring agent through the Tivoli Enterprise Portal. To deploy the OMEGAMON XE for Messaging agents, the Tivoli Enterprise Monitoring Server must first have the relevant application bundles in its depot. The OS monitoring agent must also be deployed on the target system. See Deployment Guide Series: IBM Tivoli Monitoring 6.1, SG24-7188, for full details of the remote deployment process.

Perform the following steps to deploy an agent through the portal GUI:

1. Open Tivoli Enterprise Portal.
2. In the Navigation tree, navigate to the computer where you want to deploy the agent.
3. Right-click the computer and click Add Managed System (Figure 4-89).
4. Select the agent that you want to deploy and click OK (Figure 4-90 on page 157).
5. Complete the configuration fields as required by your installation (Figure 4-91). Click **Finish**.

6. Click **Finish** on the message that tells you that deployment was successful. Your agent is now deployed.
Building a network for your WebSphere MQ messaging middleware can be a slow and difficult task. As your network grows and queue managers span dozens of systems running on a variety of operating systems, it becomes even more difficult to determine where and how to configure new queue managers and their resources. IBM Tivoli OMEGAMON XE for Messaging: WebSphere MQ Configuration (WebSphere MQ Configuration) simplifies the time-consuming and resource-intensive tasks of defining your configuration. WebSphere MQ Configuration can be an incredibly powerful tool when all of its features are exploited. You can use WebSphere MQ Configuration to:

- Manage your WebSphere MQ network, including local or remote nodes, from a single point of control
- See how your WebSphere MQ queue managers and resources are related by viewing a graphical representation of your entire network
- Manipulate WebSphere MQ objects across one or more networks of queue managers from a single workstation
- Base configurations on prototype models so that you can implement global updates with the click of a button
Save time and resources by performing many difficult development tasks automatically

Group related WebSphere MQ resources together in ways that reflect the business-oriented relationships between them and the logical structure of your enterprise

We discuss the following topics in this chapter:

- Setting up the configuration database
- WebSphere MQ Configuration overview
- WebSphere MQ Configuration scenario
- Audit Logging feature
- Backing up and restoring the configuration database
5.1 Setting up the configuration database

When you install WebSphere MQ Configuration, it provides a single repository called the configuration database for all your WebSphere MQ configuration data. WebSphere MQ Configuration supports two database types (both are located at the hub Tivoli Enterprise Monitoring Server):

- The product-provided Internal type. This is installed automatically during Tivoli Enterprise Monitoring Server installation.

- The DB2 Universal Database type. The DB2 UDB Workgroup Server Unlimited Edition V8.2 CDs are included in the OMEGAMON XE for Messaging package. If the Tivoli Enterprise Monitoring Server is installed on z/OS and DB2 is not already installed, you can purchase and install it separately, or you can use the Internal type.

Database choice is a personal preference for the client installation.

If you install WebSphere MQ Configuration on the same machine as a Monitoring Server, the WebSphere MQ Configuration Data Source Parameters window automatically opens.

If you install WebSphere MQ Configuration on a different machine from the Monitoring Server, or if you are not ready to complete the WebSphere MQ Configuration Data Source Parameters window when prompted, open the window at any time after the Monitoring Server is installed and added with data for Configuration Management Support (product code cf).

To open the WebSphere MQ Configuration Data Source Parameters window on the machine that hosts the Monitoring Server, perform the following steps:

1. Execute the file KCFDatasource.exe from the install_dir\CMS directory (where install_dir is the home directory of IBM Tivoli Monitoring and IBM Tivoli OMEGAMON XE for Messaging).

2. If you select Internal, you do not need to specify any additional parameters. Click OK.

3. If you select ODBC (DB2 UDB), complete the rest of the fields.

4. In the Admin User ID and Admin Passwords fields, type the user ID (exactly eight characters) and password of a user with DB2 administrator authority.

5. In the Database User ID and Database Password fields, either accept the default user ID and password (WMQCFG) or type the user ID and password you want to use for accessing the configuration database. The user ID must be no longer than eight characters, and the password must be no shorter than six characters.
6. The data source name for the configuration database is RKCFAPLT. You cannot change it.

7. Click **OK** to save your settings and close the window.

Note: Our Tivoli Enterprise Monitoring Server installation was performed on Microsoft Windows 2003 Server. Consult the following guides for details of how to configure the WebSphere MQ Configuration database on other platforms:

- *IBM Tivoli OMEGAMON XE for Messaging V6.0 Installation Guide*, GC32-1829

These are available at the following URL:

5.2 WebSphere MQ Configuration overview

OMEGAMON for Messaging provides two components for managing WebSphere MQ: WebSphere MQ Configuration and WebSphere MQ Monitoring.

In this chapter, we introduce WebSphere MQ Configuration. In the next chapter, Chapter 6, “Monitoring WebSphere MQ” on page 197, we describe WebSphere MQ Monitoring. This sequence of chapters matches with the project life cycle, that is, design, develop, test and deploy, maintain, and monitor. So, we decided to describe WebSphere MQ Configuration before WebSphere MQ Monitoring because this is the order in which these tools are typically used in a real client environment.

As discussed in Chapter 1, “Introduction” on page 1, “you cannot manage what you do not measure.” Going further, you cannot measure what you do not know about. Therefore, in a new WebSphere MQ deployment, the first thing clients typically do is to use WebSphere MQ Configuration and take stock of what their environment looks like by doing discovery. They then use the results of this discovery to plan the monitoring of their WebSphere MQ environment. They can use WebSphere MQ Configuration to set parameters on queues, queue managers, and so on, that enable them to monitor the relevant WebSphere MQ objects. They then activate monitoring as required. If the client is new to WebSphere MQ as well, then that client might start by creating WebSphere MQ
prototypes and objects first, and then push the configuration to their environment.

In the following sections, we provide a description of the features and tools that WebSphere MQ Configuration offers to help you manage your WebSphere MQ configuration.

5.2.1 Centralized configuration information

In a highly distributed network, WebSphere MQ can run on a wide variety of platforms, which compounds the complexity of configuring and maintaining hundreds or even thousands of nodes. No matter where your resources lie, WebSphere MQ Configuration provides simplification by offering a single repository for all your WebSphere MQ configuration data, called the configuration database.

The configuration database is stored at the hub Monitoring Server and includes a default set of objects to help you start using WebSphere MQ Configuration.

5.2.2 A graphical representation of your configuration

It is difficult to get a sense of your configuration structure when your view of it consists only of configuration definitions. To help you understand the structure of your configuration, WebSphere MQ Configuration provides a representation of your WebSphere MQ configuration called the Defined View. Defined objects in this view represent current or potential WebSphere MQ resources (queue managers, channels, queues, processes, namelists, and so on), all under the management of WebSphere MQ Configuration. Figure 5-1 on page 164 shows an example of the Defined View.
You can use the Discover feature to quickly and easily build defined objects that represent your actual WebSphere MQ configuration. You can also use the Defined View to safely validate changes to your configuration before applying them to your actual WebSphere MQ configuration.

5.2.3 Common prototype models for creating WebSphere MQ objects

The prototype feature enables you to create blueprints for queue managers, resource groups, and resources that you can use as templates for defining configurations. After you create a prototype object, you can drag and drop it from the Prototype View into the Defined View as needed to build or update your configuration.

Any object created from a prototype inherits the characteristics of the prototype unless you specifically override them. If you update a prototype, WebSphere MQ Configuration updates all objects based on that prototype automatically. Using prototypes makes maintaining your WebSphere MQ configuration much easier, because instead of having to update many defined objects, you can update just the prototype on which they are based.
5.2.4 Variables

When used with prototypes, variables ensure consistency throughout your configuration and can help you quickly identify objects that might be based on the same prototype. Variables help to maintain a consistent naming standard policy throughout your WebSphere MQ environments.

WebSphere MQ Configuration provides two types of variables:

- Global variables are available for use by any individual object on the configuration. A Global Variables workspace is provided to enable you to make use of product-provided global variables as well create your own.
- Symbolic variables are local to a particular defined or prototype object, and all of its subordinate objects can inherit the symbolic variables.

5.2.5 Managing resources from a business perspective

Instead of locking you into a systems perspective of your WebSphere MQ configuration, WebSphere MQ Configuration frees you to organize WebSphere MQ resources into groups according to their business purpose. Configured system groups let you organize queue managers into groups of your own choosing. For example, you can group and manage all resources related to a particular application. This enables you to create a configuration that closely matches the logical structure of your enterprise. At a lower level, resource groups make it easy to organize queue manager resources (such as channels, queues, processes, namelists, and so on) by the business purpose they serve.

5.2.6 Keeping your actual and defined configurations in sync

After you develop and test the Defined View, you will want to implement your changes in your actual WebSphere MQ configuration. Or you might want to change your actual configuration manually and update the Defined View accordingly. WebSphere MQ Configuration provides update features that enable you to keep your actual configuration and defined configuration in sync.

It is a good practice to reconcile differences between the Defined View and your actual WebSphere MQ configuration before attempting any type of update operation. The View discrepancies action lets you resolve specific differences either in favor of the configuration database or in favor of the actual configuration.

When you choose “Update actual from defined,” WebSphere MQ Configuration first validates your Defined View to prevent errors from being implemented in your actual configuration, and then updates your actual configuration to match the configuration database.
Another way to keep your actual configuration and defined configuration in sync is to choose “Update defined from actual,” which changes the configuration database to match your actual WebSphere MQ configuration.

5.2.7 Scheduling actions

You can either perform the “Update actual from defined,” “Update defined from actual,” or “View discrepancies” actions as you update your configurations, or you can schedule these actions to run at specific intervals.

You have options available for how you perform long-running tasks. Based on how you have the product option set, you can select whether to always run in the foreground, always run in the background, or be prompted each time. Actions that you can perform in the background include:

- Update defined from actual
- Update actual from defined
- View discrepancies
- Delete (defined, actual, or both actual and defined)
- Validate
- Discover new resources
- Backup configuration database

For example, if you have the product option set to prompt each time when you select “Update actual from defined,” you are prompted as to whether the update should run in the background. If you reply yes, the product creates an internal scheduled action to perform the update.

5.2.8 Entering WebSphere MQ commands from the Defined View

When you select the Submit MQ Command option, a window opens that enables you to enter a free-form WebSphere MQ operator command (for example, in the Defined View, select a queue manager, right-click, and from the pop-up menu, select **Action → Submit MQ command**).

5.3 WebSphere MQ Configuration scenario

This section presents a scenario to help you understand how the features of WebSphere MQ Configuration work together to help you build your WebSphere MQ network. WebSphere MQ Configuration minimizes the effort involved in the rollout and maintenance of a new application to many sites.

The (fictitious) ZXY Electronics company has only recently begun to use WebSphere MQ for application-to-application integration. The company expects
their WebSphere MQ configuration to grow rapidly in size and complexity. They will be using the WebSphere MQ Configuration to help them manage an increasingly challenging environment. Two Windows systems are used for this scenario. One of their first uses of WebSphere MQ is to integrate two applications:

- An order processing application
- An order entry application

The order processing system is ZETA and the order entry system is BETA. They created a queue manager and supporting queues for the order processing application. They had also created queue managers for the order entry application rollout. The order entry queue manager requires four queues.

The ZXY Electronics WebSphere MQ environment is shown in Figure 5-2.
Now that ZXY Electronics installed WebSphere MQ Configuration, the company wants to use its features to minimize the cost of:

- Designing and testing the planned configuration of the four queues supporting the order entry application
- Deploying the planned configuration
- Maintaining the configuration of the queues over the life of the application

After reviewing the goals and the tools provided by WebSphere MQ Configuration, the following strategy for designing, testing, and deploying the planned configuration was planned:

- The planned configuration consists of four ORDER_IN queues for load balancing purposes. Creating a prototype strategy simplifies the work required to build the initial configuration on a new store environment when a new order entry system need to be created.
- Using prototypes also greatly minimizes the effort required to maintain the queues supporting the order entry application. If changes to the application require additional queues or changes to the existing queues, you can change the prototypes directly instead of manually changing each copy.
- After copying the resource group prototype to a queue manager in the defined view, you use WebSphere MQ Configuration to test the defined configuration. Once you are satisfied with the results, use WebSphere MQ Configuration to update the actual WebSphere MQ configuration with a few clicks of the mouse.

To implement this strategy, perform the following steps:

1. Enter update mode so that you can make changes to the configuration database. To enter update mode:
 a. Ensure that you are viewing WebSphere MQ Configuration. In the Tivoli Enterprise Portal List of available Navigator Views, the Configuration view is selected.
 b. In the configuration navigator tree, select **Configuration** (the root-level item).
 c. The “Update mode” check box appears in the Configuration workspace.
 d. Select the **Update mode** check box and click **Save**.
Figure 5-3 shows the configuration update mode.

2. A configured system group is a unit of organization within WebSphere MQ Configuration that enables you to organize queue managers into groups of your own choosing. A configured system group has no corresponding component in an actual WebSphere MQ configuration; it is simply a collection of queue managers, which in turn contain resource groups. Resource groups contain individual resources (queues, channels, and so on). Configured system groups are the highest unit of organization within WebSphere MQ Configuration. To create a new configured system group:
 a. Open the Defined View.
 b. The Defined View tree displays on the left side of the Defined View workspace.
c. Right-click **Defined View** (the root-level item) and, from the pop-up menu, select **Create Configured System Group**, as shown in Figure 5-4.

![Figure 5-4 Creating a new Configured System Group](image)

You will be prompted to supply a name for the new object. Enter an alphanumeric name for the new configured system group. Click **OK**. The new configured system group object is added to the Defined View tree.

3. The Discover process populates your Defined View with data from existing queue managers. When you run the Discover process, WebSphere MQ Configuration searches your entire WebSphere MQ network for queue managers not already defined in the configuration database and adds them to the selected configured system group. This feature is only available at the configured system group level.
Right-click the configured system group to which you want to add the discovered queue managers and, from the pop-up menu, select Discover (Figure 5-5).

Note: Depending on your WebSphere MQ configuration, this can be a lengthy procedure and it is not interruptible once begun.

WebSphere MQ Configuration searches your site's entire WebSphere MQ environment for unknown queue managers and adds them and all their associated resources (queues, channels, and so on) to the configured system group you selected. For each queue manager discovered, this product creates a resource group named $Default_Group, and the queue manager's resources are added to that resource group.
Figure 5-6 Viewing configuration of discovered queue manager

After you use the Discover feature to populate a configured system group, you can see your existing WebSphere MQ configuration in the Defined View. Your configuration is shown graphically in a tree view. In this view, different icons represent each type of object in your configuration (queue managers, queues, channels, processes, namelists, and so on). The left side of the display shows a hierarchical representation of configured system groups, configured systems (queue managers), resource groups, and resources. Click the + or - signs to expand or contract the display. The right side of the display shows the settings list of the currently selected object.
4. Next, you create a prototype of each of the four queues that support the order entry application. These prototypes serve as the models for queue objects you will add later to the Defined View. After the queues are added to Windows systems in the Defined View, you can change the queues by simply changing the original four prototypes on which they are based. When creating the four queue prototypes, you specify a name for the prototype, PROTO_ORDER_ENTRYn, and another name for defined objects based on the prototype, ORDER_ENTRYn on order entry system, where n is a number from 1-4. By using similar names for defined objects and for the prototypes on which they are based, you can easily keep track of related objects. In the Prototype View tree, right-click Resource Prototypes and, from the pop-up menu, select Create, and then select Queue:Remote, as shown in Figure 5-7.

Figure 5-7 Creating prototype for queue
5. Enter a name for the new object and click OK. The new prototype object is added to the Prototype View tree. In the Prototype View tree, select the new prototype. The settings list for the object displays on right side of the Prototype View (Figure 5-8).

Figure 5-8 Viewing PROTO_ORDER_ENTRY1 prototype
6. You create a resource group prototype to contain the four resources supporting the order entry application. Creating a resource group prototype makes it easy to configure each Windows system for the order entry application as it is rolled out. To create a resource group, right-click Resource Group Prototype and select Create Resource Group, as shown in Figure 5-9.

![Creating Resource Group prototype](image)

Figure 5-9 Creating Resource Group prototype

7. You will be prompted to supply a name prototype, PROTO_ORDER_ENTRY_GROUP, and another name for defined objects that will be based on the prototype, ORDER_ENTRY_GROUP. Again, using similar names for defined objects and for the prototypes on which they are based makes it easier to keep track of related objects. Enter an alphanumeric name for the new configured system group. Click OK. The new resource group prototype is added to the Prototype View tree.
8. You can drag an instance of the four queue prototypes into the resource group prototype. This creates references to each of the four queue prototypes. These references act as pointers that link the queue prototypes to the resource group prototype. If you make changes to a queue prototype, the change is automatically reflected in the resource group prototype and in each defined object based on these prototypes (see Figure 5-10).

Figure 5-10 Linking queue resource prototypes to the resource group prototype
9. Next, you open the Defined and Prototype view and copy the resource group prototype to the defined queue manager for the first system to support its order entry application (Figure 5-11). Dragging an instance of a prototype to the Defined View does not affect your actual WebSphere MQ configuration.

![Figure 5-11 Copying the resource group prototype to the defined queue manager](image)
10. To ensure that there are no errors in the queue manager definition or in any of its new, underlying resource definitions, use WebSphere MQ Configuration to validate the queue manager with the new resource group. Right-click the queue manager and select **Validate** (Figure 5-12).

![Figure 5-12 Validate the queue manager](image)

If you find any errors in the four new queues, edit the associated prototypes, not the object in the Defined View, and then validate the queue manager again.
11. Now that you are confident that the Defined View you created in support of the order entry application is valid, use WebSphere MQ Configuration to update the actual WebSphere MQ configuration automatically. Instead of implementing the changes command by command, right-click the queue manager you want to update and, from the pop-up menu, select Update actual from defined.

Note: Both the “Update actual from defined” and “Update defined from actual” operations can delete objects from the configuration that is being updated. Therefore, it is important to perform the “View discrepancies” action before you perform either “Update action” to ensure that you know what changes will be implemented.

By default, this configuration product validates the defined configuration automatically before adding the four new queues to the queue manager on the actual Windows system.
Suppose one year later, an upgrade to the order entry application requires the addition of a fifth queue. Because you used prototypes to build the resource group and original four queues for the application, it is easy and fast to add another queue. In order to maintain a consistent WebSphere MQ naming standard, you create a global variable for the application name and use this in the new definition. Perform the following steps:

1. Open the Global Variables configuration view and click **Add User Variable**.

2. You add a variable called **APP** and assign a value of **ORDER_ENTRY**.

3. You then create a fifth prototype in the same manner as you created each of the original four queue prototypes. This time, you specify the name for the prototype using the variable, PROTO&APP. The name for defined objects based on the prototype, also uses the variable, &APP.

4. You add PROTO&APP.5 to the resource group prototype PROTO_ORDER_ENTRY_GROUP. WebSphere MQ Configuration adds a reference to the fifth queue prototype to the prototype. Now that the resource group prototype has been changed, all the defined resource groups based on PROTO_ORDER_ENTRY_GROUP get a fifth defined queue as well.
5. Because this configuration product validates updates to an actual configuration before implementing them, you can run the “Update actual from defined” operation on the entire configured system group without first validating the change you just made to the system, or you can also schedule an action for the “Update actual from defined” operation.

![Image of a window with a defined and prototype tree and resolved variables]

Figure 5-15 Resolved variables

The next section describes how you schedule an action.
5.3.1 Scheduling an action

When you make changes to your defined or actual WebSphere MQ environments, you want to update or compare these configurations to keep them in sync. However, performing these actions as configuration changes are made, or during regular business hours, might mean slower response times and a delay in your configuration activities. Equally, change needs to be managed and it is not always possible to implement during business hours simply to ensure protection of service. In most cases, MQ objects are also open for use during the day by business applications, and it is not best practice to force administrative changes to the infrastructure when this is the case.

Additionally, you might be working with configurations in different time zones and want to schedule actions based on the time of day in a particular time zone. Using the action scheduling feature, you can schedule an action to run weekly, daily, hourly, or even on hours in specified time zones. You can also schedule an action to run on demand using an activity program in a policy.

To schedule actions for a target object, use the Scheduled Action settings list. You can create a scheduled action for one object or for a group of objects. To schedule an action:

1. Ensure that you are in update mode.
2. In the Defined View, right-click the object for which you want to schedule an action and, from the pop-up menu, select **Schedules → Create**, as shown in Figure 5-16.
3. Enter the name of your new scheduled action and click **OK** (Figure 5-17).

![Scheduled Action - Edit](image)

Figure 5-17 Scheduling options

4. Use the Name section to specify:
 - The name and description of the schedule.
 - Whether the scheduled action continues running after a failure on one of the target objects when more than one target object was originally selected.
 - Whether the schedule is enabled or disabled (to run the scheduled action, the Enabled check box must be selected).
– Whether to preserve the integrity of target objects and their descendants or ancestors (this prevents another user from making any updates to target objects or their descendants or ancestors when the scheduled action is Enabled).
– The type of action to perform.

5. Use the Time section to specify:
– When the scheduled action runs.
– Whether the times specified are relative to the Tivoli Enterprise Portal client or the configured system containing the target object or objects.
– How often the scheduled action repeats.
– When the schedule needs to be purged from the configuration database.
– Whether the defined action is performed on a specified schedule or executed by a policy.

6. Use the Detail section to view the target object or objects as part of its configured systems and configured system group.

7. Use the Save section to specify:
– Whether to make the scheduled action report data eligible for saving. (To Save the scheduled action report output, the Save output check box must be selected. This is not an automatic process; manual steps are required later, from the Scheduled Action Summary Report, if you decide to save the output to a file after the scheduled action runs.)
– Whether this is a one-time-only scheduled action that needs to be deleted after the report data is saved.
– The format of the saved report data.
– The level of detail of the saved report data.
– Whether this is a one-time-only save request.
– The file name and location of the saved report data.

8. Click **Save** to save your changes.

5.3.2 Connecting queue managers

You can use WebSphere MQ Configuration to quickly and easily create bidirectional links between two queue managers. When you drag and drop queue manager objects within the graphical interface, WebSphere MQ Configuration automatically creates the necessary channels and transmission
queues. To automatically create bidirectional links between two queue managers:

1. Ensure that you are in update mode.
2. Open the Defined View and expand the Defined View tree as necessary.
3. Locate the first queue manager you want to connect.
4. Locate the second queue manager.
5. Click the first queue manager you want to connect. Drag its icon to the queue manager you want to connect to and then release the button.

Figure 5-18 shows the connecting queue managers operation.

![Connecting queue managers](image)

A resource group is automatically added to each queue manager. The resource group added is based on the value specified in the Autoconnect prototype resource group field (in the Auto Start section of the Queue Manager settings list). Default “autoconnect” prototype resource groups are shipped with WebSphere MQ Configuration.

WebSphere MQ Configuration creates the necessary transmission queues and channels to link the two queue managers. They are added to the first resource group for each queue manager. If a queue manager has no resource groups, one named $Default_Group is created.
5.3.3 Creating resources

You can use the Defined View's menu options to create and define new resources within an existing resource group. The types of resources you can define are:

- Alias queue
- Authentication Information object
- Client connection channel
- Cluster receiver channel
- Cluster sender channel
- Coupling facility (z/OS only)
- Listener
- Local queue
- Model queue
- Namelist
- Process
- Receiver channel
- Remote queue
- Requester channel
- Sender channel
- Server channel
- Server connection channel
- Storage class (z/OS only)

Note: New resources created with the method described in this section are not based on a prototype, so you need to either specify all required parameters or accept the default settings.

Let us say, for example, you need to create a local test queue for some testing purposes temporarily. You can create a new queue resource for a resource group:

1. Ensure that you are in update mode.
2. Open the **Defined View**.
3. Right-click the icon of the resource group to which you want to add the new resource and, from the pop-up menu, select **Create → Queue:Local**, as shown in Figure 5-19.

![Figure 5-19 Creating local queue](image)

4. Enter an alphanumeric name for the new resource TEST.LOCAL.QUEUE and click **OK**. The new resource object is added to the Defined View tree.
 a. If the default settings for the object are acceptable, you are finished creating the new resource.
 b. If you want to change or view the default settings for the object, continue with the next step in the procedure.
5. In the defined view tree, select the new created resource **TEST.LOCAL.QUEUE**. The settings list for the object displays on the right side of the Defined View (Figure 5-20).

![Figure 5-20 Viewing the queue object](image)

6. Complete the settings list as necessary.

7. Click **Save** to save your changes.

8. Before you add defined configuration objects to your actual WebSphere MQ configuration, make sure that you validate the definitions to ensure that they are defined properly. After you are completely satisfied, use **Update actual from defined** to add defined objects to the actual WebSphere MQ.
5.4 Audit Logging feature

The Audit Logging feature enables you to view historical records of the changes you make to your defined and actual configurations using WebSphere MQ Configuration. Auditors, WebSphere MQ system administrators, or anyone else interested in determining configuration changes can view this information in easy-to-read report format. The changes reported include:

- Creating new objects or action schedules
- Deleting of objects or action schedules
- Changes to settings
- Updates to defined or actual objects
- Actual object discoveries
- Prototype disinheritance
- Security violations
- Changes to product-managed configuration objects made as a result of a change to a managed cluster

5.4.1 Audit Log reports

This report contains information about each change to your defined and actual configurations, including the name of the user who made the changes. Depending on the type of configuration change, you can access additional details reports. Perform the following steps:

1. Use the Audit Log workspace (Figure 5-21 on page 191) to access the Audit Log report.
2. Specify a custom time period for which you want to view records (using the Start time and End time controls), and then click Show Audit Log, or you can also click one of the predefined time periods for which you want to view records. The choices are Last week log, Yesterday log, Last hour log, and Last 15 minutes log (see Figure 5-22).
5.4.2 Accessing additional details reports

An additional details report is available for entries in the Audit Log report that represent update and drag/drop actions. The contents of the report vary according to the type of action.

For update actions, a detailed report contains one row for every property that was altered. Every row contains the name of the property and its before and after values.

For drag/drop actions, a detailed report contains the name of the original configured system, the name of the original parent, and the name of the new parent. To get additional information for a particular entry in the Audit Log report:

1. Highlight an entry that contains one of the following actions: DragDrop Copy, Settings Change, and Update Defined, as shown in Figure 5-23.

2. Click Open as Details. The Details report opens (Figure 5-24).
5.5 Backing up and restoring the configuration database

It is a good practice to regularly back up the configuration database. The backup process is performed using a Tivoli Enterprise Portal client. The backup process does not interfere with the functioning of the configuration manager, nor does the Tivoli Enterprise Monitoring Server need to be disabled in order to execute the backup process.

The backup begins only if there are no outstanding deferred database updates pending; the backup also waits until all database commits have completed. While the backup is running, it is possible to fetch records from the database as required by other transactions; however, any deferred database updates that are created while the backup is running will remain queued until the backup completes. This will not prevent other update transactions from running.

The format of the backup file is platform-independent. Therefore, the backup process can be used to migrate the configuration data from one platform to another. If you use FTP to accomplish this, you must specify the ASCII format. Also, if you transfer a backup file to z/OS, define the LRECL of the receiving data as follows:

RECFM=FB,LRECL=440,BLKSIZE=<some multiple of 440>

There is only one procedure to back up the configuration database file regardless of the type of database (the product-provided Internal type or the DB2 Universal Database type) that your site uses for the configuration database. To back up the configuration database to a file:

1. Ensure that you are in update mode. The Configuration view opens.
2. In the Configuration view, click **Backup Configuration Database**. The backup configuration database opens, as in Figure 5-25. You will be prompted to supply a file name.

![Configuration view with Backup Configuration Database option highlighted](image)

Figure 5-25 Backup Configuration Database

3. Enter the name of the file, on the hub Monitoring Server machine, where you want the configuration database backed up. The format of the file name depends on the operating system on which the Monitoring Server runs:

 - If the Monitoring Server is on UNIX/Linux, this name identifies a file in the `$install_dir/tables/TEMS_Name` directory, where `install_dir` is the directory into which you installed this Tivoli Monitoring product package and `TEMS_Name` is the name of your Tivoli Enterprise Monitoring Server. If the file does not exist, it is created; if it does exist, its current contents are overwritten.

 - If the Monitoring Server is on Windows, this name identifies a file in the current Monitoring Server working directory (for example, `c:\IBM\ITM\TEMS`). If the file does not exist, it is created; if it does exist, its current contents are overwritten.
– If the Monitoring Server is on z/OS, this name references a predefined sequential data set. Do not enclose the name in quotation marks. The DCB information required for this data set is:

RECFM=FB,LRECL=440,BLKSIZE=<some multiple of 440>

After you enter the name of the file, click **OK**.

4. Wait for the message that the configuration database was successfully backed up and click **OK**.

Note: In order to restore the configuration database, a previous back up of the configuration database must have been performed.

The restoration process is performed at the hub Tivoli Enterprise Monitoring Server. The backup file that is needed for restoration must have been previously created. In the event that it is necessary for you to restore the contents of the configuration database from the backup file, use one of the restore utilities listed in this section. Use the restore utility that is appropriate for the type of configuration database used by your hub Monitoring Server:

- **Product-provided Internal type configuration database restoration options:**
 - If the Monitoring Server is on UNIX/Linux, use the RestoreMQConfigDB utility located in the $install_dir/bin directory where install_dir is the directory into which you installed this Tivoli Monitoring product package.

 - If the Monitoring Server is on Windows, use the KCFCRSTR utility located in the current Monitoring Server working directory (for example, c:\IBM\ITM\CMS). At the command prompt, you can enter KCFCRST2 with no operands to display usage information for this utility.

 - If the Monitoring Server is on z/OS, use the KCFARSM utility. For a sample JCL to run the KCFARSM utility, see the sample member named KCFRCDBJ in the &RHILEV..TKANSAM library.

- **DB2 Universal Database type configuration database restoration options:**
 - If the Monitoring Server is on UNIX/Linux, use the RestoreMQConfigDB2 utility located in the $install_dir/bin directory, where $install_dir is the directory into which you installed this Tivoli Monitoring product package.

 - If the Monitoring Server is on Windows, use the KCFCRST2 utility located in the current Monitoring Server working directory (for example, c:\IBM\ITM\CMS).

 - If the Monitoring Server is on z/OS, use the KCFCRST2 utility. For a sample JCL to run the KCFCRST2 utility, see the sample member named KCFRSDB2 in the &RHILEV..TKANSAM library.
5.6 Summary

WebSphere MQ Configuration simplifies the time-consuming and resource-intensive tasks of defining your configuration. You can use IBM Tivoli WebSphere MQ Configuration to manage your WebSphere MQ network, including local or remote nodes, from a single point of control. You can see how your WebSphere MQ queue managers and resources are related by viewing a graphical representation of your entire network. You can base configurations on prototype models so you can implement global updates with the click of a mouse, saving time and resources by performing many difficult development tasks automatically. You can group related WebSphere MQ resources together in ways that reflect the business-oriented relationships between them and the logical structure of your enterprise.

Note: The current contents of the configuration database are completely replaced by the contents of the backup file.
In Chapter 5, “Using OMEGAMON XE for Messaging to configure WebSphere MQ” on page 159, we talked about OMEGAMON XE for WebSphere MQ Configuration. In this chapter, we introduce OMEGAMON XE for WebSphere MQ Monitoring. It is important to remember that although these components are not prerequisites for each other and can be used as stand-alone components, you will get the most benefit by using them together. This will provide you with a complete end-to-end WebSphere MQ management tool.

We discuss the following topics in this chapter:

- WebSphere MQ Monitoring overview
- WebSphere MQ Monitoring options
- Workspaces
- Monitoring scenarios
6.1 WepSphere MQ Monitoring overview

IBM Tivoli OMEGAMON XE for Messaging: WebSphere MQ Monitoring (WebSphere MQ Monitoring) lets you easily collect and analyze WebSphere MQ-specific data for all queue managers from a single vantage point. It provides many useful workspaces you can use to track trends and understand and troubleshoot system problems. It provides you with the ability to view information about each WebSphere MQ object you are monitoring. You can use this information to identify system bottlenecks and evaluate tuning decisions, select the most effective threshold values for situations you create, and review status information when a change in the state of a given resource occurs, such as from Informational to Warning or from Warning to Critical.

WebSphere MQ Monitoring provides these benefits:

- Increases knowledge with extensive reporting capabilities that provide real-time access to reliable, up-to-the-minute data. Therefore, you can make faster, better-informed operating decisions.
- Enhances system performance by letting you integrate, monitor, and manage your system, environment, console, and mission-critical applications. For example, WebSphere MQ Monitoring can alert you when conditions in your environment meet or exceed the thresholds you set. These alerts notify your system administrator to limit and control system traffic.
- Simplifies application and system management by managing applications, platforms, and resources across your system.

As mentioned in 1.5, “OMEGAMON XE for Messaging overview” on page 14, the importance of understanding what the messaging infrastructure means to the business that it supports cannot be underestimated. To ensure that the WebSphere MQ Monitoring configuration meets business expectations and SLAs, a requirements gathering exercise needs to be performed with business area application developers. The output of the requirements exercise is an understanding of how the different components of the application rely on and interact with, the WebSphere MQ infrastructure. After this has been established, WebSphere MQ Monitoring can be configured and tuned accordingly to maximize its ability to support critical business systems. This also means resource utilization is targeted at the right areas and helps to ensure that WebSphere MQ applications are using the infrastructure in an efficient manner. Relevant questions might include:

- What service level agreement is in place with the business?
 This will determine how quickly problems need to alerted and resolved. It will also determine the interval at which monitoring information is recorded.
What are the typical message volumes throughout the business day?
An understanding of the traffic passing through a WebSphere MQ infrastructure means that unusually high (or low) volumes can be identified.

Do any of the applications in the WebSphere MQ infrastructure have scheduled downtime?
If so, it might be quite normal activity to have a build up of messages on particular application queues at certain times. We do not want to issue alerts for what is an expected situation.

Which services do each of the application queues access?
Some application queues might provide a link to an absolutely vital application service, others might be less important. Again, this helps to determine monitoring intervals and sampling intervals for situations.

What are the expected response times for each application?
Understanding how quickly applications expect a response message will help identify any bottlenecks in the infrastructure.

What is the nature of the various application messages? Are they persistent or non-persistent?
Understanding the importance of messages will help in any Take Action scenario as well as determining how to handle messages on the dead-letter queue.

WebSphere MQ application monitoring example
This very simple monitoring example shows important aspects of monitoring a critical application. There are two applications, one that produces messages that are consumed by another application. These applications reside on different queue managers. For the purposes of this discussion, the queue managers can reside on different machines, or within the same machine. See Figure 6-1 on page 200.
When monitoring critical applications, there are several aspects to keep in mind. First, are the necessary resources available in order for this application to operate? In this case, is the channel available and running between the two queue managers? Not shown in this example is another channel that is required to send responses to queues on the originating queue manager. It has been omitted for simplicity. The channel connects the two queue managers. If the channel fails or stops, it must be restarted immediately and automatically. Failure to keep this channel running causes the applications not to perform according to expectations. If the channel does not restart for any reason, an alert needs to be sent to operations personnel in order to investigate.

Second, another indication of the connectivity between the two queue managers is the transmission queue. In this example, it is the queue on which application A is putting messages. If this queue starts to build up messages, it might be an indication of network throughput not meeting expectations, even though the channel is operating normally.

The queue from which application B is getting messages also needs to be monitored. It must be monitored for queue depth. An increasing queue depth will indicate how fast application B is consuming messages. If the queue increases in the message depth over time, it might be an indication that application B is not performing up to expectations. It is also important to monitor the depth of this queue over time, where you can get an indication of what the demand is at certain times during the day, week, or month. If the queue depth increases only
during the hours 3:00 p.m. to 4:00 p.m., and then quickly returns to only a few messages, this indicates that between these hours there is peak load that might not be able to be handled by application B. However, queue depth alone might not be able to give an indication of application performance.

First, we must be able to define application performance. In this case, it might also be an indication of service level agreement. You expect that if 10 messages were put into the queue, that 10 messages would be consumed from this queue in the same period of time. So, if 10 messages per second were put onto this queue, and 10 messages per second were taken off of this queue during the same time, this is a good indication that we are meeting performance goals, because the specification is to have at least 10 messages per second throughput. Input rate, however, is not always constant. Messages will arrive depending on the demand at the time. Let us say that 100 messages per second arrived on the queue, and the application still ran at 10 messages per second (the specification). Then it would take 10 seconds to get to the last message on this queue. This does not meet the service level that was agreed upon, where we stated that all messages receive less than two seconds response time.

Now we have a dilemma. We have written our application to specification, but cannot meet our service levels.

This example is all too common in many enterprises. It usually originates because of insufficient testing. The testing specifications, unfortunately, also specified that this application process at least 10 messages per second. Overlooked was a system test where all applications are tested together, at production loads. In this case, in a production environment, we would have known that during certain peak times 100 messages per second arrive for processing. A good system test would have revealed that this combination of application usage is not sufficient to meet our needs.

Why test? Testing and monitoring under production loads enable us to set expectations. We know what we expect to see in terms of arrival rate and throughput. This translates directly into the production environment where we now set expectations on how application will perform. Given that we know this information, it is easy to understand when our applications are not behaving up to our expectations. We can set thresholds on queues or message rates and be alerted when these applications perform “out of bounds,” and now we have narrowed down what it takes to research the problem. Without testing, and setting expectations, we unfortunately need to rely on the phone ringing to tell us when we have a problem, and then it takes some time to figure out what the problem is.

So, how do we fix this problem? The first thing we think about is fixing the program, re-engineering it to meet the desired throughput. However, this might
take some time, and we need this application now. Fixing this application also involves testing, testing that we might or might not have done previously.

There is, however, something we can do that will only involve infrastructure and monitoring to keep this application running at the desired SLA levels. Actually, there are two things.

First, monitor queue B for message arrival rate and message departure rate. If the arrival rate is greater than the departure rate (messages are starting to build up in the queue) and the queue depth is greater than 10 messages, we can start another instance of application B. This is called vertical scalability. We now have multiple applications reading from the same queue, thus doubling the throughput of application B. If the machine resources are available, you can continue to apply this technique and run as many consuming applications as you want. When the queue depth is zero for several observations, shut down the redundant applications. Although it takes some planning, this can be done automatically through monitoring tools.

The second technique is called horizontal scalability. This technique involves distributing the workload over several machines, which will result in achieving the needed throughput and service levels. It requires no changes to the application. You are required to make a change to the WebSphere MQ configuration where queue B is now a clustered object, and when we send a message to queue B, it goes to each queue manager assigned to the cluster in order. So, we need to define application B in several other queue managers and make them members of the cluster. This has several advantages where the workload is distributed across several other queue managers. Next, it allows for a backup in case one application is not responding. It does, however, require you to monitor more channels and queues. You are not required to wait until the extensive application modifications are complete. You can change this with infrastructure.

Monitoring during testing tells us what to expect in production. We can set monitoring points in production to tell us when our applications do not meet our expectations. We can effect change in the infrastructure that allows us to meet our expectations while we fix or re-engineer our applications. The key here is to obtain these expectations during testing.

Knowing what we know from the previous figure, let's say that this is a transaction that will require several applications to complete this transaction. This might be the case in an application in an SOA architecture.
Given what we need to do in a simple application to understand how it behaves, you can see all the parts that need to be monitored in order to fully understand the behavior of this transaction or service. This is illustrated in Figure 6-2.

Figure 6-2 Monitoring points for applications

- Application A, B and C are components of a business transaction
- There are many objects that make up the underlying transactions
- There are as many as 8 monitoring points for objects associated to this transaction
- You should Monitor all the objects as it relates to the transaction (queues, channels)
- You should Monitor the flow of messages belonging to specific message queues (get/put rate)
- You need the ability to detect slowdown or stoppage in flow in specific queues (put rate exceeds get rate, channel down)
- You will need to identify problems and automatically react to them.

6.2 WebSphere MQ Monitoring options

WebSphere MQ Monitoring enables you to set a wide range of monitoring options that can be changed to suit the needs of your environment. For example, you can define which queue managers, queues, and channels you want monitored, specify the time interval for collecting WebSphere MQ data, manage the disposal of event messages from an event queue, or specify whether or not you want to collect historical monitoring data and how long you want to have that data available. Monitoring options are set by defining certain commands and parameters in a special command file that we refer to as the *monitoring file* (the actual name of the file varies slightly by operating system platform). When you start the WebSphere MQ agent, the commands and parameter values in the monitoring file are read and executed. You do not create the monitoring file; it is supplied with your product and is preconfigured with a set of default commands and parameter values. As supplied, the WebSphere MQ Monitoring Agent for WebSphere MQ on z/OS monitors all queues and channels for all queue managers and all WebSphere MQ applications. As supplied, the WebSphere MQ Monitoring Agent for WebSphere MQ on HP NonStop Kernel (formerly known as
Tandem), UNIX/Linux, Microsoft Windows, and IBM OS/400® monitors all queues and channels on a single default queue manager. You can change these default options as well as any others. The list of monitoring options available are as follows:

- The SET GROUP command defines a group of queue managers that have common monitoring characteristics. Within the group, you can override like-named parameters for specific queue managers using the SET MANAGER command. At least one SET GROUP command is required.

- The SET MANAGER command specifies queue managers to be monitored.

- The SET QACCESS command specifies a set of queues that have specified message manipulation rights in group level or manager level.

- The SET QUEUE command specifies the queues to be monitored. WebSphere MQ Monitoring always monitors the dead-letter queue. To monitor other system or application queues, specify them with the SET QUEUE command.

- The SET CHANNEL command specifies the channels to be monitored.

- The SET EVENTLOG command specifies the size, location, and other attributes of the event log. This command applies to all platforms excepts z/OS.

- The SET EVENTQIN command identifies the queue manager event queue, channel event queue, performance event queue, configuration event queue, command event queue, and logger event queue for a queue manager or group of queue managers. If no SET EVENTQIN command applies to a queue manager, the following default WebSphere MQ names are used:
 - SYSTEM.ADMIN.QMGR.EVENTS
 - SYSTEM.ADMIN.CHANNEL.EVENTS
 - SYSTEM.ADMIN.PERFM.EVENTS
 - SYSTEM.ADMIN.CONFIG.EVENT (Configuration events are present on WebSphere MQ for z/OS Version 5.3 and later only.)
 - SYSTEM.ADMIN.COMMAND.EVENT (Command events are present on WebSphere MQ for z/OS Version 6.0 and later only.)
 - SYSTEM.ADMIN.LOGGER.EVENT (Logger events are present on WebSphere for Distributed Platforms Version 6.0 and later only.)
The SET EVENTQOUT command identifies the output queues where queue manager event information, channel event information, performance event information, configuration event, command event information, and logger event information will be copied. After WebSphere MQ Monitoring has read an event message from an event queue, it deletes the message to ensure that it is processed only once. If another application running at your site requires access to event messages, you can define an output queue where these messages are copied and point the other application to that queue. If no SET EVENTQOUT command applies to a queue manager, the event information is discarded after being processed.

The PERFORM INCLUDE command points to an external file containing customization commands. To execute the commands in this file, specify PERFORM INCLUDE in your startup file.

The PERFORM STARTMON command initiates monitoring of WebSphere MQ objects, specifies the sampling interval for collecting WebSphere MQ data, and specifies whether or not historical data will be collected. The PERFORM STARTMON command is required.

The SET AGENT command enables you to specify the middle qualifier used in the managed system name. On distributed platforms, if this value is not specified, no value is used. On z/OS, if this value is not specified, the host name is used. If you specify this value, it is used only in the managed system names of subnodes. For example, to avoid confusion and to allow multiple WebSphere MQ Monitoring Agents, instead of issuing the default agent startup command IRAMAN KMQAGENT START (to start a node named hostname:MQIRA), you can issue the modified agent startup command IRAMAN KMQAGENT START agentid (to start a node named agentid:MQIRA). Here are some reasons to use the SET AGENT command:

- On distributed platforms, if your site has multiple queue managers with the same name, running on different nodes, you need to specify the node name for each queue manager to uniquely identify them.
- To group and identify queue manager names by something other than the host name and queue manager name.
- To allow multiple agents connected to the same CMS to monitor the same queue manager.

The SET APPL (z/OS only) command identifies the WebSphere MQ-based z/OS applications, CICS® transactions, and IMS™ programs that must be monitored for application debugging information and application statistics.
The SET MQIMONITOR (z/OS only) command is supported on z/OS only. The SET MQIMONITOR command activates monitoring for the applications you specified using the SET APPL command. You must specify the SET MQIMONITOR command to turn on monitoring. Use the SET MQIMONITOR command together with the SET APPL command to activate the application debugging and application statistics features.

The SET QSG (z/OS only) command specifies which queue-sharing groups the WebSphere MQ Monitoring Agent on z/OS monitors and which queue managers the agent uses to collect queue-sharing group data. At any given time, for a particular queue-sharing group, this monitoring product uses only one queue manager to gather data. If that queue manager becomes unavailable, data gathering “fails over” to another queue manager. The SET QSG command is optional. If not specified, the default behavior of the agent is to monitor all queue-sharing groups that are associated with monitored queue managers. You might use a SET QSG command to specify such things as:

- That no queue-sharing groups will be monitored
- That a particular queue-sharing group will not be monitored
- That a particular queue manager must not be used to collect queue-sharing group data

Editing WebSphere MQ Monitoring options
WebSphere MQ Monitoring options can be configured in one of two ways, remotely or locally on the managed system.

Remote agent configuration
WebSphere MQ Monitoring allows for configuration of remote agents through Tivoli Enterprise Portal. This is a very powerful feature of the product because it means that all agents can be configured, and reconfigured as necessary, from a central location.
To configure a WebSphere MQ Monitoring Agent from Tivoli Enterprise Portal:

1. Right-click the managed system and click **Configure** (Figure 6-3).

![Figure 6-3 Configure managed system](image-url)
2. Edit the managed system as required (Figure 6-4) based on the options detailed in 6.2, “WebSphere MQ Monitoring options” on page 203.

![Managed System Configuration - QM_Beta:MQ](image)

Figure 6-4 Configure Managed System details

Individual agents can also be configured and reconfigured on the host where they reside. The following is an example of editing the WebSphere MQ Monitoring Agent option on Windows.

Local agent configuration

On Windows, you can change the WebSphere MQ Monitoring options by editing the `mq.cfg` monitoring file. If your site has multiple queue managers, you might created multiple instances of the monitoring agent, each with its own uniquely named monitoring file pointing to a single queue manager. You can customize monitoring options in any or all of these monitoring files. Perform the following steps:

1. From the Manage Tivoli Enterprise Monitoring Services panel, under Service/Application, select **WebSphere MQ Monitoring Agent -- instance**, where instance is the name of the agent instance for which you want to change monitoring options.

2. Right-click the **WebSphere MQ Agent** and select **Reconfigure**.
3. Verify settings or change as needed and click **OK**.

4. Click **Yes** when you are prompted to update the mq_instance.file.

5. Click **OK**. A Notepad session opens.

6. Add, delete, or modify monitoring option commands as required for your site. Adhere to the following editing rules:
 - To continue a command onto the next line, end the current line with a hyphen (-).
 - Parameters you set when grouping objects are effective for all the objects in the group.
 - You can override parameters for an object in a group by explicitly defining parameters for that object.

7. Select **File → Save** and exit Notepad.

8. Click **Yes** at the next prompt to continue.

9. Verify that your queue manager and its command server are running.

10. Restart the agent for the changes to take effect.

For more information about this and also details about editing the monitoring options on other platforms, refer to *WebSphere MQ Monitoring User's Guide*, SC32-1825.
Note: Ensure that your Tivoli Enterprise Portal account has permission to administer WebSphere MQ. Our agent configuration was defined to allow an individual Tivoli Enterprise Portal user account to access MQ queues and messages. These Tivoli Enterprise Portal accounts do not have to exist on each managed system. The following parameters were set in the SET MANAGER command to allow for administration rights:

```
ACTIONAUTHUSERS(GREAVESM) -
ACTIONACCOUNT(USER=mqadmin) -
MSGACCESS(USEQACCESS) -
```

The SET QACCESS command was then used as follows to allow message access:

```
SET QACCESS NAME(*) -
MSGAUTHUSERS(GREAVESM) -
MSGACCOUNT(USER=mqadmin) -
MSGACCESS(DELETE) -
MGRNAME(QM_BETA) -
STATUS(ADD)
```

Where mqadmin is an account created on the managed systems that belongs to the mqm group.

6.3 Workspaces

WebSphere MQ Monitoring is installed with default views that are displayed in workspaces. Where applicable, links have been provided within the workspace to link from a parent view to a more detailed view about a selected row, or to a related workspace (for example, a workspace containing historical information). The workspaces can be accessed from the Navigator in Tivoli Enterprise Portal.
Figure 6-5 WebSphere MQ Agent workspaces within the Navigator

Note: You can use OMEGAMON XE to gather data for real-time monitoring and for historical reporting and analysis. We do not provide examples of historical data analysis, but a general discussion is provided in *Getting Started with IBM Tivoli Monitoring 6.1 on Distributed Environments*, SG24-7143. Refer to that IBM Redbook for information about collecting and analyzing historical data.

Table 6-1 on page 212 gives a brief description of the workspaces.

Refer to *IBM Tivoli OMEGAMON XE for Messaging V6.0 WebSphere MQ Monitoring Users Guide*, SC32-1825, for more information about workspaces.

Important: For some of the workspaces described here, options within WebSphere MQ need to be enabled to ensure that the related data is collected. Refer to the product documentation for more information.
Table 6-1 WebSphere MQ workspaces

<table>
<thead>
<tr>
<th>Workspace</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Accounting</td>
<td>These workspaces can help you to monitor accounting messages that are generated intermittently by distributed (non z/OS) queue managers to record information about the Message Queue Interface (MQI) operations performed by WebSphere MQ applications, or to record information about the activities occurring in a WebSphere MQ system. The workspaces only apply to WebSphere MQ V6 or later applications.</td>
</tr>
<tr>
<td>Application Debugging</td>
<td>These workspaces apply only to the WebSphere MQ applications that are running on z/OS. These workspaces can help you debug your WebSphere MQ applications by enabling you to view and sort debugging trace data.</td>
</tr>
<tr>
<td>Application Statistics</td>
<td>These workspaces provide statistics about WebSphere MQ applications that are running on z/OS only. Data for these workspaces is only available if Application Statistics are being collected on z/OS.</td>
</tr>
<tr>
<td>Buffer Pool Statistics</td>
<td>The Buffer Pool Statistics workspaces can help you ensure that your buffer managers are performing efficiently. These workspaces show current buffer manager performance for all monitored z/OS queue managers. You can also drill down to display information about a specific buffer pool to isolate recent or historical performance trends.</td>
</tr>
<tr>
<td>Channel Definitions</td>
<td>The Channel Definitions workspaces provide you with information about the channels your site has defined and is monitoring for each monitored queue manager. Included is the channel type (sender, receiver, server, or requestor).</td>
</tr>
</tbody>
</table>
| Channel Initiator Status | These workspaces pertain only to z/OS queue managers. The Channel Initiator Status workspaces provide information about:
 - Channel connection states (the number of current, maximum, active, starting, stopping, and retrying).
 - Whether the channel initiator, TCP/IP listener, and LU62 listener are active.
 - The success of adapter subtask and dispatcher activity. |
<table>
<thead>
<tr>
<th>Workspace</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel Performance</td>
<td>The Channel Performance workspaces provide performance information about the monitored channels on each monitored queue manager. Included is whether or not each channel is in-doubt, current, or inactive, as well as the channel type. The client connection channel definitions do not produce statistics, so they are not listed in any of the Channel Performance workspaces.</td>
</tr>
<tr>
<td>Cluster Queue Manager</td>
<td>These workspaces provide information about explicitly and automatically defined cluster channels and the cluster queue manager associated with them.</td>
</tr>
<tr>
<td>Dead Letter Queue Messages</td>
<td>These workspaces allow you to list and examine the messages that a queue manager queued to its dead-letter queue (DLQ) because they could not be delivered.</td>
</tr>
<tr>
<td>Error Log</td>
<td>This workspace enables you to view and monitor WebSphere MQ error log data retrieved from a monitored queue manager (non-z/OS only).</td>
</tr>
<tr>
<td>Log Manager Performance</td>
<td>These workspaces give information about the logging activity (such as I/O levels and the number of times a WebSphere MQ application was delayed because no logging buffers were available) for each monitored z/OS queue manager.</td>
</tr>
<tr>
<td>Message Manager Performance</td>
<td>The Message Manager Performance workspaces provide information about how frequently calls to the WebSphere MQ application programming interface (API) are being made against your monitored z/OS queue managers. These rates can help you determine how frequently messages are being passed to and pulled from a particular queue manager.</td>
</tr>
<tr>
<td>MQI Statistics</td>
<td>These workspaces monitor the statistics messages that are used to record information about the activities in a distributed (non z/OS) WebSphere MQ system. These workspaces apply to WebSphere MQ 6 and later.</td>
</tr>
<tr>
<td>MQSeries® Events</td>
<td>These workspaces provide information about the following six events for each monitored queue manager:</td>
</tr>
<tr>
<td></td>
<td>▶ Channel Stopped</td>
</tr>
<tr>
<td></td>
<td>▶ Queue Full</td>
</tr>
<tr>
<td></td>
<td>▶ Queue Depth High</td>
</tr>
<tr>
<td></td>
<td>▶ Queue Service Interval High</td>
</tr>
<tr>
<td></td>
<td>▶ Bridge Stopped</td>
</tr>
<tr>
<td></td>
<td>▶ Channel Not Activated</td>
</tr>
</tbody>
</table>
6.4 Monitoring scenarios

This section describes which WebSphere MQ objects and attributes must be monitored, the related alerts to be generated, and the appropriate actions, if any, that need to be taken to assist in identifying and resolving the problem. In this section, we also discuss some of the WebSphere MQ Monitoring related workspaces and how you can gather critical information about your monitored WebSphere MQ network using these workspaces.

<table>
<thead>
<tr>
<th>Workspace</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page Set Statistics</td>
<td>These workspaces give information about the usage and allocation of page sets for each monitored z/OS queue manager.</td>
</tr>
<tr>
<td>Queue Definitions</td>
<td>The Queue Definitions workspaces provide information about your monitored queues.</td>
</tr>
<tr>
<td>Queue Manager Status</td>
<td>These workspaces show the status of the monitored queue managers in your network and give basic descriptive information about each monitored queue manager.</td>
</tr>
<tr>
<td>Queue Statistics</td>
<td>The Queue Statistics workspaces provide usage information about the current queue manager queues (such as the number of open queues, how full they are, whether they are get- or put-inhibited, and the number of messages currently on each queue manager's dead-letter queue).</td>
</tr>
<tr>
<td>Queue-Sharing Group</td>
<td>These workspaces show the status of each (z/OS) queue manager in the queue-sharing group and the Coupling Facility. They also show the status of shared queues and channels used by the queue-sharing group.</td>
</tr>
<tr>
<td>Queue Messages</td>
<td>The Queue Messages workspaces can help you to manage queues by enabling you to display queue status and contents, list queued messages, display message descriptor information, display message application data, and finally, delete messages. Access these workspaces from the Queue Definitions item for the selected queue manager.</td>
</tr>
<tr>
<td>Message Statistics</td>
<td>These workspaces enable you to closely monitor the messages on a particular queue. Access these workspaces from the Queue Definitions item for the selected queue manager.</td>
</tr>
</tbody>
</table>
In the scenarios that follow, commentary is provided to highlight the most appropriate monitoring choices according to business requirements. In some cases, it might be adequate to use MQ events to report potential problems with a WebSphere MQ infrastructure. In others, it is necessary to create situations within WebSphere MQ Monitoring to report and respond to very specific scenarios.

WebSphere MQ queue manager configuration

To ensure that all of the monitoring and reporting features of WebSphere MQ Monitoring can be accessed, it is important to review your queue manager configuration for event monitoring. Event monitoring is the process of detecting occurrences of instrumentation events in a queue manager network. An instrumentation event is a logical combination of events that is detected by a queue manager or channel instance. Such an event causes the queue manager or channel instance to put a special message, called an event message, on an event queue.

The following MQ events must all be enabled as required:

- **Queue manager events**
 - Authority
 - Inhibit
 - Local
 - Remote
 - Start and stop (z/OS supports only start)

- **Channel and bridge events**
 - IMS bridge (z/OS only)
 - SSL

- **Performance events**
 - Queue depth events
 - Queue service intervals

- **Configuration events**
 - Create object events
 - Change object events
 - Delete object events
 - Refresh object events

- **Command events**

- **Logger events**
Additionally, to exploit the WebSphere MQ Monitoring Application Accounting and MQI Statistics workspaces, the following queue manager parameters also need to be reviewed. Refer to the WebSphere MQ product documentation for details about these parameters/options.

- **Statistics monitoring**
 - MQI statistics
 - Queue statistics
 - Channel statistics
 - Auto CLUSSDR statistics
 - Statistics interval

- **Accounting monitoring**
 - MQI accounting
 - Queue accounting
 - Accounting interval

WebSphere MQ Monitoring can also be used to display real-time monitoring statistics that are available with WebSphere MQ V6.0. Review the following queue manager parameters:

- **Channel monitoring**
- **Queue monitoring**
- **Auto CLUSSDR monitoring**

Note: Many of the previously listed parameters can be set at the queue or channel level as well as the queue manager level. Consider the scope of your monitoring requirements before setting these values.
All of the parameters described here can be changed either locally on the queue manager or through Tivoli Enterprise Portal by right-clicking the object in the WebSphere MQ Monitoring view, or through the WebSphere MQ Configuration view (Figure 6-6 and Figure 6-7 on page 218).

Figure 6-6 Queue manager setup (Part 1)
6.4.1 Situations

OMEGAMON XE for Messaging extends the flexibility and power of alerting through WebSphere MQ events by providing a number of specific WebSphere MQ alerting and automation rules called situations. Situations allow for a much finer degree of monitoring rules to be deployed and can be tailored for specific business requirements.

OMEGAMON XE for Messaging provides an extensive number of predefined situations that are applicable to most WebSphere MQ infrastructures. Any number of individually defined situations can also be created that meet specific business monitoring requirements. To view the product provided situations from Tivoli Enterprise Portal, select Edit → Situation Editor. Navigate to the MQSERIES folder and maximize it. Figure 6-8 on page 219 shows some of the options provided WebSphere MQ situations.
The following situations are turned on by default:

- MQSeries_Alias_Queue_Problem
- MQSeries_Bufpl._Buffer_Shrt_Crt
- MQSeries_Channel_Autodef_Error
- MQSeries_Channel_Initiator_Prob
- MQSeries_Channel_SSL_Error
- MQSeries_Channels_Indoubt
- MQSeries_CICS_Channel_Stopped
- MQSeries_Conversion_Error
- MQSeries_Dead_Letter
- MQSeries_Delayed_Message_Group
- MQSeries_High.Delayed_Messages
- MQSeries_Inhibit_Problem
- MQSeries_Listener_Not_Started
- MQSeries_Local_Object_Unknown
- MQSeries_Logging_Suspended
- MQSeries_LogMgr_Buffer_Waits
- MQSeries_LogMgr_High_Archive_Read
- MQSeries_LogMgr_Reader_Delayed
- MQSeries_Manager_inactive
- MQSeries_Manager_inactive_Event
- MQSeries_MQ_Channel_Stopped
- MQSeries_MQSecure_Problem
- MQSeries_No_Queue_Messages_Read
- MQSeries_Old_Message_On_Queue
By selecting any of the product-provided situations from the available list, you can view and edit the situation's definition. When you click a situation name or create a new situation, the right frame opens with the following tabs:

- **Formula**
 This is the condition that is being tested. It consists of the following:
 - Description: A description of the situation.
 - Formula: Determines which conditions will be checked in order for this situation to activate.
 - Sampling interval: Determines the interval for checking whether this situation is true or false.

- **Distribution**
 A list of managed systems to which the situation can be distributed. Moving a managed system into the Assigned frame activates the situation on that system.

- **Expert advice**
 Comments and instructions to be read in the event workspace.

- **Action**
 A command to be sent to the system. This frame also contains options that determine how often actions are taken and whether they are performed on the Tivoli Enterprise Monitoring Server or at the managed system (agent). It is best practice to perform all actions on the agent managed system. This prevents performance problems at the Monitoring Server when large numbers of agents are deployed throughout the infrastructure.

- **Until**
 Defines the conditions when the situation event will be closed.
Figure 6-9 illustrates the details of the predefined MQSeries_Queue_Manager_Problem situation. We use this situation in an example in 6.4.2, “WebSphere MQ queue manager monitoring” on page 221.

Figure 6-9 MQSeries_Queue_Manager_Problem situation

6.4.2 WebSphere MQ queue manager monitoring

The OMEGAMON MQ Monitoring Agent will not function if the queue manager's command server is inactive. WebSphere MQ configuration changes also cannot be carried out if this process is inactive.

It is critical to monitor the queue manager status. The Queue Manager Status workspace shows the status of the monitored queue managers in your network and gives basic descriptive information about each monitored queue manager. Use the information in the Queue Manager Status workspaces to compare the status and activity of your queue managers and to look for patterns in resource
Each queue manager's status can be one of the following:

- Active Queue Manager Not Available
- Command Server Not Responding
- Dynamic Queue Allocation Error
- Cluster Repository Not Available

Let's look at an example:

1. If the monitored queue manager goes down, a critical alert appears in the Enterprise Situation Event Console, as shown in Figure 6-10. This is an example of the MQSeries_Queue_Manager_Problem situation in action.

![Figure 6-10 WebSphere queue manager problem alert](image.png)
2. When you see an event indicator in the Navigator, you can create an acknowledgment. An acknowledgment notifies other users that you have taken ownership of the problem related to the event and are working on it. When you acknowledge an event, a green check mark appears next to the situation in the event flyover list and, if you opened the event workspace, over the situation item in the Navigator. If the situation is still true when the acknowledgment expires, the indicator changes accordingly. You can also cancel the acknowledgment before it has expired. This changes the indicator so that users can see that the acknowledgment has been removed even though the situation remains true. Select Acknowledge from the drop-down menu, as shown in Figure 6-11.
3. In the next panel (Figure 6-12), select the **Expiration** time frame for which the alert needs to be in the acknowledged status. It is a good practice to add a note in the Notes area so that the other people will know that you have acknowledged the problem and are working on it. Click **OK**.

Figure 6-12 Setting alert acknowledgement time frame
You will notice that the alert has been changed to the Acknowledged status in the Enterprise Event View, as shown in Figure 6-13.

![Figure 6-13 Alert in Acknowledged status](image)

The example in Figure 6-13 was for a Windows node. You can also acknowledge the WebSphere MQ queue manager alerts on any other platform using the same steps shown previously for Windows. Notice that, regardless of the operating system, the same principals and same type of management is used. This cuts down the training time for your operators that manage WebSphere MQ running on different operating systems.

4. You can click the **Queue Manager Status** workspace to view the basic descriptive information about each monitored queue manager. You can use the information in the Queue Manager Status workspaces to compare the status and activity of your queue manager and to look for patterns in resource usage, status, or time of day.
6.4.3 WebSphere MQ queue monitoring

This section describes WebSphere MQ queue monitoring. The Queue Statistics workspace provides usage information about all monitored queues. Key monitoring attributes include queue depth, whether or not the queues are open for input or output, whether they are get- or put-inhibited, and the number of messages currently on each queue manager’s dead-letter queue. These are common queue monitoring requirements in a WebSphere MQ infrastructure. Again, for specific business requirements and monitoring of application queues, consult the application developers and those in the business IT teams.

In addition to the MQ events that were enabled at the queue manager level in “WebSphere MQ queue manager configuration” on page 215, also review the following on each queue manager queue that is eligible for monitoring:

- The QDEPTHHI queue attribute defines the percentage value (of MAXDEPTH) that indicates a high queue status. The QDPHIEV queue attribute and the queue manager’s PERFMEV attributes must be both enabled for a queue depth high event to be generated. The reason for monitoring a queue reaching its maximum depth is to alert the administrator that there might be a potential problem. Also review the QDEPTHLO and QDPLOEV queue values.

- The queue's MAXDEPTH attribute indicates the maximum number of messages that can be held on a queue. If this number of messages is reached, no additional messages can be placed on the queue, and a QUEUEFULL event is generated by the queue manager. The QDPMAXEV queue attribute must be enabled in order to generate this alert.

- The QSVCINT defines a service interval in which MQPUT or MQGET operations must occur. If no application activity of this nature is detected on the queue during this interval, and QSVCIEV is enabled, an event is issued.

Note that there are two methods of monitoring queue issues such as these. One is to handle events such as queue full events being generated by the queue manager and the other is to actively monitor the depth of the queue. We refer to both of these options in the following pages, including the next section “Dead-letter queue alert” on page 236.
Again, let us explain this topic with an example:

1. If the monitored queue is full, a critical alert will appear in the Enterprise Event Console (Figure 6-14).

![Queue Full MQ Event](image)

Figure 6-14 Queue Full MQ Event
2. If the monitored queue is full and a situation has been assigned to report this, a situation alert is also issued (Figure 6-15). WebSphere MQ Monitoring provides a situation called MQSeries_Queue_Full to report this problem.

![Expert Advice Image]

Figure 6-15 Predefined MQSeries_Queue_Full situation

3. You can then acknowledge the alert and take any appropriate action.
4. You can view the Queue Statistics workspace (Figure 6-16), which provides usage information about all monitored queues for the monitored queue manager (such as the number of open queues, how full they are, whether they are get- or put-inhibited, and the number of messages currently on each queue manager’s dead-letter queue).

![Queue Statistics workspace](image)

Figure 6-16 Queue Statistics workspace
5. From the Queue Statistics workspace, you can click the link to get detailed information about the monitored queue (Figure 6-17).

In this example, the situation is based on an MQ Queue Full Event being received. Many situations are based on MQ events, but it is possible to base situations on many other conditions.

The distinction between situations based on MQ events and situations based on other criteria is significant; if an MQ event can adequately report the problem that you are trying to capture, it is good practice to let it. However, MQ events are limited in terms of the criteria that they report on and it is here that WebSphere MQ Monitoring can provide a great deal more flexibility and monitoring power.

Let us consider another example that has a specific business requirement.

Application X uses WebSphere MQ to process financial loans from a Web site. It has one remote queue called REQUEST that goes to a decision engine application Y, which has a local queue called REQUEST. The MAXDEPTH of the
REQUEST queue at application Y is 5000. This is required because application Y shuts down for five hours overnight but new loan applications can be submitted 24x7.

The MQ messages are new loan applications and are very important to the business. Therefore, an appropriate monitoring solution needs to be implemented to protect service.

Using MQ events to monitor queue depth limits the monitoring solution to a percentage of the queue’s MAXDEPTH. Currently, QDEPTHHI is set to 4% and QDEPTHLO is set to 2%. As a result, a QDPHIEV is only issued when the queue’s depth reaches 200.

The business wants to be alerted when the queue has more than 20 messages on it, not 200. A WebSphere MQ Monitoring situation can provide the solution.
For this solution, perform the following steps:

1. From the Queue Statistics workspace, right-click and select **Situations** (Figure 6-18).

![Figure 6-18 Create Queue Situation](image)

2. The Situations Editor opens. Right-click **MQSERIES** and click **Create New**.
3. Provide a name and description for the new situation (Figure 6-19).

![Create Situation](image)

Figure 6-19 Create Situation

4. Select the condition to monitor. Press and hold Ctrl and click **Current Depth** and **Queue Name** (Figure 6-20).

![Select condition](image)

Figure 6-20 Select condition
5. Enter a description for the situation. On the Formula tab under Current Depth, click the **Greater than** condition and enter 20 for the queue depth. Under Queue Name, enter REQUEST for the queue name. This is a critical situation for the business, so the severity of the alert is set to **Critical**. Finally, decide on an appropriate sampling interval. This determines how often MQ Monitoring checks the conditions of the situation.

![Figure 6-21 Situation attributes](image-url)
6. From the Distribution tab, check that the situation has been distributed to the correct queue managers (Figure 6-22).

![Figure 6-22 Situation Distribution](image)

7. In the Expert Advice tab, enter any corrective actions or advice to be included with the alert.

8. The Action tab allows for an automation command to be created in response to situations. In this case we are simply going to alert so nothing is required. Select the radio button **Execute the Action at the Managed System (Agent)**. Although we are not taking any action, this is good practice in case the situation is later edited.

9. Click **OK** to finish. The situation is now defined and has been deployed.

This example reinforces the need to gather business requirements before implementing a monitoring solution. Specific requirements and SLAs determine what is and what is not a suitable level of infrastructure monitoring.
Dead-letter queue alert
No discussion of queue monitoring can pass without mention of the queue manager’s dead-letter queue (DLQ). WebSphere MQ might put a message on the DLQ when it cannot deliver the message to the requested queue. This can occur for various reasons, such as the message is too long, the queue name is invalid, or the queue is full.

For example, if there are messages in the monitored DLQ, a critical alert will be generated through the predefined MQSeries_Dead_Letter situation. After receiving the SYSTEM.DEAD.LETTER.QUEUE alert:

1. It is good practice to acknowledge the alert, so others will know that you are working on the problem (Figure 6-23).
2. Click the **Dead-Letter Queue Messages** workspace, which enables you to list and examine the messages that a queue manager queued to its dead-letter queue because they could not be delivered (Figure 6-24). This workspace can help you manage your dead-letter queues and ensure that you maintain the efficiency and integrity of your business application data. Using this workspace, you can recover important messages or re-send them to their original destinations, delete obsolete messages, and identify problem applications. From the Dead-Letter Queue Messages workspace, you can select a message to view its header or application data, delete it, or retry its delivery.

![Dead-Letter Queue Messages workspace](image)

Figure 6-24 Dead-Letter Queue Messages workspace

The reason code in the Dead-Letter Queue Messages workspace indicated that the application was trying to send messages from a remote queue to the RESPONSE queue but that the queue was full.
Important: Regardless of the reason for messages being on the dead-letter queue, the fault needs to be addressed. It could either be an application error or a configuration issue. If the fault is not fixed these alerts will continue to be issued.

3. After addressing the problem, the message can either be deleted from the dead-letter queue, or, if required, forwarded onto the target queue again. Right-click the message and select **MQ Commands** to select the desired option (Figure 6-25).

![Figure 6-25 Dead-letter queue options](image-url)
6.4.4 Listener monitoring

WebSphere MQ V6.0 allows listeners to be defined as managed objects in distributed MQ systems. As a result, it is possible to monitor listener status with WebSphere MQ Monitoring. In this example, we define a new situation to monitor for a queue manager’s listener status and to start it, if it is not running:

1. Click the **Situation Editor** button on the Tivoli Enterprise Portal toolbar. Enter a name and description for the situation (Figure 6-26).

![Create Situation Window](image)

Figure 6-26 Create Listener Situation
2. Click **Listener_Status** and **Listener_Name**, as shown in Figure 6-27.

![Figure 6-27 Listener Situation conditions](image)

3. In the Formula frame, use the **Missing** predicate to detect when the listener is not running.
4. From the Distribution tab, ensure that the queue manager is in the assigned list (Figure 6-28).

![Situation Editor](image)

Figure 6-28 Missing Item List

5. From the Action tab, enter the following in the System Command box:

 MQ:start listener(

 Then, click the **Attribute Substitution** button and select **Listener Name**. Close the open parentheses.

 Note: MQ: instructs the situation that the command is a WebSphere MQ runmqsc subcommand.

6. Ensure that the command is executed at the agent level. Click **OK** to complete the definition.
If the listener for the assigned queue manager is not running for any reason, this situation will activate and attempt to run the MQ command to start the listener.

6.4.5 Channel monitoring

Some highlights of WebSphere MQ channel monitoring include:

- The channel status attribute specifies the current status of a channel. If the channel is retrying, a previous attempt to establish a connection has failed. The message channel agent (MCA) will re-attempt a connection after the specified time interval. If the MCA reaches its limit of retry attempts, the channel will stop and need to be restarted manually.

- If the channel is indoubt status, the sending MCA is waiting for an acknowledgement that a batch of messages, which it has sent, has been successfully received and committed. The detection of an indoubt channel status might indicate network-related problems.

- If the channel is stopped, it is not necessarily a problem with the network, because it might have been manually stopped for a specific reason. Therefore, in addition to checking whether the channel is stopped or not, what also needs to be checked is if the channel stopped because of an error. If this is the case, and the channel is stopped due to an error, some action needs to be taken to remedy the situation.

Again, let’s walk through an example:

1. If the monitored channel is down, a critical alert appears in the Enterprise Event Console.

2. Again, it is good practice to acknowledge the alert.
3. Select the **Channel Performance** workspace, which provides performance information about the monitored channels on each monitored queue manager, as shown in Figure 6-29. Included is whether or not each channel is in-doubt, current, or inactive, as well as the channel type. Use the information in the Channel Performance workspace to examine and compare channel performance among the selected channels. Look for patterns in resource activity, traffic, or time of day.

![Figure 6-29 Channel Performance workspace](image)

4. Use the information in the Recent Channel Performance workspace to investigate recent trends in the performance of the selected channels. Look for patterns in time of day, channel type, or transmission rate.
5. You can take advantage of the Take Action feature. From the Channel Performance workspace, select the channel you want to start and right-click it. Select **Take Action** (Figure 6-30).

![Figure 6-30 Take Action](image-url)
6. In the next panel, select **MQ Start Channel** from the drop-down Name list, select the **Destination System**, and click **OK** (Figure 6-31).

![Image of MQ Start Channel Take Action](image)

Figure 6-31 Start Channel Take Action

7. The channel starts. After the channel starts, the alert automatically closes from the Enterprise Event Console.

6.4.6 Application Accounting and MQI Statistics

OMEGAMON XE for Messaging: WebSphere MQ Monitoring provides an Application Accounting workspace and an MQI Statistics workspace. Accounting and statistics messages are generated intermittently by queue managers to record information about the MQI operations performed by WebSphere MQ applications, or to record information about the activities occurring in a WebSphere MQ system. These statistics are a feature of WebSphere MQ V6.0. Therefore, the queue manager needs to be running at this level in order to capture the metrics. As mentioned in “WebSphere MQ queue manager configuration” on page 215, the queue manager also needs to have the relevant attributes enabled. Additionally, accounting and statistics messages are not available on WebSphere MQ for z/OS; however, equivalent functionality is available through the System Management Facility (SMF).

The information contained in accounting and statistics messages can be used for:

- Accounting for application resource use
- Recording application activity
- Capacity planning
- Detecting problems in your queue manager network
- Assisting in determining causes of problems in your queue manager network
Implementing OMEGAMON XE for Messaging V6.0

- Improving the efficiency of your queue manager network
- Familiarizing yourself with the running of your queue manager network
- Confirming that your queue manager network is running correctly

Application Accounting

WebSphere MQ Monitoring displays accounting message statistics in the Application Accounting workspace.

There are two categories of accounting messages:

- MQI accounting messages contain information relating to the number of MQI requests executed using a connection to a queue manager.

- Queue accounting messages contain information relating to the number of MQI requests executed using connections to a queue manager. Each queue accounting message can contain up to 100 records, with every record relating to an activity performed by the application with respect to a specific queue.
Right-click the **Application Accounting** workspace to view metrics on either Application Accounting or Queue Accounting. Figure 6-32 shows the default display with an MQ client application connected.

There are a multitude of metrics that can be displayed in this workspace. To exploit this functionality to achieve maximum benefit to your installation, it is important to consider what information you want to capture. Based on the answers to these sort of questions, it is then useful to create your own tables or graphs to illustrate the results.

In our simple example, we have an MQ client application that connects to a queue manager and sends x messages at a rate of 1 message per second. We wanted to ensure that the client's connections to the queue manager were being pooled and reused.
Perform the following steps:

1. With the Application Accounting workspace open, click the **Plot Chart** icon in Tivoli Enterprise Portal (Figure 6-33).

![Plot Chart creation](image_url)
2. Click the area where you want the graphic to appear. The Select attribute window opens, as shown in Figure 6-34. Click **Open Count** and then **OK**.

![Select attribute](image1)

Figure 6-34 Select attribute

This displays the new graphic (Figure 6-35).

![Open count plot chart](image2)

Figure 6-35 Open count plot chart
This simple example demonstrates a very important capability of WebSphere MQ Monitoring. The graphic confirms that our application opens three connections to the WebSphere MQ infrastructure, processes a number of messages, and then gracefully disconnects. This type of information is extremely valuable to determine that MQ applications are both designed and implemented in line with best practices. A common mistake when coding MQ applications is to open a new connection to the infrastructure every time a message needs to be handled and then disconnect. This uses infrastructure resources unnecessarily through poor design. These type of metrics allow administrators to ensure that MQ resources are being correctly used.

MQI Statistics

WebSphere MQ Monitoring displays accounting message statistics in the MQI Statistics workspace.

The various types of statistics messages are:

- MQI statistics messages contain information relating to the number of MQI requests executed during a configured interval.

- Queue statistics messages contain information relating to the activity of a queue during a configured interval. The information includes the number of messages put on and retrieved from the queue and the total number of bytes processed by the queue.

- Channel statistics messages contain information relating to the activity of a channel during a configured interval. For example, the information might be the number of messages transferred by the channel, or the number of bytes transferred by the channel.
Right-click the **MQI Statistics** workspace to view metrics on either MQI Statistics, MQ Channel Statistics, or MQ Queue Statistics. Figure 6-36 demonstrates a plot chart that tracks message transmission rates across channels.

![MQI Channel Statistics](image)

As with the Application Accounting workspace, it is important to consider what sort of metrics you want to capture and display.
6.5 Summary

IBM Tivoli OMEGAMON XE for Messaging: WebSphere MQ Monitoring enables you to set a wide range of monitoring options that can be changed to suit the needs of your environment. For example, you can define which queue managers, queues, and channels you want monitored, specify the time interval for collecting WebSphere MQ data, manage the disposal of event messages from an event queue, or specify whether or not you want to collect historical monitoring data and how long you want to have that data available. You can use the Error Log monitoring feature to view and monitor WebSphere MQ error log data retrieved from a monitored queue manager (non-z/OS only). You can manage your WebSphere MQ environment effectively by taking advantage of various WebSphere MQ workspaces. The Take Action feature of Tivoli Enterprise Portal lets you issue a command to any system in your network where OMEGAMON MQ Monitoring Agents are installed. You can implement commands from the Take Action view, from a situation (when it becomes true), from the Navigator, or from a row in a table view.

Note, that as mentioned earlier in the chapter, historical reporting and analysis is also possible. Refer to Getting Started with IBM Tivoli Monitoring 6.1 on Distributed Environments, SG24-7143, for a discussion about historical data handling with IBM Tivoli Monitoring.
Monitoring WebSphere Message Broker

This chapter outlines the steps involved to install, configure, and deploy the IBM Tivoli OMEGAMON XE for Messaging: WebSphere Message Broker Monitoring (WebSphere Message Broker Monitoring) agent. We describe the information required to successfully deploy the WebSphere Message Broker Monitoring Agent and additionally provide the details about the product, such as data collection, situations, Take Actions, events, and reporting.

This chapter provides information about the following topics:

- IBM Tivoli WebSphere Message Broker Monitoring Agent
- Planning for the installation of the WebSphere Message Broker Monitoring Agent
- Installing the WebSphere Message Broker Monitoring Agent
- Configuring the WebSphere Message Broker Monitoring Agent on Microsoft Windows
- Configuring the WebSphere Message Broker Monitoring Agent on UNIX/Linux
- Agent configuration file
- Using situations
7.1 IBM Tivoli WebSphere Message Broker Monitoring Agent

IBM WebSphere Message Broker Monitoring is a monitoring and management tool that provides you with the means to verify, analyze, and tune Message Broker topologies associated with:

- WebSphere MQ Integrator V2.1
- WebSphere MQ Integrator Broker V2.1
- WebSphere MQ Event Broker V2.1
- IBM WebSphere Business Integration Event Broker V5
- IBM WebSphere Business Integration Message Broker V5
- IBM WebSphere Business Integration Message Broker with Rules and Formatter Extension V5
- IBM WebSphere Event Broker V6
- IBM WebSphere Message Broker V6
- IBM WebSphere Message Broker with Rules and Formatter Extension V6

7.1.1 WebSphere Message Broker Monitoring overview

WebSphere Message Broker Monitoring helps ensure the reliability and performance of your broker environment by detecting and correcting broker and message flow problems before they have an impact on availability and service levels. WebSphere Message Broker Monitoring also reduces the amount of time involved in the deployment of broker applications by helping you debug message flows and providing statistics you can use to tune your environment.

Using WebSphere Message Broker Monitoring, you can:

- Monitor the status of your IBM broker product and its components
- View information and performance statistics for broker topologies at broker, execution group, message flow, node, terminal, and thread level in tabular and chart views
7.1.2 How WebSphere Message Broker Monitoring works

WebSphere Message Broker Monitoring Agents collect data from WebSphere Message Brokers. The data is presented in charts and tables that you can examine to monitor the performance of your WebSphere Business Integration systems. The agents also evaluate the data to detect when specified values meet criteria you have defined and trigger alerts or programmed actions in response.

In addition, WebSphere Message Broker Monitoring provides a CandleMonitor node. Inserted into message flows, the CandleMonitor node collects statistics on message flow and subflow performance. It also provides a mechanism for generating user-defined events within a message flow (Figure 7-1).

![Figure 7-1 CandleMonitor node](image)

7.1.3 New features

This section provides an overview some of the key and new features related to monitoring the Message Broker.
Remote agent deployment and configuration
This new version supports two newly added features of IBM Tivoli Monitoring V6.1: remote agent deployment and remote configuration. Now on distributed platforms such as Microsoft Windows and UNIX/Linux, you can remotely deploy and maintain the WebSphere Message Broker Monitoring Agent on the monitored systems through Tivoli Enterprise Portal. You can also use the remote agent configuration feature to configure the parameter file through the Tivoli Enterprise Portal GUI, instead of editing it directly.

Revised CandleAgent command
To support IBM Tivoli Monitoring V6.1 agent deployment feature, the CandleAgent command for splitting the brokers among several agents on UNIX/Linux has been renamed to itmcmd agent. The -o and -p options are also swapped for their specifications:

- The -o option specifies the monitoring agent ID (maximum of four characters).
- The -p option specifies the broker name. This parameter is optional.

For example:
itmcmd agent -o AGT1 -p WBIBRK1 start qi

WebSphere Message Broker V6 support
This version supports WebSphere Message Broker V6. It also supports the coexistence of WebSphere Message Broker V6 with WebSphere Message Queueing Integrator V2.1, or WebSphere Message Broker V6 with WebSphere Business Integrator Message Broker V5.0/5.1 on the same workstation.

Native language support
Native language support has been added to this new version. You can now work with user interface windows, workspaces, message broker data, parameter files, or Take Action commands in your native language if it is in the following language list: Chinese (simplified), Chinese (traditional), English, French, German, Italian, Japanese, Korean, Portuguese (Brazilian), Spanish.

New parameters added to the parameter file
Three new parameters have been added in the parameter file. They are:

- alias
 This parameter provides an alternative to an existing broker name for use in the managed system name for the broker.
defaultRetainRecentPubSubSamples

This parameter gives the default value used by the agent for the number of recent records to keep for any of the publish/subscribe statistics data.

retainRecentPubSubSamples

This parameter gives the value used by the agent for a given broker for the number of recent records to keep for any of the publish/subscribe statistics data.

See 7.6, “Agent configuration file” on page 287 for a detailed description of the these new parameters.

New statistics available

This version provides new statistics from the monitored Message Broker about publish/subscribe activity in the broker. The following new workspaces are now available:

- Publish-Subscribe Statistics
- Multicast Summary Statistics
- Multicast Group Statistics
- Multicast Topic Statistics
- Recent Publish-Subscribe Statistics
- Recent Multicast Summary Statistics
- Recent Multicast Group Statistics
- Recent Multicast Topic Statistics
- Historical Publish-Subscribe Statistics
- Historical Multicast Summary Statistics
- Historical Multicast Group Statistics
- Historical Multicast Topic Statistics

The new Take Action command QI **Change Properties** allows you to enable statistics for the previous workspaces. See the WebSphere Message Broker Monitoring section of the Tivoli Enterprise Portal online help for detailed information about the new workspaces and the Take Action command.

The command examples are what the Take Action **mqsichangeflowstats** command uses and passes when the take action is issued:

```
mqsichangeflowstats broker_name -s -g -j -c active -t basic -n advanced -o xml
mqsichangeflowstats broker_name -a -g -j -c active -t basic -n advanced -o xml
```

The `broker_name` gives the name of the broker that is being targeted. The parameters give the rest of the desired parameters (minus the broker name) that are required or optional for the **mqsichangeflowstats** (**changeflowstats** on z/OS)
command as documented by IBM. Note that Tivoli Enterprise Portal does not parse or verify the parameters. If you want data in the accounting workspaces, you must specify “xml” as the output (-o xml).

MQI Distributed Monitoring migration support

With the installation of IBM Tivoli Monitoring V6.1.0 upgrade toolkit in Tivoli Management Environment®, you can now copy the newly implemented MQI Distributed Monitoring mapping file kqi_upgrade_map.xml from the product installation location $install_dir/tmaitm6 to the Tivoli Management Environment location $BINDIR/TME/ITMUpgrade/ITMUpgradeManager, and then follow the steps provided in the IBM Tivoli Monitoring V6.1.0 upgrade toolkit for migration of Distributed Monitoring monitors to the related Tivoli Monitoring V6.1.0 situations.

Table 7-1 shows the Distributed Monitoring monitors supported for upgrade to IBM Tivoli Monitoring V6.1 situations.

Table 7-1 Distributed Monitoring monitors for upgrade to Tivoli Monitoring V6.1 situations

<table>
<thead>
<tr>
<th>Monitor (the Distributed Monitoring CLI name of a supported monitor)</th>
<th>Attribute Group (IBM Tivoli Monitoring V6.1.0 attribute group that contains the attributes derived from the monitor)</th>
<th>Attributes (IBM Tivoli Monitoring V6.1.0 attributes, in a comma-separated list, which make up the situation condition. The first attribute listed corresponds to the monitor source. Subsequent attributes, if any, correspond to monitor arguments.) Attributes in italic style are not in arguments but are added into situation definitions for clearance.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brokerup</td>
<td>Components</td>
<td>Status</td>
</tr>
<tr>
<td>Msgflowup</td>
<td>Message Flow Information</td>
<td>Status, Execution_Group_U, Message_Flow_U</td>
</tr>
<tr>
<td>Nummsgflowdn</td>
<td>Broker Information</td>
<td>Stopped_Message_Flows</td>
</tr>
</tbody>
</table>
Table 7-2 shows the Distributed Monitoring collections not supported for upgrade to IBM Tivoli Monitoring V6.1 situations.

Table 7-2 Distributed Monitoring collections not supported for upgrade V6.1 situations

<table>
<thead>
<tr>
<th>Distributed Monitoring collection</th>
<th>Unsupported monitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>MQSI</td>
<td>perfmon</td>
</tr>
<tr>
<td>MQSI</td>
<td>timedelta</td>
</tr>
</tbody>
</table>

IBM Tivoli License Manager support

IBM Tivoli License Manager is a real-time control on software assets. It can detect where software products are installed and where they are running. This version supports Tivoli License Manager to inter-cooperate with WebSphere Message Broker Monitoring.

7.2 Planning for the installation of the WebSphere Message Broker Monitoring Agent

This section contains questions that must be answered before you install IBM Tivoli OMEGAMON XE for Messaging. It also introduces some product features that are new to WebSphere Message Broker Monitoring to consider prior to installation.

General guidelines

Note the following general planning questions:

- Has IBM Tivoli Monitoring Services Version 6.1.0 been installed with support for IBM Tivoli OMEGAMON XE for Messaging?

 Before you can begin any of the procedures that follow, these IBM Tivoli Monitoring Services Version 6.1.0 components must be installed:

 - Agent support:
 - Tivoli Enterprise Monitoring Agent Framework
 - Warehouse Proxy (if you intend to use historical reporting or save historical data to a database for reference)
 - Tivoli Enterprise Monitoring Server framework
 - Tivoli Enterprise Portal Server framework
 - Tivoli Enterprise Portal desktop client
For instructions, see online IBM Tivoli Monitoring installation and configuration books available at:

- Where are the systems or applications running?

In general, you must install and configure an IBM Tivoli OMEGAMON XE for Messaging agent on every machine where the system or application you want to monitor is running. This allows you to define the association between each instance of the monitoring agent and the IBM Tivoli Monitoring components, as well as between instances of the monitoring agent.

In some cases, an agent can query a remote system or application; and in the case of WebSphere InterChange Server Monitoring, you install only one monitoring agent, which collects data from IBM SNMP agents and its own data sources on the host of each monitored WebSphere InterChange Server instance.

- What communications protocols are available?

Use TCP/IP, IP.PIPE, or SNA for communication between the monitoring agent and the IBM Tivoli Monitoring components.

- On what operating systems will you install each IBM Tivoli OMEGAMON XE for Messaging product?

You need to determine from the relevant chapters in this book which operating systems are supported by each IBM Tivoli OMEGAMON XE for Messaging product in this package.

If you are planning to install any IBM Tivoli OMEGAMON XE for Messaging Monitoring Agents on systems other than Windows or Linux/UNIX platforms, see “Related publications” on page 377 for the titles and form numbers of the installation and configuration books to consult.

- Are you installing in a firewall environment?

If so, make sure that you read the special instructions about this subject in IBM Tivoli Monitoring Installation and Setup Guide, GC30-2683.

- Is the Tivoli Enterprise Monitoring Server to which the monitoring agents report on a different machine from the agents?

Before you can use a monitoring agent, the Tivoli Enterprise Monitoring Server to which it reports must be added with application support, that is, initialized with application data. Application support adds product-provided situations, templates, and other sample data to the Monitoring Server Enterprise Information Base (EIB) tables.

If the Monitoring Server is installed on a different machine from the monitoring agents that report to it, you might find it most convenient to install the agents' add application support data on the Monitoring Server machine before you
begin installing the agents. The application support data are found on the IBM Tivoli OMEGAMON XE for Messaging CD.

You might also find it most convenient to set up the configuration database on the Monitoring Server machine before installing the agents.

7.3 Installing the WebSphere Message Broker Monitoring Agent

In this section, we describe the installation process for Microsoft Windows and UNIX agents.

After you set up the environment, the next step is to run the install program. Which version of this program you use depends on the operating system where it is being installed (Windows or UNIX).

7.3.1 Installing on Windows

There are two installation options for installing the product on Windows:

- Installing the product with the InstallShield Wizard
- Installing the product with the silent installation

Note: Much of the content of this section is from the product installation guide. However, we reproduced it here with additional information that helps clarify some of the steps.

There are two installation options for installing the product on Windows:

- Installing the product with the InstallShield Wizard
- Installing the product with the silent installation

Installing the product with the InstallShield Wizard

Perform the following steps to install and initialize the IBM Tivoli OMEGAMON XE for Messaging product with the InstallShield Wizard:

1. Log on to Windows under a user ID with Administrator authority.
2. Close any running applications.
3. Insert the IBM Tivoli OMEGAMON XE for Messaging CD-ROM into your CD-ROM drive.

 The installation begins automatically. If InstallShield Wizard does not start, go to CD directory WINDOWS and run setupwin32.exe. If setupwin32.exe initialization fails, you do not have enough disk space to decompress the setup files.
4. Read the text that welcomes you to the installation, and click Next to continue.

5. Read the software license agreement and click Accept.

6. If a Prerequisites window opens, read it and click Next.

7. If a Choose Destination Location window opens, select the target drive and directory for the IBM Tivoli OMEGAMON XE for Messaging software. The default is C:\IBM\ITM. Click Next to continue.

8. Select the installation type that suits your needs and click Next to continue.

9. If you selected Custom, on the Select Features window, click the + sign next to each main feature to expand the tree. Select the features that you want to install on this Windows machine.

 - Agents and adapters
 - To install all the IBM Tivoli OMEGAMON XE for Messaging agents on this machine, select the Agents and Adapters check box.
 - To install particular agents on this machine, select only the boxes for those agents.

 - Tivoli Enterprise Monitoring Server Application Support
 If Tivoli Enterprise Monitoring Server is installed on the machine, select this feature to install Tivoli Enterprise Monitoring Server support for IBM Tivoli OMEGAMON XE for Messaging.

 Note: Tivoli Enterprise Monitoring Server application support must be installed locally from the IBM Tivoli OMEGAMON XE for Messaging CD onto the Monitoring Server to which the agents report before you can add application support data to the Monitoring Server for those agents.

 - Tivoli Enterprise Portal Server Application Support
 If Tivoli Enterprise Portal Server is installed on the machine, select this feature to install Tivoli Enterprise Portal Server support for IBM Tivoli OMEGAMON XE for Messaging.
– Tivoli Enterprise Portal Desktop Client Application Support

 If Tivoli Enterprise Portal desktop client is installed on the machine, select this feature to install Tivoli Enterprise Portal client support for IBM Tivoli OMEGAMON XE for Messaging.

10. On the Remote Deployment window, select the agents you want to configure for remote deployment and then click **Next**.

11. Review your settings on the Summary Information window and click Back if you want to go back and change them. When you are ready to start copying files with the settings shown, click **Install**.

12. InstallShield Wizard copies the files needed to complete the installation, and then displays the initial configuration window.

13. The initial configuration window enables you to select initial configuration tasks. The specific tasks available depend on the IBM Tivoli Monitoring components installed on the machine.

 – Configure IBM Tivoli Enterprise Monitoring Server.

 If Tivoli Enterprise Monitoring Server is installed on the machine, select this feature.

 – Configure Tivoli Enterprise Portal Server.

 If Tivoli Enterprise Portal is installed on the machine, this task is required and cannot be cleared.

 – Add a local/remote Tivoli Enterprise Monitoring Server with application data.

 Before using the monitoring agents you have installed, the Monitoring Server must be added with application support, that is, initialized with application data.

 If the Monitoring Server to which the agents report is on the same machine as the agents and if you have installed Monitoring Server application support from the IBM Tivoli OMEGAMON XE for Messaging CD, select this task now and add the Monitoring Server with data from all agents installed on the machine. Otherwise, after the InstallShield Wizard completes, add application support to the Monitoring Server from the machine that hosts the Monitoring Server.

 – Configure agents' default connection to Tivoli Enterprise Monitoring Server.

 The agents' default connection to the Monitoring Server might already have been set during IBM Tivoli Monitoring installation. Otherwise, either select this task now, or wait and configure the agents-to-Monitoring Server connection from Manage Tivoli Monitoring Services after the InstallShield Wizard completes.
For instructions, see *IBM Tivoli Monitoring Installation and Setup Guide, GC30-2683.*

- Launch Manage Tivoli Monitoring Services for additional configuration options.

Select this task to configure the individual products now, or wait and configure the products individually after completion of InstallShield Wizard. For instructions, see 7.4, “Configuring the WebSphere Message Broker Monitoring Agent on Microsoft Windows” on page 273.

14. Leave selected (checked) the items that you want to configure before the installation completes. Clear (uncheck) the items that you want to delay configuration until after the installation completes. Then click **Next** to continue.

15. On the Tivoli Enterprise Monitoring Server Configuration window, enter the Monitoring Server name, type, and protocol information. Complete the following fields for the communications protocol for the Monitoring Server (Table 7-3).

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP.UDP Settings</td>
<td></td>
</tr>
<tr>
<td>Hostname or IP</td>
<td>The host name or IP address for the hub Monitoring Server.</td>
</tr>
<tr>
<td>Address</td>
<td></td>
</tr>
<tr>
<td>Port number and/or Port Pools</td>
<td>The listening port for the hub Monitoring Server.</td>
</tr>
<tr>
<td>IP.PIPE Settings</td>
<td></td>
</tr>
<tr>
<td>Hostname or IP</td>
<td>The host name or IP address for the hub Monitoring Server.</td>
</tr>
<tr>
<td>Address</td>
<td></td>
</tr>
<tr>
<td>Port Number</td>
<td>The listening port for the Monitoring Server. The default number is 1918.</td>
</tr>
<tr>
<td>IP.SPIPE Settings</td>
<td></td>
</tr>
<tr>
<td>Hostname or IP</td>
<td>The host name or IP address for the hub Monitoring Server.</td>
</tr>
<tr>
<td>Address</td>
<td></td>
</tr>
<tr>
<td>Port number</td>
<td>The listening port for the hub Monitoring Server. The default value is 3660.</td>
</tr>
<tr>
<td>SNA Settings</td>
<td></td>
</tr>
<tr>
<td>Network Name</td>
<td>The SNA network identifier for your location.</td>
</tr>
</tbody>
</table>
16. On the Tivoli Enterprise Portal Server Configuration window, specify the default values for any IBM Tivoli Monitoring Agent to use when they communicate with the Tivoli Enterprise Portal Server:

- If the agent must cross a firewall to access the Tivoli Enterprise Portal server, select **Connection must pass through firewall**.

- Identify the type of protocol that the agent uses to communicate with the Tivoli Enterprise Portal server. You have four choices: IP.UDP, IP.PIPE, IP.SPIPE, or SNA. Specify three methods for communication. This enables you to set up backup communication methods. If the method you have identified as Protocol 1 fails, Protocol 2 is used.

- Complete the fields (Table 7-3 on page 264) to define the communications between agents and the Tivoli Enterprise Portal server.

17. On the Configuration Defaults for Connecting to a TEMS window:

- If the agent must cross a firewall to access the Monitoring Server, select **Connection must pass through firewall**.

- Identify the type of protocol that the agent uses to communicate with the Monitoring Server.

- Complete the fields (Table 7-3 on page 264) to define the communications between the agents and the Monitoring Server.

18. If a Tivoli Enterprise Portal desktop client is installed on this machine, the Define TEP Host Information window opens. Confirm the host name of the machine where Tivoli Enterprise Portal Server has been installed, and click **Next** to continue.

19. If you installed WebSphere MQ Configuration on the same machine as a Monitoring Server, the WebSphere MQ Configuration Data Source Parameters window opens. For instructions on completing this window, see 5.1, “Setting up the configuration database” on page 161.
20. On the InstallShield Wizard Complete window, select **Display the README file** if you want to read this file immediately. Click **Finish** to complete the installation.

Note: Do not attempt to start any of the monitoring agents at this point. Before you start a monitoring agent, you must complete the configuration tasks.

Installing the product with the silent installation

The silent installation is useful for advanced users who prefer to input installation information once through a response file instead of repeatedly through an installation program. You might run through the InstallShield Wizard program one time to determine the values that you need to set for your monitoring needs and then use silent installation to install the rest of your environment.

Creating a response file

A sample silent installation response file is provided on the product CD. Use the following steps to edit that response file as appropriate for your environment:

1. Locate the silent_install.txt file on the product installation CD. Copy this file to a temporary directory on your system.

2. Edit the silent_install.txt file:
 a. Open your copy of the silent_install.txt file in a text editor.
 b. Before editing the response file, note the following syntax rules:
 - Comment lines begin with a pound sign (#).
 - Blank lines are ignored.
 - Parameter lines are PARAMETER=value. Do not use a space before the parameter; you can use a space before or after an equal sign (=).
 - Do not use any of the following characters in any parameter value: Dollar sign ($) Equal sign (=) Pipe sign (|)
c. Set the following parameters as appropriate for your environment (Table 7-4).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSTALL_LOCATION</td>
<td>Specify the location where you intend to install the product. The default location for installation is C:\IBM\ITM.</td>
</tr>
<tr>
<td>INSTALL_FOR_PLATFORM</td>
<td>The operating system for which to install the product. You can specify an architecture code. If you do not specify an architecture code, the operating system for the current computer is used.</td>
</tr>
<tr>
<td>TEMS_NAME=</td>
<td>If you are installing a Tivoli Enterprise Monitoring Server, provide a name for the server. This serves as a label to identify the server. It must not be an IP address or host name.</td>
</tr>
</tbody>
</table>

d. Uncomment the product components and product supports you intend to install on this machine.

e. Uncomment the product components that you intend for remote deployment.

Note: If you want to use the TCP/IP protocol, make sure to specify IP.UDP. If you specify TCP/IP, IP.PIPE is used by default.

Do not modify any other files that come with the installation.

f. Save the file and close the editor.

Running the silent installation from the command line

Use the following steps to run the installation from the command line:

1. Start an MS-DOS® command shell.
2. From the shell, change to the directory containing this installation (where setupwin32.exe and setupwin32.ins reside).
3. Run setup as follows. You must specify the parameters in the same order as listed here.

```
setupwin32 -silent -V RESPONSEFILE_PATH=<response_file>
```

Where:

- -silent: Specifies that this is a silent installation. This causes nothing to be displayed during the installation.
- V RESPONSEFILE_PATH=: Specifies the name and the path of the response file. This is a required parameter. This file must exist.

Note: If the installation fails for any reason, a log file, `<date><time>.log`, is created to document the problem. If the installation fails before reading in the installation location, the log file is written to Windows boot drive, normally the C:\ drive. If the installation fails after reading the installation location, the log file is written to an `\install` subdirectory in the installation directory. For example, if you use the default installation directory, the log file is written to C:\IBM\ITM\install.

7.3.2 Installing on UNIX/Linux

The UNIX/Linux installation can be completed using the GUI or command line options. In this section, we use the command line options.

Preinstallation tasks

Perform these tasks before beginning the installation of any products in the IBM Tivoli OMEGAMON XE for Messaging package:

1. (SNA only) Record the communication settings for Tivoli Enterprise Monitoring Server (Table 7-5 on page 269).

 If you will be using SNA communications between the IBM Tivoli Monitoring and IBM Tivoli OMEGAMON XE for Messaging products, you need to specify during installation of IBM Tivoli OMEGAMON XE for Messaging the names used for the following SNA configuration parameters for your Tivoli Enterprise Monitoring Server:

 - Net Name: Network identified as your VTAM® network.
 - LU Name: APPLID for each Monitoring Server installed; APPLIDs are unique for each logical unit (LU).
 - LOG Mode: LU6.2 Logmode table name; IBM Tivoli default is CANCTDCS.

 These parameters are required during the configuration of components on UNIX. Contact the system administrator or VTAM system programmer for this information.
2. Create an IBM Tivoli account for installing and maintaining the $install_dir directory:
 a. (GUI installation only) Before starting the GUI installation, set up your DISPLAY environment variable.
 For KSH, use the following command:

      ```bash
      export DISPLAY=[Network_Interface_Name]:0.0
      ```
 Where Network Interface Name is the name of the interface card or IP address.

 b. Create an IBM Tivoli account for installing and maintaining the $install_dir directory. For best performance, follow these guidelines:
 • Use any valid name. The name Tivoli is recommended.
 • Do not start the installation with the root ID, because it causes problems with running the product after the installation. However, certain IBM Tivoli products might require root authority to properly configure them. In those cases, the installation or configuration command might prompt for a root user ID and password.
 • If you are using NFS or a local file system, establish your $install_dir directory according to the guidelines used in your environment.
 • The Korn shell is recommended; however, use any shell that is shipped with the UNIX operating system. IBM Tivoli products do not support third-party vendor shells such as Bash and tcsh.

3. If you are planning to install the product on an AIX 5L machine, you need to issue the following command to check if the default language setting of the system is English:
   ```bash
   locale
   ```
 If LANG is not set to C, issue the following command:
   ```bash
   export LANG=C
   ```

Table 7-5 SNA communication settings for Tivoli Enterprise Monitoring Servers

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Net Name</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LU Name</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOG Mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. (If necessary) Use FTP to transfer files to your UNIX system.

If your UNIX system does not have a CD-ROM drive from which it can directly access the files from the installation CD, or if your UNIX system cannot access the NFS to which the installation CD's contents were copied, you must transfer files from a machine with a CD-ROM drive to your UNIX system.

a. Log on to the machine on which you have loaded the IBM Tivoli OMEGAMON XE for Messaging installation CD.

b. Go to the root directory of the CD-ROM drive:

```
E:
cd
```

Or:

```
mount device mount_point
cd mount_point
```

Where device is the device driver for the CD-ROM and mount_point is the directory where the device will be mounted.

The installation CD conforms to ISO 9660 standards. The mount command might require additional options based on the operating system you are running. IBM Tivoli does not document basic operating systems commands that are the responsibility of your system administrator to oversee. Consult the man pages or your operating system documentation if necessary.

c. FTP from that window to your UNIX machine:

```
ftp [unix_machine_name]
```

d. Enter your user ID and password. FTP places you in your home directory on the receiving machine.

e. Create a receiving directory in your home directory:

```
mkdir itmimage
```

f. Change to the receiving directory:

```
cd itmimage
```

g. Print the full path name of the current directory:

```
pwd
```

h. Note the location displayed; you need this information when logging onto the UNIX machine.

i. Make a unix directory under the current directory:

```
mkdir unix
```
Enter the following commands to copy the files, and retain the lowercase requirement:

```bash
ascii
put install.sh install.sh
put license.txt license.txt
cd unix
lcd unix
put readme.txt readme.txt
binary
put cienv.tar cienv.tar
put cienv1.tar cienv1.tar
prompt
mput ??architecture*
lst
```

Where architecture is one of these:

- aix (AIX)
- hp (HP-UX)
- sol (Solaris)
- li6 (Linux for Intel)
- ls3 (Linux for zSeries)

Tip: The text string `??architecture*` used in the `mput` command matches all two-character product codes and all versions of the specified operating system.

j. Verify that the list of files displayed matches the list in Table 7-6. Files must be in lowercase following the transfer.

<table>
<thead>
<tr>
<th>File type</th>
<th>Location/name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ascii</td>
<td>/cdrom_drive/install.sh</td>
</tr>
<tr>
<td>ascii</td>
<td>/cdrom_drive/unix/license.txt</td>
</tr>
<tr>
<td>bin</td>
<td>/cdrom_drive/unix/cienv.tar</td>
</tr>
<tr>
<td>bin</td>
<td>/cdrom_drive/unix/cienv1.tar</td>
</tr>
<tr>
<td>bin</td>
<td>/cdrom_drive/unix/architecture where architecture is one of the abbreviations listed in the previous step</td>
</tr>
</tbody>
</table>

k. Enter this command:

```
quit
```
l. Log on to the UNIX machine to which you copied the files.

m. Change to the directory noted in step 4h on page 270.

n. Enable the execution bit on the install.sh script by entering the following command:

 chmod +x install.sh

5. Set the time zone.

 Set the time zone environment variable ($TZ) to collect historical data properly through the agent. This variable information is in the time zone file located in /usr/share/zoneinfo. Ask the system administrator if you are not familiar with setting environment variables.

6. Complete any pre-migration tasks.

 If you are migrating one or more products from previously installed versions, see the product documentation for any prerequisite migration tasks.

7. Check and ensure that all IBM Tivoli Monitoring components, including Tivoli Enterprise Portal, Tivoli Enterprise Portal Server, and Tivoli Enterprise Monitoring Server, have been installed and are working properly.

8. (Optional) Add application support to Tivoli Enterprise Monitoring Server.

 Before you can use a monitoring agent, the Monitoring Server to which it reports must be added with application support, that is, initialized with application data. Application support adds product-provided situations, templates, and other sample data to the Monitoring Server Enterprise Information Base (EIB) tables.

 If the Monitoring Server is installed on a different machine from the monitoring agents that report to it, you might find it most convenient to install the agents' add application support data on the Monitoring Server machine before you begin installing the agents. The application support data are on the IBM Tivoli OMEGAMON XE for Messaging CD.

Installing and initializing the product

In this step, you run the setup<platform>.bin installation program through a shell script to install the WebSphere MQ Agents. The installation mechanism is the same for any UNIX or Linux platforms supported by the OMEGAMON XE for Messaging product.

Perform these steps:

1. Mount the OMEGAMON XE for Messaging product CD at the location you have chosen on the host. Enter the following:

 a. mount device mount_point

 b. cd mount_point
Where the following are the variables:

- device: The device driver for the CD-ROM
- mount_point: The directory where the device will be mounted

2. From the bin directory under the root directory of the CD-ROM, execute

 ./setup<platform>.bin

 Where <platform> is the platform name on which you are installing the
 product. For example, if you are installing on a Linux machine, the executable
 is:

 ./setupLinux.bin

3. Read the text that welcomes you to the installation, and click Next to continue.

4. Read the software license agreement, and click Accept and then Next.

5. Select the target drive and directory for the IBM Tivoli OMEGAMON XE for
 Messaging software. The default drive is /opt/IBM/ITM.

6. Select the installation that suits your needs and click Next to continue. The
 custom installation enables you to isolate and install specific agents.

7. If you selected Custom, click the + sign next to each main feature to expand
 the tree. Select the features that you want to install on the Linux machine.

 - Agents and Adaptors:
 - To install all the IBM Tivoli OMEGAMON XE for Messaging agents on
 this machine, select the Agents and Adapters check box.
 - To install only the WebSphere Message Broker agent, select only the
 check box for that agent.

8. Read the summary and click Install.

9. Your installation is complete. Click Finish.

7.4 Configuring the WebSphere Message Broker
Monitoring Agent on Microsoft Windows

This section contains instructions for setting up WebSphere Message Broker
Monitoring before you start the product.
7.4.1 Post-migration tasks

WebSphere Message Broker Monitoring must be reconfigured to set new environment parameters after migration. If this is not done, the agent will not be able to find the file used for logging messages and will terminate abnormally.

After installing WebSphere Message Broker Monitoring and before starting the agent, perform the following steps:

1. From a Windows machine where the Tivoli Enterprise Portal client is installed, select **Start → Programs → IBM Tivoli Monitoring → Manage Tivoli Monitoring Services**.

2. Right-click **WebSphere Message Broker Monitoring** and select **Reconfigure**.

 No values need be changed, but the agent must be reconfigured.

3. To accept existing communications settings, click **OK** on the two configuration windows that open; or make any desired changes on these windows, and then click **OK**.

4. If you want to change any settings in the configuration file kqi.xml, click **Yes** at the prompt, and then edit and save the file in UTF-8 coding. Otherwise, click **No**.

 For complete information about the parameters in the kqi.xml file, see *IBM Tivoli OMEGAMON XE for Messaging: WebSphere Message Broker Monitoring User's Guide*, which is on the IBM Tivoli OMEGAMON XE for Messaging publications CD.

5. To complete the reconfiguration, click **Yes** at the prompt.

7.4.2 Authorizing the agent

By default, the account of each monitoring agent is set to LocalSystem in Manage Tivoli Monitoring Services. Before you start WebSphere Message Broker Monitoring, its account must be changed as explained here. The agent's user ID can be the same one that is used for starting the broker, or create a new one.

To start and stop the WebSphere Message Broker Monitoring and to receive broker data, the user ID used for running the monitoring agent must be a member of groups mqm, mqbrkrs, and Administrators.

Perform these steps to authorize the agent's user ID:

1. Log on to Windows as a system administrator.
2. Create a user ID for the agent, if necessary. The agent's user ID must:
 - Have authority to subscribe to broker event publications.
 - Belong to groups mqm (this must be the primary group), mqbrkrs, and Administrators. The exact procedure for adding the user ID to a group depends on the version of Windows.

3. In Manage Tivoli Monitoring Services, right-click the agent and select Change Startup.

4. In the Log on as section, change from the system account to the user ID and password for the account you created previously.

 Depending on your site's ACL entries, you might be required to authorize the agent to receive broker event publications in the Control Center or Message Brokers Toolkit. You do not need to perform this step if your site uses the IBM defaults. However, if ACL entries in the Topics tab of the Control Center or Message Brokers Toolkit have been modified such that Subscribe access to topics beginning with $SYS/Broker has been restricted, this step is required.

 An ACL entry for topics beginning with $SYS/Broker must be added to set Subscribe access to Allow for the user ID of the agent. The principal for the ACL entry gives the user ID of the agent, or it can give a group to which the agent's user ID belongs, such as mqbrkrs. The ACL entry must be deployed to all brokers to be monitored by WebSphere Message Broker Monitoring. This change allows the agent to receive the broker event publications. If the agent is restricted from receiving these publications, much data in WebSphere Message Broker Monitoring reports will be missing or inaccurate. (Specifically, the Broker Events workspace will display no data.)

 Note: The simplest way to make sure that the agent's user ID is fully authorized for all product features is to use the broker's service user ID (the one that is used to start the broker) for starting the agent.

7.4.3 Configuring the agent

If you just reconfigured the agent as a post-migration task, you do not need to reconfigure it for a second time. Otherwise, you must configure the agent now. Perform the following steps:

1. From Manage Tivoli Monitoring Services, right-click **WebSphere Message Broker Monitoring** and select **Configure using defaults** (or **Reconfigure** if the agent has already been configured).

2. (Reconfiguration only) To accept existing communications settings, click **OK** on the two configuration windows that open; or make any desired changes on these windows, and then click **OK**.
3. You are prompted to edit the kqi.xml parameter file:
 - If you want to accept the default parameters and monitor all brokers on your system, you do not need to edit the kqi.xml file. Click **No**.
 - If you want to change the parameters or monitor only certain brokers:
 i. Click **Yes**.
 The kqi.xml file opens in Notepad.
 ii. Edit the parameters as desired, and then save the file in UTF-8 coding and close the file.
 For information about the parameters, see *IBM Tivoli OMEGAMON XE for Messaging: WebSphere Message Broker Monitoring User's Guide* on the IBM Tivoli OMEGAMON XE for Messaging publications CD.
 iii. Click **Yes** to configure the agent.
 You are returned to the Manage Tivoli Monitoring Services window. This completes the initial configuration of the agent.

7.4.4 Customizing parameters

Customize the parameters that determine the operational and monitoring characteristics of WebSphere Message Broker Monitoring by editing the kqi.xml file any time. For information and instructions, see *IBM Tivoli OMEGAMON XE for Messaging: WebSphere Message Broker Monitoring User's Guide*.

7.4.5 Installing the CandleMonitor node in broker environments

The CandleMonitor node is an optional component that collects statistics on message-flow performance in a broker and provides a mechanism for generating user-defined events within a message flow.

Before the CandleMonitor node can be used to monitor message flows, it must be installed into your broker environments, as described here for Windows environments. For broker environments on UNIX, see 7.5, “Configuring the WebSphere Message Broker Monitoring Agent on UNIX/Linux” on page 278. For broker environments on z/OS, see *IBM Tivoli OMEGAMON XE for Messaging on z/OS: Configuration Guide* on the IBM Tivoli OMEGAMON XE for Messaging publications CD.
Note: With V5 brokers, IBM provides message flow accounting and statistics that partially overlap with the statistics provided by the CandleMonitor node and can be monitored in Tivoli Enterprise Portal without including the CandleMonitor node in message flows. However, the CandleMonitor node provides additional statistics, as well as the ability to monitor subflows and define message flow events. Message flows without a CandleMonitor node are not represented in Statistics workspaces. The CandleMonitor node does not function with WebSphere MQ Event Broker V2.1.

After the CandleMonitor node is installed, it must be made available in the Control Center (V2.1) or Message Brokers Toolkit (V5 or V5.1). For instructions, see IBM Tivoli OMEGAMON XE for Messaging: WebSphere Message Broker Monitoring User's Guide on the IBM Tivoli OMEGAMON XE for Messaging publications CD.

7.4.6 Installing the CandleMonitor node

To install the CandleMonitor node into a broker environment on Windows, perform the following steps:

1. Verify that the kqipnode.lil file was copied into the appropriate directory during the installation of IBM Tivoli OMEGAMON XE for Messaging.

 The file must be in the IBM broker product's bin directory. This is an example of a typical bin location:

 C:\Program Files\IBM\WebSphere MQ Integrator 2.1\bin

 If for any reason the file was not installed into the broker's bin directory, install it now by doing this:

 a. Shut down the broker.

 b. Copy kqipnode.lil from the directory <install_dir>\TEMA to the broker's bin directory.

2. Verify that the kqipnode.lil file in the broker bin directory exactly matches (in size and in date and time last modified) the one that resides in the <install_dir>\TEMA directory. A mismatch of the release-level of these files will cause a failure of the product's statistics and message flow events reporting.

3. Restart the broker.

4. Repeat steps 1-3 for each Windows system with a broker to be monitored.
7.4.7 Next steps for setting up the CandleMonitor node

You have now installed the CandleMonitor node in your broker environments. Before it can be used to monitor message flows, it must also be made available in the Control Center (V2.1) or Message Brokers Toolkit (V5 or V5.1). For instructions, see IBM Tivoli OMEGAMON XE for Messaging: WebSphere Message Broker Monitoring User's Guide on the IBM Tivoli OMEGAMON XE for Messaging publications CD.

7.5 Configuring the WebSphere Message Broker Monitoring Agent on UNIX/Linux

In this section, we describe how to configure monitoring agents on UNIX and Linux before you start the product.

To customize the agent configuration data for your site, see IBM Tivoli OMEGAMON XE for Messaging: WebSphere Message Broker Monitoring User's Guide on the IBM Tivoli OMEGAMON XE for Messaging publications CD.

7.5.1 Post-migration tasks

Perform the following post-migration tasks:

- (Migration from V1.1.0 only) Empty the library directories.

 If you have upgraded WebSphere Message Broker Monitoring from V1.1.0 to V1.3.0, make sure that the following directories are empty before you start the monitoring agent:

 - AIX 5L: $install_dir/<architecture>/qi/lib, where architecture is the architecture code of the operating system on which you installed the agent
 - Solaris: $install_dir/sol273/qi/lib
 - HP-UX: $install_dir/hp11/qi/lib

- (Solaris only) Respecify the Monitoring Server host name and port number.

 After an upgrade installation of WebSphere Message Broker Monitoring on Solaris, you might be required to respecify the Monitoring Server host name and port number for communications with the monitoring agent.

7.5.2 Installing GNU Compiler 2.95.3 (Linux zSeries only)

WebSphere MQ for Linux zSeries is built using the GNU C and C++ compilers, Version 2.95.3. Therefore, IBM Tivoli OMEGAMON XE for Messaging uses and
requires this level of compiler, which is available from SUSE support as a Service Pack, in order to run the monitoring agent. You need to install the required compiler, either by downloading it from the SUSE Web site or by obtaining the appropriate Service Pack CD from SUSE. We provide instructions for both methods here.

To install the GNU Compiler 2.95.3 from the SUSE Web site:

1. Go to the SUSE Linux portal:

 http://portal.suse.com

2. Follow the directions in the portal to access the Maintenance Web to download and install the required files. The compiler will be installed into the directory /opt/gcc295/.

 Install the Service Pack that contains the required version of GCC (2.95.3) in the package gcc_old. The Service Pack applies to the products that are based on SUSE Linux Enterprise Server 8.

3. To use the compiler, you must change the PATH variable as follows:

 export PATH=/opt/gcc295/bin/:$PATH

To install the compiler from a Service Pack CD, perform the following steps:

1. Mount (by NFS if possible) the Service Pack CD that you obtained from SUSE.

2. Change to this directory on the CD:

 s390/update/SuSE-SLES/8/rpm/s390/

3. Install the package:

 rpm -Uhv gcc_old-2.95.3-4.s390.rpm

4. To use the compiler, you must change the PATH variable as follows:

 export PATH=/opt/gcc295/bin/:$PATH

7.5.3 Creating library links to start the agent (Linux Intel only)

Before starting the WebSphere Message Broker Monitoring on Linux Intel, some links have to be created so that the library names are resolved correctly.

If these links are not created, the agent will fail to start, and the following message is displayed in the agent's log:

 ./kqiagent : error while loading shared libraries: <library name>:
cannot open shared object file: No such file or directory
Perform the following steps:

1. The following links in /opt/mqm/lib must point to the 2.95.2 GNU-compiler-built version of libraries provided by IBM.

 If these are pointing to a 3.0.3 GNU version of libraries, you need to redefine the links as follows:

   ```bash
   ln -sf /opt/mqm/lib/2.95.2/libimqb23gl_r.so
   opt/mqm/lib/libimqb23gl_r.so
   ln -sf /opt/mqm/lib/2.95.2/libimqs23gl_r.so
   /opt/mqm/lib/libimqs23gl_r.so
   ``

   You need root authority to be able to define these links.

2. Check whether the file named libstdc++-libc6.1-2.so.3 exists in /usr/lib. If not, define the following link:

   ```bash
 ln -s /usr/lib/libstdc++-3-libc6.2-2-2.10.0.so
 /usr/lib/libstdc++-libc6.1-2.so.3
 ``

 Note: You might have to substitute for libstdc++-3-libc6.2-2-2.10.0.so another (equivalent) library name available in your /usr/lib directory.

7.5.4 Creating a library link to DB2 (Linux Intel only)

Before executing Take Action commands (such as QI `StartBroker`) on Linux Intel, a link to the DB2 library must be created. If this link is not created, the command will fail with this error:

```
loading shared libraries: libdb2.so.1: cannot open shared object file: No such file or directory
```

To create the link, take either of these actions:

- Define a DB2 library soft link in /var/mqsi/lib by issuing this command from a user ID with root authority:

  ```bash
  ln -sf /opt/IBM/db2/V8.1/lib/libdb2.so.1 /var/mqsi/lib/libdb2.so.1
  ``

  If your DB2 installation directory differs from that shown in the example, substitute the correct directory in the command.

- Edit the `$install_dir/config/qi.ini` file by adding the string `:/opt/IBM/db2/V8.1/lib` to the end of the current specifications for the `$LD_LIBRARY_PATH` parameter, and save the file.
7.5.5 Setting the EXTSHM environment variable ON (WebSphere MQ V6 on AIX 5L only)

When WebSphere MQ Version 6 is running on AIX 5L, the EXTSHM environment variable must be set ON both for the user ID that starts the broker and its queue manager and for the user ID that starts the agent. We recommend that you use the same user ID for both; however, you can use separate user IDs that have the same profile definition.

Do not start the monitoring agent or deploy the CandleMonitor node to the broker without taking this step for any user ID used for starting the agent, the broker, or its queue manager. Perform the following steps:

1. Edit file <user ID home directory>.profile, using vi or your favorite editor.
2. Add this statement:
   ```
 export EXTSHM=ON
   ```
3. Save the file and exit the editor.
4. Log off, and log on again, so that the user ID can pick up the new environment variable setting.
5. Restart the broker and its queue manager.
6. Restart the agent if it is already started.

7.5.6 Authorizing the agent

Start the agent with either the same user ID as the broker or with a user ID that belongs to groups similar to those of the broker's user ID. Never start the agent with a user ID that has a higher authority than the broker's authority or that has root authority (unless the broker also runs with root authority).

To authorize the agent to receive the correct broker data, perform the following steps:

1. Create a user ID account for the agent if you decided not to use the broker's user ID to start the agent. The agent's user ID account must belong to groups mqm (this must be the primary group) and mqbrkrs.
   - The user ID that is used to start the agent must be running with the profile supplied in the broker samples directory (in /opt/mqsi/sample/profiles or, on AIX 5L, in /usr/opt/mqsi/sample/profiles). This is the same profile that the service user ID for the broker must be running. Note that if you use the `switch user` command to change user IDs, you must make sure that the profile is invoked by using the `su - <user ID>` form of the command. If the agent's user ID is not running with the proper environment settings from the profile, several Take Action commands will fail.
If you are starting the agent with a different user ID from the one you used for the installation, or if you have performed a GUI installation, you will need to make sure that permissions to the following directories allow creating and writing files:

- $install_dir/logs
- $install_dir/config
- $install_dir/$arch/qi/hist

Where $install_dir is the directory in which you installed WebSphere Message Broker Monitoring and arch is the IBM Tivoli architecture code.

2. Depending on your site's ACL entries, you might be required to authorize the agent to receive broker event publications in the Control Center or Message Brokers Toolkit. You do not need to perform this step if your site uses the IBM defaults. However, if ACL entries in the Topics tab of the Control Center or Message Brokers Toolkit have been modified such that Subscribe access to topics beginning with $SYS/Broker has been restricted, this step is required.

An ACL entry for topics beginning with $SYS/Broker must be added to set Subscribe access to Allow for the user ID of the agent. The principal for the ACL entry gives the user ID of the agent, or it can give a group to which the agent's user ID belongs, such as mqbrkrs. The ACL entry must be deployed to all brokers to be monitored by WebSphere Message Broker Monitoring. This change allows the agent to receive the broker event publications. If the agent is restricted from receiving these publications, much data in WebSphere Message Broker Monitoring reports will be missing or inaccurate. (Specifically, the Broker Events workspace will display no data.)

Note: The simplest way to make sure that the agent's user ID is fully authorized for all product features is to use the broker's service user ID (the one that is used to start the broker) for starting the agent.

7.5.7 Configuring the agent

Configure the connection between the Monitoring Server and the WebSphere Message Broker Monitoring from the Manage Tivoli Monitoring Services window.

7.5.8 Removing broker entries

To remove a broker entry from the Specify Brokers pop-up in the Manage Tivoli Monitoring Services window, go to $install_dir/config and delete the .xml parameter file for the entry. The file is named hostname_qi_brokername_##_agentID.xml, where:

- hostname is the local host name.
7.5.9 Configuring the agent from the command line

To configure the agent from a command line, use the `itmcmd config` script. The `itmcmd config` script is in `$install_dir/bin`. Execute `itmcmd config` as follows:

```bash
cd /$install_dir/bin
./itmcmd config -A [-h $install_dir] [-a $arch] qi
```

Where `arch` is the IBM Tivoli architecture code for the operating system on which you installed the agent.

For more information about the `itmcmd config` script, see the *IBM Tivoli Monitoring Installing and Setup Guide*.

7.5.10 Starting or stopping multiple agents using `itmcmd agent`

When using the `itmcmd agent` command from the command line, optionally specify the broker name. Use the `-o` option to give a broker name and the `-p` option to specify an agent ID (four or fewer characters) so that you can use multiple WebSphere Message Broker Monitoring Agents on the same system to monitor different brokers.

For example:

```bash
./itmcmd agent -o brokername -p agentID start | stop qi
```

The `[Hostname]_qi_[brokername]_##_[agentID].xml` file is created automatically when using this option.

To run a single monitoring agent on the system, using the default monitoring parameters in `kqi.xml`, run `itmcmd agent` as follows:

```bash
./itmcmd agent start | stop qi
```

7.5.11 Customizing parameters

The parameters that determine the operational and monitoring characteristics of WebSphere Message Broker Monitoring reside in an XML file created during product installation. If desired, customize these parameters. For information and instructions, see *IBM Tivoli OMEGAMON XE for Messaging: WebSphere Message Broker Monitoring User's Guide*. 

- `brokername` is the name of the broker entry you want to remove.
- `agentID` is the entry you want to remove.
7.5.12 Installing the CandleMonitor node in broker environments

The CandleMonitor node is an optional component that collects statistics on message-flow performance in a broker and provides a mechanism for generating user-defined events within a message flow.

Before the CandleMonitor node can be used to monitor message flows, it must be installed into your broker environments, as described here for UNIX environments. For broker environments on Windows, see 7.4.5, “Installing the CandleMonitor node in broker environments” on page 276. For broker environments on z/OS, see Configuring IBM Tivoli OMEGAMON XE for Messaging on z/OS on the IBM Tivoli OMEGAMON XE for Messaging publications CD.

**Note:** With V5 brokers, IBM provides message flow accounting and statistics that partially overlap with the statistics provided by the CandleMonitor node and can be monitored in Tivoli Enterprise Portal without including the CandleMonitor node in message flows. However, the CandleMonitor node provides additional statistics, as well as the ability to monitor subflows and define message flow events. Message flows without a CandleMonitor node are not represented in Statistics workspaces. The CandleMonitor node does not function with WebSphere MQ Event Broker V2.1.

After the CandleMonitor node is installed, it must be made available in the Control Center (V2.1) or Message Brokers Toolkit (V5 or V5.1). For instructions, see IBM Tivoli OMEGAMON XE for Messaging: WebSphere Message Broker Monitoring User’s Guide on the IBM Tivoli OMEGAMON XE for Messaging publications CD.

7.5.13 Installing the CandleMonitor node

Installing the CandleMonitor node into a broker environment on UNIX involves creating soft links to the CandleMonitor node files. Creating these links requires a user ID with “root” authority.

**Note:** This step is required only if the soft links could not be defined during product installation. The soft links must be in place before deploying the CandleMonitor node.

To install the CandleMonitor node into a broker environment on UNIX:

1. From the UNIX command line, create the soft links by executing the appropriate `ln` commands. (The `ln` command resides in `/usr/bin`.) In these commands, `<install_dir>` is the full path to your `$install_dir` directory.
Example 7-1  AIX 5L

```bash
ln -sf install_dir/aix433/qi/bin/kqipnode.lil
 /usr/opt/mqsi/lil/kqipnode.lil
ln -sf install_dir/aix433/qi/bin/kqipnode.cfg
 /usr/opt/mqsi/lil/kqipnode.cfg
ln -sf install_dir/aix433/qi/bin/CandleMonitorNode.cat
 /usr/opt/mqsi/messages/En_US/CandleMonitorNode.cat
ln -sf install_dir/aix433/qi/bin/CandleMonitorNode.cat
 /usr/opt/mqsi/messages/Zh_CN/CandleMonitorNode.cat
ln -sf install_dir/aix433/qi/bin/CandleMonitorNode.cat
 /usr/opt/mqsi/messages/Ja_JP/CandleMonitorNode.cat
ln -sf install_dir/aix433/qi/bin/CandleMonitorNode.cat
 /usr/lib/nls/msg/En_US/CandleMonitorNode.cat
```

Example 7-2  Solaris

```bash
ln -sf install_dir/sol273/qi/bin/kqipnode.lil
 /opt/mqsi/lil/kqipnode.lil
ln -sf install_dir/sol273/qi/bin/kqipnode.cfg
 /opt/mqsi/lil/kqipnode.cfg
ln -sf install_dir/sol273/qi/bin/CandleMonitorNode.cat
 /opt/mqsi/messages/En_US/CandleMonitorNode.cat
ln -sf install_dir/sol273/qi/bin/CandleMonitorNode.cat
 /opt/mqsi/messages/Zh_CN/CandleMonitorNode.cat
ln -sf install_dir/sol273/qi/bin/CandleMonitorNode.cat
 /opt/mqsi/messages/Ja_JP/CandleMonitorNode.cat
ln -sf install_dir/sol273/qi/bin/CandleMonitorNode.cat
 /usr/lib/nls/msg/En_US/CandleMonitorNode.cat
```

Example 7-3  HP-11

```bash
ln -sf install_dir/hp11/qi/bin/kqipnode.lil
 /opt/mqsi/lil/kqipnode.lil
ln -sf install_dir/hp11/qi/bin/kqipnode.cfg
 /opt/mqsi/lil/kqipnode.cfg
ln -sf install_dir/hp11/qi/bin/CandleMonitorNode.cat
 /opt/mqsi/messages/En_US/CandleMonitorNode.cat
ln -sf install_dir/hp11/qi/bin/CandleMonitorNode.cat
 /opt/mqsi/messages/Zh_CN/CandleMonitorNode.cat
ln -sf install_dir/hp11/qi/bin/CandleMonitorNode.cat
 /opt/mqsi/messages/Ja_JP/CandleMonitorNode.cat
ln -sf install_dir/hp11/qi/bin/CandleMonitorNode.cat
 /usr/lib/nls/msg/C/CandleMonitorNode.cat
```
Example 7-4  Linux Intel

```
ln -sf <install_dir>/li6243/qi/bin/kqipnode.lil
 /opt/mqsi/lil/kqipnode.lil
ln -sf <install_dir>/li6243/qi/bin/kqipnode.cfg
 /opt/mqsi/lil/kqipnode.cfg
ln -sf <install_dir>/li6243/qi/bin/CandleMonitorNode.cat
 /opt/mqsi/messages/En_US/CandleMonitorNode.cat
ln -sf <install_dir>/li6243/qi/bin/CandleMonitorNode.cat
 /opt/mqsi/messages/Zh_CN/CandleMonitorNode.cat
ln -sf <install_dir>/li6243/qi/bin/CandleMonitorNode.cat
 /opt/mqsi/messages/Ja_JP/CandleMonitorNode.cat
ln -sf <install_dir>/li6243/qi/bin/CandleMonitorNode.cat
 /usr/share/locale/C/LC_MESSAGES/CandleMonitorNode.cat
```

Example 7-5  Linux zSeries

```
ln -sf <install_dir>/ls3243/qi/bin/kqipnode.lil
 /opt/mqsi/lil/kqipnode.lil
ln -sf <install_dir>/ls3243/qi/bin/kqipnode.cfg
 /opt/mqsi/lil/kqipnode.cfg
ln -sf <install_dir>/ls3243/qi/bin/CandleMonitorNode.cat
 /opt/mqsi/messages/En_US/CandleMonitorNode.cat
ln -sf <install_dir>/ls3243/qi/bin/CandleMonitorNode.cat
 /opt/mqsi/messages/Zh_CN/CandleMonitorNode.cat
ln -sf <install_dir>/ls3243/qi/bin/CandleMonitorNode.cat
 /opt/mqsi/messages/Ja_JP/CandleMonitorNode.cat
ln -sf <install_dir>/ls3243/qi/bin/CandleMonitorNode.cat
 /usr/share/locale/C/LC_MESSAGES/CandleMonitorNode.cat
```

2. (Linux zSeries only) Define the required environment variable, as described immediately in the following section.

3. Restart the broker to make your changes take effect and allow monitoring by the agent.

7.5.14 Defining the required environment variable for Linux zSeries

After you have defined soft links and before you restart the broker on Linux zSeries, you must define a required environment variable. Otherwise, the broker will be unable to load the kqipnode.lil file and will produce this error message:

```
undefined symbol: read__7istreamPcl
```
Perform the following steps:

1. Edit the profile used by your service user ID that starts your broker. This is shipped by IBM as the following file, but if you have changed to use a different profile for your service user ID, edit that one:

   /opt/mqsi/sample/profiles/profile.lnx

2. Include the following lines in the file:

   3. MQSI_PRELOAD=/opt/gcc295/lib/libstdc++-libc6.2-2.so.3
   export MQSI_PRELOAD

3. Save the file.

4. Run the profile for the service user ID before restarting the broker. If you are already logged on to the user ID, enter this command to enact the new settings:

   . /opt/mqsi/sample/profiles/profile.lnx

5. Restart the broker to make your changes take effect and allow monitoring by the agent.

7.5.15 Next steps for setting up the CandleMonitor node

You have now installed the CandleMonitor node in your broker environment. Before the CandleMonitor node can be used to monitor message flows, it must also be made available in the Control Center (V2.1) or Message Brokers Toolkit (V5 or V5.1). For instructions, see IBM Tivoli OMEGAMON XE for Messaging: WebSphere Message Broker Monitoring User's Guide.

7.6 Agent configuration file

The parameters that determine the operational and monitoring characteristics of an agent reside in a file in XML format that is created during the installation of WebSphere Message Broker Monitoring and downloaded along with the WebSphere Message Broker Monitoring product.

On distributed platforms such as Windows and UNIX, this parameter file is in UTF-8 coding for containing non-English characters. Users can use the remote agent configuration feature instead of editing this file directly. On the z/OS platform, however, the file is in EBCDIC coding and users have to edit this file manually on z/OS.

At the end of the installation procedure, you are given an opportunity to view and edit the file that contains the parameter settings for the agent. You can also edit this file whenever you need to change an agent's configuration parameters. If you
choose, you can add optional configuration parameters to the file for your installation.

**Names and locations of agent parameter files**

Here we describe the parameter files on the following platforms:

- **On z/OS**
  
The agent parameter file member name is KQIXML.
  
  If you used the installation location defaults, the KQIXML member resides in the partitioned data set &rhilev.RKANDATV.

- **On UNIX**
  
The agent parameter file is named kqi.xml.
  
  Note that if you specify broker and agentId parameters at agent startup, the name of the agent parameter file is customized. The agent parameter file name for an agent started with optional parameters is of the form:
  
  `<hostName>_qi_<brokerName>_##_<agentId>.xml`
  
  If you only specify agentId parameter at agent startup, the agent parameter file name for an agent is of the form:
  
  `<hostName>_qi_<agentId>.xml`
  
  If you use the installation location defaults, the agent parameter file resides in `$install_dir/config`.

- **On Windows**
  
The agent parameter file is named kqi.xml.
  
  Note that if you use the Create Instance option of Manage Tivoli Monitoring Services to replicate the agent, the name of the agent parameter file is customized. The agent parameter file name for a created instance is of the form:
  
  `kqi_<taskname>.xml`
  
  If you use the installation location defaults, the agent parameter file resides in `C:\IBM\ITM\TMA\ITM6`.

**The default agent parameter file**

The agent parameter file, as shipped with WebSphere Message Broker Monitoring, contains a base set of parameters that employ the product defaults. However, the values of these parameters can be changed to suit the needs of your site and additional parameters can be set.
On UNIX and Windows
Your initial kqi.xml file resembles the file shown in Figure 7-2.

Note that this default file represents the core parameters that will be used in reporting and monitoring for the agent on UNIX and Windows systems. Because no individual brokers or queue managers are specified in the file, running with the parameters shown here results in all brokers being monitored by the agent.

```
<KqiAgent version="130"
 defaultRetainBrokerEvents="10"
 defaultRetainFlowEvents="10"
 retainProductEvents="10"
 discoveryInterval="300"
 defaultStatisticInterval="60"
 defaultFlowEventInterval="15"
 defaultHistoricalAccountingType="Archive"
 defaultRetainRecentSnapshotSamples="15"
 defaultRetainRecentArchiveSamples="5"
 defaultRetainRecentPubSubSamples="15"
 holdTimeForQuery="180"
 defaultReplyQueueName="KQI.AGENT.REPLY.QUEUE"
 defaultReplyQueueModel="SYSTEM.BROKER.MODEL.QUEUE"
 defaultTakeActionAuthUsers="*
</KqiAgent>
```

Figure 7-2  Default kqi.xml file on Windows and UNIX

Setting agent parameters
You can change the configuration of the agent by changing a default parameter or adding new parameters to the file.

Making changes to an existing parameter
To make changes to a parameter that already appears in the file, substitute the original parameter value with your new value, enclosed within a set of double quotation marks (""").

For example:
```
defaultStatisticInterval="original value"
```

This becomes:
```
defaultStatisticInterval="new value"
```
**Adding new parameters to the file**

To add new parameters to the agent parameter file, you must first determine if an appropriate XML tag already exists for the parameter:

- If the appropriate XML tag already exists, insert the new parameter string into the tag block.

For example, to add the agentId parameter to the default kqi.xml file, the tag block in Example 7-6 becomes that shown in Example 7-7.

**Example 7-6  Example of original kqi.xml file**

```xml
<KqiAgent version="130"
 defaultRetainBrokerEvents="10"
 defaultRetainFlowEvents="10"
 retainProductEvents="10"
 discoveryInterval="300"
 defaultStatisticInterval="60"
 defaultFlowEventInterval="15"
 defaultHistoricalAccountingType="Archive"
 defaultRetainRecentSnapshotSamples="15"
 defaultRetainRecentArchiveSamples="5"
 defaultRetainRecentPubSubSamples="15"
 holdTimeForQuery="180"
 defaultReplyQueueName="KQI.AGENT.REPLY.QUEUE"
 defaultReplyQueueModel="SYSTEM.BROKER.MODEL.QUEUE"
 defaultTakeActionAuthUsers="*">
</KqiAgent>
```

**Example 7-7  Modified kqi.xml file with agentId parameter**

```xml
<KqiAgent version="130"
 agentId="new_value"
 defaultRetainBrokerEvents="10"
 defaultRetainFlowEvents="10"
 retainProductEvents="10"
 discoveryInterval="300"
 defaultStatisticInterval="60"
 defaultFlowEventInterval="15"
 defaultHistoricalAccountingType="Archive"
 defaultRetainRecentSnapshotSamples="15"
 defaultRetainRecentArchiveSamples="5"
 defaultRetainRecentPubSubSamples="15"
 holdTimeForQuery="180"
 defaultReplyQueueName="KQI.AGENT.REPLY.QUEUE"
 defaultReplyQueueModel="SYSTEM.BROKER.MODEL.QUEUE"
 defaultTakeActionAuthUsers="*">
</KqiAgent>
```
If the appropriate XML tag does not exist, insert the correct opening and closing XML tags before including the parameter string.

For example, to set MonitorBroker parameters, insert the <MonitorBroker></MonitorBroker> tags and then add the parameters. Example 7-8 shows an example.

Example 7-8  Example of adding new block for MonitorBroker parameters

```xml
<KqiAgent version="130"
 agentId="A1"
 defaultRetainBrokerEvents="10"
 defaultRetainFlowEvents="10"
 retainProductEvents="10"
 discoveryInterval="300"
 defaultStatisticInterval="120"
 defaultFlowEventInterval="30"
 defaultHistoricalAccountingType="Archive"
 defaultRetainRecentSnapshotSamples="15"
 defaultRetainRecentArchiveSamples="5"
 defaultRetainRecentPubSubSamples="15"
 holdTimeForQuery="180"
 defaultReplyQueueName="SOME.NAME"
 defaultReplyQueueModel="SYSTEM.BROKER.MODEL.QUEUE"
 defaultTakeActionAuthUsers="*" >
 <MonitorBroker name="MySpecialBrokerName"
 statisticInterval="60"
 flowEventInterval="20"
 retainBrokerEvents="5"
 retainFlowEvents="5"
 takeActionAuthUsers="A?B,C*">
 </MonitorBroker>
 <MonitorBroker name="AnotherBrokerName">
 </MonitorBroker>
 <ConnectQueueManager name="MY.BROKER.QMGR"
 replyQueueName="SOME.OTHER.NAME"
 replyQueueModel="MY.SPECIAL.MODEL.QUEUE">
 </ConnectQueueManager>
</KqiAgent>
```

Note that each tag block encapsulates the parameters specific to that component. This sample file is included in installations on UNIX and Windows. The file is named kqismpl.xml and can be used as a template for making changes to your kqi.xml file.
On UNIX, the kqismpl.xml file is in the $install_dir/<Platform>/qi/files directory, where <Platform> is the abbreviation for the operating system architecture as shown in the installation guide (for example, aix433 or sol273).

On Windows, the kqismpl.xml file is in the C:\IBM\ITM\TMAITM6 directory.

**Agent parameter descriptions**

We describe the array of parameters that can be used in the kqi.xml file (or KQIXML member), along with their associated XML tags. The parameters are associated with one of three tags, KqiAgent, MonitorBroker, or ConnectQueueManager:

- **KqiAgent**
  
  The KqiAgent tag encapsulates all parameters for the agent. Any attributes following this tag apply to the agent as a whole and provide monitoring and connection defaults that can be overridden at the individual broker or queue manager level. All associated attributes are optional.

- **MonitorBroker**
  
  The MonitorBroker tag encapsulates parameters that apply to a single broker to be monitored by the agent. One or more MonitorBroker tags can be specified.
  
  - On UNIX/Linux and Windows: If no brokers are specified, all brokers running on the same host system as the agent will be monitored, as determined by self-discovery. If any brokers are specified, any other brokers that you want to monitor must also be explicitly specified using MonitorBroker tags and attributes. All associated attributes are optional except for the name attribute.
  
  - On z/OS: WebSphere Message Broker Monitoring does not currently support self-discovery of brokers on z/OS systems. Each broker to be monitored must be explicitly specified using MonitorBroker tags and attributes. All associated attributes are optional except for the name and the componentDirectory attributes.

- **ConnectQueueManager**
  
  The ConnectQueueManager tag encapsulates parameters that apply to a queue manager to which the agent will connect. One or more ConnectQueueManager tags can be specified. The name attribute is required. However, there is no need to specify this tag if only the name attribute will be given. In this case, agent level defaults will be used for the remaining attributes, and the agent will automatically connect to the monitored broker's associated queue manager. However, if the default reply and model queue names are not sufficient for a broker queue manager, specify the additional parameters in Table 7-7 on page 293.
**Note:** The default values shown in the following table are based on actual user experiences and should be kept in most environments. However, based on your environment, review these values as appropriate.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Tag: KqiAgent</strong></td>
<td></td>
</tr>
<tr>
<td>version</td>
<td>This is the version of the agent.</td>
</tr>
<tr>
<td>agentID</td>
<td>This is the short identifier of the agent. The maximum length is four characters. The default is &quot;&quot;.</td>
</tr>
<tr>
<td>defaultRetainBrokerEvents</td>
<td>Determines how many broker events to retain per broker for viewing in reports. The default is 10.</td>
</tr>
<tr>
<td>defaultRetainFlowEvents</td>
<td>Determines how many message flow events to retain per broker for viewing in reports. The default is 10.</td>
</tr>
<tr>
<td>retainProductEvents</td>
<td>Determines the total number of product events to retain for viewing in reports. The default is 10.</td>
</tr>
<tr>
<td>discoveryInterval</td>
<td>Determines the period of time in seconds between the agent's attempts to rediscover brokers created on the system. The default is 300.</td>
</tr>
<tr>
<td>defaultStatisticInterval</td>
<td>Determines the minimum period of time in seconds between collections of broker statistics. The default is 60.</td>
</tr>
<tr>
<td>defaultFlowEventInterval</td>
<td>Determines the period of time in seconds for the message flow event sampling interval. The default is 15.</td>
</tr>
<tr>
<td>defaultReplyQueueName</td>
<td>Specifies the name of the queue that will be used for the agent's receipt of replies and publications for any queue manager to which the agent connects. The default is KQI.AGENT.REPLY.QUEUE.</td>
</tr>
<tr>
<td>defaultReplyQueueModel</td>
<td>Specifies the name of the queue that will be used as a model for creating the agent reply queue for any queue manager to which the agent connects. The default is SYSTEM.BROKER.MODEL.QUEUE.</td>
</tr>
<tr>
<td>defaultTakeActionAuthUsers</td>
<td>Specifies which Tivoli Enterprise Portal users are authorized to issue Take Action commands associated with this agent. The default is &quot;*&quot;, which allows all Tivoli Enterprise Portal users to issue Take Action commands associated with this agent.</td>
</tr>
<tr>
<td>Attribute</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>commandTimeoutInterval</td>
<td>Specifies the period of time in seconds before the agent issues a message indicating the broker is not responding. The default is 60.</td>
</tr>
<tr>
<td>maximumCommandRetryCount</td>
<td>Specifies the number of times that the agent will attempt to reissue a command before stopping. The default is 4.</td>
</tr>
<tr>
<td>maximumAgentCollectionThreads</td>
<td>Used to increase or decrease the number of brokers that the agent can monitor. The default is 42, which is enough to monitor 10 brokers.</td>
</tr>
<tr>
<td>holdTimeForQuery</td>
<td>The amount of time, in seconds, that the agent must retain data for the ability to go down into a more detailed level in Accounting workspaces and still see the same sample of data that was selected in the higher level workspace. The default is 180.</td>
</tr>
<tr>
<td>defaultHistoricalAccountingType</td>
<td>Tells the agent which two types of accounting data are to be logged historically. The value can be All, Snapshot, Archive, or None. The default is Archive.</td>
</tr>
<tr>
<td>defaultRetainRecentSnapshotSamples</td>
<td>Gives the default value used by the agent for the number of recent snapshot records it keeps for any given message flow. The default is 15, which results in about five minutes of snapshot data.</td>
</tr>
<tr>
<td>defaultRetainRecentPubSubSamples</td>
<td>Determines the default value used by the agent for the number of recent records to keep for any of the publish/subscribe data. The default is 15.</td>
</tr>
<tr>
<td>defaultRetainRecentArchiveSamples</td>
<td>Gives the default value used by the agent for the number of recent archive records kept for any give message flow. The default is 5, which results in about five hours of archive data.</td>
</tr>
</tbody>
</table>

**Tag: MonitorBroker**

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>Specifies the name of the broker to be monitored and required.</td>
</tr>
<tr>
<td>alias</td>
<td>The alias attribute provides an alternative for an existing broker name. This alternative name is used in forming the managed system name (node name) for the broker that shows in Portal.</td>
</tr>
<tr>
<td>statisticInterval</td>
<td>Determines the minimum period of time in seconds between collections of broker statistics. It overrides the defaultStatisticInterval attribute; however, if it is not specified, the default attribute is used.</td>
</tr>
<tr>
<td>Attribute</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>flowEventInterval</td>
<td>Determines the period of time in seconds for the message flow event sampling interval. It overrides the defaultFlowEventInterval attribute; however, if it is not specified, the default attribute is used.</td>
</tr>
<tr>
<td>retainBrokerEvents</td>
<td>Determines how many broker events to retain per broker for viewing in reports. It overrides the defaultRetainBrokerEvents attribute; however, if it is not specified, the default attribute is used.</td>
</tr>
<tr>
<td>retainFlowEvents</td>
<td>Determines how many message flow events to retain per broker for viewing in reports. It overrides the defaultRetainFlowEvents attribute; however, if it is not specified, the default attribute is used.</td>
</tr>
<tr>
<td>retainRecentPubSubSamples</td>
<td>The retainRecentPubSubSamples attribute determines the value used by the agent for the given broker for the number of recent records to keep for any of the publish/subscribe data. It has the same basic meaning of, and overrides any value given for, defaultRetainRecentPubSubSamples. This parameter is not provided in the shipped kqi.xml, and the agent level default value given by defaultRetainRecentPubSubSamples is used unless the user specifically provides this.</td>
</tr>
<tr>
<td>componentDirectory</td>
<td>Specifies the directory path created when the broker to be monitored was customized. This is required on z/OS, and it ignored on UNIX and Windows.</td>
</tr>
<tr>
<td>takeActionAuthUsers</td>
<td>Specifies which CandleNet Portal users are authorized to issue Take Action commands associated with this agent on this broker. It overrides the defaultTakeActionAuthUsers attribute; however, if it is not specified, the default attribute is used.</td>
</tr>
<tr>
<td>historicalAccountingType</td>
<td>Gives the value used by the agent for the given broker for which of the types of accounting data is to be logged historically. It overrides the defaultHistoricalAccounting. If the Type attribute is not specified, the default attribute is used.</td>
</tr>
<tr>
<td>retainRecentSnapshotSamples</td>
<td>Gives the value used by the agent for the given broker for the number of recent snapshot records to keep for any give message flow. It overrides the defaultRetainRecentSnapshotSamples attribute; however, if it is not specified, the default attribute is used.</td>
</tr>
</tbody>
</table>
7.7 Using situations

WebSphere Message Broker Monitoring provides predefined situations to monitor critical activity and serve as a template for creating customized situations.

The predefined situations are grouped into two categories: alerts and historical. The alert-based situations are prefaced with the letters QI and are activated when they are distributed to the node to be monitored.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>retainRecentArchiveSamples</td>
<td>Gives the value used by the agent for the given broker for the number of recent archive records to keep for any given message flow. It overrides the defaultRetainRecentArchiveSamples attribute, however, if it is not specified, the default attribute is used.</td>
</tr>
<tr>
<td>Tag: ConnectQueueManager</td>
<td></td>
</tr>
<tr>
<td>name</td>
<td>Specifies the name of the queue manager to which the agent will connect.</td>
</tr>
<tr>
<td>replyQueueName</td>
<td>Specifies the name of the queue that will be used for the agent's receipt of replies and publications for this queue manager. If it is not specified, the defaultReplyQueueName is used.</td>
</tr>
<tr>
<td>replyQueueModel</td>
<td>Specifies the name of the queue that will used as a model for creating the agent reply queue on this queue manager. If it is not specified, the defaultReplyQueueModel is used.</td>
</tr>
</tbody>
</table>
Table 7-8 shows the predefined alert-based events and lists their description.

<table>
<thead>
<tr>
<th>Situation</th>
<th>Component</th>
<th>Subcomponent</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>QI_Broker_Not_Started</td>
<td>QI Broker</td>
<td>Broker Information</td>
<td>The Broker Status value is found to be not started.</td>
</tr>
<tr>
<td>QI_Broker_QMgr_Not_Connected</td>
<td>QI Broker</td>
<td>Broker Information</td>
<td>The Queue Manager Status value is found to be not connected.</td>
</tr>
<tr>
<td>QI_Status_Stop_Event</td>
<td>QI Broker</td>
<td>Broker Events</td>
<td>The Broker Events row occurs for a Status Stop event.</td>
</tr>
<tr>
<td>QI_Product_Events</td>
<td>QI Agent</td>
<td>Product Events</td>
<td>The Product Events row occurs.</td>
</tr>
<tr>
<td>QI_Publication_Expire_Event</td>
<td>QI Broker</td>
<td>Broker Events</td>
<td>The Broker Events row occurs for a Publication Expiration event type.</td>
</tr>
<tr>
<td>QI_Subscription_Expire_Event</td>
<td>QI Broker</td>
<td>Broker Events</td>
<td>The Broker Events row occurs for a Subscription Expiration event type.</td>
</tr>
<tr>
<td>QI_Average_Flow_Time_High</td>
<td>QI Broker</td>
<td>Message Flow Statistics</td>
<td>The Average Flow Seconds value is found to exceed a threshold. The default threshold is 10.</td>
</tr>
<tr>
<td>QI_Automation_Start_Component</td>
<td>QI Agent</td>
<td>Components</td>
<td>The Component Status value is found to be not started. This situation demonstrates reflex automation: If the situation becomes true, the proper command is issued to start the component.</td>
</tr>
</tbody>
</table>

You can create situations using the Situation Editor in the Tivoli Enterprise Portal. We recommend that you copy an existing situation and modify the copy instead of making changes to the original predefined situation. This has three advantages:

- It preserves the original.
- When maintenance is installed, updates to the product provided situations are implemented.
If the Monitoring Server is re-seeded, the updates are not lost.

Figure 7-3 shows the Situation Editor opened against the QI_Broker_Not_Started situation with the Condition tab being viewed.

![Situation Editor with QI_Broker_Not_STARTED](image)

Figure 7-3 Situation Editor with QI_Broker_Not_Started

When creating or modifying a situation, there are several things to consider:

- **Condition tab items**
  - Condition: This is the test or tests that cause the situation to be activated.
  - Sampling interval: Sets the interval of the situation. This must not be set to a smaller time frame than the statisticInterval of the agent configuration.
  - State: This is the severity of the situation.
  - Advanced: Sets situation persistence and the display item.

- **Distribution tab items**
  - Assigned.
  - Available Managed Systems.
  - Available Managed Systems Lists.
7.8 Using Take Action commands

Take Action commands enable you to submit commands to the WebSphere Message Brokers from Tivoli Enterprise Portal using the agent. They can be submitted from situations, from the Navigator, or from a row in a table view. The Take Action commands for this product are prefaced with the letters `QI`.

Which users can initiate Take Action commands is controlled by the agent parameter file at two levels:

- **Agent level**: Using the `defaultTakeActionAuthUsers` parameter
- **Broker level**: Using the `takeActionAuthUsers` parameter

The default setting is for the agent level with `defaultTakeActionAuthUsers="*"`. This means that any Tivoli Enterprise Portal user can issue Take Action commands for the agent. The commands are executed within the context of the agent’s authority.

Table 7-9 shows the Take Action commands provided with the product.

<table>
<thead>
<tr>
<th>Take Action command</th>
<th>Managed system</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>QI Start Component</td>
<td>QI Agent</td>
<td>Starts one of the following components: UserNameServer, ConfigMgr, or broker. Uses the <code>mqsistart</code> command.</td>
</tr>
<tr>
<td>QI Stop Component</td>
<td>QI Agent</td>
<td>Stops one of the following components: UserNameServer, ConfigMgr, or broker. Uses the <code>mqsistop</code> command.</td>
</tr>
<tr>
<td>Take Action command</td>
<td>Managed system</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------------------------</td>
<td>----------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>QI Stop Component and its Queue Manager</td>
<td>QI Agent</td>
<td>Stops one of the following components and its associated queue manager: UserNameServer, ConfigMgr, or broker. Uses the <code>mqsistop</code> command.</td>
</tr>
<tr>
<td>QI Change Trace Component</td>
<td>QI Agent</td>
<td>Changes the trace level of the IBM broker component. Uses the <code>mqsischangetrace</code> command.</td>
</tr>
<tr>
<td>QI Start Broker</td>
<td>QI Broker</td>
<td>Starts the selected broker. Uses the <code>mqsisstart</code> command.</td>
</tr>
<tr>
<td>QI Stop Broker</td>
<td>QI Broker</td>
<td>Stops the selected broker. Uses the <code>mqsistop</code> command.</td>
</tr>
<tr>
<td>QI Stop Broker and its Queue Manager</td>
<td>QI Broker</td>
<td>Stops the selected broker and its associated queue manager. Uses the <code>mqsistop</code> command.</td>
</tr>
<tr>
<td>QI Change Trace Broker</td>
<td>QI Broker</td>
<td>Changes the broker's trace level. Uses the <code>mqsischangetrace</code> command.</td>
</tr>
<tr>
<td>QI Change Broker</td>
<td>QI Broker</td>
<td>Allows the broker to be modified. Uses the <code>mqsischangebroker</code> command.</td>
</tr>
<tr>
<td>QI Change Flow Stats</td>
<td>QI Broker</td>
<td>Allows the activation/deactivation of message flow accounting and statistics. Uses the <code>mqsischangeflowstats</code> command.</td>
</tr>
<tr>
<td>QI Change Properties</td>
<td>QI Broker</td>
<td>Enables statistics for the Publish-Subscribe Statistics, Multicast Summary Statistics, Multicast Group Statistics, and Multicast Topic Statistics workspaces. This command is only available for the broker subnode affinity.</td>
</tr>
<tr>
<td>QI Start Message Flow(s)</td>
<td>QI Broker</td>
<td>Starts one or all message flows associated with an execution group. Leaving the Message_Flow argument blank causes all flows to be started in the give execution group.</td>
</tr>
<tr>
<td>QI Stop Message Flow(s)</td>
<td>QI Broker</td>
<td>Stops one or all message flows associated with an execution group. Leaving the Message_Flow argument blank causes all flows to be stopped in the give execution group.</td>
</tr>
<tr>
<td>QI Delete Retained Publication</td>
<td>QI Broker</td>
<td>Deletes a retained publication for the given topic and subscription point.</td>
</tr>
<tr>
<td>QI Create User Statistics</td>
<td>QI Broker</td>
<td>Creates user statistics associated with the CandleNet Portal logon ID that issues the command. The MaxInactivityTime is in minutes.</td>
</tr>
</tbody>
</table>
The destination of the Take Action command is either at the agent or broker level, as indicated in Table 7-9 on page 299. The amount of detail pre-filled for you depends on from where you open the Take Action menu. In the following two images, you can see that, depending on where we launched, the menu controlled the amount of detailed that we were provided.

The image in Figure 7-4 shows the level of detail when the Take Action is accessed by right-clicking the QI Broker object in the Navigator. Notice that the “Execution_Group” and “Message_Flow” are not filled in and are highlighted in yellow.
The image in Figure 7-5 shows more detail and has all the fields pre-filled, because the Take Action command was accessed by right-clicking the execution group within the Message Flow Statistics section. In both instances, a destination must be selected from the “Destination System(s)” field in the menu. In our case, there is only one QI Broker managed system; however, if there are multiple systems, more options will appear in the menu.

![Figure 7-5  Take Action command from right-clicking an execution group](image)

After the Take Action command runs, the status of the execution is returned to Tivoli Enterprise Portal. Note that this is not the status of the Take Action command; it is the status of the running of the Take Action command. For example, the status of the QI Start Message Flows returns a return code of 2056 with the message 2056-Successfully-Processed-XML; it does not tell you the status of the start command. In order to see if the start command was successful, you have to check the “Status” column in the “Message Flow Information” section of Portal. You can also check the “Message Flow Statistics” instead of “Message Flow Information”, but remember that for the “Message Flow Statistics” to show a message flow, you have to be monitoring it with the CandleMonitor node. The “Message Flow Information” workspace shows all message flows defined to the broker.
7.9 Automating responses

Now that we have discussed the use of situations and Take Action commands, it is time to combine them to have the product automate this process. This is one of the strengths of this product: the ability to automatically initiate an action based on an event. The term reflex automation refers to a situation that executes an action or command.

We decide to automate the restart of the broker when the situation (QI_Broker_Not_Started) detects that the broker is down. In this case, the situation posts an event to the Event Console and it will run the Take Action command. As long as the command executed by the Take Action command is successful, the next sampling interval will detect that the broker is started and send a clearing event.

We use the following steps to set up this reflex automation (Figure 7-6 on page 304):

1. Right-click Broker Information in the Navigator under the QI Broker managed system.
2. Select Situations from the pop-up menu.
3. Select QI_Broker_Not_Started from the available situations.
4. Set the Sampling Interval (the default is five minutes).
5. Click the Action tab.
7. In System Command input field, enter QI:mqsistart ‘ (that is one single quotation mark).
8. Click Attribute Selection.
9. Select Broker Information from the Group.
10. Select Broker from the list under Item.
11. Enter another single quotation mark so that the &Broker Information.Broker is enclosed in a single quotation mark. The input field will now look like this: QI:mqsistart ‘&Broker Information.Broker’
12. Click the Distribution tab.
13. Make sure that the Assigned list shows the broker managed system for which you want this situation to be executed.
14. Right-click the QI_Broker_Not_Started situation label on the left side of the menu and select Start Situation.
15. Click OK at the bottom of the menu.
Implementing OMEGAMON XE for Messaging V6.0

Figure 7-6  Reflex automation for QI_Broker_Not_Started situation

This is the basic setup of the situation and takes the defaults for other settings. You can test this situation by stopping the broker using a Take Action command. Allow the situation sample time to be exceeded and you will receive an event in the Event Console informing you of the critical situation that the broker is down. The situation executes the action and, on the next sample, the broker should be running, assuming that the action was successful.

Other actions can be automated using the same steps that we just outlined. You can create your own actions or use those provided with the product. You can also create your own situations and automate actions for those situations in a similar fashion.

7.10 Workspaces

The WebSphere Message Broker Monitoring product is installed with default views that are displayed in workspaces. Links are often provided to take the user
to a more detailed view of the selected information. This section describes using the workspaces to view data provided by the agent.

You can access the workspaces from the Navigator in the Tivoli Enterprise Portal. Figure 7-7 shows the Navigator view of the workspaces. To access the workspaces detailed in the table, click the associated icon to display the default workspace. You can also right-click an icon and select **Workspace** to reveal other available Workspace links. Table 7-10 on page 306 provides details of these workspaces.

See “New statistics available” on page 257 for commands that will ensure that statistics are gathered for these workspaces.

Table 7-10 on page 306 shows the workspaces provided with the product. Most of the workspaces have a corresponding history workspace. The default history workspaces is not shown in this table, because they show the historical view of the same information. Access the historical workspaces by right-clicking the Workspace icon in the Navigator and selecting **Workspace → Workspace_name History**. For more details about workspaces, see *IBM Tivoli*
Important: For some of these workspaces, specific parameters or options need to be enabled within WebSphere MQ. These options can be turned on using Take Action commands to enable the collection of data required for these workspaces. See the product documentation for more details.

Table 7-10  Agent workspace information

<table>
<thead>
<tr>
<th>Workspace</th>
<th>Default views</th>
<th>Description</th>
</tr>
</thead>
</table>
| ACL Entries              | ▶ Enterprise Event Log  
▶ ACL Entries                                                     | Displays access control list (ACL) entries per topic. To access the workspace, click the ACL Entries icon. |
| Agent Status             | ▶ Product Events  
▶ Components                                                             | Summarizes event and component information at the agent level. To access the workspace, click the QI Agent icon. |
| Archive Message Flow Accounting | ▶ Message Flow Elapsed Time  
▶ Message Flow CPU Time  
▶ Archive Message Flow Accounting | Provides statistics pertaining to entire message flows for the current archive collection. To access the workspace, click the Archive Message Flow Accounting icon. |
| Archive Node Accounting  | ▶ Archive Node Accounting  
▶ Node Elapsed Time  
▶ Node CPU Time                                                          | Displays statistics for nodes used by message flows for the current archive interval. To access the workspace, right-click the Archive Message Flow Accounting icon and select **Workspace → Archive Node Accounting**. |
| Archive Terminal Accounting | ▶ Archive Terminal Accounting  
▶ Terminal Invocation Rate                                            | Displays statistics for terminals on nodes used by message flows for the current archive interval. To access the workspace, right-click the Archive Message Flow Accounting icon and select **Workspace → Archive Terminal Accounting**. |
| Archive Thread Accounting | ▶ Archive Thread Accounting  
▶ Thread Elapsed Time  
▶ Thread CPU Time                                                      | Displays statistics pertaining to the threads used by message flows for the current archive interval. To access on, right-click the Archive Message Flow Accounting icon and select **Workspace → Archive Thread Accounting**. |
<table>
<thead>
<tr>
<th>Workspace</th>
<th>Default views</th>
<th>Description</th>
</tr>
</thead>
</table>
| Broker Events             | ▶ Enterprise Event Log  
▶ Broker Events                                        | Lists events generated by the broker as they occur. To access the workspace, click the Broker Events icon.                                                                                                  |
| Broker Information        | ▶ Enterprise Event Log  
▶ Broker Information                                        | Displays information about the broker, including status. To access the workspace, click the Broker Information icon.                                                                                           |
| Broker Statistics         | ▶ Current Message Rates  
▶ Current Average Message Time  
▶ Broker Statistics                                 | Displays message flow statistics at the broker level. To access the workspace, click the Broker Statistics icon.                                                                                               |
| Broker Status             | ▶ Broker Events  
▶ Message Flow Events  
▶ Broker Information                                        | Displays summary information of events, status, and definition information for the broker. To access the workspace, click the Broker icon. If multiple agents are running on a system, you will see multiple icons under QI Broker. |
| Broker Summary            | ▶ Enterprise Event Log  
▶ Broker Information                                        | This is displayed when there are multiple brokers monitored by one agent on a system. It lists information about each broker. To access the workspace, click the QI Broker folder icon.          |
| CandleMonitor Node        | ▶ Current Message Rate  
▶ Current Average Message Time  
▶ CandleMonitor Node Statistics                             | Provides message flow statistics at the individual node level as collected by the CandleMonitor node. At least one CandleMonitor node must be deployed in the broker. To access the workspace, click the CandleMonitor Node Statistics icon. |
| Components                | ▶ Enterprise Event Log  
▶ Components                                           | Displays a list of broker product components and their state at the agent level. To access the workspace, click the Components icon.                                                                         |
| Execution Group Information | ▶ Enterprise Event Log  
▶ Execution Group Information                             | Displays execution groups defined for the broker and definition information for each execution group. To access the workspace, click the Execution Group Information icon. |
<table>
<thead>
<tr>
<th>Workspace</th>
<th>Default views</th>
<th>Description</th>
</tr>
</thead>
</table>
| Execution Group Statistics    | ▶ Current Message Rates  
▶ Current Average Message Time  
▶ Execution Group Statistics | Displays message flow statistics summarized at the execution group level. The broker must have at least one deployed CandleMonitor node. To access the workspace, click the Execution Group Statistics icon. |
| Message Flow Events           | ▶ Enterprise Event Log  
▶ Message Flow Events | Displays events generated by the CandleMonitor node as they occur. The number of events shown depends on the number retained by the agent, and controlled by the agent parameter file. To access the workspace, click the Message Flow Events icon. |
| Message Flow Information      | ▶ Enterprise Event Log  
▶ Message Flow Information | Displays defined message flows by execution group and definition information for each. To access the workspace, click the Message Flow Information icon. |
| Message Flow Statistics       | ▶ Current Message Rates  
▶ Current Average Message Time  
▶ Message Flow Statistics | Displays message flow statistics summarized at the message flow level. The broker must have at least one deployed CandleMonitor node. To access the workspace, click the Message Flow Statistics icon. |
| Message Processing Node       | ▶ Enterprise Event Log  
▶ Message Processing Node Attributes | Displays all attribute values for the selected message processing node within a message flow. To access the workspace, right-click the Message Processing Node Information icon and select Workspace → Message Processing Node Attributes. |
| Attributes                    |                                                                  |                                                                                                                                               |
| Message Processing Node       | ▶ Enterprise Event Log  
▶ Message Processing Node Information | Displays defined message processing nodes by their execution group and message flow. To access the workspace, click the Message Processing Node Information icon. |
| Information                   |                                                                  |                                                                                                                                               |
| Message Processing Nodes      | ▶ Enterprise Event Log  
▶ Message Processing Nodes with queue name | Lists all message processing nodes in the enterprise with the same queue name. To access the workspace, click Message Processing Node Information, select a row in the Message Processing Node Information table view that has the value of QueueName in the Attribute 1 column, and then right-click the row and select Link To → Message Processing Nodes with Queue. |
<table>
<thead>
<tr>
<th>Workspace</th>
<th>Default views</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multicast Group Statistics</td>
<td>▶ Message Sent Rates&lt;br&gt;▶ Bytes Sent Rates</td>
<td>Displays the current data from the Multicast Group Statistics.</td>
</tr>
<tr>
<td>Multicast Summary Statistics</td>
<td>▶ Message Sent Rate&lt;br&gt;▶ Bytes Sent Rate</td>
<td>Displays the current data from the Multicast Summary Statistics. Adamit (21)</td>
</tr>
<tr>
<td>Multicast Topic Statistics</td>
<td>▶ Message Sent Rates&lt;br&gt;▶ Bytes Sent Rate</td>
<td>Displays the current data from the Multicast Topic Statistics. Adamit (21)</td>
</tr>
<tr>
<td>Neighbors</td>
<td>▶ Enterprise Event Log&lt;br&gt;▶ Neighbors</td>
<td>Displays a list of neighbors to the broker in the publish/subscribe topology. To access the workspace, click the Neighbors icon. Adamit (21)</td>
</tr>
<tr>
<td>Product Events</td>
<td>▶ Enterprise Event Log&lt;br&gt;▶ Product Events</td>
<td>Displays product events generated by the agent when a problem occurs that affects the agent's ability to collect broker data. To access the workspace, click the Products Events icon. Adamit (21)</td>
</tr>
<tr>
<td>Publish-Subscribe Statistics</td>
<td>▶ Client Message Rates&lt;br&gt;▶ Client Byte Rates&lt;br&gt;▶ Neighbor Message Rates&lt;br&gt;▶ Neighbor Byte Rates</td>
<td>Displays the current data from Publish-Subscribe Statistics. Adamit (21)</td>
</tr>
<tr>
<td>Retained Publications</td>
<td>▶ Enterprise Event Log&lt;br&gt;▶ Retained Publications</td>
<td>Displays a list of topic and subscription points that have a retained publication. Note that the update of this workspace is controlled by the defaultStatisticInterval. To access the workspace, click the Retained Publications icon. Adamit (21)</td>
</tr>
<tr>
<td>Snapshot Message Flow Accounting</td>
<td>▶ Message Flow Elapsed Time&lt;br&gt;▶ Message Flow CPU Time&lt;br&gt;▶ Snapshot Message Flow Accounting</td>
<td>Displays snapshot statistics pertaining to entire message flows for the current snapshot collection interval. The broker must be enabled to collect snapshot data for information to be displayed. To access the workspace, click the Snapshot Message Flow Accounting icon. Adamit (21)</td>
</tr>
<tr>
<td>Snapshot Node Accounting</td>
<td>▶ Node Elapsed Time&lt;br&gt;▶ Node CPU Time&lt;br&gt;▶ Snapshot Node Accounting</td>
<td>Displays statistics for nodes used by message flows for the current snapshot interval. To access the workspace, right-click the Snapshot Message Flow Accounting icon and select <strong>Workspace → Snapshot Node Accounting</strong>. Adamit (21)</td>
</tr>
<tr>
<td>Workspace</td>
<td>Default views</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
</tbody>
</table>
| Snapshot Terminal Accounting    | ▶ Terminal Invocation Rate  
▶ Snapshot Terminal Accounting                                                                                                                                                                                   | Displays statistics for terminals on nodes used by message flows for the current snapshot interval. To access the workspace, right-click the Snapshot Message Flow Accounting icon and select **Workspace → Snapshot Terminal Accounting**. |
|                                 |                                                                                                                                                                                                             |                                                                                                                                                                                                          |
| Snapshot Thread Accounting      | ▶ Thread Elapsed Time  
▶ Thread CPU Time  
▶ Snapshot Thread Accounting                                                                                                                                                                                     | Displays statistics for threads used by message flows for the current snapshot interval. To access the workspace, right-click the Snapshot Message Flow Accounting icon and select **Workspace → Snapshot Thread Accounting**. |
|                                 |                                                                                                                                                                                                             |                                                                                                                                                                                                          |
| Sub-Flow Statistics             | ▶ Current Message Rates  
▶ Current Average Message Time  
▶ Sub-Flow Statistics                                                                                                                                                                                     | Displays statistics for any defined su-flows. To access the workspace, click the Sub-Flow Statistics icon.                                                                                               |
|                                 |                                                                                                                                                                                                             |                                                                                                                                                                                                          |
| Subscriptions                   | ▶ Enterprise Event Log  
▶ Subscriptions                                                                                                                                                                                              | Displays a list of subscriptions to topics. To access the workspace, click the Subscriptions icon.                                                                                                          |
Figure 7-8 shows the Message Flow Statistics workspace in Tivoli Enterprise Portal.

Figure 7-8   Message Flow Statistics workspace

7.11 Monitoring scenarios

Now that we have discussed the product and installing and configuring it, it is time to look at some monitoring scenarios. There are essentially two types of situations to monitor in the WebSphere Message Broker product: failures and performance degradation. See 7.1.2, “How WebSphere Message Broker Monitoring works” on page 255 for the overview of the agent. We provide some monitoring scenarios; however, the needs of your business will dictate that other items be monitored.

The following is a list of some things that can be monitored. Several things need to be considered when setting up the monitoring: frequency of the situation, statisticInterval setting, severity of the event generated, and any automated actions.

- Broker stopped:
  - Use the QI_Broker_Not_Started situation.
– Consider using the Action to restart the broker. Take into account that this will attempt to restart the broker even if this is an administrator initiated shutdown of the broker.

– The severity of the event is critical.

► Broker started, queue manager not connected:
  – Use the QI_Broker_QMgr_Not_Connected situation.
  – The severity of the event is critical.

► Broker started, execution group count is 0:
  Create a situation with the following condition: Broker Status EQ Started and Execution Groups EQ 0. Both of these attributes are part of Broker Information.

► Execution Group stopped:
  Create a situation under Execution Group Statistics and set the condition to check Status NE Started. Use of situation persistence is advisable (see 7.7, “Using situations” on page 296). You can change the persistence through Advanced button on the Condition tab of the Situation Editor (see Figure 7-9) from the default of one occurrence to multiple based on your needs.

![Advanced Situation Options](image)

*Figure 7-9  Situation Persistence*

► Message flow stopped:
  Create a situation in the Message Flow Statistics workspace and set the condition to check Status EQ Stopped. Use situation persistence to ensure this is not a temporal problem.

► Insufficient instances of a message flow:
  Check the Threads in Pool attribute in the “Archive Message Flow Accounting” group. This indicates the number of configured instances for the specified message flow.
- Number of times MaxThreads reached for a message flow:
  Check the “Times MaxThreads Reached” attribute of the “Archive Message Flow Accounting” group.

- Excessive execution time for a message flow:
  - Can indicate a performance issue in the overall execution of the indicated message flow.
  - If you are using Version 5.0 (or later) brokers, check the “Avg Elapsed Microseconds” or “Max Elapsed Microseconds” attributes against a specified threshold. These attributes are part of the Archive Message Flow Accounting group. Make sure to enable accounting statistics in the broker.
  - You can also check “Overall Avg Flow Time” or “Overall Max Flow Time” attributes against a specified threshold. These attributes are in the Message Flow Statistics group and require that the CandleMonitor node be used in the message flows. This can be used with versions of the broker prior to V5.0.
  - You can use and modify the QI_Average_Flow_Time_High situation to meet the needs of this monitoring.

- Excessive CPU time for a message flow:
  - Can indicate that the message flow is not coded in an optimized fashion or that the ESQL coding within one or more nodes is not optimized.
  - Check the “Avg CPU Microseconds” or “Max CPU Microseconds” attributes in the Archive Message Flow Accounting group. Create a situation to check these values against a threshold.

- Excessive CPU or Execution time in a message flow node:
  - Can help isolate which node or nodes are causing the overall message flow to perform poorly.
  - Check the “Avg CPU Microseconds,” “Max CPU Microseconds,” “Avg Elapsed Microseconds,” or “Max Elapsed Microseconds” attributes against a specified threshold. These attributes are in the Archive Node Accounting group.

- Excessive time spent in a message flow input queue:
  - Indicates that the message flow is encountering excessive overall execution times, that there are insufficient instances of the message flow, or both.
  - Check the “Current Avg Queue Time” or “Overall Avg Queue Time” attributes against a specified threshold. These attributes are part of the Message Flow Statistics group.
Transition backouts in a message flow:
- Can be indicative of several issues:
  - Bad data in the message
  - Database error
  - Temporal error
- Check this using the “Total Backouts” attribute of the Archive Message Flow Accounting group. If this number is greater than 0, transactions are being dropped.

Messages traversing a specified path in a message flow:
- Can be useful to business application support teams to show when messages traverse an error handling path.
- Requires at least one CandleMonitor node with “other” personalities configured into the relevant section of the message flows. Set the eventMessage property to the required text string.
- Check the “Event Message” attribute in the Message Flow Events group for the specified text.

Inadequate Input Message Rate for the message flow:
- Might be of interest to applications checking for volumes flowing through message flows. The rate below a certain value might be cause for alarm for certain business groups.
- Requires at least one CandleMonitor node with an “input” personality configured in the message flow.
- Check the “Current Msg Input Rate” attribute of the Message Flow Statistics group against a specified threshold. Other relevant attributes include “Current Msg Input Count,” “Overall Msg Input Rate,” and “Overall Msg Input Count.”

Inadequate Output Message Rate for the message flow:
- Might indicate that the message flow is encountering excessive errors during message processing.
- Requires at least one CandleMonitor node with an “output” personality configured in the message flow.
- Check the “Current Msg Output Rate” attribute of the Message Flow Statistics group against a specified threshold. Other relevant attributes include “Current Msg Output Count,” “Overall Msg Output Rate,” and “Overall Msg Output Count.”

There are several additional components that can be monitored to give an overall view of the broker; however, these require additional agents outside of the broker agent. These include the broker processes, the database, and the WebSphere.
MQ queue manager. The MQ queue manager agents are included in the IBM Tivoli OMEGAMON XE for Messaging package and are described in this book. The broker processes can include bipservice, bipbroker, biphttplistener, bipconfigmgr, and bipuns. In order to monitor these processes, a Tivoli operating system agent needs to be deployed. The database can be monitored using an operating system agent or a database-specific agent. These are outside of the scope of this chapter; however, we mention them to make you aware of other components that might need to be monitored.

### 7.12 Other considerations

This section provides details about other considerations when using the agent. These include performance considerations, working with the CandleMonitor node, and using the sample programs provided with this book.

#### 7.12.1 Performance considerations

We recommend running one agent per system. However, if you are monitoring a large number of brokers, the performance of the agent is negatively impacted. The best rule is if the agent has high CPU usage and response times are high, as seen in the Tivoli Enterprise Portal workspaces or the situation responses, experiment with using multiple agents. On AIX 5L, the shared memory limitations make it a best practice to monitor only up to 10 brokers with a single agent.

Here are the steps to split the agents so that multiple agents can run on one host system:

- **Windows**
  - a. Log on to the agent system.
  - b. Start the Manage Candle Services application by selecting **Start → Programs → IBM Tivoli Monitoring → Manage Tivoli Monitoring Services**.
  - c. Right-click the agent and select **Create Instance**. This requests that the agent configuration file be updated.
  - d. Update the MonitorBroker and agentId keywords to define the brokers to this new agent.
  - e. Start the new agent after the configuration is complete.

- **UNIX/Linux**
  - a. Nominate one broker as the lead broker to be named in the CandleAgent command.
b. Log in to the agent system.

c. Start the agent using the itmcmd command ./itmcmd agent -o WBRK_BROKER1 -p BRK1 start qi, where:

- The -o flag specifies the broker name.
- The -p flag specifies the agent ID (maximum of four characters).

This automatically creates a new configuration file named host_qi_brokername_##_agentID.xml.

d. Edit this newly created configuration file and specify additional brokers to monitor using the MonitorBroker keyword.

e. Stop and start the agent using the itmcmd commands in Example 7-9.

Example 7-9  Stop and start the agent

./itmcmd agent -o WBRK_BROKER1 -p BRK1 stop qi
./itmcmd agent -o WBRK_BROKER1 -p BRK1 start qi

### 7.12.2 Working with the CandleMonitor node

You can customize the CandleMonitor node to control how it functions using the following information:

- This allows the behavior of the CandleMonitor node to be controlled.
- Changes to these variables require a restart of the broker to take effect.
- All variable names and values are case-sensitive.
- On Windows, the variables are stored in the registry. Modify the variables using Manage Candle Services:
  a. Right-click the primary agent and select Advanced → Edit Variables.
  b. Select Edit or Add, depending on the current settings.
- On UNIX and z/OS, these variables are stored in a configuration file named kqipnode.cfg.
  - UNIX location: <install_dir>/platform-version/qi/bin.
  - z/OS location: HFS directory <install_dir>/kqi/lil.
Table 7-11 shows the variables and their values.

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>KQIMemorySize</td>
<td>The size in bytes of a shared memory segment created by the plug-in. The plug-in creates three of these for holding different types of data. The default value is 32768 bytes. Only modify this value at the direction of IBM Software Support.</td>
</tr>
<tr>
<td>KQITempDirectory</td>
<td>The full directory path name to be used for shared memory and mutexes. The broker and the agent must have the ability to create files in, write, and read this directory. The default is /tmp. It is not available on Windows.</td>
</tr>
<tr>
<td>KQINodeTrace</td>
<td>Specifies whether or not kqipnode.hl tracing is turned on. The possible values are Off and On. The default is Off. For tracing to occur, the broker's normal tracing must be turned on for the applicable broker, execution group, or message flow.</td>
</tr>
<tr>
<td>KQIActivateNode</td>
<td>This parameter provides an override capability for the CandleMonitor node activateNode attribute for any broker on the system. The default is NoOverride. Possible values are:</td>
</tr>
<tr>
<td></td>
<td>▶ NoOverride: The value of the activateNode attribute deployed for each instance of the CandleMonitor node is honored; no override takes place.</td>
</tr>
<tr>
<td></td>
<td>▶ Yes: Every instance of the CandleMonitor node is activated.</td>
</tr>
<tr>
<td></td>
<td>▶ No: All instances of the CandleMonitor node are deactivated. No statistics or message flow events are generated.</td>
</tr>
<tr>
<td></td>
<td>▶ EventOnly: An instance of CandleMonitor node is activated only if the eventMessage attribute is assigned. No statistics are produced, only message flow events.</td>
</tr>
<tr>
<td></td>
<td>▶ InputOutputOnly: An instance of the CandleMonitor node is activated only if the type is input or output. Statistics are generated (and events if the eventMessage attribute is assigned).</td>
</tr>
<tr>
<td></td>
<td>▶ InputOutputAndEventOnly: Instances of CandleMonitor node are activated only if the type is input or output, or if the eventMessage attribute is assigned. Statistics are produced, and message flow events are produced if the eventMessage attribute is assigned.</td>
</tr>
<tr>
<td>KQIActivateNodeForBrokerName</td>
<td>Provides the same override capability as KQIActivateNode, except that it applies only to the named broker. This overrides the KQIActivateNode for the specified broker. This variable does not exist in the kqipnode.cfg file (UNIX and z/OS) or in the Windows drop-down. It must be added by the user.</td>
</tr>
</tbody>
</table>
Chapter 8. Monitoring WebSphere Interchange Server

This chapter provides a high-level introduction to WebSphere InterChange Server Monitoring provided by IBM Tivoli OMEGAMON XE for Messaging.

Note: There has been no significant change to this function in the latest version of the IBM Tivoli OMEGAMON XE for Messaging product. Therefore, this section of the book has not been fundamentally changed from the predecessor IBM Redbook, Implementing IBM Tivoli OMEGAMON XE for WebSphere Business Integration V1.1, SG24-6768. Product names have been updated to reflect the latest packaging of this function.

Therefore, information and examples shown in this chapter might vary from the lab environment used throughout the rest of this book.

We discuss the following in this chapter:

- OMEGAMON XE for Messaging: WebSphere InterChange Server Monitoring overview
- Configuring WebSphere InterChange Server for monitoring
- Monitoring your integration systems
8.1 OMEGAMON XE for Messaging: WebSphere InterChange Server Monitoring overview

IBM Tivoli OMEGAMON XE for Messaging: WebSphere InterChange Server Monitoring (WebSphere InterChange Server Monitoring) is a component product of the IBM Tivoli OMEGAMON XE for Messaging package. The WebSphere InterChange Server Monitoring software can help you monitor, analyze, and manage your IBM WebSphere InterChange Server implementations and your entire business integration system.

8.1.1 What does WebSphere InterChange Server Monitoring do?

WebSphere InterChange Server Monitoring helps ensure the reliability and performance of your integration environment by detecting and correcting problems before they have an impact on availability and service levels. WebSphere InterChange Server Monitoring also reduces the amount of time involved in the deployment of distributed applications by helping you debug data flows and providing statistics you can use to tune your environment.

You can use WebSphere InterChange Server Monitoring to:

- Track and report the status of the WebSphere InterChange Servers in your enterprise
- Start and stop servers, collaborations, and connectors
- Monitor and report on the processing of data flows in each WebSphere InterChange Server
- Monitor activity levels and processing statistics for each collaboration and connector
- Report error and exception conditions for servers, collaborations, and connectors, as recorded in the each server’s log file
- Trigger alerts or actions for the connector controller when specified conditions arise

8.1.2 How does WebSphere InterChange Server Monitoring help you?

WebSphere InterChange Server Monitoring enables you to:

- Pinpoint issues before they become disruptive or crippling
- Identify trouble areas, determine the cause of the problem, and decide what corrective action to take
• Detect outages and performance degradations and take automated recovery actions
• Support the evolution of applications and processes in your environment
• Analyze historical trends

8.1.3 How does WebSphere InterChange Server Monitoring work?

Typically, OMEGAMON XE products use an agent on each managed system to collect monitored data. WebSphere InterChange Server Monitoring, however, uses only one agent, which collects data from the WebSphere InterChange Server SNMP agent and from its own data sources on the host of each monitored WebSphere InterChange Server instance. It presents the data in charts and tables that you can examine to monitor the performance of your WebSphere InterChange Server integration systems. The agent also evaluates the data to detect when specified values meet criteria you have defined and triggers alerts or programmed actions in response.

The WebSphere InterChange Server Monitoring Agent acts as an SNMP manager, collecting data from WebSphere InterChange Server SNMP agents. The monitoring agent also collects server log data from client programs, known as WebSphere InterChange Server data sources, which are installed on the hosts of monitored servers. Figure 8-1 shows the product components and how data are transmitted among them.

![Figure 8-1: WebSphere InterChange Server Monitoring architecture](image_url)
8.1.4 WebSphere InterChange Server Monitoring key features

This section discusses the key features of WebSphere InterChange Server Monitoring.

Predefined workspaces and views

Workspaces are the heart of WebSphere InterChange Server Monitoring. They present you with status, configuration, and statistical information in tabular and graphical views. You can use the information provided by these workspaces to monitor the performance and availability of servers and their components, to identify potential problems, to trace the causes leading to alerts or exceptions, and to define specific conditions to monitor.

WebSphere InterChange Server Monitoring includes a set of predefined workspaces. The views in these workspaces display:

- Server status and performance statistics
  WebSphere InterChange Server Monitoring provides status and summary and detailed statistics for each server discovered or configured in the network, including boot time, uptime, memory use, number of flows processed since boot, number of failed and successful flows processed, and rate of processing. You can view summary and overview statistics for all servers, and overview and detailed information for individual servers.

- Collaboration status and performance statistics
  WebSphere InterChange Server Monitoring provides current status and performance statistics for all collaborations running in the network. You can view summary data for all collaborations, for the collaborations associated with a particular server instance, or for an individual collaboration.

- Connector status and performance statistics
  WebSphere InterChange Server Monitoring provides current status and performance statistics for all connectors running in the network. You can view summary data for all connectors, or detailed information about an individual connector.

Note: For purposes of data display and aggregation, the connector controller is considered to be part of the server, not of the connector agent that it controls. The Server Access Interface is also considered part of the server.

- Log messages
  View messages from all servers, or from an individual server, collaboration, or connector.
You can customize the predefined workspaces and views, or create your own.

For detailed information about individual predefined workspaces, see the WebSphere InterChange Server Monitoring section of the Tivoli Enterprise Portal online help. For information about creating and customizing views and workspaces, see the Tivoli Enterprise Portal online help.

**Predefined monitoring situations**

Situations are descriptions of conditions to which you want to be alerted. When situations are distributed to monitored systems they can, for example, alert you to a connector that has stopped, or to a failed flow. Situations can also be used to automate responses to problems, such as pausing a component or stopping a message flow that is consuming too many resources.

WebSphere InterChange Server Monitoring provides a set of predefined situations designed to enable you to monitor critical activity and to serve as templates for creating customized situations of your own.

For details about the predefined situations that come with this product, see the WebSphere InterChange Server Monitoring section of the Tivoli Enterprise Portal online help. For information about creating, editing, and distributing situations, see the Tivoli Enterprise Portal online help.

**Attributes**

Attributes are characteristics or properties of objects monitored by WebSphere InterChange Server Monitoring, for example, the status of servers or the number of failed flows. Attributes are used in the definition of the queries used to collect the information presented in workspace views and to specify the conditions, or situations, that trigger alerts and automated actions.

WebSphere InterChange Server Monitoring monitors these groups of attributes:

- WICS_Server (for WebSphere InterChange Server V4.2)
- WICS_Server43 (for WebSphere InterChange Server V4.3)
- WICS_Collaboration
- WICS_Connector
- WICSLog

You can use these attributes to customize the predefined views or to create your own views and workspaces. You can use them to define situations that target specific thresholds, events, or performance problems you want to monitor.

For more information about these attributes, see the WebSphere InterChange Server Monitoring section of the Tivoli Enterprise Portal online help.
Take Action commands
WebSphere InterChange Server Monitoring lets you interact directly with InterChange Server components, systems, and applications through the Tivoli Enterprise Portal Take Action feature. You can add a Take Action command to a monitoring situation to execute when the situation becomes true. If you have IBM Tivoli OMEGAMON DE, you can create automation policies using Take Action commands.

The Take Action commands provided with WebSphere InterChange Server Monitoring enable you to:

- Start and stop a server instance
- Activate, deactivate, pause, and shut down a collaboration
- Activate, deactivate, pause, and shut down a connector controller

See the WebSphere InterChange Server Monitoring section of the Tivoli Enterprise Portal online help for information about these commands. For information about defining and sending your own Take Action commands, see the Tivoli Enterprise Portal online help.

Historical data collection
You can use the facilities of the Tivoli Enterprise Portal historical data collection function to store and save the data being collected by WebSphere InterChange Server Monitoring. The historical data collection function permits you to specify:

- The interval at which data is to be collected
- The interval at which data is to be warehoused (if you choose to do so)
- The location (either at the agent or at the Tivoli Enterprise Monitoring Server) at which the collected data is to be stored

Information about using the historical data collection function is in the Tivoli Enterprise Portal online help and in the Historical Data Collection Guide for IBM Tivoli OMEGAMON XE products.

8.2 Configuring WebSphere InterChange Server for monitoring

In this section, we describe how to configure WebSphere InterChange Server for monitoring.

WebSphere InterChange Server Monitoring uses the WebSphere InterChange Server SNMP agent as the interface to access the information of WebSphere InterChange Server and its resources. You must configure WebSphere
InterChange Server Monitoring and WebSphere InterChange Server in order to get the information of WebSphere InterChange Server.

Configuring WebSphere InterChange Server for monitoring has three steps on Windows systems:

» SNMP agent configuration
» SNMP Configuration Manager configuration
» WebSphere InterChange Server Monitoring Agent configuration on Tivoli Enterprise Monitoring Server (hub) configuration

### 8.2.1 Configuring the SNMP agent

To start the SNMP Configuration wizard, select **Start → Programs → IBM WebSphere InterChange Server → SNMP Configuration Wizard**. You will see the SNMP Configuration window shown in Figure 8-2.

![SNMP Configuration wizard](image)

*Figure 8-2   SNMP Configuration wizard*

The following list explains the parameters in this window:

**Trace Level**

The level of the trace information. The options are 0 through 5. The higher trace levels produce more verbose output, while 0 (the default) produces no output.
Polling Interval

The polling interval, in seconds, that SNMP uses to periodically poll InterChange Server for information. A polling interval of 0 denotes no polling. The default value is 30.

Note: The SNMP polling interval (set in the SNMP Configuration wizard) must not exceed five minutes.

Port Number

The port on which the SNMP agent listens for requests from the SNMP manager. The default value is 161.

Agent State File

The path of the file that contains the agent's state.

Agent Log File

The path of the log file.

Server log to STDOUT

The output location for the server log. Setting it to “true” displays the tracing information in the SNMP agent's command window as well as the .log file. Setting it to “false” puts the tracing information in the .log file only. The information is not displayed in the SNMP agent's command window.

The SNMP agent gets information from the InterChange Server by polling the InterChange Server at defined intervals. The information reported to the Tivoli environment about the InterChange Server is only as current as the information reported by the SNMP agent. The polling delay tells the SNMP how often to get InterChange Server information. It is important to have reasonably current information from the SNMP agent in order for the InterChange Server Status resource model to report meaningful information.

Making the polling delay too short increases processing time in the SNMP agent and the InterChange Server to handle additional status requests. Making the polling delay too long affects the ability of IBM Tivoli Monitoring for Business Integration: WebSphere InterChange Server to report current information about the InterChange Server. The default polling delay is 30 seconds. This is a reasonable value to use until you gain more experience with the SNMP agent.

On Windows, port 161 is the default; on UNIX, it is 1161. Increase the trace level if you require more verbose output from the SNMP agent.
8.2.2 Configuring the SNMP Agent Configuration Manager

The SNMP Agent Configuration Manager enables you to configure the MIB tables associated with the SNMP agent. These tables include the Community table, the Trap Forwarding table, and the Server Access table. Perform the following steps to customize the SNMP Configuration Manager:

1. To start the SNMP Agent Configuration Manager select, Start → Programs → IBM WebSphere InterChange Server → SNMP Configuration Manager.

   **Note:** The SNMP Agent Configuration Manager must run on the same machine as the SNMP agent.

The SNMP Agent Configuration Manager window opens, as shown in Figure 8-3.

![Figure 8-3   SNMP Agent Configuration Manager](image)

2. Perform the following steps to connect the SNMP Agent Configuration Manager to a running SNMP agent:

   - **Agent Host:** Enter the host name or IP address of the machine where the SNMP agent is running.
– Port: Enter the port number that the SNMP agent will use to listen for SNMP commands. If you do not know your SNMP agent port number, you can find it in wbi_snmpagent.cfg, located in the `<WebSphere Business Integration Install Dir>\snmp\config` directory, where `<WebSphere Business Integration Install Dir>` is the directory where you installed the WebSphere InterChange Server product. The default port number is 1161 for UNIX and 161 for Windows.

– Community: Enter the read-write community name of the SNMP agent. By default, the read-write community name is “administrator” and the read-only community name is “public.” The difference between the two types of community names is as follows:

  • Read-write: Read-write access permits the user to edit MIB table components, query values, start and stop components, and register for traps.

  • Read-only: Read-only access permits the user to perform “Get” operations only. This user can view but not edit the MIB table components and cannot change the status of any component.
3. Click **Connect**. When the SNMP Agent Configuration Manager connects to the SNMP agent, the Agent Host, Port, and Community fields become disabled, and the Connect button changes to a Disconnect button.

In order to manage the WebSphere InterChange Server through Tivoli OMEGAMON XE for Messaging, we have to configure the Server Access tab in the Configuration Manager.

The server access entries enable you to link specific SNMP managers with the specific InterChange Servers to be managed. The table has three entries, as shown in Figure 8-4.

![Figure 8-4  Server Access in SNMP Agent Configuration Manager](image)

4. Click **Add** to add server access entries. You need to enter the following:
   - **Manager Host**: The host name of the SNMP manager.
   - **WebSphere InterChange Server**: The host name of the machine where InterChange Server is installed.
   - **Row Status**: The link status (active or not in service).

This is the minimum configuration you require to monitor the WebSphere InterChange Server. For advanced configuration settings, refer to the WebSphere InterChange Server Administration documentation, available at:

8.2.3 Configuring WebSphere InterChange Server Monitoring Agent

Now we configure WebSphere InterChange Server Monitoring Agent in Tivoli Enterprise Monitoring Server. Perform the following steps:

1. To configure the server monitoring agent, start the Tivoli Enterprise Monitoring Services Manager by selecting **Start → Programs → IBM Tivoli Monitoring → Manage Tivoli Monitoring Services**. You will see the window shown in Figure 8-5.

![Figure 8-5 Manage Tivoli Enterprise Monitoring Services](image)

2. Select **WebSphere InterChange Server Monitoring Agent**. Right-click and select **Configure Using Defaults**.

   The WebSphere InterChange Server Monitoring Agent: Agent Advance Configuration window opens, as shown in Figure 8-6.

![Figure 8-6 Agent Advanced Configuration](image)
3. Click **OK**. You will see the window shown in Figure 8-7. Check that the values are correctly entered and then click **OK**.

![Figure 8-7  Agent Advanced Configuration](image)

4. In the next window (Figure 8-8), click **Add** to add a new server to monitor.

![Figure 8-8  Monitoring Agent Add](image)
5. In the Data for WebSphere InterChange Server Host window, enter the WebSphere InterChange Server host name or IP address and port number where SNMP agent is running and click **OK** (see Figure 8-9).

![WebSphere InterChange Server Host](image)

**Figure 8-9**  WebSphere InterChange Server Host
6. Start the WebSphere InterChange Server Monitoring Agent by double-clicking the agent. After you start the WebSphere InterChange Server, SNMP agent, and Monitoring Agent in Tivoli Enterprise Monitoring Server, you can see your server monitoring status in Tivoli Enterprise Portal, as shown in Figure 8-10.

![Figure 8-10 WebSphere InterChange Server status in CandleNet Portal (display the same in Tivoli Enterprise Portal)](image)

### 8.3 Monitoring your integration systems

In previous sections, we configured the SNMP agent, SNMP manager, and Tivoli Enterprise Monitoring Server. In this section, we explore WebSphere InterChange Server workspaces in Tivoli Enterprise Portal.

**Note:** The following examples are from the predecessor redbook, *Implementing IBM Tivoli OMEGAMON XE for WebSphere Business Integration V1.1*, SG24-6768. Therefore, the screen captures are from CandleNet Portal and not Tivoli Enterprise Portal. The functionality and content of the examples are accurate and still relevant.
8.3.1 Workspaces

Typically, OMEGAMON XE products use multiple monitoring agents, one on each managed system. In the Tivoli Enterprise Portal Navigator tree, each agent is represented with a subnode under its host system. Its associated workspaces are listed below, identified by attribute group. The following figure shows the Tivoli Enterprise Portal workspaces (Figure 8-11).

![Diagram of Tivoli Enterprise Portal workspaces]

*Figure 8-11  Tivoli Enterprise Portal workspaces*

WebSphere InterChange Server Monitoring uses only one agent, which collects data from WebSphere InterChange Server SNMP agents and its own data sources on the hosts of the WebSphere InterChange Servers it monitors, so it appears in the Navigator only once. (The node takes the form WebSphere InterChange Server - *hostname*:KIC00_SNMP.)

Underneath the node, representing the agent, there are, by default, four subnodes, one for each type of monitored component: Version 4.2 servers, Version 4.3 servers, collaborations, and connectors.
Figure 8-12 shows the WebSphere InterChange Server workspaces in Tivoli Enterprise Portal.

Each of these subnodes is associated with one or more workspaces that present data for all monitored WebSphere InterChange Server instances, collaborations, or connectors. From these workspaces, you can link to workspaces showing more detailed data for individual components.

For example, when you select the Servers 4.3 node, the Server Summary workspace opens. By clicking the table row in this workspace, you can link to an overview workspace for a specific server, and from there to a workspace containing more detailed server information, or to a workspace associated with a collaboration or connector running on the server.

Although they are not represented in the Navigator, the systems hosting WebSphere InterChange Server data sources appear in the Take Action and Situation Editor Destination System(s) list. They take the form `hostname:KIC00_APIs`. 
Figure 8-13 shows the WebSphere InterChange Servers in CandleNet Portal (this display is the same in Tivoli Enterprise Portal). To get further details of a particular server, click the server, which will take you the server specific workspace.

Figure 8-13  WebSphere InterChange Servers in CandleNet Portal (display same in Tivoli Enterprise Portal)
Clicking a specific server will give you more details about the connectors and the collaborations running in that specific server with statistics, as shown in Figure 8-14.

![Figure 8-14 CandleNet Portal workspace for WebSphere InterChange Server (display same in Tivoli Enterprise Portal)](image)

Clicking a specific server gives you more details about the connectors and the collaborations running in that specific server with statistics.

### 8.3.2 Customizing the monitoring

WebSphere InterChange Server Monitoring gathers data on the server instances on your network and stores the data as system elements called attributes.

You can use these attributes to:

- Create queries and build custom views of the performance of your WebSphere business integration systems or individual components
- Create situations to monitor and respond to conditions of interest or concern in a particular environment or set of circumstances.
Attributes and attribute groups
Related attributes are grouped into attribute groups, or attribute tables. A given view contains information provided by a single attribute group.

WebSphere InterChange Server Monitoring uses five attribute groups:
- WICS_Server (for WebSphere InterChange Server V4.2).
- WICS_Server43 (for WebSphere InterChange Server V4.3).
- WICS_Collaboration.
- WICS_Connector attributes are based on SNMP data.
- WICSLog attributes get data from WebSphere InterChange Server data sources, which monitor server logs.

Creating and monitoring situations
Identifying the correct monitoring requirements is very important to minimize the downtime of an enterprise system. Understanding the components of a WebSphere InterChange Server and the impact of a component failure on enterprise system can help a business in formulating monitoring requirements.

A top down approach is more suitable in identifying the monitoring requirements. For example, at the business level, you want to get the answers for the following questions:
- How are orders flowing?
- Are deliveries stuck?

Normally, answers to these questions on the WebSphere InterChange Server are provided by a subprocess (also called a source connector) that sends events into the InterChange Server. InterChange Server sends these events to one or more systems after performing the necessary transformation steps.

IT users need finer-grained monitoring at each step or subprocess level. Having such information, they can easily pinpoint the problematic subprocess or a collaboration, connector, or other system that InterChange Server needs to complete a business process. Often, IT users also need statistics on physical resources such as CPU, memory, disk, and network usage for future and capacity planning.

The WebSphere InterChange Server Monitoring attributes enable you to create situations that monitor the status or performance of WebSphere InterChange Servers and their components.

A situation describes a condition you want to test. When you start a situation, Tivoli Enterprise Portal compares the values you have assigned for the situation's
attributes with the values collected by WebSphere InterChange Server Monitoring and registers an event if the condition is met. You are alerted to events by indicator icons that appear in the Navigator.

WebSphere InterChange Server Monitoring comes with predefined situations. For information about the predefined situations included with this product, refer to the WebSphere InterChange Server Monitoring section of the Tivoli Enterprise Portal online help (installed with the product). For detailed information about creating situations and about using the Situation Editor, see the Tivoli Enterprise Portal online help.

**Investigating an event**

When the conditions of a situation have been met, the situation evaluates to True, causing an event indicator to appear in the Navigator. You can investigate the cause of an event by opening its workspace.

The event workspace shows two table views: one with the values of the attributes when the situation evaluated True, and the other with the current values of the attributes.

The event workspace also contains a display view that can contain expert advice for responding to the situation and a Take Action view from which commands can be sent to affected systems.
8.3.3 Monitoring scenarios

WebSphere InterChange Server Monitoring comes with a predefined situation named IC_Connector_Not_Active. This situation raises a warning (yellow) alert, as shown in Figure 8-15.

![Figure 8-15 CandleNet Portal showing alterations in the Enterprise view (display same in Tivoli Enterprise Portal)](image)

As you notice, Tivoli Enterprise Portal can alert you about situations in the enterprise system. Now, we show you how to acknowledge the WebSphere InterChange Server alerts.
To get more details on specific server status, browse the OS systems. In our case, the WebSphere InterChange Server was installed on a Windows system called HELSINKI, so first click **Windows Systems** and then **HELSINKI**. Click **WebSphere Interchange Server** and expand the Servers 4.3 tab to get list of servers running on the Windows environment, as shown in Figure 8-16.

![Figure 8-16 WebSphere InterChange Server alert for MQ Connector](image-url)
Now you can see that WebSphereMQ Connector is inactive (Figure 8-17). To make MQ Connector active, perform the following steps:

1. Select WebSphere MQ Connection, right-click, and select **Take Action** (Figure 8-17).

![WebSphere InterChange Server taking action on alert](image)

Figure 8-17  WebSphere InterChange Server taking action on alert

A new Take Action window opens, as shown in Figure 8-18 on page 343.
2. From the drop-down menu, select **Change WIC Connector Status** (see Figure 8-18).

![Figure 8-18 Take Action](image1.png)

A new window called “Edit Argument Values” opens (Figure 8-19).

3. Edit the values if required. You have to supply a valid Community ID, which must match the one that was coded on WebSphere InterChange Server SNMP manager. In Connector Status, you can give verbs such as active, inactive, shutdown, and paused. Click **OK** after providing the values (Figure 8-19).

![Figure 8-19 Edit Argument Values](image2.png)
4. You will see the Take Action window again. Select **KIC00_SNMP** and click **OK**.

![Figure 8-20  Take Action window with arguments](image)

*Figure 8-20  Take Action window with arguments*
5. A small window opens confirming that the SNMP command was sent to the agent. After a few seconds (depending on network latency and the workload on the WebSphere InterChange Server), the connector will be activated (Figure 8-21).

![WebSphere InterChange Server with active connectors](image)

**Figure 8-21** WebSphere InterChange Server with active connectors
Troubleshooting

This chapter provides tips for troubleshooting the IBM Tivoli OMEGAMON agents. We describe the top issues and how to isolate and correct problems.

We discuss the following topics:

- Introduction to problem determination
- Tracing
- Logs
- Documentation collection
- Common issues
- Miscellaneous tips and tools
9.1 Introduction to problem determination

Troubleshooting is an important skill when using any highly configurable and powerful tool such as the IBM Tivoli Messaging V6 Agents. Usually, you start with a symptom, or set of symptoms, and trace them back to their cause. This process is called problem determination. Problem determination is not the same as problem solving, although during the process of problem determination, you can obtain enough information to solve a problem. Examples of situations where this can happen include:

- User errors
- Application programming errors
- System programming errors, such as in resource definitions

However, you might not always be able to solve a problem yourself after determining its cause. For example, a performance problem might be caused by a limitation of your hardware. If you are unable to solve a problem on your own, contact IBM Software Support for a solution.

The primary troubleshooting feature is logging. Logging refers to the text messages and trace data generated by the software. Messages and trace data are sent to an output destination, such as a console screen or a file.

Typically, text messages relay information about the state and performance of a system or application. Messages also alert the system administrator to exceptional conditions when they occur. Consult the explanation and operator response associated with the displayed messages to determine the cause of the failure.

9.2 Tracing

Each component of the IBM Tivoli OMEGAMON for Messaging V6 has a trace facility. These include Tivoli Enterprise Portal Server, Tivoli Enterprise Monitoring Server, Tivoli Enterprise Portal, Tivoli Enterprise Monitoring Agent, and installation.

Set the trace parameters for Tivoli Enterprise Portal Server using Tivoli Enterprise Monitoring Server. The following steps provide details about changing the trace parameters:

1. Open Manage Tivoli Enterprise Monitoring Services.
2. Right-click the managed system, as shown in Figure 9-1, and select **Advanced → Edit Trace Parms**.

![Figure 9-1 Accessing Edit Trace Parms from managed systems window](image)

3. This opens the Trace Parameter selection menu, as shown in Figure 9-2 on page 350. From this menu, you can choose from several parameters.

Here you can set the level of tracing per component as specified by customer support. You can also set the log size, number of log files per session and total. You can also set the communications trace in KDC_DEBUG. Setting this is good for tracing communications between a Tivoli Enterprise Monitoring Agent and the Monitoring Server.
9.3 Logs

Each component has its own log or logs that provide insight into the activity of the component. The level of detail of the information in the log is controlled by the debug and RAS1 level set for the component.

9.3.1 Tivoli Enterprise Portal Server and Tivoli Enterprise Portal

There are logs for both the Tivoli Enterprise Portal Server and the Tivoli Enterprise Portal client:

- The Tivoli Enterprise Portal Server logs are in \IBM\ITM\logs and the default name is ibm-hostname_cq_PIDPLACEHOLDER, for example, c:\IBM\ITM\logs\ibm-alpha_cq_4533de33-01.log
- The Tivoli Enterprise Portal logs are in \IBM\ITM\logs. These logs are on the system running the Tivoli Enterprise Portal desktop. The default log file name is KCJRAS1.log, for example, c: \IBM\ITM\logs \kcjrasi1.log.
9.3.2 Tivoli Enterprise Monitoring Server

The Tivoli Enterprise Monitoring Server logs differ depending on the operating system where the Monitoring Server is running.

**Windows**

For Windows:

- The Tivoli Enterprise Monitoring Server logs are in the \IBM\ITM\logs directory.
- The error trace log is called KMSRAS1.log by default, for example, c:\TEMS\logs\KMSRAS1.log.
- The seed function creates a log, depending on activity. These logs start with the name seed and end with a log. The rest of the name might contain the product component name and an action, for example:
  - c:\candle\TEMS\logs\seedkmq.log: Installation of WebSphere MQ agent seed file
  - c:\candle\TEMS\logs\seedkic42_del.log: Removal of WebSphere InterChange Server seed file

**UNIX**

For UNIX:

- The Tivoli Enterprise Monitoring Server logs are in CANDLEHOME/logs. The naming of this file is host_ms_timestamp.log. The ms is the product code for the Monitoring Server. This time stamp is an encoded time stamp generated on the Monitoring Server system, for example, /candle/logs/milan_ms_1115822514.log.
- There is also a process ID file that matches the Monitoring Server log file. This file is empty and has the naming structure of host_ms_timestamp.pid. The pid from the file name is the process ID for the Monitoring Server process on UNIX (see Example 9-1 for an example).

```
Example 9-1 Process ID file
```

```
/candle/logs/milan_ms_1115822514.pid40424
ps -ef | grep 40424
root 40424 1 0 15:41:22 - 0:00 /candle/aix433/ms/bin/TEMS start
root 56840 40424 0 15:41:22 - 0:15 /candle/aix433/ms/bin/kdsmain
```

- Additionally, on UNIX, the candle_installation.log contains useful information about activities on the Monitoring Server. It records the stop/start of the Monitoring Server in addition to logging installation information and other pertinent data.
9.4 Documentation collection

We included a new documentation gathering tool that captures all the logs and environment into a archive ready to send to support. This is good for an initial review of your problem because we will be able to determine the level of the product installed and get a good idea of your environment.

On the Windows platform, enter the command `wbigathr.cmd` at the command prompt to compress all files useful for problem determination into one file. The compressed file name is `gather.jar`, which is in the `%INSTALL_DIR%\TMAITM6` directory. `%INSTALL_DIR%\TMAITM6` is the directory path where you installed the monitoring agent.

On the UNIX platform, run `wbi_collector.sh` to compress all files useful for problem determination into one file. The compressed file name is `DigDir.tar.gz`, which is in the `$INSTALL_DIR/TMAITM6` directory. `$INSTALL_DIR` is the directory path where you installed the monitoring agent.

On z/OS platform, take the following steps to get the compressed file:
1. In Spool Search and Display Facility (SDSF), save `RKLVLOG` into a data set, and give the data set a name (For example, `&HILEV..&MIDLEV..RKLVLOG`).
2. Issue the command:
   ```
 OPUT &HILEV..&MIDLEV..RKLVLOG %INSTALL_DIR%/rklvlog
   ```
   Where `%INSTALL_DIR%` is the directory path where you installed the monitoring agent.
3. Under UNIX System Services, run `collector.z.sh` to get the compressed file `gather.tar.gz`, which is in the `%INSTALL_DIR%` directory.

9.5 Common issues

In this section, we introduce some of the common issues that are found when troubleshooting IBM Tivoli OMEGAMON agents.

9.5.1 Installation

Most of the issues surrounding installation of the product are related to failure to ensure that the prerequisite installation information is met before continuing with the installation. Some areas to check include:

- On the Tivoli Enterprise Portal Server system, make sure that the correct level of DB2 is installed.
On the Tivoli Enterprise Portal Server system, make sure that a supported version of Java runtime environment (JRE) is installed. To obtain the version of Java, go to a command prompt and type the following command:

```
Java -version
```

This returns the version of Java on the system.

- Make sure that the target file system or directory has sufficient space.
- Make sure that the user ID used to perform the installation has the appropriate levels of authority, depending on the operating system.

### 9.5.2 Configuration

Each agent has different configuration challenges. We describe some of these challenges here.

**WebSphere Business Integration Broker Agent**

This section contains some problem determination tips associated with WebSphere Business Integration Broker Agent.

**Broker not responding**

Broker not responding occurs when the agent makes a request to the broker for data but does not get a reply. It is a broker problem, but because the monitoring agent usually detects it before anything else, it can look like a WebSphere Message Broker Monitoring problem. Eventually, other broker applications will fail. For example, a subscription for data might not be properly registered with the broker, or a broker might not respond to a deploy request from the Control Center or Message Brokers Toolkit.

A broker might not respond to agent requests for several reasons, such as:

- It cannot communicate with its User Name Server.
- It cannot communicate with its Configuration Manager.
- There is a subtle problem with its database.

Symptoms of this problem are:

- The Broker_Not_Responding product event occurs in the Product Events workspace.
- The agent logs messages KQIA107W and KQIA041W repeatedly over several collection cycles.
- Data is missing from Tivoli Enterprise Portal Information workspaces.
- Broker system log messages occur, such as BIP2080E and BIP2066E.
What to try first for this problem:

- Stop all WebSphere Business Integration Broker components and the monitoring agent.
- Restart all components in the proper order and then start the agent and see if the broker responds.

**Signal violation together with KxmErrorFull from KQI Agent**

The problem is reported as:

```
kxmerrut.cpp,62,"kxmThrow(KxmErrorFull&)") Error - KXMRC_EMPTY_FIELD
Pos(0) ErrorType(ERROR), Field is empty KQIA005E (kqiaexhd.008) Signal
Memory Access Violation received. KQIAgent terminating.
```

When running KQI agent, the signal violation problem occurs together with issuance of KxmErrorFull errors:

```
42B81B27.0F152908-1:kxmerrut.cpp,62,"kxmThrow(KxmErrorFull&)") |||
Error - KXMRC_EMPTY_FIELD Pos(0) ErrorType(ERROR), Field is empty.
KQIA005E (kqiaexhd.008) Signal Memory Access Violation received.
KQIAgent terminating.
```

To solve this problem, perform the following steps:

1. Edit `%CANDLE_HOME%\CMA\kqicma.ini` and add the following entry in section Local Settings:
   ```
 NLS1_LOCALEDIR=@BinPath@LOCALE
   ```
2. Then, from Manage Tivoli Enterprise Monitoring Services, right-click the QI agent and select **Reconfigure**.

**WebSphere MQ Monitoring Agent**

The following are some problem determination tips associated with the WebSphere MQ Monitoring Agent:

- By default, the account of each WebSphere MQ Agent is set to LocalSystem. If you want to run the monitoring agent under a user account rather than under the system account, you must first authorize the user account. Only user IDs that are members of group mqm are authorized to start and stop the monitoring agent.
- If your site does not have a default queue manager specified, or if you are configuring the agent to monitor a queue manager other than the default, input the WebSphere MQ queue manager name in the `MANAGER NAME()` and `MGRNAME()` parameters of the .cfg file, and then save and close the Notepad session.
The WebSphere MQ Agent monitors a single WebSphere MQ queue manager. If you want to monitor multiple queue managers, create one instance of the monitoring agent for each queue manager.

Before starting the WebSphere MQ Agent, WebSphere MQ default objects such as SYSTEM.DEFAULT.MODEL.QUEUE must exist. If they do not exist in your environment, create them before starting the agent.

**WebSphere MQ Configuration Agent**

The following are some problem determination tips associated with the WebSphere MQ Configuration Agent:

- Make sure to provide the correct Tivoli Enterprise Monitoring Server host/IP.
- If you have multiple queue managers running on a monitored system, you only need one WebSphere MQ Configuration Agent.
- The Discover feature processes only new queue managers on systems running WebSphere MQ Configuration (the configuration agent, hereafter) connected to the Monitoring Server. If the configuration manager discovers a queue manager that is already defined within the database, that queue manager is ignored.
  - Depending on the size and complexity of your existing WebSphere MQ configuration, the Discover process might take a while, and it is not interruptible once begun. If it is not practical to wait for the entire Discover process to complete, you can activate the Discover Lite product option (in the Product Options area of the Configuration workspace). By default, Discover Lite is disabled. For more details, see the online help in the Configuration workspace.
  - Queue managers can be discovered if they have been created using the WebSphere MQ CRTMQM command.

**9.5.3 Maintenance**

When maintenance is performed on systems, there are several things that can cause product failure. These are a few common situations that occur.

**IP address change**

If the agent connects to the Tivoli Enterprise Monitoring Server using an IP address instead of a host name and the IP address changes, the agent will need to be re-configured to update the IP address information.

**Firewall has been implemented**

With recent security changes in many new environments, more and more customers are implementing firewalls. If this is the case, the new IP.SPIPE or
IP.PIPE protocol will be used to traverse the firewall through the default port specified during configuration. The default is 1918 but this can be changed. This port needs to be opened up through the firewall with bidirectional traffic capability in order for our agent to communicate.

9.6 Miscellaneous tips and tools

This section provides some additional tips to configure the product. Note that some of these tips are unsupported and if problems arise, you need to back out the change.

9.6.1 Mutex and shared memory cleanup

On UNIX, Linux, and z/OS platforms, improper stopping of the broker or agent coupled with an element of unfortunate timing might lead to a need to manually clean up mutexes and shared memory used in the communication of data between the monitor node and agent.

Symptoms of this problem are:

- When restarted, the agent does not fully initialize.
- Subsequent attempts to shut down the agent hang.
- Data is missing, that is, information data is missing without a Broker_Not_Responding event. Statistics data are missing with at least one CandleMonitor node deployed.

Follow these steps to clean up mutexes and shared memory:

1. Stop the agent and broker or brokers monitored by agent.
2. On UNIX, Linux, or UNIX System Services (on z/OS):
   a. Issue the `ipcs -a` command.
   b. In the generated output, find all message queues with the “brokers?” user IDs and “agents?” user ID, and note the IDs and KEY field for each.
   c. Find all semaphores with a matching KEY field to those noted for message queues, and note the ID field for each.
   d. Find all shared memory with the “brokers?” user IDs and “agents?” user ID and an NATTCH field of 0, and note the ID field for each.
   e. Switch to a user ID that can issue the `ipcrm` command, whether it is the owner user ID (in the `ipcs -a` output), a user ID in the same group as the owner, or a root user ID.
f. For each message queue noted, issue the `ipcrm -q <ID>` command.
g. For each semaphore noted, issue the `ipcrm -s <ID>` command.
h. For each shared memory noted, issue the `ipcrm -m <ID>` command.

3. Restart the brokers and agent.

### 9.6.2 WebSphere MQ Configuration problem determination

This section contains some problem determination tips associated with IBM Tivoli OMEGAMON XE for WebSphere MQ Configuration. This information is a quick reference designed to address the most common problems.

- **You cannot see the Configuration view:**
  - Make sure that your Tivoli Enterprise Portal user ID has the Navigator Configuration view as an Assigned View.
  - It is possible that this product is not properly installed.

- **You cannot enable update mode:**
  - Make sure that your Tivoli Enterprise Portal user ID has modify WebSphere MQ Configuration permission.

- **You are unable to create new objects or add information to settings lists:**
  - Make sure that you are in Update mode.
  - Make sure that you have the appropriate WebSphere MQ permissions on the object.
  - Make sure that the WebSphere MQ command server is running for the queue manager you are attempting to configure.

- **After running the Discover feature, there are no new queue managers visible in the defined view tree:**
  - Refresh the Defined View.
  - Make sure that the configuration agent is online.

- **The “Update defined from actual” operation does not update the defined view tree:**
  - Refresh the Defined View.
  - Make sure that you have the appropriate Tivoli Enterprise Portal user authority.
  - Make sure that the configuration agent is online.
  - Make sure that the queue manager and the command server are both running.
► The “Update actual from defined” operation does not update WebSphere MQ:
  – Make sure that the defined objects are valid.
  – You must start the queue manager and the command server before you run the “Update actual from defined” operation.
  – Right-click the object you want to validate and select **Validate**. The Discrepancy Display lists the corrections you need to make. Run the Update actual from defined operation again.

► Updates or changes made to prototypes are not reflected in the “based on” sections of objects in the Defined View:
  – Refresh the Defined View.

Refer to *IBM Tivoli OMEGAMON XE for Messaging V6.0 Problem Determination Guide*, SC32-1831, for more information about debugging problems with the IBM Tivoli OMEGAMON for Messaging product.
Tivoli Enterprise Monitoring Server and Portal Server installation walkthrough

This appendix provides a walkthrough of the installation of Tivoli Enterprise Monitoring Server and Tivoli Enterprise Portal Server. In our environment, we installed Tivoli Enterprise Monitoring Server and Tivoli Enterprise Portal Server on the same Microsoft Windows 2003 machine. The installation of Tivoli Enterprise Monitoring Server and Portal Server is very similar whether on UNIX/Linux or Windows. In this appendix, we provide information specific to the Windows environment.

In most production environments, the Monitoring Server and Portal Server are installed on separate systems for performance and other reasons. Refer to *Getting Started with IBM Tivoli Monitoring 6.1 on Distributed Environments*, SG24-7143, for more information about planning the installation of an IBM Tivoli Monitoring environment.
Installation

Run the InstallShield on Windows to install the IBM Tivoli Monitoring components:

1. Log on to the system with a user ID that has Administrator rights.
2. Load the installation image (choose one of the following methods):
   - Insert the IBM Tivoli Monitoring 6.x Platform CD into the system's CD drive.
   - Access the installation image on a network share.
   - Copy the installation image to a local disk drive.
3. Change directories to the WINDOWS directory on the image and run setup.exe.
4. In the Welcome window, click Next to continue (Figure A-1).

![Figure A-1 Tivoli Enterprise Monitoring Server Welcome](image)

5. Read the software license agreement and click Accept.
6. If the prerequisite window opens, read the information and click Next.
7. If the location window opens (Figure A-2), select the target drive and directory for the software (the default is C:\IBM\ITM).

![Figure A-2 Destination](image1)

8. Choose the user data encryption key. Encryption is used for all Secure Sockets Layer (SSL) connections with Tivoli Enterprise Monitoring Server.

![Figure A-3 Encryption Key](image2)
9. On the Select Features window (Figure A-4), choose the components to install. In this case, we selected Tivoli Enterprise Monitoring Agents, Tivoli Enterprise Monitoring Server, Tivoli Enterprise Portal Server, and Tivoli Enterprise Portal Desktop Client. Click the + sign to expand the section and see all the available options. Clicking the box next to the main feature selects all of the subfeatures. After you selecting the components to install, click Next to continue.

Figure A-4   Select Features
10. On the Agent Deployment window, select the agents you want to remote deploy to other systems (Figure A-5).

![Figure A-5  Agent Deployment](image)

11. On the Select Program Folder window, either take the defaults or make changes and click **Next**.

![Figure A-6  Program Folder](image)
12. The TEPS Desktop and Browser Signon ID and Password window opens (Figure A-7). The ID at this stage cannot be changed and has to stay sysadmin. Other user IDs can be added after the initial signon process. Click Next.

![Figure A-7 TEPS Desktop and Browser Signon ID and Password](image)

13. Review the settings in the confirmation installation window (Figure A-8). If these appear correct, click Next. To make changes, click Back and make changes.

![Figure A-8 Start Copying Files](image)
The InstallShield Wizard copies the files and makes updates to complete the installation of the Tivoli Enterprise Monitoring Server. After this finishes, the Setup Type window opens (Figure A-9).

14. On the Setup Type window, select the components to configure (Figure A-9). The options on this window are controlled by what components were installed. Configure Tivoli Enterprise Monitoring Server is not optional, and we have also taken the default setting, which is all options selected. After you making the selections, click **Next** to continue.

![Figure A-9 Setup Type](image-url)
15. On the Define TEP Host Information window, define the machine where the Tivoli Enterprise Portal Server will reside (Figure A-10).

*Figure A-10  TEP Host Information*
16. On the TEPS Data Source Config Parameters window, supply the passwords for the DB2 data source and Tivoli Enterprise Portal Server (Figure A-11).

![TEPS Data Source Config Parameters](image)

Figure A-11  TEPS Data Source Config Parameters

17. After the passwords are supplied, the installer configures the data sources and you are presented with a confirmation window that notes the successful completion of the data source and the location of the log file if there is an issue (Figure A-12).

![Success message](image)

Figure A-12  Success message
18. On the Warehouse ID and Password for TEP Server window, supply the password (the user ID is supplied).

*Figure A-13  Warehouse*
19. On the TEP Server Configuration windows, select the communication protocol, the host name, and the port to which the Tivoli Enterprise Portal Server will communicate with the Monitoring Server.

Figure A-14  TEP Server Configuration
20. The Warehouse proxy Database configuration windows open if you chose to use data warehousing to collect historical statistics (Figure A-15). Select the database type and supply the password for your database program so that the data sources can be created.

![Figure A-15  Warehouse configuration](image)

21. At the end of the configuration, confirm that you receive the following success message (Figure A-16).

![Figure A-16  Successfully completed](image)
22. On the Monitoring Server Configuration windows, define the Transportation protocol, the host name, and the port for Tivoli Enterprise Monitoring Server (Figure A-17).

![Figure A-17  Tivoli Enterprise Monitoring Server Configuration](image-url)
23. You are asked if you want to add application support to Tivoli Enterprise Monitoring Server on this computer or a remote system. We choose this computer because we are installing the Monitoring Server locally. A remote system seed applies if you installed the Monitoring Server on the mainframe and want to add application support.

![Application support](image1)

*Figure A-18 Application support*

The InstallShield then verifies if the Monitoring Server is running, because it must be running to add application support. If it is not running, the InstallShield starts the Monitoring Server.

![Monitoring Server not running](image2)

*Figure A-19 Tivoli Enterprise Monitoring Server not running*

24. Select the appropriate packages from the support packages that are available to install (Figure A-20).

![Support package](image3)

*Figure A-20 Support package*
25. When application support is complete, the Application support addition complete window opens (Figure A-21). Confirm that all packages were installed and returned a rc: 0.
26. In the following two windows, set up the default configurations for your Tivoli Enterprise Monitoring Agent (Figure A-22). Configure the protocol, host name, and port to connect to the Tivoli Enterprise Monitoring Server.

![Configuration Defaults for Connecting to a TEMS](image)

**Figure A-22** Default configuration
Verifying the installation

You can verify the installation in several ways:

- Check the installation logs to verify the outcome of the installation process.
  - Windows: The installation log is in `c:\IBM\ITM\Install\ITM` and it is named “IBM Tivoli Monitoring $pidstring$.log”.
    
    Example A-1 contains a sample from the log. Note that the log varies based on the selected components.

  \textit{Example: A-1  Installation log on Windows}

  
  3-15-2006 11:19:14 The following IBM/Tivoli Products are installed:
  3-15-2006 11:19:14 IBM Personal communications installed
  ...
  ...
  (Log will show a list of components installed compare to the products you selected)
  ...........

- UNIX: The installation log is in `install_dir/logs` and it is named `candle_installation.log`.

- The Manage Tivoli Monitoring Services application allows you to start Tivoli Enterprise Monitoring Server and Tivoli Enterprise Portal Server if the installation was successful.
Related publications

The publications listed in this section are considered particularly suitable for a more detailed discussion of the topics covered in this redbook.

IBM Redbooks

For information about ordering these publications, see “How to get IBM Redbooks” on page 379. Note that some of the documents referenced here may be available in softcopy only.

- Certification Guide Series: IBM Tivoli Monitoring V 6.1, SG24-7187
- Deployment Guide Series: IBM Tivoli Monitoring 6.1, SG24-7188
- Getting Started with IBM Tivoli Monitoring 6.1 on Distributed Environments, SG24-7143
- IBM Tivoli Monitoring Version 5.1: Advanced Resource Monitoring, SG24-5519
- MQSeries Primer, REDP-0021

Other publications

These publications are also relevant as further information sources:

- IBM Tivoli OMEGAMON XE for Messaging on z/OS V 6.0 Configuration Guide, SC32-1830
- IBM Tivoli OMEGAMON XE for Messaging V6.0 Installation Guide, GC32-1829
- IBM Tivoli OMEGAMON XE for Messaging V6.0 Problem Determination Guide, SC32-1831
- IBM Tivoli OMEGAMON XE for Messaging V6.0 Program Directory Guide, GI11-4123
- IBM Tivoli OMEGAMON XE for Messaging V6.0 WebSphere MQ Configuration Users Guide, SC32-1826
Online resources

These Web sites are also relevant as further information sources:

- IBM Tivoli Library

- OMEGAMON XE for WebSphere MQ on z/OS Program Directory link

- OMEGAMON XE for WebSphere MQ on z/OS product information center

- OMEGAMON XE for Messaging Version 6.0 information center
How to get IBM Redbooks

You can search for, view, or download Redbooks, Redpapers, Hints and Tips, draft publications and Additional materials, as well as order hardcopy Redbooks or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
# Index

## Symbols

$Default_Group 186

## A

accounting monitoring 216
ACF2 49
acknowledged status 225
acknowledgment 223
action 220
  scheduling 166, 182
adding new parameters 290
additional details report 192
address translation 27
agent
  address space selection 95
  authorization 274, 281
  configuration file 287
  configure 275, 282
  ID 102
  log file 326
  node name 93
  parameter descriptions 292
  parameter files 288
  sampling interval 63
  started task 71
  state file 326
  support 34, 259
AIX 5L 19, 269, 278
Allocate Persistent Data Store menu 83
allocate work libraries 54
allocation MGMTCLAS 114
allocation STORCLAS 114
allocation unit 79, 114
allocation volume 78, 114
APF-authorize libraries 90, 99, 126
Application Accounting 212, 245–246
application debugging 212
application monitoring example 199
application programming errors 348
application programming interface (API) 213
application queues 199
application statistics 212
application support 43
architecture 21
Archive Message Flow Accounting
  group 313
  icon 306
archive samples 103
asynchronous 2
Attachmate EXTRA! 36
attribute groups 338
attributes 323
Audit Log reports 190
audit logging feature 190
authorized load library 63, 92, 107
authorized take action users 65
auto CLUSSDR monitoring 216
automating responses 303

## B

backup configuration database 166, 194
backup facility 81, 116
backup file 195
benefits
  monitoring 198
broker agent parameters 102
broker alias 106
broker events 103
broker interface 10
browser mode 25
buffer pool statistics 212
build RTE 60
business requirements 34

## C

CandleAgent command 256
CandleMonitor 255
CandleMonitor node 284, 315–316
  installation 276–277
  statistic 307
  working 315
capacity planning 245
centralized configuration information 163
channel and bridge events 215
channel definitions 212
channel initiator status 212
channel monitoring 216, 242
channel performance 213
channel performance workspace 243
channel statistics 250
channels 172
check interval parameter 69
CICS 205
cluster queue manager 213
CMA connection 148
CMDB 18
COBOL application 7
collaboration status 322
command events 215
command submission 65
common issues 352
communications 25, 37
communications requirements 35
community ID 343
complex deployment 30
component directory 106
composite applications 12
cfg file 137
configuration
  graphical representation 163
Configuration Agent 99
  configure 90
configuration database 163
  backing up 193
  current contents 196
  restoring 195
configuration environment 50
configuration events 215
configuration manager 9
configuration window 45
configure
  MQ Monitoring Agent 62
  runtime environment 56
connecting queue managers 185
connector agent 11
connector controller 11
connector status 322
connectors 11
ConnectQueueManager 292
consolidated software inventory (CSI) 50
content-based message routing 7
creating resources 187
cycle time 35

data handlers 11
data warehouse 31
database management systems 81, 117
DE versus XE 22
dead-letter queue (DLQ) 5
dead-letter queue alert 236
dead-letter queue messages 213
default attribute 294
default take action users 104
defaultTakeActionAuthUsers 299
Defined View 164, 166
deployment scenarios 25
desktop mode 25
discover feature 164
discover new resources 166
discover process 170
discovery interval 103
discrepancies 166
disk space 36–37
distribution 220
DNS 36–37
documentation collection 352
domain 9
DragDrop Copy 192

E
EBCDIC 81, 117, 287
Eclipse 9
Eclipse toolkit 10
enterprise event view 225
enterprise information base 260
error log 213
event 24
event flyover list 223
event queue access 65
execution group 10, 312
  definition information 307
  message flows 308
expert advice 220, 235
expiration time frame 224
export option 81, 116
extract option 117
EXTSHM 281

F
firewall 25, 27, 151, 260, 265, 355
flow event interval 103
flow events 103
formula 220

G
global variables 165
GNU compiler 278
group count field 80

H
HFS directory 102
hierarchical representation 172
historical accounting 104
historical aggregation 64
historical data 34
historical data collection 324
historical display retention 64
historical information 210
hold time for query 104
HOSTS file 36
HP-UX 278
hub CMS 152
  configuration 148
  connection configuration 152
  machine 194
hub Tivoli Enterprise Monitoring Server 23, 142
Hummingbird Exceed 127

I
IBM Communications Server 36
IBM PCOMM 36
IBM Tivoli 319
  Monitoring 326
  OMEGAMON DE 324
  OMEGAMON XE 320
ICAT 54
IMS 205
indoubt status 242
Information Communication Technology (ICT) 16
initiation queue 6
install directory 133
INSTALL_LOCATION 267
installation
  Message Broker Monitoring Agent 261
  MQ agents 47
  planning 34
  silent 266
  verification 46
Installation and Configuration Assistant Tool (ICAT) 48
installation program 131
installation walkthrough
  Tivoli Enterprise Monitoring Server/Tivoli Enterprise Portal Server 359
INSTLIB library 51
InterChange Server 1, 326
  component 324
  current information 326
  information 326
  monitoring agent configuration 330
  SNMP agent 325
  SNMP Configuration Manager 327
  specific SNMP managers 329
  status resource model 326
  Tivoli environment 326
InterChange Server monitoring 319
  agent configuration 325
  key features 322
IP address 327
IP address change 355
IP.PIPE 27, 37, 142, 151, 260
  settings 264
IP.Spipe 25
IP.UDP Settings 264
itmcmd 135, 138, 256, 283

J
JCL 51
job card 83, 118

K
KCFARSM utility 195
KCFRCDBJ member 195
KMC_DEFAULT 93
KMC_HOSTNAME 93
Korn shell 37
KPDPROC 89, 126
KPDREST 81
KqiAgent 292

L
language library 63, 92
LE/370 C Dynamic Routines 107
LE/370 C Static Routines 108
License Manager support 259
number of samples 64

O
OMEGAMON XE 1, 319
OMEGAMON XE for WebSphere Integration Brokers
  automating responses 303
  performance considerations 315
  scenarios 311
  using situations 296
  using Take Actions 299
  working with the CandleMonitor node 316
  workspaces 304
OMEGAMON XE for WebSphere InterChange Server
  architecture 321
  configuration 324
  monitoring agent configuration 330
  predefined monitoring situations 323
  SNMP agent configuration 325
  SNMP Configuration Manager configuration 327
OMEGAMON XE for WebSphere MQ Configuration 163
  configuration 138
  defined view 166
  install MQ Agent on UNIX 127
  install MQ Agent on Windows 139
  scenario 166
  scheduling actions 166
OMEGAMON XE for WebSphere MQ Monitoring
  description of the workspaces 211
operating system 194
OS/400 monitors 204

P
page set statistics 214
parameter
  customization 283
parameter file 256
pc.config 137
PERFMEV attributes 226
PERFORM INCLUDE 205
PERFORM STARTMON 205
performance 243, 315
performance events 215
performance statistics 322
persistent data store 80, 115
persistent messages 199
port numbers 143, 152, 326
post-migration tasks 274, 278
pre-installation tasks 268
problem determination 347
problem determination information 348
product component selection 62
product component selection menu 100
product events 103
product-managed configuration objects 190
prototype disinheritance 190
prototype models 164
prototype view 164
  creating prototypes 173
  publish and subscribe 8
  publisher 8
  publisher applications 8

Q
QDEPTHHI queue attribute 226
QI Broker 297
  folder icon 307
  multiple icons 307
  object 301
QSVCINT 226
queue 2
queue access name 67
queue definitions 214
queue hilev qualifier 65
queue manager 2–3, 159, 164, 203–204
  agent reply queue 293
  bidirectional links 185
  configuration event queue 204
  first resource group 186
  like-named parameters 204
  node name 205
queue manager monitoring 221
queue manager status 214
queue manager status workspace 221, 225
queue managers
  connecting 185
queue messages 214
queue monitoring 216, 226
queue statistics 214, 250
queue statistics workspace 226, 229
queue-sharing group 68, 206, 214
R
RACF 49
Redbooks Web site 379
RTE
build 60
load 89
runtime environment
adding 58
configuration 56, 61
runtime environment types 58
S
sample scenarios 28
SC67TS 99
scalability 31
scenario
monitoring 214
scenarios 28
scheduled downtime 199
scheduling actions 166, 182
scheduling options 184
server status 322
service level agreement 198
SET AGENT 205
SET APPL 205
SET CHANNEL 204
SET EVENTLOG 204
SET EVENTQIN 204
SET EVENTQOUT 205
SET GROUP 204
SET MANAGER 204, 210
SET MQIMONITOR 206
SET QACCESS 204, 210
SET QACCESS commands 67
SET QSG 206
SET QSG command 206
SET QUEUE 204
setting agent parameters 289
settings change 192
shared memory cleanup 356
silent installation 266
situations 24, 218, 230, 232, 258, 296, 323
editor 24, 232, 239, 297
SNA 37, 260
SNA communications 25, 36
SNA settings 264
snapshot samples 103
SNMP agent 324, 326
read-write community name 328
reasonably current information 326
tracing information 326
verbose output 326
SNMP agent configuration 325
SNMP agents 260
SNMP manager 321
Solaris 127, 278
Solaris requirement 37
specify agent IP.UDP configuration values 75
specify options 54
statistics available 257
statistics interval 103
statistics monitoring 216
STORCLAS 79
store and forward 2
subscriber applications 8
symbolic variables 165
synchronizing configurations 165
system groups 165
System Management Facility (SMF) 245
System Modification Program/Extended (SMP/E) 48
system programming errors 348
system requirements 35
T
Take Action 293, 299, 324
TAKEOVER 69
TCP 25
TCP/IP 35–37, 260
terminology 23
time zone 272
Tivoli Enterprise Monitoring Agent 34
Tivoli Enterprise Monitoring Agent Framework 127, 139
Tivoli Enterprise Monitoring Server 19, 22–23, 34, 163, 194
   installation 42, 359
Tivoli Enterprise Monitoring Server Application Support 262
Tivoli Enterprise Monitoring Server Framework 259
Tivoli Enterprise Portal 23–24, 34, 302, 323, 333
   logon ID 300
   Navigator tree 334
   online help 323
   Take Action feature 252
   user 293
   WebSphere Business Integration Brokers 299
Tivoli Enterprise Portal desktop client 259
Tivoli Enterprise Portal Server 19, 22–23, 34
   installation 42, 359
Tivoli Enterprise Portal Server Application Support 262
Tivoli Enterprise Portal Server Framework 259
Tivoli monitoring tools 12
Top Secret 49
topic 8
total cost of ownership (TCO) 17
trace settings for the Tivoli Enterprise Portal Server 348
tracing 348
transmission queue 4
trigger message 6
trigger monitor 6
trigger parameters 6
triggers 6
troubleshooting 347
TSO HOMETEST 75

V
variables 165
verifying installation 46

W
Walldata RUMBA 36
warehouse agent 24
warehouse proxy 27, 34
WebSphere Business Integration 1
   Message Broker 7
   OMEGAMON XE 14
   product 311
WebSphere Business Integrator 1
WebSphere Message Broker Monitoring Agent
   configuration for UNIX/Linux 278
   configuration on Windows 273
WebSphere Message Queuing 1
WebSphere MQ 159
   agent installation 150
   application 203
   application programming interface 213
   channel monitoring 242
   configuration 18, 159, 165, 169, 196
   configuration agent-to-Monitoring Server communication 151
   configuration change 221
   configuration data 163
   configuration tool 18
   configuration update 164
   connection 342
   data 203
   environment 171, 252
   error log data 213
   messaging middleware 159
   monitoring 197–198
   monitoring agent 206
   network 159
   object 159, 205
   OMEGAMON Monitoring Agent 203
   overview 2
   queue manager 159
   queue manager alert 225
   queue monitoring 226
   resource 160, 165
   system administrator 190
   workspace 252
WebSphere MQ Agent
   on UNIX 127
on Windows 139
WebSphere MQ Agents
  configure 135, 150
  installation 130, 144
  start/stop 137, 153
WebSphere MQ configuration 163
WebSphere MQ-based z/OS applications 205
Windows 38, 261, 351
Windows 2000 19
Windows 2003 19
Windows prerequisites 35
Windows system 325
Workspaces
  WebSphere InterChange Server 335
workspaces 210, 304, 322

X
X11 127
XE versus DE 22
X-Term 37

Z
z/OS 19, 48, 245, 276, 356
z/OS monitors 203
Implementing OMEGAMON XE for Messaging V6.0

IBM Tivoli OMEGAMON XE for Messaging Version 6.0 is a follow-on product to IBM Tivoli for OMEGAMON XE for WebSphere Business Integration. It provides the capability to manage IBM WebSphere MQ, WebSphere Message Broker, and WebSphere InterChange Server environments from a single console. It supports distributed and mainframe systems and provides an end-to-end view across all systems. It analyzes application performance and identifies slowdowns and monitors message rates, brokers, message flows, and subflows.

This IBM Redbook describes the installation, configuration, and troubleshooting of IBM Tivoli OMEGAMON XE for Messaging on Microsoft Windows, IBM AIX 5L, Linux, and IBM z/OS platforms. We also describe the OMEGAMON framework architecture with typical deployment scenarios, best practices, and scalability considerations.

This book is an update to Implementing IBM Tivoli OMEGAMON XE for WebSphere Business Integration V1.1, SG24-6768.

This book is essential reading for IT specialists who will implement IBM Tivoli OMEGAMON XE for Messaging.

For more information: ibm.com/redbooks