

ibm.com/redbooks

Front cover

OnDemand SQL Performance
Analysis Simplified
on DB2 for i5/OS in V5R4

Hernando Bedoya
Jaime Gaug
James Kerl
Ser Ser NG

José Cardoso dos Santos

Explore and Filter the SQE Plan Cache to
enhance Performance Analysis

Navigate the SQL Performance
Monitors using the new Dashboard

Optimize your indexing strategy
with the new Index Advisor

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

OnDemand SQL Performance Analysis Simplified on
DB2 for i5/OS in V5R4

March 2007

SG24-7326-00

© Copyright International Business Machines Corporation 2007. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (March 2007)

This edition applies to Version 5, Release 4, of i5/OS (5722-SS1).

Note: Before using this information and the product it supports, read the information in “Notices” on
page ix.

Contents

Contents . iii

Notices . ix
Trademarks .x

Preface . xi
The team that wrote this redbook. xi
Become a published author . xiv
Comments welcome. xiv

Chapter 1. Determining whether you have an SQL performance problem 3
1.1 Questions to ask yourself . 4
1.2 How do you know that there is a problem? . 4
1.3 Where is the problem occurring? . 5
1.4 Did you ever have satisfactory performance?. 7
1.5 Do SQL queries appear to have performance problems?. 8

Chapter 2. DB2 for i5/OS performance basics. 11
2.1 Basics of indexing . 12

2.1.1 Binary radix tree indexes . 12
2.1.2 Encoded-vector index . 13

2.2 Query engines: an overview . 15
2.2.1 Database architecture before V5R2M0. 17
2.2.2 Current database architecture . 17
2.2.3 Query Dispatcher . 19
2.2.4 Statistics Manager . 22
2.2.5 SQE Optimizer . 24
2.2.6 Data Access Primitives . 25
2.2.7 Access plan. 25
2.2.8 SQL packages . 26
2.2.9 SQE Plan Cache. 27
2.2.10 Open Data Path . 29

Chapter 3. Overview of tools to analyze database performance 33
3.1 Introduction to the tools . 34
3.2 SQE Plan Cache . 35
3.3 SQE Plan Cache Snapshots . 39
3.4 The Database Performance Monitors . 43

3.4.1 Detailed Monitor . 44
3.4.2 Summary Monitor or Memory Resident Database Monitor 51
3.4.3 Importing a Database Monitor to SQL Performance Monitor 57
3.4.4 The Monitor Comparison feature of SQL Performance Monitor 57

3.5 Visual Explain . 60
3.6 Index Advisor . 63
3.7 Evaluators . 67

3.7.1 Index Evaluator . 67
3.7.2 MQT (Materialized Query Tables) Evaluator. 70

3.8 Current SQL for a Job function . 78
3.9 Debug messages . 82

 Contents iii

3.10 Print SQL information . 86

Chapter 4. Gathering SQL performance data . 89
4.1 Types of SQL Performance Monitors . 90
4.2 Collecting Detailed SQL performance data. 90

4.2.1 Starting a Detailed Database Monitor using the command interface 90
4.2.2 The SQL Performance Monitor Wizard . 96
4.2.3 Starting a Detailed SQL Performance Monitor . 97
4.2.4 Enabling Database Monitors in ODBC clients. 101
4.2.5 Enabling Database Monitors in OLE DB clients . 103
4.2.6 Enabling Database Monitors in JDBC clients . 105
4.2.7 Enabling Database Monitors in .NET clients. 106
4.2.8 Enabling Database Monitors using an exit program . 106

4.3 Collecting Summary SQL Performance Monitor data . 106
4.4 Importing Database Monitors into iSeries Navigator . 109

4.4.1 Importing detailed monitor data . 110
4.4.2 Importing detailed monitor data from a previous release 110
4.4.3 Importing summary monitor data . 111

4.5 SQL Performance Monitors properties . 111
4.5.1 Detailed monitor properties . 111
4.5.2 Summary monitor properties. 112
4.5.3 Imported monitor properties . 113

4.6 Summary or Detailed SQL Performance Monitor . 114

Chapter 5. Analyzing SQL performance data using iSeries Navigator 117
5.1 Detailed SQL Performance Monitor Analysis overview. 118

5.1.1 Analysis overview . 119
5.1.2 Amount of work requested . 122
5.1.3 Environmental factors . 123
5.1.4 Implementation information. 124
5.1.5 Types of statements . 126
5.1.6 Miscellaneous information. 127
5.1.7 I/O information . 128

5.2 In-depth analysis reports . 128
5.2.1 Getting detailed reports from Summary and Statement buttons 129
5.2.2 Additional information reports . 133
5.2.3 Action menu items . 140

5.3 Summary SQL Performance Monitor analysis overview. 143
5.3.1 SQL performance report information from summary data. 145
5.3.2 Examples and application of Summary SQL Performance Monitor 148
5.3.3 Limitations of the Summary monitor . 148

5.4 Show Statements . 149
5.4.1 Filtering options. 149
5.4.2 Launching Visual Explain . 152

5.5 Compare monitors. 152
5.6 Case study . 156

5.6.1 A poor performing SQL statement . 157
5.6.2 Why are table scans being done?. 159
5.6.3 Why is CQE being used? . 167
5.6.4 Comparison. 171

Chapter 6. Custom Database Monitor Analysis . 173
6.1 The Database Monitor record types . 174

6.1.1 Database Monitor record types. 174

iv OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

6.1.2 The 1000 Record: SQL statement summary. 177
6.1.3 The 30XX Records: Query Optimization Row Type . 179
6.1.4 The 3000 Record: Arrival sequence (table scan) . 179
6.1.5 The 3001 Record: using an existing index . 181
6.1.6 The 3002 Record: temporary index created . 182
6.1.7 The 3003 record: query sort . 183
6.1.8 The 3004 record: temporary file . 184
6.1.9 The 3006 record: access plan rebuild . 185
6.1.10 The 3007 record: index evaluation . 186
6.1.11 The 3010 record: host variables . 187
6.1.12 The 3014 record: general query optimization information. 188
6.1.13 The 3015 record: SQE statistics advised . 189
6.1.14 The 3018 record: STRDBMON/ENDDBMON . 189
6.1.15 The 3019 record: rows retrieved detail . 189
6.1.16 The 3020 record: index advised (SQE). 190
6.1.17 The 3030 record: materialized query table . 191

6.2 Introduction to query analysis . 192
6.3 Tips for analyzing the Database Monitor files . 194

6.3.1 Using an SQL ALIAS for the Database Monitor table . 194
6.3.2 Using a subset of the Database Monitor table for faster analysis 194
6.3.3 Using SQL views for the Database Monitor table . 195
6.3.4 Creating additional indexes over the Database Monitor table. 195

6.4 Database Monitor query examples . 196
6.4.1 Finding SQL requests that are causing problems. 197
6.4.2 Total time spent in SQL . 198
6.4.3 Individual SQL elapsed time . 199
6.4.4 Analyzing SQL operation types. 202
6.4.5 Full open analysis . 203
6.4.6 Isolation level used . 208
6.4.7 Table scan . 209
6.4.8 Temporary index analysis . 211
6.4.9 Index advised . 214
6.4.10 Access plan rebuilt . 218
6.4.11 Query sorting . 223
6.4.12 SQE advised statistics analysis . 227
6.4.13 Fetched and Retrieved detail rows . 231
6.4.14 Materialized query tables . 234

Chapter 7. SQE Plan Cache and SQE Plan Cache Snapshots 237
7.1 SQE Plan Cache and SQE Plan Cache Snapshot . 238
7.2 SQE Plan Cache . 238

7.2.1 Viewing the properties of the SQE Plan Cache . 238
7.2.2 Viewing the content of the SQE Plan Cache . 242
7.2.3 Using the filter options . 243
7.2.4 Finding and Visual Explaining a query from the SQE Plan Cache 245

7.3 SQE Plan Cache Snapshot . 248
7.3.1 Creating an SQE Plan Cache Snapshot using iSeries Navigator 248
7.3.2 Creating an SQE Plan Cache Snapshot using Stored Procedure 252
7.3.3 Creating an SQE Plan Cache Snapshot using an Exit Program. 256
7.3.4 Analyzing an SQE Plan Cache Snapshot . 258
7.3.5 Working with SQL statements from an SQE Plan Cache Snapshot 264
7.3.6 An example of finding table scans in a SQE Plan Cache Snapshot 266
7.3.7 Comparing SQE Plan Cache Snapshots . 269

 Contents v

Chapter 8. Analyzing database performance data with Visual Explain 275
8.1 What is Visual Explain. 276
8.2 Finding Visual Explain. 276

8.2.1 The SQL Script Center . 278
8.2.2 Explain Only . 279
8.2.3 Run and Explain . 280
8.2.4 Explain While Running . 280

8.3 Navigating Visual Explain . 281
8.3.1 Toolbar . 283
8.3.2 Menu options . 288
8.3.3 Controlling the diagram level of detail . 291
8.3.4 Displaying the Environment Settings . 293
8.3.5 Visual Explain query attributes and values . 294

8.4 Using Visual Explain with Database Monitor data. 298
8.5 Using Visual Explain with imported data . 301

8.5.1 Show Statements . 303
8.6 Using Visual Explain with SQE Plan Cache and Plan Cache Snaphot 304

8.6.1 Using Visual Explain with SQE Plan Cache . 304
8.6.2 Using Visual Explain with SQE Plan Cache Snapshot . 307

8.7 Non-SQL interface considerations . 310
8.8 The Visual Explain icons . 311

Chapter 9. Index Advisor . 319
9.1 What is the Index Advisor . 320
9.2 System Wide Index Advised Table . 320
9.3 Levels of Index Advisor access. 324

9.3.1 Index Advisor access at Database level . 325
9.3.2 Index Advisor access at Schema level . 326
9.3.3 Index Advisor access at Table level . 327

9.4 Index Advisor interface in iSeries Navigator . 327
9.5 Interfaces to Index Advised information . 330

9.5.1 Access to Index Advised information from Detailed SQL Performance Monitor screen
interface . 331

9.5.2 Access to Index Advised information from SQE Plan Cache screen interface . . 334
9.5.3 Access to Index Advised information from SQE Plan Cache Snapshot screen

interface . 336
9.5.4 Access to Index Advised information from Visual Explain screen interface 339
9.5.5 Access to Index Advised information from the Debug messages. 346

9.6 Temporary Indexes . 355
9.6.1 CQE - Temporary Indexes . 356
9.6.2 SQE - Temporary Indexes . 356

Chapter 10. SQL performance analysis: a methodology. 363
10.1 Performance methodology . 364
10.2 Performance troubleshooting . 364

10.2.1 Problem source determination . 364
10.2.2 Performance data capture . 365
10.2.3 Performance analysis process . 366

10.3 Application of the tools to the methodology . 366
10.4 Example of using the methodology . 370

Chapter 11. Environmental settings that affect SQL performance 379
11.1 Introduction . 380
11.2 Optimization goal . 381

vi OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

11.2.1 What is the goal? . 382
11.2.2 Setting the Optimization Goal . 385

11.3 Sensitive Cursors . 387
11.3.1 Performance and query optimization impacts . 388
11.3.2 Cursor sensitivity programming interfaces . 389

11.4 SMP (Symmetrical multiprocessing) Degree. 393
11.4.1 iSeries i5/OS Architecture. 393
11.4.2 What is SMP? . 394
11.4.3 SMP parallel-enabled functions . 395
11.4.4 Parallel Database Processing. 397
11.4.5 Enabling parallel processing . 398
11.4.6 Feedback . 399
11.4.7 Available and balanced resources . 403
11.4.8 SMP considerations . 404

Chapter 12. Tips to proactively prevent SQL performance problems 407
12.1 Indexing strategy. 408

12.1.1 Access methods . 408
12.1.2 Guidelines for perfect indexes . 409
12.1.3 Additional indexing tips . 410
12.1.4 Index Advisor . 411

12.2 Coding of your SQL statements . 411
12.2.1 Avoid using logical files in your select statements . 411
12.2.2 Avoid using SELECT * in your select statements . 413
12.2.3 Avoid using the relative record number to access your data 414
12.2.4 Avoid numeric data type conversion . 415
12.2.5 Avoid numeric expressions . 416
12.2.6 Using the LIKE predicate . 419
12.2.7 Avoid scalar functions in the WHERE clause . 420

Chapter 13. Using Collection Services data
to identify jobs using system resources . 423

13.1 Relationship of Collection Services, Database Monitor data and Performance Trace424
13.2 Collection Services and Database Monitor data . 425

13.2.1 Starting Collection Services . 425
13.2.2 From iSeries Navigator . 427
13.2.3 Using Performance Management APIs. 428
13.2.4 V5R4 STRPFRCOL command . 428

13.3 Using Collection Services data to find jobs using CPU. 429
13.3.1 Finding jobs using CPU with the Component Report . 429
13.3.2 Finding jobs using CPU with iSeries Navigator Graph History 436
13.3.3 Finding jobs using CPU with Management Central System Monitors. 439

13.4 Using Collection Services data to find jobs with high disk I/O counts 442
13.5 Using Performance Data of the Database Monitor to find the query that needs

optimization . 446
13.6 Using Performance Trace to find object locks. 452

Appendix A. Tools to check a performance problem. 457
WRKACTJOB command . 458
WRKSYSACT command . 459

WRKSYSSTS command. 461
WRKOBJLCK command. 462
WRKJOB command . 463
iDoctor for iSeries Job Watcher . 464

 Contents vii

Related publications . 467
IBM Redbooks . 467
Other publications . 467
Online resources . 467
How to get IBM Redbooks . 468
Help from IBM . 468

Index . 469

viii OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that does
not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.

© Copyright IBM Corp. 2007. All rights reserved. ix

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Redbooks (logo) ™
eServer™
iSeries™
i5/OS®
AS/400®
DB2 Universal Database™

DB2®
DRDA®
IBM®
OS/400®
POWER™
Redbooks™

System i™
System/38™
SQL/400®
WebSphere®

The following terms are trademarks of other companies:

SAP, and SAP logos are trademarks or registered trademarks of SAP AG in Germany and in several other
countries.

Snapshot, and the Network Appliance logo are trademarks or registered trademarks of Network Appliance,
Inc. in the U.S. and other countries.

Java, JDBC, J2EE, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both.

Excel, Microsoft, Visual Basic, Windows, and the Windows logo are trademarks of Microsoft Corporation in
the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

x OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Preface

The goal of database performance tuning is to minimize the response time of your queries. It
is also to optimize your server’s resources by minimizing network traffic, disk I/O, and CPU
time.

This IBM® Redbook helps you to understand the basics of identifying and tuning the
performance of Structured Query Language (SQL) statements using IBM DB2® for i5/OS®.
DB2 for i5/OS provides a comprehensive set of tools that help technical analysts tune SQL
queries. The SQL Performance Monitors are part of the set of tools that IBM i5/OS provides
for assisting in SQL performance analysis since Version 3 Release 6. These monitors help to
analyze database performance problems after SQL requests are run. In V5R4 of i5/OS,
iSeries™ Navigator provides a series of new tools to do SQL Performance analysis that we
cover in this book. Among the new tools that we will covering are:

� Capability of visualizing the contents of the SQE Plan Cache
� SQE Plan Cache Snapshots
� The new reporting tool - Dashboard
� OnDemand Index Advisor
� Evaluators such as Index and Materialized Query Tables

This book also presents tips and techniques based on the SQL Performance Monitors and
other tools, such as Visual Explain and all the tools provided in V5R4. You will find this
guidance helpful in gaining the most out of both DB2 for i5/OS and query optimizer when
using SQL.

Some of the material and foundation of this book was originally published in the IBM Redbook
SQL Performance Diagnosis on IBM DB2 Universal Database for iSeries, SG24-6654.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world working at the
International Technical Support Organization (ITSO), Poughkeepsie Center.

Hernando Bedoya is an IT Specialist at the IBM ITSO, in
Rochester, Minnesota. He writes extensively and teaches IBM
classes worldwide in all areas of DB2 Universal Database™ for
iSeries. Before joining the ITSO more than six years ago, he
worked for IBM Colombia as an IBM AS/400® IT Specialist doing
pre-sales support for the Andean countries. He has 24 years of
experience in the computing field and has taught database
classes in Colombian universities. He holds a master degree in
computer science from EAFIT, Colombia. His areas of expertise
are database technology, application development, and data
warehousing.

Note: In this book, we use the name “SQL Performance Monitor” when using iSeries
Navigator. SQL Performance Monitor has two versions: Detailed Database Monitor and
Summary Monitor. We refer to the tool as “Database Monitor” when using a green screen
and accessing the tool by running the Start Database Monitor (STRDBMON) CL
command.

© Copyright IBM Corp. 2007. All rights reserved. xi

Jaime Gaug is a Staff Software Engineer in the award-winning
iSeries Technical Support Center in Rochester, Minnesota. He
provides on demand support of DB2 UDB for i5/OS for clients
across the globe. Over the decade he has spent with IBM, he has
been involved with identifying and resolving numerous issues
involving SQL Performance. He holds a bachelor's degree in
Computer Science from Case Western Reserve University,
Cleveland, Ohio.

James Kerl is a Senior Certified IT Specialist for System i™. He
provides pre-sales technical support for database and Linux® on
System i for the IBM Americas Linux Advanced Technical Support
Organization. James is located in Dallas, Texas where he has
worked in the computing industry for IBM for 38 years. He has
expertise in the iSeries database, Business Intelligence, linux,
and most application languages. In the past, he has worked with
midrange and host communications, network management and
attached workstations. He holds a Bachelor of Science degree in
Physics from the University of Texas in Arlington and has
enhanced his education with many master level courses in

Business Administration. He has presented many technical topics on Business Intelligence
and database on the IBM AS/400 and IBM eServer™ iSeries to customer and IBM internal
conferences, such as, COMMON, the IBM iSeries Technical Conferences, IBM Professional
Leadership Exchange (PLTE), and other IBM conferences. He is active in the IBM sponsored
Try Science program where he speaks to local elementary schools in his home town of Fort
Worth, Texas.

Ser Ser NG is an accredited Advisory IT Specialist at IBM
Malaysia. She has 9 years of working experience in supporting
iSeries. She performs post-sales software support, maintenance
and services deliveries for iSeries. Her areas of expertise are
performance study, Linux, SAP® setup and configuration for
iSeries.

José Cardoso dos Santos is an IT Certified Specialist for
System i platforms at Grupo Intercompany which is an IBM
Premier Business Partner in São Paulo city in state of São Paulo,
Brazil. He joined Grupo Intercompany in 2003. In 1986 he started
his studies in Information Technology in São Bernardo do Campo
city in state of São Paulo, Brazil. He has worked with iSeries
platforms since 1995. His areas of expertise are database
technology, database performance, application development and
security. He provides pre-sales and post-sales support of DB2 for
i5/OS, WebSphere® Application Server for i5/OS, Security on
iSeries platforms and others. He also works as instructor of i5/OS

courses such as Control Language Programming, Security, Administration, DB2 for i5/OS,
Query/400 and others. He holds IBM certifications such as IBM Certified Database Associate
– DB2 UDB V8.1 Family Application Development, IBM Certified System Administrator

xii OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

WebSphere Application Server ND V6.0 and IBM Certified System Administrator WebSphere
Portal V5.0. He also holds a Bachelor of Mathematics with emphasis in Computer Science
degree from Faculdade de Filosofia Ciências e Letras da Fundação de Santo André-SP,
Brazil. He attended a post-graduation course of specialization in J2EE™ Technology at
Faculdade de Informática e Administração Paulista (FIAP) – SP, Brazil.

The authors involved in the previous edition of this book were:

Elvis Budimlic
Director of Development at Centerfield Technology

Morten Buur Rasmussen
IT Specialist at the IBM Client Technology Center in La Gaude, France

Peggy Chidester
Staff Software Engineer in IBM Rochester Support Center

Fernando Echeveste
Staff Software Engineer in IBM Rochester

Birgitta Hauser
Software Engineer at Lunzer+Partner GmbH in Germany

Kang Min Lee
IT Specialist at IBM Korea

Dave Squires
iSeries Support Center in United Kingdom

Thanks to the following people for their contributions to this project:

Thomas Gray
Marvin Kulas
Joanna Pohl-Miszczyk
Jenifer Servais
ITSO, Poughkeepsie Center

Mark Anderson
Robert Bestgen
Michael Cain
Kevin Chidester
Daniel Cruikshank
Jim Flanagan
Scott Forstie
Kent Milligan
Brian Muras
Denise Voy Tompkin
IBM Rochester

 Preface xiii

Luis Guirigay
IT Specialist - Ascendant Technology LLC

Nicolas Bueso Quan
Certified IT Specialist IBM Brazil

Peter Bradley
IBM UK

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook dealing with
specific products or solutions, while getting hands-on experience with leading-edge
technologies. You'll team with IBM technical professionals, Business Partners and/or
customers.

Your efforts will help increase product acceptance and customer satisfaction. As a bonus,
you'll develop a network of contacts in IBM development labs, and increase your productivity
and marketability.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments about this or
other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

xiv OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Part 1 Introduction to DB2 for
i5/OS and database
performance tools

In this part, we introduce basic information about DB2 for i5/OS performance. We also
introduce the different tools for analyzing database performance.

This part includes the following chapters:

� Chapter 1, “Determining whether you have an SQL performance problem” on page 3
� Chapter 2, “DB2 for i5/OS performance basics” on page 11

Part 1

Note: In this book, we use the name “SQL Performance Monitor” when using iSeries
Navigator. SQL Performance Monitor has two versions: Detailed Database Monitor and
Summary Monitor. We refer to the tool as “Database Monitor” when using a green screen
and accessing the tool by running the Start Database Monitor (STRDBMON) CL
command.

© Copyright IBM Corp. 2007. All rights reserved. 1

2 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Chapter 1. Determining whether you have
an SQL performance problem

In this chapter, we explain how to determine if a performance problem is the result of poorly
performing Structured Query Language (SQL) queries. We describe the various system tools
and a methodology to help you find an SQL performance problem.

This chapter guides you in:

� Asking the right questions to determine whether you have a performance problem
� Knowing what to check when you have a performance problem
� Determining if a performance problem is related to SQL

1

© Copyright IBM Corp. 2007. All rights reserved. 3

1.1 Questions to ask yourself

If you are reading this book, you most likely currently have an SQL performance problem,
have experienced an SQL performance problem in the past, or are interested in learning how
to diagnose SQL performance. An important step in looking into any SQL performance
problem is to ask a few questions to determine whether the problem is with your SQL or a
system-wide performance problem. To clarify the problem, you must ask yourself the
following questions:

� How do you know that there is a problem?

� Where is the problem occurring?

� Did you ever have satisfactory performance?

– If you have a job or program that used to run well but does not do so now, what
changed since it last ran well?

� Do SQL queries appear to have a performance problem?

– If the problem is with multiple queries, is there any commonality among the queries?
– If the problem is with one query, what is the change in run time?
– Have you ever tuned your queries for performance?

We explain each of these questions in more details in the sections that follow.

1.2 How do you know that there is a problem?

This question is very basic, yet vital. Identifying how you know that there is a problem
determines the steps to take to analyze the problem.

For example, you are reading a report that shows that CPU spiked during a time frame. Is this
a problem? Is CPU spiking bad? Are you seeing a trend or is this a one-time occurrence?
During the time frame, did you receive complaints from users saying that they were unable to
get their work done? Such complaints would be a strong indicator that there is an actual
problem.

We recommend that you create a spreadsheet to document and keep a history of problems.
Table 1-1 shows an example of how problem record keeping can be helpful in problem
solving.

Table 1-1 Example of problem record keeping

In the example shown in Table 1-1, it could look like an SQL problem since an SQL query was
taking a long time. However, further analysis showed that other work done in the pool was the

Date of
problem

Time of
problem

User
reporting

Problem
job

Reported
problem

How
problem
discovered

How
problem
resolved

Data
gathered

01/05/05 13:01:00 Sales
Report

QZDASOINIT Report
taking longer
to generate

User found a

a. The queries to generate the sales report usually run in a dedicated memory pool. However, for some reason
still unknown, the pool identifier in the QZDASOINIT prestart job was changed so that the queries started to run
in *BASE along with some other high demanding jobs on the system. By changing the prestart job entry, the que-
ries went back to run in their dedicated memory pool and the response time reverted to what it was in the past.

SQL
Performance
Monitor
started

4 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

cause of the problem. In Appendix A, “Tools to check a performance problem” on page 457,
we explain how to use the system commands and tools to investigate whether the problem is
related to the system or to an SQL query. There are a number of solutions to try to resolve the
problem shown in Table 1-1:

� Separate the QZDASOINIT jobs into their own pool.

For more information, see Software Knowledge Base document “Separating Batch Work
from *BASE”, document number 349033974 on the Web at:

http://www-912.ibm.com/s_dir/slkbase.NSF/1ac66549a21402188625680b0002037e/9fa68
bd7573e48af862565c2007d3d9b?OpenDocument

Another more basic document in the Software Knowledge Base is document “Assigning
Prestart Jobs to a Specific Pool”, document number 392581292 on the Web at:

http://www-912.ibm.com/s_dir/slkbase.nsf/1ac66549a21402188625680b0002037e/d3452
0dad99d66238625709200595ff9?OpenDocument

� Verify that the QPFRADJ system value is set to automatically adjust memory in the pools.

� Add more memory to the pool.

In the above example, a user is experiencing a problem when a report is generated. They
found it to be a system-wide related problem, but if the above fix did not resolve the problem,
then a more detailed analysis of the SQL job would be required.

1.3 Where is the problem occurring?

Another important step in analyzing an SQL performance problem is to identify where the
problem is occurring. It is helpful to understand the components of work involved whenever a
user executes any SQL request. Figure 1-1 illustrates the different components of work
involved in the execution of an SQL request.

Figure 1-1 Components of work

Communications

User Display I/O

Data
Processing

Database
Request

User Display I/O

Authentication

Process Request

• Access plan creation
• Index estimatesOptimization

• ODP creation
• Database authentication

Open
Processing

• Journaling
• Index maintenance
• Constraint enforcement
• Locking
• Trigger processing
• Disk operations
• CPU operations

RunTime

Output ResultsEND

BEGIN

Chapter 1. Determining whether you have an SQL performance problem 5

http://www-912.ibm.com/s_dir/slkbase.nsf/1ac66549a21402188625680b0002037e/d34520dad99d66238625709200595ff9?OpenDocument
http://www-912.ibm.com/s_dir/slkbase.NSF/1ac66549a21402188625680b0002037e/9fa68bd7573e48af862565c2007d3d9b?OpenDocument

Isolate the problem to the smallest number of factors as possible. Before we start analyzing
the SQL or database request, we must understand that other variables are involved in the
total response time such as:

� User display I/O
� Authentication
� Data processing
� Communications

You might ask some additional questions to find where the problem is occurring, such as:

� Is the problem occurring only in one pool?

– What activity is occurring in the pool?

� Are you having a performance problem running tasks on the iSeries server, even simple
commands?

� Is the problem occurring only within specific jobs, that is batch or QZDASOINIT?

� Do you hear only from one set of users when the problem occurs?

– What is the commonality among the users?

� Does the problem occur only when going through a specific interface, such as
WebSphere, SQL, or Query/400?

� Are the jobs having problems running remotely or locally?

� Can the problem be isolated to a specific program?

– Is SQL embedded?
– What type of program is it?

� Can the problem be isolated to a specific SQL statement?

You need to examine all of the answers to these questions to see if you can isolate the
problem to jobs running SQL. If the jobs that have a problem are QZDASOINIT or
QSQSRVR, then it is likely that they are running SQL. QRWTSRVR jobs are quite often used
to run SQL, but are also used if you are using distributed data management (DDM) files.
When the problem occurs only in certain jobs or for a certain group of users, you must review
the environment, such as communications, pools, job priorities, and so on.

After you isolate the problem and are now certain that the problem is on the SQL request, you
must understand what it takes to execute an SQL request. Upon the execution of an SQL
request, three main operations are done as shown in Figure 1-2:

� Optimization time
� Open processing time
� Run time

6 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Figure 1-2 Components of work: Database request

In Figure 1-2, you can see which operations affect optimization time, open processing time,
and run time. It is key that you identify and minimize the bottlenecks in these three main areas
of the processing of an SQL request.

If it is believed to be SQL related because the problem remained after making the above
changes then let’s look at how you could approach resolving it using the tools available in
V5R4 of i5/OS.

In order to make a quick determination if an SQL problem exists, an analyst could use SQE
Plan Cache described in Chapter 7., “SQE Plan Cache and SQE Plan Cache Snapshots” on
page 237 to see if there are SQL problems indicated for the jobs described above. This can
be done while waiting for data to be collected by the performance monitor that was started.
This initial analysis can begin to identify how the SQL is being processed by the database
engine in DB2 for i5/OS.

With the information in Table 1-1 in hand and an indication during the initial analysis of the
SQE Plan Cache whether there needs to be additional detailed analysis, we will need to wait
for the detailed performance monitor data being collected.

When the problem occurs again you can then select to quickly analyze the monitor data using
the iSeries Navigator tools described in Chapter 5., “Analyzing SQL performance data using
iSeries Navigator” on page 117 either using the summary or detailed monitor analysis
depending on the type of data that was being collected.

Understanding the tools that we describe in this book will help you to identify the bottlenecks
in these areas.

1.4 Did you ever have satisfactory performance?

Satisfactory performance is when the system or an application is running without any
performance problems. Knowing if you had satisfactory performance involves understanding
the history of an application on the system. Some SQL performance problems are caused by:

� The introduction of a new application

Process Request

• Access plan creation
• Index estimatesOptimization

• ODP creation
• Database authentication

Open
Processing

• Journaling
• Index maintenance
• Constraint enforcement
• Locking
• Trigger processing
• Disk operations
• CPU operations

RunTime

Output Results

Identify and minimize
bottlenecks in these
areas

Chapter 1. Determining whether you have an SQL performance problem 7

� The application of new program temporary fixes (PTFs)
� An upgrade to a newer i5/OS release
� Changes to system values

In this book, you learn how to use some tools to gather performance information prior to any
major change on the system. You learn how to determine SQL performance problems in
cases where previously there was a good working situation or where you are unsure whether
you previously had a good working situation. In a scenario where you know that you had
satisfactory performance, it is vital to document the timeline of what happened since the
system or application last ran well. Make sure that you document any changes, such as those
that we previously listed.

The key is documenting exactly what the performance was prior to a change in the
environment or application. You should always capture performance monitor data to have a
historical record of how things were working prior to significant changes. With V5R4, we’ve
made that easier with the ability to capture a snapshot of the current running environment if
you haven’t saved any performance monitor data lately. Although, it is not the ideal and does
not provide a complete detailed view of all jobs, it can help if it becomes necessary to identify
a change in the runtime environment.

Review Chapter 7., “SQE Plan Cache and SQE Plan Cache Snapshots” on page 237 and see
how the SQE Plan Cache Snapshot™ can help build a partial picture of what the system is
currently doing with SQL jobs.

1.5 Do SQL queries appear to have performance problems?

It might be difficult to answer this question if just one SQL query has a problem or if multiple
SQL queries have a problem, since the issue is often found at the job level. In the following
chapters, we show you how to use a different set of tools to investigate which queries are
having problems, if you have not already made that determination. It is important to
differentiate between one query having a performance problem and many SQL queries
having a problem.

� One SQL query having a performance problem

When it appears that a single SQL query has a performance problem, you must know the
run time of the specific query before the performance problem appeared. Additionally, you
must know how you gather the runtime data.

� Multiple SQL queries having performance problems

In situations where it appears that multiple SQL queries have performance problems, you
must ask additional questions to try to find any commonality among the queries:

– Do the queries that have the performance problem all use the same table?
– Does the problem appear to be with a specific type of query, such as left outer joins or

updates?
– Do only specific users run the queries?
– Do all the queries run in the same pool?
– Have you ever tuned your queries for performance?

When multiple queries have a problem, it indicates the need for you to review the
environment and examine such aspects as communications, pools, job priorities, and so
on. Refer to Appendix A, “Tools to check a performance problem” on page 457, for more
information.

One question to keep in mind when you are examining SQL performance problems is: “Did
you ever tune your queries?” SQL queries require the existence of indexes to obtain statistics

8 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

and for implementation (access of data) of the query request. For more information about an
adequate indexing strategy, refer to the white paper Indexing and statistics strategy for DB2
UDB for iSeries available on the Web at:

http://www.ibm.com/servers/enable/site/education/abstracts/indxng_abs.html

Through the use of the SQE Plan Cache and performance monitor data in the new iSeries
Navigator GUI “dashboard” described in Chapter 5., “Analyzing SQL performance data using
iSeries Navigator” on page 117, you can quickly and methodically research a possible
problem in SQL jobs, statements and related database objects. This will allow you to answer
the question: Does my SQL statement or query have a problem, where, and when?

In the following chapters, we explain how to use SQL Performance Monitors and other tools
to determine if your queries should be tuned for performance. In Chapter 12, “Tips to
proactively prevent SQL performance problems” on page 407, we provide tips to help you
avoid SQL performance problems.

Chapter 1. Determining whether you have an SQL performance problem 9

http://www-03.ibm.com/servers/enable/site/education/abstracts/indxng_abs.html

10 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Chapter 2. DB2 for i5/OS performance
basics

In this chapter, we introduce some of the basic concepts of SQL performance on DB2 for
i5/OS. We discuss the indexing technology on DB2 for i5/OS. We also introduce the query
engines on DB2 for i5/OS, Classic Query Engine (CQE) and SQL Query Engine (SQE).

2

© Copyright IBM Corp. 2007. All rights reserved. 11

2.1 Basics of indexing

DB2 for i5/OS has two kinds of persistent indexes:

� Binary radix tree indexes, which have been available since 1988
� Encoded-vector indexes (EVIs), which became available in 1998 with V4R3

Both types of indexes are useful in improving performance for certain kinds of queries. In this
section, we introduce this indexing technology and how it can help you in SQL performance.

2.1.1 Binary radix tree indexes

A radix index is a multilevel, hybrid tree structure that allows a large number of key values to
be stored efficiently while minimizing access times. A key compression algorithm assists in
this process. The lowest level of the tree contains the leaf nodes, which house the address of
the rows in the base table that are associated with the key value. The key value is used to
quickly navigate to the leaf node with a few simple binary search tests.

Figure 2-1 shows the structure of a binary radix tree index.

Figure 2-1 Binary radix tree index

Thus, a single key value can be accessed quickly with a small number of tests. This quick
access is generally consistent across all key values in the index, since the server keeps the
depth of the index shallow and the index pages spread across multiple disk units.

The binary radix tree structure is good for finding a small number of rows because it can find
a given row with a minimal amount of processing. For example, using a binary radix index
over a customer number column for a typical online transaction processing (OLTP) request,
such as “find the outstanding orders for a single customer,” results in fast performance. An
index created over the customer number field is considered the perfect index for this type of

Database Table

ARKANSAS001

MISSISSIPPI002

MISSOURI003

IOWA004

ARIZONA005

.

Test
Node

AR

IZONA
005

KANSAS
001

IOWA
004

ROOT

MISS

OURI
003

ISSIPPI
002

12 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

query because it allows the database to focus on the rows that it needs and perform a
minimal number of I/Os.

2.1.2 Encoded-vector index

To understand EVIs, you should have a basic knowledge of bitmap indexing. DB2 for i5/OS
does not create permanent bitmaps. SQL creates dynamic bitmaps temporarily for query
optimization.

The need for newer index technologies has spawned the generation of a variety of similar
solutions that can be collectively referred to as bitmap indexes. A bitmap index is an array of
distinct values. For each value, the index stores a bitmap, where each bit represents a row in
the table. If the bit is set on, then that row contains the specific key value.

Table 2-1 shows the bitmap representation of an index.

Table 2-1 Bitmap index

With this indexing scheme, bitmaps can be combined dynamically using Boolean arithmetic
(ANDing and ORing) to identify only those rows that are required by the query. Unfortunately,
this improved access comes with a price. In a very large database (VLDB) environment,
bitmap indexes can grow to an ungainly size. For example, in a one billion row table, you
might have one billion bits for each distinct value. If the table contains many distinct values,
the bitmap index quickly becomes enormous. Usually, relational database management
systems (RDBMSs) rely on a type of compression algorithm to help alleviate this growth
problem.

An EVI is created using the CREATE ENCODED VECTOR INDEX SQL command as shown
in Example 2-1.

Example 2-1 Creating an EVI using the CREATE ENCODED VECTOR INDEX SQL command

CREATE ENCODED VECTOR INDEX MySchema.EVI_Name
 ON MySchema.Table_Name (MyColumn)
 WITH n DISTINCT VALUES

An EVI is an index object that is used by the query optimizer and database engine to provide
fast data access in decision support and query reporting environments. EVIs are a
complementary alternative to existing index objects (binary radix tree structure, logical file, or
SQL index) and are a variation of bitmap indexing. Because of their compact size and
relative simplicity, EVIs provide faster scans of a table that can also be processed in parallel.

An EVI is a data structure that is stored basically as two components:

� Symbol table

The symbol table contains a distinct key list, along with statistical and descriptive
information about each distinct key value in the index. This table maps each distinct value
to a unique code. The mapping of any distinct key value to a 1-, 2-, or 4-byte code

10000000110000010110

Bit-Array

01000100000011010000

00000011000000100000

Key

Arkansas

Arizona

. . .

Virginia

00001000000100000001Wyoming

Chapter 2. DB2 for i5/OS performance basics 13

provides a type of key compression. Any key value, of any length, can be represented by
a small bytecode. Additional key information, such as first and last row and number of
occurrences, helps to get faster access to the data.

� Vector

The vector contains a bytecode value for each row in the table. This bytecode represents
the actual key value found in the symbol table and the respective row in the database
table. The bytecodes are in the same ordinal position in the vector, as the row it
represents in the table. The vector does not contain any pointer or explicit references to
the data in the table.

Figure 2-2 shows the components of an EVI.

Figure 2-2 Encoded-vector index

When executing queries that contain joins, grouping, and ordering, a combination of binary
radix indexes and EVIs might be used to implement the query. When the selected row set is
relatively small, a binary radix index usually performs faster access. When the selected row
set is roughly between 20% and 70% of the table being queried, table probe access using a
bitmap, created from an EVI or binary radix index, is the best choice.

Also, the optimizer and database engine have the ability to use more than one index to help
with selecting the data. This technique might be used when the local selection contains AND
or OR conditions, a single index does not contain all the proper key columns, or a single index
cannot meet all of the conditions. Single key EVIs can help in this scenario since the bitmaps
or relative record number (RRN) lists created from the EVIs can be combined to narrow down
the selection process.

Recommendation for EVI use
EVIs are a powerful tool for providing fast data access in decision support and query reporting
environments. However, to ensure the effective use of EVIs, you must implement them using
the guidelines:

Note: Because the vector represents a relative record number list, an EVI cannot be used
to order records. EVIs also have a limited use in joins.

276083000750Wyoming

34030111122249Virginia
. . .

73009976052Arkansas

50008000511Arizona

CountLast
Row

First
RowCodeKey

Value

Symbol Table

19

508

507

76

25

94
183

172

11

CodeRow
Number

Vector

14 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Create EVIs on:

� Read-only tables or tables with a minimum of INSERT, UPDATE, and DELETE activity

� Key columns that are used in the WHERE clause: local selection predicates of SQL
requests, and fact table join columns when using Star Join Schema support

� Single-key columns that have a relatively small set of distinct values

� Multiple-key columns that result in a relatively small set of distinct values

� Key columns that have a static or relatively static set of distinct values

� Nonunique key columns, with many duplicates

Create EVIs with the maximum bytecode size expected:

� Use the WITH n DISTINCT VALUES clause on the CREATE ENCODED VECTOR INDEX
statement.

� If unsure, consider using a number greater than 65535 to create a 4-byte code, avoiding
the EVI maintenance overhead of switching bytecode sizes as additional new distinct key
values are inserted.

When loading data, keep in mind that:

� You drop EVIs, load the data, and then create EVIs.

� EVI bytecode size is assigned automatically based on the number of actual distinct key
values found in the table.

� The symbol table contains all key values, in order; there are no keys in the overflow area.

2.2 Query engines: an overview

Data is the key. Quick and reliable access to business data is critical to making crucial
business decisions. A robust database management system (DBMS) has excellent
performance capabilities and automated, built-in management and administration
functionality. It allows businesses to concentrate on making decisions based on the
information contained in their database, rather than managing the database.

Integrated into IBM OS/400® (i5/OS), DB2 for i5/OS has its roots in the integrated relational
database of the IBM System/38™, the predecessor of the AS/400 and iSeries servers.
Although the database was always relational in nature, native file operations were used to
access the data.

With the debut of the AS/400 in 1988 came the introduction of SQL on the platform. SQL is an
industry standard (SQL 2003) to define database objects (Data Definition Language (DDL))
and manipulate database data (Data Manipulation Language (DML)). SQL provides an
alternative and additional method for accessing data. Both SQL and native methods can
coexist. Focusing primarily on OLTP applications, the database has satisfied customer
requirements for well over 20 years.

More recently, a new breed of applications started to dominate development efforts. These
applications are designed to accommodate rapidly changing business needs and processes.
To address the issues and satisfy the demands of the new application world, IBM considered
the following options:

� Continue to enhance the existing product
� Acquire a new database technology
� Re-engineer the existing product

Chapter 2. DB2 for i5/OS performance basics 15

The continual enhancement of the product did not seem to be a viable proposition. The
increasing development resources required to maintain the existing code resulted in a
reduction of resources available to provide new functionality in a timely manner.

Acquiring a new database technology would compromise the basic tenets that distinguish the
iSeries from the rest of the industry. These include the integration of the database within
OS/400 and the ease-of-use characteristics of the database that minimize administration
efforts. Losing these characteristics would significantly reduce the cost of ownership benefits
of the iSeries.

Re-engineering the existing product was a more practical solution. However, this could easily
become an overwhelming and potentially unsustainable task if an attempt was made to
re-engineer the entire product. It could also impact portions of the product that continue to
provide solid and efficient support to existing applications and functions.

After considering the options, IBM chose to re-engineer the product. We did so with the
added decision to focus only on those aspects of the product for which re-engineering offered
the greatest potential. The potential offered the ability to:

� Support modern application, database, and transactional needs

� Allow the continued development of database functionality in an efficient and timely
manner

� Maintain and enhance the self-managing value proposition of DB2 for i5/OS

� Provide a foundation to handle increasingly more complex query environments

� Improve query performance consistency and predictability

� Incorporate state-of-the-art techniques

In line with this decision, the query engine was identified as an area that would benefit
substantially from such a re-engineering effort. The best current technologies and algorithms,
coupled with modern object-oriented design concepts and object-oriented programming
implementation, were applied in the redesign of the query engine and its components.

To guarantee existing applications continue to work and to make new or even existing
applications profit from the new designed product, IBM decided to implement an additional
query engine. The newly redesigned query engine in DB2 for i5/OS is the SQL Query Engine
(SQE). The existing query engine is referred to as the Classic Query Engine (CQE). Both
query engines coexist in the same system.

The staged implementation of SQE enabled a limited set of queries to be routed to SQE in
V5R2 and even more in V5R3. In general, read-only single table queries with a limited set of
attributes were routed to SQE but a PTF to V5R2 and V5R3 increased the number. Over
time, more queries will use SQE, and increasingly fewer queries will use CQE. At some point,
all queries, or at least those that originate from SQL interfaces, will use SQE.

Note: SQE processes queries only from SQL interfaces, such as interactive and
embedded SQL, Open Database Connectivity (ODBC) and Java™ Database Connectivity
(JDBC™).

16 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

2.2.1 Database architecture before V5R2M0

For systems prior to the release of V5R2M0, all database requests are handled by the CQE.
Figure 2-3 shows a high-level overview of the architecture of DB2 for i5/OS before OS/400
V5R2. The optimizer and database engine are implemented at different layers of the
operating system.

Figure 2-3 Database architecture before the release of V5R2M0: Classic Query Engine

Most CQE query decisions are made above the machine interface (MI) level. In CQE, the
interaction between the optimizer and the query execution component occurs across the MI,
resulting in interface-related performance overhead.

2.2.2 Current database architecture

With the release of V5R2M0, a new SQE was shipped. SQE and CQE coexist in the same
database environment. Depending on the database requests, the Query Dispatcher (refer to
2.2.3, “Query Dispatcher” on page 19) decides to route the query to either the CQE or SQE.

While both the new SQE and the existing CQE can handle queries from start to finish, the
redesigned engine simplifies and speeds up queries. In addition to providing the same
functionality as CQE, SQE also performs these functions:

� Moves the optimizer below the MI for more efficient query processing

� Separates and moves improved statistics to the Statistics Manager dashboard

� Uses an object-oriented design that accelerates the delivery of new database functionality

� Uses more flexible, independent data access options to provide autonomous query cruise
control

� Uses enhanced algorithms to provide greater responsiveness and query handling

� Provides enhanced performance on long-running complex query terrains

� Retains road maps to provide ease of use in query driving

Chapter 2. DB2 for i5/OS performance basics 17

� Provides additional and enhanced query feedback and debug information messages
through the Database Monitor and Visual Explain interfaces

There are several new and updated components of SQE in OS/400 V5R2 through i5/OS
V5R4, including:

� Query Dispatcher
� Statistics Manager
� SQE Optimizer
� Data Access Primitives
� SQE Plan Cache

Figure 2-4 shows an overview of the DB2 for i5/OS architecture on i5/OS V5R4 and where
each SQE component fits. The functional separation of each SQE component is clearly
evident. In line with design objectives, this division of responsibility enables IBM to more
easily deliver functional enhancements to the individual components of SQE, as and when
required.

Figure 2-4 Current database architecture: coexisting CQE and SQE

Note: Most of the SQE Optimizer components are implemented below the MI level, which
translates into enhanced performance.

18 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Object-oriented design
The SQE query optimizer was implemented using an object-oriented design. It uses a
tree-based model of the query, where each node is an independent and reusable component.
These components can interact and interface with each other in any given order or
combination. Each node can be optimized and executed independently. This design allows
greater flexibility when creating new methods for query implementation.

With this new design, the ability to use an index in reverse order can be easily implemented
by simply adding a new node. The procedural nature of CQE prevents it from being easily
enhanced to read an index in reverse order.

Another example that demonstrates how the object-oriented tree model makes SQE easier to
enhance is SQE support for nonsensical queries. The term nonsensical describes a query
statement that does not return any result rows, for example:

Select * from testtable where 1 = 0

Surprisingly, many applications use this type of query to force no rows to be returned.
Because of the procedural nature of CQE, it is virtually impossible to enhance CQE to
recognize the fact that 1 will never equal 0. Therefore, CQE implements this query using a
table scan. In contrast, the tree node model of SQE easily allows a node to be added to check
for nonsensical predicates before reading any rows in the specified table.

Figure 2-5 shows an example of the node-based implementation used in SQE. In this
example, NODE1 represents a typical index probe access method. New nodes to check for
nonsensical queries and to index in reverse order are added.

Figure 2-5 Object-oriented design: tree-based model of queries

2.2.3 Query Dispatcher

The function of the Query Dispatcher is to route the query request to either CQE or SQE,
depending on the attributes of the query. One of these attributes includes the interface from
which the query originates, which is either SQL-based (embedded SQL, ODBC, or JDBC) or
non-SQL based (OPNQRYF and Query/400). All queries, irrespective of the interface used,
are, therefore, processed by the dispatcher. It is not possible for a user or application
program to influence this behavior or to bypass the dispatcher.

Original Design Additional Nodes

Node 3
Test index

for predicate

Node 2
Bring index
into memory

Node 4
Use index in
reverse order

Node 5
Check for nonsense

queries

Node 1
Index Probe

Note: Only SQL queries are considered for the SQE. Non-SQL queries, such as, those
created by OPNQRYF and Query/400 are not SQL-based.

Chapter 2. DB2 for i5/OS performance basics 19

Figure 2-6 illustrates how different database requests are routed to the different query
engines.

Figure 2-6 Query Dispatcher routing database requests to the query engines

The staged implementation of SQE enabled a limited set of queries to be routed to SQE in
V5R2. In general, read-only single-table queries with a limited set of attributes were routed to
SQE. With the V5R2 PTF applied (PTF SI07650), the dispatcher routes many more queries
through SQE. More single table queries and a limited set of multi-table queries can take
advantage of the SQE enhancements. Queries with OR and IN predicates might be routed to
SQE with the enabling PTF as are SQL queries with the appropriate attributes on systems
with symmetric multiprocessing (SMP) enabled. V5R3 enhanced the V5R2 set of queries by
adding, Views, subselects, Common Table Expressions, Derived Table, Unions,
UPDATEs/DELETEs/INSERTs and Star Schema joins without QAQQINI overrides.

In i5/OS V5R4, a much larger set of queries is implemented in SQE, including those
implemented with V5R2 and V5R3, plus many queries with the following types of attributes:

� LIKE predicates
� LOB columns
� ALWCPYDTA(*NO)
� Sensitive cursor
� Recursive Common Table Expressions
� Online analytical processing (OLAP) functions (RANK, ROW NUMBER)

SQL queries that continue to be routed to CQE in i5/OS V5R4 have the following attributes:

� Table Functions or Lateral correlation
� Scalar Functions: UPPER, LOWER, or TRANSLATE
� Scalar Functions: CHARACTER_LENGTH, POSITION, or SUBSTRING with a UTF-8 or

UTF-16 argument

System Licensed Internal Code (SLIC)
Parts of the SQE Optimizer

now reside in SLIC

SQL-Based Interfaces
ODBC/JDBC/CLI

Embedded and Interactive SQL
Run SQL Scripts
Query Manager

Net.Data
RUNSQLSTM

Non-SQL Interfaces
QPNQRYF
Query/400

QQQQry API

DATACQE SQE

Query Dispatcher

CQE SQE

Optimizer

Note: For more information about PTF SI07650, see Informational APAR II13486 on the
Web at:

http://www-912.ibm.com/n_dir/nas4apar.nsf/042d09dd32beb25d86256c1b004c3f9a/61ff
e88d56a943ed86256c9b0041fbeb?OpenDocument

20 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

http://www-912.ibm.com/n_dir/nas4apar.nsf/042d09dd32beb25d86256c1b004c3f9a/61ffe88d56a943ed86256c9b0041fbeb?OpenDocument

� CCSID character conversion
� Sort sequence other than *HEX
� DB2 Multisystem (for example, Distributed Table)
� References to logical files
� Tables with select or omit logical files over them

The dispatcher also has the built-in capability to reroute an SQL query to CQE that was
initially routed to SQE. A query typically reverts to CQE from SQE whenever the optimizer
processes table objects that define any of the following logical files or indexes:

� Logical files with the SELECT/OMIT DDS keyword specified

� Logical files built over multiple physical file members

� Nonstandard indexes or derived keys, such as logical files specifying the DDS keywords
RENAME or Alternate Collating Sequence (ACS) on a field referenced in the key

� Sort sequence NLSS specified for the index or logical file

Table 2-2 contains a summary of the information contained in this section. You can find a
detailed description by i5/OS version of how the Query Dispatcher routes queries to SQE and
CQE in The Query Dispatcher section in chapter 2 of the latest version of Preparing for and
Tuning the SQL Query Engine on DB2 for i5/OS, SG24-6598.

Note: The QAQQINI option IGNORE_ DERIVED_INDEX allows SQE to process the query
even when a derived key or select/omit index exists over a table in the query. If allowed to
run, SQE ignores the derived and select/ omit indexes.

Derived keys occur when either the Create Logical File (CRTLF) command’s data
description specification (DDS) specifies keys that are derivations, for example Substring,
or if an NLSS sort sequence is active when the CREATE INDEX SQL statement is
performed. By default, if one of these indexes exists over a table in the query, SQE is not
allowed to process the query.

Note: SQL requests that are passed back to CQE from SQE might experience an
overhead of up to 10 to 15% in the query optimization time. However, that overhead is not
generated every time that an SQL statement is run. After the access plan is built by CQE,
the Query Dispatcher routes the SQL request to CQE on subsequent executions. The
overhead appears when the access plan is built the first time or rebuilt by the optimizer.

Chapter 2. DB2 for i5/OS performance basics 21

Table 2-2 SEQ Integration Timeline

2.2.4 Statistics Manager

In releases before V5R2, the retrieval of statistics was a function of the CQE Optimizer. When
the optimizer needed to know information about a table, it looked at the table description to
retrieve the row count and table size. If an index was available, the optimizer might then
extract further information about the data in the table. Figure 2-7 illustrates how CQE relies on
indexes for statistics.

V5R2 V5R2* V5R3 V5R4

Single Table X X X X

Grouping X X X X

Distinct X X X X

Ordering X X X X

Joins X X X

OR & IN Predicates X X X

SMP X X

STAR_JOIN INI Option X X

Views/Nested Table Expressions(NTEs)
/Common Table Expressions(CTEs)

X X

Update/Delete X X

Subqueries X X

Unions X X

LIKE Predicates X

LOBs (Referenced in queries) X

Sensitive Cursors (ALWCPYDTA(*NO)) X

Lateral Correlations NTEs X

CCSID/Sort Sequences/Translation

Select/Omit and Derived Key Index Support
(Ignore option via QAQQIN file)

User Defined Table Functions

Read Triggers

Distributed Queries via DB2 Multisystem

Native Database Logical File references

Non-SQL Queries (QQQQry API, Query/400,
OPNQRYF)

Note: * V5R2 + SI07650

22 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Figure 2-7 CQE Optimizer and Statistics Retrieval

In V5R2, the collection of statistics was removed from the optimizer and is now handled by a
separate component called the Statistics Manager. The Statistics Manager does not actually
run or optimize the query. It controls the access to the metadata and other information that is
required to optimize the query. It uses this information to answer questions posed by the
query optimizer. The Statistics Manager always provides answers to the optimizer. In cases
where it cannot provide an answer based on actual existing statistics information, it is
designed to provide a predefined answer.

Figure 2-8 shows the new design with Statistics Manager.

Figure 2-8 SQE Optimizer and Statistics Manager

Note: This new statistical information is used only by the SQE. Queries that are dispatched
to the CQE do not benefit from available statistics, nor do they trigger the collection of
statistics.

Above MI Level

CQE Optimizer

Encoded
Vector IndexRadix IndexTable Size

Row Count

Statistics Retrieval

Access Plan
SQL

Query

Below MI Level

SQE Optimizer

Encoded
Vector IndexRadix IndexTable Size

Row Count

Statistics
Manager

Access Plan
SQL

Query

Chapter 2. DB2 for i5/OS performance basics 23

The Statistics Manager controls the access to the metadata that is required to optimize the
query. It uses this information to provide answers to the questions posed by the query
optimizer. The Statistics Manager typically gathers and keeps track of the following
information:

� Cardinality of values

This is the number of unique or distinct occurrences of a specific value in a single column
or multiple columns of a table.

� Selectivity

Also known as a histogram, this information is an indication of how many rows will be
selected by any given selection predicate or combination of predicates. Using sampling
techniques, it describes the selectivity and distribution of values in a given column of the
table.

� Frequent values

This is the top nn most frequent values of a column together with a count of how frequently
each value occurs. This information is obtained by using statistical sampling techniques.
Built-in algorithms eliminate the possibility of data skewing. For example, NULL values
and default values that can influence the statistical values are not taken into account.

� Metadata information

This includes the total number of rows in the table, which indexes exist over the table, and
which indexes are useful for implementing the particular query.

� Estimate of I/O operation

This is an estimate of the number of I/O operations that are required to process the table
or the identified index.

You can obtain the majority of this information from existing binary-radix indexes or
encoded-vector indexes. An advantage of using indexes is that the information is available to
the Statistics Manager as soon as the index is created or maintained.

2.2.5 SQE Optimizer

Like the CQE Optimizer, the SQE Optimizer controls the strategies and algorithms that are
used to determine which data access methods should be employed to retrieve the required
data. Its purpose is to find the best method to implement a given query.

A fundamental characteristic distinguishes the SQE Optimizer from the CQE Optimizer. The
SQE Optimizer gains access to the statistical data collected by the Statistics Manager, by
simply asking questions related to the system and the tables used in the query. Based on this
information, the access method is determined based on the lowest cost of CPU utilization and
I/O utilization.

Because most of the SQE Optimizer functionality is implemented beneath the MI and is
consequently closer to the data, the database management system provides greater flexibility
and increased performance. In addition the SQE is able to utilize the constraint definitions
from the database to rewrite queries in a more efficient way. For example Referential Integrity
constraints may allow the optimizer to rewrite queries to minimize the number of joins
required to satisfy the SQL request.

The CQE Optimizer uses a clock-based time-out algorithm. The CQE Optimizer
re-sequences the priority of the indexes, based on the number of matching index columns
and operators used in the WHERE clause of the SQL statement. This approach ensures that
the most efficient indexes are optimized first, before the set time limit expires.

24 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

In contrast, the amount of time that the SQE Optimizer spends optimizing an access plan is
unlimited. A check is done to determine if any indexes exist on the table, with keys built over
the columns specified in WHERE or SELECT clauses of the SQL statement. These indexes
are then re-sequenced so that the most appropriate indexes are processed first and
reorganized further based on index-only access, index probe selectivity, total index
selectivity, and the size of the index keys.

2.2.6 Data Access Primitives

The basic function of SQE Data Access Primitives is to implement the query. Using the data
access methods derived from the object-oriented, tree-based architecture, Data Access
Primitives provide the implementation plan of the query.

The SQE Data Access Primitives have a more aggressive approach to the use of System i
resources, such as, main storage and subsystem resources. Because the SQE data access
algorithms are more in tune with i5/OS single-level storage, SQE data access plans use table
scans more frequently than CQE.

Although the SQE Data Access Primitives use a number of the data access methods found in
CQE, the data access methods have undergone dramatic re-engineering to take advantage
of the System’s architectural strengths.

2.2.7 Access plan

An access plan is the method used for a specific SQL statement to get access to the data. If
the access plan does not exist, it is created the first time that an SQL statement is executed.
If the access plan already exists, it is compared with the information provided by the Statistics
Manager (SQE) or by the query optimizer in CQE. If the optimizer decides to use another
access path, the access plan is updated.

If you use SQL statements in programs, there are different ways to embed, prepare, and
execute your SQL statements. These different methods affect the creation time of the access
plan for the specified SQL statements. All executable SQL statements must be prepared
before they can be executed. The result of preparation is the executable or operational form
of the statement. We can differentiate between the three methods:

� Static SQL

Static SQL statements are embedded in the source code of a host application program.
These host application programs are written in high-level languages, such as COBOL or
RPG. The host application source code must be processed by an SQL pre-compiler
before compiling the host application program itself. The SQL pre-compiler checks the
syntax of the embedded SQL statements and turns them into host language statements
that interface with the database manager upon execution of the program. This process is
often referred as binding.

The SQL statements are therefore prepared before running the program and the
associated access plan persists beyond the execution of the host application program.

In static SQL, the SQL statements that must be executed are already known at compile
time. The precompiler checks the syntax and converts the SQL statement into an
executable form, as well as creates an access plan that is embedded into the program
object. If the access plan is changed because of an altered memory pool or the creation of

Note: For SQE, the indexes are ordered for each query’s selection so that the indexes that
access the smallest number of entries are examined first. For CQE, the indexes are
generally ordered from mostly recently created to oldest.

Chapter 2. DB2 for i5/OS performance basics 25

new indexes, the access plan is updated in the program object. In this way, a program
object can grow over time, even if no modifications are performed.

� Dynamic SQL

Dynamic SQL statements are prepared at the time an SQL application is executed. The
SQL statements are passed to the database manager in the form of a character string.
This string uses interfaces with the PREPARE and EXECUTE statements or an
EXECUTE IMMEDIATE type of statement.

Programs that contain embedded dynamic SQL statements must be precompiled like
those that contain static SQL. Unlike static SQL, the dynamic SQL statements are
checked, constructed, and prepared at run time. The source form of the statement is a
character or graphic string that is passed to the database manager by the program that is
using the static SQL PREPARE or EXECUTE IMMEDIATE statement. The operational
form of the statement persists for the duration of the connection or until the last SQL
program leaves the call stack. Access plans associated with dynamic SQL might not
persist after a database connection or job is ended.

� Extended dynamic SQL

An extended dynamic SQL statement is neither fully static nor fully dynamic. The Process
Extended Dynamic SQL (QSQPRCED) API provides users with extended dynamic SQL
capability. Like dynamic SQL, statements can be prepared, described, and executed
using this API. Unlike dynamic SQL, the plan is stored in the package by this API and it
persist until the package or statement is explicitly dropped.

The iSeries Access ODBC driver and toolbox JDBC driver both have extended dynamic
SQL options available. They interface with the QSQPRCED API on behalf of the
application program.

2.2.8 SQL packages

SQL packages are permanent objects with the object type *SQLPKG used to store
information related to prepared, extended dynamic SQL statements. They can be used by the
iSeries Access for Windows® ODBC driver and the IBM Toolbox for Java JDBC driver. They
are also used by applications which use the QSQPRCED API interface.

The SQL package contains all the necessary information to execute the prepared statement.
This includes registry of the statement name, the statement text, the internal parse tree for
the statement, definitions of all the tables and fields involved in the statement, and the query
access plan needed to access the tables at run time.

Creation time of SQL packages
In the case of ODBC and JDBC, the existence of the package is checked when the client
application issues the first prepare of an SQL statement. If the package does not exist, it is
created at that time, even though it might not yet contain any SQL statements. In the case of
QSQPRCED, creation of the package occurs when the application calls QSQPRCED
specifying function 1.

Note: SQL Packages are not used for static SQL on i5/OS like in other DB2 databases.

Note: When using embedded SQL, no separate SQL package is created, but the access
plan is integrated into the program or service program object.

26 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Advantages of SQL packages
Because SQL packages are a shared resource, the information built when a statement is
prepared is available to all the users of the package. This saves processing time, especially in
an environment when many users are using the same or similar statements. Because SQL
packages are permanent, this information is also saved across job initiation or termination
and across initial program loads (IPLs). In fact, SQL packages can be saved and restored on
other systems. By comparison, dynamic SQL requires that each user go through the prepare
processing for a particular statement and do this every time the user starts the application.

SQL packages also allow the system to accumulate statistical information about the SQL
statements. Accumulating such information results in better decisions about how long to keep
cursors open internally and how to best process the data needed for the query. As indicated
previously, this information is shared across users and retained for future use. In the case of
dynamic SQL, every job and every user must relearn this information.

2.2.9 SQE Plan Cache

The SQE Plan Cache is a repository that contains query implementation plans for queries
optimized by the SQE Optimizer. Query access plans generated by CQE are not stored in the
Plan Cache. The architecture of DB2 for i5/OS allows for only one Plan Cache per iSeries
server or logical partition (LPAR).

Access plans generated by CQE are not stored in the SQE Plan Cache; instead, they are
stored in SQL Packages, the system-wide statement cache, and job cache. The purposes of
the SQE Plan Cache are to:

� Facilitate the reuse of a query access plan when the same query is re-executed
� Store runtime information for subsequent use in future query optimizations

Once an access plan is created, it is available for use by all users and all queries, regardless
of where the query originates. Furthermore, when an access plan is tuned, when creating an
index for example, all queries can benefit from this updated access plan. This eliminates the
need to reoptimize the query, resulting in greater efficiency.

Before optimizing an incoming query, the optimizer looks for the query in the plan cache. If an
equivalent query is found, and the associated query plan is found to be compatible with the
current environment, the already-optimized plan is used, avoiding full optimization.

Figure 2-9 shows the concept of reusability of the query access plans stored in the SQE Plan
Cache. The SQE Plan Cache is interrogated each time a query is executed using SQE.

Chapter 2. DB2 for i5/OS performance basics 27

Figure 2-9 Plan Cache

In addition, unlike CQE, SQE can save multiple different plans for the same query. This
method is useful in more dynamic environments where the plan changes depending on user
inputs, available memory, and so on. If a valid access plan is found, it is used to implement
the query. Otherwise a new access plan is created and stored in the SQE Plan Cache for
future use. However, access plans generated by CQE are not stored in the SQE Plan Cache;
instead, they are stored in SQL Packages, the system-wide statement cache, and job cache.

To illustrate this concept, assume that Statement 2 in Figure 2-9 is executed for the first time
by SQE. The access plan for Statement 2 is stored in the SQE Plan Cache. Statement 4 is
issued by CQE. It is not stored in the SQE Plan Cache. It can, however, be stored in the SQL
Package.

The SQE Plan Cache is automatically updated with new query access plans as they are
created, or is updated for an existing plan (the next time the query is run) when new statistics
or indexes become available. The SQE Plan Cache is also automatically updated by the
database with runtime information as the queries are run. It is created with an overall size of
512 Megabytes (MB). Each SQE Plan Cache entry contains the original query, the optimized
query access plan and cumulative runtime information gathered during the runs of the query.
In addition, several instances of query runtime objects are stored with a SQE Plan Cache
entry. These runtime objects are the real executable and temporary storage containers (hash
tables, sorts, temporary indexes, and so on) used to run the query. All systems are currently
configured with the same size SQE Plan Cache, regardless of the server size or the hardware
configuration.

When the SQE Plan Cache exceeds its designated size, a background task is automatically
scheduled to remove plans from the SQE Plan Cache. Access plans are deleted based upon
the age of the access plan, how frequently it is being used and how much cumulative
resources (CPU/IO) were consumed by the runs of the query. The total number of access
plans stored in the SQE Plan Cache depends largely upon the complexity of the SQL
statements that are being executed. In certain test environments, there have been typically
between 10,000 to 20,000 unique access plans stored in the SQE Plan Cache. The SQE Plan
Cache is cleared when a system Initial Program Load (IPL) is performed.

CQE
Access plans are not

stored in the Plan Cache
Statement 4

Statement 3

SQL PKG-1

Statement 3

Statement 5

SQL PKG-2

Statement 1

Statement 2

SQL Pgm-A

Plan X

Plan Y

Plan Z

Plan Cache

28 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Multiple access plans can be maintained for a single SQL statement. Although the SQL
statement itself is the primary hash key to the SQE Plan Cache, different environmental
settings can cause different access plans to be stored in the SQE Plan Cache. Examples of
these environmental settings include:

� Different SMP Degree settings for the same query
� Different library lists specified for the query tables
� Different settings for the job’s share of available memory in the current pool
� Different ALWCPYDTA settings

Currently, the SQE Plan Cache can maintain a maximum of three different access plans for
the same SQL statement. As new access plans are created for the same SQL statement,
older access plans are discarded to make room for the new access plans. There are,
however, certain conditions that can cause an existing access plan to be invalidated.
Examples of these include:

� Specifying REOPTIMIZE_ACCESS_PLAN(*YES) or (*FORCE) in the QAQQINI table or in
the SQL Script

� Deleting or recreating the table that the access plan refers to

� Deleting an index that is used by the access plan

2.2.10 Open Data Path

When a full Open is required, a path is created at runtime to get the data in and out. This
path, called an open data path, is the path through which all of the read and write operations
for the table and file are performed. ODPs provide a way for more than one program in the
same job to share the same file status information (I/O feedback areas), file pointer positions,
and storage area.

A full open creates an Open Data Path (ODP) that will be then be used to fetch, update,
delete, or insert rows. Since there will typically be many fetch, update, delete, or insert
operations for an ODP, as much processing of the SQL statement as possible is done during
the ODP creation so that the same processing does not need to be done on each subsequent
I/O operation. An ODP may be cached at close time so that if the SQL statement is run again
during the job, the ODP will be reused. Such an open is called a pseudo-open and is much
less expensive than a full open. ODPs ar quite useful as they can improve performance,
reduce the amount of main storage needed by the job, and reduces files opens/closes.

For more information about SQE and CQE, see the latest version of the IBM Redbook
Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS, SG24-6598.

Also refer to DB2 Universal Database for iSeries Database Performance and Query
Optimization, which is available in the iSeries Information Center on the Web at:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajq/rzajq.pdf

Note: There is a separate SQE Plan Cache for each IASP for the system, so varying the
IASP also causes the SQE Plan Cache to be cleared.

Chapter 2. DB2 for i5/OS performance basics 29

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajq/rzajq.pdf

30 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Part 2 Gathering, analyzing,
and querying database
performance data

In this part of the book, we describe and discuss the different ways to gather database
performance data. After we explain how to gather this data, we describe the different ways to
analyze it with the tools that DB2 for i5/OS has. Later, we show you how to query the
Database performance data and how to tie this data to one of the preferred tools called Visual
Explain. We also dedicate some chapters to the new tools provided by i5/OS in V5R4. At the
end, we present a methodology to do Performance Analysis.

This part contains the following chapters:

� Chapter 3, “Overview of tools to analyze database performance” on page 33

� Chapter 4, “Gathering SQL performance data” on page 89

� Chapter 5, “Analyzing SQL performance data using iSeries Navigator” on page 117

� Chapter 6, “Custom Database Monitor Analysis” on page 173

� Chapter 7, “SQE Plan Cache and SQE Plan Cache Snapshots” on page 237

� Chapter 8, “Analyzing database performance data with Visual Explain” on page 275

� Chapter 9, “Index Advisor” on page 319

� Chapter 10, “SQL performance analysis: a methodology” on page 363

Part 2

© Copyright IBM Corp. 2007. All rights reserved. 31

32 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Chapter 3. Overview of tools to analyze
database performance

Database performance is a high priority in any system. The objective is to maximize system
resource utilization, while achieving maximum performance throughput. Therefore, analyzing
your queries is the most important step to ensure that they are tuned for optimal performance.

You must select the proper tools for collecting and analyzing the database performance data
first to ensure that your queries are tuned for optimal performance.

V5R4 DB2 for i5/OS has new tools to collect and analyze database performance.
Furthermore, some existing tools were enhanced in order to offer you more accuracy and
productivity during the analysis, troubleshooting or optimization of your queries.

In this chapter, we introduce and provide information about the tools for monitoring and
analyzing the database performance data of your SQL queries.

3

© Copyright IBM Corp. 2007. All rights reserved. 33

3.1 Introduction to the tools

By using the following analysis tools to obtain information through the monitoring processes,
you should be able to take the appropriate corrective actions:

� SQE Plan Cache (V5R4)
� SQE Plan Cache Snapshots (V5R4)
� Detailed Database Monitor(enhanced in V5R4)
� Summary Database Monitor
� Visual Explain - (enhanced in V5R4)
� Index Advisor(V5R4)
� Evaluators
� Current SQL for a Job
� Debug Messages
� PRTSQLINF

Every time an SQL statement goes through the query optimization process, there is feedback
from the optimizer. In Figure 3-1 we illustrate the different types of feedback produced by the
optimizer. We also show how to get more details about specific queries by drilling down
directly to Visual Explain, from SQE Plan Cache Snapshot and from Detailed Database
Monitor as well. We can also drill down to Visual Explain.

Figure 3-1 Query Optimization feedback

The tools for monitoring and analyzing the database performance data of your SQL queries
are based on the above types of feedback.

Note: Access plans generated by CQE are not stored in the SQE Plan Cache. Instead,
they are stored in SQL Packages, program objects, the system-wide statement cache, and
job cache.

Index Advisor
SQ E Plan

Cache

Query
Optim ization

SQ L request

Detailed
DB M onitor

Data

Debug
Job Log

M essages

Print SQ L
Inform ation
M essages

Visual
Explain

Query Optim ization Feedback

Summ arized
DB M onitor

Data

SQ E Plan
Cache

Snapshots

Evaluators
Index
MQ T

Current SQ L
for a Job

34 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

3.2 SQE Plan Cache

Since the new re-engineered SQL Query Engine (SQE) was introduced in DB2 UDB for
iSeries V5R2, it has been enhanced with additional capabilities in every subsequent release.
In V5R3, SQE maintains an internal cache of all access plans (called SQE Plan Cache)
created for all SQL statements that SQE serves. The Plan Cache helps improve SQL runtime
when statements are executed repeatedly. The SQE Plan Cache is always on, automatic and
has no Database Monitor Overhead. Although the SQE Plan Cache is activated automatically
after the iSeries finishes an IPL, it cannot be accessed by users in V5R3 and is cleared at
every system restart.

The purposes of the SQE Plan Cache are to:

� Facilitate the reuse of a query access plan when the same query is re-executed.

� Store runtime information for subsequent use in future query optimizations.

� Supply most of the information that a database monitor has without the overhead and disk
space that is used by the database monitor.

� Locate long running queries and drill down into Visual Explain in order to analyze specific
access plans.

Once an access plan is created, it is available for use by all users and all queries regardless
of where the query originates. Furthermore, when an access plan is tuned, after creating an
index for example, all queries can then benefit from this updated access plan. This eliminates
the need to re-optimize the query, resulting in greater efficiency.

In V5R4, you are now able to access through iSeries Navigator the SQE Plan Cache. This
feature enables you to identify areas for performance improvement of your SQL statements
that are served by SQE.

iSeries Navigator V5R4 provides you with a newly-designed graphical user interface (GUI)
that accommodates your efforts to analyze detailed performance-related information from
SQE as well as its SQL Performance Monitor. You will still need to use SQL Performance
Monitor (available since V5R1) for the analysis of SQL performance data maintained by the
Classic Query Engine (CQE).

Note: Access plans generated by CQE are not stored in the SQE Plan Cache. Instead,
they are stored in SQL packages, program objects, the system-wide statement cache, and
job cache.

Chapter 3. Overview of tools to analyze database performance 35

In order to see the properties of the SQE Plan Cache in iSeries Navigator, expand
Databases → The Database name. Select and right-click SQL Plan Cache Snapshot icon.
Select SQL Plan Cache → Properties menu items as shown in Figure 3-2.

Figure 3-2 How to get SQE Plan Cache Properties

The Properties window shown in Figure 3-3 opens.

As shown in Figure 3-3 SQE Plan Cache Properties window shows the following:

� Time of Summary

� Active Query Summary

– Number of Currently Active Queries
– Number of Queries Run Since Start
– Number of Query Full Opens Since Start

� Plan Usage Summary

– Current Number of Plans in Cache
– Current SQE Plan Cache Size
– SQE Plan Cache Size Threshold

36 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Figure 3-3 SQE Plan Cache Properties

Important: As you can see in the SQL Plan Cache Properties window, the Plan Cache
size Threshold is 512 MegaBytes. Therefore, keep checking the Current Plan Cache Size.

The SQE Plan Cache maintains the access plans with an algorithm that ensures that
frequently used access plans are kept for efficient reuse. The least-used access plans may
be wiped out if its storage is nearly full to make room for those which are used more often.
Therefore, you may not always see all access plans that SQE serves in its plan cache. The
number of access plans maintained in the Plan Cache may be much lower than the
number of SQE SQL statements run on the system because many statements can reuse
the same access plans.

The Plan Cache clears with IPL.

Chapter 3. Overview of tools to analyze database performance 37

You can View the Contents of the SQE Plan Cache by right-clicking on the SQL Plan Cache
Snapshot option and selecting SQL Plan Cache → Show Statements as shown in
Figure 3-4.

Figure 3-4 How to show statements of SQE Plan Cache

The SQL Plan Cache Statements window opens as shown in Figure 3-5.

In the new SQL Plan Cache Statements window that appears, the left pane shows the
following filtering options that you can use:

� Minimum runtime for the longest execution
� Queries run after a specified date and time
� Top ‘n’ most frequently run queries
� Top ‘n’ queries with the largest total accumulated runtime
� Queries ever run by a specified user
� Queries currently active
� Queries with index advised
� Queries with statistics advised
� Include queries initiated by operating system
� Queries that use or reference specified tables
� SQL statements that contain a specified text string

You can use any combination of these filtering options that serve your interest.

Note: The list of statements is initially empty. Read the Notice message in the right
window.

The list will appear after you choose the filters and press the Retrieve button.

38 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Figure 3-5 SQL Plan Cache Statements window

Refer to Chapter 7, “SQE Plan Cache and SQE Plan Cache Snapshots” on page 237 for
more details.

3.3 SQE Plan Cache Snapshots

The SQE Plan Cache is cleared when you do an IPL. This means that once you IPL the
system you lose all the contents of the SQE Plan Cache. For this reason it is nice to have a
method to save a copy of the contents of the SQE Plan Cache in a separate place. SQE Plan
Cache snapshots are images of the contents of the SQE Plan Cache. Its data is not Volatile.
SQE Plan Cache Snapshots cause no overhead. Its data capture is part of normal query
optimization and execution. The data of an SQE Plan Cache Snapshot is placed into a single
DB2 table.

Also keep in mind that the contents of the SQE Plan Cache are volatile and dynamic. Up to 3
access plans of the same SQL statement are kept in the Plan Cache. For this reason if lots of

Important: SQE Plan Cache exists on V5R2, V5R3 and V5R4 release versions. The SQE
Plan Cache GUI Interfaces in iSeries Navigator are available beginning in V5R4.

Restriction: Access plans generated by CQE are not stored in the SQE Plan Cache.
Instead, they are stored in SQL Packages, program objects, the system-wide statement
cache, and job cache.

Chapter 3. Overview of tools to analyze database performance 39

concurrent SQL users are executing the same SQL Statement, an SQL statement executed
by an user 15 minutes ago may no longer have an entry in the Plan Cache. This is another
reason why the Plan Cache Snapshots are important.

You can create an SQE Plan Cache Snapshot from the following interfaces:

� SQL Plan Cache Snapshot icon of iSeries Navigator

In this interface, you have the filtering capability when you are doing the dump of the Plan
Cache.

� SQL interface (CALL QSYS2/DUMP_PLAN_CACHE)

Be aware that there is no filtering when using this stored procedure to the Plan Cache
dump.

SQE Plan Cache Snapshots have very interesting analysis methods such as “before” and
“after” comparisons (For details, refer to Chapter 7, “SQE Plan Cache and SQE Plan Cache
Snapshots” on page 237).

As shown in Figure 3-6, create a snapshot of an SQE Plan Cache by performing the following
steps:

1. From the main iSeries Navigator window, expand the Databases container. Then, move
down to right-click SQL Plan Cache Snapshots and select New → Snapshot menu
items.

Figure 3-6 Creating a snapshot of SQE Plan Cache

Note: SQE Plan Cache Snapshots support only SQE SQL Statements. Remember that
SQE Plan Cache Snapshots are based on the SQE Plan Cache which does not support
CQE SQL Statements.

40 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

A New Snapshot of SQL Plan Cache window appears as shown in Figure 3-7.

Figure 3-7 New Snapshot of SQL Plan Cache window

Note: Filtering criteria for SQE Plan Cache snapshot creation:

In many occasions, you may want to create a snapshot with only some specific filtering
criteria. You can see that the option named “Include plan cache entries that meet the
following criteria” provides up to 11 filtering criteria for you to use:

� Minimum runtime for the longest execution - for filtering out fast statements
� Queries run after a specific date and time
� Top ‘n’ most frequently run queries
� Top ‘n’ queries with the largest total accumulated runtime
� Queries ever run by a specific user
� Queries currently active
� Queries with index advised
� Queries with statistics advised
� Include queries initiated by the operating system
� Queries that use or reference specific tables
� SQL statements that contain specific syntax

Remember that these criteria only apply to those SQL statements that are served by
SQE only. For SQL statements served by CQE, you need to start SQL Performance
Monitor that is also enhanced in V5R4 with filtering criteria specification.

Chapter 3. Overview of tools to analyze database performance 41

2. After making your filtering choices, click the OK button. To analyze your SQE Plan Cache
Snapshot, right-click and select Analyze as shown in Figure 3-8.

Figure 3-8 Selecting Analyze menu item of an SQE Plan Cache Snapshot

When you select Analyze, the dashboard will appear as shown in Figure 3-9.

Figure 3-9 The dashboard

42 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Refer to Chapter 7, “SQE Plan Cache and SQE Plan Cache Snapshots” on page 237 for
more details.

3.4 The Database Performance Monitors

The Database Performance Monitors are integrated tools used to collect database-specific
performance information for SQL requests being run on the iSeries. They let you keep track
of resources that SQL statements use. The collected data is output to a database table or
tables. Then reports or queries are run against the collected data from these output tables to
analyze query optimization and the performance behavior of the database request. This
analysis helps to identify and tune performance problem areas.

The SQL Performance Monitors can collect information for SQL-based interfaces such as
embedded SQL, Open Database Connectivity (ODBC), and Java Database Connectivity
(JDBC).

The SQL Performance Monitors provide all the information that the STRDBG or PRTSQLINF
commands provide plus additional information such as:

� System and job name
� SQL statement text
� Start and End time stamp
� Estimated processing time
� Total rows in table queried
� Number of rows selected
� Estimated number of rows selected
� Estimated number of joined rows
� Key columns for advised index
� Total optimization time
� Join type and method
� Open data path (ODP) implementation
� QAQQINI settings

The collected information and statistics can be analyzed later to determine information such
as:

� The number of queries that rebuild access plans
� The number of temporary indexes that have been created over a particular table
� The queries that are the most time-consuming
� The user that is has the longest-running queries
� The queries that were implemented using reusable ODPs
� Whether the implementation of a particular query changed with the application of a PTF or

a new release (uses a before and after comparison of monitor data)

Note: The Database Performance Monitor name is also known as SQL Performance
Monitor. From this point forward in the book, we use “SQL Performance Monitor” to refer
to the iSeries Navigator function. We use “Database Monitors” when using a green screen
and accessing the tool by running the Start Database Monitor (STRDBMON) CL
command.

Note: Monitor data is not volatile. The information from the optimizer and engine is
captured at a point in time.

Chapter 3. Overview of tools to analyze database performance 43

Database monitors have existed on DB2 UDB for iSeries for many releases, but the usability
of these monitors takes a big step forward in V5R4 DB2 for i5/OS with addition of both pre-
and post-filters. These filters are very similar to the filters that were available with the SQL
Plan Cache viewer. Database monitor filters are important for a couple of reasons. First, the
filters can minimize the overhead and disk space consumed by a database monitor collection.
As a case in point, a customer recently ran a database monitor collection on all jobs on their
system for 15 minutes. An SQL-based ERP application that was running on the system at the
time resulted in almost 3 million rows of detailed monitor data. Applying one of the filters
available in V5R4 (refer to figure Figure 3-12 on page 46) such as only collecting monitor data
for a certain user or only for SQL statements referencing a specified table could have
significantly reduced the amount of data that had to be collected by DB2 for i5/OS.

Two types of SQL Performance Monitors are available with OS/400 and i5/OS, which are
both packaged with the operating system:

� Detailed Monitor
� Summary Monitor, also known as the Memory-based Database Performance Monitor

We discuss both monitors in the following sections.

3.4.1 Detailed Monitor

The Detailed Monitor gathers information about SQL requests and non-SQL queries, such as
OPNQRYF. It has details about optimization and runtime behavior. The monitor data is
dumped into a single output table.

Working with the Detailed SQL Performance Monitor interface of iSeries
Navigator

As shown in Figure 3-10, you can to create a Detailed SQL Performance Monitor from the
iSeries Navigator interface by performing the following steps:

1. Expand Database → Database Name.

Note: These filters are made available when you start a new SQL Performance Monitor
collection via the graphical interface or the STRDBMON CL command.

Note: Both Detailed Database Monitor and Summary Database Monitor have CQE and
SQE supports.

Important: Use care when running the Detailed Monitor for long periods of time. The
collection and output of performance data can consume both disk and CPU resources with
its collection, resulting in system overhead.

44 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

2. Select and right-click SQL Performance Monitors.

Figure 3-10 Creating a new SQL Performance Monitor

3. Select New → SQL Performance Monitor menu items. SQL Performance Monitor
Wizard window opens as shown in Figure 3-11.

Figure 3-11 SQL Performance Monitor Wizard

4. On the SQL Performance Monitor window, perform the following steps:

a. Type a name for your SQL Performance Monitor.
b. Choose a type (Detailed or Summary).

Chapter 3. Overview of tools to analyze database performance 45

c. Choose a Schema for SQL Performance Monitor data.

5. Click the Next button. The SQL Performance Monitor Wizard window opens. As shown in
Figure 3-12, from the SQL Performance Monitor Wizard window, select one or more of the
following filters:

– Minimum estimated query runtime
– Job Name
– Job user
– Current user
– Internet Address
– Queries that access these tables

6. Choose one of the following Activity to monitor options:

– Only collect monitor output for user activity
– Collect monitor output for user and system activity

Figure 3-12 SQL Performance Monitor Wizard - filters

46 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

7. Click Next button. The SQL Performance Monitor Wizard window opens showing the
Details of your choices as shown in Figure 3-13.

Figure 3-13 SQL Performance Monitor Wizard window - Details

8. Click the Finish button.

The aforementioned filters eliminate the number of rows in a database monitor collection,
however, there are still hundreds of fields in a single database monitor row and many monitor
row types that have to be sorted through to identify and fix performance problems. Previously,
this maze of data made it a challenge to quickly look at a database monitor collection and
determine if there were any issues, unless you were a DB2 performance expert.

Thus, a dashboard summary was added in V5R4 to address this issue. On the first analysis of
a database monitor collection, DB2 for i5/OS will automatically summarize some of the key
performance indicators in the collection and then present the results in the summary window
(the dashboard summary) as shown in Figure 3-14. This summary will allow an analyst to

Chapter 3. Overview of tools to analyze database performance 47

quickly scroll through some high-level DB2 performance indicators to determine if more
detailed analysis is required.

Figure 3-14 Analysis Overview window: the dashboard

V5R4 also addresses another efficiency issue with the database monitor analysis reports by
providing drill-through analysis. In the past, the reports could be used to find an SQL
statement with performance issues. However, if more detailed research of this statement was
needed with a tool such as Visual Explain, the user had to exit out of the tool and then
manually copy that SQL statement for Visual Explain analysis. As shown in Figure 3-15, an
analyst can easily right-click to drill into more detail with Visual Explain. This is a great
enhancement for improving the efficiency of your database analysts and administrators.

Once you get to the Analysis Overview window the different indicators may have a check
mark under Summary Available and also under Statements Available. If you click the SQL

48 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Statement line, the Summary and Statements buttons will be activated. Click the Statements
button and a window like the one shown in Figure 3-15 is displayed.

Figure 3-15 Drilling down to Visual Explain from SQL Performance Monitor

Figure 3-16 shows the Visual Explain graphic of the query selected as shown in Figure 3-15.

Figure 3-16 Visual Explain graphic started from the SQL Statements Interface

STRDBMON and ENDDBMON CL commands
The CL commands, Start Database Monitor (STRDBMON) and End Database Monitor
(ENDDBMON), provide the interface for the Detailed Performance Monitors. The commands
start and end the collection of database performance statistics.

Chapter 3. Overview of tools to analyze database performance 49

The STRDBMON command gathers information about a query in real-time and stores this
information in an output table. The information can help you determine whether your system
and your queries are performing as they should or whether they need fine-tuning. The
monitor can be specified for a specific job or all jobs on system. Collected information and
statistics are placed in a single output database table made up of different record types.

For a complete description of the parameters refer to “Starting a Detailed Database Monitor
using the command interface” on page 90.

The ENDDBMON command ends the Database Monitor for a specific job or all jobs on the
server. If an attempt to end the monitor on all jobs is issued, there must have been a previous
STRDBMON issued for all jobs. If a particular job is specified on this command, the job must
have the monitor started explicitly and specifically on that job.

When collecting information for all jobs, the Database Monitor collects on previously started
jobs or new jobs that are started after the monitor starts. Each job in the system can be
monitored concurrently by two monitors:

� One monitor started specifically on that job, and another started for all jobs in the system.

� When monitored by two monitors and each monitor is logging to a different output file,
monitor information is written to both files.

Database Monitors can generate significant CPU and disk storage overhead when in use.
You can gather performance information for a specific query instead of every query to reduce
this overhead on the system. You can also gather only specific monitoring data for smaller
monitor collection since large monitor database files can slow analysis.

Consider the following guidelines:

� If possible, try collecting data only for the job that you want.

� Collect monitor data only for long-running SQL statement based on the optimizer’s
estimated runtime.

� Eliminate the SQL statement generated by DB2.

� By using the table filter function, collect only statements that reference certain tables such
as the one shown in the following example:

STRDBMON OUTFILE(o) COMMENT(‘TABLEFILTER(lib1/tab1,lib2/tab2)’)

For more information about valid parameter settings for the QAQQINI table, refer to
“Monitoring your queries using Start Database Monitor (STRDBMON)” in DB2 Universal
Database for iSeries Database Performance and Query Optimization, which is available in
the iSeries Information Center on the Web at:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp?topic=/rzajq/rzajqmst.htm

Note: Be aware that many of the parameters of the STRDBMON CL Command are new.
Therefore, they are not available on pre-V5R4 releases.

Note: To use the TABLE FILTER function, apply the following required PTFs in advance.

� V5R2 PTFs: SI15035, SI15139, SI15140, SI15142, SI15143, SI15154, and SI15155
� V5R3 PTFs: SI15955, SI16331, SI16332, and SI16333

50 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp?topic=/rzajq/rzajqmst.htm

3.4.2 Summary Monitor or Memory Resident Database Monitor

The Memory Resident Database Monitor is a tool that provides another method for monitoring
database performance. This tool is intended only for the collection of performance statistics in
SQL queries. To collect performance statistics for non-SQL queries, you should start a
Detailed Database Monitor as explained in previous sections. The Memory-based Database
Monitor or Summary Monitor, with the help of a set of APIs, manages database monitoring
information for the user in memory. This memory-based monitor reduces CPU overhead and
resulting table sizes.

The Monitor data is placed into multiple DB2 tables. You can configure pre-filtering and
post-filtering to collect summarized Database Monitor data as well.

Working with the Summary SQL Performance Monitors interfaces of
iSeries Navigator

In order to create a Summary SQL Performance Monitor, perform the following steps:

1. Follow the first steps you use to Create a Detailed SQL Performance Monitor. When the
SQL Performance Monitor wizard window asks you for the Monitor type, choose the
Summary option instead of Detailed as shown in Figure 3-17. Click the Next Button.

Figure 3-17 SQL Performance Monitor Wizard window - Summary

Chapter 3. Overview of tools to analyze database performance 51

2. The SQL Performance Monitor Wizard window asks you to choose the optional
information you want to collect as shown in Figure 3-18.

Figure 3-18 SQL Performance Monitor Wizard window - Summary Optional information

3. After you make your choices, click the Next button. The SQL Performance Monitor Wizard
permits you to select the jobs you would like to monitor as shown in Figure 3-19. You can
select to monitor All jobs or Specific jobs. Click the Next button.

Figure 3-19 Selecting the jobs you would like to monitor

Note: You can choose one or more of the following:

� Table scans and arrival sequences
� Indexes used
� Index creation
� Data sorts
� Temporary file use
� Indexes considered
� Subselect processing

52 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

4. As shown in Figure 3-20, the SQL Performance Monitor Wizard window lists your choices.
Review the details and click the Finish button. The SQL Performance Monitor starts to
collect data.

Figure 3-20 Review the details of SQL Performance Monitor Wizard - summary

To analyze the Summary SQL Performance Monitor data, perform the following steps:

1. Click Analyze menu item as shown in Figure 3-21.

Figure 3-21 How to analyze SQL Performance Monitor - summary

Chapter 3. Overview of tools to analyze database performance 53

2. A Result window to monitor the Summary SQL Database Monitor opens as shown in
Figure 3-22.

Figure 3-22 Result window to monitor the Summary SQL Database Monitor

Refer to Chapter 5, “Analyzing SQL performance data using iSeries Navigator” on page 117
for more details.

54 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

API support for the Memory Resident Database Monitor
A set of application programming interfaces (APIs) provides support for the Summary Monitor
or Memory-Resident Database Monitor that allow you to perform the activities listed in
Table 3-1.

Table 3-1 External API description

Figure 3-23 illustrates the different events in the Memory Resident Database Monitor life
cycle and the APIs associated with each event.

Figure 3-23 Memory Resident Database Monitor events and their APIs

For more information, search with Memory Resident Database Monitor external API
description in the V5R3 iSeries Information Center on the Web at:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp

API Description

QQQSSDBM This API starts the Memory-based Database Monitor. Database Monitor data is
collected in the threaded process but summarized at the job level.

QQQCSDBM This API clears and frees the associated memory are of the SQL monitor.

QQQDSDBM This API dumps the contents of the SQL monitor table. The API does not force a
clear operation (QQQCSDBM) of the memory. Data continues to be added to
memory until the QQQCSDBM or QQQESDBM API is called.

QQQESDBM This API ends the memory-based SQL monitor.

QQQQSDBM This API queries the status of the Database Monitor, and returns information about
the activity of the SQL and the original Database Monitor.

Continue

(QQQCSDBM)
Clear SQL monitor memory

Pause
(QQQESDBM)

End the SQL monitor
(QQQDSDBM)

Dump the SQL monitor

Start/Restart
(QQQSSDBM)

Start the SQL monitor

End
(QQQESDBM)

End the SQL monitor
(QQQDSDBM)

Dump the SQL monitor

Status
(QQQQSDBM)

Query status of the
database monitor

Chapter 3. Overview of tools to analyze database performance 55

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp

Memory Resident Database Monitor external table description
The Memory Resident Database Monitor uses its own set of tables instead of using the single
table with logical files that the STRDBMON monitor uses. The Memory Resident Database
Monitor tables closely match the suggested logical files of the STRDBMON monitor. The
tables are:

QAQQQRYI Query (SQL) information
QAQQTEXT SQL statement text
QAQQ3000 Table scan
QAQQ3001 Index used
QAQQ3002 Index created
QAQQ3003 Sort
QAQQ3004 Temporary table
QAQQ3007 Optimizer time-out/all indexes considered
QAQQ3008 Subquery
QAQQ3010 Host variable values
QAQQ3030 Materialized Queries Tables considered

For more information about the definitions of these tables, search on Memory Resident
Database Monitor: DDS in the V5R3 iSeries Information Center:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp

Detailed versus Summary Monitor

The STRDBMON command can constrain server resources when collecting performance
information. This overhead is mainly attributed to the fact that performance information is
written directly to a database table as the information is collected. The memory-based
collection mode reduces the server resources consumed by collecting and managing
performance results in memory. This allows the monitor to gather database performance
statistics with a minimal impact to the performance of the server as a whole (or to the
performance of individual SQL statements).

The Summary Monitor collects much of the same information as the Detailed Database
Monitor, but the performance statistics are kept in memory. At the expense of some detail,
information is summarized for identical SQL statements to reduce the amount of information
collected. The objective is to get the statistics to memory as fast as possible while deferring
any manipulation or conversion of the data until the performance data is dumped to a result
table for analysis.

The Summary Monitor is not meant to replace the Detailed Database Monitor. There are
circumstances where the loss of detail in the summary Monitor is not sufficient to fully analyze
an SQL statement. In such cases, we recommend that you use the Detailed Database
Monitor. Also keep in mind that the Summary monitor information cannot be analyzed using

Note:

� iSeries Navigator provides a graphical interface for these APIs, through the Summary
SQL Performance Monitor to administer the memory-based collection mode and to run
analytical dababase performance reports from the information collected.

� Unlike the Detailed Monitor, the Memory-Resident Database Monitor or Summary
Monitor outputs or dumps the collected information into 10 separate, categorized output
tables. To get the consolidated view of information collected for a single statement, you
must run join queries.

56 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp

Visual Explain as it is shown in Figure 3-1 which in some cases it could be a very big
disadvantage.

3.4.3 Importing a Database Monitor to SQL Performance Monitor

You can import monitor data that has been collected using Start Database Monitor
(STRDBMON) command or some other interface by using iSeries Navigator. This is a very
useful feature because this can be used to import Detailed SQL Performance monitor data
that was collected on a system that was at a previous release of the operating system. This
will allow you to use the new analysis tools to analyze data that was collected on a system at
an earlier release.

To import monitor data, perform the following step:

As shown in Figure 3-24, right-click SQL Performance monitors and select Import. Once
you have imported a monitor, you can analyze the data.

Figure 3-24 Importing a Database Monitor

3.4.4 The Monitor Comparison feature of SQL Performance Monitor

With the new monitor comparison utility, users can utilize database monitor collections to help
determine what change is causing performance issues. This technique requires that a
customer collects and saves database monitor collections when a critical DB2 workload or
report is performing and running well on their server. Once performance of this workload or
report changes, a new database monitor collection can be compared with the “good
performance” monitor collection to help identify the differences causing performance
problems. This can be a long-running process with large database monitor collections, so
plan accordingly.

Chapter 3. Overview of tools to analyze database performance 57

As shown in Figure 3-25, in order to compare SQL Performance Monitor data via iSeries
Navigator, perform the following steps:

1. Expand System → Databases.

2. Select SQL Performance Monitor icon.

3. Right click the SQL Performance Monitor which you want to compare.

4. Click Compare menu item.

Figure 3-25 Compare menu item of SQL Performance Monitors

58 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

5. As shown in Figure 3-26 the Compare SQL Performance Data window opens. Choose the
SQL Performance Monitor you want to compare as shown in Figure 3-26.

Figure 3-26 Compare SQL Performance Data window

Chapter 3. Overview of tools to analyze database performance 59

6. Click Compare button. The Compare SQL Performance Data window opens as shown in
Figure 3-27.

Figure 3-27 Compare SQL Performance Data window

3.5 Visual Explain

Visual Explain provides a graphical representation of the optimizer implementation of a query
request. The query request is broken down into individual components with icons that
represent each unique component. Visual Explain also includes information about the
database objects that are considered and chosen by the query optimizer. Visual Explain’s
detailed representation of the query implementation makes it easier to understand where the
greatest cost is incurred.

60 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Visual Explain shows the job-run environment details and the levels of database parallelism
that were used to process the query. It also shows the access plan in diagram form, which
allows you to zoom to any part of the diagram for further details as shown in Figure 3-28.

Figure 3-28 Visual Explain diagram

Visual Explain is a component of iSeries Navigator. From the Run SQL Script Center, you can
access Visual Explain directly, either from the menu or from the toolbar.

Visual Explain is based on detailed optimizer information. As shown in Figure 3-29, the
optimizer sends detailed feedback information to SQE Plan Cache and to the Detailed DB
Monitor. Therefore, in V5R4 you can also drill down into Visual Explain from the following
interfaces:

� SQE Plan Cache
� SQE Plan Cache Snapshots which are based on SQE Plan Cache information
� Detailed Database Monitor

Note: The Run SQL Script interface always deletes ODPs to force full optimization.

Chapter 3. Overview of tools to analyze database performance 61

Figure 3-29 Feedback Mechanisms integrated with Visual Explain

Note: Visual Explain supports both SQE and CQE as described below:

� SQE

– SQE Plan Cache
– SQE Plan Cache Snapshot
– Detailed Database Monitor
– Current SQL for a Job
– Run SQL Script

� CQE

– Detailed Database Monitor
– Run SQL Script

Indexes
Advised

SQ E Plan
Cache

Query
Optim ization

SQ L request

Detailed
DB M onitor

Data

Visual
Explain

V isual Explain

Current SQ L
for a Job

SQ E Plan
Cache

Snapshots

62 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Also, from the Current SQL for a Job window we can drill down into Visual Explain by clicking
the Visual Explain button as shown in Figure 3-30.

Figure 3-30 Drilling down into Visual Explain from Current SQL for a Job window

SQL Performance Monitor is used to create Database Monitor data and to analyze the
monitor data with predefined reports. For more information about the SQL Performance
Monitor, refer to Chapter 5, “Analyzing SQL performance data using iSeries Navigator” on
page 117.

Visual Explain works with the monitor data that is collected by SQL Performance Monitor on
that system or by the Start Database Monitor (STRDBMON) command. Visual Explain can
also analyze Database Monitor data that is collected on other systems after data is restored
on the iSeries server.

For more information about the Visual Explain, refer to Chapter 8, “Analyzing database
performance data with Visual Explain” on page 275.

3.6 Index Advisor

The optimizer has always provided index advised information in the past. On V5R4 the
optimizer provides new and better ways to get at the advice. System-wide Index Advisor is a
new feature which started in V5R4. It is autonomic, causes no overhead and is always on. If
the optimizer determines that a permanent index might be beneficial, it returns the key
columns necessary to create the suggested index. The data of the System-wide Index
Advisor is placed into SYSIXADV table in the QSYS2 schema.

SQE and CQE can take advantage of the System-wide Index Advisor as described below:

� SQE provides complex advice based on all parts of the query
� CQE only provides basic advice based on local selection predicates

Chapter 3. Overview of tools to analyze database performance 63

iSeries Navigator has an interface where Index adviced is listed for the System, or Schema or
Table. Also, you can create indexes directly from the GUI of iSeries Navigator.

As shown in Figure 3-31, from the Index Advisor menu item, you can choose the following:

� Index Advisor
� Clear all advised indexes
� Prune advised indexes

Figure 3-31 How to access System-wide Index Advised

The Index Advisor window opens as shown in Figure 3-32.

Note: Additional indexing analysis might be required.

The system only adds rows, the user must manage the data. There are options to clear or
prune the SYSIXADV table in the QSYS2 schema.

Note: The result list of the Index Advisor depends on what icon you right-click. As
mentioned before you can access the Index Advisor menu item when you right-click the
following icons:

� System
� Schema
� Table

64 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Figure 3-32 Index Advisor window

The Index Advisor window has a list of Indexes advised whose columns attributes are
explained with more details in Chapter 9, “Index Advisor” on page 319.

You also can access Index Advised information from the following interfaces:

� SQL Plan Cache Statements window - See Chapter 7, “SQE Plan Cache and SQE Plan
Cache Snapshots” on page 237

� SQL Plan Cache Snapshots - See Chapter 7, “SQE Plan Cache and SQE Plan Cache
Snapshots” on page 237

� Detailed SQL Performance Monitor of iSeries Navigator - See Chapter 5, “Analyzing SQL
performance data using iSeries Navigator” on page 117

� Summary SQL Performance Monitor of iSeries Navigator - See Chapter 5, “Analyzing
SQL performance data using iSeries Navigator” on page 117

� Visual Explain - See Chapter 8, “Analyzing database performance data with Visual
Explain” on page 275

� Querying the Database Monitor view 3020 - Index advised (SQE) - See Chapter 6,
“Custom Database Monitor Analysis” on page 173

� Print SQL Information

� Debug messages in job log

Note: The PRTSQLINF and Debug messages do not have the same level of index advised
as those from Database Monitors and SQE Plan Cache.

Chapter 3. Overview of tools to analyze database performance 65

Enhancements to the Index Advisor
In V5R3, the Index Advisor assists you more in suggesting indexes because the index
advised code was improved to recommend more useful indexes. To take advantage of this
enhancement, you should apply the MF34412 program temporary fix (PTF).

Index Advisor offers the following improvements:

� Advanced Radix Index advice

– It provides advice for a more optimal index, even when a suboptimal index exists and is
potentially used. For example, the query has two predicates, but an index exists on
only one of the predicates.

– It improves the handling of advice regarding join predicate, grouping, ordering, and
distinct clauses. A more complex combination of the record selection criteria can be
advised.

– Advice is based on a high-level view of the query rather than the implementation
chosen.

� Advice for an encoded-vector index (EVI)

– EVI recommendations are made for certain grouping queries.

– Recommendations for the EVI are made when Lookahead Predicate Generation (LPG)
predicates are generated.

In the past, you might have received the CPI432F message, which advised the use of an
index when an index already existed in key columns. Now the SQE Optimizer does not advise
an index if one already exists, even when the existing index differs from the advised index.
This occurs as a result of the one of the following reasons:

� The keys of the existing index match the keys of the advised index.

� The keys of the existing index are in a different, but acceptable, order than the advised
index.

The order of the keys in the existing index are opposite of the advised index. For example, the
existing index is in descending order, and the advised index wants the keys in ascending
order.

For more information, refer to Chapter 9, “Index Advisor” on page 319.

Note: The improved Index Advisor is only for SQL requests that are routed to SQE.

Note: This advanced function can increase the possibility of recommending an
unnecessary index where a suboptimal index is sufficient. Therefore, you must analyze
the recommendations that the advisor makes.

Attention: The CQE optimizer when suggesting indexes only considers the selection
criteria and does not include join, ordering, and grouping criteria. The SQE optimizer
includes selection, join, ordering, and grouping criteria when suggesting indexes.

Note: There are times when the keys have to be in a specified order, such as in sorting,
so the SQE Optimizer advises an index if the existing one does not match the correct
order.

66 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

3.7 Evaluators

In this section, we cover two very useful tools that we have named the Evaluators. The tools
are:

� Index Evaluator
� MQT Evaluator

3.7.1 Index Evaluator

Prior to V5R3, there was no easy way to determine if there were any unnecessary indexes
over a physical file or table. No information specified whether an index was used by a query
or when an index was used to give statistics to the query optimizer. The only information
available was from the Last Used Date. Unfortunately, customers erroneously used the date
to determine whether an index was used recently, and if it was not used, they deleted the
index.

After the indexes were deleted, performance problems resulted because the optimizer no
longer had the necessary indexes over the table to use in making a good decision. In V5R3
iSeries Navigator and V5R3 i5/OS, the Index Evaluator was added to give statistics about
index usage.

The new statistics fields support the following characteristics:

� There are two counters, one for when the index is used in the query implementation and
one for when the index was used to gather statistics.

� Both counters are set by the two query engines, SQE and Classic Query Engine (CQE).
The statistic fields are updated regardless of the query interface, such as Query/400,
SQL/400®, OPNQRYF, or QQQQRY API, that is used.

� The statistics survive IPLs.

� Save/Restore does not reset the statistics on an index if an index is restored over an
existing index.

� In V5R3, the statistics start counting after the PTFs are applied and active.

� For each counter, there is a corresponding time stamp to go with it from the last time the
counter was bumped.

� The data is stored internally in the index object. At this time, there is no way to query this.
To determine usage of an index over a specific time frame, look at each time stamp on
each individual index.

The new statistics are query statistics only. Native RPG, COBOL, and similar OPEN
operations that are not queries are not covered by the new statistic fields. However, we have
had native OPEN usage statistics for many years. If a user wants to determine whether the
index is used via these nonquery interfaces, look at the existing statistics via fields such as
Object Last Used.

Note: To activate this feature, apply the PTFs for APAR SE14709, iSeries Access Service
Pack 2 for V5R3, and PTF SI14782.

Note: If an index is restored that does not exist on the system, the statistics are reset.

Note: You can also use the QUSRMBRD API to return statistics.

Chapter 3. Overview of tools to analyze database performance 67

To find this information, in iSeries Navigator, right-click the desired table and then click
SHOW INDEXES as shown in Figure 3-33.

Figure 3-33 Getting index information in iSeries Navigator

In this example, you can see two indexes in the ITEM_FACT table as shown in Figure 3-34.

Figure 3-34 Two indexes in the ITEM_FACT table

The two counters update the columns as shown in Figure 3-35:

� Last Query Use
� Last Query Statistics Use
� Query Use Count
� Query Statistics Use

Last Query Use shows the time stamp when the index was last used to access tables in a
query, and Query Use Count is updated with a corresponding count. Last Query Statistics
Use is updated when the optimizer uses the index to gather statistical information about a

68 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

table, and Query Statistics Use is updated with a corresponding count as shown in
Figure 3-35.

Note that the user has to scroll several screens to the right in order to get the usage statistics.

Figure 3-35 New information about indexes in V5R3 iSeries Navigator

To see the other information, such as an index definition and description, right-click the index.
Figure 3-36 shows an example of an index definition.

Figure 3-36 Index Definition example

Figure 3-37 shows an example of a detailed index description.

Chapter 3. Overview of tools to analyze database performance 69

Figure 3-37 The detailed index descriptions

3.7.2 MQT (Materialized Query Tables) Evaluator

Materialized Query Table (MQT) support is a new feature introduced in V5R3 via a group of
program temporary fixes (PTFs) delivered as of April 29, 2005. MQTs are built directly into
V5R4.

An MQT is a DB2 table that contains the results of a query, along with the query’s definition.
An MQT can also be thought of as a materialized view or automatic summary table that is
based on an underlying table or set of tables. These underlying tables can be referred to as
the base tables. By running the appropriate aggregate query once using the base tables,
storing the results and accessing the results on subsequent requests, data processing and
query performance can be significantly enhanced.

MQT provides the most benefit when you use queries that frequently aggregate or summarize
similar data from many rows that results in a few final groups (the ratio of base table rows to
distinct groups is many-to-one).

The functionality of an MQT is similar to the role of an index. Both objects provide a path to
the data that the user is normally unaware of. Unlike an index, a user might directly query the
MQT just like a table or view. However, adapting queries to use an MQT directly might not be
a trivial exercise for those who are general query users.

Note: You can also view the index information by using the Display File Description
(DSPFD) command on the table. But the information does not include the newly-added
fields in V5R3.

70 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

The MQT Optimization and Use has the following characteristics:

� The query must use SQE
� The query must match or partially match the MQT
� Using the MQT is costed like any other strategy
� Only 1 MQT will be used per query in V5R3
� The MQT data integrity is the user's responsibility
� RI between base tables can help in V5R4

As shown in Figure 3-38 the SQE Optimizer can rewrite the user’s query to use MQTs in
situations such as the following:

� Query uses MQTs pre-aggregated, pre-calculated, pre-joined data
� Can significantly increase query performance
� Can significantly decrease resource utilization

Figure 3-38 MQT as a choice for DB2 Query Optimizer (SQE)

Note: MQTs are not automatically maintained by the system. MQTs are User maintained
only.

DB2 Query
Optimizer
(SQE)

SQL Queries

T1 T2 T3

Base Tables

M1

MQT

No Query

Rewrite

Query
Rewrite

MQT in Action

Chapter 3. Overview of tools to analyze database performance 71

Figure 3-39 shows a Run SQL Script window with an SQL statement to create the MQT
REVENUESUMMARY in schema DBITSODB11.

Figure 3-39 Creating an MQT

72 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Consider an application configured to use MQTs and an SQL statement with aggregation as
shown in figure Figure 3-40.

Figure 3-40 SQL statement with aggregation

We executed and explained the statements above. As you can see in Figure 3-41 the Visual
Explain shows that the optimizer used the MQT DBITSODB11/REVENUESUMMARY.

Chapter 3. Overview of tools to analyze database performance 73

Figure 3-41 Visual Explain Showing the use of MQT

Attention: The Default behavior is not to use MQTs. You have to configure QAQQINI file
options to enable/disable MQTs support. In the example above we used a QAQQINI file as
shown in Figure 3-42.

74 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Figure 3-42 QAQQINI file configured to use MQTs

Characteristics of MQT usage feedback:

� Visual Explain will show MQT in place of one or more base tables
� Visual Explain does not indicate explicit MQT usage in V5R3
� Visual Explain supports “highlight MQT” in V5R4
� iSeries Navigator “Show MQTs” reports all MQTs on a table in V5R4
� SQL Performance Monitor contains information about MQT optimization and use
� Detailed Database Monitor only (that is, STRDBMON)

– 3030 Record
– 3000, 3001, 3002 Records
– 3014 Record
– 1000/3006 Records

The MQT evaluator was introduced in V5R4. The MQT evaluator shows usage statistics to
help you to determine if MQTs are being used as you expected.

Chapter 3. Overview of tools to analyze database performance 75

In order to determine that MQTs are being used as you expected right-click the table and
select Show Materialized Query Tables menu item as shown in Figure 3-43.

Figure 3-43 Selection Show Materialized Query Tables menu item

When you select the Show Materialized query Tables menu item the MQTs window
appears. As shown in Figure 3-44, some columns of the MQTs window such as Last Query
Use and Query Use Count, will show if the MQT has been used. Also, you can select
Definition or Description menu items to see more details about the selected MQT.

Figure 3-44 List of MQTs of a Table

76 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Select Definition menu item and Definition window will appear as shown in Figure 3-45. You
can see the definition of the MQTs of the selected table.

Figure 3-45 Materialized Query Table Definition

Select Description menu item and Description window will appear as shown in Figure 3-46.
You can see the description of the MQTs of the selected table.

Figure 3-46 MQT Description

Chapter 3. Overview of tools to analyze database performance 77

For detailed information about MQTs, refer to a 50-page IBM white paper named The
creation and use of materialized query tables within IBM DB2 UDB for iSeries by Michael
Cain. published in April 2005. To download a PDF file of this white paper, perform the
following steps:

1. Go to the following Web address:

http://www.ibm.com/iseries/db2

2. Click Getting Started tab.

3. In the Web page, locate and click the hot link: White Papers.

4. Locate and click the hot link line for the article named The creation and use of materialized
query tables within IBM DB2 UDB for iSeries.

5. Provide your information to register and download the paper.

Alternatively, you can download the paper from the Web at:

http://www-03.ibm.com/servers/enable/site/education/abstracts/438a_abs.html

Also, read MQTs topics in the Manual IBM Systems - iSeriesDB2 Universal Database for
iSeries Database Performance and Query Optimization Version 5 Release 4 at the
Information Center Web site:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

3.8 Current SQL for a Job function

You can use the Current SQL for a Job function to select any job running on the system and
display the current SQL statement being run, if any. In addition to displaying the last SQL
statement being run, you can edit and rerun it through the Run SQL Script option (linked
automatically) and display the actual job log for the selected job or, even end the job. You can
also use this function for database usage and performance analysis with the Visual Explain
tool as explained in Chapter 8, “Analyzing database performance data with Visual Explain” on
page 275.

Important: Current SQL only has Visual Explain capabilities for SQL statements
processed by SQE.

78 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

http://www.ibm.com/iseries/db2
http://www-03.ibm.com/servers/enable/site/education/abstracts/438a_abs.html
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

To start the Current SQL for a Job function, in iSeries Navigator left pane, right-click
Databases and select Current SQL for a Job as shown in Figure 3-47.

Figure 3-47 Selecting the Current SQL for a Job function in iSeries Navigator

Then the Current SQL window (Figure 3-48) opens. This window displays the name, user, job
number, job subsystem, and current user for the available jobs on your system. You can
select a job and display its job log, the SQL statement currently being run (if any), decide to
reuse this statement in the Run SQL Script Center, or end the job, provided that you have
sufficient authority.

Note: See the line “-- Statement currently running as of 05:22:37 PM”. If the line “Last
statement to finish as of...” appears, it is the time that the SQL statement button was
selected in iSeries Navigator. This is not an indication of when the SQL ran. The SQL
statement displayed might be the current SQL the job is running or the last SQL statement
ran in the job.

Chapter 3. Overview of tools to analyze database performance 79

Figure 3-48 Current SQL for a Job

In our example, we selected a Java Database Connectivity (JDBC) job and clicked the SQL
Statement button to view the last SQL statement that it ran, in the bottom part of the panel. To
go to its job log, we can click the Job Log button. After the SQL statement is displayed in the
bottom part of the panel, we can click the Edit SQL button to work on this same statement
with the Run SQL Script center as shown in Figure 3-50.

Important: In V5R4 the Current SQL for a Job returns more attributes about SQL requests
to help you more quickly identify the issue.

We recommend that users right-click the Database icon and select Current SQL for a
Job menu option. Also, with the proper authority, you can expand the System Name icon
then expand Work Management icon and select Active Jobs icon or Server Jobs icon.
As shown in figure Figure 3-49 a list of jobs will appear. Right-click a job and select Details
menu item and then Last SQL Statement menu item. The Run SQL Script Center similar
the one shown in figure Figure 3-50 will appear. If you need to drill down into Visual
Explain, the Current SQL for a Job is the preferred option.

80 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Figure 3-49 Last SQL Statement for a Job

Figure 3-50 Run SQL Scripts with Current SQL for a job

Click the Run Visual Explain button to perform direct analysis of the SQL statement as shown
in Figure 3-51.

Refer to Chapter 8, “Analyzing database performance data with Visual Explain” on page 275,
for a more detailed explanation about how to analyze a query and use the functionality in
Visual Explain within iSeries Navigator.

Chapter 3. Overview of tools to analyze database performance 81

Figure 3-51 Running Visual Explain in Current SQL for a job

3.9 Debug messages

Analyzing debug messages is another important tool for monitoring and tuning queries. When
doing so, keep in mind the following points:

� The debug messages are no longer being enhanced (that is, no new messages are being
added for queries that go through SQE).

� No new messages are being added for queries that go through SQE, for this reason the
SQE optimizer uses the closest CQE message and that message may or may not
accurately reflect the access plan built by the SQE optimizer.

� It is hard to tie a message to an SQL statement.

� It is difficult to search through all of the job log messages. It is text-based only.

� There is low overhead.

There are multiple methods of directing the system to generate debug messages while
executing your SQL statements such as:

� Selecting the option in the Run SQL Scripts interface of iSeries Navigator
� Using the Start Debug (STRDBG) CL command
� Setting the QAQQINI table parameter
� Using Visual Explain

Important: Starting in V5R4, IBM is treating Debug Messages as a non-strategic feedback
mechanism to analyze database Performance. There is no enhancement in V5R4.

82 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

You can choose to write only the debug messages for one particular job to its job log. If you
want to use iSeries Navigator to generate debug messages, perform the following steps:

1. In the Run SQL Scripts window, click Options → Include Debug Messages in Job Log
as shown in Figure 3-52.

Figure 3-52 Enabling debug messages for a single job

2. After you run your query, in the Run SQL Scripts window, select View → Joblog to view
the debug messages in the job log. In our example, we used the SQL statement shown in
Example 3-1.

Example 3-1 Example SQL statement

SELECT year, month, returnflag, partkey, quantity, revenue_wo_tax
 FROM veteam06.item_fact
 WHERE year = 2002 and month = 6 and returnflag = 'R';

The detailed job log describes information that you can use to identify and analyze
potential problem areas in your query such as:

– Indexes
– File join order
– Temporary result
– Access plans
– Open data paths (ODPs)

All of this information is written to the job log when under debug using the STRDBG
command.

Note: We can generate debug messages from the Visual Explain interface. On the other
hand, we cannot drill down to Visual Explain from Debug Messages interfaces.

Chapter 3. Overview of tools to analyze database performance 83

Figure 3-53 shows an example of the debug messages contained in the job log after you
run the previous query.

Figure 3-53 Job Log debug messages

After you enable these settings for a particular job, only debug messages relating to
queries running in that job are written to the job log. You see the same debug messages
with this option as those explained later when the QAQQINI parameter
MESSAGES_DEBUG is set to *YES. You also see additional SQL messages, such as
“SQL7913 - ODP deleted and SQL7959 - Cursor CRSRxxxx closed”, in the job log.

3. Select any of the debug messages displayed in the job log. Click File → Details to obtain
more detailed information about the debug message. Figure 3-54 shows an example of a
detailed debug message that is displayed.

By looking at the messages in the job log and reviewing the second-level text behind the
messages, you can identify changes that might improve the performance of the query
such as:

– Why an index was or was not used
– Why a temporary result was required
– Join order of the file
– Index advised by the optimizer

Figure 3-54 Detailed debug message information

84 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

When running SQL interactively, either through a 5250-session or via the Run SQL Scripts
window in iSeries Navigator, you can also use the STRDBG CL command to generate debug
messages in your job log.

By setting the value of the QAQQINI parameter MESSAGES_DEBUG to *YES, you can direct
the system to write detailed information about the execution of your queries into the job’s job log.

To activate this setting through the Run SQL Scripts interface of iSeries Navigator, perform
the following steps:

1. Select the QAQQINI table that you want to use as shown in Figure 3-55.

2. Select the MESSAGES_DEBUG parameter and change the parameter value as shown in
Figure 3-55. After you make the appropriate change, close the window.

3. In the Change Query Attributes window, click OK to save your changes.

Figure 3-55 Enabling debug messages in QAQQINI

The analysis of optimizer debug messages was made easier with the addition of a Predictive
Query Governor. By specifying a time limit of zero in the Predictive Query Governor, you can
generate query optimizer debug messages in the job log without running the query. The
query time limit is checked against estimated query time before initiating your query since the
optimization cost and access plan are determined prior to execution in cost-based
optimization.

The time limit is set on a per-job basis such as:

� The QRYTIMLMT parameter on the CHGQRYA CL command
� The QUERY_TIME_LIMIT parameter in the QAQQINI file
� The QQRYTIMLMT system value (CHGSYSVAL QQRYTIMLMT)

That is, you can analyze a query, which might take 16 hours to run, in only a few seconds.
Some changes can be made to the query or to the database. The effect can be modeled on

Remember: You also must run the Start Server Job (STRSRVJOB) CL command if your
query runs as a batch job.

Important: Changes made to the QAQQINI table are effective immediately. They affect all
users and queries that use this table. For example, if you set the MESSAGES_DEBUG
parameter to *YES in a particular QAQQINI table, all queries that use that QAQQINI table
write debug messages to their respective job logs.

Chapter 3. Overview of tools to analyze database performance 85

the query in a few minutes. The query is then run when the optimum implementation is
achieved.

One of the most important debug messages to look for is advice about the creation of
indexes, since the objective of creating indexes is to improve the performance of your
queries. The query optimizer analyzes the record selection in the query and determines,
based on the default estimate, whether the creation of an index can improve performance. If a
permanent index is beneficial, it returns the key fields necessary to create the suggested
index. You can find Index Advisor information in the CPI432F debug message. This takes us
to the next tool, which is the Index Advisor.

3.10 Print SQL information

The information contained in SQL packages, service programs, and embedded SQL
statements can also assist in identifying potential performance problems in your queries.

To view the information pertaining to the implementation and execution of your query, select
an SQL package from iSeries Navigator. Right-click the SQL package name and select
Explain SQL, as shown in Figure 3-56.

This is equivalent to using the Print SQL Information (PRTSQLINF) CL command that
extracts the optimizer access method information from the object and places that information
in a spool file. The spool file contents can then be analyzed to determine if any changes are
required to improve performance.

The information in the SQL package is comparable to the debug messages discussed in 3.9,
“Debug messages” on page 82. However, there is more detail in the first-level SQLxxxx
messages.

Figure 3-56 Selecting to print SQL information

Important: Starting in V5R4, IBM is treating Print SQL Information as a less strategic tool
to analyze database Performance.

86 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Figure 3-57 shows an example of the SQL package information that can be displayed. The
information pertaining to the join order of the tables, the access methods used in the
implementation of the query, and runtime statistics are available. Notice the messages that
indicate which QAQQINI query options file was used for executing the query and whether this
query implementation used symmetric multiprocessing (SMP).

Figure 3-57 Viewing SQL package information

You can also obtain this information by using the following PRTSQLINF CL command:

PRTSQLINF OBJ(library_name/program_name or package_name) OBJTYPE(*SQLPKG)

The PRTSQLINF CL command directs the output data to a spooled file, from which you can
display or print the information.

Note: If you are unsure of the program or package name, look at the program name above
the QSQ* module in the call stack when you use option 11 (Display call stack, if active) of
the Work with Active Jobs (WRKACTJOB).

Note: PRTSQLINF may not return the access plan last used for both program and
package objects. For example, if circumstances at execution time cause the query to be
re-optimized and the package or program is locked, then a new access plan is dynamically
generated and placed in the SQE Plan Cache (for SQL Query Engine (SQE) use). The
version stored in the package or program is not updated.

Chapter 3. Overview of tools to analyze database performance 87

88 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Chapter 4. Gathering SQL performance data

After you identify a possible Structured Query Language (SQL) performance problem, you
must start gathering SQL performance data. In this chapter, we discuss the different tools that
are available to gather this data. Among these tools are the Detailed SQL Performance
Monitor and the Summary SQL Performance Monitor.

We introduce the SQL Performance Monitor Wizard, new to V5R4, which enables you to start
a Performance Monitor collection using several new collection filters to set criteria on what
data is to be collected.

4

© Copyright IBM Corp. 2007. All rights reserved. 89

4.1 Types of SQL Performance Monitors

Database Monitors have been part of the OS/400 operating system since V3R6. Database
Monitors and SQL Performance Monitors are used to gather information about queries run in
DB2 for i5/OS. This information can help you determine whether your system and your
queries are performing as they should, or whether they require fine-tuning. There are two
types of SQL Performance Monitors:

� Detailed SQL Performance Monitors
� Summary SQL Performance Monitors (also known as Memory Resident Database

Monitors)

The following sections describe the different ways that you can enable these two types of
monitors to gather database performance data.

4.2 Collecting Detailed SQL performance data

There are different ways to start collecting detailed SQL performance data, depending on
what interface you are using. In this section, we look at several different ways to start an SQL
Performance Monitor, along with the various new parameters which can be used to filter what
monitor data is captured. The monitor can be started from any of the following:

� The CL command line (that is, the green-screen)
� The new SQL Performance Monitor Wizard
� Open Database Connectivity (ODBC) clients
� Object Linking and Embedding (OLE) DB clients
� Java Database Connectivity (JDBC) clients
� .NET clients
� An exit program

4.2.1 Starting a Detailed Database Monitor using the command interface

You can start a Detailed Database Monitor from the command line interface by using the
STRDBMON command. At V5R3 and earlier releases, you were limited to either specifying a
single job or *ALL jobs on the system. At V5R4, you can be more precise on what jobs you
wish to monitor. There are also parameters available on the STRDBMON command to set the
collection filters introduced in the previous section.

When you start a new monitor with the STRDBMON command, you must specify the file to
which the SQL performance information is to be written. If the file or member does not exist,
one is created based on the QAQQDBMN file in QSYS library. If the file or member does
exist, the record format of the file is checked to see if it is the same.

Note: Summary SQL Performance Monitor and Memory Resident Monitor are
synonymous terms. In this book, we will refer to this type of monitor only as the Summary
SQL Performance Monitor.

A Detailed Database Monitor and a Detailed SQL Performance Monitor also refer to the
same type of monitor. Generally, when starting the monitor using the STRDBMON
command, we refer to the Database Monitor, and when started using iSeries Navigator,
we refer to it as an Detailed SQL Performance Monitor.

90 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Consider the following parameters before you start database monitoring:

Basic parameters
The STRDBMON command uses the following basic parameters:

� OUTFILE

– The file name is required, the library name is optional.
– It is created if it does not exist or is reused if it does exist.

� OUTMBR

– Member to receive output: Defaults to first member in file(*FIRST)
– Replace or add records: Defaults to replace member in file (*REPLACE)

� JOB

This parameter defaults to the job issuing the STRDBMON command. The user can
specify a single job, specify *ALL for all jobs, or specify some subset of jobs. A subset of
jobs can be specified in several ways:

– All jobs for a particular user can be monitored with the following command:

STRDBMON OUTFILE(MYLIB/DBMON) JOB(*ALL/JOEUSER/*ALL)

– All of the same named jobs can be monitored for multiple users with the following
command:

STRDBMON OUTFILE(MYLIB/DBMON) JOB(*ALL/*ALL/QZDASOINIT)

– Generic job names and user names can also be specified to provide for further
flexibility with the following command:

STRDBMON OUTFILE(MYLIB/DBMON) JOB(*ALL/J*/QPADEV*)

If the monitor is started on all jobs or a subset of all jobs, any jobs waiting on job queues or
any jobs started during the monitoring period have statistics gathered from them after they
begin. If the monitor is started on a specific job, that job must be active in the server when
the command is issued.

� TYPE

This parameter allows the user to specify the type of data to be collected:

– *BASIC provides all necessary analysis data.

– *DETAIL collects the same data as *BASIC plus the 3019 row. This type of collection
causes a little more overhead on the system but will log statistics regarding database
I/O operations.

– *SUMMARY collects the same data as *BASIC.

Note: Be aware that many of the parameters of the CL Command STRDBMON are new.
Therefore, they are not available on pre-V5R4 releases.

Note: A monitor that is started over multiple jobs or all jobs on the system is known as
a public monitor.

Chapter 4. Gathering SQL performance data 91

� FRCRCD

This parameter allows you to control the number of rows that are kept in the row buffer of
each job being monitored before forcing the rows to be written to the output table. The
default value is *CALC.

By specifying a force row write value of FRCRCD(1), monitor rows are displayed in the log
as soon as they are created. FRCRCD(1) also ensures that the physical sequence of the
rows is most likely, but not guaranteed, to be in time sequence. However, FRCRCD(1)
causes the most negative performance impact on the jobs being monitored. By specifying
a larger number for the FRCRCD parameter, the performance impact of monitoring can be
reduced.

� INCSYSSQL

– This parameter uses the default value of *NO.

– *NO - No monitor records will be created for system-generated SQL statements.
Monitor records will only be created for user-specified SQL statements.

– *YES - Monitor records will be created for both user-specified and system-generated
SQL statements.

– *INI - Monitor records will be generated based on the value of the
SQL_DBMON_OUTPUT option in the current INI file. A value of *USER or *DEFAULT
creates monitor records for only user-specified SQL statements. A value of *SYSTEM
creates monitor records for only system-generated SQL statements. A value of *ALL
creates monitor records for both user-specified and system-generated SQL
statements. If no INI file exists, then a default value of *NO will be used for the
INCSYSSQL option.

� RUNTHLD

– This Parameter uses the default value of *NONE.

– If you type a runtime-threshold, the Monitor records will be created for all SQL
statements whose estimated runtime meets or exceeds this value.

� COMMENT

This parameter allows you to add a meaningful description to the collection. It specifies
the description that is associated with the Database Monitor record whose ID is 3018.

Important: The *BASIC parameter value is new and is the default at V5R4. This
collects the same level of detail as the *SUMMARY value did at V5R3 and earlier
releases. This change was made to avoid confusion with the Summary SQL
Performance Monitor, also known as the memory resident monitor. *SUMMARY is still
an option for the TYPE parameter, but is only provided for consistency with prior
releases and will provide the same detail as *BASIC. It is not possible to start the
memory resident Summary SQL Performance Monitor using the STRDBMON
command.

92 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Filter parameters
The new V5R4 collection filters can be applied using the STRDBMON command as well, as
shown in Figure 4-1. This is where you can specify to filter the data based on file name, user
name, or internet IP address.

Figure 4-1 New Database Monitor filters

� FTRFILE

– This parameter uses the default value of *NONE

– *ALL - Monitor records will be created for any SQL statement that uses any file in the
specified library. If none of the files used in the SQL statement come from the specified
library, no monitor records will be created for the SQL statement.

– File Name - Monitor records will be created only for those SQL statements that use the
specified file. Monitor records will not be created for any SQL statements that do not
use the specified file.

– Generic File-name - Monitor records will be created only for those SQL statements that
use a file that matches the generic prefix. If none of the files used in the SQL statement
match the specified prefix, no monitor records will be created for the SQL statement.

– Library Name - Monitor records will be created only for those SQL statements that use
a file from the specified library. Monitor records will not be created if none of the files
used in the SQL statement come from the specified library.

– Generic Library Name - Monitor records will be created only for those SQL statements
that use a file from a library that matches the generic prefix. If none of the files used in
the SQL statement come from the generic library, no monitor records will be created for
the SQL statement.

You could use the following CL command to start a monitor to collect data only for
operations against files with the prefix CUST across any library beginning with the
character B:

STRDBMON OUTFILE(MYLIB/CUST_DBMON) JOB(*ALL) FTRFILE(B*/CUST*)

� FTRUSER

– This parameter uses the default value of *NONE.

– *CURRENT - Monitor records will be created only for those SQL statements that are
executed by the user who is invoking the STRDBMON command. Monitor records will
not be created for SQL statements executed by a different user.

Chapter 4. Gathering SQL performance data 93

– User name - Monitor records will be created only for those SQL statements that are
executed by the specified user. Monitor records will not be created for SQL statements
executed by a different user.

– Generic-user-name - Monitor records will be created only for those SQL statements
that are executed by a user whose name starts with the specified prefix. Monitor
records will not be created for SQL statements executed by a different user.

In the following example, the filter will limit the capture to only those statements run by
JOEUSER in a QZDASOINIT job:

STRDBMON OUTFILE(MYLIB/USERDBMON) JOB(*ALL/*ALL/QZDASOINIT) FTRUSER(JOEUSER).

� FTRINTNETA

– This parameter uses the default value of *NONE.

– Internet-address - The internet address is specified in the form nnn.nnn.nnn.nnn,
where nnn is a decimal number ranging from 0 through 255, without the leading zeros.
(An internet address having all binary ones or zeros in the bits of the network or host
identifier portions of the address is not valid.)

This filter allows you to log data for only SQL requests started from a particular remote
system. For example:

STRDBMON OUTFILE(MYLIB/IPDBMON) JOB(*ALL) FTRINTNETA('9.10.20.30')

The filters may be used together in any combination. By using this new filters, you can reduce
both CPU overhead and disk consumption by only logging the information that will be of
interest.

The monitor ID
At V5R4, the system generates a 10-digit monitor ID when the STRDBMON command is
successfully processed. In cases where you may be running multiple monitors, you should
make a note of this unique ID so that the desired monitor can later be ended. The system
issues message CPI436A which gives you the monitor ID:

Database monitor started for job *ALL/*ALL/*ALL, monitor ID 0416572016.

If you forget to record the monitor ID and later need to retrieve it, you can do so by querying
the QQC101 column of the 3018 record in the monitor output file:

select qqc101 from mylib.dbmon where qqrid = 3018

Ending a Detailed Database Monitor
To end the collection of database performance data started using the STRDBMON command
you must use the End Database Monitor (ENDDBMON) command. The following parameters
are available for this command:

� JOB

You can specify to end a monitor that was started for that named job, as long as that is the
only monitor running for the given job name. If multiple monitors are running for the same
job name, then you must end the monitor by using the monitor ID.

Use the value *ALL for this parameter to end a database monitor started against *ALL
jobs.

� MONID

Use this parameter to specify the monitor ID of the monitor you wish to end. If you have
multiple monitors running that were started with the same values for the JOB parameter,

94 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

then you should use the MONID parameter to uniquely identify which monitor you want to
end.

A very helpful new feature of V5R4 is that database monitors started using the STRDBMON
command are now automatically presented in the SQL Performance Monitor GUI as a started
monitor. This allows you to keep track of all started monitors from one central location. It also
eliminates the need to manually import a monitor that was started on the same system using
the native interface.

For example, you can start a monitor using the STRDBMON command, then end it or analyze
it, or both, using the iSeries Navigator interface, without having to import it. A database
monitor started using STRDBMON will have the naming convention “USER TABLE
DBMONID” for its SQL Performance Monitor name, where USER is the user who started the
database monitor, TABLE is the name of the database monitor output file, and DBMONID is
the 10 digit monitor ID. Figure 4-2 shows a database monitor through the SQL Performance
Monitor interface that was started using the STRDBMON command.

Figure 4-2 View of a monitor started using STRDBMON

If for some reason you do not have access to the SQL Performance Monitor GUI interface,
there is a trick which you can use to determine what monitors are active system-wide. From
the command line interface, enter the following command:

STRDBMON OUTFILE(QTEMP/DUMMY) COMMENT(DISPLAY_ACTIVE_MONITORS)

The name specified for the outfile does not matter, but the comment value
“DISPLAY_ACTIVE_MONITORS” has a special meaning and it will cause a CPF436C to be

Note: If you start a monitor collection and specify JOB(*ALL), you cannot end that monitor
for individual jobs. You must specify *ALL jobs on the ENDDBMON parameter to end
monitoring all jobs at once.

Important: You need the following V5R4 PTFs applied in order for a database monitor
started using STRDBMON to be automatically visible in the SQL Performance Monitor
GUI:

� SI25041
� SI24847

Chapter 4. Gathering SQL performance data 95

issued in your joblog for each active monitor on the system. The Monitor ID will be listed in
the second level text of the CPF436C, allowing you to end any active public monitors by
Monitor ID.

4.2.2 The SQL Performance Monitor Wizard

In V5R4 iSeries Navigator provides a new SQL Performance Monitor Wizard to start an SQL
performance monitor. This wizard has very complete prefiltering capabilities. To start the
wizard, right-click SQL Performance Monitors → New → SQL Performance Monitor, as
shown in Figure 4-3.

Figure 4-3 Starting a new SQL Performance Monitor

The SQL Performance Monitor Wizard window is displayed, Figure 4-4. From this window,
you can chose to start a Summary SQL Performance Monitor or a Detailed SQL Performance
Monitor.

Figure 4-4 Welcome to the new SQL Performance Monitor Wizard

96 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

4.2.3 Starting a Detailed SQL Performance Monitor

The Detailed SQL Performance Monitor in iSeries Navigator provides the same level of detail
as running the STRDBMON command with *DETAIL in the TYPE parameter, which was
explained in 4.2.1, “Starting a Detailed Database Monitor using the command interface” on
page 90. To start the Detailed SQL Performance Monitor, perform the following steps:

1. From the SQL Performance Monitor Wizard, give your Detailed monitor a name and select
Detailed from the Type box (this is the default), Figure 4-5.

Figure 4-5 Starting a detailed performance monitor.

2. The next window presented allows you to set filters on the data that is to be collected.
There are several filtering options which are new to V5R4. You can see these in
Figure 4-6. Specify any combination of the filters to limit the data that is collected by the

Chapter 4. Gathering SQL performance data 97

monitor, which in turn will reduce CPU consumption and disk usage by only capturing the
data you are most interested in.

Figure 4-6 Specify filtering options

The filtering options are as follows:

– Minimum estimated query runtime

Specify a value in seconds. If any query’s runtime is estimated to be less than the
number of seconds specified here, information about that query will not be collected.
This option can allow you to greatly reduce the amount of data collected by only
gathering data for long-running queries. In this example, we are setting the minimum
filter time to 60 seconds.

– Job name

Specify a job name here to limit the collection to only activity from a particular named
job. For example, specify QZDASOINIT as the job name if you only want to collect data
for jobs with that name. You can use a wildcard to specify a generic name.

– Job user

Specify a job user to collect monitor data only for jobs in which the specified user name
appears in the fully qualified job name. Wildcards may be used.

– Current user

When this parameter is specified, only information for queries run by the named user
will be collected. Current user differs from job user in that the current user refers to the
current user for the SQL statement, and not necessarily the user name that appears on
the fully qualified job name. This filter is especially useful in a client/server environment
where you have all server jobs running under the same user profile such as QUSER.
Filtering on the current user will allow you to monitor only data for that SQL run by a
particular user, even though all jobs are serviced by the QUSER profile.

– Internet address

This filter allows you to log data for only SQL requests started from a particular remote
system. Specify the IP address in the format xxx.xxx.xxx.xxx.

98 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

– Queries that access certain tables

Checking this filter and then clicking the Browse button will bring up a dialog in which
you can select, by schema, a table or list of tables. The monitor will only collect
information pertaining to SQL activity on the selected tables.

– User activity only

The default is to collect statements only for user activity. If you have a need to collect
data for systems activity as well, then check that option.

3. Once you set any desired filters, click Next to move on to the job selection window. If you
want to limit the collection further by monitoring only a specific job or jobs, then click the
Specific Jobs option and you will be presented with a list of active jobs in a new window
from which you can select Add to add specific jobs. In this example, we have selected to
monitor all jobs, Figure 4-7.

Figure 4-7 Select jobs to monitor

Note: At V5R3, this feature was supported using SQL_DBMON_OUTPUT in the
QAQQINI query options file.

Chapter 4. Gathering SQL performance data 99

4. You are presented with an overview on the selections you’ve made, as shown in
Figure 4-8. Use this opportunity to review your choices, and if satisfied, select Finish to
begin the monitor.

Figure 4-8 Review your Detailed SQL Performance Monitor selections

Figure 4-9 shows that your monitor is now listed in the list of the system’s SQL Performance
monitors with a status of started.

Figure 4-9 Started Detailed SQL Performance Monitor

Note: The data collection in an SQL Performance Monitor is done inline within the job
instead of in a separate job.

Optimization records and data do not appear for queries that are already in reusable open
data path (ODP) mode when the monitor is started. To ensure the capture of this data for a
batch job, start the monitor before the job starts and collect it over the entire length of the
job or as much as needed.

100 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

4.2.4 Enabling Database Monitors in ODBC clients

You can start a database monitor before a client initiates a connection to the server by using
the STRDBMON command to monitor the client job. Other options are available for you to
start a monitor. The two ways to start a Detailed Database Monitor in ODBC clients are:

� Enabling the Database Monitor option in the data source name
� Using an ODBC connection keyword to start the Database Monitor

ODBC data source name
To start a monitor using the data source name (DSN), perform the following steps:

1. In Microsoft® Windows XP, click Start → Programs → IBM iSeries Access for Windows
and then select ODBC administration.

2. From the ODBC Data Source Administrator window (Figure 4-10), select the desired data
source name and click the Configure button.

Figure 4-10 ODBC Data Source Administrator window

Chapter 4. Gathering SQL performance data 101

3. In the iSeries Access for Windows ODBC setup window (Figure 4-11) that opens, click the
Diagnostic tab and then select the Enable Database Monitor option. Click OK.

Figure 4-11 iSeries Access for Windows ODBC Setup window

The Enable Database Monitor option causes the ODBC driver to issue a call to STRDBMON
for the job connecting to this data source name. The output file is created in the QUSRSYS
library starting with the prefix QODB and ending with the job number, for example
QUSRSYS/QODB337344.

The ODBC driver attempts to end the monitor when the application disconnects. If the
application ends abnormally without issuing a disconnect, the monitor might continue to run.
In this case, you must manually end the monitor.

ODBC connection keywords
One potential problem with redistributing an application that uses ODBC is that a data source
might need to be created on each user’s PC. Data sources are normally created using ODBC
C APIs. However, this interface might be difficult to use for some programming languages.

An alternative for this potential problem is for a client to connect to the server without using an
ODBC data source and to use connection keywords instead. The iSeries Access ODBC
driver has many connection string keywords that can be used to change the behavior of the
ODBC connection. These same keywords and their values are also stored when an ODBC
data source is setup.

Tip: When an ODBC application makes a connection, any keywords specified in the
connection string override the values that are specified in the ODBC data source.

102 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

The connection keyword to enable the monitor is the TRACE keyword. The TRACE keyword
supports the following options:

� 0 = No tracing
� 1 = Enable internal driver tracing
� 2 = Enable Database Monitor
� 4 = Enable the Start Debug (STRDBG) command
� 16 = Enable job trace
� 32 = Enable database host server trace

To specify multiple trace options, add together the values for the options that you want. For
example, if you want to activate the Database Monitor (2) and the STRDBG command (4) on
the server, then the value that you specify is 6 (2+ 4=6).

The part of a Microsoft Excel® macro in Example 4-1 uses a data source name and the
TRACE connection keyword to enable the database monitor and to enable the STRDBG
command. Because this example uses both a data source name and a connection keyword,
the value in the TRACE keyword overrides the values specified in the data source name.

Example 4-1 Microsoft Excel macro using a data source name and TRACE connection keyword

'ODBC connection.
'The system is specified in the B1 cell in the Settings worksheet
ConnectStr = connectStr & "DSN=QDSN_TPLXE2;System=" &

Worksheets("Settings").Range("B1").Value & ";TRACE=6"
CnMYAS400.Open connectStr

The TRACE keyword, including the value to Enable Database Monitor, causes the ODBC
driver to issue a call to STRDBMON for the current job. The output file is created in the
QUSRSYS library, starting with the prefix QODB, and ending with the job number, for
example QUSRSYS/QODB337344.

4.2.5 Enabling Database Monitors in OLE DB clients

There are two ways you can start a Detailed Database Monitor in OLE DB clients:

� Using an OLE DB connection property
� Using an OLE DB connection keyword

OLE DB connection properties
A set of custom properties (IBMDA400, IBMDARLA, and IBMDASQL) is available for the OLE
DB providers shipped with iSeries Access for Windows. The trace property (available in
V5R3) is used to enable diagnostic traces when troubleshooting errors. It is an integer
property, and several numeric constants are defined for various trace options.

To determine the value this property should contain, select the desired trace options and add
the constant values. The resulting number is the value that should be specified. The
constants are:

� 0 = No trace options (the default value)
� 1 = Enable Database Monitor
� 2 = Enable the STRDBG command
� 4 = Print Job Log at disconnect

Important: Use these options only when debugging problems because they can adversely
affect performance.

Chapter 4. Gathering SQL performance data 103

� 8 = Enable Job trace via the Start Trace (STRTRC) command

Example 4-2 shows how to enable the Database Monitor using Visual Basic®.

Example 4-2 Enabling the Database Monitor using Visual Basic

Dim cnAS400 as ADODB.Connection
Dim strJobName as String

Set cnAS400 = New ADODB.Connection

'Set the provider to Client Access
cnAS400.Provider = "IBMDA400"

'Set custom properties.
cnAS400.Properties("Block Fetch") = True
cnAS400.Properties("Catalog Library List") = "LIBRARY1, LIBRARY2"
cnAS400.Properties("Convert Date Time To Char") = "FALSE"
cnAS400.Properties("Default Collection") = "MYLIB"
cnAS400.Properties("Force Translate") = 0
cnAS400.Properties("Cursor Sensitivity") = 0
cnAS400.Properties("Data Compression") = True
cnAS400.Properties("Hex Parser Option") = 0
cnAS400.Properties("Initial Catalog") = "*SYSBAS"
cnAS400.Properties("Maximum Decimal Precision") = 31
cnAS400.Properties("Maximum Decimal Scale") = 31
cnAS400.Properties("Minimum Divide Scale") = 0
cnAS400.Properties("Query Options File Library") = "QUSRSYS"
cnAS400.Properties("SSL") = "FALSE"
cnAS400.Properties("Trace") = 1 'Enable Database Monitor

'Open the connection
cnAS400.Open "Data Source=MySystem;", "USERID", "PWD"
strJobName = cnAS400.Properties("Job Name")

OLE DB connection keywords
In addition to using the trace property to enable database monitor in OLE DB, you can use the
Trace connection keyword. In Example 4-3, we illustrate an Excel macro that uses the Trace
connection keyword to enable database monitor at connection time.

Example 4-3 Excel macro using the Trace connection keyword

'OLE DB Connection
 connectStr = connectStr & "provider=IBMDA400;data source=" &
Worksheets("Settings").Range("B1").Value & ";TRACE=1"

cnMYAS400.Open connectStr

The trace property or the trace connection keyword causes the OLE DB Provider to issue a
call to STRDBMON for the current job. As with ODBC, the output file is created in the
QUSRSYS library, starting with the prefix QODB and ending with the job number.

104 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

4.2.6 Enabling Database Monitors in JDBC clients

The JDBC driver shipped with the Developer Kit for Java (commonly known as the native
JDBC driver) and the IBM Toolbox for Java JDBC driver support a server trace connection
property. Among other options, it includes an option to start a database monitor.

In Example 4-4, the Java code uses a properties object to enable tracing. The example uses
native JDBC and the IBM Toolbox for Java JDBC concurrently.

Example 4-4 Java code using JDBC

// Register both drivers.
try {
 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");
 Class.forName("com.ibm.as400.access.AS400JDBCDriver");
} catch (ClassNotFoundException cnf) {
 System.out.println("ERROR: One of the JDBC drivers did not load.");
 System.exit(0);
}

Connection conn1, conn2;
Properties props = new Properties();
props.setProperty("user", "MYUSER");
props.setProperty("password", "MYPASSWORD");
props.setProperty("server trace", "n");

try {
 // Obtain a connection with each driver.
 conn1 = DriverManager.getConnection("jdbc:db2://localhost", props);
 conn2 = DriverManager.getConnection("jdbc:as400://localhost", props);

 conn1.close();
 conn2.close();
} catch (SQLException e) {
 System.out.println("ERROR: " + e.getMessage());
}

In this example, n is one of the following options:

� 0 = No trace
� 2 = Database monitor
� 4 = STRDBG
� 8 = Save the job log
� 16 = Job trace
� 32 = Save SQL information
� 64 = Database host server tracing

As with the ODBC and OLE DB connection properties, you can add these values together to
set multiple trace options. The database monitor option causes the drivers to issue a call to
STRDBMON for the current job. The output file is created in the QUSRSYS library, starting
with the prefix QJT for the toolbox driver and the prefix QSQL for the native driver, and ending
with the job number for example, QUSRSYS/QJT042174 or QUSRSYS/QSQL041477.

Chapter 4. Gathering SQL performance data 105

4.2.7 Enabling Database Monitors in .NET clients

The IBM.Data.DB2.iSeries .NET provider supports a ConnectionString attribute called Trace
that enables you to turn on various server-side traces. When the Trace property is specified in
the ConnectionString, the provider sends commands to the iSeries to enable the specified
traces.

The trace options are DatabaseMonitor, StartDebug, PrintJoblog, and TraceJob. When the
DatabaseMonitor option is specified, the output file will be created in QUSRSYS starting with
the prefix QNET and ending with the job number, for example, QUSRSYS/QNET052800.

Several server traces can be turned on at the same time by placing them in the connection
string. Example 4-5 shows a sample connection string where we are turning on a job trace
and database monitor.

Example 4-5 Trace property specified in the connection string

iDB2Connection cn = new iDB2Connection();
cn.ConnectionString = "DataSource=myiSeries; Trace=TraceJob, DatabaseMonitor;";

4.2.8 Enabling Database Monitors using an exit program

An exit program provides another way to start a database monitor for clients using the
QZDASOINIT, QZDASSINIT, or QZDAINIT prestart jobs, such as ODBC, OLE DB, or IBM
Toolbox for Java clients. The database server has five different exit points defined.
QIBM_QZDA_INIT is one of those exit points and is called when the prestart jobs are started.

By using the Work with Registration Info (WRKREGINF) command, you can add or remove
the exit program, which has a STRDBMON command, to the exit point. You must end and
restart the prestart jobs using the Start Prestart Jobs (STRPJ) and End Prestart Jobs
(ENDPJ) commands for the change to take effect. To learn more about exit programs, search
on register exit programs in the V5R4 iSeries Information Center at:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

4.3 Collecting Summary SQL Performance Monitor data

Although the Summary Monitor itself has not changed between V5R3 and V5R4, the interface
to start it from within iSeries Navigator has been moved to the wizard. To start the Summary
SQL Performance Monitor using the wizard, simply select Summary rather than Detail in the
Type drop-down box.

This monitor resides in memory and only retains a summary of the data collected. When the
monitor is paused or ended, the data is written to disk and can then be analyzed. Because the

106 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp

monitor stores its information in memory, the performance impact to your system is minimal.
Now perform the following steps:

1. From the next window (shown in Figure 4-12), specify the types of information you want
collected into the Summary Monitor.

.

Figure 4-12 Specify summary information

The options you can check to include are:

– Table scans and arrival sequences: Contains the table scan data for the monitored
jobs.

– Indexes used: Contains details of how indexes are used by monitored jobs.

– Index creation: Contains details of the creation of indexes by monitored jobs.

– Data sorts: Contains details of data sorts that monitored jobs perform.

– Temporary file use: Contains details about temporary files that monitored jobs
created.

– Indexes Considered: Contains information about the index considered for each SQL
statement.

– Subselect processing: Contains information about each subselect in an SQL
statement.

Chapter 4. Gathering SQL performance data 107

2. After you have made your selections, the next window, shown in Figure 4-13, allows you to
specify which jobs to monitor. You can select to monitor all jobs, or, you can choose which
specific jobs you want to monitor by clicking the Add button.

Figure 4-13 Select to monitor all jobs, or specific jobs

3. When you click Add, this will open a new window listing all jobs currently in the system
(Figure 4-14) and from here you can select individual jobs from the list.

Figure 4-14 Choose individual jobs from the list

You can have multiple instances of summary monitors running on your system at one
time. However, only one monitor instance can monitor all jobs. Additionally, you cannot
have two monitors monitoring the same job. When collecting information for all jobs, the
monitor collects information about previously started jobs or new jobs started after the
monitor is created.

108 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

4. After making your job selections, click the Next button and the wizard will present you with
a final summary of the selections you have made (Figure 4-15). If you are satisfied with
everything, select Finish to start the Summary SQL Performance Monitor.

Figure 4-15 Final summary window for the Summary monitor

The new monitor will be listed in the right pane of the iSeries Navigator window with the type
Summary and a status of Started.

You can pause or end a summary monitor, or you can continue a monitor that was previously
paused. However, you cannot continue a monitor that was previously ended. When the
monitor is paused or ended, the monitored data that resides in memory is written into several
database tables that can be queried and analyzed using the predefined reports that come
with the summary monitor analysis tool, which are briefly discussed in 5.3, “Summary SQL
Performance Monitor analysis overview” on page 143.

4.4 Importing Database Monitors into iSeries Navigator

In the Import SQL Performance Data window, you can incorporate data from monitors that
were collected on a system other than the one you are performing analysis on.

Chapter 4. Gathering SQL performance data 109

To access the import window, from the main iSeries Navigator window, right-click SQL
Performance Monitors and select Import. You are presented with the Import SQL
Performance Data window (shown in Figure 4-16).

4.4.1 Importing detailed monitor data

In most import situations, you will likely be importing detailed monitor data that was collected
from another system. This is shown in Figure 4-16.

Figure 4-16 Import SQL Performance Monitor window

You can give your imported monitor any descriptive name you like. This will then show up on
the main iSeries Navigator window with a status of Imported, as shown in Figure 4-17.

Figure 4-17 Imported monitor

4.4.2 Importing detailed monitor data from a previous release

A very useful feature is that you can import Detailed SQL Performance Monitor data that was
collected on a system that was at a previous release of the operating system. This allows you
to use the new analysis tools to analyze data that was collected on a system at an earlier
release. At analysis time, the system automatically detects that the file is from a previous
release and converts the imported database monitor file from a pre-V5R4 format to the V5R4
format that is required for the analysis tools. For example, any “More Text” (MT) type records
are removed from the file since the V5R4 format places all statement text is one column
(QQ1000L). This conversion is transparent to the user and only occurs the first time analysis
is performed. The new, converted file replaces the file that was originally imported.

110 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

4.4.3 Importing summary monitor data

If you are importing data collected by a Summary monitor on another system, select
Summary for type of monitor. You then can specify any one of the several output files from
the Summary monitor. The system will automatically recognize the other output files from the
same summary collection, and ask if you would like to import them as well.

4.5 SQL Performance Monitors properties

At any time, you can display the properties of a monitor in iSeries Navigator. Right-click the
monitor for which you want to display the properties and select Properties as shown in
Figure 4-18.

Figure 4-18 Select to view properties

4.5.1 Detailed monitor properties

Figure 4-19 shows the detailed monitor properties window. From this window, you are able to
see the time period that monitor data was collected for, the table name of the underlying
monitor output file, as well as the various filters, if any, that were applied to the collection

Chapter 4. Gathering SQL performance data 111

when the monitor was started. As with the summary monitor, you are given the list of jobs that
were monitored - in this example, all jobs.

Figure 4-19 Detailed Monitor properties

4.5.2 Summary monitor properties

When you select to view the Summary Monitor properties, you are presented with the window
shown in Figure 4-20. From the Summary Monitor properties window, you can see the names

112 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

of the various output files which constitute the Summary monitor, as well as the list of jobs
that the monitor was run against.

Figure 4-20 Summary properties

4.5.3 Imported monitor properties

The properties window for an imported detailed monitor is shown in Figure 4-21. One thing to
note is that for an imported monitor, the list of jobs is not automatically filled in. Because this
monitor was imported, the system does not know what jobs were monitored without querying
the data. To have the system query the data to return the list of monitored jobs, click the
Retrieve button.

Note: To see the data description specification (DDS) for the output files, see the DB2
Universal Database for iSeries Database Performance and Query Optimization book under
the section entitled Memory Resident Database Monitor: DDS, which is available on the
Web at:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajq/rzajq.pdf

Chapter 4. Gathering SQL performance data 113

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/rzajq/rzajqmst.pdf

Figure 4-21 Imported monitor properties

4.6 Summary or Detailed SQL Performance Monitor

A question you may ask yourself when approaching an SQL performance problem is whether
you should collect a Summary or Detailed SQL Performance Monitor. In this section, we’ll
explain when one type of monitor may be more useful than the other.

For some investigations, the Summary SQL Performance Monitor may have certain
advantages over the Detailed SQL Performance Monitor. It may make more sense to use the
Summary Monitor in situations:

� When you are not sure what is causing the performance issue that you might be seeing

You can collect a lot of data over the entire system, in a short amount of time, using the
detailed monitor. If disk usage is a concern, it may be better to collect a summary monitor
over the entire system and analyze that. However, with the new filters introduced in V5R4,
disk usage for a detailed database monitor may not be the concern that it was at previous
releases.

114 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

� When you want to monitor the system over a period of time to compare, for example, the
results of one week against another.

This helps with a proactive approach to SQL performance and with observing trends in the
way the database is performing.

In most circumstances, however, a Detailed SQL Performance Monitor will be more useful
than a summary monitor. Specifically, when:

� You need more detailed information about your queries and not just summary data.
� You want to use the robust new set of query analysis tools to investigate your queries.
� You want to investigate any queries that are returning errors.
� You need to collect a monitor to send to IBM Support.

Remember, the Summary SQL Performance Monitor can be very useful in helping to narrow
down a SQL Performance problem. However, a Detailed SQL Performance Monitor will likely
be required to provide the level of detail needed to resolve most SQL Performance problems.
Furthermore, the new analysis tools introduced in V5R4 can only be used against a Detailed
SQL Performance Monitor. These new analysis tools will be introduced in Chapter 5,
“Analyzing SQL performance data using iSeries Navigator” on page 117. The tools for
analyzing Summary SQL Performance Monitor data are unchanged between V5R3 and
V5R4.

Tip: When choosing between the two types of monitors, our recommendation is to make
the Detailed SQL Performance Monitor your standard for SQL Performance analysis, and
use the Summary monitor only if you have a specific reason not to use the Detailed
monitor.

Chapter 4. Gathering SQL performance data 115

116 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Chapter 5. Analyzing SQL performance data
using iSeries Navigator

In Chapter 4, “Gathering SQL performance data” on page 89, you learned about the different
Database and SQL Performance Monitors and how to collect SQL performance data. After
you collect the SQL performance data, you are ready to analyze it.

V5R4 introduces a new, robust set of feedback tools that can be used to analyze Detailed
SQL Performance Monitor data. These new tools provide a powerful way to quickly make
sense out of your collected SQL Performance Monitor data.

5

© Copyright IBM Corp. 2007. All rights reserved. 117

5.1 Detailed SQL Performance Monitor Analysis overview

Version 5 Release 4 of i5/OS provides a brand new GUI interface for analysis of Detailed
SQL Performance monitor data collections. The hallmark of the new interface is its drill-down
capability, in which each report presents you with additional actions to take or links you can
take to another related report. This same new interface is used for analysis of the SQE Plan
Cache as well as the SQE Plan Cache snapshots. (Plan Cache topics are covered in
Chapter 7, “SQE Plan Cache and SQE Plan Cache Snapshots” on page 237.)

To being your analysis, right-click the Detailed SQL Performance monitor you wish to
analyze. From the options that appear, you can choose from the following functions for a
Detail monitor:

� End: Ends the current collection, if active.

� Analyze: The new SQL Performance Monitor GUI, known as the Analysis Overview
dashboard, is opened.

� Show Statements: This function opens a window that lists the SQL statements for which
the Detailed SQL Performance Monitor has collected data and for which a Visual Explain
diagram can be produced. This interface is also new at V5R4. We will take a look at it in
5.4, “Show Statements” on page 149.

� Properties: This function opens a window which provides the properties of the database
monitor collection. The window will differ depending on if the monitor is for summary or
detailed data. For examples, see 4.5, “SQL Performance Monitors properties” on
page 111.

� Delete: Select this to remove the SQL Performance Monitor. You will be given the option
to remove the underlying data file as well.

� Rename: Use this option to rename the SQL Performance Monitor. This will not rename
the underlying data file.

Let’s start by taking the Analyze option. (Figure 5-1)

Figure 5-1 Begin analysis of a Detailed SQL Performance monitor

118 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

V5R4 provides an Analysis Overview “dashboard” which will give you a quick overview of the
information captured in the monitor collection. This analysis overview window breaks items of
interest into several categories and serves as a starting point for you to begin in-depth
analysis of those areas. In this section, we will take a look at the information that is presented
in the Analysis Overview dashboard (Figure 5-2), as well as explore several of the detailed
reports that you can launch from the overview information.

Figure 5-2 Initial Analysis Overview

The initial window shows several folders, or categories, of analysis overview items. When you
click to expand one of the folders, you will be presented with several overview analysis items
from which you can begin analysis. There are two columns after each analysis report to
indicate Summary Available and Statement Available. A checkmark is placed in each
column to indicate if the summary or statement information is available for that particular
analysis item. On the right side of the window are the and buttons
which can be used to retrieve the information. Clicking on those buttons will give you a lot of
information regarding the queries that make up the particular report. We’ll take a look at the
detailed information retrieved when you click these buttons in 5.2, “In-depth analysis reports”
on page 128.

5.1.1 Analysis overview

Let us start by taking a look at all the useful information that can be investigated from the
initial analysis overview window. Figure 5-3 shows the first folder, Overview, expanded. This
folder may already be expanded for you when you first enter the dashboard. As you can see,
there is a wealth of data contained therein. This section provides a information about the
overview analysis items available from the Overview folder.

Notes on terminology: From this point on in this chapter, when we refer to the SQL
Performance Monitor, we are talking about the Detailed SQL Performance Monitor.

The Analysis Overview dashboard refers to the entire graphical user interface (GUI)
window that is presented when selecting to analyze a Detailed SQL Performance Monitor.

An Analysis Overview item refers to a single line in the dashboard which may have zero,
one or two checkmarks after it.

An analysis report refers to the report generated when you select either summary or
statements for an overview item.

Chapter 5. Analyzing SQL performance data using iSeries Navigator 119

Figure 5-3 Overview Analysis items in the dashboard

� SQL Statements

This item will provide you with information about all the SQL statements whose
information has been collected in the SQL Performance Monitor. Information returned
includes the statement text, the run time of the statement, the statement’s unique count,
the user name, and number of the job running the statement. By sorting on the run time
you can very quickly find the longest running query and operation captured by the SQL
Performance Monitor.

� Users

This analysis overview item can be used to get a list of users who were running SQL
during the collection period, and how much runtime can be attributed to each. This is
especially useful in a client/server environment where you may have server jobs being
serviced by the same user profile, such as QUSER. This report returns information for the
actual user profile that was connecting to the server jobs.

� Jobs and Threads reports

Use these analysis overview items to quickly identify the number of jobs, and if applicable,
threads, that were monitored during the collection period. From this item, you can quickly
determine if a particular job or jobs is responsible for most of the run time.

Note: The count returned here is equivalent to the number of records in the underlying
database monitor table where the QQRID field is equal to 1000.

120 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

� Averages reports

The next several items give you averages for the number of rows returned, the size of the
queried tables, and the average runtime for all the queries in the database monitor
considered as a whole.

� Parallel degree information

This gives you a quick place to check to what degree Symmetric Multiprocessing (SMP)
may have been involved with the queries monitored.

� SQE/CQE

Here you can find the count of statements that were processed by the SQE optimizer and
by the CQE optimizer. Note that only those statements whose implementation info was
captured in the database monitor file are included in this count. For queries whose
implementation info was captured, this count includes both full opens and pseudo opens.

� Naming convention information

These reports give you a count of queries that use SQL naming convention and system
naming convention. Note that the sum of the values for SQL and system naming
convention may not necessarily add up to the total number of SQL statements seen in the
first report in this category, since hard close operations do not have an associated naming
convention.

� Open information

The next three items give you information about the number of opens captured in the
database monitor and if those opens were full opens or pseudo opens:

– Unique open statements gives you a count of all unique open statements captured in
the monitor, where they are full opens or pseudo-opens.

– Full opens returns the number of opens logged for which implementation info has been
captured, thus indicating a full open.

– Pseudo-opens give the number of pseudo-opens, regardless of whether the full open
for the statement was captured in the monitor.

A quick check of these values can give you a good idea of whether or not you may have a
full open problem. For example, if the number of unique and pseudo-open statements is
relatively low but the number of full opens is high, then this could be an area that warrants
further investigation.

� Average MQTs used

You can check this item to quickly discover if any Materialized Query Tables were used for
the SQL statements captured in the monitor.

� Index information

The next several overview items provide information about index usage for the queries
captured in the monitor. If indexes are created, then the counts are logged here. Separate
counts are returned for full indexes, sparse indexes, and index-from-index creations. Also
returned here is a count of indexes advised by the index advisor. If the same index is
advised multiple times, it is included in this count each time it is advised. A quick look at
these numbers may inform you if an improvement to your indexing strategy is needed. For
example, if the number of average indexes used is low, while the number of indexes
created or advised is high, then some investigation of your indexing strategy may be in
order.

Note: It is important to note that ODPs can only be reused within a job or connection
and this overview is aggregating that information across the jobs.

Chapter 5. Analyzing SQL performance data using iSeries Navigator 121

� Advised Statistics

Information about queries that have had statistics advised for them is found in this item.
This count is incremented for both full opens and pseudo-opens of queries for which a
statistic has been advised. A high count here could warrant a visit to the statistics advisor.

� Additional analysis reports

The remaining reports in the overview category return additional information about the
queries logged in the database monitor:

– Temporary tables and sorts.

For queries which had implementation info captured, the respective count is
incremented if a temporary table or a sort table is used for both full opens and
pseudo-opens.

– Sort sequence

If an NLSS sort sequence is used for any query, then this count will be incremented.

– Call statements

The number of stored procedure calls and further information about the procedures
can be found here.

– Errors

If any statements captured in the database monitor were not successful, that is, had a
negative SQL return code, they will be logged here. This is an easy place to check for
any functional problems with any of the statements in your database monitor collection.

5.1.2 Amount of work requested

The next category of reports, Figure 5-4 answers the question “How much work was
requested?”.

Figure 5-4 Amount of work requested

You may notice that the overview items in this folder look familiar. They were also included in
the Overview folder and are placed here to give you a quick place to check to get an idea of
the amount of work that was collected in the SQL Performance Monitor collection.

Note: If the system is running with the default system value for statistics collection the
statistics would probably has been already collected and this value is of very little
interest.

122 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

5.1.3 Environmental factors

There are many environmental factors that go into the optimization of a query. Because
changes in these factors can lead to different query implementations, it is important to
understand the environmental settings that were in place at the time the query was run. The
next folder shows what options were provided to the optimizer (Figure 5-5).

Figure 5-5 Options provided to the optimizer

Several of these environmental factors are explained in detail in Chapter 11, “Environmental
settings that affect SQL performance” on page 379. We will briefly go over a few of the most
useful ones here.

� Parallel degree info

On a multiprocessor system with SMP enabled, the database engine can use multiple
processors for certain aspects of query processing. If multiple processing is used, we will
indicate here the average and maximum degree of parallelism. Otherwise, if multiple
processing is not used, these values will be set to one.

� Query options file info

If a QAQQINI query options file was used for the optimization of any of the queries
collected in the database monitor, that will be indicated here. We give a count of queries
that had query options specified for them, as well as the number of distinct query options
files used.

� Governor enabled

The query governor can be used to stop a query from running if its estimated runtime after
optimization exceeds a threshold set by the user. If any queries were run with the
governor enabled, that will be indicated here.

Chapter 5. Analyzing SQL performance data using iSeries Navigator 123

� Allow Copy Data information

This item gives you the count of the number of statements that went each of the three
ALWCPYDTA options, YES, NO, or OPTIMIZE.

� Optimization goal information

These two items give a count of the optimization goal for each of the queries in the
database monitor collection. The two choices for optimization goal are First IO, which
means that the optimizer should optimize the query with the goal of bringing back the first
page of records as quickly as possible, or All IO, which means the query should be
optimized to bring back the entire result set as quickly as possible.

� Additional options provided to the optimizer

There are several additional options that can be provided to the optimizer. We list them
here but will not go into additional details:

– Force join order specified
– Parameter marker conversion
– Sort sequence table specified
– Unicode normalization
– Distributed query info
– Blocking info
– Delay Prepare info
– Close cursor info
– System or SQL naming used (also available in the overview folder

5.1.4 Implementation information

The next category of analysis overview items in the dashboard, shown in Figure 5-6, are the
implementation items. These items will give you information about the specific

124 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

implementation methods that were used by the queries represented in the SQL Performance
Monitor collection.

Figure 5-6 Implementation information

You will notice that several of the items in this section have appeared elsewhere in the
dashboard, such as runtime, index created, and statistic information. In addition to those
overview items, there are items for specific implementation info.

� Bitmap information

If the optimizer creates a dynamic bitmap to implement the query, these reports will
contain a count of bitmaps created and bitmaps merged and give you details of the
queries that used bitmaps.

� Table scans

Here is where we can find information about table scans performed by the queries
collected in the database monitor data. A high number here in relation to the total number
of queries may indicate a problem.

� Join implementation information

If any of the queries in the collected monitor data are join queries, we provide information
about which join algorithm was used: nested loop join or hash join.

� Grouping and ordering implementation information

The types of grouping and ordering implementations are indicated here. For grouping, the
two possibilities are index and hash table. For ordering, the optimizer can choose to use
an index or create a temporary sort table. The count of each method used is listed here.

Chapter 5. Analyzing SQL performance data using iSeries Navigator 125

� Parallel degree info

Several overview items are provided here to indicate if certain optimizer operations were
performed using parallelism.

� Estimated row information

The average and maximum estimated row counts for the database monitor collection are
found here.

5.1.5 Types of statements

The next grouping of overview items in the report gives information and counts on the
different types of statements that were run in the SQL Performance Monitor collection. This is
shown in Figure 5-7.

Figure 5-7 Types of statements run

� SQL statement elements

From these items, you can very quickly get an overview of the number of queries that
contained subqueries, had grouping or ordering, had unions, used the distinct clause, and
so on.

� Statement functions

In these items we report the total number of select, delete, insert, update, data definition
language, and other (that is, prepare, describe, set, and so on) statements in the database
monitor collections.

126 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

� Static / dynamic processing information

The extent to which static and dynamic processing occurred can be determined by
reviewing these overview items. For dynamic processing, there are two additional items
which further indicate if the statement was extended dynamic or system wide cache
dynamic. Extended dynamic statements are stored in SQL packages, and system-wide
cache dynamic statements are stored in the SQL system-wide statement cache.

� Commitment control information

The queries in the SQL Performance Monitor are put into different overview items based
on the commitment control level used by the statement.

� Data conversion information

If data conversion was required for the query, it is indicated by this item. Data conversion
may occur, for example, when fetching column into a host variable and the host variable
and column have differing data types. A small amount of overhead is associated with data
conversion, so if this number is large, then you may want to take steps to eliminate data
conversions where possible.

� Success, warning, or error information

Separate counts are maintained for the number of SQL statements that return a
successful return code of 0, a positive return code which represents a warning, or a
negative return code to indicate an error.

5.1.6 Miscellaneous information

The miscellaneous information category is a place where you can quickly check various
maximum values for individual operations such as open, fetch, and close. These are shown in
Figure 5-8.

Figure 5-8 Miscellaneous Information

Note: For these reports, the tool groups all statements contained in the monitor into
one of the six statement function categories.

Chapter 5. Analyzing SQL performance data using iSeries Navigator 127

5.1.7 I/O information

The final category in the dashboard display is the I/O information, shown here in Figure 5-9.

Figure 5-9 Input / Output information

As you can see, this category lists several averages related to input/output operations, such
as average CPU and clock time for the queries, as well as average synchronous and
asynchronous database reads and writes. The information displayed here is derived from the
detailed information logged in the 3019 records, which are collected by default when using
the SQL Performance Monitor wizard, or by specifying *DETAIL on the STRDBMON
command.

5.2 In-depth analysis reports

Now that you are familiar with the look and feel of the new dashboard interface, you are ready
to begin focusing in on the details behind the overview analysis items. For each entry in the
analysis overview, you may have the option of getting a summary report, a statement report,
or both. The system will place a checkmark under the appropriate column if the respective
report is available for that overview. The appropriate buttons will also be activated on the right
side of your window (Figure 5-10). You can also right-click the desired overview analysis
report and get a menu from which you can select Summary or Statements.

Figure 5-10 Summary and Statement options

128 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

5.2.1 Getting detailed reports from Summary and Statement buttons

When you select the Summary button, or right-click and select the Summary menu option, the
system aggregates the data in the underlying database monitor collection that relates to the
particular analysis area. When you select the Statement button, or right-click and select the
Statement menu option, the systems returns info for the individual statements, therefore, you
will generally get a row back for each statement relating to the particular analysis area. In
Figure 5-11, we are requesting a Summary report for the SQL Statements analysis overview
item.

Figure 5-11 Right-clicking to select a summary report

For the summary report, the system groups identical statements together and totals the
associated run time for each. Figure 5-12 shows the window that is initially returned.

Figure 5-12 Initial SQL Statements report

Since there are several columns of data returned, you will need to use the scroll bar to move
left and right to view all the columns. You can also resize the column by clicking and dragging
the column separator bar, or you can rearrange the columns to a different order by clicking
the column heading and dragging it to the left or right. (Note that to move the column more
than a single window width left or right, you may have to pick it up and drop it multiple times).

You can sort a column in ascending order by clicking its heading once. Click the column
heading a second time to sort in descending order, and a third time to remove the sort. You
can also set up secondary and tertiary sorting columns by right-clicking the primary sort
column and selecting Sort → Edit sort. When you have selected a sort order, an up or down
arrow appears next to the column name to indicate the sort order. In Figure 5-13, for

Chapter 5. Analyzing SQL performance data using iSeries Navigator 129

demonstration purposes we have rearranged the columns to include on a single window the
statement type, statement text, total run time, and number of uses, and we have sorted by
descending run time.

Figure 5-13 Columns rearranged and sorted by descending runtime

Using this report, you can very quickly determine which SQL statement collectively took the
most amount of time. In the previous release, this was as far as you could take the analysis
using the GUI. But, in V5R4, you now have additional options. From this window, you can
continue the analysis to focus in on the particular SQL statement that you have identified. As
shown in Figure 5-14, you can right-click the row that interests you and you will be given two
more options.

Figure 5-14 Options when right clicking the row of interest

Selecting work with SQL statement will open a new SQL Scripts window into which will be
populated with the chosen statement, Figure 5-15.

Note: When you right click a particular record within a report, the options that you have in
the menu that pops up are sensitive to the type of report you are looking at. For example,
in the indexes advised report, which we will look at in the next section, you are given the
option to create the advised index. In the table scan report, you are given the option to
view all other SQL statements using the same base table. Explore!

130 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Figure 5-15 Run SQL Scripts window populated with selected statement.

Now, you have all the functionality of SQL Scripts available to you. From here you can run
Visual Explain to explain the subject SQL statement by clicking on the icon, as we have
shown in Figure 5-16.

Note: In the SQL Scripts window, literals will likely be replaced by parameter markers,
which are indicated by question marks. In order to run Visual Explain, you will need to
replace the parameter markers with some real values. The actual host variable values can
be obtained by checking the Variable Values column in the analysis report.

Chapter 5. Analyzing SQL performance data using iSeries Navigator 131

Figure 5-16 Visual Explain Diagram

Based on those results, you can make changes in real time, such as making a modification to
the statement or creating an index, and then re-run your query from the same script session.
Refer to Chapter 8, “Analyzing database performance data with Visual Explain” on page 275,
for a full discussion on Visual Explain and how it can graphically show you a query
implementation.

Since starting with the Detailed SQL Performance monitor collection we have been able to
drill down to determine a single statement for investigation, and then make real-time
modifications and test them. To review, we took the following steps to get here:

1. We selected the Analyze option from the iSeries Navigator performance monitor window.

2. We reviewed the various items available in the Overview Analysis dashboard.

3. We clicked the Summary button to get the list of SQL statements, runtimes, and a host of
other information about the statements in the collection.

4. We sorted the statements by descending runtime to determine the longest-running
statement.

5. We right-clicked the statement at the top of the list to work with it in a new SQL Scripts
window.

6. We ran Visual Explain to examine the implementation of the query.

132 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

5.2.2 Additional information reports

In the previous section, we looked in-depth at the SQL Statement summary information
report. The SQL Statements item is just one of the many dashboard items that can be
analyzed further, as indicated by the checkmarks in the Summary Available and Statements
columns. In this section, we’ll take a look at several of the other reports that you may find
useful in your query performance analysis.

SQE or CQE information reports
The SQE and CQE information reports give you details on which statements are going down
each of the two query engines.

Figure 5-17 SQE or CQE information reports available

At V5R4, you should find that most queries are using the SQL Query Engine. However, there
are valid reasons as to why a statement may still be using the Classic Query Engine.
Selecting the CQE information report will give you the statements using CQE and the reason
they are unable to use SQE. Figure 5-18 shows a sample Summary report.

Figure 5-18 CQE summary report showing reasons why CQE was used

Remember, the real value-add of the new interface is that you can continue to drill down into
your statement from here. You can right-click the statement, select Work with SQL
Statement to bring up a Run SQL Scripts window, make any changes to the SQL statement,
and from there run Visual Explain to see how the changes affect the query implementation.

Open information reports
The open information reports contain a row of information regarding open activity for each
SQL statement.

Note: For display purposes, we have rearranged the columns in the report to a different
order than they are first displayed by default. We will do the same for all subsequent
sample reports in this chapter.

Chapter 5. Analyzing SQL performance data using iSeries Navigator 133

Figure 5-19 Open information reports available

If an open statement occurs for the first time for a specific statement in a job, it is a full open.
A full open creates an (Open Data Path) ODP that is used to fetch, update, delete, or insert
rows. Since there are typically many fetch, update, delete, or insert operations for an ODP, as
much processing of the SQL statement as possible is done during the ODP creation, so that
the same processing is not done on each subsequent I/IO operation. An ODP may be cached
at close time so that, if the SQL statement is run again during the job, the ODP is reused.
Such an open is called a pseudo-open, which is much less expensive than a full open.

Using the full open reports, you can verify that an SQL statement run multiple times within the
same job is taking advantage of a reusable ODP. To obtain the sample report in Figure 5-20,
we first selected the Statements report for full opens. We then found an instance of the
statement which we wanted to investigate further, right-clicked it, and chose the option to
show SQL Statements with the Same Statement Text (Figure 5-20).

Figure 5-20 Right click to select SQL statements with same text

In the new window containing records for just the selected statement text, we sorted on start
time in ascending order (Figure 5-21).

Figure 5-21 Report demonstrating reuse of open data path

134 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

You can see that a full open was logged for the first and second opens of the statement and a
pseudo-open was logged for subsequent opens. After two full opens of the same SQL
statement, the optimizer will generally perform a pseudo-close of the cursor which will
maintain the open data path, thus allowing ODP re-use on the third and subsequent runs.
Note that the runtime logged for the pseudo-opens are less than the run times of the full
opens by a factor of more than 100. This demonstrates the performance benefit of the
optimizer being able to re-use an open data path.

Table scan information report
The table scan information report indicates which entire tables are scanned in arrival
sequence without using an index.

Figure 5-22 Table scan information reports available

A table scan is generally acceptable in cases where a large portion of the table is selected or
the selected table contains a small number of records. A table scan is not an efficient method
when only a small percentage of the rows are being returned. Therefore, if you are
investigating a long-running SQL statement that is doing a table scan, creating an appropriate
index usually provides better performance.

A sample table scan Statements report is shown in Figure 5-23.

Figure 5-23 Table Scan Information report

We have rearranged the column order to show the following columns in the window.

� Reason code: This column shows why the arrival sequence was chosen by the optimizer.

� Rows in base table: This column indicates the number of rows in the table.

� Estimate rows selected: From this value, you can determine if the table scan was done for
a significant number or rows.

� Advised index: This column indicated whether an index was advised.

� Advised index keys: This column suggests keys for an index. The Advised index keys
column can contain both primary and secondary keys. The advised primary index keys
column indicates the number of keys that are considered primary. The other keys are
considered less selective (secondary).

Chapter 5. Analyzing SQL performance data using iSeries Navigator 135

In the above example, you can see that a table scan is being done for the first three
statements because no indexes exist. Creating the advised index may improve performance
of this query. For the next several statements the optimizer chooses to do a table scan, which
is probably a good implementation, due to the small number of records in the file.

Index advised information report
Although it is possible to see the advised index keys from the table scan information report,
you can see the same information from the index advised information report.

Figure 5-24 Index advised information report available

You can use this report to get advised index information for any jobs that were monitored in
the SQL Performance Monitor collection. From the Statements report, you can even
right-click the line of interest to create the index, as shown in Figure 5-25.

Figure 5-25 Right-click the desired row to create the index advised

Note that at V5R4, there is a another new option to get system-wide index advised
information and create the advised indexes. The new system-wide index advisor is
introduced in Chapter 9, “Index Advisor” on page 319.

Indexes created reports
The Index Created information report contain information for each SQL statement that
required an index to be created.

Figure 5-26 Indexes created reports available

Temporary indexes might need to be created for several reasons such as to perform a join, to
support scrollable cursors, or to implement ordering or grouping. The indexes that are created
might contain keys only for rows that satisfy the query (such indexes are known as sparse
indexes). In many cases, index creation might be perfectly normal and the most efficient way
to perform the query. However, if the number of rows is large, or if the same index is

136 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

repeatedly created, you can create a permanent index to improve performance of this query.
This might be true regardless of whether an index was advised.

In CQE temporary index build does not always mean that the ODP is nonreusable. The
database optimizer tries to reuse the temporary index for each execution of the specific query
if possible.

For example, if a host variable value is used to build selection into a temporary index (that is,
sparse), then ODP is not reusable because temporary index selection can be different on
every execution of the query. In this case, the optimizer tends to avoid creating sparse
indexes if the statement execution history shows it to be a frequently executed statement. But
if the temporary index build is done during repeated query run times and the query goes into
reusable ODP mode, then the temporary index is reusable.

SQE in V5R4 supports temporary indexes as well. The advantage SQE has over CQE
concerning temporary indexes is that an SQE temporary index is maintained as the
underlying table data is changed allowing the index to be used by the SQE optimizer for other
SQL requests and connections. This SQE temporary index is known as an autonomic index
or a Maintained Temporary Index (MTI).

Temporary indexes are never built for selection alone. They always involve a join or a group
by or order by clause. Furthermore, since no name is given to the temporary index, the prefix
*TEMP is used in the monitor data.

Figure 5-27 shows the Statements report for Full Indexes Created. In this example, you can
see that an index with the same key is being created multiple times by the optimizer.
Therefore, this index may be a good candidate to be created as a permanent index.

Figure 5-27 Temporary index created report

Access plans rebuilt report

Figure 5-28 Access plan rebuilt report available

The Access plan rebuilt information report contains a row of information for each SQL
statement that requires the access plan to be rebuilt. Reoptimization is occasionally
necessary for one of several reasons such as a new index being created or dropped, applying
a program temporary fix, significant change in the size of a memory pool, and so on.
However, excessive access plan rebuilds might indicate a problem.

Figure 5-29 shows an example of the Statements Access Plan Rebuilt report.

Chapter 5. Analyzing SQL performance data using iSeries Navigator 137

Figure 5-29 Access plan rebuild reasons

From this report, the most important information is in the Access Plan Rebuild Reason
column. Some of the possible reasons are:

� Different File Or Member(change in library list or default schema)
� More Than Ten Percent Change In Number Of Rows
� New Access Path Found(Index created)
� Access Path No Longer Found Or Valid(Index deleted)
� Different CCSID
� Different Date Or Time Format
� Different Sort Sequence Table
� Different Storage Pool or Paging Option(Optimizer’s fair share of memory pool change)
� Symmetric Multi Processing Change
� QAQQINI Change
� Different Isolation Level or Scroll Option
� New Release

Temporary table report information
The Temporary Table Information reports contains information for SQL statements that
required a temporary result as shown in Figure 5-30.

Figure 5-30 Temporary table reports available

Temporary results are sometimes necessary based on the SQL statement. If you find that a
lot of time is being consumed by creation of temporary results, you might want to investigate
why the temporary result is necessary. Figure 5-31 shows a sample Statements report for
temporary results.

138 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Figure 5-31 Temporary results statement report

In our example, you can see that several of the temporary files were created due to a static,
or insensitive, cursor. Insensitive means that once opened, the cursor is not sensitive to
changed data, so a temporary file must be created. If you find that a lot of time is being spent
creating a temporary file due to a static cursor then you may want to examine your application
to see if a static cursor is really necessary. If not, you may be able to eliminate the temporary
file builds by declaring the cursor as ASENSITVE instead.

CPU retrieval time report
This report can be found under the I/O information report. This report provides a quick way to
review some of the I/O statistics for the statements recorded in the monitor file as shown in
Figure 5-32.

Figure 5-32 Average Row Retrieval CPU time

At a glance, you can determine which statement was responsible for the most time spent in
the CPU as well as the most clock time, check the number of synchronous or asynchronous
I/O operations as well as the average number of rows returned, Figure 5-33. A large retrieval
time for a relatively small number of rows may indicate a lot of unnecessary I/O is occurring
and that the query needs to be tuned.

Figure 5-33 CPU retrieval time report

In this example, the statement responsible for the most CPU time consumed about 7 seconds
of CPU time and 24 seconds of clock time to return. You could right-click that record to view
the statement and check its implementation using Visual Explain.

Chapter 5. Analyzing SQL performance data using iSeries Navigator 139

Many more reports available
In this section we have gone over a few of the reports which you may find most helpful in your
query analysis. However, there are more which may contain important information for your
particular situation. Therefore, feel free to explore.

5.2.3 Action menu items

In addition to the reports available when a checkmark is indicated in the Summary Available
or Statements Available column, there are a few additional high-level summary reports and
other features available from the Actions menu of the main dashboard window, Figure 5-34.
Let us take a look at the available options.

Figure 5-34 Actions menu options

Save history
The save history options allows you to save the analysis overview information into a history
file. When you take this option, you will be asked to name a history file to save the information
in.

Figure 5-35 Saving the overview information to a history file.

If the history file does not exist, it will be created. The high-level analysis overview information
will be saved into a single record in the history file. If the file already exists, then a record will
be added. The history file allows you to maintain a repository of the analysis overview
information for multiple SQL Performance monitor collections.

Note: The I/O information reports are based on the 3019 records, so for this information to
be available you need to have collected *DETAIL records if you used STRDBMON to start
the collection. A detailed collection started through the SQL Performance Monitor wizard
will always collect the 3019 records.

140 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Analysis Queries
Select this option if you want to see, and optionally modify, the underlying queries that are
processed to create the Summary and Statements reports that are available for the Analysis
Overview items. The window that comes up for this option lists each of the queries with some
descriptive text and a query ID as shown in Figure 5-36.

Figure 5-36 Analysis Queries

When you right-click any of these queries, you have the option to execute it and view the
report, or to modify the report in some fashion to suit your specific needs. When you select to
modify the report, it will bring up an SQL Scripts window populated with the SQL statement
behind the report (as shown in Figure 5-37). Modification of the query will not affect the
original query statement for this report, but, you could save the modified query to a new SQL
script file for future use.

Figure 5-37 Run SQL Scripts window where you can modify the query if desired

Chapter 5. Analyzing SQL performance data using iSeries Navigator 141

A particularly SQL-savvy user may wish to set a preference to have the buttons displayed in
the dashboard which allows you easy access to modify a particular report. To activate this
option, from the main dashboard window, select File → Preferences → Show Modify Query
Buttons.

Figure 5-38 Modify Query buttons

As shown in Figure 5-38, the buttons appear next to the Summary and Statement options.
Clicking the modify button brings up the SQL Scripts window with the report’s query.

User and Job Summary
This is simply another place for you to access the user and job summary queries. These
queries will run the same reports as are found in the user and job summary analysis overview
items.

Operation Summary
The Operation Summary report will give you a quick overview of the different types of
operations (fetch, open, close, and so on) that were captured in the monitor (Figure 5-39).

Figure 5-39 Operation Summary report

From this report, you can easily see what types of operations were run most frequently along
with their accumulated runtimes. Furthermore, you can drill-down from this report by
right-clicking the desired record. You can choose to view all the statements behind that
particular operation, or get the operations summary for that specific operation.

142 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Program Summary
The Programs Summary report is very useful if you want to determine what statements your
specific SQL programs were running. The report will give you the list of programs along with
the number of jobs running those programs and the runtime attributable to each program.
SQL statements not associated with any program will be grouped together in a row with a
blank program name (as shown in Figure 5-40).

Figure 5-40 Program Summary report

As with the Operation Summary report, you can right-click to drill down further. You can
choose to view the particular SQL statements that were being run by the program, either
summarized or individually, or you can select Program Actions → Explain SQL, which will
bring up a new window with the output from PRTSQLINF for the program.

Table and Index Summary
The Table Summary will give you a quick overview of all the tables accessed in the collected
monitor data (Figure 5-41), while the Index Summary gives reports on all the indexes used to
implement the queries logged in the monitor.

Figure 5-41 Table Summary report

5.3 Summary SQL Performance Monitor analysis overview

To begin viewing the results for the Summary SQL Performance Monitor, right-click the
paused or ended monitor. You will have the following options for a Summary monitor as
shown in Figure 5-42:

Chapter 5. Analyzing SQL performance data using iSeries Navigator 143

Figure 5-42 Options for a summary monitor

� Pause: This function stops the current collection of statistics and writes the current
statistics into several database files or tables that can be queried by selecting the Analyze
Results action. The monitor remains ready to collect more statistics, but requires the
Continue action to restart collection.

� Continue: This function restarts the collection of statistics for a monitor that is currently
paused.

� Analyze: The Summary Monitor analysis window is opened. This is unchanged between
V5R3 and V5R4.

Note that the option to Show Statements and Compare are missing, since those options only
apply to Detailed monitor.

To begin analysis of the Summary monitor, select Analyze.

144 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Figure 5-43 shows the first results panel that groups analysis options according to three tabs:

� Summary Results
� Detailed Results
� Composite View

Figure 5-43 Access SQL Performance Monitor results

On the Summary Results page, you can select individual summary queries or use the Select
All button. After you select the queries that you want to run, click the View Results button.

You can also choose to modify the predefined queries and run the new queries by clicking the
Modify Selected Queries button.

The Summary SQL Performance Monitor uses its own set of tables instead of using the single
table that the Detailed SQL Performance Monitor uses. The Summary monitor tables closely
match the suggested logical file formats of the Detailed SQL Performance Monitor.

5.3.1 SQL performance report information from summary data

To begin viewing the summary reports from Summary SQL Performance Monitor, click View
Results in the Summary Results tab.

Because all reports from the summary results are summarized at an output table level, you
can get a high-level perspective of what was happening during the monitoring such as:

� Analysis of the type of SQL operations
� Identification of the jobs that consumed the most DB2 resources
� Information regarding the programs that ran the monitored SQL

Chapter 5. Analyzing SQL performance data using iSeries Navigator 145

Summary reports of the Summary monitor
The Summary SQL Performance Monitor collects some of the same information as the
Detailed SQL Performance Monitor, but the performance statistics are kept in memory. At the
expense of detail, information is summarized for identical SQL statements to reduce the
amount of information collected. The objective is to get the statistics to memory as fast as
possible, while deferring any manipulation or conversion of the data until the performance
data is dumped to a result table for analysis.

In the first tab, you can select any of the four summary reports, in any combination, and then
click the View Results button. If multiple reports were selected, then multiple windows will be
brought up, one for each report. To produce Figure 5-44, we selected all four reports. You can
move the scroll bar left and right to view the several columns returned for each row.

Figure 5-44 Summary Monitor summary reports

We’ll briefly describe each of the four summary reports:

� General summary: This report contains information in a single row that summarizes all
SQL activity, such as the amount of SQL used in the application, whether the SQL
statements are mainly short-running or long-running, and whether the number of results
returned is small or large.

� Job summary: This report contains a row of information for each job. The information can
be used to tell which jobs on the system are the heaviest users of SQL, and therefore,
which ones are perhaps candidates for performance tuning.

146 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

� Operation summary: This report contains a row of summary information for each type of
SQL operation. A quick review of this report can tell you if you have a specific operation
type that is consuming most of the SQL runtime.

� Program summary: This report contains a row of information for each program that
performed SQL operations. This information can be used to identify which programs use
the most or most expensive SQL statements. Note that a program name is available only
if the SQL statements are embedded inside a compiled program. SQL statements that are
issued through Open Database Connectivity (ODBC), Java Database Connectivity
(JDBC), or OLE DB have a blank program name unless they result from a procedure,
function, or trigger.

Detail reports of the Summary monitor
The Detailed reports tab is shown in Figure 5-45.

Figure 5-45 Detailed results tab of the summary monitor

Chapter 5. Analyzing SQL performance data using iSeries Navigator 147

In this example, Figure 5-46, we have selected the table scan report. The report will give you
a row for each query that was implemented using a table scan, along with runtime information
and information about the base table that the query was run over.

Figure 5-46 Detailed table scan report of the summary monitor

A review of the information contained in this report will let you know if you may have an
excessive number of table scans occurring on your system.

Composite view reports of the Summary monitor
The composite view tab provides the same report options as the detailed tab, but instead of
returning each report in a separate window, a single composite report is returned featuring
data from each of the selected report areas.

5.3.2 Examples and application of Summary SQL Performance Monitor

For further applications and examples of using the Summary SQL Performance Monitor,
please refer to the following URL and click Database Memory Monitor Command.

http://www-03.ibm.com/servers/eserver/iseries/db2/db2code.html

5.3.3 Limitations of the Summary monitor

It is important to mention that while the Summary monitor can be a valid feedback
mechanism, it is currently not the strategic direction for SQL performance monitoring in i5/OS.
Current development efforts are focused on tools for analysis of the Detailed SQL
Performance Monitor. For example, as you learned in 3.6, “Index Advisor” on page 63, the
index advisor is improved in recent releases to provided better index advice. However, the
Summary monitor was not updated to support the improved recommendations. Therefore,
you need to use the Detailed monitor to take full advantage of the index advice
improvements.

Additionally, the Summary monitor does not feature the drill-down capability of the new
Detailed SQL Performance Monitor tools, nor does it offer the ability to sort on individual
columns from within the report.

148 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

http://www-03.ibm.com/servers/eserver/iseries/db2/db2code.html

5.4 Show Statements

At V5R4, the new Show Statements option replaces the List Explainable Statements option
from V5R3 and earlier releases. The Show Statements interface features filtering capabilities
that allow you to reduce the list of statements displayed to a more manageable size. This new
Show Statements interface is also used to display statements from the SQE Plan Cache and
SQE Plan Cache Snapshots, which will be introduced in Chapter 7, “SQE Plan Cache and
SQE Plan Cache Snapshots” on page 237.)

To access the Show Statements interface, right-click the desired monitor and choose Show
Statement, as shown in Figure 5-47.

Figure 5-47 Select Show Statements option

5.4.1 Filtering options

The list of statements window is initially empty as shown in Figure 5-48, which allows you the
opportunity to set filters on the data before the monitor file is interrogated for a list of
statements. You can filter by any one or multiple of the following criteria:

� Minimum runtime for the longest execution: Enter a whole number of seconds. Any
statement with an actual runtime of less than the chosen value will not be displayed.

� Queries run after this data and time: This allows you to subset the data based on a
specific time period.

� Queries that reference these objects: Select only those queries that are referencing
objects in the listed tables and schemas.

� SQL statement contains: Enter a string of text which must be contained in the statements
retrieved.

Chapter 5. Analyzing SQL performance data using iSeries Navigator 149

Figure 5-48 Interface to the collection’s statements

Alternatively, simply leave the filter options blank to retrieve all data from the monitor table.
Once you have made your choices, hit the Retrieve button and the List of Statements window

150 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

will be populated. In this example, Figure 5-49, we have requested to only show statements
that reference the ORDERS table.

Figure 5-49 Statements filtered by user -specified criteria

Clicking any statement in the upper right pane will display the entire statement in the lower
right pane.

From the List of Statements pane, you have the option to create a new SQL Performance
Monitor from one of more of the statements listed. Select a single statement or hold down the
shift key to select multiple statements, and then click the Create Performance Monitor
button. Enter a new name and library for the performance monitor as shown in Figure 5-50.

Figure 5-50 Creating a new performance monitor based on statements from original monitor

Information pertaining to the selected statements will be copied to a new performance
monitor and the new monitor will automatically appear as an imported monitor in the list of
SQL Performance Monitors available from the main iSeries Navigator window.

Tip: Use this option to create a subsetted performance monitor containing just the query or
queries you are investigating. You can then send the smaller monitor file to your service
representative rather than a possibly very large collection.

Chapter 5. Analyzing SQL performance data using iSeries Navigator 151

5.4.2 Launching Visual Explain

From the lower left pane, you can click Run Visual Explain to bring up the Visual Explain
diagram of the query, which is shown in Figure 5-51.

Figure 5-51 Visual Explain launched

You can now use the Visual Explain interface to further investigate your query. Refer to
Chapter 8, “Analyzing database performance data with Visual Explain” on page 275 for a full
discussion of the Visual Explain toolset.

5.5 Compare monitors

Another new addition to the V5R4 SQL Performance Monitor toolset is the Compare monitors
feature. Using this feature, you can take two SQL Performance Monitors that have been
collected against the same or a similar set of statements, and easily compare them on a
statement by statement basis, based on several key factors. To access the Compare feature,

152 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

right click one or both of the monitors you wish to compare and select the Compare option, as
shown in Figure 5-52.

Figure 5-52 Selecting the compare option

You will be presented with a window where you can fill in the name of the second monitor file,
If you had selected two initially, then both file names will be filled in as shown in Figure 5-53.

Figure 5-53 Enter names of SQL Performance Monitors to be compared.

Chapter 5. Analyzing SQL performance data using iSeries Navigator 153

You can set some additional criteria from this window as well:

� Statement runtime filter: By setting a value for the minimum runtime that should be
considered for the comparison you can eliminate data for small queries which may not be
of particular interest.

� Minimum percent difference: By setting a percentage here, the compare engine will only
return information for queries where the percentage of difference for the particular
comparison item exceeds the value entered.

� Schema mask: This convenient feature allows you to compare statements between two
monitors where the SQL statements may be against tables in different schemas. For
example, if you had one monitor over tables in TESTLIB and another monitor over tables
in PRODLIB, you could compare them by setting TESTLIB as the schema mask for the
first collection and PRODLIB as the schema mask for the second collection.

After choosing any of these settings, select the Compare button to have the tool begin the
comparison. After the processing of the two monitor files has finished, you are presented with
the initial window showing the statements that were found in each collection:

Figure 5-54 Matched statements

At the top of the window, you have the names of the first and second collections, on the left
and right sides of the window, respectively. The number of unmatched statements is listed
here as well. The above example shows that there was one statement from the first monitor
file that was not found in the second monitor, but that there were no statements found in the
second file that were not found in the first file. From this window you can all select the Show
Statements button to enter the Show Statements interface that we looked at in the previous
section.

Click the desired statement to expand the list of comparison data. Each comparison metric
has three columns of information for the statement selected: the value from the first
collection, the value from the second collection, and a percentage indicating the percent
difference between the two (Figure 5-55).

154 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Figure 5-55 Comparison data expanded

From this window, you can get a quick overview of how the statement performed in one
collection compared to the other. In the above example, you can quickly see the dramatic
difference of over 700% for the runtime of the statement in question. Further review of the
data shows that there was an average of two table scans used for the statement in the first
collection and no table scans for the second, giving a big clue as to why the performance
difference exists.

As seen throughout the new SQL performance monitor toolset, you can click Visual Explain to
get the implementation in pictorial form and do further analysis. What makes the option
unique here is that when you click the Visual Explain button at the bottom of the window, both

Chapter 5. Analyzing SQL performance data using iSeries Navigator 155

Visual Explain diagrams will be presented, stacked one on top of the other for easy
comparison, as shown in Figure 5-56.

Figure 5-56 Double Visual Explain diagrams for easy comparison

With the comparison tool, you can start with two SQL Performance monitors, and in a few
steps, find the statement representing the largest difference between the two collections and
be presented with the Visual Explain diagrams showing the two implementations of that
particular statement.

5.6 Case study

Now let us take a look at a practical example of using the new tools to investigate a query
performance issue.

Note: It important to note that since the Compare feature is a statement by statement
comparison, it only works well if the monitors being compared have several of the same
statements.

Tip: Before proceeding with the case study, review Chapter 8, “Analyzing database
performance data with Visual Explain” on page 275 if you have not done so already.

156 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

5.6.1 A poor performing SQL statement

In this example, we have an SQL application which joins rows from a customer table and an
order table. The application takes about a minute to read order information for 50 customers.
The SQL statement being used in the application to retrieve the order information is shown in
Example 5-1.

Example 5-1 Join operation from Customer table and Order table

SELECT O . *
FROM ORDERS O , CUSTOMERS C
WHERE O . CUSTKEY = C . CUSTKEY
AND C . CUSTOMER = ?

We want to tune this query and improve its performance.

As the first step to any SQL performance analysis, a Detailed SQL Performance Monitor
should be collected and analyzed using the Analysis Overview dashboard. So, we have done
this and are now going to right-click the collection in the SQL Performance Monitor pane of
the main iSeries Navigator window and select Analyze for our collection. Figure 5-57 shows
the overview information in the dashboard for both the “Overview” folder and the “What
implementations did the optimizer use?” folder.

Chapter 5. Analyzing SQL performance data using iSeries Navigator 157

Figure 5-57 Analysis overview dashboard

A quick perusal of the dashboard overview and implementation information reveals several
key focus areas:

1. The query is being optimized by CQE rather than by SQE.

2. The number of full opens is high, 50, compared to the number of unique open statements,
just one.

3. Overall runtime of 65.6 seconds.

4. Indexes are being advised.

5. Tables scans are occurring.

4

1

3

2

5

3

4

158 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Any one of the above items could be focused on to potentially improve performance. Let us
explore them.

5.6.2 Why are table scans being done?

First we will investigate why table scans are occurring for this query. This could definitely be
an area of improvement since we know we are not selecting most of the records in the tables,
and in general table scans are best used when selecting a good portion of the table. Let’s
take a look at the Table Scan Statements report to see why a table scan is being done,
Figure 5-58.

Chapter 5. Analyzing SQL performance data using iSeries Navigator 159

Figure 5-58 Table scan statement report

The report shows that table scans are done because no indexes exist over the ORDERS
table and no suitable index exists over the CUSTOMERS table.

160 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Recall that there is index advised information being returned for this query. Therefore, next
we run the Index Creates Advised Statements report in order to see what the optimizer is
recommending, Figure 5-59.

Figure 5-59 Index advised statement report

The optimizer is recommending an index over the CUSTOMERS table. But looking back to
3.6, “Index Advisor” on page 63, we know that CQE only advises indexes on local selection
criteria. Its good indexing strategy to have indexes on the join criteria as well.

Refer back to the SQL statement in Example 5-1 on page 157. The perfect indexes for this
query will cover both the local selection criteria and the join criteria. Therefore, we will want to
create an index on CUSTOMERS keyed by CUSTOMER and CUSTKEY to cover the local
selection and the join selection, and we will want an index on ORDERS keyed by CUSTKEY
to cover its join selection.

Before we decide to create the indexes required for this SQL Statement let’s see the Visual
Explain graph of this SQL statement. We can right-click one of the rows in the report, and
because the resulting menu is context sensitive, we have the option Visual Explain the

Chapter 5. Analyzing SQL performance data using iSeries Navigator 161

statement as shown in the upper window of Figure 5-61. The Visual Explain graph for this
SQL statement is illustrated in Figure 5-60.

Figure 5-60 Visual Explain diagram without indexes

Now, let’s proceed to create the required indexes for the SQL Statement. We can right- click
one of the rows in the report, and because the resulting menu is context sensitive, we have
the option to create the advised index right from the menu, Figure 5-61.

162 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Figure 5-61 Creating an index right from the menu

The index create dialog is pre-populated with the advised index column, in this case,
CUSTOMER. We selected CUSTKEY from the left pane and then clicked Add → to add it to
the column list. We give the index a name, and the system creates the index when we click
OK.

Remember, we also want to create an index over ORDERS to match its join criteria. We’ll do
that from the SQL Scripts window before testing the new indexes with Visual Explain. We

Chapter 5. Analyzing SQL performance data using iSeries Navigator 163

right-click the statement in any of the reports in which it appears and select Work with SQL
Statements to bring it up in an SQL Scripts window.

In the SQL Scripts window that appears, already populated with the query, we will first create
our second index, on ORDERS, as shown in Figure 5-62. We also have to replace the
parameter marker in the local selection, represented by the question mark, with a real value.

Figure 5-62 SQL Script to create an index and test the query

Tip: If we do not know a real value to replace the parameter marker with, several of the
Statement reports will give us this information. For example, in the “What types of SQL
statements were requested?” folder, we can run the “Select Statements” statements report
and check the “Variable Values” column.

164 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

After the index is successfully created, we click the Visual Explain icon to get the
implementation diagram shown in Figure 5-63. The diagram confirms that the indexes are
now being used.

Figure 5-63 VE diagram showing the new indexes were used

The diagram shows that an index scan has been done over each file. By flying over the Index
Scan icon with the pointer, we confirm that the indexes now used are those we just created.

Chapter 5. Analyzing SQL performance data using iSeries Navigator 165

Now that we have confirmed the indexes are being used, it is time to test our application to
see if there is an improvement in run time. Therefore, we collect another SQL Performance
Monitor and check the focus areas in the overview dashboard, Figure 5-64.

Figure 5-64 Overview analysis after indexes created

Note the following considerations:

� The query is still being optimized by CQE. In the next section, we will investigate that
further.

� There is only one full open and 49 pseudo opens, indicating the open data path is now
reusable. The reason why we now only have one full open is found by analyzing the two
Visual Explain graphs shown in Figure 5-60 and Figure 5-63. The execution of the SQL
Statement without indexes involves a hash join, and a hash table is created based on the
particular host variable value for that particular execution, that hash table cannot be
reused and therefore the cursor gets hard closed each time. On the other hand, this does
not happen in the execution of the SQL statement with indexes.

� We also note the total runtime of 0.45 seconds, that is a better than a 100 times
improvement over the original runtime.

1

2

3

4

5

166 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

� No indexes are being advised.

� Tables scans no longer occurring.

5.6.3 Why is CQE being used?

Since we know that SQE is the strategic direction for SQL on i5/OS, let us next try to
determine why this query is being routed CQE. Although the runtime improvement already
achieved by creating the indexes is impressive, perhaps we can improve it even further by
ensuring that it is processed by the SQL Query Engine rather than the Classic Query Engine.

As a review, here are the SQE restrictions at V5R4. A query with any of the following
attributes will be routed to CQE:

� Sort sequences
� UDTFs, UPPER & LOWER functions
� Logical file references
� Select/omit logical files
� Non-SQL interface
� Read triggers

To determine why our query is being routed to CQE, we will run the CQE Summary report as
shown in Figure 5-65.

Figure 5-65 CQE summary report

The reason CQE is being used is due to
DERIVED_KEY_OR_SELECT_OMIT_LOGICAL_FILE. A review of the logical files over the
CUSTOMERS and ORDERS tables confirms that select/omit logicals exist. However, after
doing some research, we learn that these select/omit logicals are from an old application and
are no longer needed. Therefore, from another session, we delete the select/omit logical files.
We can immediately test this change to see if we are now routing to SQE. We right-click the

Chapter 5. Analyzing SQL performance data using iSeries Navigator 167

record in the CQE report and select Work with SQL Statement. This brings up a SQL
Scripts session, Figure 5-66, already populated with our statement.

Figure 5-66 Work with the statement

168 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

From here, we can run Visual Explain and check the implementation to see if the query will
now be routed through SQE. As in the last case, we must replace the parameter marker with
a real value, as we have done in Figure 5-66. We then run Visual Explain.

Figure 5-67 Visual Explain confirming SQE now used

We click the final select icon and then check the right pane under “Environment information
for SQL”. There, we see that the query is now using SQE, Figure 5-67. So, let’s re-run the
application now that we’ve eliminated the select/omit logical files and see how the SQE
runtime compares to the CQE run time.

Chapter 5. Analyzing SQL performance data using iSeries Navigator 169

We again collect a SQL Performance monitor and we will check the focus areas in the
dashboard (Figure 5-68).

Figure 5-68 Analysis overview after eliminating select/omit logical files

The analysis confirms that:

� SQE is now being used.
� The ODP is still reusable as we only have one full open.
� Total runtime is again improved, now to only 0.25 seconds.
� There are still no indexes advised.
� There are still no table scans.

As a final confirmation of our work, let us run the original SQL Performance Monitor and the
latest monitor through the comparison tool.

1

4

5

2

3

170 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

5.6.4 Comparison

For the comparison, we will select the two monitors from the SQL Performance Monitors
representing the initial data collected and the final data collected, and then click Compare.

Figure 5-69 Select the two monitors to compare

Chapter 5. Analyzing SQL performance data using iSeries Navigator 171

From the comparison window, we can very quickly confirm the improvements.

Figure 5-70 Side by side comparison

From this comparison, note the following:

� Average runtime reduced from 1.312 seconds to 0.005 seconds.

� Average table scans reduced from two to zero and average indexes used increased from
zero to two.

� Average index creates advised decreased from one to zero.

� Average estimated rows reduced from about 300000 to 30.

� Statement went from CQE to SQE.

This completes our investigation. We have taken the application from a one minute run time
to a quarter of a second with the addition of some indexes and by ensuring that it is routed to
SQE. All this with the help of the new, easy-to-use SQL Performance Monitor tools.

1

2

3

4

5

172 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Chapter 6. Custom Database Monitor
Analysis

In the previous chapters, we explained how the Detailed Database Monitor dumps all the
performance data into one table. We also explained how the new iSeries Navigator graphical
“dashboard” interface, the Analyze Overview dashboard discussed in Chapter 5, “Analyzing
SQL performance data using iSeries Navigator” on page 117, can be used to identify and
understand possible SQL performance problems. There are cases were you may require
information that may not be provided by the graphical tools and that is when is important to be
able to understand how to query the performance data.

In this chapter, we explain the different records and columns in the table and how to directly
query the Detailed Database Monitor data. This is useful because you can make your own
queries that reduce the number of columns of information returned or specifically target in on
an area that may require maneuvering through many levels in the graphical interface.

This chapter guides you in:

� Understanding the contents of the records of the Detailed Performance monitor table.

� Knowing which records to select when you have a question about a specific functions and
features being used a database query.

� Determining what are the custom queries to use to locate an SQL query problem and
some possible alternatives to use to resolve them.

� Providing a method of delving deeper into a particular SQL query problem uncovered by a
high level analysis or the use of the iSeries Navigator GUI interface.

6

© Copyright IBM Corp. 2007. All rights reserved. 173

6.1 The Database Monitor record types

The Detailed Database Monitor collects different data and stores records in a single table in
the order of occurrence. Within the Database Monitor table, each record contains a record
type column. The Database Monitor uses the QQRID column to describe the type of
information gathered in the particular record. 6.1.1, “Database Monitor record types” on
page 174 shows the Database Monitor record types that are most often used for performance
analysis. For a complete listing of all of the various records types and formats go to the V5R4
iSeries Information Center on the Web at:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

On this Web page, perform the following steps:

1. Click Printable PDFs and manuals item on the iSeries Information Center menu.

2. Wait until the Printable PDFs and manuals window appears with the listing of all iSeries
V5R4 manuals

3. Key performance and query optimization into the search field and press the Search
button.

4. When the response is displayed, click the manual title DB2 UDB for iSeries Database
Performance and Query Optimization.

6.1.1 Database Monitor record types

In this section, we list the Database Monitor record types that are most often used for
performance analysis, as well as other record types. We also list the Global Database
Monitor data columns and other columns that identify the tables or indexes used.

Record types most often used (QQRID value)
The following record types are most often used:

� 1000 Record: “The 1000 Record: SQL statement summary” on page 177)
� 3000 Record: “The 3000 Record: Arrival sequence (table scan)” on page 179
� 3001 Record: “The 3001 Record: using an existing index” on page 181
� 3002 Record: “The 3002 Record: temporary index created” on page 182
� 3003 Record: “The 3003 record: query sort” on page 183
� 3004 Record: “The 3004 record: temporary file” on page 184
� 3006 Record: “The 3006 record: access plan rebuild” on page 185
� 3007 Record:“The 3007 record: index evaluation” on page 186
� 3010 Record: “The 3010 record: host variables” on page 187
� 3014 Record: “The 3014 record: general query optimization information” on page 188
� 3015 Record: “The 3015 record: SQE statistics advised” on page 189
� 3020 Record: “The 3020 record: index advised (SQE)” on page 190

Database Monitor record types: other record types
The following record types are in the Database Monitor table but are not used in all the
records:

� 3008 Record: Sub query processing
� 3018 Record: “The 3018 record: STRDBMON/ENDDBMON” on page 189
� 3019 Record: “The 3019 record: rows retrieved detail” on page 189

Note: In the sections that follow, we identify the columns for each record type. The term
“column” is also known as field.

174 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

� 3021 Record: Bitmap created
� 3022 Record: Bitmap merge
� 3023 Record: Temporal hash table created
� 3025 Record: DISTINCT processing
� 3026 Record: Set Processing (V5R4)
� 3027 Record: Subquery merge
� 3028 Record: Grouping
� 3030 Record: Query step processing
� 3031 Record: Recursive common table expression (V5R4)
� 5002 Record: Internal use only - SQE VE

Record types 3000 to 3008, 3014, and 3021 to 3028 occur during a full open and can be
referred to as optimization records. Optimization records are much like debug messages.
These records are necessary to determine the access plan for any given query in the
Database Monitor data.

Global Database Monitor data columns
The following data columns are common to all record types:

� QQRID (record identifier): This column identifies the type of record.

� QQUCNT (unique number given for each query within a job): QQUCNT links together all
Database Monitor records associated with all instances of a unique query within a job. The
QQUCNT value assigned at full open time stays constant for all subsequent instances of
that query. Non open data path (non-ODP) SQL operations (prepare, describe, commit)
have QQUCNT = 0 and cannot be linked to a query. However, the QQ1000 column in the
prepare or describe 1000 record contains the prepared SQL text.

This data column is not set for optimization records.

� Unique Query/Request Identifier - surrogate key

� QQJOB (job name)

� QQUSER (job user name)

� QVC102: This column refers to the CURRENT job user name.

� QQJNUM (job number): The job number is useful when multiple jobs are collected in one
DB Monitor file.

� QQTIME (time at which the record was created): The time record can be useful when
trying to determine which queries were running in a given time period.

� QQJFLD (join field): This column contains information that uniquely identifies a job and
includes job name, job user name, and job number.

� QQ19: (thread identifier): This column might be useful for multi-threaded applications.

Chapter 6. Custom Database Monitor Analysis 175

Figure 6-1 shows some of the Global Database Monitor columns.

Figure 6-1 Global Database Monitor columns

Other columns that identify tables or indexes used
The following columns can also identify the tables or indexes that are used:

� QQTLN: Library of the table queried
� QQTFN: Name of the table queried
� QQPTLN: Base library
� QQPTFN: Base table
� QQILNM: Library of the index used
� QQIFNM: Name of the index used; *N when it is a temporary index
� QVQTBL: Queried table long name
� QVQLIB: Queried library long name
� QVPTBL: Base table long name
� QVPLIB: Base table library long name
� QVINAM: Index used long name
� QVILIB: Index library long name

How the data is organized in the Database Monitor table
The first occurrence of a unique query within the job always results in a full open. A unique
query is one that requires a new ODP. SQL has determined that there is no existing ODP that
can be used.

Tip: If you are going to use the Run SQL Script in iSeries Navigator, change the Java
Database Connectivity (JDBC) setup to force translation for CCSID 65535, because the
QQJFLD has been defined as FOR BIT DATA. Otherwise this column is shown in
hexadecimal.

Reset the default value to use Visual Explain, otherwise it will fail.

176 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

The presence of optimization records indicates a full open for an Open, Select into, Update,
Delete, or Insert operation. Optimization records are immediately followed by SQL summary
records (QQRID=1000) for that operation.

Subsequent occurrences of this query within the same job either run in reusable ODP or
nonreusable ODP mode. Nonreusable mode is indicated by the presence of optimization
records each time a particular query is run (full open). Reusable ODP mode is indicated by
3010 and 1000 records each time the given query is run (no optimization records or full
open).

Linking query instances in the Database Monitor data
The data in the Database Monitor file is arranged chronologically. This organization can make
it difficult to find all instances of a unique query. Use the QQJNUM, QQUSER, QQJOB,
QQUCNT and QQI5 columns to view specific query instances. This is because QQUCNT and
QQI5 columns link together all row types for a specific database request. The column
QQUCNT is the surrogate key used to identify each unique query within a job. Be aware of
the following situations:

� QQUCNT is assigned during a full open and is constant for all subsequent instances of a
query.

� Non-ODP SQL operations (prepare, describe, commit) have QQUCNT = 0 and, therefore,
cannot be linked to a query. If this is the case, you can use the QQ1000 column, which in
the Prepare or Describe operation, contains the prepared SQL text.

� Non-ODP 1000 records (commit, prepare, and so on) have QQI5 = 0.

A full open occurs when there is an SQL update, insert, delete, or open operation and the
QQI5 column is 0.

6.1.2 The 1000 Record: SQL statement summary

The 1000 record is the basic record type for any SQL query analysis. One record exists for
each SQL operation (open, update, close, commit, and so on). The following columns are
those that are most commonly used:

� QQ1000: Prepared text of SQL statement literals in the original SQL text might be
replaced by parameter markers in prepared text if SQL was able to convert them during
preparation (desired). For the original SQL text, use literal values from the matching 3010
record in the place of parameter markers or obtain the text from the step mode file using
the QQSTIM time stamp from this record.

� QQC21: This column indicates the type of SQL operation (OP, FE, CL, UP, IN, DL, and so
on). A value of FE indicates a Fetch summary record and not the actual number of fetch
operations.

The ODP-related operation types are OP, IN, UP, DL, SI and SK.

� QQI2: Number of rows updated, inserted, or deleted

� QQI3: Number of rows fetched (only on FE rows)

This column indicates the actual number of rows fetched, and not the number of fetch
attempts.

� QQI6: Elapsed time for this operation in microseconds

The time to fetch all rows might not be included in with Open and Select operations; you
must look at the time on Fetch operation rows.

Chapter 6. Custom Database Monitor Analysis 177

Access plan information
The following columns indicate information about the access plan:

� QQC103 and QQC104: Package or program name and library

� QVC18: Dynamic SQL statement type

A value of E represents “extended dynamic”, a value of S represents “system wide”
statement cache, and a value of L represents a prepared statement.

� QQC22 and QVC22: Access plan rebuild code and subcode

This subcode is useful for IBM debug purposes.

� QVC24: Access plan save status

A value of Ax means that the access plan could not be saved. Values of Bx or a blank
mean that the access plan was saved successfully.

ODP information
The following columns provide information about the ODP:

� QQI5: Query instance counter, where a value of 0 means that a full open occurred
� QQC15: Hard close reason code (for an HC operation type)
� QVC12: Pseudo open indicator
� QVC13: Pseudo close indicator
� QQC181 and QQC182: Cursor and statement name

Example 6-1 shows a query with some of the most commonly used columns in the 1000
record.

Example 6-1 Common columns in the 1000 record

SELECT qqucnt AS "QQUCNT Unique Counter"
,qqc21 AS "QQC21 Statement Operation"
,qqetim - qqstim AS "Elapsed Time"
,qq1000 AS "QQ1000 Text"
,qqi3 AS "QQI3 Fetched Rows"
,qqc16 AS "QQC16 Data Conv."
,qvc11 AS "QVC11 ALWCPYDTA"
,QVC41 AS "QVC41 Cmt Control Lvl"
,rrn(a)
FROM mydbmon a
WHERE qqrid = 1000
ORDER BY rrn(a)
OPTIMIZE FOR ALL ROWS;

178 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Figure 6-2 shows the result of the query in Example 6-1. The first row shows that the Open
operation took 5.917 milliseconds and only 0.561 milliseconds to fetch 6 rows.The query ran
with ALWCPYDTA *OPTIMIZE and with commitment control set to *NONE. Also, there were
no conversion problems when the query was run.

Figure 6-2 Common columns in the 1000 record

6.1.3 The 30XX Records: Query Optimization Row Type

The 30XX record types are referred to as Optimization rows because:

� They contain information to construct the access plan for an SQL request

� The Presence of Optimization rows indicate that a Full Open occurred

� Data Access Method columns contain detail on the optimization process

QQEPT Optimizer’s estimated processing time

QQREST Estimated number of rows selected

QQAJN Estimated number of rows joined

QVPARD Parallel degree requested

QVPARU Parallel degree used

6.1.4 The 3000 Record: Arrival sequence (table scan)

The 3000 record points outs queries in which the entire table is scanned. A table scan is
generally acceptable in cases where a large portion of the table will be selected or the table
has a small number of rows.

Table information
Table information is provided by the following columns:

� QVQTBL and QVQLIB: Table name and schema name respectively
� QQPTFN and QQPTLN: Short system table name and library name respectively
� QQTOTR: Number of rows in table

Chapter 6. Custom Database Monitor Analysis 179

Query optimization details
The following columns provide details about query optimization:

QQRCOD: Reason code, why table scan chosen

� T1 - No Indexes exist.
� T2 - Indexes exist, but none can be used.
� T3 - Optimizer choose table scans over available indexes

The query shown in Example 6-2 illustrates some of the most commonly used columns in the
3000 record.

Example 6-2 Common columns in the 3000 record

WITH xx AS (SELECT * FROM mydbmon WHERE qqrid = 3000),
yy AS
(SELECT qq1000 AS qqsttx
,qqjfld ,qqucnt ,qqc21 as qqop ,qqi4 as qqtt FROM mydbmon
WHERE qqrid = 1000
AND (qvc1c = 'Y' OR (qqc21 IN('DL', 'UP')
AND qqc181 <= ' ') OR qqc21 IN ('IN', 'IC', 'SK', 'SI') OR qqc21 LIKE 'O%'))

SELECT qqop as "QQC21 Operation" ,qqtt as "QQI4 Total time (ms)" ,qqptln as
"QQPTLN Library" ,qqptfn as "QQPTFN Table" ,qqtotr as "QQTOTR Rows" ,qqrcod as
"QQRCOD Reason" ,qqsttx as "QQ1000 Statement"
FROM xx a
LEFT JOIN yy b ON a.qqjfld = b.qqjfld AND a.qqucnt = b.qqucnt
ORDER BY a.qqjfld
DESC;

Figure 6-3 shows the result of the query in Example 6-2. The information from the 3000
record is joined with information from the 1000 record, to determine which queries did a table
scan. Therefore, in a case where an index is not recommended, we can still look at the
selection in the SQL text to see if a good index can be created.

Figure 6-3 Common columns in the 3000 record

180 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

6.1.5 The 3001 Record: using an existing index

The 3001 record shows the index that will be used to access the table and why it was chosen.
If the index was chosen for a join operation, additional information is given to help determine
how the table “fits” in the join. The order of the 3001 records indicates the join order chosen
by the optimizer.

Index and table information
The following columns provide index and table information:

� QVINAM and QVILIB: name of the chosen index and library
� QVQTBL and QVQLIB: name of the associated table and library

Query optimization details
The following columns indicate details about query optimization:

� QQRCOD: Reason the index was selected

I1 Selection only
I2 Ordering or grouping
I3 Selection and ordering or grouping
I4 Nested loop join
I5 Record selection using bitmap

� QQIDXA: Index advised (Y or N)

� QQI2: Number of primary (key positioning) keys in QQIDXD column

� QQIDXD: Suggested keys for index (selection only)

� QVC14: Index only access indicator (Y or N)

� QQIA: Index page size

Example 6-3 shows a query with some of the most commonly used columns in the 3001
record.

Example 6-3 Common columns in the 3001 record

SELECT qqilnm as "QQILNM Library" ,qqifnm as "QQILFNM Table" ,qqtotr as "QQTOTR
Rows" ,qqrcod as "QQRCOD Reason" ,qqidxa as "QQIDXA Index Advised" ,qqi2 as
"QQI2 Primary Keys" ,qqidxd as "QQIDXD Suggested keys"
,qvc14 as "QCV41 Index Only"
,qqia as "QQIA Index page size"
FROM mydbmon a
WHERE qqrid = 3001
order by qqidxa desc;

Figure 6-4 shows the result of the query in Example 6-3. It shows the following information:

� The first four entries for IX_ORDERS were used to satisfy the join in the query (reason I4).
However, the optimizer is advising the creation of an index with one primary key on the
column YEAR.

� QA1ANET1 was used for ordering and grouping (reason I2). It also showed that this query
was implemented using index only access(QVC14 = ‘Y’).

Note: A combination of the 3000 and 3001 records for a table indicates bitmap processing.

Chapter 6. Custom Database Monitor Analysis 181

� There are two entries, *NONE/MTI(Node_6, which refers to use of SQE temporary
indexes.

� Some indexes are used for row selection (reason I1).

� When DB2 is able to bypass accessing the table data, QVC14 is set to ‘Y’ to indicate that
Index Access method is being used.

Figure 6-4 Common columns from the 3001 record

6.1.6 The 3002 Record: temporary index created

The 3002 record shows instances in which the database optimizer decided that existing
indexes are too costly or do not have the right key order for join, group by, or order by
clauses. For this reason, the optimizer might decide to create a temporary index (Classic
Query Engine (CQE)).

Index and table information
The following columns provide information about the index and table:

� QQPTFN and QQPTLN: Table name for which the index is built

� OVINAM and QVILIB: Temporary index name and library

� QQRCOD: Reason why the index build was done

� QQTOTR: Number of rows in the table

� QQRIDX: Number of entries in the temporary index

� QQ1000: Name of the columns used for the index keys

– Column names are the “short” column names.
– QQ1000L can also be use.

182 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Example 6-4 shows a query with some of the most commonly used columns in the 3002
record.

Example 6-4 Common columns in the 3002 record

SELECT qqucnt, qqc16 as "QQC16 Index Reused"
,qqptfn as "QQPTFN Table Name"
,qqptln as "QQPTLN Schema"
,qqtotr as "QQTOTR Rows"
,qqridx as "QQRIDX Entries in Temp Idx"
,qq1000 as "QQ1000 Key columns"
FROM mydbmon
WHERE QQRID = 3002
ORDER BY 6
Desc;

Figure 6-5 shows the result of the query in Example 6-4. It shows the following information:

� In the data sampled, we found the largest indexes, 600,572 entries, that were created for
table ORDERS using SHIPDATE as the key field.

� The next largest index was for the table CUSTOMERS using MKTSEGMENT for 15,000
entries three times.

� There was an index built for the table SUPPLIERS using SUPPKEY for only 1,000 entries
thirteen times.

Figure 6-5 Common columns in the 3002 record

6.1.7 The 3003 record: query sort

The 3003 record shows that the database optimizer has decided to put selected rows into a
temporary space and sort them. This is either cheaper than alternative indexing methods or
an operation is forcing the optimizer to do so. An example is a UNION or an ORDER BY from
the columns of several tables.

The following columns are the most commonly used:

� QQSTIM: Time stamp for the start of the refill and sort

Chapter 6. Custom Database Monitor Analysis 183

� QQETIM: Time stamp for the end of the refill and sort

� QQRCOD: Reason why a sort technique was chosen

– F1 - Query contains grouping columns (GROUP BY).

– F2 - Query contains ordering columns (ORDER BY).

– F3 - Grouping and ordering columns not compatible.

– F4 - DISTINCT was specified for the query.

– F5 - UNION was specified for the query.

– F6 - Query had to be implemented using sort.

– F7 - Query optimizer chose to use a sort rather than an index to order the results of
query.

– F8 - Perform specified row selection to minimize I/O wait time.

– FC - The query contains grouping fields and there is a read trigger.

� QQI7: Reason subcode for Union.

– 51 - Query contains UNION and ORDER BY.
– 52 - Query contains UNION ALL.

� QQRSS: The number of rows in a sort space

Keep in mind that sorting might increase the open time and cost since sorting is often
performed at open time. If the number of rows sorted is small, then adding the right index
might improve performance. Indexes can still be used to select or join records before the sort
occurs. This does not indicate that the ODP is nonreusable.

The 1000 SQL summary record for the open might have a high elapsed time (QQI6 or QQI4).
Sort buffers are refilled and sorted at open time, even in reusable ODP mode. However, high
elapsed times might indicate a large answer set. In this case, the sort outperforms index
usage (the situation in most cases).

6.1.8 The 3004 record: temporary file

The 3004 record shows that the database optimizer is forced to store intermediate results and
rows in a temporary file because of the nature of the query. Examples are group by columns
from more than one file or materializing view results.

The following columns are the most commonly used:

� QQSTIM: Time stamp for the start of a fill temporary results table
� QQETIM: Time stamp for the end of a fill temporary results table
� QQTMPR: Number of rows in a temporary table
� QQRCOD: Reason for building temporary index

Example 6-5 shows a query with some of the most commonly used columns in the 3004
record.

Example 6-5 Common columns in the 3004 record

WITH xx AS
(SELECT * FROM mydbmon WHERE qqrid = 3004),
yy AS
(SELECT qq1000 AS qqsttx, qqjfld, qqucnt FROM mydbmon WHERE qqrid = 1000 AND
(qvc1c = 'Y' OR (qqc21 IN('DL', 'UP')
AND qqc181 <= ' ') OR qqc21 IN ('IN', 'IC', 'SK', 'SI') OR qqc21 LIKE 'O%'))

184 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

SELECT qqstim as "Start timestamp" ,qqetim as "End timestamp",
DECIMAL((DAY(qqetim-qqstim)*24*3600)+
(HOUR(qqetim-qqstim)*3600)+(MINUTE(qqetim-qqstim)*60)+
(SECOND(qqetim-qqstim))+(MICROSECOND(qqetim-qqstim)*.000001),18,3) AS "Temp.
population time" ,qqrcod as "Reason" ,qqtmpr as "Rows in temp" ,qqsttx as "SQL
text"
FROM xx a LEFT JOIN yy b ON a.qqjfld = b.qqjfld AND a.qqucnt = b.qqucnt
ORDER BY "Temp. population time" DESC;

Figure 6-6 shows the result of the query in Example 6-5. The information from the 3004
record is joined with information from the 1000 record so we know which queries were
implemented using a temporary result file. The reason in the example is that the query
contains a join condition that requires a temporary table (reason FA).

Figure 6-6 Common columns in the 3004 record

6.1.9 The 3006 record: access plan rebuild

The 3006 record is not present on every full open. It is generated only when an access plan
previously existed and has to be rebuilt. Also, the 3006 record is not generated when SQE
switches between cached access plans (up to three) in the SQE plan cache for an SQL
statement.

The following columns are the most commonly used:

� QQRCOD: Rebuild reason code

� QQC21: Rebuild reason code subtype (IBM debug purposes)

� QVC22: Previous rebuild code

� QVC23: Previous rebuild code subtype

� QQC11: Plan required optimization

Y Plan had to be reoptimized and rebuilt
N QAQQINI Reoptimize option prevent access plan rebuild

The 1000 row contains an indicator regarding whether the rebuilt access plan can be
saved (QVC24).

Example 6-6 shows a query with some of the most commonly used columns in the 3006
record.

Example 6-6 Common columns in the 3006 record

WITH xx AS
(SELECT * FROM qgpl.qzg0000478 WHERE qqrid = 3006),
yy AS
(SELECT qq1000 AS qqsttx, qqstim, qqetim, qqjfld, qqucnt FROM qgpl.qzg0000478
WHERE qqrid = 1000 AND qqc21 <> 'MT'
AND (qvc1c = 'Y' OR (qqc21 IN('DL', 'UP')
AND qqc181 <= ' ') OR qqc21 IN ('IN', 'IC', 'SK', 'SI') OR qqc21 LIKE 'O%'))

Chapter 6. Custom Database Monitor Analysis 185

SELECT qqtime AS "Time", qqtim1 AS "Last Access Plan Rebuilt", qqc11 AS
"Optimization req.",
qqrcod AS "AP Rebuild Reason", HEX(qqc21) AS "Rebuild Subcode", HEX(qvc22) AS
"Original Rebuild Reason", HEX(qvc23) AS "Original Rebuild Subcode",
varchar(qqsttx,20000) AS "Statement Text"
FROM xx a LEFT JOIN yy b ON a.qqjfld = b.qqjfld AND a.qqucnt = b.qqucnt WHERE
(a.qqtime BETWEEN b.qqstim AND b.qqetim OR b.qqstim IS NULL) ORDER BY "Time";

Figure 6-7 show the result of the query in Example 6-6. The information from the 3006 record
is joined with information from the 1000 record, so we know which queries had access plans
rebuilt. The example shows three reasons:

� The access plan was rebuilt because of system programming changes (reason A7).

� The storage pool changed, or the DEGREE parameter of CHGQRYA command changed
(reason AB).

� This is the first run of the query after a Prepare operation. That is, it is the first run with real
actual parameter marker values.

Figure 6-7 Common columns in the 3006 record

6.1.10 The 3007 record: index evaluation

The 3007 record shows all indexes that are evaluated for a given table, including which (if
any) were selected for use in this query and which were not and why. Reason codes are
listed next to each index. A reason code of 0 indicates that the index was selected.

Documentation classifies this record as the “Optimizer time out” even though a 3007 row will
be generated when the optimizer does not time-out. In CQE indexes are evaluated in order
from newest to oldest, in the same order as shown by the DSPDBR CL command, excluding
the views. To ensure that an index is evaluated, you can delete and recreate it. This way it
becomes first in the list. On the other hand SQE orders the indexes by selectivity(most
selective), then costs them and selects the cheapest one.

The following columns are the most commonly used:

� QVQTBL: Table name

� QVQLIB: Table library name

� QQC11: Optimizer timed out (Y or N)

� QQ1000: Contains library qualified index names, each with a reason code

– Reason code 0 indicates that an index was selected.

– Other codes are displayed in the second level text of CPI432C and CPI432D
messages.

– Documentation and iSeries Navigator reports classify this as the “Optimizer timed out”;
the 3007 row will be generated even when the optimizer does not time out.

186 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Example 6-7 shows a query with some of the most commonly used columns in the 3007
record.

Example 6-7 Common columns in the 3007 record

WITH xx AS
(SELECT * FROM mydbmon WHERE qqrid = 3007),

yy AS
SELECT qq1000 AS qqsttx, qqjfld, qqucnt
FROM mydbmon
WHERE qqrid = 1000
AND (qvc1c = 'Y' OR (qqc21 IN('DL', 'UP')
AND qqc181 <= ' ') OR qqc21 IN ('IN', 'IC', 'SK', 'SI') OR qqc21 LIKE 'O%'))

SELECT qq1000,
varchar(qqsttx,20000) AS "Statement Text"
FROM xx a LEFT JOIN yy b
ON a.qqjfld = b.qqjfld AND a.qqucnt = b.qqucnt

Figure 6-8 shows the result of the query in Example 6-7. This is an example with information
from the qq1000 column in the 3007 record. The information is joined with information from
the 1000 record so we know the index evaluation for a given query. The first row in the
example shows that four indexes were evaluated and the last one (CUST_00003) was used
to implement the query.

Figure 6-8 Common columns from the 3007 record

6.1.11 The 3010 record: host variables

The 3010 record shows substitution values for host variables or parameter markers in the
query text (refer to the QQ1000 column in the 1000 record). This record appears just prior to
each instance of an open, update, delete, or insert with subselect. This record is not
displayed for insert with values. Data might not match exactly for updates with parameter
markers in the SET clause.

� QQ1000: This column contains substitution values for host variables or parameter
markers. The values (separated by commas) correspond left to right, with host variables
and parameter markers. All values are displayed as a character, with no special indication
of type. A floating point value is displayed as *F.

� QQUCNT and QQI5: These columns must be used to determine to which exact query the
substitution values belong. The 3010 row type is not generated for the INSERT with
Values statement.

Chapter 6. Custom Database Monitor Analysis 187

Example 6-8 Common columns from the 3010 record

WITH aa AS
(SELECT * FROM mydbmon WHERE qqrid = 3010),
bb AS
(SELECT * FROM mydbmon WHERE qqrid = 1000 AND qqc21 IN
('OP','SI','SK','IN','UP','DL'))

SELECT a.qqrid, a.qqjnum, a.qqucnt, a.qqi5, a.qq1000, b.qq1000
FROM aa a LEFT JOIN bb b ON a.qqjnum = b.qqjnum AND a.qqucnt = b.qqucnt;

The results of the query shown in Example 6-8 are displayed in Figure 6-9. The query shows
shows the Host variables and the associated SQL statement for each instance of the SQL
statement by job.

Figure 6-9 Common columns from the 3010 record

6.1.12 The 3014 record: general query optimization information

The 3014 record is displayed with full open optimization records. In most cases, one 3014
record is displayed per full open. You might see multiple 3014 records if the query consists of
multiple separately run queries, for example, a subquery with grouping functions or views that
need results materialized for use in the outer query. Values in this column help to identify the
type of query that this record represents and the amount of time it took to open the cursor for
this query.

This record also has summary information for the query or subquery. In most cases, there is
one 3014 row per full open. Subselects and materialized views can cause multiple 3014 rows.
It contains values for most of the settings that impact the query optimizer.

� QQC102: This column contains a library for the QAQQINI file if one is used. A value of *N
indicates that no QAQQINI file was used.

Many of the QAQQINI settings are found in the 3014 row; a couple are found in the 1000
row type.

� QVP154: Memory pool size

� QVP155: Memory pool ID

188 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

� QQC16: This column contains a Y when SQE is used to process the SQL statement
(CQE = N).

� QVC43: Column will contain the reason why SQE was not used

6.1.13 The 3015 record: SQE statistics advised

The 3015 record is generated by SQE when it determines that a column statistic needs to be
collected or refreshed.

The following columns are commonly used:

� QVQTBL: Table name

� QVQLIB: Table library name

� QQC11: Statistics request type

N No statistic existed for the column
S Column statistic was stale

� QQ1000: Name of the column identified in Statistic Advice

6.1.14 The 3018 record: STRDBMON/ENDDBMON

The 3018 record shows when the detailed performance monitor is started or ended by issuing
the Control Language Commands STRDBMON/ENDDBMON.

The following columns are the most commonly used:

� QQC11: Type of job monitored

– C - Current
– J - Job name
– A - All

� QQC12: Command type

– S - STRDBMON
– E - ENDDBMON

� QQC301: Monitored job information

– * - Current job
– Job number/User/Job name
– *ALL - All jobs

� QQ1000L: STRDBMON command texts

6.1.15 The 3019 record: rows retrieved detail

The 3019 record shows a summary of the Fetch or Retrieve operations performed by DB2.
For non-SQL interfaces, such as OPNQRYF, it is the only way to determine number of rows
returned and the amount of time to retrieve those rows. This record can also be used to
analyze SQL requests.

Remember: Column statistics are created in the background automatically by default for
all Statistics Advised. Use QQUCNT to analyze the SQL request to determine if an index is
better than a column statistic.

Chapter 6. Custom Database Monitor Analysis 189

The following columns are the most commonly used:

� QQI1: CPU time to return all rows, in milliseconds
� QQI2: Clock time to return all rows, in milliseconds
� QQI3: Number of synchronous database reads
� QQI4: Number of synchronous database writes
� QQI5: Number of asynchronous database reads
� QQI6: Number of asynchronous database writes
� QQI7: Number of rows returned
� QQI8: Number of calls to retrieve rows returned

6.1.16 The 3020 record: index advised (SQE)

The query optimizer analyzes the row selection in the query and determines, based on
default values, if creation of a permanent index improves performance. If the optimizer
determines that a permanent index might be beneficial, it returns the key columns necessary
to create the suggested index. For more information about this advisor, refer to the DB2 UDB
for iSeries Database Performance and Query Optimization manual searching on Query
optimizer index advisor. You can find instructions on the steps to view this manual 6.1, “The
Database Monitor record types” on page 174.

The following columns are commonly used:

� QQIDXA: Index advised (Y/N)
� QQIDXD: Columns for the index advised (also QQ1000L for long names)

� QQI1: Number of indexes advised

� QQRCOD: Reason code

– I1 - Row selection
– I2 - Ordering/Grouping
– I3 - Row selection and Ordering/Grouping
– I4 - Nested loop join
– I5 - Row selection using bitmap processing

The following query in Example 6-9 shows the SQL you can use to analyze which indexes are
advised and the frequency of the advice.

Example 6-9 Record 3020 Index advised analysis

SELECT count(*) AS "No. Times Advised",
qvplib AS "QVPLIB Schema",
qvptbl AS "QVPTBL Table Name",
cast(substr(qq1000l, 1, 100) AS CHAR(100))

AS Keys_Advised
FROM mydbmon
WHERE qqrid = 3020
AND qqjnum = '855513'
GROUP BY qvplib, qvptbl, cast(substr(qq1000l, 1, 100) AS CHAR(100))
ORDER BY 1 Desc, 2, 3, 4;

The report in Figure 6-10 is the result of selecting and analyzing the 3020 records. The report
shows a list of the most frequent advised indexes, the advised keys and the table on which
they are advised. At the top of the list, an index composed of table columns, CUSTOMER and
CUSTKEY was advised for table CUSTOMER, 28 times.

190 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

The report was organized by the number of times advised in descending sequence by table
and advised keys.

Figure 6-10 Index Advised analysis

6.1.17 The 3030 record: materialized query table

Enhancements have been added to the Database Monitor data to indicate usage of
materialized query tables (MQT).

� 1000/3006 record: QQC22 has a new reason code of B5, which indicates that the access
plan needed to be rebuilt because the MQT was no longer eligible to be used. The
reasons might be that:

– The MQT no longer exists
– A new MQT was found
– The enable or disable query optimization changed
– Time since the last REFRESH TABLE exceeds the

MATERIALIZED_QUERY_TABLE_
REFRESH_AGE QAQQINI option

– Other QAQQINI options no longer match

� 3014 record: This record shows the new QAQQINI file values:

– Logical field name QQMQTR, physical field name QQI7, contains the
MATERIALIZED_QUERY_TABLE_REFRESH_AGE duration. If the QAQQINI
parameter value is set to *ANY, the timestamp duration will be 99999999999999.

– Logical field name QQMQTU, physical field name QVC42. The first byte of QVC24
contains the MATERIALIZED_QUERY_TABLE_USAGE. Supported values are:

N *NONE, no materialized query tables are used in query optimization and
implementation.

A User-maintained refresh-deferred query tables might be used.

U Only user-maintained materialized query tables might be used.

� 3000, 3001, 3002 records: New columns have been added to the 3000, 3001, and 3002
records to indicate that a table or tables were replaced with an MQT. The logical field

Note: The query optimizer support for recognizing and using MQTs is available with V5R3
i5/OS PTF SI17164 and DB group PTF SF99503 level 4.

Although an MQT can contain almost any query, the optimizer only supports a limited set
of query functions when matching MQTs to user-specified queries. The user-specified
query and the MQT must both use SQE. The optimizer only uses one MQT per query.

Chapter 6. Custom Database Monitor Analysis 191

name QQMQT, physical field name QQC13, is either Y or N, indicating that this is an
MQT, which replaced a table or tables in the query.

� 3030 record: The new 3030 record contains information about the MQTs that are
examined. This record is only written if MQTs are enabled and MQTs exist over the tables
specified in the query.

For a complete and details description of MQTs, refer to the white paper named: The creation
and use of materialized query tables within IBM DB2 for i5/OS written by Michael Cain
available on the Web at:

http://www-03.ibm.com/servers/enable/site/education/abstracts/438a_abs.html

6.2 Introduction to query analysis

The Detailed Database Monitor table can be analyzed by using SQL. This is a
time-consuming approach unless you have predefined queries. A lot of predefined reports
exist via the new iSeries Navigator V5R4 GUI “dashboard” interface as explained in
Chapter 5, “Analyzing SQL performance data using iSeries Navigator” on page 117, however,
you can also write your own queries.

In this chapter, we present several queries to help you analyze the database performance
data. You can run the queries under all SQL interfaces that access the iSeries server. The
green-screen interface is intentionally not selected, because it can have a major negative
performance impact on some server models with reduced interactive capacity. All queries in
this chapter are run through the Run SQL Scripts window in iSeries Navigator.

192 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

http://www-03.ibm.com/servers/enable/site/education/abstracts/438a_abs.html

To start the interface, in iSeries Navigator, select Databases → your database, right-click,
and select Run SQL Scripts (as shown in Figure 6-11).

Figure 6-11 Starting the Run SQL Scripts option

Chapter 6. Custom Database Monitor Analysis 193

6.3 Tips for analyzing the Database Monitor files

In the following sections, we present different tips to make it easier to analyze the
performance data using custom-made queries. The idea is to let you copy the different SQL
requests, so you can use them in your own analysis.

6.3.1 Using an SQL ALIAS for the Database Monitor table

By creating an SQL alias for the Detailed Database Monitor table that you are analyzing, you
can use the same names for the analysis. When you analyze the next Detailed Database
Monitor table, you use the SQL DROP ALIAS statement and then create an SQL ALIAS
statement with the same name over the other table.

If you want to use DBMONLIB.MYDBMON, then use the following SQL CREATE ALIAS
statement:

CREATE ALIAS DBMONLIB.MYDBMON FOR ibmfr.LAURA1608;

Before you analyze the next Database Monitor data, be sure to enter the SQL DROP ALIAS
statement:

DROP ALIAS DBMONLIB.MYDBMON

6.3.2 Using a subset of the Database Monitor table for faster analysis

The Database Monitor table often is large and contains information about many jobs.
Therefore, running queries on the data can sometimes be slower than desired. You can try to
reduce the time that the analysis queries take by collecting only the jobs that you want.
However, sometimes this is not possible and, even if it is, batch jobs can generate a lot of
Database Monitor output. Also, using interactive tools, such as Start SQL (STRSQL), can
result in longer run times on server models.

If the response time is slow during the analysis, consider the following tips:

� Before you start the analysis, see how big the output table is for the collected Database
Monitor.

� Create a smaller table from the main Database Monitor table with only the rows in which
you are interested. You can use the following technique:

CREATE TABLE smaller-table AS (SELECT * FROM big-dbmon-table
WHERE QQJNUM IN(‘job-number’,’job-number’....) WITH DATA

� Another way to reduce the Database Monitor data is to include a time range in the SQL
selection criteria, for example:

and qqtime > '2005-03-16-12.00.00.000000' and qqtime <
'2005-03-16-12.05.00.000000'

This shows only five minutes of collection.

You can adjust these techniques as needed to speed up your analysis.

194 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

6.3.3 Using SQL views for the Database Monitor table

When using queries to analyze the Database Monitor table, you can make the queries more
readable by using views. For example, we look at a query that shows table scans, which can
be through a simple view, making it easier to see an overview of the query.

Example 6-10 shows the query before we create a view.

Example 6-10 Query before using an SQL view

WITH tablescans AS (
 SELECT qqjfld,qqucnt,qqrest,qqtotr
 FROM mydbmon
 WHERE qqrid=3000)
SELECT SUM(qqi6) "Total Time (Mics)", COUNT(*) "Times Run",
 a.qqucnt, integer(avg(b.qqrest)) "Est Rows Selected",
 integer(avg(b.qqtotr)) "Total Rows in Table", qq1000l
FROM MYDBMON a, tablescans b
WHERE qqrid=1000 AND a.qqjfld=b.qqjfld AND
 qqc21 IN ('OP','SI','UP','IN','DL')
GROUP BY a.qqucnt, qq1000l
ORDER BY "Total Time" DESC;

Then we create an SQL view as shown in Example 6-11.

Example 6-11 Creating an SQL view

CREATE VIEW LASSE0410.TABLESCANS AS SELECT QQJFLD, QQUCNT, QQRCOD, QQREST, QQTOTR
FROM MYDBMON WHERE qqrid=3000;

The query runs with the new view, with the assumption that the schema is in the library list as
shown in Example 6-12.

Example 6-12 Query after using the SQL view

SELECT SUM(qqi6) "Total Time (Mics)", COUNT(*) "Times Run",
 a.qqucnt, integer(avg(b.qqrest)) "Est Rows Selected",
 integer(avg(b.qqtotr)) "Total Rows in Table", qq1000l
l
FROM mydbmon a, tablescans b
WHERE qqrid=1000 AND a.qqjfld=b.qqjfld AND
 qqc21 IN ('OP','SI','UP','IN','DL')
GROUP BY a.qqucnt, qq1000l
ORDER BY "Total Time" DESC;

In the remainder of this chapter, we do not use views, but rather table expressions. When you
analyze your own Database Monitor data collection, you might find situations where you can
benefit from using SQL views.

6.3.4 Creating additional indexes over the Database Monitor table

In Chapter 2, “DB2 for i5/OS performance basics” on page 11, we cover the importance of
indexes for SQL performance. The Database Monitor table tends to become quite large in
size. Therefore, it is important to create indexes on the Database Monitor table over the
common selection, grouping, and ordering clauses.

Chapter 6. Custom Database Monitor Analysis 195

The following examples are some additional key combinations that a user can add to the
automatic indexes created by using the iSeries Navigator V5R4 GUI “dashboard”:

� QQJFLD, QQUCNT, QQI5
� QQRID & QQ1000

Figure 6-12 shows the SQL statements to create the additional indexes described previously.

Figure 6-12 Creating additional indexes for faster analysis

You can try other combinations as necessary. Remember to combine the selection, grouping,
and ordering clauses.

6.4 Database Monitor query examples

In this section, we present a series of queries to help solve specific questions in the detection
and resolution of SQL performance issues. Most of these queries have more elaborate
equivalents in the SQL Performance Monitor predefined reports as indicated. However, it is
still useful to be familiar with the Database Monitor table.

Note: When you use iSeries Navigator to start a detailed SQL Performance Monitor, as
soon as you end the data collection or import the monitor data file and start the analysis via
the new iSeries Navigator V5R4 GUI dashboard, it provides six indexes based on the
following key columns:

� QRID (Asc), QQC21 (Asc)
� QC11 (Asc), QQRID (Asc)
� QJFLD (Asc), QQIS (Asc)
� QUCNT (Asc)
� QC12(Asc), QQRID (Asc), QQTIME (Asc)
� QRID (Asc), QQI5 (Asc)

196 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Before running the queries, we presume that an SQL SET SCHEMA and an SQL CREATE
ALIAS are done as shown in Figure 6-12.

6.4.1 Finding SQL requests that are causing problems

To find the SQL that is causing problems, expect to use more queries for the investigation,
because it is not only the running time that matters.

First, take an overview over the data collected. To determine the number of SQL requests
that were done during the collection, run the query shown in Example 6-13.

Example 6-13 Number of SQL requests in the Database Monitor table

SELECT count(*) FROM mydbmon
WHERE qqrid=1000;

Figure 6-13 shows the result of the query in Example 6-13.

Figure 6-13 Number of SQL requests in the DBMON collection

The result is smaller than the number of rows in the Database Monitor table. The number of
rows per SQL request can be from 1 to over 20, depending on the complexity of the SQL
request. Each SQL request has one QQRID = 1000 record.

For an overview of the most time-consuming jobs running SQL, we use the query shown in
Example 6-14.

Example 6-14 Time-consuming jobs

SELECT SUM(qqi6) "Total Time (Mics)", COUNT(*) "Total SQL Requests",
qqjnum, qquser, qqjob FROM mydbmon
WHERE qqrid=1000
GROUP BY qqjob,qquser,qqjnum ORDER BY 1 DESC;

Chapter 6. Custom Database Monitor Analysis 197

Figure 6-14 shows the output of the query in Example 6-14.

Figure 6-14 Time-consuming jobs

The total time is in microseconds. Therefore, you must divide the time by 1000000 to see it in
seconds.

To find SQL requests that might cause the problems, look at different information. For
example, you should know whether the Database Monitor collection is from a sample period
of the day or from a period when response problems were observed. You can also determine
which SQL requests in a specific job or jobs take the most processing time.

6.4.2 Total time spent in SQL

During the analysis of monitor data, you can see the percentage of time that is spent in DB2.
To begin, you find the start time and end time to have a duration of the Database Monitor data
collection as shown in Example 6-15.

Example 6-15 Duration of the Database Monitor data collection

SELECT MIN(qqtime) "Start Time", MAX(qqtime) "End Time",
MAX((DAY(qqtime)*24*3600)+(HOUR(qqtime)*3600)+(MINUTE(qqtime)*60)+
(SECOND(qqtime))+(MICROSECOND(qqtime)*.000001)) -
MIN((DAY(qqtime)*24*3600)+(HOUR(qqtime)*3600)+(MINUTE(qqtime)*60)+
(SECOND(qqtime))+(MICROSECOND(qqtime)*.000001)) AS "Duration"
FROM mydbmon WHERE qqrid<>3018

Figure 6-15 shows the result of Example 6-15.

Figure 6-15 Duration of Database Monitor data collection

198 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

To get the duration of the Database Monitor data collection for the job, select the job number
as shown in Example 6-16. For qqjnum = '999999', substitute the job number.

Example 6-16 Duration of the Database Monitor collection for one job

SELECT MIN(qqtime) "Start Time", MAX(qqtime) "End Time",
MAX(qqtime) - MIN(qqtime) "Duration (Sec)"
FROM mydbmon WHERE qqrid<>3018 and qqjnum = '999999';

You can also find the total number of seconds spent by using the SQL statement shown in
Example 6-17.

Example 6-17 Time spent in SQL

SELECT SUM(qqi6)/1000000 "Total Time (Sec)" FROM mydbmon
WHERE qqrid=1000;

If stored procedures are used, then they count as double, because both the stored procedure
and the SQL requests in the stored procedure generate records in the Database Monitor
table. A good approximation is to exclude the stored procedure from the total time used in the
SQL shown Example 6-18.

Example 6-18 Time spent in SQL excluding stored procedures

SELECT SUM(qqi6)/1000000 "Total Time (Sec)" FROM mydbmon
WHERE qqrid=1000 AND qqc21 <> 'CA' ;

Figure 6-16 shows the output for Example 6-18.

Figure 6-16 Time spent in SQL

The time spent in SQL might not seem so relevant for the total run, but when the focus is on
individual jobs, or applications, then it is relevant. This means that a selection of the job
should be added to the query.

6.4.3 Individual SQL elapsed time

To find the SQL requests that count for the most run time, use the query shown in
Example 6-19.

Example 6-19 SQL request sorted on the total run time

SELECT SUM(qqi6) "Total Time" , COUNT(*) "Nbr Times Run", qq1000l "SQL Request"
FROM MYDBMON
WHERE qqjnum = ‘999999’ AND qqrid=1000 AND qqucnt<>0
GROUP BY qq1000l ORDER BY 1 DESC;

Chapter 6. Custom Database Monitor Analysis 199

The SQL in Example 6-19 eliminates reporting all none ODP operations by using qqucnt <>0
in the local selection. Also note that this report does not include Open, Fetch, and Close run
times. The result shown in Figure 6-17 comes from our test collection.

Figure 6-17 SQL requests sorted by Total Time

The top item in report in Figure 6-17 has the largest total time and number of times run, but
the problem is that the SQL Request column is blank. This means that the SQL may be only
found in the Open, Fetch or Close monitor records.

In order to check, execute the following SQL request shown in Example 6-20.

Example 6-20 SQL request for Open, Fetch and Close high run times

WITH OpenFetchClose AS
(SELECT qqjfld, sum(qqi6) AS qqi6_total
FROM MYDBMON
WHERE qqrid = 1000 AND qqc21 IN ('SI', 'OP', 'FE', 'CL', 'IN', 'UP', 'DL',

'HC')
GROUP BY qqjfld)

SELECT sum(x.QQI6_Total) AS "Total Time (Mics)", COUNT(*) AS "No. Times Run",
z.qq1000l

FROM OpenFetchClose x, MYDBMON z
WHERE x.qqjfld = z.qqjfld AND z.qqrid = 1000
AND z.qqc21 IN ('SI', 'OP', 'IN', 'UP', 'DL') AND qqi5 = 0
GROUP BY qq1000l
ORDER BY 1 DESC;

200 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Figure 6-18 Open, Fetch and Close high run time report

In the report in Figure 6-18, the top item shows the SQL statement with the highest run time.

A large number of the same SQL request can give a high total run time. Therefore, it is also
relevant to look at the SQL requests with the longest average run time as shown in the query
in Example 6-21.

Example 6-21 SQL requests sorted by average runtime

SELECT SUM(qqi6) "Total Time (Mics)" , COUNT(*) "Nbr Times Run",
SUM(qqi6)/COUNT(*) "Average Run Time", qq1000l "SQL Request"
FROM MYDBMON
WHERE qqrid=1000 AND qqucnt<>0
GROUP BY qq1000l ORDER BY 3 DESC;

Chapter 6. Custom Database Monitor Analysis 201

The execution of the query in Example 6-21 produces the result shown in Figure 6-19.

Figure 6-19 SQL requests sorted on Average Runtime

6.4.4 Analyzing SQL operation types

To get an overview of the different SQL operation types that are run during the performance
data collection, use the query shown in Example 6-22.

Example 6-22 SQL operation types

SELECT SUM(qqi6) "Total Time (Mics)", COUNT(*) "Nbr of Requests",
qqc21 "Operation Type" FROM MYDBMON
WHERE qqrid=1000
GROUP BY qqc21 ORDER BY 1 DESC;

Important: Notice that the queries in Example 6-19 and Example 6-21 use QQ1000L field
whose length is a 2MB CLOB in the GROUP BY. If the monitor table contains SQL
statements that are less than 1000 characters, then you should use the QQ1000 column
for performance reasons. When using QQ1000, the results of the SUM and COUNT
functions may not be accurate especially if the SQL statements are longer than 1000
characters.

202 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Figure 6-20 shows the output of the query in Example 6-22.

Figure 6-20 SQL operation types

This example gives you an idea of the SQL operations that run the most and the amount of
time that they account for. In our example, there were 1197 FETCH operations.

6.4.5 Full open analysis

The first time (or times) that an open occurs for a specific statement in a job, a full open
operation is required. A full open creates an ODP that is then used to fetch, update, delete, or
insert rows. An ODP might be cached at close time, so that if the SQL statement is run again
during the job, the ODP is reused. Such an open is called a pseudo-open and is much less
expensive than a full open.

A normal SQL application has many fetches, inserts, updates, and deletes. A desirable
situation is that most of the operations share the ODP so that a full open does not have to be
done over and over again.

Reusable ODPs
Reusable ODP usually happens after the second execution of an SQL statement within the
connection or job, if the statement is reusable. Because the reusable statements are
significantly faster than the nonreusable ones, you can find the statements that are not
reusing the ODP. The QQUCNT value is assigned at full open time and stays constant for all
subsequent reusable instances of that particular query.

Nonreusable ODPs are indicated by the presence of optimization records each time a
particular query is run (full open). Reusable ODPs are indicated by 3010 and 1000 records
each time the given query is run (no optimization records or full open). To understand why an
ODP is not reusable, look at the hard close reason.

Chapter 6. Custom Database Monitor Analysis 203

To find the number of SQL requests affected by full opens, you use the query shown in
Example 6-23.

Example 6-23 SQL requests affected by Full Opens

SELECT SUM(qqi6) "Total Time (Mics)" , COUNT(*) "Nbr Full Opens", qq1000
FROM mydbmon
WHERE qqjnum = ‘999999’ AND qqrid=1000 AND qqi5=0
AND qqc21 IN ('OP','SI', 'DL', 'IN', 'UP')
GROUP BY qq1000 ORDER BY 1 DESC;

Figure 6-21 shows the results of the query in Example 6-23.

Figure 6-21 SQL requests affected by full opens

To analyze the full opens, you must next copy and paste the SQL request or part of the SQL
request into a query that we use for analysis. From the previous example, copy the following
SQL statement:

“SELECT AL5.YEAR, AL5.MONTHNAME, AL1.CUSTOMER, AL2.ORDERKEY, AL3.PART,...”

Copy the selected job number and SQL statement into the query shown in Example 6-24. Be
sure to substitute the job number for the 9’s in a.qqjnum = ‘999999’ and SQL for the X’s that
follow the LIKE predicate.

Example 6-24 SQL requests affected by Full Opens in a single job

SELECT a.qqjnum, a.qqrid, a.qqucnt, a.qqi5, a.qqc21, a.qqc15 "HC Reason Code",
a.qqc22 "Rebuild Reason Code" ,
a.qqc181 "Cursor Name", a.qqc182 "Stmt Name" , a.qq1000
FROM MYDBMON a
WHERE a.qqjnum = ‘999999’
AND a.qqrid = 1000
AND ((a.qqucnt IN (SELECT b.qqucnt FROM MYDBMON b
WHERE b.qqjnum = ‘999999’
AND b.qqrid = 1000
AND b.qqc21 = 'OP'
AND b.qq1000 LIKE 'XXXXXXXXXXXXXXX%'))
OR (qqc21 IN ('DI', 'ST', 'CM', 'RO')))
ORDER BY a.qqtime;

204 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Figure 6-22 shows the results for Example 6-24.

Figure 6-22 Analysis of SQL requests affected by Full Opens in a single job

Look at the values in the QQC21 column for ODP analysis, which shows one of the following
abbreviations:

HC Hard Close
DI Disconnect
ST Set Transaction
CM Commit
RO Rollback

Identify the reasons why a Hard Close is being done by looking in the QQC15 column, some
of the reason codes are:

2 Exclusive Lock
4 Host Variable Reuse Restriction
6 Cursor Restriction (after first execution)
7 Cursor Hard Close Requested (proprietary attribute)
9 Cursor Threshold
C DRDA® AS Cursor Closed
D DRDA AR Not WITH HOLD
J File Override Change
K Program Invocation Change
L File Open Options Change
O Library List Change
P Exit Processing (End Connection)
Q SetSession User

Example 6-25 shows another query to find the number of full opens and pseudo-opens for the
SQL request.

Example 6-25 Number of full opens and pseudo-opens

SELECT SUM(qqi6) "Total Time (Mics) " ,
SUM(CASE WHEN qvc12 = 'N' THEN 1 ELSE 0 END) "Full Opens",
SUM(CASE WHEN qvc12 = 'Y' THEN 1 ELSE 0 END) "Pseudo Opens",
QQ1000l
FROM MYDBMON
WHERE qqrid=1000 and qqjnum = ‘999999’
AND qqc21 IN ('OP','SI', 'DL', 'IN', 'UP')
GROUP BY qq1000l
ORDER BY 1 DESC;

Chapter 6. Custom Database Monitor Analysis 205

Figure 6-23 shows the results of the query in Example 6-25.

Figure 6-23 Number of full opens and pseudo-opens

The total time in Figure 6-23 includes the full opens and pseudo-opens for each SQL request.
To look at the time for full opens and pseudo-opens separately, you must add QVC12 to the
GROUP BY clause from the previous query, as shown in Example 6-26.

Example 6-26 Number of full opens and pseudo-opens looked separately

SELECT SUM(qqi6) "Total Time (Mics) " ,
SUM(CASE WHEN qvc12 = 'N' THEN 1 ELSE 0 END) "Full Opens",
SUM(CASE WHEN qvc12 = 'Y' THEN 1 ELSE 0 END) "Pseudo Opens",
QQ1000L
FROM MYDBMON
WHERE qqrid=1000 and qqjnum = ‘XXXXXX’
AND qqc21 IN ('OP','SI', 'DL', 'IN', 'UP')
GROUP BY qvc12,qq1000l
ORDER BY 1 DESC;

206 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Figure 6-24 shows the results of the query in Example 6-26.

Figure 6-24 Full Opens and Pseudo-opens shown separately

To analyze the full opens, copy and paste the SQL request or part of the SQL request into a
query that used for analysis. From the previous query and result, we analyze the first SQL
request which is the most expensive. The first SQL request is similar to the third request.
Therefore, we use the LIKE predicate with two wild cards to ensure that we only retrieve
information for the first SQL request. Example 6-27 shows the query.

Example 6-27 Looking at the number of full opens and pseudo-opens separately

SELECT qqc181 "Cursor Name",qqi6 "Exec Time (Mics) ", qqucnt, qqi5, qqc21,
qqc15 "HC Reason", qq1000l , qqc22 "Rebuild Reason Code",
qqc182 "Stmt Name"
FROM MYDBMON
WHERE qqjnum='999999' AND
(qqrid = 1000 and qqc21 in ('OP') AND
UCASE(qq1000l) LIKE 'SELECT SUM(QUANTITY)%SHIPMODE =%')
OR (qqc21 IN ('HC','DI', 'ST', 'CM', 'RO'))
ORDER BY qqtime;

Chapter 6. Custom Database Monitor Analysis 207

Figure 6-25 shows the result of the query in Example 6-27.

Figure 6-25 Analysis of the Full Opens

From the previous example, we can see that a Full Open took place the first time. The
indication that it was a Full Open is the code in QQC21 and that QQI5 is 0. The Full Open
took 1.5 seconds. The query did not go into reusable mode and the cursor was hard closed
because of a cursor restriction (reason 6 in QQC15), this is a normal situation and it always
happens on the first OPEN. The second Full Open took place again, but this time a hard close
did not occur leaving the ODP to be reused. Subsequent executions reused the ODP. We can
see this by looking at the QQUCNT and QQI5 fields. The number 8 in QQUCNT was
assigned during the second Full Open and stayed constant for all subsequent instances of
that query. QQI5 has the number assigned to each instance of the query. Notice that the
execution time is minimum when the query entered into reusable mode.

For the complete list of statement types (QQC21) and the list of hard close reasons (QQC15),
go to the V5R4 iSeries Information Center on the Web at:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

Select Printable PDFs and manuals, when that list is displayed perform a search on
performance. When the list performance of PDF manuals are displayed, select the Database
Performance and Query Optimization manual and either download or open it to view.

When the manual is opened perform a search on QQC21 and choose from the results the
reference to QQC21 Statement Operations.

6.4.6 Isolation level used

You can see the number of statements that were run under each isolation level. This
information provides you with a high level indication of the isolation level used. The higher the
isolation level is, the higher the chance of contention is between users, which are seen as job
locks and seizes. A high level of Repeatable Read or Read Stability use is likely to produce a
high level of contention. Always use the lowest level isolation level that still satisfies the
application design requirement as indicated in the query shown in Example 6-28.

208 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

Example 6-28 Isolation level summary

select qvc41, count(qvc41) from mydbmon
WHERE QQRID = 1000
GROUP BY qvc41 order by 2 desc;

Figure 6-26 shows the results of the query in Example 6-28.

Figure 6-26 Isolation level summary

The values can be translated using the following codes:

RR Repeatable Read. In the SQL 1999 Core standard, Repeatable Read is called
serializable.

RS Read Stability. In the SQL 1999 Core standard, Read Stability is called Repeatable
Read.

CS Cursor Stability. In the SQL 1999 Core standard, Cursor Stability is called Read
Committed.

CSKL Cursor Stability KEEP LOCKS.

UR Uncommitted Read. In the SQL 1999 Core standard, Uncommitted Read is called
Read Uncommitted.

NC No Commit.

As you can see from the previous example, most reads are done using Cursor Stability. This
means that the isolation level is low, and therefore, the possibility for contention is low.

6.4.7 Table scan

A table scan operation is an efficient way to process all the rows in the table and verify that
they satisfy the selection criteria specified in the query. Its efficiency is accomplished by
bringing necessary data into main memory via a large I/O request and asynchronous
prefetches.

The table scan is generally acceptable in cases where a large portion of the table is selected
or the selected table contains a small number of records. To address cases where the entire
table is scanned, but a relatively small number of rows is selected, building an index on the
selection criteria is the best alternative and fully supported by the Database Monitor data.

Chapter 6. Custom Database Monitor Analysis 209

Assuming that you have collected Detailed Database Monitor data, you can use the query
shown in the Example 6-29 to see the statements that have resulted in table scan operations.

Example 6-29 Table scan operations

WITH tablescans AS (
 SELECT qqjfld,qqucnt,qqrest,qqtotr
 FROM MYDBMON
 WHERE qqrid=3000)
SELECT SUM(qqi6) "Total Time (Mics)", COUNT(*) "Times Run",
 a.qqucnt, integer(avg(b.qqrest)) "Est Rows Selected",
 integer(avg(b.qqtotr)) "Total Rows in Table", qq1000
FROM MYDBMON a, tablescans b
WHERE qqrid=1000 AND a.qqjfld=b.qqjfld AND
 qqc21 IN ('OP','SI','UP','IN','DL')
GROUP BY a.qqucnt, qq1000
ORDER BY "Total Time" DESC;

Figure 6-27 shows the results of the query in Example 6-29.

Figure 6-27 Table scan operations

In the previous query, notice the following columns:

� QQJFLD and QQUCNT

These columns are join fields that are required to uniquely identify an SQL statement in
the Database Monitor file.

� QQC21

Since we are joining common table expression table scans back to the 1000 record in the
Database Monitor file, we must ensure that we only join to 1000 records that can cause
table scans to occur. We accomplish this by verifying that the QQC21 field operation is
either open, select, update, delete, or insert. We also include the last three operations
because they might have subselects or correlated subqueries.

210 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

� QQREST and QQTOTR

We included the QQREST (estimated rows selected) and QQTOTR (total rows in table)
columns to give you an idea of the selectivity of the statement. A great difference between
these two columns is a good indicator that index is a better alternative to a table scan
operation.

� QQRID

A table scan operation is uniquely identified by the record ID (QQRID) value of 3000. We
include it as selection criteria in the common table expression tablescans.

� QQI6

This column indicates a table scan operation with a cumulative elapsed time in
microseconds for each individual query. Since we use it as a cost indicator, we ordered
the output in descending order based on this value.

6.4.8 Temporary index analysis

A temporary index is a temporary object that allows the optimizer to create and use a radix
index for a specific query. The temporary index has all of the same attributes and benefits as
a radix index that is created by a user through the CREATE INDEX SQL statement or Create
Logical File (CRTLF) CL command. The temporary index can be used to satisfy a variety of
query requests, but it is only considered by the Classic Query Engine (CQE) when the query
contains ordering, grouping, or joins.

The created indexes might only contain keys for rows that satisfy the query (such indexes are
known as sparse indexes or select/omit logical files). In many cases, the index created might
be perfectly normal and the most efficient way to perform the query.

Look at the query in Example 6-30, which list temporary index builds ordered by the entries in
the index.

Example 6-30 Temporary index creation

SELECT qqucnt, qqc16 AS "QQC16 Index Reuse",
qqptfn AS "QQPTFN Table Name", qqptln AS "QQPTLN Schema",
qqtotr "QQTOTR Rows in Table", qqridx AS "QQRIDX Entries in Index",
qq1000 AS "Key Columns"
FROM MYDBMON
WHERE qqrid=3002
AND qqjnum = ‘999999’
ORDER BY 6 DESC;

Note: Focus your efforts on optimizing statements that are displayed at the top. If a
statement is run lots of times, then even a small performance improvement can
improve the application performance. For other statements, consider the total number
of rows in the table before taking further action. If this number is relatively small, your
optimization efforts are best spent elsewhere.

Chapter 6. Custom Database Monitor Analysis 211

Figure 6-28 shows the result of the query in Example 6-30.

Figure 6-28 Temporary index creation

We explain some of the columns used in the previous query:

� QQUCNT

This column uniquely identifies a query for a given job. It includes QQJFLD to uniquely
identify the query across many jobs.

� QQTFN and QQTLN

These columns indicate the short object names. Use QVQTBL and QVQLIB for long SQL
table name and the long SQL schema name.

� QQRIDX

The number of entries in the temporary index.

Compare the total rows in the table with the entries in the temporary index to gauge
whether the selection is built into a temporary index. If QQTOTR is greater than QQRIDX,
then the selection is built into a temporary index.

� QQ1000

For this particular row type, the QQ1000 column contains key fields that are advised by
the query optimizer to satisfy criteria for join, ordering, grouping, scroll able cursors, and
so on. These are the reasons for the temporary index build. Therefore, use these keys in
any permanent index that you are going to build.

In the list of key columns in column QQ1000, the optimizer lists what it considers the
suggested primary and secondary key columns. Primary key columns are columns that
should significantly reduce the number of keys selected based on the corresponding
query selection. Secondary key columns are columns that might or might not significantly
reduce the number of keys selected.

The optimizer can perform index scan-key positioning over any combination of the primary
key columns, plus one additional secondary key column. Therefore it is important that the
first secondary key column be the most selective secondary key column. The optimizer
uses index scan-key selection with any of the remaining secondary key columns. While
index scan-key selection is not as fast as index scan-key positioning, it can still reduce the
number of keys selected. Therefore, be sure to include the secondary key columns that
are fairly selective.

� QQRID

A row type of 3002 indicates a temporary index build so we have it in our selection criteria.

212 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

We modify the previous query to gather more information about the advised index and query
optimizer reasons for building the temporary index. Example 6-31 shows the modified query.

Example 6-31 Reason for building a temporary index

WITH qqq1000 AS (
 SELECT qqjfld, qqucnt, qq1000 FROM MYDBMON
 WHERE qqrid = 1000 AND qqc21 IN (‘OP’,’IN’,’UP’,’DL’,’SI’))
SELECT a.qqetim-a.qqstim "Index Build Time", a.qqrcod "Reason Code", a.qqtfn
"File", a.qqtln "Library", a.qqtotr "Rows in Table", a.qqridx "Entries in Index",
SUBSTR(a.qq1000, 1, 100) "Key Fields", a.qqidxa "Index Advised", a.qqi2 "Nbr of
Primary Keys", SUBSTR(a.qqidxd, 1,100) "Keys Advised", a.qvc16 "Index from index",
b.qq1000
FROM MYDBMON a LEFT JOIN qqq1000 b ON a.qqjfld = b.qqjfld AND a.qqucnt = b.qqucnt
WHERE a.qqrid=3002 ORDER BY "Index Build Time" DESC;

Figure 6-29 shows the output of the query in Example 6-31.

Figure 6-29 Reason for building temporary index

We joined our initial query back to record 1000 of the base Database Monitor table to obtain
the SQL text for which the temporary index was built. The query uses the following columns:

� QQ1000

This column indicates that SQL statement that caused query optimizer to build a
temporary index.

� QQC21, QVC1C and QQC181

When joining back to row type 1000, we care only about the operations that can cause
query optimizer to advise an index. Therefore, we check for all the appropriate operation
types contained in field QQC21. Additional criteria might be contained in the QVC1C field,
SQL Statement Explainable, and QQC181, Cursor Name for the statement.

Chapter 6. Custom Database Monitor Analysis 213

� QQRCOD

This column indicates the reason code for an index build. You most commonly see the
following reason codes:

I2 Ordering/grouping
I4 Nested loop join
I3 Selection and ordering/grouping

For a detailed list of possible reason codes, search on Database Monitor qqrcod 3002 in
the V5R4 iSeries Information Center on the Web at:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

� QQI2

This column contains the number of suggested primary key columns that are listed in
column QQIDXD. These are the left-most suggested key columns. The remaining key
columns are considered secondary key columns and are listed in order of expected
selectivity based on the query. For example, assuming that QQIDXK contains a value of 4
and QQIDXD specifies seven key columns, then the first four key columns specified in
QQIDXK are the primary key columns. The remaining three key columns are the
suggested secondary key columns.

� QVC16

This column indicates that a temporary index was built from an existing index, which is
usually a short-running operation.

6.4.9 Index advised

The optimizer analyzes the row selection in the query and determines, based on default
values, if the creation of a permanent index improves performance. If the optimizer
determines that a permanent index might be beneficial, it returns the key columns necessary
to create the suggested index. Advised indexes can be used to quickly tell if the optimizer
recommends creating a specific permanent index to improve performance.

While creating an index that is advised typically improves performance, this is not a
guarantee. After the index is created, much more accurate estimates of the actual costs are
available. Based on this new information, the optimizer might decide that the cost of using the
index is too high. Even if the optimizer does not use the index to implement the query, the
new estimates available from the new index provide more detailed information to the
optimizer that might produce better performance.

To look for the indexes advised by the optimizer, use the query shown in Example 6-32.

Example 6-32 Index advised

SELECT qqucnt, qvqtbl "Table Name", qvqlib "Schema",
 qqi2 "Nbr of Primary Keys",
 SUBSTR(qqidxd, 1,100) "Keys Advised"
FROM MYDBMON
WHERE qqrid IN (3000, 3001, 3002) and qqidxa='Y'
ORDER BY 5,2;

Note: Building permanent indexes to replace temporary indexes can provide great returns
for a little time spent in analyzing Database Monitor data. Do not overuse this easy method
for short running and non repetitive temporary index builds.

214 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

Figure 6-30 shows the results of the query in Example 6-32.

Figure 6-30 Index advised

This query uses the following columns:

� QQUCNT

This column uniquely identifies a query for a given job. Include QQJFLD to uniquely
identify a query across many jobs.

� QVQTBL and QVQLIB

These columns indicate the long SQL table name and the long SQL schema name. Use
QQTFN and QQTLN for the short object names.

� QQIDXD

In the list of key columns contained in the QQIDXD column, the optimizer has listed what it
considers the suggested primary and secondary key columns. Primary key columns
should significantly reduce the number of keys selected based on the corresponding
query selection. Secondary key columns might or might not significantly reduce the
number of keys selected.

The optimizer can perform index scan-key positioning over any combination of the primary
key columns, plus one additional secondary key column. Therefore it is important that the
first secondary key column is the most selective secondary key column. The optimizer
uses index scan-key selection with any of the remaining secondary key columns. While
index scan-key selection is not as fast as index scan-key positioning, it can reduce the
number of keys selected. Therefore, include secondary key columns that are fairly
selective.

� QQI2

This column contains the number of suggested primary key columns that are listed in the
QQIDXD column. These are the left-most suggested key columns. The remaining key
columns are considered secondary key columns and are listed in order of expected
selectivity based on the query. For example, assuming that QQIDXK contains a value of 4
and QQIDXD specifies seven key columns, then the first 4 key columns specified in
QQIDXK are the primary key columns. The remaining three key columns are the
suggested secondary key columns.

Chapter 6. Custom Database Monitor Analysis 215

� QQRID

Index advice is contained in three different row types and the query looks at all of them:

– 3000 - Table scan operation

We discussed the table scan operation previously as well as the need for indexes
where a query is highly selective.

– 3001 - Index used

In cases where an existing index was used, the query optimizer might still recommend
an index. A recommended index might be better than the selected index, but not
always. Keep in mind that advised keys are for selection only and that you need to
consider JOIN, ORDER BY, or GROUP BY clause criteria.

– 3002 - Temporary index created

For temporary indexes, we recommend that you use a different query altogether
because we do not illustrate the QQ1000 column for row type 3002 in this query. In this
case, QQ1000 includes keys used for a temporary index as well as their order
(ascending or descending).

� QQIDXA

We specified Y in this column since we are interested only in the rows for which query
optimizer has advised indexes.

Our initial query serves our need perfectly when we collect a very specific set of data (that is,
a single job). However, if you perform a system-wide Database Monitor collection, you must
use a query that is a bit more sophisticated.

We look at a query that enables us to perform costing by total run time required by the SQL
statements that caused indexes to be advised. Example 6-33 shows this query.

Example 6-33 Costing of SQL statements where an index is advised

WITH qqq1000 AS (SELECT qqjfld, qqucnt, qq1000,
decimal(qqi6/1000000,21,6) AS "Total Runtime (sec)"
FROM MYDBMON
WHERE qqrid = 1000 AND qqi5 = 0 AND (qvc1c = 'Y' OR (qqc21 IN('DL', 'UP') AND
qqc181 <= ' ') OR
qqc21 IN ('IN', 'IC', 'SK', 'SI') OR qqc21 LIKE 'O%'))
SELECT b."Total Runtime (sec)", a.qqtfn "File Name",
 a.qqtln "Library Name", a.qqi2 "Nbr of Primary Keys",
 substr(a.qqidxd,1,100) "Keys Advised", b.qq1000
FROM MYDBMON a LEFT JOIN qqq1000 b ON
 a.qqjfld = b.qqjfld AND a.qqucnt = b.qqucnt WHERE qqrid IN
(3000,3001,3002) AND qqidxa = 'Y' ORDER BY "Total Runtime (sec)" DESC;

216 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Figure 6-31 shows the output of the query in Example 6-33.

Figure 6-31 Costing of SQL statements where an index is advised

We joined our initial query back to record 1000 of the base Database Monitor table to obtain
the SQL text and total statement run time. This query uses the following columns:

� QQ1000

This column indicates that an SQL statement caused query optimizer to advise an index.

� QQI6

This column indicates the total runtime required by the query, which is a good indicator of
the index benefit for a table scan and temporary index build operations. For the existing
index factors, such as join, grouping and ordering play into total runtime calculation, so
this field might not be an accurate cost indicator.

� QQC21, QVC1C and QQC181

When joining back to row type 1000, we are concerned about only the operations that can
cause the query optimizer to advise an index. Therefore, we check for all the appropriate
operation types contained in column QQC21. Additional criteria might be contained in the
QVC1C column, SQL Statement Explainable, and QQC181, Cursor Name for the
statement.

The remainder of the statement is much like the initial query. One difference is that here we
order by total runtime of the SQL statement, which provides us with a good costing indicator.
This costing indicator helps us to focus on the worst-performing statements and build indexes
intelligently.

Chapter 6. Custom Database Monitor Analysis 217

You can see the number of different indexes that are advised and how many times they are
advised. To see this information, run the query shown in Example 6-34.

Example 6-34 Listing of distinct index advised

SELECT distinct qvqtbl "Table", qqidxd "Key Fields",
count(*) "Times adviced"
FROM MYDBMON

WHERE qqrid IN (3000, 3001, 3002) and qqidxa='Y'
GROUP BY qvqtbl, qqidxd
ORDER BY qvqtbl, qqidxd;

Figure 6-32 shows the results of the query in Example 6-34.

Figure 6-32 Different index advised

This is a good example where creation of the index on table QA1A1RMT with the key field,
R1MSYS, is advised 306 times. There is also another index recommendation for the same
table for key fields, R1MACT, R1MSYS, advised 51 times. Since the left-most key field in the
two advised indexes are different, neither can be used in place of the other.

6.4.10 Access plan rebuilt

An access plan consists of one or more integrated steps (nodes) that are assembled to
retrieve and massage data from DB2 tables to produce results that are desired by the
information requestor. These steps might involve selecting, ordering, summarizing, and
aggregating data elements from a single table or from related (joined) rows from multiple
tables.

Each SQL query executes an access plan to retrieve the data that you requested. If the
access plan does not exist already, the system builds one dynamically, adding overhead to
the total time required to satisfy your request.

218 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

As a general rule, we want to avoid access plan rebuilds. That said, there are several
perfectly valid reasons for access plan rebuilds, for example:

� Deleting or recreating the table to which the access plan refers

� Deleting an index that is used by the access plan

� Applying database PTFs

� Table size changing by 10%

� Creating a new statistic, automatically or manually

� Refreshing a statistic, automatically or manually

� Removing a stale statistic

� CQE rebuilding an access plan if there was a two-fold change in memory pool size

� SQL Query Engine (SQE) looking for a ten-fold change in memory pool size if memory
pool is defined with a pool paging option of *CALC (also known as expert cache) (If paging
is set to *FIXED, SQE behaves the same as CQE.)

� Specifying REOPTIMIZE_ACCESS_PLAN (*YES) in the QAQQINI table or in the SQL
script

� Specifying REOPTIMIZE_ACCESS_PLAN (*FORCE) in the QAQQINI table or in the SQL
script

� Changing the number of CPUs (whole or fractions using logical partition (LPAR)) that are
available to a query results in rebuilding the access plan.

� Access plans are marked as invalid after an OS/400 release upgrade.

� The SQE Plan Cache is cleared when a system initial program load (IPL) is performed.

The SQE access plan rebuild activity takes place below the machine interface (MI).
Therefore, compared to CQE, you should see much less performance degradation caused by
lock contention on SQL packages, caches, and program objects.

At times, even though the optimizer rebuilt the access plan, the system fails to update the
program object. The most common reason for this failure is that other jobs are using the
same program and the optimizer cannot obtain the exclusive lock on the program object to
save the rebuilt access plan. Another reason is that the job does not have proper authority to
the program or the program is currently being saved. The query still runs, but access plan
rebuilds continue to occur until the program is updated.

The rebuilt access plan might be saved in the existing access plan space within the program,
SQL package, or cache. If a new access plan is greater than the existing one, new space is
allocated and the plan is saved in that newly-allocated space. If the number of access plan
rebuilds is high, some application redesign might be necessary.

Chapter 6. Custom Database Monitor Analysis 219

We look at access plan rebuild information that is available in Database Monitor data by using
the query shown in Example 6-35.

Example 6-35 Access plan rebuilds information

WITH rebuilds AS (
 SELECT qqjfld, qqucnt, qqrcod
 FROM MYDBMON
 WHERE qqrid=3006)
SELECT a.qqucnt, b.qqrcod "Rebuild Reason",
 qvc24 "Plan Saved Status", qq1000
FROM MYDBMON a, rebuilds b
WHERE a.qqjfld=b.qqjfld AND a.qqrid=1000 AND
 a.qqc21 NOT IN ('MT','FE','CL','HC')
ORDER BY 4, 1;

Figure 6-33 shows the result of the query in Example 6-35.

Figure 6-33 Access plan rebuilds information

This query uses the following columns:

� QQRID

Our common table expression rebuild contains only row type 3006, which has information
specific to access plan rebuilds. Row type 3006 is not present on every full open. It is only
generated when an access plan previously existed and now has to be rebuilt.

Row type 3006 is also not generated when SQE switches between cached access plans
(up to three) in the SQE plan cache for an SQL statement.

� QQJFLD and QQUCNT

By now you know that QQJFLD and QQUCNT are join fields required to uniquely identify
the SQL statement in the Database Monitor file.

� QQRCOD

This column provides the reason code for the access plan rebuild. There are over twenty
possible reason codes. For a detailed description of the reason codes, search on
Database Monitor qqrcod 3006 in the V5R4 iSeries Information Center. Click Database
monitor view 3006 - Access Plan Rebuild to view all columns and scroll down to column
QQRCOD on the Web at:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

220 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

� QVC24

This column indicates the reason code for why the access plan was saved or not saved.

All A* codes mean that the access plan was not saved. AB means that a lock could not be
obtained, A6-A9 means that not enough space was available, and AA means that a plan
was saved by another job.

All B* codes mean that the access plan was saved, with a blank value or B3, B4, or B6
meaning that a plan was saved “in place”, and B1, B2, B5, B7, or B8 meaning that the plan
was saved in a “new” space.

For a detailed description of each reason code, search on Database Monitor qvc24 1000
in the V5R4 iSeries Information Center. Click Database monitor view 1000 - SQL
Information to view all columns and scroll down to column QVC24 on the Web at:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

� QQ1000

This column indicates the SQL statement that caused query optimizer to rebuild the
access plan.

� QQC21

In this query field, QQC21 is pulled from row type 1000 and represents the operation type
for the SQL statement. We exclude continuation records, fetches, closes, and hard closes.
The output is in ascending order based on the statement text and the unique statement
counter. This query provides basic information about access plan rebuilds.

Let us rewrite the query to include more information related to access plan rebuilds as shown
in Example 6-36.

Example 6-36 Extended access plan rebuild information

WITH rebuilds AS (
 SELECT qqjfld, qqucnt, qqrcod, qqc21, qqc11, qqtim1 FROM MYDBMON
 WHERE qqrid=3006)

SELECT b.qqrcod "Rebuild Reason", hex(b.qqc21) "Reason Subcode (for IBM
debug)", a.qvc24 "Plan Saved Status", a.QQC103 "Package/Program Name",

a.QQC104 "Package/Program Library", a.qvc18 "Statement Type",
b.qqc11 "Plan Reoptimized", b.qqtim1 "Last Rebuilt", a.qq1000

FROM MYDBMON a, rebuilds b
WHERE a.qqjfld=b.qqjfld AND a.qqucnt = b.qqucnt and a.qqrid=1000

AND a.qqc21 NOT IN ('FE','CL','HC')
ORDER BY "Rebuild Reason", "Plan Saved Status";

Chapter 6. Custom Database Monitor Analysis 221

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

Figure 6-34 shows the output of the query in Example 6-36.

Figure 6-34 Extended access plan rebuild information

The query uses the following columns:

� QQC21

In this query, we pull the QQC21 column from row type 3006. In this row type, field
QQC21 contains the access plan rebuild reason subcode. This subcode is in hex and
should only be used when reporting a problem to IBM Support.

We still use QQC21 from row type 1000 to exclude undesired 1000 records, like we did in
the initial query.

� QQC11

This column contains a simple character flag that indicates if an access plan required
optimization. If the value is Y, then the plan was reoptimized. If the value is N, then the
plan was not reoptimized. If this value is never Y, it is possible that QAQQINI file contains
a REOPTIMIZE_ACCESS_PLAN setting that prevents the query optimizer from
reoptimizing the access plan.

� QQTIM1

The value in this column indicates the time stamp of last access plan rebuild.

� QQC103

This column contains the name of the package or program that contains the SQL
statement that caused query optimizer to rebuild the access plan.

� QQC104

This column indicates the name of the library that contains the program or package listed
in the QQC103 column.

222 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

� QVC18

This column describes query statement type. If statement was done as part of dynamic
processing, it is flagged with E for “extended dynamic”, with S for “system wide cache”,
and L for “local prepared statement”.

6.4.11 Query sorting

The 3003 record from the Database Monitor table shows that the database optimizer has
decided to place selected rows into a temporary space and sort them. The presence of a
3003 record does not necessarily indicate poor performance. The optimizer selected a query
sort because it is either cheaper than the alternative indexed methods or it is forced to do so,
for example when UNION is used or ORDER BY uses columns from more than one table.

Indexes can still be used to select or join rows before the sort occurs. The 3006 record does
not indicate that the ODP is nonreusable.

Sort buffers are refilled and sorted at open time, even in reusable ODP mode.

Sorting might increase the open (OP) time or cost since sorting is often performed at open
(OP) time. This means that it might take some time to return the first row in the result set to
the user.

High elapsed times for a query sort might indicate a large answer set. In this case, the sort
outperforms index usage (the situation in most cases). You should not attempt to build
indexes for queries with large result sets, unless you are going to add selection criteria to the
SQL statement’s WHERE clause to further reduce the result set.

If the answer set is small, but the optimizer does not have the right indexes available to know
that, creating indexes over selection columns can help by giving the optimizer statistics and
an alternative method of accessing the data. This is possible only if the optimizer is not forced
to use the sort (that is via a UNION or ORDER BY on columns from more than one table).

Look at which queries involve the use of a query sort. You can do a query sort by using the
query shown in Example 6-37.

Example 6-37 Use of a query sort

WITH sorts AS (
 SELECT qqjfld, qqucnt
 FROM mydbmon
 WHERE qqrid=3003)
SELECT SUM(qqi6) "Total Time" , COUNT(*) "Nbr Times Run", a.qqucnt, qq1000
FROM mydbmon a, sorts b
WHERE qqrid=1000 AND a.qqjfld=b.qqjfld and a.qqucnt=b.qqucnt AND
 qqc21 IN ('OP','SI','UP','IN','DL')
GROUP BY a.qqucnt, qq1000
ORDER BY "Total Time" DESC;

Chapter 6. Custom Database Monitor Analysis 223

Figure 6-35 shows the output of the query in Example 6-37.

Figure 6-35 Use of a query sort

This query uses the following columns:

� QQRID

Our common table expression sort contains only row type 3003, which has information
specific to SQL statements using query sorts.

� QQJFLD and QQUCNT

The QQJFLD and QQUCNT are join fields required to uniquely identify the SQL statement
in the Database Monitor file.

� QQC21

Since we are joining common table expression sorts back to the 1000 record in the
Database Monitor file, we must ensure that we only join to 1000 records that can cause
query sorts to occur. This is accomplished by verifying that QQC21 field operation is either
open, select, update, delete, or insert. We need to include last three operations because
they might have subselects or correlated subqueries.

� QQI6

This column indicates a table scan operation cumulative elapse time, in microseconds for
each individual query. Since we use it as a cost indicator, we have ordered the output in
descending order based on this value.

The query that we have outlined so far is insufficient in helping us to decide if building an
index or modifying the SQL statement is desired. Therefore, we revise the query (refer to
Example 6-38) to include data that is necessary to make the decision if any action is possible.

Example 6-38 Including data showing possible action

WITH sorts AS (SELECT qqjfld, qqucnt FROM mydbmon WHERE qqrid=3003),
summation AS (SELECT SUM(qqi6) "Total Time" , COUNT(*) "Nbr Times Run", a.qqjfld,
a.qqucnt, qq1000 FROM mydbmon a, sorts b WHERE qqrid=1000 AND a.qqjfld=b.qqjfld
AND a.qqucnt = b.qqucnt and qqc21 IN ('OP','SI','UP','IN','DL') GROUP BY a.qqjfld,

224 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

a.qqucnt, qq1000), fetches AS (SELECT a.qqjfld, a.qqucnt, integer(avg(a.qqi3))
"Rows Fetched" FROM mydbmon a, summation b WHERE qqrid=1000 AND
a.qqjfld=b.qqjfld and a.qqucnt = b.qqucnt AND
 qqc21 = 'FE' GROUP BY a.qqjfld, a.qqucnt) SELECT b."Total Time",
b."Nbr Times Run",
 a.qqrcod "Reason Code", a.qqi7 "Reason subcode for Union",
 a.qqrss "Number of rows sorted", c."Rows Fetched",
 a.qqi1 "Size of Sort Space", a.qqi2 "Pool Size",
 a.qqi3 "Pool ID", a.qvbndy "I/O or CPU bound", a.qqucnt, b.qq1000 FROM
summation b LEFT OUTER JOIN fetches c ON b.qqjfld = c.qqjfld AND
 b.qqucnt = c.qqucnt INNER JOIN mydbmon a
 ON b.qqjfld = a.qqjfld AND b.qqucnt = a.qqucnt WHERE a.qqrid = 3003
ORDER BY b."Total Time" DESC;

Figure 6-36 shows the output from the query in Example 6-38.

Figure 6-36 Include data showing action possible

This query uses the following columns:

� QQRCOD

This column indicates the reason for choosing the query sort technique. The value in this
column helps to identify whether the sort required of the query optimizer determined that
the cost of the sort is better than any other implementation (such as an index).

If you can change the SQL statement itself, any reason code is available for optimization
efforts. Or perhaps you cannot change the SQL statement (that is to optimize the
third-party ERP application) and can only build indexes and change other environmental
factors to help performance (that is, increase the pool size). In this case, focus your
optimization efforts on query sorts with reason code F7 (optimizer chose sort rather than
index due to performance reasons) and F8 (optimizer chose sort to minimize I/O wait
time).

For a detailed description of each reason code, search on Database Monitor qqrcod 3003
in the V5R4 iSeries Information Center. Click Database monitor view 3003 - Query sort
to view the columns and execute a Find to search for QQRCOD on the Web at:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

Chapter 6. Custom Database Monitor Analysis 225

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

� QQI7

This column indicates the reason subcode for the UNION clause. If the query sort reason
code lists F5 (UNION was specified for query), this column contains one of two subcodes.
A value of 51 means that there is also an ORDER BY in the statement. A value of 52
means that the query specifies UNION ALL rather than simply UNION.

� QQRSS

This column tells us the number of rows that are contained in the sort space. You can use
this value, along with the reason code, to determine if the indexed approach is possible
and possibly cheaper (for a small result set). Compare the value of QQRSS with the value
of QQI3 from the corresponding 1000 FE record for this open to determine the number of
rows that were fetched from the sort space.

If the number of rows in sort space is large, but the actual number of rows fetched is small,
consider adding OPTIMIZE FOR n ROWS to the query to help the optimizer make a better
decision.

Building a more perfect index for the selection criteria might also help the optimizer make
a better decision and use an index for the implementation method rather than a query sort.

� QQI3 from row type 1000 operation id FE (fetch)

This column tells us the number of rows that were fetched from the sort space to satisfy a
user request. As described in the QQRSS column description, the value in this column is
used to gauge whether more information is required by the query optimizer to make better
costing decisions.

� QQI1

This column indicates the size of the sort space.

� QQI2

This column indicates the pool size.

� QQI3 from row type 3003

This column indicates the pool ID.

� QVBNDY

This column contains a flag that indicates whether the query sort is CPU or I/O bound.

We have taken the base query and modified it to include more information about the query
sort implementation. This additional information helps you make more intelligent decisions
when deciding to optimize SQL statements using query sorts as the implementation method.
The most valuable new columns indicate a reason code and the number of actual rows
fetched for the query.

Changing your SQL statement or adding the OPTIMIZE FOR x ROWS syntax is most likely to
help alleviate issues that pertain to long query sort times. For highly selective queries where
sort space is disproportionately larger than actual rows fetched, building a more perfect index
might help the optimizer.

226 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

6.4.12 SQE advised statistics analysis

With the introduction of SQE to OS/400 V5R2, the collection of statistics was removed from
the optimizer and is now handled by a separate component called the Statistics Manager.
The Statistics Manager has two major functions:

� Create and maintain column statistics

� Answer questions that the optimizer asks when finding the best way to implement a given
query

These answers can be derived from table header information, existing indexes, or
single-column statistics. Single-column statistics provide estimates of column cardinality,
most frequent values, and value ranges.

These values might have been previously available through an index, but statistics have the
advantage of being precalculated and are stored with the table for faster access. Column
statistics stored with a table do not dramatically increase the size of the table object. Statistics
per column average only 8 to 12 KB in size. If none of these sources are available to provide
a statistical answer, then the Statistics Manager bases the answer on default values (filter
factors).

By default, this information is collected automatically by the system. You can manually control
the collection of statistics by manipulating the QDBFSTCCOL system value or by using the
iSeries Navigator graphical user interface (GUI). However, unlike indexes, statistics are not
maintained immediately as data in the tables changes.

There are cases were the optimizer advises the creation of statistics. The query shown in
Example 6-39 lists the optimizer advised statistics.

Example 6-39 Query optimizer advised statistics

SELECT qqucnt, qvqtbl "Table", qvqlib "Schema",
 qqc11 "Reason Stat Advised",
 SUBSTR(qq1000,1,100) "Column name"
FROM mydbmon
WHERE qqrid=3015
ORDER BY 2,5;

Chapter 6. Custom Database Monitor Analysis 227

Figure 6-37 shows the output of the query in Example 6-39.

Figure 6-37 Query optimizer advised statistics

This query uses the following columns:

� QQRID

Our selection criteria selects only 3015 rows, which contain information exclusive to SQE
advised statistics.

� QQJFLD and QQUCNT

QQJFLD and QQUCNT are join fields that are required to uniquely identify the SQL
statement in the Database Monitor file.

� QVQTBL and QVQLIB

These columns refer to the long SQL table name and the long SQL schema name. Use
QQTFN and QQTLN for short object names.

� QQC11

This column indicates the reason that the statistic was advised. This can happen only for
two reasons, where N indicates a new statistic and S indicates a stale statistic. A statistic
can become stale for several reasons; one of the most common reasons is that a base
physical table’s number of rows has changed by 15 percent.

� QQ1000

Column QQ1000 for row type 3015 contains the name of the column for which a statistic is
advised. There might be multiple recommendations for a single SQL query, with each row
containing a different column name in the QQ1000 column.

Keep in mind that column statistics are created in the background automatically by default for
all advised statistics. Therefore, in general, no manual action is required on your end to build
these statistics. The only exception is if the automatic statistics collection is turned off.

Although statistics provide a powerful mechanism for optimizing queries, do not
underestimate and disregard the importance of implementing a sound indexing strategy.
Well-defined indexes enable SQE to consistently provide efficient query optimization and
performance. Statistics cannot be used to access a table or sort the data during query
execution.

228 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

A good indexing strategy is both beneficial for providing statistics and mandatory for efficient
and fast query execution. Therefore, you should replace indexes with statistics only if the
indexes were created for the sole purpose of providing statistical information to the query
optimizer. In cases where an index provides fast and efficient access to a set of rows in a
table, DB2 Universal Database for iSeries continues to rely on its indexing technology to
provide statistics information and a data access method.

Since indexes are the premier way to improve query optimizer intelligence and data access
implementation choices, we look at the query in Example 6-40, which correlates SQE advised
statistics with any query optimizer recommended indexes.

Example 6-40 Correlation of SQE statistics and optimizer recommended indexes

WITH
advisedIndexes AS (

SELECT qqjfld, qqucnt, qqi2 "Nbr of Primary Keys",
SUBSTR(qqidxd, 1,100) "Keys Advised" FROM mydbmon

WHERE qqrid IN (3000, 3001, 3002) and qqidxa='Y')
SELECT a.qqucnt, a.qqtfn "Table", a.qqtln "Schema",

CASE a.qqc11
WHEN 'N' THEN 'No Statistic Exists'
WHEN 'S' THEN 'Stale Statistic Exists'
ELSE 'Unknown'

END AS "Reason Stat Advised", SUBSTR(a.qq1000,1,100) "Column name",
a.qqi2 "Statistics Importance", a.qvc1000 "Statistics Identifier",
b."Nbr of Primary Keys", b."Keys Advised"

FROM mydbmon a LEFT OUTER JOIN advisedIndexes b
on a.qqjfld = b.qqjfld and a.qqucnt = b.qqucnt

WHERE qqrid=3015 ORDER BY a.qqucnt DESC;

Figure 6-38 shows the output of the query in Example 6-40.

Chapter 6. Custom Database Monitor Analysis 229

Figure 6-38 Correlation of SQE statistic and optimizer recommended indexes

This query uses the following columns:

� QQIDXA

This column contains a flag of Y or N that indicates whether index was advised. We use
this information to filter out queries for which no index was recommended by the query
optimizer (QQIDXA = 'Y').

� QQIDXD

This column indicates columns for which an index was advised. This field lists primary
keys first followed by zero or more secondary keys. Secondary selection keys are less
likely to have a significant positive impact on a query’s performance.

� QQI2

This column indicates the number of primary keys contained in the QQIDXD field. For the
most benefit, build an index over the primary key fields.

� QQRID

We only focus on row types 3000, 3001, and 3002, which contain query optimizer index
suggestions.

� QQI2

This column indicates the importance of a statistic.

� QVC1000

This column contains the statistics identifier.

This query attempts to correlate the SQE advised statistics to the query optimizer index
suggestions. The idea is that we should attempt to build indexes for cases where an index can
be used by the query optimizer for the data access method.

If an index is solely used for statistical purposes, the advantage should be given to SQE
statistics due to their low maintenance overhead. An exception to this recommendation is if
statistics must be current at all times. The only way to accomplish this is by having an index
set with the *IMMED maintenance attribute.

230 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

6.4.13 Fetched and Retrieved detail rows

Specifying *DETAIL in the TYPE parameter of the STRDBMON command indicates that
detail rows, as well as summary rows, must be collected for fetch operations. The same is
true for detailed SQL Performance Monitor in iSeries Navigator.

The 3019 row can be used to indicate the amount of time SQL and non-SQL queries are
spending in fetching and retrieving data. Non-SQL queries do not generate record 1000 rows
and therefore no SQL statement. An example of such non-SQL queries are OPNQRYF,
Query/400 and QQQQry API. For non-SQL queries, the only way to determine the number of
rows that are returned and the total time elapsed to return those rows is to collect detail rows.
While the detail row contains valuable information, it creates a slight performance
degradation for each block of rows returned. Therefore, you must closely monitor its use. You
can use a detailed row for SQL analysis since the information it contains is also valuable in
the SQL environment.

A large number of physical I/O operations can indicate that a larger pool is necessary or that
SETOBJACC might be used to bring some of the data into main memory beforehand.

The query in Example 6-41 shows the most time-consuming SQL statements.

Example 6-41 Most time -consuming SQL statements

WITH retrieved AS (
 SELECT qqjfld, qqi3, qqi5
 FROM mydbmon
 WHERE qqrid=3019)
SELECT SUM(qqi6) "QQI6 Total Time" , COUNT(*) "Nbr Times Run",
 SUM(b.qqi3) "QQI3 Sync DB Reads", SUM(b.qqi5) "QQI5 ASync DB Reads",
qq1000,

qqc11, qqc21
FROM mydbmon a, retrieved b
WHERE a.qqjfld=b.qqjfld AND qqrid=1000 AND qqucnt<>0
GROUP BY qq1000, qqc11, qqc21
ORDER BY 1 DESC;

Chapter 6. Custom Database Monitor Analysis 231

Figure 6-39 shows the output of the query in Example 6-41.

Figure 6-39 Most time consuming SQL statements

This query uses the following columns:

� QQRID

In the common table expression retrieved, we select only 3019 rows, getting a subset of
data with detailed row information.

� QQJFLD

This column indicates the join column (unique per job).

� QQI3

This column indicates the number of synchronous database reads. We present a
cumulative count for each SQL statement.

� QQI5

This column indicates the number of asynchronous database reads. We present a
cumulative count for each SQL statement.

� QQI6 from row type 1000

This column indicates the cumulative elapse time in microseconds for each individual
query. Since we use it as a cost indicator, we ordered the output in descending order
based on this value.

� QQ1000

This column contains the SQL statement.

� QQUCNT

This column contains the unique statement identifier. We use this value to exclude
non-unique statement identifiers.

� QQC21

This column contains the SQL request operation identifier. We use this value to exclude
continuation records from our analysis. Continuation records are used to display
statement text for statements that cannot fit into the single QQ1000 field.

232 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

This query gives us detailed information about the amount of reads that the longest running
SQL statements have performed.

Row 3019 contains other interesting statistics. We view them by running the query shown in
Example 6-42.

Example 6-42 Row 3019 statistics

WITH retrieved AS (
SELECT qqjfld,qqi1,qqi2,qqi3,qqi5, qqi4,qqi6,qqi7,qqi8
FROM mydbmon
WHERE qqrid=3019)

SELECT SUM(a.qqi6) "Total Time" , COUNT(*) "Nbr Times Run",
SUM(b.qqi1) "CPU time in milliseconds", SUM(b.qqi2) "Clock Time in

milliseconds", SUM(b.qqi3) "Sync DB Reads", SUM(b.qqi5) "Async DB Reads",
SUM(b.qqi4) "Sync DB Writes", SUM(b.qqi6) "Async DB Writes",
SUM(b.qqi7) "Number of rows returned",
SUM(b.qqi8) "Nbr of calls to get rows", qq1000

FROM mydbmon a, retrieved b
WHERE a.qqjfld=b.qqjfld AND qqrid=1000 AND qqucnt<>0
GROUP BY qq1000
ORDER BY "Total Time" DESC;

Figure 6-40 shows the output of the query in Example 6-42 (we show two windows).

Figure 6-40 Row 3019 statistics - left part of results

Chapter 6. Custom Database Monitor Analysis 233

To show all of the columns, the left part of the results is shown in Figure 6-40 and the right
part is shown in Figure 6-41.

Figure 6-41 Row 3019 statistics - right part of results

This query uses the following columns:

� QQI1

This column indicates the CPU time in milliseconds.

� QQI2

This column indicates the clock time in milliseconds.

� QQI4

This column indicates the number of synchronous database writes.

� QQI6

This column indicates the number of asynchronous database writes.

� QQI7

This column indicates the number of rows returned.

� QQI8

This column indicates the number of calls to retrieve rows returned.

6.4.14 Materialized query tables

Materialized query tables (MQTs), also referred to as automatic summary tables or
materialized views, can provide performance enhancements for queries. This enhancement
is done by precomputing and storing results of a query in the MQT. The database engine can

Note: In the following columns, we present cumulative values for each SQL statement that
generated the 3019 record. A statement is deemed unique as long as it can fit in the single
QQ1000 record.

234 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

use these results instead of recomputing them for a user-specified query. The query optimizer
looks for any applicable MQTs and can choose to implement the query using a given MQT
provided this is a faster implementation choice. For more details on this topic refer to 3.7.2,
“MQT (Materialized Query Tables) Evaluator” on page 70. You can also find more information
in the white paper The creation and use of materialized query tables within IBM DB2 for
i5/OS, which is available from the DB2 for i5/OS Web site at:

http://www.ibm.com/iseries/db2

Click the Key Benefits tab to view additional options on the tab. Click Articles & White
Papers on to view the list of available white papers.

As a SQL performance analyst it is interesting to determine whether an MQT is being used.
Example 6-43 shows a query that you can run to view the reasons why an MQT is not being
used. You can also check whether MQTs are replacing the existing table names in the query.
You can check the QQC13 column of either the 3000, 3001, or 3002 record of the SQL
Performance Monitor data. The 3000 record is for use when a table scan is done. The 3001
record is for use when an index is used, and the 3002 record is for when an index is created.

To look at the MQTs on your system and see if they are being used, run the following Display
File Description (DSPFD) command and SQL Performance Monitor data to check. First you
must determine which tables are MQTs. Create a file with the following command:

SELECT TABLE_NAME, TABLE_SCHEMA from QSYS2.SYSTABLES
WHERE TABLE_TYPE = ‘M’

Then to see which MQTs are being used or are not in queries, run the query shown in
Example 6-43 against the file created from the DSPFD command, using SQL performance
data.

Example 6-43 Query to find MQTs

WITH MQTTABLES as (
SELECT TABLE_NAME, TABLE_SCHEMA from QSYS2.SYSTABLES
WHERE TABLE_TYPE = 'M')

SELECT count(*) as Times_Used,
a.TABLE_NAME as MQT_file,
a.TABLE_SCHEMA as MQT_library,
b.qqc13 as Used_in_Query

FROM MQTTABLES a left outer join mydbmon b
ON a.TABLE_NAME = b.qqtfn and a.TABLE_SCHEMA = b.qqtln

GROUP BY a.TABLE_NAME, a.TABLE_SCHEMA, b.qqc13
ORDER BY b.qqc13

Next, to determine why MQTs are not being used, run the query shown in Example 6-44.

Example 6-44 Reason why MQTs are not used

SELECT substr(a.qq1000,1,100) AS MQT_RC,b.qq1000
FROM mydbmon a, mydbmon b
WHERE a.qqrid = 3030

AND b.qqrid = 1000
AND a.qqjfld = b.qqjfld
AND a.qq1000 <> '0'
AND b.qqc11 in ('S','U','I','D')
AND b.qqc21 NOT IN ('CL', 'HC', 'FE')

GROUP BY B.QQ1000, A.QQ1000

Chapter 6. Custom Database Monitor Analysis 235

http://www.ibm.com/iseries/db2

236 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Chapter 7. SQE Plan Cache and SQE Plan
Cache Snapshots

In this chapter we discuss SQE Plan Cache and SQE Plan Cache Snapshots. We provide
you with the understanding of what an SQE Plan Cache is and show you what are the
possible functions you can perform on SQE Plan Cache. We also show you how to create a
snapshot out of the SQE Plan Cache for further SQL optimization analysis. You can create
the snapshot either through the iSeries Navigator GUI interface, through calling a Stored
Procedure or even through an IBM Exit Program so that the plan cache is dumped at each
IPL.

7

© Copyright IBM Corp. 2007. All rights reserved. 237

7.1 SQE Plan Cache and SQE Plan Cache Snapshot

Plan Cache and Plan Cache Snapshot are newly introduced in V5R4. In this chapter, we
discuss them both further, providing you with a better understanding of what Plan Cache is,
what a Plan Cache Snapshot is and how they can integrate with existing iSeries Navigator
tools or even new tools in V5R4, to assist you in optimizing your queries.

7.2 SQE Plan Cache

The SQE Plan Cache is a repository that contains the access plans for queries that were
optimized by SQE. The purpose of the SQE Plan Cache is to:

� Facilitate the reuse of a query access plan when the same query is re-executed
� Store runtime information for subsequent use in future query optimizations

For a more detailed description of What is the SQE Plan Cache, refer to 2.2.9, “SQE Plan
Cache”.

7.2.1 Viewing the properties of the SQE Plan Cache

The Plan Cache contains a wealth of information about the SQE queries being run through
the database. Its contents are viewable through the iSeries Navigator GUI interface.

Note: SQE Plan Cache is named SQL Plan Cache in the iSeries Navigator GUI interfaces.

238 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

This SQE Plan Cache interface provides a window into the database query operations on the
system. The interface to the SQE Plan Cache resides under the iSeries Navigator →
system name → Database as shown in Figure 7-1.

Figure 7-1 View SQE Plan Cache

Chapter 7. SQE Plan Cache and SQE Plan Cache Snapshots 239

As shown in Figure 7-2, select iSeries Navigator → system name → Database → SQL
Plan Cache Snapshot → SQL Plan Cache → Properties to see the Plan Cache Properties
window.

Figure 7-2 Path to SQE Plan Cache Properties

As shown in Figure 7-3, the Plan Cache Properties window shows high level information
about the cache, including for example, cache size, number of plans, number of full open and
pseudo-opens that have occurred. This information can be used to view overall database

240 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

activity. If tracked over time, it provides trends to help you better understand the database
utilization peaks and valleys throughout the day and week.

Figure 7-3 SQE Plan Cache Properties

Chapter 7. SQE Plan Cache and SQE Plan Cache Snapshots 241

7.2.2 Viewing the content of the SQE Plan Cache

As shown in Figure 7-4, by right-clicking the SQE Plan Cache icon, a series of options are
shown which allow different views of current SQE Plan Cache of the database.

Figure 7-4 Path to SQE Plan Cache Show Statements

From Figure 7-4, select SQL Plan Cache → Show Statements to bring up a window (shown
in Figure 7-5) with filtering capability. This window provides a direct view of the current SQE
Plan Cache on the system.

As shown in Figure 7-5, note that the Retrieve action needs to be performed (pushed) to fill
the display.The information shows the SQL query text, the last time the query was run, the
most expensive single instance run of the query, total processing time consumed by the
query, total number of times the query has been run and information about the user and job
that first created the plan entry. It also shows how many times (if any) that the database

242 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

engine was able to reuse the results of a prior run of the query to avoid rerunning the entire
query.

Figure 7-5 SQE Plan Cache Show Statements

7.2.3 Using the filter options

The window shown in Figure 7-6 provides filtering options which allow the user to more
quickly isolate specific criteria of interest. No filters are required to be specified (the default),
although adding filtering can shorten the time it takes to show the results. The list of queries
that is returned is ordered by default so that those consuming the most processing time are
shown at the top. You can reorder the results by clicking on the column heading for which you
want the list ordered. Repeated clicking toggles the order from ascending to descending.

The filtering options provide a way to focus in on a particular area of interest:

� Minimum runtime for the longest execution: Filter to those queries with at least one
long individual query instance runtime

� Queries run after this date and time: Filters to those queries that have been run recently

� Top “n” most frequently run queries: Finds those queries run most often.

� Top “n” queries with the largest total accumulated runtime: Shows the top resource
consumers. This equates to the first n entries shown by default when no filtering is given.
Specifying a value for n improves the performance of getting the first window of entries,
though the total entries displayed is limited to n.

Chapter 7. SQE Plan Cache and SQE Plan Cache Snapshots 243

� Queries ever run by user: Provides a way to see the list of queries a particular user has
run. Note that if this filter is specified, the user and job name information shown in the
resulting entries still reflect the originator of the cached entry, which is not necessarily the
same as the user specified on the filter.

� Queries currently active: Shows the list of cached entries associated with queries that
are still running or are in pseudo-close mode. As with the user filtering, the user and job
name information shown in the resulting entries still reflects the originator of the cached
entry, which is not necessarily the same as the user currently running the query (there
may be multiple users running the query).

� Queries with index advised: Limits the list to those queries where an index was advised
by the optimizer to improve performance.

� Queries with statistics advised: Limits the list to those queries where a statistic not yet
gathered might have been useful to the optimizer if it was collected. The optimizer
automatically gathers these statistics in the background, so this option is normally not that
interesting unless, for whatever reason, you want to control the statistics gathering
yourself.

� Include queries initiated by the operating system: includes into the list the “hidden”
queries initiated by the database itself behind the scenes to process a request. By default
the list only includes user initiated queries.

� Queries that use or reference these objects: Provides a way to limit the entries to those
that referenced or use the tables or indexes specified.

� SQL statement contains: Provides a wildcard search capability on the SQL text itself. It
is useful for finding particular types of queries. For example, queries with a FETCH FIRST
clause can be found by specifying “fetch”. The search is case insensitive for ease of use.
For example, the string “FETCH” finds the same entries as the search string “fetch”.

As shown in Figure 7-6, multiple filter options can be specified. Note that in a multi-filter case,
the candidate entries for each filter are computed independently and only those entries that
are present in all the candidate lists are shown. So, for example, if you specified options Top
“n” most frequently run queries and Queries ever run by user, you are shown those most-run
entries in the cache that happen to have been run at some point by the specified user. You
are not necessarily be shown the most frequently run queries run by the user (unless those
queries also happen to be the most frequently run queries in the entire cache).

Note: Current SQL for a job (right-click the Database icon) is an alternative for viewing
a particular job’s active query.

244 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Figure 7-6 Filter with Top “n” most frequently run queries and Queries ever run by user options

From Figure 7-6, when an individual entry is chosen, more detailed information about that
entry can be seen. Select Show Longest Runs shows details of up to ten of the longest
running instances of that query. The result is shown in Figure 7-7.

Figure 7-7 Show Longest Runs

7.2.4 Finding and Visual Explaining a query from the SQE Plan Cache

SQE Plan Cache can be integrated with Visual Explain, allowing you to visualize what the
optimizer is performing and further assist you in making decisions in query optimization.

Chapter 7. SQE Plan Cache and SQE Plan Cache Snapshots 245

As shown in Figure 7-8, Run Visual Explain can be performed against the chosen query to
show the details of the query plan.

Figure 7-8 Run Visual Explain on SQL Plan Cache Statement window

246 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

This leads you to the Visual Explain window as shown in Figure 7-9. The information presented can
be used in multiple ways to help with performance tuning. For example, Visual Explain of key
queries can be utilized to show advice for creating an index to improve those queries.

Figure 7-9 Visual Explain window

Alternatively, from the Figure 7-8, the Show Longest Run option gives you information for
determining if the query is being run during a heavy utilization period and can potentially be
rescheduled to a more opportune time.

Finally, if one or more entries are highlighted, you can generate a snapshot (database performance
monitor file) for those selected entries by selecting the Create Snapshot button (Figure 7-8).

Note: The user and job name information given for each entry is the user and job that initially
caused the creation of the cached entry (the user where full optimization took place).

Note: For more information about Visual Explain, refer to Chapter 8, “Analyzing database
performance data with Visual Explain” on page 275.

Chapter 7. SQE Plan Cache and SQE Plan Cache Snapshots 247

7.3 SQE Plan Cache Snapshot

Clicking the SQE Plan Cache folder shows a list of any snapshots gathered so far. A snapshot
is a database monitor file generated from the SQE Plan Cache and can be treated very much
the same as the SQL Performance Monitors list. The same analysis capability exists for
snapshots as exists for traditional SQL performance monitors.

The SQE Plan Cache is cleared each time you IPL the system. This means that once you IPL
the system you lose all the contents of the SQE Plan Cache. For this reason it is good to have
a way of storing or having a copy of the contents of the SQE Plan Cache in a separate place.
SQE Plan Cache snapshots are images of the contents of the SQE Plan Cache.

There are three ways to create an SQE Plan Cache Snapshot. There are explained in
sections:

� “Creating an SQE Plan Cache Snapshot using iSeries Navigator”
� “Creating an SQE Plan Cache Snapshot using Stored Procedure”
� “Creating an SQE Plan Cache Snapshot using an Exit Program”

7.3.1 Creating an SQE Plan Cache Snapshot using iSeries Navigator

You need to add your schema into the schema list before proceeding to create any SQE Plan
Cache snapshot.

As shown in Figure 7-10, to add your additional schema into the Schema List, select iSeries
Navigator → system name → Database → database name and right-click Schemas and
select Select Schemas to Display.

Figure 7-10 Path to adding your Schema to the Schema List

Note: SQE Plan Cache Snapshot is named SQL Plan Cache Snapshot in the iSeries
Navigator GUI interfaces.

248 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

As shown in Figure 7-11, you can use the Search for Schemas option and the Search button
to browse for your schema. Once found, you just have to highlight your schema name and use
the Add button to add it into the Schema List. Alternatively, select the Enter Schema Names
option, enter your schema name and use the Add button to add it into the Schema List.

Figure 7-11 Select schema to display

As shown in Figure 7-12, you see your schema name appears in the right pane of the SQL
Plan Cache Snapshot. Select Database, right-click SQL Plan Cache Snapshot and select
New → Snapshot to create a new snapshot of the SQE Plan Cache. Unlike the snapshot

Chapter 7. SQE Plan Cache and SQE Plan Cache Snapshots 249

option under Show Statements, it allows you to create a snapshot without having to first view
the queries.

Figure 7-12 Create SQE Plan Cache Snapshot

As shown in Figure 7-13, a new Snapshot of the SQE Plan Cache window appears. You
provide a snapshot name and select your schema from the drop down list. You can select
Include all plan cache entries or Include plan cache entries that meet the following
criteria to further narrow down the selection like choosing suboptions: Queries with index

250 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

advised. Click OK and wait a moment until you see your SQE Plan Cache Snapshot object in
the right pane of iSeries Navigator.

Figure 7-13 Suboptions in creating SQE Plan Cache Snapshot

There are a total of eleven suboptions that you can choose in the filtering criteria for SQE
Plan Cache Snapshot creation:

1. Minimum runtime for the longest execution: Select this to include queries that exceed
a certain amount of time. Select a number and then a unit of time.

2. Queries run after a specific date and time: Select this to include queries run at a
specified date and time. Select a date and time.

3. Top “n” most frequently run queries: Select this to include queries that are most
frequently run. Specify the number of most frequently run queries.

4. Top “n” queries with the largest total accumulated runtime: Select this to include
queries with the largest total accumulated runtime. Run time is defined as the cost for I/O
and CPU. Specify the number of longest-running queries.

Chapter 7. SQE Plan Cache and SQE Plan Cache Snapshots 251

5. Queries ever run by a specific user: Select this to include queries run by a certain user.
Specify a user ID. You can specify the entire ID or use a wildcard. For example, “QZDAS*”
returns all user IDs where the name starts with “QZDAS”.

6. Queries currently active: Select this to include queries that are currently running.

7. Queries with index advised: Select this to include queries that have an index advised.

8. Queries with statistic advised: Select this to include queries that have statistics advised.

9. Include queries initiated by the operating system: Select this to include queries that
were initiated by the operating system.

10.Queries that use or reference specific tables: Select this to include queries that use or
reference certain objects. Click Browse to select objects to include.

11.SQL statements that contain specific syntax: Select this to include only those queries
that contain a specific type of SQL statement. For example, specify SELECT if you only
want to include queries that are using SELECT.

7.3.2 Creating an SQE Plan Cache Snapshot using Stored Procedure

The SQE plan cache is an actively changing cache. Therefore, it is important to realize that it
contains timely information. If information over long periods of time is of interest, consider
implementing a method of performing periodic snapshots of the SQE plan cache to capture
trends and heavy usage periods.

The stored procedure, QSYS2.DUMP_PLAN_CACHE, provides the simplest way to create a
snapshot from the SQE plan cache. The DUMP_PLAN_CACHE API takes two parameters,
library name and file name, for identifying the resulting snapshot. If the file does not exist, it is

Note: These selection criteria only apply to SQL statements that are served by SQE. For
SQL statements served by CQE, you need to start SQL Performance Monitor.

252 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

created. For example, to dump the SQE plan cache to a database performance monitor file
(snapshot) in schema DBITSODB06, run this SQL script as shown in Figure 7-14:

CALL QSYS2.DUMP_PLAN_CAHCE(’DBITSODB06’,’SNAPSHOT1’);

Figure 7-14 Run Dump Plan Cache stored procedure

Chapter 7. SQE Plan Cache and SQE Plan Cache Snapshots 253

As shown in Figure 7-15, now go to DBITSODB06 schema and select Table. You should find
the SNAPSHOT1 table you have just dumped.

Figure 7-15 Locate the SNAPSHOT1 table in DBITSODB06 schema

254 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

As shown in Figure 7-16, you have to import the snapshot into the iSeries Navigator prior to
performing any performance analysis. To do so, right-click SQL Plan Cache Snapshot and
select Import.

Figure 7-16 Import the Plan Cache dumped

As shown in Figure 7-17, provide a meaningful description for the Name field and select
DBITSODB06 for the Schema field. Then select SNAPSHOT1 for the Table field and click
OK.

Figure 7-17 Select DBITSODB06 schema and SNAPSHOT1 table

Chapter 7. SQE Plan Cache and SQE Plan Cache Snapshots 255

In Figure 7-18, you should find the SQE Plan Cache Snapshot created for SNAPSHOT1
which you dumped using DUMP_PLAN_CACHE stored procedure. You can perform further
action on this snapshot such as Analyze, Show Statements and so on.

Figure 7-18 Perform further work on SNAPSHOT1 SQE Plan Cache Snapshot

7.3.3 Creating an SQE Plan Cache Snapshot using an Exit Program

You can make use of exit point QIBM_QWC_PWRDWNSYS to call
QSYS2.DUMP_PLAN_CACHE each time PWRDWNSYS and ENDSBS commands are
issued. The program is called before the system actually powers down. You can automate
capturing the plan cache snapshot prior to each IPL. Alternatively, you can use the
DUMP_PLAN_CACHE API in conjunction with job scheduling (for example), to
programmatically perform periodic snapshots capture.

In this topic, we provide a sample RPG program as shown in Example 7-1 that calls the
QSYS2.DUMP_PLAN_CACHE with two variables: the library name (DBITSODB06) and the
table name (DMPPCACHE) to hold the plan cache dump.

The program sends a message to QSYSOPR message queue once the plan cache is
dumped successfully:

“Plan Cache Dump successful!”

256 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Alternatively, if the dump is not successful, the program also sends a message to QSYSOPR
message queue:

“Plan Cache Dump Failed!”

Example 7-1 RPG program to call QSYS2.DUMP_PLAN_CACHE

*************** Beginning of data *************************************
H
D*
D** Variables for system operator message
D*
D OKMsg S 50A INZ('Plan Cache Dump successful!'
D ErrorMsg S 50A INZ('Plan Cache Dump Failed!')
D SQLCODE2 S 2A
D SQLCODEC S 5A
D MsgQueue S 10A INZ('QSYSOPR')
D*
D SCHEMA_NAME S 10A INZ('DBITSODB06')
D TABLE_NAME S 10A INZ('DMPPCACHE')
D*
C***
C* this RPG program will called by PWRWDWNSYS exit point SED AS
Cto the SQL statementsIBM_QWC_PWRDWNSYS format PWRD0100
C***
C*
C* EXECUTE SQL CALL TO
C* CALL QSYS2/DUMP_PLAN_CACHE('--SCHEMA OR LIB NAME--',
C* '--TABLE NAME--')
C*
C/EXEC SQL
C+ CALL QSYS2/DUMP_PLAN_CACHE(:SCHEMA_NAME, :TABLE_NAME)
C/END-EXEC
C*
C*
C** CHECK FOR 00 IN POSITIONS 1-2 OF SQLSTATE CODE
C*
C* Convert SQLCODE from numeric to character
C MOVE SQLCODE SQLCODEC
C* Select first 2 characters to see if 00
C SUBST SQLCODEC:2 SQLCODE2
C SQLCODE2 IFEQ '00'
C* LET SYSTEM OPERATOR KNOW PLAN CACHE DUMP OK
C*
C
C OKMsg DSPLY MsgQueue
C*
C ELSE
C* LET SYSTEM OPERATOR KNOW PLAN CACHE DUMP FAILED
C ErrorMsg DSPLY MsgQueue
C*
C*
C END
C SETON LR
****************** End of data **

Chapter 7. SQE Plan Cache and SQE Plan Cache Snapshots 257

Issue the following command to add the PRG program into QIBM_QWC_PWRDWNSYS Exit
program:

ADDEXITPGM EXITPNT(QIBM_QWC_PWRDWNSYS) FORMAT(PWRD0100) PGMNBR(*LOW)
PGM(DBITSODB06/DUMPPCACHE)

The plan cache would be dumped to DBITSODB06/DUMPPCACHE at each IPL. You can
proceed to import the plan cache in and carry out further performance analysis.

7.3.4 Analyzing an SQE Plan Cache Snapshot

In this section, we illustrate the tool used for analyzing an SQE snapshot. To do this, perform
the following steps:

1. Right-click your newly-created snapshot name and select Properties as shown in
Figure 7-19.

Figure 7-19 Path to Snapshot Properties

The information of a snapshot is stored in a table (QZGXXXXXXX). This table can be:

– Saved and restored
– FTPed to another system
– Queried by SQL

Note: You can enhance the RPG problem to dynamically name the plan cache dump
(using a sequence object, time stamp, and so on.) so as not to overwrite the existing one
with the same name (in this case DUMPPCACHE)

258 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

An SQE Plan Cache Snapshot is the materialization of the SQE plan information residing
in the plan cache. The format of the data is similar to detailed database monitor data (by
design) but not identical. Figure 7-20 shows the properties of a snapshot.

Figure 7-20 SQE Plan Cache Snapshot Properties

2. Once you have created the SQE Plan Cache Snapshot, start to analyze the performance
information contained in the snaphot. As shown in Figure 7-21, right-click your snapshot
name and select Analyze.

Figure 7-21 Path to Analyze your snapshot

Chapter 7. SQE Plan Cache and SQE Plan Cache Snapshots 259

3. A pop-up information window asking you to be patient appears. After waiting a while, the
Analysis Overview Dashboard window appears as shown in Figure 7-22.

Figure 7-22 The Analysis Overview Dashboard

Note: The Dashboard shown in Figure 7-22 is the same dashboard used and displayed
by the detailed SQL Database Monitor, described in Chapter 5, “Analyzing SQL
performance data using iSeries Navigator” on page 117.

260 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

4. As shown in Figure 7-23, expand the Overview folder if it is not already expanded. This
allows you to see if Summary Analysis and Statements are available for each
corresponding options.

Figure 7-23 SQL Statements and Statements options of the Dashboard

5. As shown in Figure 7-23, highlight SQL Statements and click the Statements button. This
leads you to a new window that contains various information of all SQL statements in the
snapshot. You can scroll to the right to view more information. Notice the Runtime column
allows you to sort either in ascending or descending order. By default, the SQL statement
with the longest runtime appears at the topmost line in the window. The same feature is
available for all the listed columns.

Note: You can specify ascending or descending sorting order of any column by clicking
the column heading once or twice. For example, if you click the column heading named
Result Rows to specify descending order, you can see the statement with the “largest
result at set” at the topmost line.

Chapter 7. SQE Plan Cache and SQE Plan Cache Snapshots 261

6. As shown in Figure 7-24, select the topmost line which has the longest run time and select
Action → Visual Explain which leads you to the graphical representation of the access
path of the selected statement.

Figure 7-24 Visual Explain from the SQL statements

You can now explore Visual Explain information to identify why this statement has the
longest run time.

7. Refer to Figure 7-23 again. From the Dashboard window select the Overview folder and
click Statements. Now refer to Figure 7-24, highlight the topmost line, select Actions →
Work with SQL Statement. The Run SQL Scripts window in Figure 7-25 appears
showing you the involved SQL statements. This helps you to execute the statement or
modify it to test for a possible performance improvement.

Figure 7-25 The Run SQL Scripts window showing the involved SQL statements

8. As shown in Figure 7-26, explore other options in the Dashboard. Expanding the
Miscellaneous Information folder leads you to Maximum Run Time, Open Time, Fetch
Time, Close Time, Other Time information such as insert operation (all in seconds), the
maximum number of rows contained in a table being accessed (Maximum Table Rows),
and the largest result set size (Maximum Rows Returned) of the statement in the
snapshot.

262 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Figure 7-26 Work with Statements of Maximum Rows Returned

9. As shown in Figure 7-26, select Maximum Rows Returned → Statements which will
show you a new window. Highlight the topmost line of the Maximum Rows Returned and
select Actions → Work with Statements which will lead you to the Run SQL Scripts
window. You can also right-click the highlighted line select from the pop-up menu that
offers the same options.

10.As shown in Figure 7-27, you see the SQL statement in the Run SQL Script window. You
can now choose to work with the selected statement in many ways such as invoking Visual

Chapter 7. SQE Plan Cache and SQE Plan Cache Snapshots 263

Explain to see the access plan of the statement, running the statement to see the result
set, or modifying the statement to test for ways that can improve its performance.

Figure 7-27 SQL Statements in the Run SQL Scripts window

7.3.5 Working with SQL statements from an SQE Plan Cache Snapshot

The Show Statements option from SQL Plan Cache Snapshot lists the SQL statements for
which a snapshot contains the plan cache details, and further allows a Visual Explain graph to
be produced. The SQL statements window is also coupled with filtering capabilities, allowing
you to retrieve and review SQL queries based on criteria of your interest as explained in the
following steps.

Note: This Show Statements option activated from SQL Plan Cache Snapshot is
equivalent to Show Statements option activated from SQL Plan Cache and SQL
Performance Monitors.

264 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

1. To access the SQL statements window, right-click your snapshot name and select Show
Statements as shown in Figure 7-28.

Figure 7-28 Path to snapshot object Show Statements

There are four filtering criteria that you can use before clicking the Retrieve button to get
the SQL statements contained in the SQE Plan Cache Snapshot:

– Minimum runtime for the longest execution
– Queries run after a specific date and time
– Queries that use or reference specific tables
– SQL statements that contain a specified text pattern

Note: The Show Statements in V5R4 is the equivalent of List Explainable Statements in
V5R3.

Chapter 7. SQE Plan Cache and SQE Plan Cache Snapshots 265

2. Assuming you are interested in Select statements, use the SQL statement contains filter
and type SELECT in the text box, then click Retrieve. Refer to Figure 7-29 for the
illustration.

Figure 7-29 Using SQE Plan Cache Snapshot Filtering option to list SQL statements

3. On the right pane, there are two options you can perform:

– Creating another snapshot for some selected statements
– Invoking Visual Explain to see the access plan of the selected statement

Clicking any line in the list of statements shows you the full SQL statement in the grey text
box on the right pane.

You can now perform further SQL statement performance analysis using any one of the
options, either with the new snapshot you created or with the Visual Explain tool.

7.3.6 An example of finding table scans in a SQE Plan Cache Snapshot

iSeries Navigator provides predefined report to help you in analyzing the performance data in
the SQE Plan Cache Snapshot. Assuming you are interested in table scan operations that
run many times, use the report to check if there is any possibility of tuning the statement that
causes the table scans.

Note: The text box of the SQL statement contains is NOT case sensitive. Typing SELECT
or select yields the same result.

Note: You can select multiple statements by holding down either the Shift key (for a
range of multiple lines) or Ctrl key (for selecting multiple individual lines) while clicking
the lines.

266 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

To do so, perform the following steps:

1. From the SQE Plan Cache Snapshot Dashboard window in Figure 7-30, select Actions →
Analysis Queries.

Figure 7-30 The Dashboard

2. As shown in Figure 7-31, now locate and right-click the line Table Scan Summary and
select View Results.

Figure 7-31 View Results on Table Scan Summary

Chapter 7. SQE Plan Cache and SQE Plan Cache Snapshots 267

3. As shown in Figure 7-32, the result window appears. Scroll to the right to locate the
column named Full Opens. Click twice on the column bar to sort the lines in descending
order. Highlight the topmost line for easy viewing and scroll further to the column named
Index Creates Advised.

Figure 7-32 Lookup Full Opens and Index Creates Advised

This is how you identify the table scan operation with the highest number of Full Open
operations (which is an expensive operation in terms of performance). If you see a high
number of Index Creates Advised, then this is an opportunity for you to explore that
particular line (representing an SQL statement) to see its details for more performance
consideration.

268 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

4. To see the SQL statement, right-click the highlighted line and select Work with
Statements. This leads you to the Run SQL scripts window with the corresponding
statement as shown in Figure 7-33.

Figure 7-33 Viewing the SQL statements in the Run SQL Scripts window

7.3.7 Comparing SQE Plan Cache Snapshots

The Compare function of SQE Plan Cache Snapshots allows you to compare two sets of
SQE Plan Cache Snapshots which contain the query performance monitor data. This function
is beneficial for comparing the query performance before and after a change of environment
variables such as:

� Application code changes
� Operating system changes
� PTF installation
� Changes in system value settings or application level settings
� Introduction of new workload
� Changes in system hardware resource
� Changes in infrastructure

With this comparison function, you can review if the environment changes affect your query
performance. Also by comparing one snapshots captured before performing query
optimization and one captured after the optimization exercise, you can verify if the
optimization performed satisfactorily.

In this section, we will compare two SQE Plan Cache Snapshots, one before an MQT table
was created and one after the MQT table was created with the following steps.

Chapter 7. SQE Plan Cache and SQE Plan Cache Snapshots 269

1. As shown in Figure 7-34, to compare two SQE Plan Cache Snapshots, right-click the SQE
Plan Cache name and select Compare.

Figure 7-34 Path to compare SQE Plan Cache Snapshots

2. As shown in Figure 7-35, fill the following fields:

– Data set 1: Use Data set 1 to specify information about the first monitor. You can
select a monitor name from the Name field. Then select any names that you want the
compare to ignore.

– Data set 2: Use Data set 2 to specify information about the second monitor. You can
select a monitor name from the Name field. Then select any names that you want the
compare to ignore.

– Compare statements that ran longer than: Specifies the minimum runtime for
statements to be compared.

– Minimum percent difference: The minimum difference in key attributes of the two
statements being compared that determines if the statements are considered equal or
not.

Note: Take into account the following considerations:

� If you have created an MQT in your query optimization process, when you use the
filtering options to narrow down your selection in the SQL Plan Cache creation stage,
you should not filter by using the option “Queries that use or reference these objects”
(for example the base table name in your schema). The optimizer refers to the original
base table before your MQT creation and it uses the MQT after your MQT creation.
With this, you will not find any matching SQL statements for further comparison and
analysis.

� For more information about Materialized Query Table (MQT), refer to Chapter 3,
“Overview of tools to analyze database performance” on page 33.

270 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Figure 7-35 Specify two sets of snapshot

3. Once you have selected data set 1 and data set 2, click Compare.

You see the window in Figure 7-36 with the SQL statements compared between the two
snapshots. You can expand the “+” sign to explore further. You can also use the Show

Note: This is an example of Schema Mask usage: you have an application running in a
test schema and have it optimized. Now you move it to the production schema and you
want to compare how it executes there. The statements in the compare are identical
except that the statements in the test schema use “TEST” and the statements in the
production schema use “PROD”. You can use the schema mask to ignore “TEST” in the
first monitor and to ignore “PROD” in the second monitor so that the statements in the
two monitors appear identical.

Chapter 7. SQE Plan Cache and SQE Plan Cache Snapshots 271

Statement function on the snapshot set or Run Visual Explain on a selected SQL
statement.

Figure 7-36 Comparison of two snapshots

4. Select the line that you are interested in, for example the Maximum Runtime line and click
Run Visual Explain to view the graphical representation of the optimizer implementation

272 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

of a query request. In Figure 7-37, you see the two sets of Visual Explain display, one for
the first f snapshot and the other for the second snapshot in comparison.

Figure 7-37 Visual Explain for comparing two snapshots

You can now compare both snapshots, implementation methods graphically by viewing
the left hand pane, and statistically on the right hand pane.

In this example, you can see that the top visual explain picture shows that a table scan
with total 600,572 rows resulting in total estimated processing time of 1536.25ms and
bottom visual explain picture shows that a table scan with total 36 rows resulting in total
estimated processing time of 0.12ms. By analyzing both graphical details on the left pane
and statistical details on the right pane for both snapshots, you can easily make a
comparison if the optimization you performed is satisfactory.

Note: Refer to Chapter 8, “Analyzing database performance data with Visual Explain” on
page 275 for more information about using Visual Explain as a tool for query performance
analysis and optimization.

Chapter 7. SQE Plan Cache and SQE Plan Cache Snapshots 273

274 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Chapter 8. Analyzing database performance
data with Visual Explain

The launch of Visual Explain with iSeries Navigator Version 4, Release 5, Modification 0
(V4R5M0) in DB2 Universal Database for iSeries was of great interest to database
administrators working in an iSeries server environment. This feature has been described as
a quantum leap forward in database tuning for query optimization. Visual Explain provides an
easy-to-understand graphical interface that represents the optimizer implementation of the
query.

For the first time, you can see, in graphic detail, how the optimizer has implemented the
query. You can even see all of the facts and figures that the optimizer used to make its
decisions. Best of all, the information is presented in one place, in color, with easy-to-follow
displays. There is no more jumping between multiple windows, trying to determine what is
happening. Even better, if you currently have iSeries Navigator, you already have Visual
Explain.

With all of this in mind, is such a richly featured product complicated to use? As long as you
are familiar with database tuning, you will enjoy using Visual Explain and want to learn more.

This chapter answers the following questions:

� Where do I find Visual Explain?

� How do I use it?

� What can it be used for?

� Will it tune my Structured Query Language (SQL) queries?

� How can we integrate Visual Explain with SQE Plan Cache, SQE Plan Cache Snapshot,
The Detailed Database Monitors and Current SQL for a Job?

8

© Copyright IBM Corp. 2007. All rights reserved. 275

8.1 What is Visual Explain

Visual Explain provides a graphical representation of the optimizer implementation of a query
request. The query request is broken down into individual components with icons that
represent each unique component. Visual Explain also includes information about the
database objects that are considered and chosen by the query optimizer. Visual Explain’s
detailed representation of the query implementation makes it easier to understand where the
greatest cost is being incurred.

Visual Explain shows the job run environment details and the levels of database parallelism
that were used to process the query. It also shows the access plan in diagram form, which
allows you to zoom to any part of the diagram for further details.

If query performance is an issue, Visual Explain provides information that can help you to
determine whether you need to:

� Rewrite or alter the SQL statement
� Change the query attributes or environment settings
� Create new indexes

Best of all, you do not have to run the query to find this information. Visual Explain has a
modeling option that allows you to explain the query without running it. That means that you
can try any of the changes suggested and see how they are likely to work, before you decide
whether to implement them. Furthermore, in V5R4 you have the option Explain While
Running which provides more accurate visual explanation.

You can also use Visual Explain to:

� View the statistics that were used at the time of optimization

� Determine whether an index was used to access a table

If an index was not used, Visual Explain can help you determine which columns might
benefit from being indexed.

� View the effects of performing various tuning techniques by comparing the before and
after versions of the query graph

� Obtain information about each operation in the query graph, including the total estimated
cost and number of rows retrieved

� View the debug messages issued by the query optimizer during the query execution

Visual Explain is an advanced tool to assist you with the task of enhancing query
performance, although it does not actually do this task for you. You still need to understand
the process of query optimization and the different access plans that you can implement.

Visual Explain is a perfect match with the SQL Plan Cache, SQE Plan Cache snapshot and
Detailed Database Monitors.

8.2 Finding Visual Explain

Visual Explain is a component of iSeries Navigator and is available under the Databases
icon. To locate the Databases icon, you must establish a session on your selected iSeries
server using the iSeries Navigator icon.

From the SQL Script Center, you can access Visual Explain directly, either from the menu or
from the toolbar as explained in 8.2.1, “The SQL Script Center” on page 278.

276 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Visual Explain is based on detailed optimizer information. As shown in Figure 8-1, the
optimizer sends detailed feedback information to SQE Plan Cache and to Detailed Database
Monitor. In V5R4 you can also drill down into Visual Explain from the following interfaces:

� SQE Plan Cache
� SQE Plan Cache Snapshots which is based on SQE Plan Cache information
� Detailed Database Monitor

Figure 8-1 Feedback Mechanisms integrated with Visual Explain

Note: Visual Explain supports both SQE and CQE as described bellow:

� SQE

– SQE Plan Cache
– SQE Plan Cache Snapshot
– Detailed Database Monitor
– Current SQL for a Job
– Run SQL Script

� CQE

– Detailed Database Monitor
– Run SQL Script

Indexes
Advised

SQE Plan
Cache

Query
Optimization

SQL request

Detailed
DB Monitor

Data

Visual
Explain

Visual Explain

Current SQL
for a Job

SQE Plan
Cache

Snapshots

Chapter 8. Analyzing database performance data with Visual Explain 277

Also from the Current SQL for a Job window we can drill down into Visual Explain by clicking
the Visual Explain button as shown in Figure 8-2.

Figure 8-2 Drilling down into Visual Explain from Current SQL for a Job window

Another way to access Visual Explain is through the SQL Performance Monitors. SQL
Performance Monitor is used to create Database Monitor data and to analyze the monitor
data with predefined reports.

Visual Explain works with the monitor data that is collected by SQL Performance Monitor on
that system or by the Start Database Monitor (STRDBMON) command. Visual Explain can
also analyze Database Monitor data that is collected on other systems after data is restored
on the iSeries server.

For more information about the SQL Performance Monitor, refer to Chapter 5, “Analyzing SQL
performance data using iSeries Navigator” on page 117.

The Run SQL Script window (SQL Script Center) provides a direct route to Visual Explain.
The window is used to enter, validate, and execute SQL commands and scripts and to
provide an interface with i5/OS through the use of CL commands.

8.2.1 The SQL Script Center

To access the SQL Scripts Center, in iSeries Navigator, expand Databases. Then select any
database, right-click, and select Run SQL Scripts. The Run SQL Scripts window (shown in
Figure 8-3) opens with the toolbar. Reading from left to right, there are icons to create, open,
and save SQL scripts, followed by icons to cut, copy, paste, and insert generated SQL (from
V5R1) statements within scripts.

The hour glass icons indicate to run the statements in the Run SQL Scripts window. From left
to right, they are run all of the statements (Run All), run all of the statements from the cursor

278 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

to the end (Run From Selected), or run the single statement identified by the cursor position
(Run Selected).

To the right of the hour glasses is a Stop button, which is the color red when a run is in
progress.

There are three Visual Explain icons in the colors blue, green and orange. The left Visual
Explain icon (blue-Explain Only) helps to explain the SQL statement. The middle Visual
Explain icon (green-Run And Explain) enables you to run and explain the SQL statement.
The right Visual Explain icon (orange-Explain While Running) enables you to explain while
running the SQL statement.

Figure 8-3 Toolbar from Run SQL Scripts

These three options are also available from the Visual Explain menu (as shown in
Figure 8-4). You can choose either option to start Visual Explain.

Figure 8-4 SQL Scripts Center Visual Explain options

The final icon in the toolbar is the Print icon.

You can use SQL Performance Monitors to record SQL statements that are explainable by
Visual Explain. We recommend that you obtain access via the SQL Performance Monitors
icon, because it provides the full list of monitors.

8.2.2 Explain Only

The Visual Explain Only option (Ctrl + E or the blue toolbar icon) submits the query request to
the optimizer and provides a visual explanation of the SQL statement and the access plan
that will be used when executing the statement. In addition, it provides a detailed analysis of
the results through a series of attributes and values associated with each of the icons. It does
not actually run the SQL statement.

To optimize an SQL statement, the optimizer validates the statement, gathers statistics about
the SQL statement, and creates an access plan. When you choose the Visual Explain Only
option, the optimizer processes the query statement internally with the query time limit set to
zero. Therefore, it proceeds through the full validation, optimization, and creation of an
access plan and then reports the results in a graphical display.

Note: When you choose Visual Explain Only, Visual Explain might not be able to explain
such complex queries as hash join, temp join results, and so on. In this case, you must
choose Explain While Running or Run and Explain for the SQL statements to see the
graphical representation.

Chapter 8. Analyzing database performance data with Visual Explain 279

8.2.3 Run and Explain

The Run and Explain option (Ctrl + U or the green toolbar icon) also submits the query
request to the optimizer. It provides a visual explanation of the SQL statement and the access
plan used when executing the statement. It provides a detailed analysis of the results through
a series of attributes and values associated with each of the icons.

However, it does not set the query time limit to zero and, therefore, continues with the
execution of the query. This leads to the display of a results window in addition to the Visual
Explain graphics.

8.2.4 Explain While Running

Visual Explain was also enhanced in V5R4. One of the enhancements is the Explain While
Running tool. Before V5R4 long-running queries could be visual explained by using Visual
Explain Only option. Sometimes Explain Only did not provide an accurate graph. In V5R4,
Explain While Running option provides a better and more accurate graph to visual explain
long-running queries. There are two ways to access Explain While Running from Run SQL
Script interface:

� Click the Explain While Running button (as shown in Figure 8-5).

Figure 8-5 Explain While Running button in Run SQL Scripts window

Note: Consider the following:

� Visual Explain might show a representation that is different from the job or environment
where the actual statement was run since it might be explained in an environment that
has different work management settings.

� If the query is implemented with multiple steps (that is, joined into a temporary file, with
grouping performed over it), the Visual Explain Only option cannot provide a valid
explanation of the SQL statement. In this case, you must use the Explain While
Running or Run and Explain options.

280 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

� Select Visual Explain → Explain While Running menu items (a shown in Figure 8-6).

Figure 8-6 Explain While Running menu item of Run SQL Scripts window

8.3 Navigating Visual Explain

The Visual Explain graphics window (Figure 8-7) is presented in two parts. The left side of the
display is called the Query Implementation Graph. This is the graphical representation of the
implementation of the SQL statement and the methods used to access the database. The
arrows indicate the order of the steps. Each node of the graph has an icon that represents an
operation or values returned from an operation.

The right side of the display has the Query Attributes and Values. The display corresponds to
the object that has been selected on the graph. The query attributes and values correspond

Chapter 8. Analyzing database performance data with Visual Explain 281

to the final results icon. The vertical bar that separates the two sides is adjustable. Each side
has its own window and is scrollable.

Figure 8-7 Visual Explain Query Implementation Graph and Query Attributes and Values

The default settings cause the display to be presented with the final result icon (a checkered
flag) on the left of the display. Each icon on the display has a description and the estimated
number of rows to be used as input for each stage of the implementation.

Clicking any of the icons causes the Query Attributes and Values display to change and
presents the details that are known to the query for that part of the implementation. You might
find it helpful to adjust the display to see more of the attributes and values. Query attributes
and values are discussed further in 8.3.5, “Visual Explain query attributes and values” on
page 294.

When you right-click any of the icons on the display, an action menu is displayed. The action
menu has options to assist with query information. It can provide a shortcut to table
information to be shown in a separate window. You can find more details in the Action menu
options section of 8.3.2, “Menu options” on page 288.

282 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

By moving the mouse pointer over the icon, a window appears with summary information
about the specific operation. Refer to Figure 8-8.

Figure 8-8 Final Select Flyover window

8.3.1 Toolbar

The Visual Explain toolbar (Figure 8-9) helps you to navigate the displays. The first four icons
(from left to right after the printer icon) help you to control the sizing of the display. The
left-most icon scales the graphics to fit the main window. For many query implementations,
this leaves the graphical display too small to be of value. The next two icons allow you to
zoom in and out of the graphic image.

Figure 8-9 Visual Explain toolbar

The fourth icon (Overview) creates an additional window (shown in Figure 8-10) that shows
the Visual Explain graphic on a reduced scale. This window has a highlighted area, which
represents the part of the image that is currently displayed in the main window.

In the Overview window (as shown in Figure 8-10), you can move the cursor into this
highlighted area that is shown in the main window. The mouse pointer changes so you can

Chapter 8. Analyzing database performance data with Visual Explain 283

drag the highlighted area to change the section of the overall diagram that is shown in the
main window.

Figure 8-10 Visual Explain Overview window

The default schematic shows the query with the result on the left, working across the display
from right to left, to allow you to start at the result and work backward. The next four icons on
the Visual Explain toolbar allow you to rotate the query implementation image. The icons are:

� Starting from the right, leading to the result on the left (default view)
� Starting from the left, leading to the result on the right
� Starting at the bottom, leading to the result at the top
� Starting from the top, leading to the result at the bottom

Try these icons to see which style of presentation you prefer. Starting in V5R1, a frame at the
bottom of the main Visual Explain window was added. In this frame, you can see two tabs.
The Statement Text tab shows the analyzed SQL statement. Also in V5R1, when Visual
Explain is used, it activates the Include Debug Messages in Job Log option and conveniently
presents those messages under the Optimizer Messages tab.

The second to the last icon (two cycling arrows), Refresh the Visual Explain picture, allows
you to refresh the Visual Explain graphical picture with runtime information. This icon is
selectable if you select Explain While Running option from the Run SQL Script window. It is
not available if you select Visual Explain Only option nor Run and Explain option from the Run
SQL Script window.

You can use the last icon (three steps), Statistics and Index Advisor (new in V5R2), to look at
what the query optimizer recommends for you on the indexes and statistic collection.

284 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

In the Index Advisor area, the query optimizer analyzes the row selection in the query and
determines, based on default values, if creation of a permanent index improves performance.
If the optimizer determines that a permanent index is beneficial, it returns the key columns
necessary to create the suggested index. This advice is shown in the Index Advisor window
as shown in Figure 8-11.

Figure 8-11 Index Advisor in Visual Explain

Chapter 8. Analyzing database performance data with Visual Explain 285

You can select the index that you want and click the Create button to create the index
selected as shown in Figure 8-12.

Figure 8-12 Create Index window

You have to enter an index and schema name. The type of index is assumed to be binary
radix with non-unique keys.

Use the Statistics Data window (shown in Figure 8-13) to view statistical data for the columns
in the selected table. The statistical information can be used by the query optimizer to
determine the best access plan for a query. The data presented here can be used to decide
whether to collect more statistics in the run immediately mode or background mode, and also

Note: The Create Index menu item is available from any icon where an index is advised
(for example, table scan, key positioning, key selection) in addition to the temp index icon.
This is one of the easy-to-use features of Visual Explain. It gives you the ability to easily
create an index that the optimizer has suggested.

286 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

allows you to find the estimated statistics collection time for a selected item before you
actually submit the statistics collection task.

Figure 8-13 Statistics Advisor in Visual Explain

Chapter 8. Analyzing database performance data with Visual Explain 287

8.3.2 Menu options

The menu options above the toolbar icons are File, View, Actions, Options, and Help. Starting
with V5R1, the ability to either print or save the Visual Explain output as an SQL Performance
Monitor file was added as shown in Figure 8-14.

Figure 8-14 The File menu options

View menu options
The View options generally replicate the toolbar icons (shown in Figure 8-15).

Figure 8-15 The View menu options

288 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

The View menu options are:

� Zoom allows you to increase or decrease the icon size or even fit all icons of the graph
into the Visual Explain window.

� Overview allows you to display the entire graph in the Overview window.

� Icon spacing allows you to either increase or decrease the space between icons, both
horizontally and vertically.

� Orientation provides you with the flexibility to orient the graph with the final result icon,
either on the left, right, top or bottom.

� Arrow labels allow you to show or hide the estimated number of rows, processing time, or
the degree of parallelism that the query is processing at each stage of the implementation.

� Icon labels allow you to show or hide the description of the icons and the object name
associated with the icon.

� You can highlight expensive icons by number of returned rows and processing time.

� You can also highlight advised indexes and icons in your graph where the optimizer
recommends that you create a permanent index. The icon is highlighted in the graph and
the relevant text fields are highlighted in the icon attributes and values table in the right
pane of Visual Explain window.

� The optimizer can also use the Look Ahead Predicate Generation to minimize the random
I/O costs of a join. To highlight predicates that used this method, select the Highlight LPG
menu option.

� You can also use the Highlight Materialized Query Table menu option to highlight icons
where Materialized Query Tables were used in the queries.

� For long-running queries, you can refresh the visual explain graph with runtime statistical
information before the query is complete. Refresh also updates the appropriate
information in the icon attributes section shown on the right pane of the Visual Explain
window. In order to use the Refresh option, select Explain while Running from the Run
SQL Scripts window.

Chapter 8. Analyzing database performance data with Visual Explain 289

Actions menu options
The Actions menu item replicates the features that are available on the display (shown in
Figure 8-16).

Figure 8-16 The Actions menu option

You might find the following action menu items selectively on different icons:

� Table Description: The Table Description menu item takes you into the graphical
equivalent of the DSPFD command. From here, you can learn more information about the
file. The description has several tabs to select to find further information. A limited number
of changes can be made from the different tab windows. Displays table information
returned by the Display File Description (DSPFD) command.

� Statistics Data: You can use the Statistics Advisor function to identify missing or stale
statistics and to specify how the statistics will be collected.

� Table Definition: The Table Definition (Table properties in V5R1) menu item opens the
same window that is used to create the table. It enables you to change the definition of the
table including columns, constraints, and partitions.

� Show Indexes: Displays a list of the indexes for the selected table.

� Show Materialized Query Tables: Display a list of the MQTs for the selected table.

� Show Related: Display a list of objects related to the selected item.

� Index Description: The Index Description attributes can be accessed to obtain further
information about the index. Several changes are allowed to an index from these
windows, including access path maintenance settings.

� Index Definition: The Index Definition window shows the columns that exist in the table.
A sequential number is placed next to the columns that form the index, with an indication

290 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

of whether the index is ascending or descending. The display also shows the type of
index.

� Create Index: From the temporary index icon, the Create Index menu item takes you to a
window where the attributes of the temporary index are completed. Simply click OK to
create a permanent index.

� Table Properties: Displays object properties.

� Explain SQL: Display SQL information for the selected object.

� Function Properties: Display function properties.

� Advisor: Show statistic and index advisor.

� Display Query Environment: Displays environment settings used during the processing
of this query.

8.3.3 Controlling the diagram level of detail

The Options menu provides you with flexibility to view the Visual Explain graph in your
preferred way. As shown in Figure 8-17, you can select how much detail you want to see on
the Visual Explain graphs. The menu options enable you to change the level of detail.

Figure 8-17 The Options menu

Click Options → Graph Detail → Basic to see only the icons that are directly related to the
query. Or click Options → Graph Detail → Full to see also the icons that are indirectly
related to the query, such as table scans performed to build temporary indexes. This option is
usually used by the developers in the System i Lab in Rochester, MN. If you select Full, a

Chapter 8. Analyzing database performance data with Visual Explain 291

white cross is displayed next to some icons where you can right-click the icon and select
Expand or Expand to window to view a subgraph of the query operation as shown in
Figure 8-18.

Figure 8-18 Controlling the diagram level of detail: *Full level (part 1 of 2)

292 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Figure 8-19 shows a subgraph of the query operation. You can right-click the subgraph and
select the Collapse option to see the graph in the original way.

Figure 8-19 Controlling the diagram level of detail: *Full level (part 2 of 2)

We recommend that you use the *BASIC diagram since it is more clear to understand.

8.3.4 Displaying the Environment Settings

The query environment settings is available as a fast path from the Final Select icon. You just
have to right-click the Final Select icon and select Environment Settings. It shows the work

Chapter 8. Analyzing database performance data with Visual Explain 293

management environment (Figure 8-20) where the query was executed. You can also obtain
this information from the Display Query Environment selection in the Actions menu.

Figure 8-20 Environment Settings

8.3.5 Visual Explain query attributes and values

The query attributes and values show more information about the optimizer implementation of
the query. If you select an icon from the Query Implementation graph, you obtain information
about that icon, as well as that part of the query implementation.

We selected a few of the query implementation icons to show you the query attributes and
values. This way you can see exactly how much information Visual Explain collects. Prior to
Visual Explain, the information was often available, but never in one place.

Table name, base table name, index name
The section in Figure 8-21 shows the name and library or schema of the table being selected.

Figure 8-21 Table name

294 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Estimated processing time and table info
The estimated processing time (shown in Figure 8-22) shows the time that the optimizer
expects to take from this part of the query. The Additional Table Info section shows
information about the rows and table size.

Figure 8-22 Estimated processing time and table information

Estimated rows selected and query join info
The estimated rows selected (shown in Figure 8-23) shows the number of rows that the
optimizer expects to output from this part of the query. If the query is only explained, it shows an
estimate of the number of rows. If it is run and explained, it shows the number of rows that are
selected.

Figure 8-23 Estimated rows selected and query join info

Estimated Cost Information About the Plan Performed
This section (as shown in Figure 8-24) indicates whether the query is CPU or I/O bound.
Queries can be CPU-intensive or I/O-intensive. When a query’s constraint resource is the
CPU, it is called CPU bound. When a query’s constraint resource is the I/O, it is called I/O
bound. A query that is either CPU or I/O bound gives you the opportunity to review the query
attributes being used when the query was processing. If a symmetric multiprocessor (SMP) is

Chapter 8. Analyzing database performance data with Visual Explain 295

installed on a multiprocessor system, you should review the DEGREE parameter to ensure
that you are using the systems resources effectively.

Figure 8-24 Estimated Cost Information

Information about the index scan performed
This display provides essential information about the index that was used for the query,
including the reason for using the index, how the index is being used, and static index
attributes. It also specifies the access method or methods used such as Index Scan - Key
positioning, Index Scan - Key Selection, and Index Only Access. To find a description about
the different reason codes, refer to the manual DB2 Universal Database for iSeries Database
Performance and Query Optimization for V5R4, which is available in the Information Center
at:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajq/rzajq.pdf

SMP parallel information
The Symmetric Multiprocessing (SMP) information (shown in Figure 8-25) shows the degree
of parallelism that occurred on this particular step. It might appear for more than one icon,
because multiple steps can be processed with differing degrees of parallelism.

Figure 8-25 SMP parallel information

Note:

� The SMP parallel information is relevant only when the DB2 SMP licensed feature is
installed and that you have setup the QQRYDEGREE system value.

� For more information about SMP and QQRYDEGREE system value, refer to
Chapter 11, “Environmental settings that affect SQL performance” on page 379 or you
can also refer to DB2 Symmetric Multiprocessing for iSeries - Database Parallelism
within i5/OS (SMP) at:

http://www-03.ibm.com/servers/eserver/iseries/db2/db2sym.html

296 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajq/rzajq.pdf
http://www-03.ibm.com/servers/eserver/iseries/db2/db2sym.html

Index advised information
The Index advised section (Figure 8-26) tells you whether the query optimizer is advising the
creation of a permanent index. If an index is being advised, the number and names of the
columns to create the index are suggested. This is the same information that is returned by
the CPI432F optimizer message. If the Highlight Index Advised option is set, advised index
information, such as base table name, library, and involved columns, are easily identifiable.
Subsequently, if you click at the Index Advisor Toolbar, you will be presented with Index and
Statistic Advisor window as shown at the bottom left of Figure 8-26.

Figure 8-26 Index advised

It is possible for the query optimizer to not use the suggested index, if one is created. This
suggestion is generated if the optimizer determines that a new index might improve the
performance of the selected data by one microsecond.

Chapter 8. Analyzing database performance data with Visual Explain 297

Additional information about SQL statement
The display in Figure 8-27 shows information about the SQL environment that was used
when the statement was captured. The SQL environment parameters can impact query
performance. Many of these settings are taken from the Open Database Connectivity
(ODBC) and Java Database Connectivity (JDBC) driver settings.

Statement is Explainable specifies whether the SQL statement can be explained by the Visual
Explain tool.

Figure 8-27 Additional information

8.4 Using Visual Explain with Database Monitor data

Performance Monitor data is query information that has been recorded by one of the DB2
Universal Database for iSeries Performance Monitors into a database table that can be
analyzed later. Multiple Performance Monitors might run on the iSeries at the same time.
They can either record information for individual jobs or for the entire system. Each one is
individually named and controlled. Any given job can be monitored by a maximum of one
system monitor and one job monitor.

You can start Performance Monitors in iSeries Navigator or by using a CL command. With
iSeries Navigator, the SQL Performance Monitors component is used to collect Database
Monitor data. If you want to use Visual Explain with the data collected with an SQL
Performance Monitor, then you must choose the Detailed Monitor collection when setting up
the SQL Performance Monitor in iSeries Navigator.

If you intend to use Visual Explain on the Database Monitor data collected with the CL
commands, the data must be imported into iSeries Navigator as detailed data.

Using Visual Explain
In iSeries Navigator, click Databases and expand the database that you want to use. Click
SQL Performance Monitors to obtain a list of the SQL Performance Monitors that are

298 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

currently on the system. Right-click the name that you want, and select Show Statements
(Figure 8-28).

Figure 8-28 Show Statements from SQL Performance data

The Show Statement window with filtering options is shown in Figure 8-29. When you are
satisfied with your filtering selection, click Retrieve to list the SQL statements. An explainable

Chapter 8. Analyzing database performance data with Visual Explain 299

statement is an SQL statement that can be explained by Visual Explain. Because Visual
Explain does not process all SQL statements, some statements might not be selected.

Figure 8-29 SQL statements in Show Statements window

To use Visual Explain on any of the statements, select the statement from the display. The
full SQL statement appears in the lower part of the display for verification. Click Run Visual
Explain (Figure 8-29) to analyze the statement and prepare a graphical representation of the
query.

Exit the Visual Explain window and the Explainable Statements window when you have
completed your analysis. You might either retain the performance data or remove it from the
system at this time, depending on your requirements.

Note: Query optimizer information is generated only for an SQL statement or query
request when an open data path (ODP) is created. When an SQL or query request is
implemented with a reusable ODP, then the query optimizer is not invoked. Therefore,
there is no feedback from the query optimizer in terms of monitor data or debug messages.
Also, the statement is not explainable in Visual Explain. The only technique for analyzing
the implementation of a statement in reusable ODP mode is to look for an earlier execution
of that statement when an ODP was created for that statement.

300 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

8.5 Using Visual Explain with imported data

You can import Database Monitor data into Visual Explain and then use the tool to help with
diagnosing problems further. Visual Explain can be used against current active jobs and
against data collected in Performance Monitors either by iSeries Navigator or using the
STRDBMON command.

To import a Database Monitor from another system or the same system, you can use iSeries
Navigator and perform the following steps:

1. Select the system where the data is held. Click Databases → your relational database.
Right-click SQL Performance Monitors and select Import as shown in Figure 8-30.

Figure 8-30 Selecting to import a Database Monitor

2. In the Import SQL Performance Monitor Files window (Figure 8-31), specify the name of
the monitor and specify the file name and schema in which it resides. For Type of monitor,
select either Summary or Detailed depending on how you collected the Database Monitor
data.

Figure 8-31 Import SQL Performance Monitor Files window

Chapter 8. Analyzing database performance data with Visual Explain 301

3. After the monitor is imported, it is displayed in the right pane of the iSeries Navigator
window as shown in Figure 8-32.

Figure 8-32 SQL Performance Monitors window

After you import the monitor, you can choose either Analyze result or Show Statements.

Note: The Show Statements in V5R4 is the equivalent of List Explainable Statements in
V5R3.

302 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

8.5.1 Show Statements

When you see the SQL Performance Monitor of interest in the iSeries Navigator window,
right-click and select Show Statements. A window opens with Filtering options:

� Minimum runtime for the longest execution: Select this to include queries that exceed
a certain amount of time. Select a number and then a unit of time.

� Queries run after this date and time: Select this to include queries run at a specified
date and time. Select a date and time.

� Queries that use or reference these objects: Select this to include queries that use or
reference certain objects. Click Browse to select objects to include.

� SQL statement contains: Select this to include only those queries that contain a specific
type of SQL statement. For example, specify SELECT if you only want to include queries
that are using SELECT.

Once you have filled in the filter selection, click Retrieve to list the statements as shown in
Figure 8-33. You can select an SQL statement by clicking the required row. You can sort on
the columns to help you look for statements of interest, like Most Expensive Time. You can
also click Create Performance Monitor button to create performance data specifically for the
statements of your interest.

Figure 8-33 Show Statements sorted by Most Expensive Time

If you highlight a specific row, the involved SQL statement appears in the bottom half of the
window. To obtain the visual explanation, click the Run Visual Explain button. After you
select an SQL statement for analysis, you can use Visual Explain to understand the
implementation the optimizer chose, the time it took to run, any indexes advised, the

Chapter 8. Analyzing database performance data with Visual Explain 303

environmental variables that were used, and the resources that were available at the time the
job ran as shown in Figure 8-34.

Figure 8-34 Final Select Visual Explain window

8.6 Using Visual Explain with SQE Plan Cache and Plan Cache
Snaphot

SQE Plan Cache and Plan Cache Snapshot are newly introduced in V5R4. In this section, we
discuss how you can integrate Visual Explain with both SQE Plan Cache and Plan Cache
Snapshot to view the implementation of optimizer in graphical representation.

8.6.1 Using Visual Explain with SQE Plan Cache

To access Visual Explain from SQE Plan Cache, in iSeries Navigator, perform the following
steps:

1. Click Databases and expand the database that you want to use.

304 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

2. Right click SQL Plan Cache Snapshots and select SQL Plan Cache → Show
Statements as shown in Figure 8-35.

Figure 8-35 Show Statements on SQL Plan Cache

3. You are now presented the Show Statements window with the filtering option
(Figure 8-36). Once you are satisfied with the filtering options, click Retrieve to list the

Chapter 8. Analyzing database performance data with Visual Explain 305

SQL statements that fulfill your selection criteria. The related SQL statements appear in
the Show Statements window as shown in Figure 8-36.

Figure 8-36 Plan Cache Show Statements window with filtering options

4. The statements are sorted by Total Processing Time. Highlight the statement which you
would like to analyze and click Visual Explain button. The Visual Explain window appears
(as shown in Figure 8-37), allowing you to examine closely how the optimizer implements
the query. You can look at the optimizer’s recommendation such as index advised in

306 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Figure 8-37, so that you can make the decision to implement the recommendation in order
to enhance your query performance.

Figure 8-37 Visual Explain for SQE Plan Cache

8.6.2 Using Visual Explain with SQE Plan Cache Snapshot

To access to Visual Explain from SQE Plan Cache Snapshot, perform the following steps:

1. In iSeries Navigator, click Databases and expand the database that you want to use.
Expand SQL Plan Cache Snapshots to list all the snapshots you have created.

Chapter 8. Analyzing database performance data with Visual Explain 307

Right-click the SQL Plan Cache Snapshot of your interest and select Show Statements
as shown in Figure 8-38.

Figure 8-38 Show Statements on Plan Cache Snapshot

308 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

2. The Show Statements window opens up with filtering options (Figure 8-39). Specify your
filtering criteria and click the Retrieve button.SQL statements which fulfilled your selection
criteria are listed and sorted by Total Processing Time as shown in Figure 8-39.

Figure 8-39 Plan Cache Snapshot Show Statements window with filtering options

3. Highlight the SQL statement of your interest and click the Run Visual Explain button.
This calls up the Visual Explain window presenting the graphical implementation of the
optimization on the left pane, coupled with the related facts on the right pane as shown in
Figure 8-40.

In addition to Show Statements, you can also select the Analyze function, which opens up the
Analysis Overview Dashboard. From the Dashboard, you can highlight the items of your
interest, click Statements to list out the SQL statements and access Visual Explain on the
SQL statement of your interest.

Note: For more information about using the Dashboard to analyze the Plan Cache
Snapshot, refer to Chapter 7, “SQE Plan Cache and SQE Plan Cache Snapshots” on
page 237.

Chapter 8. Analyzing database performance data with Visual Explain 309

Figure 8-40 Visual Explain for SQE Plan Cache Snapshot

8.7 Non-SQL interface considerations

Obviously, the SQL Performance Monitor can capture implementation information for any
SQL-based interface. Therefore, any SQL-based request can be analyzed with Visual
Explain. SQL-based interfaces range from embedded SQL to Query Manager reports to
ODBC and JDBC.

The query optimizer creates an access plan for all queries that run on the iSeries server. Most
queries use the SQL interface. They generate an SQL access plan, either directly (SQL Script
window, STRSQL command, SQL in high-level language (HLL) programs) or indirectly
(Query/400).

Other queries do not generate identifiable SQL statements (Query/400, OPNQRYF
command) and cannot be used with Visual Explain via the SQL Performance Monitor. In this
instance, the name SQL, as part of the SQL Performance Monitor, is significant.

A request from any DB2 for i5/OS SQL interface can be analyzed with Visual Explain.

Note: For more information about SQE Plan Cache and SQE Plan Cache Snapshot, refer
to Chapter 7, “SQE Plan Cache and SQE Plan Cache Snapshots” on page 237.

310 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

The statements that do not generate SQL and, therefore, that cannot be used with Visual
Explain via the SQL Performance Monitor include:

� Native database access from a high level language, for example, Cobol, RPG, and so on
� Query/400 or Query for iSeries
� Open Query File (OPNQRYF) command
� OS/400 Create Query API (QQQQRY)

8.8 The Visual Explain icons

Table 8-1 lists the icons that you might find on the Visual Explain query implementation chart.

Note that you can obtain this information by right-clicking on the icons from the Visual Explain
graph and choosing the help text.

Table 8-1 Visual Explain icons

Note: The Memory Resident or Summary Database Monitor is not supported by Visual
Explain.

The Final Select icon displays the original text and summary information about how the query
was implemented.

The Table icon indicates that a table was accessed. See the Select icon for more details.

The Table Scan icon indicates that all rows in the table were paged in, and selection criteria
was applied against each row. Only those rows that meet the selection criteria were
retrieved. To obtain the result in a particular sequence, you must specify the ORDER BY
clause.

The Table Probe icon indicates that data from the table must be processed and selected for
this query. The table is probed using a key derived from the ordinal number or relative record
number associated with each row in the table. The ordinal number is used to calculate the
pages of data that need to be retrieved and brought into main memory to satisfy this probe
request. The ordinal number used for the probe operation was provided by another data
access method previously processed for this query.

The Index icon indicates that an index object was used to process this query.

The Index Scan icon indicates that the entire index will be scanned, which causes all of the
entries in the index that are to be paged into main memory to be processed. Any selection
criteria whose predicates match the key columns of the index can then be applied against
the index entries. Only those key entries that match the specified key selection are used to
select rows from the corresponding table data.

The Index Probe icon indicates that the selection criteria whose predicates matched the
leading key columns of the index were used to probe directly into the index. The probe
selection minimizes the number of key entries that must be processed and paged into main
memory. Additional key selection can be applied against the non-leading key columns of the
index to further reduce the number of selected key entries. Only key entries that match the
specified probe and key selection are used to select rows from the corresponding table data.

The Parallel Table Scan icon indicates that a table scan access method was used and
multiple tasks were used to fill the rows in parallel. The table was partitioned, and each task
was given a portion of the table to use.

Chapter 8. Analyzing database performance data with Visual Explain 311

The Skip Sequential Table Scan icon indicates that a bitmap was used to determine which rows
were selected. No CPU processing was done on non-selected rows, and I/O was minimized
by bringing in only those pages that contained rows to be selected. This icon is usually
related to the Dynamic Bitmap or Bitmap Merge icons.

The Skip Sequential Parallel Scan icon indicates that a skip sequential table scan access
method was used and multiple tasks were used to fill the rows in parallel. The table was
partitioned, and each task was given a portion of the table to use.

The Derived Column Selection icon indicates that a column in the row selected had to be
mapped or derived before selection criteria could be applied against the row. Derived
column selection is the slowest selection method.

The Parallel Derived Column Selection icon indicates that derived field selection was
performed, and the processing was accomplished using multiple tasks. The table was
partitioned, and each task was given a portion of the table to use.

The Index Key Positioning icon indicates that only entries of the index that match a specified
range of key values were “paged in”. The range of key values was determined by the
selection criteria whose predicates matched the key columns of the index. Only selected key
entries were used to select rows from the corresponding table data.

The Parallel Index Key Positioning icon indicates that multiple tasks were used to perform the
key positioning in parallel. The range of key values was determined by the selection criteria,
whose predicates matched the key columns of the index. Only selected key entries were
used to select rows from the corresponding table data.

The Index Key Selection icon indicates that all entries of the index were paged in. Any
selection criteria whose predicates match the key columns of the index was applied against
the index entries. Only selected key entries were used to select rows from the table data.

The Parallel Index Key Selection icon indicates that multiple tasks were used to perform key
selection in parallel. The table was partitioned, and each task was given a portion of the table
to use.

The Encoded-vector Index icon indicates that access was provided to a database file by
assigning codes to distinct key values, and then representing these values in an array
(vector). Because of their compact size and relative simplicity, encoded-vector indexes
(EVIs) provide for faster scans.

The Parallel Encoded-vector Index icon indicates that multiple tasks were used to perform the
EVI selection in parallel. This allows for faster scans that can be more easily processed in
parallel.

The Encoded-vector Index Scan icon indicates that the entire EVI will be scanned causing all
of the distinct values represented in the index to be processed. Any selection criteria, whose
predicates match the key columns of the EVI can then be applied against the distinct values
represented in the index. Only those distinct values that match the specified key selection
are then used to process the vector and generate either a temporary row number list or
temporary row number bitmap.

The Encoded-vector Index Probe icon indicates that the selection criteria whose predicates
matched the leading key columns of the EVI were used to probe directly into the distinct
values represented in the index. Only those distinct values that match the specified probe
selection are then used to process the vector and generate either a temporary row number
list or temporary row number bitmap.

The Sort Sequence icon indicates that selected rows were sorted using a sort algorithm.

The Grouping icon indicates that selected rows were grouped or summarized. Therefore,
duplicate rows within a group were eliminated.

312 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

The Nested Loop Join icon indicates that queried tables were joined together using a nested
loop join implementation. Values from the primary file were joined to the secondary file by
using an index whose key columns matched the specified join columns. This icon is usually
after the method icons used on the underlying tables (that is, index scan-key selection and
index scan-key positioning).

The Hash Join icon indicates that a temporary hash table was created. The tables queried
were joined together using a hash join implementation where a hash table was created for
each secondary table. Therefore, matching values were hashed to the same hash table
entry.

The Temporary Index icon indicates that a temporary index was created, because the query
either requires an index and one does not exist, or the creation of an index will improve
performance of the query.

The Temporary Hash Table icon indicates that a temporary hash table was created to perform
hash processing.

The Temporary Table icon indicates that a temporary table was required to either contain the
intermediate results of the query, or the queried table could not be queried as it currently
exists and a temporary table was created to replace it.

The Dynamic Bitmap icon indicates that a bitmap was dynamically generated from an existing
index. It was then used to determine which rows were to be retrieved from the table. To
improve performance, dynamic bitmaps can be used in conjunction with a table scan access
method for skip sequential or with either the index key position or key selection.

The Bitmap Merge icon indicates that multiple bitmaps were merged or combined to form a
final bitmap. The merging of the bitmaps simulates boolean logic (AND/OR selection).

The DISTINCT icon indicates that duplicate rows in the result were prevented. You can
specify that you do not want any duplicates by using the DISTINCT keyword, followed by the
selected column names.

The UNION Merge icon indicates that the results of multiple subselects were merged or
combined into a single result.

The Subquery Merge icon indicates that the nested SELECT was processed for each row
(WHERE clause) or group of rows (HAVING clause) selected in the outer level SELECT.
This is also referred to as a correlated subquery.

The Hash Table Scan icon indicates that the entire temporary hash table will be scanned and
all of the entries contained with the hash table will be processed. A hash table scan is
generally considered when optimizer is considering a plan that requires the data values to
be collated together but the sequence of the data is not required. The use of a hash table
scan allows the optimizer to generate a plan that can take advantage of any non-join
selection while creating the temporary hash table.

The Hash Table Probe icon indicates that the selection criteria that match the key columns
used to create the temporary hash table will be probed to find all of the matching values
stored within the hash table. A hash table probe is generally considered when determining
the implementation for a secondary table of a join. The use of a hash table probe allows the
optimizer to generate a plan that can take advantage of any non-join selection while creating
the temporary hash table. An additional benefit of using a hash table probe is that the data
structure of the temporary hash table usually causes the table data to remain resident within
main memory after creation, reducing paging on the subsequent probe operation.

Chapter 8. Analyzing database performance data with Visual Explain 313

The Temporary Distinct Hash Table icon indicates that a temporary distinct hash table was
created in order to perform hash processing. A distinct hash table is a data structure that is
identical to the temporary hash table, except all duplicate data is compressed out of the
temporary being created. The resulting hash table can then be used to perform distinct or
aggregate operations for the query.

The Distinct Hash Table Scan icon indicates that the entire temporary distinct hash table will
be scanned and all of the entries contained with the hash table will be processed. A distinct
hash table scan is generally considered when optimizer is considering a plan that requires
the data values to be collated together and all duplicate removed but the sequence of the
data is not required. The use of a distinct hash table scan allows the optimizer to generate
a plan that can take advantage of any non-join selection while creating the temporary distinct
hash table. An additional benefit of using a distinct hash table scan is that the data structure
of the temporary distinct hash table usually causes the table data within the distinct hash
table to remain resident within main memory after creation. This benefit reduces the paging
on the subsequent scan operations.

The Distinct Hash Table Probe icon indicates that the selection criteria that match the key
columns used to create the temporary distinct hash table will be probed to find all of the
matching values stored within the hash table. The use of a distinct hash table probe allows
the optimizer to generate a plan that can take advantage of any non-join selection while
creating the temporary distinct hash table. An additional benefit of using a distinct hash table
probe is that the data structure of the temporary distinct hash table usually causes the table
data to remain resident within main memory after creation. This benefit reduces the paging
on the subsequent probe operation.

The Temporary Sorted List icon indicates that a temporary sorted list was created in order to
perform a sequencing operation. A sorted list is a data structure where the table data is
collated and sorted based upon the value of a column or columns referred to as the sort key.
The sorted list can then be used to return the data in a specified sequence or to perform
probe operations using the sort key to quickly retrieve all of the table data that matches a
particular sort key.

The Sorted List Scan icon indicates that the entire temporary sorted list will be scanned and
all of the entries contained with the sorted list will be processed. A sorted list scan is
generally considered when optimizer is considering a plan that requires the data values to
be sequenced based upon the sort key of the sorted list. The use of a sorted list scan allows
the optimizer to generate a plan that can take advantage of any non-join selection while
creating the temporary sorted list. An additional benefit of using a sorted list scan is that the
data structure of the temporary sorted list usually causes the table data within the sorted list
to remain resident within main memory after creation. This benefit reduces the paging on the
subsequent scan operations.

The Sorted List Probe icon indicates that the selection criteria that match the key columns
used to create the temporary sorted list is probed to find all of the matching values stored
within the sorted list. A sorted list probe is generally considered when determining the
implementation for a secondary table of a join when either the join condition uses an
operator other than equal or a temporary hash table is not allowed in this query environment.
The use of a sorted list probe allows the optimizer to generate a plan that can take
advantage of any non-join selection while creating the temporary sorted list. An additional
benefit of using a sorted list probe is that the data structure of the temporary sorted list
usually causes the table data to remain resident within main memory after creation. This
benefit reduces the paging on the subsequent probe operation.

The Temporary List icon indicates that a temporary list was created. The temporary list was
required to either contain the intermediate results of the query, or the queried table could not
be queried as it currently exists and a temporary list was created to replace it. The list is an
unsorted data structure with no key. The data contained within the list can only be retrieved
by a scan operation.

314 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

The List Scan icon indicates that the entire temporary list will be scanned and all of the entries
will be processed.

The Temporary Row Number List icon indicates that a temporary row number list was created
in order to help process any selection criteria. A row number list is a data structure used to
represent the selected rows from a table that matches any specified selection criteria. Since
the selected rows are represented by a sorted list of row numbers, multiple lists can be
merged and combined to allow for complex selection and processing to be performed
without having any paging occur against the table itself.

The Row Number List Scan icon indicates that the entire row number list will be scanned and
all of the entries will be processed. Scanning a row number list can provide large amounts
of savings for the table data associated with the temporary row number list. Since the data
structure of the temporary row number list guarantees that the row numbers are sorted, it
closely mirrors the row number layout of the table data, ensuring that the paging on the table
will never revisit the same page of data twice.

The Row Number List Probe icon indicates that a row number list was used to verify that a row
from a previous operation in the query matches the selection criteria used to create the
temporary row number list. The use of a row number list probe allows the optimizer to
generate a plan that can process the rows in the table in any manner regardless of any
specified selection criteria. As the rows are processed, the ordinal number from the row is
used to probe into the row number list to determine if that row matches the selection criteria.
This is generally found when an index is used to satisfy the ORDER BY from a query and a
separate viable index exists to process the selection criteria.

The Bitmap Scan icon indicates that the entire bitmap will be scanned and all of the entries
that represent selected rows will be processed. Scanning a bitmap can provide large
amounts of savings for the table data associated with the temporary bitmap. Since the data
structure of the temporary bitmap mirrors the row number layout of the table data, the bitmap
can be used to efficiently schedule paging of the table for all selected rows.

The Bitmap Probe icon indicates that a bitmap was used to verify that a row from a previous
operation in the query matches the selection criteria used to create the temporary bitmap.
The use of a bitmap probe allows the optimizer to generate a plan that can process the rows
in the table in any manner regardless of any specified selection criteria. As the rows are
processed, the ordinal number from the row is used to probe into the bitmap to determine if
that row matches the selection criteria. This is generally found when an index is used to
satisfy the ORDER BY from a query and a separate viable index exists to process the
selection criteria.

The Index Scan icon indicates that the entire temporary index will be scanned causing all of
the entries in the index to be paged into main memory to be processed. Any selection criteria
whose predicates match the key columns of the index can then be applied against the index
entries. Only those key entries that match the specified key selection are used to select rows
from the corresponding table data.

The Index Probe icon indicates that the selection criteria whose predicates matched the
leading key columns of the index were used to probe directly into the temporary index. The
probe selection minimizes the number of key entries that must be processed and paged into
main memory. Additional key selection can be applied against the non-leading key columns
of the temporary index to further reduce the number of selected key entries. Only those key
entries that matched the specified probe and key selection are used to select rows from the
corresponding table data.

Chapter 8. Analyzing database performance data with Visual Explain 315

The Temporary Correlated Hash Table icon indicates that a temporary correlated hash table
was created in order to perform hash processing. A hash table is a data structure where the
table data is collated based upon the value of a column or columns referred to as the hash
key. The hash table can then be used to perform probe operation using the hash key to
quickly retrieve all of the table data that matches a particular hash value. Because this is a
correlated hash table, the hash table needs to be rebuilt prior to any scan or probe
operations being performed.

The Correlated Hash Table Scan icon indicates that the entire temporary hash table will be
scanned and all of the entries contained with the hash table will be processed. A correlated
hash table scan is generally considered when optimizer is considering a plan that requires
the data values to be collated together but the sequence of the data is not required. In
addition, the some of the values used to create the correlated hash table can change from
one scan to another. The use of a correlated hash table scan allows the optimizer to
generate a plan that can take advantage of any non-join selection while creating the
temporary correlated hash table. An additional benefit of using a correlated hash table scan
is that the data structure of the temporary correlated hash table usually causes the table
data within the hash table to remain resident within main memory after creation. This benefit
reduces the paging on the subsequent scan operations.

The Correlated Hash Table Probe icon indicates that the selection criteria that match the key
columns used to create the temporary correlated hash table will be probed to find all of the
matching values stored within the hash table. A correlated hash table probe is generally
considered when determining the implementation for a secondary table of a join. The use of
a hash table probe allows the optimizer to generate a plan that can take advantage of any
non-join selection while creating the temporary correlated hash table. An additional benefit
of using a correlated hash table probe is that the data structure of the temporary correlated
hash table usually causes the table data to remain resident within main memory after
creation. This benefit reduces paging on the subsequent probe operation.

The Temporary Correlated List icon indicates that a temporary correlated list was created. The
temporary correlated list was required to either contain the intermediate results of the query,
or the queried table could not be queried as it currently exists and a temporary correlated
list was created to replace it. The list is an unsorted data structure with no key that must be
rebuilt prior to any scan operation being performed.

The Correlated List Scan icon indicates that the entire temporary list will be scanned and all
of the entries will be processed.

The Temporary Buffer icon indicates that a temporary buffer was created to store the
intermediate rows of an operation. The temporary buffer is generally considered at a
serialization point within a query to help facilitate operations such as parallelism. The buffer
is an unsorted data structure, but it differs from other temporary data structures in that the
buffer does not have to be fully populated in order allow its results to be processed.

The Buffer Scan icon indicates that the entire temporary buffer will be scanned and all of the
entries will be processed.

The Table Random Pre-Fetch icon indicates that the pages required for the table probe
operation will be requested synchronously in the background prior to the actual table probe
operation being performed. The system attempts to manage the paging for the table probe
to maintain that all of the pages of data necessary to perform the table probe operation stay
resident within main memory until they are processed. The amount of pre-fetch paging that
is performed by this data access method is dynamically controlled by the system based
upon memory consumption and the rate at which rows continue to be processed.

316 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

The Table Clustered Pre-Fetch icon indicates that the pages required for the table probe
operation will be requested synchronously in the background prior to the actual table probe
operation being performed. The system attempts to manage the paging for the table probe
to maintain that all of the pages of data necessary to perform the table probe operation stay
resident within main memory until they are processed. The amount of pre-fetch paging that
is performed by this data access method is dynamically controlled by the system based
upon memory consumption and the rate at which rows continue to be processed.

The Index Random Pre-Fetch icon indicates that the pages required for the index probe
operation will be requested synchronously in the background prior to the actual index probe
operation being performed. The system attempts to manage the paging for the index probe
to maintain that all of the pages of data necessary to perform the index probe operation stay
resident within main memory until they are processed. The amount of pre-fetch paging that
is performed by this data access method is dynamically controlled by the system based
upon memory consumption and the rate at which rows continue to be processed.

The Logic icon indicates that the query needed to perform an operation or test against the
data in order to generate the selected rows.

The Fetch N Rows icon indicates that a limit was placed upon the number of selected rows.
The fetch n rows access method can either be used to implement a user specified limit on
the selected rows or it can be combined with other access methods by the optimizer to
satisfy complex implementation plans.

The Lock Row for Update icon indicates that an update lock was acquired for the associated
table data in order to perform an update or delete operation. To minimize contention
between queries, the optimizer attempts to place the lock row for update operation such that
the lock is not acquired and held for a long duration.

The User-defined table function icon indicates that a user-defined function that returns a table
was used. A table function can be referenced in an SQL FROM clause in the same way that
a table or view can be referenced.

The Select icon indicates a point in the query where multiple results are brought together into
a single result set. For example, if a query is the union of two different select statements, at
the point before the union occurs, the Select icon indicates the points where the select
statements finished and the union is about to occur. This icon also represents the default
information for an operation that is unknown or not defined elsewhere with Visual Explain. It
can help to represent tables or insert, update and delete operations for a query. The
summary information for this icon contains any available information to help describe the
operation being performed and what the icon represents.

The Incomplete Information icon indicates that a query could not be displayed due to
incomplete information.

Chapter 8. Analyzing database performance data with Visual Explain 317

318 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Chapter 9. Index Advisor

In this chapter we introduce the new Index Advisor tool which offers you three difference
levels of information access, that is, Database, Schema and Table. We further describe the
Index Advisor repository table and the Index Advisor tool. We also discuss the various
possible interfaces that give you access to the Index Advisor information. This new tool
coupled with the index advised information will help you in optimizing your queries.

9

© Copyright IBM Corp. 2007. All rights reserved. 319

9.1 What is the Index Advisor

The Database component of iSeries Navigator is the major driver of DB2 UDB simplification
in V5R4 with the addition of new tools and streamlining of existing tools. This new
combination of tools is known as the DB2 OnDemand Performance Center.

Index Advisor is one of the new tools in V5R4. Index advice from the DB2 UDB query
optimizer is not a new capability in V5R4. Feedback on suggested indexes in past releases
could be found in optimizer debug messages within a joblog or a database monitor collection.
However, this feedback was only available if someone manually started a database monitor
or turned on debug messaging. Even if this was done, an analyst had to deal with the
complexities of extracting the advised index details of various joblogs and database monitor
files. The new Index Advisor eliminates these hurdles with the click of a mouse. No user
intervention such as starting a database monitor is needed since the query optimizer
automatically logs index advice for all queries to a repository in V5R4. Right-click your
Database name in the iSeries Navigator tree and select the “Index Advisor” task and you are
given the output displayed here.

A further enhancement in V5R4 is that the index advice provided by the SQE query optimizer
is more intelligent and complete. The index advice given in past releases only focused on
filtering criteria of a query and ignored the join, grouping and ordering criteria. Again, this
design required manual intervention from an analyst to take the DB2 index advice and then
review the associated query to supplement the DB2 index advice. Look closely at the Index
Advisor output and you will see that the optimizer also provides advice on the type of index to
create. Some queries may benefit from a traditional radix index while others would benefit
from an encoded vector index structure.

9.2 System Wide Index Advised Table

In this section we will discuss a place to find index advised information. The table
QSYS2.SYSIXADV (i5/OS format QSYS2/QYQIXADV) provides summary information about
the table and schema on which the indexes are advised.

The Index Advisor Repository is QSYS2/SYSIXADV. The details of this system table are
shown in Table 9-1.

Table 9-1 SYSIXADV system table

Column name System column
name

Data type Description

TABLE_NAME TBNAME VARCHAR(258) Table over which an index is advised

TABLE_SCHEMA DBNAME CHAR(10) Schema containing the table

SYSTEM_TABLE_NAME SYS_TNAME CHAR(10) System table name on which the index
is advised

PARTITION_NAME TBMEMBER CHAR(10) Partition detail for the index

KEY_COLUMNS_ADVISED KEYSADV VARCHAR(16000) Column names for the advised index

LEADING_COLUMN_KEYS LEADKEYS VARCHAR(16000) Leading, Order Independent keys. the
keys at the beginning of the
KEY_COLUMNS_ADVISED field which
could be reordered and still satisfy the
index being advised.

320 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

The descriptions of the QSYS2/SYSIXADV columns are as follows:

� Table for Which Index was Advised: The optimizer is advising creation of a permanent
index over this table. This is the long name for the table. The advice was generated
because the table was queried and no existing permanent index could be used to improve
the performance of the query.

� Schema: Schema or library name for the table.

� Short Name: System table name on which the index is advised.

� Partition: Partition detail for the index.

– <blank>, which means for all partitions
– For Each Partition
– Specific name of the partition

� Keys Advised: Column names for the advised index. The order of the column names is
important. The names should be listed in the same order on the CREATE INDEX SQL
statement, unless the leading, order-independent key information indicates that the
ordering can be changed.

INDEX_TYPE INDEX_TYPE CHAR(14) Radix (default) or EVI

LAST_ADVISED LASTADV TIMESTAMP Last time this row was updated

TIMES_ADVISED TIMESADV BIGTINT Number of times this index has been
advised

ESTIMATED_CREATION_TIME ESTTIME INT Estimated number of seconds for index
creation

REASON_ADVISED REASON CHAR(2) Coded reason why index was advised

LOGICAL_PAGE_SIZE PAGESIZE INT Recommended page size for index

MOST_EXPENSIVE_QUERY QUERYCOST INT Execution time in seconds of the query

AVERAGE_QUERY_ESTIMAT
E

QUERYEST INT Average execution time in seconds of
the query

TABLE_SIZE TABLE_SIZE BIGINT Number of rows in table when the index
was advised

NLSS_TABLE_NAME NLSSNAME CHAR(10) NLSS table to use for the index

NLSS_TABLE_SCHEMA NLSSDBNAME CHAR(10) Schema name of the NLSS table

MTI_USED MTIUSED BIGINT Number of times an MTI that matched
the advised definition was used by the
database because a matching
permanent index did not exist

MTI_CREATED MTICREATED INT Number of times this specific index
advice was used by the database to
create a MTI

LAST_MTI_USED LASTMTIUSE TIMESTAMP Last time an MTI was used by the
database because a matching
permanent index did not exist

Column name System column
name

Data type Description

Chapter 9. Index Advisor 321

� Leading Keys Order Independent: The keys at the beginning of the
KEY_COLUMNS_ADVISED field that could be reordered and still satisfy the index being
advised.

� Index Type Advised:

– Binary Radix (default)

You can find more information about Binary Radix indexes on the Web at:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajq/rzajqbinar
y.htm

– Encoded Vector (not unique).

You can find more information about EVIs on the Web at:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajq/whatareevi
.htm

� Last Advised for Query Use: The time stamp representing the last time this index was
advised for a query.

� Times Advised for Query Use: The cumulative number of times this index has been
advised. This count should stop increasing when a matching permanent index is created.
The row of advice will remain in this table until the user removes it.

� Estimated Index Creation Time: Estimated time required to create this index.

� Reason Advised: Coded reason why index was advised.

– I1 - Row selection
– I2 - Ordering/Grouping
– I3 - Row selection and Ordering/Grouping
– I4 - Nested Loop join
– I5 - Row selection using bitmap processing

� Logical Page Size Advised (KB): Recommended page size to be used on the
PAGESIZE keyword of the CREATE INDEX SQL statement when creating this index.

� Most Expensive Query Estimate: Execution time in seconds of the longest-running
query that generated this index advice.

� Average of Query Estimates (seconds): Average execution time in seconds of all
queries that generated this index advice.

� Rows in Table when Advised: Number of rows in the table for which the index is being
advised, for the last time this index was advised.

� NLSS Table Advised: The sort sequence table in use by the query that generated the
index advice. For more detail about sort sequences refer to:

– http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajq/usesortseq.
htm

– http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/db2/rbafzmstsortse
quence.htm#sortsequence

� NLSS Schema Advised: The library of the sort sequence table.

� MTI USED: The number of times that this specific MTI has been used by the optimizer.
The optimizer will stop using a matching MTI when a permanent index is created.

Note: These are the same reason codes found in QQRCOD in Detailed Performance
Monitor record type 3020.

322 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajq/rzajqbinary.htm
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajq/rzajqbinary.htm
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajq/whatareevi.htm
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajq/usesortseq.htm
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajq/usesortseq.htm
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/db2/rbafzmstsortsequence.htm#sortsequence

� MTI CREATED: The number of times that this specific MTI has been created by the
optimizer. MTIs do not persist across system IPLs.

� MTI LAST USED: The time stamp representing the last time this specific MTI was used by
the optimizer to improve the performance of a query. The MTI Last Used field can be
blank, which indicates that an MTI that exactly matches this advice has never been used
by the queries that generated this index advice.

In Example 9-1 there is an example of a custom query that you could use to view the
System-Wide Index Advised table, QSYS.SYSIDXADV, and ask the question,” Which tables
had the most indexes advised?”.

Example 9-1 System-Wide Index Advised table - QSYS.SYSIDXADV

SELECT
TABLE_NAME,
TABLE_SCHEMA,
KEY_COLUMNS_ADVISED,
INDEX_TYPE,
TIMES_ADVISED,
REASON_ADVISED,
LAST_ADVISED

FROM QSYS2.SYSIXADV
WHERE TABLE_SCHEMA NOT IN ('QSYS','QUSRSYS')
ORDER BY TIMES_ADVISED Desc, TABLE_NAME;

The results of this custom query is shown in Figure 9-1. The table on which an index was
advised most was ACCOUNTEJB in schema TRADE6DB, 5,892 times. The reason for this
index advise is I1, Row selection. Also notice that EVIs are advised, see row with table name
ORDERS, in column INDEX_TYPE the text Encoded Vector.

Figure 9-1 System Wide Index Advised table

The following is the difference between the information returned from a custom query written
for the System-Wide Index Advised table and one written for “The 3020 record: index advised
(SQE)” on page 190:

� The System-Wide Index Advised table is summary information and provides the big
picture and is a good starting point for checking for large number of advised indexes for a
particular table.

Chapter 9. Index Advisor 323

� In order to determine if a number of indexes advised have been made for the same table,
you will have to modify the query in Example 9-1 to be ordered by table name and number
of times advised.

� You will notice that no specific instance, statement, or job information is contained within
this table, so you cannot drill down to the specific SQL statement which generated any of
the index advice.

� Remember that the System-Wide Advised table is not automatically pruned, cleared of old
data, so it must be done manually via the iSeries Navigator Index Advisor or using SQL
Delete.

� For more comprehensive advised index information reporting, use a custom query to
process the Detailed Performance Monitor data record 3020. Section 6.4.9, “Index
advised” on page 214 provides examples of how to write custom queries to get to the level
of detail required to determine the who, what, when and why but more importantly which
indexes you should create.

9.3 Levels of Index Advisor access

Index Advisor is accessible at three levels. They are shown in the following sections of this
chapter:

� “Index Advisor access at Database level” - also known as System Wide Index Advisor
� “Index Advisor access at Schema level”
� “Index Advisor access at Table level”

Note: The source code used in the SQL script examples in this chapter can be found in the
downloadable material of the book found in Appendix B, “Additional material” on page 467.

Note: The optimizer provides feedback to your SQL queries in the form of an Access Plan
that is populated to the Plan Cache or Program Object. At the same time, the feedback is
also populated to QSYS2/SYSIZADV system table. The Index Advised information
provided on Database, Schema and Table level are retrieved from QSYS2/SYSIXADV
system table.

324 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

9.3.1 Index Advisor access at Database level

To access Index Advisor at Database level, select iSeries Navigator → Database and
right-click the database name. Then select Index Advisor as shown in Figure 9-2.

Figure 9-2 Index Advisor access at Database level

Chapter 9. Index Advisor 325

9.3.2 Index Advisor access at Schema level

To access Index Advisor at Schema level, select iSeries Navigator → Database →
database name → Schema. Right-click your schema name and select Index Advisor as
shown in Figure 9-3.

Figure 9-3 Index Advisor access at Schema level

326 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

9.3.3 Index Advisor access at Table level

To access Index Advisor at Table level, use iSeries Navigator → Database. Select the
database name → Schema. Then select the schema name → Tables and right-click your
table name. Then select Index Advisor as shown in Figure 9-4.

Figure 9-4 Index Advisor access at Table level

9.4 Index Advisor interface in iSeries Navigator

The index Advisor interface in iSeries Navigator offers three main functions as shown in
Figure 9-3:

� Index Advisor: Work with Index Advisor

� Clear All Advised Indexes: Clear advised indexes from index advisor table

� Prune Advised Indexes: Prune advised indexes from index advisor table for tables that no
longer exist

The QSYS2/SYSIXADV system table is populated by the database but is not maintained. As
indexes are created or tables are dropped, the old advise is not removed automatically by the
system. It can be considered an historical table and as such will keep accumulating rows, so
you may want to clear out the table occasionally. You can use the Clear Advised indexes
menu option. For the database-wide and schema-wide views you have an additional option to

Note:

� CQE only provides basic advice based on local selection predicates.

� SQE provides complex advice based on all parts of the query, it supports predicates
like Group By, Order By and Joins.

� Currently SQE does not advise indexes for OR predicates.

Chapter 9. Index Advisor 327

Prune Advised Indexes. This option removes all index advised rows where the table that the
advise was created for no longer exists. There’s also a menu option to remove the selected
row of index advised from the list.

When you select Index Advisor → Index Advisor regardless of which level you are at
(Database, Schema or Table), the information is populated in the format shown in Figure 9-5.

Figure 9-5 Index Advisor

The rows are sorted by Times Advised for Query Use column so that the most frequently
advised indexes are first in the list. To resort the list by any other column, select that column
header.

You can also see additional statistics for the last time the index was advised and the
estimated time it might take to create the index. These pieces of information can help you
gauge the impact of creating the new index. If the index is recommended many times but was
last recommended a month ago, and the table is one that would be considered historical, you
might conclude that there is no compelling reason to act on the advice. However, if the advice
was recommended five minutes ago, is advised many times and the table is one of your key
production tables, it is qualifies as a great candidate.

Index Type Advised column tells you the type of index recommended (binary radix or EVI).
Reason Advised column shows you the reason the optimizer recommended the index. These
columns combine to give you a more complete picture of the optimizer’s advice.

Another important piece of information is the list of key columns being advised for this index,
along with the leading key-order independent columns. If there are keys in the leading
key-order independent column, it means that the index could have the key columns specified
in any order. When the Index Advisor specifies leading key-order independent columns, there
is an opportunity to collapse advise to cover more queries. Since indexes must be maintained
by the database, reducing their number can improve performance.

When determining whether to create, drop or replace indexes based on this index advice,
consider all of the indexes being advised for this table, as well as the existing table.

328 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

When you have decided to create an index,right click the table name → select Create Index
Alternatively you can select Show Statements to determine more of the SQL statement
before creating an index. You also can select Remove from List to remove the entry from
the advisor list.

From Figure 9-5, when you select Show statements, you can perform further statement
analysis on the statements shown in Figure 9-6.

Figure 9-6 SQL Plan Cache Statements

Note: At table level, information is displayed if there is an index advised, otherwise you
may find the window returns no row.

Note: The Table option allows you to perform all the table-related functions such as Edit
Content, View Content, Definition, Data and so on. For more information, refer to
Advanced Functions and Administration on DB2 Universal Database for iSeries,
SG24-4249.

Chapter 9. Index Advisor 329

From Figure 9-6, you can also activate Create Snapshot, Show Longest Run (result shown in
Figure 9-7) or Run Visual Explain function from this interface.

Figure 9-7 Show Longest Run

9.5 Interfaces to Index Advised information

You can access Index Advised information from various iSeries Navigator screen interfaces
such as:

� From the Detailed SQL Performance Monitor
� From the SQE Plan Cache screen interface
� From the SQE Plan Cache Snapshot screen interfase
� From the Visual Explain screen interface
� From the Debug messages

Note: For more information about Creating Snapshot, refer to Chapter 7, “SQE Plan
Cache and SQE Plan Cache Snapshots” on page 237 and for more information about
Visual Explain, refer to Chapter 8, “Analyzing database performance data with Visual
Explain” on page 275.

Note:

� The Index Advised information used by these interfaces is retrieved from the Access
Plan feedback that the optimizer provides instead of QSYS2/SYSIXADV.

� For more information about Creating Snapshots, refer to Chapter 7., “SQE Plan Cache
and SQE Plan Cache Snapshots”; and for more information about Visual Explain, refer
to Chapter 8., “Analyzing database performance data with Visual Explain”.

330 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

9.5.1 Access to Index Advised information from Detailed SQL Performance
Monitor screen interface

To access Index Advised information from SQE Plan Cache Snapshot screen interface,
perform the following steps:

1. In the SQL Performance Monitors right pane, right-click the detailed performance
monitor name and select Analyze as shown in Figure 9-8.

Figure 9-8 Analyzing Detailed Performance Monitor

Chapter 9. Index Advisor 331

2. As shown in Figure 9-9, in the Analysis Overview Dashboard window, expand the
Overview folder if is not expanded and highlight Index Creates Advised. Then select
Summary.

Figure 9-9 The Analysis Overview Dashboard

332 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

3. You get Index Creates Advised - Summary window in Figure 9-10. Scroll to the right for
more detail. The rows are sorted by the Maximum Runtime column.

Figure 9-10 Index Creates Advised - Summary

4. If you select Statement option, you get the Index Creates Advised - Statements window in
Figure 9-11. Scroll to the right for more detail. The rows are sorted by the Runtime
column.

Figure 9-11 Index Creates Advised - Statements

With these details, you can perform an index review and further performance analysis.

Note: For more information about the Dashboard tool, refer to Chapter 5., “Analyzing SQL
performance data using iSeries Navigator”.

Chapter 9. Index Advisor 333

9.5.2 Access to Index Advised information from SQE Plan Cache screen
interface

To access Index Advised information from SQE Plan Cache screen interface, perform the
following steps:

1. In the iSeries Navigator, select Database and select the database name. Then select
Schema, right-click SQL Plan Cache Snapshot and select SQL Plan Cache → Show
Statements as shown in Figure 9-12.

Figure 9-12 Accessing Index Advised information from SQE Plan Cache screen interface

2. You are presented with the SQL Plan Cache Statements window in Figure 9-13. Select
Queries with index advised → Retrieve and you see the list of statements where
indexes are advised. You can analyze further by choosing Show Longest Runs, Run

334 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Visual Explain or even Create Snapshot and import into other system to carry out further
analysis.

Figure 9-13 Select Queries with index advised

Chapter 9. Index Advisor 335

9.5.3 Access to Index Advised information from SQE Plan Cache Snapshot
screen interface

To access Index Advised information from SQE Plan Cache Snapshot screen interface,
perform the following steps:

1. In the SQL Plan Cache Snapshot right pane, right-click the snapshot name and select
Analyze as shown in Figure 9-14.

Figure 9-14 Path to SQL Plan Cache Snapshot Analysis

336 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

2. In the Dashboard window in Figure 9-15, expand Overview folder if is not expanded and
highlight Index Created advised. Then select Summary.

Figure 9-15 The Dashboard

Chapter 9. Index Advisor 337

3. In Figure 9-16, you see the Index Creates Advised-Summary window populated with
information. Scroll to the right to view more details. The rows are sorted by Maximum
Runtime column.

Figure 9-16 Index Creates Advised-Summary window

4. From Figure 9-15, when you highlight Index Created advised, select Statements. You
see the Index Creates Advised - Statements window as shown in Figure 9-17. Scroll to the
right for more information. The rows are sorted by Runtime column.

Figure 9-17 Index Creates Advised - Statements window

338 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

9.5.4 Access to Index Advised information from Visual Explain screen
interface

Run SQL Scripts is a component of iSeries Navigator and it is available under the Database
icon as shown in Figure 9-18. To locate the Database icon, you must establish a session on
your selected iSeries server using the iSeries Navigator icon.

Figure 9-18 Path to Run SQL Scripts

Chapter 9. Index Advisor 339

As shown in Figure 9-19, from the SQL Scripts Center, you can access Visual Explain
directly, either from the menu or from the toolbar.

Figure 9-19 Access Visual Explain from toolbar or icon

Another way to access Visual Explain is through the Show Statement window as shown in
Figure 9-20. You can access the Show Statements window from by selecting SQL
Performance Monitor. Then right-click your database monitor data and select Show
Statements. Alternatively, select SQL Plan Cache Snapshot and right-click your snapshot

340 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

and select Show Statements (refer to Figure 9-18 for the SQL Performance Monitor folder
and SQL Plan Cache Snapshot folder).

Figure 9-20 Show Statements window

When you are in Visual Explain as shown in Figure 9-21, select View and enable Highlight
Index Advised. The Table Scan (Index Advised section) is immediately highlighted. Click the
highlighted icon once (Table Scan icon in this case) and the index related information is

Note: Refer to Chapter 8., “Analyzing database performance data with Visual Explain” for
more information about what Visual Explain is and how to use Visual Explain to integrate
with Database Monitors and SQE Plan Cache Snapshots. Alternatively, you can also refer
to Chapter 7., “SQE Plan Cache and SQE Plan Cache Snapshots” on the integration of
plan cache and plan cache snapshot to Visual Explain.

Chapter 9. Index Advisor 341

displayed on the right pane. Scroll down and locate the Index advised information section for
more details.

Figure 9-21 View options in Visual Explain

342 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

As shown in Figure 9-22, when you select Actions from the pull-down menu, there are three
index related options you can perform:

� Show Index: Display a list of the indexes for the selected table
� Create Index: Create index based on advised or temporary index
� Advisor: Show Statistics and Index Advisor

Figure 9-22 Action options in Visual Explain

Chapter 9. Index Advisor 343

Show index
From Figure 9-22, when you select Actions → Show Indexes, an empty window as shown in
Figure 9-23 is presented since the Orders table contains no index in our Table Scan example.

Figure 9-23 Show Index

Create Index
When you select Actions → Create Index, you are presented with a New Index window as
shown in Figure 9-24.

Figure 9-24 New Index

Here are some of the fields you have to fill into the New Index window:

� Index name: The SQL name for the object and must be unique in the schema.

� Index schema: Names the schema in which the index resides.

344 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

� Table name: Select the name of the table that this index references.

� Selected columns: You can use Move up or Down to order the column sequence.
Additionally, you also can use Set Ascending or Descending to order the priority of the
columns. This are the columns that make up the keys of the index.

� Index type: Specify the types of index. The types are:

– Not unique: The table can contain multiple rows with the same value of the index key.

– Encoded Vector (Not unique): The resulting index is an encoded vector index.
Encoded vector indexes (EVIs) keep track of the distinct values that can be found in
the key columns of a table. EVIs can improve data warehouse performance queries as
well as business applications queries. An EVI cannot be used to ensure any expected
ordering of records and cannot be used for positioning of an open data path.

– Unique: Prevents the table from containing two or more rows with the same value of
the index key.

– Unique where not null: Prevents the table from containing two or more rows with the
same non-null value of the index key. Multiple rows with null values are allowed.

� Number of distinct values: Specifies the number of distinct key values expected for this
index. The entry size of the vector of an EVI has a direct affect on the size and
performance of the index. An index with a 4 byte vector entry size consumes four times as
much space as the same index with a 1 byte vector. Also, the scanning time during query
processing of a 4 byte vector entry size EVI may be 4 times that of the same EVI with a 1
byte vector entry size. The possible values are:

– Not specified: The number of distinct key values is not specified.

– 1 to 255: Number between 1 and 255 for an EVI allocates a vector with a 1 byte entry
for each row in the table. An encoded vector index with a 1 byte vector entry length
restricts the maximum number of distinct key values that the index can contain to 255.

– 256 to 65355: This causes the EVI to allocate a vector with a 2 byte entry for each row
in the table, and restricts the maximum number of distinct key values that the index can
contain to 65355.

– Greater than 65356: This causes the EVI to allocate a vector with a 4 byte entry for
each row in the table, and restricts the maximum number of distinct key values that the
index can contain to 2147483647.

� Page size: The page size is used by the system to determine the size of each page of the
index. This page size is the amount of bytes of the index that can be moved into the job's
storage pool from the auxiliary storage for a page fault. Possible values are:

– Default - page size is determined by the total length of the key, or keys. This is the
value that we recommend.

– 8 KB

– 16 KB

– 32 KB

– 64 KB

– 128 KB

– 256 KB

– 512 KB

Note: For non-EVIs, specifies the estimated number of rows the table will contain.
This value does not have to be exact, but may be helpful to the query optimizer.

Chapter 9. Index Advisor 345

When you are satisfied with the entries made, click OK to create the index or you can also
click Show SQL to view the SQL statement used to build the index.

Advisor
From Figure 9-22, when you select Actions → Advisor, you are presented with a window as
shown in Figure 9-25.

Figure 9-25 Index Advisor

You can also use the Create button to create the index advised on-the-fly.

9.5.5 Access to Index Advised information from the Debug messages

Query optimizer debug messages issue informational messages to the joblog about the
implementation of a query. These messages explain what happened during the query
optimization process. For example, you can learn:

� Why an index was or was not used
� Why a temporary result was required
� Whether joins and blocking are used
� What type of index was advised by the optimizer
� Status of the job’s queries
� Indexes used
� Status of the cursor

There are four methods of directing the system to generate debug messages while executing
your SQL statements:

� Selecting the option in Run SQL Scripts interface of iSeries Navigator
� Using the Start Debug (STRDBG) CL command
� Setting the QAQQINI table parameter
� Using Visual Explain

346 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

By looking at the first level debug messages and reviewing second level text behind the
debug messages, you can identify changes that might improve the performance of the query
such as the index advised.

We use this set of SQL statements in Example 9-2 for all of the four methods and observe the
outcome.

Example 9-2 SELECT statements that causes index advised

SELECT YEAR, MONTH, RETURNFLAG, PARTKEY, QUANTITY
FROM ORDERS
WHERE YEAR = 2002 AND MONTH = 6 AND RETURNFLAG = 'R';

Selecting the option in Run SQL Scripts interface of iSeries Navigator
Run SQL Script is found in the Database function. Now perform the following steps:

1. Click Run SQL Scripts as shown in Figure 9-26 to activate the Run SQL Script window.

Figure 9-26 Run SQL Script s of Database function

Note: The debug messages are no longer being enhanced for queries that go through
SQE. Thus, Visual Explain is a better tool to review optimizer’s recommendations such as
index advised, compared to Joblog or Debug messages.

Chapter 9. Index Advisor 347

2. To view debug messages in Run SQL Scripts, from the Options menu, select Include
Debug Messages in Job Log as shown in Figure 9-27.

Click the Run All icon to execute both the SQL statements.

Figure 9-27 Include Debug Messages in Job Log

348 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

3. As shown in Figure 9-28, The statements ran successfully. Now select Job Log from the
View menu.

Figure 9-28 Run All and View Job Log

The Job Log window appears as shown in Figure 9-29. Observe optimizer joblogs that
appear in the Debug message section:

CPI434A **** Starting optimizer debug message for query.
CPI4339 Query options retrieved file QAQQINI in library QUSRSYS.
CPI4329 Arrival sequence access was used for file ORDERS.
CPI432F Access path suggestion for file ORDERS.
CPI434B **** Ending debug message for query.

Chapter 9. Index Advisor 349

4. As shown in Figure 9-29, highlight and right-click the CPI432F Access path suggestion for
the ORDERS line and select Properties.

Figure 9-29 Job Log through Run SQL Script window

350 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

The CPI432F properties window is shown in Figure 9-30. Observe the Cause explained
and the Recovery action recommended on the index.

Figure 9-30 CPI4329 Properties

Setting the QAQQINI table parameter
You can also set the QRYOPTLIB parameter on the Change Query Attributes (CHGQRYA)
command to a user schema where the QAQQINI table exists. Set the parameter on the
QAQQINI table to MESSAGES_DEBUG, and set the value to *YES. This option places query
optimization information in the job log. Changes made to the QAQQINI table are effective
immediately and will affect all users and queries that use this table. Once you change the
MESSAGES_DEBUG parameter, all queries that use this QAQQINI table write debug
messages to their respective joblogs. Perform the following steps:

1. Create a duplicate of the default QAQQINI file in QUSRSYS into your application schema,
for example DBITSODB0, using the following command:

CRTDUPOBJ OBJ(QAQQINI) FROMLIB(QUSRSYS) OBJTYPE(*FILE) TOLIB(DBITSODB07)
DATA(*YES)

Chapter 9. Index Advisor 351

2. Proceed to make changes on the query attribute. In Run SQL Script center select
Options → Change Query Attributes as shown in Figure 9-31.

Figure 9-31 Change Query Attributes option in Run SQL Script center

352 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

3. Check the Use the query options file located in the following schema box and select your
schema name (for example DBITSODB07). Then click Edit Options as shown in
Figure 9-32.

Figure 9-32 Change Query Attribute window - select the QAQQINI file in your schema

4. Update the MESSAGE_DEBUG value from *DEFAULT to *YES as shown in Figure 9-33.

Figure 9-33 DEBUG_MESSAGE setting in QAQQINI file

5. Close the file and click OK in the Change Query Attribute window when done. This
enables Debug messages to be logged into joblog.

Chapter 9. Index Advisor 353

Now you can execute the SQL statements and review the debug messages in joblog for the
index advised recommendation. The joblog review steps are similar to what is described in
“Selecting the option in Run SQL Scripts interface of iSeries Navigator” on page 347.

Using Visual Explain
In Visual Explain, debug messages are always available. You do not need to turn them on or
off. Debug messages appear in the lower portion of the window. You can view detailed
messages by double-clicking on a message. This is done by performing the following steps:

1. As shown in Figure 9-34, highlight the same set of scripts in the Run SQL Script window
and select the Run and Visual Explain icon.

Figure 9-34 Run and Explain

2. You are presented with Visual Explain window as shown in Figure 9-35. Click the
Optimizer messages button to view the messages presented by Optimizer (it is identical
to other debug messages shown in “Selecting the option in Run SQL Scripts interface of
iSeries Navigator” on page 347 and “Setting the QAQQINI table parameter” on page 351).
You can also select View → Highlight Index Advised, the Index Advised section (Table
scan in this case) is automatically highlighted. The index information is presented on the
right pane. You can now examine the information in detail before deciding to create the
index advised by optimizer.

354 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Figure 9-35 Optimizer Messages in the Visual Explain window

9.6 Temporary Indexes

A temporary index is a temporary object that allows the optimizer to create and use a radix
index for a specific query. The temporary index has all of the same attributes and benefits as
a radix index that is created by a user through the CREATE INDEX SQL statement or Create
Logical File (CRTLF) CL command. Additionally, the temporary index is optimized for use by
the optimizer to satisfy a specific query request. This includes setting the logical page size
and applying any selection to the creation to speed up the use of the temporary index after it
has been created.

The temporary index can be used to satisfy a variety of query requests:

� Ordering
� Grouping/Distinct
� Joins
� Record selection

In the this section, we discuss CQE - Temporary Indexes and SQE - Temporary Indexes in
more detail.

Chapter 9. Index Advisor 355

9.6.1 CQE - Temporary Indexes

The index advised in CQE are basic advise and it covers Radix index only. The advice is
based on table scan and local selection columns. The temporary index creation information
provides you with insight to fine-tune your SQL performance. Further more, Visual Explain
always try and tie pieces together to advise you with a good index and presented to you in a
graphical picture as shown in Figure 9-36.

Figure 9-36 CQE Temporary Index in Visual Explain

9.6.2 SQE - Temporary Indexes

The index advised in SQE is of robust advise. The support includes Radix and EVI indexes
and is based on all parts of the query. Multiple indexes can be advised for the same query
and the temporary index creation (autonomic indexes) provides you with good insight to
optimizing your SQL queries.

Maintained Temporary Indexes (MTIs)
Maintained Temporary Indexes (MTIs) are created and used by the SQE optimizer in V5R4,
under situations where a matching permanent index does not exist. The SQE optimizer
watches query requests and learns. It has autonomic capability to create an index based on:

� Observing “n” number of queries
� Assessing the benefits of creating and using an index
� Optimizer’s own index advice

Note: CQE Temporary indexes are not reused and cannot not be shared across jobs.
They also cannot be shared among SQL statements within the same job, and they are
deleted after the SQL statement is completed.

Note: SQE Automatic temporary index creation is a new feature in V5R4. The temporary
indexes are reused and can be shared across jobs and queries.

356 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

The MTIs indexes are:

� Temporary
� Maintained while any cursor is open - maintenance is delayed when all cursors are closed
� Shared between queries and jobs
� Primarily created on smaller tables
� Not used for statistics

This new feature of MTIs in V5R4 allows additional queries to use SQE (for example.
Sensitive cursors), and it also allows DB2 UDB for iSeries to “tune” itself.

The MTI existence and usage information has been externalized to the customer by way of
the iSeries Navigator Index Advisor and Show Indexes facilities.

Viewing the MTI information in the context of index advice can help explain performance
fluctuations. In one common scenario, performance is shown to be degraded after an IPL, but
improves over time as queries are executed. MTIs do not persist across an IPL. By accessing
the Show Indexes detail for the table, you can confirm that MTIs exist. Further, the index
advisor information details how often a specific MTI has been created and used and how
recently it was used.

When paired with other index advice environmental information such as Times Advised and
Average Query Estimate, a better index strategy can be determined. If an MTI becomes a
crucial part of an index strategy, it might be the perfect time to change the permanent indexes
to avoid using the MTI altogether. This can be accomplished by simply launching the Create
Index dialog from the index advisor. The optimizer will recognize the existence of a matching
permanent index and discard the MTI. This change will be reflected in the index advisor table
via the MTI Last Used time stamp.

After making any change to an index strategy, the usage information within the permanent
indexes can be reset. Resetting the usage statistics makes it easier to evaluate the value of
the current set of permanent indexes. Because an implied maintenance cost is associated
with each index, having as few permanent indexes as possible is preferable.

Use this command to reset Index statistics:

CHGOBJD OBJ(schema/index) OBJTYPE(*FILE) USECOUNT(*RESET))

Additionally, after an index strategy is changed, it might be useful to clear out the existing
index advice for that schema or table. There are many ways to clear the advice, both within
iSeries Navigator and from Run SQL Scripts. After clearing the advice and index statistics,
the index strategy is ready to be evaluated. These techniques work in a performance analysis
environment, on a development system or on production machines.

Note: For more information about Sensitive Cursor, you can refer to Chapter 11,
“Environmental settings that affect SQL performance” on page 379.

Chapter 9. Index Advisor 357

Interfaces to Maintained Temporary Indexes (MTIs) information
To access to MTIs information, perform the following steps:

1. From the iSeries Navigator Schemas folder view, right-click the schema of choice and
select Index Advisor → Index Advisor to launch the Index Advisor (Figure 9-37).

Figure 9-37 Path to Index Advisor at Schema level

358 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

The Index Advisor window appears as shown in Figure 9-38. The MTIs information
appears on the far right side. The table can be resorted by selecting any column header.
The table shown here is sorted by MTI USED.

Figure 9-38 Index Advisor window with MTIs information

Tip: The row of index advised that registers a high number of MTI Used value, it makes
a great candidate for permanent index to be created. This information serves as an
index advised information.

Chapter 9. Index Advisor 359

2. If you are interested in the indexes advise of a particular table, right-click the row of index
advice and select Table → Show Indexes as shown in Figure 9-39.

Figure 9-39 Table Show Indexes from the Index Advisor window

3. As shown in Figure 9-40, the Show Indexes window is launched. You can use the
information presented in the window for easy comparison between existing permanent
indexes and MTIs over this table to the indexes being advised.

Figure 9-40 MTI details in Show Indexes window

360 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Note:

� MTIs detail in Show Indexes window is summary information, for specific information
about MTIs, refer to columns MTI USED, MTI CREATED and MTI LAST USED in
QSYS2/SYSIXADV system table in 9.2, “System Wide Index Advised Table”.

� PTF information:

– The Index Advisor MTI enabling Server PTFs were included in SF99504: 540 DB2
UDB for iSeries Group Level #4.

– The iSeries Navigator enabling Client PTFs ship after September 1, 2006.

� Related articles:

– DB2 for i5/OS Redefines On Demand for Indexing found on the Web at:

http://www.ibmsystemsmag.com/ME2/Audiences/dirmod.asp?sid=&nm=&type=Publi
shing&mod=Publications%3A%3AArticle&mid=8F3A7027421841978F18BE895F87F791&
tier=4&id=00D363297CDB4F54BAF9FA42E9286218&AudID=1E8FEE745A284521B6CFB3FD
70B49099

– The Optimizer Takes Its Own Advice found on the Web at:

http://www.ibmsystemsmag.com/ME2/Audiences/dirmod.asp?sid=&nm=&type=Publi
shing&mod=Publications%3A%3AArticle&mid=8F3A7027421841978F18BE895F87F791&
AudID=1E8FEE745A284521B6CFB3FD70B49099&tier=4&id=15C863E9852B45F696015053
2D43F2A5

Chapter 9. Index Advisor 361

http://www.ibmsystemsmag.com/ME2/Audiences/dirmod.asp?sid=&nm=&type=Publishing&mod=Publications%3A%3AArticle&mid=8F3A7027421841978F18BE895F87F791&tier=4&id=00D363297CDB4F54BAF9FA42E9286218&AudID=1E8FEE745A284521B6CFB3FD70B49099
http://www.ibmsystemsmag.com/ME2/Audiences/dirmod.asp?sid=&nm=&type=Publishing&mod=Publications%3A%3AArticle&mid=8F3A7027421841978F18BE895F87F791&AudID=1E8FEE745A284521B6CFB3FD70B49099&tier=4&id=15C863E9852B45F6960150532D43F2A5
http://www.ibmsystemsmag.com/ME2/Audiences/dirmod.asp?sid=&nm=&type=Publishing&mod=Publications%3A%3AArticle&mid=8F3A7027421841978F18BE895F87F791&AudID=1E8FEE745A284521B6CFB3FD70B49099&tier=4&id=15C863E9852B45F6960150532D43F2A5

362 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Chapter 10. SQL performance analysis: a
methodology

In this, the final chapter of Part 2, “Gathering, analyzing, and querying database performance
data” on page 31, we will tie everything together.

In the previous chapters of this SQL Performance Diagnosis book, we have discussed the
new features and enhancements that became available with DB2 for i5/OS for V5R4. The
Analysis Overview dashboard is one of the new tools that provides a graphical interface to
view and analyze SQL database performance. Other new tools include the SQE Plan Cache
analysis tools and the system-wide Index Advisor. Visual Explain has received a number of
enhancements as well. In order to allow a wide range of IT professionals to use the new
database tools and functions, the new tools have been seamlessly integrated into the iSeries
Navigator GUI interface. All of these tools have been linked together in some fashion in order
to provide you with an easy way to view and analyze all of the information required to identify
and diagnose an SQL Performance problem.

In the preceding chapters, we have introduced each of the new tools or interfaces. We also
have described how to use them, how to identify an SQL problem, how to analyze it and
finally how to view some recommendations on ways you might resolve the problems. For an
experienced SQL performance analyst, this may be all that is needed to make an analyst
productive in an i5/OS SQL environment. The analyst modifies the methodology that they
have used in the past to allow the use of the new tools and continues their job as usual.

But for most of us who do not perform SQL Performance analysis on a daily basis, we need a
roadmap or methodology on how to handle a possible SQL performance problem. Therefore,
in this chapter, we will suggest some steps to use to follow the problem to its resolution
through the use of the analysis tools.

10

© Copyright IBM Corp. 2007. All rights reserved. 363

10.1 Performance methodology

First, let us take a step back and review the entire performance methodology process. In
reality, performance problem diagnosis (performance troubleshooting) is a small part of a
larger methodology which is meant to keep the problem from occurring. Prevention is the best
medicine. An overall performance methodology is made up of five separate parts:

� Planning for performance and scalability: Document the projected system topology,
database design, the projected workload, and define measurable performance and
scalability objectives. Perform initial capacity planning and sizing estimates.

� Making solution design choices and performance trade-offs: Understand topology choices
(types of client, SQL interfaces, and so on), feature choices (such as, MQT, Index
strategies, procedures/triggers/functions, HLL) and their performance implications.

� Performance tuning: Plan for an initial tuning period to maximize confidence and reduce
risk, using the tools and techniques from the monitoring and troubleshooting phases to
meet the objectives set in the planning phase. Focus on effective tuning of SQL and its
environment using management of system resources: CPU, memory, disk I/O, and
network bandwidth.

� Monitoring and maintaining performance: Maintain a performance profile of the workload
metrics and resource utilizations on the database and servers. Monitor over time to
observe trends before they become a problem.

� Performance troubleshooting: When performance issues arise, use a disciplined and
organized approach to solve the problem using the performance tools, data, and
performance tuning guidelines.

This book is written to address the last item in the list, performance troubleshooting. Since we
have reviewed the exciting new tools and the interfaces to SQL performance feedback, the
only thing that we need is a basic blueprint on how to use them when we encounter an SQL
performance problem. Let us now focus only on the last item in the list above, since this book
is all about the use of the tools and enhancements in V5R4 of i5/OS which enable effective
performance troubleshooting and analysis.

10.2 Performance troubleshooting

This is the part of the performance methodology that guides us on how to identify if there is a
problem, how to quantify the problem, and which analysis to use to discover resolutions to the
problems.

When attacking a performance problem, we take the following steps in order to progress from
initial problem discovery to resolution.

� Problem source determination
� Performance data capture
� Performance analysis process

10.2.1 Problem source determination

In this part of the analysis methodology, we take a problem report record and ask specific
questions that we will use later to narrow down the scope or source of the problem. This step
is required in order to later determine what tool to use to enter the performance analysis
process. The types of questions that should be asked include those discussed in Chapter 1,

364 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

“Determining whether you have an SQL performance problem” on page 3. Further examples
are listed below.

� Is it a single user or system-wide?
� What are the symptoms?
� What do I need to capture to identify the source of the problems?
� What can be done prior to starting monitors?
� Which tools will give the best picture of the problem?
� Which feedback mechanism may have captured this problem?

Identify resources that affect performance
During source problem determination it is essential that system-wide and environmental
causes are eliminated prior to continuing the analysis process. This section identifies the
hardware, software and environmental attributes that should be checked prior to examining
SQL performance attributes.

� Hardware

– CPU
– Memory
– Disk
– Network

� Software

– System (for example, OS)
– Middleware
– Application

� Environmental

– Steady state
– Constantly changing

10.2.2 Performance data capture

Once identification of a problem has occurred, we should ensure that the problem is
SQL-related by eliminating system configuration, operational, and environmental causes.
This might be done ahead of time by a system performance process, which monitors the state
of the overall workload, capacity, and operation of the system as a whole.

If there is currently no process for monitoring the system's performance, then we would have
to perform system tuning. Once that is done and eliminated from being the cause of our SQL
problem, we can turn to evaluating SQL performance tools to narrow the symptoms of the
problem.

The following questions are the last to be answered before selecting the SQL Performance
tool to begin the analysis of the problem.

� What monitors should be started and what is the scope? System, jobs, users?
� When should the monitors be started and ended?
� How should these monitors be started?
� What level of data detail?

When we answer these questions we are ready to select whether we choose to start the
analysis at a detailed or summary level. Also, with the ability to quickly review the types of
access plans most recently used for certain SQL statements by viewing the Plan Cache via
the new analysis tools, we may not have to capture data via performance monitor to identify
where the problem is occurring. Chapter 7, “SQE Plan Cache and SQE Plan Cache
Snapshots” on page 237 will give you insight into interrogating recent SQL statement

Chapter 10. SQL performance analysis: a methodology 365

execution. You will want to first review Chapter 5, “Analyzing SQL performance data using
iSeries Navigator” on page 117 to familiarize yourself with the new Analysis Overview
interface.

If you find, based on the answers to the questions above that you must capture more
information about the SQL during execution, then you will need to read Chapter 3, “Overview
of tools to analyze database performance” on page 33 to gain a better understanding of the
use and capabilities of each of the SQL Performance tools for DB2 for i5/OS.

10.2.3 Performance analysis process

This section outlines the steps that we should take in approaching the actual analysis of a
performance problem once it has been identified.

Analysis process
The following is the list of the process steps:

� All reported problems should be recorded and entered into the analysis process

� The approach should be hierarchical: High level (system or user) to low level (statements
or instances)

� The scope should be wide (for example, all operations) to narrow (for example, fetches,
and so on)

� Total runtime to specific time to perform a function or operation

� Search for deviation from typical runtime or excessively long runtimes for small amounts
of work (for example, ten seconds to fetch 100 rows)

� Appearance of unexplained long inactivity during high resource utilization workloads

Specific problem analysis
Using one of the tools identified in Chapter 3 to narrow down the problem area, we are now
ready to focus on the specific problem. The following list is a sample of the types of specific
problems an analyst will focus on at this step in the process.

� An SQL statement in a job by local/remote user takes longer to execute?
� All jobs are taking longer today
� Remote users are complaining about certain jobs
� My daily query was submitted and didn't returned any results
� Will an index help this query? What kind of index?
� How can I improve the performance of this query?

10.3 Application of the tools to the methodology

Now let us see how new set of tools fits in to the SQL performance troubleshooting
methodology.

In 10.2, “Performance troubleshooting” on page 364, we identified three parts. The steps that
we are about to introduce fit into the parts as follows:

� Problem source determination (Step 1)
� Performance data capture (Step 2 & 3)
� Performance analysis process (Step 4-8)

In problem source determination, we attempt to determine as closely as possible the cause of
the current SQL performance problem. We first have to eliminate environmental and system

366 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

attributes as a possible cause. In Chapter 13, “Using Collection Services data to identify jobs
using system resources” on page 423, we discuss Collection Services and its use to monitor
and analyze system resources that affect every job that executes on the system. Therefore,
this is the place where you should start your problem determination search and ask the
question “What effect is the overall system performance having on the identified SQL
Problem?”

Step 1: Ensure Collection Services eliminates system resources as a
possible cause of the SQL Problem

If IT operations does not collect system statistics on a periodic basis, you will have to perform
a one-time analysis of the system by collection data during the time the SQL Problem occurs
and analyze the impact of resources on your SQL job or jobs. If you are not familiar with,
Collection Services and its data collection and reporting read Chapter 13. For more
information, go to Information Center on the Web at:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzahx/rzahxcollectdata
cs.htm

Once we have eliminated system resources and performance as a source of interference with
the execution of our SQL jobs and the source of the problem, we can turn our focus to the
SQL jobs and generally how the database is handling them.

Step 2: Examine the SQE plan cache
In Chapter 1, we identified the overall components of a database work request. By using
Collection Services, we have reduced the possibility that other system components are the
cause of our SQL performance problem (for example, communications, system memory or
disk constraints, and so on). We are ready to focus on the database component.

In Chapter 3 we learned that the SQE Plan Cache allows quick analysis of plans that were
created by SQE. If the SQL was executed by SQE we may be able to quickly drill down into
the cache and find the plan for the statement that is having the problem. For example we
could be using user filter by longest-running query.

The SQE Plan Cache viewer allows the use of comprehensive filtering to focus in on the time,
job, user, objects and so on to reduce the volume of data to analyze to find the SQL problem.

If we suspect we have found the problem in the plan cache we want to make sure we dump
this information into a persistent object. For this reason our next step would be to save this
information into a Plan Cache snapshot by using the same filtering options. Once we have the
Plan Cache snapshot we would proceed to Step 4.

Step 3: If the problem is not apparent from the SQE plan cache, start a
detailed performance monitor and recreate the issue

There are a few reasons why the problem SQL may not have been found in the plan cache.
One of the possible reasons is that it was executed by CQE. Another possible reason is that it
may have already been pruned from the cache by the time you analyzed it. In any case, if a
problem is not evident from the analysis of the SQE Plan cache, then recreate the problem
while collecting a detailed SQL Performance monitor. Even if the statement of interest is
found in the Plan Cache, remember that it is just a snapshot. If we need to capture data over
a period of time, for example, multiple executions of the same SQL statement, then a Detailed
SQL Performance monitor will be required.

Chapter 10. SQL performance analysis: a methodology 367

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzahx/rzahxcollectdatacs.htm

Step 4: Review the items in the Overview Analysis dashboard for any
key indicators of a problem

Does anything stick out as being excessive or out of the ordinary, in comparison to the rest of
the data captured? Do you have an SQL Performance Monitor containing the same SQL
statements from a period of satisfactory performance? If so, run the Compare utility to
highlight any differences. Chapter 5 highlights several of the analysis overview areas that you
may want to review for problems.

Step 5: Run Summary or Statements reports, or both, for any of the
focus areas identified to get to the root SQL statement or statements
behind the problem

The drill down capability of the tools allow you to continually narrow your focus and dig
deeper into the problem. With the V5R4 tools, there are no “dead end” reports. Details on
several of the analysis reports are presented in Section 5.2, “In-depth analysis reports” on
page 128. You can also use the system wide Index Advisor, explained in Chapter 9, “Index
Advisor” on page 319, at this stage to check for any recommended indexes on the tables in
your identified query or queries.

Step 6: Run Visual Explain to review the implementations of any
statements found in step 5

Once you have identified any problem statements, you can use Visual Explain to review the
details of the specific statement’s implementation. From Visual Explain you can choose to
highlight indexes, expensive operations, and so on. Review Chapter 8, “Analyzing database
performance data with Visual Explain” on page 275 for the full discussion on the Visual
Explain tool.

Step 7: Make modifications to the query, create indexes and so on
Use the Work with Statement option from within the analysis reports to bring your statement
into a new SQL Script to test any changes in real time. For example, you could modify the
SQL here, or create new indexes.

Step 8: Recreate your application after implementing changes
If you still find a problem, return to Step 2 to gather a new SQL Performance monitor that
covers the changes made in Step 7. Remember, SQL Performance analysis is an iterative
process. If at first you do not succeed, try, try again! The new toolset makes that easier than
ever.

Figure 10-1 shows a flowchart of this suggested methodology.

368 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Figure 10-1 SQL Performance Analysis methodology flowchart

Chapter 10. SQL performance analysis: a methodology 369

10.4 Example of using the methodology

A user has noticed that an application which tallies up sales for each sales person in the
company is starting to perform slower every day. We also know that business has been good
and there has been an increased volume in sales. Let us follow the methodology steps
through this hypothetical situation.

1. Assume for the purposes of this example that we have reviewed the Collection Services
data and have found no evidence of needing system-wide tuning.

2. We review the plan cache and sort by total run time. We find a statement at the top which
is taking the greatest run time. We see that this is a query joining the employee and
department table to the sales file so it could be a culprit. We create a plan cache snapshot
by clicking the Create Snapshot button shown in Figure 10-2.

370 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Figure 10-2 Viewing the SQE Plan Cache

3. Since we found a statement to investigate in the plan cache, there is no need to collect an
SQL Performance monitor at this time. So we will proceed to the next step. After creating
the snapshot, you should select SQL Plan Cache Snapshots from the left pane to view the
snapshots as shown in upper window of Figure 10-3, then you select the newly-created
snapshot in the right pane.

Chapter 10. SQL performance analysis: a methodology 371

4. We select Analyze to open up the plan cache snapshot Analysis Overview dashboard.
We take a look at the areas of interest. We find that there are several index
recommendations for our statement as well as a couple of table scans (Figure 10-3).

Figure 10-3 Analyzing the Plan Cache snapshot

372 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

5. At this point, we decide to review the index advised and table scan reports, Figure 10-4.
Another place we could get this information is the system wide Index Advisor, explained in
Chapter 7.

Figure 10-4 Running Visual Explain from the index advised report

6. We could have created the recommended indexes from either the index advised or table
scan reports, or even from the system wide index advisor. For illustrative purposes, let us
proceed to the Visual Explain diagram and ask that the index advice be highlighted by
selecting View → Highlight Index Advised (Figure 10-5).

Figure 10-5 Visual Explain diagram with advised indexes highlighted

Chapter 10. SQL performance analysis: a methodology 373

7. There are four tables in our query. But, three of them are small, so we decide to build only
the index which is advised over the large Sales table (Figure 10-6).

Figure 10-6 Right click the highlighted table scan to create the advised index

8. We re-run the application and it find its performance has improved significantly. We could
optionally collect a SQL Performance monitor at this stage to quantify the improvement
made by our index, and impress our CIO with our query analysis and problem solving skill.

374 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

In Figure 10-7 we see that the run time has improved from the 66 second time seen in the
plan cache snapshot to less than half a second. Nice work!

Figure 10-7 Nice work

If we step back and think about it, this makes sense. When the database was first created,
the sales table was small and it performed fine without any indexes. But as sales grew and
the size of the table increased, it became more and more expensive to find a particular sales
person’s data within the table. Therefore, the index, keyed by sales person, was just what
was needed.

Chapter 10. SQL performance analysis: a methodology 375

376 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Part 3 Additional tips

In this part, we provide additional tips to help prevent database performance problems. We
present tips regarding indexing strategy and optimizing your SQL statements. We will also
discuss some environmental settings that affect SQL Performance. The last chapter of the
book will address Collection Services to identify non-SQL performance problems.

This part contains the following chapters:

� Chapter 11, “Environmental settings that affect SQL performance” on page 379

� Chapter 12, “Tips to proactively prevent SQL performance problems” on page 407

� Chapter 13, “Using Collection Services data to identify jobs using system resources” on
page 423

Part 3

© Copyright IBM Corp. 2007. All rights reserved. 377

378 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Chapter 11. Environmental settings that
affect SQL performance

SQL queries optimized by DB2 for i5/OS generate access plans to retrieve the data. These
access plans are impacted by the environment in which the query is generated. Various
environmental factors affect the costing of access plans and therefore which access plan is
selected to retrieve the data.

This chapter discusses some environmental attributes that may affect the access plan as
following:

� Optimization goal
� Sensitive cursors
� SMP (Symmetrical multiprocessing) Parallel Degree

11

© Copyright IBM Corp. 2007. All rights reserved. 379

11.1 Introduction

DB2 UDB for i5/OS can be accessed by different types of SQL applications such as the
following:

� Web/J2EE applications connecting DB2 for i5/OS via JDBC
� Web/.Net applications via.Net Provider
� Client Server application via JDBC, ODBC, CLI
� Client Server application via ADO/OLEDB provider
� High Level Languages with Embedded SQL statements

As you can see in Figure 11-1 an access plan is an intersection of various factors.

Figure 11-1 The Access Plan - The intersection of various factors

The performance of such applications depends on these factors. We classify these factors as
following:

Server factors (Hardware and Software)

� Server model/ Architecture
� Main storage size
� Number of processors (CPUs)
� Server configuration (subsystems, pools, activity levels, etc.)
� Server attributes (system values such as QPFRADJ, QQRYDEGREE)
� Server Performance
� Work Management
� Subsystem configuration (number of connections, job queues)
� Version/Release/Modification Level
� SMP

Server configuration
Server attributes

Version/Release/Modification
Level

SMP

Database design

Table sizes, num ber of rows

Views and Indexes (Radix, EVI)

W ork
managem ent

Static
Dynam ic

Extended Dynam ic
Interfaces

SQL Request

Job, Query attributes

Server perform ance

The PlanThe Plan

Optimization... the intersection of various factors

380 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Job and Query attribute factors

� Allow copy data (ALWCPYDTA)
� Query time limit
� QAQQINI
� Naming Convention
� Job Description (Library list, priority, job queue, output queue)
� Data source configuration (JDBC/ODBC)
� Optimization goal
� CCSID

Database factors

� Database Design
� Table Sizes (number of rows)
� Indexes (Radix, EVI)
� Views
� MQTs
� Statistics
� CCSID

Request factors

� SQL statement
� Static SQL
� Dynamic SQL
� Extended Dynamic SQL
� CQE
� SQE
� Result set size
� Optimization goal

If you change one or more of these factors, the access plan and its performance may also
change. The change can be better or worse than usual. Therefore, you have to understand at
least the basic aspects of each factor mentioned previously.

If you really want to understand a given access plan and its respective performance, you
must know all factors and configurations at the moment of the query optimization process and
its execution.

11.2 Optimization goal

It is very common for users to run queries which display results to front-end interfaces. Many
times users cancel the query just after viewing the first page of output data. In this front-end
scenario users cannot wait too long for large result sets. On the other hand, users also submit
queries where output is be written to a file or report, or the interface queues the output data.
Normally in this batch scenario users know in advance that the queries are supposed to take
some time to build the result set. DB2 for i5/OS has two Optimization Goal attributes to treat
each one of these scenarios:

� FIRST I/O - *FIRSTIO value or Optimize for N rows clause
� ALLIO - *ALLIO value or Optimize for ALL rows clause

Chapter 11. Environmental settings that affect SQL performance 381

11.2.1 What is the goal?

Before we technically explain what is the Optimization goal on DB2 for i5/OS, we are going to
explain it in a non-technical manner.

People are always moving from one place to another. What criteria do people use to choose
transportation? Why don’t people always use airplanes? Is the airplane the fastest
transportation to move from one place to another?

Who will arrive at the destination first? One who moves by bicycle or one who moves by
airplane? The answer is: It depends!

It depends on how far is the destination.

As shown in Figure 11-2 if the distance between one place to another is just ten meters, then
one who moves by bicycle will win. By the time that the airplane has warmed up its engines
the bicycle has moved the 10 meters. Therefore, the bicycle is the best choice for such short
distances.

Figure 11-2 First vehicle to 10 meter mark, who will win?

As shown in Figure 11-3, if the distance between one place to another is one hundred
kilometers, then one who moves by airplane will win. Therefore, the airplane is the best
choice for long distances.

If the goal is: first vehicle to the 10 meter mark, who will win?

10 meters

382 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Figure 11-3 First vehicle to the 100 kilometer mark, who will win?

In conclusion, you usually know the distance between one place to another in advance.
Actually you do not need to know the accurate distance. But, normally you have an idea if the
distance is short, medium or long. Therefore, you can decide if you walk, if you go by bicycle,
by car or by plane. How about going by rocket? Again, It depends! Are you going to the
moon? Can you go to the moon by airplane?

Now we are going to talk about the Optimization Goal of the DB2 for i5/OS.

The decision of what transportation would be the better choice depends on the distance that
one knows in advance. Think about queries in a similar way, the Optimizer builds a plan
dependent on how many rows you expect to fetch per transaction. It builds a plan that is
optimal for returning n or all rows expected. Therefore, you have to answer the following
questions:

� How much do you know in advance about your query?
� How much can you tell the optimizer about your query?
� How many rows do you expect to fetch per transaction?

Of course, you do not have to know an accurate number of how many rows your queries are
going to fetch. But, you usually have an idea whether the result sets are going to be small or

If the goal is: first vehicle to the 100 kilometer mark, who will win?

100 kilometers

Chapter 11. Environmental settings that affect SQL performance 383

big. As shown in Figure 11-4, the answers to these questions affects the query “start up” time
and overall time.

Figure 11-4 The Optimization Goal

When setting the Optimization Goal you can use the following:

� *DEFAULT

– Optimization goal is determined by the interface (ODBC, SQL precompiler options,
OPTIMIZE FOR nnn ROWS clause).

� *FIRSTIO

– All queries will be optimized with the goal of returning the first page of output as fast as
possible. This goal works well when the control of the output is controlled by a user
who is most likely to cancel the query after viewing the first page of output data.
Queries coded with an OPTIMIZE FOR nnn ROWS clause will honor the goal specified
by the clause.

� *ALLIO

– All queries will be optimized with the goal of running the entire query to completion in
the shortest amount of elapsed time. This is a good option when the output is being
written to a file or report, or the interface is queuing the output data. Queries coded
with an OPTIMIZE FOR nnn ROWS clause will honor the goal specified by the clause.

Note: Be aware that usually the optmizer looks for an index when you use First I/O.

DB2

• Tells the optimizer how many rows you expect to fetch per transaction

• Optimizer builds a plan that is optimal for returning n or all rows expected

• Affects the query "start up" time and overall run time

First n rows

Next n rows

All rows

Time

First I/O All I/O

The Optimization Goal

Read by key
via an index

Build and use
a hash table

384 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

11.2.2 Setting the Optimization Goal

The Optimization Goal can be set via the following:

� Optional SQL statement clause

– OPTIMIZE FOR n ROWS
– OPTIMIZE FOR ALL ROWS

� OPTIMIZATION_GOAL parameter of the QAQQINI options file –or- ODBC/JDBC
connection attributes

– *FIRSTIO
– *ALLIO

� Default for dynamic interfaces is First I/O

– ODBC, JDBC, STRSQL, dynamic SQL in programs
– CQE - 3% of expected result set
– SQE - 30 rows

� Otherwise default is ALL I/O

– Extended dynamic, RUNSQLSTM, INSERT + subSELECT, CLI, static SQL in
programs

– All of expected excepted result set

The following SQL script in Example 11-1 uses Optimization Goal FIRST I/O. See the
Optimize for 10 rows clause:

Example 11-1 SQL statement with optimization goal First I/O and Optimize for 10 rows clause

SELECT year, part
FROM orders i, parts p
WHERE i.partkey = p.partkey
AND year = 2002
AND returnflag like 'R'
Optimize for 10 rows;

Important: The optimization goal will affect the optimizer's decisions:

� Use of indexes, SMP, temporary intermediate results like hash tables
� Tell the optimizer as much information as possible
� If the application fetches the entire result set, use *ALLIO

Chapter 11. Environmental settings that affect SQL performance 385

Figure 11-5 shows the Visual Explain graph with the access plan chosen by the optimizer.
See that the Optimizer used the index and considered the Optimization Goal FIRST I/O for 10
rows.

Figure 11-5 Sample of Visual Explain of the SQL statement with optimization goal First I/O and
Optimize for 10 rows clause

Now see the following SQL script in Example 11-2 that uses Optimization Goal ALL I/O with
the Optimize for ALL rows clause:

Example 11-2 SQL statement with optimization goal ALL I/O and Optimize for ALL rows clause

SELECT year, part
FROM orders i, parts p
WHERE i.partkey = p.partkey
AND year = 2002
AND returnflag like 'R'
Optimize for ALL rows;

Figure 11-6 shows the Visual Explain graph with the access plan chosen by the optimizer.
See that this time the Optimizer considered the Optimization Goal ALL I/O and it used a table

386 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

scan to build a Hash Table. The optimizer took some time to build the Hash Table. Once the
Hash table was ready it speeded up the query.

Figure 11-6 Sample of Visual Explain of the SQL statement with optimization goal ALL I/O and
Optimize for ALL rows clause

11.3 Sensitive Cursors

Cursor sensitivity controls whether or not the result set returned by a cursor will include
changes (Insert/Update/Delete) made to a table after the cursor was opened.

There are three types of settings for Sensitive Cursors

� ASENSITIVE

– The Default setting. ASENSITIVE cursor allows DB2 to choose to implement the
cursor as Sensitive or Insensitive depending on how the select-statement is optimized.
Updateable cursors are always implemented as Sensitive. If the cursor is read-only,
the cursor behaves as INSENSITIVE.

� SENSITIVE

– Specifies that changes made to the database after the cursor is opened are visible in
the result table. The cursor has some level of sensitivity to any updates or deletes
made to the rows underlying its result table after the cursor is opened. The cursor is
always sensitive to positioned updates or deletes using the same cursor. Additionally,
the cursor can have sensitivity to changes made outside this cursor. If the database
manager cannot make changes visible to the cursor, then an error is returned. The
database manager cannot make changes visible to the cursor when the cursor
implicitly becomes read-only.

Chapter 11. Environmental settings that affect SQL performance 387

� INSENSITIVE

– Specifies that once the cursor is opened, it does not have sensitivity to inserts,
updates, or deletes performed by this or any other activation group. If INSENSITIVE is
specified, the cursor is read-only and a temporary result is created when the cursor is
opened. In addition, the SELECT statement cannot contain a FOR UPDATE clause
and the application must allow a copy of the data (ALWCPYDTA(*OPTIMIZE) or
ALWCPYDTA(*YES)).

For example, a sensitive cursor declared as “SELECT * FROM orders” would return all the
current orders as well as any new orders inserted into the database after the cursor was
opened. For example, if there were six orders when a sensitive cursor was opened and two
new orders inserted after the cursor was opened by another application, then a sensitive
cursor will try to include all eight orders in its result set (see Table 11-1).

Table 11-1 Sensitive cursor result set

The result set contents returned by an insensitive cursor in the same application scenario are
displayed in Table 11-2.

Table 11-2 Insensitive cursor result set

11.3.1 Performance and query optimization impacts

The cursor sensitivity setting obviously has an impact on the access plan created by the
query optimizer. The access plan for a sensitive cursor cannot include algorithms or data
access techniques that make a copy of the table data. For instance, hash tables are often
used in the implementation of join and grouping queries, but since they contain a copy of the
table data, they cannot be used in the implementation of sensitive queries. This direct
correlation between cursor sensitivity and the query optimizer is why the cursor sensitivity
support has been enhanced since V5R2. V5R2 included query optimization enhancements
that resulted in the optimizer using more algorithms that make a copy of table data. The end
result was fewer cursors returning sensitive result sets than in previous releases. To solve

A122 5 Hammer

A123 500 Screw - 1/4

A125 10 Saw

A126 100 Carriage Bolt

A127 6 Hammer

A130 22 Electric Drill

A131 1 Table Saw

A132 200 Clamp

A122 5 Hammer

A123 500 Screw - 1/4

A125 10 Saw

A126 100 Carriage Bolt

A127 6 Hammer

A130 22 Electric Drill

388 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

this problem, programming interfaces were enhanced to give application developers greater
control of the cursor sensitivity setting.

The default setting of ASENSITIVE is the best performing option because it allows the query
optimizer to use its complete set of algorithms when deciding on the best method for
implementing a query. Utilization of an algorithm that makes a copy of the data (e.g., hashing)
can drastically improve performance and other queries where performance is better when
copies of the data are avoided. The ASENSITIVE setting gives the query optimizer the
freedom to choose the best performing method. The SENSITIVE and INSENSITVE cursor
settings can force the optimizer into a plan that is sub-optimal from a performance point of
view. The SENSITIVE setting eliminates the usage of temporary data copies by the optimizer;
this also prevents parallel processing since the DB2 Symmetric MultiProcessing (DB2 SMP)
feature makes copies of the table data. The INSENSITIVE setting forces a copy of the table
data whether it is good for performance or not. Thus, the INSENSITIVE and SENSITIVE
cursor settings should be used only when the associated cursor behavior is absolutely
required by the application.

11.3.2 Cursor sensitivity programming interfaces

This section contains the programming details on how to control the cursor sensitivity setting
with the iSeries integrated middleware. Please be aware that when controlling the cursor
sensitivity at a connection level that sensitivity is applied to all cursors opened within that
connection. This means that if SENSITIVE is the connection level setting, the database
manager must be able to implement all of the cursors in that connection as sensitive cursors.
Otherwise, an error will be returned.

iSeries access ODBC driver
With the ODBC driver, sensitivity can be controlled at an individual cursor level with the
SQL_ATTR_CURSOR_SENSITIVITY attribute on the SQLSetStmtAttr API. It should be
noted that ODBC specifications do not support a value of Asensitive; instead, Unspecified is
the value used on the SQLSetStmtAttr API to specify an Asensitive cursor sensitivity
behavior.

The CURSORSENSITIVTY connection keyword can be specified to control the cursor
sensitivity setting at a connection level with one of the following values:

� 0 - Asensitive
� 1- Insensitive
� 2 - Sensitive

The keyword applies only to applications that use the ODBC 2.0 cursor type statement
attribute (which associates sensitivity and scrollability). The connection keyword is ignored in
applications that use ODBC 3.0 attributes for sensitivity.

Static cursors are always Insensitive. The sensitivity settings only apply to dynamic and
forward-only cursors.

The following ODBC code snippet in Example 11-3 shows how to control the cursor sensitivity
at a connection level with the CURSORSENSITIVITY connection keyword and at a statement
level with the SQLSetStmtAttr API. When using the SQLSetStmtAttr API to change attributes,
changing some cursors attributes such as cursor type can also cause the sensitivity setting to

Note: Updateable cursors are always implemented as SENSITIVE cursors, so the
sensitivity settings described below are ignored for updateable cursors.

Chapter 11. Environmental settings that affect SQL performance 389

be changed. These indirect changes of the sensitivity setting are documented in the ODBC
specifications.

Example 11-3 ODBC Code Example

connectStr = “DRIVER={iSeries Access ODBC
Driver};SYSTEM=myiSvr;UID=myid;PWD=mypwd;” +
 “CURSORSENSITIVITY=2;”
rc = SQLDriverConnect(hdbc, NULL, (SQLCHAR *)connectStr, SQL_NTS, NULL, 0, NULL,
SQL_DRIVER_NOPROMPT);
...

SQLAllocHandle(SQL_HANDLE_STMT, hdbc,&hstmt1);
SQLSetStmtAttr(hstmt1, SQL_ATTR_CONCURRENCY, SQL_CONCUR_VALUES, 0);
SQLSetStmtAttr(hstmt1, SQL_ATTR_CURSOR_SENSITIVITY, SQL_SENSITIVE, 0);
SQLExecDirect(hstmt1, "SELECT orderid, status FROM orders", SQL_NTS);
...

iSeries OLE DB provider
The OLE DB provider only allows Cursor Sensitivity to be controlled at the connection level
with the connection property, “Cursor Sensitivity.” The connection property values are the
same as the ODBC connection keywords. This new connection property cannot be changed
after a connection has been opened.

Example 11-4 is a coding example showing how to set the new connection property either on
the connection string or with the Properties method.

Example 11-4 OLE DB Code Example

cn.ConnectionString = "Provider=IBMDA400;Data Source=MyiSeries;Cursor
Sensitivity=2"

cn.Properties(“Cursor Sensitivity”) = 0 '// ASENSITIVE
cn.Open...

Like the ODBC driver, static cursors are always implemented with the Insensitive attribute.
Forward only cursors can never be sensitive with the OLE DB provider. The next release will
allow forward only cursors to be defined as sensitive.

Toolbox JDBC Driver
The Toolbox JDBC driver also has a "Cursor sensitivity" connection property that supports
the property values of: asensitive, sensitive and insensitive.

The sensitive connection property value is only honored for cursors declared with a
resultSetType of TYPE_SCROLL_SENSITIVE. Cursors declared with the resultSetType of
TYPE_SCROLL_SENSITIVE are implemented as ASENSITIVE by default. The connection
property of “sensitive” must be specified in order for cursors with resultSetType,
TYPE_SCROLL_SENSITIVE, to be implemented as SENSITIVE cursors.

Insensitive cursors are defined by specifying TYPE_SCROLL_INSENSITIVE for the
resultSetType. The only time that the insensitive connection property value is recognized is
for cursors declared with a resultSetType of TYPE_FORWARD_ONLY.

390 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

TYPE_FORWARD_ONLY cursors are always implemented as ASENSITIVE unless the
insensitive connection property value is specified.

The following JDBC coding in Example 11-5 shows how to specify a sensitive cursor setting
with the new connection property.

Example 11-5 JDBC Code example

// Load the IBM Toolbox for Java JDBC driver.

DriverManager.registerDriver(new com.ibm.as400.access.AS400JDBCDriver());
Properties props = new Properties();

props.setProperty("user", "myid");
props.setProperty("password", “mypass");
props.setProperty("cursor sensitivity", "sensitive");

Connection connection = DriverManager. getConnection(" jdbc: as400://myiSvr",
props);
...
s = connection.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_READ_ONLY);
ResultSet rs = s.executeQuery("SELECT ordid, status FROM orders”);
...

Chapter 11. Environmental settings that affect SQL performance 391

Embedded SQL
V5R4 and V5R3 include the ability to specify the three cursor sensitivity settings on the
DECLARE CURSOR statement. Refer to Example 11-6.

Example 11-6 Cursor sensitivity setting on the Declare cursor statement

EXEC SQL
DECLARE C1 SENSITIVE SCROLL CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO
FROM TDEPT
WHERE ADMRDEPT = 'A00';

For more information, refer to the article available on the Web at:

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0403milligan/index.ht
ml

Important:

The AS400JDBCDataSource java class has the following getCursorSensitivity method
which returns the value of the cursor sensitivity property:

public String getCursorSensitivity()

If the resultSetType is ResultSet.TYPE_FORWARD_ONLY or
ResultSet.TYPE_SCROLL_SENSITIVE, the value of this property will control what cursor
sensitivity is requested from the database. If the resultSetType is
ResultSet.TYPE_SCROLL_INSENSITIVE, this property will be ignored.

Returns the cursor sensitivity. Valid values include:

� “asensitive”
� “insensitive”
� “sensitive”

Also the AS400JDBCDataSource java class has the following setCursorSensitivity method
which allows you to set the cursor sensitivity to be requested from the database:

public void setCursorSensitivity(String cursorSensitivity)

If the resultSetType is ResultSet.TYPE_FORWARD_ONLY or
ResultSet.TYPE_SCROLL_SENSITIVE, the value of this property will control what cursor
sensitivity is requested from the database. If the resultSetType is
ResultSet.TYPE_SCROLL_INSENSITIVE, this property will be ignored.

Valid values include:

� “asensitive”
� “insensitive”
� “sensitive”

The default is “asensitive”. This property is ignored when connecting to systems running
OS/400 V5R1 and earlier.

Note: V5R2 support only allows the default setting of ASENSITIVE or choosing an
INSENSITIVE cursor definition.

392 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0403milligan/index.html
http://www.ibm.com/developerworks/db2/library/techarticle/dm-0403milligan/index.html

11.4 SMP (Symmetrical multiprocessing) Degree

In this section we give you the concepts of SMP and how it works cohesively with DB2 for
i5/OS to deliver powerful parallelism for database access. Also, we discuss how to turn SMP
on and off, and how to manage the degree of SMP that is invoked by a particular job.
Feedback from SQE Plan Cache Snapshots, SQL Performance Monitor and Visual Explain
are also covered in this section. They provide information to understand how well your jobs
are taking advantage of SMP. At the end of this section we mention several sets of tips and
considerations related to the use of database parallelism in the i5/OS environment.

11.4.1 iSeries i5/OS Architecture

The architecture and technology of the eServer i5 server running i5/OS provides the
foundation for database parallelism. Starting at the bottom of the Figure 11-7.

Figure 11-7 iSeries i5/OS Architecture

� The iSeries independent I/O subsystem, along with i5/OS storage management, allows for
synchronous and asynchronous database I/O requests. These requests can make use of
parallel operations to access data on multiple disk units simultaneously via the I/O
processors (IOPs) and I/O adapters (IOAs), without using the CPU.

� DB2 UDB for iSeries uses storage management to spread the database objects across all
the available disk units. For example, as a table is populated, the space is automatically
allocated on the disk units for optimal performance. This spreading of data minimizes
contention on any single disk unit, and it also provides the basis for parallel I/O.

� As the disk units are accessed, the data is brought into memory. The design of the iSeries
hardware supports a very large memory system. As a true 64-bit system, i5/OS and DB2
UDB for iSeries can take full advantage of all the available memory. This provides the
advantage of using main memory like cache for database objects.

� iSeries servers have a unique way of addressing storage. It views the disk space on the
server and the server's main memory as one large storage area. This way of addressing
storage is known as single-level storage. The concept of single-level storage means that
the knowledge of the underlying characteristics of hardware devices (in this case, main

Single Level Storage

QUERY

 M
E
M
O
R
Y

IOP IOPIOPIOPIOPIOPIOP

Storage Management

Table

Single
System

N-way

SMP

64 bit
POWER
CPUs

Chapter 11. Environmental settings that affect SQL performance 393

storage and disk storage) resides in the System Licensed Internal Code (SLIC). All the
storage is automatically managed by the server. No user intervention is ever needed to
take full advantage of any storage technology. Programs work with objects; objects are
accessed by name, not by address.

� iSeries servers support multiple 64-bit POWER™ CPUs (currently up to 64). i5/OS can
take advantage of multiple CPUs by automatically dispatching work to one or more CPUs.

� As the query request is processed, the integrated database takes advantage of the
advanced server and operating system technologies to exploit symmetric multiprocessing,
and thus achieve database parallelism.

11.4.2 What is SMP?

DB2 Symmetric Multiprocessing provides high performance database processing and is an
excellent way to take advantage of all the available resources within the eServer i5 platform.
This feature relies on the integrated technologies found in i5/OS and is an example of the
outstanding value provided by the best business computer available today.

n-way processing
Before we start describing what SMP is let’s explain the concept of n-way processing. Within
i5/OS, a unit of work is defined as a job, thread, or task. Built into the operating system is the
ability to dispatch this work to any one of the available CPUs. This concept has the advantage
of allowing more requests to be processed, as more CPUs are made available. As shown in
Figure 11-8, any individual job, thread, or task can only run on a single CPU. If additional
CPUs are available, they provide little or no help. For example, if one job is executing on a
server or LPAR with eight CPUs available, this job will only take advantage of one of the
CPUs while the other seven sit idle. To utilize the other CPUs, additional techniques and
strategies must be applied. This is where DB2 SMP comes into play.

Figure 11-8 n-Way Processing

How SMP works
The DB2 UDB Symmetric Multiprocessing feature provides the optimizer and database
engine with additional methods and strategies for retrieving data and processing data in
parallel. SMP enables database parallelism on a single server or LPAR where multiple (CPU

Processors

1

3

5

7

2

4

6

8

Job A

Job B

Job C

Job D

Thread J

Thread I

Thread H

Job G

Job E
Job F

n Processors can work on several jobs or threads at one time without any special programming.
Memory is shared across all processors.

Database is shared across all jobs and all processors.
No one job is running on more than one processor.

394 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

and I/O) processors that share memory and disk resource work simultaneously toward
achieving a single end result. As shown in Figure 11-9 parallel processing allows the
database engine to have more than one (or all) the processors working on a single query
simultaneously. The performance of a CPU-bound query can be significantly improved with
this feature on multiple-processor servers by distributing the processor load across more than
one processor. While using SMP does not require the presence of more than one CPU,
database parallelism is most effective when there is more than one physical CPU available to
run the tasks or threads. Given that SMP is achieved through the use of the iSeries server
and its i5/OS advanced architecture, table partitioning is not required for database
parallelism.

Figure 11-9 How SMP Works

CQE versus SQE
Database parallelism is achieved through the use of SLIC tasks or threads. The Classic
Query Engine (CQE) originally provided with SQL on the iSeries server uses tasks as a
means of achieving parallelism. Instead, the new (as of V5R2) SQL Query Engine (SQE)
uses threads. Generally speaking, CQE limits the number of tasks (for a given query request)
to the number of disk units that contain the data. In contrast, SQE limits the number of
threads (for a given query request) to the number of physical CPUs available.

Furthermore, CQE requires a large number of tasks to drive parallel I/O and data processing.
normally 1 task per disk unit (up to 255 per query or 1024 per server). On the other hand,
SQE requires a small number of threads to drive parallel I/O and data processing: normally 1
or 2 threads per CPU. Therefore, SQE can take more advantage of SMP than CQE.

The row selection and column processing is performed in the task or thread. The parent job
schedules the work requests to the tasks or threads, and merges the results into the result
buffer that is returned to the application.

11.4.3 SMP parallel-enabled functions

By installing and enabling the DB2 SMP feature, the query optimizer is able to consider
parallel methods and strategies. However, these parallel methods and strategies are only
available for certain database features and functions. Generally speaking, any query request

The system automatically divides the query work into multiple tasks or threads.
Multiple processors can work on one job by servicing the individual tasks or threads

simultaneously (N-way).

SMP does not necessarily require multiple processors.

DB parallelism does not require table space partitioning.

Job A
Task or thread Aa
Task or thread Ab
Task or thread Ac
Task or thread Ad
Task or thread Ae
Task or thread Af
Task or thread Ag
Task or thread Ah

Processors

1

3

5

7

2

4

6

8

Chapter 11. Environmental settings that affect SQL performance 395

that is processed by the DB2 optimizer is eligible, regardless of programming interface. A
static or dynamic SQL request from within a high-level language program is eligible to use
SMP.

Another important use of SMP is to speed up the creation and maintenance of indexes
(sometimes referred to as keyed access paths). Creating indexes with SMP allows the
database engine to use all of the available resources to speed up the creation process. This
may be an important strategy when an application is unavailable until an index for one of the
files accessed by that application is available.

With multiple indexes or keyed logical files over a table or physical file, index maintenance
occurs whenever rows are added, changed, or deleted. Normally, each index is maintained
synchronously, that is, one at a time. With SMP enabled, blocked INSERT or WRITE
operations can benefit from the fact that the database engine maintains each index in
parallel. This is accomplished by using one database task to maintain each index – again
trading the use of additional resources for a decrease in time. This has the benefit of reducing
the overall index maintenance time and the overall INSERT time.

Within i5/OS, DB2 UDB for iSeries has the ability to import data into a table. This function is
known as copy from import file, and is invoked using the CPYFRMIMPF command. This
feature is also parallel-enabled via SMP.

Within i5/OS, DB2 UDB for iSeries has the ability to physically reorganize the data within a
table. This function is known as reorganize physical file member, and is invoked using the
iSeries Navigator command. This feature is also parallel-enabled via SMP.

Integrated within i5/OS is the ability to save and restore objects, including database objects.
This function is parallel-enabled, but does not require the SMP feature. Given that the
parallel save and restore support is accessed via APIs, the recommendation is that you use
Backup Recovery and Media Services (BRMS) if parallel save and restore is to be used.

SQL requests and SMP
While INSERT, UPDATE and DELETE operations cannot execute in parallel, most read-only
query methods and queries can use parallel methods. This means that if the query is using a

Restriction: Native, record level access from within high-level language programs is not
enabled for SMP. This is one reason why using SQL is an advantage.

396 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

table scan, that particular operation can use parallelism and benefit from SMP. Figure 11-10
shows how an SQL SELECT statement can take advantage of SMP.

Figure 11-10 SQL Requests and SMP

Some operations, such as ordering the data via a sort, are not performed in parallel and do
not benefit from SMP.

If a temporary index is created during the query request, the operation can benefit from SMP.

As queries are analyzed and tuned for performance, it is important to remember which
methods and strategies are parallel-enabled and potentially benefit from SMP.

11.4.4 Parallel Database Processing

The use of database parallelism requires the SMP feature to be installed on the server (or
LPAR). However, SMP must also be enabled for the job processing the request.

The default setting for the server allows no database parallelism. The parallel processing
degree can be set by either the system value QQRYDEGREE, a query option file (QAQQINI),
or by the DEGREE parameter on the change query attributes (CHGQRYA) command. In fact,
the CHGQRYA command can be issued multiple times within a job to turn parallelism on and
off.

There are two forms of database parallelism: I/O parallelism and CPU parallelism. I/O
parallelism allows for the accessing of data in parallel, but the processing of that data does
not occur in parallel. I/O parallelism utilizes shared memory and disk resources by
pre-fetching or pre-loading the data, in parallel, into memory. CPU parallelism utilizes one (or
all) of the system processors in conjunction with the shared memory and disk resources in
order to reduce the overall elapsed time of a query. CPU parallelism allows for both the
accessing of data and the processing of that data in parallel. For example, a table scan can
use only parallel I/O to access and bring the data into memory, but only process it with one
task. With the SMP feature installed and enabled, CPU parallelism can be used to both
access the data in parallel and to process the data in parallel, using multiple tasks or threads.

SELECTING
Index scan or probe
Table scan or probe via bitmap or RRN list
Table scan

JOINING
Index scan or probe
Hash

GROUPING
Index scan or probe
Hash

ORDERING
Index scan or probe
Sort

SMP
enabled

Creating temporary indexes for joining, grouping or
ordering is SMP enabled (CQE)

INSERT, UPDATE, DELETE are not SMP enabled

Chapter 11. Environmental settings that affect SQL performance 397

Setting the parallel degree allows the query optimizer to consider the use of SMP. The
optimizer determines whether or not the query will benefit from parallel methods, and builds
the appropriate strategy for using database parallelism.

11.4.5 Enabling parallel processing

After you install the DB2 SMP feature, there are several different ways to activate parallel
processing so that parallel index builds and maintenance can be performed.

At a system level
By default, the amount of parallel processing is controlled at a system-wide level via the
QQRYDEGREE system value. If that system value is set to a value other than *NONE, DB2
UDB will use parallel processing. The CHGSYSVAL (Change System Value) commands can be
used to change the setting of the QQRYDEGREE system value. Here are the values that you
can specify to enable parallel index processing:

� *NONE - No parallel processing is allowed for database query processing.

� *IO - Any number of tasks may be used when the database query optimizer chooses to
use I/O parallel processing for queries. CPU parallel processing is not allowed. SQE
always considers IO parallelism.

� *OPTIMIZE - The query optimizer can choose to use any number of tasks or threads for
either I/O or CPU parallel processing. Use of parallel processing and the number of tasks
or threads used will be determined with respect to the number of processors available in
the system, the job's share of the amount of active memory available in the pool in which
the job is run, and whether the expected elapsed time for the query is limited by CPU
processing or I/O resources.

� *MAX - The query optimizer can choose to use either I/O or CPU parallel processing to
process the query. The choices made by the query optimizer will be similar to those made
for parameter value *OPTIMIZE except the optimizer will assume that all active memory in
the pool can be used to process the query.

At a job or connection level
If you want to restrict parallel processing to an individual job or connection, then use the
CHGQRYA (Change Query Attributes) CL system command or a QAQQINI file to enable
parallel processing for a job or connection. These interfaces override the system value
setting. Both interfaces can configure a job or connection to use parallel processing with the
same values as the system value QQRYDEGREE. Also, at job or connection level you can
configure the following values:

� *SYSVAL - Specifies that the processing option used should be set to the current system
value, QQRYDEGREE.

� *ANY - This value has the same meaning as *IO. The *ANY value is maintained for
compatibility with prior releases.

� *NBRTASKS nn - Specifies the number of tasks or threads to be used when the query
optimizer chooses to use CPU parallel processing to process a query. I/O parallelism will
also be allowed. This values is not available via the system value. It is used to manually
control the degree value.The value is used whether or not parallelism provides a faster
elapsed time.

Note: An excellent article on parallel indexing by Kent Milligan is available on the Web at:

http://www.ibm.com/developerworks/db2/library/techarticle/0301milligan/0301mill
igan.html

398 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

http://www.ibm.com/developerworks/db2/library/techarticle/0301milligan/0301milligan.html

The DEGREE parameter on the CHGQRYA CL command accepts the same values as the
system value. If the CHGQRYA command is executed in a job as shown in Example 11-7,
then the parallel degree is set to *MAX only for that job, regardless of the system value.

Example 11-7 Changing parallel degree only for a job

CHGQRYA DEGREE(*MAX)

This command can be issued multiple times within a job to turn parallelism on and off.

The QAQQINI file also lets you specify parallel processing for an individual job or connection.
The QAQQINI file can be used to influence the behavior of the database engine - in this case,
the parallel processing behavior. These QAQQINI configuration settings can be saved and
applied dynamically across multiple database requests.

The fact that the QAQQINI file is just a normal database table means you can dynamically
change the values of different attributes as required by your environment. It's also very
flexible, because normal database interfaces can be used to change the values of a
QAQQINI attribute. The SQL statement in Example 11-8 demonstrates how to use the
QAQQINI file to set the parallel processing degree to *OPTIMIZE.

Example 11-8 Using the QAQQINI file to set the parallel processing degree to *OPTIMIZE

UPDATE MyLib.QAQQINI
SET QQVAL = '*OPTIMIZE'
WHERE QQPARM='PARALLEL_DEGREE'

Background Database Server Jobs
Some database requests are executed within the background database server jobs, and are
recognized on the job list by the name “QDBSRVxx.” These jobs pick up the parallel degree
value from the system value QQRYDEGREE prior to handling a request. To change the
degree value to something other than the system value, use the CHGQRYA command and
specify the particular QDBSRVxx job whose degree value you wish to alter.

11.4.6 Feedback

It is very important to have SMP feedback to see how the optimizer is taking advantage of its
benefits. This feedback can be found in Visual Explain and in the SQE Plan Cache Snapshots
Dashboard or SQL Performance Monitors.

Note: The use of parallel CPU methods requires the SMP feature. When you set the
degree parameter value to *NBRTASKS the optimizer will build a plan to use the number
of task or threads requested. This value is used for experimentation and testing, and is not
necessarily designed for use in a production environment given that it forces the optimizer
to use parallelism.

Note: There is no limit on the number of times that an attribute value can be changed
during a job or connection.

Chapter 11. Environmental settings that affect SQL performance 399

Visual Explain
CQE depicts parallel database methods using specific icons within the query graph as shown
in Figure 11-11. See that CQE used a parallel Table Scan to create a temporary Hash Table.

Figure 11-11 Visual Explain of a CQE statement using SMP

400 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

SQE depicts database parallelism by using double arrows as shown in Figure 11-12. In these
areas, parallel methods and strategies are used to decrease the run time of the query. For
example, see that SQE used a parallel table scan to create a temporary hash table.

Figure 11-12 Visual Explain showing a SQE statement using SMP

Chapter 11. Environmental settings that affect SQL performance 401

SQE Plan Cache Snapshot
You can see if a SQE query has used SMP from the SQE Plan Cache Snapshot Dashboard
as shown in Figure 11-13.

Figure 11-13 SQE Plan Cache Snapshot Dashboard showing the use of SMP

402 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Database Monitor
The Database Monitor contains data that indicates the use of parallel methods and strategies.
This data can be displayed using either handwritten queries or the dashboard provided by the
SQL Performance Monitors in iSeries Navigator as shown in Figure 11-14.

Figure 11-14 SQL Performance Monitor Dashboard showing the use of SMP

11.4.7 Available and balanced resources

To take advantage of SMP, the computing resources must be available and balanced. In
other words, the system or LPAR configuration must have a good balance of CPU, memory,
and disk units. Otherwise, the optimizer will not be able to make the best use of SMP. For
example, a robust set of CPU resources must be supported with a robust set of I/O
resources; else the CPUs will be waiting for I/O requests to be fulfilled. On the other hand, if
the CPU resources are limited, then the amount of parallelism will also be limited.

Enabling SMP for a given job will allow that job to use multiple tasks or threads to perform the
work. Those multiple tasks or threads will consume more resources with the goal of faster
response times. Multiple CPUs will allow the tasks or threads to execute in parallel. In other
words, more work will be accomplished in the same unit of time.

Distribute adequate resources
Assume a given job demands one unit of resources without SMP. Running 10 of those jobs
simultaneously would place 10 units of demand on the system resources.

Now assume a given job demands five units of resources with SMP. Running 10 of those jobs
simultaneously would place 50 units of demand on the system resources.

In other words, enabling the optimizer to choose parallel methods and strategies for the job
will also allow that job to consume more resources. Running multiple jobs with SMP may

Chapter 11. Environmental settings that affect SQL performance 403

cause even more resources to be consumed. If the resources are not available, the
computing resources will be overcommitted and the throughput will be reduced.

Work Management and SMP
With SMP-enabled workloads, Work Management processes are the same, and yet different.
Work Management is the same given that the tasks and threads use the parent job’s run
priority and memory pool. Work Management is different given that the tasks and threads are
working on behalf of the parent job.

To prevent the database engine from consuming all the computing resources for parallelism,
the SMP degree also controls the optimizer. During query optimization, the job’s fair share of
memory is calculated. This fair share helps to determine how aggressive the query plan will
be, including the amount of parallelism. All of the parallel degree values except *MAX, cause
the optimizer to use a fair share of the job’s memory pool. The value *MAX allows the
optimizer to consider using all of the job’s memory pool, which results in a more aggressive
query plan and possibly more use of SMP.

When the parallel degree value is *NONE, *IO, *OPTIMIZE, or *NBRTASKS; the fair share of
memory is determined using the following formula:

CQE fair share = memory pool size / max-active value

SQE fair share = memory pool size / min(max-active, max(avg-active, 5))

Where the “avg-active” is either:

� A 15-minute rolling average of the number of users when the paging option is set to
*CALC, or

� The number of unique users when the paging option is set to *FIXED.

The Max-active value for the memory pool can be viewed and changed via the WRKSYSSTS
command or iSeries Navigator (by selecting Work Management → Memory Pools).

11.4.8 SMP considerations

Conditions that prevent parallelism
Parallel access methods may not be used for queries that require any of the following:

� Use of the *ALL or *RS commitment control level, or repeatable read isolation level
� Restoration of the cursor position on rollback
� Scrollable cursor
� Nested loop join by key implementation (CQE)
� Update- or delete-capable cursor

Parallel methods can be used on any intermediate temporary result regardless of the
interface used to define the query.

There are some application environments in which SMP cannot be employed because
parallel database techniques are not allowed, do not help, or are not available. When
considering or evaluating the use of SMP, it is important to understand the application
environment and attributes.

Important: When considering the use of SMP, ensure there will be enough resources
available to handle the increased demand.

404 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

SMP may be used for some parts of the query plan and not for others. If the query plan uses
temporary, intermediate results; these results may be processed with parallel methods. An
example is the creation of a temporary index to support the query. To speed up the
processing, the temporary index can be created in parallel, but accessed without parallelism.

It is important to remember that SQL does not guarantee the query results will be returned in
any particular order. As a matter of fact, the same query executed multiple times may return
the results in a different order each time. One reason for this phenomenon is the use of SMP.
When running in parallel, the rows can be processed and returned in any order by the
multiple tasks or threads. To ensure a consistent ordering of the query results, specify the
SQL ORDER BY clause.

Application environments, computing resources
When considering the use and benefits of SMP, remember that some query requests may
benefit from SMP and others may not. Similarly, some environments can support parallel
database techniques while others may not. For example, if a query request is accessing a
very small set of rows via an index, then that particular query will not benefit from SMP. On
the other hand, if a query request is accessing a majority of the rows via a table scan, then
that particular query may benefit from SMP by allowing the optimizer to run the table scan in
parallel.

If the query request is expected to access and process many rows, then allowing the request
to run in parallel can increase the response time of the query. This increase in response time
is not magical or free, it is the result of using more resources.

Following are the application environments that can use and benefit from parallelism:

� SQL requests that use parallel-enabled methods
� Longer-running or complex SQL queries
� Longer-running requests such as index creation
� Few or no concurrent users running in same memory pool
� Dedication of most or all resources to specific SQL requests

The additional resources must be available during query optimization and query execution.
The optimizer uses the static resources that are in place at the time of query optimization.
These resources are: the number of CPUs as well as their relative power, memory pool size,
and number of disk units that contain the database objects being accessed. If the resources
are not balanced or not sufficient to support SMP, then the optimizer will not use parallel
methods and strategies.

When a parallel query plan is executed, this plan will adhere to the rules of work
management. The parallel tasks or threads running on behalf of the job will compete for
resources just like any other job. If there are not sufficient resources available to support the
increase in workload, then the resources will become saturated and the overall throughput
may decrease. If no other jobs are competing for resources, then the parallel query plan will
be free to use all the available resources and gain the benefits of SMP – namely increased
throughput and response time.

The best way to understand the benefits of using SMP is to study the particular workload and
environment, or run a benchmark. Short of that, some general guidelines can be used to
assess whether or not SMP may be beneficial. A candidate SMP environment should have
more than one physical (dedicated) CPU, four to eight gigabytes of memory per CPU, and
more than 10 disk units per CPU. The CPU utilization should be below 60% for the interval of
time when SMP will be considered. For example, assuming an SQL query workload, a nightly
batch environment has four CPUs and the average (total) CPU utilization is 25% during the
nightly processing. To make use of the remaining CPU resources, SMP can be enabled to

Chapter 11. Environmental settings that affect SQL performance 405

allow parallel database processing. On the other hand, the daily transaction environment has
an average (total) CPU utilization of 85% during the daily processing. During this time
interval, the extra computing resources are not available and using SMP will not increase the
throughput.

SMP considerations: first time tips
When using or experimenting with SMP for the first time, start with the parallel degree set to
*OPTIMIZE and analyze the query plan and run time. Set the MAX ACTIVE value for the
memory pool to a number that represents the true number of concurrent, active jobs or
threads. This will allow the optimizer to determine a realistic fair share of the memory pool for
the jobs.

For jobs that are running alone in a memory pool, start by using *OPTIMIZE, and then move
to *MAX. *MAX will allow the optimizer to consider using all the memory in the pool, but will
also let the database engine use more CPU resources.

Setting the memory pool’s paging option to *CALC will allow the database engine to be more
intuitive and more aggressive with I/O requests. The value of *CALC allows more parallel,
asynchronous I/O.

Based on the application’s behavior and SQL interface, the optimizer can use an optimization
goal of First I/O or All I/O. The First I/O optimization goal tends to avoid parallel methods and
strategies given that these plans are built to deliver the first n rows of the result set as fast as
possible, and a faster query startup time is required. The All I/O optimization goal tends to
allow parallel methods and strategies, given that (1) these plans are built to deliver the entire
result set as fast as possible, and (2) a slower query startup time is acceptable. Using parallel
methods and strategies may require some additional initialization time during query startup in
favor of a faster overall query run time.

Conclusion
To receive the benefits of parallel database processing, the DB2 Symmetric Multiprocessing
feature must be installed and enabled. This feature is included in the Enterprise Edition of
i5/OS or can be ordered separately.

DB2 Symmetric Multiprocessing provides high performance database processing and is an
excellent way to take advantage of all the available resources within the eServer i5 platform.
This feature relies on the integrated technologies found in i5/OS and is an example of the
outstanding value provided by the best business computer available today.

For more information about Symmetric Multiprocessing refer to the existing whitepaper: DB2
Symmetric Multiprocessing for iSeries: Database Parellelism within i5/OS on the Web at:

http://www-03.ibm.com/servers/enable/site/education/abstracts/4aea_abs.html

406 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

http://www-03.ibm.com/servers/enable/site/education/abstracts/4aea_abs.html

Chapter 12. Tips to proactively prevent SQL
performance problems

It is important to analyze SQL performance problems and to fix them. Most of this book has
been focused on how to analyze an existing problem. But for programmers, it may be even
more important to know how to prevent those problems from the beginning in order to achieve
the best performance.

In this chapter, we help you to understand what the optimizer considers an optimal index, so
that you can predict which indexes are necessary. We also provide further tips and
information about coding techniques to use and to avoid with your SQL statements, along
with steps you can take to maintain your database and keep it running optimally.

12

© Copyright IBM Corp. 2007. All rights reserved. 407

12.1 Indexing strategy

The database has two types of permanent objects: tables and indexes. Tables and indexes
include information about the object’s structure, size, and attributes. In addition, tables and
indexes contain statistical information about the number of distinct values in a column and the
distribution of those values in the table. The DB2 for i5/OS optimizer uses this information to
determine how to best access the requested data for a given query request.

Since the iSeries optimizer uses cost-based optimization, the more information given about
the rows and columns in the database, the better the optimizer is able to create the best
possible (least costly and fastest) access plan for the query. With the information from the
indexes, the optimizer can make better choices about how to process the request (local
selection, joins, grouping, and ordering).

The primary goal of the optimizer is to choose an implementation that quickly and efficiently
eliminates the rows that are not interesting or required to satisfy the request. A proper
indexing strategy assists the optimizer and database engine with this task.

For a complete documentation on Indexing Strategy refer to the existing whitepaper: Indexing
and Statistics Strategy for DB2 for i5/OS found at:

http://www-03.ibm.com/servers/enable/site/education/ibo/register.html?indxng

12.1.1 Access methods

As stated previously, the database has two types of permanent objects (tables and indexes).
There are several methods or algorithms that can be used with these objects:

� Table scan

With a table scan, all rows of a table are processed regardless of the selectivity of the
query. Deleted records are examined even though none are selected.

� Table probe

A table probe operation is used to retrieve a specific row from a table based upon its row
number. The row number is provided to the table probe access method by some other
operation that generates a row number for the table. This can include index operations as
well as temporary row number lists or bitmaps.

� Index scan

With an index scan, all keys from the index are processed. The resulting rows are
sequenced based upon the key columns. This characteristic is used to satisfy a portion of
the query request (such as ordering or grouping).

� Index probe

An index probe reads like an index scan in a keyed sequence, but the requested rows are
first identified by a probe operation.

Note: Although you cannot specify indexes in an SQL statement, the optimizer uses them
to implement the best access plan to get access to the requested data. You can only
specify tables and views in SQL statements.

408 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

http://www-03.ibm.com/servers/enable/site/education/ibo/register.html?indxng

12.1.2 Guidelines for perfect indexes

Typically you create an index for the most selective columns and create statistics for the least
selective columns in a query. By creating an index, the optimizer knows that the column is
selective, which gives the optimizer the ability to choose that index to implement the query.

In a perfect radix index, the order of the columns is important. In fact, it can make a difference
as to whether the optimizer uses it for data retrieval at all. As a general rule, order the
columns by placing the equal predicates first, since predicates using the equal (=) operator
generally eliminate the largest number of nonparticipating rows. Within the equal predicates,
place the most selective of the columns first in the index.

At a minimum, for a given table in a query you want to have a radix index over the selection
columns and another over any join columns, or, a single index with the selection criteria
followed by the join criteria. Additionally, each of the following indexes may benefit your basic
indexing strategy, if applicable:

� Local selection columns followed by grouping columns
� Local selection columns followed by ordering columns
� Ordering columns followed by local selection columns

The query shown in Example 12-1 uses the ITEMS table and finds all the customers who
returned orders at year end 2000 that were shipped via air. We illustrate the perfect indexes
for this query.

Example 12-1 One table query

SELECT CUSTOMER, CUSTOMER_NUMBER, ITEM_NUMBER
 FROM ITEMS
 WHERE "YEAR" = 2000
 AND "QUARTER" = 4
 AND RETURNFLAG = 'R'
 AND SHIPMODE = 'AIR'
 ORDER BY CUSTOMER_NUMBER, ITEM_NUMBER

The query has four local selection predicates and two ORDER BY columns.

Following the guidelines, the perfect index places the key columns first that cover the equal
predicates (“YEAR”, “QUARTER”, RETURNFLAG, SHIPMODE), followed by the ORDER BY
columns CUSTOMER_NUMBER, ITEM_NUMBER as specified in Example 12-2.

Example 12-2 Perfect index for the one table query example

CREATE INDEX MySchema/ItemIdx01
 ON MySchema/Items
 ("YEAR", "QUARTER", ReturnFlag, ShipMode,
 Customer_Number, Item_Number)

Encoded-vector index guidelines
An encoded-vector index (EVI) cannot be used for grouping or ordering and has a limited use
in joins. Single key EVIs can be used to create bitmaps or relative record number (RRN) lists
that can be used in combination with binary radix tree indexes. You might use this technique

Note: Indexes consume system resources, so you need to find a balance between query
performance and system (index) maintenance.

Chapter 12. Tips to proactively prevent SQL performance problems 409

when the local selection contains AND or OR conditions and a single index does not contain
all the proper key columns or a single index cannot meet all of the conditions.

If you look at the query in Example 12-1, you see four local selection predicates and two
ORDER BY columns. Following the EVI guidelines, single key indexes are created with key
columns covering the equal predicates as shown in Example 12-3.

Example 12-3 EVIs for the one table query example

CREATE ENCODED VECTOR INDEX MySchema/ItemsEVI_Year
 ON MySchema/Items ("YEAR");

CREATE ENCODED VECTOR INDEX MySchema/ItemsEVI_Quarter
 ON MySchema/Items ("QUARTER");

CREATE ENCODED VECTOR INDEX MySchema/ItemsEVI_ReturnFlag
 ON MySchema/Items (RETURNFLAG);

CREATE ENCODED VECTOR INDEX MySchema/ItemsEVI_ShipMode
 ON MySchema/Items (SHIPMODE);

12.1.3 Additional indexing tips

Keep in mind that indexes are used by the optimizer for the optimization phase or the
implementation phase of the query. For example, you might create an index that you do not
see is being used by the optimizer for the implementation phase, but it might have been used
for the optimization phase. There are some additional considerations to remember where the
optimizer might not use an index:

� Avoid NULL capable columns if expecting to use index only access. When any key in the
index is NULL capable, the index-only access method cannot be used with the Classic
Query Engine (CQE).

� Avoid derived expressions in local selection. Access via an index might not be used for
predicates that have derived values. Or, a temporary index is created to provide key
values and attributes that match the derivative. For example, if a query included one of the
following predicates, the optimizer considers that predicate to be a derived value and
might not use an index for local selection:

T1.ShipDate > (CURRENT DATE – 10 DAYS)
UPPER(T1.CustomerName) = "SMITH"

� Index access is not used for predicates where both operands come from the same table.
For example, if the WHERE clause contains the following snippet, the optimizer does not
use an index to retrieve the data since it must access the same row for both operands.

T1.ShipDate > T1.OrderDate

� Consider index only access (IOA). If all of the columns used in the query are represented
in the index as key columns, the optimizer can request index only access. With IOA, DB2
for i5/OS does not have to retrieve any data from the actual table. All of the information
required to implement the query is available in the index. This might eliminate the random
access to the table and drastically improve query performance.

� Use the most selective columns as keys in the index. Give preference to columns used in
equal comparisons.

� For key columns that are unique, use a unique constraint.

� Make sure that statistics exist for the most and least selective columns for the query.

410 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

12.1.4 Index Advisor

As we have discussed in earlier chapters, the optimizer has several feedback mechanisms to
help you identify the need for an index. To help you to identify the indexes advised for a given
query request, you can use the following methods:

� Running and analyzing an SQL statement using Visual Explain Index Advisor in iSeries
Navigator

Refer to 9.5.4, “Access to Index Advised information from Visual Explain screen interface”
on page 339.

� Index advised reports available from the Analysis Overview dashboard

5.1.1, “Analysis overview” on page 119.

� New V5R4 System-wide Index Advisor

Refer to 9.4, “Index Advisor interface in iSeries Navigator” on page 327.

12.2 Coding of your SQL statements

It is not possible to force the optimizer to use a particular index, but you can affect the
optimizer’s decision by coding the SQL select statement in a particular manner. In this
section, we show you some ways in which you can influence the optimizer.

12.2.1 Avoid using logical files in your select statements

It is a common misunderstanding that, by specifying logical files in SQL statements, the query
optimizer can be forced to choose this index. This is not true. The specified index can be
selected if it meets all the requirements for the best access path. But the query optimizer can
choose any other index or even decide to do a table scan.

If you specify a keyed logical file in an SQL select statement, the optimizer takes only the
column selection, join information, and any select or omit clauses, and rewrites the query. For
each table in a join logical file a specific index is determined.

There is another reason to avoid specifying logical files in an SQL statement. A select
statement that contains logical files is rerouted and executed by CQE and does not benefit
from the enhancements of the new SQL Query Engine (SQE). The cost of rerouting might
cause an overhead of up to 10% to 15% in the query optimization time.

We illustrate this with an example. Suppose that we have a base table ORDERS that
contains all order information. Two logical files are created over the table using DDS.

Note: As you will see, at V5R4, the SQE optimizer compensates for many of these
“to-be-avoided” types of SQL statements and is able to use indexes. However, CQE will
usually only be able to implement these with a table scan. So, if many of your queries still
use CQE, then you will want to pay special attention to this section.

Chapter 12. Tips to proactively prevent SQL performance problems 411

Example 12-4 show the DDS description of the keyed logical file ORDERSL1, with the key
fields ORDERDATE and ORDERKEY.

Example 12-4 Logical file ORDERSL1 DDS

R ORDERSF PFILE(ORDERS)
K ORDERDATE
K ORDERKEY

Example 12-5 shows the DDS description of the second logical file ORDERSL2, with the key
fields SHIPDATE in descending order, CUSTKEY, and ORDERKEY.

Example 12-5 Logical file ORDERSL2

R ORDERSF PFILE(ORDERS)
K SHIPDATE DESCEND
K CUSTKEY
K ORDERKEY

Now we want to select all orders with the order date 14 July, 2004. In the first case, we
perform the select explicitly specifying the logical file ORDERSL2, and in the second case,
we specify the physical file.

Figure 12-1 shows the Visual Explain diagram for both statements. In both cases, the access
path of the keyed logical file is used. But in the first case, an Index Scan - Key Positioning is

412 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

performed by CQE, while in the second case, an index probe in combination with a table
probe is executed by SQE.

Figure 12-1 Comparing the use of logical and physical files in select statements

12.2.2 Avoid using SELECT * in your select statements

When reading a record with native I/O, all fields and field values are always moved into
memory. If you have tables with a lot of columns and you only need information from a few, a
lot of unnecessary information must be loaded. With SQL, you can select only the columns
that you need to satisfy the data request.

If you specify the required columns in your select statements, the optimizer might be able to
perform index only access. With IOA, DB2 for i5/OS does not have to retrieve any data from
the actual table. All of the information required to implement the query is available in the
index. This might eliminate the random access to the table and substantially improve query
performance. Figure 12-2 shows the Visual Explain diagram for the case of SELECT * and

select * from ordersl2 where orderdate =
';

select * from orders where orderdate =

CQE SQE

Chapter 12. Tips to proactively prevent SQL performance problems 413

the case of selecting only the required column. Note that in the index-only access diagram,
there is no table probe needed.

Figure 12-2 Allowing index-only access by specifying the column name rather than SELECT *

12.2.3 Avoid using the relative record number to access your data

For most tables, it is easy to define a primary or unique key. In some cases, such as for
transaction tables, it is almost impossible to determine a unique key. With native I/O, the
required records are often read using the relative record number. For native I/O, this is the
fastest access method.

In SQL, the relative record number can be determined by using the scalar function RRN().
The relative record number is not a defined row in the database table. Therefore, it is not
possible to create an index over the relative record number. If you try to read a row using the
relative record number, a relative record number scan is performed, which is similar to a table
scan.

For tables where you cannot specify a unique key, you must create an additional column to
hold a unique value. SQL provides methods, such as identity columns or columns with
ROWID data type, where a unique value is automatically generated if a new row is inserted.
Identity columns or columns with ROWID data type are ideal for primary or unique key
constraints, and it is also possible to create an index over these columns.

select * from orders where shipdate >

select shipdate from orders where shipdate >

414 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Figure 12-3 shows the selection of a specific row using the SQL scalar function RRN()
compared to using that row’s key.

Figure 12-3 Row selection by using the SQL scalar function RRN() compared to using a key

12.2.4 Avoid numeric data type conversion

When a column value and a host variable (or constant value) are being compared, try to
specify the same data types and attributes. A query that uses CQE does not use an index for
the named column if the host variable or constant value has a greater precision than the
precision of the column.

However, if you have different numeric definitions between the column and host variable or
constant value, the queries that use SQE can use the existing indexes.

If different numeric definitions exist, and no index is available, only SQE is able to suggest an
index.

To avoid problems for columns and constants being compared, use:

� The same data type
� The same scale, if applicable
� The same precision, if applicable

select * from orders where RRN(orders) = 927; select * from orders where orderkey = 927;

Chapter 12. Tips to proactively prevent SQL performance problems 415

Figure 12-4 shows an SQL statement that selects all orders with an order quantity greater
than 50. The QUANTITY column is defined with a scale of 2. In the WHERE clause, we used
a scale of 4. We executed the query twice. The first time we specified a logical file in order to
cause the query to use CQE. The second time we specified the table and the query was
executed by SQE.

Figure 12-4 Row selection using a different numeric data type in the where clause

With SQE, an index can be used, while with CQE, because of the differing scales, no suitable
index can be found and a table scan is performed.

12.2.5 Avoid numeric expressions

When possible, avoid using an arithmetic expression as an operand to be compared to a
column in a local selection predicate when your query may be optimized by CQE. CQE may
not be able to use an index on a column that is being compared to an arithmetic expression.
Furthermore, this may prevent the index from being used for any estimates.

select * from ordersl1 where quantity = select * from orders where quantity = 50.0000;

CQE SQE

416 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Example 12-6 shows part of an SQL stored procedure that selects the orders for the next
seven days using an explicitly specified logical file. The new date is calculated in a numeric
expression which is the right operand of the equal predicate.

Example 12-6 Using numeric expressions in an SQL stored procedure

CREATE PROCEDURE NUMERIC_EXPRESSION ()
LANGUAGE SQL
SPECIFIC NUMERIC_EXPRESSION
NOT DETERMINISTIC
MODIFIES SQL DATA

BEGIN

DECLARE OrderCount INTEGER ;

Select Count(ORDERKEY) into OrderCount
from ORDERSL1
Where ORDERDATE = Current_Date + 7 Days;
END;

Instead of a numeric expression in the SQL statement, Example 12-7 shows that a host
variable is defined and the new date is filled in from a calculation made earlier in the code.

Example 12-7 Using host variables instead of numeric expressions in SQL

CREATE PROCEDURE HOST_VARIABLE ()
LANGUAGE SQL
SPECIFIC HOST_VARIABLE
NOT DETERMINISTIC
MODIFIES SQL DATA

BEGIN

DECLARE OrderCount INTEGER ;
DECLARE NextWeek DATE;

SET NextWeek = Current_Date + 7 Days;

Select Count(ORDERKEY)
into OrderCount
from ORDERSL1
Where ORDERDATE = NextWeek;
END;

Chapter 12. Tips to proactively prevent SQL performance problems 417

Figure 12-5 shows the Visual Explain diagram for both SQL Statements. Notice the table scan
when using the numeric expression for the CQE query. When a host variable is used instead,
CQE is able to utilize an existing index.

Figure 12-5 Using numeric expressions (right) or host variables (left) in an SQL stored procedure with CQE

As noted, SQE at V5R4 is able to execute the query using an index in either case, as shown
in Figure 12-6. So, having a numeric expression in a local selection predicate probably won’t
affect the performance if your query is using SQE. But, since there are still various reasons

CQE

418 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

why a query may be routed to CQE, putting the numeric expression in a separate host
variable is a good programming practice.

Figure 12-6 SQE implements with an index in either case

12.2.6 Using the LIKE predicate

The percent sign (%) and the underline (_), when used in the pattern of a LIKE predicate,
specify a character string that is similar to the column value of rows that you want to select.
Such queries can take advantage of indexes when used to denote characters in the middle or
at the end of a character string. However, when used at the beginning of a character string,
the wildcards can prevent CQE from using any indexes that might be defined in the
appropriate column.

Beginning in V5R4, LIKE statements are eligible for optimization by SQE, which is able to use
an index to implement a LIKE predicate when the search string begins with a wildcard.

SQE

Chapter 12. Tips to proactively prevent SQL performance problems 419

Figure 12-7 shows the difference between CQE and SQE when using the LIKE predicate with
the wildcard in the first position of the character expression.

Figure 12-7 Using the LIKE predicate in SQL select statements

Since CQE uses does a table scan, if your query is optimized by CQE for some reason, you
may wish to avoid using a LIKE predicate with a wildcard in the first position of the search
string.

12.2.7 Avoid scalar functions in the WHERE clause

If a scalar function is used in the WHERE clause, the CQE optimizer might not be able to use
an appropriate existing index. In some cases, you can influence the optimizer by rewriting
your query in a different manner. For example, if you must select all the orders for a specific
year or month, use a range and not the scalar functions YEAR or MONTH.

In the following example, we are getting a count of all orders for the year 2004. As in previous
examples, we are specifying the logical file to get a CQE implementation. We first use the
scalar function YEAR to select the desired year in the WHERE clause. In the second test, we
use a date range instead, using the BETWEEN predicate.

select * from orders where orderpriority
LIKE'%LOW%’;

select * from ordersl1 where orderpriority
LIKE'%LOW%’;

CQE SQE

420 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Figure 12-8 shows the Visual Explain diagrams for both SQL statements.

Figure 12-8 Using ranges instead of scalar functions

As you can see, a table scan is done for the case of the scalar function in the WHERE clause,
while an index is used for the BETWEEN clause case.

This is another case where the SQE optimizer is now able to handle either case using an
index. But, in our testing, the runtime of the SQL statement was significantly better when
using the BETWEEN as compared to using the scalar function in the WHERE clause.
Therefore, even if your statements are using SQE, you may wish to avoid the use of scalar
functions in the WHERE clause to improve performance as shown in Figure .

select count(*)
from ordersl1
where year(orderdate) = 2004;

select count(*)
from ordersl1

CQE

Chapter 12. Tips to proactively prevent SQL performance problems 421

Figure 12-9 SQE can use an index in each case, but performance is better without the scalar function

select count(*)
from orders

select count(*)
from orders
where orderdate between '01/01/04' and

SQE

422 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Chapter 13. Using Collection Services data
to identify jobs using system
resources

This chapter explains how to find jobs using CPU or I/O with Collection Services data and
how you can integrate it with the Database Monitor data. This chapter begins by describes
how to start Collection Services. Then it guides you in using Collection Services data to find
jobs using CPU, to find jobs with high disk I/O counts, and to use it in conjunction with the
SQL Performance Monitors. We also discuss using Performance Trace to find jobs that have
object locks.

13

© Copyright IBM Corp. 2007. All rights reserved. 423

13.1 Relationship of Collection Services, Database Monitor
data and Performance Trace

There are times where poor job performance is caused by insufficient system resources.
There are many options available to help you to identify and resolve performance problems.
In this topic, we discuss using Collection Services, Database Monitor and Performance Trace
in helping you to achieve this goal in relation to optimizing your SQL performance.

The Collection Services have reporting facilities that allows you to find the sources of these
performance problem. There are a few areas where you need more detail than what
Collection Services can provide. In this case, you will need Performance Traces to help you.
Once you have identified the sources of system resource constraint and taken the necessary
actions to eliminate the bottlenecks, and if job performance still remain as an issue, you
should proceed to integrate the Collection Services with Database Monitor data to further
address SQL optimization.

To achieve optimum performance, you must recognize the interrelationship among the critical
system resources and attempt to balance these resources, CPU, disk, main storage, and for
communications, remote lines. Each of these resources can cause a performance
degradation. You can make use of Collection Services or even Performance Traces to
identify them and take action to eliminate them. The ares to look at are:

� Processor load: Determine if there are too many jobs on the system or if some jobs are
using a large percentage of processor time.

� Main storage: Investigate faulting and the wait-to-ineligible transitions.

� Disk: Determine if there are too few arms or if the arms are too slow.

� Communications: Find slow lines, errors on the line, or too many users for the line.

� IOPs: Determine if any IOPs are not balanced or if there are not enough IOPs.

� Software: Investigate locks and mutual exclusions (mutexes).

Note: For more information about Performance Tools, refer to:

� IBM Redbook - A Systems Management Guide to Performance Management for i5 and
p5 Systems, SG24-7122

� Redpaper - IBM eServer iSeries Performance Management Tools, REDP-4026

424 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

13.2 Collection Services and Database Monitor data

Collection Services allows you to gather performance data with little or no observable impact
on system performance. Its data is analyzed using the IBM Performance Tools for iSeries
licensed program (5722PT1) or other performance report applications, iSeries Navigator
monitors, and the graph history function. If you prefer to view real-time performance data,
system monitors provide an easy-to-use graphical interface for monitoring system
performance. For more information about iSeries Navigator Monitors, see “iSeries Navigator
monitors” in Systems Management - Performance Version 5 Release 4 on the Web at:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzaih/rzaih.pdf

Collection Services collects data that identifies the relative amount of system resource used
by different areas of your system. While you are required to use Performance Tools for
iSeries, it is not required to gather the data.

In most of the analysis of job-level information in this chapter, we use the Component Report.
The Component Report uses Collection Services data to provide information about the same
components of system performance as a System Report, but at a greater level of detail. The
Component Report helps you find the jobs that are consuming high amounts of system
resources, such as CPU, disk, and so on.

13.2.1 Starting Collection Services

To analyze Collection Services data, you must first start Collection Services, which you can
do in one of the following ways:

� From the PERFORM menu, using GO PERFORM
� From iSeries Navigator
� Using Performance Management APIs
� In V5R4, using the Start Performance Collection (STRPFRCOL) CL command

In the following sections, we explain the details for each of the methods to start Collection
Services to gather data.

Note: While running Collection Services, you should also run Database Monitor on all the
jobs. After we identify the job information of the job or jobs that consume high amounts of
system resources, such as CPU, disk and so on, we can query the data to find the jobs as
shown in 13.5, “Using Performance Data of the Database Monitor to find the query that
needs optimization” on page 446.

Note: Starting Collection Services from the PERFORM menu requires that you install
Performance Tools for iSeries, 5722PT1.

Chapter 13. Using Collection Services data to identify jobs using system resources 425

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/ic2924/info/rzahx/rzahx.pdf

PERFORM menu
To start Collection Services, from the PEFORM menu perform the following steps:

1. Enter the following command:

GO PERFORM

2. On the IBM Performance Tools for iSeries display, type option 2 (Collect performance
data).

3. On the Collect Performance Data display, select option 2 (Configure Performance
Collection).

4. The Configure Perf Collection (CFGPFRCOL) display is shown. In setting the
configuration, you should consider your system resources, for example, whether you have
enough storage to handle the data being gathered. You must consider the following two
parameters:

– Default interval: This parameter indicates the sample interval time in minutes to collect
data.

– Collection retention period: This parameter indicates how long the management
collection object (*MGTCOL) should be retained on the system.

Set these parameters based on your system resources and the problem that you are
trying to capture. For example, if you have a performance problem that occurs
intermittently over a week, you might set the interval time to 15 minutes and the collection
retention period to seven days or longer if you want comparison data, but only if you have
the resources to maintain the size of the *MGTCOL objects.

Figure 13-1 shows the selection with collection retention period set to seven days.

Figure 13-1 Configure Performance Collection CFGPFRCOL

After you set the configuration, press Enter.

 Configure Perf Collection (CFGPFRCOL)

 Type choices, press Enter.

 Default interval 15.00 *SAME, .25, .50, 1.0, 5.0...
 Collection library QMPGDATA Name, *SAME
 Default collection profile . . . *STANDARDP *SAME, *MINIMUM, *STANDARD...
 Cycle time 000000 Time, *SAME
 Cycle interval 24 *SAME, 1-24 hours
 Collection retention period:
 Number of units 7 *SAME, 1-720, *PERM
 Unit of time *DAYS *HOURS, *DAYS
 Create database files *YES *SAME, *YES, *NO
 Change PM iSeries library . . . *NO *NO, *YES

 Bottom
 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
 F24=More keys

426 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

5. Type option 1 (Start Performance Collection). Specify *CFG for the collection profile.

For more information, see Systems Management - Performance Version 5 Release 4 on the
Web:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzahx/rzahx.pdf

13.2.2 From iSeries Navigator

In iSeries Navigator, select your system name, then select Configuration and Service.
Right-click Collection Services and select Start Performance Collection (as shown in
Figure 13-2).

Figure 13-2 Start Performance Collection in iSeries Navigator

Chapter 13. Using Collection Services data to identify jobs using system resources 427

In the Start Collection Services window (Figure 13-3), verify the configuration settings and
click OK to start Collection Services.

Figure 13-3 Configuring and starting Collection Services in iSeries Navigator

13.2.3 Using Performance Management APIs

You can use Collector APIs to start collecting performance data. The APIs do not require you
to have Performance Tools for iSeries installed. To start Collection Services, you can use the
following command:

CALL QYPSSTRC PARM('*PFR ' '*STANDARDP' X'00000000')

For more information about the parameters of the API, see “Collector APIs” in Systems
Management - Performance Version 5 Release 4 on the Web at:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzahx/rzahx.pdf

13.2.4 V5R4 STRPFRCOL command

You can also start V5R4 of Collection Services by using the STRPFRCOL CL command.
Then to configure Collection Services, you use the Configure Performance Collection
(CFGPFRCOL) CL command.

For more information about the Collection Services CL commands, see Systems
Management - Performance Version 5 Release 4 on the Web at:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzahx/rzahx.pdf

428 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzahx/rzahx.pdf
http://publib.boulder.ibm.com/infocenter/iseries/v5r3/ic2924/info/rzahx/rzahx.pdf

13.3 Using Collection Services data to find jobs using CPU

You can use Collection Services data to look for jobs using CPU. In this section, we explain
how to find jobs that are using CPU by using the following methods:

� Component Report from the PERFORM menu
� iSeries Navigator Graph History
� Management Central System Monitors

13.3.1 Finding jobs using CPU with the Component Report

To use the PERFORM menu of IBM Performance Tools for iSeries to gather the Component
Report, you must install Performance Tools, product 5722PT1, and then perform the
following steps:

1. To access the PERFORM menu, enter the following command:

GO PERFORM

2. If you want to interactively examine the data, select option 7 (Display performance data). If
you choose this option, you must keep in mind your system resources. This job runs
interactively and uses CPU and I/O resources. Or you can select option 3 (Print
performance report), which submits a job to batch.

3. After you select an option, select the member that you want to investigate, based on the
date and time shown. If no members are shown and you have started Collection Services,
run the Create Performance Data (CRTPFRDTA) command against the *MGTCOL object
that contains your data or create the files in iSeries Navigator as follows:

– To create the files using the CRTPFRDTA CL command, find the *MGTCOL object to
create the files from by entering the following command:

WRKOBJ OBJ(qmpgdata/*ALL) OBJTYPE(*MGTCOL)

The attribute of the *MGTCOL object must be *PFR. In the WRKOBJ command shown,
you replace qmpgdata with the library where you keep your performance data. After
the *MGTCOL object is found, you run the following CL command to create the
database files:

CRTPFRDTA FROMMGTCOL(library/mgtcolname)

– To create the files using iSeries Navigator, select your system name and then select
Configuration and Service. Right-click Collection Services. Then in the right pane,
you see a list of the *MGTCOL objects. Right-click the collection name, which is the
*MGTCOL object, and select Create Database Files Now as shown in Figure 13-4.

For more information, see Systems Management - Performance Version 5 Release 4
on the Web at:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzahx/rzahx.pdf

Note: When the job information is found, you can use the job information to query the
Database Monitor table as explained in 13.5, “Using Performance Data of the Database
Monitor to find the query that needs optimization” on page 446.

Chapter 13. Using Collection Services data to identify jobs using system resources 429

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzahx/rzahx.pdf

Figure 13-4 Creating files from *MGTCOL objects in iSeries Navigator

The following sections explain how to find the jobs that are using CPU by using either the
option to print performance report or the option to display performance data.

Using option 3: Print performance report
When you select option 3, you must specify the library in which you keep your performance
data. In most cases, the library is QMPGDATA. You can page up and down until you see a
time frame that you want. Type 2 next to the member that you want to use to get a
Component Report and then perform the following steps:

1. In the next Select Sections for Report display (Figure 13-5), you can press F6 to print the
entire report to select all the sections to be in your report. Since you must often review all
the performance data at the time of high CPU usage, we recommend that you use F6. In

430 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

the display shown in Figure 13-5, you see that we choose option 1 to select Job Workload
Activity so that we can only see the jobs that are using CPU.

Figure 13-5 Select Sections for Report display

2. In the Select Categories for Report display (Figure 13-6), we type option 1 to select Time
interval. Time interval is usually the best option if you do not know any other information. If

 Select Sections for Report

 Member : Q247000107

 Type options, press Enter. Press F6 to print entire report.
 1=Select

 Option Section
 Component Interval Activity
 1 Job Workload Activity
 Storage Pool Activity
 Disk Activity
 IOP Utilizations
 Local Work Stations
 Remote Work Stations
 Exception Occurrence
 Data Base Journaling Summary
 TCP/IP Activity
 HTTP Server Activity

 Bottom
 F3=Exit F6=Print entire report F12=Cancel

Chapter 13. Using Collection Services data to identify jobs using system resources 431

you want more information, you can press F6 to print the entire report, but it is best to
narrow the information down to a time frame in which you are interested.

Figure 13-6 Select Categories for Report display

3. If you selected Time interval on the previous display, you see the Select Time Intervals
display (Figure 13-7). You can select intervals that you want to look at based on CPU

 Select Categories for Report

 Member : Q247000107

 Type options, press Enter. Press F6 to print entire report.
 1=Select

 Option Category
 1 Time interval
 Job
 Job type
 Job run priority
 User ID
 Subsystem
 Pool
 Communications line
 Control unit
 Functional area

 Bottom
 F3=Exit F6=Print entire report F12=Cancel

432 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

utilization. In this example, we select two time frames of interest by typing 1 in the Opt
column. These time frames were chosen because the concern is the sudden CPU growth.

Figure 13-7 Select Time Intervals display

4. In the Specify Report Options display (Figure 13-8), you specify any report title that you
want. In this example, we specify CPU Report. Press Enter, and a job is submitted to
batch.

Figure 13-8 Specify Report Options panel

5. You then return to the Print Performance Report - Sample data display and see the
following message at the bottom of the display:

Job 117667/NGSS/PRTCPTRPT submitted to job queue QBATCH in library QGPL.

 Select Time Intervals

 Library : QMPGDATA Performance data : Q247000107

 Type options, press Enter.
 1=Select
 O Int High Pool
 p Transaction -CPU Util-- Feat --Util-- -Fault/Sec-
 t Date Time Count Resp Tot Int Bch Util Dsk Unit Mch User ID Excp
 09/04 07:45 0 .00 21 0 21 0 1 0004 0 0 02 1298
 09/04 08:00 12 5.91 28 1 27 0 4 0005 4 8 02 1730
 09/04 08:15 0 .00 29 0 29 0 2 0004 1 4 02 1787
 09/04 08:30 18 .16 36 0 36 0 2 0003 0 2 02 1715
 09/04 08:45 0 .00 66 0 66 0 6 0005 2 20 02 1542
 1 09/04 09:00 47 1.23 99 2 97 2 4 0005 1 17 02 1470
 1 09/04 09:15 0 .00 100 0 100 0 2 0005 0 9 02 1480
 1 09/04 09:30 0 .00 99 0 99 0 3 0004 0 13 02 1395
 09/04 09:45 34 .35 40 0 40 0 3 0005 2 21 02 1850

 Bottom

 F3=Exit F5=Refresh F12=Cancel
 F13=Sort (date/time) F14=Sort (count) F24=More keys

 Specify Report Options

 Type choices, press Enter.

 Report title CPU Report

 Report detail . . . *JOB *JOB, *THREAD

 Job description . . QPFRJOBD Name, *NONE
 Library *LIBL Name, *LIBL, *CURLIB

 F3=Exit F12=Cancel

Chapter 13. Using Collection Services data to identify jobs using system resources 433

This message gives you the submitted job for your report. You can find your report by
entering the following command:

WRKSBMJOB *JOB

6. In the Work with Submitted Jobs display, your submitted job is called PRTCPTRPT. When
the PRTCPTRPT job is in OUTQ status, select option 8 to view the spool file. The report is
in the spool file QPPTCPTR. Type 5 on the line that precedes the QPPTCPTR file.

In Figure 13-9, you see part of the Component Report showing the jobs that are using
CPU. In this example, there are three jobs of concern as highlighted in bold.

Figure 13-9 Partial print of Jobs using CPU

The disadvantage of using the printed report versus displaying the data interactively is that
the printed Component Report is sorted by the job name, not by CPU. Displaying the data
interactively allows you to sort on CPU.

Now that we have the jobs that are using the majority of CPU, we can now look at the
Database Monitor data that was running at the same time to investigate what the jobs were
doing. 13.5, “Using Performance Data of the Database Monitor to find the query that needs
optimization” on page 446 gives examples on how to investigate the SQL.

 Display Spooled File
 File : QPPTCPTR
 Control
 Find
 *...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9....+....0..
 Component Report
 CPU report
 Member :Q247000107 Model/Serial: 270/65-2DF1B Main storage :1024.0 MB Started:09/04/06 00:01
 Library :QMPGDATA System name :MYI270 Version/Release:5/3.0 Stopped :09/04/06 09:45
 Partition ID:000 Feature Code:22A2-2248-1517 Int Threshold :15.60 %
 Virtual Processors:1 Processor Units:1.0
 T P DB
 Job User Name/ Job y t CPU Cpb Tns -------- Disk I/O --------
 Name Thread Number p Pl y Util Util Tns /Hour Rsp Sync Async Logical
 ---------- ---------- ------ -- -- -- ----- ----- ------- --------- ------- -------- -------- --------
 QSQSRVR QUSER 114671 B 02 10 .00 .0 0 0 .000 45 1 6
 QSQSRVR QUSER 114679 B 02 20 .00 .0 0 0 .000 612 18 21
 QSQSRVR QUSER 114687 B 02 10 .00 .0 0 0 .000 3 0 0
 QSQSRVR QUSER 114690 B 02 10 .00 .0 0 0 .000 288 78 170
 QSYSWRK QSYS 114548 M 02 00 .00 .0 0 0 .000 35 0 0
 QTCPMONITR QTCP 114612 B 02 10 .00 .0 0 0 .000 1364 251 0
 QTOTNTP QNTP 114649 B 02 10 .00 .0 0 0 .000 444 0 0
 QTSMTPCLTD QTCP 114663 B 02 35 .00 .0 0 0 .000 90 0 0
 QTSMTPSRVD QTCP 114650 B 02 35 .00 .0 0 0 .000 6 0 0
 QUSRWRK QSYS 114563 M 02 00 .00 .0 0 0 .000 33 0 0
 QYPSJSVR QYPSJSVR 114637 B 02 16 .00 .0 0 0 .000 10710 573 0
 QYPSPFRCOL QSYS 117306 B 02 01 .00 .0 0 0 .000 896 656 0
 QYUSCMCRMD QSYS 114646 B 02 50 .00 .0 0 0 .000 1147 0 0
 QZDASOINIT QUSER 117683 C 02 20 .00 79.4 0 0 .000 987 5208 343
 QZRCSRVS QUSER 117686 C 02 20 .00 .0 0 0 .000 352 115 0
 QZRCSRVS QUSER 117687 C 02 20 .00 .0 0 0 .000 33 1 0
 QZRCSRVS QUSER 117689 C 02 20 .00 .0 0 0 .000 157 89 0
 Q1PSCH QPM400 114614 B 02 50 .00 .0 0 0 .000 94 3 310
 REPLICA QNOTES 115839 B 02 20 .00 .0 0 0 .000 1 0 0

 F3=Exit F12=Cancel F19=Left F20=Right F24=More keys

434 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Option 7: Display performance data
If you select option 7, you must specify the library in which you keep your performance data.
In most cases, the library is QMPGDATA. Now perform the following steps:

1. Select the member that you want to investigate, based on the date and time shown. You
do this by typing 1 next to the member.

2. After you select the member, use page up and down until you see a time frame you are
looking for or until you see a CPU Utilization that concerns you. Then you type 1 next to
the interval or intervals that you want to examine.

3. After you select the intervals, you see the Display Performance Data display
(Figure 13-10).

Figure 13-10 Display Performance Data display

 Display Performance Data

 Member Q247000107 F4 for list
 Library QMPGDATA

 Elapsed time . . . : 00:15:00 Version : 5
 System : MYI270 Release : 3.0
 Start date : 09/04/06 Model : 270
 Start time : 00:01:08 Serial number . . : 65-2DF1B
 Partition ID . . . : 000 Feature Code . . . : 22A2-2248-1517
 QPFRADJ : 3 Int Threshold . . : 15.60 %
 QDYNPTYSCD : 1 Virtual Processors : 1
 QDYNPTYADJ : 1 Processor Units . : 1.00

 CPU utilization (interactive) : 2.35
 CPU utilization (other) : 97.57
 Interactive Feature Utilization : 2.38
 Time exceeding Int CPU Threshold (in seconds) . : 0
 Job count : 59
 Transaction count : 47
 More...
 F3=Exit F4=Prompt F5=Refresh F6=Display all jobs F10=Command entry
 F12=Cancel F24=More keys

Chapter 13. Using Collection Services data to identify jobs using system resources 435

4. From this display, press F6 to view all jobs. Then you see a listing of the jobs that were
running during the interval as shown in Figure 13-11. You can use F19 to sort by CPU.

Figure 13-11 Listing of jobs using CPU

In this example, it appears as though there is a job that is using the majority of CPU. If this is
unusual and Database Monitor data was gathered during this interval, you can use the
examples as shown in 13.5, “Using Performance Data of the Database Monitor to find the
query that needs optimization” on page 446 to isolate the SQL, if any, that this job was
running during this interval.

13.3.2 Finding jobs using CPU with iSeries Navigator Graph History

Graph history provides a graphical view of performance data collected over days, weeks,
months, or years with Collection Services. You do not need to have a system monitor running
to view performance data. As long as you use Collection Services to collect data, you can

 Display Jobs

 Elapsed time . . : 00:15:00 Member : Q247000107
 Library : QMPGDATA

 Type options, press Enter.
 5=Display job detail 6=Wait detail

 Job CPU Tns Avg Disk
 Option Job User Number Type Util Count Rsp I/O
 QZDASOINIT QUSER 117683 BCH 69.11 0 .0 3459
 QYPSJSVR QYPSJSVR 114637 BCH 8.71 0 .0 4697
 SERVER QNOTES 115828 BCH 3.05 0 .0 3651
 CFINT01 LIC 2.80 0 .0 0
 EVENT QNOTES 115831 BCH 2.61 0 .0 215
 HTTP QNOTES 115834 BCH 2.43 0 .0 257
 QPADEV002B NGSS 117681 PTH 2.35 47 1.2 4614
 ADMINP QNOTES 115837 BCH 1.21 0 .0 650
 RMTMSAFETA SK LIC 1.03 0 .0 7
 AUDPRDJOB AUDUSR 117621 BCH .95 0 .0 178
 More...
 F3=Exit F12=Cancel F15=Sort by job F16=Sort by job type
 F19=Sort by CPU F24=More keys

436 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

view the Graph History window. To access the graph history in iSeries Navigator, select the
system name, then select Configuration and Service and perform the following steps:

1. Right-click Collection Services and select Graph History as shown in Figure 13-12.

Figure 13-12 Selecting Graph History

2. The Graph History window opens. When you click the drop-down list for Metric, you see
several options to help you find the jobs using CPU as shown in Figure 13-13. In this

Chapter 13. Using Collection Services data to identify jobs using system resources 437

example, we select the CPU Utilization (Database Capability) option. You also need to
specify the time frame for which you want to see graph history.

Figure 13-13 Graph History metric options

3. After you launch a graph history, a window opens that shows a series of graphed
collection points. These collection points on the graph line are identified by three different
graphics that correspond to the three levels of data that are available:

– A square collection point represents data that includes both the detailed information
and properties information.

– A triangular collection point represents summarized data that contains detailed
information.

– A circular collection point represents data that contains no detailed information or
properties information.

You can select any of the bars on the graph to view information about the job in the box
underneath it. Figure 13-14 shows information after a point on the graph was selected. It
shows the bargraph in the upper right corner that shows job names sorted by CPU. In the
example shown, the bar turns black after being selected, and the first three lines of
information in the box underneath the graph are the job name, user name, and job
number. This information is useful to be used in 13.5, “Using Performance Data of the

438 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Database Monitor to find the query that needs optimization” on page 446 to indicate
whether the job was running SQL, and if so, the SQL statement that was run.

Figure 13-14 Displaying job using CPU with Graph History data

For more information about using Graph History, refer to System Management - Performance
Version 5 Release 3 on the Web at:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzahx/rzahx.pdf

13.3.3 Finding jobs using CPU with Management Central System Monitors

The system monitors display the data stored in the collection objects that are generated and
maintained by Collection Services. The system monitors display data as it is collected, for up
to one hour. To view longer periods of data, use Graph History as explained in 13.3.2,
“Finding jobs using CPU with iSeries Navigator Graph History” on page 436. You can change
the frequency of the data collection in the monitor properties, which overrides the settings in
Collection Services.

Chapter 13. Using Collection Services data to identify jobs using system resources 439

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/ic2924/info/rzahx/rzahx.pdf

To set up a system monitor, you must define the metrics that you want to track and the action
that the monitor should take when the metrics reach the specified levels. To define a system
monitor that looks for jobs using CPU, complete the following steps:

1. In iSeries Navigator, expand Management Central → Monitors. Right-click System
Monitor and select New Monitor (Figure 13-15).

Figure 13-15 Create New Monitors

2. On the General page, enter a name and description for the monitor.

440 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

3. On the Metrics page (Figure 13-16), enter the following values:

a. From the list of Available Metrics, select CPU Utilization (Average) and click Add.
CPU Utilization (Average) is now listed under Metrics to monitor, and the bottom
portion of the window shows the settings for this metric.

b. Add three other Available Metrics: CPU Utilization (Interactive Jobs), CPU Utilization
(Interactive Feature) and CPU Utilization (Database Capability).

c. For Collection interval, specify how often you want to collect this data. This value
overrides the Collection Services setting. For this example, we specify 30 seconds.

d. To change the scale for the vertical axis of the monitor’s graph for this metric, change
the Maximum graphing value. To change the scale for the horizontal axis of the graph
for this metric, change the value for Display time.

Figure 13-16 New Monitor metric options

4. On the Systems and Groups page, select your systems and groups. You can click Browse
to select the endpoint system on which you want to run the monitor.

5. Expand Management Central → Monitors and click System. You should now see the
monitor displayed with a status of Stopped.

6. To start the monitor, right-click it and select Start.

Chapter 13. Using Collection Services data to identify jobs using system resources 441

7. To view the graph data, double-click the monitor that you created. Click any square in the
graph to see a bar graph in the upper right corner that shows the job names sorted by
CPU. To find more job details, click any of the bars on the graph as shown in Figure 13-17.

Figure 13-17 System Monitor showing job using CPU

The box below the bar graph shows the fully qualified job detail, consisting of job name, user
name, and job number. You can use this information to query a Database Monitor file
collecting during this time frame as shown in 13.5, “Using Performance Data of the Database
Monitor to find the query that needs optimization” on page 446.

For more information about using Graph History, see System Management - Performance
Version 5 Release 4 on the Web at:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzahx/rzahx.pdf

13.4 Using Collection Services data to find jobs with high disk
I/O counts

You can use Collection Services data to look for jobs with high disk I/O counts. To find the
jobs with high disk I/O, you are required to have Performance Tools installed. To start looking
for jobs that have a high I/O count, use the Component Report from the PERFORM menu. To
access the PERFORM menu, enter the following command:

GO PERFORM

442 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzahx/rzahx.pdf

If you want to interactively view the data, select option 7 (Display performance data). Keep in
mind your system resources when you choose this option. This job runs interactively and
uses CPU and I/O resources. Or you can choose option 3 (Print performance report), which
submits a job to batch.

The following sections explain how to find the jobs with high I/O counts either interactively
(option 7) or in batch (option 3).

Option 3: Print performance report
When you select option 3, you must specify the library in which you keep your performance
data. In most cases, the library is QMPGDATA. Now perform the following steps:

1. Page up and down until you see a time frame that you want. Type 2 next to the member
that you want to use to get a Component Report.

If no members are found and you have started Collection Services, you must create the
database files that are needed. See the first bullet point in 13.3.1, “Finding jobs using CPU
with the Component Report” on page 429, for information about creating the files.

2. In the next Select Sections for Report display (Figure 13-5 on page 431), you can press F6
(Print entire report) to select all the sections to be in your report. Since you must often
review the storage pool activity and disk activity, we recommend that you use F6. In the
display shown in Figure 13-5, you see that we choose option 1 to select Job Workload
Activity to find the jobs with high I/O counts.

3. In the Select Categories for Report display (Figure 13-6 on page 432), we type option 1 to
select Time interval. Time interval is usually the best option if you do not know any other
information. If you want more information, you can press F6 to print the entire report, but it
is best to narrow the information down to a time frame in which you are interested.

4. If you selected Time interval on the previous display, you see the Select Time Intervals
display (Figure 13-7). You can select intervals that you want to look at based on High Disk
Utilization or a time frame.

5. In the Specify Report Options display (Figure 13-8 on page 433), specify any report title
that you want. Press Enter, and a job is submitted to batch.

6. You then return to the Print Performance Report - Sample data display and see the
following message at the bottom of the display:

Job 117667/NGSS/PRTCPTRPT submitted to job queue QBATCH in library QGPL.

This message gives you the submitted job for your report. You can find your report by
entering the following command:

WRKSBMJOB *JOB

7. In the Work with Submitted Jobs display, your submitted job is called PRTCPTRPT. When
the PRTCPTRPT job is in OUTQ status, select option 8 to view the spool file. The report is
in spool file QPPTCPTR. Type 5 on the line that precedes the QPPTCPTR file.

Figure 13-18 shows a job that has a high I/O count in comparison to other jobs in the report.
The disadvantage of using the printed report versus displaying the data interactively is that
the printed Component Report is sorted by the job name, not by disk I/O. Displaying the data
interactively allows you to sort on disk I/O. Now that we have isolated a job with relatively high
disk I/O, we can look at the Database Monitor data that was running at the same time to
investigate what the job was doing. 13.5, “Using Performance Data of the Database Monitor
to find the query that needs optimization” on page 446, gives examples of how to investigate
what SQL, if any, that the job was running based on the job name, job user, and job number.

Chapter 13. Using Collection Services data to identify jobs using system resources 443

Figure 13-18 Example of job having relative high I/O count

Option 7: Display performance data
If you select option 7, you must specify the library in which you keep your performance data.
In most cases, the library is QMPGDATA. Then perform the following steps:

 Display Spooled File
 File : QPPTCPTR
 Control
 Find

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9....
+....0..
 Component Report
 Job Workload Activity
 CPU Report
 Member :Q247000107 Model/Serial :270/65-2DF1B Main storage :1024.0MB
Started:09/04/06 00:01
 Library :QMPGDATA System name :MYI270 Version/Release:5/ 3.0
Stopped:09/04/06 09:45
 Partition ID:000 Feature Code :22A2-2248-1517 Int Threshold :15.60 %
 Virtual Processors:1 Processor Units:1.0
 T P DB
 Job User Name/ Job y t CPU Cpb Tns -------- Disk I/O

 Name Thread Number p Pl y Util Util Tns /Hour Rsp Sync Async
Logical
 ---------- ---------- ------ -- -- -- ----- ----- ------- --------- ------- -------- --------

 QTOTNTP QNTP 114649 B 02 10 .00 .0 0 0 .000 444 0
0
 QTSMTPCLTD QTCP 114663 B 02 35 .00 .0 0 0 .000 90 0
0
 QTSMTPSRVD QTCP 114650 B 02 35 .00 .0 0 0 .000 6 0
0
 QUSRWRK QSYS 114563 M 02 00 .00 .0 0 0 .000 33 0
0
 QYPSPFRCOL QSYS 117306 B 02 01 .00 .0 0 0 .000 896 656
0
 QZDASOINIT QUSER 117683 C 02 20 .00 79.4 0 0 .000 987 5208
343
 QZRCSRVS QUSER 117686 C 02 20 .00 .0 0 0 .000 352 115
0
 QZRCSRVS QUSER 117687 C 02 20 .00 .0 0 0 .000 33 1
0
 QZRCSRVS QUSER 117689 C 02 20 .00 .0 0 0 .000 157 89
0
 Q1PSCH QPM400 114614 B 02 50 .00 .0 0 0 .000 94 3
310
 REPLICA QNOTES 115839 B 02 20 .00 .0 0 0 .000 1 0
0

 F3=Exit F12=Cancel F19=Left F20=Right F24=More keys

444 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

1. Select the member that you want to investigate, based on the date and time shown. You
do this by typing 1 next to the member.

If no members are found and you started Collection Services, you must create the
database files needed. See 13.3.1, “Finding jobs using CPU with the Component Report”
on page 429, for information about how to create the files.

2. After you select the member, you can page up and down until you see a time frame you
are looking for or until you see a high disk utilization that concerns you. Then you type 1
next to the interval or intervals that you want to examine.

After you select the intervals, you see the Display Performance Data display (Figure 13-10 on
page 435). From this display, press F6 to view all jobs. You can use F22 to sort by disk I/O as
shown in Figure 13-19. If the disk activity is unusually high and Database Monitor data was
gathered during this interval, then the Database Monitor data can be queried as explained in
13.5, “Using Performance Data of the Database Monitor to find the query that needs
optimization” on page 446, to isolate what the job is doing.

Figure 13-19 Job having a high disk I/O count

You can find additional information about Collection Services data and using the tools in
Systems Management - Performance Tools Reports Version 5 Release 4 in the Information
Center on the Web at:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzahx/rzahxptrpts.pdf

Also refer to Systems Management - Performance Version 5 Release 4, which is available on
the Web at:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzahx/rzahx.pdf

 Display Jobs

 Elapsed time . . : 00:15:00 Member : Q247000107
 Library : QMPGDATA

 Type options, press Enter.
 5=Display job detail 6=Wait detail

 Job CPU Tns Avg Disk
 Option Job User Number Type Util Count Rsp I/O
 QZDASOINIT QUSER 117683 BCH 69.11 0 .0 3459
 CRTPFRDTA QSYS 117645 BCH .22 0 .0 1459
 QDBSRVXR2 QSYS 114542 SYS .17 0 .0 1142
 QIJSSCD QIJS 114623 BCH .10 0 .0 1085
 ADMIN QEJBSVR 114948 BCH .71 0 .0 668
 QIJSCPEM QIJS 115170 BCH .09 0 .0 661
 More...
 F20=Sort by transactions F21=Sort by response F22=Sort by disk I/O
 F24=More keys

Chapter 13. Using Collection Services data to identify jobs using system resources 445

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzahx/rzahxptrpts.pdf
http://publib.boulder.ibm.com/infocenter/iseries/v5r3/ic2924/info/rzahx/rzahx.pdf

13.5 Using Performance Data of the Database Monitor to find
the query that needs optimization

Working in parallel with Collection Services, you should also collect Database Monitoring data
to help in analyzing and pin-pointing which query causes the performance degradation.

In this section, we look at how we can find more information from the Database Monitoring
data by performing the following steps:

1. In iSeries Navigator, expand the system name → Database → SQL Performance
Monitors and right-click the Database Monitor data. Now you have options to Analyze or
Show Statements (as shown in Figure 13-20).

Figure 13-20 Options to Analyze and Show Statements of Database Monitor data

2. When you select Analyze option, the Analysis Overview Dashboard is presented as
shown in Figure 13-21. The green color checkmark sign indicates if there is further
Summary or Statements that you can analyze. For example, you can highlight the SQL

446 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

statements line and select the Summary button to look at the Summary data or select
Statements button to look at the SQL statements involved.

Figure 13-21 The Analysis Overview Dashboard

3. You can also highlight the item line of your interest. Click Actions menu from the
Dashboard and select Analysis Queries. From the Analysis Queries window as shown in

Chapter 13. Using Collection Services data to identify jobs using system resources 447

Figure 13-22, you can highlight and right-click the item line of interest and select View
Results to see the resulting details.

Figure 13-22 Analysis Queries

448 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

4. You are presented with the Result details window as shown in Figure 13-23. In this case,
you will be interested in the line which has the highest Maximum Runtime and proceed to
identify the SQL statements involved.

Figure 13-23 Result detail - Advised Index Summary

Chapter 13. Using Collection Services data to identify jobs using system resources 449

Alternatively, perform the following steps:

1. Instead of selecting Analyze option as shown in Figure 13-20, you can select Show
Statements option. The Show Statements window is presented as shown in Figure 13-24.

Figure 13-24 Show Statements

2. In this case, you will be interested in the item line with the highest value for Most
Expensive Time and Total Processing Time. Highlight the top item line and click Run

450 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Visual Explain. The Visual Explain window is presented (Figure 13-25), showing you the
graphical representation of the optimization path used by the query optimizer.

Figure 13-25 Visual Explain

3. If you select View → Highlight Index Advised, this enables the area with index advised
to be highlighted. In this case you see Table scan icon is lighlighted. You can analyze
further on the index advised details presented on the right pane of the Visual Explain
window. In this case, you see the CUSTOMER column is advised as the key column.

You will also find the Job details on the right pane. In this case, you see
QZDASOINIT/QUSER/117683 for the Job-name/Job-user/Job-number, which matches
the job that consumed the highest CPU found in the Performance component report
(Figure 13-9), the Displaying performance data (Figure 13-11), the Displaying Graph
History (Figure 13-14), the Displaying Management center system monitor (Figure 13-17),
and the same job that uses the most Disk IO found in Performance component report
(Figure 13-18) and the Displaying performance data (Figure 13-19).

4. Now if you select the Actions menu from the Visual Explain window and select Advisor,
you are presented with the Index Advisor window (Figure 13-26) which provides you with
the details of the index advised. Click the Create button to create the advised index on the
fly, and optimize the query by setting the optimization goal suggested by the query
optimizer.

Chapter 13. Using Collection Services data to identify jobs using system resources 451

Figure 13-26 Index advisor

13.6 Using Performance Trace to find object locks

There are many incidences that slow query performance is not caused by insufficient system
resources nor unoptimized SQL statements, but rather due to object locks. With this in mind,
we discuss using Performance Trace to find object locks in this section.

This OS/400 facility uses trace data to provide information about locks during system
operation. With this information you can determine if jobs are being delayed during
processing because of unsatisfied lock requests. These conditions are also called waits. If
they are occurring, you can determine which objects the jobs are waiting for and the length of
the wait.

Performance Trace is not part of Performance Tools Collection Services. In such, you must
use the Start Performance Trace (STRPFRTRC) and End Performance Trace
(ENDPFRTRC) commands to collect the trace information.

Note: For more information about how to analyze the SQL performance data in iSeries
Navigator and utilizing the Dashboard, refer to Chapter 5, “Analyzing SQL performance
data using iSeries Navigator” on page 117. For more information about querying the
database monitor, refer to Chapter 6, “Custom Database Monitor Analysis” on page 173.
For more information about how to utilize Visual Explain, refer to Chapter 8, “Analyzing
database performance data with Visual Explain” on page 275. For more information about
the index advised and Index Advisor, refer to Chapter 9, “Index Advisor” on page 319.

452 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Example of Start Performance Trace and End Performance Trace commands:

STRPFRTRC
ENDPFRTRC MBR(TRACE3) LIB(QPFRDATA) TEXT('Lock trace on DBITSODB08 14SEP06
4.50PM')

Once you have collected the Performance trace, you have to use the Print Lock Report
(PRTLCKRPT) to generate the report so that you can perform further analysis. The Lock
Report shows information of:

� File, record, or object contention by time
� The holding job or object name
� The requesting job or object name

There are two levels of Lock Report, that is, Summary and Detail. Detail report allows you to
have a few options that you can select:

� *TOD: Provides detail sorted by time of day, followed by a summary

� *HLD: Includes detail sorted by name of the holding job and time of day, followed by a
summary

� *RQS: This includes detail sorted by name of the requesting job and time of day, followed
by a summary

� OBJ: You are presented with detail sorted by name of the object and time of day, followed
by a summary

� *ALL: If you select this option, there are four reports being produced. The reports include
*TOD, *HLD, *RQS, and *OBJ, followed by a summary

Example of Print Lock Report (PRTLCKRPT) commands:

PRTLCKRPT MBR(TRACE3) LIB(QPFRDATA) TITLE('SumLckTrc DBITSODB08 14SEP06 5PM')
RPTTYPE(*SUM)
PRTLCKRPT MBR(TRACE3) LIB(QPFRDATA) TITLE('DetailLckTrc DBITSODB08 14SEP06
4.50PM') RPTTYPE(*ALL)

Chapter 13. Using Collection Services data to identify jobs using system resources 453

Let us look at a Lock Report type “*ALL”, starting with the four sections of the report as shown
in Figure 13-27.

Figure 13-27 Four report sections of Lock Report

 Display Spooled File
 File : QPPTLCK
 Control
 Find
 *...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9....+....0...
 9/14/06 17:09:16 Seize/Lock Wait Statistics by Time of Day
 ALLLckTrc DBITSODB08 14SEP06 5PM
 TOD of Length Object
 Wait of Wait L Requestor's Job Name Holder's Job Name Type Object Name
 -------- ------- - ---------------------------- ---------------------------- ------ -------------------
 17.00.51 0 QINTER 00000008 048317 QCMNARB01 00000008 048281 LIB QSYS
 17.01.16 30030 L QPADEV000D NGSS 049110 QPADEV000C NGSS 049098 DS ORDERS
 DBITSODB08 ITEM_FACT
 17.01.32 0 QTVDEVICE QTCP 048397 QINTER QSYS 048317 DEVD QPADEV000F
 17.01.32 0 QINTER 00000009 048317 QTVDEVICE 00000009 048397 LIB QSYS
 17.02.29 0 MNTASK QPADEV000F NGSS 049111 LIB QGPL
 17.03.12 19 MNTASK QPADEV000F NGSS 049111 LIB NGSS

 9/14/06 17:09:16 Seize/Lock Wait Statistics by Requesting Job
 ALLLckTrc DBITSODB08 14SEP06 5PM
 TOD of Length Object
 Wait of Wait L Requestor's Job Name Holder's Job Name Type Object Name
 -------- ------- - ---------------------------- ---------------------------- ------ -------------------
 17.02.29 0 MNTASK QPADEV000F NGSS 049111 LIB QGPL
 17.03.12 19 MNTASK QPADEV000F NGSS 049111 LIB NGSS
 17.00.51 0 QINTER 00000008 048317 QCMNARB01 00000008 048281 LIB QSYS
 17.01.32 0 QINTER 00000009 048317 QTVDEVICE 00000009 048397 LIB QSYS
 17.01.16 30030 L QPADEV000D NGSS 049110 QPADEV000C NGSS 049098 DS ORDERS
 DBITSODB08 ITEM_FACT
 17.01.32 0 QTVDEVICE QTCP 048397 QINTER QSYS 048317 DEVD QPADEV000F

 9/14/06 17:09:16 Seize/Lock Wait Statistics by Holding Job
 ALLLckTrc DBITSODB08 14SEP06 5PM
 TOD of Length Object
 Wait of Wait L Requestor's Job Name Holder's Job Name Type Object Name
 -------- ------- - ---------------------------- ---------------------------- ------ -------------------
 17.00.51 0 QINTER 00000008 048317 QCMNARB01 00000008 048281 LIB QSYS
 17.01.32 0 QTVDEVICE QTCP 048397 QINTER QSYS 048317 DEVD QPADEV000F
 17.01.16 30030 L QPADEV000D NGSS 049110 QPADEV000C NGSS 049098 DS ORDERS
 DBITSODB08 ITEM_FACT
 17.02.29 0 MNTASK QPADEV000F NGSS 049111 LIB QGPL
 17.03.12 19 MNTASK QPADEV000F NGSS 049111 LIB NGSS
 17.01.32 0 QINTER 00000009 048317 QTVDEVICE 00000009 048397 LIB QSYS

 9/14/06 17:09:16 Seize/Lock Wait Statistics by Object
 ALLLckTrc DBITSODB08 14SEP06 5PM
 TOD of Length Object
 Wait of Wait L Requestor's Job Name Holder's Job Name Type Object Name
 -------- ------- - ---------------------------- ---------------------------- ------ -------------------
 17.01.32 0 QTVDEVICE QTCP 048397 QINTER QSYS 048317 DEVD QPADEV000F
 17.01.16 30030 L QPADEV000D NGSS 049110 QPADEV000C NGSS 049098 DS ORDERS
 DBITSODB08 ITEM_FACT
 17.03.12 19 MNTASK QPADEV000F NGSS 049111 LIB NGSS
 17.02.29 0 MNTASK QPADEV000F NGSS 049111 LIB QGPL
 17.00.51 0 QINTER 00000008 048317 QCMNARB01 00000008 048281 LIB QSYS
 17.01.32 0 QINTER 00000009 048317 QTVDEVICE 00000009 048397 LIB QSYS

454 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

From the four sections of the Lock Report, you can easily identify which jobs have the long
wait, via looking at statistics by Time of day, by Requesting job, by Holding job and by Object.
As shown in Figure 13-27, we see that 049110/QPADEV00C/NGSS job has a long wait of
30030ms for member ITEM_FACT of table ORDERS in schema DBITSODB08.

Now let us look at the Summary section of the Lock Report as shown in Figure 13-28.

Figure 13-28 Summary section of Lock Report

You can easily identify the jobs with the long wait, by examining statistics by Requestors, by
Job name, by the Holder’s job name and by the Object name. In this case it is
049110/QPADEV00C/NGSS that has a long wait of 30030ms on
DBITSODB08/ORDERS(ITEM_FACT).

With both detail and summary statistics provided by Lock Report, you identify the jobs with
the long wait. Then you take the necessary action such as reschedule jobs or ensure Commit
controls are in their correct places, to reduce or eliminate the object contention. As a result,
you can help optimize your query performance.

 9/14/06 17:09:16 Seize/Lock Wait Statistics Summary
 ALLLckTrc DBITSODB08 14SEP06 5PM

 Requestor's Job Name Count Avg Length Count Avg Length
 ------------------------------------- ------------- ------------- ------------- -------------
 MNTASK 26 1
 QDBSRVXR2 QSYS 048295 3 84
 QINTER QSYS 048317 00000008 1
 QINTER QSYS 048317 00000009 1
 QPADEV000D NGSS 049110 1 30,030
 QTVDEVICE QTCP 048397 1
 SERVER QNOTES 048416 0000004E 3 15

 9/14/06 17:09:16 Seize/Lock Wait Statistics Summary
 ALLLckTrc DBITSODB08 14SEP06 5PM
 Locks Seizes
 Holder's Job Name Count Avg Length Count Avg Length
 ------------------------------------- ------------- ------------- ------------- -------------
 QCMNARB01 QSYS 048281 00000008 1
 QDBSRVXR QSYS 048291 4 20
 QDBSRVXR2 QSYS 048295 2 30
 QINTER QSYS 048317 1
 QPADEV000C NGSS 049098 1 30,030
 QPADEV000F NGSS 049111 26 1
 QTVDEVICE QTCP 048397 00000009 1
 SERVER QNOTES 048419 00000050 3 15

 9/14/06 17:09:16 Seize/Lock Wait Statistics Summary
 ALLLckTrc DBITSODB08 14SEP06 5PM
 Object Locks Seizes
 Type Object Name Count Avg Length Count Avg Length
 ------ -------------------------------- ------------- ------------- ------------- -------------
 DEVD QPADEV000F 1
 DS ORDERS DBITSODB08 ITEM_FACT 1 30,030
 DS QADBIFLD QSYS QADBIFLD 3 103
 DS QADBXREF QSYS QADBXREF 2 40
 LIB NGSS 13 1
 LIB QGPL 13

Chapter 13. Using Collection Services data to identify jobs using system resources 455

456 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Appendix A. Tools to check a performance
problem

When a performance problem is occurring, it is important to understand what is happening
with the system, even when you know that you are having a problem with SQL queries. There
are several commands that you can use to see a high level view of what the system is doing.

Use the tools in this appendix to help you look at the big picture. They will help you determine
if SQL queries are causing performance problems if system tuning needs to be done to
prevent SQL query performance problems.

A

© Copyright IBM Corp. 2007. All rights reserved. 457

WRKACTJOB command
The Work with Active Jobs (WRKACTJOB) command allows you to see what jobs are using
system resources. You can sort on any column. Position the cursor over the column that you
want to examine and press F16 to sort it. You can sort by CPU% to find the job or jobs that
are using most of the CPU.

Figure A-1 shows the Work with Active Jobs display. You can see that the top three jobs are
using the majority of CPU. Refresh this display often to see if the jobs continue to use CPU or
if it was a one-time occurrence. It is important to note the function for the jobs that are using
CPU. You can find the function by looking in the Function column. See if they are building
indexes. If indexes are being built, the function shows IDX-indexname, where indexname is
the name of the index being built.

Figure A-1 Work with Active Jobs panel display jobs using CPU

The Work with Active Jobs display can also show jobs that are using a large amount of I/O
(see Figure A-2). To view the I/O display, enter the WRKACTJOB command and then press
F11. Then place your cursor in the AuxIO column and press F16 to sort the column.

In the Work with Active Jobs display, the I/O count shown is only reported after an operation
has completed. An example of where the WRKACTJOB I/O count for a job might not match
the Work with System Activity (WRKSYSACT) count is when a blocked fetch is done. The
WRKSYSACT command shows the actual I/O count, where the WRKACTJOB command
does not show the I/O count until the fetch has completed.

In this example, using the WRKACTJOB command, a poor performing SQL statement might
appear as though it is performing little to no I/O, but the WRKSYSACT command shows that
the job is I/O intensive. For more information about the WRKSYSACT command, refer to
“WRKSYSACT command” on page 459.

 Work with Active Jobs RCHASCLC
 03/04/05 10:13:32
 CPU %: 99.8 Elapsed time: 00:00:04 Active jobs: 1300

 Type options, press Enter.
 2=Change 3=Hold 4=End 5=Work with 6=Release 7=Display message
 8=Work with spooled files 13=Disconnect ...

 Opt Subsystem/Job User Type CPU % Function Status
 QCLNSYSLOG QPGMR BCH 22.5 CMD-DLTPRB RUN
 QPADEV001V KLD INT 18.4 CMD-WRKMEDIBRM RUN
 QPADEV0035 TSWEENEY INT 17.5 CMD-DSPLICKEY RUN
 Q1PDR QPM400 BCH 4.3 PGM-Q1PBATCH RUN
 PRTCPTRPT EILEENPI BCH 3.7 PGM-QPTBATCH RUN
 CRTPFRDTA QSYS BCH 3.7 CMD-CRTPFRDTA RUN
 QPADEV004W DHUFFMAN INT 1.4 MNU-MAIN RUN
 QPADEV0018 HANS INT 1.4 CMD-WRKPRB RUN
 QRWTSRVR QUSER BCI 1.3 RUN
 More...
 Parameters or command
 ===>
 F3=Exit F5=Refresh F7=Find F10=Restart statistics
 F11=Display elapsed data F12=Cancel F23=More options F24=More keys

458 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

It is important to press F11 two more times when looking at the I/O with the WRKACTJOB
command to reach the display that shows the function for the jobs. If the function is
IDX-indexname, then the job is building an index. Further investigation must be done to
determine why the job is building an index.

Figure A-2 Work with Active Jobs display showing I/O used

WRKSYSACT command
WRKSYSACT command is provided with the Performance Tools. This command is helpful in
finding jobs that use system resources. The advantage of using this command over the
WRKACTJOB command is that the WRKSYSACT command shows the Licensed Internal
Code (LIC) tasks in addition to the active jobs in the system.

The WRKSYSACT command, by default, sorts on CPU utilization as shows in Figure A-3. It is
important to note the elapsed time. To watch for jobs using CPU, press F10 often to see if the
same jobs stay near the top of the list of jobs using CPU. These are the jobs that you want to
determine what they are doing.

One way to determine what a job is doing is to look at the function of the job using the
WRKACTJOB command as shown in Figure A-1. You can also use the Work with Jobs
(WRKJOB) command to see what the job is doing. For more information about the WRKJOB
command, refer to “WRKJOB command” on page 463. If it is known that the jobs using CPU

 Work with Active Jobs RCHASCLC
 03/04/05 10:27:54
 CPU %: 99.8 Elapsed time: 00:14:25 Active jobs: 1302

 Type options, press Enter.
 2=Change 3=Hold 4=End 5=Work with 6=Release 7=Display message
 8=Work with spooled files 13=Disconnect ...
 --------Elapsed---------
 Opt Subsystem/Job Type Pool Pty CPU Int Rsp AuxIO CPU %
 PRTSYSRPT BCH 2 50 62.3 29230 1.5
 QSCSTT0001 BCH 2 25 5743.6 22403 .3
 QSCSTT0004 BCH 2 25 6025.5 22346 .3
 QPADEV0048 INT 3 20 4.0 109 2.7 15138 .0
 QPADEV004W INT 3 20 36282.0 0 .0 6551 .9
 QPADEV003N INT 3 20 1.5 37 2.8 3733 .0
 QRWTSRVR BCI 2 20 33036.7 3601 .5
 QPADEV0018 INT 3 20 2747.9 0 .0 3389 .4
 AMQPCSEA BCH 2 35 12.0 2434 .0
 More...
 Parameters or command
 ===>
 F3=Exit F5=Refresh F7=Find F10=Restart statistics
 F11=Display thread data F12=Cancel F23=More options F24=More keys

Appendix A. Tools to check a performance problem 459

are also using SQL, then you want to look at Database Monitor data or use other tools to try
to capture the performance problem.

Figure A-3 Work with System Activity display sorted by CPU

The WRKSYSACT command can also sort on different resources, such as I/O. You can
resequence the list by selecting F16. Then you see the Select Type of Sequence display
(refer to Figure A-4).

Figure A-4 Sequence options for the WRKSYSACT command

In this example, we type option 2 to sort by I/O. Then you see the Work with System Activity
display shown in Figure A-5. It is important to refresh the display with F10 often to see if the
same jobs are doing a lot of I/O. It is also good to notice if the I/O is synchronous or
asynchronous. In most cases, asynchronous I/O is more desirable. Asynchronous disk I/O

 Work with System Activity RCHASCLC
 03/04/05 10:24:50
 Automatic refresh in seconds 5
 Elapsed time : 00:00:02 Average CPU util : 99.9
 Number of CPUs : 4 Maximum CPU util : 101.8
 Overall DB CPU util . . . : 7.7 Minimum CPU util : 98.8
 Current processing capacity: 3.00
 Type options, press Enter.
 1=Monitor job 5=Work with job
 Total Total DB
 Job or CPU Sync Async CPU
 Opt Task User Number Thread Pty Util I/O I/O Util
 QCLNSYSLOG QPGMR 640427 00000088 10 24.3 0 0 .0
 QPADEV0035 TSWEENEY 639636 00000002 23 22.4 0 0 .0
 QPADEV001V KLD 640239 0000008A 20 21.7 0 0 .0
 Q1PDR QPM400 640481 00000416 50 4.9 0 0 7.1
 CRTPFRDTA QSYS 640539 00000029 50 4.7 0 0 .0
 PRTCPTRPT EILEENPI 641086 00000022 50 4.5 0 0 .0
 QPADEV0015 PEGGYCL 641174 00000016 1 1.7 4 0 .0
 QPADEV004W DHUFFMAN 640056 00000040 23 1.5 28 0 .5
 More...
 F3=Exit F10=Update list F11=View 2 F12=Cancel F19=Automatic refresh
 F24=More keys

 Select Type of Sequence

 Type option, press Enter.

 Option 2 1. Sequence by CPU
 2. Sequence by I/O
 3. Sequence by net storage
 4. Sequence by allocated storage
 5. Sequence by deallocated storage
 6. Sequence by database CPU
 7. Sequence by total waiting time

 F12=Cancel

460 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

means the job can do other work while waiting for disk I/O to complete. Synchronous disk I/O
is when a job has to wait for disk I/O work to be done before doing other work.

When you find the job that is using I/O, determine what the job is doing. You can use the
WRKACTJOB command to find the job and see what function the job is in at the time as
shown in Figure A-1 on page 458. You can also use the WRKJOB command to see what the
job is doing. For more information about the WRKJOB command, refer to “WRKJOB
command” on page 463.

If SQL is being run, Database Monitor data can help determine the problem. For more
information about gathering Database Monitor data, refer to Chapter 4, “Gathering SQL
performance data” on page 89.

Figure A-5 Work with System Activity display sorted by I/O

WRKSYSSTS command
The Work with System Status (WRKSYSSTS) command provides a global view of the
system. You can get a better view if you press F21 and select the advanced assistance level.
Press F10 to restart the statistics. It is best to look at the data after a couple of minutes have
elapsed. Press F5 to refresh the display until you see 00:02:00.

Figure A-6 shows a Work with System Status display. When you have a performance
problem, check the Work with System Status display to see if your % CPU used is higher than
you normally run. You can also look at the pools to see if you have abnormally high faulting or
paging.

What do you do when % CPU used seems high? One item to check is the % DB Capability.
If the % DB Capability is also high, then it is an indication that there is SQL activity is
occurring. Use the WRKSYSACT command to display the jobs using CPU. Refer to
“WRKSYSACT command” on page 459 for more information.

 Work with System Activity RCHASCLC
 03/04/05 10:24:50
 Automatic refresh in seconds 5
 Elapsed time : 00:00:02 Average CPU util : 99.9
 Number of CPUs : 4 Maximum CPU util : 101.8
 Overall DB CPU util . . . : 7.7 Minimum CPU util : 98.8
 Current processing capacity: 3.00
 Type options, press Enter.
 1=Monitor job 5=Work with job
 Total Total DB
 Job or CPU Sync Async CPU
 Opt Task User Number Thread Pty Util I/O I/O Util
 SMPO0001 0 1.0 0 1786 .0
 GLIDDEN51E QEJBSVR 620898 0000000C 0 .3 173 0 .0
 LTWAS51ND QEJBSVR 632143 00002D98 26 .4 144 0 .0
 PRTSYSRPT EILEENPI 641085 00000089 50 1.3 46 91 .0
 QYPSJSVR QYPSJSVR 624351 0000002C 0 .2 131 0 .0
 GNETSIZ AJMAC 639853 00000027 50 1.1 3 124 .0
 NODEAGENT QEJBSVR 621978 00000015 0 .2 125 0 .0
 MICK51EXP QEJBSVR 636665 000000D2 0 .2 115 0 .0
 More...
 F14=Display jobs only F15=Display tasks only F16=Resequence
 F24=More keys

Appendix A. Tools to check a performance problem 461

� If a high priority job (low number) is using a lot of CPU, greater than 50% for an extended
period of time, then the job can cause the entire system to have poor response times. If it
is found that one or a few jobs are using the majority of CPU, then ask:

– Is the priority of the job really appropriate?

– Is the job running in the correct environment? For example, if the job is interactive,
would it be better suited to run in batch?

– What is the job doing?

� If the CPU utilization is high, greater than 80%, and all jobs seem to have an equal but
small CPU percent, this can mean that there are too many active jobs on the system.

Figure A-6 Work with System Status display

For more information about the WRKSYSSTS command and how to view the data via iSeries
Navigator, see Managing OS/400 with Operations Navigator V5R1 Volume 5: Performance
Management, SG24-6565.

WRKOBJLCK command
Using the Work with Object Lock (WRKOBJLCK) command on user profiles can help narrow
down clients that are having performance problems. For example, a user is using an ODBC
connection and is complaining about having a performance problem. To find the job that the
user is running on the iSeries, enter the following command:

WRKOBJLCK OBJ(QSYS/userprofile) OBJTYPE(*USRPRF)

In this example, userprofile refers to the user’s iSeries user ID.

A panel is displayed that shows a list of jobs that the user profile has locked. You can work
with each job to see if you can isolate the one that is having the problem. You can look at the
call stack and objects locked to see a picture of what the job is doing.

 Work with System Status RCHASCLC
 03/04/05 13:52:55
 % CPU used : 2.7 System ASP : 1922 G
 % DB capability : .0 % system ASP used . . . : 88.2414
 Elapsed time : 00:02:00 Total aux stg : 2055 G
 Jobs in system : 14182 Current unprotect used . : 6944 M
 % perm addresses : .202 Maximum unprotect . . . : 7476 M
 % temp addresses : .910

 Sys Pool Reserved Max ----DB----- --Non-DB--- Act- Wait- Act-
 Pool Size M Size M Act Fault Pages Fault Pages Wait Inel Inel
 1 788.06 227.82 +++++ .0 .0 .9 1.3 18.3 .0 .0
 2 2754.35 2.17 9514 .0 .8 11.4 42.8 2148 .0 .0
 3 4785.78 .00 233 .0 .0 4.1 4.8 32.8 .0 .0
 4 44.91 .00 11 .0 .0 .0 .0 .0 .0 .0
 5 94.20 .00 5 .0 .0 .0 .0 .0 .0 .0
 6 1.25 .00 6 .0 .0 .0 .0 .0 .0 .0
 7 94.20 .00 24 .0 .0 .0 .0 .0 .0 .0
 8 94.20 .00 5 .0 .0 .0 .0 .0 .0 .0
 9 763.33 .17 23 .0 .0 .0 .0 83.5 .0 .0
 Bottom
 ===>
 F21=Select assistance level

462 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

If any program beginning with QSQ is found in the call stack or QDBGETMQO is found, then
SQL is being used. Refer to Chapter 3, “Overview of tools to analyze database performance”
on page 33, to learn about other tools that you can use to further analyze the job, after the
correct job is found.

WRKJOB command
You can use the Work with Job (WRKJOB) command to determine what a job is doing. It
includes options to look at the job. Some of the following options might be helpful to check for
jobs that have performance problems:

� Use option 1 to find the pool in which the job is running. The subsystem and subsystem
pools are shown:

An example is:
Subsystem : QINTER
 Subsystem pool ID : 2

To find the system pool in which the job is running, enter the Work with Subsystems
(WRKSBS) command.

Figure A-7 shows the Work with Subsystems display for our example. As you can see, the
subsystem pool ID is 2 and the subsystem is QINTER. We go to subsystem QINTER and
look under the subsystem pool column of 2, which shows the job is using system pool 3.

Figure A-7 Work with Subsystems display

� Use option 3 to give the job run attributes, if the job is active. This option is helpful in
determining how much CPU and temporary storage are being used in the job. High
temporary storage use can be the result of temporary indexes being built.

� Use option 4 to see all the spooled files for the job. Check this to see if any unexpected
spooled files are being created.

Work with Subsystems
 System: RCHASCLC
 Type options, press Enter.
 4=End subsystem 5=Display subsystem description
 8=Work with subsystem jobs

 Total -----------Subsystem Pools------------
 Opt Subsystem Storage (M) 1 2 3 4 5 6 7 8 9 10
 QASE5 .00 2 8
 QASE51 .00 2 9
 QBATCH 1.25 2 6
 QCMN .00 2
 QCTL .00 2
 QEJBAS51 .00 2
 QHTTPSVR .00 2
 QINTER .00 2 3 4 5
 QMQM .00 2
 QSERVER .00 2
 More...
 Parameters or command
 ===>
F3=Exit F5=Refresh F11=Display system data F12=Cancel
 F14=Work with system status

Appendix A. Tools to check a performance problem 463

� Use option 10 to see the job log for the job. It is important to review the job log. Chapter 3,
“Overview of tools to analyze database performance” on page 33, explains how to turn on
debug messages to capture optimizer messages when running SQL.

� Use option 11 to view the call stack for the job. The example in Figure A-8 shows
QDBGETMQO at the bottom of the call stack. QDBGETMQO is when the SQL Query
Engine (SQE) is getting rows. SQE is discussed in Chapter 2, “DB2 for i5/OS performance
basics” on page 11.

If QDBGETM is displayed at the bottom of the call stack, either the Classic Query Engine
(CQE) is fetching rows or there is native I/O such as in RPG. It is important to note any
user programs that are at the bottom of the call stack. If a user program is found, use the
Print SQL Information (PRTSQLINF) command to see if the program contains SQL. For
details about PRTSQLINF, refer to Chapter 3, “Overview of tools to analyze database
performance” on page 33.

Press F10 to monitor whether the programs in the call stack change. If any program
beginning with QSQ is found in the call stack or QDBGETMQO is found, then SQL is
being used.

Figure A-8 Display Call Stack display, when using option 11 from the WRKJOB command

iDoctor for iSeries Job Watcher
For a more in depth analysis of a performance problem, you can use the advanced analysis
tool called iDoctor for iSeries Job Watcher, which we refer to as Job Watcher. Job Watcher is
made up of two parts:

� Tools for collecting data
� Tools for analyzing and viewing the collected data

A typical situation to use the Job Watcher is for a job that is taking a long time to run but is
hardly using any CPU resource and disk I/Os are not particularly excessive. Job Watcher is
an excellent tool to help you determine job waits, seizes, and other types of contention.
Identifying why a job or multiple jobs or threads are “not doing anything when they should be,”
is a primary situation to demonstrate a key set of Job Watcher capabilities.

 Display Call Stack
 System: RCHASCLC
 Job: QPADEV0027 User: PEGGYCL Number: 647778

 Thread: 00000046

 Program
 Rqs or
 Lvl Procedure Library Statement Instruction
 QSQIMAIN QSQL 05CA
 QSQISE QSQL 0707
 QQUDA QSYS 03CD
 QQURA QSYS 0087
 QQURB QSYS 0677
 QDBGETMQO QSYS 0000002573

 Bottom
 F3=Exit F10=Update stack F11=Display activation group F12=Cancel
 F16=Job menu F17=Top F18=Bottom F22=Display entire name

464 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Job Watcher returns near real-time information about a selected set of jobs, threads, LIC
tasks, or all three. It is similar in sampling function to the WRKACTJOB and WRKSYSACT
system commands, where each refresh computes delta information for the ending snapshot
interval. In Job Watcher, these refreshes can be set to occur automatically, even as
frequently as every five seconds. Better yet, Job Watcher harvests the data from the jobs,
threads, or tasks being watched in a manner that does not impact other jobs on the system
while it is collecting.

Job Watcher collected data includes the following information among other details:

� Standard WRKSYSACT type information

– CPU

– DASD I/O breakdown

– DASD space consumption

– For jobs or threads, the user profile under which the job or thread is running

For prestart server jobs that were started under user profile QUSER, you can see the
user profile that is currently being serviced by that job/thread, rather than QUSER.

� Expanded details on types of waits and object lock or seize conditions

� Last run SQL statements syntax

� Program or procedure call stack, 1000 levels deep

You can download Job Watcher from the Web at:

http://www.ibm.com/eserver/iseries/support/i_dir/idoctor.nsf

Select downloads from the left pane and then select the appropriate download option. You
can sign up for a 45-day trial to use the product.

For further information about using Job Watcher, refer to the IBM iDoctor iSeries Job
Watcher: Advanced Performance Tool, SG24-6474.

Appendix A. Tools to check a performance problem 465

http://www.ibm.com/eserver/iseries/support/i_dir/idoctor.nsf
http://www.ibm.com/eserver/iseries/support/i_dir/idoctor.nsf

466 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this redbook.

IBM Redbooks
For information about ordering these publications, see “How to get IBM Redbooks” on
page 468. Note that some of the documents referenced here may be available in softcopy
only.

� Advanced Functions and Administration on DB2 Universal Database for iSeries,
SG24-4249

� IBM iDoctor iSeries Job Watcher: Advanced Performance Tool, SG24-6474

� Stored Procedures, Triggers and User Defined Functions on DB2 Universal Database for
iSeries, SG24-6503

� Managing OS/400 with Operations Navigator V5R1 Volume 5: Performance Management,
SG24-6565

� Preparing for and Tuning the V5R2 SQL Query Engine on DB2 Universal Database for
iSeries, SG24-6598

� Using AS/400 Database Monitor and Visual Explain To Identify and Tune SQL Queries,
REDP-0502

Other publications
These publications are also relevant as further information sources:

� DB2 Universal Database for iSeries Database Performance and Query Optimization

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp?topic=/rzajq/
rzajqmst.htm

� Star Schema Join Support within DB2 UDB for iSeries - Version 3

http://www-1.ibm.com/servers/enable/site/education/abstracts/16fa_abs.html

Online resources
These Web sites are also relevant as further information sources:

� Information Center

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp

� iDoctor for iSeries Job Watcher

http://www.ibm.com/eserver/iseries/support/i_dir/idoctor.nsf

© Copyright IBM Corp. 2007. All rights reserved. 467

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp?topic=/rzajq/rzajqmst.htm
http://www-1.ibm.com/servers/enable/site/education/abstracts/16fa_abs.html
http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp
http://www.ibm.com/eserver/iseries/support/i_dir/idoctor.nsf
http://www.ibm.com/eserver/iseries/support/i_dir/idoctor.nsf

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips, draft
publications and Additional materials, as well as order hardcopy Redbooks or CD-ROMs, at
this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

468 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

Index

Symbols
% CPU used 461
% DB Capability 461
*BASIC DBMON parameter 91
*DETAIL DBMON parameter 91
*SUMMARY DBMON parameter 91

Numerics
1000 Record 174
1000 Record (SQL statement summary) 177
3000 Record 174, 179
3001 Record 174, 181
3002 Record 174
3002 Record (temporary index created) 182
3003 Record 174, 183
3004 Record 174, 184
3006 Record 174, 185
3007 Record 174, 186
3008 Record 174
3010 Record 174, 187
3014 Record 174, 188
3015 Record 189
3018 Record 174
3019 Record 174, 189
3020 Record 174
3021 Record 175
3022 Record 175
3023 Record 175
3025 Record 175
3026 Record 175
3027 Record 175
3028 Record 175
3030 Record 175
5002 Record 175
5722PT1 425

A
access methods 408

Index probe 408
Index scan 408
Table probe 408
Table scan 408

access plan 25
rebuilt 218

Alternate Collating Sequence 21
analysis tools for database performance 33
ANDing 13
API support for Memory Resident Database Monitor 55
asynchronous disk I/O 460
authentication 6
automatic summary table 234

B
binary-radix tree index 12
bitmap index 13
bitmap indexing 13
Boolean arithmetic 13

C
CFGPFRCOL (Configure Performance Collection) com-
mand 428
Change Query Attributes (CHGQRYA) CL command

QRYTIMLMT 85
CHGQRYA (Change Query Attributes) CL command 85
CHGSYSVAL QQRYTIMLMT 85
Classic Query Engine (CQE) 11, 16, 464

Statistics Manager 22
temporary index 182

Collection Services 425
data to identify jobs using system resources 423
start 425

Collector APIs 428
communications 6
Component Report 425
compression algorithm 13
Configure Performance Collection (CFGPFRCOL) CL
command 428
connection keyword

ODBC 102
OLE DB 104

connection properties, OLE DB 103
correlated subquery 313
CPU bound 295
CQE (Classic Query Engine) 11, 16, 464
CREATE ENCODED VECTOR INDEX statement 13, 15
Create Logical File (CRTLF) command 21, 211
Create Performance Data (CRTPFRDTA) command 429
CRTLF (Create Logical File) command 21, 211
CRTPFRDTA (Create Performance Data) command 429
Current SQL for a Job function 34, 78

D
Data Access Primitives 18
data conversion problems 97
Data Definition Language (DDL) 15
Data Manipulation Language (DML) 15
data processing 6
data source name, ODBC 101
database architecture prior to V5R2 17
Database Monitor 18, 424–425

data organization in a table 176
end 94
exit program 106
global data fields 175
JDBC client 105

 Index 469

ODBC clients 101
OLE DB client 103
query examples 196
record types 174
start 90
tips to analyze files 194

Database Monitor record types
1000 Record 174, 177
3000 Record 174, 179
3001 Record 174, 181
3002 Record 174, 182
3003 Record 174, 183
3004 Record 174, 184
3006 Record 174
3007 Record 174, 186
3008 Record 174
3010 Record 174, 187
3014 Record 174, 188
3015 Record 189
3018 Record 174
3019 Record 174, 189
3021 Record 175
3022 Record 175
3023 Record 175
3025 Record 175
3026 Record 175
3027 Record 175
3028 Record 175
3030 Record 175
5002 Record 175

Database Monitor table
additional index 195
SLQ view 195
subset for faster analysis 194

database performance analysis tools 33
Database Performance Monitors 43
DDL (Data Definition Language) 15
debug information messages 18
debug messages 82
Detailed Database Monitor 90, 114

end 94
start 90, 97

Detailed Monitor 44
disk I/O counts 442
display performance data 435
distinct key list 13
DML (Data Manipulation Language) 15
dynamic bitmap 13
dynamic SQL 26

EXECUTE IMMEDIATE statement 26
SQL PREPARE 26

E
encoded-vector index (EVI) 12–13

recommended use 14
End Database Monitor (ENDDBMON) command 49, 94
ENDDBMON 94
ENDDBMON (End Database Monitor) command 49, 94
EVI (encoded-vector index) 12–13

recommended use 14

exit program 106
expert cache 219
Explain Only 279
Explain SQL 86
explainable statement 299
extended dynamic SQL 26
external table description

Memory Resident Database Monitor 56

F
filters 97
full open

analysis 203

G
global field

QQ19 175
QQJFLD 175
QQJNUM 175
QQJOB 175
QQRID 175
QQTIME 175
QQUCNT 175
QQUSER 175
QVC102 175

H
hash key 316

I
I/O bound 295
iDoctor for iSeries Job Watcher 464
index

advised 84, 214
over the Database Monitor table 195
temporary 211

Index Advisor 285
advise for encoded-vector index 66
radix index suggestion 66

Index Evaluator 67
index only access (IOA) 410
index scan-key selection 212
indexing 9

strategy 408
tips 410

IOA (index only access) 410
iSeries Navigator

Create Database Files Now 429
Current SQL for a Job 78
Graph History 429, 436
Visual Explain 61

isolation level 208

J
JDBC client, enabling Database Monitor 105
Job Watcher 464
jobs using system resources 423

470 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

K
key value 12

L
leaf node 12
LIKE predicate 419
List Explainable Statements 303
logical file, avoid use in select statements 411

M
machine interface (MI) 17
Management Central System Monitors 429, 439
management collection object (*MGTCOL) 426
materialized query table (MQT) 234
materialized view 234
Memory Resident Database Monitor 51, 90

analysis of data conversion problems 97
API support 55

QAQQ3000 56
QAQQ3001 56
QAQQ3002 56
QAQQ3003 56
QAQQ3004 56
QAQQ3007 56
QAQQ3008 56
QAQQ3010 56
QAQQQRYI 56
QAQQTEXT 56
QQQCSDBM 55
QQQDSDBM 55
QQQESDBM 55
QQQQSDBM 55
QQQSSDBM 55

external table description 56
Memory-based Database Performance Monitor 44
MI (machine interface) 17
monitor data collection 90
monitor ID 94
MQT (materialized query table) 234
MQT record types 191

N
nonreusable ODP mode 177
nonsensical query 19
numeric data type conversion 415
numeric expression 416

O
object-oriented design 17, 19
ODBC 19

connection keywords 102
data source name 101
Database Monitor 101

ODBC clients, enabled database monitor for 101
ODP (open data path) 300
OLE DB

client 103

connection keywords 104
connection properties 103

OLTP (online transaction processing) 12
online transaction processing (OLTP) 12
Open Data Path 29
open data path 29
open data path (ODP) 83, 300

reusable 43, 300
open processing time 6–7
optimization record 175
optimization time 6–7
ORing 13

P
perfect index 12
PERFORM menu 425
Performance Management APIs 425
Performance Tools 459
persistent indexes 12
Plan Cache 18

definition 27
Predictive Query Governor 85
Preparing for and Tuning the SQL Query Engine on DB2
for i5/OS 21
primary key column 212
Print performance report 430
print SQL information 33, 86
Print SQL Information (PRTSQLINF) command 43, 86,
464
PRTSQLINF (Print SQL Information) command 43, 86,
464
pseudo open 203, 206
public monitor 91

Q
QAQQINI option

IGNORE_DERIVED_INDEX 21
QAQQINI parameter

MESSAGES_DEBUG 84
QUERY_TIME_LIMIT 85

QDBFSTCCOL system value 227
QDBGETM 464
QDBGETMQO 464
QPFRADJ system value 5
QQRCOD 322
QQRID value 174
QRWTSRVR jobs 6
QSQPRCED API 26
QSQSRVR 6
QSYS/SYSIDXADV 323
QSYS2.SYSIXADV 320
QSYS2/QYQIXADV 320
QSYS2/SYSIXADV 320
query analysis 192
query attributes and values 281
Query Dispatcher 18, 21
query engine 15
query feedback 18
Query Implementation Graph 281

 Index 471

query sorting 223
QUSRMBRD API 67
QZDASOINIT jobs 5

R
radix index 12

suggestion 66
record types in Database Monitor 174
Redbooks Web site 468

Contact us xiv
relative record number (RRN) 14, 409

avoid using to access data 414
RENAME 21
reusable ODP 43, 300

mode 177
RRN (relative record number) 14, 409
run time 6

S
Satisfactory SQL performance 7
satisfactory SQL performance 7
scalar function, avoid in WHERE clause 420
secondary key column 212
SELECT *, avoid use in select statements 413
select statement

avoid use of logical files 411
avoid use of SELECT * 413

SELECT/OMIT DDS keyword 21
select/omit logical file 211
sparse index 136, 211
SQE (SQL Query Engine) 11, 16, 464
SQE Optimizer 18
SQL

analysis of operation types 202
elapsed time 199
embedded 6
problem causing requests 197
total time spent in 198

SQL (Standard Query Language) 15
SQL ALIAS 194
SQL package 26, 86

advantages 27
SQL Performance Monitor 43

Detailed Monitor 44
Memory Resident Database Monitor 51
properties 111
Summary Monitor 51
types 90
Visual Explain 63, 278

SQL Performance Monitor Wizard 96
SQL Query Engine (SQE) 11, 16, 464

Data Access Primitives 25
node-based implementation 19
staged implementation 20
statistics advised 227

SQL statement optimization 411
SQL statement summary (1000 Record) 177
SQL view for Database Monitor table 195
Standard Query Language (SQL) 15

Start Database Monitor (STRDBMON) command 49
Start Debug (STRDBG) command 43, 82, 85
Start Performance Collection (STRPFRCOL) CL com-
mand 425, 428
Start Server Job (STRSRVJOB) CL command 85
static SQL 25
statistics 9

advised 227
cardinality of values 24
frequent values 24
metadata information 24
selectivity 24

Statistics and Index Advisor 284
Statistics Manager 17–18, 227
STRDBG (Start Debug) command 43, 82, 85
STRDBMON 90
STRDBMON (Start Database Monitor) command 49
STRPFRCOL (Start Performance Collection) CL com-
mand 425, 428
STRSRVJOB (Start Server Job) CL command 85
subsystem pools 463
Summary Database Monitor 90
Summary Monitor 44, 51, 114
Summary Reports

Detailed Performance Monitor 118
Memory-Resident 146

symbol table 13
symmetric multiprocessing 20
synchronous disk I/O 461
system pool 463
system resources used by jobs 423
System Wide Index Advised table - QSYS/SYSIDXADV
323

T
table scan 209
temporary index analysis 211
temporary index created (3003 Record) 182
temporary result 84

U
user display I/O 6

V
V5R4 iSeries Information Center URL 174
vector 14
very large database (VLDB) 13
Visual Explain 18, 60

attributes and values 294
Explain Only 279
icons 311
iSeries Navigator 61
navigating 281
non-SQL interface 310
query environment 293
Run and Explain 280
SQL Performance Monitor 63, 278
toolbar 283

472 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

what is 276
VLDB (very large database) 13

W
WHERE clause, avoidance of scalar functions 420
Work with Active Jobs (WRKACTJOB) command 458
Work with Jobs (WRKJOB) command 459
Work with Object Lock (WRKOBJLCK) command 462
Work with Subsystems (WRKSBS) command 463
Work with System Activity (WRKSYSACT) command
458–459
Work with System Status (WRKSYSSTS) command 461
WRKACTJOB (Work with Active Jobs) command 458
WRKJOB (Work with Jobs) command 459
WRKOBJLCK (Work with Object Lock) command 462
WRKSBS (Work with Subsystems) command 463
WRKSYSACT (Work with System Activity) command
458–459
WRSYSSTS (Work with System Status) command 461

 Index 473

474 OnDemand SQL Performance Analysis Simplified on DB2 for i5/OS in V5R4

(1.0” spine)
0.875”<

->
1.498”

460 <
->

 788 pages

OnDem
and SQL Perform

ance Analysis Sim
plified on DB2 for i5/OS in

OnDem
and SQL Perform

ance Analysis
Sim

plified on DB2 for i5/OS in V5R4

OnDem
and SQL Perform

ance
Analysis Sim

plified on DB2 for
i5/OS in V5R4

OnDem
and SQL Perform

ance Analysis Sim
plified on DB2 for i5/OS in V5R4

OnDem
and SQL Perform

ance
Analysis Sim

plified on DB2 for
i5/OS in V5R4

OnDem
and SQL Perform

ance
Analysis Sim

plified on DB2 for
i5/OS in V5R4

®

SG24-7326-00 ISBN 0738486264

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

OnDemand SQL Performance
Analysis Simplified
on DB2 for i5/OS in V5R4

Explore and Filter the
SQE Plan Cache to
enhance Performance
Analysis

Navigate the SQL
Performance
Monitors using the
new Dashboard

Optimize your
indexing strategy
with the new Index
Advisor

The goal of database performance tuning is to minimize the
response time of your queries. It is also to optimize your server’s
resources by minimizing network traffic, disk I/O, and CPU time.

This IBM Redbook helps you to understand the basics of identifying
and tuning the performance of Structured Query Language (SQL)
statements using IBM DB2 for i5/OS. DB2 for i5/OS provides a
comprehensive set of tools that help technical analysts tune SQL
queries. The SQL Performance Monitors are part of the set of tools
that IBM i5/OS provides for assisting in SQL performance analysis
since Version 3 Release 6. These monitors help to analyze database
performance problems after SQL requests are run. In V5R4 of i5/OS,
iSeries Navigator provides a series of new tools for SQL
performance analysis that we cover in this book. Capability of
visualizing the contents of the SQE Plan Cache, SQE Plan Cache
Snapshots, Dashboard, the new reporting tool, On Demand Index
Advisor and evaluators such as Index and Materialized Query Tables
are among the new tools we cover.

This book also presents tips and techniques based on the SQL
Performance Monitors and other tools, such as Visual Explain and all
the tools provided in V5R4. You’ll find this guidance helpful in
gaining the most out of both DB2 for i5/OS and query optimizer
when using SQL.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 Introduction to DB2 for i5/OS and database performance tools
	Chapter 1. Determining whether you have an SQL performance problem
	1.1 Questions to ask yourself
	1.2 How do you know that there is a problem?
	1.3 Where is the problem occurring?
	1.4 Did you ever have satisfactory performance?
	1.5 Do SQL queries appear to have performance problems?

	Chapter 2. DB2 for i5/OS performance basics
	2.1 Basics of indexing
	2.1.1 Binary radix tree indexes
	2.1.2 Encoded-vector index

	2.2 Query engines: an overview
	2.2.1 Database architecture before V5R2M0
	2.2.2 Current database architecture
	2.2.3 Query Dispatcher
	2.2.4 Statistics Manager
	2.2.5 SQE Optimizer
	2.2.6 Data Access Primitives
	2.2.7 Access plan
	2.2.8 SQL packages
	2.2.9 SQE Plan Cache
	2.2.10 Open Data Path

	Part 2 Gathering, analyzing, and querying database performance data
	Chapter 3. Overview of tools to analyze database performance
	3.1 Introduction to the tools
	3.2 SQE Plan Cache
	3.3 SQE Plan Cache Snapshots
	3.4 The Database Performance Monitors
	3.4.1 Detailed Monitor
	3.4.2 Summary Monitor or Memory Resident Database Monitor
	3.4.3 Importing a Database Monitor to SQL Performance Monitor
	3.4.4 The Monitor Comparison feature of SQL Performance Monitor

	3.5 Visual Explain
	3.6 Index Advisor
	3.7 Evaluators
	3.7.1 Index Evaluator
	3.7.2 MQT (Materialized Query Tables) Evaluator

	3.8 Current SQL for a Job function
	3.9 Debug messages
	3.10 Print SQL information

	Chapter 4. Gathering SQL performance data
	4.1 Types of SQL Performance Monitors
	4.2 Collecting Detailed SQL performance data
	4.2.1 Starting a Detailed Database Monitor using the command interface
	4.2.2 The SQL Performance Monitor Wizard
	4.2.3 Starting a Detailed SQL Performance Monitor
	4.2.4 Enabling Database Monitors in ODBC clients
	4.2.5 Enabling Database Monitors in OLE DB clients
	4.2.6 Enabling Database Monitors in JDBC clients
	4.2.7 Enabling Database Monitors in .NET clients
	4.2.8 Enabling Database Monitors using an exit program

	4.3 Collecting Summary SQL Performance Monitor data
	4.4 Importing Database Monitors into iSeries Navigator
	4.4.1 Importing detailed monitor data
	4.4.2 Importing detailed monitor data from a previous release
	4.4.3 Importing summary monitor data

	4.5 SQL Performance Monitors properties
	4.5.1 Detailed monitor properties
	4.5.2 Summary monitor properties
	4.5.3 Imported monitor properties

	4.6 Summary or Detailed SQL Performance Monitor

	Chapter 5. Analyzing SQL performance data using iSeries Navigator
	5.1 Detailed SQL Performance Monitor Analysis overview
	5.1.1 Analysis overview
	5.1.2 Amount of work requested
	5.1.3 Environmental factors
	5.1.4 Implementation information
	5.1.5 Types of statements
	5.1.6 Miscellaneous information
	5.1.7 I/O information

	5.2 In-depth analysis reports
	5.2.1 Getting detailed reports from Summary and Statement buttons
	5.2.2 Additional information reports
	5.2.3 Action menu items

	5.3 Summary SQL Performance Monitor analysis overview
	5.3.1 SQL performance report information from summary data
	5.3.2 Examples and application of Summary SQL Performance Monitor
	5.3.3 Limitations of the Summary monitor

	5.4 Show Statements
	5.4.1 Filtering options
	5.4.2 Launching Visual Explain

	5.5 Compare monitors
	5.6 Case study
	5.6.1 A poor performing SQL statement
	5.6.2 Why are table scans being done?
	5.6.3 Why is CQE being used?
	5.6.4 Comparison

	Chapter 6. Custom Database Monitor Analysis
	6.1 The Database Monitor record types
	6.1.1 Database Monitor record types
	6.1.2 The 1000 Record: SQL statement summary
	6.1.3 The 30XX Records: Query Optimization Row Type
	6.1.4 The 3000 Record: Arrival sequence (table scan)
	6.1.5 The 3001 Record: using an existing index
	6.1.6 The 3002 Record: temporary index created
	6.1.7 The 3003 record: query sort
	6.1.8 The 3004 record: temporary file
	6.1.9 The 3006 record: access plan rebuild
	6.1.10 The 3007 record: index evaluation
	6.1.11 The 3010 record: host variables
	6.1.12 The 3014 record: general query optimization information
	6.1.13 The 3015 record: SQE statistics advised
	6.1.14 The 3018 record: STRDBMON/ENDDBMON
	6.1.15 The 3019 record: rows retrieved detail
	6.1.16 The 3020 record: index advised (SQE)
	6.1.17 The 3030 record: materialized query table

	6.2 Introduction to query analysis
	6.3 Tips for analyzing the Database Monitor files
	6.3.1 Using an SQL ALIAS for the Database Monitor table
	6.3.2 Using a subset of the Database Monitor table for faster analysis
	6.3.3 Using SQL views for the Database Monitor table
	6.3.4 Creating additional indexes over the Database Monitor table

	6.4 Database Monitor query examples
	6.4.1 Finding SQL requests that are causing problems
	6.4.2 Total time spent in SQL
	6.4.3 Individual SQL elapsed time
	6.4.4 Analyzing SQL operation types
	6.4.5 Full open analysis
	6.4.6 Isolation level used
	6.4.7 Table scan
	6.4.8 Temporary index analysis
	6.4.9 Index advised
	6.4.10 Access plan rebuilt
	6.4.11 Query sorting
	6.4.12 SQE advised statistics analysis
	6.4.13 Fetched and Retrieved detail rows
	6.4.14 Materialized query tables

	Chapter 7. SQE Plan Cache and SQE Plan Cache Snapshots
	7.1 SQE Plan Cache and SQE Plan Cache Snapshot
	7.2 SQE Plan Cache
	7.2.1 Viewing the properties of the SQE Plan Cache
	7.2.2 Viewing the content of the SQE Plan Cache
	7.2.3 Using the filter options
	7.2.4 Finding and Visual Explaining a query from the SQE Plan Cache

	7.3 SQE Plan Cache Snapshot
	7.3.1 Creating an SQE Plan Cache Snapshot using iSeries Navigator
	7.3.2 Creating an SQE Plan Cache Snapshot using Stored Procedure
	7.3.3 Creating an SQE Plan Cache Snapshot using an Exit Program
	7.3.4 Analyzing an SQE Plan Cache Snapshot
	7.3.5 Working with SQL statements from an SQE Plan Cache Snapshot
	7.3.6 An example of finding table scans in a SQE Plan Cache Snapshot
	7.3.7 Comparing SQE Plan Cache Snapshots

	Chapter 8. Analyzing database performance data with Visual Explain
	8.1 What is Visual Explain
	8.2 Finding Visual Explain
	8.2.1 The SQL Script Center
	8.2.2 Explain Only
	8.2.3 Run and Explain
	8.2.4 Explain While Running

	8.3 Navigating Visual Explain
	8.3.1 Toolbar
	8.3.2 Menu options
	8.3.3 Controlling the diagram level of detail
	8.3.4 Displaying the Environment Settings
	8.3.5 Visual Explain query attributes and values

	8.4 Using Visual Explain with Database Monitor data
	8.5 Using Visual Explain with imported data
	8.5.1 Show Statements

	8.6 Using Visual Explain with SQE Plan Cache and Plan Cache Snaphot
	8.6.1 Using Visual Explain with SQE Plan Cache
	8.6.2 Using Visual Explain with SQE Plan Cache Snapshot

	8.7 Non-SQL interface considerations
	8.8 The Visual Explain icons

	Chapter 9. Index Advisor
	9.1 What is the Index Advisor
	9.2 System Wide Index Advised Table
	9.3 Levels of Index Advisor access
	9.3.1 Index Advisor access at Database level
	9.3.2 Index Advisor access at Schema level
	9.3.3 Index Advisor access at Table level

	9.4 Index Advisor interface in iSeries Navigator
	9.5 Interfaces to Index Advised information
	9.5.1 Access to Index Advised information from Detailed SQL Performance Monitor screen interface
	9.5.2 Access to Index Advised information from SQE Plan Cache screen interface
	9.5.3 Access to Index Advised information from SQE Plan Cache Snapshot screen interface
	9.5.4 Access to Index Advised information from Visual Explain screen interface
	9.5.5 Access to Index Advised information from the Debug messages

	9.6 Temporary Indexes
	9.6.1 CQE - Temporary Indexes
	9.6.2 SQE - Temporary Indexes

	Chapter 10. SQL performance analysis: a methodology
	10.1 Performance methodology
	10.2 Performance troubleshooting
	10.2.1 Problem source determination
	10.2.2 Performance data capture
	10.2.3 Performance analysis process

	10.3 Application of the tools to the methodology
	10.4 Example of using the methodology

	Part 3 Additional tips
	Chapter 11. Environmental settings that affect SQL performance
	11.1 Introduction
	11.2 Optimization goal
	11.2.1 What is the goal?
	11.2.2 Setting the Optimization Goal

	11.3 Sensitive Cursors
	11.3.1 Performance and query optimization impacts
	11.3.2 Cursor sensitivity programming interfaces

	11.4 SMP (Symmetrical multiprocessing) Degree
	11.4.1 iSeries i5/OS Architecture
	11.4.2 What is SMP?
	11.4.3 SMP parallel-enabled functions
	11.4.4 Parallel Database Processing
	11.4.5 Enabling parallel processing
	11.4.6 Feedback
	11.4.7 Available and balanced resources
	11.4.8 SMP considerations

	Chapter 12. Tips to proactively prevent SQL performance problems
	12.1 Indexing strategy
	12.1.1 Access methods
	12.1.2 Guidelines for perfect indexes
	12.1.3 Additional indexing tips
	12.1.4 Index Advisor

	12.2 Coding of your SQL statements
	12.2.1 Avoid using logical files in your select statements
	12.2.2 Avoid using SELECT * in your select statements
	12.2.3 Avoid using the relative record number to access your data
	12.2.4 Avoid numeric data type conversion
	12.2.5 Avoid numeric expressions
	12.2.6 Using the LIKE predicate
	12.2.7 Avoid scalar functions in the WHERE clause

	Chapter 13. Using Collection Services data to identify jobs using system resources
	13.1 Relationship of Collection Services, Database Monitor data and Performance Trace
	13.2 Collection Services and Database Monitor data
	13.2.1 Starting Collection Services
	13.2.2 From iSeries Navigator
	13.2.3 Using Performance Management APIs
	13.2.4 V5R4 STRPFRCOL command

	13.3 Using Collection Services data to find jobs using CPU
	13.3.1 Finding jobs using CPU with the Component Report
	13.3.2 Finding jobs using CPU with iSeries Navigator Graph History
	13.3.3 Finding jobs using CPU with Management Central System Monitors

	13.4 Using Collection Services data to find jobs with high disk I/O counts
	13.5 Using Performance Data of the Database Monitor to find the query that needs optimization
	13.6 Using Performance Trace to find object locks

	Appendix A. Tools to check a performance problem
	WRKACTJOB command
	WRKSYSACT command
	WRKSYSSTS command
	WRKOBJLCK command
	WRKJOB command
	iDoctor for iSeries Job Watcher

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

