

ibm.com/redbooks

End-to-end Automation
with IBM Tivoli System
Automation for Multiplatforms

Edson Manoel
Desmond Krishna
Randy R. Watson
Creighton Hicks

Achieve proactive high availability of
heterogeneous environments

Covers multiplatforms, Linux,
AIX, and z/OS

Includes real world case
study scenarios

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

End-to-end Automation with IBM Tivoli System
Automation for Multiplatforms

November 2005

International Technical Support Organization

SG24-7117-00

© Copyright International Business Machines Corporation 2005. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (November 2005)

This edition applies to IBM Tivoli System Automation for Multiplatforms V2.1 and IBM Tivoli
System Automation for z/OS V3.1.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xvii.

Note: This book is based on a pre-GA version of a product and may not apply when the
product becomes generally available. We recommend that you consult the product
documentation or follow-on versions of this redbook for more current information.

Contents

Figures . ix

Tables . xi

Examples. xiii

Notices . xvii
Trademarks . xviii

Preface . xix
The team that wrote this redbook. xx
Become a published author . xxii
Comments welcome. xxii

Part 1. Fundamentals . 1

Chapter 1. IBM Tivoli System Automation for Multiplatforms V2.1 3
1.1 IBM Tivoli System Automation for Multiplatforms V2.1 overview 4

1.1.1 Main features . 4
1.2 Base Component overview . 6

1.2.1 Reliable Scalable Cluster Technology . 8
1.2.2 Resource Managers . 8
1.2.3 End-to-end Automation Adapter . 9

1.3 End-to-end Automation Management Component overview. 9
1.3.1 Automation Engine . 12
1.3.2 End-to-end Automation Manager . 12
1.3.3 Operations Console . 12
1.3.4 Automation database . 14
1.3.5 Automation policy . 14
1.3.6 End-to-end Automation Adapter . 14

1.4 Communication between end-to-end components 15
1.5 Concepts and terminology. 24

1.5.1 High Availability and IBM Tivoli System Automation for Multiplatforms
24

1.5.2 Terms used in IBM Tivoli System Automation for Multiplatforms . . . 25

Chapter 2. IBM Tivoli System Automation for z/OS V3.1 33
2.1 IBM Tivoli System Automation for z/OS V3.1 overview. 34
2.2 What is new in IBM Tivoli System Automation for z/OS V3.1 37

© Copyright IBM Corp. 2005. All rights reserved. iii

2.2.1 Enhancements to the Customization Dialog 37
2.2.2 IBM Tivoli OMEGAMON integration . 39
2.2.3 GDPS Integration . 40
2.2.4 IBM Tivoli System Automation for z/OS V3.1 End-to-end Automation

Adapter . 40
2.3 Overview Planning for installation . 44

Part 2. Case study scenario implementation . 45

Chapter 3. Case study scenario overview. 47
3.1 Scenario overview . 48

Chapter 4. Case study scenario:
HTTP Servers on Linux first-level automation domain 53

4.1 Apache automation domain overview . 55
4.1.1 Installation . 56
4.1.2 Automation requirements . 56

4.2 Automation domain configuration . 56
4.2.1 Create the first-level automation domain . 57
4.2.2 Define resources in the automation domain 58
4.2.3 Create the automation policy using relationship definitions 67
4.2.4 Change the operational state of the resource group. 69
4.2.5 Configuration error and recovery example . 71
4.2.6 Exercising the automation policy example . 72

4.3 End-to-end Automation Adapter configuration . 75
4.3.1 Configure the End-to-end Automation Adapter 77
4.3.2 Replicate configuration files to nodes in the automation domain . . . 80
4.3.3 Define the End-to-end Automation Adapter automation policy 81

4.4 Miscellaneous information. 83

Chapter 5. Case study scenario:
Application Servers on AIX first-level automation domain. . . 89

5.1 Application server automation domain overview . 91
5.1.1 Automation requirements . 92

5.2 Automation domain configuration . 92
5.2.1 Create the first-level automation domain . 93
5.2.2 Define automation domain resources . 95
5.2.3 Create the automation policy using relationship definitions 109
5.2.4 Change the Operational State of the resource group 112
5.2.5 Verify the operational quorum and tie breaker definition. 115

5.3 End-to-end Automation Adapter configuration . 118
5.3.1 Generate End-to-end Automation Adapter configuration files. 120
5.3.2 Replicate the End-to-end Automation Adapter configuration files. . 124
5.3.3 Define the End-to-end Automation Adapter automation policy 125

iv End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

5.4 Maintaining defined policies . 127

Chapter 6. Case study scenario:
IBM DB2 on z/OS first-level automation domain 129

6.1 IBM DB2 on z/OS automation domain overview 131
6.2 IBM DB2 on z/OS automation domain configuration. 131

6.2.1 Configure NetView for IBM Tivoli System Automation for z/OS . . . 132
6.2.2 Automate NetView startup procedure . 134
6.2.3 Allocate System-Unique data sets . 134
6.2.4 Configure the Automation Manager . 135
6.2.5 Allocate data sets for the ISPF customization dialog 136
6.2.6 Update PARMLIB data sets . 136
6.2.7 Update PROCLIB data sets . 137
6.2.8 Define the base automation policy . 144

6.3 Configuring automation policies for IBM DB2 . 145
6.3.1 Identify required IBM DB2 messages . 146
6.3.2 Create scenario automation policy database 147
6.3.3 Populate the scenario policy database . 149
6.3.4 Define policies for monitoring IBM DB2 application tasks. 152
6.3.5 Import customized scenario policy database into production 165
6.3.6 Create application group and define group membership 170
6.3.7 Verify Relationships in the automation policy 176

6.4 End-to-end Automation Adapter configuration . 181
6.4.1 Check prerequisites and dependencies . 184
6.4.2 Configure NetView and IBM Tivoli System Automation for z/OS . . 184
6.4.3 Enabling the Event Automation Service . 186
6.4.4 Configure the Global Initialization File. 186
6.4.5 Configure the NetView Message Adapter Service 187
6.4.6 Customize the End-to-end Automation Adapter 190
6.4.7 Perform configuration for security . 196
6.4.8 Verify startup of the Automation Adapter . 197
6.4.9 Solve timeout problems. 198

Chapter 7. Case study scenario:
End-to-end automation domain . 201

7.1 End-to-end Automation Management Component installation 203
7.2 Installation verification tasks . 211

7.2.1 EAUTODB and OPCONDB databases . 211
7.2.2 End-to-end Automation Management Component automation engine

startup. 213
7.2.3 End-to-end Automation Management Component applications status .

214
7.2.4 JDBC providers connection. 215

 Contents v

7.2.5 ISC portal application startup . 216
7.2.6 System Automation operations console . 217

7.3 Users and group management . 218
7.3.1 Creating users. 219
7.3.2 Creating user groups. 219
7.3.3 Assigning access permissions to user groups 221
7.3.4 Assigning users to user groups. 224
7.3.5 Assigning access roles to user groups . 226

7.4 End-to-end Automation Management Component configuration 228
7.5 Defining the end-to-end automation policy . 229

7.5.1 Automation requirements and policy overview 230
7.5.2 Creating the end-to-end automation policy file 231
7.5.3 Verifying the end-to-end automation policy file 240
7.5.4 Activating the end-to-end automation policy file 240

Part 3. Appendixes . 245

Appendix A. Troubleshooting overview . 247
Communication between end-to-end components. 248
Location of the root directories . 248
Tivoli common directory . 249
Log and trace files . 250

End-to-end Automation Management Component automation engine . . . 250
End-to-end Automation Management Component automation manager . 251
End-to-end Automation Adapter . 251
IBM Tivoli System Automation for Multiplatforms Operations Console . . . 252

The log viewer tool . 252
The TraceWizard utility. 252

Appendix B. Additional material . 255
Locating the Web material . 255
Using the Web material . 255

System requirements for downloading the Web material 256
How to use the Web material . 256

Abbreviations and acronyms . 257

Related publications . 259
IBM Redbooks . 259
Other publications . 259
Online resources . 260
How to get IBM Redbooks . 260
Help from IBM . 260

vi End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Index . 261

 Contents vii

viii End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Figures

1-1 IBM Tivoli System Automation for Multiplatforms V2.1 components 6
1-2 Sample scenario: Base Component . 7
1-3 Sample Scenario: End-to-end Automation Management Component . . 10
1-4 Basic role of the End-to-end Automation Manager 11
1-5 IBM Tivoli System Automation for Multiplatforms Operations Console . 13
1-6 Basic role of the End-to-end Automation Adapter 15
1-7 Communication overview. 16
1-8 End-to-end automation management environment startup workflow. . . 17
1-9 First-level automation adapter startup . 19
1-10 Resource monitoring workflow. 20
1-11 Request against a resource reference workflow 22
1-12 Event from a referenced resource workflow . 23
1-13 Subclusters from a cluster . 26
1-14 Tie breaker. 28
2-1 Monitor, control, and automation functions . 35
2-2 E2E Automation Adapter communication . 41
3-1 Application environment. 48
3-2 End-to-end automation case study scenario . 49
3-3 IBM Tivoli System Automation for Multiplatforms scenario components 50
4-1 Apache first-level automation domain . 54
4-2 Web application tier configuration . 55
4-3 Overview of the Apache automation domain . 68
4-4 End-to-end domain and apache_SA_Domain interaction 76
4-5 Configure the automation adapter for the Apache automation domain . 76
4-6 Adapter Tab data fields . 77
4-7 Host using adapter tab. 78
4-8 Automation Tab . 79
4-9 Modified End-to-end Automation Adapter configuration files. 80
4-10 Replicate configuration files to other nodes in automation domain 80
4-11 Adapter configuration replication completion dialog box 81
4-12 Defining automation policy for End-to-end Automation Adapter 82
5-1 Application server first-level automation domain 90
5-2 Web application tier configuration . 91
5-3 Defined relationships for the scenario . 112
5-4 Network tie breaker . 116
5-5 End-to-end domain and was_SA_Domain interaction 119
5-6 End-to-end Automation Adapter configuration tool 120
5-7 Configuration tool: Adapter tab . 121

© Copyright IBM Corp. 2005. All rights reserved. ix

5-8 Configuration tool: Host using adapter tab. 122
5-9 End-to-end Automation Adapter configuration tool: Automation tab . . 123
5-10 End-to-end Automation Adapter configuration files 124
5-11 End-to-end Automation Adapter configuration tool: Replication 124
5-12 End-to-end Automation Adapter configuration tool: Replication results125
5-13 End-to-end Automation Adapter configuration tool: Defining policies . 125
6-1 IBM DB2 on z/OS first-level automation domain 130
6-2 End-to-end automation domain and SC64N interaction 181
6-3 End-to-end Automation Adapter communication 183
6-4 com.ibm.eez.aab.invocation-timeout-seconds variable definition 200
7-1 Our scenario’s end-to-end automation domain 202
7-2 End-to-end Automation Management Component scenario server . . . 205
7-3 LTPA Properties: SSO domain name . 206
7-4 Operations Console Database. 207
7-5 Security using IBM DB2 database user registry option 207
7-6 ISC settings . 208
7-7 ISC port number settings . 209
7-8 Console Help Server port number . 209
7-9 ISC application server names . 210
7-10 Ene-to-end automation domain name . 210
7-11 Installation successful message . 211
7-12 End-to-end Automation Management Component applications 215
7-13 JDBC Providers connection . 216
7-14 End-to-end Automation Management Component operations console 218
7-15 Required groups definition . 221
7-16 Granting access to the Integrated Solution Console pages. 223
7-17 Granting access to ISC operations console . 224
7-18 User association to a user group . 225
7-19 Mapping roles to user groups . 227
7-20 First-level automation domain credentials . 229
7-21 Case study scenario end-to-end automation policy 231
7-22 Resource reference selection . 234
7-23 Relationship definitions . 238
7-24 Operations Console: Policy information. 242
7-25 Operations Console: Policy selection . 243
7-26 Operations Console: Populated policy information 244

x End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Tables

5-1 End-to-end Automation Adapter automation resources. 126
7-1 End-to-end Automation Management Component required groups . . 220

© Copyright IBM Corp. 2005. All rights reserved. xi

xii End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Examples

4-1 Display automation domain . 58
4-2 Automation domain status . 58
4-3 ServiceIP definition input file . 59
4-4 Display the apache_SIP ServiceIP . 59
4-5 Display equivalency apache_nieq . 61
4-6 Apache HTTP Server automation script . 62
4-7 Application definition input file . 63
4-8 Verify application resource definition . 64
4-9 Create resource group and populate with resources 66
4-10 Display resource group information . 66
4-11 Display relationship definitions. 68
4-12 Display resource group operational state . 69
4-13 Application resources OpState online . 70
4-14 Initial ServiceIP definition input file data contents 71
4-15 Display of ServiceIP resource after initial definition 71
4-16 Clear error with start/stop of IBM.RecoveryRM 72
4-17 Display current state of the Apache automation domain 72
4-18 Display state of the Apache automation domain after failure of a node. 73
4-19 Display status of the ServiceIP after failure of tsa001 73
4-20 lsrsrc output . 74
4-21 Post adapter configuration resource group display 82
4-22 Post adapter configuration resource group display 83
4-23 Display of all resource groups in the Apache automation domain 83
4-24 Display of all applications in the automation domain 83
4-25 ServiceIP resources. 84
4-26 Apache automation domain equivalencies . 85
4-27 Apache automation domain relationships . 86
4-28 ifconfig on tsa001 with End-to-end automation 87
5-1 was_SA_Domain automation domain OpState 94
5-2 IBM.RecoveryRM status . 94
5-3 Monitoring script for application resource: WebSphere.sh 97
5-4 IBM.Application WebSphere resource definition file 97
5-5 IBM WebSphere Application Server application resource 98
5-6 IBM.Application db2 resource definition file . 100
5-7 Monitoring script for the J2EE application . 101
5-8 trade3_start.jacl script . 102
5-9 trade3_stop.jacl script . 102
5-10 IBM.Application trade3 resource definition file 102

© Copyright IBM Corp. 2005. All rights reserved. xiii

5-11 Application resource OpState . 103
5-12 IBM.ServiceIP resource definition file . 104
5-13 ServiceIP resource. 104
5-14 ServiceIP OpState . 105
5-15 Determining the CommGroup . 106
5-16 Network equivalency status . 107
5-17 Resource group membership. 108
5-18 Resource group operational state . 109
5-19 Managed relationships. 111
5-20 Operational State . 113
5-21 Application resources OpState online . 114
5-22 Operational quorum . 115
5-23 IBM.TieBreaker resource definition file . 117
5-24 Tie breaker properties . 117
5-25 netmon.cf configuration file . 118
5-26 End-to-end Automation Adapter resources status 126
5-27 Backing up defined policies . 127
5-28 Resource group XML definition . 127
6-1 VTAM major node definition. 133
6-2 COMMAND64 member . 134
6-3 Case scenario PARMLIB HSAPRM00. 135
6-4 Case scenario Automation Manager startup procedure 138
6-5 Case scenario Automation Manager start . 140
6-6 Our Netview subsystem interface (AOFASSI) 141
6-7 AOFASSI Initialization Message . 142
6-8 NetView startup procedure (Agent) . 142
6-9 AOFAPPL initialization message . 143
6-10 Customization Dialog Primary Menu . 147
6-11 Adding IBM DB2 sample Policy Database. 148
6-12 Define new IBM DB2 Policy Database. 148
6-13 Select DB2 Policy Database . 148
6-14 Create a New Policy Database . 148
6-15 Data set information. 149
6-16 Policy Database Selection panel . 149
6-17 IBM DB2 Automation Policy Database . 150
6-18 Define Entry panel . 150
6-19 Link Instance to Class panel . 151
6-20 DB2_MSTR Policy Selection panel . 151
6-21 Command Prefix . 152
6-22 Selection of DB2_MSTR . 153
6-23 DB2 CONTROL option. 154
6-24 Our case study scenario DB2 Control Entries panel 154
6-25 Renaming Application to DB8QMSTR . 155

xiv End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

6-26 Entry Rename panel . 156
6-27 DB8QDBM1 Application. 156
6-28 Entry Type Selection panel . 157
6-29 Entry Name Selection panel . 158
6-30 RELATIONSHIPS: Policy Selection panel . 158
6-31 Define Relationship to JES2 . 159
6-32 Relationship Selection List panel . 159
6-33 Adding additional resource . 160
6-34 Adding additional supporting resource. 160
6-35 Message Processing . 161
6-36 Entry Name Selection panel . 162
6-37 Policy Selection panel . 162
6-38 Define Relationship of C-DB2_DEPENDENTS 163
6-39 Relationship Selection List . 163
6-40 Link Instance to Class called C_DB2_DEPENDENTS 164
6-41 Link Class to Instances . 165
6-42 SA z/OS 3.1 Customization Dialog Primary Menu. 166
6-43 Data Management Menu . 166
6-44 Import entries from other Policy Database. 166
6-45 Entry Type Selection Panel . 167
6-46 Policy Data Base Selection . 168
6-47 Import entries from other Policy Database. 168
6-48 Class Entry Name . 169
6-49 Selected Entry Names for Import . 169
6-50 Confirm Entry Name List For Import . 169
6-51 Start of import process. 170
6-52 Entry Type Selection . 170
6-53 Define New Entry Type . 171
6-54 Define new entry of type ApplicationGroup . 171
6-55 Updating the Automation Name. 172
6-56 Selecting the group to a system. 173
6-57 Where Used . 173
6-58 Entry Type Selection . 174
6-59 ApplicationGroup . 174
6-60 Policy Selection . 175
6-61 Applications For ApplicationGroup. 175
6-62 Selections for Applications for ApplicationGroup panel 176
6-63 NetView Logon screen. 177
6-64 NetView main menu. 177
6-65 IBM Tivoli System Automation for z/OS Main Menu 178
6-66 SDF panel: DISPSTAT . 178
6-67 IBM DB2 application dependencies . 179
6-68 Checking APPLGR_DB8Q Group . 180

 Examples xv

6-69 APPLGR_DB8Q members. 180
6-70 DISPAOPS command response . 185
6-71 Message adapter task . 187
6-72 IHSAMCFG member settings . 188
6-73 AOFAEVNT startup procedure . 188
6-74 End-to-end Automation Adapter startup script 191
6-75 End-to-end Automation Adapter master configuration file 193
6-76 End-to-end Automation Adapter plug-in configuration file 195
6-77 The JAAS configuration file and adapter.jaas.properties. 196
6-78 Status of resources E2E_EAS and E2E_ADPT. 197
6-79 AOFAADPT application console output . 198
7-1 Database verification . 212
7-2 EAUTODB database tables . 213
7-3 Automation engine status . 213
7-4 ISC startup . 216
7-5 PolicyInformation element definition . 232
7-6 ResourceReference element definitions . 235
7-7 ResourceGroup element definitions. 237
7-8 Relationship element definitions . 238
7-9 Policy checker tool . 240

xvi End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.

© Copyright IBM Corp. 2005. All rights reserved. xvii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Eserver®
Redbooks (logo) ™
pSeries®
xSeries®
z/OS®
zSeries®
AIX®
CICS®
Database 2™
DB2®

ESCON®
FICON®
Geographically Dispersed

Parallel Sysplex™
GDPS®
IBM®
IMS™
Language Environment®
MVS™
NetView®

OMEGAMON®
OS/390®
Parallel Sysplex®
Redbooks™
RACF®
RMF™
Tivoli®
VTAM®
WebSphere®

The following terms are trademarks of other companies:

Java, JDBC, JVM, J2EE, PDB, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in
the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

xviii End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Preface

IBM Tivoli System Automation for Multiplatforms monitors and automates
applications distributed across Linux®, AIX®, and z/OS® operating systems by
introducing a new product structure with two major components:

� IBM Tivoli System Automation for Multiplatforms Base Component

Provides high availability and disaster recovery capabilities for Linux, Linux on
zSeries® and AIX clusters

� IBM Tivoli System Automation for Multiplatforms End-to-end Automation
Management Component

Provides automated operations and monitoring capabilities for increasing
availability and eases operations of heterogeneous business applications

IBM Tivoli System Automation for Multiplatforms utilizes an adapter infrastructure
to integrate with IBM Tivoli System Automation for z/OS, allowing for more
effective high availability, automation, and management of multi-tier applications.

This IBM Redbook introduces the new versions of the IBM® Tivoli® Systems
Automation product family and gives you a broad understanding of the new
architecture and components of both IBM Tivoli System Automation for
Multiplatforms V2.1 and IBM Tivoli System Automation for z/OS V3.1 using a
scenario-based approach.

This redbook is a valuable addition to the existing product documentation and
should be read in conjunction with the official product documentation, which
complements some of the concepts explained in this redbook.

The instructions given in this redbook are very detailed and explicit. These
instructions are not the only way to install the products and related prerequisites.
They are meant to be followed by anyone to successfully install, configure, and
set up end-to-end automation management using IBM Tivoli System Automation
for Multiplatforms V2.1 and IBM Tivoli System Automation for z/OS V3.1 in
environments of any size.

© Copyright IBM Corp. 2005. All rights reserved. xix

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Austin Center.

Edson Manoel is a Certified IT Specialist at IBM working in the ITSO, Austin
Center, in the systems management area. Prior to joining the ITSO, Edson
worked in the IBM Software Group, Tivoli Systems, and in IBM Brazil Global
Services Organization. He was involved in numerous projects in designing and
implementing systems management solutions for IBM clients and Business
Partners. Edson holds a Bachelor of Science degree in applied mathematics
from Universidade de Sao Paulo, Brazil.

Desmond Krishna is a System Engineer at Standard Bank of South Africa for
Group IT specializing in IBM Tivoli System Automation for z/OS. His areas of
expertise are NetView®, SA z/OS, and Mainframe Operations. He has 24 years
experienced in the IT industry, of which 6 years have been in Mainframe Systems
Automation.

Randy R. Watson is an IBM Certified IT Specialist assigned to the Global
Response Team (GRT) within IBM Software Services Tivoli (ISST) and supports
customers around the world using Tivoli Workload Scheduler, Tivoli Systems
Automation for Multiplatforms, Tivoli Storage Manager and the Tivoli Framework
core products. He joined IBM in 1995 and has been a software developer,
systems software support consultant, systems programmer, project manager and
software services consultant working with most major distributed computing
platforms and the IBM Mainframe. He is a certified ITIL process consultant with
extensive experience in multiple industries and countries. Randy holds a degree
in Computer and Information Science from Ohio State University. He currently
resides in the Miami Florida area.

Creighton Hicks is a member of the IBM Tivoli Software Advanced Technologies
(SWAT) team responsible for technical pre-sales with IBM Tivoli System
Automation for Multiplatforms, IBM Tivoli Provisioning Manager, and IBM Tivoli
Intelligent Orchestrator. He joined IBM in 2001 and has worked in Level 3
Support for IBM Tivoli Enterprise Console and in software development under
the Extreme Blue program. Creighton holds a Bachelor of Science degree in
Computer Sciences from The University of Texas at Austin.

xx End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Thanks to the following people for their contributions and technical guidance and
review during the development of this redbook:

Bob Haimowitz
Budi Darmawan
International Technical Support Organization, Austin Center

Dennis Sample
IBM Software Group - IBM Tivoli Systems Automation Product Management

Barbara Fierro
Matthew Boult
IBM Software Group - Product Introduction

Chad Smith
Moji Trasti
IBM Software Group - Solutions Test

Bernd Dowedeit
Bernd Jostmeyer
Claus Rauh
Elmar Meyer zu Bexten
Enrico Joedecke
Frank Blaschka
Joachim Schmalzried
Matthias Haeussler
Sven Lange-Last
Sylvia Koch
Thomas Drews
Wolfgang Schawer
IBM Software Group - IBM Tivoli Systems Automation Development, Boeblingen
Germany

Rainer Rentschler
Ruth Nolting
IBM Software Group - Information Development, Boeblingen Germany

 Preface xxi

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. JN9B Building 905
11501 Burnet Road
Austin, Texas 78758-3493

xxii End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Part 1 Fundamentals

Part 1

© Copyright IBM Corp. 2005. All rights reserved. 1

2 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Chapter 1. IBM Tivoli System
Automation for
Multiplatforms V2.1

This chapter gives an overview of the major features and functionality of IBM
Tivoli System Automation for Multiplatforms V2.1.

We discuss the following topics:

� Overview of IBM Tivoli System Automation for Multiplatforms V2.1
components, features, and functionality

� View of the IBM Tivoli System Automation for Multiplatforms V2.1 Base
Component

� Introduction to IBM Tivoli System Automation for Multiplatforms V2.1
End-to-end Automation Management Component

� Communication between the various components of IBM Tivoli System
Automation for Multiplatforms V2.1

� Concepts and terminology used in this IBM Redbook

1

© Copyright IBM Corp. 2005. All rights reserved. 3

1.1 IBM Tivoli System Automation for Multiplatforms
V2.1 overview

IBM Tivoli System Automation for Multiplatforms V2.1 consists of two major
components:

1. IBM Tivoli System Automation for Multiplatforms Base Component

2. IBM Tivoli System Automation for Multiplatforms End-to-end Automation
Management Component

IBM Tivoli System Automation for Multiplatforms V2.1 provides the capability to
manage the availability of applications running on AIX or Linux systems using the
Base Component. The End-to-end Automation Management Component
manages the availability of applications running on a heterogeneous mixture of
Linux, AIX, and z/OS clusters.

IBM Tivoli System Automation for Multiplatforms uses policies to determine what
actions are required to maintain a system’s health in response to an event and
issues commands to perform those actions, including: activities such as shutting
down the components of an application and moving them to another system.

1.1.1 Main features
The two major IBM Tivoli System Automation for Multiplatforms components
above provide the following key features:

High availability and resource monitoring
IBM Tivoli System Automation provides a high availability environment for
applications and business systems. High availability describes a system which is
continuously available and which has a self-healing infrastructure to prevent
downtime caused by system problems. Thus it relieves operators from manual
monitoring, remembering application components and relationships, and can
eliminate operator errors.

Policy-based automation
IBM Tivoli System Automation for Multiplatforms allows you to configure high
availability systems through the use of policies that define the relationships
among the various components. Once you establish the relationships, IBM Tivoli
System Automation for Multiplatforms will assume responsibility for managing the
applications on the specified nodes as configured per policy. With IBM Tivoli
System Automation for Multiplatforms V2.1, policy and resource definition can be
produced using XML-based definition files. For more details, see 7.5, “Defining
the end-to-end automation policy” on page 229.

4 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Automatic recovery
IBM Tivoli System Automation for Multiplatforms quickly and consistently
performs an automatic restart of failed resources or whole applications either in
place or on another system of a Linux or AIX cluster.

Automatic movement of applications
IBM Tivoli System Automation for Multiplatforms manages the cluster-wide
relationships among resources for which it is responsible. If applications need to
be moved among nodes, IBM Tivoli System Automation for Multiplatforms
automatically handles the start and stop relationships, node requirements, and
any preliminary or follow-up actions.

Resource grouping
You can group resources together in IBM Tivoli System Automation for
Multiplatforms. Once grouped, all relationships among the members of the group
can be established, such as location relationships, or start and stop
relationships. After you complete configuration, operations can be performed
against the entire group as a single entity.

End-to-end automation management
IBM Tivoli System Automation for Multiplatforms now provides all the above
features for a heterogeneous server environment (z/OS, Linux, and AIX) enabling
true business application automation, as you see in Figure 1-1.

 Chapter 1. IBM Tivoli System Automation for Multiplatforms V2.1 5

Figure 1-1 IBM Tivoli System Automation for Multiplatforms V2.1 components

The IBM Tivoli System Automation for Multiplatforms V2.1 End-to-end
Automation Management Component performs the End-to-end automation
management capability. We present this component in more detail later in this
chapter.

1.2 Base Component overview
As we discussed earlier in this chapter, IBM Tivoli System Automation for
Multiplatforms V2.1 Base Component provides features and capabilities to
manage the availability of applications running on AIX or Linux systems.

As an example of how you can use these features and capabilities, consider an
organization with three application servers (node1, node2, and node3) and a
single static IP Address (IPAddr1). The application (appl1) must be active on one
and only one of the three available nodes at any time with IPAddr1.

6 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Now, node1 is schedule for maintenance on Saturday at 9:00 pm. At the
scheduled change window time (9pm), node1 is taken offline via IBM Tivoli
System Automation for Multiplatforms by an operator. As it turns out, node1 is the
active server, IBM Tivoli System Automation for Multiplatforms sees the pseudo
outage and moves the IPaddr1 to node2 and starts the application on node2, all
without additional operator intervention. The node1 is placed back into online
mode at the end of the change window. The following Saturday, node2 is
scheduled for maintenance and the above is repeated in reverse (node1 or
node3 is made active). This assumes that node2 remained the active application
server during the intervening week. There are other variations possible with this
simple scenario, such as, the maintenance node is not the active application
server, among others. See Figure 1-2.

Figure 1-2 Sample scenario: Base Component

While this is a simple scenario, it shows the general idea of IBM Tivoli System
Automation for Multiplatforms.

The key products of IBM Tivoli System Automation for Multiplatforms V2.1 Base
Component are:

� Reliable Scalable Cluster Technology

� Resource Managers

� End-to-end Automation Adapter

We discuss these products in the following sections.

 Chapter 1. IBM Tivoli System Automation for Multiplatforms V2.1 7

1.2.1 Reliable Scalable Cluster Technology
Reliable Scalable Cluster Technology (RSCT) is a software product that provides
a comprehensive clustering environment for AIX and Linux. RSCT is the
infrastructure used by IBM Tivoli System Automation for Multiplatforms to provide
Linux and AIX clusters with improved system availability and scalability. We list
the major components of RSCT below, and you can learn more about these
RSCT components in the IBM Reliable Scalable Cluster Technology
Administration Guide, SA22-7889.

� Resource Monitoring and Control (RMC)

� High Availability Group Services (HAGS)

� High Availability Topology Services (HATS)

1.2.2 Resource Managers
The core components of IBM Tivoli System Automation for Multiplatforms are
user-defined automation policies to monitor and control cluster resources. IBM
Tivoli System Automation for Multiplatforms categorizes cluster resources in
predefined classes. These resource classes are managed by the various IBM
Tivoli System Automation for Multiplatforms resource managers (RM), depending
on what type of resource is being managed. Resource managers are the
software layer acting as interface between resources and RSCT, specifically,
RMC.

The main resource managers provided by IBM Tivoli System Automation for
Multiplatforms include:

� Recovery RM (IBM.RecoveryRM)

This resource manager serves as the decision engine for IBM Tivoli System
Automation for Multiplatforms. Once a situation develops that requires
intervention, the Recovery RM drives the decisions defined in the automation
policy.

� Global Resource RM (IBM.GblResRM)

The Global Resource RM provides the classes that define the behavior of
application and IP address resources. These are the IBM.Application and
IBM.ServiceIP resource classes.

� Configuration RM (IBM.ConfigRM)

This resource manager is used during cluster definitions. It also provides
means of ensuring data integrity via cluster quorum support (See 1.5,
“Concepts and terminology” on page 24).

8 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

� Event Response RM (IBM.ERRM)

Allows IBM Tivoli System Automation for Multiplatforms to monitor conditions
and situations in the cluster.

These resource managers provide IBM Tivoli System Automation for
Multiplatforms with the capabilities to define, monitor, group, and manage
resources within a Linux or AIX cluster.

1.2.3 End-to-end Automation Adapter
The IBM Tivoli System Automation for Multiplatforms V2.1 Base Component
uses the End-to-end Automation Adapter to provide services needed by the new
End-to-end Automation Management Component.

There can be only one End-to-end Automation Adapter per IBM Tivoli System
Automation for Multiplatforms cluster (see cluster definition in 1.5, “Concepts and
terminology” on page 240). Therefore, we highly recommend you have the
End-to-end Automation Adapter highly available. You accomplish this by
configuring End-to-end Automation Adapter as a resource managed by the IBM
Tivoli System Automation for Multiplatforms Base Component.

We provide more information about the End-to-end Automation Adapter in the
following section.

1.3 End-to-end Automation Management Component
overview

In this section, we describe the general features, capabilities, and components of
IBM Tivoli System Automation for Multiplatforms End-to-end Automation
Management Component.

The End-to-end Automation Management Component is new to IBM Tivoli
System Automation for Multiplatforms V2.1 and provides coordinated,
cross-cluster automation. This capability allows organizations to operate their
homogeneous (Linux, AIX, and z/OS) clusters, managed by IBM Tivoli System
Automation for Multiplatforms Base Component, in an integrated manner.

While High Availability Clusters have greatly improved system availability,
organizations also require high availability of business applications. Many of
these applications require the services of heterogeneous systems environments.
IBM Tivoli System Automation for Multiplatforms V2.1 End-to-end Automation
Management Component provides the ability to safely ensure higher business
application availability.

 Chapter 1. IBM Tivoli System Automation for Multiplatforms V2.1 9

End-to-end Automation provides the capability to automate the operation of
resources within heterogeneous environments (called first-level automation
domains) that each have a local automation technology of their own. For
example, consider a multi-tiered business application which components run in
heterogeneous platforms. Each tier of this application runs on a dedicated
infrastructure, such as HTTP Servers on Linux, the application servers on AIX,
and database servers on a z/OS Sysplex, as seen in Figure 1-3.

As each tier of this business application is made high available by IBM Tivoli
System Automation for Multiplatforms and IBM Tivoli System Automation for
z/OS, the End-to-end Automation Management Component is able to ensure
high availability of the entire infrastructure used by the business application. This
is accomplished by defining resources, and logical relationships between them.
In Figure 1-3, we show some of the possible relationships. For example, the
Application resource will only be started after the resource Database starts
completely, and the HTTP resource will be forced offline in case of a failure of all
resources that belong to Group01.

Figure 1-3 Sample Scenario: End-to-end Automation Management Component

10 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

The core parts that make up the End-to-end Automation Management
Component of IBM Tivoli System Automation for Multiplatforms are:

� Automation Engine
� End-to-end Automation Manager
� Operations Console
� Automation database
� Automation policy
� End-to-end Automation Adapter

Figure 1-4 shows the End-to-end Automation Management Component and the
relationships among the parts that make it up.

Figure 1-4 Basic role of the End-to-end Automation Manager

Note: The above figure shows the IBM Tivoli System Automation for
Multiplatforms Operations Console and the Integrated Solutions Console on
the same physical server. It is also possible to have it installed on a separate
machine from the End-to-end Manager server using its own IBM WebSphere
Application Server instance.

End-to-end Manager server

WebSphere Application Server

Integrated Solutions Console

Operations
Console

First level automation domain
A_SAfMP_Domain

First level automation domain
A_SAfMP_Domain

First level automation domain
A_SAfMP_Domain

End-to-end automation
adapter

End-to-end
automation manager

Automation
engine

Automation
Policy

Automation
Database

 Chapter 1. IBM Tivoli System Automation for Multiplatforms V2.1 11

1.3.1 Automation Engine
The automation policy is notified of state changes of resources managed by the
End-to-end Automation Management Component, compares that state to the
desired state defined in the automation policies, and determines the appropriate
set of actions to take. The Automation Engine must run on the same system on
which IBM WebSphere Application Server hosting the End-to-end Automation
Manager J2EE™ application environment (IBM WebSphere Application Server)
runs.

1.3.2 End-to-end Automation Manager
The End-to-end Automation Manager logically sits between the Operations
Console and the first-level automation domains with interaction with the
automation engine. The End-to-end Automation Manager stores resource state
information in the automation database. Once an automation policy is activated,
the End-to-end Automation Manager will monitor and manage first-level
automation domains according to the established automation policy and operator
requests. The automation domain controlled by the End-to-end Automation
Manager is often referred to as the end-to-end automation domain.

The basic configuration of the End-to-end Automation Manager is done at
End-to-end Automation Management Component installation time. However,
additional configuration information is still required, or changes to the existing
configuration information can be performed. End-to-end Automation
Management Component provides a End-to-end Automation Manager
configuration tool. You can find additional information in Chapter 7, “Case study
scenario: End-to-end automation domain” on page 201.

The End-to-end Automation Manager makes use of an adapter to communicate
with the first-level automation domains. This adapter is named the first-level
automation manager resource adapter.

1.3.3 Operations Console
The Operations Console is the web-based graphical user front-end that provides
Operators access and control to the end-to-end automation domain and to the
first-level automation domains. For an example, see Figure 1-5 on page 13.

The Operations Console is Integrated Solutions Console (ISC)-based and
provides Operators Web-based access to:

� Activate and deactivate automation policies
� Monitor and perform problem analysis
� View logs and trace information
� Control resources and submit requests against them

12 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

� Control cluster configurations
� Work with console user preferences

Figure 1-5 IBM Tivoli System Automation for Multiplatforms Operations Console

The Operations Console can be used in three different modes:

� End-to-end automation mode

Operators can manage and monitor resources controlled by the End-to-end
Automation Manager as well as resources of all first level domains that are
connected to the End-to-end Automation Manager.

� First-level automation mode

Operators can manage and monitor resources controlled by both IBM Tivoli
System Automation for Multiplatforms Base Component and IBM Tivoli
System Automation for z/OS.

� Direct access mode

 Chapter 1. IBM Tivoli System Automation for Multiplatforms V2.1 13

Operators can manage and monitor resources controlled by IBM Tivoli
System Automation for Multiplatforms Base Component only.

1.3.4 Automation database
The automation database stores persistent information about the end-to-end
automation domain and all the first-level automation domains controlled by the
the End-to-end Automation Manager. The automation database also contains
partial information contained in the automation policy.

IBM Tivoli System Automation for Multiplatforms V2.1 only supports IBM DB2
UDB Enterprise Edition Version 8.2.3.

1.3.5 Automation policy
The automation policy contain definitions of all resource references, resource
groups, and their relationships and desired state (See definitions in 1.5,
“Concepts and terminology” on page 24).

Automation policies are defined using XML format. IBM Tivoli System
Automation for Multiplatforms V2.1 provides a schema definition to ease the
definition of automation policies. The schema for the automation policy is named
EEZPolicy.xsd. IBM Tivoli System Automation for Multiplatforms V2.1 also
provides a policy checking tool so that automation policy files can be verified
before activation.

Several automation policy files may be available for the automation engine, but
only one will be active at any time.

Additional details can be found in 7.5, “Defining the end-to-end automation
policy” on page 229, when we define the automation policy we use in our case
study scenario environment.

1.3.6 End-to-end Automation Adapter
An automation adapter process must run on each first-level automation domain
that the End-to-end Automation Management Component will manage. The
automation adapter process provides an interface between the first-level
automation manager resource adapter and the End-to-end Automation Manager.

The functions of the End-to-end Automation Adapter include:

� Monitor resources defined in the IBM Tivoli System Automation for
Multiplatforms cluster.

14 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

� Communicate resource status and attribute changes to the End-to-end
Automation Management Component.

� Perform tasks mandated by the End-to-end Automation Management
Component to resources defined in the IBM Tivoli System Automation for
Multiplatforms cluster.

The End-to-end Automation Adapter uses the Tivoli Event Integration Facility
(EIF) to communicate with the End-to-end Automation Management Component.

IBM Tivoli System Automation for Multiplatforms provides a tool for configuring
the End-to-end Automation Adapter. Later in this IBM Redbook, we present a
case study scenario in which we configure the End-to-end Automation Adapter
on different IBM Tivoli System Automation for Multiplatforms environments,
including Linux, AIX, and z/OS environments.

Figure 1-6 Basic role of the End-to-end Automation Adapter

1.4 Communication between end-to-end components
Below is a more detailed overview of the End-to-end Automation Management
Component environment. The depiction is one possible configuration, showing
the Operations Console and End-to-end Automation Manager on the same node.
It is possible to host the Operations Console on a separate system. Figure 1-7 on
page 16 shows an overview of the configuration and communications for the
End-to-end Automation Adapter and the End-to-end Automation Manager with a

First level automation domain

Node

First-level automation
manager

End-to-End
Automation adapter

WebSphere

Integrated Solutions
Console

Operations
Console

End-to-end
automation

manager

 Chapter 1. IBM Tivoli System Automation for Multiplatforms V2.1 15

single first-level automation domain manager. The port numbers represent the
default communication ports’ values.

IBM Tivoli System Automation for Multiplatforms End-to-end Automation
Management Component uses the Tivoli Event Integration Facility (EIF) to
communicate the status changes of resources.

Figure 1-7 Communication overview

All communications between the End-to-end Automation Manager and the
End-to-end Automation Adapters running on first-level automation domains are
secure and use the SSH protocol.

As mentioned earlier, the End-to-end Automation Manager uses the first-level
automation manager resource adapter for communication with the End-to-end
Automation Adapters running on first-level automation domains. This adapter is
responsible for an asynchronous communication to the first-level automation
domains.

End-to-end Automation Domain

WebSphere Application Server

Integrated Solutions Console

Operations
Console

End-to-end
automation manager

Automation
engine

Automation
Policy

Automation
Database

Event port

2002

First-level Automation Domain

Node1

SAfMP/RSCT

End-toEnd Automation
adapter

Request
port

EIF
2001

5539

Node2

MASTER NODE

SAfMP/RSCT

EIF event
publishing

EIF

8421

16 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

For a more detailed overview of the communication flows between the various
components of IBM Tivoli System Automation for Multiplatforms End-to-end
Automation Management Component, we describe the following scenarios.

� End-to-end automation management environment startup
� First-level automation adapter startup
� Resource monitoring
� Requests against a resource reference
� Events from referenced resource

You can find additional scenarios in the IBM Tivoli System Automation for
Multiplatforms V2.1 End-to-End Automation Management User’s Guide and
Reference, SC33-8211-00, manual.

End-to-end automation management environment startup
The following communication flow figure (Figure 1-8) shows the actions that are
taken between end-to-end components when the end-to-end automation
management environment is started.

Figure 1-8 End-to-end automation management environment startup workflow

1. The automation engine component starts and then sends an event to the
End-to-end Automation Manager (EEZEAR) to join the domain.

End to end automation management

WebSphere

Automation engine

Automation policy

End-to-end automation manager / EEZEAR

First-level automation manager
 resource adapter

Integrated
Solutions
Console

SAfMP
Operations

Console

First-level
Automation domain

Node

First-level automation
manager

End-to-end automation
adapter

NodeY

NodeX

End to end automation server

Database

1

2

3

4
5

6

7

 Chapter 1. IBM Tivoli System Automation for Multiplatforms V2.1 17

2. The End-to-end Automation Manager checks the automation database to
determine the last activated automation policy in the end-to-end automation
domain.

3. Once the End-to-end Automation Manager has successfully processed the
event generated in step 1, it sends an event to inform the Operations Console
of the successful join. This will cause the end-to-end automation domain to be
listed in the topology tree of the Operations Console.

4. The End-to-end Automation Manager makes a request to the automation
engine for activation of the last active automation policy determined in step 2.
The automation engine creates all resources, groups, and relationships as
per policy definition.

5. The automation engine issues a subscription request to all first-level
automation domains in which there is a resource that is referenced in the
active automation policy per the automation database.

6. The automation engine is notified of the state of resources controlled by the
first-level automation domain and sends an event to notify of a change in
domain policy.

7. The Operations Console receives the event in Step 6 and causes the state of
the resource to change accordingly.

First-level automation adapter startup
The following communication flow figure (Figure 1-9) shows what actions are
taken between end-to-end components when a first-level automation adapter is
started.

18 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Figure 1-9 First-level automation adapter startup

1. The End-to-end Automation Adapter is started on the node on the first-level
automation domain, and it sends an event to the automation engine to
request to join the end-to-end automation domain.

2. The automation engine converts the EIF event sent in step 1 to a JMS event
that is sent to the End-to-end Automation Manager.

3. The End-to-end Automation Manager checks on the automation database
(3a) if the automation engine is subscribed to the first-level automation
domain that sent the original event in step 1. The End-to-end Automation
Manager also sends an event to the automation engine (3b).

4. Once the End-to-end Automation Manager has processed the event sent to it
in step 2 successfully, it will send an event notifying the successful join of the
first-level automation domain to the Operations Console. The first-level
automation domain is now shown in the Operations Console's topology tree
as active.

5. The automation engine processes the event sent to it in Step 3 and
subscribes to the resources on the first-level automation domain which are
referenced by the active automation policy (5a). The subscriptions are added
to the automation database (5b).

End to end automation management

WebSphere

Automation engine

Automation policy

End-to-end automation manager / EEZEAR

First-level automation manager
 resource adapter

Integrated
Solutions
Console

SAfMP
Operations

Console

First-level
Automation domain

Node

First-level automation
manager

Automation adapter

NodeY

NodeX

End to end automation server

Database

1

2

3a

3b

4 5a

5b

6

7

8

9

 Chapter 1. IBM Tivoli System Automation for Multiplatforms V2.1 19

6. Each subscription generated in Step 5 is forwarded through the first-level
automation manager resource adapter to the End-to-end Automation Adapter.

7. The End-to-end Automation Adapter will confirm each resource subscription
with an event to the automation engine.

8. The automation engine converts the EIF event sent in step 7 to a JMS event
that is sent to the End-to-end Automation Manager.

9. The End-to-end Automation Manager checks if the automation engine is
subscribed to the first-level automation domain that sent the event in step 7.
The End-to-end Automation Manager sends an event to the automation
engine.

Resource monitoring
The following communication flow figure (Figure 1-10) shows what actions are
taken between end-to-end components when an operator requests a resource to
be monitored.

Figure 1-10 Resource monitoring workflow

1. Using the browser client, the operator selects an automation domain in the
topology tree on the Operations Console to view the resources of that
domain.

End to end automation management

WebSphere

Automation engine

Automation policy

End-to-end automation manager / EEZEAR

First-level automation manager
 resource adapter

Integrated
Solutions
Console

SAfMP
Operations

Console

First-level
Automation domain

Node

First-level automation
manager

End-to-end automation
adapter

NodeY

NodeX

End to end automation server

Database

1

2

3

4

5

5

6

7

8

20 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

2. The Operations Console queries the End-to-end Automation Manager for all
top level resources of the specified domain.

3. The End-to-end Automation Manager forwards the query to the first-level
automation resource adapter.

4. The query is forwarded from the first-level automation resource adapter to the
End-to-end Automation Adapter on the first-level automation domain. The
resource information is gathered and the list of top level resources is returned
through the first-level automation resource adapter.

5. The End-to-end Automation Manager sends an event to inform the
Operations Console of the successful query. This will cause the resources to
be listed in the resource tree of the Operations Console.

6. The Operations Console sends a subscription request for all returned
resources that are not subscribed yet to the End-to-end Automation Manager.

7. The End-to-end Automation Manager adds the current operator to the list of
subscribers to the first-level automation manager resource adapter. The
subscription request is forwarded to the End-to-end Automation Adapter on
the first-level automation domain.

Requests against a resource reference
The following communication flow figure (Figure 1-11) shows what actions are
taken between end-to-end components when an operator issues a request
against a resource reference.

 Chapter 1. IBM Tivoli System Automation for Multiplatforms V2.1 21

Figure 1-11 Request against a resource reference workflow

1. Using a browser client, the operator submits a request against a resource
reference in the Operations Console.

2. The request is forwarded to the End-to-end Automation Manager.

3. The event is forwarded to the automation engine.

4. The automation engine calculates resulting requests which must be issued
against referenced resources by taking into account relationships defined
between resources in the automation policy.

5. Resulting requests generated in Step 4 are passed from the automation
engine to the End-to-end Automation Manager.

6. The events sent to the End-to-end Automation Manager in Step 5 are
forwarded through the first-level automation manager resource adapter to the
End-to-end Automation Adapter on the first-level automation domain. The
End-to-end Automation Adapter forwards the event to the first-level
automation manager, which processes the request.

End to end automation management

WebSphere

Automation engine

Automation policy

End-to-end automation manager / EEZEAR

First-level automation manager
 resource adapter

Integrated
Solutions
Console

SAfMP
Operations

Console

First-level
Automation domain

Node

First-level automation
manager

End-to-end automation
adapter

NodeY

NodeX

End to end automation server

Database

1
2 3

4

5

6

22 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Events from referenced resource
The following communication flow figure (Figure 1-12) shows what actions are
taken between end-to-end components when a subscribed resource in a
first-level automation domain has a state change.

Figure 1-12 Event from a referenced resource workflow

1. The first-level automation manager observes a state change of a resource in
the first-level automation domain. Because this is a referenced resource, the
End-to-end Automation Adapter sends an event to the automation engine to
notify the state change.

2. The automation engine converts the EIF event sent in step 1 to a JMS event
that is sent to the End-to-end Automation Manager.

3. The End-to-end Automation Manager queries the list of subscribers for this
particular resource stored in the automation database.

4. The JMS event is published where it is received by the Operations Console
(4a). In addition, the event is forwarded to the first-level automation manager
resource adapter (4b).

5. The JMS event triggers a refresh of the browser window to update the view on
the Operations Console (5a). In addition, the End-to-end Automation
Manager forwards the event to the automation engine (5b).

End to end automation management

WebSphere

Automation engine

Automation policy

End-to-end automation manager / EEZEAR

First-level automation manager
 resource adapter

Integrated
Solutions
Console

SAfMP
Operations

Console

First-level
Automation domain

Node

First-level automation
manager

End-to-end automation
adapter

NodeY

NodeX

End to end automation server

Database

2

3

4a 4b

5a

5b

6

7

8

1

 Chapter 1. IBM Tivoli System Automation for Multiplatforms V2.1 23

6. The automation engine calculates new states of the resource reference
pointing to this resource. It also calculates resulting actions against this or
other referenced resources.

7. Requests generated in Step 6 are forwarded to the End-to-end Automation
Manager.

8. The events sent to the End-to-end Automation Manager in Step 6 are
forwarded through the first-level automation manager resource adapter to the
End-to-end Automation Adapter, which forwards the event to the first-level
automation manager. The first-level automation manager handles the
requests accordingly.

1.5 Concepts and terminology
This section discusses IBM Tivoli System Automation for Multiplatforms concepts
and some terminology. For more complete information, see the IBM Tivoli
System Automation for Multiplatforms V2.1 Base Component User’s Guide,
SC33-8210-04, and the IBM Tivoli System Automation for Multiplatforms V2.1
End-to-End Automation Management User’s Guide and Reference,
SC33-8211-00.

1.5.1 High Availability and IBM Tivoli System Automation for
Multiplatforms

One definition of high availability is: “The continuous operation of systems over
time”. There are two properties that are important to keep in mind when
examining a high availability solution:

� Liveness
� Safety

The liveness property relates to number of points in time that the system is
operational, generally the more the better. In addition, there are certain states in
the system that lead to failure -- Such as a single IP address being active on two
different nodes at the same point in time. This is said to violate the safety
property of the system. A system preserves its safety property if it is guaranteed
that the system will never enter an unsafe state.

IBM Tivoli System Automation for Multiplatforms strives for the greatest amount
of liveness possible with maximum safety. The advantage is that, if implemented
correctly, making a system highly available will not compromise the integrity of
the system, and, at the same time, will increase the amount of uptime that
system achieves with virtually no risk.

24 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

IBM Tivoli System Automation for Multiplatforms ensures maximum safety by
implementing two concepts (defined later in this chapter):

� Quorum
� Tie breaker

IBM Tivoli System Automation for Multiplatforms refers to the set of nodes in the
system, commonly called a cluster, as a peer domain. All nodes in a peer domain
continually send and receive heartbeats over communication groups. A
communication group is a set of nodes that can talk to each other over a
common communication medium. A common example of a communication group
would be network interface cards residing on several nodes connected to the
same network. IBM Tivoli System Automation for Multiplatforms automatically
detects and configures communication groups.

1.5.2 Terms used in IBM Tivoli System Automation for Multiplatforms
This section provides definitions to commonly used IBM Tivoli System
Automation for Multiplatforms terminology used in this IBM Redbook.

Clusters
The group of host systems upon which IBM Tivoli System Automation for
Multiplatforms manages resources is known as a cluster. A cluster can consist of
one or more systems or nodes. Some IBM Tivoli System Automation for
Multiplatforms manuals may use the term “peer domain” when referring to a
cluster. The two terms are interchangeable. IBM Tivoli System Automation
supports up to 32 Linux or AIX nodes within a cluster. The z/OS environment has
for quite some time managed clusters using Parallel Sysplex®.

Subclusters
A cluster may split into two or more subclusters in the case where no
communication is possible between some set of nodes in the cluster. This could
be caused by some form of communications failure. Subclusters are not aware of
each other.

A subset of the peer domain that is fully connected by heartbeat is called a
subcluster. When all the nodes in a peer domain are fully connected (meaning no
network or node failures), then the subcluster is the same as the cluster or peer
domain. When a split among the peer domain that creates multiple subclusters
occurs, then at the most one subcluster will become the active subcluster. This
active subcluster will be the only subcluster that will be allowed to start
resources. This subcluster is said to have operational quorum. There will be at
all times at most one subcluster that will have operational quorum. See
Figure 1-13.

 Chapter 1. IBM Tivoli System Automation for Multiplatforms V2.1 25

Figure 1-13 Subclusters from a cluster

Quorum
The goal of quorum operations is to keep data consistent and to protect critical
resources. Look at quorum as the number of nodes in a cluster that are required
to modify the cluster definition or perform certain cluster operations. In general, a
subcluster must have a majority of nodes in order to have quorum.

Configuration quorum
Configuration quorum determines when configuration changes will be accepted
for the cluster. Changes are permitted only when a strict majority of the nodes
are online. All changes to Cluster membership and resource definitions require
configuration quorum.

Operational quorum
Operational quorum determines whether a node may be safely started.
Operational quorum is determined in the following way: A subcluster must have a
clear majority of nodes in the Cluster to gain operational quorum. If we assume
that a Cluster has N nodes, then for a subcluster to gain operational quorum it
must have floor defined by the following expression:

26 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Operational quorum may be determined with the aid of a Tie breaker.

Tie breaker
Clusters with an even number of nodes require a method to ensure operational
quorum in the event than no subcluster has a majority of nodes.

If we have a cluster with two nodes (N=2), then a subcluster must have two
nodes to maintain operational quorum. This is clearly not the optimal situation so
IBM Tivoli System Automation for Multiplatforms contains a Tie breaker function.

A Tie breaker ensures that exactly one subcluster will win the Tie breaker and all
others will lose. The one subcluster that wins the Tie breaker will act as if that
subcluster has one additional node for the purpose of operational quorum. A Tie
breaker is only called when a subcluster has exactly half of the nodes in a cluster.
Therefore, for a Tie breaker to be called, the total number of nodes in a Cluster
must be even. Now if we have two nodes in our cluster, if the heartbeat between
them fails, they will become two subclusters of one node each. At this point both
subclusters will enter a race condition for the Tie breaker and only one subcluster
will win that Tie breaker. The subcluster that wins the Tie breaker will then gain
operational quorum while the other subcluster will lose operational quorum.

There are three main groups of Tie breakers in IBM Tivoli System Automation for
Multiplatforms V2.1: Disk Tie breakers (SCSI, ECKD, and so on), the Operator
Tie breaker, and the Network Tie breaker.

The Operator Tie breaker involves manual intervention by an operator to resolve
operational quorum, and, therefore, is usually discarded for one of the other Tie
breakers. It is important to remember that Tie breakers are only useful when the
total number of nodes in a cluster is odd.

The Network Tie breaker is implemented as an EXEC Tie breaker meaning that
the Tie breaker is issued by executing a script. This script is included in IBM
Tivoli System Automation for Multiplatforms V2.1 and no modifications to the
script are needed. To define the Network Tie breaker, you must supply the target
node (usually the network gateway). When the script is executing, both
subclusters attempt to ping the target node a predefined number of times (default
is 2). If a node is able to ping the target node, then it wins the Tie breaker, and,
therefore, will gain operational quorum. A node that is unable to ping the target
node will lose the Tie breaker and, therefore, lose operational quorum.

It is very important to understand how the Network Tie breaker differs from Disk
Tiebreakers. In a Disk Tie breaker one subcluster is taking away a resource (for

N 2⁄ 1+

 Chapter 1. IBM Tivoli System Automation for Multiplatforms V2.1 27

example, a SCSI disk) from another subcluster. The Network Tie breaker does
not do this, but instead relies on the assumption that:

IF subcluster A can communicate (ping) with the target and subcluster B can
communicate (ping) with the target THEN subcluster A must be able to
communicate (heartbeat) subcluster B.

Figure 1-14 Tie breaker

If this assumption was violated in some way, then it could be the case where
subcluster A and subcluster B lose heart beat and therefore enter a race
condition for the Tie breaker. Furthermore, if both subclusters A and B were able
ping the gateway then both subclusters A and B would win the Tie breaker and
gain operational quorum. However, since subclusters A and B cannot
communicate with each other, this is why the tie breaker was called in the first
place, safety would be violated as a split brain would occur.

To prevent this, we recommend that the following be true to use the Network Tie
breaker:

Subcluster A Subcluster B

Cluster

Target
Node

? ?

28 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

� All nodes in the Cluster are located on the same network segment (in other
words, on the same switch).

� The target used for the Network Tie breaker be the network gateway for all
nodes in the Cluster. This ensures that there is only one hop between each
node in the Cluster and the target node.

Resource
A resource is any piece of hardware or software that can be defined to IBM Tivoli
System Automation. These resources can be either defined manually by the
administrator or through the harvesting functionality of the cluster infrastructure,
where resources are automatically detected and prepared for use, for example, a
network interface card.

Critical Resource
A critical resource is a resource that must not be active on more than one node at
any point in time. If such a resource is active on two or more separated nodes,
then data or functional integrity of the cluster is endangered. The unsafe situation
where such a critical resource is running on two separate nodes is referred to as
a split brain situation. An example is an IP address, which must be active on one
and only one node.

When a node loses operational quorum while that node is running a critical
resource, then, by default to ensure safety, IBM Tivoli System Automation for
Multiplatforms will perform a hard reboot of that node. This is to ensure a
maximum blend of safety and liveness. As soon as that node loses operational
quorum, if another node is able to, that other node will have operational quorum
and try to start the critical resource right away. To maintain that no critical
resource exists on two different nodes, we must stop the critical resource on the
node that lost operational quorum as soon as possible. The best way to do this is
to perform a hard reboot on that node.

Important: The default behavior when a subcluster loses operational quorum
is to perform a hard reboot on all nodes running critical resources. We strongly
suggest that this behavior is left as default functionality. However, after
completely understanding the consequences, you can change this.
Instructions can be found in the IBM Tivoli System Automation for
Multiplatforms V2.1 Base Component User’s Guide, SC33-8210-04.

 Chapter 1. IBM Tivoli System Automation for Multiplatforms V2.1 29

Resource Reference
A virtual resource hosted by the End-to-end Automation Manager that points to
an actual resource on other automation domains controlled by IBM Tivoli System
Automation for Multiplatforms Base Component or IBM Tivoli System Automation
for z/OS. These domains are also known as First Level Automation Domains
(FLA).

Resource groups
A collection of resources, resource references (End-to-end Automation
Management Component only), or other resource groups that share the same
automation goal. The current state of a resource group is an aggregation of the
states of its members.

Choice groups
An End-to-end Automation Manager resource group that represents an
alternative configuration, for example, a fallback or reduced capacity
configuration. A configuration that must be selected or activated by an operator.

Resource States
The actual state of a resource as follows:

� Observed State

Current runtime status of a resource, online, offline, and so on.

� Desired State

Intended target state of a resource as expressed within an automation policy
or as a result of operator requests, Online or Offline.

� Operational State

Detailed automation processing status, such as Online, Offline, Pending
Online, Failed Offline, and so on.

� Compound State

Used to select the icon that appears on the Operations Console for domains,
groups, and resources. Possible values: OK, Warning, Error, and Fatal.

Relationships
These define the relationships between the resources defined in a cluster.
Relationships provide the possibility to define relationships between resource
groups, resources, and equivalencies. It is also possible to define relationships
between resources running on different systems in the cluster.

IBM Tivoli System Automation for Multiplatforms allows the definition of the
following relationships:

30 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

� Start-stop relationships

Relationships are used to define start and stop dependencies between
resources. The following are allowed start-stop relationships:

StartAfter, StopAfter, DependsOn, DependsOnAny, and ForcedDownBy

� Location relationships

Location relationships are applied when resources must, or should if possible,
be started on the same or a different node in the cluster. The following are
allowed location relationships:

Collocation, AntiCollocation, Affinity, AntiAffinity, and IsStartable.

A simple example is that a Web server and its corresponding service IP
address, which could be started on any node in the cluster, should always be
kept together.

Equivalency
An equivalency is a collection of resources that provide the same functionality.
This allows IBM Tivoli System Automation for Multiplatforms to select any
resource in the equivalency to perform an operation. For example, a common
practice is to define a set of network adapters in an equivalency, so that in case
of a failure of a network adapter, IBM Tivoli System Automation for Multiplatforms
is able to define an IP address to another network adapter in the equivalency.

Later in this IBM Redbook, we present a case study scenario in which several
relationships are defined. Also, refer to IBM Tivoli System Automation for
Multiplatforms V2.1 Base Component User’s Guide, SC33-8210-04, for
additional information on relationships.

Note: There is an implicit Collocation location relationship between multiple
floating resources that have a DependsOn relationship defined between them
and the same equivalency. In case this functionality is not desired, it is
possible to define multiple identical equivalencies each differing only by the
name. Now each resource would instead have a DependsOn relation from
that resource to one of the newly created equivalencies.

 Chapter 1. IBM Tivoli System Automation for Multiplatforms V2.1 31

32 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Chapter 2. IBM Tivoli System
Automation for z/OS V3.1

This chapter provides an overview of IBM Tivoli System Automation for z/OS
V3.1 functionality and new features. We discuss the following topics:

� “IBM Tivoli System Automation for z/OS V3.1 overview” on page 34

� “What is new in IBM Tivoli System Automation for z/OS V3.1” on page 37

� “Overview Planning for installation” on page 44

2

© Copyright IBM Corp. 2005. All rights reserved. 33

2.1 IBM Tivoli System Automation for z/OS V3.1
overview

IBM Tivoli System Automation for z/OS is an IBM Tivoli NetView for z/OS base
software product that provides a single point of control for a various range of
systems management functionality. IBM Tivoli System Automation for z/OS plays
a key role in supplying high end-to-end automation solutions.

IBM delivers integrated cross-platform management functions. IBM Tivoli System
Automation for z/OS functions include monitoring, control, and automation of a
large range of system elements spanning both the hardware and software
resources of your enterprise.

IBM Tivoli System Automation for z/OS is a system management program with a
single point of control. You see a single system image for a full range of essential
systems management functions. IBM Tivoli System Automation for z/OS
monitors, controls, and automates the following:

� Monitors the following resources to respond before they affect users:

– Hardware components

– Software products and applications

– Automated processes

– Messages and alerts

� Controls and takes action on resources based on conditions:

– Start and stop your entire enterprise system; initiate hardware and
software startup and shutdown sequences

– Manage both remote and local operations and support any zSeries and
390-CMOS processors within a Parallel Sysplex

– Manage several operating systems: z/OS, OS/390®, MVS™, VM, and
VSE

– Control a coupling facility as a target system with coupling links in a
Parallel Sysplex environment

– React to errors and unscheduled events

� Automates many repetitive and complex tasks:

– Start/shutdown software resources

– Control channels and channel paths

– Control availability of I/O devices

– Control switching of I/O device ports

34 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

– Detect and respond to system messages

– Perform initial program load (IPL)

– Perform system power-on reset (POR)

– Build an automation policy for your enterprise

– Extend the built-in automation routines by writing your own automation
policies

IBM Tivoli System Automation for z/OS is a IBM Tivoli NetView for z/OS-based
application. Its functions include monitoring, controlling, and automating a large
range of system elements, spanning both hardware and software resources of an
enterprise (see Figure 2-1).

Figure 2-1 Monitor, control, and automation functions

Operating Systems:

OS/390, MVS, VM, VSE, LINUX for zSeries, z/OS

Software Resources:

RMF, ISPF, JES2, SDSF, TWS, CICS, TSO, IMS,
ACF/VTAM, RACF, DB2, LOGREC SYSLOG, JES
SPOOL, OMEGAMON, LINUX, E2E, GDPS, NMC,

PROCOPS, SAP, USS, WEBSPHERE

System Information:

Processors, Software, I/O Devices, XCF

Automation Commands

IBM Tivoli NetView for z/OS

IBM Tivoli System Automation for z/OS

 Chapter 2. IBM Tivoli System Automation for z/OS V3.1 35

IBM Tivoli System Automation for z/OS perform the following major operations:

� System Operations
� Processor Operations
� I/O Operations

System Operations
System Operations (SysOps) monitors and controls system operations
applications and subsystems such as IBM Tivoli NetView for z/OS, SDSF, JES,
RMF™, TSO, RODM, ACF/VTAM®, DB2®, CICS®, IMS™, OMEGAMON®, and
Tivoli Workload Scheduler. With system operations, you can automate Parallel
Sysplex applications. IBM Tivoli System Automation for z/OS can automate
applications distributed over a sysplex by virtually removing system boundaries
for automation through its automation manager/automation agent design. IBM
Tivoli System Automation for z/OS reduces the complexity of managing a Parallel
Sysplex through its goal driven automation and its concepts such as grouping
and powerful dependency support which enable you to model your configuration.
Single systems are also fully supported; the automation scope is then just one
system. IBM Tivoli System Automation for z/OS uses Enterprise monitoring to
update the NetView Management Console (NMC) resource status information
which is stored in the Resource Object Data Manager (RODM). IBM Tivoli
System Automation for z/OS provides controlled startup, controlled shutdown,
and automated recovery of various software resources on your systems. System
Operations (SysOps) provides the ability to monitor and control all subsystems in
a sysplex from any system in the sysplex. In other words, if your Focal Point (FP)
is down for whatever reason, you can view the status from any other system
within a SysPlex.

Processor Operations
Processor operations monitor and control processor hardware operations. It
provides a connection from a focal point processor to a target processor. With
IBM Tivoli NetView for z/OS on the focal point system, processor operations
automate operator and system consoles for monitoring and recovering target
processors.

The Processor Operations facility (ProcOps), formerly known as Target System
Control Facility (TSCF), provides connections from a Focal Point processor to
target processors. In addition, ProcOps allow you to power multiple target
processors on, off, and reset systems; perform IPLs; set time of day clocks;
respond to messages; monitor status; and detect and recover wait states.

I/O Operations
I/O operations provide a single point of control for managing connectivity in your
active I/O configurations. It takes an active role in detecting unusual I/O

36 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

conditions and lets you view and change paths between a processor and an
input/output device, which can involve using dynamic switching, such as the
enterprise systems connection (ESCON®) or fiber channel connection
(FICON®) switch. I/O operations changes paths by letting you control channels,
ports, switches, control units, and input/output devices. You can do this through
an operator console or API.

2.2 What is new in IBM Tivoli System Automation for
z/OS V3.1

This section contains an overview of important changes and enhancements to
IBM Tivoli System Automation for z/OS V3.1. There are a number of
enhancements with this release of IBM Tivoli System Automation for z/OS. For a
complete list, refer to the IBM Tivoli System Automation for z/OS V3.1 Planning
and Installation, SC33-8261, manual.

Here we present a summary, as follows:

� Enhancements to the customization dialog

� IBM Tivoli OMEGAMON integration

� GDPS® integration

� IBM Tivoli System Automation for z/OS V3.1 End-to-end Automation Adapter

2.2.1 Enhancements to the Customization Dialog
The section introduces the most important changes in the behavior of the
customization dialogs, such as:

� Adding, updating, and deleting large amounts of data

� Concurrent multi-user access to system definitions

� Policy database import

� Enhancements to the entry name selection panel

� Additional sample policy databases

Adding, updating, and deleting large amounts of data
There is an alternative to entering or modifying policy data with the customization
dialog. You can create sequential data sets with specifications of the policy data
in a newly designed text format. These sequential data sets allow one to see
multiple policy items of multiple database entries at a glance, but in contrast with
data base reports. The syntax of these imports cannot be violated but only be
imported into the policy data base.

 Chapter 2. IBM Tivoli System Automation for z/OS V3.1 37

There are two keywords: new and update, in the sequential data set control
whether the important will add entries to the policy database. Thereafter, you can
modify the entries. The data sets for import into policy databases can be created
either “from scratch” or by exporting selected parts of an existing policy data
base.

In addition to deleting single policy objects one by one, you can now delete any
number of policy objects all at once. With this new feature, you can specify how
often you want to be asked for confirmation.

Your options are:

� Confirmation with each policy object to be deleted

� Confirmation only applies to those policy objects that are still connected to
other policy objects (via links, membership, class instantiation, and so on)

� No confirmation at all

If you confirm deletion of an object that is still connected, any links to it will be
removed, too.

Concurrent multi-user access to system definitions
Concurrent write-access by multiple users is now possible for policy objects.

Policy database import
IBM System Automation z/OS 2.3 allows you to import one or multiple policy
objects of a single entry from another policy data base into the current one, but
the link was not included with the import. This restriction has now been removed
in IBM Tivoli System Automation for z/OS V3.1.

The Policy Data Base importation supports the inclusion of the LINKED objects
for the following entry types:

� APG (application group imported together with APLs, SVPs, and TRGs)

� APL (application instance imported together with the class APL, and class
APL imported together with its APL instances, this together with SVPs, TRGs,
CSAs, and ISA that is linked to them)

� TRG (trigger imported along with EVTs)

This enables one to import the entire object in a single import. For instance, the
entire application group and everything that is associated with this group will be
copied to the target policy database.

38 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Enhancements to entry name selection panel
On the Policy Data Base, there is a new QUERYSTAT command that shows
Statistics Information about the object. The following information is displayed
when a Q (QUERYSTAT) is entered next to the object.

� The user id that made the last update
� The date and time of the last update
� The date and time of the last build
� The ACF fragment name (if built into the ACF)

Additional sample policy databases
The Policy Data Base samples that are shipped with IBM Tivoli System
Automation for z/OS V3.1 have been completely restructured and rewritten.

There is now a distinction between:

� Basic samples
� Add-on samples

There are only two basic samples:

� BASE
� EMPTY

The new add-on sample policies shipped with IBM Tivoli System Automation for
z/OS V3.1 are:

� IBM CICS
� IBM DB2
� IBM End-to-end Automation Adapter
� IBM Geographically Dispersed Parallel Sysplex™ (GDPS)
� IBM Information Management Systems (IMS)
� IBM NetView Management Console (NMC)
� IBM Tivoli OMEGAMON
� IBM Processor Operations (PROCOPS)
� SAP
� IBM Tivoli Work Scheduler (TWS)
� IBM UNIX® System Services (USS)
� IBM WebSphere Application Server

2.2.2 IBM Tivoli OMEGAMON integration
IBM Tivoli System Automation for z/OS V3.1 now integrates with the IBM Tivoli
OMEGAMON suite by means of automated sessions. This complements
message-based automation with new proactive monitoring capabilities. For
details refer to the IBM Tivoli System Automation for z/OS V3.1 Planning and
Installation, SC33-8261, manual.

 Chapter 2. IBM Tivoli System Automation for z/OS V3.1 39

2.2.3 GDPS Integration
To set up IBM Tivoli System Automation for z/OS V3.1 and IBM Tivoli NetView for
z/OS for GDPS has been made significantly easier because IBM now provides a
predefined GDPS environment as part of IBM Tivoli System Automation for z/OS
V3.1. For details, refer to the IBM Tivoli System Automation for z/OS V3.1
Planning and Installation, SC33-8261, manual.

2.2.4 IBM Tivoli System Automation for z/OS V3.1 End-to-end
Automation Adapter

The IBM Tivoli System Automation for Multiplatforms V2.1 End-to-end
Automation Management Component provides end-to-end automation. The IBM
Tivoli System Automation for Multiplatforms V2.1 End-to-end Automation
Management Component can be used to automate the operation of resources
within heterogeneous environments (called first-level automation domains) that
each has a local automation technology of its own.

Each first-level automation domain is connected to the End-to-end Automation
Manager by an End-to-end Automation Adapter. The End-to-end Automation
Manager automation domain is named end-to-end automation domain.

The IBM Tivoli System Automation for Multiplatforms V2.1 operations console is
a Web-based graphical user front-end to the end-to-end automation domain and
to the first-level automation domains. This means resources managed by IBM
Tivoli System Automation for z/OS V3.1 or IBM Tivoli System Automation for
Multiplatforms V2.1, or other automation tools can be managed by the IBM Tivoli
System Automation for Multiplatforms End-to-end Automation Management
Component using the IBM Tivoli System Automation for Multiplatforms V2.1
operations console.

The End-to-end Automation Manager has a role equivalent to the Automation
Manager in IBM Tivoli System Automation for z/OS V3.1. For further details, refer
to the IBM Tivoli System Automation for z/OS V3.1 End-to-end Automation
Adapter, SC33-8271, manual.

Each first-level automation domain managed by IBM Tivoli System Automation
for z/OS V3.1 has an End-to-end Automation Adapter and a Primary Automation
Agent that together communicate with the End-to-end Automation Manager. The
End-to-end Automation Adapter and Primary Automation Agent must run on the
same host system and must be linked to the sysplex group. The End-to-end
Automation Adapter (E2E Automation Adapter) can run on only one system in
the sysplex (See Figure 2-2).

40 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Figure 2-2 E2E Automation Adapter communication

Shown by Figure 2-2, the IBM Tivoli System Automation for z/OS V3.1 Primary
Automation Manager (on Host 2) can run on any system within the sysplex, other
than the system on which the End-to-end Automation Adapter is running (on
Host 1).

The End-to-end Automation Adapter acts as the link between the End-to-end
Automation Manager and its first-level automation domain within managed by
IBM Tivoli System Automation for z/OS in the sysplex group.

Note: The End-to-end Automation Adapter must be located on the same
system as the primary IBM Tivoli System Automation for z/OS V3.1 agent
(Host 1 on Figure 2-2).

 Chapter 2. IBM Tivoli System Automation for z/OS V3.1 41

The functions of the End-to-end Automation Adapter are:

� Monitor resources within its first-level automation domain

� Propagate resource attribute changes to the End-to-end Automation Manager

� Start and stop resources within the first-level automation domain by request
of the End-to-end Automation Manager

� Provide information about resources that are available within the first-level
automation domain in response to queries from operators

The End-to-end Automation Adapter can communicate either synchronously or
asynchronously. Figure 2-2 represents this function.

� Synchronous Communication

The End-to-end Automation Adapter schedules an IBM Tivoli System
Automation for z/OS V3.1 task execution request via Program-to-Program
Interface synchronous communication (see Figure 2-2) to a task execution
command handler that runs the automated operator function E2EOPER or
E2EOPRnn. The task execution request contains one or more end-to-end
automation requests.

The Program-to-Program Interface (PPI) enables application programs to
send or receive data buffers from other application programs that are running
on the same host. It is an optional facility of the IBM Tivoli NetView for z/OS
subsystem address space and can be initialized with its PPIOPT start option.
The PPI option can only be requested for one subsystem address space of a
system. PPI is used for synchronous communication between the primary
IBM Tivoli System Automation for z/OS V3.1 automation agent and the
automation adapter.

� Asynchronous Communication

The End-to-end Automation Adapter provides an Event Integration Facility
(EIF) event receiver and an EIF event emitter. IBM Tivoli System Automation
for z/OS V3.1 acts as an asynchronous data provider and sends specific
events to the End-to-end Automation Adapter’s EIF event receiver. This then
delegates the events to the End-to-end Automation Adapter’s event mapping
function. Once an event has been mapped and not rejected by the End-to-end
Automation Adapter, it is sent to the End-to-end Automation Manager via the
EIF emitter component.

The message adapter service of the Event Automation Service (EAS)
converts and forwards messages from the IBM Tivoli NetView for z/OS
message automation to a designated event server, such as the End-to-end
Automation Adapter. So that the End-to-end Automation Adapter can receive
events from IBM Tivoli System Automation for z/OS V3.1, EAS registers with
the IBM Tivoli NetView for z/OS PPI. IBM Tivoli System Automation for z/OS
V3.1 sends automation adapter-specific events over PPI to the message

42 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

adapter service. The EAS message adapter service converts the messages
into EIF events using the message adapter format file. The resulting events
are forwarded to the End-to-end Automation Adapter.

Prerequisites and dependencies
To implement the End-to-end Automation Adapter, the following prerequisites
and dependencies apply:

� IBM Tivoli System Automation for z/OS V3.1

� IBM Tivoli NetView for z/OS V5.1

� z/OS 1.3 or higher

� Java™ Runtime Environment (JRE) 1.4.2 installed on z/OS

� The JRE Software Development Kit (SDK) if you choose to use the facility to
create sample keys. Refer to the IBM Tivoli System Automation for z/OS V3.1
End-to-end Automation Adapter, SC33-8271-00, manual for details.

You need to configure the following components of these prerequisites:

� Event/Automation Service (EAS) component of IBM Tivoli NetView for z/OS.

� Full z/OS UNIX System Services (USS) with hierarchical file system

� Subsystem Interface (SSI) address space with PPI function of IBM Tivoli
NetView for z/OS

� IBM Tivoli System Automation for Multiplatforms V2.1 Automation Manager

� IBM Tivoli System Automation for z/OS V3.1 Automation Agent

Primary Automation Agent and Primary Automation Manager
The successful initialization of the End-to-end Automation Adapter on a system
makes the automation agent on that system the primary automation agent.

The End-to-end Automation Adapter and the primary agent must run on the
same system (see Figure 2-2).

The primary automation agent communicates the fact that it has become the
primary automation agent on that system to a primary automation manager
(PAM). The primary automation manager ensures that there must exist only one
primary automation agent in the sysplex.

The primary automation manager can run on any system in the sysplex other
than the system on which the End-to-end Automation Adapter is running (see
Figure 2-2).

 Chapter 2. IBM Tivoli System Automation for z/OS V3.1 43

The End-to-end Automation Adapter acts as the link between the IBM Tivoli
System Automation for Multiplatforms End-to-end Automation Manager and its
first-level automation domain within the z/OS sysplex.

The primary automation agent forwards events to the End-to-end Automation
Adapter after it has registered with the primary automation agent and subscribed
for them. After a system failure, event subscriptions may have been lost and so
the End-to-end Automation Adapter has to re-subscribe. The primary automation
manager sends events to the primary automation agent over Crosslink Coupling
Facility (XCF).

Note that the End-to-end Automation Adapter can only run on one system in a
domain, although we may have more than one domain in a sysplex. There can,
however, be a maximum of only one End-to-end Automation Adapter per domain.

2.3 Overview Planning for installation
These are the major tasks required to install IBM Tivoli System Automation for
z/OS V3.1:

� SMPE/E installation

� Allocate System Unique Data Sets

� Allocate Data Sets for the Customization Dialog

� Customization of SYS1.PROCLIB

� Customization of SYS1.PARMLIB

� Customize IBM Tivoli NetView for z/OS

� Customization of the IBM Tivoli System Automation for z/OS Automation
Manager

� Installation of ISPF Dialog Panels

� Defining Automation Policy

� Automate System Operations Startup

Refer to the IBM Tivoli System Automation for z/OS V3.1 Planning and
Installation, SC33-8261, manual for details about each of these steps.

We present details for this implementation in our case study scenario chapter,
Chapter 6, “Case study scenario: IBM DB2 on z/OS first-level automation
domain” on page 129.

44 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Part 2 Case study
scenario
implementation

Part 2

© Copyright IBM Corp. 2005. All rights reserved. 45

46 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Chapter 3. Case study scenario
overview

This chapter outlines a case study environment, which we intend to use to
represent a simplified customer environment.

We describe an environment, along with the rules to automate it, and we use this
environment throughout this IBM Redbook to demonstrate the activities required
for a typical high availability and automation solution using both IBM Tivoli
System Automation for Multiplatforms V2.1 and IBM Tivoli System Automation for
z/OS V3.1.

3

© Copyright IBM Corp. 2005. All rights reserved. 47

3.1 Scenario overview
In many cases, enterprise software applications are multi-tiered with their
components running on multiple nodes, and, often, on multiple operating system
platforms. In this chapter, we show a scenario using a three-tiered application
environment running a Java 2 Platform Enterprise Edition (J2EE) application.

The application environment in this scenario uses Web servers (Linux) providing
front end and Web access services, Web application servers (AIX) providing the
J2EE environment for running the application and transaction services, and
back-end database servers (z/OS). The J2EE application accesses the database
through Java Database Connectivity (JDBC™).

Each of the application tiers we describe consists of multiple servers. Figure 3-1
shows the application environment.

Figure 3-1 Application environment

The first two tiers of the application environment in this scenario consist of a
homogeneous cluster. A single z/OS system represents the third tier. The
following are the characteristics of each tier presented in Figure 3-1:

� Tier one has three servers running Apache HTTP Server on Red Hat RHEL
3.0 ES.

� Tier two has two servers running IBM WebSphere Application Server on IBM
AIX 5.3.

� Tier three runs IBM DB2 Server V8.1.5 on z/OS 1.06.

This chapter focuses on the automation aspects of this heterogeneous
environment using IBM Tivoli System Automation for Multiplatforms V2.1. We
create a first-level automation management for each homogeneous cluster using

48 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

the IBM Tivoli System Automation for Multiplatforms V2.1 Base Component and
IBM Tivoli System Automation for z/OS V3.1. In addition, we create an
End-to-end Automation Management environment for our application by building
automation controls upon each first-level automation domain and integrating
them. Figure 3-2 presents this environment.

Figure 3-2 End-to-end automation case study scenario

We demonstrate how to create relationships, dependencies, and automation
policies between the resources belonging to each homogeneous cluster. This
configuration ensures high availability of resources local to each cluster and
makes up each first-level automation domain. We show the configuration steps
required to prepare the first-level automation domains for end-to-end automation.
This implies configuring an automation adapter in each of the first-level
automation domains, as we see in Figure 3-3.

 Chapter 3. Case study scenario overview 49

The following figure shows the communication between components and details
of the automation domains in our case study scenario.

Figure 3-3 IBM Tivoli System Automation for Multiplatforms scenario components

We discuss this in the following chapters:

� Chapter 4, “Case study scenario: HTTP Servers on Linux first-level
automation domain” on page 53.

This chapter describes the activities for achieving high availability and
automation of the scenario HTTP servers cluster by setting up the
httpd_SA_Domain first-level automation domain using IBM Tivoli System
Automation for Multiplatforms V2.1 Base Component running on Red Hat
Linux.

50 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

� Chapter 5, “Case study scenario: Application Servers on AIX first-level
automation domain” on page 89.

This chapter describes the activities for achieving high availability and
automation of the scenario IBM WebSphere Application Server cluster by
setting up the was_SA_Domain first-level automation domain using IBM
Tivoli System Automation for Multiplatforms V2.1 Base Component running
on IBM AIX.

� Chapter 6, “Case study scenario: IBM DB2 on z/OS first-level automation
domain” on page 129.

This chapter describes the activities for achieving high availability and
automation of the scenario database server by setting up the SC64N
first-level automation domain using IBM Tivoli System Automation for z/OS
V3.1.

� Chapter 7, “Case study scenario: End-to-end automation domain” on
page 201.

We complete the scenario by creating a second-level automation domain,
specifically an end-to-end automation management domain named
ITSOE2E.

This domain controls the relationships between the resources of every
first-level automation domain to ensure high availability of our application
environment. In order to accomplish this, we install and configure all elements
of the IBM Tivoli System Automation for Multiplatforms V2.1 End-to-end
Automation Management Component on a single server. The ITSOE2E
end-to-end automation management domain uses its end-to-end automation
manager and automation manager resource adapter to communicate to the
end-to-end automation adapters running on the first-level automation
domains.

 Chapter 3. Case study scenario overview 51

52 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Chapter 4. Case study scenario:
HTTP Servers on Linux
first-level automation
domain

In this chapter, we discuss the high availability and automation of the servers
performing HTTP Server services for our sample application environment. We do
this by creating and configuring an IBM Tivoli System Automation for
Multiplatforms first-level automation domain named apache_SA_Domain.

In addition, we configure an End-to-end Automation Adapter so that this first-level
automation domain can be managed by the IBM Tivoli System Automation for
Multiplatforms V2.1 End-to-end Automation Management Component.

We discuss the following topics:

� “Apache automation domain overview” on page 55

� “Automation domain configuration” on page 56

� “End-to-end Automation Adapter configuration” on page 75

� “Miscellaneous information” on page 83

4

© Copyright IBM Corp. 2005. All rights reserved. 53

Figure 4-1 shows the portion of the entire case study scenario we cover in this
chapter.

Figure 4-1 Apache first-level automation domain

54 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

4.1 Apache automation domain overview
This section describes the configuration steps for setting up high availability for
the servers providing HTTP services for our sample application. Our HTTP
server environment consists of three Linux systems running on xSeries®
servers. All three servers in the cluster have identical hardware and software
configurations.

This three node cluster provides the HTTP environment and is configured to
service any Web request to the address tsahttpd.istc.austin.ibm.com address
and redirect the request to the IBM WebSphere Application Server cluster at the
tsawas.itsc.austin.ibm.com address. We modified the /etc/httpd/conf/httpd.conf
file to achieve this redirection.

This environment is meant to have one active instance of httpd running on any of
the three available servers using a single IP Address (ServiceIP - 9.3.5.29)
mapped to the tsahttpd.itsc.austin.ibm.com address.

Figure 4-2 shows the configuration of one of the servers in the cluster and all
elements that will be part of the IBM Tivoli System Automation for Multiplatforms
first-level automation domain configuration.

Figure 4-2 Web application tier configuration

IBM Tivoli System Automation for Multiplatforms is configured to ensure that only
one instance of Apache is active on any of the three servers and that server is
configured to use the ServiceIP.

 Chapter 4. Case study scenario: HTTP Servers on Linux first-level automation domain 55

4.1.1 Installation
We install IBM Tivoli System Automation for Multiplatforms V2.1 on the three
servers of our Apache HTTP cluster: tsa001, tsa002, and tsa003. Installation of
IBM Tivoli System Automation for Multiplatforms is straightforward and
uneventful. See the IBM Tivoli System Automation for Multiplatforms V2.1 Base
Component User’s Guide, SC33-8210-04, for further information.

4.1.2 Automation requirements
We define the following high availability and automation requirements for our
environment:

� The Apache HTTP Server must be startable on any node in the domain.

� A single instance of the Apache HTTP Server is active on only one node in
the domain at any given point in time.

� In case of a failure, the Apache HTTP Server must be restarted on any node
in the domain.

� We have installed the Apache HTTP Server on all nodes in our domain.

� The running instance of the HTTP server must provide the same URL to the
user and this URL must be associated to the same IP address, regardless of
the node on which the HTTP server is running. This IP address serves as the
Service IP for the domain.

The following sections go into detail about how we meet these requirements in
our scenario.

4.2 Automation domain configuration
This section contains the steps we use to create the IBM Tivoli System
Automation for Multiplatforms environment to manage our Apache HTTP server
cluster.

We perform the following steps:

� Create the automation domain
� Define resources within the automation domain
� Create the automation policy using relationship definitions
� Verify the automation domain is operational

56 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

4.2.1 Create the first-level automation domain
The first step in the creation of our automation domain is to prepare the target
servers for domain membership. The node preparation task enables security on
the node, so we can define this node in an automation domain. It allows for
automation operations to be performed on the node. This task must be done
before the node can join an automation domain. Then, we can define the
automation domain itself, specifying the nodes that will be members of the
domain.

Prepare the nodes
We do this using the IBM Reliable Scalable Cluster Technology (RSCT)
preprpnode command.

We must run the preprpnode command on every node that will be part of the
automation domain. In our environment, we issue the following command on
each of the three servers, tsa001, tsa002 and tsa003:

preprpnode tsa001 tsa002 tsa003

Create the automation domain
The next step is to create the automation domain using the RSCT command
mkrpdomain.

For the purposes of this case study scenario, the IBM Tivoli System Automation
for Multiplatforms configuration contains a single automation domain named
ttpd_SA_Domain, of which the three Apache HTTP servers, tsa001, tsa002,
and tsa003, are members. We create our domain with the command:

mkrpdomain httpd_SA_Domain tsa001 tsa002 tsa003

This command must be executed only once on any of the target nodes of the
automation domain. From this point on, any IBM Tivoli System Automation for
Multiplatforms or RSCT command may be issued from any node in the
automation domain.

Use the command lsrpdomain to display the IBM Tivoli System Automation for
Multiplatforms automation domain status. See Example 4-1.

Note: To remove a single point of failure, create entries for each node of the
cluster in their local /etc/hosts files on all nodes and ensure the nameserver
entries are identical.

 Chapter 4. Case study scenario: HTTP Servers on Linux first-level automation domain 57

Example 4-1 Display automation domain

lsrpdomain
Name OpState RSCTActiveVersion MixedVersions TSPort GSPort
httpd_SA_Domain Offline 2.4.3.0 No 12347 12348

The newly created automation domain has an operational state (OpState) of
Offline. We change the OpState by issuing a startrpdomain command to bring
the new defined automation domain online.

startpdomain httpd_SA_Domain

At this point, you can verify the automation domain status with the lsrpdomain
command. See Example 4-2.

Example 4-2 Automation domain status

lsrpdomain
Name OpState RSCTActiveVersion MixedVersions TSPort GSPort
httpd_SA_Domain Online 2.4.3.0 No 12347 12348

4.2.2 Define resources in the automation domain
Now that we have defined the extent of our Apache automation domain (nodes:
tsa001, tsa002, and tsa003), and it is in the online operational state, it is time to
define the resources within this automation domain we wish to control. We need
to define the application (Apache), the Service IP Address (9.3.5.29), and to
indicate to IBM Tivoli System Automation for Multiplatforms that the network
adapters on nodes tsa001, tsa002, and tsa003 are appropriate and equivalent for
the Service IP Address.

Resources have two type of attributes, Persistent and Dynamic. The resource
definitions specify the persistent attributes. Dynamic attributes are set by RSCT
and IBM Tivoli System Automation for Multiplatforms.

Define ServiceIP resource
In our scenario, we have an IP Address that we want to be active on the same
server as our active HTTP Server. This is an example of a resource that we must
define to IBM Tivoli System Automation for Multiplatforms. We create RSCT
resources with the command mkrsrc. We can provide all resource characteristics
in command line parameters, but the mkrsrc command also accepts a definition
file in plain text. We use the second approach with a definition file named
apache.resourcedef.IBM.ServiceIP, which contains the following (see
Example 4-3:

58 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Example 4-3 ServiceIP definition input file

PersistentResourceAttributes::
 NodeNameList={"tsa001","tsa002","tsa003"}
 Name="apache_SIP"
 NetMask=255.255.255.0
 IPAddress=9.3.5.29
 ResourceType=1

The resource representing the ServiceIP for our HTTP servers is of class
IBM.ServiceIP. The command we use to create our ServiceIP resource using the
above definition file as input is:

mkrsrc -f apache.resourcedef.IBM.ServiceIP IBM.ServiceIP

We verify the resource creation by issuing a lsrsrc command. See Example 4-4.

Example 4-4 Display the apache_SIP ServiceIP

lsrsrc -l IBM.ServiceIP
Resource Persistent Attributes for IBM.ServiceIP
resource 1:
 Name = "apache_SIP"
 ResourceType = 0
 AggregateResource = "0x2029 0xffff 0x421b1763 0xf3c328b7 0x8f9a0344
0xd236b078"
 IPAddress = "9.3.5.29"
 NetMask = "255.255.255.0"
 ProtectionMode = 1
 ActivePeerDomain = "httpd_SA_Domain"
 NodeNameList = {"tsa003.itsc.austin.ibm.com"}
resource 2:
 Name = "apache_SIP"
 ResourceType = 0
 AggregateResource = "0x2029 0xffff 0x421b1763 0xf3c328b7 0x8f9a0344
0xd236b078"
 IPAddress = "9.3.5.29"
 NetMask = "255.255.255.0"
 ProtectionMode = 1
 ActivePeerDomain = "httpd_SA_Domain"
 NodeNameList = {"tsa002.itsc.austin.ibm.com"}
resource 3:
 Name = "apache_SIP"
 ResourceType = 0

Note: The parameter ResourceType=1 indicates a floating resource, in other
words, not fixed. The default is 1, floating resource, no matter how many
entries are supplied in the NodeNameList parameter.

 Chapter 4. Case study scenario: HTTP Servers on Linux first-level automation domain 59

 AggregateResource = "0x2029 0xffff 0x421b1763 0xf3c328b7 0x8f9a0344
0xd236b078"
 IPAddress = "9.3.5.29"
 NetMask = "255.255.255.0"
 ProtectionMode = 1
 ActivePeerDomain = "httpd_SA_Domain"
 NodeNameList = {"tsa001.itsc.austin.ibm.com"}
resource 4:
 Name = "apache_SIP"
 ResourceType = 1
 AggregateResource = "0x3fff 0xffff 0x00000000 0x00000000 0x00000000
0x00000000"
 IPAddress = "9.3.5.29"
 NetMask = "255.255.255.0"
 ProtectionMode = 1
 ActivePeerDomain = "httpd_SA_Domain"
 NodeNameList =
{"tsa001.itsc.austin.ibm.com","tsa002.itsc.austin.ibm.com","tsa003.itsc.austin.
ibm.com"}

Define equivalency for the network adapters
Our three xSeries servers in the automation domain have multiple network
adapters (eth0 and eth1). When a node in the cluster has multiple network
attachments, they all may not be equally suited to host the ServiceIP resource
(apache_SIP). An equivalency definition specifies the network adapters that you
can use to carry the apache_SIP address. Equivalency means that each of the
adapters in the equivalency can provide the same required function regardless of
its own unique characteristics. Since the HTTP Server should be startable on
each node in the cluster, at least one of the adapters on each node has to appear
in the equivalency. An equivalency groups together a set of resources from
another class. Network adapters belong to a class named IBM.NetworkInterface.
There is no need to provide resource definitions for all the network adapters on
the cluster nodes, since RSCT has a harvesting function which automatically
creates appropriate resource definitions for many system-defined resources.

The following command creates a static equivalency named apache_nieq, which
contains a network adapter from each node of the cluster:

mkequ apache_nieq IBM.NetworkInterface:eth0:tsa001,eth0:tsa002,eth0:tsa003

Important: We recommend to define equivalencies in a dynamic fashion,
especially when interfacing the first-level domain with the IBM Tivoli System
Automation for Multiplatforms Operations Console or the End-to-end
Automation Management Component. Chapter 5, “Case study scenario:
Application Servers on AIX first-level automation domain” on page 89 provides
step by step instructions about how to define a dynamic equivalency.

60 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

You can verify the equivalency with the command lsequ. See Example 4-5.

Example 4-5 Display equivalency apache_nieq

lsequ -e apache_nieq
Displaying Equivalency information:
For Equivalency "apache_nieq".

Equivalency 1:
 Name = apache_nieq
 MemberClass = IBM.NetworkInterface
 Resource:Node[Membership] =
{eth0:tsa001.itsc.austin.ibm.com,eth0:tsa002.itsc.austin.ibm.com,eth0:tsa003.it
sc.austin.ibm.com}
 SelectString = ""
 SelectFromPolicy = ANY
 MinimumNecessary = 1
 Subscription = {}
 ActivePeerDomain = httpd_SA_Domain
 ConfigValidity =

Define application resource
Now, we define the Apache HTTP Server application. Before defining the
application resource, we need to provide scripts for IBM Tivoli System
Automation for Multiplatforms to be able to:

� Start the application
� Stop the application
� Monitor the application, in other words, query the status of the application

In addition, we have to define time-out values for the Start, Stop, and Monitor
operations.

For our implementation, we decide to use a single directory repository for all
scripts (/usr/local/IBM/TSA/scripts). We have to copy these scripts to all nodes in
the domain, and the scripts must be located in the same directory path.

We use the automation scripts part of an predefined automation policy provided
by IBM at:

http://www.ibm.com/software/tivoli/products/sys-auto-linux/downloads.html

The supplied automation policy uses a single script with parameters to start,
stop, and query the status of the Apache HTTP Server process. We adapt the
supplied script for our scenario-specific location of our httpd.pid file, as presented
in the following example (Example 4-6).

 Chapter 4. Case study scenario: HTTP Servers on Linux first-level automation domain 61

http://www.ibm.com/software/tivoli/products/sys-auto-linux/downloads.html

Example 4-6 Apache HTTP Server automation script

#!/bin/ksh -p
#
init section
#
UNKNOWN=0
ONLINE=1
OFFLINE=2

APACHECMD=/usr/sbin/apachectl
APACHEPID=/var/run/httpd.pid

Action=${1:-status}

#
main section
#
case ${Action} in
 start)
 if [! -f ${APACHECMD}]
 then
 logger -i -t "SAM-apache" "the application is not
found"
 RC=1
 else

 ${APACHECMD} start >/dev/null 2>&1

 logger -i -t "SAM-apache" "start order issued for
Apache"
 RC=0
 fi
 ;;
 stop)
 ${APACHECMD} stop >/dev/null 2>&1

 logger -i -t "SAM-apache" "stop order issued for Apache"
 RC=0
 ;;
 status)
PIDFILE=`cat ${APACHECMD} | grep PIDFILE= | cut -d'=' -f2`
 if [-f ${APACHEPID}] ; then
 PID=`cat ${APACHEPID}`
 if ["x${PID}" != "x"] && kill -0 ${PID} 2>/dev/null ;
then
 RC=${ONLINE}
else
 RC=${OFFLINE}

62 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

 fi
 else
 RC=${OFFLINE}
 fi
 ;;
 *) #incorrect input -->> log and exit
 logger -i -t "SAM-apache" "Error: Incorrect parameter
>${Action}<"
 RC=${UNKNOWN}
 ;;
esac
exit ${RC}

The application resource defined in IBM Tivoli System Automation for
Multiplatforms is of class IBM.Application. We again use the mkrsrc command to
define our Application resource, using the mkrsrc -f form with a definition file
named apache.resourcedef.IBM.Application, which contains the following (see
Example 4-7):

Example 4-7 Application definition input file

PersistentResourceAttributes::
 Name="apache"
 StartCommand="/usr/local/IBM/TSA/scripts/apache start"
 StopCommand="/usr/local/IBM/TSA/scripts/apache stop"
 MonitorCommand="/usr/local/IBM/TSA/scripts/apache status"
 MonitorCommandPeriod=5
 MonitorCommandTimeout=5
 NodeNameList={"tsa001","tsa002","tsa003"}
 StartCommandTimeout=10
 StopCommandTimeout=10
 UserName="root"
 ResourceType=1

The command we use to create our Application resource using the above
definition file as input is:

mkrsrc -f apache.resourcedef.IBM.Application IBM.Application

We then verify the resource definition with the following command (see
Example 4-8):

Note: For us it was necessary to make a small modification to the supplied
Apache HTTP automation script for our environment. We define the path to
the Apache PIDFILE within the script. See the “bold” lines in the above listing
of the script.

 Chapter 4. Case study scenario: HTTP Servers on Linux first-level automation domain 63

Example 4-8 Verify application resource definition

lsrsrc IBM.Application
Resource Persistent Attributes for IBM.Application
resource 1:
 Name = "apache"
 ResourceType = 0
 AggregateResource = "0x2028 0xffff 0x3b4eb30e 0x61e50e32 0x8f9bd741
0x149af380"
 StartCommand = "/usr/local/IBM/TSA/scripts/apache start"
 StopCommand = "/usr/local/IBM/TSA/scripts/apache stop"
 MonitorCommand = "/usr/local/IBM/TSA/scripts/apache status"
 MonitorCommandPeriod = 5
 MonitorCommandTimeout = 5
 StartCommandTimeout = 10
 StopCommandTimeout = 10
 UserName = "root"
 RunCommandsSync = 1
 ProtectionMode = 0
 HealthCommand = ""
 HealthCommandPeriod = 10
 HealthCommandTimeout = 5
 InstanceName = ""
 InstanceLocation = ""
 ActivePeerDomain = "httpd_SA_Domain"
 NodeNameList = {"tsa003.itsc.austin.ibm.com"}
resource 2:
 Name = "apache"
 ResourceType = 0
 AggregateResource = "0x2028 0xffff 0x3b4eb30e 0x61e50e32 0x8f9bd741
0x149af380"
 StartCommand = "/usr/local/IBM/TSA/scripts/apache start"
 StopCommand = "/usr/local/IBM/TSA/scripts/apache stop"
 MonitorCommand = "/usr/local/IBM/TSA/scripts/apache status"
 MonitorCommandPeriod = 5
 MonitorCommandTimeout = 5
 StartCommandTimeout = 10
 StopCommandTimeout = 10
 UserName = "root"
 RunCommandsSync = 1
 ProtectionMode = 0
 HealthCommand = ""
 HealthCommandPeriod = 10
 HealthCommandTimeout = 5
 InstanceName = ""
 InstanceLocation = ""
 ActivePeerDomain = "httpd_SA_Domain"
 NodeNameList = {"tsa002.itsc.austin.ibm.com"}
resource 3:

64 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

 Name = "apache"
 ResourceType = 0
 AggregateResource = "0x2028 0xffff 0x3b4eb30e 0x61e50e32 0x8f9bd741
0x149af380"
 StartCommand = "/usr/local/IBM/TSA/scripts/apache start"
 StopCommand = "/usr/local/IBM/TSA/scripts/apache stop"
 MonitorCommand = "/usr/local/IBM/TSA/scripts/apache status"
 MonitorCommandPeriod = 5
 MonitorCommandTimeout = 5
 StartCommandTimeout = 10
 StopCommandTimeout = 10
 UserName = "root"
 RunCommandsSync = 1
 ProtectionMode = 0
 HealthCommand = ""
 HealthCommandPeriod = 10
 HealthCommandTimeout = 5
 InstanceName = ""
 InstanceLocation = ""
 ActivePeerDomain = "httpd_SA_Domain"
 NodeNameList = {"tsa001.itsc.austin.ibm.com"}
resource 4:
 Name = "apache"
 ResourceType = 1
 AggregateResource = "0x3fff 0xffff 0x00000000 0x00000000 0x00000000
0x00000000"
 StartCommand = "/usr/local/IBM/TSA/scripts/apache start"
 StopCommand = "/usr/local/IBM/TSA/scripts/apache stop"
 MonitorCommand = "/usr/local/IBM/TSA/scripts/apache status"
 MonitorCommandPeriod = 5
 MonitorCommandTimeout = 5
 StartCommandTimeout = 10
 StopCommandTimeout = 10
 UserName = "root"
 RunCommandsSync = 1
 ProtectionMode = 0
 HealthCommand = ""
 HealthCommandPeriod = 10
 HealthCommandTimeout = 5
 InstanceName = ""
 InstanceLocation = ""
 ActivePeerDomain = "httpd_SA_Domain"
 NodeNameList =
{"tsa001.itsc.austin.ibm.com","tsa002.itsc.austin.ibm.com","tsa003.itsc.austin.
ibm.com"}

At this point, the resources are configured and ready for management by IBM
Tivoli System Automation for Multiplatforms. To accomplish this, we need to

 Chapter 4. Case study scenario: HTTP Servers on Linux first-level automation domain 65

create a resource group, place our resources (apache and apache_SIP) into this
resource group, and then bring the resource group online.

Define resource group
All resources groups defined in this automation domain are RSCT resources
groups. IBM Tivoli System Automation for Multiplatforms makes use of these
resources groups to perform automation operations.

Our resource group is named apache_rg. We create it and add the ServiceIP
and application resources to it with the following commands (see Example 4-9):

Example 4-9 Create resource group and populate with resources

mkrg apache_rg
addrgmbr -g apache_rg IBM.Application:apache
addrgmbr -g apache_rg IBM.ServiceIP:apache_SIP

We display our new resource group with the following command (Example 4-10):

Example 4-10 Display resource group information

lsrg -m
Displaying Member Resource information:
Class:Resource:Node[ManagedResource] Mandatory MemberOf OpState
IBM.ServiceIP:apache_SIP True apache_rg Offline
IBM.Application:apache True apache_rg Offline
#

Tip: You can limit the data returned from the lsrsrc command by specifying
the attribute names for the resource class, as follows:

lsrsrc -l IBM.Application Name NodeNameList
Resource Persistent Attributes for IBM.Application
resource 1:
 Name = "apache"
 NodeNameList = {"tsa003.itsc.austin.ibm.com"}
resource 2:
 Name = "apache"
 NodeNameList = {"tsa002.itsc.austin.ibm.com"}
resource 3:
 Name = "apache"
 NodeNameList = {"tsa001.itsc.austin.ibm.com"}
resource 4:
 Name = "apache"
 NodeNameList =
{"tsa001.itsc.austin.ibm.com","tsa002.itsc.austin.ibm.com","tsa003.itsc.aust
in.ibm.com"}

66 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

4.2.3 Create the automation policy using relationship definitions
Now, we are ready to define the relationships between our resources. This
defines the automation policy to which IBM Tivoli System Automation for
Multiplatforms will adhere and execute.

To this point, our Apache automation domain contains the following resources:

Defined resources and resource group:

Application resource apache
ServiceIP apaceh1IP
Equivalency apache_nieq
Resource group apache_rg

In order to complete our automation definition, we must create relationships
between the defined resources. For details and rules about valid relationship
definitions, refer to the IBM Tivoli System Automation for Multiplatforms V2.1
Base Component User’s Guide, SC33-8210-04.

According to the automation requirements we define in Section 4.1, “Apache
automation domain overview” on page 55, we need to create the following
relationships:

� The Apache application depends on ServiceIP apache_SIP to be active.

� The ServiceIP apache_SIP depends on the network interface equivalency
apache_nieq to be active.

Figure 4-3 shows an overview of our Apache automation domain automation
policy:

 Chapter 4. Case study scenario: HTTP Servers on Linux first-level automation domain 67

Figure 4-3 Overview of the Apache automation domain

First, we define the relationship between our apache application resource
(apache) and our apache ServiceIP resource (apache_SIP) with the following
command.

mkrel -p DependsOn -S IBM.Application:apache -G IBM.ServiceIP:apache_SIP
apache_dependson_ip

Next, we define the relationship between our ServiceIP resource (apache_SIP)
and the network interface equivalency (apache_nieq) with the following
command.

mkrel -p DependsOn -S IBM.ServiceIP:apache_SIP -G IBM.Equivalency:apache_nieq
apache_SIP_dependson_apache_nieq

You can display the relationship definitions with the following command
(Example 4-11):

Example 4-11 Display relationship definitions

lsrel -l
Displaying Managed Relations :

Managed Relationship 1:
 Name = apache_SIP_dependson_apache_nieq
 Class:Resource:Node[Source] = IBM.ServiceIP:apache_SIP
 ResourceGroup[Source] = apache_rg

Managed Relationship 2:
 Name = apache_dependson_ip

apache_nieq

eth0eth0

tsa002 tsa003

eth0

tsa001

apacherg

apache1IP

tsa001, 002 and 003

apache1

tsa001, 002 and 003

DependsOn

DependsOn

68 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

 Class:Resource:Node[Source] = IBM.Application:apache
 ResourceGroup[Source] = apache_rg

4.2.4 Change the operational state of the resource group
We now are ready to activate the resource group apache_rg. This will modify the
operational state of the resource group as well as all the resources defined as its
members. We use the chrg command as presented as follows:

chrg -o online apache_rg

At last, we have a fully defined and configured environment. We verify the status
of the resource group with the following command (Example 4-12):

Example 4-12 Display resource group operational state

lsrg -g apache_rg
Displaying Resource Group information:
For Resource Group "apache_rg".

Resource Group 1:
 Name = apache_rg
 MemberLocation = Collocated
 Priority = 0
 AllowedNode = ALL
 NominalState = Online
 ExcludedList = {}
 Subscription = {}
 Owner =
 Description =
 InfoLink =
 ActivePeerDomain = httpd_SA_Domain
 OpState = Online
 TopGroup = apache_rg
 ConfigValidity =
 TopGroupNominalState = Online

 Chapter 4. Case study scenario: HTTP Servers on Linux first-level automation domain 69

Once the apache_rg resource group has an online OpState, we validate the
policy definitions we have done so far. We need to check the operational state of
all defined application resources. An OpState value of 1 indicates the application
resource is online on the node, as shown in the following example
(Example 4-13):

Example 4-13 Application resources OpState online

lsrsrc IBM.Application Name NodeNameList OpState
Resource Persistent and Dynamic Attributes for IBM.Application
resource 1:
 Name = "apache"
 NodeNameList = {"tsa003.itsc.austin.ibm.com"}
 OpState = 2
resource 2:
 Name = "apache"
 NodeNameList = {"tsa002.itsc.austin.ibm.com"}
 OpState = 2
resource 3:
 Name = "apache"
 NodeNameList = {"tsa001.itsc.austin.ibm.com"}
 OpState = 1
resource 4:
 Name = "apache"
 NodeNameList =
{"tsa001.itsc.austin.ibm.com","tsa002.itsc.austin.ibm.com","tsa003.itsc.austin.ibm.com"}
 OpState = 1

In Example 4-13, the Apache HTTP Server, represented by the apache
application resource defined in this case study scenario, is running on a single
node, tsa001, according to the defined policy (relationships).

Note: The nominalState, this is the state the resource should be in, Online
after chrg -o online apache_rg or Offline after chrg -o offline apache_rg.
The OpState is the current operation state, which will match the nominalState
in a fully functional environment.

In addition, the managed resources should not be started/stopped by a third
party, for example, the Linux run level or manually by the operator. The
resources defined should be exclusively under the control of IBM Tivoli
System Automation for Multiplatforms once they are managed, in other words,
a member of a Resource Group.

70 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

4.2.5 Configuration error and recovery example
The pre-GA version of the IBM Tivoli System Automation for Multiplatforms V2.1
Base Component User’s Guide, SC33-8210-04, manual provides an example to
create the ServiceIP with command line input attributes. We convert that
example into an input file. Our definition file at first looks like the following
example (Example 4-14):

Example 4-14 Initial ServiceIP definition input file data contents

PersistentResourceAttributes::
 NodeNameList="{'tsa001','tsa002','tsa003'}"
 Name="apache_SIP"
 NetMask=255.255.255.0
 IPAddress=9.3.5.29
ResourceType=1

This seems consistent with the line command example provided in the pre-GA
version of the above mentioned manual. We issue the mkrsrc -f command and it
returned without error. However, our ServiceIP resource did not have any entries
in the NodeNameList, see Example 4-15 below.

Example 4-15 Display of ServiceIP resource after initial definition

lsrsrc -l IBM.ServiceIP
Resource Persistent Attributes for IBM.ServiceIP
resource 1:
 Name = "apache_SIP"
 ResourceType = 1
 AggregateResource = "0x3fff 0xffff 0x00000000 0x00000000 0x00000000
0x00000000"
 IPAddress = "9.3.5.29"
 NetMask = "255.255.255.0"
 ProtectionMode = 1
 ActivePeerDomain = "httpd_SA_Domain"
 NodeNameList = {}

We did not notice this state until later when we were unable to bring the resource
group (apache_rg) operational state to Online. Once we identified the empty
NodeNameList for the ServiceIP resource as the source of our problem, we
correct our definition of the ServiceIP (apache_SIP) with the following chrsrc
command:

chrsrc -s 'Name == "apache_SIP"' -a IBM.ServiceIP
NodeNameList={"tsa001.itsc.austin.ibm.com","tsa002.itsc.austin.ibm.com","tsa003
.itsc.austin.ibm.com"}

 Chapter 4. Case study scenario: HTTP Servers on Linux first-level automation domain 71

We were still unable to bring the ServiceIP into a known state. At that point, we
stop and start the IBM.RecoveryRM daemon which clears the problem in our
environment as follows (Example 4-16):

Example 4-16 Clear error with start/stop of IBM.RecoveryRM

stopsrc -s IBM.RecoveryRM
0513-044 The IBM.RecoveryRM Subsystem was requested to stop.

lssrc -s IBM.RecoveryRM
Subsystem Group PID Status
 IBM.RecoveryRM rsct_rm inoperative

startsrc -s IBM.RecoveryRM
0513-059 The IBM.RecoveryRM Subsystem has been started. Subsystem PID is 25293.

4.2.6 Exercising the automation policy example
With the IBM Tivoli System Automation for Multiplatforms first-level automation
domain configured and operational, we can verify the automation policy
definitions and operations by simulating a system failure.

We begin with our Apache application running on tsa001 (OpState = 1), as seen
in the query below (Example 4-17).

Example 4-17 Display current state of the Apache automation domain

lsrsrc -l IBM.Application NodeNameList OpState
Resource Persistent and Dynamic Attributes for IBM.Application
resource 1:
 NodeNameList = {"tsa003.itsc.austin.ibm.com"}
 OpState = 2
resource 2:
 NodeNameList = {"tsa002.itsc.austin.ibm.com"}
 OpState = 2
resource 3:
 NodeNameList = {"tsa001.itsc.austin.ibm.com"}
 OpState = 1
resource 4:
 NodeNameList =
{"tsa001.itsc.austin.ibm.com","tsa002.itsc.austin.ibm.com","tsa003.itsc.austin.
ibm.com"}
 OpState = 1

Note: There is no significance that tsa001 is the current operational Apache
HTTP Server. The node on which the application is operational is defined by
IBM Tivoli System Automation for Multiplatforms.

72 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

The server tsa001 now loses network connectivity (we unplugged the network
cable) and IBM Tivoli System Automation for Multiplatforms assigns the
ServiceIP to a new node and starts the Apache HTTP Server on the node, in this
case, tsa002 node. Note that the status of tsa001 is unknown (OpState = 3) to
IBM Tivoli System Automation for Multiplatforms due to the lack of network
connectivity (Example 4-18).

Example 4-18 Display state of the Apache automation domain after failure of a node

lsrsrc -l IBM.Application Name NodeNameList OpState
Resource Persistent and Dynamic Attributes for IBM.Application
resource 1:
 Name = "apache"
 NodeNameList = {"tsa003.itsc.austin.ibm.com"}
 OpState = 2
resource 2:
 Name = "apache"
 NodeNameList = {"tsa002.itsc.austin.ibm.com"}
 OpState = 1
resource 3:
 Name = "apache"
 NodeNameList = {"tsa001.itsc.austin.ibm.com"}
 OpState = 3
resource 4:
 Name = "apache"
 NodeNameList =
{"tsa001.itsc.austin.ibm.com","tsa002.itsc.austin.ibm.com","tsa003.itsc.austin.
ibm.com"}
 OpState = 1

We verify the ServiceIP reassign with the following command (Example 4-19):

Example 4-19 Display status of the ServiceIP after failure of tsa001

lsrsrc -l IBM.ServiceIP Name NodeNameList OpState ResourceType
Resource Persistent and Dynamic Attributes for IBM.ServiceIP
resource 1:
 Name = "apache_SIP"
 NodeNameList = {"tsa003.itsc.austin.ibm.com"}
 OpState = 2
 ResourceType = 0
resource 2:
 Name = "apache_SIP"
 NodeNameList = {"tsa002.itsc.austin.ibm.com"}
 OpState = 1
 ResourceType = 0
resource 3:
 Name = "apache_SIP"

 Chapter 4. Case study scenario: HTTP Servers on Linux first-level automation domain 73

 NodeNameList = {"tsa001.itsc.austin.ibm.com"}
 OpState = 3
 ResourceType = 0
resource 4:
 Name = "apache_SIP"
 NodeNameList =
{"tsa001.itsc.austin.ibm.com","tsa002.itsc.austin.ibm.com","tsa003.itsc.austin.
ibm.com"}
 OpState = 1
 ResourceType = 1

Later, when network connectivity is reestablished with tsa001, we see the
following status for the IBM.Application and IBM.ServiceIP resources.

Example 4-20 lsrsrc output

lsrsrc -l IBM.Application Name NodeNameList OpState
Resource Persistent and Dynamic Attributes for IBM.Application
resource 1:
 Name = "apache"
 NodeNameList = {"tsa003.itsc.austin.ibm.com"}
 OpState = 2
resource 2:
 Name = "apache"
 NodeNameList = {"tsa002.itsc.austin.ibm.com"}
 OpState = 1
resource 3:
 Name = "apache"
 NodeNameList = {"tsa001.itsc.austin.ibm.com"}
 OpState = 2
resource 4:
 Name = "apache"
 NodeNameList =
{"tsa001.itsc.austin.ibm.com","tsa002.itsc.austin.ibm.com","tsa003.itsc.austin.
ibm.com"}
 OpState = 1

lsrsrc -l IBM.ServiceIP Name NodeNameList OpState ResourceType
Resource Persistent and Dynamic Attributes for IBM.ServiceIP
resource 1:
 Name = "apache_SIP"
 NodeNameList = {"tsa003.itsc.austin.ibm.com"}
 OpState = 2
 ResourceType = 0
resource 2:
 Name = "apache_SIP"
 NodeNameList = {"tsa002.itsc.austin.ibm.com"}
 OpState = 1
 ResourceType = 0

74 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

resource 3:
 Name = "apache_SIP"
 NodeNameList = {"tsa001.itsc.austin.ibm.com"}
 OpState = 2
 ResourceType = 0
resource 4:
 Name = "apache_SIP"
 NodeNameList =
{"tsa001.itsc.austin.ibm.com","tsa002.itsc.austin.ibm.com","tsa003.itsc.austin.
ibm.com"}
 OpState = 1
 ResourceType = 1

You should notice that IBM Tivoli System Automation for Multiplatforms is aware
of the change in the status of tsa001, but it kept the Apache HTTP Server and
ServiceIP running on tsa002.

4.3 End-to-end Automation Adapter configuration
We now prepare our first-level automation domain for end-to-end automation
management through the IBM Tivoli System Automation for Multiplatforms V2.1
End-to-end Automation Management Component.

We configure our Linux-based Apache first-level automation domain using the
cfgsamadapter command found in the IBM Tivoli System Automation for
Multiplatforms install directory path: /opt/IBM/tsamp/sam/bin.

Note: OpState has the following mapping:

0 = Unknown, 1 = Online, 2 = Offline, 3 = Failed Offline

In case Unknown states should arise, it is important to remedy the situation
since resources in an Unknown state cannot be effectively controlled by IBM
Tivoli System Automation for Multiplatforms. In addition, resources that have a
relationship either to or from the resource in an Unknown state cannot be
effectively controlled by IBM Tivoli System Automation for Multiplatforms.

As a first step to troubleshooting resources in an Unknown state, check the
following:

� Start, stop, and monitor automation scripts.
� Timeout values defined for the resources.
� Start, stop, and monitor automation commands defined for the resource.

 Chapter 4. Case study scenario: HTTP Servers on Linux first-level automation domain 75

Figure 4-4 shows the interaction between our first-level automation domain and
the End-to-end Automation Management Component. We discuss the
End-to-end Automation Management Component installation and configuration
in Chapter 7, “Case study scenario: End-to-end automation domain” on
page 201.

Figure 4-4 End-to-end domain and apache_SA_Domain interaction

We follow the directions provided in IBM Tivoli System Automation for
Multiplatforms V2.1 Base Component User’s Guide, SC33-8210-04, to configure
the End-to-end Automation Adapter. The following dialog is launched by
cfgsamadater. See Figure 4-5.

Figure 4-5 Configure the automation adapter for the Apache automation domain

The following sections discuss three of the four operations presented on the
dialog box.

� Configure
� Replicate
� Define

First-level automation domain
apache_SA_Domain

NodeX

End-to-end automation
adapter

End-to-end automation domain
ITSOE2E

End-to-end automation
manager

Operations Console First-level automation
manager

76 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

4.3.1 Configure the End-to-end Automation Adapter
We select the Configure button on Figure 4-5 above to begin configuration of our
first-level automation domain End-to-end Automation Adapter. We now have a
tabbed dialog box to provide configuration data on the following topics:

� Adapter
� Host using adapter
� Automation
� Security
� Logger

We use the defaults for the last two tabs, Security and Logger. We discuss the
settings for the remaining tabs below.

Adapter tab
On this tab, we enter the ServiceIP address used by the IBM Tivoli System
Automation for Multiplatforms End-to-end Automation Adapter in our Apache
automation domain. See Figure 4-6.

Figure 4-6 Adapter Tab data fields

We obtain an IP Address (9.3.5.23) for use by the End-to-end Automation
Adapter for our Linux automation domain. This End-to-end Automation Adapter
application uses this address on whichever Linux system the adapter is active.

 Chapter 4. Case study scenario: HTTP Servers on Linux first-level automation domain 77

The End-to-end Automation Adapter is much like our Apache application; it is
active on one and only one node of our cluster using a fixed (ServiceIP) address.
We enter this address into the Host name or IP address entry field and leave the
Request port number and Event port number fields with the provided default
values.

Host using adapter tab
Next, we select the Host using adapter tab. See Figure 4-7. Here we supply the
fully qualified host name of the system where our IBM Tivoli System Automation
for Multiplatforms End-to-end Automation Management Component is installed,
see Chapter 7, “Case study scenario: End-to-end automation domain” on
page 201.

Figure 4-7 Host using adapter tab

Automation tab
Next, we select the Automation tab. See Figure 4-8. Here we supply the
information necessary to provide high availability to our IBM Tivoli System
Automation for Multiplatforms adapter. We check the Automate adapter in

Note: Use a Host name only if the End-to-end Automation Adapter is not a
floating resource, in other words, fixed to a single node of the cluster. This
limits functionality should that node fail.

78 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

system automation domain box. Ensure that the first-level automation domain
is online and use the Query button to populate the configuration panel with all
the nodes in online status. In our case, we want the End-to-end Automation
Adapter to be able to run on nodes tsa001, tsa002, and tsa003.

We provide the IBM Tivoli System Automation for Multiplatforms adapter IP
Address (9.3.5.23), subnet mask (255.255.255.0), and a prefix for the Apache
automation domain (apache_E2E_).

Figure 4-8 Automation Tab

We use the default values and settings for the Security and Logger tabs.

Note: We choose to use a trailing underscore ‘_’ rather than the default dash
‘-’for the prefix. After our configuration is complete and active, we notice that
the IBM.Application resource for the adapter is named:

apache_E2E_

Later, after the configurations are finalized, we are unhappy with the
appearance of the trailing underscore character and we rename the resource
using the following command:

chrsrc -s 'Name == "apache_E2E_"' IBM.Application Name=apache_E2E

 Chapter 4. Case study scenario: HTTP Servers on Linux first-level automation domain 79

We then select the Save button. As you see in Figure 4-9, we modify several
configuration files.

Figure 4-9 Modified End-to-end Automation Adapter configuration files

4.3.2 Replicate configuration files to nodes in the automation domain
Now that we have provided the IBM Tivoli System Automation for Multiplatforms
End-to-end Automation Adapter configuration data, we need to replicate this data
to all the nodes in the automation domain that will be eligible to run the
End-to-end Automation Adapter. We execute the cfgsamadapter command again
and select the Replicate button in the main dialog box, shown in Figure 4-5 on
page 76.

A new dialog box appears and we select all configuration files and all nodes
using the respective Select all buttons. We then provide the login user id and
password of those target nodes and select the >> Replicate >> button.See
Figure 4-10.

Figure 4-10 Replicate configuration files to other nodes in automation domain

This process contacts each node, and processing time varies with the number of
nodes.

80 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Figure 4-11 appears at the completion of the configuration data replication.

Figure 4-11 Adapter configuration replication completion dialog box

4.3.3 Define the End-to-end Automation Adapter automation policy
Next, we have to define the policy for automating the End-to-end Automation
Adapter in the automation domain. This task defines resources, resource groups,
equivalencies, and finally relationships between resources.

We launch the End-to-end Automation Adapter configuration tool by executing
the cfgsamadapter command (Figure 4-5 on page 76) and selecting Define.

At completion, Figure 4-12 on page 82 displays.

Important: The replication task uses the user credentials provided in the User
ID and Password fields. Ensure that every single node uses the same user ID
and password combination. In addition, the Replication process uses secure
shell communications to transfer the configuration files over to the target
nodes. In our case, sshd is operational on every node.

 Chapter 4. Case study scenario: HTTP Servers on Linux first-level automation domain 81

Figure 4-12 Defining automation policy for End-to-end Automation Adapter

We then review the modifications to our IBM Tivoli System Automation for
Multiplatforms automation domain. We display the resource groups as follows
(Example 4-21):

Example 4-21 Post adapter configuration resource group display

lsrg -m
Displaying Member Resource information:
Class:Resource:Node[ManagedResource] Mandatory MemberOf OpState
IBM.ServiceIP:apache_E2E_ip True apache_E2E_rg Offline
IBM.Application:apache_E2E True apache_E2E_rg Offline
IBM.ServiceIP:apache_SIP True apache_rg Online
IBM.Application:apache True apache_rg Online

Note that the End-to-end Automation Adapter configuration created a new
resource group (apache_E2E_rg) in our first-level automation domain.

At this point, we start the End-to-end Automation Adapter application with the
following command:

chrg -o online apache_E2E_rg

This command is valid on any of our three nodes in the automation domain
(Example 4-22).

82 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Example 4-22 Post adapter configuration resource group display

lsrg -m
Displaying Member Resource information:
Class:Resource:Node[ManagedResource] Mandatory MemberOf OpState
IBM.ServiceIP:apache_E2E_ip True apache_E2E_rg Online
IBM.Application:apache_E2E True apache_E2E_rg Online
IBM.ServiceIP:apache_SIP True apache_rg Online
IBM.Application:apache True apache_rg Online

4.4 Miscellaneous information
This section contains examples and displays of various information about our
first-level automation domain upon completion of our configuration,
customization, and activation.

Resource group
We have two resource groups as seen below (Example 4-23):

Example 4-23 Display of all resource groups in the Apache automation domain

lsrg -m
Displaying Member Resource information:
Class:Resource:Node[ManagedResource] Mandatory MemberOf OpState
IBM.ServiceIP:apache_E2E_ip True apache_E2E_rg Online
IBM.Application:apache_E2E True apache_E2E_rg Online
IBM.ServiceIP:apache_SIP True apache_rg Online
IBM.Application:apache True apache_rg Online

Application
For the status of our two applications (Apache and End-to-end adapter), see
Example 4-24.

Example 4-24 Display of all applications in the automation domain

lsrsrc -l IBM.Application Name NodeNameList OpState
Resource Persistent and Dynamic Attributes for IBM.Application
resource 1:
 Name = "apache_E2E"
 NodeNameList = {"tsa003.itsc.austin.ibm.com"}
 OpState = 2
resource 2:
 Name = "apache_E2E"
 NodeNameList = {"tsa001.itsc.austin.ibm.com"}
 OpState = 2
resource 3:

 Chapter 4. Case study scenario: HTTP Servers on Linux first-level automation domain 83

 Name = "apache_E2E"
 NodeNameList = {"tsa002.itsc.austin.ibm.com"}
 OpState = 1
resource 4:
 Name = "apache_E2E"
 NodeNameList =
{"tsa002.itsc.austin.ibm.com","tsa001.itsc.austin.ibm.com","tsa003.itsc.austin.
ibm.com"}
 OpState = 1
resource 5:
 Name = "apache"
 NodeNameList = {"tsa003.itsc.austin.ibm.com"}
 OpState = 2
resource 6:
 Name = "apache"
 NodeNameList = {"tsa002.itsc.austin.ibm.com"}
 OpState = 2
resource 7:
 Name = "apache"
 NodeNameList = {"tsa001.itsc.austin.ibm.com"}
 OpState = 1
resource 8:
 Name = "apache"
 NodeNameList =
{"tsa001.itsc.austin.ibm.com","tsa002.itsc.austin.ibm.com","tsa003.itsc.austin.
ibm.com"}
 OpState = 1

ServiceIP
Our ServiceIP resources. See Example 4-25.

Example 4-25 ServiceIP resources

lsrsrc -l IBM.ServiceIP Name NodeNameList IPAddress OpState
Resource Persistent and Dynamic Attributes for IBM.ServiceIP
resource 1:
 Name = "apache_E2E_ip"
 NodeNameList = {"tsa003.itsc.austin.ibm.com"}
 IPAddress = "9.3.5.23"
 OpState = 2
resource 2:
 Name = "apache_E2E_ip"
 NodeNameList = {"tsa001.itsc.austin.ibm.com"}
 IPAddress = "9.3.5.23"
 OpState = 2
resource 3:
 Name = "apache_E2E_ip"
 NodeNameList = {"tsa002.itsc.austin.ibm.com"}

84 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

 IPAddress = "9.3.5.23"
 OpState = 1
resource 4:
 Name = "apache_E2E_ip"
 NodeNameList =
{"tsa002.itsc.austin.ibm.com","tsa001.itsc.austin.ibm.com","tsa003.itsc.austin.
ibm.com"}
 IPAddress = "9.3.5.23"
 OpState = 1
resource 5:
 Name = "apache_SIP"
 NodeNameList = {"tsa003.itsc.austin.ibm.com"}
 IPAddress = "9.3.5.29"
 OpState = 2
resource 6:
 Name = "apache_SIP"
 NodeNameList = {"tsa002.itsc.austin.ibm.com"}
 IPAddress = "9.3.5.29"
 OpState = 2
resource 7:
 Name = "apache_SIP"
 NodeNameList = {"tsa001.itsc.austin.ibm.com"}
 IPAddress = "9.3.5.29"
 OpState = 1
resource 8:
 Name = "apache_SIP"
 NodeNameList =
{"tsa001.itsc.austin.ibm.com","tsa002.itsc.austin.ibm.com","tsa003.itsc.austin.
ibm.com"}
 IPAddress = "9.3.5.29"
 OpState = 1

Equivalency
We display our equivalency definitions with both persistent and dynamic
attributes below. See Example 4-26.

Example 4-26 Apache automation domain equivalencies

lsequ -A b
Displaying Equivalency information:
All Attributes

Equivalency 1:
 Name = apache_E2E_nieq
 MemberClass = IBM.NetworkInterface
 Resource:Node[Membership] =
{eth0:tsa002.itsc.austin.ibm.com,eth0:tsa001.itsc.austin.ibm.com,eth0:tsa003.it
sc.austin.ibm.com}

 Chapter 4. Case study scenario: HTTP Servers on Linux first-level automation domain 85

 SelectString = ""
 SelectFromPolicy = ANY
 MinimumNecessary = 1
 Subscription = {}
 ActivePeerDomain = httpd_SA_Domain
 Resource:Node[ValidSelectResources] =
{eth0:tsa002.itsc.austin.ibm.com,eth0:tsa001.itsc.austin.ibm.com,eth0:tsa003.it
sc.austin.ibm.com}
 Resource:Node[InvalidResources] = {}
 ConfigValidity =
 AutomationDetails[CompoundState] = Undefined

Equivalency 2:
 Name = apache_nieq
 MemberClass = IBM.NetworkInterface
 Resource:Node[Membership] =
{eth0:tsa001.itsc.austin.ibm.com,eth0:tsa002.itsc.austin.ibm.com,eth0:tsa003.it
sc.austin.ibm.com}
 SelectString = ""
 SelectFromPolicy = ANY
 MinimumNecessary = 1
 Subscription = {}
 ActivePeerDomain = httpd_SA_Domain
 Resource:Node[ValidSelectResources] =
{eth0:tsa001.itsc.austin.ibm.com,eth0:tsa002.itsc.austin.ibm.com,eth0:tsa003.it
sc.austin.ibm.com}
 Resource:Node[InvalidResources] = {}
 ConfigValidity =
 AutomationDetails[CompoundState] = Undefined

Relationships
We show our relationships below (see Example 4-27).

Example 4-27 Apache automation domain relationships

lsrel -l
Displaying Managed Relations :

Managed Relationship 1:
 Name = apache_E2E_ip-on-nieq
 Class:Resource:Node[Source] = IBM.ServiceIP:apache_E2E_ip
 ResourceGroup[Source] = apache_E2E_rg

Managed Relationship 2:
 Name = apache_SIP_dependson_apache_nieq
 Class:Resource:Node[Source] = IBM.ServiceIP:apache_SIP
 ResourceGroup[Source] = apache_rg

86 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Managed Relationship 3:
 Name = apache_E2E_on-ip
 Class:Resource:Node[Source] = IBM.Application:apache_E2E
 ResourceGroup[Source] = apache_E2E_rg

Managed Relationship 4:
 Name = apache_dependson_ip
 Class:Resource:Node[Source] = IBM.Application:apache
 ResourceGroup[Source] = apache_rg

Active ServiceIPs on network adapter
The node on which our Apache application resource and the End-to-end
Automation Adapter currently run has three IP addresses assigned to it. Two of
these IP addresses are the defined ServiceIP and the third one is the fixed IP
address for the node (in this example, tsa001). See Example 4-28.

Example 4-28 ifconfig on tsa001 with End-to-end automation

ifconfig
eth0 Link encap:Ethernet HWaddr 00:02:55:C6:E4:E4
 inet addr:9.3.5.97 Bcast:9.3.5.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:254931 errors:0 dropped:0 overruns:0 frame:0
 TX packets:153243 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:30260658 (28.8 Mb) TX bytes:25404806 (24.2 Mb)

eth0:0 Link encap:Ethernet HWaddr 00:02:55:C6:E4:E4
 inet addr:9.3.5.29 Bcast:9.3.5.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

eth0:1 Link encap:Ethernet HWaddr 00:02:55:C6:E4:E4
 inet addr:9.3.5.23 Bcast:9.3.5.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:379 errors:0 dropped:0 overruns:0 frame:0
 TX packets:379 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:50795 (49.6 Kb) TX bytes:50795 (49.6 Kb)

 Chapter 4. Case study scenario: HTTP Servers on Linux first-level automation domain 87

88 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Chapter 5. Case study scenario:
Application Servers on AIX
first-level automation
domain

In this chapter, we discuss the high availability and automation of the sample
application running on the IBM WebSphere Application Server cluster. We show
this by creating and configuring a IBM Tivoli System Automation for
Multiplatforms first-level automation domain. In addition, we configure an
End-to-end Automation Adapter so that the IBM Tivoli System Automation for
Multiplatforms V2.1 End-to-end Automation Management Component can
manage this first-level automation domain.

We discuss the following topics:

� “Application server automation domain overview” on page 91

� “Automation domain configuration” on page 92

� “End-to-end Automation Adapter configuration” on page 118

� “Maintaining defined policies” on page 127

5

© Copyright IBM Corp. 2005. All rights reserved. 89

Figure 5-1 shows the portion of the entire case study scenario we cover in this
chapter.

Figure 5-1 Application server first-level automation domain

90 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

5.1 Application server automation domain overview
This section describes the configuration steps for setting up high availability for
the servers that provide middleware services for our sample application. As you
see in Figure 5-2, these servers are running AIX 5.3, IBM WebSphere
Application Server, IBM DB2 Client, and the J2EE application, TRADE3. Both
servers in the cluster have identical hardware and software configurations.

Figure 5-2 shows the configuration of one of the servers in the cluster and all
elements that will be part of the IBM Tivoli System Automation for Multiplatforms
first-level automation domain configuration.

Figure 5-2 Web application tier configuration

We install IBM Tivoli System Automation for Multiplatforms V2.1 Base
Component on all nodes that will be part of the automation domain. In our
scenario, they are prov008 and prov009. For installation instructions, refer to IBM
Tivoli System Automation for Multiplatforms V2.1 Base Component User’s Guide,
SC33-8210-04.

 Chapter 5. Case study scenario: Application Servers on AIX first-level automation domain 91

5.1.1 Automation requirements
We must define the following high availability and automation requirements for
our environment:

� IBM WebSphere Application Server, IBM DB2 client, and the Trade3
application must be startable on any node in the domain.

� IBM WebSphere Application Server, IBM DB2 client, and the Trade3
application will be active on only one node in the domain at any given point in
time.

� In case of a failure, IBM WebSphere Application Server, IBM DB2, and the
Trade3 application must capable of being restarted on any node in the
domain.

� IBM WebSphere Application Server, IBM DB2, and the Trade3 application
must run on the same node in the domain.

� IBM WebSphere Application Server, IBM DB2, and the Trade3 application are
installed on all nodes in our domain.

� The HTTP servers (defined in Chapter 4, “Case study scenario: HTTP
Servers on Linux first-level automation domain” on page 53) must always
access the Trade3 application using the same IP address, regardless of on
which node IBM WebSphere Application Server is running. This IP address
serves as the Service IP for the domain.

The following sections go into detail about how we meet these requirements in
our environment scenario.

5.2 Automation domain configuration
Setting up the high availability scenario requires the following configuration
steps:

� Create the automation domain

� Define the resources for automation

� Create the automation policy using relationship definitions

� Change the Operational State of the resource group

� Verify the operational quorum and create a tie breaker

The following sections provide details about how we accomplish these tasks for
our case scenario.

92 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

5.2.1 Create the first-level automation domain
In order to create the automation domain for our case study environment, we
need to perform the following tasks:

� Perform node preparation

� Define and start the automation domain

� Verify the recovery resource manager

Perform node preparation
The preprpnode command prepares security on the node on which the command
is run so it can be defined in a domain. The preprpnode command allows for peer
domain operations to be performed on this node and must be run before the
node can join a domain.

The preprpnode command must be run on every node in order for that node to be
defined to the new domain. This gives the necessary authority to create the
domain configuration on each new node.

In our environment, we issue the following command on all servers (servers
prov008 and prov009) that become part of the automation domain:

preprpnode prov008 prov009

Define and start the automation domain
We use the automation domain to provide high availability services for all the
nodes that belong to it. Before creating the automation domain, ensure that you
have properly prepared the nodes using the prepnode command.

In order to define the automation domain in our scenario environment, we use
the mkrpdomain command. You can issue this command from any node that will
be part of the automation domain.

mkrpdomain was_SA_Domain prov008 prov009

The mkrpdomain command above creates an automation domain named
was_SA_Domain and the nodes prov008 and prov009 are defined in the domain.
We also refer to the automation domain as a cluster.

Note: Once the preprpnode command has been successfully run on all
servers that will be part of the automation domain, all other commands shown
in this chapter can be issued from any node in the automation domain as long
as the node is operational.

 Chapter 5. Case study scenario: Application Servers on AIX first-level automation domain 93

To check the status of the newly created was_SA_Domain automation domain,
issue the lsrpdomain command as follows:

lsrpdomain
Name OpState RSCTActiveVersion MixedVersions TSPort GSPort
was_SA_Domain Offline 2.4.3.0 No 12347 12348

Note that the operational state (OpState) of the automation domain is set to
offline. We need to bring the automation domain to an online operational state
using the startrpdomain command as follows:

startrpdomain was_SA_Domain

Issue the lsrpdomain command to verify the OpState of the automation domain
as shown in Example 5-1.

Example 5-1 was_SA_Domain automation domain OpState

lsrpdomain
Name OpState RSCTActiveVersion MixedVersions TSPort GSPort
was_SA_Domain Pending online 2.4.3.0 No 12347 12348
#
lsrpdomain
Name OpState RSCTActiveVersion MixedVersions TSPort GSPort
was_SA_Domain Online 2.4.3.0 No 12347 12348
#

In order to verify the status of the nodes that are part of the automation domain,
issue the lsrpnode command as follows:

lsrpnode
Name OpState RSCTVersion
prov008 Online 2.4.3.0
prov009 Online 2.4.3.0

Verify the recovery resource manager
All nodes that are part of the automation domain have an IBM Tivoli System
Automation for Multiplatforms daemon running in case their OpState is online.
IBM.RecoveryRM is the name of the daemon.

In order to check the status of the IBM.RecoveryRM daemon, issue the following
lssrc command, as shown in Example 5-2.

Example 5-2 IBM.RecoveryRM status

lssrc -ls IBM.RecoveryRM
Subsystem : IBM.RecoveryRM
PID : 28904
Cluster Name : was_SA_Domain

94 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Node Number : 1
Daemon start time : Mon Aug 22 14:32:51 CDT 2005

Daemon State:
 My Node Name : prov008
 Master Node Name : prov009 (node number = 2)
 Our IVN : 2.1.0.0
 Our AVN : 2.1.0.0
 Our CVN : 00 (0x0)
 Total Node Count : 2
 Joined Member Count : 2
 Config Quorum Count : 2
 Startup Quorum Count : 1
 Operational Quorum State: HAS_QUORUM
 In Config Quorum : TRUE
 In Config State : TRUE
 Replace Config State : FALSE

Information from malloc about memory use:
 Total Space : 0x007502b0 (7668400)
 Allocated Space: 0x00712d60 (7417184)
 Unused Space : 0x000259c0 (154048)
 Freeable Space : 0x00000000 (0)

Note that the output in Example 5-2 shows one of the nodes in the domain as the
Master Node. The IBM.RecoveryRM daemon running on the Master Node is
responsible for driving all the required high availability actions and decisions in
the domain. In our case, at this point in time, the node prov009 is the Master
Node in our domain.

In case the IBM.RecoveryRM daemon is inactive, use the startsrc -s
IBM.RecoveryRM command. To stop the daemon, use stopsrc -s
IBM.RecoveryRM.

5.2.2 Define automation domain resources
In order to define the automation domain resources and group them into logical
manageable entities for our case study environment, we need to perform the
following tasks:

� Define application resources
� Define network resources
� Create network equivalencies
� Define resource groups

 Chapter 5. Case study scenario: Application Servers on AIX first-level automation domain 95

Define the application resources
In our scenario, we want to achieve a high availability configuration for the
servers running our sample J2EE application on IBM WebSphere Application
Server.

Based on the high availability requirements defined in 5.1, “Application server
automation domain overview” on page 91, we need to define the following
application resources. These resources represent the applications running on
our servers:

� IBM WebSphere Application Server
� IBM DB2 client
� Our sample scenario J2EE application: Trade3

We define these application resources to IBM Tivoli System Automation for
Multiplatforms as floating resources, since they can run on any node in the
domain.

Before we can define the application resources, we must define how IBM Tivoli
System Automation for Multiplatforms will act in the following situations: Start the
application, stop the application, and monitor the status of the application. We
define this by informing IBM Tivoli System Automation for Multiplatforms of the
commands and scripts to use in these situations.

As a best practice, for our implementation, we decide to use a single directory
repository for all scripts (/usr/local/IBM/TSA/scripts). We must copy these scripts
to all nodes in the domain and they must be located in the same directory path.

For more information about how to define application resources, refer to IBM
Tivoli System Automation for Multiplatforms V2.1 Base Component User’s Guide,
SC33-8210-04.

IBM WebSphere Application Server application resource definition
We create a single monitoring script for starting, stopping, and monitoring IBM
WebSphere Application Server on the nodes.

Example 5-3 shows the script we use in our scenario. Note that all nodes in our
domain are running AIX 5.3.

Note: All application resources defined in this section are Reliable Scalable
Cluster Technology (RSCT) resources. IBM Tivoli System Automation for
Multiplatforms makes use of these resources to perform automation
operations. The application resource we define here is of class
IBM.Application.

96 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Example 5-3 Monitoring script for application resource: WebSphere.sh

#!/bin/ksh

Set WAS_HOME
WAS_HOME=/usr/IBM/WebSphere/AppServer

OPSTATE_ONLINE=1
OPSTATE_OFFLINE=2

Action=${1}

case ${Action} in

 start)
 $WAS_HOME/bin/startServer.sh server1 > /dev/null 2>&1
 logger -i -t "SAM-WebSPhere" "WebSphere started"
 RC=0
 ;;
 stop)
 $WAS_HOME/bin/stopServer.sh server1 > /dev/null 2>&1
 logger -i -t "SAM-WebSPhere" "WebSphere stoped"
 RC=0
 ;;
 status)
 RC=${OPSTATE_OFFLINE}
 STATUS=`/usr/IBM/WebSphere/AppServer/bin/serverStatus.sh
server1 | grep STARTED` && RC=${OPSTATE_ONLINE}
 ;;
esac

exit $RC

Example 5-3 must be created and located in the same directory path in every
node in the domain.

In order to define the application resource, we create a file named
WebSphere.resourcedef.IBM.Application with the definition attributes. See
Example 5-4. We use this file later as an input parameter for the mkrsrc
command.

Example 5-4 IBM.Application WebSphere resource definition file

PersistentResourceAttributes::
 Name="websphereResource"
 StartCommand="/usr/local/IBM/TSA/scripts/websphere.sh start"
 StopCommand="/usr/local/IBM/TSA/scripts/websphere.sh stop"
 MonitorCommand="/usr/local/IBM/TSA/scripts/websphere.sh status"

 Chapter 5. Case study scenario: Application Servers on AIX first-level automation domain 97

 MonitorCommandPeriod=90
 MonitorCommandTimeout=85
 NodeNameList={"prov008","prov009"}
 StartCommandTimeout=80
 StopCommandTimeout=80
 UserName="root"
 ResourceType=1

In Example 5-4, ResourceType=1 specifies that the application resource will be a
floating resource. A floating resource can run on several nodes in the domain.
The floating resource is also referred to as an aggregate resource.

In our scenario, the application resource WebSphereResouce is a serial floating
resource. We define this by the attribute NodeNameList containing multiple
entries (NodeNameList={"prov008","prov009"}). Being a serial floating resource, the
IBM WebSphere Application Server is able to run on multiple nodes in the
domain, but only one instance will be active at any given point in time.

In order to define the IBM WebSphere Application Server application resource of
class IBM.Application, we use the following command.

mkrsrc -f WebSphere.resourcedef.IBM.Application IBM.Application

You can verify the IBM.Application resource definition by using the lsrsrc
command, as shown in Example 5-5.

Example 5-5 IBM WebSphere Application Server application resource

lsrsrc -l IBM.Application
Resource Persistent Attributes for IBM.Application
resource 1:
 Name = "websphereResource"
 ResourceType = 0
 AggregateResource = "0x2028 0xffff 0xd37b4a18 0x78890a88 0x8f9be739 0x409148bd"
 StartCommand = "/usr/local/IBM/TSA/scripts/websphere.sh start"
 StopCommand = "/usr/local/IBM/TSA/scripts/websphere.sh stop"
 MonitorCommand = "/usr/local/IBM/TSA/scripts/websphere.sh status"
 MonitorCommandPeriod = 90
 MonitorCommandTimeout = 85
 StartCommandTimeout = 80

Note: The above Period and Timeout values defined in Example 5-4 are not
proper for production environments. You must tune these values to each
environment depending on how often IBM Tivoli System Automation for
Multiplatforms should monitor the resource, and how long it takes to start and
stop the application resource. We use the above values in our scenario
environment for testing purposes only.

98 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

 StopCommandTimeout = 80
 UserName = "root"
 RunCommandsSync = 1
 ProtectionMode = 0
 HealthCommand = ""
 HealthCommandPeriod = 10
 HealthCommandTimeout = 5
 InstanceName = ""
 InstanceLocation = ""
 ActivePeerDomain = "was_SA_Domain"
 NodeNameList = {"prov009.itsc.austin.ibm.com"}
resource 2:
 Name = "websphereResource"
 ResourceType = 0
 AggregateResource = "0x2028 0xffff 0xd37b4a18 0x78890a88 0x8f9be739 0x409148bd"
 StartCommand = "/usr/local/IBM/TSA/scripts/websphere.sh start"
 StopCommand = "/usr/local/IBM/TSA/scripts/websphere.sh stop"
 MonitorCommand = "/usr/local/IBM/TSA/scripts/websphere.sh status"
 MonitorCommandPeriod = 90
 MonitorCommandTimeout = 85
 StartCommandTimeout = 80
 StopCommandTimeout = 80
 UserName = "root"
 RunCommandsSync = 1
 ProtectionMode = 0
 HealthCommand = ""
 HealthCommandPeriod = 10
 HealthCommandTimeout = 5
 InstanceName = ""
 InstanceLocation = ""
 ActivePeerDomain = "was_SA_Domain"
 NodeNameList = {"prov008.itsc.austin.ibm.com"}
resource 3:
 Name = "websphereResource"
 ResourceType = 1
 AggregateResource = "0x3fff 0xffff 0x00000000 0x00000000 0x00000000 0x00000000"
 StartCommand = "/usr/local/IBM/TSA/scripts/websphere.sh start"
 StopCommand = "/usr/local/IBM/TSA/scripts/websphere.sh stop"
 MonitorCommand = "/usr/local/IBM/TSA/scripts/websphere.sh status"
 MonitorCommandPeriod = 90
 MonitorCommandTimeout = 85
 StartCommandTimeout = 80
 StopCommandTimeout = 80
 UserName = "root"
 RunCommandsSync = 1
 ProtectionMode = 0
 HealthCommand = ""
 HealthCommandPeriod = 10
 HealthCommandTimeout = 5

 Chapter 5. Case study scenario: Application Servers on AIX first-level automation domain 99

 InstanceName = ""
 InstanceLocation = ""
 ActivePeerDomain = "was_SA_Domain"
 NodeNameList = {"prov008.itsc.austin.ibm.com","prov009.itsc.austin.ibm.com"}
#

Note that Example 5-5 shows three resources. The aggregate resource has a
ResourceType attribute value of 1. The other resources identified with
ResourceType=0 are created by the resource manager IBM.Application on each
node on which the resource is supposed to run. The resources with
ResourceType=0 are called constituent resources (a fixed resource), and the
NodeNameList contains one node only. At the time of creation, the other
attributes have identical values as the aggregate resource.

IBM DB2 client application resource definition
Since our sample application requires IBM DB2 Client, we also define an
application resource for IBM DB2. We use the IBM DB2 monitoring scripts
provided by IBM at:

http://www.ibm.com/software/tivoli/products/sys-auto-linux/downloads.html

In order to define the application resource, we create a file named
db2.resourcedef.IBM.Application with the definition attributes, shown in
Example 5-6. We use this file later as an input parameter for the mkrsrc
command.

Example 5-6 IBM.Application db2 resource definition file

PersistentResourceAttributes::
 Name="db2Resource"
 StartCommand="/usr/local/IBM/TSA/scripts/db2_start.ksh db2inst1"
 StopCommand="/usr/local/IBM/TSA/scripts/db2_stop.ksh db2inst1"
 MonitorCommand="/usr/local/IBM/TSA/scripts/db2_monitor.ksh db2inst1"
 MonitorCommandPeriod=30
 MonitorCommandTimeout=25
 NodeNameList={"prov008","prov009"}
 StartCommandTimeout=20
 StopCommandTimeout=20
 UserName="root"
 ResourceType=1

In order to define the IBM DB2 application resource of class IBM.Application, we
use the following command.

mkrsrc -f db2.resourcedef.IBM.Application IBM.Application

100 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

http://www.ibm.com/software/tivoli/products/sys-auto-linux/downloads.html
http://www.ibm.com/software/tivoli/products/sys-auto-linux/downloads.html

Trade3 application resource definition
We created a single monitoring script for starting, stopping, and monitoring the
sample J2EE application used in this scenario. Example 5-7 shows the
monitoring script used in our scenario.

Example 5-7 Monitoring script for the J2EE application

#!/bin/ksh

Set WAS_HOME
WAS_HOME=/usr/IBM/WebSphere/AppServer

hostname=`hostname`
url="http://$hostname.itsc.austin.ibm.com:9080/trade"

OPSTATE_ONLINE=1
OPSTATE_OFFLINE=2

Action=${1}

case ${Action} in

 start)
 $WAS_HOME/bin/wsadmin.sh -f trade3_start.jacl > /dev/null 2>&1
 logger -i -t "SAM-WebSPhere" "Trade3 started"
 RC=0
 ;;
 stop)
 $WAS_HOME/bin/wsadmin.sh -f trade3_stop.jacl > /dev/null 2>&1
 logger -i -t "SAM-WebSPhere" "Trade3 stopped"
 RC=0
 ;;
 status)
 /usr/local/IBM/TSA/scripts/wget $url > /dev/null 2>&1
 if [$? == 0];
 then
 RC=${OPSTATE_ONLINE}
 rm /usr/local/IBM/TSA/scripts/index.html
 else
 RC=${OPSTATE_OFFLINE}
 fi
 ;;
esac

exit $RC

 Chapter 5. Case study scenario: Application Servers on AIX first-level automation domain 101

The scripts in Example 5-7 start and stop the sample J2EE application by
executing the wsadmin command using JACL scripts as input. Example 5-8
shows the trade3_start JACL script.

Example 5-8 trade3_start.jacl script

set cl1 [$AdminControl queryNames
type=ApplicationManager,node=prov008Node01,process=server1,*]
$AdminControl invoke $cl1 startApplication trade3

Example 5-9 shows the trade3_stop JACL script.

Example 5-9 trade3_stop.jacl script

set cl1 [$AdminControl queryNames
type=ApplicationManager,node=prov008Node01,process=server1,*]
$AdminControl invoke $cl1 stopApplication trade3

In order to define the application resource for the sample application, we create a
file named trade3.resourcedef.IBM.Application with the definition attributes,
shown in Example 5-10. We use this file later as an input parameter for the
mkrsrc command.

Example 5-10 IBM.Application trade3 resource definition file

PersistentResourceAttributes::
 Name="trade3Resource"
 StartCommand="/usr/local/IBM/TSA/scripts/trade3.sh start"
 StopCommand="/usr/local/IBM/TSA/scripts/trade3.sh stop"
 MonitorCommand="/usr/local/IBM/TSA/scripts/trade3.sh status"
 MonitorCommandPeriod=90
 MonitorCommandTimeout=85
 NodeNameList={"prov008","prov009"}
 StartCommandTimeout=80
 StopCommandTimeout=80
 UserName="root"
 ResourceType=1

In order to define the Trade3 application resource of class IBM.Application, we
use the following command.

mkrsrc -f trade3.resourcedef.IBM.Application IBM.Application

In order to check the operational state of all defined application resources, we
issue the lsrsrc IBM.Application Name NodeNameList OpState command as
shown in Example 5-11. OpState value of 2 indicates the resource is offline.

102 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Example 5-11 Application resource OpState

lsrsrc IBM.Application Name NodeNameList OpState
Resource Persistent and Dynamic Attributes for IBM.Application
resource 1:
 Name = "trade3Resource"
 NodeNameList = {"prov009.itsc.austin.ibm.com"}
 OpState = 2
resource 2:
 Name = "trade3Resource"
 NodeNameList = {"prov008.itsc.austin.ibm.com"}
 OpState = 2
resource 3:
 Name = "trade3Resource"
 NodeNameList =
{"prov008.itsc.austin.ibm.com","prov009.itsc.austin.ibm.com"}
 OpState = 2
resource 4:
 Name = "db2Resource"
 NodeNameList = {"prov009.itsc.austin.ibm.com"}
 OpState = 2
resource 5:
 Name = "db2Resource"
 NodeNameList = {"prov008.itsc.austin.ibm.com"}
 OpState = 2
resource 6:
 Name = "db2Resource"
 NodeNameList =
{"prov008.itsc.austin.ibm.com","prov009.itsc.austin.ibm.com"}
 OpState = 2
resource 7:
 Name = "websphereResource"
 NodeNameList = {"prov009.itsc.austin.ibm.com"}
 OpState = 2
resource 8:
 Name = "websphereResource"
 NodeNameList = {"prov008.itsc.austin.ibm.com"}
 OpState = 2
resource 9:
 Name = "websphereResource"
 NodeNameList =
{"prov008.itsc.austin.ibm.com","prov009.itsc.austin.ibm.com"}
 OpState = 2

Define the network resources
You must create an IP address to represent any server in the first-level
automation domain created in this section. In our scenario, the HTTP servers use
this IP address to access the IBM WebSphere Application Server in the domain.

 Chapter 5. Case study scenario: Application Servers on AIX first-level automation domain 103

The name of this IP address is ServiceIP. The Service IP is active in whichever
application resource defined above that is running. The ServiceIP is defined as a
floating resource since it can be active at any node in the domain.

A Service IP address is an aggregate resource with one constituent resource per
node. It is a floating aggregate resource since it can only have one constituent
active at a time.

In order to define the ServiceIP resource, we create a file named
WebSphere.resourcedef.IBM.ServiceIP with the definition attributes, shown in
Example 5-12. We use this file later as an input parameter for the mkrsrc
command.

Example 5-12 IBM.ServiceIP resource definition file

PersistentResourceAttributes::
 NodeNameList={"prov008","prov009"}
 Name="websphereResourceIP"
 NetMask=255.255.255.0
 IPAddress=9.3.5.28

In order to define the ServiceIP, we use the following command.

mkrsrc -f websphere.resourcedef.IBM.ServiceIP IBM.ServiceIP

You can verify the IBM.ServiceIP resource definition by using the lsrsrc
command, as shown in Example 5-13.

Example 5-13 ServiceIP resource

lsrsrc -l IBM.ServiceIP
Resource Persistent Attributes for IBM.ServiceIP
resource 1:
 Name = "websphereResourceIP"
 ResourceType = 0
 AggregateResource = "0x2029 0xffff 0xd37b4a18 0x78890a88 0x8f9bebc3 0x510e7e81"
 IPAddress = "9.3.5.28"
 NetMask = "255.255.255.0"
 ProtectionMode = 1
 ActivePeerDomain = "was_SA_Domain"
 NodeNameList = {"prov009.itsc.austin.ibm.com"}
resource 2:
 Name = "websphereResourceIP"
 ResourceType = 0

Note: The ServiceIP is a RSCT resource of type IBM.ServiceIP. We use the
IBM.ServiceIP resource class to manage IP addresses that can be started,
stopped, and moved between adapters and nodes within a domain.

104 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

 AggregateResource = "0x2029 0xffff 0xd37b4a18 0x78890a88 0x8f9bebc3 0x510e7e81"
 IPAddress = "9.3.5.28"
 NetMask = "255.255.255.0"
 ProtectionMode = 1
 ActivePeerDomain = "was_SA_Domain"
 NodeNameList = {"prov008.itsc.austin.ibm.com"}
resource 3:
 Name = "websphereResourceIP"
 ResourceType = 1
 AggregateResource = "0x3fff 0xffff 0x00000000 0x00000000 0x00000000 0x00000000"
 IPAddress = "9.3.5.28"
 NetMask = "255.255.255.0"
 ProtectionMode = 1
 ActivePeerDomain = "was_SA_Domain"
 NodeNameList = {"prov008.itsc.austin.ibm.com","prov009.itsc.austin.ibm.com"}

In order to check the operational state of the ServiceIP resource, we issue the
lsrsrc command as shown in Example 5-14. OpState value of 2 indicates the
resource is offline.

Example 5-14 ServiceIP OpState

lsrsrc IBM.ServiceIP Name NodeNameList OpState
Resource Persistent and Dynamic Attributes for IBM.ServiceIP
resource 1:
 Name = "websphereResourceIP"
 NodeNameList = {"prov009.itsc.austin.ibm.com"}
 OpState = 2
resource 2:
 Name = "websphereResourceIP"
 NodeNameList = {"prov008.itsc.austin.ibm.com"}
 OpState = 2
resource 3:
 Name = "websphereResourceIP"
 NodeNameList =
{"prov008.itsc.austin.ibm.com","prov009.itsc.austin.ibm.com"}
 OpState = 2

Create network equivalency
We now have to define which network interfaces can host the ServiceIP defined
in the previous section. We accomplish by several steps. One of them is to define
a equivalency definition of resources in which we can utilized the ServiceIP.
Equivalency, in this case, means that each of the adapters in the equivalency
definition can be set up with the ServiceIP.

 Chapter 5. Case study scenario: Application Servers on AIX first-level automation domain 105

The equivalency definition for the network adapters uses resources defined by
the IBM.NetworkInterface class.

In our scenario, since the IBM WebSphere Application Server must be startable
on each node in the domain, the network adapters for each server must be part
of the equivalency definition.

In this section, we show a different method for creating a network equivalency
than the method described in Chapter 4, “Case study scenario: HTTP Servers on
Linux first-level automation domain” on page 53. Here we create a network
equivalency using the dynamic select string method.

In order to define a network equivalency using the dynamic select string method,
we first issue the lsrsrc IBM.NetworkInterface command to determine the name
of the CommGroup to which the network interfaces we are interested in belong.
See Example 5-15.

Example 5-15 Determining the CommGroup

lsrsrc IBM.NetworkInterface
Resource Persistent Attributes for IBM.NetworkInterface
resource 1:
 Name = "en0"
 DeviceName = "ent0"
 IPAddress = "9.3.5.33"
 SubnetMask = "255.255.255.0"
 Subnet = "9.3.5.0"
 CommGroup = "CG1"
 HeartbeatActive = 1
 Aliases = {}
 ActivePeerDomain = "was_SA_Domain"
 NodeNameList = {"prov009.itsc.austin.ibm.com"}
resource 2:
 Name = "en0"
 DeviceName = "ent0"
 IPAddress = "9.3.5.32"
 SubnetMask = "255.255.255.0"
 Subnet = "9.3.5.0"
 CommGroup = "CG1"
 HeartbeatActive = 1
 Aliases = {}
 ActivePeerDomain = "was_SA_Domain"

Note: The RSCT has already collected all of the information on the network
adapters of nodes in our domain automatically. These network adapters of
nodes in our domain are defined by the class IBM.NetworkInterface.

106 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

 NodeNameList = {"prov008.itsc.austin.ibm.com"}

In order to define the network equivalency named netequ, we use the following
command, using the CommGroup string collected in Example 5-15.

mkequ -D 'CommGroup=="CG1"' netequ IBM.NetworkInterface

You can verify the equivalency definition by using the lsequ -Ab command, as
shown in Example 5-16.

Example 5-16 Network equivalency status

lsequ -Ab -e netequ
Displaying Equivalency information:
All Attributes
For Equivalency "netequ".

Equivalency 1:
 Name = netequ
 MemberClass = IBM.NetworkInterface
 Resource:Node[Membership] = {}
 SelectString = "CommGroup=="CG1""
 SelectFromPolicy = ANY
 MinimumNecessary = 1
 Subscription = {}
 ActivePeerDomain = was_SA_Domain
 Resource:Node[ValidSelectResources] =
{en0:prov009.itsc.austin.ibm.com,en0:prov008.itsc.austin.ibm.com}
 Resource:Node[InvalidResources] = {}
 ConfigValidity =
 AutomationDetails[CompoundState] = Automation

Note the network interfaces participating in the equivalency are listed in the
Resource:Node[ValidSelectResources] attribute.

Define resource groups
Now, we need to group the logical resources we defined in previous sections into
logical units called resource groups. We do this to facilitate the management of
resources and the definitions of relationships among these logical groups.

Note: All resources groups we define in this section are RSCT resources
groups. IBM Tivoli System Automation for Multiplatforms makes use of these
resources groups to perform automation operations.

 Chapter 5. Case study scenario: Application Servers on AIX first-level automation domain 107

In our environment, we define a resource group named WebSphererg to group
both application and ServiceIP resources defined in “Define the application
resources” on page 96, using the mkrg command as follows.

mkrg websphererg

Once we define the resource group, we add the application resource
(websphereResource) and ServiceIP resource (websphereResourceIP) to it
using the addrgmbr command as follows.

addrgmbr -g websphererg IBM.Application:websphereResource
#
addrgmbr -g websphererg IBM.Application:db2Resource
#
addrgmbr -g websphererg IBM.Application:trade3Resource
#
addrgmbr -g websphererg IBM.ServiceIP:websphereResourceIP
#

To verify the membership definitions, use the lsrg -lm command as follows in
Example 5-17.

Example 5-17 Resource group membership

lsrg -lm
Displaying Member Resource information:

Member Resource 1:
 Class:Resource:Node[ManagedResource] = IBM.Application:trade3Resource
 Mandatory = True
 MemberOf = websphererg
 OpState = Offline

Member Resource 2:
 Class:Resource:Node[ManagedResource] = IBM.Application:db2Resource
 Mandatory = True
 MemberOf = websphererg
 OpState = Offline

Member Resource 3:
 Class:Resource:Node[ManagedResource] = IBM.ServiceIP:websphereResourceIP
 Mandatory = True
 MemberOf = websphererg
 OpState = Offline

Member Resource 4:
 Class:Resource:Node[ManagedResource] = IBM.Application:websphereResource
 Mandatory = True
 MemberOf = websphererg

108 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

 OpState = Offline

You can verify the operational and nominal state of the resource group by issuing
the lsrg command as follows in Example 5-18.

Example 5-18 Resource group operational state

lsrg -g websphererg
Displaying Resource Group information:
For Resource Group "websphererg".

Resource Group 1:
 Name = websphererg
 MemberLocation = Collocated
 Priority = 0
 AllowedNode = ALL
 NominalState = Offline
 ExcludedList = {}
 Subscription = {}
 Owner =
 Description =
 InfoLink =
 ActivePeerDomain = was_SA_Domain
 OpState = Offline
 TopGroup = websphererg
 ConfigValidity =
 TopGroupNominalState = Offline

The objective is to have the resource group operational and nominal states
defined as online. Before we can bring the resource group online, we have to
define relationships and dependencies to the defined resources.

5.2.3 Create the automation policy using relationship definitions
We define relationships between a resource (named source resource) and one or
more resources (named target resources). For example, resource A must be
online so that resource B can start. In this example, the relationship to be defined
is a StartAfter relationship. For details and rules about valid relationship
definitions, refer to IBM Tivoli System Automation for Multiplatforms V2.1 Base
Component User’s Guide, SC33-8210-04.

Based on the requirements we define in 5.1, “Application server automation
domain overview” on page 91 for our case study scenario, we know that both the
application resource defined for IBM WebSphere Application Server and the

 Chapter 5. Case study scenario: Application Servers on AIX first-level automation domain 109

ServiceIP resource must be started and active on the same node in the domain.
The available relationship for this requirement is a Collocated relationship.

Also, the ServiceIP resource must be active so that the application resource
defined for IBM WebSphere Application Server can be started. We define this as
a StartAfter relationship.

IBM Tivoli System Automation for Multiplatforms provides a relationship that
combines both StartAfter and Collocated requirements described above into one
relationship definition: DependsOn relationship.

We must define another relationship between the ServiceIP and the interfaces in
which the ServiceIP can be defined. We can only set the ServiceIP to an active
network interface. Since we have defined an equivalency for the available
network interfaces of the nodes in the domain, we must define the relationship
between the ServiceIP and the network equivalency.

In order to define the relationships described above, we used the mkrel
command as follows:

� The following defines a DependsOn relationship between the
websphereResource application resource and the ServiceIP resource name:

mkrel -p DependsOn -S IBM.Application:websphereResource -G
IBM.ServiceIP:websphereResourceIP websphere_dependson_SIP

� The following defines a DependsOn relationship between the ServiceIP and
the network equivalency:

mkrel -p DependsOn -S IBM.ServiceIP:websphereResourceIP -G
IBM.Equivalency:netequ SIP_dependson_netequ

The Trade3 application requires access to a database running on IBM DB2. We
provide this access by using a JDBC connection from the IBM WebSphere
Application Server. In order for the JDBC access to succeed, IBM DB2 client
must be running on the same node as IBM WebSphere Application Server. The
available relationship for this requirement is a Collocated relationship. In order to
ensure that IBM DB2 is up and running before IBM WebSphere Application
Server, we define a DependsOn relationship instead, as follows:

mkrel -p DependsOn -S IBM.Application:websphereResource -G
IBM.Application:db2Resource websphere_dependson_db2

The Trade3 application also requires IBM WebSphere Application Server up and
running. In this case, we define a DependsOn relationship as follows:

mkrel -p DependsOn -S IBM.Application:trade3Resource -G
IBM.Application:websphereResource trade3_dependson_websphere

110 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

You can verify the relationship definitions using the lsrel command. See
Example 5-19.

Example 5-19 Managed relationships

lsrel -l
Displaying Managed Relations :

Managed Relationship 1:
 Name = websphere_dependson_SIP
 Class:Resource:Node[Source] = IBM.Application:websphereResource
 ResourceGroup[Source] = websphererg

Managed Relationship 2:
 Name = websphere_dependson_db2
 Class:Resource:Node[Source] = IBM.Application:websphereResource
 ResourceGroup[Source] = websphererg

Managed Relationship 3:
 Name = trade3_dependson_websphere
 Class:Resource:Node[Source] = IBM.Application:trade3Resource
 ResourceGroup[Source] = websphererg

Managed Relationship 4:
 Name = SIP_dependson_netequ
 Class:Resource:Node[Source] = IBM.ServiceIP:websphereResourceIP
 ResourceGroup[Source] = websphererg

Figure 5-3 on page 112 shows the relationship requirements for our
environment.

 Chapter 5. Case study scenario: Application Servers on AIX first-level automation domain 111

Figure 5-3 Defined relationships for the scenario

5.2.4 Change the Operational State of the resource group
Once we have defined all of our resources into a resource group, all of our
resources are made manageable using the resource group definition. Initially,
When we define resource groups and add members to them, their automation
goal is set to offline by default.

Now that all the relationships and dependencies between the resources are
properly defined for our environment, we set the resource group to an automation
goal of online. This action also changes the operational state of all members of
the resource group. This is achieved using the chrg command as follows.

chrg -o online websphererg

You can check the operational and nominal state of the resource group by issuing
the lsrg command. Example 5-20 shows a sequence of lsrg commands. Note
that the first execution shows the Operational State as Pending online. This
means all the resources of that resource group are not yet available.

netequ

en0

prov009

en0

prov008

websphererg

prov008, prov009

websphere
Resouce

prov008, prov009

DependsOn

DependsOnServiceIP

trade3
Resouce

prov008, prov009

DependsOn

db2
Resouce

prov008, prov009

DependsOn

112 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Example 5-20 Operational State

lsrg -g websphererg
Displaying Resource Group information:
For Resource Group "websphererg".

Resource Group 1:
 Name = websphererg
 MemberLocation = Collocated
 Priority = 0
 AllowedNode = ALL
 NominalState = Online
 ExcludedList = {}
 Subscription = {}
 Owner =
 Description =
 InfoLink =
 ActivePeerDomain = was_SA_Domain
 OpState = Pending online
 TopGroup = websphererg
 ConfigValidity =
 TopGroupNominalState = Online
#
lsrg -g websphererg
Displaying Resource Group information:
For Resource Group "websphererg".

Resource Group 1:
 Name = websphererg
 MemberLocation = Collocated
 Priority = 0
 AllowedNode = ALL
 NominalState = Online
 ExcludedList = {}
 Subscription = {}
 Owner =
 Description =
 InfoLink =
 ActivePeerDomain = was_SA_Domain
 OpState = Online
 TopGroup = websphererg
 ConfigValidity =
 TopGroupNominalState = Online

Once the resource group has an online OpState, we validate the policy
definitions we have done so far. We need to check the operational state of all

 Chapter 5. Case study scenario: Application Servers on AIX first-level automation domain 113

defined application resources. An OpState value of 1 indicates the application
resource is online on the node. See Example 5-21.

Example 5-21 Application resources OpState online

lsrsrc IBM.Application Name NodeNameList OpState
Resource Persistent and Dynamic Attributes for IBM.Application
resource 1:
 Name = "trade3Resource"
 NodeNameList = {"prov009.itsc.austin.ibm.com"}
 OpState = 2
resource 2:
 Name = "trade3Resource"
 NodeNameList = {"prov008.itsc.austin.ibm.com"}
 OpState = 1
resource 3:
 Name = "trade3Resource"
 NodeNameList = {"prov008.itsc.austin.ibm.com","prov009.itsc.austin.ibm.com"}
 OpState = 1
resource 4:
 Name = "db2Resource"
 NodeNameList = {"prov009.itsc.austin.ibm.com"}
 OpState = 2
resource 5:
 Name = "db2Resource"
 NodeNameList = {"prov008.itsc.austin.ibm.com"}
 OpState = 1
resource 6:
 Name = "db2Resource"
 NodeNameList = {"prov008.itsc.austin.ibm.com","prov009.itsc.austin.ibm.com"}
 OpState = 1
resource 7:
 Name = "websphereResource"
 NodeNameList = {"prov009.itsc.austin.ibm.com"}
 OpState = 2
resource 8:
 Name = "websphereResource"
 NodeNameList = {"prov008.itsc.austin.ibm.com"}
 OpState = 1
resource 9:
 Name = "websphereResource"
 NodeNameList = {"prov008.itsc.austin.ibm.com","prov009.itsc.austin.ibm.com"}
 OpState = 1

In Example 5-20, all the Application resources we define in this case study
scenario are running on a single node, prov008, according to the defined policy
(relationships).

114 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

5.2.5 Verify the operational quorum and tie breaker definition
We use the operational quorum to decide if resources can be safely activated
without causing conflicts with other resources. The operational quorum is
determined based on the number of online nodes and the use of a tie breaker to
resolve certain situations. IBM Tivoli System Automation for Multiplatforms is only
able to manipulate resources when an operational quorum exists.

In our scenario environment, we have only two nodes in the domain. This
represents a problem in case one of the nodes is in a failed state. IBM Tivoli
System Automation for Multiplatforms periodically tries to reach each network
interface of the nodes in the domain. In our environment, we have a two node
domain. In case one interface fails on one of the nodes, the other node will not be
able to get a response from the peer node and is flagged offline by IBM Tivoli
System Automation for Multiplatforms. In any domain with an even number of
nodes, a tie breaker must be defined to decide which remaining nodes are able
to run the resources.

In order to obtain the operational quorum for a domain, we use the lssrc
command as shown in Example 5-22.

Example 5-22 Operational quorum

lssrc -ls IBM.RecoveryRM
Subsystem : IBM.RecoveryRM
PID : 28602
Cluster Name : was_SA_Domain
Node Number : 1
Daemon start time : Mon Aug 22 18:39:18 CDT 2005

Daemon State:
 My Node Name : prov008
 Master Node Name : prov009 (node number = 2)
 Our IVN : 2.1.0.0
 Our AVN : 2.1.0.0
 Our CVN : 81124823583 (0x8430b721f)
 Total Node Count : 2
 Joined Member Count : 2
 Config Quorum Count : 2
 Startup Quorum Count : 1
 Operational Quorum State: HAS_QUORUM
 In Config Quorum : TRUE
 In Config State : TRUE
 Replace Config State : FALSE

Information from malloc about memory use:
 Total Space : 0x007702c0 (7799488)

 Chapter 5. Case study scenario: Application Servers on AIX first-level automation domain 115

 Allocated Space: 0x00719108 (7442696)
 Unused Space : 0x0003f4e0 (259296)
 Freeable Space : 0x00000000 (0)

Use the IBM.TieBreaker class to configure a tie breaker. There are several types
of tie breaker that you can use. Refer to IBM Tivoli System Automation for
Multiplatforms V2.1 Base Component User’s Guide, SC33-8210-04, for details.
Even though you can define multiple tie breakers, still only one is activated in a
domain at time.

In our scenario, we choose to define a network tie breaker. It will use an external
IP address that is available to the nodes, and it is used to resolve a tie situation.
We decide to use the default gateway of the subnetwork in which all our nodes
belong. Figure 5-4 represents our scenario.

Figure 5-4 Network tie breaker

The definition of the network tie breaker is an RSCT tie breaker type EXEC. For
additional information on the valid types of tie breakers, refer to the IBM Reliable
Scalable Cluster Technology Administration Guide, SA22-7889-07.

IBM Tivoli System Automation for Multiplatforms provides a script to use as a
network tie breaker. The name of the script is samtb_net and samtb_net is
located in the /usr/sbin/rsct/bin directory.

In order to define the tie breaker for our environment, we create a file named
websphere.resourcedef.IBM.TieBreaker with the definition attributes that you see

Important: To ensure maximum safety, we advise, when using the network tie
breaker, that you have all nodes in the cluster on the same subunit, and for the
target for the network tie breaker to be the gateway of that subunit. Refer to
“Tie breaker” on page 27.

prov008 prov009

gateway

en0
9.3.5.33

en0
9.3.5.32

en0
9.3.5.419.3.5.0

subnet

Target Node for
Tiebreaker

116 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

in Example 5-23. We use this file later as an input parameter for the mkrsrc
command.

Example 5-23 IBM.TieBreaker resource definition file

PersistentResourceAttributes::
 Type=EXEC
 Name="websphereTieBreaker"
 DeviceInfo="PATHNAME=/usr/sbin/rsct/bin/samtb_net Address=9.3.5.41"
 PostReserveWaitTime=30
 HeartbeatPeriod=10

In Example 5-23, a tie breaker named websphereTieBreaker is created of the
type: EXEC. The executable script is the network tie breaker samtb_net shipped
with IBM Tivoli System Automation for Multiplatforms and Address=9.3.5.41
specifies the IP address of our default gateway.

In order to define the tie breaker, we use the following command.

mkrsrc -f websphere.resourcedef.IBM.TieBreaker IBM.TieBreaker

You can verify the tie breaker definition by issuing the lsrsrc command as shown
in Example 5-24.

Example 5-24 Tie breaker properties

lsrsrc IBM.TieBreaker
Resource Persistent Attributes for IBM.TieBreaker
resource 1:
 Name = "Fail"
 Type = "Fail"
 DeviceInfo = ""
 ReprobeData = ""
 ReleaseRetryPeriod = 0
 HeartbeatPeriod = 0
 PreReserveWaitTime = 0
 PostReserveWaitTime = 0
 NodeInfo = {}
 ActivePeerDomain = "was_SA_Domain"
resource 2:
 Name = "websphereTieBreaker"
 Type = "EXEC"
 DeviceInfo = "PATHNAME=/usr/sbin/rsct/bin/samtb_net
Address=9.3.5.41"
 ReprobeData = ""
 ReleaseRetryPeriod = 0
 HeartbeatPeriod = 10
 PreReserveWaitTime = 0
 PostReserveWaitTime = 30

 Chapter 5. Case study scenario: Application Servers on AIX first-level automation domain 117

 NodeInfo = {}
 ActivePeerDomain = "was_SA_Domain"
resource 3:
 Name = "Operator"
 Type = "Operator"
 DeviceInfo = ""
 ReprobeData = ""
 ReleaseRetryPeriod = 0
 HeartbeatPeriod = 0
 PreReserveWaitTime = 0
 PostReserveWaitTime = 0
 NodeInfo = {}
 ActivePeerDomain = "was_SA_Domain"

Once we define the tie breaker, we must activate it. We use the chrsrc command
as follows.

chrsrc -c IBM.PeerNode OpQuorumTieBreaker="websphereTieBreaker"

In addition to the tie breaker definition, we need some additional configuration
changes so that IBM Tivoli System Automation for Multiplatforms can detect
network interface failures. On every node in the domain, we must create the
following file: /usr/sbin/cluster/netmon.cf.

Each line of the netmon.cf file should contain a hostname or IP address. It is not
necessary to specify which line of the netmon.cf file pertains to which network
interface; IBM Tivoli System Automation for Multiplatforms automatically uses the
IP address or host name that exists in the same subunit as the appropriate
network interface. We highly recommend that you use the IP address of the
gateway for that network interface.

Example 5-25 shows the netmon.cf file we use in our scenario.

Example 5-25 netmon.cf configuration file

Definition required for operational quorum for websphere resource group
9.3.5.41

5.3 End-to-end Automation Adapter configuration
This section describes the configuration steps we use in our environment to
configure the End-to-end Automation Adapter we use in our case study scenario.
We configure the End-to-end Automation Adapter so that our first-level
automation domain can be operated by the IBM Tivoli System Automation for

118 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Multiplatforms V2.1 End-to-end Automation Management Component. The
End-to-end Automation Adapter in our scenario will:

� Monitor resources defined at the first-level automation domain

� Propagate resource attribute changes to the End-to-end Automation
Management Component automation manager

� Manage resources defined at the first-level automation domain from the
End-to-end Automation Management Component

Figure 5-5 shows the interaction between our first-level automation domain and
the End-to-end Automation Management Component. We discuss the
End-to-end Automation Management Component installation and configuration
in Chapter 7, “Case study scenario: End-to-end automation domain” on
page 201.

There can be only one End-to-end Automation Adapter active in a first-level
automation domain. In our scenario, we configure the End-to-end Automation
Adapter to be high available. This configuration allows the End-to-end
Automation Adapter to run on any node of our automation domain, in case of
failure of the node in which the End-to-end Automation Adapter is running.

Figure 5-5 End-to-end domain and was_SA_Domain interaction

First-level automation domain
was_SA_Domain

NodeX

End-to-end automation
adapter

End-to-end automation domain
ITSOE2E

End-to-end automation
manager

Operations Console First-level automation
manager

 Chapter 5. Case study scenario: Application Servers on AIX first-level automation domain 119

In order to configure the End-to-end Automation Adapter, we use the IBM Tivoli
System Automation for Multiplatforms adapter configuration tool to perform the
following tasks:

� Generate End-to-end Automation Adapter configuration files

� Replicate the End-to-end Automation Adapter configuration files to other
servers in the automation domain

� Define the End-to-end Automation Adapter automation policy

We discuss these tasks in detail in the following sections.

5.3.1 Generate End-to-end Automation Adapter configuration files
In order to use the IBM Tivoli System Automation for Multiplatforms adapter
configuration tool, issue the following command: cfgsamadapter. This brings up
the window you see in Figure 5-6.

Figure 5-6 End-to-end Automation Adapter configuration tool

Important: The first-level domain that we present in this chapter is made up of
pSeries® servers running AIX 5.3. The End-to-end Automation Adapter uses
the Secure shell (SSH) for communication with the End-to-end Automation
Management Component.

Therefore, the installation of both the openssl package and the openssh
package is mandatory on AIX servers. You obtain these packages at the IBM
AIX Toolbox for Linux Applications Web site:

https://www14.software.ibm.com/webapp/iwm/web/reg/download.do?source=aixt
bx&S_PKG=dlaixww&cp=UTF-8

120 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

https://www14.software.ibm.com/webapp/iwm/web/reg/download.do?source=aixtbx&S_PKG=dlaixww&cp=UTF-8
https://www14.software.ibm.com/webapp/iwm/web/reg/download.do?source=aixtbx&S_PKG=dlaixww&cp=UTF-8

You can start the configuration by selecting the Configure button. Figure 5-7
displays.

Figure 5-7 Configuration tool: Adapter tab

The Adapter tab allows you to define the IP address. Use this as the ServiceIP
for the End-to-end Automation Adapter.

In cases where you configure the adapter to be high available, this tab allows you
to define the port numbers on which the End-to-end Automation Adapter listens
for requests from the End-to-end Automation Management Component
automation manager (Request port number), and the End-to-end Automation
Adapter listens for events from the first-level automation manager (Event port
number). We use the default values for both Request and Event port numbers.

We also keep the default values defined under the Advanced button.

Click Save.

Figure 5-8 displays.

 Chapter 5. Case study scenario: Application Servers on AIX first-level automation domain 121

Figure 5-8 Configuration tool: Host using adapter tab

Under the Host using adapter tab, we define the adapter mode to manage our
first-level automation domain. We specified the host name of our End-to-end
Automation Management Component automation manager and the port number
on which the End-to-end Automation Management Component automation
manager listens for events from the End-to-end Automation Adapter. The value
for this port number has to match with the port number used during the
installation of the End-to-end Automation Management Component. We use the
default value 2002 as shown in Figure 5-8.

Click Save. Figure 5-9 displays.

122 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Figure 5-9 End-to-end Automation Adapter configuration tool: Automation tab

The Automation tab, shown in Figure 5-9, allows us to define the resources and
policy for a high available End-to-end Automation Adapter. Check the Automate
adapter in system automation domain box. Ensure that the first-level
automation domain is online and use the Query button to populate the
configuration panel with all the nodes in online status. You can specify which
nodes will be able to run the End-to-end Automation Adapter. We define all
resources for the automation of this End-to-end Automation Adapter using a
prefix (Automated resources prefix). We also specify the IP address and network
mask of the ServiceIP.

We keep the default values for the Security and Logger tabs. By using the Save
button, we create and change the End-to-end Automation Adapter configuration
files. Figure 5-10 shows the configuration files that the End-to-end Automation
Adapter of our scenario uses.

 Chapter 5. Case study scenario: Application Servers on AIX first-level automation domain 123

Figure 5-10 End-to-end Automation Adapter configuration files

5.3.2 Replicate the End-to-end Automation Adapter configuration
files

Once we properly configure the End-to-end Automation Adapter, we must
propagate the configuration files to all the nodes on which the End-to-end
Automation Adapter is set to run. The End-to-end Automation Adapter
configuration tool provides a way to automatically propagate these files.

In order to replicate the End-to-end Automation Adapter, start the End-to-end
Automation Adapter configuration tool and select Replicate. See Figure 5-11.

We select to replicate all configuration files to all nodes in the automation domain
as shown in Figure 5-11.

Figure 5-11 End-to-end Automation Adapter configuration tool: Replication

Figure 5-12 shows the replication results in our environment.

Note: The replication tasks utilize the Secure shell (SSH) to propagate the
configuration files. Ensure that SSH communication is active between the
server on which you are configuring the End-to-end Automation Adapter and
all the other nodes in the domain.

124 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Figure 5-12 End-to-end Automation Adapter configuration tool: Replication results

5.3.3 Define the End-to-end Automation Adapter automation policy
Now we are ready to create the resources used by IBM Tivoli System Automation
for Multiplatforms to automate the End-to-end Automation Adapter. We do this by
using the End-to-end Automation Adapter configuration tool.

Issue the cfgsamadapter command and select Define. Resources are defined in
the automation domain using the prefix defined during the End-to-end
Automation Adapter configuration, shown in Figure 5-9 on page 123.

Figure 5-13 shows the results of the resources definition tasks for our
environment.

Figure 5-13 End-to-end Automation Adapter configuration tool: Defining policies

Table 5-1 presents the resources defined in our environment.

 Chapter 5. Case study scenario: Application Servers on AIX first-level automation domain 125

Table 5-1 End-to-end Automation Adapter automation resources

Once all resources are defined, the resource group websphere_E2E_rg status is
offline. Issue the chrg command to bring the resources defined in the resource
group online as follows:

chrg -o online websphere_E2E_rg

Verify the status of the resources defined in the resource group using the lsrg
command as shown in Example 5-26.

Example 5-26 End-to-end Automation Adapter resources status

lsrg -m
Displaying Member Resource information:
Class:Resource:Node[ManagedResource] Mandatory MemberOf OpState
IBM.ServiceIP:websphere_E2E_ip True websphere_E2E_rg Online
IBM.Application:websphere_E2E_ True websphere_E2E_rg Online
IBM.Application:trade3Resource True websphererg Online
IBM.Application:db2Resource True websphererg Online

Resource Name Resource Class Comment

websphere_E2E_rg IBM.ResourceGroup All defined resources
are managed using this
resource group.

websphere_E2E_ IBM.Application The application
representing the
End-to-end Automation
Adapter.

websphere_E2E_ip IBM.ServiceIP The ServiceIP on which
the End-to-end
Automation Adapter
runs.

websphere_E2E_nieq IBM.Equivalency Equivalency definition
for all the network
interfaces on which the
ServiceIP will be
defined.

websphere_E2E_on-ip IBM.ManagedRelationship The WebSphere_E2E_
application resource
depends on the
ServiceIP.

websphere_E2E_ip-on-nieq IBM.ManagedRelationship The ServiceIP depends
on the network
equivalency.

126 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

IBM.ServiceIP:websphereResourceIP True websphererg Online
IBM.Application:websphereResource True websphererg Online

5.4 Maintaining defined policies
One new feature of IBM Tivoli System Automation for Multiplatforms V2.1 is the
ability to maintain all defined policies to ensure that you have defined policies
properly and the flexibility of knowing you can recreate them at any time.

As described in Chapter 1, “IBM Tivoli System Automation for Multiplatforms
V2.1” on page 3, you can create or restore policies using expressions in XML
format. IBM Tivoli System Automation for Multiplatforms provides the sampolicy
command, a policy management tool that you can use to activate, backup,
restore, and replace policies.

In this section, we use the sampolicy command to back up all policies defined in
our environment for the was_SA_Domain automation domain as presented in
Example 5-27.

Example 5-27 Backing up defined policies

sampolicy -s /usr/local/IBM/TSA/scripts/was_SA_Domain_policies.xml

.samadapter version: driver: 0.2.2.053102

.....The current policy has been saved to file
/usr/local/IBM/TSA/scripts/was_SA_Domain_policies.xml.

The file was_SA_Domain_policies.xml created above will contain all policies for
our automation domain defined using expressions in XML format. You can use
this file to expand or recreate our IBM Tivoli System Automation for
Multiplatforms automation domain.

The following example, Example 5-28, shows a resource group definition
extracted from the was_SA_Domain_policies.xml file created above.

Example 5-28 Resource group XML definition

<ResourceGroup name="websphererg" class="IBM.ResourceGroup">
 <DesiredState>Online</DesiredState>
 <Members>
 <MoveGroup name="websphereResource" class="IBM.Application"

selectFromPolicy="Ordered" mandatory="True"/>
 <MoveGroup name="db2Resource" class="IBM.Application"

selectFromPolicy="Ordered" mandatory="True"/>
 <MoveGroup name="trade3Resource" class="IBM.Application"

selectFromPolicy="Ordered" mandatory="True"/>

 Chapter 5. Case study scenario: Application Servers on AIX first-level automation domain 127

 <MoveGroup name="websphereResourceIP" class="IBM.ServiceIP"
selectFromPolicy="Ordered" mandatory="True"/>

 </Members>
 <MemberLocation>Collocated</MemberLocation>
 <Priority>0</Priority>
 <AllowedNode>ALL</AllowedNode>
 </ResourceGroup>

128 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Chapter 6. Case study scenario:
IBM DB2 on z/OS first-level
automation domain

In this chapter, we provide the steps to provide high availability and automation to
the database environment of the sample application we use in our case study
scenario. We do this by creating and configuring an IBM Tivoli System
Automation for z/OS V3.1 first-level automation domain. In addition, we set up
the End-to-end Automation Adapter so that IBM Tivoli System Automation for
Multiplatforms V2.1 End-to-end Automation Management Component can
manage this first-level automation domain.

We discuss the following topics:

� “IBM DB2 on z/OS automation domain overview” on page 131

� “IBM DB2 on z/OS automation domain configuration” on page 131

� “Configuring automation policies for IBM DB2” on page 145

� “End-to-end Automation Adapter configuration” on page 181

6

© Copyright IBM Corp. 2005. All rights reserved. 129

Figure 6-1 shows the portion of the entire case study scenario we cover in this
chapter.

Figure 6-1 IBM DB2 on z/OS first-level automation domain

130 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

6.1 IBM DB2 on z/OS automation domain overview
We base this chapter on a case study scenario detailed in Chapter 3, “Case
study scenario overview” on page 47 and we aim to achieve a fully automated
database environment provided by IBM DB2 on z/OS for our sample application.

We assume the following scenario specific tasks have already been performed:

� z/OS Version 1.6 is fully functional, including VTAM, JES, TSO, and TCP/IP
configured, up, and running.

� IBM Tivoli NetView for z/OS Version 5.1 is installed, up, and running.

� IBM DB2 environment for our sample application is fully operational.

In order to achieve our goal, we must perform the following major tasks:

� IBM Tivoli System Automation for z/OS V3.1 installation and configuration.

We performed the SMP/E installation procedure without any problems
following the steps described in the IBM Tivoli System Automation for z/OS
V3.1 Planning and Installation, SC33-8261, manual. We also followed
instructions provided by the IBM Tivoli System Automation for z/OS V3.1
Program Directory, which shipped with the installation media of IBM Tivoli
System Automation for z/OS V3.1.

� IBM Tivoli NetView for z/OS configurations for IBM Tivoli System Automation
for z/OS V3.1.

We describe these configuration tasks in the “IBM DB2 on z/OS automation
domain configuration” on page 131.

� Define and configure automation policies for IBM DB2.

We describe these configuration tasks in the “Configuring automation policies
for IBM DB2” on page 145.

6.2 IBM DB2 on z/OS automation domain configuration
In order to implement IBM DB2 high availability and automation with IBM Tivoli
System Automation for z/OS V3.1, we must install and customize IBM Tivoli
NetView for z/OS. In this chapter, we explain the steps needed to customize IBM
Tivoli System Automation for z/OS V3.1 and IBM Tivoli NetView for z/OS data
sets to get IBM Tivoli NetView for z/OS active and IBM Tivoli System Automation
for z/OS V3.1 prepared for automating our database environment.

For the purposes of this IBM Redbook, we assume that most z/OS installations
run IBM Tivoli NetView for z/OS (NetView). In our case study scenario, we only
have one NetView installation which is used for IBM Tivoli System Automation for

 Chapter 6. Case study scenario: IBM DB2 on z/OS first-level automation domain 131

z/OS V3.1. The NetView domain ID used in our example is defined as SC64N
and the system name Host of the z/OS system that NetView runs on is SC64TS.

We use system cloning techniques. System cloning enables the use of variables
or symbolics in procedures, data sets, VTAM majnode definitions, and so forth.
This allows for one procedure defined in a common proclib for execution on
multiple systems. For further details about the cloning techniques, refer to IBM
Tivoli System Automation for z/OS V3.1 Planning and Installation, SC33-8261,
manual.

Preparing our IBM Tivoli System Automation for z/OS V3.1 environment for IBM
DB2 automation requires the following configuration steps:

� “Configure NetView for IBM Tivoli System Automation for z/OS” on page 132

� “Automate NetView startup procedure” on page 134

� “Allocate System-Unique data sets” on page 134

� “Configure the Automation Manager” on page 135

� “Allocate data sets for the ISPF customization dialog” on page 136

� “Update PARMLIB data sets” on page 136

� “Update PROCLIB data sets” on page 137

� “Define the base automation policy” on page 144

6.2.1 Configure NetView for IBM Tivoli System Automation for z/OS
In order to implement IBM Tivoli System Automation for z/OS V3.1, we must
install and customize NetView. In this section, we give an overview of the steps
required to customize NetView and IBM Tivoli System Automation for z/OS V3.1
basic implementation in our environment.

VTAM Major Node Definition
For details about VTAM major node names and definitions, refer to Tivoli NetView
for z/OS V5.1 Installation: Getting Started, SC31-8872, manual, Appendix B.

Example 6-1 shows the definition of VTAM major node in our environment.

Note: If you are running two NetView programs on the same system, refer to
the Tivoli NetView for z/OS Installation: Configuring Additional Components,
SC31-8874, manual.

132 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Example 6-1 VTAM major node definition

**
* NETVIEW MAIN TASK *

&SYSNAME.A APPL AUTH=(VPACE,ACQ,PASS),PRTCT=&SYSNAME.A, X
 MODETAB=AMODETAB,DLOGMOD=DSIL6MOD, X
 APPC=YES,PARSESS=YES, X
 DMINWNL=4,DMINWNR=4,DSESLIM=8,VPACING=10, X
 AUTOSES=2
* STATOPT='NETVIEW'

* NETVIEW PRIMARY POI - (PROGRAM OPERATOR INTERFACE) *

&SYSNAME.APPT APPL AUTH=(NVPACE,SPO),PRTCT=&SYSNAME.A,EAS=1, X
 MODETAB=AMODETAB,DLOGMOD=DSILGMOD
* STATOPT='NETVIEW PPT'

**
* NETWORK MANAGEMENT PRODUCTS (NETVIEW) *

&SYSNAME.ALUC APPL AUTH=ACQ,PARSESS=YES,MODETAB=AMODETAB, X
 DLOGMOD=DSINLDML, X
 PRTCT=&SYSNAME.A
* NGFINC=OMIT
* STATOPT='LUC TASK'
&SYSNAME.ASPT APPL AUTH=(SPO),EAS=5
* NGFINC=OMIT
* STATOPT='STATMON-VTAM'

Customize NetView DSIPARM data set
We must change these members in the DSIPARM data set.

� CNMSTYLE/CxxSTGEN
� DSIDNMK
� AOFMSGSY
� INGMSG01
� INGXINIT
� DSICMSYS/AOFCMDSO

The IBM Tivoli System Automation for z/OS V3.1 Planning and Installation,
SC33-8261-00, manual provides instructions about what you need to change in
the above members. For our case study environment, we followed the referenced
manual with no problems.

 Chapter 6. Case study scenario: IBM DB2 on z/OS first-level automation domain 133

6.2.2 Automate NetView startup procedure
Add commands to the COMMNDxx member of ing.PARMLIB to start NetView
automatically when z/OS starts. You may also need to modify an IEASYSxx
member of ing.PARMLIB to specify which COMMNDxx or other PARMLIB
members to use during z/OS IPL.

IBM Tivoli System Automation for z/OS V3.1 initialization becomes automated
and begins with starting System Operations. You accomplish this by making
changes to the ing.PARMLIB data set member COMMNDxx. Make sure that the
procedure names you choose match those specified in the ing.PROCLIB data
set. Compare the contents of the COMMNDxx member with the INGECOM
member, which resides in the SINGSAMP sample library.

Example 6-2 shows the COMMNDxx member of our case study scenario.

Example 6-2 COMMAND64 member

COM='SET MPF=00'
COM='MN JOBNAMES,T'
COM='K M,AMRF=Y'
COM='K S,DEL=RD,SEG=20,CON=N,RNUM=20,RTME=001,MFORM=M,L=01'
COM='S AOFASSI,SUB=MSTR'
COM='S AOFAPPL'
COM='S HSAMSC64,SUB=MSTR'
COM='S JES2'

6.2.3 Allocate System-Unique data sets
The following data sets are required several times across the focal point and the
target systems. To allocate these data sets, sample jobs are provided in the
following members of the SINGSAMP data set. These jobs must be run on every
system where the data sets are required. These data sets are:

� INGALLC1 - HCD trace file for I/O OPS

� INGALLC2 - Automation status file

� INGALLC3 - All Automation Managers data sets

� INGALLC4 - IPL data collection

Before you run these jobs, you need to edit them as per your environment
specifications. The value that you fill in may vary from system to system.

134 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

6.2.4 Configure the Automation Manager
In order to configure the Automation Manager, we need to customize the
PARMLIB member HSAPRMxx.

The HSAPRMxx PARMLIB member contains information required for the
initialization of the automation manager and default values for other operational
parameters. The member is designed for common use by all automation
manager instances within the automation subplex.

Alternatively, you can put the automation manager PARMLIB member in any
partitioned data set. See Example 6-3. Then, you need to insert a statement
HSAPLIB DD into the automation manager startup procedure member which
refers to this partitioned data set. A sample member called HSAPRM00 is
provided in the SINGSAMP sample library. You must copy this sample into your
PARMLIB of the automation manager (DD name HSAPLIB) when you allocate
this data set as described.

Example 6-3 Case scenario PARMLIB HSAPRM00

**
* Name....: HSAPRM00 *
* Function: SA z/OS default PARMLIB member for Automation manager *
* Notes...: For a detailed description of each keyword see *
* SA z/OS Planning and Installation *
**
*
DELAY=0
*
*GRPID=id
* Only if you plan to use multiple "logical" sysplex configurations
* in your real sysplex environment
*
TAKEOVERFILE=SA310USR.VSAM.TAKEOVER
* 2@09C
*MQM=subn
COMM=XCF
*
PROMPT=NO
*
*LOGSTREAM=NO

Note: There may be a requirement to allocate additional data sets for your
enterprise. For more information about how to allocate these data sets, refer
to IBM Tivoli System Automation for z/OS V3.1 Planning and Installation,
SC33-8261.

 Chapter 6. Case study scenario: IBM DB2 on z/OS first-level automation domain 135

* NO - Indicates that the automation manager does not connect
* to the System Logger
BUILDTIMEOUT=180
*
CFGDSN=SA310USR.SAV3R1.ACF
*
STOPDELAY=30

6.2.5 Allocate data sets for the ISPF customization dialog
When performing this step, we use the sample job INGEDLGA in SINGSAMP to
allocate data sets required for the I/O operations and the customization dialog.

These data sets are normally allocated only on the focal point system, where you
use the customization dialog.

You must include these data sets for z/OS system, processor, and I/O operations
as follows:

Systems operations:

ING.CUSTOM.AOFTABL ISPF customization table for customization
dialog

ING.CUSTOM.SOCNTL System operations control file

Processor operations:

ING.CUSTOM.AOFTABL ISPF customization table for customization
dialog

ING.CUSTOM.POCNTL Processor operations control file
ING.CUSTOM.POLOG Processor operations control file log

I/O operations:

ING.CUSTOM.IHVCONF I/O operations configuration file

For further information about how to Install and customize the ISPF Dialog
Panels, refer to the IBM Tivoli System Automation for z/OS V3.1 Planning and
Installation, SC33-8261, manual.

6.2.6 Update PARMLIB data sets
We modify the following members of the PARMLIB in our environment:

� PROGxx
� MPFLSTxx

136 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Refer to the IBM Tivoli System Automation for z/OS V3.1 Planning and
Installation, SC33-8261, manual for additional PARMLIB members that you need
to update in your environment.

Update PROGxx
You can define the following authorized libraries in a PROGxx member. This
dynamically authorizes the program facility called APF. Once you have updated
PROGxx, you can issue the command SET PROG=xx to dynamically add
without having to IPL the system. We change our PROGxx member to include:

� ING.SINGMOD1
� ING.SINGMOD2
� ING.SINGMOD3

Update MPFLSTxx
We recommend that you update the MPFLSTxx member after you install the
ISPF Customization Dialog.

Using the customization dialog, you can define the automation policy and create
a list of messages involved in automation. The customization dialog also allows
you to define header and trailer lines for the message list, therefore building a
complete MPFLSTxx member called MPFLSTSA. The MPFLSTSA is built after
you have built the Policy Data Base (PDB™). Alternatively, you can update the
contents of the MPFLSTxx member manually using the INGEMPF member. This
sample member resides in the SINGSAMP sample library that ships with IBM
Tivoli System Automation for z/OS V3.1. Edit the MPFLSTxx member so that it
includes all the statements in the INGEMPF member.

This adds the IBM Tivoli System Automation for z/OS V3.1 message automation
and console display suppression specifications to the MPFLSTxx member. The
AUTO(YES) in the NO_ENTRY statement is required to gather all unknown
WTORs. If you ensure that the unknown WTORs are routed to automation via the
general MPF exit IEAVMXIT and you have all messages that are specified in the
NetView message automation table also specified in the MPF with AUTO(YES),
you can specify AUTO(NO) for the NO_ENTRY statement.

In our case study scenario, we use only the following prefixes of messages:

� AOF*,SUP(NO),AUTO(YES)
� DSN*,SUP(NO),AUTO(YES)
� IEF*,SUP(NO),AUTO(YES)

6.2.7 Update PROCLIB data sets
We modified the following startup procedures in our case study environment.

 Chapter 6. Case study scenario: IBM DB2 on z/OS first-level automation domain 137

� Systems operations (SYSOPS)
� Automation Manager
� NetView subsystem Interface
� NetView subsystem Agent

System Operations (SYSOPS)
You may require changes to the startup procedure members in the PROCLIB
data set. We recommend that you either back up the startup procedure members
that you are going to change or that you create new members. If you are
implementing IBM Tivoli System Automation for z/OS V3.1 for the first time, then
this is not relevant.

We copied the following members from the SINGSAMP data set to members of
our PROCLIB and followed the customization instructions that are contained
within these members:

� INGPIXCU
� INGPHOM
� INGPIPLC
� HSAPIPLC

Additional details can be found in the detail in the IBM Tivoli System Automation
for z/OS V3.1 Planning and Installation, SC33-8261, manual.

Start up procedure for Automation Manager
We copied sample startup procedures called INGEAMSA from the data set
ing.SINGSAMP into our PROCLIB. All the required data sets were allocated
there.

We include the procedure that runs the Automation Manager into the PROCLIB.
A separate NON-APF authorized task library is required in addition to the
authorized steplib. See Example 6-4 of the procedure for the Automation
Manager we use in this case study scenario.

This is described in more detail in the IBM Tivoli System Automation for z/OS
V3.1 Planning and Installation, SC33-8261, manual.

Example 6-4 shows the startup procedure of the Automation Manager we use in
our environment.

Example 6-4 Case scenario Automation Manager startup procedure

//***
//* Name....: INGEAMSA
//INGEAMSA PROC TYPE=COLD, Start type (HOT | WARM | COLD)
// D=0, Default start delay is none

138 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

// M=00, Default parmlib suffix is 00
// P=NO, Default is NO prompting
// HLQINST='SA310', SMP/E installed target lib
// HLQV='SA310USR.VSAM', HLQ of shared and unique AM
// HLQ3='SA310USR.V3R1', HLQ of shared and unique AM
// SLQ='SC64N', 2nd-level qualifier for unique
// HLQCLB='CBC', Default C/C++ library HLQ
// HLQCEE='CEE' Default LE/390 library HLQ
//***
//AMSA EXEC PGM=HSAPINIT,REGION=200M,TIME=1440, X
// PARM='MEMBER=&M,START=&TYPE,DELAY=&D,PROMPT=&P'
//*--
//* STEPLIB - APF Authorized libraries
//* Remove this statement if SINGMOD1 is part of
//* LNKLSTxx concatenation
//*--
//STEPLIB DD DSN=&HLQINST..SINGMOD1,DISP=SHR
//*--
//* HSAMODLE - Non-APF Authorized library concatenation (TASKLIB)
//*--
//HSAMODLE DD DSN=&HLQINST..SINGMOD1,DISP=SHR SA z/OS
// DD DSN=&HLQCLB..SCLBDLL,DISP=SHR C/C++
// DD DSN=&HLQCEE..SCEERUN,DISP=SHR LE/390
//*--
//* HSAOVR - Required schedule override file (shared)
//*--
//HSAOVR DD DSN=&HLQV..HSAAMOVR,DISP=SHR
//*--
//* HSACFGIN - Required file that saves AM warm start info (shared)
//* Note: This is NOT the Automation Control File
//*--
//HSACFGIN DD DSN=&HLQ3..SHSACFGO,DISP=SHR
//*--
//* HSAPLIB - Parameter library containing HSAPRMxx member
//*--
//HSAPLIB DD DSN=&HLQ3..PARMLIB,DISP=SHR
//*--
//* SYSOUT DATASET used by LE
//* DISP=OLD prevents duplicate start of this proc
//*--
//SYSOUT DD DSN=&HLQ3..&SLQ..SYSOUT,DISP=OLD
//*SYSOUT DD SYSOUT=*
//SYSPRINT DD DUMMY,SPACE=(TRK,(2,200))
//*--
//* CEEDUMP - is used by the Language Environment Dump Services.
//* CEEDUMP must be a sequential data set.
//* See below for the recommended size of the data set.
//*--
//CEEDUMP DD DUMMY,SPACE=(TRK,(30,100)),

 Chapter 6. Case study scenario: IBM DB2 on z/OS first-level automation domain 139

// DCB=(RECFM=FB,LRECL=133,BLKSIZE=13330)
//*--
//* TRACE DATASETS. Uncomment in case of needed trace information
//*--
//TRACET0 DD DSN=&HLQ3..&SLQ..TRACET0,DISP=SHR
//TRACET1 DD DSN=&HLQ3..&SLQ..TRACET1,DISP=SHR

The Automation Manager must be started cold on the first startup. The cold start
is performed by default, unless you specify the warm start option. Do not select
the warm start option, because you might have policy data from earlier releases
in your warm start cache. In Example 6-5, you also see that the ACF load had
completed successfully. The following message should appear on the system
console. See Example 6-5.

Example 6-5 Case scenario Automation Manager start

1 J E S 2 J O B L O G -- S Y S T E M S C 6 4 -- N O D E W T S C P L X 2
0
 20.35.44 STC03420 ---- THURSDAY, 25 AUG 2005 ----
 20.35.44 STC03420 IEF695I START HSAMSC64 WITH JOBNAME HSAMSC64 IS ASSIGNED TO
USER STC , GROUP SYS1
 20.35.44 STC03420 $HASP373 HSAMSC64 STARTED
 20.35.44 STC03420 IEF403I HSAMSC64 - STARTED - TIME=20.35.44 - ASID=007C -
SC64
 20.35.46 STC03420 IEF761I HSAMSC64 HSAMSC64 HSAPLIB HSAPSPLM/A DD IS ALREADY
ALLOCATED AND WILL BE USED BY THIS TASK.
 20.35.46 STC03420 IEE252I MEMBER HSAPRM00 FOUND IN SA310USR.V3R1.PARMLIB
 20.35.47 STC03420 HSAM1003I ARM REGISTER WAS SUCCESSFUL FOR
ELEMENT=HSAAM_SC64$$$$1 TYPE=HSAMGR RESTART=NO.
 20.35.47 STC03420 HSAM1005I COMMUNICATION IS XCF ONLY. THE TAKEOVER FILE WILL
BE USED FOR HOT START AND RECOVERY PURPOSES.
 20.35.50 STC03420 HSAM1000I AUTOMATION MANAGER SUBTASKS ARE BEING STARTED.
 20.35.51 STC03420 HSAM1315I SUCCESSFULL ALLOCATION OF TAKEOVER FILE
SA310USR.VSAM.TAKEOVER.
 20.35.51 STC03420 +HSAL1083I AUTOMATION MANAGER HAS CREATED THE INITIAL POSIX
THREAD WITH PID=84017230.
 20.35.51 STC03420 +HSAL1107I REFRESH OF TAKEOVER FILE
DSN=SA310USR.VSAM.TAKEOVER WITH CURRENT AUTOMATION MANAGER DATA STARTED.
 20.35.52 STC03420 +HSAL1108I REFRESH OF TAKEOVER FILE
DSN=SA310USR.VSAM.TAKEOVER COMPLETED.
 20.36.02 STC03420 HSAM1308I SA z/OS PRIMARY AUTOMATION MANAGER INITIALIZATION
COMPLETE, TYPE=COLD.
 20.42.13 STC03420 HSAM1330I LOAD_ACF REQUEST COMPLETED SUCCESSFULLY ON SC64.

140 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

NetView subsystem Interface startup
NetView provides a sample subsystem Interface startup procedure in member
CNMSJ010. We copy and adapt this member from our NetView library to suit our
environment.

Also, the INGENVSA member of the SINGSAMP sample library contains a
sample startup procedure. This is new to IBM Tivoli System Automation for z/OS
V3.1.

The following are recommendations for NetView subsystem interface startup:

� Ensure that the edited copy of the NetView application startup procedure
contains the appropriate data set concatenation order.

� Verify that your new NetView application startup procedure member uses the
correct data set names for your system.

� Rename the NetView application startup procedure member to agree with the
four-character prefix defined in the IEFSSNxx PARMLIB member as per IBM
Tivoli System Automation for z/OS V3.1 Planning and Installation,
SC33-8261, manual guidelines.

� You must define the Program to Program Interface (PPI). Refer to IBM
instructions in the supplied sample subsystem Interface startup procedure
(CNMSJ010). In our case study scenario environment, we call the subsystem
Interface application AOFASSI.

Example 6-6 Our Netview subsystem interface (AOFASSI)

//CNMPSSI PROC SQ1='NETVIEW.V5R1M0', ** SYSTEM DSN HIGH LEVEL QUALIFIER
// PROG=CNMINIT, ** PGM USED TO START NETVIEW SUBSYSTEM
// REG=1250, ** REGION SIZE(IN K)
// MBUF=4000, ** NUMBER OF MESSAGE BUFFERS TO USE
// CBUF=200, ** NUMBER OF COMMAND BUFFERS TO USE
// DSIG='', ** Subsystem command designator
// MSGIFAC='SYSTEM', ** SSI/EXTENDED CONSOLE OVERRIDE SWITCH
// PPIOPT='PPI', ** PPI OPTIONS SWITCH
// ARM='*NOARM', ** AUTOMATIC RESTART (ARM) USAGE
// PFXREG='ONE', ** Prefix Registration option.
// P256BUF=300, ** Number of 256 byte PPI buffers to use
// P4000BUF=0 ** Number of 4000 byte PPI buffers to use
//NETVIEW EXEC PGM=&PROG,TIME=1440,REGION=®.K,
// PARM=(&MBUF,&CBUF,'&DSIG','&MSGIFAC','&PPIOPT','&ARM',

Note: Add your ing.SINGMOD1 library and the NetView CNMLINK library
containing CNMPSSI to the steplib. Alternately, you may add these libraries to
LINKLST. You should have already APF-authorized these libraries. See
Example 6-6 of the AOFASSI application.

 Chapter 6. Case study scenario: IBM DB2 on z/OS first-level automation domain 141

// '&PFXREG',&P256BUF,&P4000BUF),DPRTY=(13,13)
//STEPLIB DD DSN=&SQ1..CNMLINK,DISP=SHR

We issue the MVS S AOFASSI command to start the AOFASSI PPI. Example 6-7
shows the initialization message.

Example 6-7 AOFASSI Initialization Message

J E S 2 J O B L O G -- S Y S T E M S C 6 4 -- N O D E

18.58.24 STC03409 ---- THURSDAY, 25 AUG 2005 ----
18.58.24 STC03409 IEF695I START AOFASSI WITH JOBNAME AOFASSI IS ASSIGNED TO
U
18.58.24 STC03409 $HASP373 AOFASSI STARTED
18.58.24 STC03409 IEF403I AOFASSI - STARTED - TIME=18.58.24 - ASID=009F - SC64
18.58.24 STC03409 CNM226I NETVIEW PROGRAM TO PROGRAM INTERFACE INITIALIZATION
18.58.24 STC03409 CNM541I NETVIEW SUBSYSTEM INITIALIZED SUCCESSFULLY

NetView subsystem Agent startup
We configure the NetView subsystem Agent startup procedure to suit our
environment as presented in Example 6-8. In our case study scenario
environment, the subsystem Agent is AOFAPPL.

Example 6-8 NetView startup procedure (Agent)

//INGENVSA PROC DOMAIN=&SYSNAME.N, ** NETVIEW DOMAIN NAME
// PROG=DSIMNT, ** PGM FOR AUTOMATION NETVIEW
// Q1='NETVIEW.V5R1USER',** USER DSN HIGH LEVEL QUALIFIER
// SQ1='NETV', ** NETVIEW DSN HIGH LVL QUALIFIER
// SQ2=ING, ** SA z/OS DSN HIGH LVL QUALIFIER
// VQ2=ING, ** SA z/OS DSN HIGH LVL QUALIFIER-VSAM
// EQQ=EQQ, ** OPC/TWS DSN HIGH LVL QUALIFIER
// CPSM='ing.CPSM', ** CPSM DSN HIGH LVL QUALIFIER
// VQ1='NETVIEW.V5R1M0', ** VSAM DSN HIGH LVL QUALIFIER
// REG=0, ** REGION SIZE(IN M) FOR NetView
// SUBSYM='', ** SYMBOLIC SUBSTITUTION SWITCH
// NV2I=''
//NETVIEW EXEC PGM=&PROG,TIME=1440,
// REGION=®.M,
// PARM=(24K,200,
// '&DOMAIN','','','&SUBSYM','&NV2I'),
// DPRTY=(13,13)
//DSICLD DD DSN=&SQ2..SINGNREX,DISP=SHR SA TARGET
// DD DSN=&SQ1..CNMCLST,DISP=SHR NETVIEW TARGET
// DD DSN=&SQ1..CNMSAMP,DISP=SHR NETVIEW SAMPLIB
//DSIOPEN DD DSN=&SQ1..SDSIOPEN,DISP=SHR
//DSIPARM DD DSN=&Q1..&DOMAIN..DSIPARM,DISP=SHR USER TARGET
// DD DSN=&Q1..DSIPARM,DISP=SHR USER TARGET

142 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

// DD DSN=&SQ2..SINGNPRM,DISP=SHR SA TARGET
// DD DSN=&SQ1..DSIPARM,DISP=SHR NETVIEW TARGET
//DSILIST DD DSN=&Q1..&DOMAIN..DSILIST,DISP=SHR USER TARGET
//DSIASRC DD DSN=&Q1..&DOMAIN..DSIASRC,DISP=SHR USER TARGET
//DSIARPT DD DSN=&Q1..&DOMAIN..DSIARPT,DISP=SHR USER TARGET
//DSIVTAM DD DSN=&Q1..&DOMAIN..VTAMLST,DISP=SHR USER TARGET
//DSIPRF DD DSN=&SQ2..SINGNPRF,DISP=SHR SA TARGET
// DD DSN=&SQ1..DSIPRF,DISP=SHR NETVIEW TARGET
//DSIMSG DD DSN=&SQ2..SINGNMSG,DISP=SHR SA US
// DD DSN=&SQ1..SDSIMSG1,DISP=SHR NETVIEW TARGET
//BNJPNL1 DD DSN=&SQ1..BNJPNL1,DISP=SHR
//BNJPNL2 DD DSN=&SQ1..BNJPNL2,DISP=SHR
//CNMPNL1 DD DSN=&SQ2..SINGNPNL,DISP=SHR SA US
// DD DSN=&SQ1..CNMPNL1,DISP=SHR NETVIEW US
//AOFSTAT DD DSN=&Q1..&DOMAIN..STATS,DISP=SHR
//HSAIPL DD DSN=&VQ2..IPLDATA,DISP=SHR
//DSILOGP DD DSN=&VQ1..&DOMAIN..DSILOGP,
// DISP=SHR,AMP='AMORG,BUFNI=20,BUFND=20'
//DSILOGS DD DSN=&VQ1..&DOMAIN..DSILOGS,
// DISP=SHR,AMP='AMORG,BUFNI=20,BUFND=20'
//DSITRCP DD DSN=&VQ1..&DOMAIN..DSITRCP,DISP=SHR,AMP=AMORG
//DSITRCS DD DSN=&VQ1..&DOMAIN..DSITRCS,DISP=SHR,AMP=AMORG
//DSISVRT DD DSN=&VQ1..&DOMAIN..DSISVRT,
// DISP=SHR,AMP=AMORG
//INGDUMP DD DSN=&VQ2..&DOMAIN..INGDUMP,DISP=SHR
//SYSPRINT DD SYSOUT=&SOUTA

We issue the MVS S AOFAPPL command to start the NetView subsystem Agent.
Example 6-9 shows the initialization message.

Example 6-9 AOFAPPL initialization message

SDSF OUTPUT DISPLAY AOFAPPL STC03422 DSID 2 LINE 0 COLUMNS 01- 80
COMMAND INPUT ===> SCROLL ===> CSR
******************************** TOP OF DATA **********************************
 J E S 2 J O B L O G -- S Y S T E M S C 6 4 -- N O D E

20.41.53 STC03422 ---- THURSDAY, 25 AUG 2005 ----
20.41.53 STC03422 IEF695I START AOFAPPL WITH JOBNAME AOFAPPL IS ASSIGNED TO
20.41.53 STC03422 $HASP373 AOFAPPL STARTED
20.41.53 STC03422 IEF403I AOFAPPL - STARTED - TIME=20.41.53 - ASID=0080 - SC64

*******Page few pages down to see message id AOF540I *******

20.47.51 STC03422 AOF540I 20:47:51 : INITIALIZATION RELATED PROCESSING HAS
BEEN COMPLETED.

 Chapter 6. Case study scenario: IBM DB2 on z/OS first-level automation domain 143

6.2.8 Define the base automation policy
Before you can start using automation, you need to define your base automation
policy using the IBM supplied policies. This involves the following actions:

� If applicable, migrate/merge existing policy information; you can use the
sample job INGEBMIG in the SINGSAMP sample library.

Since we have a brand new IBM Tivoli System Automation for z/OS V3.1
installation, we use the sample automation policy.

� Add further policy definitions.

In our case, we create new policy definitions for IBM DB2. We show this in
“Configuring automation policies for IBM DB2” on page 145.

� Distribute the policy definitions (the policy database) where required.

Since we have a single z/OS system, we do not need to perform this task.

Since we have started our IBM Tivoli System Automation for z/OS V3.1 from
scratch, we use the IBM samples delivered with the product and create our new
policy database.

Note: After you install the host components (automation manager, interface,
and agent) of IBM Tivoli System Automation for z/OS V3.1, we recommend
that you perform a system IPL, per the guidelines provided in IBM Tivoli
System Automation for z/OS V3.1 Planning and Installation, SC33-8261,
manual.

Important: In our environment , IBM Tivoli System Automation for z/OS V3.1,
the procedure Agent did not produce a message AOF617I SA z/OS
INITIALIZATION STARTED after message DWO854I VTAM is active.

The following corrections were made to initialize IBM Tivoli System
Automation for z/OS V3.1:

Update the xxxSTGEN member of DSIPARM (in our environment the member
name is C64STGEN) with the following statement as the last statement in the
file: TOWER.SA = SYSOPS

Make sure COMSTNXT is copied into your DSIPARM. Follow the instructions
provided by the COMSTNXT member as required.

144 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

We use the following process to define the base automation policy in our
environment:

1. We have our customization dialog installed on our single z/OS system, SC64.
We create the policy database using the ISPF input panels of the
customization dialog, as described in the IBM Tivoli System Automation for
z/OS V3.1 Defining Automation Policy, SC33-8262-01 manual.

2. After our policy database has been created we used the BUILD function of the
customization dialog to produce the following:

– The System operations control files: Automation Control File (ACF) and
Automation Manager Configuration File (AMC)

– NetView Automation Table (AT)

– The message processing facility for IBM Tivoli System Automation for
z/OS: MPFLSTSA.

As we are automation a standalone system, there is no need to distribute above
the generated output to other sysplexes or other standalone systems for
automation. Refer to the IIBM Tivoli System Automation for z/OS V3.1 Defining
Automation Policy, SC33-8262-01 manual for details on how to distribute the
control files

IBM Tivoli System Automation for z/OS V3.1 provides a sample job named
INGEBBLD in the SINGSAMP sample library to perform the build in batch mode.
This job is configured accordingly to your the installation requirements. In our
case study scenario we used the ISPF Customization dialog.

The BUILD command is available from various panels of the customization
dialog. For more information on how to perform this step, refer to the IBM Tivoli
System Automation for z/OS V3.1 Defining Automation Policy, SC33-8262-01
manual.

6.3 Configuring automation policies for IBM DB2
IBM DB2 Automation on IBM Tivoli System Automation for z/OS V3.1 has been
produced to provide automated functions for the database environment used in
our case study scenario. This will be shown by automating stop, start, and
recovery procedures of the IBM DB2 software running on our z/OS system.

In order to accomplish automation of our IBM DB2 environment, the following
tasks must be performed:

Important: Do not change the system operations control files manually. You
must use the customization dialog to manipulate the policy objects.

 Chapter 6. Case study scenario: IBM DB2 on z/OS first-level automation domain 145

� “Identify required IBM DB2 messages” on page 146

� “Create scenario automation policy database” on page 147

� “Populate the scenario policy database” on page 149

� “Define policies for monitoring IBM DB2 application tasks” on page 152

� “Import customized scenario policy database into production” on page 165

� “Create application group and define group membership” on page 170

� “Verify Relationships in the automation policy” on page 176

The above tasks are in accordance to the IBM Tivoli System Automation for z/OS
V3.1 Customizing and Programming, SC33-8260-01 manual, which provides
instructions on how to perform IBM DB2 automation using IBM Tivoli System
Automation for z/OS V3.1.

6.3.1 Identify required IBM DB2 messages
Certain messages must be available in MPFLSTxx for the automated operations
to function for IBM DB2. These messages are produced by IBM DB2 and are
made available in the MPFLSTxx per our configuration shown in “Update
PARMLIB data sets” on page 136.

IBM DB2 required recovery commands are defined for the message in the
automation policy item MESSAGES/USER DATA for any IBM DB2 subsystem
that requires IBM DB2 critical event message recovery. If the IBM DB2
subsystem is known to IBM Tivoli System Automation for z/OS as an application
of type IBM DB2, event message recovery can be controlled by parameters
entered via the IBM DB2 control policy item for the subsystem.

Automation Table statements that call the generic routine ISSUECMD or a IBM
DB2-specific routine are only created during the build process for messages that
have commands defined in the Automation Control File. If a recovery action is the
only action processed when the triggering message is issued by a subsystem of
type DB2, the created automation table statement is labeled with the group name
DB2. Otherwise the Automation Table statement is created without a label.

Created automation table statements that call the generic routine ISSUECMD
are conditional and can be overwritten via automation policy item
MESSAGES/USER DATA.

Restrictions and Limitations Critical event monitoring is only done if the IBM DB2
subsystem is defined to IBM Tivoli System Automation for z/OS. These IBM DB2
messages are provided by IBM DB2 Automation policy as default.

146 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

6.3.2 Create scenario automation policy database
The policy database samples contain samples of IBM DB2 Automation (all
except the *DEFAULT sample). The IBM DB2 entries are contained in the
CLASS/INSTANCE application (APL) relationships. Refer to the IBM Tivoli
System Automation for z/OS V3.1 Defining Automation Policy, SC33-8262-01,
manual for detailed information about how to implement these samples and other
entries into your automation policy.

Once we create the policy database (PDB) for our basic z/OS system with the
base automation policy, and install all prerequisites, the following tasks must be
initialized and running before proceeding with the IBM DB2 automation definition.

� Program to Program Interface
� The Automaton Manager
� The Agent subsystem

Now we are ready to add IBM DB2 Automation requirements. We want to create
a policy database using the sample DB2 policy database as model.

In order to achieve this, we perform the following steps:

1. On the IBM Tivoli System Automation for z/OS Customization Dialog Primary
Menu, select Option 4 (Policies - Maintain Policy Database list). See
Example 6-10.

Example 6-10 Customization Dialog Primary Menu

SA z/OS 3.1 Customization Dialog Primary Menu
Option ===> 4

 0 Settings User parameters

 1 Open Work with the Policy Database
 2 Build Build functions for Policy Database
 3 Report Generate reports from Policy Database
 4 Policies Maintain Policy Database list
 5 Data Management Import policies/Migrate files into a Policy Database
 U User User-defined selections

 X Exit Terminate Customization Dialog

 To switch to another Policy Database, specify the Policy Database name
 in the following field, or specify a ? to get a selection list.
 Current Policy Database . . . ITSO_V3R1_PDB

2. See Example 6-11. On the Menu, select COMMANDS. The system prompts
you with the following dialog or you can enter N (new). Create a new database
by selecting Option 2.

 Chapter 6. Case study scenario: IBM DB2 on z/OS first-level automation domain 147

Example 6-11 Adding IBM DB2 sample Policy Database

MENU COMMANDS ACTIONS VIEW HELP

2 1. OPEN......(O) - Open selected database
 2. NEW.......(N) - Create new database
 3. EDIT......(E) - Edit selected database
 4. DELETE....(D) - Delete selected database
 5. ADD.......(A) - Add database to list
 6. REMOVE....(M) - Remove database from list
 7. BUILD.....(B) - Build functions
 8. MANAGE....(G) - Data Management
 9. REPORT....(R) - Generate database report
 10. VIEW......(V) - Cycle thru alternate views
 11. LOCATE....(L) - Locate entry
 12. END.......... - Exit panel

3. Press Enter. You will be prompted with the next dialog. We enter the Policy
Database Name, Enterprise Name, and Data Set Name as in Example 6-12.

Example 6-12 Define new IBM DB2 Policy Database

To define a new Policy Database, specify the following information:
 Policy Database Name . . CASE_STUDY_SCENARIO
 Enterprise Name. SANDBOX_DB2
 Data Set Name. 'SA310USR.DB2.PDB1'

 Model Policy Database. . ? Policy Database name or "?"
 for list of names

4. When prompted to select model policy database, we select DB2 from the list
as in Example 6-13.

Example 6-13 Select DB2 Policy Database

Select the database to serve as a model:
Action Status PolicyDB Name Enterprise Name
 *BASE BASE
 *EMPTY EMPTY
S DB2 TES3

5. Now the Create a New Policy Database panel contains the DB2 set as the
policy database model as in Example 6-14.

Example 6-14 Create a New Policy Database

To define a new Policy Database, specify the following information:
 Policy Database Name . . CASE_STUDY_SCENARIO
 Enterprise Name. SANDBOX_DB2
 Data Set Name. 'SA310USR.DB2.PDB1'

148 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

 Model Policy Database. . DB2 Policy Database name or "?"

6. When prompted for the data set information, we keep the default attributes as
in Example 6-15.

Example 6-15 Data set information

New Policy Database : CASE_STUDY_SCENARIO
 Attributes to be used for allocation of the new data set:
 More: +
 Managed storage. NO YES NO
 Management class TIVO01 Blank for default management class *

Storage class. Blank for default storage class *
Volume serial. Blank for authorized default volume

 Data class Blank for default data class *
Space units. CYLINDERS CYLS TRKS BLKS KB MB
Primary quantity . . . 1 1 to 999 - In above units
Secondary quantity . . 1 0 to 999 - In above units
Directory blocks . . . 50 1 to 999
Record format. . . . : FB
Record length. . . . : 80
Block size 32720
Data Set Name type . . PDS LIBRARY PDS

7. This completes the process for creating a new policy database named
CASE_STUDY_SCENARIO using the DB2 policy database as the model.

6.3.3 Populate the scenario policy database
After we build the scenario policy database, we complete the following steps to
populate it with the sample IBM DB2 automation policy.

1. From the Policy Database Selection panel, we select our newly created policy
database: CASE_STUDY_SCENARIO, as shown in Example 6-16.

Example 6-16 Policy Database Selection panel

MENU COMMANDS ACTIONS VIEW HELP
 --
 Policy Database Selection Row 1 to 3 of 3
 Command ===> SCROLL===> PAGE

 Action Policy Database Enterprise Name/Data Set Name
 S CASE_STUDY_SCENARIO SANDBOX_DB2
 'SA310USR.DB2.PDB1'
 E2E END_TO_END_MPV2R1
 'SA310.E2E.MPV2R1.PDB'
 ITSO_V3R1_PDB ITSOTESTSC64

 Chapter 6. Case study scenario: IBM DB2 on z/OS first-level automation domain 149

 'SA310USR.SAV3R1.PDB'
 ****************************** Bottom of data ********************************

2. The Entry Type Selection panel displays as in Example 6-17.

Example 6-17 IBM DB2 Automation Policy Database

Entry Type Selection
 Option ===>

 1 ENT Enterprise 30 TMR Timers
 2 GRP Group 31 TMO Timeout Settings
 3 SBG SubGroup 32 TPA Tape Attendance
 4 SYS System (*) 33 MVC MVS Component
 5 APG ApplicationGroup (*) 34 MDF MVSCOMP Defaults
 6 APL Application (*) 35 SDF System Defaults
 7 EVT Events 36 ADF Application Defaults
 8 SVP Service Periods 37 AOP Auto Operators
 9 TRG Triggers 38 NFY Notify Operators
 10 PRO Processor 39 NTW Network
 11 MTR Monitor Resource (*) 40 NNT NNT Sessions
 41 RES Resident CLISTs
 20 PRD Product Automation 42 SCR Status Details

 99 UET User E-T Pairs
 (*) Multi-User-Capable

3. We select entry type Application from the menu (Option 6).

4. We then enter DB2_MSTR as the entry name to represent a policy object for
the scenario’s IBM DB2 master subsystem. See Example 6-18.

5. On the Define New Entry panel, we enter our IBM DB2 Master Subsystem
Name, the Application Type, the Subtype (one of: MSTR, SPAS, IRLM, DBM1,
DIST, or WLMS), and the MVS Job Name. Example 6-18 shows this activity.

Example 6-18 Define Entry panel

Subsystem Name DB8Q
Application Type : DB2
Subtype MSTR
Job Name DB8QMSTR

6. This brings us to the Policy Selection panel for Applications. From here, we
select policy item Link Instance to Class. We select the class named
C_DB2_MSTR, as shown in Example 6-19.

150 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Example 6-19 Link Instance to Class panel

COMMANDS ACTIONS VIEW HELP
 --
 Link Instance to Class Row 1 to 2 of 2
 Command ===> SCROLL===> PAGE

 Entry Type : Application PolicyDB Name : CASE_STUDY_SCENARIO
 Entry Name : DB2_MSTR Enterprise Name : SANDBOX_DB2

 Action Status Entry Name
 C_DB2_DEPENDENTS
 S C_DB2_MSTR
 ******************************* Bottom of data *******************************

The C_DB2_MSTR Class provides all the necessary commands for IBM DB2
Automation.

For example, the NORM START command looks like this: MVS &SUBSCMDPFX
STA DB2 &EHKVAR1. Also, this class provides proper procedures to stop IBM
DB2. For example, it includes the INGRDTTH &SUBSAPPL S command to cancel
with notification any outstanding threads prior to IBM DB2 shutdown. If you
would prefer that threads are not cancelled, this command should be changed
to read: INGRDTTH &SUBSAPPL S N as per IBM DB2 defaults.

7. To complete our settings, on the Policy Selection panel, we select
APPLICATION INFO as in Example 6-20.

Example 6-20 DB2_MSTR Policy Selection panel

Policy Selection Row 1 to 13 of 21
Command ===> SCROLL===> PAGE

Entry Type : Application PolicyDB Name : CASE_STUDY_SCENARIO
Entry Name : DB2_MSTR Enterprise Name : SANDBOX_DB2

Action Policy Name Policy Description
 DESCRIPTION Enter description
 LINK TO CLASS Link instance to class
 S APPLICATION INFO Define application information
 AUTOMATION FLAGS Define application automation flags
 TRIGGER Select trigger
 SERVICE PERIOD Select service period
 RELATIONSHIPS Define relationships
 MESSAGES/USER DATA Define application messages and user data
 STARTUP Define startup procedures
 SHUTDOWN Define shutdown procedures
 THRESHOLDS Define error thresholds
 MINOR RESOURCE FLAGS Define application sub-component flags

 Chapter 6. Case study scenario: IBM DB2 on z/OS first-level automation domain 151

 SYSTEM ASSOCIATION Define primary and secondary associations

8. When presented with the panel Application Information, we enter the
command prefix characters of our IBM DB2 master subsystem in the
Command Prefix entry as seen in Example 6-21.

Example 6-21 Command Prefix

COMMANDS HELP
 --
 Application Information Top of data
 Command ===>

 Entry Type : Application PolicyDB Name : CASE_STUDY_SCENARIO
 Entry Name : DB2_MSTR Enterprise Name : SANDBOX_DB2
 More: +
 Application Type : DB2 (STANDARD IMAGE JES2 JES3
 CICS IMS DB2 OPC USS)
 Subtype MSTR (For STANDARD, CICS, IMS, DB2, OPC)
 Subsystem Name DB8Q
 Job Type (MVS NONMVS TRANSIENT)
 Job Name DB8QMSTR
 Transient Rerun. (YES NO)

------------PAGE DOWN to see the page 2 of the panel--------------

Command Prefix -DB8Q
Message Prefix
Sysname (System name)

6.3.4 Define policies for monitoring IBM DB2 application tasks
We populated the scenario policy database named CASE_STUDY_SCENARIO
with the IBM-supplied IBM DB2 policy database, and we initially configured the
scenario policy database with information about our IBM DB2 master subsystem.
We described these activities in previous sections.

In this section, we define an automation policy for our environment’s IBM DB2
application tasks.

When our IBM DB2 master subsystem task (DB8QMSTR) starts, its children
tasks: DB8QDBM1, DB8QDIST, and DB8QIRLM are also started. Similarly,
when DB2QMSTR stops, the children tasks are stopped first.

For this reason, the children tasks must also be configured on IBM Tivoli System
Automation for z/OS V3.1 for monitoring purposes. IBM Tivoli System

152 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Automation for z/OS V3.1 cannot start and stop the children tasks of
DB8QMSTR because these tasks are controlled within DB8QMSTR.

We configure dependency relationships on our IBM Tivoli System Automation for
z/OS as follows:

� The DB8QMSTR task is dependent on z/OS resources (JES2 and TCP/IP).

� The children tasks DB8QDBM1, DB8QDIST, and DB8QIRLM are dependent
on the parent task DB8QMSTR.

Before defining these relationships, we perform additional configuration steps as
follows:

� Set the Active log data set name to our scenario policy database.

� As we create our scenario policy database using the DB2 policy database as
our model, the application names are set to the default values. We need to
change these names to the names used in our case study environment.

Setting the Active log data set name
We perform the following steps:

1. From the Policy Database Selection panel, we select our newly created policy
database: CASE_STUDY_SCENARIO.

2. On the Entry Type Selection panel, we enter Option 6 for Applications.

3. On the Entry Name Selection panel, under the Action, we select DB2_MSTR.
See Example 6-22.

Example 6-22 Selection of DB2_MSTR

Entry Name Selection Row 1 to 7 of 7
Command ===> SCROLL===> PAGE

Entry Type : Application PolicyDB Name : CASE_STUDY_SCENARIO
 Enterprise Name : SANDBOX_DB2

Action Entry Name C Short Description
 C_DB2_DEPENDENTS * DB2 Class - DIST,DBM1,IRLM,SPAS
 C_DB2_MSTR * DB2 Class - System Services
 DB2_DBM1 DB2 Database Services
 DB2_DIST DB2 Distributed Data Facility
 DB2_IRLM DB2 Resource Lock Manager
S DB2_MSTR DB2 Subsystem
 DB2_SPAS DB2 Stored Procedures
******************************* Bottom of data ********************************

4. We then selected DB2 CONTROL, as seen in Example 6-23.

 Chapter 6. Case study scenario: IBM DB2 on z/OS first-level automation domain 153

Example 6-23 DB2 CONTROL option

Policy Selection Row 1 to 13 of 21
Command ===> SCROLL===> PAGE

Entry Type : Application PolicyDB Name : CASE_STUDY_SCENARIO
Entry Name : DB2_MSTR Enterprise Name : SANDBOX_DB2

Action Policy Name Policy Description
 DESCRIPTION Enter description
 LINK TO CLASS Link instance to class
 APPLICATION INFO Define application information
 AUTOMATION FLAGS Define application automation flags
 TRIGGER Select trigger
 SERVICE PERIOD Select service period
 RELATIONSHIPS Define relationships
 MESSAGES/USER DATA Define application messages and user data
 STARTUP Define startup procedures
 SHUTDOWN Define shutdown procedures
 THRESHOLDS Define error thresholds
 MINOR RESOURCE FLAGS Define application sub-component flags
 SYSTEM ASSOCIATION Define primary and secondary associations
 -------------------- -----RESOURCES-------------------------------
 GENERATED RESOURCES List resources generated for this entry
 MEMBER OF List resources where this entry is a member
 ------------------- -----DB2 SPECIFIC POLICY---------------------
 S DB2 CONTROL Define DB2 subsystem specific data
 -------------------- ---
 WHERE USED List application groups linked to this entry
 COPY Copy data from an existing entry
******************************* Bottom of data ********************************

5. The DB2 Control Entries panel displays. See Example 6-24.

Example 6-24 Our case study scenario DB2 Control Entries panel

Entry Type : Application PolicyDB Name : CASE_STUDY_SCENARIO
Entry Name : DB2_MSTR Enterprise Name : SANDBOX_DB2

Subsystem : DB8Q
Subtype : MSTR Subtype from APPLICATION INFO policy
 More: +
Enter or update the following fields:
 DB2 subsystem id DB8Q
 Active log data set name . .
 DB8QU.LOGCOPY1.DS01
 Log full threshold 09 Percentage full
 Shutdown if indoubt. YES YES NO blank

Process iteration delays (HH:MM:SS):

154 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

TSO logoff delay 00:00:59
STOP tablespace delay. . . . 00:03:00
Connection Monitor delay . . 00:30:00
Terminate threads delay. . . 00:01:00 Cycles . . . 5
Active log alert 00:00:30 Threshold. . 4
Log offload interval 00:30:00

We enter the data set name of the IBM DB2 Active Log Data set in this panel.
This will allow for checks before the command to message DSNJ002I is
issued. These information will be advised by the IBM DB2 System
Programmer.

6. We save the changes and return to the Policy Selection panel.

Renaming IBM DB2 application names
We chose to rename the applications DB2_DBM, DB2_DIST, and DB2_IRLM to
the names of our environment (DB8QDBM1, DB8QDIST, and DB8QIRLM),
because we do not have multiple IBM DB2 master subsystems.

In order to rename the application names, we perform the following steps:

1. From the Policy Database Selection panel, we select our newly created policy
database: CASE_STUDY_SCENARIO.

2. On the Entry Type Selection panel, we enter Option 6 for Applications.

3. On the Entry Name panel, we select R (Rename) for DB2_DBM1. See
Example 6-25.

Example 6-25 Renaming Application to DB8QMSTR

COMMANDS ACTIONS VIEW HELP
--
 Entry Name Selection Row 1 to 7 of 7
Command ===> SCROLL===> PAGE

Entry Type : Application PolicyDB Name : CASE_STUDY_SCENARIO
 Enterprise Name : SANDBOX_DB2

Action Entry Name C Short Description
 C_DB2_DEPENDENTS * DB2 Class - DIST,DBM1,IRLM,SPAS
 C_DB2_MSTR * DB2 Class - System Services
R DB2_DBM1 DB2 Database Services

Note: The above task cannot be done in CLASS C_DB2_MSTR if there
are more than the IBM DB2 master defined and linked to this CLASS. The
application names will be different. The policy database build will fail.

 Chapter 6. Case study scenario: IBM DB2 on z/OS first-level automation domain 155

 DB2_DIST DB2 Distributed Data Facility
 DB2_IRLM DB2 Resource Lock Manager
 DB2_MSTR DB2 Subsystem
 DB2_SPAS DB2 Stored Procedures
******************************* Bottom of data ********************************

4. On the Entry Rename panel (Example 6-26), we want to rename DB2_DBM1
to DB8QDBM1.

Example 6-26 Entry Rename panel

COMMANDS ACTIONS VIEW HELP
--
 Entry Name Selection Row 3 to 7 of 7
Command ===> SCROLL===> PAGE

Entry Type : Application PolicyDB Name : CASE_STUDY_SCENARIO
 Enterprise Name : SANDBOX_DB2

Action Entry Name C Short Description
R DB2_DBM1 DB2 Database Services
 EssN y
 e Entry Rename e
 e e
 e Description : DB2 Database Services e
****** e Old Name : DB2_DBM1 e *************
 e e
 e New Name . . db8qdbm1 e
 e e
 e Press ENTER to rename member. e
 e Press CANCEL to cancel rename. e
 e F1=Help F2=Split F3=End F9=Swap F12=Cancel e
 DssM

5. We also update the Application Information panel with the correct job name
as seen in Example 6-27.

Example 6-27 DB8QDBM1 Application

Application Information
Command ===>

Entry Type : Application PolicyDB Name : CASE_STUDY_SCENARIO
Entry Name : DB8QDBM1 Enterprise Name : SANDBOX_DB2
 More: +
Application Type : DB2 (STANDARD IMAGE JES2 JES3
 CICS IMS DB2 OPC USS)
Subtype DBM1 (For STANDARD, CICS, IMS, DB2, OPC)
Subsystem Name DB8QDBM1

156 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Job Type (MVS NONMVS TRANSIENT)
Job Name DB8QDBM1
Transient Rerun. (YES NO)
Scheduling Subsystem . . . (MSTR, JES Subsystem or blank)
JCL Procedure Name
Captured Messages Limit. . (0 to 999, or blank)

Restart after IPL. (START NOSTART NONE blank)
Restart after Recycle. . . (START NOSTART NONE blank)
Start Timeout (time for "UP" status checks, hh:mm:ss)

6. We repeat the above steps to rename DB2_DIST to DB8QDIST and
DB2_IRLM to DB8QIRLM.

Relationships between DB8QMSTR and z/OS resources
To define dependency relationships among the IBM DB2 master subsystem
DB8QMSTR and JES2 and TCP/IP resources on z/OS, we perform the following
steps:

1. From the Policy Database Selection panel, we select our newly created policy
database: CASE_STUDY_SCENARIO.

2. On the Entry Type Selection panel, enter Option 6 for Applications, as seen in
Example 6-28.

Example 6-28 Entry Type Selection panel

Entry Type Selection
Option ===> 6

 1 ENT Enterprise 30 TMR Timers
 2 GRP Group 31 TMO Timeout Settings
 3 SBG SubGroup 32 TPA Tape Attendance
 4 SYS System (*) 33 MVC MVS Component
 5 APG ApplicationGroup (*) 34 MDF MVSCOMP Defaults
 6 APL Application (*) 35 SDF System Defaults
 7 EVT Events 36 ADF Application Defaults
 8 SVP Service Periods 37 AOP Auto Operators
 9 TRG Triggers 38 NFY Notify Operators
 10 PRO Processor 39 NTW Network
 11 MTR Monitor Resource (*) 40 NNT NNT Sessions
 41 RES Resident CLISTs
 20 PRD Product Automation 42 SCR Status Details

 99 UET User E-T Pairs
 (*) Multi-User-Capable

 Chapter 6. Case study scenario: IBM DB2 on z/OS first-level automation domain 157

3. On the Entry Name Selection panel, we select the C_DB2_MSTR class, as
seen in Example 6-29.

Example 6-29 Entry Name Selection panel

COMMANDS ACTIONS VIEW HELP
--
 Entry Name Selection Row 1 to 7 of 7
Command ===> SCROLL===> PAGE

Entry Type : Application PolicyDB Name : CASE_STUDY_SCENARIO
 Enterprise Name : SANDBOX_DB2

Action Entry Name C Short Description
 C_DB2_DEPENDENTS * DB2 Class - DIST,DBM1,IRLM,SPAS
 S C_DB2_MSTR * DB2 Class - System Services
 DB2_DBM1 DB2 Database Services
 DB2_DIST DB2 Distributed Data Facility
 DB2_IRLM DB2 Resource Lock Manager
 DB2_MSTR DB2 Subsystem
 DB2_SPAS DB2 Stored Procedures
******************************* Bottom of data ********************************

4. See Example 6-30. We then select RELATIONSHIPS on the Policy Selection
panel.

Example 6-30 RELATIONSHIPS: Policy Selection panel

ACTIONS HELP
--
 Policy Selection Row 1 to 13 of 16
Command ===> SCROLL===> PAGE

Entry Type : Application PolicyDB Name : CASE_STUDY_SCENARIO
Entry Name : C_DB2_MSTR Enterprise Name : SANDBOX_DB2

Action Policy Name Policy Description
 DESCRIPTION Enter description
 LINK TO INSTANCES Link class to instances
 APPLICATION INFO Define application information
 AUTOMATION FLAGS Define application automation flags
 TRIGGER Select trigger
 SERVICE PERIOD Select service period
 s RELATIONSHIPS Define relationships
 MESSAGES/USER DATA Define application messages and user data
 STARTUP Define startup procedures
 SHUTDOWN Define shutdown procedures
 THRESHOLDS Define error thresholds
 MINOR RESOURCE FLAGS Define application sub-component flags

158 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

------------------- -----DB2 SPECIFIC POLICY---------------------
 DB2 CONTROL Define DB2 subsystem specific data
 -------------------- ---
 COPY Copy data from an existing entry
******************************* Bottom of data ********************************

5. On the Defining Relationship panel, we add the dependency of JES2 using
the Supporting Resource. JES/APL/= and Relationship Type =
HASPARENT. See Example 6-31.

Example 6-31 Define Relationship to JES2

COMMANDS HELP
--
 Define Relationship
Command ===>

Entry Type : Application PolicyDB Name : CASE_STUDY_SCENARIO
Entry Name : C_DB2_MSTR Enterprise Name : SANDBOX_DB2

 More: +
Subsystem : C_DB2_MSTR
Description.

Relationship Type. . HASPARENT MAKEAVAILABLE MAKEUNAVAILABLE
 PREPAVAILABLE PREPUNAVAILABLE
 FORCEDOWN EXTERNALLY HASMONITOR
 HASPARENT HASPASSIVEPARENT
Supporting Resource. JES/APL/=
 Resource Name
Sequence Number. . . 1 Sequence Number (1-99,blank)

Automation ACTIVE PASSIVE
Chaining STRONG WEAK

6. We save the changes and the Relationship Selection List panel displays
(Example 6-32) showing the Supporting Resource and the Relationship Type.
As defined, DB8QMSTR will not start if JES2 is not available.

Example 6-32 Relationship Selection List panel

Relationship Selection List Row 1 to 1 of 1
Command ===> N

Entry Type : Application PolicyDB Name : CASE_STUDY_SCENARIO
Entry Name : C_DB2_MSTR Enterprise Name : SANDBOX_DB2

External Startup. . . (INITIAL ALWAYS NEVER blank)
External Shutdown . . (FINAL ALWAYS NEVER blank)

 Chapter 6. Case study scenario: IBM DB2 on z/OS first-level automation domain 159

Action # Type Supporting Resource Auto Chain

HASPARENT JES2/APL/=
******************************* Bottom of data ********************************

7. To define the relationship to TCP/IP, we perform similar steps. Example 6-33
shows the Define Relationship panel we use for the TCP/IP relationship
definition.

Example 6-33 Adding additional resource

COMMANDS HELP
--
 Define Relationship
Command ===>

Entry Type : Application PolicyDB Name : CASE_STUDY_SCENARIO
Entry Name : C_DB2_MSTR Enterprise Name : SANDBOX_DB2

 More: +
Subsystem : C_DB2_MSTR
Description.

Relationship Type. . HASPARENT MAKEAVAILABLE MAKEUNAVAILABLE
 PREPAVAILABLE PREPUNAVAILABLE
 FORCEDOWN EXTERNALLY HASMONITOR
 HASPARENT HASPASSIVEPARENT
Supporting Resource. TCIP/APL/=
 Resource Name
Sequence Number. . . Sequence Number (1-99,blank)

Automation ACTIVE PASSIVE
Chaining STRONG WEAK

8. Example 6-34 shows both relationships defined for DB8QMSTR with
Relationship Type HASPARENT.

Example 6-34 Adding additional supporting resource

Relationship Selection List Row 1 to 2 of 2
Command ===>

Entry Type : Application PolicyDB Name : CASE_STUDY_SCENARIO
Entry Name : C_DB2_MSTR Enterprise Name : SANDBOX_DB2

External Startup. . . (INITIAL ALWAYS NEVER blank)
External Shutdown . . (FINAL ALWAYS NEVER blank)

Action # Type Supporting Resource Auto Chain

160 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

 HASPARENT JES/APL/=
 HASPARENT TCIP/APL/=
******************************* Bottom of data ********************************

9. IBM Tivoli System Automation for z/OS V3.1 allows the user to type particular
messages to trigger specific commands in the Message Processing dialog.
Example 6-35 shows the messages we use in our environment.

For information about how to add these entries to the MESSAGES/USER
DATA policy item, refer to the IBM Tivoli System Automation for z/OS V3.1
Customizing and Programming, SC33-8260-01, manual.

Example 6-35 Message Processing

Entry Type : Application PolicyDB Name : CASE_STUDY_SCENARIO
 Entry Name : C_DB2_MSTR Enterprise Name : SANDBOX_DB2

 Define message IDs and their automation actions.
 CMD = Command REP = Reply CODE = CODE USER = User Data
 AUTO = AT Actions OVR = AT Override

 Action Message ID Cmd Rep Code User Auto Ovr
 Description
 ACORESTART 1
 Specifications for ACORESTART
 DATABASE 3
 Specifications for DATABASE
 DSNJ002I 1
 Specifications for DSNJ002I
 DSNJ115I 1
 Specifications for DSNJ115I

DSNL008I 1
 Specifications for DSNL008I
 DSNP007I 1
 Specifications for DSNP007I
 DSNR002I 1
 Specifications for DSNR002I
 SHUTFORCEDDF 1
 Specifications for SHUTFORCEDDF
 UP 1
 Specifications for UP

Relationships between children tasks and DB8QMSTR
The children tasks DB8QDBM1, DB8QDIST, and DB8QIRLM are dependent on
the parent task DB8QMSTR.

 Chapter 6. Case study scenario: IBM DB2 on z/OS first-level automation domain 161

In order to define relationships between the children tasks and the DB8QMSTR,
we perform the following tasks.

1. From the Policy Database Selection panel, we select our newly created policy
database: CASE_STUDY_SCENARIO.

2. On the Entry Type Selection panel, enter Option 6 for Applications.

3. On the Entry Name Selection panel, we select the C_DB2_DEPENDENTS
class, as seen in Example 6-36.

Example 6-36 Entry Name Selection panel

COMMANDS ACTIONS VIEW HELP
--
 Entry Name Selection Row 1 to 7 of 7
Command ===> SCROLL===> PAGE

Entry Type : Application PolicyDB Name : CASE_STUDY_SCENARIO
 Enterprise Name : SANDBOX_DB2

Action Entry Name C Short Description
S C_DB2_DEPENDENTS * DB2 Class - DIST,DBM1,IRLM,SPAS

C_DB2_MSTR * DB2 Class - System Services
 DB2_DBM1 DB2 Database Services
 DB2_DIST DB2 Distributed Data Facility
 DB2_IRLM DB2 Resource Lock Manager
 DB2_MSTR DB2 Subsystem
 DB2_SPAS DB2 Stored Procedures
******************************* Bottom of data ********************************

4. We then select RELATIONSHIPS on the Policy Selection panel. See
Example 6-37.

Example 6-37 Policy Selection panel

Policy Selection Row 1 to 13 of 14
Command ===> SCROLL===> PAGE

Entry Type : Application PolicyDB Name : CASE_STUDY_SCENARIO
Entry Name : C_DB2_DEPENDENTS Enterprise Name : SANDBOX_DB2

Action Policy Name Policy Description
 DESCRIPTION Enter description
 LINK TO INSTANCES Link class to instances
 APPLICATION INFO Define application information
 AUTOMATION FLAGS Define application automation flags
 TRIGGER Select trigger
 SERVICE PERIOD Select service period
S RELATIONSHIPS Define relationships
 MESSAGES/USER DATA Define application messages and user data

162 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

 STARTUP Define startup procedures
 SHUTDOWN Define shutdown procedures
 THRESHOLDS Define error thresholds
 MINOR RESOURCE FLAGS Define application sub-component flags
 -------------------- ---
 COPY Copy data from an existing entry
******************************* Bottom of data ********************************

5. On the Defining Relationship panel, we add the dependency of JES2 using
the Supporting Resource. DB8Q/APL/= and Relationship Type =
HASPARENT. You must also specify the Condition as
StartsMeAndStopsMe. The purpose of this condition is for DB8QMSTR start
procedure to start its children. See Example 6-38.

Example 6-38 Define Relationship of C-DB2_DEPENDENTS

Define Relationship
Command ===>

Entry Type : Application PolicyDB Name : CASE_STUDY_SCENARIO
Entry Name : C_DB2_DEPENDENTS Enterprise Name : SANDBOX_DB2

 More: +
Subsystem : C_DB2_DEP
Description.

Relationship Type. . HASPARENT MAKEAVAILABLE MAKEUNAVAILABLE
 PREPAVAILABLE PREPUNAVAILABLE
 FORCEDOWN EXTERNALLY HASMONITOR
 HASPARENT HASPASSIVEPARENT
Supporting Resource. DB8Q/APL/=
 Resource Name
Sequence Number. . . Sequence Number (1-99,blank)

Automation ACTIVE PASSIVE
Chaining STRONG WEAK
Chaining STRONG WEAK
Condition StartsMeAndStopsMe
 Satisfy condition
 (? for list of possible values)

6. We save the changes and the Relationship Selection List panel displays,
showing the Supporting Resource and the Relationship Type. See
Example 6-39.

Example 6-39 Relationship Selection List

Relationship Selection List Row 1 to 1 of 1
 Command ===>

 Chapter 6. Case study scenario: IBM DB2 on z/OS first-level automation domain 163

 Entry Type : Application PolicyDB Name : CASE_STUDY_SCENARIO
 Entry Name : C_DB2_DEPENDENTS Enterprise Name : SANDBOX_DB2

 External Startup. . . ALWAYS (INITIAL ALWAYS NEVER blank)
 External Shutdown . . ALWAYS (FINAL ALWAYS NEVER blank)

 Action # Type Supporting Resource Auto Chain
 HASPARENT DB8Q/APL/=
 ******************************* Bottom of data *******************************

We now must link DB8QDBM, DB8QDIST, and DB8QIRLM to an Instance. In
order to do this, we perform the following steps:

1. From the Policy Database Selection panel, we select our newly created policy
database: CASE_STUDY_SCENARIO.

2. On the Entry Type Selection panel, enter Option 6 for Applications.

3. On the Entry Name Selection panel, we select the C_DB2_DEPENDENTS
class.

4. On the Policy Selection panel, we select LINK TO INSTANCES Link class to
instances. See Example 6-40.

Example 6-40 Link Instance to Class called C_DB2_DEPENDENTS

COMMANDS ACTIONS VIEW HELP
--
 Policy Selection Row 2 to 14 of 14
Command ===> SCROLL===> PAGE

Entry Type : Application PolicyDB Name : CASE_STUDY_SCENARIO
Entry Name : C_DB2_DEPENDENTS Enterprise Name : SANDBOX_DB2

Action Policy Name Policy Description
S LINK TO INSTANCES Link class to instances

APPLICATION INFO Define application information
 AUTOMATION FLAGS Define application automation flags
 TRIGGER Select trigger
 SERVICE PERIOD Select service period
 RELATIONSHIPS Define relationships
 MESSAGES/USER DATA Define application messages and user data
 STARTUP Define startup procedures
 SHUTDOWN Define shutdown procedures
 THRESHOLDS Define error thresholds
 MINOR RESOURCE FLAGS Define application sub-component flags
 -------------------- ---
 COPY Copy data from an existing entry

164 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

5. Now we require all DB8QMSTR children tasks to be selected to this Link
Class to Instances. See Example 6-41.

Example 6-41 Link Class to Instances

COMMANDS ACTIONS VIEW HELP
--
 Link Class to Instances Row 1 to 5 of 5
Command ===> SCROLL===> PAGE

Entry Type : Application PolicyDB Name : CASE_STUDY_SCENARIO
Entry Name : C_DB2_DEPENDENTS Enterprise Name : SANDBOX_DB2

Action Status Entry Name currently linked
 SELECTED DB2_DIST C_DB2_DEPENDENTS
 SELECTED DB2_IRLM C_DB2_DEPENDENTS
 DB2_MSTR C_DB2_MSTR

SELECTED DB8QDBM1 C_DB2_DEPENDENTS
******************************* Bottom of data ********************************

6. We save all the changes made in the above steps.

Now we are ready to import the CASE_STUDY_SCENARIO policy database into
our enterprise policy database named ITSO_V3R1_PDB. There are various
ways to do this. In our Case Study Scenario, we use the SA z/OS 3.1
Customization Dialog Primary Menu.

6.3.5 Import customized scenario policy database into production
Our customization of our CASE_STUDY_SCENARIO policy database contains
the required automation policy configurations for IBM DB2 in our environment.

These configurations need to be active in order for IBM Tivoli System Automation
for z/OS to automate the database environment for our sample application. In
order to achieve this, we need to import the automation policy defined in the
CASE_STUDY_SCENARIO policy database into the current production policy
named ITSO_V3R1_PDB.

We use the following steps to import our customized policy database for IBM
DB2 automation.

1. On the SA z/OS 3.1 Customization Dialog Primary Menu, we select Option 5 -
Data management. See Example 6-42.

 Chapter 6. Case study scenario: IBM DB2 on z/OS first-level automation domain 165

Example 6-42 SA z/OS 3.1 Customization Dialog Primary Menu

SA z/OS 3.1 Customization Dialog Primary Menu
 Option ===> 5

 0 Settings User parameters

 1 Open Work with the Policy Database
 2 Build Build functions for Policy Database
 3 Report Generate reports from Policy Database
 4 Policies Maintain Policy Database list
 5 Data Management Import policies/Migrate files into a Policy Database
 U User User-defined selections

 X Exit Terminate Customization Dialog

 To switch to another Policy Database, specify the Policy Database name
 in the following field, or specify a ? to get a selection list.
 Current Policy Database . . . ITSO_V3R1_PDB

2. On the Data Management Menu, we select option 1 - Import from another
Policy Database. See Example 6-43.

Example 6-43 Data Management Menu

MENU HELP
--
 Data Management Menu
Option ===> 1

 1 Import from PDB Import from another Policy Database

 2 Import from Add-on Import from predefined add-on policies

 3 Update via File Write selected data to file or read data from file

 9 Migrate from ACF Migrate ACF files (agent data) into Policy Database

3. On the Import entries from other Policy Database panel, we have to specify
the source policy database and the entry type. See Example 6-44.

Example 6-44 Import entries from other Policy Database

--
 Import entries from other Policy Database
Option ===>

 Current Policy Database : ITSO_V3R1_PDB

166 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

 Enterprise Name : ITSOTESTSC64

 1 Import Policy Data
 Source Policy Database. . . . ? (? or name)
 Entry type ? (? or type)
 Import linked entries NO (YES or NO)
 (applies to types APG,APL,TRG only)
 2 View import report

4. For the Entry type field, we are interested in APG (ApplicationGroups) and
APL (Application). Example 6-45 shows the Entry Type Selection panel in
which we select the APG and APL types.

Example 6-45 Entry Type Selection Panel

--
 Entry Type Selection Row 1 to 14 of 34
Command ===>

Enterprise Name : ITSOTESTSC64 PolicyDB Name : ITSO_V3R1_PDB

Action Type Description
 ADF Application Defaults
 AOP Auto Operators
 S APG ApplicationGroup
 S APL Application
 CCN CICS link
 CSA CICS State/Action
 CVP Monitoring period
 EVT Event
 GRP Group
 IRN IMS resource name
 ISA IMS State/Action
 ISF IMS Status file
 MDF MVSCOMP Defaults
 MTR Monitor Resource
 MVC MVS Component
 NFY Notify Operators
 NNT NNT Sessions
 NTW Network
 OCS Controller details
 ODM Workstation domainID
 OEN OPC System details
 OSR Special resources
 PRO Processor
 RES Resident CLISTs
 SBG SubGroup
 SCR Status Details
 SDF System Defaults

 Chapter 6. Case study scenario: IBM DB2 on z/OS first-level automation domain 167

 SVP Service Period
 SYS System
 TMO Timeout Settings
 TMR Timers
 TPA Tape Attendance
 TRG Trigger
 UET User E-T Pairs

5. Example 6-46 is the next panel that displays and it is the Policy Data Base
Selection. There we select the policy database containing the automation
policy for our database environment: CASE_STUDY_SCENARIO.

Example 6-46 Policy Data Base Selection

Policy Data Base Selection Row 1 to 3 of 3
Command ===> SCROLL===> PAGE

Action PolicyDB Name Enterprise Name/Data Set Name
 S CASE_STUDY_SCENARIO SANDBOX_DB2
 E2E END_TO_END_MPV2R1
 ITSO_V3R1_PDB ITSOTESTSC64
******************************* Bottom of data ********************************

6. Now, back to the Import entries from other Policy Database panel
(Example 6-47), we select Option 1 to import the CASE_STUDY_SCENARIO
policy database.

Example 6-47 Import entries from other Policy Database

Import entries from other Policy Database
Option ===> 1

 Current Policy Database : ITSO_V3R1_PDB
 Enterprise Name : ITSOTESTSC64

 1 Import Policy Data
 Source Policy Database. . . . CASE_STUDY_SCENARIO (? or name)
 Entry type APL (? or type)
 Import linked entries NO (YES or NO)
 (applies to types APG,APL,TRG only)
 2 View import report

7. Example 6-48 displays with further selections. In this panel, we require all
applications, including the classes in the Entry Name field, to be imported to
our current policy database. See Example 6-48.

168 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Example 6-48 Class Entry Name

Entry Name Selection Row 1 to 7 of 7
Command ===> SCROLL===> PAGE

Action Status Entry Name Short Description
S C_DB2_DEPENDENTS DB2 Class - DIST,DBM1,IRLM,SPAS
S C_DB2_MSTR DB2 Class - System Services
S DB8QDBM1 DB2 Database Services
S DB8QDIST DB2 Distributed Data Facility
S DB8QIRLM DB2 Resource Lock Manager
S DB2_MSTR DB2 Subsystem
******************************* Bottom of data ********************************

8. Example 6-49 shows the Selected Entry Names for Import panel, confirming
our selections.

Example 6-49 Selected Entry Names for Import

Selected Entry Names for Import Row 1 to 7 of 7
Command ===> SCROLL===> PAGE

Action Entry Name Type C D Short Description
 C_DB2_DEPENDENTS APL DB2 Class - DIST,DBM1,IRLM,SPAS
 C_DB2_MSTR APL DB2 Class - System Services
 DB8QDBM1 APL DB2 Database Services
 DB8QDIST APL DB2 Distributed Data Facility
 DB8QIRLM APL DB2 Resource Lock Manager
 DB2_MSTR APL DB2 Subsystem
******************************* Bottom of data ********************************

9. Example 6-50 displays. It is the Confirm Entry Name List For Import panel, as
seen in the following example.

Example 6-50 Confirm Entry Name List For Import

--
 Confirm Entry Name List For Import Row 1 to 7 of 7
Command ===> SCROLL===> PAGE

Press ENTER to start Import Process.
Press CANCEL or PF3 to return.

 Entry Names Type Link Only Short Description
 C_DB2_DEPENDENTS APL DB2 Class - DIST,DBM1,IRLM,SPAS
 C_DB2_MSTR APL DB2 Class - System Services
 DB8QDBM1 APL DB2 Database Services
 DB8QDIST APL DB2 Distributed Data Facility

 Chapter 6. Case study scenario: IBM DB2 on z/OS first-level automation domain 169

 DB8QIRLM APL DB2 Resource Lock Manager
 DB2_MSTR APL DB2 Subsystem
******************************* Bottom of data ********************************

10.When the import process starts, we follow the messages as you see in
Example 6-51.

Example 6-51 Start of import process

Starting to read data from Policy Database 'CASE_STUDY_SCENARIO'.
Read data of Application 'C_DB2_DEPENDENTS'.
Read data of Application 'C_DB2_MSTR'.
Read data of Application 'DB8QDBM1'.
Read data of Application 'DB8QDIST'.
Read data of Application 'DB8QIRLM'.
Read data of Application 'DB2_MSTR'.
Store data into Policy Database 'ITSO_V3R1_PDB'.

6.3.6 Create application group and define group membership
As we can only automate applications by linking them to systems via an
application group, we have to define an application group for the IBM DB2
applications in our environment.

In this section, we create the application group APPL_GROUP_DB2 and link it to
the required system on which our IBM DB2 subsystem is to be automated,
specifically, our SC64.

Later, we make the DB2_MSTR, DB8QDBM1, DB8QDIST, and DB8QIRLM tasks
members of the APPL_GROUP_DB2.

Creating APPL_GROUP_DB2
We perform the following tasks to create the APPL_GROUP_DB2 application
group:

1. From the Policy Database Selection panel, we select our production policy
database: ITSO_V3R1_PDB.

2. On the Entry Type Selection panel (Example 6-52), enter Option 5 for
ApplicationGroup.

Example 6-52 Entry Type Selection

Entry Type Selection
Option ===> 5

 1 ENT Enterprise 30 TMR Timers
 2 GRP Group 31 TMO Timeout Settings

170 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

 3 SBG SubGroup 32 TPA Tape Attendance
 4 SYS System (*) 33 MVC MVS Component
 5 APG ApplicationGroup (*) 34 MDF MVSCOMP Defaults
 6 APL Application (*) 35 SDF System Defaults
 7 EVT Events 36 ADF Application Defaults
 8 SVP Service Periods 37 AOP Auto Operators
 9 TRG Triggers 38 NFY Notify Operators
 10 PRO Processor 39 NTW Network
 11 MTR Monitor Resource (*) 40 NNT NNT Sessions
 41 RES Resident CLISTs
 20 PRD Product Automation 42 SCR Status Details

 99 UET User E-T Pairs
 (*) Multi-User-Capable

3. On the Entry Name Selection panel (Example 6-53), we issue the N
APPL_GROUP_DB2 command to create a new application group
APPL_GROUP_DB2.

Example 6-53 Define New Entry Type

Entry Name Selection Row 3 to 13 of 13
 Command ===> N APPL_GROUP_DB2 SCROLL===> PAGE

 Entry Type : ApplicationGroup PolicyDB Name : ITSO_V3R1_PDB
 Enterprise Name : ITSOTESTSC64

 Action Entry Name C Short Description
 APPL_GROUP_MOVE MOVE Application Group (SYSPLEX)
 APPL_GROUP_MSTR
 APPL_GROUP_PROXY Proxy_Resource_Appl_Grp
 APPLGR_DB531 DB2 D531 definition
 APPLGR_SGPLEX Sysplex group - sg11 + sg12
 APPLL_GROUP_01 Application group 01
 CICSPAPBGRP CICSPAPB group for OPCAO
 DB2_GROUP SG11/12 Selector
 SYS1_DB2_GROUP SYS1 DB2 Group
 SYS2_DB2_GROUP All DB2 systems on SYS2
 SYS2_DB2_MAINT SG12 DB2 MAINT mode
 ******************************* Bottom of data *******************************

4. On the next panel, note the Automation Name field is empty. All other fields
will be filled in by default.

Example 6-54 Define new entry of type ApplicationGroup

Define New Entry
Command ===>
 More: +

 Chapter 6. Case study scenario: IBM DB2 on z/OS first-level automation domain 171

Define new entry of type ApplicationGroup

 Entry name APPL_GROUP_DB2

 Type SYSPLEX (SYSTEM SYSPLEX)
 Nature BASIC (BASIC MOVE SERVER)
 Default Preference . . . *DEF (0 to 3200, *DEF)
 Automation Name
 Automatically link . . . YES (for Application-Resources)
 Behaviour ACTIVE (ACTIVE PASSIVE)

 Short description . . .
 Long description 1 . . .
 Long description 2 . . .
 Long description 3 . . .
 Long description 4 . . .
 Long description 5 . . .

For our environment, we use the Automation Name called APPLGR_DB8Q.
This Automation Name will be appear in the INGLIST panel and will be
displayed later in “Verify Relationships in the automation policy” on page 176.

See Example 6-55 with the updated Automation Name field.

Example 6-55 Updating the Automation Name

Define New Entry
Command ===>
 More: +

Define new entry of type ApplicationGroup

 Entry name APPL_GROUP_DB2

 Type SYSPLEX (SYSTEM SYSPLEX)
 Nature BASIC (BASIC MOVE SERVER)
 Default Preference . . . *DEF (0 to 3200, *DEF)
 Automation Name APPLGR_DB8Q
 Automatically link . . . YES (for Application-Resources)
 Behaviour ACTIVE (ACTIVE PASSIVE)

 Short description . . .
 Long description 1 . . .
 Long description 2 . . .
 Long description 3 . . .
 Long description 4 . . .
 Long description 5 . . .

172 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

5. Now that we have created the APPL_GROUP_DB2, we must link it to our
SC64 system. On the Policy Selection panel below (Example 6-56), we select
the WHERE USED option.

Example 6-56 Selecting the group to a system

Policy Selection Row 2 to 13 of 13
 Command ===> SCROLL===> PAGE

 Entry Type : ApplicationGroup PolicyDB Name : ITSO_V3R1_PDB
 Entry Name : APPL_GROUP_DB2 Enterprise Name : ITSOTESTSC64

 Action Policy Name Policy Description
 APPLGROUP INFO Define applicationgroup information
 APPLICATIONS Select applications for system APG
 TRIGGER Select trigger
 SERVICE PERIOD Select service period
 RELATIONSHIPS Define relationships
 -------------------- -----RESOURCES-------------------------------
 RESOURCES Select resources and set preferences
 GENERATED RESOURCES List resources generated for this entry
 MEMBER OF List resources where this entry is a member
 -------------------- ---
 s WHERE USED List systems linked to this entry
 COPY Copy data from existing entry
 ******************************* Bottom of data *******************************

6. On the Where Used panel (Example 6-57), we select the system on which we
will automate our IBM DB2 environment: SC64.

Example 6-57 Where Used

Where Used Row 1 to 1 of 1
Command ===> SCROLL===> PAGE

Entry Type : ApplicationGroup PolicyDB Name : ITSO_V3R1_PDB
Entry Name : APPL_GROUP_DB2 Enterprise Name : ITSOTESTSC64

Action Status Name Type
S SELECTED SC64 SYS
******************************* Bottom of data ********************************

Defining membership for APPL_GROUP_DB2
Now it is time to establish membership to the newly created APPL_GROUP_DB2
application group. In our case, we made the IBM DB2 master subsystem
(DB2_MSTR) and its children tasks (DB8QDBM1, DB8QDIST, and DB8QIRLM)
part of the application group.

 Chapter 6. Case study scenario: IBM DB2 on z/OS first-level automation domain 173

In order to define the membership, we perform the following steps:

1. From the Policy Database Selection panel, we select our production policy
database: ITSO_V3R1_PDB.

2. On the Entry Type Selection panel, enter Option 5 for ApplicationGroup, as
seen in Example 6-58.

Example 6-58 Entry Type Selection

Entry Type Selection
Option ===> 5

 1 ENT Enterprise 30 TMR Timers
 2 GRP Group 31 TMO Timeout Settings
 3 SBG SubGroup 32 TPA Tape Attendance
 4 SYS System (*) 33 MVC MVS Component
 5 APG ApplicationGroup (*) 34 MDF MVSCOMP Defaults
 6 APL Application (*) 35 SDF System Defaults
 7 EVT Events 36 ADF Application Defaults
 8 SVP Service Periods 37 AOP Auto Operators
 9 TRG Triggers 38 NFY Notify Operators
 10 PRO Processor 39 NTW Network
 11 MTR Monitor Resource (*) 40 NNT NNT Sessions
 41 RES Resident CLISTs
 20 PRD Product Automation 42 SCR Status Details

 99 UET User E-T Pairs
 (*) Multi-User-Capable

3. On the Entry Name Selection panel (Example 6-59), we select the application
group APPL_GROUP_DB2.

Example 6-59 ApplicationGroup

COMMANDS ACTIONS VIEW HELP
 --
 Entry Name Selection Row 2 to 13 of 13
 Command ===> SCROLL===> PAGE

 Entry Type : ApplicationGroup PolicyDB Name : ITSO_V3R1_PDB
 Enterprise Name : ITSOTESTSC64

 Action Entry Name C Short Description
 S APPL_GROUP_DB2 SC64 DB2 Group
 APPL_GROUP_MOVE MOVE Application Group (SYSPLEX)
 APPL_GROUP_MSTR
 APPL_GROUP_PROXY Proxy_Resource_Appl_Grp
 APPLGR_DB531 DB2 D531 definition
 APPLGR_SGPLEX Sysplex group - sg11 + sg12

174 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

 APPLL_GROUP_01 Application group 01
 CICSPAPBGRP CICSPAPB group for OPCAO
 DB2_GROUP SG11/12 Selector
 SYS1_DB2_GROUP SYS1 DB2 Group
 SYS2_DB2_GROUP All DB2 systems on SYS2
 SYS2_DB2_MAINT SG12 DB2 MAINT mode
 ******************************* Bottom of data *******************************

4. On the Policy Selection panel (Example 6-60), we select the type of member,
as in the following example.

Example 6-60 Policy Selection

ACTIONS HELP
--
 Policy Selection Row 1 to 13 of 13
Command ===> SCROLL===> PAGE

Entry Type : ApplicationGroup PolicyDB Name : ITSO_V3R1_PDB
Entry Name : APPL_GROUP_DB2 Enterprise Name : ITSOTESTSC64

Action Policy Name Policy Description
 DESCRIPTION Enter description
 APPLGROUP INFO Define applicationgroup information
S APPLICATIONS Select applications for system APG
 TRIGGER Select trigger
 SERVICE PERIOD Select service period
 RELATIONSHIPS Define relationships
 -------------------- -----RESOURCES-------------------------------
 RESOURCES Select resources and set preferences
 GENERATED RESOURCES List resources generated for this entry
 MEMBER OF List resources where this entry is a member
 -------------------- ---
 WHERE USED List systems linked to this entry
 COPY Copy data from existing entry

5. On the Applications for ApplicationGroup panel (Example 6-61), we select the
applications to be members of the application group, as in the following
example.

Example 6-61 Applications For ApplicationGroup

COMMANDS ACTIONS VIEW HELP
--
 Applications for ApplicationGroup Row 14 to 26 of 117
Command ===> SCROLL===> PAGE

Entry Type : ApplicationGroup PolicyDB Name : ITSO_V3R1_PDB
Entry Name : APPL_GROUP_DB2 Enterprise Name : ITSOTESTSC64

 Chapter 6. Case study scenario: IBM DB2 on z/OS first-level automation domain 175

Action Status Application
S DB2Q
S DB8QDBM1
S B8QDIST
S DB8QIRLM

6. The following panel (Example 6-62) displays to show our selections to this
group.

Example 6-62 Selections for Applications for ApplicationGroup panel

COMMANDS ACTIONS VIEW HELP
 --
 Applications for ApplicationGroup Row 14 to 26 of 117
 Command ===> SCROLL===> PAGE

 Entry Type : ApplicationGroup PolicyDB Name : ITSO_V3R1_PDB
 Entry Name : APPL_GROUP_DB2 Enterprise Name : ITSOTESTSC64

 Action Status Application

SELECTED DB2Q
SELECTED DB8QDBM1

 SELECTED DB8QDIST
 SELECTED DB8QIRLM

All the applications are now selected and part of the APPL_GROUP_DB2
application group.

Per the IBM Tivoli System Automation for z/OS V3.1 Customizing and
Programming, SC33-8260-01, manual guidelines, you can now create the
automation control file (ACF) using the BUILDF command. Once you build the
ACF, the program to program interface (PPI) AOFASSI, Automation Manager
INGEAMSA, and Automation Agent AOFAPPL can be started.

The ACF will be read into cache at Automation Manager INGEAMSA cold
startup.

The Agent must be started up last to receive the AOF603D message after the
Automation Manager INGEAMSA is initialized.

6.3.7 Verify Relationships in the automation policy
In this section, we verify the relationship definitions of our IBM DB2 automation
policy. These relationships were defined as dependencies and represent a
hierarchy of resources defined in our policy.

176 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Now we are ready to log on to our IBM Tivoli System Automation for z/OS
domain named SC64N as we present in the following steps.

1. Example 6-63 represents the NetView logon screen of our environment.

Example 6-63 NetView Logon screen

NN NN VV VV
 NNN NN EEEEEE TTTTTTTT VV VV II EEEEEE WW WW TM
 NNNN NN EE TT VV VV II EE WW W WW
 NN NN NN EEEE TT VV VV II EEEE WW WWW WW
 NN NNNN EE TT VV VV II EE WWWW WWWW
 NN NNN EEEEEE TT VVV II EEEEEE WW WW
 NN NN V

 5697-ENV (C) Copyright IBM Corp. 1986, 2002 - All Rights Reserved
U.S. Government users restricted rights - Use, duplication, or disclosure
 restricted by GSA ADP schedule contract with IBM corporation.
 Licensed materials - Property of IBM Corporation
 Domain = SC64N NetView V5 - 64

 OPERATOR ID ==> TivO01 or LOGOFF
 PASSWORD ==>
 PROFILE ==> Profile name, blank=default
 HARDCOPY LOG ==> device name, or NO, default=NO
RUN INITIAL COMMAND ==> YES or NO, default=YES
 Takeover session ==> YES, NO or FORCE, default=NO

 Enter logon information or PF3/PF15 to logoff

2. Since we are logged onto NetView, we get the main menu panel shown in
Example 6-64.

Example 6-64 NetView main menu

CNM1NETV Tivoli NetView for z/OS Version 5 Main Menu

 Operator ID = TIVO01 Application = SC64N02C

 Enter a command (shown highlighted or in white) and press Enter.

 Browse Facility BROWSE command
 Command Facility NCCF command
 News NEWS command
 PF Key Settings DISPFK command
 Help Facility HELP command
 Index of help topics INDEX command
 Help Desk HELPDESK command

 Chapter 6. Case study scenario: IBM DB2 on z/OS first-level automation domain 177

 System Automation for z/OS AOC command

 To log off or disconnect LOGOFF command or DISC command

TO SEE YOUR KEY SETTINGS, ENTER 'DISPFK'
Action===> aoc

3. On the Action prompt, we use the AOC command to access the IBM Tivoli
System Automation for z/OS main menu as shown in Example 6-65.

Example 6-65 IBM Tivoli System Automation for z/OS Main Menu

AOFPOPER SA z/OS - System Operations
Domain ID = SC64N --------- MAIN MENU --------- Date = 08/31/05
Operator ID = TIVO01 Time = 11:04:31

 Select Description Component

 1 Operator Interface OPER
 2 Command Dialogs CD
 3 Status Display Facility SDF
 I IMS Automation Feature IMS
 C CICS Automation Feature CICS
 O OPC Automation Feature OPC
 L User defined Local Functions

 SA z/OS Version 3 Release 1
 Licensed Materials - Property of IBM
 5698-SA3 (C) Copyright IBM Corp. 1990, 2005 All Rights Reserved.

Command ===> 3
 PF1=Help PF2=End PF3=Return PF6=Roll
 PF12=Retrieve

4. We use Option 3 to access the Status Display Facility (SDF). This shows all
our applications that IBM Tivoli System Automation for z/OS V3.1 controls
and monitors. See Example 6-66.

Example 6-66 SDF panel: DISPSTAT

AOFKSTA5 SA z/OS - Command Dialogs Line 1 of 17

178 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Domain ID = SC64N -------- DISPSTAT ---------- Date = 08/31/05
Operator ID = TIVO01 Time = 11:09:35
 A ingauto B setstate C ingreq-stop D thresholds E explain F info G tree
 H trigger I service J all children K children L all parents M parents
CMD RESOURCE STATUS SYSTEM JOB NAME A I S R D RS TYPE Activity
--- ----------- -------- -------- -------- ------------ -------- ---------
 AOFASSI UP SC64 AOFASSI Y Y Y Y Y Y MVS --none--
 APPC UP SC64 APPC Y Y Y Y Y Y MVS --none--
 ASCH UP SC64 ASCH Y Y Y Y Y Y MVS --none--
 DB8Q UP SC64 DB8QMSTR Y Y Y Y Y Y MVS --none--
 DB8QDBM1 UP SC64 DB8QDBM1 Y Y Y Y Y Y MVS --none--
 DB8QDIST UP SC64 DB8QDIST Y Y Y Y Y Y MVS --none--
 DB8QIRLM UP SC64 DB8QIRLM Y Y Y Y Y Y MVS --none--

HSAMPROC UP SC64 HSAMSC64 Y Y Y Y Y Y MVS --none--
 G JES2 UP SC64 JES2 Y Y Y Y Y Y MVS --none--
 LLA UP SC64 LLA Y Y Y Y Y Y MVS --none--

RMF UP SC64 RMF Y Y Y Y Y Y MVS --none--
 RMFIII UP SC64 RMFGAT Y Y Y Y Y Y MVS --none--
 TSO UP SC64 TSO Y Y Y Y Y Y MVS --none--
 VLF UP SC64 VLF Y Y Y Y Y Y MVS --none--
 VTAM44 UP SC64 VTAM44 Y Y Y Y Y Y MVS --none--

Command ===>
 PF1=Help PF2=End PF3=Return PF4=INGLIST PF5=Filters PF6=Roll
 PF7=Back PF8=Forward PF9=Refresh PF10=Previous PF11=Next PF12=Retrieve

5. To check the dependencies of our IBM DB2 applications, we enter the
command G to JES2. This displays the hierarchy of the IBM DB2 applications
starting from JES2. See Example 6-67.

Example 6-67 IBM DB2 application dependencies

AOFKTREE SA z/OS - Command Dialogs Line 1 of 19
Domain ID = SC64N -------- DISPTREE ---------- Date = 08/31/05
Operator ID = TIVO01 Time = 11:24:52

 Subsystem ==> JES2 System ==> SC64 Dependency ==> START

JES2
+-- DB8Q
| +-- DB8QDBM1
| +-- DB8QDIST
| +-- DB8QIRLM
+-- VTAM44
| +-- TCPIP
| +-- DB8Q

 | | +-- DB8QDBM1

 Chapter 6. Case study scenario: IBM DB2 on z/OS first-level automation domain 179

 | | +-- DB8QDIST
 | | +-- DB8QIRLM
 | +-- E2E_EAS
 | +-- E2E_ADPT

With these definitions, in case DB8Q (parent task) is set to be stopped, all the
other children tasks: DB8QDM1, DB8QDST, DB8QIRLM will be terminated
first, and, then, DB8Q will terminate. In case of a DB8Q start, all the children
tasks will be started after a successful DB8Q initialization.

6. To check the groups and their membership information on IBM Tivoli System
Automation for z/OS V3.1, on the command line, enter INGLIST. See
Example 6-68.

Example 6-68 Checking APPLGR_DB8Q Group

INGKYST0 SA z/OS - Command Dialogs Line 1 of 26
Domain ID = SC64N -------- INGLIST --------- Date = 09/08/05
Operator ID = TIVO01 Sysplex = SANDBOX Time = 18:28:42
CMD: A Update B Start C Stop D INGRELS E INGVOTE F INGINFO
 G Members H DISPTRG I INGSCHED J INGGROUP M DISPMTR / scroll
CMD Name Type System Compound Desired Observed Nature
--- ------------ ---- -------- ------------ ----------- ---------- --------
 AOFASSI APL SC64 SATISFACTORY AVAILABLE AVAILABLE
 APPC APL SC64 SATISFACTORY AVAILABLE AVAILABLE
 G APPLGR_DB8Q APG SC64 SATISFACTORY AVAILABLE AVAILABLE BASIC
 APPLGRBASIC APG SC64 SATISFACTORY AVAILABLE AVAILABLE BASIC
 APPLGROUP01 APG SC64 SATISFACTORY AVAILABLE AVAILABLE BASIC
 APPLGRPMSTR APG SC64 SATISFACTORY AVAILABLE AVAILABLE BASIC

7. Now we want to view the members within the APPLGR_DB8Q. Enter G (for
Members). The result displays in Example 6-69.

Example 6-69 APPLGR_DB8Q members

INGKYST0 SA z/OS - Command Dialogs Line 1 of 4
Domain ID = SC64N -------- INGLIST --------- Date = 09/08/05
Operator ID = TIV0O1 Sysplex = SANDBOX Time = 18:36:16
CMD: A Update B Start C Stop D INGRELS E INGVOTE F INGINFO
 G Members H DISPTRG I INGSCHED J INGGROUP M DISPMTR / scroll
CMD Name Type System Compound Desired Observed Nature
--- ------------ ---- -------- ------------ ----------- ---------- --------
 DB8Q APL SC64 SATISFACTORY AVAILABLE AVAILABLE
 DB8QDBM1 APL SC64 SATISFACTORY AVAILABLE AVAILABLE
 DB8QDIST APL SC64 SATISFACTORY AVAILABLE AVAILABLE
 DB8QIRLM APL SC64 SATISFACTORY AVAILABLE AVAILABLE

180 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

6.4 End-to-end Automation Adapter configuration
As presented in Chapter 1, “IBM Tivoli System Automation for Multiplatforms
V2.1” on page 3, you can use IBM Tivoli System Automation for Multiplatforms
V2.1 End-to-end Automation Management Component to automate the
operation of resources across heterogeneous environments (called first-level
automation domains), which is managed by an automation manager such as IBM
Tivoli System Automation for Multiplatforms V2.1 Base Component or IBM Tivoli
System Automation for z/OS V3.1.

An End-to-end Automation Adapter connects each first-level automation domain
to the End-to-end Automation Manager.

We must note that there can be only one End-to-end Automation Adapter per
first-level automation domain. In the context of IBM Tivoli System Automation for
z/OS V3.1, that means only one End-to-end Automation Adapter per IBM Tivoli
System Automation for z/OS V3.1 z/OS sysplex group.

Although there can be more than one IBM Tivoli System Automation for z/OS
V3.1 domain in a sysplex, there can be only one End-to-end Automation Adapter
per z/OS system. In addition, the End-to-end Automation Adapter must run on
the same system as the primary IBM Tivoli System Automation for z/OS V3.1
Agent.

Figure 6-2 End-to-end automation domain and SC64N interaction

When the End-to-end Automation Adapter runs on a z/OS system, the IBM Tivoli
System Automation for z/OS V3.1 Agent on that z/OS system is the primary
automation agent.

First-level automation domain
SC64N

SC64 Host

End-to-end automation adapter

End-to-end automation domain
ITSOE2E

End-to-end automation
manager

Operations Console
IBM Tivoli Systems Automation

for z/OS V3.1
 automation manager

 Chapter 6. Case study scenario: IBM DB2 on z/OS first-level automation domain 181

The End-to-end Automation Adapter registers with the primary automation agent
at startup time. The End-to-end Automation Adapter also subscribes with the
primary automation agent to enable communication channels. The primary
automation agent then enables the End-to-end Automation Adapter to
communicate with the primary IBM Tivoli System Automation for z/OS V3.1
Automation Manager.

After a system failure, event subscriptions are lost and the End-to-end
Automation Adapter has to re-subscribe to the primary automation agent.

In our case study scenario environment, we have a single z/OS system. In this
case, the End-to-end Automation Adapter primary automation agent and the
primary IBM Tivoli System Automation for z/OS V3.1 Automation Manager are all
running on the same z/OS system. See Figure 6-3.

182 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Figure 6-3 End-to-end Automation Adapter communication

Per the IBM Tivoli System Automation for z/OS V3.1 End-to-end Automation
Adapter, SC33-8271-01, manual, setting up the IBM Tivoli System Automation
for z/OS V3.1 End-to-end Automation Adapter in our environment requires the
following configuration steps:

� “Check prerequisites and dependencies” on page 184

� “Configure NetView and IBM Tivoli System Automation for z/OS” on page 184

� “Enabling the Event Automation Service” on page 186

� “Configure the Global Initialization File” on page 186

� “Configure the NetView Message Adapter Service” on page 187

 Chapter 6. Case study scenario: IBM DB2 on z/OS first-level automation domain 183

� “Customize the End-to-end Automation Adapter” on page 190

� “Perform configuration for security” on page 196

� “Verify startup of the Automation Adapter” on page 197

� “Solve timeout problems” on page 198

6.4.1 Check prerequisites and dependencies
In order to implement the End-to-end Automation Adapter on IBM Tivoli System
Automation for z/OS V3.1, you must satisfy the following prerequisites and
dependencies:

� IBM Tivoli System Automation for z/OS V3.1

� IBM Tivoli NetView V5.1

� z/OS 1.3 or higher

� Java Runtime Environment (JRE) 1.4.2 installed on z/OS

� The JRE Software Development Kit (SDK)

� The Event Automation Service (EAS) and Message Adapter Service
components of NetView must be configured

� Full z/OS UNIX System Services (USS) with hierarchical file system

� SSI address space with PPI function of NetView

� TCP/IP

6.4.2 Configure NetView and IBM Tivoli System Automation for z/OS
The IBM Tivoli System Automation for z/OS V3.1 communication task
INGPXDST has an initialization member DSIPARM (INGXINIT) that we use to
specify End-to-end Automation Adapter-specific parameters. In our case study
scenario, we add the following parameters to this member:

� GRPID=XY

This parameter must be set for the XCF group ID for IBM Tivoli System
Automation for z/OS V3.1. This ID must be the same as in the automation
adapter plug-in configuration.

� PPI=YES

This parameter is used for the End-to-end Automation Adapter.

� PPIBQL=1500

This parameter controls the input request flow into this buffer queue.

184 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

For further details about the above parameters, refer to the IBM Tivoli System
Automation for z/OS V3.1 End-to-end Automation Adapter, SC33-8271-01,
manual.

Automated operator functions
End-to-end Automation Adapter uses dedicated automated operator functions in
the primary agent to execute requests and to forward events.

The automated operator functions E2EOPER, and E2EOPR01 through
E2EOPRNN, are optional for the End-to-end Automation Adapter configuration. If
defined, they are used to execute requests from the End-to-end Automation
Adapter.

You must define the automated operator function EVTOPER. It is used to forward
events to the End-to-end Automation Adapter. If not defined, the initialization of
the End-to-end Automation Adapter fails.

We use the customization dialogs to define the automated operator functions for
the End-to-end Automation Adapter in entry type Auto Operators of the IBM Tivoli
System Automation for z/OS V3.1 policy database.

Note that the names of the Automation Operators must match those defined in
the DSIPARM data set. The following operator group had to be selected to our
z/OS system SC64.

� EVT_PUBLISHER - Event Publisher

� E2E_AUTOOPS - Automated Functions for End-to-end Automation Adapter

For further details about automated operators, refer to IBM Tivoli System
Automation for z/OS V3.1 End-to-end Automation Adapter, SC33-8271-01.

Example 6-70 shows the output of the DISPAOPS command in our environment
showing the defined automated operator functions.

Example 6-70 DISPAOPS command response

AOFK2SO SA z/OS - Command Dialogs Line 14 of 38
Domain ID = SC64N ---------- DISPAOPS ---------- Date = 09/06/05
Operator ID = Tiv0O1 Time = 14:05:39

 Automated
 System Function Primary Status Secondary Status
 -------- ---------- ------- ------ --------- ------
 SC64 EVTOPER AUTEVT1 ACTIV AUTEVT2 ACTIV
 SC64 E2EOPER AUTE2E ACTIV
 SC64 E2EOPR01 AUTE2E01 ACTIV
 SC64 E2EOPR02 AUTE2E02 ACTIV

 Chapter 6. Case study scenario: IBM DB2 on z/OS first-level automation domain 185

 SC64 E2EOPR03 AUTE2E03 ACTIV

Command ===>
 PF1=Help PF2=End PF3=Return PF6=Roll
 PF7=Back PF8=Forward PF9=Refresh PF12=Retrieve

6.4.3 Enabling the Event Automation Service
The Event Automation Service (EAS) can be started either with a job from an
MVS system console, or from a UNIX System Service command shell. In our
case study scenario, we automate the EAS start on our IBM Tivoli System
Automation for z/OS V3.1. Our EAS resource name is called E2E_EAS and the
MVS job name is called AOFAEVNT in our case study.

You can find a sample for starting EAS as a job located in
NETVIEW.V5R1M0.SCNMUXMS as the member IHSAEVNT. The initialization
files are assumed to be located in a data set allocated to DD name IHSSMP3.
We follow the description within the member for configuration.

The startup parameters have to be provided in form of the following initialization
files, and we discuss configuration in the following sections.

� Global initialization file
� Message adapter configuration file

Perform the following updates to the sample to meet our requirements for our
installation in the start procedure AOFAEVNT (IBM default member IHSAEVNT):

� If you do not use the default name IHSAINIT for the global initialization file,
pass the name of your file via the parameter INITFILE.

� If you do not use the default name IHSAMCFG for the message adapter
configuration file, pass the name of your file via the parameter MSGCFG.

� In the DD statement, specify the data set names of your installation.

6.4.4 Configure the Global Initialization File
The default member name for the global initialization file is IHSAINIT. This is
found in the IBM-supplied member NETVIEW.V5R1M0.SCNMUXMS.

This member was copied into our data set name NETUSER.SCNMUXMS for
IBM Tivoli System Automation for z/OS V3.1 job AOFAEVNT. We follow the
description within the member for configuration.

186 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Make sure that the NetView message adapter service is also started when
starting EAS. This is done by commenting out the following statement:

NOSTART TASK=MESSAGEA

Specify the Program to Program Interface (PPI) called INGEV2E2 for the
receiver.

PPI=INGEVE2E

We change the IHSAINIT initialization file so that only the necessary tasks for our
environment are started at initialization time. Example 6-71 shows the
configuration in the NETVUSER.SCNMUXCL(IHSAINIT) member. We show here
only the lines that are relevant to our scenario. All the missing lines are
commented out.

Example 6-71 Message adapter task

PPI Receiver ID
PPI=INGEVE2E
Tasks not started at initialization
NOSTART TASK=ALERTA
#NOSTART TASK=MESSAGEA
NOSTART TASK=EVENTRCV
NOSTART TASK=ALRTTRAP
NOSTART TASK=TRAPALRT

For further information, refer to the IBM Tivoli System Automation for z/OS V3.1
End-to-end Automation Adapter, SC33-8271-01, manual.

6.4.5 Configure the NetView Message Adapter Service
The default member name for the global initialization file is IHSAMCFG. We copy
this member into our data set name NETUSER.SCNMUXMS.

In our environment, the NetView message event adapter configuration file is a
member named IHSAMCFG. We must change the following in this member:

1. We specify the address 127.0.0.1 as the server host name.

2. We keep the port number on which the End-to-end Automation Adapter
responds as default 5529.

3. As for connection mode, we set it to connection_oriented. This allows for the
connection to be established at initialization time and closed at End-to-end
Automation Adapter termination time.

4. We keep the default value of 4096 for the maximum event size.

 Chapter 6. Case study scenario: IBM DB2 on z/OS first-level automation domain 187

5. We specify the name of the NetView message adapter format file as
INGMFMTE. The version of this file that is to be used by end-to-end automation
is delivered in ING.SINGSAMP(INGMFMTE). No configuration is required.

We have a user-defined data set named NETVUSER.SCNMUXCL of which the
IHSAMCFG is a member. This data set is included in the NetView message
adapter service startup procedure.

Example 6-72 shows the configuration parameters used in our
NETVUSER.SCNMUXCL(IHSAMCFG) member.

Example 6-72 IHSAMCFG member settings

ServerLocation=127.0.0.1
ServerPort=5529
ConnectionMode=connection_oriented
BufferEvents=yes
BufferEventsLimit=0
BufferFlushRate=0
BufEvtPath=/etc/Tivoli/tec/cache_nv390msg
BufEvtMaxSize=64
BufEvtShrinkSize=8
BufEvtRdBlkLen=64
EventMaxSize=4096
AdapterFmtFile=INGMFMTE
FilterMode=out

For further details, refer to IBM Tivoli System Automation for z/OS V3.1
End-to-end Automation Adapter, SC33-8271-01.

Example 6-73 shows the NetView message adapter service startup procedure:
AOFAEVNT.

Example 6-73 AOFAEVNT startup procedure

//EASGO PROC PROG=IHSAC000, ** EVENT/AUTOMATION SERVICE
// REG=32M, ** REGION SIZE IN K FOR MAIN TASK
//* TCPDATA='', ** SET FOR TCPIP.DATA EXPLICIT ALLOC
// MSGCFG=, ** MESSAGE ADAPTER CONFIG FILE
// ALRTCFG=, ** ALERT ADAPTER CONFIG FILE
// ERCVCFG=, ** EVENT RECEIVER CONFIG FILE
// TALRTCFG=, ** TRAP TO ALERT CONV. CONFIG FILE
// ALRTTCFG=, ** ALERT TO TRAP CONV. CONFIG FILE
// PPI=INGEVE2E, ** PPI RECEIVER ID
// INITFILE=, ** EVENT AUTOAMTION SVC INIT FILE
// OUTSIZE=, ** TRACE/ERROR WRAP SIZE IN KBYTES
// OELINE= ** SPECIFY OE-STYLE PARAMETERS
//*
//***

188 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

//*
//STEP1 EXEC PGM=&PROG,TIME=1440,REGION=®,
// PARM=('/MSGCFG=&MSGCFG ALRTCFG=&ALRTCFG ERCVCFG=&ERCVCFG*
// TALRTCFG=&TALRTCFG ALRTTCFG=&ALRTTCFG PPI=&PPI *
// INITFILE=&INITFILE OUTSIZE=&OUTSIZE &OELINE')
//*
//STEPLIB DD DSN=NETVIEW.SCNMUXLK,DISP=SHR
//* UNCOMMENT THE FOLLOWING LINE IF YOU WILL BE USING LE/370 LIBRARIES
//* DD DSN=CEE.V1R7M0.SCEERUN,DISP=SHR
//*
//* INITIALIZATION PARAMETERS AND CONFIGURATION FILES DATASET
//IHSSMP3 DD DSN=NETVUSER.SCNMUXCL,DISP=SHR
// DD DSN=NETVIEW.SCNMUXCL,DISP=SHR
//*
//* EAS MESSAGES DATASET
//IHSMSG1 DD DSN=NETVIEW.SCNMUXMS,DISP=SHR
//*
//* EAS OUTPUT DATASETS
//IHSC DD SYSOUT=A
//IHSM DD SYSOUT=A
//IHSA DD SYSOUT=A
//IHSE DD SYSOUT=A
//IHST DD SYSOUT=A
//IHSL DD SYSOUT=A
//IHSCS DD SYSOUT=A
//IHSMS DD SYSOUT=A
//IHSAS DD SYSOUT=A
//IHSES DD SYSOUT=A
//IHSTS DD SYSOUT=A
//IHSLS DD SYSOUT=A
//IHSCSTD DD SYSOUT=A
//IHSASTD DD SYSOUT=A
//IHSMSTD DD SYSOUT=A
//IHSESTD DD SYSOUT=A
//IHSTSTD DD SYSOUT=A
//IHSLSTD DD SYSOUT=A
//*
//* TCP/IP EXPLICIT ALLOCATION OF TCPIP.DATA
//* NOTE: REMOVE THE COMMENT FROM THE FOLLOWING STATEMENT AND
//* SET THE TCPIPDATA SUBSTITUTION VARIABLE TO EXPLICITLY
//* ALLOCATE TCPIP.DATA
//*SYSTCPD DD DISP=SHR,DSN=&TCPDATA
//*
//* RUNTIME LIBRARY MESSAGES
//SYSTERM DD SYSOUT=A
//*
//* NOTE: REMOVE THE COMMENTS FROM THE NEXT TWO STATEMENTS ALONG WITH
//* THE JOBCARD WHEN MAKING THIS A BATCH JOB.
//* PEND

 Chapter 6. Case study scenario: IBM DB2 on z/OS first-level automation domain 189

//*EAS EXEC EASGO
**************************** Bottom of Data ****************************

6.4.6 Customize the End-to-end Automation Adapter
After we install the necessary prerequisites, we are now ready to configure the
End-to-end Automation Adapter.

The End-to-end Automation Adapter SMP/E installation creates a default
structure for the various files that are associated with the End-to-end Automation
Adapter, as follows:

/usr/lpp/ing/adapter This contains the executable files, for example,
the End-to-end Automation Adapter start and
stop scripts.

/usr/lpp/ing/adapter/config This contains configuration files, for example,
the master configuration file.

/usr/lpp/ing/adapter/data Working files, for example, the cache and log
files. This directory is initially empty.

/usr/lpp/ing/adapter/lib It contains JAR files and DLLs for the
End-to-end Automation Adapter.

/usr/lpp/ing/adapter/ssl Security certificates. This directory is initially
empty.

To customize the End-to-end Automation Adapter, we perform configurations on
the following elements:

� “RACF authorization for z/OS UNIX privileges” on page 190

� “The End-to-end Automation Adapter shell script” on page 191

� “The link list” on page 193

� “The End-to-end Automation Adapter master configuration file” on page 193

� “The End-to-end Automation Adapter plug-in configuration file” on page 194

� “The End-to-end Automation Adapter JAAS configuration file” on page 195

The following sections go into the details of each of the above configuration steps
for our case study environment.

RACF authorization for z/OS UNIX privileges
You can define profiles in the UNIXPRIV class to grant RACF® authorization for
certain z/OS UNIX privileges. These privileges are automatically granted to all
users with z/OS UNIX superuser authority. By defining profiles in the UNIXPRIV
class, you may specifically grant certain superuser privileges with a high degree

190 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

of granularity to users who do not have superuser authority. This allows you to
minimize the number of assignments of superuser authority at your installation
and reduces your security risk.

Since our case study scenario is in a controlled environment, we decide to grant
our RACF user ID with superuser authority.

Refer to the Security Configuration in a TCP/IP Sysplex Environment,
SG24-6527-00, Redbook for instructions on how to manipulate security
privileges for your environment.

The End-to-end Automation Adapter shell script
If you want to use your own hierarchical file system (HFS) or a shared HFS, you
have to modify the End-to-end Automation Adapter start script and its
configuration files.

In our case scenario according to IBM Tivoli System Automation for z/OS V3.1
End-to-end Automation Adapter, SC33-8271-01, we update the ingadapter.sh
USS shell script for our environment.

We changed the following parameters in the ingadapter.sh script for our case
study scenario. Entries that are not mentioned in the following list are not
modified and are left with their default values.

� We comment out the SSL_PASSWD parameter because we are not using the
GenerateSampleKeys function.

� We set the filenames for the standard output and error streams using the
REDIRSTDOUT and REDIRSTDERR entries in the ingadapter.sh script to
match the End-to-end Automation Adapter start up procedure script on z/OS
(AOFAADPT). The entries in the AOFAADPT are as follows.

//STDOUT DD PATH='/usr/lpp/ing/adapter/data/logs/stdout.log',
//STDERR DD PATH='/usr/lpp/ing/adapter/data/logs/stderr.log',

� We specify the path to JAVA runtime in our installation.

Example 6-74 shows the ingadapter.sh for our case study scenario. Changed
attributes are marked in bold.

Example 6-74 End-to-end Automation Adapter startup script

#--
Customization section begins here
#--
Root of the automation adapter installation
INSTALL_DIR=/usr/lpp/ing/adapter

Password for the truststore generated by function GenerateSampleKeys.

 Chapter 6. Case study scenario: IBM DB2 on z/OS first-level automation domain 191

Needed only if it is planned to generate sample keys.
SSL_PASSW=passphrase

Redirection of stdout and stderr as specified in sample proc SAM(INGXADPT).
Specify only filename without path.
REDIRSTDOUT=/usr/lpp/ing/adapter/data/logs/stdout.log
REDIRSTDERR=/usr/lpp/ing/adapter/data/logs/stderr.log

Customize debugging DLLs (only if IBM service requires you to do so)
export INGXDBUG=1,2,1

#--
Additional customization needed if your installation differs from
the default installation, e.g. different config or data directory
#--

Java runtime. Customize path in order to invoke java runtime.
JAVA=/usr/lpp/java/J1.4/bin/java
Java SDK. Customize path in order to invoke java keytool (optional).
JAVA_KEYTOOL=keytool

Data directory must match eez-data-directory within ing.adapter.properties
and must match the log path in ing.adapter.jlogdir.properties
Directory access must be read-write
DATA_DIR=$INSTALL_DIR/data

Used by function CreateSampleKeys in order to create and store
the keystore and trusstore files. See also ing.adapter.ssl.properties
Directory access must be read-write otherwise keys remains in data directory
SSL_DIR=$INSTALL_DIR/ssl

Configuration directory, where all config files are stored
CONFIG_DIR=$INSTALL_DIR/config

Master config file for the automation adapter.
The suffix will be added automatically if required.
ADAPTER_CONFIG=$CONFIG_DIR/ing.adapter${SUFFIX}.properties

Java Logger configuration file name and
file name that containst the path to the log-directory
JLOG_FILENAME_LOGPATH=ing.adapter.jlogdir.properties
JLOG_FILENAME=ing.adapter.jlog.properties
JLOG_CONFIG_DIR=$CONFIG_DIR

Other configuration files
JAAS_CONFIG=$CONFIG_DIR/ing.adapter.jaas.properties
SSL_CONFIG=$CONFIG_DIR/ing.adapter.ssl.properties

#--

192 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Customization section ends here.
#--

The link list
We add the following libraries to the link list in our case study environment:

� SYS1.SCLBDLL2
� SYS1.SCEERUN
� SYS1.SCEERUN2
� SYS1.SCLBDLL

You can check that these libraries have been linked using the following
command: D PROG,LNKLST

The End-to-end Automation Adapter master configuration file
The master configuration file for the End-to-end Automation Adapter is specified
in the ingadapter.sh script as follows:

Master config file for the automation adapter.
The suffix will be added automatically if required.
ADAPTER_CONFIG=$CONFIG_DIR/ing.adapter${SUFFIX}.properties

Since we do not use a suffix in our environment, we have to configure the file
/usr/lpp/ing/adapter/config/ing.adapter.properties.

We change the following parameters in the End-to-end Automation Adapter
master configuration file for our case study scenario. Entries that we do not
mention here in the following list were not modified and were left with their default
values.

� The IP address of our z/OS system on which the End-to-end Automation
Adapter receives requests from the End-to-end Automation Management
Component. This is specified in the eez-remote-contact-hostname entry.

� We set eez-operator-authentication to false because we are using the
default IBM Tivoli System Automation for z/OS V3.1 JAAS login modules for
authentication.

� We specify the fully qualified hostname of the server on which the End-to-end
Automation Management Component runs in our environment using the
eif-send-to-hostname entry.

Example 6-75 shows the End-to-end Automation Adapter master configuration
file for our case study scenario. Changed attributes are marked in bold.

Example 6-75 End-to-end Automation Adapter master configuration file

--- Adapter Configuration -----

 Chapter 6. Case study scenario: IBM DB2 on z/OS first-level automation domain 193

eez-remote-contact-hostname = 9.12.6.9
eez-remote-contact-port = 2001
eez-remote-contact-over-ssl = false
eez-operator-authentication = false
eez-initial-contact = true
eez-max-connections = 3
eez-data-directory = ./data

--- EIF Configuration ---------

eif-cache = true
eif-cache-size = 500
eif-retry-interval-seconds = 30
eif-send-to-hostname = tsa011.itsc.austin.ibm.com
eif-send-to-port = 2002
eif-receive-from-hostname = 127.0.0.1
eif-receive-from-port = 5529

--- Plugin Configuration ------

plugin-configfile-sa4zos = ./config/ing.adapter.plugin.properties

The End-to-end Automation Adapter plug-in configuration file
The master configuration file contains the location of the End-to-end Automation
Adapter plug-in configuration file, as follows:

plugin-configfile-sa4zos = ./config/ing.adapter.plugin.properties

We change the following parameters in the End-to-end Automation Adapter
plug-in configuration file for our case study scenario. Entries that are not
mentioned in the following list were not modified and were left with their default
values.

� We set the XCF group ID of the our z/OS as per configurations in INGXINIT
using the GRPID entry.

� We change the number of elements in the PPI queue with the PPIBQL entry.

� Since our z/OS system resides in a remote data center, we change the value
of the TIMEOUT entry.

Note: The Automation manager PARMLIB (HSAMPRM00) on z/OS must
also be updated as GRPID=XY.

194 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

� We decided to change the plugin-domain-name entry to SC64N because
this is our IBM Tivoli System Automation for z/OS NetView domain ID.

Here you can decide your own naming strategy or set it to ? and IBM Tivoli
System Automation for z/OS V3.1 uses the XCF sysplex group name.

Example 6-76 shows the End-to-end Automation Adapter plug-in configuration
file for our case study scenario. Changed attributes are marked in bold.

Example 6-76 End-to-end Automation Adapter plug-in configuration file

--- Specific settings for the SA/Netview communication ---
--- Modify these parameters to your needs ---

GRPID = XY
PPIBQL = 3000
AUTOPFN = E2EOPER
TIMEOUT = 4447
CODEPAGE= Cp1047

--- Domain name may be modified or omitted ---

plugin-domain-name = SC64N

--- Do not modify these plugin settings ---
plugin-impl-class = com.ibm.ing.sam.INGXPlugin
plugin-impl-class-singleton = true
plugin-event-classes = SystemAutomation_Resource_Status_Change
SystemAutomation_Domain_Status_Change SystemAutomation_Resource_Conf
iguration_Change SystemAutomation_Request_Configuration_Change
SystemAutomation_Relationship_Configuration_Change
plugin-auto-start = true

The End-to-end Automation Adapter JAAS configuration file
The JAAS configuration file for the End-to-end Automation Adapter is specified in
the ingadapter.sh script as follows:

Other configuration files
JAAS_CONFIG=$CONFIG_DIR/ing.adapter.jaas.properties

This file specifies two entries for a login module that is required, because in our
environment all incoming requests to the End-to-end Automation Adapter will be
authenticated using JAAS.

 Chapter 6. Case study scenario: IBM DB2 on z/OS first-level automation domain 195

We have not changed this file and used all default values. See Example 6-77. In
our environment, the JAAS configuration files is located at:
/usr/lpp/ing/adapter/config/ing.adapter.jaas.properties

Example 6-77 The JAAS configuration file and adapter.jaas.properties

EEZAdapterDefaultLogin {

 com.ibm.eez.adapter.EEZAdapterDefaultLoginModule required ;
};

EEZAdapterLogin {

 com.ibm.security.auth.module.OS390LoginModule required;
};

6.4.7 Perform configuration for security
When the End-to-end Automation Management Component issues a request to
the End-to-end Automation Adapter, there is always a user ID and password
associated with the request. You need to consider two security aspects:

Authentication
In our environment, the End-to-end Automation Adapter then performs
authentication checks using RACF using the login modules specified in the JAAS
configuration file, described in “The End-to-end Automation Adapter JAAS
configuration file” on page 195.

This decision is made at End-to-end Automation Adapter startup time in the
master configuration file eez-operator-authentication=false.

There are other options for setting up authentication security. Refer to the IBM
Tivoli System Automation for z/OS V3.1 End-to-end Automation Adapter,
SC33-8271-01, manual for details.

Authorization
In case the user ID authentication succeeds, the End-to-end Automation Adapter
performs an authorization check for each of the commands in the request that
are to be executed.

The authorization check is done by an authorization user exit, which is an
external REXX program that must be named AOFEXE2E. If no authorization user
exit exists, the user ID associated with the request is considered to be authorized
for each request.

196 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

We decide not to create our own authorization user exit, but decided that any
request to be considered granted would be a security hazard. We decided to use
the sample that is provided by IBM Tivoli System Automation for z/OS V3.1 as
the member AOFEXE2E in the sample data set SINGSAMP. Refer to the IBM
Tivoli System Automation for z/OS V3.1 End-to-end Automation Adapter,
SC33-8271-01, for details about how to create your own authentication user exit
or to use the AOFEXE2E sample.

6.4.8 Verify startup of the Automation Adapter
Once we complete all the customization, we are ready to start the End-to-end
Automation Adapter for z/OS.

Example 6-78 displays the status of E2E_EAS and E2E_ADPT resources on
NetView. The status of these resources are in CTLDOWN.

We need to change the status of these resources to AUTODOWN, starting with
the E2E_ADPT first and then E2E_EAS second. This will start both resources in
the proper order.

Example 6-78 Status of resources E2E_EAS and E2E_ADPT

AOFKSTA5 SA z/OS - Command Dialogs Line 1 of 18
Domain ID = SC64N -------- DISPSTAT ---------- Date = 09/15/05
Operator ID = TIV0O1 Time = 13:59:46
 A ingauto B setstate C ingreq-stop D thresholds E explain F info G tree
 H trigger I service J all children K children L all parents M parents
CMD RESOURCE STATUS SYSTEM JOB NAME A I S R D RS TYPE Activity
--- ----------- -------- -------- -------- ------------ -------- ---------
 AOFASSI UP SC64 AOFASSI Y Y Y Y Y Y MVS --none--
 APPC UP SC64 APPC Y Y Y Y Y Y MVS --none--
 ASCH UP SC64 ASCH Y Y Y Y Y Y MVS --none--
 DB8Q UP SC64 DB8QMSTR Y Y Y Y Y Y MVS --none--
 DB8QDBM1 UP SC64 DB8QDBM1 Y Y Y Y Y Y MVS --none--
 DB8QDIST UP SC64 DB8QDIST Y Y Y Y Y Y MVS --none--
 DB8QIRLM UP SC64 DB8QIRLM Y Y Y Y Y Y MVS --none--
 E2E_ADPT CTLDOWN SC64 AOFAADPT Y Y Y Y Y Y MVS --none--
 E2E_EAS CTLDOWN SC64 AOFAEVNT Y Y Y Y Y Y MVS --none--
 HSAMPROC UP SC64 HSAMSC64 Y Y Y Y Y Y MVS --none--
 JES2 UP SC64 JES2 Y Y Y Y Y Y MVS --none--
 LLA UP SC64 LLA Y Y Y Y Y Y MVS --none--
 RMF UP SC64 RMF Y Y Y Y Y Y MVS --none--

Command ===>

The name of our End-to-end Automation Adapter for our case study scenario is
(AOFAADPT). This is fully automated on our IBM Tivoli System Automation for

 Chapter 6. Case study scenario: IBM DB2 on z/OS first-level automation domain 197

z/OS V3.1. Refer to IBM Tivoli System Automation for z/OS V3.1 End-to-end
Automation Adapter, SC33-8271-01, for details about how to automate the start
of the End-to-end Automation Adapter.

Example 6-79 shows AOFAADPT application console output. We highlight key
messages in bold.

Example 6-79 AOFAADPT application console output

$HASP100 AOFAADPT ON STCINRDR
IEF695I START AOFAADPT WITH JOBNAME AOFAADPT IS ASSIGNED TO USER STC,GROUP SYS1
$HASP373 AOFAADPT STARTED
CNM493I INGMSG02 : 00000029 : AOCFILT AOFAADPT ACTIVMSG JOBNAME=AOFAADPT
IEF403I AOFAADPT - STARTED - TIME=13.41.04 - ASID=0080 - SC64
INGX9704I Preparing the environment to start the automation adapter.
EEZA0100I The adapter has been started*
Initial contact was enabled and the connection to the management server has
been established*
EEZA0101I The adapter is active*
EEZA0111I The plug-in is starting: class com.ibm.ing.sam.INGXPlugin *
INGX9802I INGX9802I INGXLogger has successfully been initialized using
 configuration file ing.adapter.jlog.properties from path /usr/lpp/ing
 /adapter/config.*
INGX9902I INGXPluginLogger has successfully been initialized using con
 figuration file ing.adapter.jlog.properties from path /usr/lpp/ing/ada
 figuration file ing.adapter.jlog.properties from path /usr/lpp/ing/ada
 pter/config.*
CNM493I INGMSG02 : 00003489 : ACTIVMSG UP=YES
EEZA0112I The plug-in has been started: class com.ibm.ing.sam.INGXPlugin *
EEZA0102I The adapter is ready*

6.4.9 Solve timeout problems
Since we have a relatively small z/OS system, during the development of this
redbook, we experienced timeout problems on the End-to-end Automation
Management Component operations console when displaying IBM Tivoli System
Automation for z/OS resource data from our SC64N automation domain.

Note: You must define the automated operator function EVTOPER. It is used
to forward events to the End-to-end Automation Adapter. If it is not defined, the
initialization of the End-to-end Automation Adapter will fail.

Important: The End-to-end Automation Management Component automation
manager has to be active for the End-to-end Automation Adapter to initialize
with the above messages.

198 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

As described in “End-to-end Automation Adapter configuration” on page 181, the
End-to-end Automation Adapter receives the requests from the End-to-end
Automation Management Component operations console.

These requests are then mapped to IBM Tivoli System Automation for z/OS
commands that query the requested data from the End-to-end Automation
Management Component automation manager. Before sending the query
commands to the End-to-end Automation Management Component automation
manager, the primary automation agent in z/OS checks the expiration time given
to the requests. If the expiration time that remains is too short, the requested
command will be rejected, resulting in error message ING249E that indicates
that a task execution request timed out.

The manual IBM Tivoli System Automation for z/OS V3.1 End-to-end Automation
Adapter, SC33-8271-01, provides a mapping of end-to-end automation requests
to IBM Tivoli System Automation for z/OS commands. Most of these commands
contain a WAIT parameter. The value of the WAIT parameter is calculated as the
difference between the time when the IBM Tivoli System Automation for z/OS
command was issued within the NetView environment and the expiration time
given to the end-to-end automation request.

The expiration time of an end-to-end automation request is determined by both:

� The time when the corresponding end-to-end automation request was issued
from the End-to-end Automation Management Component operations
console or the End-to-end Automation Management Component automation
manager.

� The timeout in seconds defined by a environment variable defined in the IBM
WebSphere Application Server on which the End-to-end Automation
Management Component automation manager runs. The environment
variable must be named com.ibm.eez.aab.invocation-timeout-seconds
and must be set to a value in seconds.

In our environment, we set the com.ibm.eez.aab.invocation-timeout-seconds
to 2500 seconds as you can see in Figure 6-4.

 Chapter 6. Case study scenario: IBM DB2 on z/OS first-level automation domain 199

Figure 6-4 com.ibm.eez.aab.invocation-timeout-seconds variable definition

This solved our timeout issues. Set the value of the
com.ibm.eez.aab.invocation-timeout-seconds variable to fit your environment.

200 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Chapter 7. Case study scenario:
End-to-end automation
domain

In this chapter, we discuss the high availability and end-to-end automation
aspects of the sample application environment across its multiple first-level
automation domains.

We do this by creating and configuring a IBM Tivoli System Automation for
Multiplatforms V2.1 End-to-end Automation Management Component managing
an end-to-end automation domain. The IBM Tivoli System Automation for
Multiplatforms V2.1 End-to-end Automation Management Component is
configured to manage all first-level domains of our case study scenario
environment.

We describe the following topics:

� “End-to-end Automation Management Component installation” on page 203

� “Installation verification tasks” on page 211

� “Users and group management” on page 218

� “End-to-end Automation Management Component configuration” on page 228

� “Defining the end-to-end automation policy” on page 229

7

© Copyright IBM Corp. 2005. All rights reserved. 201

Figure 7-1 shows the portion of the entire case study scenario that this chapter
covers.

Figure 7-1 Our scenario’s end-to-end automation domain

202 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

7.1 End-to-end Automation Management Component
installation

The End-to-end Automation Management Component IBM Tivoli System
Automation for Multiplatforms V2.1 partly runs on a J2EE Application Server and
needs a database server for persisting data. The only supported J2EE
Application Server is IBM WebSphere Application Server Version 6.0.0.2 with a
fixed list of required interim fixes. This very particular IBM WebSphere® version
is necessary because the Integrated Solutions Console (ISC) Version 6 is
installed on top of IBM WebSphere.

You can summarize the installation of End-to-end Automation Management
Component by the following steps:

1. Install IBM DB2 UDB Enterprise Server Edition V8.2

2. Install IBM DB2 V8 Fix Pack 10

Applying this Fix Pack will bring the IBM DB2 installation to an 8.2.3 level. You
can obtain this Fix Pack from the following site:

http://www.ibm.com/software/data/db2/udb/support/downloadv8.html

3. Install IBM WebSphere Application Server V6

4. Install IBM WebSphere Application Server V6 Fix Pack 2

Applying this Fix Pack will bring the IBM WebSphere installation to a 6.0.0.2
level.

5. Install the following IBM WebSphere Application Server V6 interim fixes

– PK08802

http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=PK08802&uid
=swg24010206&loc=en_US&cs=utf-8&lang=en

– PK10066

No information on the IBM WebSphere support web site at the time of
writing this IBM Redbook.

– PK01524

http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=PK01524&uid
=swg24009431&loc=en_US&cs=utf-8&lang=en

Important: Using a different IBM WebSphere version, release, modification
(refresh packs), fix level (fix packs), or even deviating interim fixes may lead to
a non-working installation of the End-to-end Automation Management
Component. Ensure you use the IBM WebSphere installation media shipped
with IBM Tivoli System Automation for Multiplatforms V2.1.

 Chapter 7. Case study scenario: End-to-end automation domain 203

http://www.ibm.com/software/data/db2/udb/support/downloadv8.html
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=PK08802&uid=swg24010206&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=PK08802&uid=swg24010206&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=PK01524&uid=swg24009431&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=PK01524&uid=swg24009431&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/software/data/db2/udb/support/downloadv8.html
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=PK08802&uid=swg24010206&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=PK08802&uid=swg24010206&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=PK01524&uid=swg24009431&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=PK01524&uid=swg24009431&loc=en_US&cs=utf-8&lang=en

– PK00842

http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=P
K00842&uid=swg1PK00842&loc=en_US&cs=utf-8&lang=en

– PK05321

http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=PK05321&uid
=swg24009601&loc=en_US&cs=utf-8&lang=en

– PK06246

http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=PK06246&uid
=swg24009735&loc=en_US&cs=utf-8&lang=en

– PK04784

http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=PK04784&uid
=swg24009575&loc=en_US&cs=utf-8&lang=en

– PK06140

http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=PK06140&uid
=swg24009756&loc=en_US&cs=utf-8&lang=en

– PK00652

http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=PK00652&uid
=swg1PK00652&loc=en_US&cs=utf-8&lang=en

6. Install End-to-end Automation Management Component

All listed Interim Fixes apply to all operating systems and platforms supported by
the IBM Tivoli System Automation for Multiplatforms V2.1 End-to-end Automation
Management Component. Install all required Interim Fixes exactly in the
sequence listed above.

For our scenario, we decided to use a single server for the End-to-end
Automation Management Component. Figure 7-2 shows the components
installed on our single End-to-end Automation Management Component server.

Important: Install the interim fixes in the order presented here. Also, do not
leave out any of the Interim Fixes listed above and do not install additional
Interim Fixes.

204 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=PK00842&uid=swg1PK00842&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=PK05321&uid=swg24009601&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=PK05321&uid=swg24009601&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=PK06246&uid=swg24009735&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=PK06246&uid=swg24009735&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=PK04784&uid=swg24009575&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=PK04784&uid=swg24009575&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=PK06140&uid=swg24009756&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=PK06140&uid=swg24009756&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=PK00652&uid=swg1PK00652&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=PK00652&uid=swg1PK00652&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=PK05321&uid=swg24009601&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=PK05321&uid=swg24009601&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=PK06246&uid=swg24009735&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=PK06246&uid=swg24009735&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=PK04784&uid=swg24009575&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=PK04784&uid=swg24009575&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=PK06140&uid=swg24009756&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=PK06140&uid=swg24009756&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=PK00652&uid=swg1PK00652&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=PK00652&uid=swg1PK00652&loc=en_US&cs=utf-8&lang=en

Figure 7-2 End-to-end Automation Management Component scenario server

We performed the installation of the above prerequisite software following the
steps and guidelines provided in the IBM Tivoli System Automation for
Multiplatforms V2.1 End-to-end Automation Management Component User’s
Guide and Reference, SC33-8211.

We installed the End-to-end Automation Management Component on a single
server running Microsoft® Windows® 2003 Server with Service Pack 1. In this
situation, this single server works as both the End-to-end Automation
Management Component and the operations console server. The installation
option we used in our scenario is End-to-End Automation Management

Important: Before proceeding with the End-to-end Automation Management
Component installation, ensure that all the prerequisite software is at the
required levels. Special attention is required to the IBM WebSphere
Application Server Fix Packs and interim fixes.

Run the genHistoryReport command to generate a IBM WebSphere
Application Server installation report. This tool generates an HTML file
containing all changes to the IBM WebSphere Application Server product due
to installation of Fix Packs and interim Fixes. Verify that the report contains
exactly all the required Fix Packs and interim Fixes.

 Chapter 7. Case study scenario: End-to-end automation domain 205

component, which includes the IBM Tivoli System Automation for Multiplatforms
operations console.

During the installation process, we kept the default value for the end-to-end
automation manager database: EAUTODB. We also provided the user ID and
password of the IBM DB2 instance owner, the hostname, and port number of the
IBM DB2 server.

We used the default configuration settings for IBM WebSphere Application
Server such as the default profile and server1 application server.

For the Lightweight Third Party Authentication (LTPA) configuration settings, we
specified the SSO domain name as shown in Figure 7-3.

Figure 7-3 LTPA Properties: SSO domain name

We also kept the default value for the IBM Tivoli System Automation for
Multiplatforms operations console database: OPCONDB, as shown in Figure 7-4
on page 207. Also, notice that if your database server is not local to the
End-to-end Automation Management Component server, you must have already
created both the operations console database on the database server and a
connection to this database on the End-to-end Automation Management
Component server. In our case, we use a database server local to the
End-to-end Automation Management Component server and we create the
operations console database by the install process.

206 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Figure 7-4 Operations Console Database

The installation proceeds to requesting the type of user registry to use for IBM
WebSphere Application Server security. See Figure 7-5. In our environment, we
opt for an IBM DB2 base user registry. Refer to the IBM Tivoli System Automation
for Multiplatforms V2.1 End-to-end Automation Management Component User’s
Guide and Reference, SC33-8211, if you plan to use a LDAP user registry.

Figure 7-5 Security using IBM DB2 database user registry option

 Chapter 7. Case study scenario: End-to-end automation domain 207

At this point, we have provided the installation process all the necessary
information for the End-to-end Automation Management Component. It now
starts collecting information for the IBM Tivoli System Automation for
Multiplatforms operations console.

We specify the installation directory for Integrated Solutions Console (ISC), and
set the credentials for the ISC administrator user, as presented in Figure 7-6.

Figure 7-6 ISC settings

Figure 7-7 shows the values for the ports used by ISC. The port numbers are
registered within IBM and usually do not require modification. We use the
specified default values.

208 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Figure 7-7 ISC port number settings

We also keep the default values for the Console Help Server port number. See
Figure 7-8.

Figure 7-8 Console Help Server port number

Figure 7-9 shows the values used for the Console and Console Help Services.
The Console Service is an application that runs on top of IBM WebSphere
Application Server. Both Console and Console Help Services are registered as
system services in our environment.

 Chapter 7. Case study scenario: End-to-end automation domain 209

Figure 7-9 ISC application server names

As a last step before the actual installation process begins, we provide the name
of our End-to-end Automation Management Component automation domain
(Figure 7-10). We use this domain later in our environment to manage resources
of our first-level automation domains.

Figure 7-10 Ene-to-end automation domain name

The installation process finishes by showing an installation completion message
as shown in Figure 7-11.

210 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Figure 7-11 Installation successful message

7.2 Installation verification tasks
In this section, we provide a list of tasks to verify the installation of the End-to-end
Automation Management Component. Perform the following tasks to verify a
successful installation of the End-to-end Automation Management Component:

� Verify the creation of the EAUTODB and OPCONDB databases

� Start the End-to-end Automation Management Component automation
engine

� Verify the status of the applications on IBM WebSphere Application Server

� Check the definition and connection of the JDBC providers in IBM
WebSphere Application Server

� Start the ISC portal application

� Open the IBM Tivoli System Automation for Multiplatforms operations console

7.2.1 EAUTODB and OPCONDB databases
In order to verify the creation of the EAUTODB and OPCONDB databases, list
the database directory on the IBM DB2 server and try a connection to the
databases using the database instance owner specified during the End-to-end
Automation Management Component installation as shown Example 7-1.

 Chapter 7. Case study scenario: End-to-end automation domain 211

Example 7-1 Database verification

C:\>db2 list database directory

 System Database Directory

 Number of entries in the directory = 2

Database 1 entry:

 Database alias = EAUTODB
 Database name = EAUTODB
 Database drive = C:\DB2
 Database release level = a.00
 Comment =
 Directory entry type = Indirect
 Catalog database partition number = 0
 Alternate server hostname =
 Alternate server port number =

Database 2 entry:

 Database alias = OPCONDB
 Database name = OPCONDB
 Database drive = C:\DB2
 Database release level = a.00
 Comment =
 Directory entry type = Indirect
 Catalog database partition number = 0
 Alternate server hostname =
 Alternate server port number =

C:\>db2 connect to EAUTODB user db2admin
Enter current password for db2admin:

 Database Connection Information

 Database server = DB2/NT 8.2.3
 SQL authorization ID = DB2ADMIN
 Local database alias = EAUTODB

C:\>db2 connect to OPCONDB user db2admin
Enter current password for db2admin:

 Database Connection Information

 Database server = DB2/NT 8.2.3
 SQL authorization ID = DB2ADMIN

212 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

 Local database alias = OPCONDB

Ensure that the tables used by the End-to-end Automation Management
Component are created in the EAUTODB database, as presented in
Example 7-2.

Example 7-2 EAUTODB database tables

C:\>db2 connect to EAUTODB user db2admin
Enter current password for db2admin:

 Database Connection Information

 Database server = DB2/NT 8.2.3
 SQL authorization ID = DB2ADMIN
 Local database alias = EAUTODB

C:\>db2 select name from sysibm.systables where creator='EAUTOUSR'

NAME
--
EEZAUTOMATIONACCESS
EEZAUTOMATIONRELATION
EEZDOMAINSUBSCRIPTION
EEZOPERATORDOMAINFILTER
EEZOPERATORDOMAINPREFERENCES
EEZOPERATORHIDDENDOMAIN
EEZRESOURCESUBSCRIPTION

 7 record(s) selected.

7.2.2 End-to-end Automation Management Component automation
engine startup

Start the End-to-end Automation Management Component automation engine
using the eezdmn command. For details about the eezdmn command, refer to the
IBM Tivoli System Automation for Multiplatforms V2.1 End-to-end Automation
Management Component User’s Guide and Reference, SC33-8211.

Example 7-3 shows the start of the End-to-end Automation Management
Component automation engine in our environment.

Example 7-3 Automation engine status

C:\IBM\tsamp\eez\bin>eezdmn -?
IBM Tivoli System Automation end-to-end automation engine Version:
2.1.0.053601, NO_APAR

 Chapter 7. Case study scenario: End-to-end automation domain 213

Usage:
eezdmn [option]

 -START Starts the automation engine
 -SHUTDOWN | -SHUTD Stops the automation engine
 -MONITOR | -M Displays the current state
 -RECONFIG | -R Re-configures the automation engine
 -CO Starts only the EIF2JMS conversion thread
 -XD ("*" | "<RES_NAME>[,<RES_NAME>]") <DUMPFILE>
 Dumps (all | specific) resources to a file

When no option is specified, START is used

C:\IBM\tsamp\eez\bin>eezdmn -M
About to get current state of the automation engine
State of automation engine is: NOT AVAILABLE - the automation engine probably
not started
Done

C:\IBM\tsamp\eez\bin>eezdmn.bat -START
Starting...
About to get current state of the automation engine
State of automation engine is: IDLE - no policy activated
Done

7.2.3 End-to-end Automation Management Component applications
status

The End-to-end Automation Management Component installation process
installs several applications on IBM WebSphere Application Server. For the
End-to-end Automation Management Component automation engine, the
following applications are installed:

� EEZEAR

� EventServer

� EventServerMdb

In order to check the status of the above listed applications, perform the following
steps.

1. Open the IBM WebSphere Application Server administrative console using
the following URL:

https://<SERVER_NAME>:9043/ibm/console/logon.jsp

2. Provide the iscadmin user credentials.

214 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

https://<SERVER_NAME>:9043/ibm/console/logon.jsp

3. Navigate to Applications → Enterprise Applications.

4. Verify the status of the applications. Start them in case they are stopped, as
shown in Figure 7-12.

Figure 7-12 End-to-end Automation Management Component applications

7.2.4 JDBC providers connection
You can check the JDBC providers connection in IBM WebSphere Application
Server by performing the following steps:

On the IBM WebSphere Application Server administrative console, navigate to
Resources → JDBC Providers.

Select DB2 Universal JDBC Driver (XA) → Data Sources.

Select EAUTODBDS and click Test Connection as seen in Figure 7-13.

 Chapter 7. Case study scenario: End-to-end automation domain 215

Figure 7-13 JDBC Providers connection

7.2.5 ISC portal application startup
To be able to use the IBM Tivoli System Automation for Multiplatforms operations
console, both the Integrated Solutions Console (ISC) console server and the
Eclipse Help system application must be up and running.

In our case, the Eclipse Help system runs as a Windows Service named HS01.
We use the Windows Services panel to start it.

The ISC console server runs as a portal application on IBM WebSphere
Application Server. Start it by using the startISC ISC_PORTAL command. In our
environment, we run the startISC command as shown in Example 7-4.

Example 7-4 ISC startup

C:\IBM\ISC\PortalServer\bin>startISC.bat ISC_PORTAL

C:\IBM\ISC\PortalServer\bin>rem Licensed Materials - Property of IBM, (C)
Copyright IBM Corp. 2003,2004 - All Rights reserved.
ADMU7701I: Because ISC_PORTAL is registered to run as a Windows Service, the
 request to start this server will be completed by starting the

216 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

 associated Windows Service.
ADMU0116I: Tool information is being logged in file

C:\IBM\WebSphere\AppServer\profiles\default\logs\ISC_Portal\startServer.log
ADMU0128I: Starting tool with the default profile
ADMU3100I: Reading configuration for server: ISC_Portal
ADMU3200I: Server launched. Waiting for initialization status.
ADMU3000I: Server ISC_Portal open for e-business; process id is 33680

You can stop the ISC console server by running the stopISC command as
follows: stopISC ISC_PORTAL iscadmin <iscadmin_passsword>. Refer to the IBM
Tivoli System Automation for Multiplatforms V2.1 End-to-end Automation
Management Component User’s Guide and Reference, SC33-8211, for details
about the startISC and stopISC commands.

7.2.6 System Automation operations console
You can verify the IBM Tivoli System Automation for Multiplatforms operations
console by performing the following tasks.

1. Open the ISC administrative console using the following URL:

http://<SERVER_NAME>:8421/ibm/console

2. Provide the iscadmin user ID credentials.

3. Navigate to IBM Tivoli System Automation for Multiplatforms → SA
Operations Console. The IBM Tivoli System Automation for Multiplatforms
operations console panel displays as shown in Figure 7-14.

 Chapter 7. Case study scenario: End-to-end automation domain 217

http://<SERVER_NAME>:8421/ibm/console

Figure 7-14 End-to-end Automation Management Component operations console

Refer to the IBM Tivoli System Automation for Multiplatforms V2.1 End-to-end
Automation Management Component User’s Guide and Reference, SC33-8211,
for troubleshooting common installation problems.

7.3 Users and group management
This section provides the tasks for users, user groups, and their associated roles
for End-to-end Automation Management Component. We provide an introduction
to the roles used by End-to-end Automation Management Component and how
to associate user groups with these roles.

The sections below contain the tasks you need to perform to authorize users to
work with End-to-end Automation Management Component. You must perform
these tasks immediately after the End-to-end Automation Management
Component installation.

218 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

7.3.1 Creating users
You must create users and grant them proper authorization to the End-to-end
Automation Management Component operations console. In our case study
scenario, we use the default ISC administrator account iscadmin and have no
need to define new users. We do not recommend this decision for production
environments.

You can define users for the End-to-end Automation Management Component
operations console by accounts with administrative authority, such as the
iscadmin user ID. You perform this task using the ISC administration console,
under Console Settings → User and Group Management → All
Authenticated Portal Users → New User.

Refer to the IBM Tivoli System Automation for Multiplatforms V2.1 End-to-end
Automation Management Component User’s Guide and Reference, SC33-8211,
for details.

7.3.2 Creating user groups
There are End-to-end Automation Management Component access roles
defined in IBM WebSphere Application Server during the End-to-end Automation
Management Component installation process. These roles determine the actions
that users of the End-to-end Automation Management Component operations
console are allowed to perform. The defined roles are:

EEZMonitor This role provides authorization for query-type
operations against defined resources.

EEZOperator This role allows users to issue requests against
first-level automation domain resources, but does not
allow users to activate or deactivate policies.

EEZConfigurator Extends the EEZOperator role by allowing users to
work with policies.

EEZAdministrator This role allows users to perform all operations for
resources defined in the first-level domain.

EEZEndToEndAccess This role must be given to users responsible for
managing the end-to-end automation resources. This
role does not determine which actions users can
perform in the end-to-end automation domain. Users
must be granted other roles defined above for the type
of actions they are allowed to perform.

EEZAsync This role is used for all internal IBM WebSphere
Application Server methods of End-to-end Automation
Management Component. This role is granted to the

 Chapter 7. Case study scenario: End-to-end automation domain 219

IBM WebSphere Application Server user ID during the
End-to-end Automation Management Component
installation.

Table 7-1 shows the required user groups and their associated roles for the
End-to-end Automation Management Component.

Table 7-1 End-to-end Automation Management Component required groups

In order to define these user groups, perform the following tasks:

1. Log in to the ISC administration console, providing the iscadmin user ID
credentials.

2. Navigate to Console Settings → User and Group Management and select
New Group.

3. Enter the name of the group and click OK. For example,
EEZAdministratorGroup.

4. Repeat the above tasks for all required groups presented in Table 7-1 on
page 220.

Figure 7-15 shows all the required groups defined in our environment.

End-to-end Automation Management
Component role

Group name

EEZMonitor EEZMonitorGroup

EEZOperator EEZOperatorGroup

EEZConfigurator EEZConfiguratorGroup

EEZAdministrator EEZAdministratorGroup

EEZEndToEndAccess EEZEndToEndAccessGroup

EEZAsync No group definition required

220 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Figure 7-15 Required groups definition

7.3.3 Assigning access permissions to user groups
In order to enable End-to-end Automation Management Component users to
work with ISC administrative console and the End-to-end Automation
Management Component operations console, you must grant the following to the
user groups defined in the previous section:

� Access permissions to the pages of ISC administrative console

 Chapter 7. Case study scenario: End-to-end automation domain 221

� Access permissions to the End-to-end Automation Management Component
operations console

These tasks must be performed once after the installation of the End-to-end
Automation Management Component. When you have performed both tasks
described in this section, users who belong to the user groups can access the
pages of ISC administrative console and the End-to-end Automation
Management Component operations console. However, users can only perform
tasks when the access roles have been assigned to the user groups, as
described in “Assigning access roles to user groups” on page 226.

Access to the pages of ISC administrative console
In order to grant user groups access permissions to the pages of ISC
administrative console, perform the following tasks.

1. Log in to the ISC administration console providing the iscadmin user ID
credentials.

2. Navigate to Console Settings → Resource Permissions.

3. In the Resource Types list, select Pages.

4. Click the icon representing Assign Access for Content Root.

5. Click the icon representing Edit Role for Users. Ensure that Allow
Propagation and Allow Inheritance boxes are checked.

6. Select Add.

7. Select User groups in the Search for Users or User Groups pull-down
menu and click Search.

8. Select all of the End-to-end Automation Management Component user
groups defined in the previous section and click OK.

9. Ensure that the EJPAO4003I: Members successfully added to the role
message displays, as shown in Figure 7-16. For changes to take effect, you
must restart Integrated Solutions Console.

Important: Once you have performed the above tasks, you must restart the
Integrated Solutions Console. You do this by issuing the following command:

stopISC ISC_PORTAL -username iscadmin -password <iscadminPW>

where iscadminPW is the password for the iscadmin user ID.

222 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Figure 7-16 Granting access to the Integrated Solution Console pages

Access to the operations console
In order to grant user groups access permissions to the End-to-end Automation
Management Component operations console, perform the following tasks.

1. Log in to the ISC administration console, providing the iscadmin user ID
credentials.

2. Navigate to Console Settings → Resource Permissions.

3. In the Resource Types list, select Portlet Applications.

4. Click the icon representing Assign Access for Tivoli System Automation
for Multiplatforms Operations Console.

5. Click the icon representing Edit Role for Users. Ensure that Allow
Propagation and Allow Inheritance boxes are checked.

6. Select Add.

7. Select User groups in the Search for Users or User Groups pull-down
menu and click Search.

8. Select all of the End-to-end Automation Management Component user
groups defined in the previous section and click OK.

 Chapter 7. Case study scenario: End-to-end automation domain 223

9. Ensure that the EJPAO4003I: Members successfully added to the role
message displays, as shown in Figure 7-17. For changes to take effect, you
must restart the Integrated Solutions Console operations console.

Figure 7-17 Granting access to ISC operations console

7.3.4 Assigning users to user groups
All users we defined in “Creating users” on page 219 must be members of a user
group. This allows users to perform operations according to the roles associated
to the user groups of which they are members.

The iscadmin user ID must be a member of the following groups:

� EEZAdministratorGroup

� EEZEndToEndAccessGroup

In our case study scenario environment, we use the default ISC administrator
account iscadmin for all tasks for both ISC administrative console and
End-to-end Automation Management Component operations console.

In order to add a user ID as a member of a user group, perform the following
tasks.

224 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

1. Log in to the ISC administrative console providing the iscadmin user ID
credentials.

2. Navigate to Console Settings → User and Group Management.

3. In the Manage Users and Groups, select All Portal User Groups.

4. Select the End-to-end Automation Management Component user groups we
defined in the previous section, for example, EEZAdministratorGroup.

5. Click Add Member.

6. Select the user ID from the user list. In our case, we select iscadmin. Click
OK.

7. Repeat the above steps to add the user ID iscadmin to the
EEZEndToEndAccessGroup. Ensure you receive the EJPAL0140I: User or
user group has been successfully added to the selected group
message, as shown in Figure 7-18.

Figure 7-18 User association to a user group

You must perform the above steps for each defined user ID.

 Chapter 7. Case study scenario: End-to-end automation domain 225

7.3.5 Assigning access roles to user groups
After you create the End-to-end Automation Management Component user
groups using the ISC administrative console, you must assign access roles to
these user groups in the IBM WebSphere Application Server administrative
console. This will grant the users who are members of a user group permission
to perform tasks associated to the role.

In order to assign access roles to user groups, perform the following tasks.

1. Log in to the IBM WebSphere Application Server administration console,
providing the iscadmin user ID credentials.

2. Expand Applications → Enterprise Applications and select EEZEAR
application.

3. Select Map security roles to users/groups.

4. Select one of the End-to-end Automation Management Component
predefined roles, for example, EEZAdministrator.

5. Deselect both check boxes Everyone? and All authenticated? and Click
Look up groups.

6. Click Search.

7. Select the group to be associated with this role. In our case,
EEZAdministratorGroup. The proper entry is cn=EEZAdministratorGroup,
o=Default Organization.

8. Move the selected group to the Selected column and click OK.

9. Repeat the above steps for all End-to-end Automation Management
Component predefined roles and associated user groups.

Figure 7-19 shows the roles and user group associations for our environment.

226 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Figure 7-19 Mapping roles to user groups

10.Once you complete all associations, save the changes in the IBM WebSphere
Application Server.

11.Expand Applications → Enterprise Applications and select EEZEAR
application.

12.Select Map RunAs roles to users.

13.Enter the credentials of the iscadmin user ID and select the role EEZAsync.

14.Click Apply.

15.Click OK.

16.Once you complete all definitions, save the changes in the IBM WebSphere
Application Server.

17.You must restart IBM WebSphere Application Server for the changes to take
effect.

 Chapter 7. Case study scenario: End-to-end automation domain 227

7.4 End-to-end Automation Management Component
configuration

The basic configuration of the End-to-end Automation Management Component
is performed during its installation time. The End-to-end Automation
Management Component installation process creates several configuration files
in the <E2E_INSTALL>/cfg directory, where <E2E_INSTALL> is the installation
directory of the End-to-end Automation Management Component. You must not
manipulate these configuration files manually.

End-to-end Automation Management Component provides a configuration tool to
perform changes in the configuration files. The name of the End-to-end
Automation Management Component configuration tool is cfgeezdmn and it is
located in the <E2E_INSTALL>/bin directory.

For an overview of the End-to-end Automation Management Component
configuration tool functionality, refer to the IBM Tivoli System Automation for
Multiplatforms V2.1 End-to-End Automation Management User’s Guide and
Reference, SC33-8211.

For our case study scenario, we have to inform the End-to-end Automation
Management Component automation domain how to authenticate to the
first-level automation domains. We do this by providing the user credentials
specific to our first-level automation domains. Whenever End-to-end Automation
Management Component needs to perform actions against resources defined in
the first-level automation domains, it collects the proper credentials in the
eez.automation.engine.dif.properties file. All passwords are stored using an
encryption mechanism.

In order to set the first-level automation domain user credentials, perform the
following tasks.

1. Start the End-to-end Automation Management Component configuration tool
by issuing the cfgeezdmn command (cfgeezdmn.bat in our environment).

2. Select the User credentials tab.

3. Under the Credentials for accessing specific first-level automation domains
area, click Add.

4. Provide the Domain’s name, User ID, and password.

Repeat this step for each first-level automation domain. Figure 7-20 shows
our settings.

228 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Figure 7-20 First-level automation domain credentials

5. Click Save to commit the changes.

6. You must restart the End-to-end Automation Management Component
automation engine or re-configure it for the changes to take effect. In order to
re-configure the End-to-end Automation Management Component
automation engine, issue the eezadmn command as follows:

C:\IBM\tsamp\eez\bin>eezdmn.bat -RECONFIG
About to re-configure automation engine
The automation engine has been re-configured

7.5 Defining the end-to-end automation policy
End-to-end Automation provides the capability to automate the operation of
resources within heterogeneous environments. As presented in Chapter 3,
“Case study scenario overview” on page 47, our scenario environment depicts a
multi-tiered business application that has components running in heterogeneous
platforms.

Each tier of this application runs on a dedicated infrastructure that has been
made high available using IBM Tivoli System Automation for Multiplatforms V2.1
first-level automation domains. Now, the End-to-end Automation Management

 Chapter 7. Case study scenario: End-to-end automation domain 229

Component is able to ensure high availability of the entire infrastructure used by
the business application.

We accomplish this by defining an end-to-end automation policy that contains
resource definitions and logical relationships among them.

7.5.1 Automation requirements and policy overview
In this section, we create an end-to-end automation policy which will fulfill the
following automation requirements:

� Each tier of our application should have a desired state of online.

� In case of a failure of the database environment, the application environment
must be brought offline.

� In case of a failure of either the application or database environment, the
HTTP server environment must also be brought offline.

� The start and stop process of the various elements making up the application
environment must obey a predefined order to ensure that required resources
are available when needed. Specifically:

– The database environment must be up and running for the Application
environment start process.

– Both the application and database environments must be up and running
for the HTTP server environment start process.

– Both the HTTP server environment and the application environment must
be stopped so that the database environment can be properly stopped.

– The HTTP server environment must be stopped so that the application
environment can be stopped.

In order to achieve the automation requirements we describe above, we define
an end-to-end automation policy that contains resource definitions that refer to
resources on our first-level automation domains, resource groups organizing our
end-to-end resources in a hierarchical structure, and relationship definitions.

Figure 7-21 provides an overview of the elements and their relationships for the
end-to-end automation policy that fulfills the above automation requirements.

230 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Figure 7-21 Case study scenario end-to-end automation policy

The following sections go into detail about how we define the end-to-end
automation policy depicted in Figure 7-21.

7.5.2 Creating the end-to-end automation policy file
We create end-to-end automation policies by defining XML-formatted elements.
IBM Tivoli System Automation for Multiplatforms V2.1 End-to-end Automation
Management Component provides a schema definition file. Before defining the
end-to-end automation policy, you should first review and gain a basic
understanding of the schema definition file EEZPolicy.xsd. This file is located in
the <TSA_E2E_install>/policyPool directory, where <TSA_E2E_install> is the
installation directory of the End-to-end Automation Management Component.

Refer to the IBM Tivoli System Automation for Multiplatforms V2.1 End-to-End
Automation Management User’s Guide and Reference, SC33-8211-00, for
detailed instructions about creating the end-to-end automation policy.

End-to-end automation policy

http_rg_REF

ITSOE2E_Backend_RG

StopAfter

ForcedDownBy

StartAfter

was_rg_REF db2_rg_REF

ForcedDownBy

StartAfter

StopAfter

was_SA_Domain
 first-level automation

domain

websphererg

SC64N
 first-level automation

domain

 APPLGR_DB8Q

http_SA_Domain
 first-level automation

domain

apache_rg

Resource reference Resource reference Resource reference

Note: Although you can create the end-to-end automation policy using any
text editor, we highly recommend the use of an XML editor.

 Chapter 7. Case study scenario: End-to-end automation domain 231

Once created, you must check the end-to-end automation policy XML file against
the provided schema and place the end-to-end automation policy XML file in the
policyPool directory prior to activation.

Based on the IBM Tivoli System Automation for Multiplatforms V2.1 End-to-End
Automation Management User’s Guide and Reference, SC33-8211-00,
guidelines, we create the following XML element definitions:

� Standard end-to-end automation policy header and documentation
information

� Resource references

� Resource groups

� Relationships

There is an additional element definition that our scenario did not require: choice
group. Refer to the IBM Tivoli System Automation for Multiplatforms V2.1
End-to-End Automation Management User’s Guide and Reference,
SC33-8211-00, for details.

Automation policy header and documentation information
Our XML header information uses the sample template provided with the
installation of IBM Tivoli System Automation for Multiplatforms End-to-end
Automation Management Component with changes to the documentation fields.
The XML policy sample template file is located in the
<TSA_E2E_install>/policyPool/template.xml file, where <TSA_E2E_install> is
the installation directory of the End-to-end Automation Management Component.

All entries in the end-to-end automation policy XML file must be enclosed by the
<AutomationPolicy> element.

Based on the sample template, we create the following entries for the
<PolicyInformation> XML element:

� PolicyName
� AutomationDomainName
� PolicyToken
� PolicyAuthor
� PolicyDescription

Example 7-5 shows the above definitions in XML format:

Example 7-5 PolicyInformation element definition

<?xml version="1.0" encoding="UTF-8"?>

<AutomationPolicy version="1.0"

232 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

 xmlns="http://www.ibm.com/TSA/Policy.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ibm.com/TSA/Policy.xsd EEZPolicy.xsd ">
 <PolicyInformation>
 <PolicyName>ITSOPolicyE2E</PolicyName>
 <AutomationDomainName>ITSOE2E</AutomationDomainName>
 <PolicyToken> 5.0 </PolicyToken>
 <PolicyAuthor>ITSO Redbook Team</PolicyAuthor>
 <PolicyDescription>

ITSO E2E automation for Redbook Case Study Scenario
 </PolicyDescription>
 </PolicyInformation>

Resource definitions
Here we define the resources of the end-to-end automation domain by
referencing resources of our first-level automation domains. The guidelines
provided in the IBM Tivoli System Automation for Multiplatforms V2.1 End-to-End
Automation Management User’s Guide and Reference, SC33-8211-00, as well
as the layout of our first-level automation domains made the selection resources
for use in our end-to-end automation policy simple.

Having in mind the automation requirements described in “Automation
requirements and policy overview” on page 230, we decide to create end-to-end
automation resources that refer to the top-level or outermost first-level
automation domain resource group.

Figure 7-22 on page 234 shows the end-to-end resource references to the
selected resource group defined in our first-level automation domains.

 Chapter 7. Case study scenario: End-to-end automation domain 233

Figure 7-22 Resource reference selection

As you see in Figure 7-22, the selected resource groups are as follows:

� The resource reference db2_rg_REF refers to the APPLGR_DB8Q application
group defined in the SC64N IBM Tivoli System Automation for z/OS V3.1
z/OS first-level automation domain.

� The resource reference was_rg_REF refers to the websphererg resource group
defined in the was_SA_Domain IBM Tivoli System Automation for
Multiplatforms V2.1 first-level automation domain.

� The resource reference http_rg_REF refers to the apache_rg resource group
defined in the http_SA_Domain IBM Tivoli System Automation for
Multiplatforms V2.1 first-level automation domain.

Resource references are defined in the end-to-end automation policy using the
<ResourceReference> element. For each <ResourceReference> element
definition, we use the following entries and sub-entries:

� Description
� Owner
� DesiredState, except for resource references that will be part of a resource

group
� ReferencedResource

– AutomationDomain

http_rg_REF

apache_rg

apache1IP

tsa001, 002 and 003

apache1

tsa001, 002 and 003

DependsOn

websphererg

prov008, prov009

websphere
Resouce

prov008, prov009

DependsOn

ServiceIP

trade3
Resouce

prov008, prov009

DependsOn

db2
Resouce

prov008, prov009

DependsOn

was_rg_REF db2_rg_REF

APPLGR_DB8Q

 DB8QDBM1

 DB8Q

 DB8QDIST

DB8QIRLM

SC64

SC64

SC64

SC64

234 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

– Name
– Class
– Node

Example 7-6 shows the resource reference definitions for our environment in
XML format.

Example 7-6 ResourceReference element definitions

<!-- Resource Reference for the HTTP tier -->
 <ResourceReference name="http_rg_REF">

 <Description>

Reference to apache_rg resource group defined in
the httpd_SA_Domain first level domain running the
HTTP servers for our sample environment.

 </Description>

 <Owner>ITSO Redbook Team</Owner>

 <DesiredState>Online</DesiredState>

 <ReferencedResource>
 <AutomationDomain>httpd_SA_Domain</AutomationDomain>
 <Name>apache_rg</Name>
 <Class>IBM.ResourceGroup</Class>
 </ReferencedResource>

 </ResourceReference>

<!-- Resource Reference for the application tier -->
 <ResourceReference name="was_rg_REF">

<Description>
Reference to websphererg resource group defined in
the was_SA_Domain first level domain running IBM
WebSphere and our sample J2EE application.

 </Description>

 <Owner>ITSO Redbook Team</Owner>

 <ReferencedResource>
 <AutomationDomain>was_SA_Domain</AutomationDomain>
 <Name>websphererg</Name>
 <Class>IBM.ResourceGroup</Class>
 </ReferencedResource>

 </ResourceReference>

 Chapter 7. Case study scenario: End-to-end automation domain 235

<!-- Resource Reference for the database tier on z/OS -->
 <ResourceReference name="db2_rg_REF">

<Description>
Reference to APPLGR_DB8Q resource group defined in
the SC64N first level domain running IBM DB2 on z/OS
hosting the database for our sample application.

 </Description>

 <Owner>ITSO Redbook Team</Owner>

 <ReferencedResource>
 <AutomationDomain>SC64N</AutomationDomain>
 <Name>APPLGR_DB8Q</Name>
 <Class>APG</Class>
 <Node>SC64</Node>
 </ReferencedResource>

 </ResourceReference>

Group definitions
Based on the automation requirements described in “Automation requirements
and policy overview” on page 230, we group resources from different first-level
domains that, in our scenario, must be managed and monitored as one unit. This
also makes creating the definition of relationships between these resource
references easier later.

For our scenario, we create a resource group named ITSOE2E_Backend_RG that
groups the resource references for our application’s middleware and database
tier, was_rg_REF and db2_rg_REF resources, as seen in Figure 7-21 on
page 231.

You define resource groups in the end-to-end automation policy using the
<ResourceGroup> element. For each <ResourceGroup> element definition, use the
following entries and sub-entries:

� DesiredState
� Description
� Members

– ResourceReference

Note: You can nest resource groups. However, a resource group can only be a
member of a single resource group.

236 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Example 7-7 shows the resource group definition for our environment in XML
format.

Example 7-7 ResourceGroup element definitions

<!-- Resource Group definition -->
<ResourceGroup name="ITSOE2E_Backend_RG" >

<DesiredState>Online</DesiredState>

<Description>
This is a Resource Group for the WAS and DB2 resource references.

</Description>

<Members>
<ResourceReference name="was_rg_REF"/>
<ResourceReference name="db2_rg_REF"/>

</Members>

</ResourceGroup>

Relationship definitions
Now we are ready to define the relationships and dependencies between the
resources and resource groups in our end-to-end automation policy. These
definitions provide automation control over starting, stopping, and operations of
our heterogeneous application environments. The available relationship
definitions are as follows:

� StartAfter
� StopAfter
� ForcedDownBy

Based on the automation requirements we describe in “Automation requirements
and policy overview” on page 230, we decide on the following relationships:

http_rg_REF StartAfter ITSOE2E_Backend_RG
In case of a start request is issued for http_rg_REF, the resources of the
ITSOE2E_Backend_RG group must be started first.

was_rg_REF StartAfter db2_rg_REF
In case of a start request is issued for was_rg_REF, the db2_rg_REF resource
must be started first.

was_rg_REF StopAfter http_rg_REF
In case of a stop request is issued for was_rg_REF, the http_rg_REF resource
must be stopped first.

 Chapter 7. Case study scenario: End-to-end automation domain 237

db2_rg_REF StopAfter was_rg_REF
In case of a stop request is issued for db2_rg_REF, the was_rg_REF resource
must be stopped first.

http_rg_REF ForcedDownBy ITSOE2E_Backend_RG
The http_rg_REF is brought offline in case of a failure of any resource in the
ITSOE2E_Backend_RG resource group.

was_rg_REF ForcedDownBy db2_rg_REF
The was_rg_REF is brought offline in case of a failure of the db2_rg_REF
resource.

Figure 7-23 shows the end-to-end relationship definitions described above.

Figure 7-23 Relationship definitions

Relationships are defined in the end-to-end automation policy using the
<Relationship> element. For each <Relationship> element definition, we use
the following entries and sub-entries:

� Source
� Type
� Target

Example 7-8 shows the relationship definitions for our environment in XML
format.

Example 7-8 Relationship element definitions

<!-- StartAfter Relationships -->
<Relationship>

<Source>
<ResourceReference name="http_rg_REF"/>

</Source>
<Type>StartAfter</Type>
<Target>

<ResourceGroup name="ITSOE2E_Backend_RG"/>

http_rg_REF

ITSOE2E_Backend_RG

StopAfter

ForcedDownBy

StartAfter

was_rg_REF db2_rg_REF

ForcedDownBy

StartAfter

StopAfter

238 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

</Target>
</Relationship>

<Relationship>
<Source>

<ResourceReference name="was_rg_REF"/>
</Source>
<Type>StartAfter</Type>
<Target>

<ResourceReference name="db2_rg_REF"/>
</Target>

</Relationship>

<!-- StopAfter Relationships -->
<Relationship>

<Source>
<ResourceReference name="was_rg_REF"/>

</Source>
<Type>StopAfter</Type>
<Target>

<ResourceReference name="http_rg_REF"/>
</Target>

</Relationship>

<Relationship>

<Source>
<ResourceReference name="db2_rg_REF"/>

</Source>
<Type>StopAfter</Type>
<Target>

<ResourceReference name="was_rg_REF"/>
</Target>

</Relationship>

<!-- ForcedDownBy Relationships -->
<Relationship>

<Source>
<ResourceReference name="http_rg_REF"/>

</Source>
<Type>ForcedDownBy</Type>
<Target>

<ResourceGroup name="ITSOE2E_Backend_RG"/>
</Target>

</Relationship>

<Relationship>
<Source>

<ResourceReference name="was_rg_REF"/>
</Source>

 Chapter 7. Case study scenario: End-to-end automation domain 239

<Type>ForcedDownBy</Type>
<Target>

<ResourceReference name="db2_rg_REF"/>
</Target>

</Relationship>

7.5.3 Verifying the end-to-end automation policy file
Once you create the end-to-end automation policy file, you must copy it to the
<TSA_E2E_install>/policyPool directory, where <TSA_E2E_install> is the
installation directory of the End-to-end Automation Management Component, so
that it can be activated.

Prior to activating the end-to-end automation policy, you can verify the policy
definitions against the provided policy schema definition and other logical
verifications using the IBM Tivoli System Automation for Multiplatforms V2.1
policy checker tool.

In order to perform verification tasks in our newly defined end-to-end automation
policy file, we use the policy checker tool by issuing the following command
(Example 7-9):

Example 7-9 Policy checker tool

C:\IBM\tsamp\eez\bin>eezpolicychecker.bat C:\IBM\tsamp\eez\policyPool\ITSOE2E_v5.xml
CJL0044E The TCP/IP port 9,992 is already in use. The Log Manager cannot start a log command
server.

POLICY CHECKER

This program verifies a policy document (*.xml) for use with IBM Tivoli System Automation for
Multiplatforms.

(C) COPYRIGHT International Business Machines Corp. 2005
 All Rights Reserved.

Policy has been verified.

7.5.4 Activating the end-to-end automation policy file
Once you have created, verified, and placed the end-to-end automation policy file
in the <TSA_E2E_install>/policyPool directory, activate it using the IBM Tivoli
System Automation for Multiplatforms V2.1 Operations Console.

240 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

In order to activate the end-to-end automation policy defined in the policy
definition XML file, perform the following steps:

1. Log in to the IBM Tivoli System Automation for Multiplatforms V2.1
Operations Console

2. In the Topology section, select the end-to-end automation domain. In our
case, the ITSOE2E domain.

3. On the information area section, select Policy → Activate new policy, as
shown in Figure 7-24.

Note: Before performing the policy activation tasks, ensure that the domain
name specified in the <PolicyInformation> element definition matches the
name of the end-to-end automation domain showing on the Operations
Console.

 Chapter 7. Case study scenario: End-to-end automation domain 241

Figure 7-24 Operations Console: Policy information

4. Select the policy in the provided list, as shown in Figure 7-25. Once you
select the policy file, a validity check is performed automatically and any
warnings display on the same window.

242 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Figure 7-25 Operations Console: Policy selection

5. Select Activate to activate the end-to-end automation policy.

6. IBM Tivoli System Automation for Multiplatforms V2.1 End-to-end Automation
Management Component performs policy activation tasks, such as issuing
requests to first-level automation domains for obtaining the status, and for
changing the desired status of referenced resources.

7. Once active, the policy information displays in the operations console, as in
Figure 7-26.

 Chapter 7. Case study scenario: End-to-end automation domain 243

Figure 7-26 Operations Console: Populated policy information

8. Also, verify that the End-to-end Automation Management Component
automation engine has picked up the policy activation by using the eezadmn
command as follows:

C:\IBM\tsamp\eez\bin>eezdmn.bat -M
About to get current state of the automation engine
State of automation engine is: RUNNING - policy is activated
Done

244 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Part 3 Appendixes

Part 3

© Copyright IBM Corp. 2005. All rights reserved. 245

246 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Appendix A. Troubleshooting overview

This appendix provides an overview of tools, techniques, and pointers for
troubleshooting the end-to-end automation environment.

For detailed information, refer to the IBM Tivoli System Automation for
Multiplatforms V2.1 End-to-end Automation Management User’s Guide and
Reference, SC33-8211, and IBM Tivoli System Automation for Multiplatforms
V2.1 Base Component User’s Guide, SC33-8210-04, manuals.

A

© Copyright IBM Corp. 2005. All rights reserved. 247

Communication between end-to-end components
A key tool when performing troubleshooting tasks in the end-to-end automation
environment is the understanding of the components that make up the
end-to-end automation environment and how they interact with each other.
Chapter 1, “IBM Tivoli System Automation for Multiplatforms V2.1” on page 3
provides a great deal of information about how elements of the IBM Tivoli System
Automation for Multiplatforms V2.1 Base and End-to-end Automation
Management Component communicate.

Refer also to the IBM Tivoli System Automation for Multiplatforms V2.1
End-to-end Automation Management User’s Guide and Reference, SC33-8211,
because it provides additional communication scenarios.

Understanding these communication flows is important in order to later be able to
understand how to work with logs and trace files, and then to be able to analyze
and find the core problems in the end-to-end automation environment.

Location of the root directories
Since the end-to-end automation environment is composed of a variety of
applications, here we provide a list of the root directories as reference.

� WAS_INST_ROOT

This is the recommended directory used to install IBM WebSphere
Application Server, for example:

Windows C:\IBM\WebSphere\AppServer

AIX /usr/opt/IBM/WebSphere/AppServer

Linux /opt/IBM/WebSphere/AppServer

� EEZ_INST_ROOT

This is the recommended directory used to install the End-to-end Automation
Management Component automation engine, for example:

Windows C:\IBM\tsamp\eez

AIX /usr/IBM/tsamp/eez

Linux /opt/IBM/eez/tsamp

� ISC_ROOT

This is the directory used as root to install the Integrated Solutions Console
hosting the IBM Tivoli System Automation for Multiplatforms operations
console, for example:

248 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Windows C:\IBM\ISC

AIX and Linux /opt/IBM/ISC

� EEZ_CONF_ROOT

This is the directory used as root for all configuration files of the End-to-end
Automation Management Component automation engine:

Windows <EEZ_INST_ROOT>\cfg

AIX and Linux /etc/<EEZ_INST_ROOT>/cfg

� TIVOLI_COM_DIR

This is the Tivoli common directory used by the End-to-end Automation
Management Component automation engine and the End-to-end Automation
Adapter to place logs and trace files, for example:

Windows C:\Program Files\IBM\Tivoli\common

AIX and Linux /var/ibm/tivoli/common

Tivoli common directory
The End-to-end Automation Management Component automation engine and
the End-to-end Automation Adapter running on first-level automation domains
write their traces and log information in sub-directories of the Tivoli common
directory as follows:

� <TIVOLI_COMMON_DIR>/EEZ/logs

This is the directory to find End-to-end Automation Management Component
automation engine log and trace files, or End-to-end Automation Adapter logs
and trace files, or both if the mentioned components are installed on the same
system.

� <TIVOLI_COMMON_DIR>/EEZ/ffdc

This is the directory to find First Failure Data Capture (FFDC) traces of the
End-to-end Automation Management Component automation engine and
End-to-end Automation Adapter.

� <TIVOLI_COMMON_DIR>/EEZ/lic (Windows only)

This is the directory where the nodelocked license file of the End-to-end
Automation Management Component automation engine can be found.

It is possible to change the location of the TIVOLI_COMMON_DIR by changing
the log.properties file, which you can find at:

Windows <TIVOLI_COMMON_DIR>\cfg

 Appendix A. Troubleshooting overview 249

AIX and Linux /etc/ibm/tivoli/common/cfg

Log and trace files
This section provides details of the message log and trace files of the following
components:

� End-to-end Automation Management Component automation engine
� End-to-end Automation Management Component automation manager
� End-to-end Automation Adapter
� IBM Tivoli System Automation for Multiplatforms Operations Console

End-to-end Automation Management Component automation engine
The message log files and trace files of the End-to-end Automation Management
Component automation engine are available in the directory
<TIVOLI_COMMON_DIR>/eez/logs. The message log and trace file are as
follows:

� msgengine.log message log file

� traceengine.log message trace file

You can display the content of the msgengine.log file in the IBM Tivoli System
Automation for Multiplatforms Operations Console for the respective selected
automation domain.

Trace and log settings for the End-to-end Automation Management Component
automation engine can be observed and changed with help of the End-to-end
Automation Management Component configuration tool cfgeezdmn.

The message levels for log information are:

� Error
� Warning
� Information (default)

The message levels for trace information, as well as for FFDC, are:

� Off (no trace information recording)
� Minimum
� Medium
� Maximum

250 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

End-to-end Automation Management Component automation manager

Since the End-to-end Automation Management Component automation manager
is a J2EE application running on top of IBM WebSphere Application Server, it
uses the standard log files and the tracing function of IBM WebSphere
Application Server.

The location of the log and trace files of the End-to-end Automation Management
Component automation manager is
<WAS_INST_ROOT>\profiles\<profileName>\logs\<serverName>, where:
<profileName> is the name of the profile specified at installation time (for
example, default) and <serverName> is the internal name of the IBM WebSphere
Application Server server used during installation (for example, server1).

The log and trace files are as follows:

� SystemOut.log
� SystemErr.log
� trace.log

End-to-end Automation Adapter
The message log files and trace files of the End-to-end Automation Adapter are
available in the directory <TIVOLI_COMMON_DIR>/eez/logs. The message log
and trace file are as follows:

� msgAdapter.log and msgFlatAdapter.log message log files

� Several trace files are used. They all have file names as trace*.

Trace and log settings for the End-to-end Automation Adapter can be observed
and changed with the help of the End-to-end Automation Adapter configuration
tool cfgsamadapter.

The message levels for log information are:

� Error
� Warning
� Information (default)

The message levels for trace information as well as for FFDC are:

� Off (no trace information recording)
� Minimum
� Medium
� Maximum

 Appendix A. Troubleshooting overview 251

IBM Tivoli System Automation for Multiplatforms Operations Console
Since the IBM Tivoli System Automation for Multiplatforms Operations Console
runs on top of IBM WebSphere Portal Server, it uses the standard log files and
the tracing function of IBM WebSphere Portal Server as follows:

� <WAS_INST_ROOT>\profiles\<profileName>\logs\ISC_Portal
� <WAS_INST_ROOT>\profiles\<profileName>\csa\logs
� <ISC_ROOT>/PortalServer/log/*.*

where <profileName> is the name of the profile specified at installation time (for
example default).

The log viewer tool
IBM Tivoli System Automation for Multiplatforms V2.1 provides a tool that
facilitates the display of the content of log files.

The installation package of the log viewer tool is located in the
<EEZ_INST_ROOT>/install directory.

To install the log viewer tool, perform the following steps:

1. Unzip the content of the logviewer214_basics.zip file.

2. Adjust the file viewer.bat (for Windows) or viewer.sh (for Linux or AIX) with the
path where an appropriate version of the JVM™.

3. Create a text file named stdtrace containing only the following line:

select Time,SourceFile,SourceMethod,MessageId,LogText,Exception,Thread
where (ProductId=SAMP)

Use the viewer command to start the conversion process. For example, to
convert the traceengine.xml log file, issue the following command:

viewer -f stdtrace traceengine.xml > traceengine.htm

The TraceWizard utility
As described earlier, the IBM Tivoli System Automation for Multiplatforms
Operations Console writes trace statements to
<ISC_ROOT>/PortalServer/log/wps_*.log files. These are Portal Server trace
files containing the trace statements of all user sessions since server start time.

With the help of the TraceWizard utility, this trace information can be split into
different files which are easier for you to read for a better diagnosis of problems.

252 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

The TraceWizard utility is packaged in the <EEZ_INST_ROOT>/lib/eezutils.jar
library.

Use the following command to generate readable formatted files.

java -classpath <EEZ_INST_ROOT>/lib/eezutils.jar
com.ibm.eez.ui.trace.TraceWizard wps_<TIMESTAMP>.log

The generated files are organized by session IDs. This is especially useful when
multiple users are accessing the operations console at the same time, because
each of them has a different session ID. Organizing the output files by session ID
has the great advantage of following the events and actions in the context of a
single user session.

In addition to the full trace for each user session, the tool generates an overview
trace that only contains the most important entries, such as user actions and
events.

 Appendix A. Troubleshooting overview 253

254 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Appendix B. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG247117

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG247117.

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description
SG247117.zip Zipped sample files and scripts

B

© Copyright IBM Corp. 2005. All rights reserved. 255

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

System requirements for downloading the Web material
A functional IBM Tivoli System Automation for Multiplatforms V2.1 Base
Component environment running on either Linux or AIX is required.

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder.

256 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

acronyms
ACF Automation Control File

AT Automation Table

EAS Event Automation Service

EIF Event Integration Facility

ESCON enterprise systems
connection

FFDC First Failure Data Capture

FLA First-Level Automation
Domains

GDPS Geographically Dispersed
Parallel Sysplex

GRT Global Response Team

HFS hierarchical file system

IBM International Business
Machines Corporation

IMS IBM Information Management
Systems

IPL initial program load

ISC Integrated Solutions Console

ISST IBM Software Services Tivoli

ITSO International Technical
Support Organization

JAR Java archive

JCL job control language

JDBC Java Database Connectivity

JES Job Entry Subsystem

JMS Java Message Service

JRE Java Runtime Environment

JVM Java virtual machine

LDAP Lightweight Directory Access
Protocol

LTPA Lightweight Third Party
Authentication

Abbreviations and

© Copyright IBM Corp. 2005. All rights reserved.
NMC NetView Management
Console

PAM primary automation manager

PDB Policy Data Base

PPI Program to Program Interface

PROCOPS Processor Operations

RM resource managers

RODM Resource Object Data
Manager

RSCT Reliable Scalable Cluster
Technology

SDF Status Display Facility

SDK Software Development Kit

SSH Secure shell

SSI Subsystem Interface

SYSOPS System Operations

TSCF Target System Control Facility

TSO Time Sharing Option

TWS Tivoli Work Scheduler

USS UNIX System Services

VM virtual machine

VSAM Virtual Storage Access
Method

VSE Virtual Storage Extended

VTAM Virtual Telecommunications
Access Method

XML Extensible Markup Language

 257

258 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 260. Note that some of the documents referenced here may be available
in softcopy only.

� Security Configuration in a TCP/IP Sysplex Environment, SG24-6527-00

Other publications
These publications are also relevant as further information sources:

� BM Reliable Scalable Cluster Technology Administration Guide, SA22-7889

� IBM Tivoli System Automation for Multiplatforms V2.1 End-to-end Automation
Management User’s Guide and Reference, SC33-8211

� IBM Tivoli System Automation for Multiplatforms V2.1 Base Component
User’s Guide, SC33-8210-04

� IBM Tivoli System Automation for Multiplatforms V2.1 Base Component
Reference, SC33-8212-00

� IBM Tivoli System Automation for z/OS V3.1 Planning and Installation,
SC33-8261

� IBM Tivoli System Automation for z/OS V3.1 Defining Automation Policy,
SC33-8262-01

� IBM Tivoli System Automation for z/OS V3.1 Customizing and Programming,
SC33-8260-01

� IBM Tivoli System Automation for z/OS V3.1 End-to-end Automation Adapter,
SC33-8271-01

� Tivoli NetView for z/OS V5.1 Installation: Getting Started, SC31-8872

� Tivoli NetView for z/OS Installation: Configuring Additional Components,
SC31-8874

© Copyright IBM Corp. 2005. All rights reserved. 259

Online resources
These Web sites are also relevant as further information sources:

� IBM Tivoli System Automation for Multiplatforms product Web site

http://www-306.ibm.com/software/tivoli/products/sys-auto-linux/

� IBM Tivoli System Automation for z/OS product Web site

http://www-306.ibm.com/software/tivoli/products/system-automation-390/

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

260 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www-306.ibm.com/software/tivoli/products/sys-auto-linux/
http://www-306.ibm.com/software/tivoli/products/system-automation-390/

Index

Symbols
${SUFFIX} 193
$CONFIG_DIR 192
*DEFAULT sample policy 147
/usr/sbin/cluster/netmon.cf 118
<AutomationPolicy> 232
<PolicyInformation> 232
<Relationship> 238
<ResourceGroup> 236
<ResourceReference> 234

Numerics
390–CMOS 34

A
access permissions 221
access roles 219
access roles and group association 220
ACF 176
activating end-to-end policy definitions 240
active log 155
ActivePeerDomain 61, 99
adapter communication 182
adapter configuration 75, 77
adapter directory structure z/OS 190
adapter installation 190
adapter master file 193
adapter script 191
addrgmbr command 66, 108
Affinity 31
aggregate resource 98
AggregateResource 98
AntiAffinity 31
AntiCollocation 31
AOC command 178
AOF603D message 176
AOFAEVNT 186
AOFAPPL 142, 176
AOFCMDSO 133
AOFEXE2E sample exit 197
AOFEXE2E user exit 196
AOFMSGSY 133

© Copyright IBM Corp. 2005. All rights reserved.
APL relationships 147
APPLGR_DB8Q members 180
application group creation 170
application group z/OS 170
application movement 5
ApplicationGroups 167
assign access roles to groups 226
Asynchronous Communication 42
asynchronous communication 16
attributes

dynamic 58
persistent 58

authenticate to first-level automation domains 228
authorization user exit 196
Automated operator functions 185
Automated resources prefix 123
Automatic movement of applications 5
Automatic recovery 5
automation control file 176
Automation database 14
automation domain configuration 131
Automation Engine 11
automation engine statup 213
automation goal 112
Automation Manager cold start 140
Automation Manager configuration 135
Automation policy 11, 14
automation policy 12, 61, 67, 109, 120
automation policy example 72
automation policy item 146
Automation requirements 56, 92
automation scripts 61
automation subplex. 135
AutomationDomain entry 234
AutomationDomainName element 232
AutomationPolicy element 232
AUTOSES 133

B
Base Component overview 6

C
C_DB2_MSTR class 151

 261

C64STGEN 144
cfgeezdmn 250
cfgeezdmn configuration tool 228
cfgsamadapter 251
cfgsamadapter command 75, 120
choice group 232
Choice groups 30
chrg command 69, 112
chrsrc command 71, 118
Clusters 25
cn=EEZAdministratorGroup 226
CNMLINK library 141
CNMPSSI 141
CNMSJ010 member 141
CNMSTYLE 133
cold start 140
Collocated relationship 110
Collocation 31
com.ibm.eez.aab.invocation-timeout-seconds 199
CommGroup 106
COMMNDxx 134
communication between components 15, 248
Communication overview 16
Compound State 30
COMSTNXT 144
concepts 24
Config Quorum 115
configuration files 120, 228
Configuration quorum 26
Configuration RM 8
configuring End-to-end Automation Management
Componen 228
configuring the adapter 77
ConfigValidity 61
connection_oriented mode 187
Console Help Server 209
Console Help Server port number 209
Console Help Service ID 209
Console Service ID 209
control policy item 146
creating user groups 219
creating users 219
critical resource 29
CTLDOWN status 197
Current runtime status of a resource, online, offline,
etc. Desired State 30
CxxSTGEN 133

D
DB2 automation 131
DB2 CONTROL 153
default gateway 117
Defining group membership 173
dependency definitions on z/OS 153
DependsOn 31
DependsOn relationship 110
DependsOnAny 31
Desired State 30
DesiredState 234
Direct access mode 13
DLOGMOD 133
domain ID 132
DSICMSYS 133
DSIDNMK 133
DSIPARM 133, 184
dynamic resources attributes 58
dynamic select string method.network equivalency
dynamic string 106

E
E2E_AUTOOPS 185
E2EOPER 185
E2EOPER function 42
E2EOPRNN 185
EAS 184
EAS resource name 186
EAUTODB 206
EAUTOUSR tables creator 213
Eclipse Help system 216
eez.automation.engine.dif.properties 228
EEZAdministrator 219
EEZAsync 219
EEZAUTOMATIONACCESS 213
EEZConfigurator 219
eezdmn command 213
eezdmn.bat -M 244
eezdmn.bat -RECONFIG 229
EEZDOMAINSUBSCRIPTION 213
EEZEAR 214
EEZEndToEndAccess 219
EEZMonitor 219
EEZOperator 219
eez-operator-authentication 193, 196
EEZPolicy.xsd 231
eezpolicychecker tool 240
eez-remote-contact-hostname 193

262 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

eezutils.jar library 253
EIF 15
eif-send-to-hostname 193
EJPAL0140I message 225
EJPAO4003I message 222, 224
elements in PPI queue 194
End-to-end Automation Adapter 7
End-to-end Automation Adapter configuration 118
End-to-end Automation Adapter shell script 191
End-to-end automation management 5
End-to-end Automation Management Component
access roles 219
End-to-end Automation Management Component
appplications

EEZEAR 214
EventServer 214
EventServerMdb 214

End-to-end Automation Management Component
automation engine 211
End-to-end Automation Management Component
configuration 228
End-to-end Automation Management Component
configuration files 228
End-to-end Automation Management Component
installation 203
End-to-end Automation Management Component
statup 213
End-to-end Automation Management Component
Tables

EEZAUTOMATIONACCESS 213
EEZAUTOMATIONRELATION 213
EEZDOMAINSUBSCRIPTION 213
EEZOPERATORDOMAINFILTER 213
EEZOPERATORDOMAINPREFERENCES
213
EEZOPERATORHIDDENDOMAIN 213
EEZRESOURCESUBSCRIPTION 213

End-to-end Automation Manager 11–12
end-to-end automation manager database 206
End-to-end automation mode 13
Ene-to-end automation domain name 210
environment variable 199
equivalency definition 60
Event Automation Service 184
Event Integration Facility 15
Event port number 121
Event Publisher 185
Event Response RM 9
EventServer 214

EventServerMdb 214
EVT_PUBLISHER 185
EVTOPER function 185, 198
execution timeout error 199

F
features 4
FFDC 249
First Failure Data Capture 249
First-level automation mode 13
floating resource 59, 96, 98
ForcedDownBy 31
ForcedDownBy relationship 237

G
GDPS 37, 39
GenerateSampleKeys function 191
genHistoryReport command 205
Geographically Dispersed Parallel Sysplex 39
Global initialization file 186
Global Resource RM 8
granting access permissions 221
group management 218
group membership on z/OS 173
GRPID 194
GRPID=XY 184

H
HAGS 8
harvesting function 60
harvesting functionality 29
HASPARENT relationship type 159, 163
HATS 8
HCD trace file 134
HealthCommand 99
HealthCommandPeriod 99
HealthCommandTimeout 65
HeartbeatPeriod 117
HFS 191
hierarchical file system 191
High availability 24
High availability and resource monitoring 4
High Availability Group Services 8
High Availability Topology Services 8
high available End-to-end Automation Adapter 119
HS01 windows service 216
HSAPIPLC 138

 Index 263

HSAPLIB DD 135
HSAPRMxx member 135

I
I/O OPS 134
IBM DB2 Active Log Dataset 155
IBM DB2 high availability 131
IBM DB2 UDB Enterprise Server Edition V 8.2 203
IBM DB2 V8 Fixpack 10 203
IBM Processor Operations 39
IBM WAS interim fixes 203

PK00652 204
PK00842 204
PK01524 203
PK04784 204
PK05321 204
PK06140 204
PK06246 204
PK08802 203
PK10066 203

IBM WebSphere Application Server V 6 203
IBM WebSphere Application Server V 6 fixpack 2
203
IBM.Application 63, 96, 126
IBM.ConfigRM 8
IBM.Equivalency 126
IBM.ERRM 9
IBM.GblResRM 8
IBM.ManagedRelationship 126
IBM.NetworkInterface 60
IBM.RecoveryRM 8, 95
IBM.ResourceGroup 126
IBM.ServiceIP 59, 126
IBM.TieBreaker class 116
IEASYSxx 134
IEFSSNxx 141
ifconfig command 87
IHSAEVNT 186
IHSAINIT 186
IHSAMCFG 187
IHSSMP3 186
importing policy database 165
ing.PARMLIB 134
ING249E error message 199
ingadapter.sh 191
INGEAMSA sample file 138, 176
INGEBBLD sample job 145
INGECOM 134

INGEDLGA 136
INGEMPF member 137
INGENVSA 141
INGEVE2E 187
INGLIST 180
INGMSG01 133
INGPHOM 138
INGPIPLC 138
INGPIXCU 138
INGPXDST communication task 184
INGXDBUG=1,2,1 192
INGXINIT 133
INGXINIT initialization member 184
initial program load 35
Installation verification tasks 211
installing End-to-end Automation Management
Component 203
InstanceLocation 65
Integrated Solutions Console 208
IPL 35
IPL data collection 134
ISC administrator user 208
ISC port numbers 208
ISC portal application 211
ISC portal application startup 216
ISC settings 208
ISC user ID 217
ISC_PORTAL 216
iscadmin group membership 224
iscadmin user ID 217
ISPF Dialog Panels 44
IsStartable 31
ISSUECMD routine 146

J
J2EE application environment 12
JAAS login modules 193
JACL scripts 102
JAVA_KEYTOOL 192
JDBC Driver (XA) 215
JDBC providers 211
JDBC providers connections 215
JES 131
JRE on z/OS 184

L
LDAP user registry 207
Lightweight Third Party Authentication 206

264 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

link list 193
Liveness 24
LNKLST 193
Location relationships 31
log data set 155
log viewer tool 252
Logger 123
logviewer214_basics.zip 252
lsequ command 61, 107
lsrel command 111
lsrg command 108
lsrg -m command 66
lsrpdomain command 57–58, 94
lsrpnode command 94
lsrsrc command 98
lssrc command 94
LTPA 206

M
majnode 132
managing users and groups 218
mapping access roles to groups 226
master configuration file 193
Master Node 95
Message adapter configuration file 186
Message Adapter Service 184
mkequ command 60
mkrel command 110
mkrg command 108
mkrpdomain command 57, 93
mkrsrc command 58, 63, 97
model policy database 147
MODETAB 133
MonitorCommandPeriod 98
MonitorCommandTimeout 98
movement of applications 5
MPFLSTxx member 136
msgAdapter.log 251
msgFlatAdapter.log 251

N
netequ 107
netmon.cf configuration file 118
NETUSER.SCNMUXMS 186–187
NetView domain ID 132
NetView logon screen 177
NetView Management Console 36
NetView system name 132

NETVIEW.V5R1M0.SCNMUXMS 186
network equivalency 106
NMC 36
node preparation 93
NodeNameList 98, 103
NodeNameList attribute 98
NodeNameList parameter 59
nominalState 70
NON-APF authorized task library 138
NOSTART TASK=MESSAGEA 187

O
Observed State 30
OMEGAMON 36
OPCONDB 206
openssh 120
openssl 120
Operational Quorum 115
Operational quorum 26, 115
Operational State 30
operational state 58
Operations Console 11–12
operations console database 206
operator group 185
OpState 58, 94, 102

P
Parallel Sysplex 25
PARMLIB 134
PARMLIB data sets 136
PDB 147
Peerdomain 25
Pending online. 112
persistent resource attributes 58
pid file 61
PIDFILE 63
PK00652 204
PK00842 204
PK01524 203
PK04784 204
PK05321 204
PK06140 204
PK06246 204
PK08802 203
PK10066 203
plug-in configuration file 194
plugin-domain-name 195
policies backup 127

 Index 265

policies maintenance 127
policy checker tool 240
policy database 144
policy database import 165
policy definitions 70, 113
policy file activation 240
PolicyAuthor element 232
PolicyDescription element 232
PolicyInformation element 232
PolicyName element 232
policyPool 231
PolicyToken element 232
POR 35
port number for Console Help Server 209
port numbers for ISC 208
Portal Server log files 252
Portlet Applications 223
PostReserveWaitTime 117
power-on reset 35
PPI 141
PPI queue 194
PPI=INGEVE2E 187
PPIBQL 184, 194
preprpnode command 57, 93
Prerequisites 43
PreReserveWaitTime 117
Primary Automation Agent 43
primary automation agent 181
Primary Automation Manager 43
Processor Operations facility 36
proclib 132
PROCOPS 39
ProcOps 36
PROG=xx 137
Program Directory 131
Program to Program Interface 141
PROGxx member 136
ProtectionMode 65, 104
pSeries 120

Q
QUERYSTAT 39
Quorum 25

R
RACF authorization 190
recovery example 71
Recovery RM 8

Redbooks Web site 260
Contact us xxii

REDIRSTDERR 191
REDIRSTDOUT 191
ReferencedResource entry 234
relationship definition 157
relationship definitions 67, 109
Relationship element definition 238
Relationships 30
relatioships definitions on z/OS 153
ReleaseRetryPeriod 117
Reliable Scalable Cluster Technology 7, 57, 96
ReprobeData 117
Request port number 121
Resource 29
resource attributes 58
resource group 112
Resource group XML definition 127
Resource grouping 5
Resource groups 30
resource manager 8
Resource Managers 7
resource monitoring 4
Resource Monitoring and Contro 8
Resource Object Data Manager 36
Resource Reference 30
Resource reference definition 232
resource references definitions 233
Resource States 30
ResourceGroup element definition 236
ResourceReference element definition 234
ResourceType attribute 100
ResourceType=1 59, 98
REXX program 196
RMC 8
RODM 36
root directories 248
RSCT 57, 96
RSCT harvesting function 60
RSCT resources 96
RSCT resources groups 66
RunCommandsSync 65

S
Safety 24
sample policy database 147
sample policy databases 37
sampolicy command 127

266 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

samtb_net 116
SCEERUN2 193
schema definition file 231
SCLBDLL 193
SCLBDLL2 193
SCNMUXMS 186
scripts repository 61
SDF 178
SDK on z/OS 184
Secure shell 124
SelectString 107
serial floating resource 98
Service IP Address 58
ServiceIP 104
ServiceIP OpState 105
session ID 253
shared HFS 191
shell script ingadapter.sh 191
SINGMODX 137
SINGSAMP 136, 138
SINGSAMP data set 134
SINGSAMP library 134
SMP/E 131
SSH 124
SSI address space 184
SSL_PASSWD parameter 191
SSO domain name 206
start cache 140
StartAfter 31
StartAfter relationship 109, 237
StartCommandTimeout 98
starting End-to-end Automation Management Com-
ponent 213
startISC command 216
startrpdomain command 58, 94
StartsMeAndStopsMe 163
startsrc command 95
Start-stop relationships 31
Startup Quorum 115
STATOPT 133
Status Display Facility 178
steplib 138
StopAfter 31
StopAfter relationship 237
StopCommandTimeout 98
stopISC command 217
stopsrc command 95
Subclusters 25
Synchronous Communication 42

SYS1.SCEERUN 193
SYS1.SCLBDLL2 193
SYSOPS 138
SysOps 36
Sysplex 25
sysplex 181
System Automation operations console 217
System Operations 36
system service 209
SystemErr.log 251
SystemOut.log 251

T
Target System Control Facility 36
TCPIP port numbers for ISC 208
terminology 24
tie breaker 115
tie breaker definition 115
tie breaker type EXEC 116
Tiebreaker 25, 27
timeout problems 198
Tivoli common directory 249
TOWER.SA 144
TraceWizard utility 252
troubleshooting 247
trroubleshooting 247
TSCF 36
TSO 36, 131

U
UNIX System Services 184
UNIXPRIV class 190
user access roles 219
user exit AOFEXE2E 197
user group roles

EEZAdministrator 219
EEZAsync 219
EEZConfigurator 219
EEZEndToEndAccess 219
EEZMonitor 219
EEZOperator 219

user groups 218
user ID for ISC 217
users management 218
USS 184

 Index 267

V
Resource

Node 107
viewer command 252
VTAM 131
VTAM majnode 132
VTAM Major Node 132

W
WAIT parameter 199
wsadmin command 102
WTORs 137

X
XA JDBC Driver 215
XCF group ID 184, 194
XCF sysplex group name 195
XML definition files 4
XML elements definitions 232
XML formated elements 231
XML policy definition 127
XML schema definition file 231
xxxSTGEN member 144

Z
z/OS adapter file structure 190
z/OS application group 170
z/OS automation domain 131
z/OS group membership 173
z/OS ingadapter.sh 191
z/OS UNIX privileges 190
z/OS UNIX superuser authority 190

268 End-to-end Automation with IBM Tivoli System Automation for Multiplatforms

(0.5” spine)
0.475”<

->
0.875”

250 <
->

 459 pages

End-to-end Autom
ation w

ith IBM
 Tivoli System

 Autom
ation for M

ultiplatform
s

®

SG24-7117-00 ISBN 073849402X

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

End-to-end Automation
with IBM Tivoli System
Automation for
Multiplatforms
Achieve proactive
high availability of
heterogeneous
environments

Covering
multiplatforms,
Linux, AIX, and z/OS

Includes real world
case study scenarios

IBM Tivoli System Automation for Multiplatforms monitors and
automates applications distributed across Linux, AIX, and
z/OS operating systems by introducing a new product
structure with two major components:
IBM Tivoli System Automation for Multiplatforms Base
Component and the End-to-end Automation Management
Component.

IBM Tivoli System Automation for Multiplatforms utilizes an
adapter infrastructure to integrate with IBM Tivoli System
Automation for z/OS, allowing for more effective high
availability, automation, and management of multi-tier
applications.

This IBM Redbook introduces the new versions of the IBM
Tivoli Systems Automation product family and gives you a
broad understanding of the new architecture and components
of both IBM Tivoli System Automation for Multiplatforms V2.1
and IBM Tivoli System Automation for z/OS V3.1 using a
scenario-based approach.

The instructions given in this redbook are meant to be
followed by anyone to successfully install, configure, and set
up end-to-end automation management using IBM Tivoli
System Automation for Multiplatforms V2.1 and IBM Tivoli
System Automation for z/OS V3.1 in environments of any size.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Figures
	Tables
	Examples
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 Fundamentals
	Chapter 1. IBM Tivoli System Automation for Multiplatforms V2.1
	1.1 IBM Tivoli System Automation for Multiplatforms V2.1 overview
	1.1.1 Main features

	1.2 Base Component overview
	1.2.1 Reliable Scalable Cluster Technology
	1.2.2 Resource Managers
	1.2.3 End-to-end Automation Adapter

	1.3 End-to-end Automation Management Component overview
	1.3.1 Automation Engine
	1.3.2 End-to-end Automation Manager
	1.3.3 Operations Console
	1.3.4 Automation database
	1.3.5 Automation policy
	1.3.6 End-to-end Automation Adapter

	1.4 Communication between end-to-end components
	1.5 Concepts and terminology
	1.5.1 High Availability and IBM Tivoli System Automation for Multiplatforms
	1.5.2 Terms used in IBM Tivoli System Automation for Multiplatforms

	Chapter 2. IBM Tivoli System Automation for z/OS V3.1
	2.1 IBM Tivoli System Automation for z/OS V3.1 overview
	2.2 What is new in IBM Tivoli System Automation for z/OS V3.1
	2.2.1 Enhancements to the Customization Dialog
	2.2.2 IBM Tivoli OMEGAMON integration
	2.2.3 GDPS Integration
	2.2.4 IBM Tivoli System Automation for z/OS V3.1 End-to-end Automation Adapter

	2.3 Overview Planning for installation

	Part 2 Case study scenario implementation
	Chapter 3. Case study scenario overview
	3.1 Scenario overview

	Chapter 4. Case study scenario: HTTP Servers on Linux first-level automation domain
	4.1 Apache automation domain overview
	4.1.1 Installation
	4.1.2 Automation requirements

	4.2 Automation domain configuration
	4.2.1 Create the first-level automation domain
	4.2.2 Define resources in the automation domain
	4.2.3 Create the automation policy using relationship definitions
	4.2.4 Change the operational state of the resource group
	4.2.5 Configuration error and recovery example
	4.2.6 Exercising the automation policy example

	4.3 End-to-end Automation Adapter configuration
	4.3.1 Configure the End-to-end Automation Adapter
	4.3.2 Replicate configuration files to nodes in the automation domain
	4.3.3 Define the End-to-end Automation Adapter automation policy

	4.4 Miscellaneous information

	Chapter 5. Case study scenario: Application Servers on AIX first-level automation domain
	5.1 Application server automation domain overview
	5.1.1 Automation requirements

	5.2 Automation domain configuration
	5.2.1 Create the first-level automation domain
	5.2.2 Define automation domain resources
	5.2.3 Create the automation policy using relationship definitions
	5.2.4 Change the Operational State of the resource group
	5.2.5 Verify the operational quorum and tie breaker definition

	5.3 End-to-end Automation Adapter configuration
	5.3.1 Generate End-to-end Automation Adapter configuration files
	5.3.2 Replicate the End-to-end Automation Adapter configuration files
	5.3.3 Define the End-to-end Automation Adapter automation policy

	5.4 Maintaining defined policies

	Chapter 6. Case study scenario: IBM DB2 on z/OS first-level automation domain
	6.1 IBM DB2 on z/OS automation domain overview
	6.2 IBM DB2 on z/OS automation domain configuration
	6.2.1 Configure NetView for IBM Tivoli System Automation for z/OS
	6.2.2 Automate NetView startup procedure
	6.2.3 Allocate System-Unique data sets
	6.2.4 Configure the Automation Manager
	6.2.5 Allocate data sets for the ISPF customization dialog
	6.2.6 Update PARMLIB data sets
	6.2.7 Update PROCLIB data sets
	6.2.8 Define the base automation policy

	6.3 Configuring automation policies for IBM DB2
	6.3.1 Identify required IBM DB2 messages
	6.3.2 Create scenario automation policy database
	6.3.3 Populate the scenario policy database
	6.3.4 Define policies for monitoring IBM DB2 application tasks
	6.3.5 Import customized scenario policy database into production
	6.3.6 Create application group and define group membership
	6.3.7 Verify Relationships in the automation policy

	6.4 End-to-end Automation Adapter configuration
	6.4.1 Check prerequisites and dependencies
	6.4.2 Configure NetView and IBM Tivoli System Automation for z/OS
	6.4.3 Enabling the Event Automation Service
	6.4.4 Configure the Global Initialization File
	6.4.5 Configure the NetView Message Adapter Service
	6.4.6 Customize the End-to-end Automation Adapter
	6.4.7 Perform configuration for security
	6.4.8 Verify startup of the Automation Adapter
	6.4.9 Solve timeout problems

	Chapter 7. Case study scenario: End-to-end automation domain
	7.1 End-to-end Automation Management Component installation
	7.2 Installation verification tasks
	7.2.1 EAUTODB and OPCONDB databases
	7.2.2 End-to-end Automation Management Component automation engine startup
	7.2.3 End-to-end Automation Management Component applications status
	7.2.4 JDBC providers connection
	7.2.5 ISC portal application startup
	7.2.6 System Automation operations console

	7.3 Users and group management
	7.3.1 Creating users
	7.3.2 Creating user groups
	7.3.3 Assigning access permissions to user groups
	7.3.4 Assigning users to user groups
	7.3.5 Assigning access roles to user groups

	7.4 End-to-end Automation Management Component configuration
	7.5 Defining the end-to-end automation policy
	7.5.1 Automation requirements and policy overview
	7.5.2 Creating the end-to-end automation policy file
	7.5.3 Verifying the end-to-end automation policy file
	7.5.4 Activating the end-to-end automation policy file

	Part 3 Appendixes
	Appendix A. Troubleshooting overview
	Communication between end-to-end components
	Location of the root directories
	Tivoli common directory
	Log and trace files
	End-to-end Automation Management Component automation engine
	End-to-end Automation Management Component automation manager
	End-to-end Automation Adapter
	IBM Tivoli System Automation for Multiplatforms Operations Console

	The log viewer tool
	The TraceWizard utility

	Appendix B. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

