Disaster Recovery Solutions for IBM TotalStorage SAN File System

- Protect your SAN File System from disaster
- Use advanced disk replication solutions
- Step by step instructions

Charlotte Brooks
Huang Dachuan
Derek Jackson
Matthew A. Miller
Massimo Rosichini

ibm.com/redbooks
Note: Before using this information and the product it supports, read the information in “Notices” on page vii.

First Edition (January 2006)

This edition applies to Version 2, Release 2, Modification 2 of IBM TotalStorage SAN File System (product number 5765-FS2) on the day of announce in October of 2005. Please note that pre-release code was used for the screen captures and command output; some minor details may vary from the generally available product.

© Copyright International Business Machines Corporation 2006. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
Contents

Figures ...v

Notices ... vii
Trademarks .. viii

Preface .. ix
The team that wrote this redbook ..ix
Become a published author ..xi
Comments welcome ...xi

Chapter 1. Introduction to disaster recovery for IBM TotalStorage SAN File System . 1
1.1 What is disaster recovery? ... 2
1.2 A breakdown of the seven tiers ... 2
 1.2.1 Tier 0: No off-site data .. 3
 1.2.2 Tier 1: Data backup with no hot site .. 3
 1.2.3 Tier 2: Data backup with a hot site ... 3
 1.2.4 Tier 3: Electronic vaulting .. 3
 1.2.5 Tier 4: Point-in-time copies .. 3
 1.2.6 Tier 5: Transaction integrity .. 4
 1.2.7 Tier 6: Zero or little data loss .. 4
 1.2.8 Tier 7: Highly automated, business integrated solution .. 4
1.3 SAN File System overview ... 4
1.4 SAN File System architecture ... 5
1.5 IBM copy services ... 7
 1.5.1 Metro Mirror .. 7
 1.5.2 FlashCopy .. 8
 1.5.3 What is data consistency? .. 8
1.6 Use of the disaster recovery tiers in this book ... 9
1.7 SAN File System DR considerations ... 10

Chapter 2. Scenario 1: Complete recovery to different TCP/IP address .. 13
2.1 Scenario overview and preparation ... 14
 2.1.1 Establishing and invoking Metro Mirror for required volumes .. 15
 2.1.2 Establishing a consistency group for source and target storage pools 19
 2.1.3 Optional: Creating a configuration file on recovery MDSs .. 24
2.2 Recovery ... 29
 2.2.1 Simulating a disaster that requires recovery to Site B ... 29
 2.2.2 Turning on the MDSs at Site B ... 30
 2.2.3 Recovering Site B SAN File System cluster .. 30
 2.2.4 Alternate Site B SAN File System cluster recovery ... 36
 2.2.5 Verifying data recovery and access ... 37

Chapter 3. Scenario 2: Complete recovery to same TCP/IP address ... 39
3.1 Scenario overview and preparation ... 40
 3.1.1 Preparing the disaster recover file on original MDSs ... 41
 3.1.2 Establishing and invoking Metro Mirror for required volumes 41
 3.1.3 Establishing a consistency group for source and target storage pools 41
3.2 Recovery ... 42
Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Seven tiers of business continuity solutions</td>
<td>2</td>
</tr>
<tr>
<td>1-2</td>
<td>SAN File System architecture</td>
<td>6</td>
</tr>
<tr>
<td>1-3</td>
<td>Metro Mirror for SVC</td>
<td>7</td>
</tr>
<tr>
<td>1-4</td>
<td>Implementation of SVC FlashCopy</td>
<td>8</td>
</tr>
<tr>
<td>2-1</td>
<td>Scenario 1 topology</td>
<td>14</td>
</tr>
<tr>
<td>2-2</td>
<td>Create a Metro Mirror Relationship page</td>
<td>15</td>
</tr>
<tr>
<td>2-3</td>
<td>Selecting the Auxiliary Cluster page</td>
<td>16</td>
</tr>
<tr>
<td>2-4</td>
<td>Selecting the Master VDisk page</td>
<td>17</td>
</tr>
<tr>
<td>2-5</td>
<td>Select the auxiliary vdisk</td>
<td>17</td>
</tr>
<tr>
<td>2-6</td>
<td>Metro Mirror relationship options</td>
<td>18</td>
</tr>
<tr>
<td>2-7</td>
<td>Verifying Metro Mirror Relationship page</td>
<td>18</td>
</tr>
<tr>
<td>2-8</td>
<td>Metro Mirror relationships</td>
<td>19</td>
</tr>
<tr>
<td>2-9</td>
<td>Create a consistency group - 1</td>
<td>19</td>
</tr>
<tr>
<td>2-10</td>
<td>Create a consistency group - 2</td>
<td>20</td>
</tr>
<tr>
<td>2-11</td>
<td>Create a consistency group - 3</td>
<td>20</td>
</tr>
<tr>
<td>2-12</td>
<td>Create a consistency group - 4</td>
<td>21</td>
</tr>
<tr>
<td>2-13</td>
<td>Create a consistency group - 5</td>
<td>21</td>
</tr>
<tr>
<td>2-14</td>
<td>Create a consistency group - 6</td>
<td>22</td>
</tr>
<tr>
<td>2-15</td>
<td>Display consistency groups</td>
<td>22</td>
</tr>
<tr>
<td>2-16</td>
<td>Start Metro Mirror copy process</td>
<td>23</td>
</tr>
<tr>
<td>2-17</td>
<td>Status after starting the Metro Mirror</td>
<td>23</td>
</tr>
<tr>
<td>2-18</td>
<td>Status of Metro Mirror when consistency is achieved</td>
<td>24</td>
</tr>
<tr>
<td>2-19</td>
<td>Stop Metro Mirror copy process</td>
<td>29</td>
</tr>
<tr>
<td>2-20</td>
<td>Enable write access to secondary disks</td>
<td>29</td>
</tr>
<tr>
<td>2-21</td>
<td>Metro Mirror process is stopped</td>
<td>30</td>
</tr>
<tr>
<td>2-22</td>
<td>SAN File System can access the recovered cluster</td>
<td>37</td>
</tr>
<tr>
<td>2-23</td>
<td>SAN File System can browse directories</td>
<td>38</td>
</tr>
<tr>
<td>2-24</td>
<td>Drill down to check files and directories</td>
<td>38</td>
</tr>
<tr>
<td>3-1</td>
<td>Scenario 2 topology</td>
<td>40</td>
</tr>
<tr>
<td>3-2</td>
<td>SAN File System can access the recovered cluster</td>
<td>43</td>
</tr>
<tr>
<td>3-3</td>
<td>SAN File System can browse directories</td>
<td>43</td>
</tr>
<tr>
<td>4-1</td>
<td>Scenario 3 topology</td>
<td>46</td>
</tr>
<tr>
<td>4-2</td>
<td>View FlashCopy Mappings page</td>
<td>47</td>
</tr>
<tr>
<td>4-3</td>
<td>Steps to create a FlashCopy mapping</td>
<td>48</td>
</tr>
<tr>
<td>4-4</td>
<td>FlashCopy Mapping properties</td>
<td>48</td>
</tr>
<tr>
<td>4-5</td>
<td>Select source LUN</td>
<td>49</td>
</tr>
<tr>
<td>4-6</td>
<td>Select target LUN</td>
<td>49</td>
</tr>
<tr>
<td>4-7</td>
<td>Verify mapping</td>
<td>50</td>
</tr>
<tr>
<td>4-8</td>
<td>Complete set of FlashCopy mappings</td>
<td>50</td>
</tr>
<tr>
<td>4-9</td>
<td>Create a Consistency Group selection</td>
<td>51</td>
</tr>
<tr>
<td>4-10</td>
<td>Consistency group properties</td>
<td>51</td>
</tr>
<tr>
<td>4-11</td>
<td>Consistency group is created</td>
<td>52</td>
</tr>
<tr>
<td>4-12</td>
<td>Start FlashCopy consistency group</td>
<td>53</td>
</tr>
<tr>
<td>4-13</td>
<td>View FlashCopy process</td>
<td>53</td>
</tr>
<tr>
<td>4-14</td>
<td>FlashCopy is complete</td>
<td>54</td>
</tr>
<tr>
<td>4-15</td>
<td>FlashCopy mappings are all complete.</td>
<td>54</td>
</tr>
<tr>
<td>4-16</td>
<td>Browsing the SAN File System directories</td>
<td>55</td>
</tr>
<tr>
<td>4-17</td>
<td>New FlashCopy mappings</td>
<td>56</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4-18</td>
<td>Verify data is correctly restored - 1</td>
<td>56</td>
</tr>
<tr>
<td>4-19</td>
<td>Verify data is correctly restored - 2</td>
<td>56</td>
</tr>
<tr>
<td>5-1</td>
<td>Original cluster setup</td>
<td>60</td>
</tr>
<tr>
<td>6-1</td>
<td>SAN File System enables LAN-free backup</td>
<td>66</td>
</tr>
<tr>
<td>7-1</td>
<td>Exploitation of SAN File System with Tivoli Storage Manager</td>
<td>73</td>
</tr>
<tr>
<td>7-2</td>
<td>User files selection</td>
<td>75</td>
</tr>
<tr>
<td>7-3</td>
<td>Restore selective file selection</td>
<td>76</td>
</tr>
<tr>
<td>7-4</td>
<td>Select destination of restore file(s)</td>
<td>76</td>
</tr>
<tr>
<td>7-5</td>
<td>Restore files selection for FlashCopy image backup</td>
<td>77</td>
</tr>
<tr>
<td>7-6</td>
<td>Restore files destination path selection</td>
<td>77</td>
</tr>
</tbody>
</table>
Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and distribute these sample programs in any form without payment to IBM for the purposes of developing, using, marketing, or distributing application programs conforming to IBM's application programming interfaces.
Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United States, other countries, or both:

- eServer®
- AIX®
- DB2®
- Enterprise Storage Server®
- FlashCopy®
- HyperSwap™
- IBM®
- Redbooks™
- Tivoli®
- TotalStorage®

The following terms are trademarks of other companies:

- Solaris, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
Preface

This IBM® Redbook presents various scenarios for recovery of the IBM TotalStorage® SAN File System, ranging from complete recovery at an alternative site (using MetroMirror to provide synchronous mirroring of the data) to replacement of a Metadata server (MDS) that has failed. Each scenario includes step-by-step instructions.

This book is intended for those who already have extensive knowledge of SAN File System; this knowledge can be obtained by reading IBM TotalStorage SAN File System, SG24-7057 and the other resources listed in the bibliography.

You must also have advanced knowledge of copy services offerings on the storage systems used for metadata and user volumes. We provide some examples of this using the IBM TotalStorage SAN Volume Controller, but there are many other systems that can be used. Detailed setup procedures for each of these is beyond the scope of this redbook, so see your system documentation.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world working at the Advanced Technical Support Storage Solutions Benchmark Center in Gaithersburg, Maryland.

Charlotte Brooks is an IBM Certified IT Specialist and project leader for Storage Solutions at the International Technical Support Organization, San Jose Center. She has 14 years of experience with IBM TotalStorage hardware and software, IBM pSeries® servers, and AIX®. She has written 15 Redbooks™ and has developed and taught IBM classes in all areas of storage and storage management. Before joining the ITSO in 2000, she was the technical support manager for Tivoli® Storage Manager in the Asia Pacific Region.

Huang Dachuan is an advisory IT specialist in the Advanced Technical Support team of IBM China in Beijing. He has nine years of experience in networking and storage support. He is CCIE certified and his expertise includes Storage Area Networks, IBM TotalStorage SAN Volume Controller, SAN File System, ESS, DS6000, DS8000, copy services, and networking products from IBM and Cisco.

Derek Jackson is a senior IT specialist working for the Advanced Technical Support Storage Solutions Benchmark Center in Gaithersburg. He primarily supports SAN File System, IBM TotalStorage Productivity Center, and the ATS lab infrastructure. Derek has worked for IBM for 22 years and has been employed in the IT field for 30 years. Before joining ATS, Derek worked for IBM Business Continuity and Recovery Services and was responsible for delivering networking solutions for customers.

Matthew A. Miller is an IBM Certified IT Specialist and systems engineer with IBM in Phoenix. He has worked extensively with IBM Tivoli Storage Software products as a field systems engineer and as a software sales representative and currently works with Tivoli Techline. Prior to joining IBM in 2000, Matt worked for 16 years in the customer community both technical and managerial positions.

Massimo Rosichini is an IBM Certified Product Services and Country Specialist in the ITS Technical Support Group in Rome, Italy. He has extensive experience in IT support for TotalStorage solutions in the EMEA South Region. He is an ESS/DS Top Gun Specialist and
an IBM Certified Specialist for Enterprise Disk Solutions and Storage Area Network Solutions. He was an author of previous editions of *IBM TotalStorage Enterprise Storage Server Implementing ESS Copy Services in Open Environments*, SG24-5757 and *IBM TotalStorage SAN File System* SG24-7057.

The team (from left to right): Dachuan, Massimo, Matthew, Derek, and Charlotte

Thanks to the following people for their contributions to this project:

Forsyth Alexander
International Technical Support Organization, Raleigh Center

Ashish Chaurasia, Steve Correl, Jeanne Gordon, Matthew Krill, Ajay Srivastava,
IBM Beaverton

Rick Taliaferro
IBM Raleigh

John Amann, Kevin Cummings, Gonzalo Fuentes, Craig Gordon, Rosemary McCutchen,
IBM Gaithersburg

Todd DeSantis
IBM Pittsburgh

Ron Henkhaus
IBM Illinois

Michael Klein
IBM Germany

John Bynum
IBM San Jose
Become a published author

Join us for a two- to six-week residency program! Help write an IBM Redbook dealing with specific products or solutions, while getting hands-on experience with leading-edge technologies. You'll team with IBM technical professionals, Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As a bonus, you'll develop a network of contacts in IBM development labs, and increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments about this or other Redbooks in one of the following ways:

- Use the online Contact us review redbook form found at:

 ibm.com/redbooks

- Send your comments in an e-mail to:

 redbook@us.ibm.com

- Mail your comments to:

 IBM Corporation, International Technical Support Organization
 Dept. QXXE Building 80-E2
 650 Harry Road
 San Jose, California 95120-6099
Introduction to disaster recovery for IBM TotalStorage SAN File System

This chapter provides a brief introduction to the concept of disaster recovery and IBM TotalStorage SAN File System.

In this chapter, we discuss:

- Definition of disaster recovery: the seven tiers
- SAN File System overview
- SAN File System architecture and requirements for disaster recovery
- Introduction to disk copy services
1.1 What is disaster recovery?

This book focuses specifically on disaster recovery of the SAN File System, which is defined as: *The ability to recover a data center at a different site if a disaster destroys the primary site or otherwise renders it inoperable*. It is only one component of an overall business continuity plan.

In other scenarios, we also consider recoveries from partial failures, such as failure in the storage system, and failure of an individual server (either a SAN File System Metadata server or a SAN File System client).

Note: For a more comprehensive discussion of business continuity and disaster recovery, see *IBM TotalStorage Business Continuity Solutions Guide*, SG24-6547.

Business continuity is commonly discussed in terms of seven tiers.

1.2 A breakdown of the seven tiers

In 1992, the SHARE user group in the United States, in combination with IBM, defined a set of business continuity tier levels. This was done to address the need to properly describe and quantify various differing methodologies for successful implementations of mission-critical computer systems business continuity. Accordingly, within the IT business continuance industry, the tier concept continues to be used, and it is very useful for describing today's business continuity capabilities. They need only to be updated for today's specific business continuity technologies and associated Recovery Time Objective/Recovery Point Objective (RTO/RPO).

The seven tiers of business continuity solutions offer a simple methodology for defining your current service level, the current risk, and the target service level and environment. Figure 1-1 summarizes the seven tiers.
1.2.1 Tier 0: No off-site data

Businesses with a Tier 0 business continuity solution have no business continuity plan. This means that:

- There is no saved information, no documentation, no backup hardware, and no contingency plan.
- The length of recovery time in this instance is unpredictable. In fact, it might not be possible to recover at all.

1.2.2 Tier 1: Data backup with no hot site

Businesses that use Tier 1 business continuity solutions back up their data at an off-site facility. Depending on how often backups are made, they are prepared to accept several days to several weeks of data loss, but their off-site backups are secure. However, this tier lacks the systems on which to restore data. Example 1-1 shows some Tier 1 solutions.

Example 1-1 Examples of Tier 1 business continuity solutions

| Pickup Truck Access Method (PTAM), disk subsystem or tape-based mirroring to locations without processors, IBM Tivoli Storage Manager |

1.2.3 Tier 2: Data backup with a hot site

Businesses with Tier 2 business continuity solutions make regular backups on tape. This is combined with an off-site facility and infrastructure (known as a hot site) for restoring systems from those tapes in the event of a disaster. This solution tier results in the need to recreate several hours to several days of data, but it is less unpredictable in recovery time. Example 1-2 shows some Tier 2 solutions.

Example 1-2 Tier 2 business continuity solutions

| Electronic Vaulting of Data, IBM Tivoli Storage Manager - Disaster Recovery Manager |

1.2.4 Tier 3: Electronic vaulting

Tier 3 solutions utilize components of Tier 2. Additionally, some-mission critical data is electronically vaulted. This electronically vaulted data is typically more current than that which is shipped by PTAM. As a result, there is less data recreation or loss after a disaster occurs. Example 1-3 shows some Tier 3 solutions.

Example 1-3 Tier 3 business continuity solutions

| Electronic Vaulting of Data, IBM Tivoli Storage Manager - Disaster Recovery Manager |

1.2.5 Tier 4: Point-in-time copies

Tier 4 solutions are used by businesses that require both greater data currency and faster recovery than users of lower tiers. Rather than relying largely on shipping tape, as is common for the lower tiers, Tier 4 solutions begin to incorporate more disk-based solutions. Several hours of data loss are still possible, but it is easier to make such point-in-time (PIT) copies with greater frequency than data replicated with tape-based solutions. Example 1-4 on page 4 shows some Tier 4 solutions.
Example 1-4 Tier 4 business continuity solutions

Batch/Online Database Shadowing and Journaling, Global Copy, FlashCopy, FlashCopy Manager, Peer-to-Peer Virtual Tape Server, Metro/Global Copy, IBM Tivoli Storage Manager - Disaster Recovery Manager, FlashCopy Backup/Restore for SAP Databases, DS4000 Integrated Backup for Databases, Rapid Data Recovery for UNIX and Windows (eRCMF)

1.2.6 Tier 5: Transaction integrity

Tier 5 solutions are used by businesses that require consistency between production and recovery data centers. There is little to no data loss in such solutions; however, the presence of this functionality is entirely dependent on the application in use. Example 1-5 shows some Tier 5 solutions.

Example 1-5 Tier 5 business continuity solutions

Software, two-phase commit, such as DB2 remote replication, Oracle Data-Guard, and so on.

1.2.7 Tier 6: Zero or little data loss

Tier 6 business continuity solutions maintain the highest levels of data currency. They are used by businesses with little or no tolerance for data loss that need to restore data to applications rapidly. These solutions do not depend on applications to provide data consistency. Example 1-6 shows some Tier 6 solutions.

Example 1-6 Tier 7 business continuity solutions

Metro Mirror, Global Mirror, z/OS Global Mirror, GDPS HyperSwap Manager, Peer-to-Peer VTS with synchronous write, PPRC Migration Manager, eRCMF, HACMP/XD with Logical Volume Mirroring, HACMP/XD with Metro Mirror

1.2.8 Tier 7: Highly automated, business integrated solution

Tier 7 solutions include all the major components that are used for a Tier 6 solution with the additional integration and automation. This allows Tier 7 solutions to ensure data consistency at a level above that granted by Tier 6 solutions. Recovery of the applications is automated, so that restoration of systems and applications is much faster and more reliable than manual business continuity procedures. Example 1-7 shows some Tier 7 solutions.

Example 1-7 Tier 7 business continuity solutions

GDPS/PPRC with or without HyperSwap, GDPS/XRC, AIX HACMP/XD with Metro Mirror, TotalStorage Continuous Availability for Windows, IBM eServer iSeries High Availability Business Partner software

1.3 SAN File System overview

The design of SAN File System is based on industry standards to:

- Allow data sharing and collaboration across servers over the SAN with high performance and full file locking support, using a single global namespace for the data.
- Provide more effective storage utilization by reducing the amount of duplicate data and by sharing free and temporary space across servers.
Improve productivity and reduce the “pain” for IT storage and server management staff by centralizing and simplifying management through policy-based storage management automation, thus significantly lowering the cost of storage management.

Facilitate application server and storage consolidation throughout the enterprise to scale the infrastructure for on demand storage and data.

Simplify and lower the cost of data backups through built-in, file-based FlashCopy® image function.

Eliminate data migration during application server consolidation and also reduce application downtime and failover costs.

SAN File System, a multiplatform, robust, scalable, and highly available file system, is a storage management solution that works with Storage Area Networks (SANs). It uses SAN technology, which allows an enterprise to connect a large number of computers and share a large number of storage devices with a high-performance network.

With SAN File System, heterogeneous clients can access shared data directly from large, high-performance, high-function storage systems, such as IBM TotalStorage DS6000, IBM TotalStorage DS8000, IBM TotalStorage SAN Volume Controller (SVC), IBM TotalStorage DS4000, and other storage devices. The SAN File System is built on a Fibre Channel network, and it is designed to provide superior I/O performance for data sharing between heterogeneous computers.

SAN File System differs from conventional distributed file systems in that it uses a data-access model that separates file metadata (information about the files, such as owner, permissions, and the physical file location) from actual file data (contents of the files). The metadata is provided to clients by Metadata servers (MDSs); the clients communicate with the MDSs only to obtain the information that they need to locate and access the files. Once they have this information, the SAN File System clients access data directly from storage devices with their own direct connection to the SAN. Direct data access eliminates server bottlenecks and provides the performance necessary for data-intensive applications.

SAN File System presents a single, global namespace to clients where they can create and share data, using uniform file names from any client or application. Furthermore, data consistency and integrity is maintained through SAN File System management of distributed locks and the use of leases.

SAN File System also uses polices and rules to provide automatic file placement. Based on rules specified in a centrally-defined and managed policy, SAN File System automatically stores data on devices in storage pools that are specifically created to provide the capabilities and performance appropriate for how the data is accessed and used.

1.4 SAN File System architecture

SAN File System architecture and components are illustrated in Figure 1-2 on page 6. Computers that must share data and have their storage centrally managed are all connected to the SAN. In SAN File System terms, these are known as clients, because they access SAN File System services, although in the enterprise context, they would most likely be, for example, database servers, application servers, or file servers.
In Figure 1-2, we show six such clients, each running a SAN File System currently supported client operating system. The SAN File System client software enables the client to access the global namespace through a virtual file system (VFS) on UNIX/Linux® systems and an installable file system (IFS) on Windows® systems. This layer (VFS/IFS) is built by the OS vendors for use specifically for special-purpose or newer file systems.

There are also special computers called MDS engines that run the MDS software, as shown to the left side of the figure. The MDSs manage file system metadata (including file creation time, file security information, file location information, and so on), but the user data accessed through the SAN by the clients does not pass through the MDSs.

This eliminates the performance bottleneck that many existing shared file system approaches suffer from, giving near-local file system performance. MDSs are clustered for scalability and availability of metadata operations; they are often referred to as the MDS cluster. In a SAN File System server cluster, there is one master MDS and one or more subordinate MDSs. Each MDS runs on a separate physical engine in the cluster. Additional MDSs can be added as required if the workload grows, providing solution scalability.

Storage volumes that store the SAN File System client user data (User Volumes) are separated from storage volumes that store metadata (System Pool) as shown in Figure 1-2.

The administrative server allows SAN File System to be remotely monitored and controlled through a Web-based user interface called the SAN File System console. The administrative server also processes requests that are issued from an administrative command line interface (CLI), which can also be accessed remotely. This means that the SAN File System can be administered from almost any system with suitable TCP/IP connectivity. The administrative server can use local authentication (standard Linux user IDs) to look up authentication and authorization information about the administrative users. Alternatively, an Lightweight Data Access Protocol (LDAP) server that is customer supplied can be used for authentication.

The primary administrative server runs on the same engine as the master MDS. It receives all requests issued by administrators and also communicates with administrative servers that run
on each additional server in the cluster to perform routine requests. Detailed information about the SAN File System is available in IBM TotalStorage SAN File System, SG24-7057. For the rest of this book, we assume extensive knowledge of SAN File System, its architecture, and operation.

1.5 IBM copy services

Copy services are a collection of functions that are offered in higher-end disk subsystems to provide for disaster recovery, data migration, and data duplication functions. There are two primary types of copy services functions: Point-in-Time Copy and Remote Mirror and Copy. Generally, the Point-in-Time Copy function is used for data duplication and the Remote Mirror and Copy function is used for data migration and disaster recovery. The IBM copy services implementations use the term Metro Mirror for Remote Mirror and FlashCopy for Point-in-Time Copy. The sections that follow describe these implementations in more detail.

1.5.1 Metro Mirror

Metro Mirror (previously known as synchronous Peer-to-Peer Remote Copy, or PPRC) provides real-time mirroring of logical volumes between two disk subsystems. It is a synchronous copy solution where write operations are completed for both copies (local and remote site) before they are considered to be complete. This is illustrated in Figure 1-3, which shows the actual Metro Mirror copy function for the SVC. The implementations for other disk systems are similar.

![Figure 1-3 Metro Mirror for SVC](image)
Metro Mirror is a fully synchronous remote copy technique that ensures that updates are committed at both primary and secondary sites before the application receives a completion status for an update. Figure 1-3 on page 7 shows how a write to the master virtual disk is mirrored to the cache for the auxiliary virtual disk before an acknowledgement of the write is sent back to the host that is issuing the write. This ensures that the secondary disk is synchronized in real time in case it is needed in a failover situation.

1.5.2 FlashCopy

IBM FlashCopy provides Point-in-time copy services. As shown in Figure 1-4, FlashCopy can perform an instantaneous point-in-time copy with virtually no downtime for the source host. The FlashCopy target can then be mounted to a different host (or backup server) and backed up. Using this procedure, the backup speed becomes less important, because the backup time does not require downtime for the host that is dependent on the source disks.

![Figure 1-4 Implementation of SVC FlashCopy](image)

With copy services, you create consistency groups for FlashCopy and Metro Mirror, which are critical for ensuring data and metadata consistency for SAN File System Copy Services.

1.5.3 What is data consistency?

Many applications, such as databases, process a repository of data that has been generated over a period of time. Many require that the repository be in a consistent state to begin or continue processing.

In general, consistency implies that the order of dependent writes is preserved in the data copy. For example, the following sequence might occur for a database operation involving a log volume and a data volume:

1. Write to log volume: Data Record #2 is being updated.
2. Update Data Record #2 on data volume.
3. Write to log volume: Data Record #2 update complete.

If the copy of the data contains any of these combinations, then the data is consistent:

- Operation 1, 2, and 3
If the copy of data contains any of these combinations, then the data is inconsistent (the order of dependent writes was not preserved):

- Operation 1 and 2
- Operation 1

In the consistency group operation, data consistency means that this sequence is always kept in the backup data. And, the order of non-dependent writes does not necessarily need to be preserved. For example, consider the following two sequences:

1. Deposit paycheck in checking account A.
2. Withdraw cash from checking account A.
3. Deposit paycheck in checking account B.
4. Withdraw cash from checking account B.

For the data to be consistent, the deposit of the paycheck must be applied before the withdrawal of cash for each of the checking accounts. However, it does not matter whether the deposit to checking account A or checking account B occurred first, as long as the associated withdrawals are in the correct order. So, the data copy would be consistent if the following sequence occurred at the copy:

1. Deposit paycheck in checking account B.
2. Deposit paycheck in checking account A.
3. Withdraw cash from checking account B.
4. Withdraw cash from checking account A.

In other words, the order of updates is not the same as it was for the source data, but the order of dependent writes is still preserved.

Additional detail about Consistency Groups and how they work can be found in The IBM TotalStorage DS8000 Series: Concepts and Architecture, SG24-6452.

1.6 Use of the disaster recovery tiers in this book

Our recovery scenarios cover a combination of the tier levels introduced in 1.2, “A breakdown of the seven tiers” on page 2. For example, Chapter 3, “Scenario 2: Complete recovery to same TCP/IP address” on page 39 demonstrates Tier 6 protection of the SAN File System data and storage combined with a Tier 2 protection of the server infrastructure, including the MDSs and clients.

Additional recovery scenarios are possible that might provide fully adequate protection based on the cost and recovery requirements of a business. Tier 2, Tier 3, and Tier 4 protection can be provided for the SAN File System environment using a combination of Tivoli Storage Manager and the SAN File System FlashCopy function. For example, in a Tier 2 recovery scenario where recovery is limited to just the data and not the complete SAN File System configuration, Tivoli Storage Manager alone can be used. A Tivoli Storage Manager client installed on a SAN File System client can access and back up all files in the global namespace visible to that client just as it can with a local file system. When SAN File System data is backed up, Tivoli Storage Manager captures both the data itself and the metadata so that subsequent restores can be made, either back to the SAN File System global namespace, or to a local file system or other storage that the client can access.
More details and examples of using Tivoli Storage Manager to back up the SAN File System can be found in Chapter 7, “Protecting the files in the global namespace” on page 71, and in IBM TotalStorage SAN File System, SG24-7057.

Because SAN File System is a global namespace (the files are visible to all clients), the files can be backed up from any SAN File System client. Therefore, you can back up those files, either directly from the filesets or from a SAN File System FlashCopy image, on a completely separate SAN File System client from the client that normally runs any applications on these files, thus giving applications a server-free backup. This backup method removes the application servers themselves from the data path of the backup and frees them from expending any processor cycles on the backup process. If you back up the files from a SAN File System FlashCopy image, this almost eliminates the backup window (that is, a period of outage of the application to clients), because you create an online consistent copy of the data that is then backed up. The application then proceeds uninterrupted while the backup is executed against the FlashCopy image. More information about using SAN File System FlashCopy is in IBM TotalStorage SAN File System, SG24-7057.

Important: For a complete file-based backup of files stored in the SAN File System global namespace (including security attributes, ACLs, and so on), files should be backed up on a Tivoli Storage Manager client running on the same platform as the birthplace of the file. A file birthplace is either UNIX® (including AIX, Solaris™, and Linux) or Windows. Therefore, if your SAN File System namespace includes files that were created on both UNIX and Windows platforms, you should back up Windows-created files from a Windows Tivoli Storage Manager client and back-up UNIX files from a UNIX Tivoli Storage Manager client. This will ensure OS-specific attributes can be accurately restored.

Distinction: SAN File System FlashCopy and Copy Services (hardware-based) FlashCopy are completely different functions. SAN File System FlashCopy is a file-based point-in-time copy of a fileset. File-based means that it appears as a regular directory, and all the files are visible (permissions allowing). Along with the standard FlashCopy revert function for the entire fileset, an individual file or files can be accessed, backed up, and restored (to the original fileset or to an alternative location). A Copy Services FlashCopy is a point-in-time image of a logical unit number (LUN) and can only be reverted as a single entity.

We make it clear in the context which type of FlashCopy is being discussed.

The first steps in planning for disaster recovery is to review the current production environment and outline the specific goals of recovery. Two factors to be considered are cost and degree of recovery.

1.7 SAN File System DR considerations

A prime consideration for planning disaster recovery in a SAN File System configuration is whether the recovery site will include identical equipment and infrastructure identical to the production site, or just a subset. For example:

- For the SAN File System MDS cluster, you must consider whether you will have the same number of MDSs as you have in the production site, or a smaller number. Bear in mind:
 - A minimum of two MDSs is required.
 - If you have fewer MDSs at the recovery site, performance is likely to be lower. Consider what performance levels are acceptable in a recovery situation. If you used an N+1
configuration at the production site (where one MDS has no filesets assigned to it and is used to maintain existing performance in the event of failure of a single MDS), you might choose to have only the N MDSs required, at the recover site; that is, do not have a spare idle MDS for recovery.

- The fileset type used: static or dynamic. If you have fewer MDSs available at the recovery site than at the production site, then, if you are using dynamic filesets, SAN File System automatically balances the number of filesets across the total number of MDSs in the cluster. If using statically assigned filesets, SAN File System automatically assigns filesets with static assignments to MDSs that are not present in the new cluster; that is, it treats them as dynamic. If the recovery cluster is likely to remain in operation for some time, you might wish to redefine the static assignments for more precise control on the allocation of filesets.

Note: This redbook considers only scenarios where the same number of MDSs are used at both the production and recovery site.

- Consider your network infrastructure and the impact on IP addresses for the SAN File System infrastructure and SAN File System clients and any equipment accessing those servers.
- Determine if your business has the same redundancy and failover requirements for your network at the recovery site as it does in the production site.
- Consider your storage pool design and the underlying hardware that contributes to those storage pools. Performance and cost requirements are important considerations because SAN File System itself is flexible as to what storage subsystems you can use. You should weigh the cost advantages of using less expensive disks for either your system data or user data or both; remember that there are different and more restrictive requirements on supported disk subsystems used for system data. The configurations shown in this redbook have identical storage configurations at the production and recovery sites.
- Is your recovery site to be dedicated for disaster recovery or is it to serve as a part-time production or test facility? If your recovery site has dual purposes, consider the impact on time of recovery to remove, change, or bring down any existing applications and infrastructure. In addition, consider the business impact of these supplemental facilities being unavailable throughout the recovery period.

- Are your SAN File System Client servers and computers local to your production site or remote? Do you need to be able to replace or rebuild these servers and computers in the event of a disaster to your production facility? If there is a requirement for them to be recovered, consider if that is to be done at the same recovery site as the SAN File System infrastructure. Do you plan to use identical equipment? You must also remember to consider network requirements.

Note: In this redbook we focus on the recovery of the MDS cluster itself and the access of the SAN File System clients to the global namespace. Detailed consideration of recovery of the client systems is beyond the scope of this book; however, some considerations are given in Chapter 6, “Recovery scenario: SAN File System clients” on page 65.

The key objective in a disaster recovery situation for SAN File System is to provide a means for recovering the user data, the metadata, and the metadata cluster configuration. Remember, in all cases, when you are using copy services to mirror or copy the complete SAN File System configuration, all the LUNs, both metadata and user, form a single consistency group; that is, they must be copied together as a single entity. This is required to preserve data consistency. The examples in the following chapters illustrate this principle.
In order to achieve this, all disks must be capable of being mirrored together. One way to achieve this is to use the same disk subsystem (for example, DS6000 or DS8000). If different disk subsystems are being used, then they can be made into a single “virtual” subsystem using an SVC. Our examples show SAN File System disaster recovery configurations using copy services on an SVC.
Chapter 2. Scenario 1: Complete recovery to different TCP/IP address

In this chapter, we discuss setup and restore for a complete SAN File System recovery scenario, where all the hardware and disks are destroyed and the cluster is re-created using MDSs at a different location with replicated volumes and different TCP/IP addresses from the original configuration.

Our test environment is shown in Figure 2-1 on page 14. Our recovery environment is configured as a warm-standby facility with identical MDSs, user systems (SAN File System clients), and a storage subsystem using SVC Metro Mirroring capability. SVC Metro Mirror provides synchronous block-level mirroring and enables us to ensure an exact replication of data between our production and recovery sites. We show the following activities:

1. Establish Metro Mirror source and target volume mappings and a consistency group for the metadata and user pools. It is critical that all volumes in the metadata and user pools form one consistency group to preserve data integrity.
2. Establish and invoke Metro Mirroring between our production site (Site A) volumes and recovery s (Site B) volumes.
3. Optional: Create configuration file in recovery MDSs.
4. Simulate a disaster that necessitates a recovery to Site B.
5. Stop the SVC Mirror.
6. Turn on the MDSs at Site B.
7. Recover Site B SAN File System cluster.
8. Recover alternate Site B SAN File System cluster.
9. Verify data recovery and client access.

We do not show recovery of the application servers (SAN File System clients) in this chapter; we simply show how to set up and recover the MDS cluster systems.
2.1 Scenario overview and preparation

In this section, we show how to set up a SAN File System cluster for a complete recovery and the detailed steps for recovering a SAN File System cluster when the disaster has destroyed both MDSs, storage, and clients. Our MDS servers are IBM Eserver xSeries 345, with SUSE Linux V8, Service Pack 4. SAN File System V2.2.2 is installed. The SAN File System client is running Microsoft Windows 2003. The back-end storage is an SVC with an IBM TotalStorage DS4300 disk.

The topology is illustrated in Figure 2-1, which shows the metadata and user storage pools. For each SVC vdisk in the metadata and user storage pools on Site A, there is an equivalent vdisk that is mapped to the Site B systems. The diagram shows the host to LUN mappings for each of the named volumes.

![Figure 2-1 Scenario 1 topology](image)

The original cluster consists of two MDSs, tank-mds1 at TCP/IP address 9.82.24.96 and tank-mds2 at 9.82.24.97. The Site A configuration is active, using the LUNs and storage pools shown. Install the SAN File System software on the recovery systems at Site B (including the client), using host names tank-mds3 at 9.82.22.171 and tank-mds4 at 9.82.22.172. Refer to IBM TotalStorage SAN File System, SG24-7057 for detailed instructions for installing SAN File System.

The initial installation points to the local metadata LUNs—ITSO_storage3 and ITSO_storage4—are shown in Figure 2-1 as part of Site B. After installation, verify that the Site B cluster can operate correctly, using its own LUNs as metadata and user storage. After verification is complete, disable autorestart of each MDS in Site B:

```
sfscli stopautorestart mdsn
e
```

From the master MDS, stop the cluster:

```
sfscli stopcluster
```
Turn off the Site B systems, including the clients. In the event of a failure, the Site B systems will be renamed as tank-mds1 and tank-mds2 but retain their (original) TCP/IP addresses.

2.1.1 Establishing and invoking Metro Mirror for required volumes

You must set up Metro Mirroring for all the volumes in the configuration; that is, the combination of the metadata (system) and user volumes forms a single consistency group. Refer to your disk system documentation for detailed information about how to do this. For the SVC, see IBM TotalStorage SAN Volume Controller, SG24-6423.

To establish and invoke Metro Mirror, follow this procedure:

1. Log in to the SVC browser interface. Click Manage Copy Services, then click Metro Mirror Relationships. Next, click Create a Metro Mirror Relationship (Figure 2-2).

![Figure 2-2 Create a Metro Mirror Relationship page](image)

2. SVC prompts you to create the Metro Mirror Relationship. Click Next.
3. Enter a name for the Metro Mirror relationship. We chose mds_pair1, as shown in Figure 2-3. We selected **Intra-cluster Metro Mirror**, because, for our test environment, we used a single SVC.

In a production situation, you would have two remote linked SAN Volume Controller; in that case, you select **Inter-cluster Metro Mirror**. If you use Inter-cluster, you must create a Metro Mirror cluster partnership before you create the Metro Mirror relationship between the virtual disks. Click **Next**.

![Figure 2-3 Selecting the Auxiliary Cluster page](image-url)
4. Select the master vdisk in the Metro Mirror. In our scenario (Figure 2-4), we used the vdisk called ITSO_STORAGE1 in the metadata storage pool at the primary site. Click Next.

![Selecting the Master VDisk page](image1)

Figure 2-4 Select the Master VDisk page

5. Select a corresponding vdisk for the target (Figure 2-5). We used vdisk ITSO_STORAGE3 as the LUN for the metadata pool at the remote site. Click Next.

![Select the auxiliary vdisk](image2)

Figure 2-5 Select the auxiliary vdisk
6. In the next window (Figure 2-6), because the vdisks for the primary and remote sites are not yet synchronized and no consistency group exists at this point, click **Next**.

![Figure 2-6 Metro Mirror relationship options](image)

7. The next page (Figure 2-7) shows the relationship just created. Verify that everything is correct and click **Finish**.

![Figure 2-7 Verifying Metro Mirror Relationship page](image)
Because there are four vdisks in total, in our primary configuration (shown in Figure 2-1 on page 14), we repeat the steps three more times. When we have finished, the results are those shown in Figure 2-8. We have created four Metro Mirror pairs: mds_pair1 and mds_pair2 are for the metadata pool, and client_pair1 and client_pair2 are for the user data pool.

2.1.2 Establishing a consistency group for source and target storage pools

It is important to use consistency groups between the user data and metadata to ensure data integrity; for SAN File System, all the user and metadata LUNs must be members of a single consistency group. To establish a consistency group, follow this procedure:

1. From the SVC browser interface, select Manage Copy Services and Metro Mirror Consistency Groups. Select Create a Consistency Group as shown in Figure 2-9.
2. The next page (Figure 2-10) summarizes the procedure. Click Next.

![Figure 2-10 Create a consistency group - 2](image)

3. Enter a name for the Metro Mirror consistency group. In our example, we used SFSDR. Select the option to create an intra-cluster Metro Mirror consistency group (Figure 2-11).

![Figure 2-11 Create a consistency group - 3](image)
If you were using separate SVCs, you would create an inter-cluster Metro Mirror consistency group. Click Next.

4. The four Metro Mirror pairs that we just created are listed on the page illustrated in Figure 2-12. They all need to be in the consistency group. Select them all, and click Next.

![Figure 2-12 Create a consistency group - 4](image)

5. Figure 2-13 shows all the information for the Metro Mirror consistency group SFSDR. Verify that everything is correct and click Finish.

![Figure 2-13 Create a consistency group - 5](image)
6. The Metro Mirror consistency group is now created (Figure 2-14). Click **Finish**.

![Figure 2-14 Create a consistency group - 6](image)

7. You can view the consistency group and its status as shown in Figure 2-15. If you create other Metro Mirror pairs later, for example, by adding new volumes to the system or user pools, you must add these pairs to the consistency group.

![Figure 2-15 Display consistency groups](image)

8. Figure 2-15 shows that the status of the Metro Mirror consistency group SFSDR is inconsistent and stopped. You must start the Metro Mirror, so select **Start Copy Process** and click **Go**.
9. On the next page (Figure 2-16), make your selections and click **OK**.

![Figure 2-16](image)

Figure 2-16 Start Metro Mirror copy process

10. The Metro Mirror starts. Because the bitmaps for both sites are different, the status is **inconsistent copying** as shown in Figure 2-17. Click **Refresh** to update the status.

![Figure 2-17](image)

Figure 2-17 Status after starting the Metro Mirror

11. When the bitmaps for both sites are the same, the status is **consistent synchronized** (Figure 2-18 on page 24).
You have now mirrored both the metadata and the user volumes to remote site B using SAN Volume Controller LUN based copy service. The copy should remain active during normal operation. You are ready for a disaster.

2.1.3 Optional: Creating a configuration file on recovery MDSs

This step is optional; however, if you perform it, your recovery is simpler and you can use the alternate procedure described in 2.2.4, “Alternate Site B SAN File System cluster recovery” on page 36.

Example 2-3 on page 33 is an example of a configuration file that is stored as /tmp/sfs.conf. You can copy this file to use as a template, and edit it with your own appropriate values.

You must create and save this file on each standby MDS (that is, at the recovery site, Site B), but the parameters in the file should reflect the values to be used if the MDS takes over after a disaster. Therefore, in our example, we created one sfs.conf file on tank-mds3 (shown in Example 2-3 on page 33), which gives the SERVER_NAME as tank-mds1, because this is the MDS name/host name to be used in the event of recovery. We then create and store a similar file for tank-mds4, referencing tank-mds2 as the MDS name (and equivalent RSA card address).

Example 2-1 Sample configuration file for automatically recovering the cluster

tank-mds3:/tmp # more sfs.conf
Server name (SERVER_NAME)
================
#
Every engine in the cluster must have a unique name. This name
must be the same as the unique name used to configure the RSA
II adapter on each engine. However, no checks are done by the
metadata server to enforce this rule.
#
Server name [-]:

SERVER_NAME=tank-mds1

Cluster name (CLUSTER_NAME)
================
#
Specifies the name given to the cluster. This cluster name
becomes the global name space root. For example, when a
client mounts the namespace served by cluster name
sanfs on the path /mnt/, the SAN File System
is accessed by /mnt/sanfs/. If a name is not specified,
a default cluster name will be assigned. The cluster name can
be a maximum of 30 ASCII bytes or the equivalent in Unicode
characters.
Cluster name [-]:

CLUSTER_NAME=ATS_GBURG

Server IP address (IP)
============
This is dotted decimal IPv4 address that the local metadata
server engine has bound to its network interface.
Server IP address [-]:

IP=9.82.22.171

Language (LANG)
===========
The metadata server can be configured to use a custom locale.
This release supports only UTF8 locales.
Language [-]:

LANG=en_US.utf8

LDAP server (LDAP_SERVER)
=============
An LDAP server is used to authenticate users who will
administer the server.
LDAP server IP address [-]:

LDAP_SERVER=CHANGE

LDAP user (LDAP_USER)
=========
Distinguished name of an authorized LDAP user.
LDAP user [-]:

LDAP_USER=CHANGE

LDAP user password (LDAP_PASSWD)
===============
Password of the authorized LDAP user. This password
will need to match the credentials set in your LDAP
server.
LDAP user password [-]:
LDAP_PASSWD=CHANGE

LDAP secured connection (LDAP_SECURED_CONNECTION)
==
Set this value to true if your LDAP server requires
SSL connections. If your LDAP server is not using
SSL or you are not sure, set this value to false.
LDAP secured connection [-]:
LDAP_SECURED_CONNECTION=false

LDAP roles base distinguished name (LDAP_BASEDN_ROLES)
==
Base distinguished name to search for roles.
For example: ou=Roles,o=company,c=country
LDAP roles base distinguished name [-]:
LDAP_BASEDN_ROLES=CHANGE

LDAP members attribute (LDAP_ROLE_MEM_ID_ATTR)
==
The attribute that holds the members of a role.
LDAP members attribute [-]:
LDAP_ROLE_MEM_ID_ATTR=roleOccupant

LDAP user id attribute (LDAP_USER_ID_ATTR)
==
The attribute that holds the User ID.
LDAP user id attribute [-]:
LDAP_USER_ID_ATTR=uid

LDAP role name attribute (LDAP_ROLE_ID_ATTR)
==
The attribute that holds the name of the role.
LDAP role name attribute [-]:
LDAP_ROLE_ID_ATTR=cn

Authorized RSA User (RSA_USER)
==
Enter the user name used to access the RSA II card.
Authorized RSA User [-]:
RSA_USER=USERID
RSA Password (RSA_PASSWD)
===
Enter the password used to access the RSA II card.
RSA Password [-]:

RSA_PASSWD=PASSW0RD

CLI User (CLI_USER)
===================
Enter the user name that will be used to access the
administrative CLI. This user must have an administrative
role when authenticated with the LDAP server.
CLI User [-]:

CLI_USER=root

CLI Password (CLI_PASSWD)
=========================
Enter the password used to access the administrative CLI.
CLI Password [-]:

CLI_PASSWD=password

Truststore Password (TRUSTSTORE_PASSWD)
=======================================
Enter the password used to secure the truststore file.
The password must be at least six characters.
Truststore Password [-]:

TRUSTSTORE_PASSWD=ibmstore

LDAP SSL Certificate (LDAP_CERT)
================================
If your LDAP server only allows SSL connections,
enter the full path to the file containing the LDAP
certificate. Otherwise, do not enter anything.
LDAP SSL Certificate [-]:

LDAP_CERT=

Metadata disk (META_DISKS)
==========================
A space separated list of raw devices on which SAN File System
metadata is stored. Raw devices are created once the install script
is run. The file names added to this list may not exist until after
the install has started. For example, if a vpath name is vpatha, the
metadata disk is expressed as /dev/rvpatha
Disaster Recovery Solutions for IBM TotalStorage SAN File System

Metadata disk [-]:
META_DISKS=/dev/rvpath*

System Management IP (SYS_MGMT_IP)
=================================
Enter the System Management IP address
This is the address assigned to your RSAII card.
System Management IP [-]:
SYS_MGMT_IP=9.82.22.173

SAN File System package location (CD_MNT)
==
When using the -loadcluster option setupsfs needs to know the
location of the packages that will be installed. This should be
the full path to the directory where the SAN File System CDROM
is mounted or equivalent.
Package location [-]:
CD_MNT=/media/cdrom

Engine list (NODE_LIST)
=======================
The NODE_LIST only needs to be created if setupsfs is run with the -noprompt
command line option. Otherwise the NODE_LIST is generated in memory while
information is gathered about each node, though the interactive prompts.
NODE_LIST contains a list of all metadata servers in the cluster.
This is a space separated list. Each entry needs the following values:
<MDS IP>:<cluster port>:<MDS name>:<RSAII IP>:<cimom port>
cluster port will normally be 1737.
cimom port will normally be 5989.
example NODE_LIST definition for a two node cluster:
192.168.150.16:5989
If you plan to use the -noprompt option uncomment the next line and update
the values to match your environment. Add an entry for each node.
NODE_LIST=9.82.22.171:1737:tank-mds1:9.82.22.173:5989 9.82.22.172:1737:tank-mds2 :
9.82.22.174:5989

Truststore file (TRUSTSTORE)
=============================
This value only needs to be set when the -loadserver option is used and must
be a copy of /usr/tank/admin/truststore file, from the master node. If the
install script is being run from the master node enter
/usr/tank/admin/truststore. The truststore file contains unique keys, used
for communication between servers, and must be to same file for all nodes in
a cluster.
TRUSTSTORE=/usr/tank/admin/truststore
2.2 Recovery

In this section, we show the steps necessary to recover the cluster if a disaster occurs.

2.2.1 Simulating a disaster that requires recovery to Site B

In this section, we assume that Site A is completely destroyed and the recovery is at Site B. For testing purposes, simply turn off all the MDSs and clients at Site A and follow these steps:

1. Stop the SVC Mirror. Select the Metro Mirror consistency group that you want to stop. In our scenario, this is SFSDR. Select Stop Copy Process and click Go (Figure 2-19).

![Figure 2-19 Stop Metro Mirror copy process](image1)

2. Figure 2-20 shows where we selected the option to give the write access to the secondary vdisks. This assigns MDS and clients in site B the rights to write data to these LUNs.

![Figure 2-20 Enable write access to secondary disks](image2)
3. Now the status of the Metro Mirror consistency group is *Idling* (Figure 2-21).

![Image](image.png)

Figure 2-21 Metro Mirror process is stopped

2.2.2 Turning on the MDSs at Site B

Turn on the Site B master MDS and all subordinate MDSs.

If you want the MDS of Site B to use the same name as that for Site A, remember to change the host name and edit the `/etc/hosts` file to correctly map host name and IP. For this scenario, we changed the host name (using the `hostname` command and edit `/etc/HOSTNAME`) and edited the `/etc/hosts` file to assign the MDSs at site B the same host names as the original systems at Site A. You also must update your DNS to point the entries for tank-mds1 and tank-mds2 to their new TCP/IP addresses. We are using different TCP/IP addresses (see Figure 2-1 on page 14) because of networking constraints. So, we now have “replacement” tank-mds1 and tank-mds2 with different TCP/IP addresses.

2.2.3 Recovering Site B SAN File System cluster

When recovering the cluster, use the same cluster name as before, but specify the actual vdisk path `/dev/rvpathx` to the LUNs for metadata storage and follow these steps:

1. Start a session on replacement tank-mds1 (at TCP/IP address MDS 9.82.22.171). Reset the host name from tank-mds3 to tank-mds1, and update DNS entries as required.
2. As shown in Example 2-2 on page 31, the current status of our cluster is shown when we use `sfscli lsserver`. It is not running, because we disabled the automatic start.
3. Run `tank resetcluster`. This command erases the static cluster definition in the system master volume, without reinitializing the metadata, and drops all the MDSs from the cluster. This command was necessary in our situation because we were using a different TCP/IP address on the recovery MDSs, and therefore we had to re-write the cluster configuration information. We also ran `setupsfs` with the `setmaster` option to set up the SAN File System again. Note that we also specified `-noldap` because we were using local authentication. You have to manually enter all the appropriate values; we show a way to automate the response to this command in 2.2.4, “Alternate Site B SAN File System cluster recovery” on page 36.
4. After completing the `setupsfs`, re-issue `sfscli lsserver` to verify that MDS is running as the master MDS.
5. During `setupsfs`, you must input the raw devices for the metadata LUNs. Use `datapath query device` to get the device path.
Example 2-2 Reset the cluster and initialize new master MDS

```
tank-mds1:~ # sfscli lsserver
Name      State       Server Role Filesets Last Boot
==================================================================
tank-mds1 Not Running Master             0 Jan 1, 1970 12:00:00 AM
tank-mds2 Unknown     Subordinate        0 Jan 1, 1970 12:00:00 AM
tank-mds1:/usr/tank/server/bin # ./tank resetcluster
HSTNL0009E The static cluster definition has been reset.
tank-mds1:/usr/tank/server/bin # setupsfs -noldap -setmaster
IBM SAN File System metadata server setup

To use the default value that appears in [square brackets],
press the ENTER key. A dash [-] indicates no default is
available.

Server name (SERVER_NAME)
==========================
Every engine in the cluster must have a unique name. This name
must be the same as the unique name used to configure the RSA
II adapter on each engine. However, no checks are done by the
metadata server to enforce this rule.

Server name [-]: tank-mds1

Cluster name (CLUSTER_NAME)
===========================
Specifies the name given to the cluster. This cluster name
becomes the global namespace root. For example, when a
client mounts the namespace served by cluster name
sanfs on the path /mnt/, the SAN File System
is accessed by /mnt/sanfs/. If a name is not specified,
a default cluster name will be assigned. The cluster name can
be a maximum of 30 ASCII bytes or the equivalent in unicode
characters.

Cluster name [sanfs]: ATS_GBURG

Server IP address (IP)
======================
This is dotted decimal IPv4 address that the local metadata
server engine has bound to its network interface.

Server IP address [-]: 9.82.22.171

Language (LANG)
===============
The metadata server can be configured to use a custom locale.
This release supports only UTF8 locales.

Language [en_US.utf8]:

System Management IP (SYS_MGMT_IP)
=================================
Enter the System Management IP address
This is the address assigned to your RSAII card.
```
System Management IP [-]: 9.82.22.173

Authorized RSA User (RSA_USER)

Enter the user name used to access the RSA II card.

Authorized RSA User [-]: USERID

RSA Password (RSA_PASSWD)

Enter the password used to access the RSA II card.

RSA Password [-]: PASSWORD

CLI User (CLI_USER)

Enter the user name that will be used to access the administrative CLI. This user must have an administrative role.

CLI User [-]: itsoadm

CLI Password (CLI_PASSWD)

Enter the password used to access the administrative CLI.

CLI Password [-]: password

Truststore Password (TRUSTSTORE_PASSWD)

Enter the password used to secure the truststore file. The password must be at least six characters.

Truststore Password [-]: ibmstore

LDAP SSL Certificate (LDAP_CERT)

If your LDAP server only allows SSL connections, enter the full path to the file containing the LDAP certificate. Otherwise, do not enter anything.

LDAP SSL Certificate [-]:

Metadata disk (META_DISKS)

A space separated list of raw devices on which SAN File System metadata is stored.

Metadata disk [-]: /dev/rvpathc /dev/rvpathd

Engine list (NODE_LIST)

==================================
List of subordinate metadata server engines.
Enter a space-separated list of IP addresses.
Subordinate node list [NONE]: 9.82.22.172

Run SAN File System server setup
===
The configuration utility has not made any changes to your system configuration.
- Enter No to quit without configuring the metadata server on this system.
- Enter Yes to start the metadata server.

Run server setup [Yes]:
Updating configuration file: /usr/tank/admin/config/cimom.properties

HSTSS0013I /usr/tank/admin/truststore already exists and will not be recreated.

HSTSS0008I Skipping execution of the tank install command.
This node is already part of a cluster.

HSTSS0025I Stopping the CIM Agent.
Warning: hung processes were detected and removed.
HSTSS0026I Starting the CIM Agent.
Waiting 30seconds for the CIM agent to start.

HSTSS0015I The SAN File System console is already running.
Skipping SAN File System Console startup.

tank-mds1:/usr/tank/server/bin # sfscli lsserver
Name State Server Role Filesets Last Boot
===
tank-mds1 Online Master 3 Sep 7, 2005 10:18:36 AM

6. Log in to the subordinate MDS (“replacement” tank-mds2). Reset the host name from tank-mds4 to tank-mds2, and update DNS entries as required. As shown in Example 2-3, remove the file Tank.Bootstrap from the /usr/tank/server/config directory. Then run setupsfs as shown; this brings up the MDS as a subordinate, but does not join it to the cluster. Use sfscli lsserver to see this.

Example 2-3 Bring up new subordinate MDS
tank-mds2:/usr/tank/server/config # ls
.. Tank.Bootstrap Tank.Config Tank.PID backup.list.template tank.sys
tank-mds2:/usr/tank/server/config # rm Tank.Bootstrap
tank-mds2:/usr/tank/server/config # ls
.. Tank.Config Tank.PID backup.list.template tank.sys
tank-mds2:/usr/tank/server/config # setupsfs -noldap
IBM SAN File System metadata server setup

To use the default value that appears in [square brackets], press the ENTER key. A dash [-] indicates no default is available.
Server name (SERVER_NAME)

Every engine in the cluster must have a unique name. This name must be the same as the unique name used to configure the RSA II adapter on each engine. However, no checks are done by the metadata server to enforce this rule.

Server name [-]: tank-mds2

Server IP address (IP)

This is dotted decimal IPv4 address that the local metadata server engine has bound to its network interface.

Server IP address [-]: 9.82.22.172

Language (LANG)

The metadata server can be configured to use a custom locale. This release supports only UTF8 locales.

Language [en_US.utf8]:

System Management IP (SYS_MGMT_IP)

Enter the System Management IP address
This is the address assigned to your RSAII card.

System Management IP [-]: 9.82.22.174

Authorized RSA User (RSA_USER)

Enter the user name used to access the RSA II card.

Authorized RSA User [-]: USERID

RSA Password (RSA_PASSWD)

Enter the password used to access the RSA II card.

RSA Password [-]: PASSWORD

CLI User (CLI_USER)

Enter the user name that will be used to access the administrative CLI. This user must have an administrative role.

CLI User [-]: root

CLI Password (CLI_PASSWD)

Enter the password used to access the administrative CLI.

CLI Password [-]: password

Truststore Password (TRUSTSTORE_PASSWD)
=======================================

Enter the password used to secure the truststore file.
The password must be at least six characters.

Truststore Password [-]: ibmstore

Run SAN File System server setup
================================

The configuration utility has not made any changes to your
system configuration.
- Enter No to quit without configuring the metadata server
 on this system.
- Enter Yes to start the metadata server.

Run server setup [Yes]:

Updating configuration file: /usr/tank/admin/config/cimom.properties

HSTSS0025I Stopping the CIM Agent.
Warning: hung processes were detected and removed.
HSTSS0026I Starting the CIM Agent.
.
Waiting 30 seconds for the CIM agent to start.

HSTSS0015I The SAN File System console is already running.
Skipping SAN File System Console startup.

tank-mds2:/usr/tank/server/config # sfscli lsserver
Name State Server Role Filesets Last Boot
==
tank-mds2 Not Added Subordinate 0 Sep 7, 2005 10:42:35 AM

7. For tank-mds1, the master MDS, use addserver to add the new subordinate, tank-mds2
(Example 2-4). Run lsserver on both MDSs to confirm the correct result.

Example 2-4 Add the subordinate MDS to the cluster

tank-mds1:/usr/tank/server/bin # sfscli addserver 9.82.22.172
CMMNP5205I Metadata server 9.82.22.172 on port 1737 was added to the cluster successfully.
tank-mds1:/usr/tank/server/bin # sfscli lsserver
Name State Server Role Filesets Last Boot
==
tank-mds1 Online Master 2 Sep 7, 2005 10:18:36 AM
tank-mds2 Online Subordinate 1 Sep 7, 2005 10:42:35 AM

tank-mds2:/usr/tank/server/config # sfscli lsserver
Name State Server Role Filesets Last Boot
==
tank-mds2 Online Subordinate 1 Sep 7, 2005 10:42:35 AM
2.2.4 Alternate Site B SAN File System cluster recovery

As an alternative to entering all the information shown in Example 2-3 on page 33, while running the `setupsfs` command, you can create (in advance, while the primary cluster is operating normally) a configuration file. This contains the responses required by `setupsfs`. This step is described in 2.1.3, “Optional: Creating a configuration file on recovery MDSs” on page 24. Using this configuration file, we can recover an MDS more quickly, without the need to respond to the configuration prompts as follows:

1. First, recover the master MDS. Run `tank resetcluster` as before, then run `setupsfs` and specify the saved configuration with the `-noprompt` and `-setmaster` options. This is shown in Example 2-5. Note that, compared with Example 2-3 on page 33, you are not prompted for the configuration values because they are automatically read from the configuration file. An alternative is to run without the `-noprompt` option, but still specify the configuration file. In this case, the values are read and entered, so you can press the Enter key to continue, but you have the opportunity to correct any values.

Example 2-5 Recover master MDS with saved configuration file

```
tank-mds1:/tmp # sfscli lsserver
Name    State       Server Role Filesets Last Boot
==================================================================
tank-mds1 Not Running Master             0 Jan 1, 1970 12:00:00 AM
tank-mds2 Unknown     Subordinate        0 Jan 1, 1970 12:00:00 AM
tank-mds1:/ # cd /usr/tank/server/bin
tank-mds1:/usr/tank/server/bin # ./tank resetcluster
HSTNL0009E The static cluster definition has been reset.
tank-mds1:/usr/tank/server/bin # setupsfs -f /tmp/sfs.conf -noldap -noprompt -setmaster
Updating configuration file: /usr/tank/admin/config/cimom.properties
HSTSS0013I /usr/tank/admin/truststore already exists and will not be recreated.
HSTSS0008I Skipping execution of the tank install command. This node is already part of a cluster.
HSTSS0025I Stopping the CIM Agent.
HSTSS0026I Starting the CIM Agent.
Waiting 30seconds for the CIM agent to start.
HSTSS0015I The SAN File System console is already running. Skipping SAN File System Console startup.
tank-mds1:/usr/tank/server/bin # sfscli lsserver
Name    State       Server Role Filesets Last Boot
==================================================================
tank-mds1 Online Master             3 Sep 9, 2005 7:07:44 AM
```

2. Next, recover the subordinate MDS. Remove the Tank.Bootstrap file, then run `setupsfs` and reference the local saved configuration file using the `noprompt` option, as shown in Example 2-6. Then run `lsserver` to see the status.

Example 2-6 Recover subordinate MDS with configuration file

```
tank-mds2:/usr/tank/server/config # rm Tank.Bootstrap
tank-mds2:/usr/tank/server/config # setupsfs -f /tmp/sfs.conf -noldap -noprompt
Updating configuration file: /usr/tank/admin/config/cimom.properties
```

36 Disaster Recovery Solutions for IBM TotalStorage SAN File System
Chapter 2. Scenario 1: Complete recovery to different TCP/IP address

HSTSS0025I Stopping the CIM Agent.
Warning: hung processes were detected and removed.
HSTSS0026I Starting the CIM Agent.
Waiting 30 seconds for the CIM agent to start.
HSTSS0015I The SAN File System console is already running.
Skipping SAN File System Console startup.
tank-mds2:/usr/tank/server/confi # sfscli lsserver
Name State Server Role Filessets Last Boot
===
tank-mds2 Not Added Subordinate 0 Sep 9, 2005 7:11:24 AM

For the master MDS, add the subordinate MDS using addserver as shown in Example 2-7. This step is the same as using the previous method. The cluster is now running.

Example 2-7 Add subordinate MDS to the cluster

tank-mds1:/usr/tank/server/bin # sfscli addserver 9.82.22.172
CMMP5205I Metadata server 9.82.22.172 on port 1737 was added to the cluster successfully.
tank-mds1:/usr/tank/server/bin # sfscli lsserver
Name State Server Role Filessets Last Boot
==
tank-mds1 Online Master 2 Sep 9, 2005 7:07:44 AM
tank-mds2 Online Subordinate 1 Sep 9, 2005 7:11:24 AM

2.2.5 Verifying data recovery and access

You should check to see if your clients at the recovery site are pointing to the TCP/IP address for the new master MDS. If not, you must change it. For UNIX and Linux clients, you can modify the parameter in stclient.conf in /usr/tank/client/config. The parameter is Metadata server connection IP address. After the change, you must stop and restart the SAN File System client.

For Windows clients, you can either reinstall the client, specifying the changed master MDS, or, if you configured the Microsoft Management Console (MMC) interface, you can change the Server IP address in Volume Properties. Close MMC and restart the client. For client ATSSANBS1-9, verify that it can access the recovered cluster. Display the SAN File System drive T as shown in “SAN File System can access the recovered cluster” on page 37.

Figure 2-22 SAN File System can access the recovered cluster
Open the T drive to show that it can still see all directories, as shown in Figure 2-23 and Figure 2-24.

Figure 2-23 SAN File System can browse directories

Figure 2-24 Drill down to check files and directories
Chapter 3. Scenario 2: Complete recovery to same TCP/IP address

In this chapter, we discuss setup and restore for a complete SAN File System recovery scenario, where all the hardware and disks are destroyed, and the cluster is recreated using MDSs at a different location with replicated volumes and the same TCP/IP addresses as the original configuration.

Our test environment is shown in Figure 3-1 on page 40. Our recovery environment is configured as a warm-standby facility with identical MDSs and user systems (SAN File System clients) and a storage subsystem with SVC Metro Mirroring capability. SVC Metro Mirror provides synchronous block-level mirroring and enables us to ensure an exact replication of data between our production and recovery sites. We show the following activities:

1. Create disaster recovery file on master and subordinate MDS of the primary site and store these files in a safe place.
2. Establish Metro Mirror source and target volume mappings and a consistency group for the metadata and user pools. It is critical that all volumes in the metadata and user pools form one consistency group to preserve data integrity.
3. Establish and invoke Metro Mirroring between our production site (Site A) volumes and recovery site (Site B volumes).
4. Simulate a disaster that necessitates a recovery to Site B.
5. Stop the SVC Mirror.
6. Start the MDS at Site B.
7. Recover Site B SAN File System cluster.
8. Verify data recovery and client access.

We do not show recovery of the application servers (SAN File System clients) in this chapter; we simply show how to set up and recover the MDS systems.
3.1 Scenario overview and preparation

In this section, we show you how to set up a SAN File System cluster for a complete recovery and the detailed steps for recovering a SAN File System cluster when the disaster has destroyed both MDSs, storage, and clients. Our MDSs are xSeries 345, with SUSE Linux V8, Service Pack 4. SAN File System V2.2.2 is installed. The SAN File System client is running Windows 2003. The back-end storage is an SVC with IBM TotalStorage DS4300 disk. The topology is illustrated in Figure 3-1, which shows the metadata and user storage pools. For each SVC vdisk in the metadata and user storage pools at Site A, there is an equivalent vdisk that is mapped to the Site B systems. The diagram shows the host to LUN mappings for each of the named volumes.

The original cluster consists of two MDSs - tank-mds1 at the TCP/IP address 9.82.24.96 and tank-mds2 at t9.82.24.97.

![Figure 3-1 Scenario 2 topology](image)

The Site A configuration is active, using the LUNs and storage pools shown. Install the SAN File System software on the recovery systems at Site B (including the client), using host names tank-mds3 and tank-mds4 and temporary alternative TCP/IP addresses. Although after a disaster, these systems assume the original Site A TCP/IP addresses, for installation purposes, tank-mds3 and tank-mds4 require different TCP/IP addresses because you cannot have two hosts with the same TCP/IP address. Alternatively, if you can turn off the Site A systems while you install the recovery site, you can use the same TCP/IP addresses. Refer to IBM TotalStorage SAN File System, SG24-7057 for detailed instructions.

The initial installation points to the local metadata LUNs, ITSO_storage3 and ITSO_storage4. After installing, verify that the site B cluster can operate correctly, using its own LUNs as metadata and user storage. After verification is complete, disable autorestart of each MDS in Site B by running:

`sfscli stopautorestart mdsname`
From the master MDS, use `sfscli stopcluster` to stop the cluster. Turn off the Site B systems, including the clients. If there is a failure, the Site B systems are renamed to tank-mds1 and tank-mds2 and configured to use the original tank-mds1 and tank-mds2 TCP/IP addresses.

3.1.1 Preparing the disaster recover file on original MDSs

Run `setupsfs -backup` on both tank-mds1 and tank-mds2, as shown in Example 3-1 and Example 3-2. This command creates an archive of the critical files needed for recovery of the MDSs and is known as a DR file. Copy these archives to tank-mds3 and tank-mds4; we also recommend creating a diskette or other external copy, for safety.

Example 3-1 Create DRfile archive on tank-mds1

```
tank-mds1:/usr/tank/admin/bin # setupsfs -backup
/etc/HOSTNAME
/etc/tank/admin/cimom.properties
/etc/tank/server/Tank.Bootstrap
/etc/tank/server/Tank.Config
/etc/tank/server/tank.sys
/etc/tank/admin/tank.properties
/usr/tank/admin/truststore
/var/tank/server/DR/TankSysCLI.auto
/var/tank/server/DR/TankSysCLI.volume
/var/tank/server/DR/TankSysCLI.attachpoint
/var/tank/server/DR/After_upgrade_to_2.2.1-13.dump
/var/tank/server/DR/After_upgrade_to_2.2.1.13.dump
/var/tank/server/DR/Before_Upgrade_2.2.2.dump
/var/tank/server/DR/drtest.dump
/var/tank/server/DR/Moved_to_ESSF20.dump
/var/tank/server/DR/SFS_BKP_After_Upgrade_to_2.2.0.dump
/var/tank/server/DR/Test_051805.dump
/var/tank/server/DR/ATS_GBURG.rules
/var/tank/server/DR/ATS_GBURG_CLONE.rules
Created file: /usr/tank/server/DRfiles-tank-mds1-20050912114651.tar.gz
```

Example 3-2 Create DRfile archive on tank-mds2

```
tank-mds2:/usr/tank/admin/bin # setupsfs -backup
/etc/HOSTNAME
/etc/tank/admin/cimom.properties
/etc/tank/server/Tank.Bootstrap
/etc/tank/server/Tank.Config
/etc/tank/server/tank.sys
/etc/tank/admin/tank.properties
/usr/tank/admin/truststore
Created file: /usr/tank/server/DRfiles-tank-mds2-20050912121345.tar.gz
```

3.1.2 Establishing and invoking Metro Mirror for required volumes

See 2.1.1, “Establishing and invoking Metro Mirror for required volumes” on page 15 for detailed instructions. The process is identical.

3.1.3 Establishing a consistency group for source and target storage pools

See 2.1.2, “Establishing a consistency group for source and target storage pools” on page 19 for detailed instructions. The process is identical.
3.2 Recovery

This section describes the steps for recovering the cluster if a disaster occurs. For testing purposes, simply turn off all the MDSs and clients at Site A and follow this procedure:

1. Stop the SVC Mirror as shown in step 1 on page 29.

2. Start the Site B master MDS. Set the host name to tank-mds1 and reconfigure the TCP/IP address (if required) so that it is the same as the original tank-mds1 address. Extract the saved files from the DR file archive (see 3.1.1, “Preparing the disaster recover file on original MDSs” on page 41). Start the SAN File System server process with `sfscli startserver` as shown in Example 3-3. The DR file archive contains the `/etc/HOSTNAME` file, so this permanently sets the host name so that it is the same as the primary site.

```
Example 3-3  Start up recovery master MDS

tank-mds1:~ # sfscli lsserver
Name     State  Server Role Filesets Last Boot
==================================================================
tank-mds1 Not Running Master     0 Jan 1, 1970 12:00:00 AM
tank-mds2 Unknown Subordinate  0 Jan 1, 1970 12:00:00 AM

tank-mds1:/usr/tank/server/DR # tar -zxPvf DRfiles-tank-mds1-20050912114651.tar.gz
/etc/HOSTNAME
/etc/tank/admin/cimom.properties
/etc/tank/server/Tank.Bootstrap
/etc/tank/server/Tank.Config
/etc/tank/server/tank.sys
/etc/tank/admin/tank.properties
/usr/tank/admin/truststore
/var/tank/server/DR/TankSysCLI.auto
/var/tank/server/DR/TankSysCLI.volume
/var/tank/server/DR/TankSysCLI.attachpoint
/var/tank/server/DR/After_upgrade_to_2.2.1-13.dump
/var/tank/server/DR/After_upgrade_to_2.2.1.13.dump
/var/tank/server/DR/Before_Upgrade_2.2.2.dump
/var/tank/server/DR/drtest.dump
/var/tank/server/DR/Moved_to_ESSF20.dump
/var/tank/server/DR/SFS_BKP_After_Upgrade_to_2.2.0.dump
/var/tank/server/DR/Test_051805.dump
/var/tank/server/DR/ATS_GBURG.rules
/var/tank/server/DR/ATS_GBURG_CLONE.rules

tank-mds1:/usr/tank/server/DR # sfscli startserver tank-mds1
Are you sure you want to start the metadata server? Starting the metadata server might cause filesets to be reassigned to this metadata server in accordance with the fileset assignment algorithm. [y/n]:y
CMMNP5248I Metadata server tank-mds1 started successfully.

tank-mds1:~ # sfscli lsserver
Name     State  Server Role Filesets Last Boot
==================================================================
tank-mds1 Online Master     2 Sep 12, 2005 12:46:02 PM
tank-mds2 Unknown Subordinate  0 Jan 1, 1970 12:00:00 AM
```

3. Start the Site B subordinate MDS(s). Set the host name to tank-mds2 (hostname `tank-mds2`) and reconfigure the TCP/IP address (if required) to be the same as the original for tank-mds2. Extract the saved files from the DR file archive (see 3.1.1, “Preparing the disaster recover file on original MDSs” on page 41). To start the SAN File System server, run `sfscli startserver` (Example 3-4 on page 43). Because the DR file archive contains
the file /etc/HOSTNAME, this permanently sets the host name as the same as the primary site host name.

Example 3-4 Start up subordinate master MDS

tank-mds2:/usr/tank/server/DR # tar -zxPvf DRfiles-tank-mds2-20050912121345.tar.gz
/etc/HOSTNAME
/etc/tank/admin/cimom.properties
/etc/tank/server/Tank.Bootstrap
/etc/tank/server/Tank.Config
/etc/tank/server/tank.sys
/etc/tank/admin/tank.properties
/usr/tank/admin/truststore

tank-mds2:/usr/tank/server/DR # sfscli startserver tank-mds2
Are you sure you want to start the metadata server? Starting the metadata server might cause filesets to be reassigned to this metadata server in accordance with the fileset assignment algorithm. [y/n]:y
CMMNPS248I Metadata server tank-mds2 started successfully.

tank-mds2:/usr/tank/server/DR # sfscli lsserver
Name State Server Role Filesets Last Boot

tank-mds2 Online Subordinate 1 Sep 12, 2005 1:34:30 PM

tank-mds1:/usr/tank/server/DR # sfscli lsserver
Name State Server Role Filesets Last Boot

tank-mds1 Online Master 2 Sep 12, 2005 12:46:02 PM
tank-mds2 Online Subordinate 1 Sep 12, 2005 1:34:30 PM

4. Verify data recovery and access from the client. On the site B client, verify that it can access the recovered cluster by displaying SAN File System drive T (Figure 3-2 and Figure 3-3).

Figure 3-2 SAN File System can access the recovered cluster

Figure 3-3 SAN File System can browse directories
Scenario 3: Storage recovery using FlashCopy

In this chapter, we discuss setup and restore for a SAN File System recovery scenario, where the system data or user data is destroyed by some logical errors or failure in the back-end storage only. It assumes the MDSs and clients are still working.

In this test scenario we take advantage of the FlashCopy capability of SVC. SVC provides block-level LUN copy and it also supports FlashCopy of consistency groups.

Our procedure is as follows:
1. Create DR file on master and subordinate MDS of primary site and store these files in a safe place.
2. Establish consistency groups for the source and target storage pools. It is critical that all volumes in the metadata and user pools form one consistency group, to preserve data integrity.
3. Establish and invoke FlashCopy.
4. Make a change to a FlashCopy source volume.
5. Simulate the FlashCopy source volume failure and copy data back from the FlashCopy target volume to the source volume.
6. Verify data recovery and access from client.
4.1 Scenario overview and preparation

In this scenario, we show you how to set up FlashCopy on the SAN File System and user data volumes, so that they can be restored if there is a disk system or logical failure. Our MDSs are xSeries 345, with SUSE Linux V8, Service Pack 4. SAN File System V2.2.2 is installed. The SAN File System client is running Windows 2003. The back-end storage is an SVC with IBM TotalStorage DS4300 disk. The topology is illustrated in Figure 4-1, which shows the metadata and user storage pools. The cluster consists of two MDSs, tank-mds1 at TCP/IP address 9.82.24.96 and tank-mds2 at 9.82.24.97. We use hardware-based FlashCopy provided by SVC, not the SAN File System FlashCopy function, which is file-based.

![Figure 4-1 Scenario 3 topology](image)

4.1.1 Preparing the DR file on the MDSs

Run `setupsfs -backup` on both tank-mds1 and tank-mds2, as shown in Example 4-1 and Example 4-2 on page 47. This command creates an archive of the critical files needed for recovery of the MDS(s) and is known as a DR file. We also recommend creating a diskette or other external copy for safety.

Example 4-1 Create DR file archive on tank-mds1

tank-mds1:/usr/tank/admin/bin # setupsfs -backup
/etc/HOSTNAME
/etc/tank/admin/cimom.properties
/etc/tank/server/Tank.Bootstrap
/etc/tank/server/Tank.Config
/etc/tank/server/tank.sys
/etc/tank/admin/tank.properties
/usr/tank/admin/truststore
/var/tank/server/DR/TankSysCLI.auto
/var/tank/server/DR/TankSysCLI.volume
/var/tank/server/DR/TankSysCLI.attachpoint
Example 4-2 Create DRfile archive on tank-mds2

tank-mds2:/usr/tank/admin/bin # setupsfs -backup
/etc/HOSTNAME
/etc/tank/admin/cimom.properties
/etc/tank/server/Tank.Bootstrap
/etc/tank/server/Tank.Config
/etc/tank/server/tank.sys
/etc/tank/admin/tank.properties
/usr/tank/admin/truststore
Created file: /usr/tank/server/DR/DRfiles-tank-mds2-20050912121345.tar.gz

In normal circumstances, these two files are not necessary for this type of restore scenario. However, in special cases of a FlashCopy restore, if LUNs have been added or removed after taking the FlashCopy, then these two files are very useful.

4.1.2 Establishing FlashCopy on SVC

As stated before, the system (metadata) and user LUNs need to form one consistency group for the FlashCopy operation. This ensures data integrity. Figure 4-1 on page 46 shows the LUN names that we used for source and target volume mappings.

Refer to your disk system documentation for detailed information about setting up FlashCopy. For the SVC, see *IBM TotalStorage SAN Volume Controller*, SG24-6423. To establish FlashCopy on SVC, follow these steps:

1. To create the FlashCopy mappings between the corresponding LUNs, select **Manage Copy Services → FlashCopy Mappings**. Select **Create a Mapping** (Figure 4-2).
2. Click Go.

3. Figure 4-3 shows the steps for creating a FlashCopy mapping. Click Next.

![FlashCopy Mapping](image1.png)

Figure 4-3 Steps to create a FlashCopy mapping

4. Enter the properties as shown in Figure 4-4.

![FlashCopy Mapping Properties](image2.png)

Figure 4-4 FlashCopy Mapping properties
5. Select the source LUN (Figure 4-5) and click **Next**.

![Figure 4-5 Select source LUN](image)

6. Select the target LUN (Figure 4-6) and click **Next**.

![Figure 4-6 Select target LUN](image)
7. The next window (Figure 4-7) summarizes the inputs so far. If it is correct, click **Finish**.

![Figure 4-7 Verify mapping](image)

8. Repeat these steps and create four FlashCopy pairs. SFS_FLASH_1/2 are metadata LUNs and SFS_FLASH_3/4 are user data LUNs. The mappings are shown in Figure 4-8.

![Figure 4-8 Complete set of FlashCopy mappings](image)
4.1.3 Creating the consistency group

Next, you create a consistency group for the four FlashCopy pairs as follows:

1. Select Manage Copy Services → FlashCopy Consistency Groups. Select Create a Consistency Group Figure 4-9(). Click Go.

2. Name the FlashCopy consistency group (for example, SFS_FLASH_GROUP as shown in Figure 4-10). Select the FlashCopy pairs to be used and click OK.
3. Figure 4-11 shows that the consistency group has been created. Now you can start the FlashCopy operation.

![Figure 4-11 Consistency group is created](image)

4.1.4 Creating FlashCopy image of LUNS in the consistency group

To create the FlashCopy image:

1. From the page illustrated in Figure 4-11, select the consistency group, select Start a Consistency Group, and click Go.

2. Select Prepare FlashCopy consistency group and click OK (Figure 4-12 on page 53). This step is important, because it flushes the cache before taking the FlashCopy.
3. You can check the FlashCopy progress as shown in Figure 4-13. Select **Manage Progress → FlashCopy** to view the progress of each FlashCopy pair.

![Figure 4-12 Start FlashCopy consistency group](image1)

![Figure 4-13 View FlashCopy process](image2)
4. After the FlashCopy is finished, you can see the results shown in Figure 4-14. The status of SFS_FLASH_GROUP is idle or copied.

![Figure 4-14 FlashCopy is complete](image1)

5. Select Manage Copy Services → FlashCopy Mapping to see that all FlashCopy pairs show progress of 100%. This confirms that the FlashCopy is complete.

![Figure 4-15 FlashCopy mappings are all complete](image2)

You now have a consistent snapshot image of the system and user LUNs.

4.2 Testing the recovery

The next step is to test the recovery from the FlashCopy snapshot image.
4.2.1 Deleting some data at the client

In this step, we deleted some files at the SAN File System client to change data in the FlashCopy source volume and simulate a data failure that requires a restore. Note that, in normal circumstances, it is not necessary to restore an entire hardware-based FlashCopy snapshot to recover from this type of failure, because you can restore the deleted files from a file-based backup or SAN File System FlashCopy. However, we use it because it is a simple type of data loss. A more typical reason to restore from the SVC FlashCopy is a loss of a whole metadata LUN.

The point is that, when you restore from the FlashCopy, the SAN File System is at the same point in time as when the FlashCopy was made.

To delete some data:

1. Log in to SAN File System client SANBS1-8 and navigate to a subdirectory in the SAN File System drive, T (Figure 4-12 on page 53).

2. Delete the folder called CD and the file called fc.txt.

4.2.2 Copying data from the FlashCopy target to the source volumes

Because you have lost some data, you want to copy the FlashCopy back to the original source volumes. First, you remove the copy pair that you established previously. You then create reverse direction FlashCopy pairs and join them to the consistency group. Refer to 4.1.2, “Establishing FlashCopy on SVC” on page 47 and 4.1.3, “Creating the consistency group” on page 51 for instructions.

Figure 4-17 on page 56 illustrates the new FlashCopy pairs, which shows that the targets are now the source. Compare them with the original mappings shown in Figure 4-8 on page 50.

You must shut down the SAN File System MDS(s) before overwriting the LUNS, so run `sfscli stopcluster` from the master MDS. You can now start the FlashCopy consistency group, using the same procedure that is described in 4.1.4, “Creating FlashCopy image of LUNS in the consistency group” on page 52. After the FlashCopy is complete, restart the SAN File System cluster (`sfscli startcluster`).
Log in to the client and verify that the files that were deleted after the FlashCopy was made are restored and accessible, as shown in Figure 4-18 and Figure 4-19.
Scenario 4: Replacing an MDS

In this chapter, we discuss how to recover from a single MDS failure in the SAN File System cluster. The assumption is that the failed MDS must be re-installed or replaced because of permanent failures, because temporary failure is automatically handled by SAN File System. When an MDS fails, all the filesets that it hosts are re-assigned to other MDS nodes automatically. We show you how to install a replacement MDS server and join it to the cluster. This new node uses the same TCP/IP address of the failing node.

The procedure that we use is:

1. Turn off or pull out the cable from the master MDS.
2. Install SAN File System software on the new hardware that is replacing the failed node.
 a. Install SAN File System software if it is a brand new server.
 b. Run `setupsfs` if the MDS already has SAN File System installed.
3. Configure the master MDS and join the node to the cluster.
5.1 Scenario overview

In this section, we show how to restore the SAN File System to its original condition when one MDS in the cluster fails. Our basic setup is shown in Figure 5-1. We used xSeries 345, with SUSE Linux V8, Service Pack 4. SAN File System V2.2.2 was installed. The client is Windows 2003. The back-end storage is an SVC with IBM TotalStorage DS4300 disk.

The original cluster consists of two MDSs, tank-mds3 at TCP/IP address 9.82.24.96 and tank-mds4 at 9.82.24.97.

Figure 5-1 Original cluster setup

The master MDS is tank-mds3, which you can see when you run \texttt{lsserver} as shown in Example 5-1. There are three filesets. The ROOT fileset is assigned to the subordinate MDS, tank-mds4. The other filesets, WINFILES and AIXFILES, are assigned to tank-mds3.

Example 5-1 Original configuration

\begin{verbatim}
tank-mds3:~ # sfscli lsserver
Name State Server Role Filesets Last Boot
===
tank-mds3 Online Master 2 Sep 15, 2005 3:52:36 AM
tank-mds4 Online Subordinate 1 Sep 15, 2005 3:58:31 AM
\end{verbatim}

\begin{verbatim}
tank-mds3:~ # sfscli lslun
Lun ID Vendor Product Size (MB) Volume State
Storage Device WWNN Port WWN
===
VPD83NAA6=600507680184001AA800000000000088 IBM 2145 2048 sys_vol1 Assigned
50:05:07:01:01:00:03:55 50:05:07:01:01:10:03:55,
VPD83NAA6=600507680184001AA800000000000087 IBM 2145 2048 MASTER Assigned
50:05:07:01:01:00:03:55 50:05:07:01:01:10:03:55,
tank-mds3:~ # sfscli lsfileset
Name Fileset State Quota Type Quota (MB) Used (MB) Used (%) Threshold (%) Most Recent
Image Server
===
\end{verbatim}
5.1.1 Turning off master MDS

In our scenario, we turned off the master MDS, including RSA. The failover capabilities of SAN File System ensure that tank-mds4 takes over the master role and assumes the filesets that were assigned to tank-mds3, as shown in Example 5-2.

Example 5-2 tank-mds4 takes over the master MDS role and the filesets

```
tank-mds4:~ # sfscli lsserver
Name     State  Server Role Filesets Last Boot
=============================================================
tank-mds4 Online Subordinate 1 Sep 15, 2005 3:58:31 AM
```
```
tank-mds4:~ # sfscli lsserver
Name     State   Server Role Filesets Last Boot
==============================================================
tank-mds4 Joining Subordinate 1 Sep 15, 2005 3:58:31 AM
```
```
tank-mds4:~ # sfscli lsserver
Name     State  Server Role Filesets Last Boot
=============================================================
tank-mds4 Online Master 3 Sep 15, 2005 3:58:31 AM
```
```
tank-mds4:~ # sfscli lsserver
Name     State   Server Role Filesets Last Boot
==============================================================
tank-mds4 Online Master 3 Sep 15, 2005 3:58:31 AM
```
```
tank-mds4:~ # sfscli lsfileset
Name     Fileset State Quota Type Quota (MB) Used (MB) Used (%) Threshold (%) Most Recent Image Server
========================================================================================================
ROOT     Attached      Soft                0         0        0             0 -
tank-mds4
WINFILES Attached      Soft                0      1200        0            80 Sep 9, 2005 12:54:40 PM tank-mds4
AIXFILES Attached      Soft                0        16        0            80 Sep 9, 2005 1:20:54 PM tank-mds4
```

5.1.2 Installing a new MDS

In our example, we assumed that a brand new server was necessary to replace the failed tank-mds3. In this case, we installed it from scratch. Refer to IBM TotalStorage SAN File System, SG24-7057 and IBM TotalStorage SAN File System Installation and Configuration Guide, GA27-4316 for detailed instructions, including planning considerations. If you are experienced in SAN File System, see Appendix A, “Installing an MDS” on page 89 for a quick description of the installation process.
5.1.3 Adding the newly installed MDS to the cluster

To add the newly installed node (tank-mds3) to the cluster, log in to the master MDS (tank-mds4 in our example) and list the current node status by running `lsserver`. The new MDS should have the Not Added Subordinate status as shown in Example 5-3.

Example 5-3 Cluster status before adding new MDS

```bash
tank-mds4:~ # sfscli lsserver
Name      State     Server Role Filesets Last Boot
================================================================
tank-mds4 Online    Master             3 Sep 15, 2005 3:58:31 AM
tank-mds3 Not Added Subordinate        0 Sep 15, 2005 8:12:07 AM
```

Before adding the MDS, you must re-assign any of its static filesets. To see if filesets are static or dynamic, use the `setfilesetserver` command. In our case, the AIXFILES and WINFILES filesets had been statically assigned to tank-mds3; therefore we temporarily assigned them to tank-mds3, as shown in Example 5-4. Because these filesets have already moved to be hosted by tank-mds4 (when tank-mds3 left the cluster), no other action is necessary to re-assign the filesets.

Example 5-4 Temporarily re-assign any static filesets of the new MDS

```bash
tank-mds4:~ # sfscli setfilesetserver -server tank-mds4 AIXFILES
CMMNP5140I Fileset AIXFILES assigned to metadata server tank-mds4.
tank-mds4:~ # sfscli setfilesetserver -server tank-mds4 WINFILES
CMMNP5140I Fileset WINFILES assigned to metadata server tank-mds4.
tank-mds4:~ # sfscli setfilesetserver -server tank-mds4 ROOT
CMMNP5140I Fileset ROOT assigned to metadata server tank-mds4.
```

The output of Example 5-3 shows that the cluster already thinks there is an MDS called tank-mds3. Since we have created a new MDS called tank-mds3, we must delete the records of the old tank-mds3 from the cluster configuration by running `dropserver` (Example 5-5).

Example 5-5 Drop the old MDS

```bash
tank-mds4:~ # sfscli dropserver tank-mds3
Are you sure you want to drop metadata server tank-mds3?
Filesets automatically assigned to this metadata server will be reassigned to the remaining metadata servers.
You must reassign any statically assigned filesets manually. [y/n]:y
CMMNP5214I Metadata server tank-mds3 dropped from the cluster.
```

Now, to add the new MDS, tank-mds3, to the cluster, run `addserver` (Example 5-6). Both MDSs are shown as online.

Example 5-6 Add the new MDS

```bash
tank-mds4:~ # sfscli addserver 9.82.22.171
CMMNP5205I Metadata server 9.82.22.171 on port 1737 was added to the cluster successfully.
tank-mds4:~ # sfscli lsserver
Name      State     Server Role Filesets Last Boot
================================================================
tank-mds4 Online Master             3 Sep 15, 2005 3:58:31 AM
tank-mds3 Online Subordinate        0 Sep 15, 2005 8:12:07 AM
```
If we had dynamic filesets, the addition of the new MDS could probably cause some fileset movement to balance the workload. If we had static filesets, we would now want to reassign some to tank-mds3 (using \texttt{setfilesetserver}).

We have now successfully recovered from the permanent failure of an MDS by replacing it with a new MDS.
Chapter 6. Recovery scenario: SAN File System clients

This chapter discusses the recovery of SAN File System clients. The focus is the recovery of the SAN File System Client, once the SAN File System MDSs and storage pools have been recovered by using one of the methods discussed in previous chapters of this book.

SAN File System supports a number of different client operating systems, including:

- AIX
- Red Hat Enterprise Linux
- SUSE Linux Enterprise Linux
- Solaris
- Windows 2000
- Windows 2003

A complete list of supported client operating systems and detailed requirements can be found at:

http://www.ibm.com/support/docview.wss?rs=575&uid=ssg1S1002521

Basic data backup and recovery of SAN File System clients can be accomplished in the same manner and with the same tools as other file and application servers. Applications such as Tivoli Storage Manager, and other popular vendor tools that support the specific operating system requirements can be used. In addition to the conventional method of loading the selected backup and recovery software in individual servers, SAN File System can establish and separate the backup and recovery operation in distinct servers other than those running key production applications. This technique reduces or potentially eliminates concerns of backup time requirements and backup I/O and CPU impact on production applications.

Data recovery procedures can also be positively impacted when you use SAN File System because some recovery tools allow two or more servers to act as recovery proxies for the production server. For example, IBM Tivoli Storage Manager allows you to use two or more servers to process the I/O that is needed to recover the data required by a key application server.
This infrastructure is shown in Figure 6-1 and is more fully discussed in *IBM TotalStorage SAN File System, SG24-7057*. These configurations are possible because of the global namespace of SAN File System. Because all clients see the same view of the data, backup and recovery operations can be run from any client (file permission syntax permitting).

![Figure 6-1 SAN File System enables LAN-free backup](image)

This type of backup is only for the actual data in the user storage pools, that is, in the SAN File System itself. If there is a disaster that destroys the client systems themselves, you need to provide some suitable replacement systems, rebuilt to the stage where they can access the SAN File System global namespace. To provide this, you can consider various bare metal restore tools.
6.1 Bare metal restore

Bare metal restore or bare machine recovery (BMR) differs from standard backup and recovery tools in that addresses the recovery of:

- The operating system
- Hardware configurations
- Operating system patches
- Operating system customizations
- Disk partitions
- Device drivers
- Network settings

There are a number of typical situations where bare metal restore can be valuable:

- Any hardware failure that makes it impossible to boot the system
- A virus or other corruption of the O/S
- A damaged boot disk

In the case of a SAN File System client, the BMR tool is designed to restore it back to the stage where it can access the SAN File System cluster (that is, with SAN File System client running).

There are a number of BMR tools available. Regardless of the tools chosen the backup processes followed are quite similar:

1. Create machine specific configuration files.
2. Create a boot device. This might be a common bootable CD that can be used across many operating systems and OS versions, a customized CD for the OS, or other devices.
3. Perform a full system backup. Typically, this requires a full data backup (or progressive incremental backup when you are using Tivoli Storage Manager).
4. Back up or recreate machine-specific files whenever there has been a hardware or operating system change.

If a restore is required, you would boot from the boot media, and perform the steps summarized in Table 6-2 on page 68.

Most BMR tools provide the ability to interface with an enterprise backup package (such as Tivoli Storage Manager) so that data from both tools is stored and managed by the enterprise backup tool. Although all tools need some type of initial boot device, in most cases, the server-specific information can be stored and recovered by the enterprise backup tool.

6.2 Some BMR tools available from IBM

Table 6-1 on page 68 shows the various SAN File System client platforms, and the various BMR tools available from IBM. There are, of course, many BMR packages available; check with your vendor to see which SAN File System client platforms are supported. All the IBM-supplied packages, Cristie Bare Machine Recovery (CBMR), Tivoli Storage Manager with ASR, and Tivoli Storage Manager for System Backup and Recovery, can send the backed up data to a Tivoli Storage Manager server.
Table 6-1 BMR tools available from IBM for SAN File System client platforms

<table>
<thead>
<tr>
<th></th>
<th>Cristie Bare Machine Recovery (CBMR)</th>
<th>Tivoli Storage Manager V5.2+ ASR (ASR)</th>
<th>Tivoli Storage Manager for System Backup and Recovery (Sysback)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIX</td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Windows 2000</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Windows 2003</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Linux</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solaris</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note that Linux support with CBMR is for Intel® processors only.

Table 6-2 summarizes restore methods with the different BMR tools.

Table 6-2 Restore methods

<table>
<thead>
<tr>
<th></th>
<th>CBMR</th>
<th>ASR</th>
<th>Sysback</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boot network and disk</td>
<td>Linux kernel, TSM API, and DBMR files are loaded from the CBMR CD or CBMR boot and system diskette</td>
<td>Automated windows ASR installation from Windows 2003 installation CD</td>
<td>Network boot using Sysback Utilities to bring the system into service mode</td>
</tr>
<tr>
<td>Install mini-OS</td>
<td>Not applicable</td>
<td>Windows OS from OS CD</td>
<td>RAM Filesystem loaded by boot process</td>
</tr>
<tr>
<td>Repartition drives</td>
<td>CBMR repartitions according to information in config files</td>
<td>Windows does according to information from TSMASR diskette</td>
<td>Repartitioning of drivers takes place as the first step of the restore of the original OS</td>
</tr>
<tr>
<td>Restore original OS</td>
<td>CBMR restores files from TSM server with the TSM API</td>
<td>TSM client, which is stored on special TSM CLI CD, pulls back information from TSM Server</td>
<td>Restore from image sent to TSM server</td>
</tr>
<tr>
<td>Post BMR Tasks</td>
<td>TSM B/A client system object restore; TSM File restore (using ifnewer option)</td>
<td>If using an online TSM restore, ASR restore will pull back latest backup. If using backupset restore, TSM File restore (using ifnewer option)</td>
<td>Possible TSM b/a client file restore depending on frequency and type of backups Sysback is doing to TSM</td>
</tr>
<tr>
<td>Needed material to do restore</td>
<td>CBMR CD, device configuration diskette or network share</td>
<td>O/S CD, TSM Client CD, ASR diskette</td>
<td>Sysback Network Boot Server and Image</td>
</tr>
</tbody>
</table>
6.3 Dissimilar hardware

The use of dissimilar hardware is a very important consideration when you are planning for disaster recovery. Continual rapid advance in technology makes it unlikely that all of the equipment that needs to be restored has an exact match in your DR facility. From an operating system perspective important hardware differences include:

- Different number of local hard disks than original system
- One or more hard disks differ in size
- Network or fiber adapters from different manufacturers or are different models or versions
- Controller cards
- CPUs
- Other

All BMR tools offer some means of working within a dissimilar hardware environment, but some approaches are more automated than others. It is important to understand the limitations of your specific tool set and prepare accordingly to have the requisite hardware for your critical applications and servers.
Protecting the files in the global namespace

In this chapter, we discuss how to do daily backup of the files in the SAN File System global namespace. We focus on using Tivoli Storage Manager to do this. Performing regular backups is important, because the most common form of data loss is a partial data loss. Typically, these data losses are caused by the user.
7.1 Introduction

Data protection is the process of making extra copies of data, so that it can be restored after various types of failure. The type of data protection (or backup) done depends on the kinds of failure that you wish to avoid. Various failures might require the restore of a single file, an older version of a file, a directory, a LUN, or an entire system. Various methods for protecting the SAN File System are available, including:

- SAN File System FlashCopy
- Third-party backup and restore applications for SAN File System (for example, Tivoli Storage Manager, Legato NetWorker, and VERITAS NetBackup)
- Storage system-based protection methods (for example, FlashCopy and Metro Mirror functions of IBM disk systems), also known as LUN-based backups
- Saving the SAN File System cluster configuration and restoring and running it

The previous chapters of this book have focused on the last two points in this list; in this chapter, we focus on the first two.

SAN File System FlashCopy provides a space-efficient image of the contents of part of the SAN File System global namespace at a particular moment.

SAN File System supports the use of backup tools that might already be present in your environment. For example, if your enterprise currently uses a storage management product, such as Tivoli Storage Manager, SAN File System clients can use the functions and features of that product to back up and restore files in the SAN File System global namespace.

When backing up files stored in SAN File System, you must save the actual files themselves and the file metadata. The examples in this chapter demonstrate some approaches for this. Because the split between file and metadata is invisible to the client operating systems, and therefore to normal data protection products such as Tivoli Storage Manager, relevant metadata for each file is automatically backed up and restored as necessary.

7.1.1 File-based backup of SAN File System

In a file-based backup, the smallest unit of restore is an individual file. For file-based backup, there are two basic methods:

- SAN File System FlashCopy, which backs up at the fileset level, but provides the ability to restore parts of the fileset, such as directories, groups of files, or individual files. See *IBM TotalStorage SAN File System*, SG24-7057 for more information.

- Operating system utilities and vendor provided backup and recovery tools. These include commands such as `tar`, `cpio`, `xcopy`; Windows Backup; Tivoli Storage Manager, VERITAS NetBackup, and Legato NetWorker. These tools are designed to access the SAN File System global namespace exactly as they would a local drive. An example of using Tivoli Storage Manager for file-based backup is described in 7.2, “Back up and restore using Tivoli Storage Manager” on page 73.

When you use a file-based backup method, you must be aware of the associated file metadata backup (this includes all the permissions and extended file attributes). This metadata for Windows-created files can only be backed up completely from a Windows backup client or utility. Similarly, metadata for UNIX (including Linux) files can only be backed up completely from another UNIX-based backup client or utility. If you must preserve full file attribute information, a solution is to create separate filesets by primary allegiance; that is, certain filesets only contain Windows files and other filesets only contain UNIX files. In this way, you can back them up from the appropriate client OS.
7.2 Back up and restore using Tivoli Storage Manager

In this section, we discuss using a backup/recovery application, such as Tivoli Storage Manager, with SAN File System clients to perform a file-based backup of files in the SAN File System global namespace.

7.2.1 Benefits of Tivoli Storage Manager with SAN File System

Because SAN File System is a global namespace (the files are visible to all clients), this means that the files can be backed up from any SAN File System client. Therefore, you can back up those files, either directly from the filesets or from a SAN File FlashCopy image on a SAN File System client that is completely separate from the client that normally runs any applications on these files, thus providing an application server-free backup. This removes the application servers themselves from the data path of the backup and frees them from expending any CPU cycles on the backup process. If you back up the files from a FlashCopy image, this effectively almost eliminates the backup window, that is, a period of outage of the application to clients, because you create an online consistent copy of the data that is then backed up. The application then proceeds uninterrupted while the backup runs against the FlashCopy image.

This principle is shown in Figure 7-1.

![Figure 7-1 Exploitation of SAN File System with Tivoli Storage Manager](image)

The following procedure provides application server-free backup:

1. Create FlashCopy images of the filesets that you want to protect. This requires minimal disruption to the SAN File System clients that are performing a production workload (Web servers, application servers, database servers, and so on).
2. A file-based backup application, such as Tivoli Storage Manager where the Tivoli Storage Manager client is installed on a separate SAN File System client, can be used to back up these FlashCopy images. It still sees all the files, but the backups run independently of the production SAN File System clients. To keep all file attributes, if you have both Windows and UNIX (including Linux)-created data in your SAN File System environment, it should be separated by fileset. Then, you should run two separate Tivoli Storage Manager clients in this instance: a Windows Tivoli Storage Manager and SAN File System client to back up Windows files, and an AIX Tivoli Storage Manager and SAN File System client to back up UNIX (including Linux) files. You can also run multiple instances of these (if necessary) to improve backup performance. The Tivoli Storage Manager server can be on any supported Tivoli Storage Manager server platform, and only needs to be SAN and LAN attached. It does not need to be a SAN File System client.

3. If you have implemented a non-uniform SAN File System configuration and not all filesets are visible to all clients, you need additional backup clients to ensure that all filesets can be backed up by a client that has visibility to it.

4. You can use the LAN-free backup client to also back up these files directly over the SAN to a SAN-attached library as shown, rather than using the LAN for backup data traffic. The result is LAN-free and application server-free backup capability.

Note: Tivoli Storage Manager, when backing up the files in SAN File System, automatically also backs up the associated file metadata. Tivoli Storage Manager also supports restoring files to the same or a different location, and even to a different Tivoli Storage Manager client. This means that you can restore files backed up from SAN File System not only to a different SAN File System environment, but also (as in a disaster recovery situation) to a local file system on another UNIX or Windows Tivoli Storage Manager client that is not a SAN File System client; that is, you could still restore these files from a Tivoli Storage Manager backup even if you do not have a SAN File System environment to restore them to. After all, they are just files to Tivoli Storage Manager. The metadata is handled appropriately for the restore platform, depending on whether the restore destination is a directory in the SAN File System global namespace or a local file system.

7.3 Backup and restore scenarios with Tivoli Storage Manager

We present the following scenarios for restore:

- Back up user data in Windows filessets using Tivoli Storage Manager client for Windows
 - Selected file to original location
 - File restore to different location from a FlashCopy image backup
- Back up user data in UNIX filessets using Tivoli Storage Manager client for AIX
 - Back up and restore files using data in an actual fileset
 - Back up and restore SAN File System FlashCopy images with the snapshotroot TSM option

In our lab, we installed the Tivoli Storage Manager server on a Windows 2000 server and two clients on the following platforms:

- AIX 5L™ Version 5.2, Maintenance Level 03, 32-bit version
- Windows 2000 Service Pack 4

Both Tivoli Storage Manager server and client code versions used in our lab were V5.2.2.0. Note that, to back up SAN File System data from AIX and Windows SAN File System clients, you need Tivoli Storage Manager client V5.1 and higher. To back up SAN File System data from Linux and Solaris clients, you need Tivoli Storage Manager client V5.2.3.1 or higher.
All these clients are also SAN File System clients. In the following sections, we introduce sample backup and restore scenarios for both Windows and UNIX SAN File System filesets.

7.3.1 Backing up Windows data with Tivoli Storage Manager for Windows

First, we back up the files with the Tivoli Storage Manager client:

1. To start the GUI, select **Start** → **Programs** → **Tivoli Storage Manager** → **Backup-Archive GUI**, and select **Backup**. Select the files to back up, as shown in Figure 7-2. Notice that the SAN File System drive and filesets appear as a Local drive in the backup-archive client.

![Figure 7-2 User files selection](image)

2. Start the backup by clicking **Backup**. The files are backed up to the Tivoli Storage Manager server. Note that we have selected for our backup not only the actual content of the INSTALL directory, but also its SAN File System FlashCopy image, which is located in the .flashcopy/Image-8 folder. If you make a FlashCopy image each day (using a different directory) and back it up, Tivoli Storage Manager incremental backup will back up all the files each time. In 7.3.3, “Tivoli Storage Manager snapshotroot option for FlashCopy images” on page 80, we show you how to back up SAN File System FlashCopy images incrementally using the Tivoli Storage Manager snapshotroot option.

Restoring user data using Tivoli Storage Manager client for Windows

Having backed up both actual data and its FlashCopy image, we can execute our restore scenarios.
Scenario 1: Restoring selected file to original destination

In this scenario, you see how to restore from the Tivoli Storage Manager backup of the actual files. We deleted the INSTALL directory, and the plan is to restore it using Tivoli Storage Manager. We are only showing the restore of one folder for demonstration purposes, but Tivoli Storage Manager can restore multiple files and folders or an entire file system. The process you use is:

1. Start the Tivoli Storage Manager Backup/Archive client and select **Restore**. As shown in Figure 7-3, we chose to restore the folder.

![Figure 7-3 Restore selective file selection](image)

2. Select the restore location. We chose to restore to the original location, as shown in Figure 7-4. Click **Restore** to start the restore.

![Figure 7-4 Select destination of restore file(s)](image)

3. The deleted file is restored.
Scenario 2: Restoring FlashCopy image to a different destination

In this scenario, you learn how to restore the files backed up from the FlashCopy image to the real fileset location. The procedure is:

1. Start the Tivoli Storage Manager Backup/Archive client. Select Restore.
2. Select the files to restore as shown in Figure 7-5. We restored the Image-8 folder from the FlashCopy image.

3. Select the destination to restore the files to. We chose to restore the folder to the win2kfiles fileset in S:\winhome\win2kfiles\testfolder as shown in Figure 7-6. Click Restore to start the restore. Note that we could not (and it would not make sense to) restore the files to the .flashcopy directory as FlashCopy images, so their directories are read-only.
4. The restore of the FlashCopy files is now complete. The original folder is restored.

Tip: Regular periodic FlashCopy images are highly recommended. They are the most efficient method for quickly backing up and restoring files in scenarios where the metadata is still available.

7.3.2 Backing up UNIX user data with Tivoli Storage Manager for AIX

In this section, we introduce the following backup/restore scenarios:

- Backing up and restoring files using data in an actual fileset
- Backing up and restoring SAN File System FlashCopy images using the snapshotroot Tivoli Storage Manager option

Backing up and restoring files using data in an actual fileset

In this scenario, you learn how to back up sample files in the aixfiles and lixfiles filesets (Example 7-1). Our example uses the Tivoli Storage Manager command-line interface.

Example 7-1 Files to back up using Tivoli Storage Manager AIX client

```
Rome:/sfs/sanfs/lixfiles/linuxhome/install >ls -l
2048 total
-rw-rw-rw- 1 root system 696679 Jun 01 11:07 TIVguid.i386.rpm
Rome:/sfs/sanfs/lixfiles/linuxhome/install >ls -l ../../../aixfiles/aixhome/inst.images
48897 total
-rw-r--r-- 1 root system 0 May 26 17:47 .toc
-rw-r--r-- 1 root system 25034752 May 26 17:46 510005.v2.tar
drwxr-x--- 2 root system 48 May 26 17:47 lost+found/
```

The procedure is:

1. Back up the files with the Tivoli Storage Manager client. Example 7-2 shows the output of our backup.

Example 7-2 Backing up files using Tivoli Storage Manager AIX command line client

```
Rome:/sfs/sanfs >dsmc selective "/sfs/sanfs/aixfiles/aixhome/inst.images/*" "/sfs/sanfs/lixfiles/linuxhome/install/*"
IBM Tivoli Storage Manager
Command Line Backup/Archive Client Interface - Version 5, Release 2, Level 2.0
(c) Copyright by IBM Corporation and other(s) 1990, 2003. All Rights Reserved.

Node Name: AIXROME
Session established with server NPSRV2: Windows
Server Version 5, Release 2, Level 2.0
Server date/time: 06/02/04 09:51:00 Last access: 06/02/04 09:48:37

Selective Backup function invoked.

Directory--> 72 /sfs/sanfs/aixfiles/aixhome/inst.images [Sent]
Directory--> 312 /sfs/sanfs [Sent]
Directory--> 96 /sfs/sanfs/aixfiles [Sent]
Directory--> 144 /sfs/sanfs/aixfiles/aixhome [Sent]
Normal File--> 27,673,600

/sfs/sanfs/aixfiles/aixhome/inst.images/IP22727.tivoli.tsm.client.ba.32bit [Sent]
Selective Backup processing of "/sfs/sanfs/aixfiles/aixhome/inst.images/*" finished without failure.
```
Selective Backup processing of ‘/sfs/sanfs/lixfiles/linuxhome/install/*’ finished without failure.

Total number of objects inspected: 10
Total number of objects backed up: 10
Total number of objects updated: 0
Total number of objects rebound: 0
Total number of objects deleted: 0
Total number of objects expired: 0
Total number of objects failed: 0
Total number of bytes transferred: 27.05 MB
Data transfer time: 2.32 sec
Network data transfer rate: 11,909.43 KB/sec
Aggregate data transfer rate: 9,186.13 KB/sec
Objects compressed by: 0%
Elapsed processing time: 00:00:03

2. Simulate data loss in the fileset that was backed up in step 1 on page 78. In Example 7-3, we simulated data loss by deleting the /sfs/sanfs/aixfiles/aixhome/inst.images/inst.images and /sfs/sanfs/lixfiles/linuxhome/install directories.

Example 7-3 Simulating the loss of data by deleting directories that we backed up in step 1
Rome:/sfs/sanfs >rm -rf /sfs/sanfs/lixfiles/linuxhome/install
Rome:/sfs/sanfs >rm -rf /sfs/sanfs/aixfiles/aixhome/inst.images

3. Restore your files using the Tivoli Storage Manager AIX line client from the backup created in step 1 on page 78. Our restore output is shown in Example 7-4.

Example 7-4 Restoring files from Tivoli Storage Manager AIX client backup

dsrm restore "/sfs/sanfs/aixfiles/aixhome/inst.images/*."; dsmc restore "/sfs/sanfs/lixfiles/linuxhome/install/*"
IBM Tivoli Storage Manager
Command Line Backup/Archive Client Interface - Version 5, Release 2, Level 2.0
(c) Copyright by IBM Corporation and other(s) 1990, 2003. All Rights Reserved.

Restore function invoked.

Node Name: AIXROME
Session established with server NPSRV2: Windows
 Server Version 5, Release 2, Level 2.0
 Server date/time: 06/02/04 09:59:47 Last access: 06/02/04 09:56:34

ANSI1247I Waiting for files from the server...
Restoring 72 /sfs/sanfs/aixfiles/aixhome/inst.images [Done]
Restoring 27,673,600 /sfs/sanfs/aixfiles/aixhome/inst.images/IP22727.tivoli.tsm.client.ba.32bit [Done]

Restore processing finished.

Total number of objects restored: 2
Total number of objects failed: 0
Total number of bytes transferred: 26.39 MB
Data transfer time: 20.45 sec
Network data transfer rate: 1,321.14 KB/sec
Aggregate data transfer rate: 1,174.53 KB/sec
Elapsed processing time: 00:00:23

IBM Tivoli Storage Manager
Command Line Backup/Archive Client Interface - Version 5, Release 2, Level 2.0
(c) Copyright by IBM Corporation and other(s) 1990, 2003. All Rights Reserved.

Restore function invoked.

Node Name: AIXROME
Session established with server NPSRV2: Windows
 Server Version 5, Release 2, Level 2.0
 Server date/time: 06/02/04 10:00:10 Last access: 06/02/04 09:59:47

ANSI247I Waiting for files from the server...
Restoring 72 /sfs/sanfs/lixfiles/linuxhome/install [Done]
Restoring 696,679 /sfs/sanfs/lixfiles/linuxhome/install/TIVguid.i386.rpm [Done]
< 680.40 KB> [-]
Restore processing finished.

Total number of objects restored: 2
Total number of objects failed: 0
Total number of bytes transferred: 680.40 KB
Data transfer time: 0.36 sec
Network data transfer rate: 1,877.42 KB/sec
Aggregate data transfer rate: 135.87 KB/sec
Elapsed processing time: 00:00:05

4. Verify the files have been restored to their original locations. Our results are shown in Example 7-5.

Example 7-5 Check if files have been successfully restored
Rome:/sfs/sanfs >ls -l /sfs/sanfs/lixfiles/linuxhome/install
 total 2048
 -rw-rw-rw- 1 root system 696679 Jun 01 13:26 TIVguid.i386.rpm
Rome:/sfs/sanfs >ls -l /sfs/sanfs/aixfiles/aixhome/inst.images
 total 55296
 -rw-r----- 1 root system 27637600 Jun 01 14:38 IP22727.tivoli.tsm.client.ba.32bit

7.3.3 Tivoli Storage Manager snapshotroot option for FlashCopy images

Before we introduce the actual backup and restore scenario that uses snapshotroot (a Tivoli Storage Manager client backup option), let us briefly explain the purpose of this option. Note that the content of this section requires in-depth knowledge of Tivoli Storage Manager concepts, which is beyond the scope of this redbook. If you need additional information about Tivoli Storage Manager, refer to the Tivoli Storage Manager product manuals, IBM Tivoli Storage Management Concepts, SG24-4877, and IBM Tivoli Storage Manager Implementation Guide, SG24-5416.

The snapshotroot option can be used with Tivoli Storage Manager incremental and selective backups as well as archives. It helps associate snapshot data created by any third-party application with a native FlashCopy capability, such as SAN File System FlashCopy, with the actual filesystem data stored in the Tivoli Storage Manager.

Note: The snapshotroot option does not provide any functionality for taking a FlashCopy (snapshot) image; it only helps manage data that has been already created by any FlashCopy-capable software application.
How does snapshotroot work? To explain the benefits of using this option for SAN File System FlashCopy images, we present the following example.

Important: Please note that this section only introduces our example, highlighting any necessary considerations and steps you need to take. The actual “cookbook-style” on how we have set up both our SAN File System and Tivoli Storage Manager environment to use this advanced approach is described in “Setting up for snapshotroot-based Tivoli Storage Manager backup” on page 83.

Assume that we have a fileset called aixfiles, attached to the /sfs/sanfs/aixfiles/aixhome directory. When we create a SAN File System FlashCopy image for this particular fileset, a subdirectory will be created in the /sfs/sanfs/aixfiles/aixhome/.flashcopy directory. That subdirectory holds the snapshot of the actual files and directories stored in /sfs/sanfs/aixfiles/aixhome and its subdirectories. Example 7-6 shows two FlashCopy images that we have created for the purpose of this scenario.

Example 7-6 SAN File System FlashCopy images in /sfs/sanfs/aixfiles/aixhome.flashcopy directory

```
Rome:/sfs/sanfs/aixfiles/aixhome/.flashcopy >pwd
/sfs/sanfs/aixfiles/aixhome/.flashcopy
Rome:/sfs/sanfs/aixfiles/aixhome/.flashcopy >ls -l
total 2
d---------   5 root     system          120 Jun 01 22:32 Image06-01-2004/
d---------   5 root     system          120 Jun 01 22:33 Image06-02-2004/
```

Now, to back up the SAN File System FlashCopy image using the Tivoli Storage Manager client, you normally run the following command:

```
dsmc incr "'/sfs/sanfs/aixfiles/aixhome/.flashcopy/Image06-01-2004/*" -subdir=yes
```

In this case, the Tivoli Storage Manager client starts to process the data in the /sfs/sanfs/aixfiles/aixhome/.flashcopy/Image06-01-2004/ directory and its subdirectories.

With snapshotroot, we are able to base the backup on the SAN File System FlashCopy image, while still preserving (from the Tivoli Storage Manager server point of view) the actual absolute directory structure and file names from which that particular SAN File System FlashCopy image originates. However, the main reason you might consider using a snapshotroot-based backup approach is that you have the ability to back up SAN File System FlashCopy images using Tivoli Storage Manager incremental methods. This requires you to add virtual mount point definitions into the Tivoli Storage Manager client dsm.sys configuration file for:

- All the filesets you plan to back up
- Each and every SAN File System FlashCopy image you create for any of your filesets

In Example 7-7, you can see how we have defined virtual mount points in our dsm.sys configuration file.

Example 7-7 Virtual mount point definitions example

```
virtualmountpoint /sfs/sanfs/aixfiles/aixhome
virtualmountpoint /sfs/sanfs/aixfiles/aixhome/.flashcopy/Image06-01-2004
virtualmountpoint /sfs/sanfs/aixfiles/aixhome/.flashcopy/Image06-02-2004
```

Without virtual mount point definitions, the Tivoli Storage Manager server stores all SAN File System related backups into a single filespace (in our example, AIXRome /sfs) as shown in Example 7-8 on page 82.
Example 7-8 q filespace command: no virtual mount point definitions

tsmaf NPSRV2>q filesp

 Node Name: AIXROME
 Filespace Name: /sfs
 FSID: 5
 Platform: AIX
 Filespace Type: SANFS
 Is Filespace Unicode?: No
 Capacity (MB): 294,480.0
 Pct Util: 3.7

If we, however, define a virtual mount point for our aixfiles fileset and also for all of our SAN File System FlashCopy images, and run a Tivoli Storage Manager backup, then the filespace layout on the Tivoli Storage Manager server (output of the q filesp command) resembles that shown in Example 7-9.

Example 7-9 q filespace command: With virtual mount point definitions

tsmaf NPSRV2>q filesp

 Node Name: AIXROME
 Filespace Name: /sfs
 FSID: 5
 Platform: AIX
 Filespace Type: SANFS
 Is Filespace Unicode?: No
 Capacity (MB): 294,480.0
 Pct Util: 3.7

 Node Name: AIXROME
 Filespace Name: /sfs/sanfs/aixfiles/aixhome
 FSID: 6
 Platform: AIX
 Filespace Type: SANFS
 Is Filespace Unicode?: No
 Capacity (MB): 304,688.0
 Pct Util: 3.6

 Node Name: AIXROME
 Filespace Name: /sfs/sanfs/aixfiles/aixhome/.flashcopy/Image06-01-2004
 FSID: 7
 Platform: AIX
 Filespace Type: SANFS
 Is Filespace Unicode?: No
 Capacity (MB): 304,688.0
 Pct Util: 3.6

 Node Name: AIXROME
 Filespace Name: /sfs/sanfs/aixfiles/aixhome/.flashcopy/Image06-02-2004
 FSID: 8
 Platform: AIX
 Filespace Type: SANFS
 Is Filespace Unicode?: No
 Capacity (MB): 304,688.0
 Pct Util: 3.6
So far, we have explained the purpose of the snapshotroot option, and outlined the role of the Tivoli Storage Manager client virtual mount points. Now we describe how to actually back up SAN File System data using the snapshotroot option.

Using the snapshotroot option to back up SAN File System filesets
As mentioned earlier in this section, you can back up a SAN File System FlashCopy image using dsmc with a syntax similar to this:

dsmc incr "/sfs/sanfs/aixfiles/aixhome/.flashcopy/Image06-01-2004/*" -subdir=yes

But with the snapshotroot backup approach, you in fact do not run backup against the SAN File System FlashCopy image directory, but rather against the actual data directory. The SAN File System FlashCopy directory is then specified as the option for the snapshotroot option as shown:

dsmc incr /sfs/sanfs/aixfiles/aixhome/ -snapshotroot="/sfs/sanfs/aixfiles/aixhome/.flashcopy/Image06-02-2004"

Because we have now explained the whole concept behind backing up SAN File System data based on their FlashCopy images using the snapshotroot Tivoli Storage Manager client option, we can now show a step-by-step scenario for this type of backup in our lab environment.

Setting up for snapshotroot-based Tivoli Storage Manager backup
In this section, we describe all the necessary steps for configuring a snapshotroot-based Tivoli Storage Manager backup of the SAN File System data. The snapshotroot option for SAN File System is supported, at the time of this writing, on Tivoli Storage Manager V5.2.3.1 and higher clients for AIX, Windows, Solaris, and Linux. The steps are as follows:

1. Make sure you have a virtual mount point defined for your fileset in the Tivoli Storage Manager dsm.sys file; if not, create the definition as follows:

 virtualmountpoint /sfs/sanfs/aixfiles/aixhome

2. Create the SAN File System FlashCopy image. You can use either the SAN File System graphical console or the command-line interface. In our example, we used the command-line interface and mkimage:

 sfscli>mkimage -fileset aixfiles -dir Image06-01-2004 aixfiles_fcopy1

3. Add a new virtual mount point definition in the dsm.sys file for the newly created SAN File System FlashCopy image:

 virtualmountpoint /sfs/sanfs/aixfiles/aixhome/.flashcopy/Image06-01-2004

4. Make sure that the .flashcopy directory is excluded from normal Tivoli Storage Manager backups by adding the appropriate exclude.dir option into the dsm.sys file:

 exclude.dir /.../.flashcopy

5. This step is for AIX only. If you are configuring this example on a client other than AIX, please skip this step. Add the testflag option to the dsm.sys file to prevent undesired object updates caused by AIX LVM inode number differences between the actual and FlashCopy data:

 testflag ignoreinodeupdate

6. Example 7-10 shows the completed dsm.sys file for our environment.

Example 7-10 Example of the dsm.sys file in our environment

Rome:/usr/tivoli/tsm/client/ba/bin >cat dsm.sys
Servername config1
 COMMmethod TCPIP
7. Perform the Tivoli Storage Manager incremental, selective, or archive backup operation. In our case, we performed an incremental backup of the fileset, with the snapshotroot based on Image06-02-2004:

```
dsmc incr /sfs/sanfs/aixfiles/aixhome/ \
\-snapshotroot=/sfs/sanfs/aixfiles/aixhome/.flashcopy/Image06-02-2004
```

8. After we backed up the SAN File System data incrementally using the FlashCopy image, we deleted that FlashCopy image on MDS using the command line interface:

```
rmimage -fileset aixfiles aixfiles_fcopy1
```

In the next section, we introduce the backup scenario based on the snapshotroot option, which demonstrates how the Tivoli Storage Manager incremental backup using snapshotroot really works.

Scenario: Backup using the snapshotroot option

In this scenario, we have a fileset named aixfiles and no SAN File System FlashCopy images have been created yet. The SAN File System fileset directory initially contains a file named file1.exe. We followed this procedure:

1. First, we created the SAN File System Flash Copy image for fileset aixfiles as shown in Example 7-11.

 Example 7-11 Create SAN File System Flash Copy image

   ```
sfscli> mkimage -fileset aixfiles -dir aixfiles-image-1 aixfiles-image-1
   CMMNP5168I FlashCopy image aixfiles-image-1 on fileset aixfiles was created successfully
   ```

2. Next, we added the virtual mount point definition to our DSM.SYS configuration file and ran an incremental backup of the fileset data using the snapshotroot option, as shown in Example 7-12.

 Example 7-12 Run Tivoli Storage Manager backup of the data

   ```
   Rome:/sfs/sanfs/aixfiles/aixhome >dsmc incr /sfs/sanfs/aixfiles/aixhome/ \
   \-snapshotroot=/sfs/sanfs/aixfiles/aixhome/.flashcopy/aixfiles-image-1
   ```

IBM Tivoli Storage Manager

Command Line Backup/Archive Client Interface - Version 5, Release 2, Level 2.0
(c) Copyright by IBM Corporation and other(s) 1990, 2003. All Rights Reserved.

Node Name: AIXROME
Session established with server NPSRV2: Windows
Server Version 5, Release 2, Level 2.0
Server date/time: 06/08/04 14:29:57 Last access: 06/08/04 14:29:05

Incremental backup of volume '/sfs/sanfs/aixfiles/aixhome/
Directory--> 48 /sfs/sanfs/aixfiles/aixhome/lost+found [Sent]
Normal File--> 5,495,760 /sfs/sanfs/aixfiles/aixhome/file1.exe [Sent]
Successful incremental backup of '/sfs/sanfs/aixfiles/aixhome/*'

Total number of objects inspected: 2
Total number of objects backed up: 2
Total number of objects updated: 0
Total number of objects rebound: 0
Total number of objects deleted: 0
Total number of objects expired: 0
Total number of objects failed: 0
Total number of bytes transferred: 5.24 MB
Data transfer time: 0.44 sec
Network data transfer rate: 11,973.98 KB/sec
Aggregate data transfer rate: 1,775.06 KB/sec
Objects compressed by: 0%
Elapsed processing time: 00:00:03
Rome:/sfs/sanfs/aixfiles/aixhome >

The file /sfs/sanfs/aixfiles/aixhome/file1.exe has been backed up by Tivoli Storage Manager using the SAN File System image in /sfs/sanfs/aixfiles/aixhome/.flashcopy/aixfiles-image-1/file1.exe.

3. We added a new file to the /sfs/sanfs/aixfiles/aixhome directory named file2.exe.

4. We created a new SAN File System FlashCopy image in the /sfs/sanfs/aixfiles/aixhome/.flashcopy/aixfiles-image-2 directory as shown in Example 7-13.

Example 7-13 Creating a new FlashCopy image
sfscli> mkimage -fileset aixfiles -dir aixfiles-image-2 aixfiles-image-2
CMMNP5168I FlashCopy image aixfiles-image-2 on fileset aixfiles was created successfully.

5. We added a new virtual mount point for the new SAN File System FlashCopy image aixfiles-image-2 (Example 7-14).

Example 7-14 Adding a new virtual mount point definition into DSM.SYS and run new backup
Rome:/sfs/sanfs/aixfiles/aixhome >cat /usr/tivoli/tsm/client/ba/bin/dsm.sys
SERVERname config1
 COMMmethod TCPip
 TCPPort 1500
 TCPServeraddress 9.42.164.126
 Nodename AIXRome
 Passwordaccess generate

***** added for SAN File System *****
testflag ignoreinodeupdate
virtualmountpoint /sfs/sanfs/aixfiles/aixhome
virtualmountpoint /sfs/sanfs/aixfiles/aixhome/.flashcopy/aixfiles-image-1
virtualmountpoint /sfs/sanfs/aixfiles/aixhome/.flashcopy/aixfiles-image-2

6. Now, we ran the backup again, using the snapshotroot option pointing to the latest Flashcopy image: aixfiles-image-2 (Example 7-15).

Example 7-15 Run backup again, this time using the aixfiles-image-2 image
Rome:/sfs/sanfs/aixfiles/aixhome >dsmc incr /sfs/sanfs/aixfiles/aixhome/\ \
n-snapshotroot=/sfs/sanfs/aixfiles/aixhome/.flashcopy/aixfiles-image-2
IBM Tivoli Storage Manager
Command Line Backup/Archive Client Interface - Version 5, Release 2, Level 2.0
As you can see, the /sfs/sanfs/aixfiles/aixhome directory has been backed up incrementally, this time using the aixfiles-image-2 image. Therefore, we just backed up the newly added file - file2.exe.

7. We created the file3.exe file in the /sfs/sanfs/aixfiles/aixhome directory.

8. We made a SAN File System FlashCopy image named aixfiles-image-3, as shown in Example 7-16.

Example 7-16 Making another SAN File System FlashCopy image

sfscli> mkimage -fileset aixfiles -dir aixfiles-image-3 aixfiles-image-3
CMMNP5168I FlashCopy image aixfiles-image-3 on fileset aixfiles was created successfully.

9. We added another file named file4.exe.

10. Finally, we ran a backup, pointing the snapshotroot to the aixfiles-image-3 SAN File System FlashCopy image, remembering to add a new virtual mount point for the aixfiles-image-3 image to the DSM.SYS configuration file. In this case, only the file3.exe is backed up and file4.exe is ignored because we added file4.exe to the actual file system directory and did not generate a new SAN File System FlashCopy image afterwards. The SAN File System FlashCopy image aixfiles-image-3 does not contain the image of the file file4.exe because the file was created after the image was taken. Therefore, file4.exe is not backed up. This is how the snapshotroot option works; in each case, the files set is backed up incrementally, using the specified FlashCopy image as a base.

Example 7-17 Final backup

Rome:/sfs/sanfs/aixfiles/aixhome
>hotroot=/sfs/sanfs/aixfiles/aixhome/.flashcopy/aixfiles-image-3
IBM Tivoli Storage Manager
Command Line Backup/Archive Client Interface - Version 5, Release 2, Level 2.0
(c) Copyright by IBM Corporation and other(s) 1990, 2003. All Rights Reserved.
Node Name: AIXROME

Session established with server NPSRV2: Windows
 Server Version 5, Release 2, Level 2.0
 Server date/time: 06/08/04 15:07:56 Last access: 06/08/04 14:45:17

Incremental backup of volume '/sfs/sanfs/aixfiles/aixhome/'
Normal File--> 5,495,760 /sfs/sanfs/aixfiles/aixhome/file3.exe [Sent]
Successful incremental backup of '/sfs/sanfs/aixfiles/aixhome/**'

| Total number of objects inspected: | 4 |
| Total number of objects backed up: | 1 |
| Total number of objects updated: | 0 |
| Total number of objects rebound: | 0 |
| Total number of objects deleted: | 0 |
| Total number of objects expired: | 0 |
| Total number of objects failed: | 0 |
| Total number of bytes transferred: | 5.24 MB |
| Data transfer time: | 0.40 sec |
| Network data transfer rate: | 13,115.34 KB/sec |
| Aggregate data transfer rate: | 1,768.19 KB/sec |
| Objects compressed by: | 0% |
| Elapsed processing time: | 00:00:03 |

As you can see, our assumption that only the file3.exe file would be backed up was right. The Tivoli Storage Manager backup client searches the actual data directory /sfs/sanfs/aixfiles/aixhome for existing objects to be backed up, but for the backup itself, it uses the SAN File System FlashCopy directory specified by the snapshotroot option, which in our case, was /sfs/sanfs/aixfiles/aixhome/aixfiles-image-3.

This scenario also explains the role of the virtual mount point entries in the dsm.sys configuration file. As you can see in Example 7-14 on page 85, there is one virtual mount point created for the /sfs/sanfs/aixfiles/aixhome directory. We need this option to inform the Tivoli Storage Manager server that it must create and use a new separate filespace for the /sfs/sanfs/aixfiles/aixhome directory. See the output of the q filesp command from the Tivoli Storage Manager command-line interface shown in Example 7-18.

Example 7-18 Query filesp command output from Tivoli Storage Manager CLI

 tsm: NPSRV2>q filesp

 Node Name: AIXROME
 Filename Name: /sfs/sanfs/aixfiles/aixhome
 FSID: 10
 Platform: AIX
 Filesystem Type: SANFS
 Is Filesystem Unicode?: No
 Capacity (MB): 352,800.0
 Pct Util: 8.1

Simply put, if you did not specify a virtual mount point for the /sfs/sanfs/aixfiles/aixhome directory (which is also the attach point of the SAN File System fileset aixfiles) and then ran a backup, the TSM filespace name would be /sfs only (as shown in Example 7-8 on page 82) and you would not be able to run incremental backups using the snapshotroot option.

So, why do we need virtual mount point entries in dsm.sys for all of our SAN File System FlashCopy images? The reason is that you can only specify a mount point to the snapshotroot option, not a directory. If the virtualmountpoint entry for the aixfiles-image-3
image was not made, and you tried to run a backup with the snapshotroot option pointing to the /sfs/sanfs/aixfiles/aixhome/.flashcopy/aixfiles-image-3 directory, the Tivoli Storage Manager client would generate an error message as shown in Example 7-19 below.

Example 7-19 Need for dsm.sys virtual mountpoint entries for SAN File System FlashCopy images

```bash
Rome:/sfs/sanfs/aixfiles/aixhome >dsmc incr /sfs/sanfs/aixfiles/aixhome/
-snaphotroot=/sfs/sanfs/aixfiles/aixhome/.flashcopy/aixfiles-image-3

ANS7533E The specified drive '/sfs/sanfs/aixfiles/aixhome/.flashcopy/aixfiles-image-3' does not exist or is not a local drive.
```

Conclusions

Using the snapshotroot option with your Tivoli Storage Manager backup client allows you to use SAN File System FlashCopy images to back up data even with the incremental backup method. To use the snapshotroot option, you must add a virtualmountpoint entry for the actual fileset and also for each and every SAN File System FlashCopy image generated for that particular fileset. You can avoid the manual modification to your dsm.sys file (to add a specific virtualmountpoint entry) by choosing the standard naming convention for your SAN File System FlashCopy images (Image-1, Image-2, Image-3, and so on). Because the SAN File System supports a maximum number of FlashCopy images of 32, you can predefine all your virtual mount points to your dsm.sys configuration file and then automate the backup process using scripts.
Installing an MDS

This appendix shows the basic steps for installing a SAN File System MDS. This only shows the actual SAN File System packages; for details about the prerequisite software (including SUSE Linux, RSA, HBA device driver, disk system device driver, and so on), and for more detailed planning information and instructions, see IBM TotalStorage SAN File System Installation and Configuration Guide, GA27-4316 and IBM TotalStorage SAN File System, SG24-7057.

We also assume, in this appendix, that local authentication is used for SAN File System administrative users. If you are using LDAP, refer to the documentation mentioned previously.

Important: This appendix assumes that you are already skilled in general SAN File System installation.
Installation steps for a single MDS

After installing the SUSE Linux (including any required service packs), HBA driver, and SDD on the MDS server, the SAN File System code itself is installed.

The SAN File System cluster is installed by executing a self-extracting archive and shell script. The self-extracting archive is named install_sfs-package-<version>.sh and contains the software packages for all SAN File System components, including the MDS, the administrative server, and all clients.

Run the installation script that corresponds to the version of SUSE Linux Enterprise server that is installed on your system. For SAN File System V2.2.2, there are two install_sfs-package scripts on the SAN File System CD:

- For SUSE Linux Enterprise server version 8, in a directory named SLES8
- For SUSE Linux Enterprise server version 9, in a directory named SLES9

For the installation, follow these steps:

1. Put the SAN File System CD in the CD drive of the MDS where you want to run the installation. Mount the CD (for example, mount /media/cdrom).
2. Copy the truststore file (/usr/tank/admin/truststore) from the master MDS to the new MDS. You must use secure copy (for example, scp) to do this.
3. Generate a configuration file template by running install_sfs-package-<version>.sh with the genconfig option and redirect the output to a file: /tmp/sfs.conf as follows:
   ```bash
   /media/cdrom/SLESx/install_sfs-package-<version>.sh --genconfig > /tmp/sfs.conf
   ```
 Respond to the prompts based on your system configuration.
4. Edit /tmp/sfs.conf and change each entry to match your environment.
5. Run install_sfs-package-<version>.sh to install and configure a single SAN File System MDS. Note the use of the -noldap option:
   ```bash
   /media/cdrom/SLESx/install_sfs-package-<version>.<platform>.sh --loadserver --sfsargs "-f /tmp/sfs.conf -noldap"
   ```

 Note: If you are using an LDAP server rather than local authentication to authenticate SAN File System Administration console users, omit the noldap option. The command then becomes:
   ```bash
   /media/cdrom/SLESx/install_sfs-package-<version>.<platform>.sh --loadcluster --sfsargs "-f /tmp/sfs.conf".
   ```

 If you run without the noldap option, you are prompted for additional LDAP configuration options; see the documentation referenced at the beginning of this appendix for more details of LDAP configuration.

 If you are using local authentication, then the new MDS must have the same SAN File System user IDs, passwords, and groups already defined, before installing SAN File System, as they exist on MDSs in the cluster.

6. Select the installation language (we chose 2 for English), press **Enter** to display the license agreement, and enter 1 when prompted to accept the license agreement, as shown in Example A-1 on page 91.
Appendix A. Installing an MDS

Example: A-1 Cluster installation: language and license agreement

tank-mds3:/media/cdrom/SLES8 # ./install_sfs-package-2.2.2-132.i386.sh --loadcluster
--sfsargs "-f /tmp/sfs.conf -noldap"

Software Licensing Agreement
1. Czech
2. English
3. French
4. German
5. Italian
6. Polish
7. Portuguese
8. Spanish
9. Turkish

Please enter the number that corresponds to the language you prefer.

2

Software Licensing Agreement

Press Enter to display the license agreement on your screen. Please read the agreement carefully before installing the Program. After reading the agreement, you will be given the opportunity to accept it or decline it. If you choose to decline the agreement, installation will not be completed and you will not be able to use the Program.

International Program License Agreement

Part 1 - General Terms

BY DOWNLOADING, INSTALLING, COPYING, ACCESSING, OR USING THE PROGRAM YOU AGREE TO THE TERMS OF THIS AGREEMENT. IF YOU ARE ACCEPTING THESE TERMS ON BEHALF OF ANOTHER PERSON OR A COMPANY OR OTHER LEGAL ENTITY, YOU REPRESENT AND WARRANT THAT YOU HAVE FULL AUTHORITY TO BIND THAT PERSON, COMPANY, OR LEGAL ENTITY TO THESE TERMS. IF YOU DO NOT AGREE TO THESE TERMS,

- DO NOT DOWNLOAD, INSTALL, COPY, ACCESS, OR USE THE PROGRAM; AND

- PROMPTLY RETURN THE PROGRAM AND PROOF OF ENTITLEMENT TO

Press Enter to continue viewing the license agreement, or, Enter "1" to accept the agreement, "2" to decline it or "99" to go back to the previous screen.

1

7. The SAN File code packages are extracted, as shown in Example A-2. You are prompted to accept the options that you configured in the configuration file /tmp/sfs.conf. You can either accept each one, by pressing Enter, or change them to other values.

Example: A-2 Cluster installation: unpack packages and check installation options

Installing /usr/tank/packages/sfs.server.verify.linux_SLES8-2.2.2-91.i386.rpm......
sfs.server.verify.linux_SLES8-2.2.2-91
Installing /usr/tank/packages/sfs.server.config.linux_SLES8-2.2.2-91.i386.rpm......
sfs.server.config.linux_SLES8
sfs.server.config.linux_SLES8-2.2.2-91
IBM SAN File System metadata server setup

To use the default value that appears in [square brackets],
press the ENTER key. A dash [-] indicates no default is
available.

SAN File System CD mount point (CD_MNT)
===

setupsfs needs to access the SAN File System CD to verify the
license key and install required software. Enter the full path
to the SAN File System CDs mount point.

CDs mount point [/media/cdrom]: /media/cdrom

Server name (SERVER_NAME)
==========================

Every engine in the cluster must have a unique name. This name
must be the same as the unique name used to configure the RSA
II adapter on each engine. However, no checks are done by the
metadata server to enforce this rule.

Server name [tank-mds3]: tank-mds3

Cluster name (CLUSTER_NAME)
===========================

Specifies the name given to the cluster. This cluster name
becomes the global namespace root. For example, when a
client mounts the namespace served by cluster name
sanfs on the path /mnt/, the SAN File System
is accessed by /mnt/sanfs/. If a name is not specified,
a default cluster name will be assigned. The cluster name can
be a maximum of 30 ASCII bytes or the equivalent in unicode
characters.

Cluster name [ITSO_GBURG]: ATS_GBURG

Server IP address (IP)
======================

This is dotted decimal IPv4 address that the local metadata
server engine has bound to its network interface.

Server IP address [9.82.22.171]: 9.82.22.171

Language (LANG)
===============

The metadata server can be configured to use a custom locale.
This release supports only UTF8 locales.

Language [en_US.utf8]: en_US.utf8

System Management IP (SYS_MGMT_IP)
=================================

92 Disaster Recovery Solutions for IBM TotalStorage SAN File System
Enter the System Management IP address
This is the address assigned to your RSAII card.

System Management IP [9.82.22.173]: 9.82.22.173

Authorized RSA User (RSA_USER)
=================================

Enter the user name used to access the RSA II card.

Authorized RSA User [USERID]: USERID

RSA Password (RSA_PASSWD)
==========================

Enter the password used to access the RSA II card.

RSA Password [PASSWORD]: PASSW0RD

CLI User (CLI_USER)
==================

Enter the user name that will be used to access the administrative CLI. This user must have an administrative role.

CLI User [itsoadm]: root

CLI Password (CLI_PASSWD)
=========================

Enter the password used to access the administrative CLI.

CLI Password [itso]: xxxxx

Truststore Password (TRUSTSTORE_PASSWD)
==

Enter the password used to secure the truststore file. The password must be at least six characters.

Truststore Password [password]: xxxx

LDAP SSL Certificate (LDAP_CERT)
================================

If your LDAP server only allows SSL connections, enter the full path to the file containing the LDAP certificate. Otherwise, do not enter anything.

LDAP SSL Certificate []:

8. Now the installation proceeds. The unpacked software is installed on the MDS and the processes initiate. The output should look similar to Example A-3 on page 94.
Example: A-3 Cluster installation: install the MDS

Run SAN File System server setup
================================

The configuration utility has not made any changes to your system configuration.

- Enter No to quit without configuring the metadata server on this system.
- Enter Yes to start the metadata server.

Run server setup [Yes]: yes
Gathering required files

HSTPV0035I Machine tank-mds3 complies with requirements of SAN File System version 2.2.2.91, build sv22_0001.

Updating configuration file: /usr/tank/admin/config/cimom.properties

Installing: sfs.admin.linux_SLES8-2.2.2-91.i386.rpm on 9.82.22.171.

HSTWU0011I Installing the SAN File System console...

HSTWU0014I The SAN File System console has been installed successfully.

Installing: sfs.server.linux_SLES8-2.2.2-91.i386.rpm on 9.82.22.171.

Creating configuration for 9.82.22.171.

Updating configuration file: /tmp/fileIFY1m/sfs.conf.9.82.22.171.

Starting the metadata server on 9.82.22.171.

Starting the CIM agent on 9.82.22.171.

Starting the SAN File System Console on 9.82.22.171.

9. At the end of the process, the MDS is visible with a Not Added Subordinate status.

10. The installation process stores the software packages for all SAN File System components, including the MDS, the administrative server, and all clients, in the directory /usr/tank/packages. Example A-4 shows the SAN File System packages installed in the directory.

Example: A-4 SAN File System installation packages

```
# cd /usr/tank/packages
# ls
...
inst_list.cd
inst_list.no.cd
```
sfs-client-WIN2K3-opt-2.2.2.82.exe
sfs.admin.linux_SLES8-2.2.2-91.i386.rpm
sfs.client.aix51
sfs.client.aix52
sfs.client.aix53
sfs.client.linux_RHEL-2.2.2-82.i386.rpm
sfs.client.linux_SLES8-2.2.2-82.i386.rpm
sfs.client.linux_SLES8-2.2.2-82.ppc64.rpm
sfs.client.solaris9.2.2.2-82
sfs.locale.linux_SLES8-2.2.2-8.i386.rpm
sfs.server.config.linux_SLES8-2.2.2-91.i386.rpm
sfs.server.linux_SLES8-2.2.2-91.i386.rpm
sfs.server.verify.linux_SLES8-2.2.2-91.i386.rpm
sfs.server.linux-2.2.0-83.i386.rpm
mds1:/usr/tank/packages #
Related publications

The publications listed in this section are considered particularly suitable for a more detailed discussion of the topics covered in this redbook.

IBM Redbooks

For information about ordering these publications, see “How to get IBM Redbooks” on page 97. Note that some of the documents referenced here may be available in softcopy only.

- IBM TotalStorage SAN File System, SG24-7057
- IBM TotalStorage Business Continuity Solutions Guide, SG24-6547
- IBM TotalStorage Business Continuity Solutions Guide, SG24-6547
- IBM TotalStorage SAN Volume Controller, SG24-6423

Other publications

These publications are also relevant as further information sources:

- IBM TotalStorage Master Console Installation and User's Guide, GC30-4090
- IBM TotalStorage SAN File System Administrator's Guide and Reference, GA27-4317
- IBM TotalStorage SAN File System Maintenance and Problem Determination Guide, GA27-4318
- IBM TotalStorage SAN File System Planning Guide, GA27-4344
- IBM TotalStorage SAN File System Installation, and Configuration Guide, GA27-4316

How to get IBM Redbooks

You can search for, view, or download Redbooks, Redpapers, Hints and Tips, draft publications and Additional materials, as well as order hardcopy Redbooks or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM

IBM Support and downloads
ibm.com/support

IBM Global Services
ibm.com/services
Index

A
- ACL 10
- application server consolidation 5
- ASR 67

B
- bare metal restore 67
- BMR 67
- boot device 67

C
- CBMR 67
- clustering 6
- Consistency Group 8
- consistency group 11, 13, 15, 39, 51
- consolidation 5
- copy services 7
 - data consistency 8

D
- Data Backup with no Hot-Site 3
- data consistency 4, 8
- data duplication 7
- data loss
 - Several hours 3
- data migration 7
- disaster recovery 2
- DNS 30
- DR file 39, 42, 45
- DRfile 41, 46
- dynamic filesets 63

E
- electronic vaulting 3

F
- failover 61
- failover situation 8
- file
 - metadata 5
 - filesets 60
 - FlashCopy 8–9, 45, 72

G
- global namespace 5, 73

H
- highly automated, business integrated 4
- hot site 3

I
- IBM Tivoli Storage Manager see TSM
- install MDS 90
- installable file system 6
- ITSM 73

L
- LAN-free backup 74
- LDAP 6, 90
- Legato NetWorker 72
- license agreement 90
- LUN-based backup 72

M
- MDS 6
- metadata 5
- metadata pool 14, 40, 46
- Metadata server 6
- Metro Mirror 7, 13, 39
- MMC 37

O
- off-site backup 3

P
- point-in-time (PIT) 3
- point-in-time copies 3
- point-in-time copy 7
- point-in-time copy (PTC) 3
- PPRC 7
- primary allegiance 72
- PTAM 3

R
- real-time synchronized 8
- Recovery Point Objective 2
- Recovery Time Objective 2
- Redbooks Web site 97
 - Contact us xiii
- remote mirror 7

S
- SAN File System
 - add an MDS 62
- SAN File System 5
 - administration 6
 - architecture 5
 - assign fileset 62–63
 - backup 65, 72
 - backup FlashCopy 73
 - backup FlashCopy image 80

© Copyright IBM Corp. 2006. All rights reserved.
backup metadata 74
backup UNIX data 78
backup Windows data 75
backup with TSM
CLI 6
client 5, 65
clustered MDS 6
configuration file 90
configuration files 41, 46
delete an MDS 62
disaster recovery 2
DR file 39, 42, 45
DRfile 41, 46
dynamic filesets 63
failover 61
file-based backup 74
filesets 60
FlashCopy 9–10, 72–73, 77
global namespace 5
installation 90
LAN-free backup 74
LDAP 90
license agreement 90
local authentication 90
LUN-based backup 72
MDS 6
MDS installation 90
MDS status 62
metadata pool 14, 40, 46
Metadata server 6
non-uniform configuration 74
package installation 90
primary allegiance 72
replace MDS 59
restore Windows data 75
server-free backup 73
static filesets 62
supported clients 65
truststore 90
user data 6
SAN File system
storage volumes 6
SAN File System commands
addserver 35, 37, 62
dropserver 62
lsserver 30, 33, 35, 60, 62
mkimage 83
setfilesets
setfiles
setfilesetserver 62
setupsfs 30, 33, 36, 41, 46, 59
startcluster 55
startserver 42
stopautorestart 14, 40
stopcluster 14, 41, 55
tank resetcluster 30
SAN File System commands
setfilesets
SAN Volume Controller 13, 39
scp 90
server consolidation 5
server-free backup 73
service level 2
seven tiers 2
SHARE 2
snapshotroot 80
static filesets 62
storage consolidation 5
SUSE 90
SVC 12
FlashCopy 45
T
Tier 0 3
Tier 1 3
Tier 2 3
Tier 3 3
Tier 4 3
Tier 5 4
Tier 6 4
Tier 7 4
Tivoli Storage Manager see TSM
transaction integrity 4
truststore 90
TSM 9, 65, 72
backup SAN File System metadata 74
backup/restore scenarios 74
LAN-free backup 74
restore to different destination 77
restore to original destination 76
snapshotroot 80
U
user data 6
V
VERITAS NetBackup 72
virtual file system 6
volume mapping 13, 39
Z
zero data loss 4
Disaster Recovery Solutions for IBM TotalStorage SAN File System

Disaster recovery is the ability to recover a data center at a different site if a disaster destroys the primary site or otherwise renders it inoperable. It is only one component of an overall business continuity plan.

This IBM Redbook presents various scenarios for recovery of the IBM TotalStorage SAN File System, ranging from complete recovery at an alternative site (using Metro Mirror to provide synchronous mirroring of the data) to how to replace a failed Metadata server. Each scenario includes step-by-step instructions.

In other scenarios, we consider recovery from partial failures, such as failure in the storage system and failure of an individual server (either a SAN File System Metadata server or a SAN File System client). We also provide some examples of copy services options using the IBM TotalStorage SAN Volume Controller.

This book is intended for those who already have a detailed knowledge of SAN File System. You should also have advanced knowledge of copy services offerings for the storage systems that are used for metadata and user volumes.