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Preface

This redbook is designed to familiarize you with the IBM ^ pSeries 
POWER4 microarchitecture and to provide you with the information necessary to 
exploit the new high-end servers based on this architecture.

The eight to 32-way symmetric multiprocessing (SMP) pSeries 690 Model 681 
will be the first POWER4 system to be available. Thus, most analysis presented 
in this publication refers to this system.

Specifically, this publication will address the following issues:

� POWER4 features and capabilities

� Processor and memory optimization techniques, especially for Fortran 
programming

� AIX XL Fortran Version 7.1.1 compiler capabilities and which options to use

� Parallel processing techniques and performance

� Available libraries and programming interfaces

� Performance examples of commonly used kernels 

The anticipated audience for this redbook is as follows:

� Application developers

� Technical managers responsible for equipment purchase decisions

� Managers responsible for project planning

� Researchers involved in numerical algorithm development

� End users with an interest in understanding the performance of their 
applications

While this publication is decidedly technical in nature, the fundamental concepts 
are presented from a user point of view and numerous examples are provided to 
reinforce these concepts. 
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Chapter 1. Processor evolution

In this section, the stages of RS/6000 and pSeries processor development are 
discussed, starting with the POWER1 architecture through to the latest 
POWER4. 

1.1  POWER1
The first RS/6000 products were announced by IBM in February of 1990, and 
were based on a multiple chip implementation of the POWER architecture, 
described in IBM RISC System/6000 Technology, SA23-2619. This technology is 
now commonly referred to as POWER1, in the light of more recent 
developments. The models introduced included an 8 KB instruction cache 
(I-cache) and either a 32 KB or 64 KB data cache (D-cache). They had a single 
floating-point unit capable of issuing one compound floating-point multiply/add 
(FMA) operation each cycle, with a latency of only two cycles. Therefore, the 
peak MFLOPS rate was equal to twice the MHz rate. For example, the Model 530 
was a desk-side workstation operating at 25 MHz, with a peak performance of 50 
MFLOPS. Commonly occurring numerical kernels were able to achieve 
performance levels very close to this theoretical peak.

In January of 1992, the Model 220 was announced, based on a single chip 
implementation of the POWER architecture, usually referred to as RISC Single 
Chip (RSC). It was designed as a low-cost, entry-level desktop workstation, and 
contained a single 8 KB combined instruction and data cache.

1
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The last POWER1 machine, announced in September of 1993, was the Model 
580. It ran at 62.5 MHz and had a 32 KB I-cache and a 64 KB D-cache.

1.2  POWER2
Announced in September 1993, the first POWER2 machines included the 
55 MHz Model 58H, the 66.5 MHz Model 590, and the 71.5 MHz 990. The most 
significant improvement introduced with the POWER2 architecture for scientific 
and technical applications was the floating-point unit (FPU) that was enhanced to 
contain two 64-bit execution units. Thus, two floating-point multiply/add 
instructions could be executed each cycle. A second fixed-point execution unit 
was also provided. In addition, several new hardware instructions were 
introduced with POWER2:

� Quad-word storage instructions. The quad-word load instruction moves two 
adjacent double-precision values into two adjacent floating-point registers.

� Hardware square root instruction.

� Floating-point to integer conversion instructions.

Although the Model 590 ran with only a marginally faster clock than the 
POWER1-based Model 580, the architectural improvements listed above, 
combined with a larger 256 KB D-cache size, enabled it to achieve far greater 
levels of performance.

In October 1996, IBM announced the RS/6000 Model 595. This was the first 
machine to be based on the P2SC (POWER2 Super Chip) processor. As its 
name suggests, this was a single chip implementation of the POWER2 
architecture, enabling the clock speed to be increased further. The Model 595 
ran at 135 MHz, and the fastest P2SC processors, found in the Model 397 
workstation and RS/6000 SP Thin4 nodes, ran at 160 MHz, with a theoretical 
peak speed of 640 MFLOPS.

1.3  PowerPC
The RS/6000 Model 250 workstation, the first to be based on the PowerPC 601 
processor running at 66 MHz, was introduced in September, 1993. The 601 was 
the first processor arising out of the partnership between IBM, Motorola, and 
Apple. The PowerPC Architecture includes most of the POWER instructions. 
However, some instructions that were executed infrequently in practice were 
excluded from the architecture, and some new instructions and features were 
added, such as support for symmetric multiprocessor (SMP) systems. In fact, the 
601 did not implement the full PowerPC instruction set, and was a bridge from 
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POWER to the full PowerPC Architecture implemented in more recent 
processors, such as the 603, 604, and 604e. Currently, the fastest 
PowerPC-based machines from IBM for technical purposes, the four-way SMP 
system RS/6000 7025 Model F50 and the uniprocessor system RS/6000 43P 
7043 Model 150, use the 604e processor running at 332 MHz and 375 MHz, 
respectively. The POWER3 and POWER4 processors are also based on the 
PowerPC Architecture, but discussed in the following sections.

1.4  RS64
The first RS64 processor was introduced in September of 1997 and was the first 
step into 64-bit computing for RS/6000. While the POWER2 product had strong 
floating-point performance, this series of products emphasized strong 
commercial server performance. It ran at 125 MHz with a 2-way associative, 4 
MB L2 cache and had a 64 KB L1 instruction cache, a 64 KB L1 data cache, one 
floating-point unit, one load-store unit, and one integer unit. Systems were 
designed to use up to 12 processors. pSeries products using the RS64 were the 
first pSeries products to have the same processor and memory system as 
iSeries products. 

In September 1998, the RS64-II was introduced. It was a different design from 
the RS64 and increased the clock frequency to 262 MHz. The L2 cache became 
4-way set associative with an increase in size to 8 MB. It had a 64 KB L1 
instruction cache, a 64 KB L1 data cache, one floating-point unit, one load-store 
unit, two integer units, and a short in-order pipeline optimized for conditional 
branches. 

With the introduction of the RS64-III in the fall of 1999, this design was modified 
to use copper technology, achieving a clock frequency of 450 MHz, with a L1 
instruction and data cache increased to 128 KB each. This product also 
introduced hardware multithreading for use by AIX. Systems were designed to 
use up to 24 processors. 

In the fall of 2000, this design was enhanced to use silicon on insulator (SOI) 
technology, enabling the clock frequency to be increased to 600 MHz. The L2 
cache size was increased to 16 MB on some models. Continued development of 
this design provided processors running at 750 MHz. The most recent version of 
this microprocessor was called the RS64-IV.

During the history of this family of products, top performance publications have 
been made for a large variety of benchmarks, including TPC-C (online 
transaction processing), SAP (enterprise resource planning - ERP), Baan (ERP), 
PeopleSoft (ERP), SPECweb (web serving), and SPECjbb (Java).
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1.5  POWER3
The POWER3 processor brought together the fundamental design of the 
POWER2 microarchitecture, as currently implemented in the P2SC processor, 
with the PowerPC Architecture. It combined the excellent floating-point 
performance delivered by P2SC’s two floating-point execution units, while being 
a 64-bit, SMP-enabled processor ultimately capable of running at much higher 
clock speeds than current P2SC processors. Initially introduced in the fall of 1998 
at a processor clock frequency of 200 MHz, most recent versions of this 
microprocessor incorporate copper technology and operate at 450 MHz.

1.6  POWER4
The new POWER4 processor, described in detail in Chapter 2, “The POWER4 
system” on page 5, continues the evolution. The POWER4 processor chip 
contains two microprocessor cores, chip and system pervasive functions, core 
interface logic, a 1.41 MB level-2 (L2) cache and controls, the level-3 (L3) cache 
directory and controls, and the fabric controller that controls the flow of 
information and control data between the L2 and L3 and between chips. 

Each microprocessor contains a 64 KB level-1 instruction cache, a 32 KB level-1 
data cache, two fixed-point execution units, two floating-point execution units, two 
load/store execution units, one branch execution unit, and one execution unit to 
perform logical operations on the condition. Instructions dispatched in program 
order in groups are issued out of program order to the execution units, with a bias 
towards oldest operations first. Groups can consist of up to five instructions, and 
are always terminated by a branch instruction. The processors on the first IBM 
POWER4-equipped servers, the IBM ^ pSeries 690 Model 681 servers, 
operate at either 1100 MHz or 1300 MHz. 

A quick look at comparative metrics may help you put the capacity of the latest 
POWER-based processors in perspective, as provided in Table 1-1.

Table 1-1   Comparative POWER3-II, RS64-III, and POWER4 processor metrics

Metric POWER3-II
450 MHz

RS64-III
450 MHz

POWER4
1300 MHz

SPECint2000 335.0 234.0 814.0

SPECfp2000 433.0 210.0 1169.0
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Chapter 2. The POWER4 system

The POWER4 system is a new generation of high-performance 64-bit 
microprocessors and associated subsystems especially designed for server and 
supercomputing applications. POWER4 systems power the next generation of 
servers that will be the replacements for the POWER3 and RS64-series high-end 
RS/6000 and pSeries technical servers. This chapter provides details of the 
POWER4 system that are significant to application programmers concerned with 
understanding or improving application performance.

2.1  POWER4 system overview
The POWER4 system is a high-performance microprocessor and storage 
subsystem utilizing IBM’s most advanced semiconductor and packaging 
technology. It is the building block for the next-generation pSeries and iSeries 
SMP servers. The POWER4 system implements the PowerPC AS Processor 
Architecture, which specifies the instruction set, register set, and storage model, 
to name a few, in other words, all functions that are visible to the programmer.

A POWER4 system logically consists of multiple POWER4 microprocessors and 
a POWER4 storage subsystem, interconnected together to form an SMP system. 
Physically, there are three key components: the POWER4 processor chip, the L3 
Merged Logic DRAM (MLD) chip, and the memory controller chip.

� The POWER4 processor chip contains two 64-bit microprocessors, a 
microprocessor interface controller unit, a 1.41 MB (1440 KB) level-2 (L2) 

2
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cache, a level-3 (L3) cache directory, a fabric controller responsible for 
controlling the flow of data and controls on and off the chip, and chip/system 
pervasive functions.

� The L3 merged logic DRAM (MLD) chip, which contains 32 MB of L3 cache. 
An eight-way POWER4 SMP module will share 128 MB of L3 cache 
consisting of four modules each of which contains two 16 MB merged logic 
DRAM chips.

� The memory controller chip features one or two memory data ports, each 16 
bytes wide, and connects to the L3 MLD chip on one side and to the 
Synchronous Memory Interface (SMI) chips on the other.

The pSeries 690 Model 681 is built around the POWER4 Multi-chip Module 
(MCM) which contains four POWER4 chips. A 32-way SMP system contains four 
MCMs. POWER4 MCMs are mounted on system boards along with the L3, 
memory cards including the memory controllers, and support chips to form the 
heart of the pSeries 690 Model 681. 

2.2  The POWER4 chip
The main components of the POWER4 chip are shown in Figure 2-1 on page 7. 
The POWER4 chip has a maximum of two microprocessors, each of which is a 
fully functional 64-bit implementation of the PowerPC AS Architecture 
specification. Also on the chip is a unified second-level cache, shared by both 
microprocessors through a core interface unit (CIU). The L2 cache is physically 
divided into three equal-sized parts, each having an L2 cache controller. The CIU 
connects each of the three L2 controllers to each processor though separate 
32-byte wide data reload and instruction reload ports. Each microprocessor also 
has an 8-byte wide store port to the CIU that in turn is used to store data through 
the appropriate L2 controller. 

Each processor also has associated non-cacheable unit (NCU), shown in 
Figure 2-1 on page 7, responsible for handling instruction-serializing functions 
and performing any non-cacheable operations in the storage hierarchy. Logically, 
these are part of the L2 cache.

To improve performance by reducing the latency to memory, the directory for the 
level 3 cache (L3 cache) and its controller are also located on the POWER4 chip 
(while the actual L3 arrays are located on the L3 MLD module). Additionally, for 
I/O device communication, the GX bus controller and the two associated 
four-byte wide GX bus, one on chip and one off chip, are on the chip as well.
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Figure 2-1   The POWER4 chip

Each POWER4 chip contains a fabric controller that provides master control of 
the network of buses. These buses connect together the on-chip L2 controllers, 
L3, other POWER4 chips, and other POWER4 modules, and also perform 
snooping and coherency duties. The Fabric Controller directs a point-to-point 
network between each of the four chips on the MCM made up of unidirectional 
16-byte wide buses running at half the processor frequency, the 8-byte buses 
also operating at half the processor speed connecting each chip to a 
corresponding chip on a neighboring MCM, and also controls the unidirectional 
16-byte wide buses (running at 3:1 in the pSeries 690 Model 681) between the 
POWER4 chip and the L3 cache, as well as the buses to the NCU and GX 
controller. 

Although not related to performance, it is worth mentioning that the chip also 
includes an important set of pervasive functions. These include trace and debug 
facilities used for First Failure Data Capture, built-in self-test (BIST) facilities, 
performance monitoring unit (PMU), an interface to the service processor (SP) 
used to control the overall system, power-on reset (POR) sequencing logic, and 
error detection and logging circuitry.
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2.3  Processor overview
Figure 2-2 shows a high-level block diagram of a POWER4 microprocessor. The 
POWER4 microprocessor is a high-frequency, speculative superscalar machine 
with out-of-order instruction execution capabilities. Eight independent execution 
units are capable of executing instructions in parallel providing a significant 
performance attribute known as superscalar execution. These include two 
identical floating-point execution units, each capable of completing a multiply/add 
instruction each cycle (for a total of four floating-point operations per cycle), two 
load-store execution units, two fixed-point execution units, a branch execution 
unit, and a conditional register unit used to perform logical operations on the 
condition register.

Figure 2-2   The POWER4 processor

To keep these execution units supplied with work, each processor can fetch up to 
eight instructions per cycle and can dispatch and complete instructions at a rate 
of up to five per cycle. A processor is capable of tracking over 200 instructions 
in-flight at any point in time. Instructions may issue and execute out-of-order with 
respect to the initial instruction stream, but are carefully tracked so as to 
complete in program order. In addition, instructions may execute speculatively to 
improve performance when accurate predictions can be made about conditional 
scenarios.
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2.3.1  The POWER4 processor execution pipeline
Figure 2-3 depicts the POWER4 processor execution pipeline. The deeply 
pipelined structure of the machine’s design is shown. Each small box represents 
a stage of the pipeline (a stage is the logic which is performed in a single 
processor cycle). Note that there is a common pipeline which first handles 
instruction fetching and group formation, and this then divides into four different 
pipelines corresponding to four of the five types of execution units in the machine 
(the CR execution unit is not shown, which is similar to the fixed-point execution 
unit). All pipelines have a common termination stage, which is the group 
completion (CP) stage.

Figure 2-3   The execution pipeline

2.3.2  Instruction fetch, group formation, and dispatch
The instructions that make up a program are read in from storage and are 
executed by the processor. During each cycle, up to eight instructions may be 
fetched from cache according to the address in the instruction fetch address 
register (IFAR) and the fetched instructions are scanned for branches 
(corresponding to the IF, IC, and BP stages in Figure 2-3).
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� X-form fixed-point stores (cracked into an add + store)

� Load algebraic (cracked into load + sign extend)

� CR-logicals, except for destructive forms (RT=RB)

Common instructions that are millicoded are:

� lmw, lswi (all multiples and string load instructions)

� mtcrf (move to condition register fields, more than one target field)

� mtxer and mfxer

Groups are formed that contain up to five internal instructions, each occupying 
an internal instruction slot (numbered 0 through 4) of a dispatch group. After a 
group is assembled, it is readied for dispatch, which is the process of sending the 
instructions as a group to the issue queues. As part of the dispatching operation, 
internal group instruction dependencies are determined and internal resources 
such as issue queue slots, rename registers, reorder queues, and mappers are 
assigned (GD and MP stages). Groups are dispatched and tracked using the 
20-entry global completion table (GCT) in program order at a rate of up to one 
per cycle. (See discussion on completion in Section 2.3.10, “Group completion” 
on page 16).

Each internal instruction slot in a group feeds separate issue queues for the 
floating-point units, the branch execution unit, the CR execution unit, the logical 
CR execution unit, the fixed-point execution units and the load/store execution 
units. The fixed point and load/store execution units share common issue 
queues. Table 2-1 summarizes the depth of each issue queue and the number of 
queues available for each type of queue. For the floating-point issue queues and 
the common issue queues for the fixed point and load/store units, the issue 
queues fed from slots 0 and 3 of the instruction group hold instructions to be 
executed in one of the execution units, while the issue queues fed from slots 1 
and 2 of the group feed the other execution unit. The CR execution unit draws its 
instructions from the CR logical issue queue fed from instruction slots 0 and 1.

Table 2-1   Issue queues

Queue type Entries per queue Number of queues

Fixed point and load-store units 9 4

Floating point 5 4

Branch execution 12 1

CR logical 5 2
10 POWER4 Processor Introduction and Tuning Guide 



During the issue stage (ISS), instructions that are ready to execute are pulled out 
of the issue queues and enter the register file access stage, where they access 
their source operands from registers. If more than two instructions from a 
particular queue are ready to execute, the issue logic attempts to issue the oldest 
instruction. 

2.3.3  Instruction execution, speculation, rename resources
The speculative-execution design of the POWER4 microprocessor can execute 
instructions before it is certain that those instructions will be required to be 
executed. Speculative execution can significantly enhance performance by 
potentially eliminating stalls associated with waiting for a condition associated 
with a branch to be resolved.

It is important to understand the distinction between instructions that finish 
execution and instructions that complete. The term completion carries an 
important architectural meaning: completion makes results available to a 
program. An instruction or group of instructions may have been speculatively 
executed by the hardware, but unless they complete, their results are not visible 
to the program. (This, however, does not hold up speculative execution of 
instructions dependent on these results.)

A superscalar speculative-execution design requires an orderly way to manage 
machine resources and to flush instructions, along with affected registers, when 
predictions are found to be incorrect. The POWER4 microprocessor uses 
physical resources called rename registers throughout its design that are critical 
to this capability. Rename registers are assigned to instructions during the 
mapping (MP) stage and are typically released when the next instruction writing 
to the same logical resource (for example, the same architected general purpose 
register) is completed. At any point in time, a rename register may represent an 
architected register or a target buffer register. In the latter case, the register will 
be reclassified as an architected register upon successful completion of the 
instruction or released for reuse if the instruction is flushed. For each type of 
PowerPC register group, Table 2-2 lists the number of architected registers in the 
PowerPC specification and the corresponding number of physical (rename) 
registers in the POWER4 microprocessor.

Table 2-2   Rename resources

Resource type Architected (PowerPC) Physical 

General-Purpose Register (GPR) 32 80

Floating-Point Register (FPR) 32 72

Condition Register (CR) eight 4-bit fields 32
 Chapter 2. The POWER4 system 11



2.3.4  Branch prediction
If an instruction sequence contains a conditional branch instruction, the 
conditional test associated with that branch directs the flow of execution, either to 
take the branch or to continue execution at the next sequential instruction. In the 
POWER4 microprocessor, all such conditional branches are predicted, and 
instructions are fetched and executed speculatively based upon that prediction. 
Instruction streams are scanned for branch instructions, and upon encountering 
a conditional branch, a prediction is made as to the outcome of its conditional 
test. This prediction is used to direct the fetching of instructions beyond the 
branch. If the prediction is correct, processing simply continues and the branch 
instruction completes normally. If, however, the prediction is incorrect, the 
instructions corresponding to the incorrect prediction are flushed and instruction 
fetching is redirected down the correct path, incurring a performance penalty of 
at least 12 cycles.

To make accurate predictions about the outcome of a conditional branch 
instruction, the POWER4 microprocessor tracks two different prediction 
methodologies simultaneously, and also tracks which method is predicting a 
particular branch more effectively, so that it may use the more successful 
prediction method for a given branch. The first employs a traditional branch 
history table, each entry of which corresponds to whether a given branch was 
taken or not taken. The second method attempts to predict the direction of a 
branch by using information about the path of execution that was taken to get to 
that branch. Both methods use a 16 KB entry table to hold their 1-bit prediction 
per branch, and a third 16 KB table holds the 1-bit selector indicating the 
preferred predictor for that branch. This combination of branch prediction 
methods produces very accurate predictions across a wide range of workload 
types. As branch instructions are executed and resolved, the branch history 
tables and the other predictors are updated to reflect the latest and most 
accurate information. 

If the first branch encountered in a particular cycle is predicted as not taken and 
a second branch is found in the same cycle, the POWER4 processor predicts 
and acts on the second branch in the same cycle. In this case, the machine will 
register both branches as predicted, for subsequent resolution at branch 
execution, and will redirect the instruction fetching based on the second branch.

Link/Count Register (LCR) 2 16

Floating-Point Status and Control Register 
(FPSCR)

1 20

Fixed-Point Exception Register (XER) four fields 24

Resource type Architected (PowerPC) Physical 
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Dynamic branch prediction can be overridden by hint bits in the branch 
instructions. This is useful in cases where knowledge at the application level 
exists that can result in better predictions than the execution-time hardware 
prediction methods. It is accomplished by setting two previously reserved bits in 
conditional branch instructions, one to indicate a software override and the other 
to predict the direction. When these two bits are zero, the hardware branch 
prediction previously described is used. Since only reserved bits are used for this 
purpose, 100 percent binary compatibility with earlier software is maintained.

The POWER4 processor also has target address prediction logic for predicting 
the target of branch to link and branch to count instructions, which often have 
repeating and therefore predictable targets.

2.3.5  Translation buffers (TLB, SLB, I- and D-ERAT)
The PowerPC Architecture specifies a virtual storage model for applications, in 
which each program’s effective address (EA) space is a subset of a larger virtual 
address (VA) space that is managed by the operating system (see Section 3.3.1, 
“POWER4 virtual memory architecture overview” on page 54). Virtual addresses 
are, in turn, translated into real (physical) storage locations. Each POWER4 
processor has three types of buffer caches to speed this process of translation: a 
translation look-aside buffer (TLB), a segment look-aside buffer (SLB), and an 
effective-to-real address table (ERAT). The SLB is a 64-entry, fully associative 
buffer for caching the most recent segment table entries (STEs). The TLB is a 
1024-entry, four-way set-associative buffer for caching the most recent page 
table entries (PTEs). These page table entries may represent either the standard 
4 KB page or a 16 MB large page. The POWER4 microprocessor also has 
separate ERATs for instructions (I-ERAT) and for data (D-ERAT), both of which 
are 128-entry, two-way set-associative arrays. The ERATs hold the most recent 
{EA,RA} pairs to facilitate the high-frequency, high-bandwidth design of the 
POWER4 microprocessor. Both ERATs are indexed using the effective address 
and require 10 cycles to reload from the TLB, assuming that pages EA to RA 
translation exists in the TLB. ERAT entries are always maintained on a 4 KB page 
basis.

2.3.6  Load instruction processing
Load instructions execute in the LD/ST pipeline shown in Figure 2-3 on page 9. 
After a load instruction issues, it must generate the effective address of the 
operand being loaded or stored using the contents of the general-purpose 
registers specified along with the instruction. The RA stage is the cycle in which 
the registers are accessed and the EA cycle is the address generation stage, 
also called AGEN.
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To keep track of hazards associated with loads and stores executing out of order 
with respect to each other, two 32-entry queues exist: the load reorder queue 
(LRQ) and the store reorder queue (SRQ). All loads and stores are allocated an 
entry in these queues at dispatch, respectively. Loads and stores are checked 
against the entries in these tables to ensure that program correctness is 
maintained.

The cycle following the AGEN cycle is the DC cycle, in which the real address 
from the D-ERAT is obtained and the data cache is accessed for the appropriate 
cache line. If the DC cycle is successful, the data is formatted and written into a 
register, and it is ready for use by a dependent instruction. If a D-ERAT miss 
occurs, the instruction is rejected, but it is kept in the issue queue. Meanwhile a 
request is made to the TLB to reload the D-ERAT with the address translation 
information. The rejected instruction is then re-issued a minimum of 7 cycles 
after it was first issued. If the D-ERAT still does not contain the translation 
information, the instruction is again rejected. This process continues until the 
D-ERAT is reloaded. 

In the case of loads, hits in the L1 data cache result in the requested bytes being 
formatted and written into the appropriate register. In the event of a cache miss, a 
request is initiated to the L2 cache to retrieve the line. Requests to the L2 cache 
are stored in the load miss queue (LMQ), which acts as a repository for all 
outstanding L1 cache line misses. The LMQ can hold up to eight requests to the 
L2 cache; hence each POWER4 microprocessor is capable of managing up to 
eight data cache line requests to the L2 cache (and beyond) at any given time, 
providing an effective mechanism for reducing the average latency of cache line 
reloads. If the LMQ is full, the load instruction that missed in the data cache is 
rejected and is re-issued again in a minimum of 7 cycles. If there is already a 
request to the L2 cache for the same line from another load instruction, the 
second request is merged into the same LMQ entry. If a third request to the same 
line occurs, the load instruction is rejected and processing continues as above. 
All reloads from the L2 cache check the LMQ to see if there is an outstanding 
request yet to be honored against a just-returned line. If there is, the requested 
bytes are forwarded to the register to complete the execution of the load 
instruction. After the line has been reloaded, the LMQ entry is released for reuse.

2.3.7  Store instruction processing
Store instructions are assigned an entry in the SRQ during the issue stage for 
tracking by the real address of the stored data. The store data queue (SDQ) has 
32 double-word entries and receives the data being stored in an entry 
corresponding to the address entry in the SRQ. Stores are removed from the 
SRQ and SDQ and the data is written to the L2 once it has been completed and 
all older stores have been successfully sent to the L2. 
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Loads that are to the same address as a previous store may be forwarded 
directly from the SDQ to the target register of the load, provided the data for the 
load is completely contained within the store operand and the data has not yet 
been written to the cache.

The L1 data cache is a store-through design: all data stored to cache lines that 
exist in the L1 data cache are also sent to the L2 cache to ensure that 
modifications to lines in the L1 cache are always reflected in corresponding lines 
in the L2 cache. If data is stored to a cache line that is not found in the L1 data 
cache, the data is simply transferred straight through to the L2 cache without 
establishing the cache line in the L1 data cache. All data contained in the L1 data 
cache is guaranteed to be in the L2 cache. If the L2 needs to cast out data that is 
contained in the L1 data cache, that line is invalidated in the L1 data cache.

Stores can be sent to the L2 cache at a maximum rate of one store per cycle. 
Store data is directed to the proper L2 controller (through a hashing function) by 
way of the storage slice queue (SSQ) and the L2 store queue (STQ). 
Steady-state store performance is described in detail in Section 3.1.7, “Selected 
fundamental kernel performance within on-chip cache” on page 49.

2.3.8  Fixed-point execution pipeline
The pipeline for the two fixed-point execution units (FXUs) is shown as the FX 
pipe in Figure 2-3 on page 9. Both units are capable of basic arithmetic, logical, 
and shifting operations, and both units are capable of fixed-point multiplies 
(non-pipelined). One of the FXUs is capable of fixed-point divides, and the other 
can handle special-purpose register (SPR) operations. 

2.3.9  Floating-point execution pipeline
The POWER4 microprocessor contains two symmetrical floating-point execution 
units each of which implement a fused multiply/add pipeline with single cycle 
throughput conforming to the PowerPC microarchitecture. All floating-point 
instructions pass though both the multiply stage and the add stage. For 
floating-point multiplies, 0 is used as the add operand, and for floating-point 
adds, 1 is used as the multiplicand. Each floating-point execution unit supports 
single-cycle throughput and six-cycle data forwarding for dependent instructions.

The floating-point operations square root (fsqrt and fsqrts) and divide (fdiv and 
fdivs) are not pipelined. Each pipeline can execute the operations with the 
assistance of additional logic to handle their numerical algorithms. The 
performance of these and other floating-point operations is highlighted in 
Section 3.1.7, “Selected fundamental kernel performance within on-chip cache” 
on page 49.
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The POWER4 microprocessor also implements the optional PowerPC 
instructions fres (floating-point reciprocal estimate) and frsqrte (floating-point 
reciprocal square-root estimate), as well as fsel (floating-point select). The last 
instruction provides for a conditional floating-point assignment operation without 
branching, which eliminates the chance of incurring a performance penalty for a 
mispredicted branch.

2.3.10  Group completion
Results are written to registers or cache/memory when the group completes. 
Completion carries an important architectural meaning: completion makes 
results available to a program through architected resources (such as 
floating-point registers). An instruction or group of instructions may have been 
executed speculatively by the hardware, but do not complete unless all 
conditions associated with their execution have been successfully resolved. A 
group can complete when all older groups have completed and when all 
instructions in the group have finished execution free of exceptions. One group 
can complete in a cycle, which matches the rate at which groups can be 
dispatched.

2.4  Storage hierarchy
The POWER4 system storage hierarchy consists of three levels of cache and the 
memory subsystem. The L1 caches and L2 cache is physically on the POWER4 
chip. The directory for the L3 cache is also on the chip, but the actual cache itself 
is on a separate. Table 2-3 summarizes the capacities and organization of the 
various levels of cache.

Table 2-3   Storage hierarchy organization and size

Component Organization Capacity

L1 instruction cache Direct map, 128-byte line 128 KB per chip 
(64 KB per processor)

L1 data cache Two-way, 128-byte line 64 KB per chip 
(32 KB per processor)

L2 cache Four-way to eight-way, 128-byte line 1440 KB per chip 
(1.41 MB)

L3 cache Eight-way, 512-byte lines,
managed as four 128-byte sectors

128 MB per MCM
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2.4.1  L1 instruction cache
Each POWER4 microprocessor has an L1 instruction cache that is a 64 KB direct 
mapped cache and capable of either one 32-byte read or write each cycle. It is 
indexed by the effective address of the instruction cache line. 

2.4.2  L1 data cache
Each POWER4 microprocessor contains an L1 data cache that is 32 KB in size, 
two-way set associative, and has a replacement policy of first-in-first-out (FIFO). 
It is capable of two eight-byte reads and one eight-byte write per cycle (it is 
effectively triple ported).

When the cache line containing the operand of a load instruction is not in the L1 
data cache, the processor requests a cache line reload, which retrieves the line 
from the memory subsystem and places it in the L1 data cache across a reload 
interface to the CIU that is 32 bytes wide. Since the maximum the processor can 
demand per cycle from the register file is two doubleword loads (for example, 
16 bytes/cycle) this reload rate is twice the rate that the processor itself can 
demand data.

The L1 data cache implements a store-through design, which means that any 
updates to data in the L1 data cache are immediately stored through to the L2 
cache to keep it synchronized with the L1 data cache. If the operand of a store 
instruction is not found in any of the cache lines currently resident in the L1 data 
cache (such as when there is an L1 store miss), the data that is in the source 
register of the store instruction is stored through to the L2 cache, and the cache 
line is not established or reloaded into the L1. The data to be stored passes 
through various queues in the processor (the Store Data Queue), the CIU (the 
Slice Store Queue), and the L2 cache (the L2 Store Queue) before it actually 
gets stored into the L2 cache. These queues act as buffers for stored data, which 
allows the store instruction itself to complete and facilitates the optimization of 
store performance through a technique named store gathering. 

2.4.3  L2 cache
Each POWER4 chip has an L2 cache that is supervised by three L2 controllers, 
each of which manages 480 KB, for a total L2 size of 1440 KB. Cache lines are 
hashed across the three controllers. Cache line replacement is implemented as a 
binary-tree pseudo-LRU algorithm. The L2 cache is a unified cache: it caches 
instructions, data, and page table entries. The L2 cache is also shared by the 
processors on the chip. For HPC features of the pSeries Model 690, there is only 
one processor per chip, and thus the L2 cache is entirely owned by that 
processor.
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Memory coherency in the system is enforced primarily at the L2 cache level by 
L2 cache controllers. Each L2 has associated command queues, known as 
coherency processors. Snoop processors within each controller observe all 
transactions in the system and respond accordingly, providing responses or 
delivering cache lines if the situation merits. 

2.4.4  L3 cache
The L3 cache is eight-way set-associative organized in 512-byte blocks, but with 
coherence still maintained in the system cache line size of 128 bytes. POWER4 
chips are connected to memory through an L3 cache (see Figure 2-4). Generally, 
it caches data that comes from the memory port to which it is attached. An 
exception to this is when the cache line has been sent from a remote MCM, in 
which case an attempt is made to cache the line in an L3 cache on the 
requesting module. 

The L3 cache is designed to be combined with other L3 caches on the same 
processor module in pairs or quadruplets to create a larger, address-interleaved 
L3 cache of 64 MB or 128 MB. Combining L3 caches into groups not only 
increases the L3 cache size, but also increases the L3 bandwidth available to any 
processor. When combined into groups, L3 caches and the memory behind them 
are interleaved on 512-byte granularity.

2.4.5  Interconnecting chips to form larger SMPs
The basic building block for a pSeries is a multi-chip module (MCM) with four 
POWER4 chips forming an 8-way SMP, as shown in Figure 2-4. Multiple MCMs 
can then be interconnected to form 16-, 24-, and 32-way SMPs.

Figure 2-4   A logical view of the interconnection buses within an MCM
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The logical interconnection of four POWER4 chips is point-to-point, with 
uni-directional buses connecting each pair of chips to form an 8-way SMP with an 
all-to-all interconnection topology. The fabric controller on each chip monitors (for 
example snoops) all buses and writes to its own bus, arbitrating between the L2 
cache, I/O controller, and the L3 controller for the bus. Requests for data from an 
L3 cache are snooped by each fabric controller to determine if it has the data 
being requested in its L2 cache (in a suitable state), or in its L3 cache, or in the 
memory attached to its L3 cache. If any one of these is true, then that controller 
returns the requested data to the requesting chip on its bus. The fabric controller 
that generated the request then sees the response on that bus and accepts the 
data.

2.4.6  Multiple module interconnect
Figure 2-5 shows the interconnection of four MCMs to form a 32-way SMP. Up to 
four MCMs can be interconnected by extending each bus from each module to its 
neighboring module in one direction. Inter-module buses run at half the 
processor frequency and are 8-bytes wide. The inter-MCM topology is that of a 
ring in which requests and data move from one module to another module in one 
direction. As with the single MCM configuration, each chip always sends 
requests, commands and data on its own bus but snoops all buses for requests 
or commands from other MCMs.

Figure 2-5   Logical view of MCM-to-MCM interconnections
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2.4.7  Memory subsystem
Each POWER4 chip can optionally have a memory controller attached behind 
the L3 cache. Memory controllers are packaged two to a memory card and 
support two of the four POWER4 chips on a module (as shown by the placement 
of memory slots in Figure 2-6). A pSeries 690 Model 681 has two memory slots 
associated with each module. No memory cards, one, or two memory cards can 
be installed per module. Memory controllers can each have either one or two 
ports to memory.

The memory controller is attached to the L3 MLD chips, with each memory 
controller having two 16-byte buses to the L3, one in each direction. These buses 
operate at one-third of the processor speed.

Each port to memory has four 4-byte bidirectional buses operating effectively at 
400 MHz connecting load/store buffers in the memory controller to four System 
Memory Interface (SMI) chips used to read and write data from memory. When 
two memory ports are available, they each work on 512-byte boundaries. The 
memory controller has a 64-entry read command queue, a 64-entry write 
command queue, and a 16-entry write cache queue.

Figure 2-6   Multiple MCM interconnection

If one memory card or two unequal size memory cards are attached to a module, 
then the L3 caches attached to the module function as two 64 MB L3 caches. 

GXGX

P

L2

PP

L2

P

P

L2

P P

L2

P

GXGX

P

L2

PP

L2

P

P

L2

P P

L2

P

GX

GX

P

L2

PP

L2

P

P

L2

P P

L2

P

GX

GX

GX

GX

GX

P

L2

PP

L2

P

P

L2

P P

L2

P

GX

GX

GX

GX

GX

Mem
Slot

GX
Slot

L3 L3 L3 L3L3 L3L3 L3

L3 L3

L3 L3

L3 L3L3 L3 L3 L3

L3 L3

L3 L3

L3 L3

L3 L3

L3 L3

L3 L3

L3 L3

MCM 1

MCM 3MCM 2

MCM 0

GX
Slot

Mem
Slot

Mem
Slot

Mem
Slot

Mem
Slot

Mem
Slot

Mem
Slot

Mem
Slot

GX
Slot

GX
Slot
20 POWER4 Processor Introduction and Tuning Guide 



The two L3 caches that act in concert are the L3 caches that would be in front of 
the memory card. (Note that one memory card is attached to two chips.) 

2.4.8  Hardware data prefetch
In addition to out of order execution and the ability to sustain multiple outstanding 
cache misses, POWER4 systems provide additional hardware to hide memory 
latency by prefetching data cache lines from memory, L3 cache, and L2 cache 
transparently into the L1 data cache. The POWER4 processor can prefetch 
streams, which are defined as a sequence of loads from storage that reference at 
least two or more contiguous data cache lines, in order, either in an ascending or 
descending pattern (the loads themselves need not be monotonically increasing 
or decreasing). Eight such streams per processor are supported. Hardware 
prefetching is triggered by data cache line misses, and then paced by loads to 
the stream. Pacing prefetches by monitoring loads provides a 
consumption-driven method to provide timely and effective prefetching.

The prefetch engine typically initiates a prefetch stream after detecting misses to 
two consecutive cache lines. Figure 2-7 shows the sequence of prefetch 
operations in the steady-state after a ramp-up phase. L1 prefetches are one 
cache line ahead of the cache line currently being loaded from in the program. L2 
prefetches, which prefetch cache lines from the L3 cache (or memory) into the L2 
cache, are five cache lines ahead, which is sufficient to hide the latency between 
the L3 cache and the L2 cache. Finally, L3 prefetches, which prefetch data from 
the memory into the L3 cache, are 17 to 20 lines ahead of the current cache line 
being loaded from in the program. L3 prefetches are usually done as logical 
512-byte lines, for example, four 128-byte lines at a time. This increases the 
efficiency of the transactions and need only be performed every fourth line 
referenced. 

Figure 2-7   Hardware data prefetch operations

EU 0 1EU 0 1

Hardware Data Prefetch

L2

L3
Memory

Core L2

l 1 l2 l4l3 l5l 1 l2 l4l3 l5

L3

l l l ll l l ll l l l5 6 7 8

l 9 l 10 l11 l12

l13 l 14 l15 l 16

l 17 l18 l 19 l20

5 6 7 85 6 7 8

l 9 l 10 l11 l12l 9 l 10 l11 l12

l13 l 14 l15 l 16l13 l 14 l15 l 16

l 17 l18 l 19 l20l 17 l18 l 19 l20

l 17 l18 l 19 l20l 17 l18 l 19 l20l 17 l18 l 19 l20

Memory

DL1

l

Core

l

 Chapter 2. The POWER4 system 21



To begin a stream, the prefetch engine either increments or decrements the real 
address of a cache line miss (so that it is the address of the next or the previous 
cache line) and places that address in the prefetch filter queue. The decision 
whether to increment or decrement is based upon the offset within the line 
corresponding to the load operand. As new cache misses occur, if the real 
address of the new cache miss matches one of the guessed addresses in the 
filter queue, a stream has been detected. If the prefetch engine has fewer than 
eight streams active, the new stream is installed in the prefetch request queue 
and the prefetching ramp-up sequence is begun. Once placed in the prefetch 
request queue, a stream remains active until it is aged out. Normally a stream is 
aged out when the stream reaches its end and other cache misses displace its 
entry in the filter queue.

The hardware prefetch engine issues prefetches only within a real page since it 
does not carry information about the effective to real address mapping. Hence, 
page boundaries curtail prefetching and end streams. If a prefetchable storage 
reference pattern crosses a page boundary, a new stream is started at the 
beginning of the new real page according to the startup logic described above. 
Since this results in a performance penalty that can be significant, POWER4 
systems support, in addition to the standard 4 KB page, an additional page size 
of 16 MB (concurrently with 4 KB pages). Applications which place data into 16 
MB pages can significantly improve prefetching performance by essentially 
eliminating this penalty associated with stream re-initialization at page 
boundaries.

2.4.9  Memory/L3 cache command queue structure
Each L3 cache controller has eight all-purpose coherency processors and eight 
special-purpose coherency processors. In the desired mode in which four L3 
cache arrays are operating in shared mode and therefore appear as one logical, 
interleaved L3 cache, there are a total of 32 all-purpose coherency processors 
and 32 special-purpose coherency processors. Coherency processors are busy 
processing a request until the operation is complete. Special-purpose coherency 
processors handle primarily cache line writes to memory. For many workloads, 
the majority of requests to the L3 cache will be read requests or data prefetch 
requests, and hence the all-purpose coherency processors performance will 
essentially determine the overall performance of the L3 cache and memory 
subsystem.
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2.5  I/O structure
Figure 2-8 on page 23 shows the I/O structure in POWER4 systems. The 
POWER4 GX bus is attached to a Remote I/O (RIO) bridge chip. This chip 
transmits the data across two one-byte wide RIO buses to PCI Host Bridge 
(PHB) chips.

Figure 2-8   I/O structure
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AIX 5L contains application program interface (API) code for customer use in 
enabling and using the performance monitor facilities from their applications. Use 
of the POWER4 Performance Monitor API is discussed in Section 5.3, “The 
performance monitor” on page 101.
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Chapter 3. POWER4 system 
performance and tuning

This chapter provides a guide for Fortran or C programmers who have a general 
understanding of tuning techniques to tune their programs for POWER4. The 
following major topics are discussed within: 

� Tuning for scientific and technical numerically intensive applications 

� Tuning for non-numerically intensive or commercial applications

� General system level aspects of tuning

For more information on the general aspects of tuning, see Optimization and 
Tuning Guide for Fortran, C, and C++, SC09-1705.

3.1  Tuning for numerically intensive applications
Before describing specific tuning techniques, this section first reviews the tuning 
process and discusses those aspects of POWER4 microarchitecture that 
particularly influence the performance of numerically intensive scientific and 
technical programs.

3
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3.1.1  The tuning process for numerically intensive applications
For an existing program, the following steps summarize the tuning process in 
approximate order of importance. Taking these guidelines into account when 
writing a new program should significantly reduce the need for tuning at a later 
stage.

1. If I/O is a significant part of the program, tuning for this is an important but 
separate activity from computational tuning. Some guidelines for efficient I/O 
coding are given in Chapter 4, “Optimizing with the compilers” on page 69.

2. Use the best set of compiler optimization flags. See Section 4.1, 
“POWER4-specific compiler options” on page 69.

3. Locate the hot spots in the program (profiling). This step is very important. Do 
not waste time tuning code that is infrequently executed.

4. Use the MASS library and ESSL (and maybe other performance-optimized 
libraries) when possible. These libraries are discussed in Chapter 6, 
“Performance libraries” on page 113.

5. Make sure that the generic common sense tuning guidance given in 
Chapter 4, “Optimizing with the compilers” on page 69 has been followed.

6. Hand tune the code to the POWER4 design. This will be discussed in the rest 
of this chapter.

3.1.2  Hand tuning overview for numerically intensive programs
Hand tuning for cache-based RISC architecture computers such as a pSeries 
690 Model 681 is divided into two parts:

1. Avoid the negative. 

Tune to avoid or minimize the impact of a cache and memory subsystem that 
is necessarily slower than the computational units. Basic techniques for doing 
this include:

– Stride minimization
– Encouragement of data prefetch streaming
– Avoidance of cache set associativity constraints
– Data cache blocking

2. Exploit the positive.

Tune to maximize the utilization efficiency of the computational units, in 
particular the floating-point units.

Techniques for CPU tuning include:

– Unrolling inner loops to increase the number of independent computations 
in each iteration to keep the pipelines full.
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– Unrolling outer loops to increase the ratio of computation to load and store 
instructions so that loop performance is limited by computation rather than 
data movement.

It will be assumed that the reader has a basic understanding of the concepts of:

� Loading and storing (into and from floating-point registers) 

� Stride and what determines it in Fortran and C loops

� Loop unrolling

3.1.3  Key aspects of the POWER4 design
This section covers those parts of the POWER4 design that are relevant to tuning 
the performance of floating-point intensive applications. Additional details are 
provided in Chapter 2, “The POWER4 system” on page 5.

The components described here are:

� The L1, L2, and L3 caches

� The ERAT and TLB

� Data prefetch streaming

� Floating point and load/store units

The level 1, 2, and 3 caches
A brief description of the caches follows.

The L1 instruction cache
The L1 instruction cache (I-cache) is 64 KB and is direct mapped. It can be of 
considerable importance for commercial applications such as transaction 
processing.

For computationally intensive applications, it does not usually have a significant 
impact on performance because such applications usually consist of highly 
active loops (DO-loops in Fortran or for-loops in C) that contain relatively few 
instructions. The amount of data handled is usually much larger than the space 
taken by the instruction stream.

Tuning for the I-cache consists mainly of ensuring that active loops do not contain 
a very large number of instructions.
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The L1 data cache
Each processor has a dedicated 32 KB L1 data cache. It is two-way set 
associative with a first-in-first-out (FIFO) replacement algorithm. These concepts 
and the implications for tuning are explained fully in “Structure of the L1 data 
cache” on page 28.

The L2 cache
Each POWER4 chip has a dedicated L2 (data and instruction combined) cache 
1440 KB in size. The pSeries 690 Model 681 and pSeries 690 Turbo have two 
processors per chip that share the L2 cache. The pSeries 690 HPC feature has 
one processor per chip that, therefore, has the L2 cache dedicated. Cache 
coherence is maintained across the entire pSeries 690 Model 681 system at the 
L2 level.

The L3 cache
Four POWER4 chips are combined into an multi-chip module (MCM) each of 
which has a 128 MB Level 3 cache. For pSeries 690 Model 681 systems with 
more than one MCM, the L3 caches on remote MCMs are accessible with a 
modest performance penalty. This applies even if the system is partitioned using 
LPAR.

The L3 cache is eight-way set associative.

General cache considerations
The high bandwidth from L2 to L1 is more than enough to feed the floating-point 
units. Thus, the primary difference from a performance point of view between L1 
and L2 is latency. A load/store between floating-point register and L1 has a 
latency of about 4 cycles; between registers and L2 it is approximately 14 cycles.

The tuning recommendation for dense (as opposed to sparse) computation is 
therefore to block data for the L2 cache and to structure the data access (array 
leading dimension, for example) for the L1. This tuning advice will be explained in 
subsequent sections.

An application whose performance is dominated by latency (such as the 
pointer-chasing code described in Section 3.1.6, “Cache and memory latency 
measurement” on page 47) may need to be blocked for L1 for best performance.

Structure of the L1 data cache
There are two concepts, cache lines and set associativity, that are key to 
understanding the structure of the pSeries 690 Model 681 data cache, discussed 
in the following sections.
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Cache lines
Conceptually, memory is sectioned into contiguous 128-byte lines, each one 
starting on a cache-line boundary whose hardware address is a multiple of 128. 
The cache is similarly sectioned and all data transfer between cache and 
memory is in units of these lines.

If, for example, a particular floating-point number is required to be copied 
(loaded) into a floating-point register to be used in a computation, then the whole 
cache line containing that number is transferred from memory to cache.

Set associativity
The L1 data cache is mapped onto memory, as shown in Figure 3-1. Each 
column in one of the diagrams is called a congruence class, and any particular 
line from memory may only be loaded into a cache line in a particular congruence 
class, that is into one of only two locations.

The POWER4 L1 data cache is two-way set associative with 128 congruence 
classes. Each cache line is 128 bytes. In total, the L1 data cache can contain 
32,768 bytes of data.

Figure 3-1   The POWER4 L1 data cache

When a new line is loaded into L1, it displaces the oldest of the two lines in the 
congruence class (FIFO replacement). 
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The set associative structure of the cache can lead to a reduction in its effective 
size. Suppose successive data elements are being processed that are regularly 
spaced in memory (that is with a constant stride). With the POWER4 cache, the 
worst case is when the stride is exactly 16 KB or a multiple of 16 KB. In this case, 
all elements will lie in the same congruence class and the effective cache size 
will be only two lines. This effect happens, to a lesser extent, with any stride that 
is a multiple of a power of 2 less than 16 KB.

Characteristics of the L2 cache
The size of the L2 cache is 1440 KB per POWER4 chip, and this is shared 
between the two processors in the chip. As with the L1 data cache, the cache line 
size is 128 bytes. The replacement policy is pseudo-LRU (least recently used) so 
frequently accessed cache lines should be readily maintained in the cache. The 
L2 cache is a combined data and instruction cache. Instruction caching aspects 
of the L2 cache are not considered here.

The L2 cache is divided into three equal parts, each under control of a separate 
L2 cache controller. The particular portion a line is stored is in is determined from 
the real memory address using a hashing algorithm. Sixteen consecutive 
double-precision Fortran array elements (138 bytes) are held in the same cache 
line, and therefore under control of the same cache controller. The 17th element 
will be in a different cache line and the hashing algorithm guarantees it will be 
stored under control of a different cache controller. This has implications for the 
optimization of store processing when accessing arrays sequentially.

Loads are processed by loading a cache line from L2 into the L1 data cache 32 
bytes at a time. This means that the L2 cache can load the equivalent of four 
double-precision floating-point data elements per cycle, which is double the 
capability of the processor to issue load instructions. Prefetched data will be 
loaded into the L1 at the same rate.

The L2 cache is a store-in cache, which means that stores are always written to 
the L2 cache whether there is a hit in the L2 cache or not. This is in contrast to 
the store-through L1 data cache where a store miss will not result in the data 
being written into this level. Stores are passed to the L2 cache interface 8 bytes 
at a time. The rate at which stores can be accepted by the interface depends on 
whether the stores are to the same L2 section or not. See 3.1.7, “Selected 
fundamental kernel performance within on-chip cache” on page 49 and 3.1.8, 
“Other tuning considerations” on page 51 for discussions concerning store 
performance.
30 POWER4 Processor Introduction and Tuning Guide 



Once the store has been accepted by the interface unit, the store instruction is 
released by the processor, freeing up resources. Note that store data is never 
written into the caches until they have been completed, such as, made visible to 
the program, by the processor. Completion in this sense is separate and later 
than execution.

In the case where the cache line is not already present in the L2 cache (an L2 
cache miss), then it must be loaded from either memory, another chip’s L2 cache, 
or the L3 cache to ensure that the L2 cache contains the latest copy of this cache 
line. Depending on whether the line already exists in another L2 cache on 
another chip, some coherency processing may be required to ensure that the 
local chip has permission to modify the line. Once the line is updated in the L2 
cache, then it is marked as dirty and will eventually be written out to memory and 
potentially to L3 cache.

The ERAT and TLB
The instruction stream addresses data using a 64-bit effective addresses (EA). 
To access the data in memory, the EA is first converted to an 80-bit virtual 
address (VA) and then to a 64-bit real address (RA). The translation lookaside 
buffer (TLB) holds the 1024 entries organized in a 4-way set-associative 
structure. It contains previously translated EAs to RAs and other information on a 
page basis, either 4 KB or 16 MB page sizes. For 4 KB pages, the TLB 
addresses a total of 4 MB of (not necessarily contiguous) memory. Data that is 
within a page addressed by the TLB will not take the overhead of a TLB miss 
when the EA is accessed. The ERAT is effectively a cache for the TLB. It is a 
256-entry 2-way set-associative array. All ERAT entries are based on 4 KB pages 
pages, even if 16 MB pages are used.

The TLB addresses a greater amount of memory (at least 4 MB) than the L2 
cache (1.41 MB). Therefore, any program that is tuned to take any advantage of 
the L2 cache is unlikely to experience serious overheads due to TLB misses (this 
is different from POWER3 where the TLB addressed 1 MB but L2 was 4 MB or 
8 MB). It is still possible on POWER4 to construct situations involving high strides 
that will create a TLB miss and not a cache miss, but tuning for the TLB is beyond 
the scope of this document. For codes in which a blocking strategy is used, 
empirically determining the blocking factors will also include ERAT and TLB 
effects. 

Prefetch data streaming
The POWER4 design provides a prefetch mechanism that can identify streams 
as defined in Section 2.4.8, “Hardware data prefetch” on page 21. Each 
POWER4 microprocessor can support up to eight independent prefetch streams. 
In contrast, the POWER3 processor supported four independent prefetch 
streams. Note that there is no prefetch on store operations.
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The prefetch mechanism is based on real addresses. Therefore, whenever a real 
address reference crosses a page boundary, the prefetch mechanism is stopped. 
Two consecutive cache line misses on the subsequent page are required to 
restart the mechanism. Large pages are supported in AIX 5L only through 
shared memory segments. More general large page support will be available in a 
future release of AIX 5L. There can be performance benefits because the 
prefetch mechanism can operate over much larger arrays before crossing page 
boundaries.

The floating-point units and maximum GFLOPS
To achieve the maximum floating-point rate possible on a single pSeries 690 
Model 681 processor, the delays due to the memory subsystem have to be 
eliminated and the program must reside in the L1 cache.

The following key facts summarize the way the FPUs perform:

� A single pSeries 690 Model 681 processor has two FPUs (sharing a single L1 
cache) that can operate independently. The two FPUs see only floating-point 
registers. There are a total of 72 physical registers. An assembler program 
can address 32 architected registers and these are mapped onto the physical 
registers through a hardware process known as renaming. The 72 physical 
registers serve both FPUs. They all have 64 bits. floating-point computation is 
carried out only with data in these registers. They are all 64-bits wide. All 
floating-point arithmetic instructions are register-to-register operations, 
logically using only floating-point registers as sources and targets.

� Data is copied into the registers from the L1 cache (loaded) and copied back 
to the L2/L1 cache (stored) by two load/store units. 

� For data in the L1 or L2 cache, loads or stores of floating-point 
double-precision (REAL*8) variables can be done by each load/store unit at 
the rate of one per cycle, but for loads, there is a latency before the FPU can 
use the data for computation. This latency is approximately four cycles if the 
data is in L1, or 14 cycles if it is in L2 but not L1. For maximum performance, 
it is important that loaded data is in L1, because the compiler will assume the 
L1 latency.

� Single precision (REAL*4) variables use the same register set as REAL*8. 
Each variable occupies an entire 64-bit register (there is no ability to pack two 
REAL*4s into a single register).

� The basic computational floating-point instruction is a double-precision 
multiply/add, with variants multiply/subtract, negative multiply/add, and 
negative multiply/subtract. There are also single precision variants.
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A single add, subtract, or multiply (not divide) is done using the same 
hardware as a multiply/add and takes the same amount of time. A 
multiply/add counts as two floating-point operations. For example, a program 
doing only additions might run at half the MFLOPS rate of one doing alternate 
multiplies and adds.

The assembler acronym for the double-precision floating-point multiply/add is 
FMA. This term will be used extensively as shorthand for any of the variants 
of this basic floating-point instruction.

The computational part of an FMA takes six cycles.

The worst case would be a sequence of wholly dependent 6-cycle FMAs 
(where a result of one FMA is needed by the next) where only one of the 
FPUs would be active. This would run at the rate of one FMA per six cycles.

A sequence of independent FMAs, however, can be pipelined and the 
throughput can then approach the peak rate of two FMAs per cycle (one per 
FPU).

� Divides are very costly and are not pipelined.

� A fundamental aspect of RISC architecture is that the functional units can run 
independently. Therefore, FMAs can run in parallel with load/stores and other 
functions.

Conditions for approaching peak GFLOPS
When considering a numerically intensive loop, the following applies to the 
instruction stream within the loop:

� Operate efficiently within L1 and L2 caches.

� No divides (or square roots or function calls and so on).

� To achieve peak megaflops, loops must contain FMAs only, therefore using 
floating-point adds or subtracts with multiplies. 

� FMAs must be independent and at least 12 in number to keep two pipes of 
depth six busy.

� The loop should be FMA-bound. That is, cycles needed for instructions other 
than FMAs (mainly load/stores) should be less than that needed for FMAs so 
that they can be overlapped with FMAs and effectively hidden. In principle, 
they could be equal to the FMA cycles, but, in practice, peak performance is 
approached most easily if there are fewer.
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� The performance of floating-point intensive applications on 1.3 GHz 
POWER4 is typically between two and three times faster than on 375 MHz 
POWER3 but is usually somewhat less than that as indicated merely by a 
comparison of clock rate ratios. This is because it is more difficult to approach 
peak performance on POWER4 than on POWER3 because of factors such 
as: 

– The increased FPU pipeline depth

– The reduced L1 cache size 

– The higher latency (in terms of processor cycles) on the higher level 
caches

3.1.4  Tuning for the memory subsystem
There are four basic tuning techniques (some of these techniques may be done 
by the compilers) that will be discussed in this section, namely:

� Stride minimization

� Encouragement of data prefetch streaming

� Structuring for L1 set associativity

� Data cache blocking

Stride minimization
Sequential accessing of data is beneficial for two reasons:

� It ensures that, once a line is loaded into cache, all other operands in the 
same cache line will also be referenced. If the data is accessed with a large 
stride, less data from the cache line will be referenced. If the stride is greater 
than 16 for double precision words, or 32 for single precision words, only one 
number in each line will be referenced. There will then be a high probability 
that, when the other numbers in the line are accessed at a later stage, the line 
will no longer be in cache leading to the overhead of a cache miss.

� Sequentially accessed (forwards or backwards - stride 1 or -1) data can start 
one of the eight hardware prefetching streams. Other low-value strides may 
also start a prefetching stream provided that they are contiguous cache line 
references.

Fortran arrays are stored in memory in column major order, C arrays in row-major 
order. Coding nested loops to access data the right way so that 
multi-dimensioned arrays are accessed sequentially (stride 1) is the most basic 
tuning technique of all. 
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The following examples illustrate this:

Correctly tuned stride 1 sequential access

Fortran
do i=1,n

do j=1,n
a(j,i)=a(j,i)+b(j,i)*c(j,i) ! Left subscript same as inner loop var.

enddo
enddo

C
for(i=0;i<n;i++)

for(j=0;j<n;j++)
{a[i][j]+=b[i][j]*c[i][j];} /* Right index same as inner loop variable 

*/

If the nesting order of the loops is changed, the arrays are then accessed with a 
large stride.

In this simple case, the compilers will reverse the order of the loops for you. 
However, it is sound coding practice not to rely on the compiler and always to 
code loops in the correct order.

It is, of course, not always possible to code so that all arrays are accessed 
stride 1. For example, the following is a typical matrix multiply code fragment:

do i=1,n
   do j=1,n
     do k=1,n
       d(i,j)=d(i,j)+a(j,k)*b(k,i)
     enddo
   enddo
 enddo

No matter how the loops are coded, one or more arrays will have non-unit stride. 
In this case, data cache blocking may be necessary as described in “Data cache 
blocking” on page 38.

Encouragement of data prefetch streaming
Data prefetching is implemented in the POWER4 processor hardware so that 
prefetching is transparent to the application: it does not require any software 
assistance to be effective. There are, however, situations where the performance 
of an application can be improved with code tuning to more fully exploit the 
capabilities of the hardware prefetch engine. These situations arise when:

� There are too few or too many streams in a performance-critical loop

� The length of the streams in a performance-critical loop is too short.
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The POWER4 data prefetch design was optimized for loops with four to eight 
concurrent hardware streams. Figure 3-2 on page 37 shows the performance for 
a series of loops with one to eight streams per loop. Note that increasing the 
number of streams from one to eight can improve data bandwidth out of the L3 
cache and memory by up to 70 percent, and that most of the improvement 
comes from increasing the number of streams from one to four. 

The number of streams in a loop can be increased by fusing adjacent loops (a 
capability which the XL compilers posses with the -qhot optimization) or by 
midpoint bisection of the loop. Fusing simply means combining two or more 
compatible loops into a single loop. For example:

DO I=1,N
S = S + B(I) * A(I)

      ENDDO
DO I=1,N

R(I) = C(I) + D(I)
      ENDDO

may be combined into:

DO I=1,N
S = S + B(I) * A(I)
R(I) = C(I) + D(I)

      ENDDO

Midpoint bisection of a loop doubles the number of streams but halves its vector 
length. Consider the standard dot-product loop:

DO I=1,N
S = S + B(I) * A(I)

      ENDDO

This loop contains two streams corresponding to the two arrays on the right hand 
side of the expression. Midpoint bisection doubles the number of streams by 
starting two more streams at the halfway point of each of the arrays, as shown in 
the following:

      NHALF = N/2
S0=0.D0
S1=0.D0
DO I=1,NHALF

       S0 = S0 + A(I)*B(I)
 S1 = S1 + A(I+NHALF)*B(I+NHALF)

      ENDDO
IF(2*NHALF.NE.N) S0 = S0 + A(N)*B(N)
S = S0+S1
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For this example, in situations where the data is being reloaded from beyond the 
L2 cache, the break-even vector length is approximately 220. Loops with vector 
lengths beyond 220 which have been midpoint bisected as shown have superior 
performance by up to 20 percent.

When a loop has more than eight streams, reducing the number of streams per 
loop may also boost overall performance. Since only eight of the streams can be 
prefetched (as there are only eight prefetch request queues), streams beyond 
eight will be reloaded on a demand basis. It may be possible to split the loop into 
two or more loops, each with eight or fewer streams. This may or may not involve 
introducing extra temporary vectors to allow the loop to be split. In any event, 
profiling or loop timing should always be done within the application to check 
whether the tuning, either to increase or decrease the number of streams per 
loop, had a positive overall effect on performance.

Increasing vector length can significantly improve performance as well, simply 
due to the fact that there is a fixed overhead resulting from loop unrolling and 
prefetch stream acquisition. In some cases, increasing the vector length of an 
application is under direct control of the programmer, such as in those in which 
explicit integration of a variable permits operations on groups of entities of 
arbitrary size. In these situations, there is often a trade-off between cache reuse 
and vector length, so it is again advisable to determine the optimal vector length 
empirically.

Figure 3-2   POWER4 data transfer rates for multiple prefetch streams
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Structuring for L1 set associativity
In cases where it is not possible to access arrays sequentially, the stride is 
typically determined by the leading dimension of the array. For example, consider 
the following loop.

real*8 a(2048,75)
.
.

do i=1,75
a(100,i)=a(100,i)*1.15

enddo

This updates the 100th row of a Fortran array. The row is 75 elements long, so 75 
cache lines will be accessed (if this were a column, only 5 cache lines would be 
accessed). The L1 cache has a total of 256 lines. So, if, for example, this section 
of the array has been recently accessed, you might hope to find these lines in the 
cache.

However, the leading dimension of the array determines the stride for array A to 
be 2048 REAL*8 numbers or 16384 bytes. These map to a single congruence 
class in the L1 cache so that only two elements of A can be held in L1. At best, 
only the first two lines (of the 75) accessed could possibly be in the L1 cache. 

Changing the leading dimension to 2064 (that is, 2048 plus a single cache line of 
16 REAL*8 numbers) would cause the 75 lines to map to different congruence 
classes and all 75 lines would fit. With a two-way set associative cache, a leading 
dimension of 2056 (2048 plus half a cache line) would also work. But 2046 would 
work for any level of set associativity, including direct mapping.

The general rule is: 

Avoid leading dimensions that are a multiple of a high power of two. 

Any odd number of cache lines is ideal, that is for 128-byte cache lines, any odd 
multiple of 16 for REAL*8 arrays or any odd multiple of 32 for REAL*4 arrays.

Data cache blocking
The data cache blocking idea is basic: if your arrays are too big to fit into cache, 
then process them in blocks that do fit into cache. Generally with POWER4, it is 
the 1440 KB L2 cache that needs to be large enough to contain the block.

There are two factors that determine if using blocking will be effective:

� When all arrays are accessed stride 1 

� When each data item is used in more than one arithmetic operation
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The combination of these factors produces four scenarios:

� All arrays are stride 1 and no data reuse. There is no benefit from blocking.

! Summed dot products. Note each element of A and B used just once.
do j=1,n

do i=1,n
s = s + a(i,j)*b(i,j)

enddo
endd

� Some arrays are not stride 1 and there is no data reuse. Blocking will be 
moderately beneficial.

! Summed dot products with transposed array.
do j=1,n

do i=1,n
s = s + a(j,i)*b(i,j)

enddo
endd

� All arrays are stride 1 and there is much data reuse. Blocking will be 
moderately beneficial.

! Matrix multiply transpose.
do i=1,n
   do j=1,n
     do k=1,n
       d(i,j)=d(i,j)+a(k,j)*b(k,i)
     enddo
   enddo
 enddo

� Some arrays are not stride 1 and there is much data reuse. Blocking will be 
essential.

! Matrix multiply.
do i=1,n
   do j=1,n
     do k=1,n
       d(i,j)=d(i,j)+a(j,k)*b(k,i)
     enddo
   enddo
 enddo
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The following example shows how matrix multiply should be blocked.

!3 blocking loops
do ii=1,n,nb

do jj=1,n,nb
do kk=1,n,nb

!
! In-cache loops

do i=ii,min(n,ii+nb-1)
   do j=jj,min(n,jj+nb-1)
     do k=kk,min(n,kk+nb-1)
       d(i,j)=d(i,j)+a(j,k)*b(k,i)
     enddo
   enddo

enddo
!

enddo
enddo

enddo

In this example, the size of the blocks of each matrix is NB x NB elements. For 
blocking to be effective, it must be possible for the L2 cache to hold three such 
blocks. On an pSeries 690 HPC, the process will have the whole L2 cache 
available. On a non-HPC model, it may be sharing L2 with another process or 
thread so that only half the cache is available. The relatively complicated 
structure of the cache may also require NB to be smaller than a simple size 
calculation would suggest. In practice, the right way to fix NB is to vary it and 
measure the performance to achieve the optimum value. However, if a non-HPC 
machine is being used, these measurements should not be run stand-alone if, in 
practice, the application will be run when another application or thread is 
competing for L2.

Note that, although this code leads to in-cache performance, it does not lead to 
maximum GFLOPS. The reason for this is explained in the next section.

Blocking usually needs to be done by hand rather than leaving it to the compiler.

3.1.5  Tuning for the FPUs
In contrast to tuning for the memory subsystem, the compiler is generally very 
successful at tuning for the FPUs and often there is little extra that can be 
achieved by hand tuning. Some exceptions to this are highlighted in this section.
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Inner loop unrolling and instruction scheduling
To keep the FPU pipelines busy, the following conditions must apply in the inner 
instruction loop:

� There must be enough (at least 12) independent FMAs in the compiled loop.

� Loads must precede FMAs in the instruction stream by at least four cycles to 
overcome the L1 cache latency.

� The total number of architected registers used must not exceed 32. If this 
happens, the compiler must generate spill coding that stores the register 
values and reloads them later.

� The number of rename registers needed must not exhaust the hardware pool 
available.

� The number of loads and stores must be less than or equal to the number of 
FMAs, otherwise the load/store time dominates.

Techniques for dealing with the last item - load/store bound loops - are discussed 
in “Outer loop unrolling to increase the FMA to load/store ratio” on page 41.

The basic technique for achieving multiple independent FMAs is inner loop 
unrolling. While this can be done by hand, it produces convoluted coding and 
usually there is no point since the compiler will do it for you efficiently and reliably. 
If you unroll manually, there is a danger that the compiler will unroll again. This 
may cause register spilling or other overheads and it may be beneficial to use the 
-qnounroll compiler flag.

To help the compiler to avoid register spilling, you should avoid coding too many 
unnecessary temporary scalar variables in the loop.

Apart from the items noted, you must rely on the compiler to produce the 
optimum instruction stream unless assembler language is used. This is easier 
than might be imagined, since advantage can be taken of the -S compiler option. 
This will produce a file from the Fortran with a .s suffix that may be assembled 
with the as command and linked into the program. Identifying the inner loop of 
the routine and editing it to improve the instruction stream is then quite possible 
for the experienced programmer without the necessity to fully learn assembler 
language. Nevertheless, most programmers will not choose to do this and further 
advice is beyond the scope of this publication.

Outer loop unrolling to increase the FMA to load/store ratio
In cases where the inner loop is load/store bound (loads + stores greater than 
FMAs) it may be possible to significantly improve performance by increasing the 
ratio of FMAs to loads and stores in the loop. This is only possible in data re-use 
cases and the basic technique is usually outer loop unrolling.
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This section considers two cases: one simple loop that the compiler does not 
handle successfully, and then blocked matrix multiply coding.

Simple loop benefitting from hand unrolling
Consider the following loop:

do i = 1,n
do j = 1,n

y(i) = y(i) + x(j)*a(j,i)
end do

end do

This loop is already well structured in that the inner loop both has stride 1 and is 
a sum-reduction (y(i) is a scalar). This means that the number of loads and 
stores needed in the inner loop is minimized because the scalar value y(i) can 
be held in a single register and stored just once after the inner loop is complete. 
Iteration of the inner loop needs just two loads (for x(j) and a(j,i)) and zero 
stores. If the loop order were reversed (with the inner loop on I), there would be 
two loads needed (for y(i) and a(j,i)) plus one store (for y(i)). In addition, 
there would be poor stride on a(j,i).

However, the loop is load/store bound because there are more load and store 
instructions than FMAs. Therefore, as it stands, the performance of this loop will 
be limited by the effective rate at which the load/store unit can operate.

The compiler will successfully unroll the inner loop on J. This is necessary in 
order to populate the inner loop with independent FMAs rather than dependent 
ones. However, this does nothing to alter the FMA to load/store ratio.

The solution, in this case, is to unroll the outer loop on I. With this simple loop, 
the compiler may optimize the code for you with the -qhot option, but, generally, it 
is more reliable to do outer-loop unrolling by hand.

The following code shows the loops unrolled to depth 4 (tidy-up coding omitted 
for cases where n is not a multiple of 4).

do i = 1,n,4
s0 = y(i)
s1 = y(i+1)
s2 = y(i+2)
s3 = y(i+3)

do j = 1,n
s0 = s0 + x(j)*a(j,i)
s1 = s1 + x(j)*a(j,i+1)
s2 = s2 + x(j)*a(j,i+2)
s3 = s3 + x(j)*a(j,i+3)

enddo
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y(i)   = s0
y(i+1) = s1
y(i+2) = s2
y(i+3) = s3

enddo

Note the introduction of the temporary scalar values, S0, S1, S2, and S3. This is 
very important because usually, whenever the inner loop contains anything more 
complicated than a single subscripted scalar, the compiler may not recognize 
that they are scalars and may generate unnecessary loads and stores. Generally 
speaking, introducing temporary scalars to make the scalar nature of array 
elements clear to the compiler is good coding practice. This does not contradict 
previous advice to avoid the introduction of unnecessary scalar variables. In this 
case, it is necessary for the compiler to recognize that y(i), y(i+1), y(i+2), 
and y(i+3) are scalar in the inner loop.

The load/store to FMA ratio is reduced because the element x(j) is now re-used 
three times in the inner loop. So, now, for four of the original iterations, there are 
five loads rather than eight. Clearly, as the unrolling depth increases, the 
load/store to FMA ratio reduces asymptotically from two to one.

The actual performance depends on the compiler optimization flags and the 
depth of hand-unrolling. Selected results for a 1.1 GHz machine are shown in 
Figure 3-3 on page 44. The label depth refers to the unrolling depth of the outer 
loop of the hand-tuned code. The x-axis refers to dimension n. At n=64 the data 
just exceeds the size of the L1 cache. Without hand-unrolling, the compiler does 
not take advantage of the L1 cache. The top two lines are with different compilers 
but the main reason for the difference in performance is that the top line is 
compiled for -qarch=pwr4 rather than pwr3.

Note the “L1 cache peak” for the (top three) hand unrolled lines as the array size 
is increased. The untuned code (the bottom line) does not show this peak.
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Figure 3-3   Outer loop unrolling effects on matrix-vector multiply (1.1GHz system) 

M x N unrolling for matrix multiply
The following is the heart of the blocked matrix multiply code. The blocking loops 
have been omitted for clarity.

do i=ii,min(n,ii+nb-1)
do j=jj,min(n,jj+nb-1)

do k=kk,min(n,kk+nb-1)
 d(i,j)=d(i,j)+a(j,k)*b(k,i)

enddo
 enddo

enddo

As with the previous example, having the inner loop on k (rather than i or j) 
minimizes the number of loads and stores. The array element d(i,j) is a scalar 
in the inner loop, since it does not depend on the inner loop variable, k, so the 
inner loop is a sum reduction. The scalar may be held in a register during 
iteration and only stored after the inner loop is complete. The inner loop requires 
just two loads (for a(j,k) and b(k,i)) whereas if i or j were the inner loop 
variable, there would be two loads plus one store.
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Let us recast the loop so as to make the scalar nature of d(i,j) explicit.

do i=ii,min(n,ii+nb-1)
do j=jj,min(n,jj+nb-1)

s = d(i,j)
do k=kk,min(n,kk+nb-1)
 s = s + a(j,k)*b(k,i)

enddo
d(i,j) = s

 enddo
enddo

As with the previous example, introduction of the variable S is sound coding 
practice.

Although the number of load/stores in the inner loop has been minimized, the 
loop is nevertheless clearly load/store bound. There are two loads and only one 
FMA. This can be effectively transformed into an FMA-bound loop by unrolling 
the outer two loops. If the outer loop is unrolled to depth M and the middle loop to 
depth N, then the number of loads is m+n and the number of FMAs is m*n. 
Unrolling 2x2 makes the loop balanced (load/stores = FMAs). Anything more 
makes it FMA-bound. The following code shows 5x4 unrolling. This requires 29 
architectured registers (20 for the holding of the 20 partial sums in the temporary 
scalar variables and 9 for holding the elements of A and B). Anything higher 
would exceed the number of architectured registers.

do i=ii,min(n,ii+nb-1),5
do j=jj,min(n,jj+nb-1),4

s00 = d(i+0,j+0)
s10 = d(i+1,j+0)
s20 = d(i+2,j+0)
s30 = d(i+3,j+0)
s40 = d(i+4,j+0)
s01 = d(i+0,j+1)
s11 = d(i+1,j+1)
s21 = d(i+2,j+1)
s31 = d(i+3,j+1)
s41 = d(i+4,j+1)
s02 = d(i+0,j+2)
s12 = d(i+1,j+2)
s22 = d(i+2,j+2)
s32 = d(i+3,j+2)
s42 = d(i+4,j+2)
s03 = d(i+0,j+3)
s13 = d(i+1,j+3)
s23 = d(i+2,j+3)
s33 = d(i+3,j+3)
s43 = d(i+4,j+3)
do k=kk,min(n,kk+nb-1)
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 s00 = s00 + a(j+0,k)*b(k,i+0)
 s10 = s10 + a(j+0,k)*b(k,i+1)
 s20 = s20 + a(j+0,k)*b(k,i+2)
 s30 = s30 + a(j+0,k)*b(k,i+3)
 s40 = s40 + a(j+0,k)*b(k,i+4)
 s01 = s01 + a(j+1,k)*b(k,i+0)
 s11 = s11 + a(j+1,k)*b(k,i+1)
 s21 = s21 + a(j+1,k)*b(k,i+2)
 s31 = s31 + a(j+1,k)*b(k,i+3)
 s41 = s41 + a(j+1,k)*b(k,i+4)
 s02 = s02 + a(j+2,k)*b(k,i+0)
 s12 = s12 + a(j+2,k)*b(k,i+1)
 s22 = s22 + a(j+2,k)*b(k,i+2)
 s32 = s32 + a(j+2,k)*b(k,i+3)
 s42 = s42 + a(j+2,k)*b(k,i+4)
 s03 = s03 + a(j+3,k)*b(k,i+0)
 s13 = s13 + a(j+3,k)*b(k,i+1)
 s23 = s23 + a(j+3,k)*b(k,i+2)
 s33 = s33 + a(j+3,k)*b(k,i+3)
 s43 = s43 + a(j+3,k)*b(k,i+4)

enddo
d(i+0,j+0) = s00
d(i+1,j+0) = s10
d(i+2,j+0) = s20
d(i+3,j+0) = s30
d(i+4,j+0) = s40
d(i+0,j+1) = s01
d(i+1,j+1) = s11
d(i+2,j+1) = s21
d(i+3,j+1) = s31
d(i+4,j+1) = s41
d(i+0,j+2) = s02
d(i+1,j+2) = s12
d(i+2,j+2) = s22
d(i+3,j+2) = s32
d(i+4,j+2) = s42
d(i+0,j+3) = s03
d(i+1,j+3) = s13
d(i+2,j+3) = s23
d(i+3,j+3) = s33
d(i+4,j+3) = s43

 enddo
enddo

As with all hand unrolling operations, extra “tidy-up” coding is necessary where 
the array dimensions are not multiples of (in this case) 5 and 4. The tidy-up 
coding is omitted for clarity.
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Together with blocking, this technique provides the best performance for 
matrix-multiply kernel. Matrix factorization structured to use the rank-n update, 
which is an operation identical to matrix-multiply but which updates the target 
matrix, is also optimized using this unrolling technique. See Section 6.1.2, 
“Performance examples using ESSL” on page 115 for the performance of ESSL 
DGEMM, which uses similar optimization techniques. 

3.1.6  Cache and memory latency measurement
Most of the examples so far in this chapter have been in connection with 
structured data that can usually be accessed sequentially and for which data 
prefetch streaming gives excellent performance even for very large amounts of 
data that do not fit into the cache. Some applications, however, access data in a 
much more random way and, for these applications, data streaming cannot be 
used.

The key performance factor for such an application is the latency, that is, the time 
before the computational units can make use of a data item. The latency is very 
different depending on which cache holds the data or whether it is in memory. To 
study this, the following loop was used:

ip1=ia(1) 
do i=2,n

ip2=ia(ip1)
ip1=ip2

enddo        

The data in the INTEGER*8 array ia was a random sequencing of the integers 
from 1 to N, subject to the constraint that following the pointers as shown would 
traverse the whole array. This ensured that each iteration was dependent on the 
previous one and that data streaming could not operate. As usual, the loop was 
iterated many times so that, if the whole of the ia array fitted into a particular 
cache, it would be the latency of that cache that was being measured.
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The results in Figure 3-4 have been normalized to present the latency in terms of 
numbers of cycles. Since a 1.3 GHz pSeries 690 HPC was used, the numbers 
should be divided by 1.3 to get latency in nanoseconds. In the graph, the 
numbers of bytes increase uniformly on a logarithmic scale.

Figure 3-4   Latency in machine cycles to access N bytes of random data

The following conclusions can be drawn from this graph:

� Latency for the L1 cache is around 4-5 cycles. The figures increase sharply 
when bytes exceed about 32000, the size of the L1 cache.

� Latency for the L2 cache is around 11-14 cycles but seems to increase to 
over 20 cycles as the cache becomes full at around 1500000 bytes.

� When data spills out of L2 cache, the combined L3 cache and memory 
subsystem cause a fairly graceful increase in latency to a value of at least 340 
cycles corresponding to memory latency. It is difficult to discern the L3 cache 
latency separately from these figures. With a large volume of random data, 
some will be in L3 and some will be in memory and this blurs the effect. If the 
data had been structured non-randomly to ensure that data would not be in 
cache unless it would all fit, the L3 cache effect might have been clearer. 
However, the random distribution used is probably more realistic.
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3.1.7  Selected fundamental kernel performance within on-chip cache
Table 3-1 shows the measured performance of a set of fundamental loops on a 
pSeries 690. These measurements serve as a reference for achievable 
performance levels on the machine; both absolute performance in cycles per 
iteration for the loop, and performance relative to a 375 MHz POWER3-II 
processor, are given. Since the POWER4 processor has two levels of on-chip 
cache, results are shown for loops contained within each level: the L1 data cache 
and the L2 cache. The vector length, which is also the inner-loop limit, is shown 
for each set of data. An outer repetition loop has been used to obtain accurate 
timings. The inner loop is often unrolled by the compiler to minimize branch 
instructions, break floating-point instruction dependencies, and to allow for more 
flexibility in scheduling instructions for maximum performance. All of the loops 
were compiled using the -qarch=pwr4 and -O3 flags with the development 
version of XL Fortran Version 7.1.1 available at the time of publication.

Table 3-1   Performance of various fundamental loops

1. Loop 1 has only stfd (double-precision floating-point store) instructions in the 
inner loop. As discussed in Section 2.3.7, “Store instruction processing” on 
page 14, store data is placed in the SDQ and the data then proceeds to the 
proper SSQ and STQ until it is finally written into the L2 array. Store 
performance is determined by the rate at which the STQ can be drained, and 
since there is an STQ per L2 cache controller, it depends on how stores are 

ID Kernel L1 data cache contained results L2 cache contained results

Vector 
length

Cycles 
per 
iteration

Performance 
relative to 
POWER3 
Model 270

Vector 
length

Cycles 
per 
iteration

Performance 
relative to 
POWER3 
Model 270

1 x(i)=s 2000 1.7 2.0 40000 1.8 5.2

2 x(i)=y(i) 1000 1.7 2.8 20000 2.1 4.6

3 x(i)=x(i)+s*y(i) 1000 1.7 3.0 20000 2.2 2.9

4 x(i)=x(i)+y(i) 1000 1.7 3.0 20000 2.2 2.9

5 s=s+x(i) 2000 0.9 2.2 40000 1.7 3.1

6 s=s+x(i)*y(i) 1000 1.3 3.0 20000 1.9 2.8

7 x(i)=sqrt(y(i)) 1000 18.1 2.1 20000 18.1 2.1

8 x(i)=1.0/y(i) 1000 15.1 2.2 20000 15.1 2.2

9 x(i)=a(i)+x(i-1) 1000 6.5 1.7 20000 6.5 1.7

10 s=s+y(i)*a(ix(i)) 800 2.0 3.1 16000 2.5 3.2
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distributed across the three L2 controllers. The loop measured is a 
straightforward stride 1 store pattern in which the compiler has unrolled the 
inner loop by eight and has roughly scheduled the stores within the loop from 
highest address to lowest (that is, in reverse order). The performance of 
stores is relatively flat for vector lengths up through the size of the L2 cache 
because of the store-through design, which always sends updates through to 
the L2 cache.

2. Loop 2 is the copy loop, consisting of an lfd and stfd per iteration. The 
performance of this loop is still determined by the store performance. Cache 
lines corresponding to load instructions are always reloaded into the L1 data 
cache on an L1 data cache miss; cache lines to which stores are directed are 
not.

3. Loop 3, commonly known as DAXPY, is load/store bound like the first two 
loops, but adds an fmadd. Since the vector being stored has been updated 
with a multiple of the other vector, the line being stored into must first be 
reloaded, and will then reside in the L1 data cache. Still, the modified data is 
stored-through to the L2 cache.

4. Loop 4 is identical to DAXPY, but without the multiply/add. Therefore it has the 
same execution performance. Since the arithmetic instruction is an fadd 
rather than an fmadd, the work done is half that of DAXPY.

5. Loop 5 is the sum reduction of a vector. The compiler unrolls the loop by eight 
producing eight partial sums (which are accumulated in registers), and totals 
the partial sums at the conclusion of the loop. This breaks the 
interdependence among the fadd operations, which would otherwise 
determine the performance of the loop, and the resulting performance is 
determined by the rate at which a single stream of floating-point loads can 
execute.

6. Loop 6 is commonly known as DDOT, or dot product. Just as in the case of 
loop 5, the sum reduction is split into eight partial sums to remove the 
floating-point arithmetic interdependence. The resulting performance is 
determined by the rate at which two streams of floating-point loads can be 
completed. 

7. Loop 7 shows the average performance of floating-point double-precision 
square root. Floating-point square-root instructions may execute on either 
floating-point unit, but are not pipelined. Independent work can execute in the 
other floating-point unit concurrently, including another floating-point 
square-root instruction. Since both execution units can work in parallel, and a 
floating-point double-precision square root normally takes 36 cycles, the 
average time is approximately 18 cycles. 

8. Loop 8 shows the average performance of floating-point double-precision 
divide. Floating-point divide instructions may execute on either floating-point 
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unit but are not pipelined. Again, two divides execute in parallel, reducing the 
average time to 15 cycles.

9. Loop 9 exposes the six-cycle dependent operation latency in the floating-point 
execution unit. The loop represents a true mathematical recurrence: each 
operation requires the result from the previous operation. Thus, the execution 
time is limited by the effective pipeline depth of six. The performance ratio 
relative to POWER3 is simply half the ratio of the processor frequencies, 
since the dependent operation latency in the POWER3 is three.

10.Loop 10 is an indirect DDOT in which one of the vectors is independently 
addressed using a vector of integer indices. This is the crux of the 
sparse-matrix-vector multiply. Each iteration of the loop requires the index to 
be loaded (as an integer), and that value to be shifted so as to become a 
byte-oriented offset rather than doubleword index, and the shifted result is 
used to load the double-precision element of vector a. This is multiplied by the 
stride 1 vector y and accumulated into the scalar s. The compiler breaks 
dependencies on the arithmetic by using eight partial sums, just as in DDOT. 
The dependent chain of load-shift-(indirect) load is carefully scheduled to 
avoid stalls.

3.1.8  Other tuning considerations 
In this section, the topics of tuning for L2 cache access and a discussion of the 
branch prediction mechanism are provided.

Tuning for L2 cache access 
Blocking for an L2 cache is discussed in “Data cache blocking” on page 38.

Improving store performance to L2 cache
Store performance can be improved with some extra effort to distribute the stores 
across the three L2 controllers. The following loop is a simple way to accomplish 
this, and will perform as much as 40 percent faster than the code given in the 
table for vector lengths greater than around 90.

nlim=(n/48)*48 
do ii = 1,nlim,48 

do i=ii,ii+15 
x(i)=c0 
x(i+16)=c0 
x(i+32)=c0 

enddo 
end do 
do i=nlim+1,n 

x(i)=c0 
end do 
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3.2  Tuning non-floating point applications
In the following sections we discuss aspects of tuning that are relevant to 
non-numeric applications. However, you should bear in mind that many of the 
aspects discussed in Section 3.1, “Tuning for numerically intensive applications” 
on page 25 are also relevant.

When tuning applications, you should determine whether to tune for throughput 
or for response time, depending on the type of application. Different approaches 
may be required in either case and, rather than studying the subject in detail 
here, we suggest referring to some of the books written on the subject.

Once the approach has been determined, we recommend the following steps:

� If the application is CPU bound, identify the critical parts of the application 
code using profiling (Section 5.5, “Locating hot spots (profiling)” on page 110) 
and determine whether the critical code can be improved.

� If the application is paging, identify how much memory is being used and 
what it is being used for. Consider using tools such as vmstat and svmon (refer 
to the AIX commands documentation). If the memory is allocated by the 
application, it may be possible to adjust this using configuration files. If there 
is not enough system memory, you could use vmtune (see Section 3.3, 
“System tuning” on page 54).

� If the application is disk or I/O bound, identify the hot disks or volumes 
(iostat, svmon, filemon). You may need to change the way I/O is performed, 
for example use asynchronous I/O instead of synchronous I/O or you may 
simply be able to move files from hot disks to disks that are less busy.

� If the application is network bound, investigate this with tools such as netstat, 
netpmon, and nfsstat. Tune network parameters with the no command.

� If your application is still not performing satisfactorily, start again at the top.

Chapter 4, “Optimizing with the compilers” on page 69 provides a number of 
suggestions for tuning code.

3.2.1  The load/store and integer units
Loads, stores, and integer operations form the majority of non-floating point 
instructions executed. 

The load/store performance is documented in Section 8.1, “Memory to memory 
copy” on page 155. Ultimately, the load/store performance depends on the size 
of the units, that is bytes, 32-bit words or 64-bit words, and using larger units may 
positively affect performance.
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There is a small penalty in load/store performance when data items cross 
32-byte and 64-byte boundaries. Where possible, data structures should be 
organized so that they start on double word or word boundaries.

Note that integer divide instructions are relatively slow compared to other 
arithmetic instructions.

3.2.2  Memory configurations
pSeries 690 Model 681 systems support four memory controllers per MCM. 
Physically, the memory subsystem is implemented using memory books where 
each book contains two memory controllers, synchronous memory interfaces 
(SMIs) and DIMMs. Each controller can support up to 16 DIMMs. For a detailed 
description, see Chapter 2, “The POWER4 system” on page 5.

Memory is interleaved across controllers. Interleaving addresses is a function of 
the L3 cache controllers and the L3 cache to which the memory controllers are 
attached and is implemented by the L3 cache controller on the POWER4 chip. 

Assuming an MCM has two equal-sized memory books attached to it, real 
memory is interleaved across the four memory controllers. Then physical 
memory on the next MCM is allocated and so on. The operating system is 
responsible for mapping real memory to virtual memory.

If you have only one memory book attached to an MCM, the L3 cache configures 
itself as a 64 MB shared L3 connected to one memory book, plus a 64 MB 
shared L3 with no backing storage. Memory is interleaved across the two 
controllers on the book. The bus between the L3 and the book must then process 
twice the traffic compared to the same amount of memory spread over two 
books, thus reducing memory bandwidth.

If an MCM has two books of different sizes installed, they operate independently 
with each book being two-way interleaved.

In the current release of AIX 5L Version 5.1, pages are allocated to a process 
from any memory book. In a future update to AIX 5L Version 5.1, pages will be 
allocated from memory attached to the MCM where the process is running. This 
memory affinity, combined with process affinity, will provide an improvement in 
application performance for most classes of applications.
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3.3  System tuning
In this section we discuss the aspects of the system that are relevant to 
application performance running on the pSeries 690 Model 681. We begin with a 
review of the virtual memory architecture before examining large-page support. 
We then examine some of the system tuning parameters that can have large 
effects on application performance. Many of these are beyond the ability of the 
application programmer or user to modify directly because they require root 
authority to change, but it is useful to understand their possible effects.

3.3.1  POWER4 virtual memory architecture overview
This section provides an overview of the POWER4 virtual memory architecture 
for those readers who may be unfamiliar with it.

The architecture is an extension of the POWER3 architecture. Unlike POWER3, 
it provides two page sizes. The default page size is 4 KB but the hardware and 
operating system provide a large page (16 MB), which can be advantageous in 
certain circumstances. See Section 3.3.2, “Small and large page sizes” on 
page 58.

Program structure
POWER programs access memory through segment-based addresses. A 
segment-based address is calculated using a segment register (pointing to some 
storage) and a segment offset. In the 32-bit environment there are 16 segment 
registers and each can reference a segment of up to 256 MB. Some registers are 
reserved to address kernel memory. Other registers can be used for several 
purposes. 

By default, segment 2 holds process data (Figure 3-5 on page 55). This includes 
any constants and non-stack variables and they are allocated from the bottom of 
the segment upwards. Stack space is allocated from the top of the segment 
downwards.

Programmers can prevent the stack overwriting non-stack data by limiting the 
size of the stack. This can be done by calling the linker (ld) with a -S option. The 
programmer can also use the shell ulimit command (ksh: ulimit, csh: limit) to 
limit the size of the stack and/or data area at run time.
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Figure 3-5   32-bit environment segment register usage
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A PTE provides information about a corresponding page frame (which can be 
4 KB or 16 MB in size). Pages of both sizes can co-exist on a system though a 
segment can only have pages of one size. Each PTE contains a number of status 
and protection bits as well as address information.

AIX Version 4.3 and AIX 5L Version 5.1 executables
Note that 32-bit executables compiled under AIX Version 4.3 will run unchanged 
under AIX 5.1. Any code compiled in 64-bit mode under AIX Version 4.3 must be 
re-compiled before it can be used on AIX 5L Version 5.1. This means that:

� AIX Version 4.3 64-bit executables must be re-compiled from the source code 
to run under AIX 5L Version 5.1, not just relinked.

� AIX Version 4.3 64-bit object modules or library files cannot be linked with AIX 
5L Version 5.1 object modules or library files. The AIX Version 4.3 64-bit 
modules must be re-compiled.

Note that you cannot link 32-bit together with 64-bit object modules under either 
operating system release.

Address translation
Figure 3-6 gives an overview of the steps in the address translation process.

Figure 3-6   POWER address translation
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An effective address (EA) is the address of data or an instruction generated by 
the processor during the decode of an instruction. The EA specifies a segment 
register and offset information within the segment.

Address translation occurs in two steps: EA to virtual address (VA) and VA to real 
address (RA). If the EA cannot be translated, a storage exception occurs. While 
there are a number of different reasons for exceptions, programmers need only 
concern themselves with those caused by invalid data addresses. In these 
cases, the operating system will send a signal to the offending process and 
typically terminate it.

Conversion of a 64-bit effective address to a corresponding virtual address is 
performed by looking up the segment identifier (ESID) in the Segment Lookaside 
Buffer (SLB). The SLB is a cache of ESIDs and corresponding virtual segment 
identifiers (VSIDs) maintained by the operating system and referenced by the 
hardware. Each SLB entry also contains a valid bit and various flags. The 80-bit 
virtual address is formed by concatenating the VSID with the page and byte 
address from the EA as shown in Figure 3-7.

Figure 3-7   Translation of 64-bit effective address to 80-bit virtual address
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Conversion of the 80-bit virtual address to its corresponding real address is done 
by hardware lookup in the page table. The page table is maintained by the 
operating system and its base address is held in a hardware register. The virtual 
page number (VSID + page number) is used to construct an index into the page 
table. The real address for the base of the page is extracted from the page table 
Entry.

3.3.2  Small and large page sizes
Historically, the PowerPC Architecture supported the mapping between virtual 
and physical memory at a granularity of 4 KB pages. POWER4 systems 
introduce a new PowerPC Architecture feature that provides an alternate 
large-page size that can be used in addition to the 4 KB base-page size. The 
pSeries 690 Model 681 system supports a 16 MB large-page size. The 
implementation involves the selective use of large virtual/physical memory pages 
to back the process private data segment(s). A process can contain a mixture of 
small (4 KB) and large (16 MB) pages at a 256 MB virtual segment granularity. 
All pages within a 256 MB segment have the same size. 

The primary benefit from large-page support is improved performance for 
applications. This refers to applications that access a large amount of memory in 
a sequential manner or have significant gather/scatter components (such as 
large, randomly accessed user data spaces). Large pages can improve 
performance for these applications by reducing the translation lookaside buffer 
(TLB) miss rate. POWER4 systems use memory data prefetching (and other 
techniques) to minimize memory latencies. Data prefetching starts when a new 
page is accessed and grows more aggressive as the page continues to be 
sequentially accessed. However, data prefetching must be restarted at page 
boundaries. The use of large pages can improve performance by reducing the 
number of prefetch startups.

An update of AIX 5L Version 5.1, targeted for mid-2002, introduces a usage 
model that allows existing applications to use large pages without requiring 
source code changes and/or recompilations. The need for investment protection 
also dictates that the large-page data support must not impact source or binary 
compatibility for existing applications and the kernel extensions they depend 
upon if large-page support is not used by these applications. With the initial 
release of AIX 5L Version 5.1, which supports the pSeries 690 Model 681, there 
is already a low-level shmat/shmget interface, which will also be enhanced with 
future releases.
58 POWER4 Processor Introduction and Tuning Guide 



Large-page data areas
Large pages will be used for the data areas of the user address space. For 
technical applications, these areas consist of the user heap and main program 
BSS and data storage areas. These are the critical data areas for C programs, 
since the user heap supports malloc storage, BSS holds uninitialized program 
data, and data storage holds both initialized and (small) uninitialized data. 

These are also the critical data areas for Fortran programs because the Fortran 
storage classes that require large pages reside within these areas, as follows: 

Static Static variables reside in the data storage area. Large, uninitialized 
static variables reside in BSS. 

Common If a common block variable is initialized, the whole block resides in 
the data storage area; otherwise, the whole block resides in BSS. 

Controlled This storage class is used for allocatable arrays. Controlled 
variables reside in the user heap. 

Large pages are not required for other areas of the user address space, so 4 KB 
pages are used. These consist of the process stack, library data storage area, 
mmap regions, and user text. At the cost of 16 MB of physical memory resource 
per page, large pages would provide little or no benefit to applications if used for 
the process stack or library data because both typically represent small 
quantities of data. For a single-threaded process automatic and controlled 
automatic Fortran storage classes reside within the process stack and therefore 
do not use large pages. Typically, the amount of data is small. 

Use of large pages for thread stacks within a multi-thread process is of value and 
can provide benefit through larger TLB coverage. The use of large pages for 
thread stacks is supported through the AIX pthreads library, which places thread 
stacks within the user heap. 

It is not planned to support large pages for mmap regions. The support of large 
pages for user text data is not relevant for technical applications. 

Note: At the time of writing this document the AIX implementation of 
large-page support was still under development. The following description is 
subject to change.
 Chapter 3. POWER4 system performance and tuning 59



Some technical and commercial (for example database) applications do map and 
use shared memory segments within their user address spaces and can benefit 
from large pages. This is supported by the implementation of a large-page 
shmat/shmget interface. An application must be modified in order to use large 
pages for shared memory segments. This is because a special option must be 
specified at the time a shared memory segment is created if large pages are to 
be used for the segment. 

In a future release of AIX 5L large pages will be allocated preferentially from 
physical memory that is close to the processor (or MCM) that initiated the 
request. This memory affinity is intended to hide the non-uniformity in latency 
and bandwidth (primarily the latter) of the memory subsystem. 

Large pages are pinned (cannot be paged out or stolen) to memory the entire 
time an application executes. The large-page memory pool is a limited system 
resource. A failure will occur when a large-page application tries to allocate a 
large page and none are available. 

Large page application support

Although the 64-bit kernel is the strategic AIX kernel, large-page data support is 
also provided in the 32-bit kernel. 

A new bit flag will be maintained within the XCOFF and XCOFF64 executable file 
headers to record the large-page data attribute of a program. If the flag is set, 
this indicates that the program uses large pages; otherwise, it only uses small 
pages. It is deemed better to fail a technical application that requests an 
additional large page when none is available than have it silently execute with 
4 KB pages. 

The ldedit command will provide the ability to set and unset the large page flag 
of an executable file without the need for source code changes, recompiling, or 
relinking. It will also support setting maxdata and maxstack. The dump command 
will be modified to display the status of a program’s large page data flag.

The large page data usage is inherited over fork(). Check the manual pages for 
details on the memory duplication scheme. Large page data usage is not 
inherited over exec().

Because of different page protection requirements, the data model for 32-bit 
large page data applications is slightly different from the existing 32-bit process 
models (default and large memory) shown in Figure 3-5 on page 55. You can 
inspect a program’s memory layout with the help of the svmon command. 
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Large-page command support
An extension of the vmtune command will be provided to select at boot time the 
number of memory segments (256 MB) that will hold large pages. 

A system administrator has the ability to control usage of the large-page memory 
pool by user ID (such as with the chuser and mkuser commands). This prevents 
unprivileged users causing privileged large-page data applications to fail due to 
running out of large pages. 

At this time, there is no Workload Manager (WLM) support provided to manage 
large-page physical memory or large-page applications. Large pages are neither 
pageable nor swappable. They are essentially pinned pages that are treated as 
unmanaged resources by the WLM. 

The commands ps, vmstat, and svmon have been extended to report on 
large-page usage.

Large-page performance observations
General large-page support for Fortran and C application is not available in 
AIX 5L Version 5.1. It is expected that when large-page support is available, 
uniprocessor performance for memory-bound kernels such as DAXPY will 
increase significantly. This is primarily due to the increased efficiency of data 
prefetching long vectors in large pages (see Section 2.3.8, “Fixed-point execution 
pipeline” on page 15). 

3.3.3  AIX system parameters
System factors that can influence application performance include:

� Hardware configuration

– CPU configuration

The speed, number of CPUs and the particular type of pSeries 690 Model 
681 processor module installed are, of course, extremely important to 
application performance. In the POWER4 or POWER4 Turbo modules, the 
L2 caches are each shared between two CPUs. In the POWER4 HPC 
modules, the L2 caches are not shared. However, these are factors that 
cannot be adjusted or tuned for a given machine configuration, but are 
hardware characteristics of which the programmer should be aware.
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– Memory configuration

Similarly, the memory configuration is also important. As described in 
Section 3.2.2, “Memory configurations” on page 53, the particular memory 
configuration of a particular machine determines the overall memory 
bandwidth available to the CPUs. This is not a factor that can be adjusted 
for a given machine configuration, but the programmer should be aware of 
the possible effects.

– Storage configuration

A detailed discussion of possible storage configurations that can be 
attached to the pSeries 690 Model 681 is outside the scope of this book. 
However, for I/O dependent applications, the underlying storage 
configuration can have a very significant effect on application 
performance. These can include General Parallel Filesystem (GPFS) or 
AIX Journaled Filesystem (JFS) configurations spread across multiple 
physical disks, which could include SSA, various types of SCSI disk, or 
fiber-attached disks. For this reason, awareness of the target storage 
configuration and the available memory configuration may favor 
programming choices that trade memory use for I/O.

� Software configuration

– Paging space configuration

In the scientific and technical computing domain, it is common for the 
application mix on a machine to be selected and controlled so as to avoid 
paging. With the advent of AIX Version 4.3.2 the paging allocation 
algorithm only allocates space in paging space when it is necessary to 
free up a page in memory. This means that for a system that is under no 
pressure for real memory pages, the paging space utilization will be very 
small. The lsps -a command might show one percent utilization. For this 
reason, and in order to save disk space, it is becoming common to 
configure paging space that is somewhat smaller than real memory. Large 
memory systems may be running applications that consume large 
amounts of memory. If so, it is important to consider the effect if multiples 
of these jobs are ever started such that memory becomes overcommitted, 
possibly exhausting paging space. A control mechanism, for example a job 
scheduling system such as LoadLeveler or AIX Workload Manager, should 
be considered. Alternatively, the paging space should be made large 
enough to accommodate such an event.
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– 32- or 64-bit kernel

In general, if the main application or applications are 64-bit applications, 
then it is slightly better to use the 64-bit AIX kernel. For 32-bit applications 
then it is slightly better to use the 32-bit kernel. However, the overhead of 
running 64-bit applications on the 32-bit kernel (remapping system calls to 
32-bit calls, and reshaping the data structures for these calls) is handled in 
the kernel and is small. The overhead of running 32-bit applications on the 
64-bit kernel (reshaping data structures in system calls) is likewise small.

Note that 64-bit applications from AIX Version 4.3.3 must be recompiled to 
run under AIX 5L Version 5.1, whether they will be run on the 64-bit kernel 
or not.

– Kernel parameters

Certain kernel tuning parameters can have a large effect on the 
performance of certain applications, depending on the application’s use of 
memory and files.

The vmtune command (provided in the AIX fileset bos.adt.samples) 
provides a number of parameters that can be adjusted to suit particular 
applications:

• Page replacement selection of file or application pages

As demand for memory increases, the AIX Virtual Memory Manager 
(VMM) must occasionally reassign pages in use by programs to 
maintain a minimum number of free pages. The vmtune parameters 
minperm and maxperm set thresholds that determine the pool from 
which the AIX VMM page replacement algorithm will select pages to be 
reassigned. 

For the purposes of this discussion, allocated memory pages can be 
considered to be one of two types. File pages are pages containing 
data from files mapped into memory by AIX. Computational pages are 
pages allocated to running programs.

When the percentage of real memory occupied by file pages falls 
below the minperm value, the page replacement algorithm steals both 
computational and file pages.

When the percentage of real memory occupied by file pages is greater 
than the maxperm value, the page replacement algorithm steals only 
file pages.
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When the percentage of real memory occupied by file pages is 
between the minperm and maxperm values, the page replacement 
algorithm can steal pages from both computational and file pages. It 
will normally steal only file pages, unless the repage rate for file pages 
is higher than that for computational pages. If so, it will steal both types 
of pages.

The default settings for these parameters are approximately 
minperm=20, maxperm=80. That is 20 percent and 80 percent of real 
memory.

Consider, for example, a program that uses a lot of memory for 
computation, but that also writes out large files sequentially. As the 
program writes out to the file, more and more file pages will be created 
in memory. Once the number of file pages reaches 80 percent of real 
memory, an application's computational pages will be largely protected 
from being stolen by the page replacement algorithm. Below this level, 
an application may find that its computational pages are being stolen to 
make way for file pages. If the working set size of the program is larger 
than 20 percent of real memory (100 - maxperm), then its performance 
may well suffer as its computational pages are stolen to make way for 
file pages. The larger the program, the greater this effect.

Therefore, such an application could well benefit from setting minperm 
and maxperm lower than their default values, and in the case of 
maxperm possibly much lower.

There is a third parameter, related to minperm and maxperm: 
strict_maxperm. This makes the maxperm setting a hard limit rather 
than a threshold.

For example, to set the threshold below which VMM page replacement 
will steal computational pages to 5 percent and the threshold above 
which it will steal only file pages to 20 percent, the following command 
would be used:

/usr/samples/kernel/vmtune -p5 -P20

To set the maxperm threshold as a hard limit using strict_maxperm:

/usr/samples/kernel/vmtune -h 1
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• Memory page replacement parameters

The minfree, maxfree, mempools, and lrubuckets parameters may 
need to be adjusted together to reduce memory scanning overhead in 
a busy system and to maintain a large enough free list to readily satisfy 
demands from programs allocating memory. Recommendations for 
tuning these parameters can be found in the AIX Performance 
Management Guide (product manual, available on the Web) and the 
AIX 5L Performance Tools Handbook, SG24-6039. 

The maxfree parameter should be at least maxpgahead (see the 
maxpgahead kernel parameter description that follows in this section) 
greater than minfree. It is worth experimenting with larger values for 
minfree and maxfree than the defaults when trying to smooth out peaks 
and troughs of mixed workloads.

Page replacement in AIX is performed by the lrud daemon. From AIX 
4.3.3 onwards, this daemon is multi-threaded, and the system memory 
is divided into a number of pools. The number of pools is specified by 
the mempools parameter. On a large memory, SMP system, this allows 
memory scanning to be performed more efficiently than with one large 
memory pool.

Each memory pool can be further subdivided into a number of sections 
called buckets. The size of these buckets is specified by the lrubuckets 
parameter. These buckets are scanned individually by the lrud using 
the VMM page replacement algorithm. This involves a two pass 
process where unreferenced pages are marked in the first pass, and, if 
a free page is not found a second pass is made and pages still marked 
as unreferenced will be replaced. On a large, busy system, with a 
single bucket across all of memory, this two pass memory scan would 
be too great an overhead. The subdivision of memory into buckets 
reduces this overhead.

• I/O pacing with min_pout and max_pout

These parameters are of importance in improving the performance of 
both single, large applications performing sequential I/O, and multiple 
jobs that perform I/O. 

min_pout and max_pout are system attributes that control I/O pacing. 
That is, max_pout sets a maximum threshold for pending I/O requests 
per file. Above this level, an application generating large numbers of I/O 
requests will be put into a sleep state until the number of pending I/O 
requests falls to or below the min_pout value. The default settings are 
zero for both values, which means no checking, but this can allow a 
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high I/O volume application to saturate the system’s capabilities and 
seriously affect the performance of other applications. However, 
enabling checking with too low values for these parameters can reduce 
the performance of such a high I/O volume application.

Therefore, where multiple applications must share a system, one 
approach to setting I/O pacing would be to set these values high 
(several thousand), and measure the effect on all types of workload on 
the system. The aim should be to get these values as high as possible 
for maximum throughput of the high I/O volume of the application while 
not reducing the performance of other workloads.

These parameters can be set with the chdev -l sys0 command, using 
the appropriate attribute.

• Read ahead with minpgahead and maxpgahead

These values control the amount by which the VMM will schedule 
pages in advance of the current page when reading files sequentially. 
When sequential access is detected, the read-ahead mechanism 
brings in two pages, and at each confirmation the number of pages 
read ahead is doubled up to maxpgahead. For applications that 
perform large amounts of serial I/O, it may be advantageous to set a 
relatively large maxpgahead value (the default value is 8).

However, the underlying I/O subsystem should be taken into account 
when selecting this value. For example, if the file is stored on file 
systems striped across multiple devices then a higher value may be 
appropriate than if it is stored on a single disk device.

• max_coalesce

This parameter is an attribute of logical disk drives that sets the 
maximum number of bytes to be transferred to the disk by the device 
driver in a single operation. When using SSA RAID arrays for 
sequential I/O, this value should be set to the number of disks across 
which the data is striped multiplied by 64 KB.

• Sequential and random write-behind

Files mapped into memory are partitioned into 16 KB clusters (four 
pages when using small pages). When writing sequentially, all four 
pages in a cluster will be modified one after another. The parameter 
numclust specifies the number of such clusters before the current 
cluster, which the VMM will allow before scheduling the writing of their 
modified pages. By default this is set to 1, which means that modified 
pages from sequential files should not accumulate in memory. For 
randomly written files, this mechanism does not apply. There is another 
parameter, maxrandwrt, which sets a maximum number of modified 
(also known as dirty) pages for a given file. Once this number is 
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exceeded, then the VMM will schedule these pages for writing. It 
should be noted that when the syncd daemon runs, these modified 
pages will be written to disk anyway, but these parameters can prevent 
the buildup of modified pages between runs of syncd to the extent that 
syncd running affects system performance. These parameters can be 
modified using the vmtune command.

• lgpg_regions, lgpg_size

As discussed in Section 3.3.2, “Small and large page sizes” on 
page 58, the use of large pages for virtual memory has the potential to 
significantly improve the performance of certain applications. In order 
for an application to use large pages, there must have been large 
pages defined to the system at system IPL. The lgpg_regions 
parameter specifies the number of large pages to be made available at 
the next reboot. The lgpg_size parameter specifies the size of these 
pages, and for the IBM ^ pSeries 690 Model 681 POWER4 
machines this would be 16 MB specified in bytes. An example of a 
sequence of commands and actions to define 8 GB of large pages and 
make them available might be as follows:

vmtune -g 16777216 -L 512
bosboot -a
shutdown -Fr

The exact usage of the bosboot command would depend on the 
particular system being configured for large pages.

3.3.4  Minimizing variation in job performance
Various factors can affect the consistency of the performance of a job from run to 
run. These include:

� System factors

– Competing jobs

Multiple jobs running in the system simultaneously can compete for 
resources such as CPU, memory, and I/O bandwidth. One approach to 
reducing the variability introduced by running multiple jobs on the system 
is to carefully select jobs that require different types of resources to be run 
together. Once jobs have been characterized in this way, the running of the 
job mix can be controlled using a job scheduling system such as 
LoadLeveler. In practice, many large applications have requirements for all 
the above types of resource. Another approach is to use the AIX Workload 
Manager to guarantee resources to a particular job, and perhaps sharing 
the remaining resource between other jobs in the system. For examples of 
the effects of multiple jobs running on the system, see Chapter 8, 
“Application performance and throughput” on page 153.
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For more information on AIX Workload Manager, see AIX 5L System 
Management Concepts: Operating System and Devices, and AIX 5L 
System Management Guide: Operating System and Devices. For more 
information on LoadLeveler, see Using and Administering IBM 
LoadLeveler for AIX, SA22-7311.

– External I/O performance

If a job is dependent on the performance of shared storage facilities that 
are heavily utilized at certain times, then it may experience variation in 
runtime. In this situation, it may be possible to trade memory use for I/O to 
reduce the dependency on the external I/O performance.

– System software levels

Occasionally, different system software levels will implement different 
default values for certain tuning parameters. This can cause unexpected 
variation in job performance. Software updates and fixes should therefore 
be checked and tested carefully for such changes.

� Application factors

– Processor binding

In order to guarantee the sharing of L2 cache between certain threads, or 
to guarantee that threads are using dedicated L2 cache, you may have 
bound threads or processes to specific processors. Depending on the 
thread scheduling scope (see Section 7.1.1, “SMP runtime behavior” on 
page 126), and the numbers of threads and processors, this could 
introduce variation in runtime behavior.

– Variation in data

The previous factors apply to variations in runtimes for the same job 
running with the same data. It is also the case that variations in the data 
input to the job can cause variability, even though the problem to be solved 
is the same size, and the program may take longer to converge to a 
solution. With parallel jobs variations in input data may lead to hotspots 
where certain processors have more work to do than others, leading to an 
overall increase in the runtime of the job. An approach to resolving this, 
which is outside the scope of this book, is to implement a dynamic load 
balancing design in the parallelization of the program.
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Chapter 4. Optimizing with the 
compilers

In this chapter we describe the features of the XL Fortran and C and C++ 
compilers that relate to optimization for the POWER4 processors. We begin with 
the optimization options available with particular emphasis on those that benefit 
applications running on POWER4 processors. In subsequent sections the 
particular techniques and considerations for improving performance using the 
compiler are discussed.

4.1  POWER4-specific compiler options
In this section some useful XL Fortran compiler options that can be used to 
improve performance are presented. We then focus on options with specific 
benefits on POWER4 microarchitecture machines. Finally, we make some 
recommendations for initial attempts at optimization.

It should be noted that, when specifying conflicting compilation options on the 
command line, the last option wins. For example, consider the following 
command:

xlf -O3 -qsource -qlist -o monte -O2 monte.f

4
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The optimization flag -O is specified twice with two different levels. In this case, 
optimization level two would be used because this is specified last. This also 
applies to those options that are implied by another option. See the description of 
-O4 and -O5 in the following section.

4.1.1  General performance options
In the following sections, useful Fortran, C and C++ compiler general 
performance options are discussed.

XL Fortran options
The following options are provided by the XL Fortran compiler. For more details 
see the XL Fortran for AIX User’s Guide, SC09-2866.

� -O, -O2, -O3, -O4, -O5

The -O flag is the main compiler optimization flag, and can be specified with 
several levels of optimization. -O and -O2 are currently equivalent. 

At -O2, the XL Fortran compiler’s optimization is highly reliable and usually 
improves performance, often quite dramatically. -O2 avoids optimization 
techniques that could alter program semantics. 

-O3 provides an increased level of optimization. It can result in the reordering 
of associative floating-point operations or operations that may cause runtime 
exceptions. This could slightly alter program semantics. This can be 
prevented through the use of the -qstrict option together with -O3. At this 
optimization level, the compiler can also replace divides with reciprocal 
multiplies. -O3 is often used together with -qhot, -qarch, and -qtune. 

-O4 provides more aggressive optimization and implies the following options:

– -qhot

– -qipa

– -O3

– -qarch=auto

– -qtune=auto

– -qcache=auto

-O5 implies the same optimizations as -O4 with the addition of -qipa=level=2.

In general, increasing levels of optimization require more time (sometimes 
considerably more time), and larger memory during the compilation. In 
addition, -O4 and -O5 sometimes need additional space in /tmp (or the 
location specified by the TMPDIR environment). The recommendation is to 
have at least 200 MB available, and potentially up to 400 MB.
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� -qarch, -qtune, -qcache

These options allow the compiler to take advantage of particular hardware 
configurations for the purposes of optimization.

– -qarch specifies the instruction set architecture of the machine, that is 
which instructions the compiler will generate. Specifying certain values for 
this option can generate code that will not run on other machine types. For 
example, -qarch=pwr2 would generate code that might not run on a 
POWER4 machine. 

The -qarch=com option generates executable code that will run on any 
POWER or PowerPC hardware platform. However, this option also 
prevents the compiler from generating any of the optional PowerPC 
architecture instructions. In the case of POWER4, these instructions 
include the two floating-point square root instructions: fsqrt and fsqrts, 
which are likely to be important in numerically intensive applications.

– -qtune instructs the compiler to perform optimizations for the specified 
processor. These can include taking into account instruction scheduling 
and memory hierarchy for the specified architecture. This option only has 
an effect when used with an optimization level of -O (or -O2) or greater.

– The -qcache option is only effective if the -qhot option is also specified 
explicitly or implicitly with, for example, -O4. 

This option can be used to specify the exact cache hierarchy of the 
machine. This can be useful if the target machine has a different cache 
hierarchy from the default. -qcache is designed to describe the complete 
cache hierarchy of the system including the TLB. If specifying cache 
configurations with -qcache, then the specifications should be ordered by 
capacity and to be very precise should include the ERAT, TLB, L1, L2, and 
L3. 

At present, the compiler uses the line size of the cache for optimization, 
but a future level of the compiler may use capacity and miss cost more 
aggressively. At that time, if compiling for machines with different cache 
hierarchies, then the most conservative specification would be the larger 
line size, the smaller capacity, the smaller associativity level, and the larger 
cost.

If the program will be compiled and run on the same machine, then 
-qarch=auto should be used or -qarch should be set to the specific processor. 
The default setting is -qarch=com in 32-bit mode, and -qarch=ppc in 64-bit 
mode. The compiler will then automatically select default settings for -qtune 
and -qcache appropriate to the processor architecture selected. If the 
compilation machine is different from the target machine, then it can be useful 
to specify the target architecture for -qarch and -qtune.
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For example, if compiling and running on a POWER4 pSeries 690 Model 681, 
then use -qarch=auto -qtune=auto, or -qarch=pwr4 -qtune=pwr4. If compiling 
on this machine but executing on an RS/6000 SP 375 MHz POWER3 High 
Node, then -qarch=pwr3 -qtune=pwr3 should be used. Different combinations 
of these two options can be used to specify the machines on which the 
executable will run, but produce code that is optimized for one of the target 
machine types.

� -qhot

The -qhot option performs high-order transformations to maximize the 
efficiency of loops and array language. It can optionally pad arrays for more 
efficient cache usage and can generate calls to vector intrinsic functions such 
as square root and reciprocal. As with -O3, some of the transformations can 
slightly alter program semantics, but this can be avoided by also using -qstrict. 
The -qhot option is made less effective by the -C array bounds checking 
option, but remains active. Note that -qhot is selected by default when -O4, 
-O5, or -qsmp=auto options are specified.

� -qalias

The -qalias option can be used to tell the compiler about the types of aliasing 
that may be found in the program where an area of storage may be referred 
to by more than one name. The compiler may be able to perform additional 
optimization with this information, for example for programs that violate 
parameter aliasing rules (see the discussion of -qalias in the XL Fortran 
User’s Guide, SC09-2866).

Compiling with -O2 -qalias=nostd may give better performance than using no 
optimization at all.

� -qalign

The -qalign option specifies the alignment of data objects in storage. There 
are two suboptions: 

– -qalign=4k, which causes certain objects over 4 KB to be aligned on 4 KB 
boundaries and can be useful for optimizing I/O when using data striping. 

– -qalign=struct, which can specify the alignment of derived type objects 
such as structures. 

� -qassert

The -qassert option can be used to give the compiler information about loop 
dependencies and iteration counts, which may allow additional optimizations.
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� -qcompact

The -qcompact option reduces optimizations that increase the size of the 
executable. For current systems with large memories this is not commonly 
used. However, it can be useful in the rare cases where -O3 generates code 
that performs worse than code generated with -O2. In these cases, -O3 
-qcompact is often better.

� -qpdf, -qfdpr

The -qpdf option enables profile-directed feedback. This is a two-step process 
where profile information from a typical run or set of runs is used for further 
optimization.

-qfdpr generates object files containing the necessary information for use with 
the AIX Feedback Directed Program Restructuring (FDPR) command. 

� -qipa

The -qipa option can improve basic optimization by doing analysis across 
procedures. This must be specified at both compile and link stages, and there 
are various suboptions to give the compiler more information about the 
characteristics of procedures within the program, and how to handle 
references to procedures that have not been compiled with -qipa.

� -qsmp

The -qsmp option is used for shared memory parallelization of certain loops 
within a program. It is possible to make the compiler use the minimum 
optimization necessary to achieve parallelization by using -qsmp=noopt.

Shared memory parallelization is covered in more detail in Section 7.1, 
“Shared memory parallelization” on page 126.

� -qstrict, -qstrict_induction

These options prevent the compiler (options -O3, -qhot and -qipa) from 
performing optimizations that could alter the semantics of the program and 
potentially producing results that differ from unoptimized code. 
-qstrict_induction applies to such optimizations on loop counter variables. 
Both of these options can result in reduced performance.

� -qunroll

The -qunroll option allows the compiler to unroll loops within a compilation 
unit. By default, with optimization level 2 (-O, or -O2) the compiler performs 
loop unrolling if analysis indicates that it will be beneficial. If such unrolling 
actually reduces performance for a procedure, then -qnounroll could be used 
to turn it off for a particular procedure. Loops where it is beneficial to unroll 
within this procedure could then be marked with the UNROLL compiler 
directive. See Section 4.2, “XL Fortran compiler directives for tuning” on 
page 80
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� -Q

The -Q option allows the compiler to inline functions and procedures. That is, 
the compiler can move the code from the inlined program unit into the code of 
the calling unit and potentially achieve further optimizations by doing so. This 
option can also take the names of functions or procedures to be inlined, or 
those to be excluded from inlining.

� -qlibansi, -qlibessl, -qlibposix

These options specify that any references to functions that have the same 
name as a library function are references to that function.

-qlibansi ANSI C library.

-qlibessl ESSL library. See Section 6.1, “The ESSL and Parallel ESSL 
libraries” on page 114

-qlibposix POSIX 1003.1 library.

� -qnozerosize

The -qnozerosize option tells the compiler that there are no zero-sized 
objects in the program that can improve performance in some programs by 
removing the need to check for them.

� -g

The -g option is not a performance flag. It generates symbol and line number 
information in the object files that can be used for debugging. However, it is 
important to note that compiling with -g has almost no effect on performance. 
It does not prevent optimizations performed by the compiler.

� -p, -pg

These options are used to generate monitoring information when producing 
runtime profiles of a program. See Section 5.5, “Locating hot spots (profiling)” 
on page 110 for more details.

Visual Age C and C++ options
With the following exceptions, all the options mentioned previously are also valid 
when used with the C and C++ compilers:

� -qhot

� -qnozerosize

� -qlibessl, -qlibposix

� -qsmp is supported by the C compiler, but is not supported by the C++ 
compiler. However, C++ can declare (as extern “C”) and call C functions that 
are coded with shared memory parallelism through OpenMP pragmas.
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In addition, the following performance-related options exist for these compilers:

� -qalias=ansi

The -qalias=ansi option specifies the use of type-based aliasing during 
optimization. This is synonymous with the obsolete -qansialias, and allows 
the compiler to make assumptions about the types of objects accessed via 
pointers.

� -qfold

The -qfold option evaluates constant floating-point expressions at compile 
time.

� -qinline

The -qinline option is equivalent to the -Q option described in the Fortran 
options.

� -qunroll=n

The -qunroll option accepts a value n, where n is the depth to which the 
compiler should unroll inner loops. The default value of n is four, and the 
maximum value is eight. This option takes effect when an optimization level of 
-O2 or higher is specified.

4.1.2  Options for POWER4
This section describes specific optimization actions performed by the compiler for 
POWER4 microarchitecture machines.

Compiler options that perform specific optimizations for POWER4 
microarchitecture machines are as follows:

� -qarch=pwr4

� -qtune=pwr4

� -qcache=auto

or

-qcache=level=1:type=i:size=64:line=128:assoc=0:cost=13 \
-qcache=level=1:type=d:size=32:line=128:assoc=2:cost=11 \
-qcache=level=2:type=c:size=1440:line=128:assoc=8:cost=125

Note that the cost value for the L2 cache miss above is derived from an 
average for data misses across the various L3 caches.
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4.1.3  Using XL Fortran vector-intrinsic functions
The compiler is capable of generating calls to specially optimized vector versions 
of intrinsic functions. These are included in the libxlopt.a library included with XL 
Fortran, and the standard linkage sequences for the various invocations of the 
Fortran compiler (for example xlf, xlf90, xlf90_r) include this library. Calls to 
intrinsic functions can often make up a significant percentage of the CPU usage 
profile. For example, one weather modelling program spends 22 percent of its 
time in the intrinsic functions.

These calls may be generated using the -qhot compiler option and will be 
satisfied from the libxlopt.a library. Certain other options will prevent the 
generation of these calls: -qhot=novector, or -qstrict. For example, the following 
code outline could generate vector-intrinsic function calls when compiled with 
-qhot:

do i=1,n
c(i)=cos(a(i))
.
.

end do

Vector versions of the following functions exist with examples of the calls 
provided in the following list:

� Cosine

cos(a(i))

� Division (not strictly speaking a function, but a vector division function exists 
in libxlopt.a)

a(i)/b(i)

At present, although this function exists, the compiler does not generate this 
function call, but uses a combination of a vrec or a vsrec function call and 
multiply instructions.

� Exponential

exp(a(i))

� Natural logarithm

log(a(i))

� Reciprocal

1.0/a(i)

� Reciprocal square root

1.0/sqrt(a(i))
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� Sine

sin(a(i))

� Square root

sqrt(a(i))

� Tangent

tan(a(i))

There are two versions of each function, a double-precision version and a 
single-precision version. The compiler will generate the appropriate call.

These functions are derived from the MASS library functions (see Section 6.2, 
“The MASS libraries” on page 117 for more information on the MASS library). 
Since the XL Fortran release schedule is separate from the freely available 
MASS library, the libxlopt.a versions may lag behind the MASS library versions. 
This means that any improvements in the performance of these routines, for 
example by algorithm changes that take advantage of the POWER4 architecture, 
are likely to be available in the MASS library first.

Also note that the use of these functions is subject to the same considerations as 
the use of the MASS library functions.

Examples of the speedups that can be seen with the vector-intrinsic functions are 
shown in Table 4-1.

Table 4-1   Vector-intrinsic function speedups

Function Speedup (double precision) Speedup (single precision)

cos 3.94 3.90

div not generated not generated

exp 4.60 4.55

log 5.80 5.74

reciprocal 1.10 2.17

rsqrt 2.26 6.23

sin 4.03 3.85

sqrt 1.09 2.17

tan 4.27 3.79
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The double-precision numbers were generated with the following program:

program cos_test

        integer m,n
        parameter ( n = 1000 )
        parameter ( m = 10000 )
        real*8 a(n)
        real*8 b(n)
        real*8 fns
        real*8 time1,time2,rtc
        real*8 ctime
        integer i,j

        ctime=0.0d0

        call random_seed
        call random_number(a)
        call random_number(b)

        do i=1,m
          time1=rtc()
          do j=1,n
            b(j)=cos(a(j))
          end do
          time2=rtc()
          ctime=ctime+(time2-time1)
          call dummy(b,a,n)
        end do

        fns=float(m*n)

        write(6,998)ctime,fns/(ctime*1.0e6)
998     FORMAT('Cosine: intrinsic time (s) = ',F6.2,
     &                 ' cos/s = ',F8.2)

        stop
        end

For the other vector-intrinsic functions, the call to cos_test in the preceding 
example was replaced with the appropriate function or operation.

The dummy subroutine does nothing, but calling it prevents the compiler from 
optimizing away the loop.
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4.1.4  Recommended options
The recommended starting compiler options for the POWER4 microarchitecture 
are:

-O3 -qarch=pwr4 -qtune=pwr4

If the executable must execute on POWER3 and POWER4 machines, but the 
performance on the POWER4 machine is most important, then -qarch=pwr3 and 
-qtune=pwr4 should be specified instead.

The -qhot option may give significant performance benefits, at the cost of 
additional compile time. It is also essential for certain other optimization flags to 
take effect, including -qcache. 

If the program makes extensive use of the intrinsic functions listed in 
Section 4.1.3, “Using XL Fortran vector-intrinsic functions” on page 76 and the 
programmer does not wish to modify the code to use the MASS library functions, 
then there may be considerable benefit from using the vector versions from 
libxlopt. The -qhot option should then be used. In this case, the benefit from the 
vector-intrinsic functions can be determined by comparing the effect of compiling 
with -qhot and compiling with -qhot=novector.

4.1.5  Comparing C and Fortran compiler code generation
This section compares C and Fortran compiler code generation.

Numeric intensive code
The IBM Fortran and C compilers share common technology and, in particular, a 
common back-end optimizer. To investigate potential variations, we examined 
the code generated by the C and Fortran compilers for simple loops (DDOT and 
DAXPY). The C code was written using arrays instead of pointers for similarity 
with Fortran.

Using only the -O2 compiler option, the Fortran compiler generates unrolled 
loops while the C compiler does not. The Fortran examples run faster than the C 
examples.

Using the recommended compiler options (-O3 -qarch=pwr4 -qtune=pwr4), the 
code generated by the compilers was essentially the same. The execution times 
for the C and Fortran loops were within 1 percent variation. This is as expected 
since the back-end optimizer is common to both compilers.

Note: As described in Section 4.1.1, “General performance options” on 
page 70, -O4 implies -qhot.
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The essential code is shown below:

ddot.f ddot.c
do j=1,iterations for (i=0;i<iterations;i++) {

c1=0.0d0 c1=0.0;
do i=1,array_size for (j=0;j<array_size;j++) {

c1 = c1 + x(i) * y(i) c1 += x[j] * y[j];
end do }
call dummy(x,c1) dummy(x,c1);

end do }

The example for DAXPY is similar to the code sample above:

x(i) = x(i) +c1 * y(i) x[j] += c1*y[i];

Non-numeric intensive code
We made a brief investigation of the impact of compiler options on non-numeric 
C code by compiling applications with -O3 -qarch=com and -O3 -qarch=pwr4 
-qtune=pwr4 and compared execution time. In one case, we compared the 
performance of the UNIX utility nroff and in another we compared a string 
manipulation script written in Perl (where the Perl compiler was compiled with the 
different options). In both the nroff and Perl cases, there was no difference in 
execution time.

We compiled the FASTA program (see Section 8.6, “FASTA genetic sequencing 
program” on page 168) with both -qarch=com and -qarch=pwr3 -qtune=pwr3 and 
re-ran the arp_arath test. Execution times of the com, pwr3, and pwr4 versions 
were within 1 percent variation. Since this program performs large amounts of 
I/O, we consider these execution times equivalent.

Note that -qarch=com will ensure that the compiler uses only standard PowerPC 
instructions. Optional instructions such as the hardware floating-point square 
root and non-PowerPC instructions such as the POWER2 loadquad instruction 
will not be used. This can have a significant impact on performance.

4.2  XL Fortran compiler directives for tuning
A number of XL Fortran compiler directives exist that the programmer can use to 
improve performance without extensive modification of source code. These 
directives can be activated at compile time by specifying the -qdirective option 
with the trigger expression that has been used. These directives are discussed in 
the following sections.
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4.2.1  Prefetch directives
Prefetch directives are directives that generate specific machine instructions for 
accessing memory locations. They can be used to influence the hardware 
prefetch mechanism so that, for example, data that will be needed later in the 
execution begins to be prefetched before it is actually needed. Not all of these 
prefetch directives have an effect on all machine architectures.

� PREFETCH_BY_LOAD

This generates a load byte and zero (lbz) instruction for a memory location. It 
can be used to trigger prefetching for data that may be loaded or stored later.

As discussed in Section 2.3.2, “Instruction fetch, group formation, and 
dispatch” on page 9, load misses are entered into the prefetch filter queues, 
and on confirmation will automatically initiate prefetching. This is not the case 
for store misses. By using the PREFETCH_BY_LOAD directive and 
specifying a data element to be stored, it is therefore possible to precede the 
store miss with a load miss that will be entered into the prefetch filter queue. A 
second prefetch directive to the next cache line in the desired direction will 
initiate prefetching of the cache lines where the data will be stored.

This directive (and the related technique of multiplying a data element to be 
stored by 0.0) was quite useful on the POWER3 architecture machines. With 
POWER4, it is less useful with the exception of store only or initialization 
operations. An example of its usage follows:

do i=1,n
!P4_bl* PREFETCH_BY_LOAD(x(i+17))

x(i) = s
.
.
end do

In this example, where x is a double precision floating-point array, the prefetch 
directive generates a load instruction for a data element in the next cache line 
beyond x(i). Subsequent iterations will issue loads for consecutive elements 
of x in this cache line, with a new cache line being referenced every 16 
iterations. The exact offset from i used in the prefetch directive depends on 
the size of the loop.

This directive is not always beneficial and can be detrimental to performance. 
The use of this directive inserts extra load instructions into the executable 
code that must be scheduled and completed among the other instructions, 
and for which the data will be loaded into L1 cache. This will not benefit the 
store operation, and may replace data that would otherwise be reused from 
L1 cache.
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� PREFETCH_FOR_LOAD, PREFETCH_FOR_STORE

Each of these directives generates a cache line touch instruction (dcbt and 
dcbtst respectively). They will cause a cache line to be loaded into L1, but will 
not by themselves initiate hardware prefetching. However, they are treated 
like load misses and generate entries in the prefetch filter queue. Subsequent 
directives targeting consecutive cache lines will therefore initiate prefetching.

These directives have an advantage over the PREFETCH_BY_LOAD 
directive in that the instructions generated do not have to wait for the cache 
line to be loaded for completion.

4.2.2  Loop-related directives
These directives are used to specify the characteristics of do loops in Fortran 
and instruct the compiler to perform certain optimizations in relation to do loops. 
They can also be used in association with automatic parallelization using the 
-qsmp option.

� ASSERT

This directive can be used to specify likely iteration counts and dependency 
information between iterations (not within an iteration) for a specific do loop.

� INDEPENDENT

This directive indicates that the iterations of a do loop can be performed in 
any order.

� UNROLL(n)

This directive indicates that the compiler may unroll the following loop to depth 
n. If the compiler can unroll the specified loop, then it should do so. This is 
most useful for unrolling a particular loop in a compilation unit while 
preventing other loops from being unrolled with the -qnounroll compiler flag. 
Another use of this directive is to specify a different depth to unroll from that 
which the compiler would select automatically at optimization level -O2 and 
above.

� CNCALL

This directive indicates to the compiler that no dependencies between 
iterations exist for procedures called by the following loop.

� PERMUTATION

This directive indicates to the compiler that one or more integer arrays have 
no repeated values. This would be used where the integer array was being 
used to index another array.
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4.2.3  Cache and other directives
In this section, the cache_zero and light_sync directives are discussed.

� CACHE_ZERO

This directive generates a dcbz instruction that zeros a cache line without 
needing to first load the cache line from memory. It could be used for efficient 
initialization of storage, or as a mechanism for establishing cache lines that 
will be overwritten without the need for them to be loaded into cache first 
(either by a load or store miss). However, this instruction should be used with 
care. It modifies the whole cache line, so the programmer should make sure 
that only data elements that it intended to set to zero are in this cache line and 
that no other processor requires access to the cache line until this operation 
is complete. For example, consider:

CACHE_ZERO(x(1))

This will cause the cache line containing x(1) to be set to zeros. There is no 
certainty that x(1) will be at the beginning of a cache line, and it could be 
anywhere in the cache line. It is, therefore, essential to check the location of 
this element with, for example:

MOD( LOC( x(1) ), 128 )

On POWER4 microarchitecture machines, this directive is likely to be of 
benefit only when the 128-byte line to be zeroed is in memory and not 
anywhere in the cache hierarchy. If the data is in L1 or L2 caches, then using 
this directive is likely to result in significant degradation in performance. If the 
data is in L3 cache, then there is likely to be a slight degradation in 
performance. However, when the programmer is sure that the data is not in 
cache, for example in an initialization near the beginning of a program, then 
this directive does give a performance benefit.

� LIGHT_SYNC

This directive allows synchronization between multiple processors without 
waiting for a confirmation from each processor. This can reduce the 
performance impact of synchronization between processors. It generates a 
lightweight sync instruction, which is a special case of the sync instruction. It 
can be used to guarantee the ordering of loads and stores relative to a 
specific processor. This has some use in the pthread programming model 
where for example, one thread updates a value that is then used by a second 
thread. The lightweight sync can be used to ensure that the second thread 
does not access the value until the first thread has updated it.

Thread 1 Thread 2
flag=0
. do while ( flag .ne. 1 )
. .
. .
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x=newvalue .
lightweight sync .
flag=1 end do
. y=x

The lightweight sync between the two store operations (shown in the 
preceding example) in Thread 1 means that these operations must be 
completed in order. This means that when Thread 2 polls the flag and finds 
that it has been set to one, the update of x must be complete and so it is safe 
to use this value.

4.3  The object code listing
This section reviews the process of obtaining an object code listing from the 
compiler. The object code listing shows the instruction sequences generated by 
the compiler and can assist the programmer in a number of ways:

� Understanding the impact of the compiler options used, such as the 
optimization and unroll flags.

� Identifying instructions that may be platform specific and therefore cause the 
code to fail on other platforms.

� Identifying potential problems with the compiler.

Obtaining an object code listing from a Fortran, C, or C++ compilation is simple. 
Invoke the compiler with the -qlist option. This will generate a file with the same 
prefix as the module being compiled but with an .lst extension.

For example, consider the following C program:

1 #include <stdio.h>
2 main()
3 {
4 printf(“Hello world.\n”);
5 }

Compiling with the -qlist option generates hello.lst. This file contains several 
sections depending on the language and compiler:

� The options section lists the compiler options (both default and those 
specified on the command line) that were used for the compilation.

� The file table section lists any included source files.

� The source section (only present if -qsource is specified) lists line-numbered 
source code and warnings and errors from the compiler.

� The compilation epilogue section provides a summary of the number of 
source lines processed, errors, warnings and other messages.
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� The object section lists the pseudo-assembler code generated. 

The pseudo-assembler in the object section is somewhat easier to read (than 
that generated with -s) and the listing includes line numbers that are normally 
invaluable in understanding the listing. In addition to the assembler listing, the 
object section also contains a map showing register usage.

The following is part of the object section for the hello world program:

     | 000000                           PDEF     main
    2|                                  PROC
    0| 000000 mfspr    7C0802A6   1     LFLR     gr0=lr
    0| 000004 stw      93E1FFFC   0     ST4A     #stack(gr1,-4)=gr31
    0| 000008 stw      90010008   2     ST4A     #stack(gr1,8)=gr0
    0| 00000C stwu     9421FFC0   0     ST4U     gr1,#stack(gr1,-64)=gr1
    0| 000010 lwz      83E20004   1     L4A      gr31=.+CONSTANT_AREA(gr2,0)
    4| 000014 ori      63E30000   2     LR       gr3=gr31
    4| 000018 bl       4BFFFFE9   0     CALL     gr3=printf,1,gr3,printf",gr1

,cr[01567]",gr0",gr4"-gr12",fp0"-fp13"
    4| 00001C ori      60000000   1
    5| 000020 addi     38600000   0     LI       gr3=0
    5|                              CL.1:
    5| 000024 lwz      80010048   1     L4A      gr0=#stack(gr1,72)
    5| 000028 mtspr    7C0803A6   2     LLR      lr=gr0
    5| 00002C addi     38210040   1     AI       gr1=gr1,64
    5| 000030 lwz      83E1FFFC   0     L4A      gr31=#stack(gr1,-4)
    5| 000034 bclr     4E800020   2     BA       lr

The left-hand column in the example shows the corresponding source line 
number. Column two contains the relative instruction address and column three 
contains the instruction. The right-hand column contains the instruction 
operands. 

Column five is a number indicative of the number of cycles to execute the 
instruction. A zero means the instruction can be overlapped with previous 
instructions. Note, these numbers should not be used to estimate execution time 
from cycle times, because they do not accurately reflect the POWER4 
microarchitecture. 

Note: Compiling with the -S flag will generate assembler code that can be 
read by the assembler, as (1) and used to generate a .o file. 
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In the hello world example, locate the five instructions on line zero (which doesn’t 
exist in a program). These instructions set up the stack and return address for the 
program. Instructions for line four set up for and then call the printf function. 
Instructions for line five restore the link register (program return address), 
collapse the stack, and exit.

Optimized code frequently shows more complex behavior. The optimizer will 
move code sequences, unroll loops, and use a number of other techniques that 
make it more difficult to interpret the object code listing. However, the line 
numbers associated with each instruction are preserved and you can identify 
code for given source lines without completely understanding why the compiler 
has generated the specific sequences. Consider the following example:

1 #define NX 1000000
2
3 main()
4 {
5 int j;
6 double f1;
7
8 double  e[NX], q[NX];
9
10 f1 = 1.5;
11
12 for (j=0;j<NX;j++)
13 {
14 q[j] = e[j] + f1*q[j];
15 }
16 }

This example was compiled with optimization for POWER4 and no loop unrolling. 
In this case we specified no loop unrolling to keep the object code small. The 
command used to compile is as follows:

xlc -O3 -qarch=pwr4 -qtune=pwr4 -qnounroll -qlist loop.c

The corresponding segment of the object list produced from this command is as 
follows:

     | 000000                           PDEF     main
    3|                                  PROC
    0| 000000 addis    3CE0000F   1     LIU      gr7=15
   12| 000004 addi     38600000   1     LI       gr3=0
    0| 000008 addis    3D80FF0C   1     LIU      gr12=-244
   10| 00000C lwz      80A20004   1     L4A      gr5=.+CONSTANT_AREA(gr2,0)
    0| 000010 addi     398CDBC0   1     AI       gr12=gr12,-9280
    0| 000014 addi     38074240   1     AI       gr0=gr7,16960,ca"
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   10| 000018 lfs      C0650000   1     LFS      fp3=+CONSTANT_AREA(gr5,0)
    0| 00001C mtspr    7C0903A6   1     LCTR     ctr=gr0
    0| 000020 stwux    7C21616E   1     ST4U     gr1,#stack(gr1,gr12)=gr1
    0| 000024 addis    3C810001   1     CFAA     gr4=32760,gr1,1
    0| 000028 addi     38848038   1
    0| 00002C addi     38848000   1     AI       gr4=gr4,-32768,ca"
    0| 000030 addis    3CC1007A   1     CFAA     gr6=8026200,gr1,1
    0| 000034 addi     38C67898   1
    0| 000038 addi     38C699A0   1     AI       gr6=gr6,-26208,ca"
   14| 00003C lfd      C8260008   1     LFL      fp1=q[]0(gr6,8)
   14| 000040 lfdu     CC040008   1     LFDU     fp0,gr4=e[]0(gr4,8)
   14| 000044 fmadd    FC03007A   1     FMA      fp0=fp0,fp3,fp1,fcr
    0| 000048 bc       4340001C   0     BCF      ctr=CL.26,taken=0%(0,100)
    0| 00004C ori      60000000   2
   12|                              CL.3:
   14| 000050 lfdu     CC240008   1     LFDU     fp1,gr4=e[]0(gr4,8)
   14| 000054 lfd      C8460010   1     LFL      fp2=q[]0(gr6,16)
   14| 000058 stfdu    DC060008   1     STFDU    gr6,q[]0(gr6,8)=fp0
   14| 00005C fmadd    FC0308BA   1     FMA      fp0=fp1,fp3,fp2,fcr
    0| 000060 bc       4320FFF0   0     BCT      ctr=CL.3,taken=100%(100,0)
    0|                              CL.26:
   14| 000064 stfdu    DC060008   1     STFDU    gr6,q[]0(gr6,8)=fp0
   16| 000068 lwz      80210000   1     L4A      gr1=#stack(gr1,0)
   16| 00006C bclr     4E800020   0     BA       lr

To locate a loop, we can look for a BCT instruction that branches back to a label 
and confirm this by checking line numbers. In our example, there are two BCT 
instructions. The relevant one is the second one with the additional hint 
taken=100%. Note that some instructions associated with the loop appear to be 
outside the loop code. This is caused by the instruction scheduling knowledge 
built in to the optimizer.

Before entering the loop, the loop counter is loaded using a mtspr (move to 
special register) instruction at address 01C and the single precision constant f1 is 
loaded into fp3 and converted to double (at 018). We also set up registers 
pointing to arrays e and q (020 through 038).

Starting at address 03C, q[j] is loaded into fp1. The lfd instruction loads a double 
(8 bytes) into a floating-point register. Then the lfdu instruction loads e[j] into fp0 
and also updates the register pointer to e[j]. Note that the address of e[j] is not 
computed from j but rather by incrementing by the size of a double. A 
floating-point multiply/add is initiated to generate the new value for q[j] in fp0.
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The following points are related to the inner loop processing:

� The lfdu loads fp1 with the next value of e[j], updating the pointer.

� The lfd loads fp2 with the next element in the array q[j]. Note carefully the 
offset of 16 bytes from the pointer (gr6,16) and compare this with the previous 
lfd, where the offset was 8 bytes (gr6,8).

� By this time, the previous FMA has completed and put its result in fp0. The 
stfdu stores the new value of q[j] and then updates the pointer. Note the stfdu 
also uses (gr6,8).

� We then initiate an FMA for the e[j] and q[j] just loaded.

� The bc conditional branch tests the counter and branches back to CL.3 if 
appropriate.

� If we did not branch, we still need to store the result of the last FMA, hence 
the stfdu following CL.26.

From this basic example, we can see how the compiler can optimize code by use 
of registers as pointers and by appropriate scheduling of possibly overlapping 
instructions. In production code, optimized code can appear very complex.

A complete description of the instruction set can be found on the AIX Extended 
Documentation CD. It can also be found on the Web site:

http://www.ibm.com/servers/aix/library/techpubs.html

4.4  Basic coding practices for performance
In this section we list coding practices that can help the compiler to generate 
more efficient code. 

4.4.1  Language-independent tips
� Do not excessively hand-optimize your code (for example, unrolling or 

inlining). This often confuses the compiler (and other programmers) and 
makes it difficult to optimize for new machines.

� Avoid unnecessary use of globals and pointers. When using them in a loop, 
load them into a local before the loop and store them back after.

� Avoid breaking your program into too many small functions. If you must use 
small functions, seriously consider using the -qipa option.

� Use register-sized integers (long in C/C++ and INTEGER*4 or INTEGER*8 in 
Fortran) for scalars. 
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� For large arrays or aggregates of integers, consider using 1- or 2-byte 
integers or bit fields in C or C++.

� Use the smallest floating-point precision appropriate to your program. Use 
long double, REAL*16, or COMPLEX*32 only when extremely high precision 
is required.

� Obey all language aliasing rules (try to avoid -qassert=nostd in Fortran and 
-qalias=noansi in C/C++).

� Use locals wherever possible for loop index variables and bounds. In C/C++, 
avoid taking the address of loop indices and bounds.

� Keep array index expressions as simple as possible. Where indexing needs to 
be indirect, consider using the PERMUTATION directive.

4.4.2  Fortran tips
� Use the [mp]xlf90[_r] or [mp]xlf95[_r] driver invocations where possible to 

ensure portability. If this is not possible, consider using the -qnosave option.

� When writing new code, use module variables rather than common blocks for 
global storage.

� Use modules to group related subroutines and functions.

� Use INTENT to describe usage of parameters.

� Limit the use of ALLOCATABLE arrays and POINTER variables to situations 
that demand dynamic allocation.

� Use CONTAINS in subprograms only to share thread local storage.

� Avoid the use of -qalias=nostd by obeying Fortran alias rules.

� When using array assignment or WHERE statements, pay close attention to 
the generated code with -qlist or -qreport. If performance is inadequate, 
consider using -qhot or rewriting array language in loop form.

4.4.3  C and C++ tips
� Use the xlc[_r] invocation rather than cc[_r] when possible.

� Always include string.h when doing string operations and math.h when using 
the math library.

� Pass large class/struct parameters by address or reference and pass 
everything else by value where possible.

� Use unions and pointer type-casting only when necessary and try to follow 
ANSI type rules.
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� If a class or struct contains a double, consider putting it first in the declaration. 
If this is not possible, consider using -qalign=natural.

� Avoid virtual functions and virtual inheritance unless required for class 
extensibility. These are costly in object space and function invocation 
performance.

� Use volatile only for truly shared variables.

� Use const for globals, parameters and functions whenever possible.

� Do limited hand-tuning of small functions by defining them as inline in a 
header file.

4.4.4  Inlining procedure references
Inlining involves replacing a procedure reference with a copy of the procedure’s 
code, so that the overhead of referencing the procedure, and of returning from it, 
is eliminated. In certain situations inlining can enable the compiler to perform 
more optimization than without inlining.

The general advice is to avoid inlining in areas of a program that are infrequently 
executed and to ensure that small functions are inlined in frequently executed 
areas. Do not inline large functions. Inlining does not always improve 
performance; therefore you should test the effects of this option on your code. 

A program with inlining might slow down because of larger code size resulting in 
more cache misses and page faults, or because there are not enough registers 
to hold all the local variables in some combined routines (check the compiler 
output for register spills).

Inlining by the compiler is controlled through the -Q and -O options and the 
suboptions of the -qipa (not available for C++). You must specify at least 
optimization level -O (equivalent to -O2) for -Q inlining to take effect. In Fortran, 
by default, -Q only affects a procedure if both the caller and callee are in the 
same source file or set of files that are connected by INCLUDE directives. To turn 
on inline expansion for calls to procedures in different source files, you must also 
use the -qipa option. 

The compiler decides whether to inline procedures based on their size. Other 
criteria might help to improve performance. For procedures that are unlikely to be 
referenced in a standard execution (for example, error-handling or debugging 
procedures), you might selectively disable inlining by using the -Q-names option. 
For procedures that are referenced within hot spots, specify the -Q+names 
option to ensure that those procedures are always inlined.
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Getting the right amount of inlining for a particular program may require some 
trials. As a good starting point, consider identifying a few subprograms that are 
called most often, and inline only those subprograms.

To verify whether the compiler has inlined the call of a certain procedure or not, 
you can check whether the call has disappeared in the object listing (-qlist). The 
following example shows how a call to a subroutine (named foo) may appear:

9| 000038 bl       4BFFFFC9   0     CALL gr3=foo,3,a",gr3,#1",gr4,i",gr5,
fcr",foo",gr1,cr[01567]",gr0",gr4"-gr12",fp0"-fp13",mq",lr",fcr",xer",fsr",ca",
ctr"

In C++ there are two methods to define a functions as inline: by using the inline 
keyword or by defining (not just declaring) member functions within the class 
definition. Inline functions are not necessarily inlined by the compiler, and 
functions that are not defined as inline may still be inlined, depending on the 
optimization level and the -Q compiler flag. 

4.4.5  Structuring code for optimal grouping
The grouping of the internal microprocessor instructions is important in order to 
exploit the potential performance of the different hardware execution units for a 
specific calculation. As a general rule, it is desirable to fill out all four slots (five in 
case of a branch) of an instruction group. Instructions that have to be first or last 
in a group may prevent optimal grouping. Flushing instruction groups and 
refetching instructions for reordering is a worst case situation to be avoided if 
possible.

There are no means to influence instruction grouping from the C or Fortran 
language level directly. The compiler has to cope with the requirements of 
grouping. Only when writing assembler code is it possible to arrange the order of 
instructions in order to optimize grouping. 

Writing suitably structured high-level code might help the compiler to generate an 
instruction stream, which can be grouped nicely. The key issues to be considered 
carefully are proper alignment and data dependencies and these tuning 
techniques are beneficial for overall performance anyway.

4.5  Tuning for 64-bit integer performance
Given a program that uses 64-bit integer data types, you need to compile with the 
-q64 option in order to exploit the 64-bit integer hardware support of POWER3 
and POWER4. Note that specifying the -q64 compiler option does not affect the 
default setting for -qintsize. 
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In 64-bit mode, the use of INTEGER(8) induction (loop counter) variables can 
improve performance. The XLF 7.1 compiler automatically converts induction 
variables declared as INTEGER or INTEGER(1) or (4) to INTEGER(8) unless 
-qSTRICT_INDUCTION is specified. It is no longer necessary to set the size of 
default INTEGER and LOGICAL data entities (-qintsize) to 8 bytes in order to 
achieve this goal without source code changes. In this case the usage of 
-qintsize=8 could increase the memory consumption and bandwidth 
requirements unnecessarily.

Figure 4-1 shows some performance implications. A simple add operation, 
B(I) = A(I) + C, is selected. In the context of this example 32-bit denotes 32-bit 
array elements and 32-bit address space; 64-bit indicates 64-bit integer 
elements. Fetching data from L1 and L2 cache, the 64-bit version with hardware 
support (-q64) is not slower than the 32-bit version. The 32-bit version is faster 
when going out to L3 cache and to memory. Twice the number of elements are 
kept in L2 and L3 cache, so the performance degradation is delayed.

Without the 64-bit integer hardware support, the performance of the operation 
with 64-bit operands is significantly worse. One should expect twice the number 
of load, store, and add instructions. But the object code listing reveals that 64-bit 
emulation is more complex. In addition, addic (add with carry) instructions are 
generated, which probably lead to inefficient instruction grouping. 

Figure 4-1   Integer computation: B(I)=A(I)+C
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Chapter 5. General tuning guidelines

This chapter covers general code tuning and application optimization techniques 
that are not specific to POWER4 microarchitecture. It is intended to be a 
repository of recommended coding practices.

5.1  Hand tuning code
Many of the following tips and advice can be found in the IBM Fortran and C 
compiler manuals.

5.1.1  Local or global variables?
Use local variables, preferably automatic variables, as much as possible. The 
compiler can accurately analyze the use of local variables, but it has to make 
several worst-case assumptions about global variables. These assumptions tend 
to hinder optimization. For example, if you write a function that uses global 
variables heavily, and that function also calls several external functions, the 
compiler assumes that every call to an external function could change the value 
of every global variable. If you know that none of the function calls affects the 
global variables that you are using, and you have to read them frequently with 
function calls interspersed, copy the global variables to local variables and then 
use these local variables. The compiler can then perform optimization that it 
could not otherwise perform. 

5
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In C, if you must use global variables, use static variables with file scope rather 
than external variables wherever possible. In a file with several related functions 
and static variables, the optimizer can gather and use more information about 
how the variables are affected. 

To access an external variable, the compiler has to make an extra memory 
access to obtain the address of the variable. When the compiler removes 
extraneous address loads, it has to use a register to keep the address. Using 
many external variables simultaneously takes up many registers. Those that 
cannot fit into the available registers during optimization are spilled into memory. 
The C compiler organizes all elements of an external structure so that they use 
the same base address and hence base address register. Therefore, you should 
group external data into structures or arrays wherever it makes sense to do so. 
Do not group together data whose address is taken (either explicitly using an 
ampersand (&) or implicitly, including arrays passed as parameters and C++ 
class objects passed as this parameters) in the same structure with other data 
whose address is not taken.

In C, because the compiler treats register variables the same as it does 
automatic variables, you do not gain performance by declaring register variables. 
Note that this differs from other vendors’ implementations, where using the 
register attribute can greatly affect program performance. However, declaring a 
variable as register is a good hint to the compiler and means the variable cannot 
be dereferenced.

5.1.2  Pointers
Keeping track of pointers during optimization is difficult and in some cases 
impossible. Using pointers inhibits most memory optimization (such as dead 
store elimination and store motion). 

Using the C #pragma disjoint preprocessor directive to list identifiers that do not 
share the same physical storage can improve the runtime performance of 
optimized code.

5.1.3  Expressions
The Fortran compiler is good at recognizing identical expressions but not 
permutations of them. For example, in the code:

x = a + b + c + d
y = a + c + b + d
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the compiler will only load the variables a, b, c, and d into registers once. 
However, it evaluates the expressions separately and stores the results from 
separate registers. Wherever possible, write identical expressions specifying 
variables in the same order.

5.1.4  Data type conversions
Avoid forcing the compiler to convert numbers between integer and floating-point 
internal representations.

Do not use floats (datatype real) for loop variables.

While this is not a performance issue, when comparing floating-point numbers for 
equality, bear in mind that values may vary in the least significant bit, depending 
on how the value is calculated. Where appropriate, test that the unsigned 
difference between the values is less than an acceptable threshold of accuracy.

5.1.5  Tuning loops
There are a variety of techniques, basically good coding practice, that can be 
applied to tuning loops. These techniques are not POWER4 specific. They are 
described in the Fortran context but also apply to C.

� Keep the size of do loops manageable

Loops should not spread over many lines of code. If they do, there probably 
exists a better algorithm. Large loops also make program maintenance more 
difficult.

� Access data sequentially (unit stride)

Wherever possible, organize data arrays so that elements are accessed with 
unit stride to improve cache utilization. Note, in Fortran arrays, elements 
a(1,n), a(2,n), a(3,n) and so on are in sequential memory locations. In C 
arrays, the order is reversed, that is a[n][1], a[n][2] and a[n][3] are in 
sequential locations.

� Minimize loop invariant IF statements in loops

Reduce the loop instruction path length by moving IF statements outside the 
loop and coding two separate loops. This is more important for small loops 
where the IF test may be a significant contributor to the loop execution time.

� Avoid subroutine and function calls in loops (give routine its own loop)

Avoid subroutine calls within loops (where possible) to save the cost of the 
branch and link instructions. Use code inlining instead. 
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Alternatively, replace the loop with its subroutine call for each element with a 
subroutine call, passing an array parameter, where the subroutine contains a 
loop operating on each element.

� Simplify array subscripts

Avoid writing complex expressions for array subscripts if possible, particularly 
expressions involving loop variables. Complex expressions may cause the 
compiler to compute the array index even if the increment is fixed. For fixed 
increments, the compiler can generate array element addresses with register 
add instructions instead of a more complex calculation.

� Use INTEGER loop variables

Integer loop variables simplify loop counter optimization, since the counter 
can be kept in a register and also used as an address index. Do not use 
INTEGER*8 loop variables unless in 64-bit mode. Use of REAL loop variables 
is strongly discouraged because both of the following affect performance:

– Calculation of the loop variable requires one or more floating-point 
operations 

– Use of the loop variable as an index requires conversion 

In addition, the test for loop termination may be inexact and the loop may be 
executed one fewer or one more time than expected.

In C, declare loop variables as type long. Long variables are the natural or 
register size in 32-bit and 64-bit environments, that is they are 32 or 64 bits 
accordingly. Loop variable arithmetic using the register size has significantly 
better performance than using, for example, integer (32-bit) loop variables in a 
64-bit environment. Note that in the 64-bit environment, the C compiler will 
optimize integer loop variables to long if you specify -O3 (or greater) and do 
not specify -qstrict_induction.

� Avoid the following constructs within loops:

– Flow control statements such as GOTO, STOP, PAUSE, RETURN 
computed GOTO, ASSIGN, or ASSIGNED GOTO

– EQUIVALENCE data items

These constructs impair the ability of the compiler to optimize the loop.

� Avoid non-optimizable data types such as LOGICAL*1, BYTE, INTEGER*1, 
INTEGER*2, REAL*16, COMPLEX*32, CHARACTER, and INTEGER*8 in 
32-bit mode.

These data types do not correspond to the native hardware types and require 
additional instructions for each operation, impacting performance.
96 POWER4 Processor Introduction and Tuning Guide 



For performance-critical do loops, avoid the following:

� Access data with large stride

Large strides reduce the effectiveness of the cache

� Do few iterations of the loop

For very small numbers of loop iterations, it may be preferable to unroll the 
loop by hand.

� Include I/O statements

I/O can introduce indeterminate delays in processing. I/O function calls will 
also prevent automatic parallelization of loops.

Examples
These are some examples of how to correct some inefficient coding practices 
that have been found in real codes:

Removal of invariant IF
Untuned Tuned
------- -----

DO I=1,N IF(D(J).LE.0.0)THEN
IF(D(J).LE.0.0)X(I)=0.0 DO I=1,N
A(I)=B(I)+C(I)*D(I) A(I)=B(I)+C(I)*D(I)
E(I)=X(I)+F*G(I) X(I)=0.0

ENDDO E(I)=F*G(I)
ENDDO

ELSE
DO I=1,N

A(I)=B(I)+C(I)*D(I)
E(I)=X(I)+F*G(I)

ENDDO
ENDIF

The compiler will recognize that the IF test is invariant within the loop but will not 
generate two versions of the loop as in the tuned example.
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Boundary condition IF testing
A frequent requirement is to perform a different calculation for the first and/or last 
iteration of a loop. If the loop is performance-critical, then it is important to treat 
these special cases separately and remove the IF code from the main loop:

Untuned Tuned
------- -----

DO I=1,N A(1)=B(1)+C(1)*D(1)
IF(I.EQ.1)THEN X(1)=0.0

X(I)=0.0 E(1)=F*G(1)
ELSEIF(I.EQ.N)THEN DO I=2,N-1

X(I)=1.0 A(I)=B(I)+C(I)*D(I)
ENDIF E(I)=X(I)+F*G(I)
A(I)=B(I)+C(I)*D(I) ENDDO
E(I)=X(I)+F*G(I) X(N)=1.0

ENDDO A(N)=B(N)+C(N)*D(N)
E(N)=1.0+F*G(N)

Repeated intrinsic function calculation
In this example, the untuned code calls SIN() N2 times, whereas in the tuned 
code, it is called N times and saved in a separate array. In the inner loop, the call 
is replaced by a significantly cheaper load.

Untuned Tuned
------- -----

DO I=1,N DIMENSION SINX(N)
DO J=1,N .

A(J,I)=B(J,I)*SIN(X(J)) DO J=1,N
ENDDO SINX(J)=SIN(X(J))

ENDDO ENDDO
DO I=1,N

DO J=1,N
A(J,I)=B(J,I)*SINX(J)

ENDDO
ENDDO
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Replacing divides by reciprocal multiply
This optimization can sometimes be done automatically by the compiler by 
specifying at least -O3 optimization level.

Since divides are costly, any loop that divides by the same value more than once 
can be easily optimized by taking the reciprocal of the value and then multiplying 
by the reciprocal, as in this example:

Untuned Tuned
------- -----

DO I=1,N DO I=1,N
A(I)=B(I)/C(I) OC=1.0/C(I)
P(I)=Q(I)/C(I) A(I)=B(I)*OC

ENDDO P(I)=Q(I)*OC
ENDDO

In practice, any improvement will depend on the ratio of divides to loads and 
stores. For trivial loops, there is no benefit for reals but there is a benefit for 
integers.

The following example shows a similar method that has been used when there 
are two (or more) different divisors:

Untuned Tuned
------- -----

DO I=1,N DO I=1,N
A(I)=B(I)/C(I) OCD=1.0/( C(I)*D(I) )
P(I)=Q(I)/D(I) A(I)=B(I)*D(I)*OCD

ENDDO P(I)=Q(I)*C(I)*OCD
ENDDO

Here, two divides have been replaced by one divide and five multiplies. In the 
untuned case, the compiler can take advantage of the multiple FPU pipelines, 
whereas in the tuned case, the code is dependent on a single floating-point 
divide.
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Array dimensions that are high powers of two
The following discussion is an extension of what was described in “Set 
associativity” on page 29.

The following code elements illustrate a problem that can arise with array 
dimensions:

integer nx,nz
parameter (nx=2048,nz=2048)
real    p(2,nx,nz)

...

...
do 25 ix=2,nx-1
              do 20 iz=2,nz-1

p(it1,ix,iz)=  -p(it1,ix,  iz)
     &                        +s*p(it2,ix-1,iz)
     &                        +s*p(it2,ix+1,iz)
     &                        +s*p(it2,ix,  iz-1)
     &                        +s*p(it2,ix,  iz+1)
20            continue
25         continue

The second dimension of p multiplied by the first dimension (in this case two) is 
precisely one half of the size of the L1 cache. Array elements p(it2,ix-1,iz) and 
p(it2,ix+1,iz) will (normally) be found in the same cache line as p(it2,ix,iz). 
However, accessing p(it2,ix,iz-1) and p(it2,ix,iz+1) will displace this cache line 
because each of these elements map to the same congruence class. In this 
example, there are five loads to the same congruence class but only two cache 
lines available, because L1 is two-way associative. 

A simple solution is to increase the dimension of the array, as in

integer nx,nz
parameter (nx=2048,nz=2048)
real    p(2,2080,nz)

Note that we are simply changing the dimension of the array, not the number of 
elements accessed. In this example, the application performance increased by a 
factor of two.

You can also get multiple loads to the same congruence class in loops that 
access a large number of arrays because there are only 128 classes. In this 
case, it is possible to improve performance by splitting the loop into multiple 
loops and relocating array accesses into these separate loops.
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5.2  Using pre-tuned code
Do not spend time duplicating tuning work that has already been done. If your 
program performs standard functions, such as matrix multiply, equation solving, 
other BLAS functions, FFTs, convolution, and so on, then modify your code to call 
the equivalent ESSL function. ESSL is described in 6.1, “The ESSL and Parallel 
ESSL libraries” on page 114, and contains probably the most highly tuned code 
available for RS/6000 and pSeries numerically intensive functions. Other 
commercially and publicly available libraries, such as NAG, IMSL, LAPACK, and 
so on, have also been tuned for cache-based superscalar architectures.

5.3  The performance monitor
The POWER3 and POWER4 processor designs (as well as RS64) include 
hardware performance monitoring facilities. These facilities provide access to 
counters that record highly detailed information about processor behavior and 
instruction execution. At the lowest level, the interface consists of 
special-purpose registers that control the state of counters and multiplexors 
within the processor. These registers are only accessible at the operating system 
level; therefore a programming interface is provided that accesses these 
registers using a kernel extension.

The hardware provides eight counters each of which can count the number of 
occurrences of one event. Events are things that happen inside the processor 
such as the completion of an instruction or a load from a cache line. Events are 
platform specific, therefore, certain events may exist on one processor type but 
not another. 

The programming interface provides a set of C routines to specify which events 
should be counted, whether they should be counted for the kernel, the user, or at 
the process level. Counting can be turned on or off within a program, thereby 
providing a very accurate mechanism for determining processor usage in specific 
parts of an application.

The API and documentation are provided on the AIX 5L installation media.

There is also a command, pmcount, which will execute a command or script. You 
can specify countable events as options to pmcount. Using another set of options, 
pmcount will display event numbers and their definitions for the current hardware 
platform.
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The POWER3 and RS64 implementations allow the counting of events in any 
counter for which the event is defined (although not all combinations may be 
meaningful in the sense that the set of multiplexors used to accumulate into a 
specified counter may not produce a meaningful result).

Event counting has been refined to provide a number of groups of events for 
each processor type. The definition of a group is simply a set of eight events and 
the particular counters on which they are counted. Combinations of events in a 
group are meaningful.

A group may be specified as an option to pmcount in place of a set of events.

The increased level of complexity of the POWER4 design means that it is more 
difficult to guarantee meaningful results from counting events. Therefore, only 
counting by groups is supported.

The following example illustrates some of the techniques that may be useful in 
programming the API: 

#include <stdio.h>
#include <sys/time.h>
#include <malloc.h>
#include <stdlib.h>
#include “pmapi.h”

#define STRIDE_MAX 4096
#define NUM_LOOPS 100

void timevalsub(struct timeval *, struct timeval *);
void timevaladd(struct timeval *, struct timeval *);
void invalidate_tlb();

main(int argc, char **argv)
{

int i,j, testcount, /* various loop variables */
rc, /* return code */
stride, group_no;/* parameters */

char *progname;
float x,

array[512][513];

/* timestamps for loop start, end */
struct timeval loop_start, loop_end, total;

/* process monitor data structures */
pm_info_t myinfo;
pm_groups_info_tmygroupinfo;
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pm_prog_t myprog;
pm_data_t mydata;

stride=1;
total.tv_sec=0; total.tv_usec=0;

/* make sure all pages in array exist to minimize later timing issues */
for (i=0;i<512;i++) {

for (j=0;j<513;j++) {
array[i][j]=0.0;

}
}

progname = *argv;

if (argc == 3 ) {
argv++;
group_no=atoi(*argv);
argv++;
stride=atoi(*argv);

} else {
printf(“usage: %s group stride\n”,progname);
exit(1);

}

/* initialize API. Allow all possible events. */
if ((rc = pm_init(PM_VERIFIED|PM_UNVERIFIED|PM_CAVEAT, 

&myinfo,&mygroupinfo)) > 0) {
                pm_error(“pm_init”, rc);
                exit(-1);

}

/* set up counting modes for call to pm_set-program_mythread() */

myprog.mode.w = 0;
/* count in user mode, not kernel mode */
myprog.mode.b.user = 1;
myprog.mode.b.kernel = 0;
/* defer starting counting until we call pm_start_mythread */
myprog.mode.b.count = 0;

/* set is_group to say we’re counting groups rather than events */
myprog.mode.b.is_group = 1;
/* since we’re counting groups, put the group number into events[0].

The API won’t look at other events[] structures. */
myprog.events[0]=group_no;

if ((rc=pm_set_program_mythread(&myprog)) != 0 ) { 
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pm_error(“Calling pm_set_program_mythread”,rc);
exit(1);

}

testcount=NUM_LOOPS;

while (testcount-- > 0 ) {
invalidate_tlb();
gettimeofday(&loop_start,NULL);
/* Start counting. We don’t want to include the overhead of the 
 invalidate_tlb() and gettimeofday() calls so we start and stop
 counting accordingly */
if ((rc=pm_start_mythread()) != 0 ) {

pm_error(“Calling pm_start_mythread”,rc);
exit(1);

}
for (i=0;i<512;i++) {

for (j=0;j<512;j+=stride) {
array[i][j]=array[i][j] * 1.5; 

}
}

/* Stop counting but don’t reset the counters. Therefore, counting 
 will simply continue on the next call to pm_start_mythread() */

if ((rc=pm_stop_mythread()) != 0 ) {
pm_error(“Calling pm_stop_mythread”,rc);
exit(1);

}
gettimeofday(&loop_end,NULL);
timevalsub(&loop_end,&loop_start);
timevaladd(&total,&loop_end);

}

/* retrieve counter data */
if ((rc=pm_get_data_mythread(&mydata)) != 0 ) {

pm_error(“pm_get_data_mythread”,rc);
exit(1);

}

x=(total.tv_sec*1000000)+total.tv_usec;
printf(“Time (usecs) = %8.2f\n”,x/NUM_LOOPS);
for (i=0;i<8;i++)

printf(“Counter %d = %-8lld\n”,
i+1,mydata.accu[i]/NUM_LOOPS);

return(0);
}
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Running this program produces the output below:

bu30b$ ./pm_example 5 8
Inside pm_set_program_mythread: prog->events[0] is 5.
  prog->mode.b.is_group is 1.
Time (usecs) =   375.19
Counter 1 = 249     
Counter 2 = 215     
Counter 3 = 0       
Counter 4 = 7966    
Counter 5 = 0       
Counter 6 = 0       
Counter 7 = 0       
Counter 8 = 0       
bu30b$ 

The first two lines of output are generated by the pm_set_program_mythread() 
call, apparently as diagnostic information. The program prints the elapsed time 
and counter values. We previously used pmcount to identify the groups and 
counters. Group 5 counts information on sources of data. The definitions for the 
individual counters used in this example are as follows:

Counter 1 The number of times data was loaded from L3

Counter 2 The number of times data was loaded from memory

Counter 3 The number of times data was loaded from L3.5

Counter 4 The number of times data was loaded from L2

Counter 5 The number of times data was loaded from L2 partition 1 in shared 
mode

Counter 6 The number of times data was loaded from L2 partition 2 in shared 
mode

Counter 7 The number of times data was loaded from L2 partition 1

Counter 8 The number of times data was loaded from L2 partition 2

Thus, in this example, we can see the relative sources of data for the calculation. 
Other groups can be used to identify the efficiency of the prefetch mechanism, 
floating-point unit and so on.

The API described above is provided in C. There is no Fortran API. However, it is 
a reasonable task to write a suitable, simplified API. 
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Subroutines to initialize the performance monitor, start and stop counting, and 
print results are required. Here is some pseudo-code that implements these 
subroutines.

#include <sys/types.h>
#include “pmapi.h”
int pminit(int group) 
{

pm_info_t pm_myinfo;
pm_groups_info_t pm_mygroupinfo;
pm_prog_t myprog;

pm_init(PM_VERIFIED|PM_UNVERIFIED,&pm_myinfo,&pm_mygroupinfo);
myprog.mode.b.user=1; myprog.mode.b.kernel=0; myprog.mode.b.count=0;

myprog.mode.b.is_group=1; myprog.events[0]=group;
pm_set_program_mythread(&myprog);
return(0);

}

int pmstart()
{

pm_start_mythread();
return (0);

}

int pmstop()
{

pm_stop_mythread();
return(0);

}

int pmprint()
{

int i;
pm_data_t my_data;
pm_get_data_mythread(&my_data);
for (i=0;i<8;i++) 
{

printf(“Counter %d = %-8lld\n”,i+1,my_data.accu[i]);
}
return(0);

}

You will need to compile these functions and save the object file for later use. The 
-c option tells the compiler that the source file is not a complete program and it 
should stop after the compilation stage and not attempt to link. For example:

xlc -O3 -c -o pm_subroutines.o mysourcefilename.c
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Here is how you might use these subroutines to monitor a Fortran program. Note 
that we have passed the group to be monitored by value explicitly because 
Fortran, by default, passes parameters by reference:

program pm_test

       integer pminit,pmstart,pmstop,pmprint,i,j
       integer result,group
       real*8 x,a(512,512)

       group=5
       result = pminit(%VAL(group))

       result = pmstart()

       do i=1,512
         do j=1,512
           a(i,j) = a(i,j) *1.5
         end do
       end do
       result = pmstop()
       result = pmprint()

       end program

To compile this program, we need to include the C subroutines and the 
performance monitor libraries:

xlf -O3 -o pm_test pm_subroutines.o -lpmapi -L/usr/pmapi/lib pm_test.f

Note that the performance monitor has not been tested in LPAR environments.

5.4  Tuning for I/O
If I/O is a significant part of the program, it may well dominate the overall run time 
and render CPU tuning unproductive. Some guidelines for improving I/O 
efficiency in Fortran and C are discussed in the following sections. However, the 
best advice is simply to eliminate or minimize I/O as much as possible. If I/O is 
your performance bottleneck, then using the best hardware and software options 
(high-speed storage arrays, striping over multiple devices and adaptors, and 
asynchronous I/O, for example) may be the best tuning options. A detailed 
discussion of these subjects is outside the scope of this publication. 
Large-memory SMP systems are capable of generating large amounts of I/O, but 
different I/O subsystems have different performance characteristics, so it is 
difficult to make specific recommendations.
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Asynchronous I/O
Programs normally perform I/O synchronously. That is, execution continues after 
the operating system has completed the I/O. AIX also supports asynchronous 
I/O. In this case, a program executes an I/O call that returns immediately. The 
program can then perform other useful work. The operating system will perform 
the I/O and inform the program when it’s complete. There are a variety of 
techniques for the program to detect that the I/O has finished.

Taking advantage of asynchronous I/O can result in reduced run time because 
you can overlap computation and I/O. The degree of improvement will depend on 
the amount of I/O the program performs.

Implementing asynchronous I/O will require program changes and the degree of 
difficulty will vary from program to program.

In Fortran (introduced in XL Fortran Version 5), a program can open a file with 
the ASYNC qualifier. Read and writes will be performed asynchronously. The 
program needs to be changed to issue a wait for each asynchronous read or 
write. a description of asynchronous I/O, including a discussion of error handling, 
can be found in the XL Fortran Language documentation.

In C, asynchronous I/O is only supported for unbuffered I/O. The program 
changes required for asynchronous I/O are typically more complex than those 
required in Fortran. Refer to “Asynchronous I/O Overview”, in the AIX Version 4.3 
Kernel Extensions and Device Support Programming Concepts documentation.

Direct I/O
Direct I/O is a form of synchronous I/O. By default, the operating system 
transfers data between the application program and a file using intermediate 
buffers. For example, for file system files, the operating system caches file data 
and this typically improves I/O performance. Using direct I/O data is transferred 
between the device and the application’s data buffers without intermediate 
buffering. This can sometimes lead to degraded performance, typically with file 
system files. 

Paging I/O
Paging is a special case of I/O. You can measure paging rates using vmstat. This 
command displays, among other statistics, the paging rates for a specified time 
interval. It displays these statistics for the whole system, which must be taken 
into account when evaluating the effect of a particular application. A certain 
amount of paging during startup or when the program changes from one phase 
to another is to be expected. However, any measurable paging rate over a 
sustained period during program execution is an indication that you are 
over-committing memory or are on the edge of doing so. This is likely to cause 
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serious performance problems. The only solution is to reduce the level of 
memory over-commitment. Either tune the program to use less memory, or run 
on a computer with more memory (or fewer users). It should be noted that from 
AIX Version 4.3.2 on, the paging space allocation algorithm only allocates a page 
of paging space when it actually needs to write to that page. This means that it is 
common for the amount of paging space configured on a large memory system 
to be considerably less than the size of memory. In this situation any significant 
amount of paging can have more serious effects than poor performance of an 
application, as the system can quickly reach a state where virtual memory is 
exhausted and thrashing ensues.

The topas command is also a useful real time monitor of system I/O activity.

C unbuffered and buffered I/O
C programs can make use of two techniques for I/O. These are buffered I/O, also 
referred to as streams, and unbuffered I/O. Unbuffered I/O is implemented by 
calls to operating system functions and offers the greatest opportunity for 
performance at a cost in coding complexity. Buffered or stream I/O is 
implemented by standard library functions that provide a higher level interface. 
Refer to the “Input and Output Handling Programmer’s Overview” in AIX Version 
4.3 General Programming Concepts: Writing and Debugging Programs.

Fortran I/O
Some guidelines for efficient I/O in Fortran follow:

� Reduce the number of calls to the I/O subsystem.

For example, the following three ways of writing the whole of a 2-D array to a 
sequential file differ very considerably in performance. As well as performing 
very slowly, Case 3 will create a file almost twice as large as Case 1 (if A is 
REAL*8) because of the extra record length indicators.

DIMENSION A(N,N)
.
.

Case 1. Best. 1 record of N*N values.
WRITE(1)A

Case 2. N records, each of N values.
DO I=1,N

WRITE(1)(A(J,I),J=1,N)
ENDDO

Case 3. Worst. N*N records, each of one value.
DO I=1,N

DO J=1,N
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WRITE(1)A(J,I)
ENDDO

ENDDO

� Use long record lengths when reading or writing files in a sequential fashion.

Use at least 100 KB if possible, preferably 2 MB or more. This allows the I/O 
to access the underlying devices more effectively.

� Prefer Fortran unformatted I/O to formatted.

This reduces binary to decimal conversion overhead.

� Prefer Fortran direct files to sequential.

This avoids Fortran record length and overflow checking. A Fortran direct file 
in AIX is a simple sequential series of data bytes. A Fortran sequential file has 
record length indicators at both ends of each record.

� Use asynchronous I/O to overlap computation with I/O activity.

� If you write a large temporary file sequentially and need to read through it 
again at a later stage in processing, make it a direct access file and then try to 
read the end records of the file first. Ideally, read it sequentially backwards. 
This is because AIX will automatically use memory to buffer the file. Assuming 
the file is larger than memory, after the write is completed, memory is likely to 
contain a large number of buffers corresponding to the last part of the file. If 
you then read these records, AIX will supply them to the program from 
memory without physically reading the disk. If you read the file forwards, the 
incoming records from the front of the file will flush out the in-memory buffers 
before you reach them.

5.5  Locating hot spots (profiling)
Profiling tells you how the CPU time used by a program during execution is 
distributed over the code. It identifies the active subroutines and loops so that 
tuning effort can be applied most effectively.

It is important to understand that a profile relates just to the particular run of the 
program for which the profile was obtained. The same program run with different 
data may produce a different profile. Some numerically intensive programs 
produce very consistent profiles with widely varying sets of input data. Others 
produce quite different profiles when the data is changed.

From the point of view of the person tuning the code, the ideal situation is a 
consistent profile with very pronounced concentrations of time spent in a few 
routines. Tuning effort can then be concentrated on those routines.
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The AIX tools available for profiling the programs include:

� The AIX prof and gprof commands

� The AIX tprof command

The prof and gprof commands provide profiling at the procedure (subroutine 
and function) level. The tprof command uses the AIX trace facility to interrupt 
your program at each tick (10 milliseconds) of the AIX CPU clock and construct a 
trace table that contains the hardware instruction address register. At the end of 
your program execution, tprof creates a report (using the trace table) showing 
the number of ticks that relate to each line of your source code.

To use prof and gprof, do the following:

1. Compile your program with the -p or -pg option in addition to the normal 
compiler options

2. Run the program (this produces the gmon.out file)

3. Run prof or gprof by entering:

prof > filename

or 

gprof > filename

The standard output, filename, of prof will contain the following information:

� The percentage of the program’s CPU time used by the procedure.

� The time in seconds required for all references to the procedure.

� The cumulative total of seconds required for all procedures in the list.

� The number of times the procedure was called and the time required to 
perform each call.

The output of gprof contains all the information provided by prof, and in addition 
the timing information of the calling tree for the procedures in the program.
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To use tprof on a program myprog.f, do the following:

1. Compile your program with the -g option

2. Run tprof on the program: 

tprof -p myprog -x “myprog params”

This procedure creates two output files, namely __myprog.all and __t.myprog.f. 
The first file shows all the processes involved in running your program and 
provides a count of the timer ticks associated with each process. It also lists the 
percentage of ticks that are associated with the complete program. The second 
file is only produced if you compile your program with the -g option. It is an 
annotated version of your source file, that indicates the CPU ticks associated 
with each line of the source code being executed.

For more details on how to use prof, gprof, and tprof, see Optimization and 
Tuning Guide for Fortran, C, and C++, SC09-1705.

By far the most user-friendly and powerful tool, providing graphically assisted 
profiling down to the Fortran or assembler statement level, is xprofiler. 
xprofiler is a supported IBM tool distributed as part of the IBM Parallel 
Environment for AIX licensed program product (5765-D93). The specific fileset 
component that supplies this tool is ppe.xprofiler. If you are running on a 
workstation where PE is not installed, your profiling option is to use prof, gprof, 
or tprof.

To use xprofiler, compile and link as for gprof with -g -pg options together with 
-O3 or whatever other optimization you are using. It is important to use the same 
optimization options as you will use for production, since changing the 
optimization is highly likely to also change the profile.

Then simply run the executable against the chosen test data. This will produce 
the standard gmon.out file containing the profiling data. Then run xprofiler. 
Graphics will appear showing the subroutine tree of the program, with each 
subroutine represented by a rectangle. The area of each rectangle is roughly 
proportional to the CPU time spent in that routine, giving an immediate visual 
indication of hot-spot locations. Clicking on a rectangle will produce a set of 
options, one of which creates a source code listing with each statement 
annotated with the amount of CPU time (in units of 1/100 of a second) used. This 
enables the active loops to be easily identified.
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Chapter 6. Performance libraries

In this chapter we discuss performance-enhancing techniques that take 
advantage of highly tuned variants of commonly needed operations.

Scientific and technical computational problems often contain common 
mathematical constructs, such as matrix-vector multiply or matrix-matrix multiply, 
which use a large portion of an application’s computational time. Many of these 
common constructs have been extensively researched and tuned for efficient 
computation. Basic linear algebra subprograms (BLAS) that compute many of 
these common constructs are available from various sources. For example, you 
can download the source or precompiled BLAS from:

http://www.netlib.org/blas

Subprograms for solving systems of linear equations, eigenvalue problems, 
singular value problems, and so forth can be found in the public domain LAPACK 
libraries:

http://www.netlib.org/lapack

LAPACK uses BLAS calls whenever possible to simplify its use and to be able to 
take advantage of any available optimized BLAS libraries.
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The public domain BLAS or LAPACK are not highly tuned for a particular 
architecture and locally compiled versions seldom approach peak GFLOPS 
rates. An alternative is to download the package from the automatically tuned 
linear algebra software (ATLAS) site:

http://math-atlas.sourceforge.net

With ATLAS, you must first generate a tuned library for a system by running an 
extensive testing suite on a quiet system. The adjustable parameters in the tuned 
library are determined by extensively testing processor speed, cache sizes and 
speed, and memory size and speed. Some impressive performance results can 
be obtained in this manner. However, the resulting library may not be well tuned if 
it is subsequently used on a somewhat different machine configuration.

Another alternative is to use the IBM Engineering and Scientific Subroutine 
Library (ESSL) and the parallel version, Parallel ESSL. These libraries are highly 
tuned for IBM hardware, having been tested on many different PowerPC 
processor configurations. ESSL and Parallel ESSL are discussed in The ESSL 
and Parallel ESSL libraries section that follows.

A different type of specialized performance tuning is applying faster, but slightly 
less accurate versions of Fortran intrinsic functions such as SIN, LOG, and EXP. 
IBM has produced tuned versions of functions like these, which can be found in 
the MASS library. MASS can be downloaded from:

http://www.rs6000.ibm.com/resource/technology/MASS

MASS is discussed in detail in Section 6.2, “The MASS libraries” on page 117.

6.1  The ESSL and Parallel ESSL libraries
The Engineering and Scientific Subroutine Library (ESSL) family of products is a 
state-of-the-art collection of mathematical subroutines. Running on IBM pSeries 
servers and IBM RS/6000 workstations, servers and SP systems, the ESSL 
family provides a wide range of high-performance mathematical functions for a 
variety of scientific and engineering applications.

The ESSL family includes: 

� ESSL for AIX, which contains over 400 high-performance mathematical 
subroutines tuned for IBM UNIX hardware. 

� Parallel ESSL for AIX, which contains over 100 high-performance 
mathematical subroutines specifically designed to exploit the full power of 
RS/6000 SP hardware with scalability of up to 512 nodes. 
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Complete information on the ESSL and Parallel ESSL libraries, including 
information on obtaining them, can be found at:

http://www-1.ibm.com/servers/eserver/pseries/software/sp/essl.html

6.1.1  Capabilities of ESSL and Parallel ESSL
ESSL provides a variety of mathematical functions, such as: 

� Basic Linear Algebra Subprograms (BLAS)

� Linear Algebraic Equations 

� Eigensystem Analysis 

� Fourier Transforms 

ESSL products are compatible with public domain subroutine libraries such as 
Basic Linear Algebra Subprograms (BLAS), Scalable Linear Algebra Package 
(ScaLAPACK), and Parallel Basic Linear Algebra Subprograms (PBLAS). Thus, 
migrating applications to ESSL or Parallel ESSL is straightforward.

Both ESSL and Parallel ESSL have SMP-parallel capabilities. The term parallel 
in the Parallel ESSL product name refers specifically to the use of MPI message 
passing, usually across the SP switch. For SMP parallel use within a single 
pSeries 690 Model 681, Parallel ESSL is not required. An SMP-parallel example 
(DGEMM) for the pSeries 690 Model 681 is provided in Figure 6-1 on page 116.

6.1.2  Performance examples using ESSL
ESSL V3.3 and Parallel ESSL V2.3 are available for the IBM ^ pSeries 
690 Model 681 and contain highly optimized routines tuned for the POWER4 
processor. Significant optimizations have been done in ESSL to effectively use 
the L1 and L2 cache, maximize data reuse in the caches, and minimize memory 
bandwidth requirements. Any application that can be formulated with BLAS calls, 
especially BLAS3 calls such as SGEMM or DGEMM, will benefit greatly from the 
ESSL library.

Attention: Some performance numbers reported here used a pre-release 
version of ESSL that was the latest available at the time this document was 
written. Readers should perform their own studies to establish firm 
performance metrics.
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Single processor DGEMM
The ESSL version of DGEMM was used to perform matrix-matrix multiplies on a 
single POWER4 processor on a pSeries 690 Turbo system. The measured 
GFLOPS as a function of matrix size are shown in Figure 6-1. The best 
performance is greater than 3.6 GFLOPS and the performance is excellent for a 
wide range of matrix sizes.

Figure 6-1   ESSL DGEMM single processor GFLOPS

SMP-parallel DGEMM - optimal POWER4 GFLOPS from ESSL
Table 6-1 lists the performance of SMP parallel DGEMM on a pSeries 690 Turbo 
for square REAL*8 matrices.

Table 6-1   DGEMM throughput summary

Parallelism 2000x2000 REAL*8 10000x10000 REAL*8

32 CPU pSeries 690 Turbo

8-way 25.80 not measured

16-way 47.86 not measured

24-way 69.00 not measured

32-way 84.30 96.13
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A sustained rate of over 96 GFLOPS was measured on a 1.3 GHz pSeries 690 
Turbo for 32-way parallel DGEMM on 10000x10000 matrices, as provided in 
Table 6-1 on page 116. This is the highest performance seen for a single job on a 
single pSeries 690 Turbo during the preparation of this publication. Also see 
Section 8.4.1, “ESSL DGEMM throughput performance” on page 161 for the 
performance observed for multiple copies of a single processor DGEMM 
application.

6.2  The MASS libraries
The mathematical acceleration subsystem (MASS) library provides 
high-performance versions of a subset of Fortran intrinsic functions. These 
versions sacrifice a small amount of accuracy to allow for faster execution. 
Compared to the standard mathematical library, libm.a, the MASS library differs, 
at most, only in the last bit. Thus, MASS results are sufficiently accurate in all but 
the most stringent conditions.

There are two basic types of functions available for each operation: 

� A single instance function 

� A vector function 

The single instance function simply replaces the libm.a call with a MASS library 
call. The vector function is used to produce a vector of results given a vector 
operand. The vector MASS functions may require coding changes while the 
single instance functions do not.

6.2.1  Installing and using the MASS libraries
The MASS libraries can be downloaded from:

http://www.rs6000.ibm.com/resource/technology/MASS

This site also has extensive documentation and should be referred to for more 
detailed explanations.

The download file is a compressed tar file that can be unpacked into /usr/lpp and 
the resulting library files linked to /usr/lib, or the tar file may be unpacked into any 
other location for inclusion at link time. There are separate libraries for the single 
instance functions and the vector functions. 

The following is an example using MASS. If libmass.a and the other libraries are 
installed in /home/somebody/mass, it is used as:

xlf90 -c -O3 -qarch=pwr4 -qtune=pwr4 myprogram.f
xlf90 -o myjob -L/home/somebody/mass -lmass myprogram.o
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All references to SINE, LOG, EXP and other functions in myprogram.f will have 
been satisfied from the single instance functions in libmass.a rather than the 
normally chosen functions in libm.a.

Some of the functions available in the MASS library have now been included in 
the XL Fortran runtime environment. This means that at higher specified levels of 
compiler optimization, a Fortran intrinsic function or operation may be replaced 
with a faster version found in /usr/lib/libxlopt.a even if the MASS libraries have not 
been installed. If you wish to track exactly which version of an intrinsic has been 
used you can produce a detailed, sorted cross reference map using 
-bsxref:myxref when creating the executable.

The following is an example using the MASS library with Fortran code:

real(8) a(*)
...
do i=1,n

a(i)=1.0d0/a(i)
enddo

This code would be rather expensive using the hardware divide function and may 
be replaced using the vector MASS reciprocal approximation function vrec as:

call vrec(a,a,n)

Using the vector form, the speedup for this example is approximately 2.25 for 
n>~50. See Table 6-2 on page 119 for more information.

The executable is linked as:

xlf90 -o myjob -bsxref:myxref -L/home/somebody/mass -lmassv myprogram.o

Examination of the file myxref shows that vrec has been loaded from libmassv.a.

However, if you are using XL Fortran Version 7.1 or later, compiling and linking 
as:

xlf90 -c -O3 -qhot -qarch=pwr4 -qtune=pwr4 myprogram.f
xlf90 -o myjob -bsxref:myxref myprogram.o

you will find that a version of vrec has been loaded from libxlopt.a. Several other 
functions are recognized and may be substituted by the compiler such as exp, 
sin, cos, sqrt, and reciprocal square root.
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6.2.2  Description and performance of MASS libraries
Table 6-2 lists the functions available in the MASS libraries and an approximate 
measure of performance. The performance numbers are based on POWER3 
measurements. Similar speedups are expected on POWER4. While MASS 
functions are somewhat less accurate than the standard function, errors are 
mostly less than 1 bit.

Table 6-2   Mass library functions and performance

Function mass call speedup massv call speedupa

64-bit exponential exp 2.37 vexp 6.7

32-bit exponential exp 2.37 vsexp 9.7

64-bit natural log log 1.57 vlog 10.4

32-bit natural log log 1.57 vslog 12.3

64-bit sine or cosine sin,cos 2.25b vsin,vcos 7.2b

32-bit sine or cosine sin,cos 2.17b vssin,vscos 9.75b

64-bit sine and cosine sin,cos 2.42b vsincosc 10.0b

32-bit sine and cosine sin,cos 2.08b vssincos 13.2b

64-bit tangent tan 2.13 vtan 5.84

32-bit tangent tan 2.02 vstan 5.95

64-bit inverse tangent of complex number atan2 4.75 vatan2 16.5

32-bit inverse tangent of complex number atan2 4.70 vsatan2 16.7

Truncate to whole number dint 1.0 vdint 7.86

Convert to nearest whole number dnint 2.0 vdnint 7.06

64-bit reciprocal n/a vrec 2.6

32-bit reciprocal n/a vsrec 3.8

64-bit square root sqrt vsqrt 1.2

32-bit square root sqrt vssqrt 2.3

64-bit reciprocal square root rsqrt 1.34 vrsqrt 6.2

32-bit reciprocal square root rsqrt 1.34 vsrsqrt 13.2

Real raised to real power x**y 2.35 N/A N/A

aPer result for vector length 1000
bSpeedup for data range [-1,1]
cSee libmassv.f in installation directory for usage
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6.3  Modular I/O (MIO) library
The Modular I/O (MIO) library was developed by the Advanced Computing 
Technology Center (ACTC) of the Watson Research Center at IBM to address 
the need for an application-level method for optimizing I/O. Applications 
frequently have very little logic built into them to provide users the opportunity to 
optimize the I/O performance of the application. The absence of application level 
I/O tuning leaves the end user at the mercy of the operating system to provide 
the tuning mechanisms for I/O performance. Typically, multiple applications are 
run on a given system that have conflicting needs for high-performance I/O 
resulting, at best, in a set of tuning parameters that provide moderate 
performance for the application mix. 

The MIO library allows users to analyze the I/O of their application and then tune 
the I/O at the application level for a more optimal performance for the 
configuration of the current operating system. 

Sequential access, predominantly reads, of very large files (tens of gigabytes) is 
a common pattern of I/O, for example, in implicit finite element analysis codes. 
Applications that are characterized by this I/O pattern tend to benefit minimally 
from operating system buffer pools. Large operating system buffer pools are 
ineffective since there is very little, if any, data reuse and system buffer pools 
typically do not provide prefetching of user data. However, the MIO library can be 
used to address this issue by invoking a prefetching (pf) module that will detect 
the sequential access pattern and asynchronously preload the needed data into 
a smaller cache. The pf cache need only be large enough to contain enough 
pages to maintain sufficient read ahead. The pf module can optionally use direct 
I/O, which will avoid an extra memory copy to the system buffer pool and also 
frees the system buffers from the one-time access of the I/O traffic, allowing the 
system buffers to be used more productively. Our early experiences with the aix 
module have consistently demonstrated that the use of direct I/O with the pf 
module is highly beneficial to system throughput. 

The MIO library consists of four I/O modules that may be invoked at run time on a 
per-file basis. The modules currently available are: 

mio The interface to the user program 

pf A data prefetching module 

trace A statistics gathering module 

aix The MIO interface to the operating system 
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For each file that is opened with MIO there are a minimum of two modules 
invoked: the mio module, which converts the user MIO calls (MIO_open, 
MIO_read, MIO_write, to name a few) into the internal calling sequence of MIO, 
and the aix module, which converts the internal calling sequence of MIO into the 
appropriate system calls (open, read, write, for example). Between the mio and 
aix module invocations the user may specify the invocation of the other modules, 
pf and trace.

For applications that use the POSIX standard open, read, write, lseek, and close 
I/O calls the application programmer should only need to introduce #define's to 
direct the I/O calls to use the MIO library. MIO is controlled through four 
environment variables. Among other things, these variables determine which 
modules are to be invoked for a given file when MIO_open is called. 

As an example, the output of a MIO trace invocation is shown for a simple 
program. It opens a file, truncating it back to zero bytes in length, and then writes 
100 records of 16 KB. The file is then read forwards with 100 reads of 16 KB, and 
then read backwards with 100 reads of 16 KB.

MIO statistics file : Wed Feb  9 16:03:17 2000
hostname=v01n01.vendor.pok.ibm.com
program=a.out
MIO library built Feb  1 2000 12:53:59  : with aio calls
MIO_STATS   =example.mio
MIO_DEBUG   =OPEN
MIO_FILES   = *.dat [ trace/stats ] 
MIO_DEFAULTS= trace/kbytes 

Opening file file.dat
   modules=trace/stats
==========================================================================

Trace close : mio <-> aix : file.dat : (4800/1.80)=2659.71 kbytes/s
     demand rate=2611.47 kbytes/s=4800/(1.85-0.02))
     current size=1600   max_size=1600
  mode =0640  sector size=4096
  oflags =0x302=RDWR  CREAT  TRUNC  
  open              1     0.03
  write           100     0.03       1600       1600      16384      16384
  read            200     1.65       3200       3200      16384      16384
  seek            101     0.00
  fcntl             1     0.00
  close             1     0.12
  size            100
==========================================================================
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For more information about MIO, refer to the following Web site:

http://www.research.ibm.com/actc/Opt_Lib/mio/mio_doc.htm 

The MIO library was shipped first with the AIX Version 4.3 and 5L Bonus Pack in 
July 2001. More information on this is found at the following Web site:

http://www.ibm.com/servers/aix/products/bonuspack

6.4  Watson Sparse Matrix Package (WSMP)
The Watson Sparse Matrix Package (WSMP) is a high-performance, robust, and 
easy-to-use software package for solving large sparse systems of linear 
equations using a direct method on pSeries servers, RS/6000 workstations, and 
the RS/6000 SP. It can be used as a serial package, in a shared-memory 
multiprocessor environment, or as a scalable parallel solver in a 
message-passing environment, where each node can either be a uniprocessor 
or a shared-memory multiprocessor. 

WSMP is comprised of two parts, both of which are bundled in the same library. 
Part I of WSMP replaces the older software called WSSMP for the solution of 
symmetric sparse systems of linear equations. Part II of the WSMP library deals 
with the solution of general sparse systems of linear equations. Currently, WSMP 
does not support the solution of general/unsymmetrical sparse systems in a 
message-passing parallel environment. WSMP does not have out-of-core 
capabilities. The problems must fit in the main memory for reasonable 
performance.

Technical papers related to the software, some example programs, and 
information about the latest updates can be obtained from the following Web site:

http://www.cs.umn.edu/~agupta/wsmp.html 

IBM Research intends to provide a version of WSMP compiled for POWER4 
when the hardware and compiler become available.

For solving symmetric systems, WSMP uses a modified version of the 
multifrontal algorithm for sparse Cholesky factorization and a highly scalable 
parallel sparse Cholesky factorization algorithm. The package also uses scalable 
parallel sparse triangular solvers and an improved and parallelized version of the 
previously released package WGPP for computing fill-reducing orderings. 
Sparse symmetric factorization in WSMP has been clocked at up to 3.6 GFLOPS 
on an RS/6000 workstation with four 375 MHz POWER3 CPUs and 90 GFLOPS 
on a 128-node SP with two-way SMP 200 MHz POWER3 nodes. 
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For solving general sparse systems, WSMP uses a modified version of the 
multifrontal algorithm for matrices with an unsymmetrical pattern of nonzeros. 
WSMP supports threshold partial pivoting for general matrices with a 
user-defined threshold. WSMP automatically exploits SMP parallelism on an 
RS/6000 workstation or SP node with multiple CPUs and this parallelism is 
transparent to the user. On an RS/6000 with four 375 MHz POWER3 CPUs, 
WSMP has been clocked at up to 2.4 GFLOPS for factoring general sparse 
matrices with partial pivoting. 
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Chapter 7. Parallel programming 
techniques and performance

There are several methods available to the application programmer to achieve 
parallel execution of a program and more rapid job completion compared to 
running on a single processor. These methods include:

� Directive-based shared memory parallelization (SMP)

� Compiler automatically generated shared memory parallelization

� Message passing based shared or distributed memory parallelization

� POSIX threads (pthreads) parallelization

� Low-level UNIX parallelization using fork() and exec()

Each of these techniques has been used to produce efficient parallel codes. The 
best technique to use is highly dependent on the application, the programmer’s 
skills and preferences, portability requirements for the application, and the target 
machine’s characteristics.

In this chapter we discuss shared memory parallelization, both directive-based 
and automatic, message passing based parallelization using the MPI standard, 
and pthread parallelization.

7
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7.1  Shared memory parallelization
Shared memory parallelization describes parallelization that can take place in a 
computer in which all memory used by a program is locally addressable from 
within the program. For current IBM computers and the current AIX 5L operating 
system, this means running on a single node. In the future, non-uniform memory 
access (NUMA) may be available in which memory on separate, remote nodes 
may be addressable locally from within a single program. 

A detailed description of shared memory parallelization, or SMP programming, 
can be found in Scientific Applications in RS/6000 SP Environments, 
SG24-5611. A brief overview is given in this section. All discussions refer to the 
OpenMP standard implementation of SMP parallelism.

7.1.1  SMP runtime behavior
Shared memory parallelization is implemented by creating user threads that are 
scheduled to run on kernel threads by the operating system. This parallel job flow 
is illustrated in Figure 7-1 on page 127. 

A single thread is created when a program starts. Additional threads are created 
when the first parallel region is entered. After all parallel work for a thread is 
completed, it spin waits for the next parallel section for a period, but it consumes 
processor time while waiting. After the spin wait time has expired and if a yield 
wait time has been specified, the thread can yield its place on the kernel thread 
to another runable thread. If the yield wait time has expired and no new parallel 
region has been entered, the thread goes to sleep. Reactivating a thread from a 
sleep state is more costly than if the thread is in a yielded state. 
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Figure 7-1   Shared memory parallel job flow

There are some important environment variables that can affect parallel 
performance at run time. Different settings would be appropriate on a busy 
machine compared to a quiet machine. Some of the more important environment 
variables are:

� AIXTHREAD_SCOPE = S or P (default = P)

The thread contention scope can be system (S) or process (P). When system 
contention scope is used, each user thread is directly mapped to one kernel 
thread. This is appropriate for typical scientific and technical applications in 
which there is a one-to-one ratio between threads wanted and processors 
wanted. Process contention scope is best when there are many more threads 
than processors. When process contention scope is used, user threads share 
a kernel thread with other (process contention scope) user threads in the 
process.
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� OMP_DYNAMIC = FALSE or TRUE (default = TRUE)

The OMP_DYNAMIC environment variable disables or enables dynamic 
adjustment of the number of threads available for the execution of parallel 
regions. If this variable is TRUE, the runtime environment can adjust the 
number of threads it uses for executing parallel regions so it makes the most 
efficient use of system resources. The dynamic checking can add a small 
amount of overhead, so for benchmarking, scaling tests, or if an application 
depends on a specific number of threads, this variable should be set to 
FALSE.

� SPINLOOPTIME=n (default = 40)

If a user thread cannot acquire a lock (which is necessary to begin a parallel 
loop, for example), it will attempt to spin for up to SPINLOOPTIME times. 
Once the spin count has been exhausted, the thread will go to sleep waiting 
for a lock to become available unless the YIELDLOOPTIME is set to a number 
greater than zero. You want to spin rather than sleep if you are waiting for a 
previous parallel loop to complete, provided there is not too much sequential 
work between the loops. If YIELDLOOPTIME is set, upon exhausting the spin 
count, the thread issues the yield() system call, gives up the processor, but 
stays in a runable state rather than going to sleep. On a quiet system, yielding 
is preferable to sleeping since reactivating the thread after sleeping costs 
more time. For benchmarking or scaling tests, SPINLOOPTIME can be very 
large, for example 100000 or more. On a busy system, it should not be too 
large or much processor time that could otherwise be shared with other jobs 
is consumed spinning. The best value to use depends on various system 
characteristics such as processor frequency, and several values should be 
tested to achieve optimal tuning.

� YIELDLOOPTIME = n (default = 0)

YIELDLOOPTIME controls the number of times that the system yields the 
processor when trying to acquire a busy spin lock before going to sleep. The 
processor is yielded to another kernel thread, assuming there is another 
runable one with sufficient priority. YIELDLOOPTIME is only used if 
SPINLOOPTIME is also set.

� MALLOCMULTIHEAP (default = not set)

Multiple heaps are useful so that a threaded application can have more than 
one thread issuing memory allocation subroutine calls. With a single heap, all 
threads trying to do a malloc(), free(), or realloc() call would be serialized (that 
is, only one thread can do malloc/free/realloc at a time) which could have a 
serious impact on multi-processor machines. With multiple heaps, each 
thread gets its own heap, up to 32 separate heaps.
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� SMP stack size (default = 4 MB/thread)

For 32-bit OpenMP applications, the default limit on stack size per thread is 
rather small and if it is exceeded it will result in a runtime error. Should this 
occur, the stack size may be increased using the XLSMPOPTS environment 
variable with:

export XLSMPOPTS=stack=n

where n is the stack size in bytes. However, the total stack size for all threads 
cannot exceed 256 MB (one memory segment). This limitation of one 
segment does not apply to 64-bit applications.

7.1.2  Shared memory parallel examples
Shared memory parallelization (SMP) programming can be done at a very high 
level such as:

SUBROUTINE EXAMPLE(M,N,A,B)
REAL(8) A(N),B(N)

!$OMP PARALLEL DO PRIVATE(J), DEFAULT(SHARED)
DO J=1,M
CALL DOWORK(J,N,A,B)
ENDDO
...

The subroutine DOWORK and all subsequent subroutine calls must be carefully 
checked to ensure they are, in fact, thread safe. This high level of parallelization 
is usually the most efficient, and is recommended when possible.

It is also common to use shared memory parallelization at a low level, although 
scaling efficiencies are often quite limited when little work is done in a parallel 
region. The ease of implementation is an attractive feature of low-level 
parallelization. The discussion and examples that follow demonstrate parallelism 
at the loop level.

We have tested three loops from the solver of a computational fluid dynamics 
code and use them as examples. The loops are:

LOOP A

      DO  J=1,NX
      Q(J)=E(J)+F2*Q(J)
      ENDDO

LOOP B

      DO J=1,NX
        I1=IL(1,J)
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        I2=IL(2,J)
        I3=IL(3,J)
        I4=IL(4,J)
        I5=IL(5,J)
        I6=IL(6,J)
        E(J)=Y3(J)*Q(J)-(
     *              Q2(1,J)*Q(I1)+Q2(2,J)*Q(I2)+
     *              Q2(3,J)*Q(I3)+Q2(4,J)*Q(I4)+
     *              Q2(5,J)*Q(I5)+Q2(6,J)*Q(I6))
        F3=F3+Q(J)*E(J)
      ENDDO

LOOP C

      DO J=1,NX
      Z0(J)=Z0(J)+X2*Q(J)
      B1(J)=B1(J)-X2*E(J)
      T1=B1(J)
      E(J)=T1*DBLE(C1(J))
      F1=F1+T1*E(J)
      F4=F4+ABS(T1)
      ENDDO

The declarations are:

      REAL(8) Z0(NX),B1(NX),E(NX),Q(0:NX)
      REAL(4) Y3(NX),Q2(6,NX),C1(NX)
      INTEGER(4) IL(6,NX)

In this example, NX is typically 100000 to 10000000.

Loop A is a simple multiply/add loop. Loop B is a complicated loop with 20 
memory loads, a single store, and a reduction sum. Six of the memory 
references, such as Q(I1) are indirect address references. Loop C is a 
moderately complicated loop with five memory loads, three stores, and two 
reduction sums.

7.1.3  Automatic shared memory parallelization
Automatic shared memory parallelization is successful when the compiler can 
recognize parallel code constructs and safely produce efficient parallel code. The 
IBM XL Fortran Version 7.1 compiler has state-of-the-art capabilities for 
automatically parallelizing Fortran programs. A major concern with automatic 
parallelization is the potential that a loop with little work or few iterations is 
parallelized and runs more slowly than it would had it remained sequential. 
However, when a large Fortran code is well written and it is compiled for 
automatic parallelization, good speedups can be realized with very little effort.
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The three example loops are automatically parallelized with:

xlf90_r -c -qsmp=auto -qnohot -qreport=smplist -O3 -qarch=pwr4 -qtune=pwr4 
-qfixed sub.f

The option -qsmp=auto initiates automatic parallelization and it also implies 
-qhot. The option -qnohot was used to be consistent with the directive-based 
SMP runs. The option -qreport=smplist reports the line number of each 
successfully parallelized loop. The resulting file, sub.lst, has additional 
information including reasons why parallelization may have been unsuccessful 
for a loop. The xlf90_r compiler invocation should be used rather than xlf90 to 
ensure the resulting object code is thread safe. Performance results are shown in 
Section 7.1.5, “Measured SMP performance” on page 132.

7.1.4  Directive-based shared memory parallelization
Directive-based shared memory parallelization is more labor intensive than 
automatic parallelization, but it does allow for more control over which loops get 
parallelized and more options for scheduling individual loops.

For the example loops, the following directives were used:

LOOP A

!$OMP PARALLEL DO PRIVATE(J),DEFAULT(SHARED),SCHEDULE(GUIDED)

LOOP B

!$OMP PARALLEL DO PRIVATE(J,I1,I2,I3,I4,I5,I6)
!$OMP* REDUCTION(+:F3)
!$OMP*  DEFAULT(SHARED),SCHEDULE(GUIDED)

LOOP C

!$OMP PARALLEL DO PRIVATE(J,T1)
!$OMP* REDUCTION(+:F1,F4)
!$OMP*  DEFAULT(SHARED),SCHEDULE(GUIDED)

The loops use guided scheduling, which initially divides the iteration space into 
one chunk equal to NX divided by N and then exponentially decreases the chunk 
size to a minimum size of 1. This scheduling algorithm, which allows for a 
processor that found more data in L1 or L2 cache to get another chunk of data 
quickly while a processor requiring many L3 or memory references is working, is 
often most efficient.
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Compiling for directive-based parallelization uses the following command 
options:

xlf90_r -c -qsmp=omp -O3 -qarch=pwr4 -qtune=pwr4 -qfixed sub.f

The option noauto is implied when -qsmp=omp is used. However, with -qsmp=omp, 
-qhot is not implied.

7.1.5  Measured SMP performance
The three example loops were run from within an application and timed using 
realistic data for 200 repetitions with NX set to 1000000. The environment 
settings used were:

export AIXTHREAD_SCOPE=S
export SPINLOOPTIME=100000
export YIELDLOOPTIME=40000
export OMP_DYNAMIC=false
export MALLOCMULTIHEAP=1

All results were run on a two-MCM, eight-processor pSeries 690 HPC. The 
results for each of the three loops are shown separately in Table 7-1, Table 7-2, 
and Table 7-3 on page 133.

Table 7-1   Loop A parallel performance elapsed time

Table 7-2   Loop B parallel performance elapsed time

Processors -O3 -qsmp=auto speedup -qsmp=omp speedup

1 1.211 1.378 0.88 1.238 0.98

2 0.815 1.49 0.706 1.72

4 0.481 2.52 0.431 2.81

6 0.364 3.33 0.335 3.61

8 0.307 3.94 0.262 4.62

Processors -O3 -qsmp=auto speedup -qsmp=omp speedup

1 4.190 4.758 0.88 4.268 0.98

2 2.000 2.10 2.068 2.03

4 1.143 3.67 1.146 3.66

6 0.885 4.73 0.883 4.75

8 0.787 5.32 0.720 5.82
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Table 7-3   Loop C parallel performance elapsed time

The data shows that for these test loops there is little difference between 
automatic and manual parallelization. Some overhead due to parallelization can 
be seen comparing the single processor results. Note that the compiler may be 
using different optimization strategies when creating parallel code as well.

The reduction sums in loops B and C require the creation of critical sections in 
which only one processor can update the reduced variable at a time. These 
critical sections can significantly reduce parallel efficiency if the amount of work 
in the loop is too small or too many processors are used.

The conclusions from this analysis are:

� SMP parallelization does result in improved run times.

� SMP parallelization is easy to implement.

� Overall speedups are limited for small loops, especially when there are 
reduction sums.

7.2  MPI in an SMP environment
This section examines how existing MPI programs, written for distributed memory 
systems, can make the best use of both SMP and distributed memory systems.

We do not attempt to provide a detailed discussion of distributed memory 
parallelization or the use of MPI and refer the reader to the IBM Parallel 
Environment for AIX product documentation, and the IBM Redbook Scientific 
Applications in RS/6000 SP Environments, SG24-5611.

Processors -O3 -qsmp=auto speedup -qsmp=omp speedup

1 2.795 3.056 0.91 2.830 0.99

2 1.430 1.95 1.541 1.81

4 0.906 3.08 0.933 3.00

6 0.719 3.89 0.736 3.80

8 0.633 4.42 0.588 4.75
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In the following discussion, processes executing in parallel and communicating 
using MPI calls are referred to as tasks. A number of different scenarios are 
considered:

� MPI only

The MPI implementation in IBM Parallel Environment for AIX (PE) can use 
several protocols for communication between tasks.

Internet Protocol (IP) can be used between tasks on the same node and 
between tasks on different nodes. This incurs relatively high latencies and IP 
overheads.

In the IBM RS/6000 SP environment with nodes attached to one of the types 
of SP switch, then another protocol known as user space can be used for 
communication between tasks. Depending on the type of switch involved and 
the version and release of PE, there may be restrictions on the number of 
user space tasks allowed per node. At the time of writing, the SP Switch2 with 
PE 3.1 can support up to 16 user space tasks per POWER3 node. User 
space significantly reduces the overhead and latency when compared to IP, 
but it may still be higher between processes on the same node than using 
shared memory.

MPI communication calls can also use shared memory for message passing 
between MPI tasks on the same node. The PE MPI library is capable of using 
shared memory automatically. In a cluster or SP configuration of POWER3 
nodes, then IP or user space would be used between tasks on other nodes. 

In this case, overall performance can still be limited by communication 
between the nodes. This could be reduced for group operations (such as 
broadcast) by having one processor per node handle all the internode 
communication. This process would use shared memory to collect and 
distribute data to other processes on the same node.

Since the different tasks on the same node are different processes, they have 
different address spaces and the shared memory MPI library will 
communicate though a shared memory segment. This mean a double copy of 
the data (into and out of the shared memory segment). It would be possible 
for each task to keep its data in the shared memory segment and not use MPI 
for this communication but this would require some degree of reprogramming. 
The advantage of using the PE shared memory MPI library is that no 
reprogramming is required.
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In order to use shared memory for communication calls within a shared 
memory machine one of the following two procedures should be followed:

– Use the following PE environment variable settings:

export MP_SHARED_MEMORY=yes
export MP_WAIT_MODE=poll

MP_WAIT_MODE is not essential in order to use shared memory, but 
setting it to poll is recommended for performance in most scenarios where 
MPI tasks will use shared memory.

– Use the following command line arguments either with the parallel 
program or with the poe command depending on the way the parallel 
program is started:

-shared_memory yes -wait_mode poll

� MPI and SMP Fortran

In this scenario, also known as the hybrid or mixed-mode programming 
model, there are fewer MPI tasks than processors per node. Shared memory 
parallelization techniques such as OpenMP directives can be used to execute 
sections of the code between MPI calls in parallel. This means that each MPI 
task has multiple threads executing in parallel, and the aim would be to keep 
all of the processors busy all of the time. In practice, it will be difficult to 
achieve this during the MPI communication phases of the program. However, 
the benefit of this programming model is that it can be used to reduce the 
amount of communication traffic between nodes, especially during global 
communications, by reducing the total number of MPI tasks. This could be 
especially important for large multi-processor systems such as 32-way 
POWER4 systems clustered together.

The overhead of shared memory parallelization is similar to that of MPI data 
transfers, so it is desirable to parallelize at a sufficiently coarse granularity to 
keep the effect of this overhead small. Some recoding may be required to 
achieve this hybrid parallelization.

� MPI and explicit large chunk threads

In this scenario, there is only one MPI process per node. The initial process 
(or master thread) creates threads which, instead of issuing MPI calls, use 
pthread techniques to transfer data between themselves and the master 
thread. The master thread uses MPI to transfer all data between the nodes.

Data does not have to be copied between threads since they all use the same 
address space. Synchronization can be achieved either with standard pthread 
calls, or, with even less overhead, by using spin loops and the atomic 
fetch_and_add function (which guarantees that only one thread at a time can 
update a variable).
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The total number of messages between nodes is reduced and hence delays 
due to latency are reduced. Since the master thread handles all messages, it 
should perhaps be coded to do less work than the other threads.

However, all of this may imply considerable reprogramming. The program may 
have used the MPI task ID to create its arrays and organize its data. The 
threads will have to arrange this differently, because they share the same task 
ID, and are using the same address space.

The advantages and disadvantages of these scenarios are summarized in 
Table 7-4.

Table 7-4   Advantages and disadvantages of message passing techniques

To summarize, all of the scenarios can be useful depending on the particular 
application requirements and the target environment. Descending the table, the 
efficiency of the solution increases, but the amount of reprogramming required 
also increases.

To gain addressability to 8 GB with a 32-bit MPI, the sPPM ASCI benchmark 
code used the Hybrid mode. More information about this can be obtained from:

http://www.llnl.gov/asci_benchmarks/asci/limited/ppm/sppm_readme.html

Programming model Advantages Disadvantages

MPI only No program changes.
Same coding for calls between 
all tasks, uses shared memory 
on same node.

Double copy between 
processes on same node.

Hybrid mode MPI exchanges reduced.
Can reduce off node 
communication.

May not be possible to 
fully use the CPUs.
Some reprogramming 
required.

MPI and large chunk 
threads

MPI exchanges reduced.
Exchanges and overhead 
between threads reduced.

Considerable 
reprogramming may be 
required.
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7.3  Programming with threads
The thread programming paradigm is a flexible, low-level model of distributing the 
work of a given application into multiple streams of execution that share a single 
memory address space. Each thread can execute its own function and can be 
controlled independently. In the context of high-performance computing, threads 
are used to distribute a workload onto multiple processors of an SMP system, 
rather than to dispatch many threads onto a single processor, as is common for 
graphical user interfaces.

There is a standardized application interface for threads called Pthreads (POSIX 
threads) that is part of the UNIX specification. The redbook Scientific 
Applications in RS/6000 SP Environments, SG24-5611, provides a compact 
introduction to Pthreads for multi-processor applications on the AIX platform. The 
corresponding AIX reference manual General Programming Concepts: Writing 
and Debugging Programs (part of the AIX Programming Guides) can be found at:

http://www.ibm.com/servers/aix/library/techpubs.html

Programming explicitly with threads is not recommended for the casual user. In 
many cases the benefits of multiple threads can be more easily obtained by 
using the automatic parallelization capabilities of the compiler or OpenMP 
directives.

7.3.1  Basic concepts
Threads can be described as light-weight processes. Each thread has its own 
private program counter, stack, and registers. The memory state and file 
descriptors are shared. For a brief overview of the usage of Pthreads a simple 
hello world program is shown in Example 7-1 on page 138. Although this 
program does no complicated work, it provides a useful template for thread 
creation. 

A Pthread program begins to execute as a single thread. Additional threads are 
created and terminated as necessary to concurrently schedule work onto the 
available processors. In this example, the initial thread creates three worker 
threads, which will print hello messages and terminate. As will be familiar to 
message passing programmers, it is a good practice for the master thread (or 
MPI task) to take part in the computation. This yields good load-balancing when 
N threads are dispatched on N processors.

A threaded application should be compiled and linked with the _r-suffixed 
invocation of the C compiler, for example xlc_r, which defines the symbol 
_THREAD_SAFE and links with the Pthreads library.
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Example 7-1   Pthread version of a hello world program

#include <pthread.h>
#include <stdio.h>

void * thfunc(void * arg)
{
   int id;
   id = *((int *) arg);
   printf("hello from thread %d \n", id);
   return NULL;
}

int main(void)
{
   pthread_t thread[4];
   pthread_attr_t attr;
   int arg[4] = {0,1,2,3};
   int i;

   /* setup joinable threads with system scope */
   pthread_attr_init(&attr);
   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
   pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);

   /* create N-1 worker threads */
   for (i=1; i<4; i++) {
      pthread_create(&thread[i], &attr, thfunc, (void *) &arg[i]);
   }

   /* let the master thread also take part in the computation */
   thfunc((void *) &arg[0]);

   /* wait for all other threads to finish */
   for (i=1; i<4; i++) {
      pthread_join(thread[i], NULL);
   }
   return 0 ;
}

Threads are created using the pthread_create function. This function has four 
arguments: A thread identifier, which is returned upon successful completion, a 
pointer to a thread-attributes object, the function that the thread will execute, and 
the argument of the thread function. The thread function takes a single pointer 
argument (of type void *) and returns a pointer (of type void *). In practice, the 
138 POWER4 Processor Introduction and Tuning Guide 



argument to the thread function is often a pointer to a structure, and the structure 
may contain many data items that are accessible to the thread function. In this 
example, the argument is a pointer to an integer, and the integer is used to 
identify the thread. 

The previous simple example creates a fixed number of threads. In many 
applications, it is useful to have the program decide how many threads to create 
at run time while providing the ability to override the default behavior by setting 
an environment variable. For example, for OpenMP programs the default is to 
create as many threads as processors are available. In AIX, you can get the 
number of online processors by calling the sysconf routine from libc, as shown in 
Example 7-2. 

Example 7-2   Sample code for setting the number of threads at run time

#include <pthread.h>
#include <unistd.h>
#include <stdlib.h>
...
char * penv;
int ncpus, numthreads;
...
/* get the number of online processors */
ncpus = sysconf(_SC_NPROCESSORS_ONLN);
if (ncpus < 1) ncpus = 1;

/* check the NUMTHREADS environment variable */
penv = getenv("NUMTHREADS");
if (penv == NULL) numthreads = ncpus;
else numthreads = atoi(penv);
...

A thread terminates implicitly when the execution of the thread function is 
completed. A thread can terminate itself explicitly by calling pthread_exit. It is 
also possible for one thread to terminate other threads by calling the 
pthread_cancel function. The initial thread has a special property. If the initial 
thread reaches the end of its execution stream and returns, the exit routine is 
invoked, and, at that time, all threads that belong to the process will be 
terminated. However, the initial thread can create detached threads, and then 
safely call pthread_exit. In this case, the remaining threads will continue 
execution of their thread functions and the process will remain active until the last 
thread exits. In many applications, it is useful for the initial thread to create a 
group of threads and then wait for them to terminate before continuing or exiting. 
This is can be achieved with threads that are joinable (see 
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pthread_attr_setdetachstate). The AIX default is detached. The function 
pthread_join suspends the calling thread until the referenced thread has 
terminated. The system scope attribute is appropriate when N threads are 
supposed to run on N processors concurrently. 

Synchronization
As with OpenMP directive-based parallelization the distinction between 
threadprivate and shared variables is essential for the correctness and 
performance of a program. The access to shared variables has to be 
synchronized to avoid conflicts and to assure correct results. The use of 
synchronization should be balanced with its degradation of performance and 
scalability. 

A major difficulty of parallel programming for shared memory is to find the right 
balance of local and global variables, since the scoping defines which variables 
are private or shared. Contention for global variables, as in a reduction sum, is a 
major source of performance problems. The introduction of temporary local 
variables often helps to resolve such problems.

In multi-threaded applications the update of shared memory locations is usually 
protected with mutex (mutual exclusion) locks. The operating system ensures 
that access to the shared data is serialized. At a given time only one thread can 
enter the region between lock and unlock to modify the data. The usage of mutex 
locks is shown in Example 7-3. This example demonstrates how to construct a 
basic barrier synchronization function. It is left as an exercise for the reader to 
study a Pthread programming reference in order to understand this complex 
construct.

Example 7-3   Usage of mutex locks to modify shared data structures

#include <pthread.h>
int barrier_instance = 0;
int blocked_threads = 0;

pthread_mutex_t sync_lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t sync_cond = PTHREAD_COND_INITIALIZER;

int syncthreads(int nth)
{

int instance;

/* the calling thread implements a lock, other threads block */
pthread_mutex_lock(&sync_lock);

/* the thread with the lock proceeds */
instance = barrier_instance;
blocked_threads++;
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if (blocked_threads == nth)
{

/* notify all threads that the sync condition is met */
blocked_threads = 0;
barrier_instance++;
pthread_cond_broadcast(&sync_cond);

}

while (instance == barrier_instance)
{

/* release the lock and wait here */
pthread_cond_wait(&sync_cond, &sync_lock);

}

/* all threads call the unlock function and return */
pthread_mutex_unlock(&sync_lock);

return(0);
}

Frequent mistakes
The most common mistakes of thread programming shown in this section occur 
more frequently than we would like:

� Process exits before all threads have finished 

The following example of code is not correct because when a process exits or 
returns from main(), all of the process memory is deallocated and all threads 
belonging to the process are terminated.

#include <pthread.h>
int main(void) {

pthread_t tid[NUMBER_OF_THREADS];
...
/* create threads */
for (i =0; i<NUMBER_OF_THREADS; i++)

/* each thread calls thread_main with parameter arg. */
pthread_create (&tid[i], NULL,(void*(*)(void*)) thread_main, (void *) 

arg);
exit(0);

}

� Parent thread exits before child

A problem similar to the previous one; do not forget to call the pthread_join 
routine before exiting.
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� Dangling pointer

The following code fragment is incorrect because errorcode resides on the 
local stack of the thread and will be freed when the thread is destroyed, 
leading to a dangling pointer.

void * thfunc(void * arg)
{
   int errorcode;

/* do something */
/* if error condition detected, errorcode = something; */

   pthread_exit(&errorcode);
...

}

Using Pthreads in Fortran
On IBM systems, a Fortran version of the Pthreads interface is available in 
addition to the standard C Pthreads interface. This makes it relatively simple to 
introduce threads into numerically intensive Fortran applications. The reader 
should recognize that the Fortran interface is not backed by an industry-wide 
standard. For example, Pthread constructs can be used within OpenMP 
programs in rare instances when some direct control of thread management or 
data access synchronization is necessary. In such a mixed mode the OpenMP 
runtime environment will create and manage all threads used for the execution of 
OpenMP parallel constructs. Explicit pthread creation is the responsibility of the 
programmer.

The IBM Fortran version of the Pthreads API is similar to the C version, where 
the function names and data types from C are preceded with f_. Fortran 
programs that use explicit Pthread routines must have a statement to include the 
f_pthread module. In general the -qnosave option is essential for correct behavior 
of a program. A number of Fortran routines, including f_pthread_create, have call 
sequences that differ from the standard C version. For example, the 
f_pthread_create function takes an additional parameter to specify properties of 
the argument to the thread function. The IBM Fortran implementation of Pthreads 
is described in the XL Fortran for AIX Language Reference, SC09-2867.
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7.3.2  Coding and performance considerations 
The following performance considerations apply to both Pthread hand-coded 
programs and OpenMP based programs.

Thread creation
The time required for creation of a thread is of the order of magnitude of 100 
microseconds. You should only create/awake/terminate threads that execute for 
a significantly longer time.

Lock contention
Shared data structures that are modified within an innermost loop of a thread and 
need to be protected against concurrent access can cause severe performance 
degradation. The following example shows a loop that counts the number of 
elements in a vector with a value equal to one. The counter is a shared variable 
that has to be protected by a mutex lock when incremented. Assuming that every 
second element is equal to one, this example takes more than 30 times longer to 
execute on four processors than an equivalent sequential loop, which does not 
need to call the Pthread lock routines. 

int shared_count=0;
...
void * thfunc(void *id)
{

...
for (i=start; i<start+incr; i++) {

if (vector[i] == 1) {
pthread_mutex_lock(&lock);
shared_count++;
pthread_mutex_unlock(&lock);

}
}
...

}

Without increasing the default values of the SMP runtime variables 
SPINLOOPTIME or YIELDLOOPTIME the performance is even slower. For 
details on AIX environment variables that determine the runtime behavior of a 
thread when waiting for a lock (spin, yield, sleep), see Section 7.1.1, “SMP 
runtime behavior” on page 126.
 Chapter 7. Parallel programming techniques and performance 143



In this simple case, the performance problem can be resolved with the help of a 
local counter variable, which turns the tremendous speed down into an expected 
parallel speedup.

int shared_count=0;
...
void * thfunc(void *id)
{

int private_count=0;
...
for (i=start; i<start+incr; i++) {

if (vector[i] == 1) {
private_count++;

}
}
pthread_mutex_lock(&lock);
shared_count += private_count;
pthread_mutex_unlock(&lock);
...

}

Avoiding locks and OpenMP critical sections
In many multi-threaded programs, a barrier synchronization routine can help to 
reduce extensive use of locks or OpenMP critical sections. For example, suppose 
that multiple threads are working to fill out different entries of a table, and, once 
that is done, each thread needs read access to the table for the next step. A 
barrier synchronization point would ensure that no thread could proceed to the 
next step until all threads have finished filling out the table. Instead of working 
directly with the low-level pthread_mutex functions, a higher level thread 
synchronization function is very useful. 

If you cannot avoid a lock or critical section:

� Reduce the amount of time a lock is held. Move all unnecessary code outside 
a critical section.

� Combine access to shared data in order to reduce the number of single 
lock/unlock calls.

False sharing
False sharing of a cache line occurs when multiple threads on different 
processors with private caches modify independent data structures that happen 
to belong to the same cache line. In this situation, the cache line of a particular 
CPU is flushed out due to another processor store operations and has to be 
transferred repeatedly from remote caches. This is likely to happen when, for 
example, a thread local variable is stored in a global array indexed by the logical 
thread number. This causes the data to be located close together in memory.
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By using appropriate padding, false cache-line sharing can be avoided. Referring 
to the proceeding example, the following implementation cures the lock 
contention problem, but suffers from false sharing. On our machine, this leads to 
a moderate speed down (of about 1.5) on four processors compared to the 
sequential program.

int shared_count=0;
int private_count[4]={0,0,0,0};
...
void * thfunc(void *id)
{

...
myid = *((int *)id);
for (i=start; i<start+incr; i++) {

if (vector[i] == 1) {
            private_count[myid]++;
      }
   }

pthread_mutex_lock(&lock);
   gobal_count += private_count[myid];

pthread_mutex_unlock(&lock);
}

By introducing appropriate padding space, to fill up a cache line of 128 byte, false 
sharing can be eliminated.

struct count{
   int  private_counter;
   char pad[124];
}counter[4];
int shared_count=0;
...
void * count_ones(void *id)
{

...
for (i=start; i<start+incr; i++) {

if (vector[i] == 1) {
counter[myid].private_counter++;

}
}
pthread_mutex_lock(&lock);
shared_count += counter[myid].private_counter;
pthread_mutex_unlock(&lock);

}

For example, a similar false sharing problem can occur when storing a set of 
mutex lock objects in a global array. The following Fortran code avoids false 
sharing. The type pthread_mutex_t is declared in /usr/include/sys/types.h. In 
64-bit mode it has a different size.
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use f_pthread
integer, parameter :: maxthreads=8
type plock

sequence
type(f_pthread_mutex_t)  :: lock
integer                  :: pad(19)

end type plock
type(plock) :: locks(maxthreads)
common /global/ locks

As a rule of thumb, in an SMP program, global data whose access is not 
serialized should not be close together. 

Reducing OpenMP overhead
In general, an SMP parallel program does generate some computational 
overhead. Even when executed by just a single thread a certain amount of 
overhead compared to the execution of the equivalent sequential (non threaded) 
version of a program can be observed. For discussion purposes, call this the 
sequential overhead. Thread-safe system libraries, such as for I/O, that are 
referenced by an _r-suffixed compiler invocation may also contribute to this 
overhead. 

For a fine-grain OpenMP program, the sequential overhead can be significant. If 
the overhead exceeds, for example, 30 percent of the elapsed time, this can be 
an indication of inefficient use of OpenMP directives. If global variables need to 
be scoped threadprivate this often causes problems.

The following example is taken from a real application. To support the 
threadprivate pragma (or directive in Fortran) the compiler generates calls to the 
internal function _xlGetThreadValue. These calls are relatively expensive. In 
general it is a good idea to reduce the number of calls by packing several 
threadprivate variables into a single structure. This way we will encounter only 
one call per dynamic path through each function where the threadprivate 
variables are referenced. Otherwise, we will encounter one call per threadprivate 
variable. As an example, consider the following lines of code:

static int n_nodes, num_visits;
static Node *node_array;
static int *val, *stack;
static Align_info *align_array;

#pragma omp threadprivate( \
n_nodes, num_visits, \
node_array, \
val, stack, \
align_array \

)
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This code could be substituted as follows to improve performance. More code 
changes in the subsequent code are necessary to make this complete.

struct nn{
int n_nodes, num_visits;
Node *node_array;
int *val, *stack;
Align_info *align_array;

} glob;
#pragma omp threadprivate(glob)

7.3.3  The best approach for shared memory parallelization
As discussed, there are many different ways to parallelize a program for shared 
memory architectures. The appropriate approach depends on several 
considerations, for example: Does a sequential code already exist or will the 
parallel program be written from scratch? What are the parallel programming 
skills of the project team? and so on. The following are some pros and cons of 
the different paradigms:

� Auto-parallelization by the compiler:

– Easy to implement (just a few directives)

– Enables teamwork easily

– Limited scalability because data scoping is neglected

– Compiler dependent (even on the release of a particular compiler)

– Not necessarily portable

� OpenMP directives:

– Portable

– Potentially better scalability of the auto-parallelization

– Uniform memory access is assumed

� RYO (subset or mixture of OpenMP and Pthreads, or UNIX fork() and exec() 
parallelization, or platform-specific constructs)

– Might enable teamwork

– Needs a well-tested concept to assure performance and portability

– Not necessarily portable

� Pthread:

– Portable

– Potentially best scalability

– Needs experienced programmers
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� SMP-enabled libraries

– Least effort

– Limited flexibility

7.4  Parallel programming with shared caches
On all models of POWER4 microarchitecture machines currently available, each 
processor has a dedicated L1 cache. As discussed in Section 2.4.3, “L2 cache” 
on page 17, the L2 cache organization is that each L2 cache unit is shared 
between two processors in the pSeries 690 Turbo and pSeries 690 Model 681, 
but in the pSeries 690 HPC each processor has a dedicated L2 cache. In all 
models L2 cache remains the level of coherency.

The sharing of the L2 cache raises a number of considerations, such as:

� Processors that share L2 cache will compete for the bandwidth from the L2 
cache to L3 and memory. However, the effect of this is unlikely to differ very 
much from the effect seen by independent processes sharing the bandwidth 
from L2.

� In the configurations where two processors share L2 cache, and each are 
accessing different memory addresses, then for each cache line loaded into 
L2, there may be conflict.

� Interference when accessing the same cache lines

In the extreme case, two threads of a shared memory application may access 
the same cache line. In this case, there may be a benefit to the shared L2 
cache configuration, since there will be a higher percentage of hits in the L2 
cache and there will be fewer cache snooping events.

An example of this would be the following, rather artificial loop:

!$OMP PARALLEL DO PRIVATE(s,j,time1,time2), SHARED(a,b,s1,ttime), &
!$OMP&             SCHEDULE(STATIC,1)
          do i=1,m
            do j=1,n
              b(i,j)=a(i,j)+a(i,j)*c1
            end do
          end do
!$OMP END PARALLEL DO

In this example, when parallelized across two threads, each thread will 
access alternate elements of the array.
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Measurements were performed on a 32-way pSeries 690 Turbo, with the 
arrays dimensioned to fit in L2 but not in L1, and the results provided in 
Table 7-5 were obtained.

Table 7-5   Shared memory cache results, pSeries 690 Turbo

The unshared cache times were obtained by binding the threads of the program 
to alternate processors. Thread one was bound to processor one, thread two was 
bound to processor three, and so on. The shared cache times were obtained by 
binding the threads to adjacent processors. 

The times are the average of the time obtained in three separate runs. Apart from 
the four-thread case, it seems that for this example there is a clear benefit in the 
shared cache. This is most noticeable with two threads. With a larger number of 
threads, the amount of work done by the individual threads is reduced and so the 
overhead of running in parallel starts to dominate the time. 

Further examples where the loop appeared similar to the following were also run:

!$OMP PARALLEL DO PRIVATE(s,j), SHARED(a,b,s1), &
!$OMP&             SCHEDULE(STATIC,1)

do i=1,m
do j=1,n

s=s+a(i,j)*b(i,j)
end do
s1(i)=s

end do
!$OMP END PARALLEL DO

These did not show any difference in speed between shared and dedicated L2 
cache configurations.

We also tested two examples where we compared performance of two processes 
accessing a shared cache line where the cache line was in a single L2 cache or 
moved between L2 caches. 

Threads Unshared cache time [s] Shared cache time [s] Unshared / shared

1 14.76 14.40 0.98

2 14.11 8.63 0.61

4 7.57 8.02 1.06

8 6.78 5.69 0.84

16 6.60 5.75 0.87
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The test programs we used forked child processes which then bound themselves 
to specific processors. Each process acquired a semaphore, updated a counter, 
and released the semaphore. The code kernel is as follows:

for (i=0;i<LOOPS;i++)
{

msem_lock(sem,0);
curr_value= (*shared_counter)++;
msem_unlock(sem,0);

}

The msem_ routines are part of the AIX libsys.a library. They implement an 
atomic lock using the lwarx instruction.

In the first example (Table 7-6), the counter and semaphore were in the same 
cache line. 

Table 7-6   Counter and semaphore sharing cache line

In the second example (Table 7-7), the counter and semaphore were in separate 
cache lines.

Table 7-7   Counter and semaphore in separate cache line

As expected, there is a significant performance benefit when two processes 
share data in the L2 cache. There is also a benefit in separating data structures 
and the semaphores that control them. 

Case Time [s]

Single process (no sharing) 3.36

Two processes. L2 cache shared 8.95

Two processes. L2 caches on same MCM 13.31

Two processes. L2 caches on separate MCMs 13.40

Case Time [s] Ratio to shared 
counter/semaphore

Single process (no sharing) 3.34 0.99

Two processes. L2 cache shared 8.85 0.98

Two processes. L2 caches on 
same MCM

12.75 0.96

Two processes. L2 caches on 
separate MCMs

12.82 0.95
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The previous code example makes use of a sleeping semaphore. In addition, the 
amount of work done on the cache line is relatively small. We created a second 
example using spin/wait instead of sleeping semaphores and increased the 
amount of work on the cache line. The semaphore and the shared data structure 
were in separate cache lines.

The relevant code segments are:

struct shared_data {
long long n;
int counter;
int i;
} *p_shared;

msemaphore *p_shared_sem;
....

for (i=0;i<LOOPS;i++)
{

/* spin waiting for semaphore */
while ( ((err=msem_lock(p_shared_sem,MSEM_IF_NOWAIT)) == -1)

&& (errno == EAGAIN));

(p_shared->counter)++;
p_shared->n=1;
/* now do some real work */
for (j=0;j<200;j++)

{
p_shared->n = p_shared->n * (p_shared->n +1);
}

msem_unlock(p_shared_sem,0);
}

We observed the results provided in Table 7-8.

Table 7-8   Heavily used shared cache line performance

Case Time [s]

Single process (no sharing) 38.72

Two processes. L2 cache shared 75.91

Two processes. L2 caches on same MCM 84.57

Two processes. L2 caches on different MCMs 84.51

Four processes on two chips on the same MCM 143.27

Four processes, one on each chip on an MCM 156.03

Four processes, each on a different MCM 156.12
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The shared L2 cache enables two processes to share the workload very 
efficiently. Two processes run in twice the time of one process. When the cache 
is not shared there is an 18 percent penalty. This is independent of whether or 
not the processes run on the same MCM.

We also examined the case where four processes ran on two chips, that is, four 
processors sharing two L2 caches, and compared this with unshared L2 caches. 
We see a small benefit in sharing the L2 cache but once the L2 cache is not 
shared, the impact of on or off the MCM is the same as for two processes. When 
testing four processes, we observed that the run times of the individual 
processes varied (results above are averages for two or four processes). We saw 
that three processes would run in approximately the same time and one would 
run in approximately 60 percent to 75 percent of the others. We were not able to 
investigate this effect for this document. We assume it is either an artifact of the 
operating system scheduler or an error in the test program. Note that this effect 
was not observed in the two process test runs.
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Chapter 8. Application performance 
and throughput

This chapter examines system performance achievable from running multiple 
copies of a program or programs compared to a single copy of a program. On a 
multiple processor machine (or node), throughput issues include:

� Processor utilization 

Oversubscribing processors (for example, 12 concurrent jobs on an 
8-processor machine) when running processor-bound jobs usually does not 
increase total processor time significantly as measured by user processor 
time and system processor time, since the operating system efficiently 
schedules the jobs to run. Processor-bound jobs refer to programs that are 
not bottlenecked by any other major system resources.

� Memory bandwidth utilization 

A 32-processor pSeries 690 Turbo has a very high aggregate memory 
bandwidth of approximately 200 GB/s. For many workloads, this is sufficient 
to sustain 32 concurrent processes with a performance per process close to 
that obtained if the processes were to run standalone.

However, a standalone process is capable of driving the memory bandwidth 
at a far greater rate than 1/32nd of the total. As detailed in 8.4.3, “Memory 
stress effects on throughput” on page 162, on a 32-way pSeries 690 Turbo or 
a 16-way pSeries 690 HPC, a standalone application can use approximately 

8
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1/8th of the total bandwidth. This is a significant benefit of pSeries 690 design 
in cases where such memory-stressing applications can be run in a mixed 
workload together with low memory stress applications. However, if 32 copies 
of a job that does use maximum bandwidth are run concurrently on a pSeries 
690 Turbo, each job will necessarily take at least 4 times as long as a 
standalone job. For 16 processes on a 16-way pSeries 690 HPC, it would be 
at least twice as long.

Most applications, when run standalone, use far less than the maximum 
bandwidth and there are many techniques, such as blocking, available for 
reducing the extent of memory stress. Some of these techniques are 
described in 3.1.4, “Tuning for the memory subsystem” on page 34. 
Nevertheless, applications that, run standalone, use more than their 
proportionate share of the total bandwidth, will necessarily run more slowly 
when every processor is loaded with them. For such workloads, the pSeries 
690 HPC is likely to be a more appropriate configuration than a pSeries 690 
Turbo.

� Shared L2 cache 

On a pSeries 690 Model 681 or pSeries 690 Turbo, two processors on a 
single chip share the 1440 KB L2 cache. When two similar jobs are running 
on the same chip they can effectively utilize only half of the L2 cache and the 
L2 to L3 cache bandwidth and it could be anticipated that there will be some 
performance degradation. In a pSeries 690 HPC, there is only one processor 
that can access the L2 cache, which implies more predictable behavior.

� I/O channels 

When a program has high I/O requirements the I/O channels and subsystems 
often prove to be the performance bottleneck. When multiple copies of high 
I/O jobs are run, performance can seriously degrade unless attention is given 
to separating or hiding I/O transfers. See Section 6.3, “Modular I/O (MIO) 
library” on page 120, which describes one useful tool that can be used to hide 
I/O transfers.

The rest of this chapter shows some examples of throughput testing done on 
POWER4 pSeries 690 Model 681 systems.
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8.1  Memory to memory copy
Figure 8-1 shows performance for a simple copy (a[i] = b[i]) for a range of array 
sizes and numbers of copies. Maximum throughput is achieved when the array 
fits into the L2 cache. The system was configured with two MCMs and four 
memory books. 

Tuning by using methods such as 

a[i] = b[i] + zero*a[i];

does not make any significant difference to copy performance, whereas this 
technique was often beneficial on the POWER3.

Figure 8-1   Memory copy performance

Figure 8-2 on page 156 shows corresponding performance when using the C 
library memcpy() function. Performance is less than that achieved in the case 
above because the load/stores are 8 bytes (Fortran REAL*8) whereas the 
memcpy() function loads and stores bytes to a word boundary then loads and 
stores words (4 bytes) and completes the copy with bytes if required.
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Figure 8-2   C library memcpy performance

The memory subsystem provides a reasonably linear response to increasing 
processor load as provided in Table 8-1.

Table 8-1   Memory copy performance relative to one CPU

2 CPUs 4 CPUs 6 CPUs 8 CPUs

16 KB 2.0 3.9 6.0 8.0

32 KB 2.0 4.0 6.0 8.0

128 KB 2.0 4.0 6.1 8.1

1 MB 1.8 3.2 4.4 5.3

2 MB 1.9 3.2 4.5 5.4

4 MB 1.9 3.3 4.7 5.6

8 MB 1.9 3.2 4.7 5.6
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8.2  Memory bandwidth limited throughput
In contrast to the performance described in the previous section, this section 
describes a throughput test that deliberately challenges the total system memory. 
The program solves for the dot product of two REAL*8 arrays of length N. For this 
throughput test, N was chosen to be 110000000 to ensure that most of the data 
would not be resident in L3 cache.

A single copy of this program achieved a 2.3 GB/s transfer rate on a 1.3 GHz 
processor. When eight copies of this job were run on a two MCM, eight processor 
pSeries 690 HPC, the aggregate data transfer rate was 11.3 GB/s, a speedup of 
4.9. The aggregate transfer rates for job counts of 1 through 8 are shown in 
Figure 8-3.

Figure 8-3   System memory throughput for pSeries 690 HPC
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A second throughput test using the same program was run on a 32-way four 
MCM,1.3 GHz pSeries 690 Turbo with 96 GB of real memory. This system had 
512 MB of shared L3 cache so the array sizes were increased to 310 million 
double-precision elements up through 16 processors to ensure most of the data 
was not in L3 cache. For 32 copies of the program, the array sizes were reduced 
to 150 million double-precision elements, to prevent the programs from 
exceeding the real memory on the system. The aggregate system throughput 
rates are shown in Figure 8-4.

Figure 8-4   System memory throughput on pSeries 690 Turbo

The shared L2 cache and non-shared L2 cache throughput rates for 2 through 16 
jobs were obtained using the AIX bindprocessor command and related system 
calls. For the shared L2 cache runs, pairs of jobs were bound to processors on 
the same POWER4 chip. For the non-shared L2 cache runs, at most one job was 
bound to any POWER4 chip. The non-shared L2 cache performance would be 
nearly identical to the performance of a pSeries 690 HPC system. As expected, 
when two jobs share the L2 cache, the system throughput decreased.

It should be noted that this program relies on hardware prefetch streams. The 
performance of the prefetch streams are highly dependent on the size of memory 
pages. At the time this document was written, only 4 KB pages were available in 
AIX 5L. Large page sizes, which will be available in early 2002, are expected to 
significantly increase the single job and multiple job throughput for these 
examples.
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8.3  MPI parallel on pSeries 690 and SP
This section describes a hydrodynamics benchmark application called Hydra 
from AWE, Aldermaston in the UK and is included as an example to illustrate the 
comparative performance of pSeries 690 Model 681 and the RS/6000 SP 375 
MHz POWER3 SMP High Node both with respect to absolute performance and 
parallel scalability. The RS/6000 SP 375 MHz POWER3 SMP High Node, is a 
shared memory unit that contains 16 POWER3-II processors running at a 
frequency of 375 MHz.

Hydra is written in Fortran with MPI message passing and scales well to at least 
512 processors for large problems. It does not use OpenMP or similar 
paradigms.

The results for two test cases, a medium one called 2mm and a large one called 
1mm are shown in Table 8-2. All MPI communication is shared memory with the 
single exception of the 32-way RS/6000 SP 375 MHz POWER3 SMP High Node 
case where user space MPI (EUILIB=us) was used over the IBM Switch2 
connecting two SP nodes.

For this application, conclusions that can be drawn include:

� Up to 32-way parallel, a 1.3 GHz pSeries 690 Model 681 system is between 
2.1 and 3.1 times faster than the same number of RS/6000 SP 375 MHz 
POWER3 SMP High Node processors.

� Scalability characteristics of a single pSeries 690 Model 681 system are 
similar to that of an RS/6000 SP 375 MHz POWER3 SMP High Node.

Table 8-2   MPI performance results for AWE Hydra code

2mm test case 1mm test case

Parallelism Elapsed 
seconds

Parallel 
speedup

Ratio over 
NH2

Elapsed 
seconds

Parallel 
speedup 
over 4-way 
run

Ratio over 
NH2

16-processor RS/6000 SP 375 MHz POWER3 SMP High Nodes 

Serial 8776.4 1 1 not measured N/A 1

2-way 4598.9 1.91 1 not measured N/A 1

4-way 2331.1 3.76 1 28645 1 1

8-way 1286.2 6.82 1 14065 2.04 1

16-way 754.6 11.63 1 8033 3.57 1

32-way 388.5 22.59 1 3913 7.32 1
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* Assuming 4-way speedup is same as pSeries 690 HPC, that is, 3.56.

8.4  Multiple job throughput
This section discusses the extent to which the total execution times for different 
types of jobs increases when multiple jobs are run concurrently. Examples are 
given of two jobs that only lightly stress the I/O and memory subsystems and 
hence give excellent throughput scaling. Then results from an artificial job are 
shown adjusted to provided varying degrees of memory subsystem stress.

We have not been able to investigate throughput effects for I/O intensive jobs. 
This is a very important subject area, but only a very limited I/O configuration was 
available to us on the pSeries 690 Model 681 systems we tested. Results from 
any I/O intensive applications would, therefore, have been unrealistic.

64-way 229.0 38.32 1 2080 13.77 1

128-way 141.2 62.16 1 1101 26.02 1

8-processor pSeries 690 HPC, results normalized to 1.3 GHz

Serial 3297.5 1 2.66 not measured not measured not measured

2-way 1701.6 1.93 2.70 not measured not measured not measured

4-way 926.9 3.56 2.51 11349 1 2.52

8-way 537.9 6.13 2.39 6307 1.80 2.23

32-processor pSeries 690 Model 681, 1.3 GHz.

4-way 752.3 3.56* 3.10 not measured not measured not measured

8-way 468.9 5.71* 2.74 not measured not measured not measured

16-way 272.1 9.84* 2.77 not measured not measured not measured

32-way 160.5 16.68* 2.42 1821 N/A 2.15

2mm test case 1mm test case

Parallelism Elapsed 
seconds

Parallel 
speedup

Ratio over 
NH2

Elapsed 
seconds

Parallel 
speedup 
over 4-way 
run

Ratio over 
NH2
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8.4.1  ESSL DGEMM throughput performance
Multiple copies of DGEMM from ESSL (see Section 6.1, “The ESSL and Parallel 
ESSL libraries” on page 114) were run together on a 32-way pSeries 690 Turbo. 
Each job multiplied matrices of 5000x5000 REAL*8 numbers, which require 600 
MB of memory for the three arrays involved. However, because ESSL blocks the 
code to achieve good memory locality, and because matrix multiply involves a 
high ratio of computation to memory access, almost no slowdown was seen 
when multiple copies were run.

Table 8-3 lists the performance of the jobs in GFLOPS. Any slowdown due to 
running multiple copies would be evidenced by decreasing values for GFLOPS 
as the number of jobs increases. However, the multiple job slowdown is very 
small in all cases, being only 11 percent when 32 concurrent jobs were run on a 
32-way pSeries 690 Turbo.

Table 8-3   Effects of running multiple copies of DGEMM

As can be calculated from Table 8-3, 32 copies of the same program achieve a 
total performance rate of 98.5 GFLOPS.

8.4.2  Multiple ABAQUS/Explicit job streams
ABAQUS/Explicit is a commercially available structural analysis code from HKS 
Inc. of Pawtuckett, Rhode Island. It uses an explicit (rather than implicit) solution 
technique and, therefore, does not perform heavy I/O or memory access 
operations. The jobs run were HKS’s seven standard timing tests, t1-exp through 
t7-exp and the time reported is the total elapsed time to run all seven.

In addition to running a single stream of jobs, four and then eight sets of the 
seven timing jobs were run concurrently on an eight-processor 1.3 GHz pSeries 
690 HPC (different from the 1.1 GHz machine used for most of the other 
measurements in this publication). The times for the three runs are shown in 
Table 8-4 and are the total elapsed seconds to complete all jobs. 

Number of jobs GFLOPS for 5000x5000 
REAL*8 matrices

Slowdown ratio to single job

1.3 GHz 32-way pSeries 690 Turbo

1 3.417 1

8 3.338 1.02

16 3.253 1.05

24 3.167 1.08

32 3.079 1.11
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These results show excellent throughput scaling from the pSeries 690 HPC for 
this application. The 8-stream run, using all processors, takes only 2 percent 
longer than a single-stream run.

Table 8-4   Multiple ABAQUS/Explicit job stream times

8.4.3  Memory stress effects on throughput
Compared with the previous sections that showed jobs with excellent total 
throughput, this section describes a worst case example of a job that is designed 
to stress memory as much as possible. Most production applications will stress 
memory significantly less than this. As will be explained, this study demonstrates 
the benefits of the pSeries 690 HPC models for high-memory stress applications.

A simple program was used consisting of repeated calls to a subroutine that 
executed the statement A(I)=B(I)+C(I)*D(I) in a loop. This code stresses memory 
in much the same way as the dot-product test reported in Section 8.2, “Memory 
bandwidth limited throughput” on page 157. The results presented here are 
consistent with those in that section but are presented in a way that focuses on 
the total throughput obtained by running multiple copies of the job.

Figure 8-5, Figure 8-6, and Figure 8-7 show the interactions between a number 
of jobs plotted as a function of the total amount of memory accessed by each 
program. Results are shown for a 16-way RS/6000 SP 375 MHz POWER3 SMP 
High Node, an 8-way pSeries 690 HPC and a 32 processor pSeries 690 Model 
681. First, these figures are discussed individually and then some overall 
conclusions are drawn.

Number of job stream Elapsed seconds Slowdown ratio to single stream

1 2439 1

4 2459 1.01

8 2488 1.02
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Figure 8-5   Job throughput effects on a 375 MHz POWER3 SMP High Node

Figure 8-6   Job throughput effects on an eight-way pSeries 690 HPC
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Figure 8-7   Job throughput effects on a 32-way pSeries 690 Turbo

� 16-way RS/6000 SP 375 MHz POWER3 SMP High Node

Each processor has a local 8 MB L2 cache. The times for multiple jobs start to 
exceed the single job time when the memory accessed by each job 
approaches this value.

� pSeries 690 HPC and pSeries 690 Model 681

On the pSeries 690 HPC, each processor has its own local L2 cache whereas 
on the pSeries 690 Turbo, even/odd pairs of processors share a local L2 
cache. To illustrate the effect of this, on the pSeries 690 Turbo, the 8 and 16 
job runs were done in two ways. The shared L2 cache runs were done with 
the jobs bound sequentially to processors. The non-shared L2 cache runs 
were done with the jobs bound only to even processors so that no two jobs 
were ever sharing the cache. The non-shared runs are expected to behave in 
the same way as a pSeries 690 HPC and it can be seen that the 8 jobs, 
non-shared L2 graph in Figure 8-7 (pSeries 690 Turbo) is very similar to the 
8 jobs graph in Figure 8-6 (pSeries 690 HPC).

Conclusions from the graphs
The following are the conclusions that may be developed from the graphs:

� The graphs for pSeries 690 Model 681 are more complicated than for 
RS/6000 SP 375 MHz POWER3 SMP High Node because of the presence of 
the Level 3 cache.
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� As a consequence of the pSeries 690 design, in which each processor has a 
powerful data prefetch engine plus full access the L3 cache and memory 
bandwidth on its MCM, it takes relatively few jobs as stressful at this to 
consume the system's resources. This design feature provides the maximum 
opportunity for a mixture of jobs with arbitrary resource demands to achieve 
the best possible system throughput. Once a system resource such as L3 
cache or memory bandwidth is fully consumed, however, adding more jobs to 
the system will not improve overall system throughput. This effect is seen on 
the pSeries 690 Model 681 around the point where each program accesses 
around 100 MB of data. This happens because of the shared L3 cache 
(256 MB on the two-MCM pSeries 690 HPC and 512 MB on the four-MCM 
pSeries 690 Turbo). Multiple jobs can be slowed down by spilling out of L3 
cache, necessitating additional accesses to main memory subsystem. 

� A similar shared-L2 cache effect can be seen on the three shared L2 lines on 
the pSeries 690 Turbo (Figure 8-7) around the point where the jobs access 
around 750 KB of memory and spill out of L2. The pSeries 690 HPC-like lines 
do not show any such effect.

� Throughput in the worst case region where the programs are working wholly 
outside any cache shows job times of approximately four times single job 
times for 32 jobs on a 32-way pSeries 690 Turbo, approximately two times for 
16 jobs on a 16-way pSeries 690 HPC, and approximately 1.5 times for 8 jobs 
on an 8-way pSeries 690 HPC.

� In general, throughput is expected to improve for this example with a future 
update to AIX 5L in which pages are allocated from memory attached to the 
MCM where the process is running, thus minimizing MCM-to-MCM traffic. 
(See 3.2.2, “Memory configurations” on page 53). 

� The benefit of the pSeries 690 HPC design over pSeries 690 Turbo for a 
memory stressing job mix is clear.

8.4.4  Shared L2 cache and logical partitioning (LPAR)
FIRE is a commercially available computational fluid dynamics (CFD) analysis 
code from AVL List GmbH, Austria (http://www.avl.com). There are optimized 
versions of FIRE available for scalar, vector, and parallel (shared and distributed 
memory) architectures. For the following study, the SMP Version V7.3, compiled 
with XLF 6.1 for the POWER3 platform, was used. 

AVL provides several standard test cases for benchmark purposes. In the 
following, the test cases water (water cooling jacket; 284,000 cells) and ext3d 
(external flow; 711,000 cells) are investigated. A sequential job needs about 
300 MB (water) or 620 MB (ext3d) of memory, respectively. FIRE is a memory 
bandwidth demanding application. The time for I/O is negligible.
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The following machines were used, which not only differ by clock frequency but 
also by memory speed and micro code level:

hpc 8-CPU pSeries 690 Model 681 HPC at 1.1 GHz (memory at 328 MHz)

turbo 32-CPU pSeries 690 Model 681 Turbo at 1.3 GHz (memory at 400 
MHz)

lpar 8-CPU pSeries 690 Model 681 HPC at 1.0 GHz 
(memory at 400 MHz, a development system, two logical partitions of 
four processors each)

Performance impact of shared versus non-shared L2 cache
The performance impact of a shared L2 cache can be studied when binding two 
threads of a two-CPU parallel job to two processors that either belong to the 
same POWER4 chip or to different chips. It turns out that the shared cache has 
very little impact on performance with respect to FIRE. Table 8-5 contains the job 
execution times on a pSeries 690 Model 681 Turbo.

Table 8-5   FIRE benchmark: Impact of shared versus non-shared L2 cache

Impact of partitioning on single job performance
Logical partitioning is expected to introduce a little overhead on memory access. 
However, it is possible to distribute a throughput workload across several LPARs 
in order to isolate single jobs or groups of jobs. Whether throughput performance 
can benefit from partitioning depends on how the physical resources are mapped 
onto the different LPARs. 

For the following benchmark a pSeries 690 Model 681 HPC system is divided 
into two LPARs. Each LPAR consists of one MCM (four CPUs). Only the MCM’s 
local memory was assigned to its LPAR (this configuration is not supported 
through standard hardware management console function, a system reset after 
an LPAR reconfiguration was required to achieve this through trial and error). 
Results for a single sequential job running in a LPAR are presented in Table 8-6. 
Timings normalized to 1.3 GHz are given in parentheses. Note, partitioning does 

Elapsed time [s] water ext3d

Sequential (pSeries 690 Turbo) 228.8 525.6

Two-CPU -- shared (pSeries 690 Turbo) 127.1 303.7

Two-CPU -- not shared (pSeries 690 Turbo) 125.9 297.8
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not degrade single job performance. A slight benefit was even observed, which 
might be close to the bounds of the experimental error. The benefit is likely due to 
the chosen memory affinity. The ratio between clock frequency and memory 
frequency also bias the measurement.

Table 8-6   FIRE benchmark: Uniprocessor, single job versus partitioning

Impact of partitioning on throughput performance
Running eight sequential FIRE jobs on an eight-way machine is the throughput 
scenario that puts the most stress on the memory subsystem. For the particular 
setup of this benchmark, it is observed that partitioning can reduce the 
interference between different processes of a throughput workload and therefore 
improve the throughput performance. The results are presented in Table 8-7. 
Timings normalized to 1.3 GHz are given in parentheses.

Table 8-7   FIRE benchmark: Throughput performance versus partitioning

Elapsed time [s] water ext3d

no LPAR
pSeries 690 HPC

260.1
(220.1)

627.0
(530.5)

LPAR 1 
(64-bit kernel)

274.9
(211.5)

648.8
(499.1)

LPAR 2 
(32-bit kernel)

283.0
(217.7)

659.2
(507.1)

Elapsed time [s] water ext3d

Single job, no LPAR
(pSeries 690 Turbo)

228.8 525.6

Single job, no LPAR
(pSeries 690 HPC)

260.1
(220.1)

627.0
(530.5)

Eight jobs, no LPAR
(pSeries 690 HPC)

452.8
(383.1)

1004.3
(849.8)

Four jobs using LPAR 2
LPAR 1 idle

415.9
(319.9)

905.6
(696.6)

Four jobs using LPAR 1 

Four jobs using LPAR 2

409.5
(315.0)

421.8
(324.5)

919.7
(707.5)

926.4
(712.6)
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8.5  Genetic sequencing program
A genetic sequencing program was run on a number of systems including 
POWER4 to determine relative performance. The program is written in C and 
comprises a mixture of floating-point arithmetic, character manipulation and file 
I/O. Table 8-8 lists performance results on the different systems. Use of 
POWER4 specific optimization provides a noticeable benefit compared to 
-qarch=com.

Table 8-8   Performance on different systems

8.6  FASTA genetic sequencing program
The FASTA program suite provides a number of utilities for local sequence 
alignment of DNA or protein sequences against corresponding sequence 
databases. The FASTA utility uses a fast, heuristic algorithm. The search utility 
uses a Smith-Waterman algorithm. Comparison tests for two well-known 
sequences, arp_arath (536AA) and metr_salty (276AA), were run against the 
Swiss-Prot Release 39 database using both algorithms. Note that these utilities 
do significant amounts of I/O. The sequence database is approximately 250 MB. 
Table 8-9 provides a single-processor performance comparison against 
POWER3.

Table 8-9   Relative performance of FASTA utilities

System and compiler flags Elapsed Time

POWER3 -O3 (375 MHz) 22m 21s

S80 -O3 (450 MHz) 45m 22s

POWER4 -O3 -qarch=com (1.3 GHz HPC) 11m 42s

POWER4 -O3 -qarch=pwr4 -qtune=pwr4 (1.3GHz HPC) 10m 42s

Sequence POWER3 POWER4 Speedup

arp_arath (fasta) 26.47 15.54 1.7

arp_arath(ssearch) 453.72 300.30 1.5

metr_salty(fasta) 20.84 12.09 1.7

metr_salty(ssearch) 230.45 153.03 1.5
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8.7  BLAST genetic sequencing program
BLAST (Basic Local Alignment Search Tool) is a suite of applications for 
searching DNA sequence databases. The BLAST algorithm makes pairwise 
comparisons of sequences, seeking regions of local similarity rather than optimal 
global alignment. BLAST 2.2.1 can perform gapped or ungapped alignments.

blastn DNA sequence queries can be performed against DNA sequence 
databases.

tblastn Protein sequence query performed against a DNA sequence database 
dynamically translated in all six reading frames.

As with the FASTA tests, the BLAST programs perform varying and typically 
significant amounts of I/O. Relative performance on POWER3 and POWER4 for 
blastn and tblastn are provided in Table 8-10 and Table 8-11, respectively:

Table 8-10   Blastn results

Table 8-11   Tblastn results

Query POWER3 POWER4 Ratio

nt.2655203 180 81 2.2

nt.3283410 70 31 2.3

nt,5764416 10 4 2.5

Query POWER3 POWER4 Ratio

nt.1177466 170 68 2.5

nt.129295 63 23 2.7

nt,231729 95 35 2.7
 Chapter 8. Application performance and throughput 169



170 POWER4 Processor Introduction and Tuning Guide 



Related publications

The publications listed in this section are considered particularly suitable for a 
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks” 
on page 173.

� RS/6000 Scientific and Technical Computing: POWER3 Introduction and 
Tuning Guide, SG24-5155

� Scientific Applications in RS/6000 SP Environments, SG24-5611

� AIX 5L Performance Tools Handbook, SG24-6039

Other resources
These publications are also relevant as further information sources:

� IBM RISC System/6000 Technology, SA23-2619

� XL Fortran for AIX User’s Guide, SC09-2866

� XL Fortran for AIX Language Reference, SC09-2867

� Optimization and Tuning Guide for Fortran, C, and C++, SC09-1705

� Accelerating AIX by Rudy Chukran, Addison-Wesley, 1998

� AIX Performance Tuning by Frank Waters, Prentice -Hall, 1996

� You can access all of the AIX documentation through the Internet at the 
following URL: http://www.ibm.com/servers/aix/library

The following types of documentation are located on the documentation CD 
that ships with the AIX operating system:

– User guides 

– System management guides 

– Application programmer guides 

– All commands reference volumes 

– Files reference 

– Technical reference volumes used by application programmers
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Referenced Web sites
These Web sites are also relevant as further information sources:

� AIX and RS/6000 SP manuals

http://www.ibm.com/servers/aix/library/techpubs.html

� MIO library

http://www.research.ibm.com/actc/Opt_Lib/mio/mio_doc.htm

� Watson Sparse Matrix Package (WSMP) 

http://www.cs.umn.edu/~agupta/wsmp.html

� AIX Bonus Pack

http://www.ibm.com/servers/aix/products/bonuspack

� CFD (computational fluid dynamics) application FIRE

http://www.avl.com

� SPPM

http://www.llnl.gov/asci_benchmarks/asci/limited/ppm/sppm_readme.html

� BLAS

http://www.netlib.org/blas

� LAPACK

http://www.netlib.org/lapack

� ATLAS

http://math-atlas.sourceforge.net

� MASS

http://www.rs6000.ibm.com/resource/technology/MASS

� ESSL

http://www-1.ibm.com/servers/eserver/pseries/software/sp/essl.html

� HKS Abaqus

http://www.abaqus.com

� SPEC

http://www.specbench.org

� TPC

http://www.tpc.org

� STREAM

http://www.cs.virginia.edu/stream
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http://www.ibm.com/servers/aix/products/bonuspack
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http://www.llnl.gov/asci_benchmarks/asci/limited/ppm/sppm_readme.html
http://www.netlib.org/blas
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http://www.specbench.org
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� NAS

http://www.nas.nasa.gov//NAS/NPB

How to get IBM Redbooks
Search for additional Redbooks or Redpieces, view, download, or order hardcopy 
from the Redbooks Web site:

ibm.com/redbooks

Also download additional materials (code samples or diskette/CD-ROM images) 
from this Redbooks site. 

Redpieces are Redbooks in progress; not all Redbooks become Redpieces and 
sometimes just a few chapters will be published this way. The intent is to get the 
information out much quicker than the formal publishing process allows.

IBM Redbooks collections
Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the 
Redbooks Web site for information about all the CD-ROMs offered, as well as 
updates and formats. 
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Special notices

References in this publication to IBM products, programs or services do not imply 
that IBM intends to make these available in all countries in which IBM operates. 
Any reference to an IBM product, program, or service is not intended to state or 
imply that only IBM's product, program, or service may be used. Any functionally 
equivalent program that does not infringe any of IBM's intellectual property rights 
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment 
specified, and is limited in application to those specific hardware and software 
products and levels.

IBM may have patents or pending patent applications covering subject matter in 
this document. The furnishing of this document does not give you any license to 
these patents. You can send license inquiries, in writing, to the IBM Director of 
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose 
of enabling: (i) the exchange of information between independently created 
programs and other programs (including this one) and (ii) the mutual use of the 
information which has been exchanged, should contact IBM Corporation, Dept. 
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions, 
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal 
IBM test and is distributed AS IS. The information about non-IBM ("vendor") 
products in this manual has been supplied by the vendor and IBM assumes no 
responsibility for its accuracy or completeness. The use of this information or the 
implementation of any of these techniques is a customer responsibility and 
depends on the customer's ability to evaluate and integrate them into the 
customer's operational environment. While each item may have been reviewed 
by IBM for accuracy in a specific situation, there is no guarantee that the same or 
similar results will be obtained elsewhere. Customers attempting to adapt these 
techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for 
convenience only and do not in any manner serve as an endorsement of these 
Web sites.
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Any performance data contained in this document was determined in a controlled 
environment, and therefore, the results that may be obtained in other operating 
environments may vary significantly. Users of this document should verify the 
applicable data for their specific environment.

This document contains examples of data and reports used in daily business 
operations. To illustrate them as completely as possible, the examples contain 
the names of individuals, companies, brands, and products. All of these names 
are fictitious and any similarity to the names and addresses used by an actual 
business enterprise is entirely coincidental.

Reference to PTF numbers that have not been released through the normal 
distribution process does not imply general availability. The purpose of including 
these reference numbers is to alert IBM customers to specific information relative 
to the implementation of the PTF when it becomes available to each customer 
according to the normal IBM PTF distribution process.

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc. in the United States and/or other 
countries.

Java and all Java-based trademarks and logos are trademarks or registered 
trademarks of Sun Microsystems, Inc. in the United States and/or other 
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of 
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United States 
and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel 
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed 
exclusively through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks 
owned by SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service 
marks of others
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acronyms

GAMGPRMASS

ABI Application Binary Interface

AFPA Adaptive Fast Path 
Architecture

AIX Advanced Interactive 
Executive

ANSI American National Standards 
Institute

APAR Authorized Program Analysis 
Report

API Application Programming 
Interface

ASCI Accelerated Strategic 
Computing Initiative

ASCII American National Standards 
Code for Information 
Interchange

ASR Address Space Register

AUI Attached Unit Interface

BCT Branch on Count

BIST Built-In Self-Test

BLAS Basic Linear Algebra 
Subprograms

BOS Base Operating System

CAD Computer-Aided Design

CAE Computer-Aided Engineering

CAM Computer-Aided 
Manufacturing

CATIA Computer-Graphics Aided 
Three-Dimensional 
Interactive Application

CDLI Common Data Link Interface

CD-R CD Recordable

CE Customer Engineer

CEC Central Electronics Complex

Abbreviations and 
© Copyright IBM Corp. 2001
CFD Computational Fluid 
Dynamics

CGE Common Graphics 
Environment

CHRP Common Hardware 
Reference Platform

CIU Core Interface Unit

CLIO/S Client Input/Output Sockets

CMOS Complimentary Metal-Oxide 
Semiconductor

CPU Central Processing Unit

CWS Control Workstation

D-Cache Data Cache

DAD Duplicate Address Detection

DAS Dual Attach Station

DASD Direct Access Storage Device

DFL Divide Float

DIMM Dual In-Line Memory Module

DIP Direct Insertion Probe

DMA Direct Memory Access

DOE Department of Energy

DOI Domain of Interpretation

DPCL Dynamic Probe Class Library

DRAM Dynamic Random Access 
Memory

DSA Dynamic Segment Allocation

DSE Diagnostic System Exerciser

DSU Data Service Unit

DTE Data Terminating Equipment

DW Data Warehouse

EA Effective Address

EC Engineering Change
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ECC Error Checking and 
Correcting

EEPROM Electrically Erasable 
Programmable Read Only 
Memory

EFI Extensible Firmware Interface

EHD Extended Hardware Drivers

EIA Electronic Industries 
Association

EISA Extended Industry Standard 
Architecture

ELF Executable and Linking 
Format

EPOW Environmental and Power 
Warning

ERAT Effective-to-Real Address 
Table

ERRM Event Response resource 
manager

ESID Effective Segment ID

ESSL Engineering and Scientific 
Subroutine Library

ETML Extract, Transformation, 
Movement and Loading

F/C Feature Code

F/W Fast and Wide

FBC Fabric Bus Controller

FDPR Feedback Directed Program 
Restructuring

FIFO First In/First Out

FLIH First Level Interrupt Handler

FMA Floating-point Multiply/Add 
operation

FPR Floating-Point Register

FPU Floating-Point Unit

FRCA Fast Response Cache 
Architecture

FRU Field Replaceable Unit

GAMESS General Atomic and 
Molecular Electronic Structure 
System

GCT Global Completion Table 

GFLOPS Billion FLoating-point 
Operations Per Second

GPFS General Parallel File System

GPR General-Purpose Register

HACWS High Availability Control 
Workstation

HiPS High Performance Switch

HiPS LC-8 Low-Cost Eight-Port High 
Performance Switch

HPF High Performance Fortran

HPSSDL High Performance 
Supercomputer Systems 
Development Laboratory

Hz Hertz

I-CACHE Instruction Cache

I/O Input/Output

I2C Inter Integrated-Circuit 
Communications

IA Intel Architecture

IAR Instruction Address Register

IBM International Business 
Machines

ID Identification

IDE Integrated Device Electronics

IDS Intelligent Decision Server

IEEE Institute of Electrical and 
Electronics Engineers

IETF Internet Engineering Task 
Force

IFAR Instruction Fetch Address 
Register

IHV Independent Hardware 
Vendor

IM Input Method
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INRIA Institut National de Recherche 
en Informatique et en 
Automatique

IPL Initial Program Load

IRQ Interrupt Request

ISA Industry Standard 
Architecture, Instruction Set 
Architecture

ISO International Organization for 
Standardization

ISV Independent Software Vendor

ITSO International Technical 
Support Organization

L1 Level 1

L2 Level 2

L3 Level 3

LAPI Low-Level Application 
Programming Interface

LED Light Emitting Diode

LFD Load Float Double

LID Load ID

LLNL Lawrence Livermore National 
Laboratory

LMQ Load Miss Queue

LP Linear Programming

LP64 Long-Pointer 64

LPP Licensed Program Product

LRQ Load Reorder Queue

LRU Least Recently Used

MASS Mathematical Acceleration 
Subsystem

MAU Multiple Access Unit

Mbps Megabits Per Second

MBps Megabytes Per Second

MCAD Mechanical Computer-Aided 
Design

MCM Multi-chip Module 

NCU Non-Cacheable Unit

MDI Media Dependent Interface

MES Miscellaneous Equipment 
Specification

MFLOPS Million FLoating-point 
Operations Per Second

MII Media Independent Interface

MIP Mixed-Integer Programming

MLD Merged Logic DRAM

MLR1 Multi-Channel Linear 
Recording 1

MODS Memory Overlay Detection 
Subsystem

MP Multiprocessor

MPI Message Passing Interface

MPP Massively Parallel Processing

MPS Mathematical Programming 
System

MST Machine State

NTF No Trouble Found

NUMA Non-Uniform Memory Access

NUS Numerical Aerodynamic 
Simulation

NVRAM Non-Volatile Random Access 
Memory

NWP Numerical Weather Prediction

OACK Option Acknowledgment

OCS Online Customer Support

ODBC Open DataBase Connectivity

OEM Original Equipment 
Manufacturer

OLAP Online Analytical Processing

OLTP Online Transaction 
Processing

OSL Optimization Subroutine 
Library

OSLP Parallel Optimization 
Subroutine Library

P2SC POWER2 Single/Super Chip
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PBLAS Parallel Basic Linear Algebra 
Subprograms

PCI Peripheral Component 
Interconnect

PDT Paging Device Table

PDU Power Distribution Unit

PE Parallel Environment

PEDB Parallel Environment 
Debugging

PHB Processor Host Bridge

PHY Physical Layer 

PID Process ID

PII Program Integrated 
Information

PIOFS Parallel Input Output File 
System

PMU Performance Monitoring Unit

POE Parallel Operating 
Environment

POSIX Portable Operating Interface 
for Computing Environments

POST Power-On Self-test

POWER Performance Optimization 
with Enhanced Risc 
(Architecture)

PPC PowerPC

PPM Piecewise Parabolic Method

PSE Portable Streams 
Environment

PSSP Parallel System Support 
Program

PTF Program Temporary Fix

PTPE Performance Toolbox Parallel 
Extensions

PVC Permanent Virtual Circuit

QP Quadratic Programming

RAM Random Access Memory

RAN Remote Asynchronous Node

RAS Reliability, Availability, and 
Serviceability

RFC Request for Comments

RIO Remote I/O

RIPL Remote Initial Program Load

RISC Reduced Instruction-Set 
Computer

ROLTP Relative Online Transaction 
Processing

RPA RS/6000 Platform 
Architecture

RPL Remote Program Loader

RPM Red Hat Package Manager

RSC RISC Single Chip

RSCT Reliable Scalable Cluster 
Technology

RSE Register Stack Engine

RSVP Resource Reservation 
Protocol

RTC Real-Time Clock

SAR Solutions Assurance Review

SAS Single Attach Station

ScaLAPACK Scalable Linear Algebra 
Package

SCB Segment Control Block

SCO Santa Cruz Operations

SDQ Store Data Queue

SDRAM Synchronous Dynamic 
Random Access Memory

SEPBU Scalable Electrical Power 
Base Unit

SGI Silicon Graphics Incorporated

SHLAP Shared Library Assistant 
Process

SID Segment ID

SIT Simple Internet Transition

SLB Segment Look-aside Buffer, 
Server Load Balancing
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SLIH Second Level Interrupt 
Handler

SLR1 Single-Channel Linear 
Recording 1

SM Session Management

SMB Server Message Block

SMI System Memory Interface

SMP Symmetric Multiprocessor

SOI Silicon-on-Insulator

SP Service Processor

SP IBM RS/6000 Scalable 
POWER Parallel Systems

SP Service Processor

SPCN System Power Control 
Network

SPEC System Performance 
Evaluation Cooperative

SPM System Performance 
Measurement

SPR Special Purpose Register

SPS SP Switch

SPS-8 Eight-Port SP Switch

SRQ Store Reorder Queue

SRN Service Request Number

SSA Serial Storage Architecture

SSC System Support Controller

SSQ Store Slice Queue

SSL Secure Socket Layer

STE Segment Table Entry

STFDU Store Float Double with 
Update

STP Shielded Twisted Pair

STQ Store Queue

SUID Set User ID

SUP Software Update Protocol

SVC Switch Virtual Circuit

SVC Supervisor or System Call

SYNC Synchronization

TCE Translate Control Entry

Tcl Tool Command Language

TCQ Tagged Command Queuing

TGT Ticket Granting Ticket

TLB Translation Lookaside Buffer

TOS Type Of Service

TPC Transaction Processing 
Council

TPP Toward Peak Performance

TTL Time To Live

UDI Uniform Device Interface

UIL User Interface Language

ULS Universal Language Support

UP Uniprocessor

USLA User-Space Loader Assistant

UTF UCS Transformation Format

UTM Uniform Transfer Model

UTP Unshielded Twisted Pair

VA Virtual Address

VESA Video Electronics Standards 
Association

VFB Virtual Frame Buffer

VHDCI Very High Density Cable 
Interconnect

VLAN Virtual Local Area Network

VMM Virtual Memory Manager

VP Virtual Processor

VPD Vital Product Data

VPN Virtual Private Network

VSD Virtual Shared Disk

VT Visualization Tool

XCOFF Extended Common Object 
File Format

XLF XL Fortran
 Abbreviations and acronyms 181
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Index

Symbols
   70

Numerics
32-bit

large page support   60
64-bit

performance, integer   91

A
ABAQUS/Explicit   161
addi instruction   9
addic instruction   92
address

effective   57
real   57
translation   56
virtual   57

affinity
memory   53, 60

AGEN cycle   14
AIX

5.1   58
AIXTHREAD_SCOPE   127
ALLOCATABLE

Fortran   89
application

FIRE   165
sPPM   136

application tuning
memory   34
numerically intensive   26

applications
large page   60

argument
by reference, by value   89

array
order in memory   34

arrays
C

element order   95
dimension   100
© Copyright IBM Corp. 2001
Fortran
element order   95

subscripts   96
ASCI

benchmark   136
assembler   41, 85

documentation   88
instructions   85
standard instructions   80

ASSERT   82
asynchronous I/O   108, 120
ATLAS   114
automatic parallelization   130
AVL

FIRE   165
AWE   159

B
bandwidth   148

64-bit   92
barrier   144

PThreads   140
binding

process, to a processor   149
bindprocessor command   158
BLAS   113, 115
BLAST   169
blocking   38
bosboot command   67
branch prediction   12
buffered I/O   109, 120
built-in self test   7

C
C

array order in memory   34
arrays

element order   95
compiler options   69
directives

#pragma disjoint   94
C/C++

virtual functions, performance   90
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volatile   90
cache

bandwidth   148
blocking   38
considerations   28
false sharing   144
interference   148
L1   28
L2   30
L2 slices   30
latency   32
lines   29
set associativity   29
shared   148
shared, L2   165
structure   27

cache considerations   28
cache miss

L2   31
cache misses

avoiding   38
CACHE_ZERO   83
CFD

FIRE   165
chdev command   66
Cholesky factorization   122
chuser command   61
CNCALL   82
commands

bindprocessor   158
bosboot   67
chdev   66
chuser   61
dump   60
fdpr   73
filemon   52
gprof   111
iostat   52
ldedit   60
limit   54
lsps   62
mkuser   61
netpmon   52
netstat   52
nfsstat   52
prof   111
ps   61
svmon   52, 60, 61
svmon command   61

topas   109
tprof   111
ulimit   54
vmstat   52, 61, 108
vmtume   63
vmtune   52, 61, 63, 67
xprofiler   112

communication
protocol   134

compiler directive
Fortran

ASSERT   82
CACHE_ZERO   83
CNCALL   82
INDEPENDENT   82
LIGHT_SYNC   83
PERMUTATION   82
PREFETCH_BY_LOAD   81
PREFETCH_FOR_LOAD   82
PREFETCH_FOR_STORE   82
UNROLL   82

compiler directives
Fortran   80
loop-related   82
prefetch   81

compiler option
C

-qalias   75
-qarch   80
-qfold   75
-qinline   75
-qlist   84
-qsmp   74
-qunroll   75

C++
-qsmp   74

Fortran   74
-g   74
-O   70
-O2   70
-O3   70
-O5   70
-p   74
-pg   74
-Q   74
-qalias   72
-qalign   72
-qarch   71
-qassert   72
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-qcache   71
-qcompact   73
-qfdpr   73
-qhot   72, 76
-qipa   73
-qlibansi   74
-qlibessl   74
-qlist   84
-qnozerosize   74
-qpdf   73
-qsmp   73
-qstrict   73
-qstrict_induction   73
-qtune   71
-qunroll   73

-O   90
-Q   90
-q64   91
-qalign   90
-qarch   168
-qintsize   92
-qipa   90
-qlist   91

compiler options   69
Fortran

conflicting   69
POWER4 specific   75
recommended   79

compilers
comparing code generation   79

congruence class   29
CONTAINS, Fortran

Fortran   89
copy

performance   155
core interface unit (CIU)   6
counters   105
critical sections   133

D
daemon, page replacement   65
dangling pointer   142
data

sources of   105
data prefetch   31, 35
DAXPY   79
dcbz instruction   83
DDOT   79

DGEMM   161
single processor   116
SMP parallel   117

dimension
arrays   100

direct I/O   108
directives

C
#pragma disjoint   94

distributed
memory, MPI   133

dump command   60
dynamic threads   128

E
effective address   57
effective address (EA)   13
effective-to-real address table (ERAT)   13
eigenvalue   113
environment variables

SMP   127
ESSL   114
events   102
executable format   60
execution unit

floating point   32
expressions

Fortran   94

F
fabric controller   7
false sharing   144
FASTA   168
fdiv instruction   15
fdivs instruction   15
fdpr command   73
fetch_and_add   135
filemon command   52
FIRE

computational fluid dynamics   165
First Failure Data Capture   7
floating point operation   32
floating point registers   32
floating point unit   32
FMA   33
fork

process   150
format
 Index 185



executable   60
Fortran

ALLOCATABLE   89
array order in memory   34
arrays

element order   95
automatic parallelization   130
coding tips   89
compiler directive   80

ASSERT   82
CACHE_ZERO   83
CNCALL   82
INDEPENDENT   82
LIGHT_SYNC   83
PERMUTATION   82
PREFETCH_BY_LOAD   81
PREFETCH_FOR_LOAD   82
PREFETCH_FOR_STORE   82
UNROLL   82

compiler options   69
CONTAINS   89
directives

prefetch   81
I/O   109
INCLUDE   90
INTENT   89
intrinsic functions

vectorized   76
module   89
option precedence   69
WHERE   89

FPU   32
fres instruction   16
frsqrte instruction   16
fsel instruction   16
fsqrt instruction   15
fsqrts instruction   15

G
general sparse system of linear equations   122
genetic

sequencing   168
global

const   90
variables, thread   140

global completion table (GCT)   10
gprof command   111
group completion (GC) stage   9

group operations
MPI   134

groups   102
GX bus controller   6

H
hand tuning   26
hardware prefetch   31

prefetch, hardware   21
High Node, 375 MHz   162
hot spots

locating   110
hybrid

programming   135

I
I/O

asynchronous   108
buffered   109
direct   108
Fortran   109
optimizing   120
paging   108
performance   120
tuning   107
unbuffered   109

I/O library, MIO   120
I/O pacing   65
IBM

SP   159
switch   159

INCLUDE
Fortran   90

INDEPENDENT   82
induction variable   92
inlining   90, 95
instruction   85
instruction fetch address register (IFAR)   9
instruction set

documentation   88
instructions

standard   80
integer

performance   91
interference

cache   148
interleaving   53
intrinsic functions   98, 114, 117
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Fortran
vectorized   76

invariant functions   97
iostat command   52
issue queues   10
issue stage (ISS)   11

L
L1 data cache   28, 32

structuring for   38
L2 cache   30, 32, 148

miss   31
store   30, 51

L2 cache slices   30
L3 cache structure   22
LAPACK   113
large page   158

applications   60
data inheritance   60
usage control   61
vmtune   61

large page data   59
large page memory

defining   67
large pages   58

pinned   60
latency

MPI   136
ldedit command   60
library

MIO   120
WSMP   122

library, tuned   114
libsys.a

semaphore   150
LIGHT_SYNC   83
light-weight synchronization   83
limit command   54
lmw instruction   10
load instruction

data load   30
load miss queue (LMQ)   14
load reorder queue (LRQ)   14
load-balancing

thread programming   137
loadquad instruction   80
local

variables, thread   140

lock   128
atomic   150
contention   143
mutex   140

logical
partitioning   165

loops
locating   87
performance   95
stride   95, 97
unrolling   86
variables   96

low level parallelization   129
LPAR   107, 165
lrubuckets   65
lrud   65
lsps -a command   62
lswi instruction   10

M
malloc   128
MALLOCMULTIHEAP   128
mapping (MP) stage   11
MASS   114, 117
math.h   89
mathematical functions   114
matrix

WSMP library   122
matrix multiply   44
max_coalesce   66
max_pout   65
maxfree   65
maxperm   63
maxpgahead   65, 66
maxrandwrt   66
MCM

partitioning, LPAR   166
memory

affinity   53
book   53
configuration   53
controller   53
interleaving   53

memory affinity   60
memory bandwidth   153, 157
memory copy   155
mempools   65
merged logic DRAM   5
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message passing   133
WSMP library   122

mfxer instruction   10
millicoded instructions   9
min_pout   65
minfree   65
minimization, stride   34
minperm   63
minpgahead   66
MIO library   120
mixed-mode

programming   135
mkuser command   61
module

Fortran   89
monitoring

I/O   120
MP_SHARED_MEMORY   135
MP_WAIT_MODE   135
MPI   159

parallelization   133
msem_   150
mtcrf instruction   10
mtxer instruction   10
multi-chip module (MCM)   18
multifrontal algorithm   122
multiple jobs   161
multiply-and-add instruction   8
mutex lock   140

N
netpmon command   52
netstat command   52
nfsstat command   52
non-cacheable unit (NCU)   6
nroff   80
NUMA   126
number of processors, online   139
numclust   66
numerically intensive applications   26

O
-O flags   70
O3 fortran option   70
object code   84

instructions   85
locating loops   87

OpenMP   126

critical section   144
false sharing   144
overhead   146
Pthreads   142
threadprivate   146

operation
floating point   32

optimization
see also performance
see also tuning
intrinsic functions   98
invariant statement   97
reciprocal multiply   99

optimizer   79
outer loop unrolling   41
overhead

parallel, OpenMP   146

P
P2SC   2
page replacement daemon   65
page size   54
page table   55, 58
page table entry   55
pages

large   58
paging   108
parallel

overhead, OpenMP   146
Parallel Environment   134
Parallel ESSL   114, 115
parallelization

automatic   130
comparison   147
directive based SMP   131
general   125
high level   129
low level   129
MPI   133
overhead   133
Pthreads   137
shared memory   126

partitioning   165
performance   166

PCI Host Bridge (PHB)   23
PE   134
Peak Megaflops   33
performance
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see also optimization
see also tuning
64-bit   91
array dimension   100
cache   150
coding tips   88
comparative   159
function arguments   89
I/O   120
inlining   90
integer arithmetic   91
intrinsic functions   98
invariant statement   97
lock contention   143
loops   95

unrolling   86
math.h   89
non numeric code   80
reciprocal multiply   99
semaphores   150
shared cache   166
string operations   89
threads   143
total system   161
variation   67

performance monitor   23, 101
events   102
groups   102
pmcount   101

performance monitoring unit (PMU)   7
PERMUTATION   82
pinned memory   60
pipeline

floating point   33
POWER4   9

pmcount   101
POE   134
pointer

dangling   142
pointers   94
POSIX

I/O   121
power on reset   7
POWER1   1
POWER2   2
POWER3   4, 159
POWER4

block diagram   8
caches   27

chip   6
introduction   4
memory subsystem   20
overview   5
performance characteristics   27
performance monitor   23

PowerPC 601   2
PowerPC 603   3
PowerPC 604   3
PowerPC 604e   3
prefetch   31, 35
PREFETCH_BY_LOAD   81
PREFETCH_FOR_LOAD   82
PREFETCH_FOR_STORE   82
prefetching

I/O   120
large pages   58

process scope   127
processor

introduction   4
POWER4 details   5

processor, online   139
prof command   111
profiling   110
program counter

thread programming   137
programming

model, MPI   135
protein

sequencing   168
ps command   61
pthread_create   138
Pthreads

detached   139
Fortran   142
joinable   139
OpenMP   142
programming   137
pthread_cancel   139
pthread_exit   139
pthread_mutex_t   145
thread creation   138, 143
thread termination   139

Q
qarch fortran option   70
qcache fortran option   70
qhot fortran option   70
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qipa fortran option   70
-qlibposix   74
qtune fortran option   70

R
read command queue   20
real address   57
reciprocal approximation   118
reciprocal multiply   99
Redbooks Web site   173

Contact us   xiv
reduction sum   133
register

physical   32
rename   32
segment   54
spilling   41
thread programming   137
usage in assembler listing   85

registers   32
renaming   32
runtime variables

SPINLOOPTIME, YIELDLOOPTIME   143

S
ScaLAPACK   115
scaling   160
scaling, MPI   159
scheduling, thread   131
scope, process   127
scope, system   127
scope, thread contention   127
segment addressing   54
segment lookaside buffer   57
segment look-aside buffer (SLB)   13
segment table entry (STE)   13
semaphore   150

sleep versus spin   151
sequencing

genetic   168
serialization, threads   140
set associativity   29
shared

cache   148
L2 cache   165
memory segment   134
memory, MPI   133
memory, Pthreads   137

parallelization, shared memory   126
shared L2 cache   158
size

apparent cache size   148
SLB   57
sleep

versus spin   151
slice queue (SSQ)   15
slices, L2 cache   30
small page   158
small pages   58
Smith-Waterman

algorithm   168
SMP

runtime variables   143
SP switch   134
sparse matrix

WSMP library   122
special purpose register (SPR)   15
speculative-execution   11
spilling   41
spin

versus sleep   151
spin wait   126
SPINLOOPTIME   128, 143
sPPM

code   136
stack

size, OpenMP   129
thread programming   137

storage slice queue (SSQ)   15
store queue (STQ)   15
store reorder queue (SRQ)   14
store-in   30
store-through   30
strict_maxperm   64
stride   34, 95, 97
string operation

performance   89
superscalar execution   8
svmon command   52, 60, 61
synchronization   135
synchronization, threads   140
sysconf   139
System Memory Interface (SMI)   20
system performance   61
system scope   127
system tuning   54
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programming, see Pthreads   137
scheduling   131
shared cache   148

thread contention scope   127
thread safe   129, 131
threads   126
threadsafe   146
throughput   157, 160, 161, 162

I/O   120
partitioning, LPAR   165

TLB   31
large pages and   58

topas command   109
tprof command   111
trace file

I/O   121
Translation Lookaside Buffer   31
translation look-aside buffer (TLB)   13
translation lookaside buffer (TLB)   31
translation, address   56
triangular matrix solver   122
tuning

see also optimization
see also performance
application   25
application memory   34
floating point   40
for cache   38, 51
I/O   65, 107

vmtune   66
inlining   90
page replacement   63
system   54
VMM   63, 65

type conversion   95

U
ulimit command   54
unbuffered I/O   109
UNROLL   82
unrolling   41
user space

protocol   134

V
variables   93

global, thread   140
local, thread   140
loop   96

vector intrinsics   76
virtual address (VA)   13, 57
virtual memory   54
VMM tuning   63
vmstat command   52, 61, 108
vmtune command   52, 61, 63, 65, 66, 67

W
Watson Sparse Matrix Package (WSMP)   122
WHERE

Fortran   89
write cache queue   20
write command queue   20
write-behind   66
WSMP library   122

X
XLSMPOPTS   129
xprofiler   112
xprofiler command   112

Y
yield wait   126
YIELDLOOPTIME   128
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