UNIX System Services
z/0S Version 1 Release 7
Implementation

z/0S UNIX overview

-~
z/0S UNIX setup

z/0S UNIX usage

ibm.com/redbooks Red h OOkS

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

UNIX System Services z/OS Version 1 Release 7
Implementation

March 2006

SG24-7035-01

Note: Before using this information and the product it supports, read the information in “Notices” on
page xiii.

Second Edition (March 2006)

This edition applies to Version 1 Release 7 of z/OS (5637-A01), and Version 1, Release 7 of z/OS.e (5655-G52), and to all
subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2003, 2006. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Contents

NOtICES ... Xiii
Trademarkso e Xiv
Preface XV
The team that wrote thisredbook. XV
Become a published author Xvi
Comments WEICOME.t XVii
Chapter 1. UNIX overview. e e 1
1.1 UNIXfundamentals. e 2
1.1.1 UNIXobjectives e 2
1.1.2 What people like about UNIX 2
1.1.3 What people don’tlike about UNIX. 3
1.1.4 UNIX operating system 3
1.1.5 UNIXfile system 4
1.1.6 Parameterfiles e 6
1.1.7 DaBmMONS. . . 6
1.1.8 Accessing UNIX e 6
1.1.9 UNIX standards. 7
1.1.10 MVS and UNIX functional comparison, 8
1.2 z/OS UNIX System Services fundamentals 9
1.21 Dubandundub e 10
1.2.2 Z/OS UNIDX SUPPOIt . . .ot e e e e 10
1.2.3 Interaction with elements and features of zZ/OS 11
1.2.4 Hardware considerations e 14
1.2.5 Configuration parameters i e 15
1.2.6 Z/OS UNIXfile system. 15
1.2.7 AdAresSs SPaCESot t 22
1.2.8 Accessing zZ/OS UNIX o 22
1.2.9 What people like about ZZOS UNIX. e 23
1.2.10 What people don’t like about ZZOSUNIX 23
1.3 z/OS UNIX System Services release history. i L. 23
1.3.1 MVS/ESA VAR - 1994 e e e 24
1.3.2 MVS/ESA VERT - 1994 e 24
1.3.3 MVS/ESA VER2M2 - 1995 e e 25
1.3.4 OS/390 VIRT - 1996.t e e 25
1.3.5 OS/390 VIR2 - 1996.ot e 25
1.3.6 OS/390 V1IR3 - 1997, . . .o it e e e 25
1.3.7 OS/390 V2R4 - 1097 oo e e 25
1.3.8 OS/890 V2R5 - 1998, i e 26
1.3.9 OS/390 V2R6 - 1998.ottt e 26
1.3.10 OS/390 V2R7 - 1999.t e e e 26
1.3.11 OS/B90 V2R8 - 1999. e e 27
1.3.12 OS/B90 V2RO - 2000. . . . vttt e e e e e e 28
1.3.13 OS/390 V2R10 - 2000.ottt e it e e e e e 32
1.3.14 OS/390 V2R10 - 2000 Software Refresh 34
1.3.15 ZIOS VIRT - 2007ot e 35
1.3.16 ZIOS VIR2 - 2007ot e 35
1.3.17 ZIOS VARG - 2002. . . . oo 37

© Copyright IBM Corp. 2003, 2006. All rights reserved. iii

iv

1.3.18 ZIOS VIR4 - 2002.o 40

1.3.19 ZIOS VIRS - 2004. . . . oo 44
1.3.20 ZIOS VIR6 - 2004. . . .o oot e 44
1.3.21 ZIOS VIR7 - 2005. . . . oot 44
1.4 IBM exploitation of z/OS UNIX System Services 45
1.5 Additional material for this Redbook 46
Chapter 2. Installation. 47
2.1 Introductiono 48
2.2 Activating z/OS UNIX in minimummode. i i 49
2.2.1 Step1-Createthe OMVS procedure.o it 49
2.2.2 Step 2 - Create the BPXOINIT procedure. 49
2.2.3 Step 3-Establishsecurity 50
2.2.4 Step 4 - Customize IEASYSXX . ..o it e 51
2.2.5 Step B - IPL . .. 52
2.3 Activating z/OS UNIX in full functionmode. i 53
2.3.1 Step 1-Createthe OMVS procedure. it .. 54
2.3.2 Step 2 - Create the BPXOINIT procedure.t 54
2.3.3 Step 3- Createthe BPXAS proceduret 55
2.3.4 Step 4 -Establishsecurity 55
2.3.5 Step5-Create HFSdatasets i 57
2.3.6 Step 6 - Customize BPXPRMXX . . . o .v it e 58
2.3.7 Step 7 - Customize ALLOCXX oottt e e 67
2.3.8 Step 8 - Customize COFVLEXX.ot e 67
2.3.9 Step 9 - Customize CTNBPXXX. . . . ottt 68
2.3.10 Step 10 - Customize IEADMROO.o e 68
2.3.11 Step 11 - Customize SMFPRMXX e e 68
2.3.12 Step 12 - Customize IEASY SXX . . .o oo it e 69
2.3.18 Step 13- P . .o e 69
2.3.14 Step 14 - Customize /etc/init.options. i 72
2.3.15 Step 15-Customize /etC/rC. e 76
2.3.16 Step 16 - Customize /etc/profile 78
Chapter 3. Establish security forZZOSUNIX. 81
3.1 Superuser authority. e 82
3.1.1 Defining superusers with appropriate privileges 82
3.1.2 Using the UNIXPRIV class profiles.o 83
3.1.3 Using the BPX.SUPERUSER profile. 84
3.1.4 Switchtosuperusermodet 84
3.1.5 Assigninga UID of 0.o e 87
3.1.6 Managing UIDsSo e 88
3.2 Creating a RACF environment for products and subsystems. 89
3.2.1 RACF group Structure e 90
3.22 CreatinguserIDs 91
3.2.3 Systemdatasetprofiles e 92
B.2.4 OWNEISNID. . . e e 92
3.3 The RACF database and zZZOS UNIX e 92
3.4 Identity mapping with VLF and UNIXMAP 93
3.4.1 VLF PARMLIB definitions oo e 94
3.4.2 Populating and activating the UNIXMAP class 94
3.5 Application identity mapping 96
3.5.1 RACF IRRIRAOO utilityo e 96
3.5.2 AIM conversion considerations. i e 98

UNIX System Services z/OS Version 1 Release 7 Implementation

3.5.3 Recovering fromerrors with AIM. 100

3.6 RACF utilities and IRRIRAQDot 101
3.7 Defining and managing z/OS UNIX users and groupsovuuneenn... 102
3.7.1 Superuserauthority. 103
3.7.2 Authentication and authorization of users to ZZOSUNIX 104
3.7.3 Defining users and groupsttt e 105
3.7.4 Group access considerations 108
3.7.5 Defining protected user IDsfor STCs i 108
3.8 Useraccesstothe zZZOS UNIXshell i 109
3.8.1 Defineausersfilesystem i, 109
3.8.2 Enteringthe shellfrom TSO/E 110
3.8.3 Entering the shellfromrlogin i 111
3.8.4 Enteringthe shellfromtelnet 111
3.8.5 Setting z/OS UNIX resource limitsforusers. 112
3.8.6 Support forlowercase userIDs. 113
3.8.7 Setting up field access level for OMVS segment 114
3.9 UNIXPRIV class enhancements e 114
3.10 Shared UIDs and GIDSottt e e 115
3.10.1 Automatic UID and GID assignment. 115
3.10.2 Shared UIDand GID prevention. i, 119
3.10.3 SHARED keyword to allow duplicate UID and GID. 120
3.11 Protecting filesinthefilesystems. 120
3.11.1 File and directory access 121
3.12 Creating and managing files and directories. 123
3.12.1 Setting the permissionbits 123
3.12.2 Settingthe UIDand GIDt e 125
3.12.3 Change of file ownership 127
3.12.4 Changing permissionbits 128
3.12.5 Setuid, setgid, and sticky bits 129
3.13 File and directory accesscheckingo 130
3.13.1 Controlling access to files for administrators. 130
3.13.2 Controlling accesstofileswith RACF. 131
3.14 Access control lists (ACLS)o e e 134
3141 ACL entrieso e 134
3.14.2 Z/OS UNIXVIR3 ACL OVEIVIEW . . . oottt e e 134
3.14.3 FSP and access control lists. i 135
B3.14.4 ACL MapPIiNg . . ottt e 135
3.14.5 ACLiInheritance i e 136
3.15 Creating and accessing ACLS. oottt 136
3.15.1 Authoritytocreate ACLS. i e 137
3.15.2 Controlling access to files having ACLs for administrators. 137
3.15.3 RACF authorization checking flow with ACLs. 138
3.16 Defining ACLs from the ZZOS UNIXshell it 139
3.16.1 Define allthree ACLtypes ... e 140
3.16.2 Example of ACL inheritance i 141
3.17 Defining ACLs fromthe ISHELL i, 143
3.17.1 ISHELL panels to display and define ACLS 144
3.17.2 The IRRHFSU utility and ACLS.t e 149
3.17.3 Modified commands with ACL support, 149
3.17.4 Using ACLS iN @ SYSPleXo ittt 151
3.18 Daemons and SECUIYottt e 151
3.18.1 Security environmentfordaemons i 153
3.18.2 UNIX-level SeCUrityo e e 153

Contents v

Vi

3.19 z/OS UNIX level security fordaemons, 154

3.19.1 BPX.DAEMON FACILITY classprofile. 154
3.19.2 RACF program control protection. 155
3.19.3 Enhanced program security mode zZOSV1IR4 158
3.19.4 z/OS UNIX highest level of securityexample 161
3.19.5 Definingdaemon security i e 162
3.20 File security packetextattrbits 162
3.20.1 External attribute bits (extattrbits) i 163
3.21 Usingsanction lists e 165
3.21.1 Creatingasanctionlist i 165
3.22 SEeCUINtY fOr SBIVEIS . . . e e 166
3.22.1 The pthread_security_np() callable service 167
3.22.2 Establishing the correct level of security forservers. 167
3.22.3 Two levels of z/OS UNIX security forservers. 168
3.23 Checking authority to use protected resources., 169
3.23.1 Limitations of RACF client ACEE support.o, 170
3.23.2 Defining servers to use thread-level security 170
3.23.3 Defining servers to process users without passwords 171
3.24 Security for operationsin zZZ OSUNIX 172
3.24.1 BPX.SAFFASTPATH e 173
3.24.2 BPX.JOBNAME e 174
3.24.3 BPX.STOR.SWAP . .. 174
3.24.4 BPXWLMSERVER 174
3.24.5 Security for ServerPac and CBPDOinstall.. 175
3.25 Auditing for ZZOS UNIXo 177
3.25.1 Settingup auditcontrols 179
3.25.2 Auditing access to files and directories. L 180
3.25.3 Specifying file auditoptions 181
3.25.4 Commands to activate auditing. i 182
3.25.5 Usingthe chauditcommand i 182
3.25.6 Auditing for superuser authority in the UNIXPRIV class. 183
Chapter 4. Overview and customization of TCP/IP forzZOSUNIX 185
4.1 Overview of TCP/IP. . ..o e e 186
4.2 Customizing and starting TCP/IP 189
4.2.1 Using the z/OS TCP/IP configuration wizardonthe Web. 190
4.2.2 TCP/IP data sets and configurationfiles. 190
4.2.3 Implementing the samplesystem 198
4.3 Customizing forinetd and rloginddaemons 201
4.3.1 Customize inetd e 202
4.3.2 Customizing the rloginddaemon. i 204
4.4 Define TCP/IP daemoOns oottt e e 206
4.4.1 Syslogd daemon e 207
4.42 Otelnetd daemon i e 208
4.4.3 REXECD and RSHD SEIVErSt e i 211
4.4.4 FTPD daemon. oot e e e 212
445 Start daemons. e 214
4.5 SMTP SeIVer . . o o 215
4.6 Sending e-mail using SMTP commands. 216
4.7 Customizingand starting NFS 217
4.7.1 Configuringthe ZZOSNFSclient. 217
4.7.2 Configuringthe ZZOS NFS server e e 219
4.7.3 Security settings for the z/OS NFS environment. 223

UNIX System Services z/OS Version 1 Release 7 Implementation

Chapter 5. 2/OS Distributed File Service zSeries File System (zFS) 229

5.1 ZFSintroduction e 230
5.2 Application programming interfaces (APIS). 230
5.3 zFS physical file system 231
5.4 ZFS colony address SPaCe v ittt e 232
5.5 zFS supports ZIOS UNIX ACLS.ot e 232
5.6 zFSfile systemaggregates. 233
5.6.1 Compatibility mode aggregates. i 233
5.6.2 Multi-file system aggregates. 234
5.7 Metadata cache. 235
5.8 zFSfile system clones 235
5.8.1 Backupfilesystem e 236
5.9 ZFS 10g files. . . oo 236
510 ZFS rBCOVEIY . . ottt 236
5.11 Additional information 236
Chapter 6. USS sysplexsharing i, 237
6.1 USS sysplex sharing design e 238
6.2 USSfile systemstructures 239
6.2.1 SymboliC liNKS 239
6.2.2 Single system image OS/390 V2R9orlater............ 240
6.2.3 USS enhancements in case of sysplexsharing 241
6.2.4 USS file system structuresinasysplex 242
6.2.5 New or changed BPXPRMxx statements 242
6.2.6 The UNIX sysplex sharing structures 243
6.3 USSfile systemsharing 251
6.3.1 Logical and physical file system relationship 252
6.3.2 Shared USS coupledataset. 254
6.3.3 USSfile system recovery et e 255
6.4 Automove system list 256
6.4.1 Automove system list specification. 256
6.4.2 Changing an automove systemlist......... 259
6.5 Showing all USS file sharing structures forasystem 260
6.6 USS file system sharing implementation. 260
6.6.1 Creating and defining the USS couple datasets 261
6.6.2 Creating the USS sysplexrootfilesystem 262
6.6.3 Creating the USS system-specific filesystem. 263
6.7 Additional notes and comments 263
6.7.1 Using TFS filesystype in a colony addressspace. 263
6.8 Effects of USS sysplexsharing. i 264
6.8.1 How USS sysplex sharing affects mounttimes. 265
6.9 Shared HFS unmountoption. 265
6.9.1 UNMOUNT Option.ot e et e e e e 266
6.10 Mount table limit monitoring 268
6.11 Shared HFS support for the confighfscommand 272
6.12 Byte-range locking in a shared HFS environment. 272
6.13 Deciding whether to keep or to unmounta versionroot 274
6.14 Replacing the sysplex root without IPLing any system. 275
6.15 USS file systems for licensed program products., 278
6.15.1 Using a directory mount pointin/usr/lpp.o i 278
6.15.2 Solution 1, using symbolic linksin/usr/lpp i 282
6.15.3 Solution 2, using a new path structure without referencing /usr/lpp 283
6.15.4 Solution 3, using “Symlink Symbolics” introduced with zZOSV1R5 283

Contents vii

6.16 System-specific data under the version root structure 285

6.17 Replacing a version structure dynamically 285
6.18 File system remount function for USS sysplex sharing. 286
Chapter 7. Definingusers withzZ/OSUNIX 291
7.1 Settingupageneral USert 292
7.1.1 Definingan OMVS segmentttt 292
7.1.2 Creatinguserfile systems. i 294
7.1.3 Creating zFSfile systems 294
7.1.4 Allocate and format the VSAM lineardataset 294
7.1.5 Attach the aggregate to the zFS addressspace. 295
7.1.6 Define a zFS file system inside the aggregate 296
7.1.7 Creatingan HFSfilesystem 297
7.1.8 Mounting afile system 298
7.2 Mounting a file system using directmount o oL 299
7.2.1 Create a user file system fordirectmounts. 300
7.3 Mounting file systems with the automount facility 302
7.3.1 Creating the automountfacility 302
7.3.2 Display the current automountpolicy 304
7.3.3 Addtoan existing poliCyo 305
7.3.4 Support “#” as comment delimiter in the mapfile 305
7.3.5 Dynamic HFS allocation in automountpolicy 305
7.3.6 Generic match on lowercase names.oo it 307
7.3.7 Support of system symbols inthe mapfile.........., 308
7.3.8 Using the automount facility for generalusers 309
7.4 Settingup startedtasks. 310
7.5 Environmentvariables. 311
7.6 Codepagetables e 311
7.6.1 Specifyingacode pPage.ot 312
7.7 Settingthetime zone 312
7.7.1 User-defined variables 313
Chapter 8. Exploitation. 315
8.1 BookManager BoOKSErver e 316
8.1.1 Publishonthe Web. 316
8.1.2 Read BookManager booksontheWeb 316
8.2 DFS SMB . . .o 316
8.2.1 SMB supportfeaturesot e 317
8.2.2 SMB PrOCESSES . . o it it it et e 317
8.2.3 Shared direCtories.ot e 317
8.2.4 Shared printers e 318
8.3 HT TP Server. . .. e e e e 318
8.3.1 Additional information 318
8.4 INfoprint Server e e 318
8.4.1 Printing from UNIX System Services 319
8.4.2 UNIX commands with Infoprint Server 320
8.5 Java support on z/0OS e 323
8.5.1 Whatis Java?o e 323
8.5.2 SDKiinstallationand setup i i 324
8.5.3 Considerations whenusingdava 326
8.5.4 Garbage collection i e 328
8.5.5 Tuning Java and LE runtime options 330
8.5.6 Enhanced z/OS linkage andheap pools. 333

viii UNIX System Services z/OS Version 1 Release 7 Implementation

8.6 NF S . . 337
8.6.1 Using ZZOS UNIXTiles. i e e 338
8.6.2 Using conventional zZOSdatasets., 339
8.6.3 Supported servers forthe zZZOS NFSclient. 340
8.6.4 WebNFS support e 341
8.6.5 Native ASCII support e 341

8.7 Text Search. e 341
8.7.1 The Text Search Engine environment. 342
8.7.2 Client/server communication. 343
8.7.3 Text Search Engine concepts.ot e 343

8.8 Tivoli Storage Manager.ot 344

Chapter 9. Interacting withzZ/OSUNIX. 347

9.1 Commands to monitor ZZOS UNIX 348
9.1.1 Interprocess communicationsignals. oo, 348
9.1.2 Kill @ PrOCESS. . . v ot i et e 349

9.2 z/0OS UNIX interactive interfaces. i 351

9.3 Usingthe ISHELL e 352
9.3.1 ISHELL enhancements. e 353
9.3.2 Using the cursor on the Directory Listpanel 355
9.3.3 Displaying colors on the Directory Listpanel 360

9.4 Invokingthe ZZOS UNIXshell 361
9.4.1 Using z/OS UNIX shellcommands 362
9.4.2 History file e 362
9.4.3 Customizing SHOME/.profile. e 363
9.4.4 Command pPrompPt. e e 367
9.4.5 Built-in shell variables 368
9.4.6 Subcommand mode 369
9.4.7 REXX, CLISTs,and shell scripts. 369
9.4.8 Helpfacilities. e 371

9.5 Directlogintothe ZZOS UNIXshell 374

9.6 BPXBAT CH. ..o 376
9.6.1 BPXBAT S . .ot e 379

Chapter 10. Tools, functions, and programming interfaces 383

10.1 Usefultools for ZZOS UNIX e 384
10.1.1 SKUIKET . .o e 384
10.1.2 COPY IO . o o et 385
10.1.3 OpPeNnSSH . . . e 387
10.1.4 Thesshdaemon. i e 387
10.1.5 USSTOO0ISo e e 390

10.2 REXX functionsandinterfaces 393

10.3 Programming examples for REXX e 395

10.4 Programmingexamplefor C. e 402

10.5 Using BPX.JOBNAME for USS processes, 405
10.5.1 Using _BPX_JOBNAME in/etc/rc. i 405

10.6 C Shell. . ..o 406

10.7 Disabling use of SMF exit IEFUSI for UNIX processes. 407

10.8 USS hard links used with SMP/E e 408

10.9 OMVS syntax Checker. i e 410

10.10 Storage limits for UNIX processes 411

10.11 Using BPXCOPY to load files into the UNIX file structure. 416

Contents ix

X

10.12 Usingthe magic number. e 417

10.13 Enhanced ASCII functionality 418
10.13.1 ASCII SUPPOIt OVEIVIEWttt e i i e 419
10.14 Automatic CONVErSioN e 420
10.14.1 AUTOCONVEISION . . . oo oo e e e 420
10.14.2 Scope of autoconversion i 421
10.15 File tagging . . . oot e 422
10.15.1 Filetagmetadata 423
10.15.2 Howtotagfiles.o e 423
10.15.3 Shellcommands fortags e 424
10.15.4 Accessingdata by programs. 426
10.15.5 Otherwaystotagfiles 427
10.15.6 C/CH+ o ot 429
10.15.7 Language environmentrun-time.t 429
Chapter 11. Administration 431
11.1 Shutting down z/OS UNIX without re-IPLing. 432
11.1.1 Registration support 432
11.1.2 Shuttingdown zZ/OS UNIX. e 433
11.1.3 Restarting ZZOS UNIX. 436
11.2 Z/OS UNIXfile systems. 437
11.2.1 How to start colony address spaces.iiiiiinen.n.. 438
11.2.2 Start colony address spaces outside of JES. 438
11.2.3 Running a temporary file system in a colony address space 439
11.2.4 TFSinsharedfile systemmode 440
11.3 Managing HFS data sets. e 441
11.3.1 DFSMSdssdump andrestore.t 441
11.3.2 Increasing the size ofan HFSdataset. 447
11.3.3 Logical backup and restoring of file systems using TSM 450
11.3.4 Physical copying offilesystems 454
11.4 Monitoring Z/OS UNIX.o 454
11.4.1 Resource Measurement Facility (RMF) 454
11.4.2 SDSF process panel. 456
Chapter 12. Tuningand performance 459
12.1 HFS and zFS file system comparison. i 460
12.1.1 ZFS cache Sizes o 460
12.1.2 Comparison of results. 463
12.2 Domino and zFS performancet 464
12.3 The Domino server environment. e 464
12.3.1 Tasks performed by the Dominoserver 466
12.3.2 Testresulls e 469
12.3.3 Client-driven workloads. e e 472
12.3.4 Domino performance conclusions. i 481
12.4 Additional informationaboutzFS 481
Chapter 13. Maintenance of ZZOSUNIX. 483
13.1 HFS data set backup and recovery. 484
13.1.1 Backing up and restoring HFS data sets using DFSMShsm. 484
13.1.2 Backing up and restoring HFS data sets using DFSMSdss 484
13.2 Increasing the size of an existingHFS dataset 487
13.2.1 Increasing the size of the root HFS dataset. 487
13.2.2 Increasing the size of otherHFS datasets. 488
13.3 Installing service using SMP/E e 489

UNIX System Services z/OS Version 1 Release 7 Implementation

13.3.1 Applying servicetoanactiveroot., 490

13.3.2 Installing service to productsinthe HFS. 493
13.3.3 Prepare for SMP/E APPLY 494
13.4 Post-installationtasks 497
Chapter 14. Problem determination. 499
14.1 Failures and messages in the z/OS UNIX environment 500
14.1.1 zZ/OS USS messages and Codes. u vt it e 500
14.1.2 Messages from failing zZOS UNIX functions. 500
14.1.3 ZIOS UNIX latches i e 501
14.1.4 Gettingaconsoledumpforahang.o .. 503
14.2 Slip trap settings and OMVS componenttrace............... 504
14.2.1 Setting a slip for SVCDUMP based on a UNIX reasoncode 504
14.2.2 Slip for SVDUMP on FSUM shell and utilities message 505
14.2.3 OMVS componenttrace v ittt e e 505
14.2.4 General message sliptrap e 506
14.3 USS sysplex sharing diagnosis.o e 506
14.3.1 Shared USS diagnostic and repair functions 506
14.3.2 USS sysplex sharing diagnostic procedures.o ... 507
Appendix A. Managing z/OS UNIX userIDsandgroups....................... 509
A.1 Managing RACF userand group profiles i 510
A1 Listing GIDSo 510
A.2 JCL example to define a user OMVS segment. 512
A3 Methods to listUIDS e 513
A4 The ICETOOL Utilityo e e 516
A.4.1 Unloadthe RACF database i, 516
A4.2 RunaUlDs reportusing ICETOOLt 517
A4.3 GIDreports using ICETOOL.o e 519
A.4.4 Backing up the primary RACF database 522
A.4.5 Statisticsonthe UNIXMAP class e 523
A.4.6 Backing up the RACF database using the IRRIRAQO utility 523
A.4.7 IRRIRAQO utility -stageOtostage 1........ 524
A.4.8 Inactivate UNIXMAP Class e 525
A.4.9 COFVLFOO parmlibmember. e 525
A.4.10 Rerunthe IRRUT200 utility.t e 525
A.4.11 Replace the RACF backupdatabase 526
A.4.12 Activate the backup database i, 526
Appendix B. Installationfiles.......... 529
SYST1.PROCLIB(BPXAS) . . . ot 530
SYS1.PROCLIB(BPXOINIT) .. et e 530
SYST.PROCLIB(OMVS) . .ottt e 531
SYS1.SAMPLIB(BPXPRMXX) . . . o ottt e e e e 531
/samples/inetd.conf 551
/samples/init.options. 552
[samples/profile 553
[SAMPIES/IC. . . o o e e 557
Appendix C. Access control list (ACL) support considerations. 559
C.1 Examples of the setfacl and getfaclcommands 560
C.1.1 Change access level for user/group in an extended ACL 560
C.1.2 Setan entire ACL (baseandextended).........., 561
C.1.3 Pipe output from getfacltosetfacl, 562

Contents Xxi

Xii

C.2 Working withdefault ACLSo 563

C.2.1 Useoutputof findas inputtosetfacl 564
C.3 Callable services for ACL SUPPOItottt e i i 565
C.4 z/OS UNIX REXX support for ACLSot 566

C.4.1 Otherinterface changes. e 567

C.4.2 LE Callable Services supportfor ACLs 568
Related publications 571
IBM RedbOOKSo e 571
Other publications 571
ONliNE rESOUICES ottt e e e e 572
How to get IBM RedboOKS o e 573
Help from IBM . ..o 573
INdeX . .. 575

UNIX System Services z/OS Version 1 Release 7 Implementation

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions are
inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS I1S" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to IBM's application programming interfaces.

© Copyright IBM Corp. 2003, 2006. All rights reserved. xiii

Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United States,

other countries, or both:

@server®

@server®

Redbooks (logo) (@ ™
iNotes™ '
iSeries™

z/OS®

zSeries®

AnyNet®

AD/Cycle®

AFP™

AIX®

AS/400®
BookManager®
C/370™

Common User Access®
CICS®

CUA®

Database 2™

Domino®

DB2 OLAP Server™

DB2 Universal Database™
DB2®

DFS™

DFSMS/MVS®
DFSMSdss™
DFSMShsm™

DFSORT™

Electronic Service Agent™
Infoprint®

Intelligent Miner™

IBM®

IMS™

Language Environment®
Lotus Notes®

Lotus®

MQSeries®

The following terms are trademarks of other companies:

MVS™
MVS/ESA™
Net.Data®
NetView®
Notes®
0OS/390®
Redbooks™
RACF®
RAMAC®
RMF™
S/390®
Tivoli®
VisualAge®
VM/ESA®
VTAM®
WebSphere®

Java, JVM, Solaris, Sun, Sun Microsystems, WebNFS, and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

bookshelf, Microsoft, Windows NT, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United

States, other countries, or both.

Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Xiv UNIX System Services z/OS Version 1 Release 7 Implementation

Preface

This IBM® Redbook presents the information you need to plan for and run an IBM z/OS®
system with support for z/ZOS UNIX® System Services (z/OS UNIX) and z/OS.e. It provides
information to facilitate the installation and use of z/OS Version 1 Release 7 UNIX System
Services, and step-by-step instructions on how to install, customize, and use the z/OS UNIX
System Services product set.

This redbook is written for MVS™ systems programmers who install and customize the z/OS
UNIX System Services product set.

Practical examples are presented to demonstrate the installation and customization of UNIX
System Services. This includes examples of the customization of DFSMS, RACF®, TCP/IP,
and NFS required to set up a z/OS UNIX System Services environment.

Some knowledge of UNIX System Services is assumed.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world working at the
International Technical Support Organization, Poughkeepsie Center.

This edition was produced by the following team.

Paul Rogers is a Consulting IT Specialist at the International Technical Support
Organization, Poughkeepsie Center. He writes extensively and teaches IBM classes
worldwide on various aspects of z/OS JES3, Infoprint® Server, and z/OS UNIX. Before
joining the ITSO 18 years ago, Paul worked in the IBM Installation Support Center (ISC) in
Greenford, England, providing OS/390® and JES support for IBM EMEA and the Washington
Systems Center in Gaithersburg, Maryland.

Paul-Robert Hering is an IT Specialist at the ITS Technical Support Center, Mainz,
Germany. He advises customers on z/OS and UNIX System Services-related questions and
problems. He has participated in several ITSO residencies since 1988, writing about
UNIX-related topics. Before providing support on OS/390 and z/OS, he worked with VM and
all its different flavors (VM/370, VM/HPO, VM/XA, and VM/ESA®) for many years.

Patrick Bruinsma is an IT Specialist working for IBM Global Services in the Netherlands. He
has five years of general expertise on z/OS, DB2®, MQSeries®, Websphere MQ Workflow,
Blaze Advisor, CICS®, and UNIX System Services.

These three authors also produced the previous version, along with the following additional
team members:

Theodore Antoff is a Senior RACF Architect in Australia, director of his own companies in
Australia (AG Glomar Pty Ltd) and USA (antoff IT, Inc), consulting on all aspects of the IBM
Security Server components. He has 15 years of experience in RACF and MVS systems
programming. His projects include SDSF, CICS and DB2 conversions to RACF, CA-Top
Secret to RACF migrations, merging RACF databases, and Security Technical Reviews. In
his previous career as a physicist, he was involved in the research and development of the
technology of non-volatile memories based on MIS structures. He has worked for IBM in
Australia for three years.

© Copyright IBM Corp. 2003, 2006. All rights reserved. XV

Neil O’Connor is a z/OS Technical Consultant working for IBM Global Services in Australia.
He has 30 years of experience in the mainframe operating systems field. His areas of
expertise include systems programming, automated operations, and the deployment of
standardized z/OS platforms, tools and processes, throughout IBMGS SDCs worldwide. He
has participated in authoring other ITSO projects including the previous USS redbook and
USS Training Camp. As part of the Global Service Delivery Technical Architecture
Committee, Neil is a frequent visitor to Poughkeepsie.

Lutz Kiihner is a z/OS systems programmer working for IBM business services in Germany.
He has 16 years of experience in the mainframe operating systems field. His areas of
expertise include systems programming, tools, and processes.

Livio Sousa is a System Engineer and member of the zSeries® Technical Sales Support
team in Latin America. He has three years of experience in the operational systems and
networking fields. He is a student of Computer Science at FASP, Sao Paulo. He has been
working since 2002 at IBM, responsible for planning and implementation of new workload
projects on zSeries.

The team, from left to right: Neil O’Connor, Lutz Kiihner, Theodore Antoff, Livio Sousa,
Paul-Robert Hering, Paul Rogers, Patrick Bruinsma

Thanks to the following people for their contributions to this project:

Rich Conway
International Technical Support Organization, Poughkeepsie Center

Alfred Schwab, Alison Chandler
Editors, International Technical Support Organization, Poughkeepsie Center

Become a published author

Join us for a two- to six-week residency program! Help write an IBM Redbook dealing with
specific products or solutions, while getting hands-on experience with leading-edge
technologies. You'll team with IBM technical professionals, Business Partners and/or
customers.

Your efforts will help increase product acceptance and customer satisfaction. As a bonus,
you'll develop a network of contacts in IBM development labs, and increase your productivity
and marketability.

XVi UNIX System Services z/OS Version 1 Release 7 Implementation

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!
We want our Redbooks™ to be as helpful as possible. Send us your comments about this or
other Redbooks in one of the following ways:
» Use the online Contact us review redbook form found at:
ibm. com/redbooks
» Send your comments in an Internet note to:
redbook@us.ibm.com
» Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYJ Mail Station P099

2455 South Road

Poughkeepsie, NY 12601-5400

Preface xvii

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

Xviii UNIX System Services z/OS Version 1 Release 7 Implementation

UNIX overview

This chapter introduces UNIX.

We describe UNIX concepts for the benefit of heritage MVS users. References are made to
equivalent MVS functions, wherever it is appropriate.

The terms z/OS UNIX System Services and z/OS UNIX both refer to the IBM UNIX
implementation in the z/OS operating system.

© Copyright IBM Corp. 2003, 2006. All rights reserved.

1.1 UNIX fundamentals

UNIX is an interactive, multi-user, multi-tasking operating system, designed to be
independent of the hardware platform it runs on. The first version of UNIX was created in
1971.

The term “UNIX” is not itself an acronym, but it was derived from the acronym of an earlier
operating system called UNiplexed Information and Computing Service (UNICS). These days,
“UNIX” is a registered trademark licensed exclusively through The Open Group.

Operating systems may only use the UNIX trademark if they have been certified to do so by
The Open Group. UNIX-compatible operating systems that are not certified by The Open
Group are typically referred to as “UNIX-like”. For instance, Linux® is a UNIX-like operating
system.

1.1.1 UNIX objectives

Some of the objectives of the design of UNIX include:

>

Make each program perform a single function well, and reuse that program wherever that
function is required.

Write each program expecting its output to become input to another. This means many
simple programs can be combined to perform complex tasks.

Develop programs incrementally. Start small, then test and modify incrementally until the
program is completed.

Use terse commands and messages to reduce typing and screen output.

1.1.2 What people like about UNIX

Some of the reasons why UNIX is popular include:

2

»

Operating system hardware independence. Operating system code is written in the C
language (rather than a specific assembly language) so it can easily be moved from one
hardware platform to another.

Applications are portable. Moving an application (or porting) from one hardware platform
to another is generally as simple as transferring the source, then recompiling it.

Full multitasking with protected memory. Multiple users can run multiple programs
concurrently without interfering with each other.

Very efficient virtual memory. Many programs can execute with only a small amount of
physical memory available.

Access controls and security. All users must be authenticated by a valid account and
password to use the system. All files are owned by particular accounts. The owner can
decide whether others have read or write access to the owner’s files.

Productive development environment. For programmers, UNIX offers rich tooling and
command language. Commands and utilities can be strung together in unlimited ways to
accomplish complex tasks.

Unified file system. Everything is a file: data, programs, and physical devices. The entire
file system appears as a single large tree of nested directories.

Distributed processing.

UNIX System Services z/OS Version 1 Release 7 Implementation

http://www.unix-systems.org

1.1.3 What people don’t like about UNIX

Some of the reasons why UNIX is not popular include:

» The traditional command line shell interface is “user unfriendly”. It is more designed for the
programmer than the casual user.

» Commands typically have cryptic names and do not offer much feedback to the user. With
heavy use of special keyboard characters, small typing errors can produce unexpected
results.

» To use UNIX well, the user needs to understand some of the main design features. The
power of UNIX comes from knowing how to make commands and programs interact with
each other, not just from treating each as a fixed “black box”.

» UNIX has a huge number of commands and utilities that a user may find overwhelming.
And the available documentation has few examples or tutorials to help users understand
how to use these commands and utilities.

1.1.4 UNIX operating system

UNIX is functionally organized at three levels: kernel, shell and utilities. Technically, only the
kernel and the shell form the operating system, while the utilities have evolved over time to
make the operating system more immediately useful to the user.

Kernel

The kernel is the core of the UNIX operating system. It consists of a small collection of
software that makes it possible for the operating system to provide other services. The kernel
provides four basic types of services:

» Creation and management of processes
» A file system
» Communications

» A means to start the system

Kernel functions are of two broad types: autonomous and responsive. Kernel functions, such
as allocation of memory and CPU, are performed without being explicitly requested by user
processes. Other functions of the kernel, such as resource allocation, and process creation
and management, are initiated by requests from processes.

UNIX users do not need to know anything about the kernel, just as TSO users do not need to
know anything about MVS.

Processes

A process is the execution of a program. Some operating systems (such as MVS) call the
basic unit of execution a “job” or “task”. In UNIX it's called a process. In the UNIX kernel,
anything that's done, other than autonomous operations, is done by a process issuing system
calls. Processes often spawn other processes (using the fork() system call) that run in parallel
with them, accomplish subtasks and, when they are finished, terminate themselves.

All processes have “owners”. Typically the human owner of a process is the owner of the
account whose login process spawned the process in question. When a process creates or
spawns another process, the original process is known as the parent process while the
process it creates is called a child process. The child process inherits the file access and
execution privileges belonging to the parent.

Chapter 1. UNIX overview 3

Signals

One way that processes communicate with each other and with the kernel is through signals.
Signals are used to inform processes of unexpected external events such as a time-out or
forced termination of a process. A signal consists of a prescribed message with a default
action embedded in it. Each signal has a unique number associated with it.

Virtual memory
UNIX utilizes paging and swapping techniques similar to MVS.

Shell

The shell is the interactive environment UNIX users encounter when they log in, similar to
what MVS users encounter when they log on to TSO. The shell's prompt is usually visible at
the cursor's position on the screen, similar to line-mode in a TSO session. To perform work,
commands are entered at the prompt.

The shell is a command interpreter, that is, it takes each command entered and passes it to
the operating system kernel to be acted upon. The results of this operation are displayed on
the screen. Several shells might be available on a UNIX system for a user to choose from,
each with its own strengths and weaknesses. A user may decide to use the default shell or
override it. Some of the more common shells are:

» Bourne shell (sh)

» C shell (csh)

» Korn shell (ksh)

» TC shell (tcsh)

» Bourne Again shell (bash)

Each shell also includes its own programming language. Command files, called “shell
scripts”, are used to accomplish a series of tasks.

There is a GUI shell available for UNIX systems, called “X-Windows” or simply “X”. This GUI
has all the features found on a personal computer. In fact, the version used most commonly
on modern UNIX systems (CDE), is made to look very similar to Microsoft® Windows®.

Utilities
UNIX includes many utility programs (often referred to as commands) to perform functions
such as:

» Editing

» File maintenance

» Printing

» Sorting

» Programming support

» Online information

1.1.5 UNIX file system

A UNIX file system is a data structure or a collection of files. A file system has both a logical
(hierarchical directory tree) and physical (arrangement of files on disk partitions) dimension.

4 UNIX System Services z/OS Version 1 Release 7 Implementation

Logical file system

The logical file system refers to the hierarchy of connected directories made of all the files (or
disk partitions) that are accessible to the user. The UNIX file system is arranged in a tree or
inverted pyramid, where all files are logically contained within the root directory. See

Figure 1-1, where the shaded boxes represent directories, while the unshaded boxes
represent files.

This is similar to the Microsoft Windows hierarchical file system, except that the directory
separator is a forward slash (/), compared to the Windows backslash (\). There are slight
differences in the arrangement of directories between variants of UNIX, however, the overall
structure is basically the same. Note that UNIX is a case-sensitive operating system, so a file
called “ABC” is different from a file called “abc”.

/ root directory
/etc /t | Ju |
| _....
| | |
/etc/rc /etc/profile /u/neil
] |
§ /u/neil/a /u/neil/b
| |
/u/neil/a/jeffery /u/neil/a/philip

Figure 1-1 Hierarchical file system

Physical file system

The physical file system is divided first by disk partitions. Partition size determines the
number of blocks that the file system uses. Each file system has a superblock, inodes, and
data blocks. The superblock holds the control information for the system. Inodes contain
similar information for individual files. The data blocks hold data, the information in the files.

File and directory permissions
Every file or directory in a UNIX file system has three types of permissions (or protections)
that define whether certain actions can be carried out. The permissions are:

read [r] A user who has read permission for a file may look at its contents or make a
copy of it. For a directory, read permission enables a user to find out what files
are in that directory.

write [w] A user who has write permission for a file can alter or remove the contents of
that file. For a directory, the user can create and delete files in that directory.

Chapter 1. UNIX overview 5

execute [x] A user who has execute permission for a file can cause the contents of that file
to be executed (provided that it is executable). For a directory, execute
permission allows a user to change to that directory.

These permissions are applied and tested at three levels: the owner’s user ID; the owner’s
group, and other users.

Figure 1-2 shows how permission bits are often referred to by their octal representation. For
example, if a file is to be updated only by its owner, while others are allowed to read/execute
it, then the correct octal permission setting is 755 (owner = rwx = 4+2+1 = 7; group = r-x =
4+0+1 = 5; other = r-x = 4+0+1 = 5).

0 --- No access

1 --x Execute-only Bit values

2 -w- Write-only XXX

3 -wx Write and execute —_

4 r-- Read-only 421

5 r-x Read and execute

6 rw- Read and write

7 rwx Read, write and execute
Permission bit examples:

700 owner (7=rwx) group (0=---) other (0=---)

755 owner (7=rwx) group (5=r-x) other (5=r-x)

Figure 1-2 Octal representation of permissions

1.1.6 Parameter files

Parameter files are typically stored in the /etc directory. This is similar to SYS1.PARMLIB on
an MVS system.

1.1.7 Daemons

A daemon is a program that runs continuously and exists for the purpose of handling periodic
service requests that a computer system expects to receive. The daemon program forwards
the requests to other programs (or processes) as appropriate. Daemons are like Started
Tasks (STCs) in MVS.

1.1.8 Accessing UNIX

6

To access UNIX interactively, the user has to log in to their user account using the rlogin
(remote login) or telnet interface. rlogin and telnet are similar except rlogin supports access
from trusted hosts without requiring a password (hence security people will like this less than
telnet).

Most platforms (including Microsoft Windows) include a telnet command/interface. When
logging in, remember that UNIX is case-sensitive, so uppercase characters used in the userid
or password are not the same as lowercase characters.

UNIX System Services z/OS Version 1 Release 7 Implementation

UNIX also has a console interface (similar to an MVS console) but that is normally only used
by system administrators or computer operators.

UIDs

The user account of a UNIX user is represented in two ways: username and UID. Username
is an easy-to-remember word, while UID is a number. This information might be stored in the
file /etc/passwd. UID is typically a number between 0 and 65,535, where 0 thru 99 might be
reserved. UID=0 has special meaning as the superuser.

Superuser (root)

Superuser is a privileged user (UID=0) who has unrestricted access to the whole system, that
is, all commands and all files regardless of their permissions. By convention, the user name
for the superuser account is root. Don’'t confuse the term root here with the root subdirectory
in the file system—they are unrelated.

The root account is necessary because many system administration files and programs need
to be kept separate from the executables available to non-privileged users.

Also, UNIX allows users to set permissions on the files they own. A system administrator
(root) may need to override those permissions.

GIDs

Each UNIX user is also associated with a grouping so that people in the same workgroup can
share data. This grouping is represented in two ways: group name and GID. Group name is
an easy-to-remember word, while GID is a number. This information might be stored in the file
/etc/group. GID is typically a number between 0 and 65,535, where 0 thru 99 might be
reserved. Unlike UID, GID=0 has no special meaning.

1.1.9 UNIX standards

The work on Portability Operating Systems Interface (POSIX) started as an effort to
standardize UNIX and was performed by a workgroup under the Institute of Electrical and
Electronical Engineers (IEEE). What they defined was an application programming interface
that could be applied to any operating system.

POSIX is not a product. It is an evolving family of standards describing a wide spectrum of
operating system components ranging from C language and shell interfaces to system
administration.

The POSIX standard is sponsored by International Organization for Standardization (ISO)
and is incorporated into X/Open Portability Guides (XPG). Each element of the standard is
defined by a 1003.* number. For example:

1003.1 System Application Program Interface for C
1003.1a System Application Program Interface Extensions
1003.1b Real Time Extensions

1003.1c Threads Extensions (previous 1003.4a)

1003.1e Security Extensions

1003.1f Network - Transparent File Access

1003.1g Protocol Independent Network API

1003.2 Shell and Utilities

1003.5 ADA Bindings (for 1003.1)

Chapter 1. UNIX overview 7

1003.9 Fortran Bindings (for 1003.1)

1003.13 Real Time Application Environment Profile

1003.15 Batch System Administration
POSIX defines the interfaces and not the solution or implementation. In this way POSIX can
be supported by any operating system. Implementation of POSIX can be different in areas

such as performance, availability, and recoverability. Not all POSIX-compliant systems are the
same, although they all support basically the same interface.

POSIX and 1003.1 are registered trademarks of the Institute of Electrical and Electronic

Engineers, Inc (IEEE).

1.1.10 MVS and UNIX functional comparison

8

Table 1-1 provides a functional comparison of some of the basic functions of MVS and the

equivalent or similar functions with z/OS UNIX.

Table 1-1 MVS and UNIX functional comparison

Function MVS UNIX

Background work Submit batch JCL sh_cmd &
Configuration parameters SYS1.PARMLIB /etc

Data management DFSMS, HSM tar, cpio, pax
Debug TSO TEST dbx

Editor ISPF option 2 ed, sed, oedit, ishell

Initiate new task

ATTACH, LINK, XCTL

fork(), spawn()

Interactive access Logon to TSO telnet/rlogin to sh/tcsh
Job management SDSF ps, kill

List files ISPF option 3.4, LISTC Is

Long running work Started task (STC) daemon

Post IPL commands COMMNDxx /etc/rc

Power user RACF OPERATIONS superuser or root
Primary configuration IEASYSxx BPXPRMxx

Primary data index

Master Catalog

root (“/’) directory

Procedural language CLIST, REXX shell scripts, REXX
Program products LNKLST lusr

Resident programs LPA sticky bit

System logging SYSLOG SYSLOGD

System programs LNKLST /bin

Test programs STEPLIB /sbin

User data &SYSUID or &SYSPREF /u/<username>
User identity user/group UID/GID

UNIX System Services z/OS Version 1 Release 7 Implementation

1.2 z/OS UNIX System Services fundamentals

z/OS UNIX System Services is a UNIX operating environment, implemented within the z/OS
operating system. z/OS UNIX System Services is also referred to by its shorter name z/OS
UNIX.

The z/OS support for z/OS UNIX enables two open systems interfaces on the z/OS operating
system:

» An application program interface (API). The application interface is composed of C
interfaces. Some of the C interfaces are managed within the C Run-Time Library (RTL),
and others access kernel interfaces to perform authorized system functions on behalf of
the unauthorized caller.

» An interactive z/OS shell interface.

Figure 1-3 shows the API and interactive shell open systems interfaces and their relationship
with z/OS.

API I

(C functions) ——

Language
Environment
(LE)
UNIX

System

Interactive —.\ Services
Shell p (kernel)

(commands)

Figure 1-3 z/OS UNIX with open systems interfaces

With the APls, programs can run in any environment, including in batch jobs, in jobs
submitted by TSO/E users, and in most other started tasks, or in any other MVS application
task environment. The programs can request:

» Only MVS services

» Only z/OS UNIX

» Both MVS and z/OS UNIX

The shell interface is an execution environment analogous to TSO/E, with a programming
language of shell commands analogous to the REXX language. The shell work consists of:
» Programs run by shell users

» Shell commands and scripts run by shell users

» Shell commands and scripts run as batch jobs

Chapter 1. UNIX overview 9

z/OS UNIX has two shells, the z/OS shell and the tcsh shell. They are collectively called the
z/OS UNIX shells.

z/0S shell

The z/OS shell is modeled after the UNIX System V shell with some of the features found in
the Korn shell. As implemented for z/OS UNIX services, this shell conforms to POSIX
standard 1003.2, which has been adopted as ISO/IEC International Standard 9945-2: 1992.
The z/OS shell is upward-compatible with the Bourne shell.

tcsh shell

The tcsh shell is an enhanced but completely compatible version of the Berkeley UNIX C
shell, csh. It is a command language interpreter usable both as an interactive login shell and a
shell script command processor. It includes a command-line editor, programmable word
completion, spelling correction, a history mechanism, job control, and a C-like syntax.

1.2.1 Dub and undub

Dub is a term that means to make an MVS address space known to z/OS UNIX System
Services. Once dubbed, an address space is considered to be a “process”. Address spaces
created by the fork() function are automatically dubbed when they are created; other address
spaces become dubbed if they invoke a z/OS UNIX service. Dubbing also applies to MVS
tasks. A dubbed task is considered to be a “thread”. Tasks created by pthread_create() are
automatically dubbed threads; other tasks are dubbed if they invoke a z/OS UNIX service.

Undub is a term that means the inverse of dub. Normally, a task (dubbed a thread) is
undubbed when it ends. An address space (dubbed a process) is undubbed when the last
dubbed thread ends.

1.2.2 z/0OS UNIX support

10

z/OS UNIX, which responds to requests from programs and the z/OS UNIX shells, is made up
of system and application services.

System Services
System Services provide:

» XPG4 UNIX 1995 conformance

» Assembler callable services

» TSO/E commands to manage the file system
» |ISPF shell environment

Application Services

Application Services (FMID HOTxxxx) interprets commands from users or programs, called
shell scripts, and requests MVS services in response to the commands. The dbx debugger
enables the application programmer to debug source programs written in C or C/C++.
Application Services provide:

» A TSO/E command to enter the shell environment

» A shell environment for developing and running applications
» Utilities to administer and develop in a UNIX environment

» The dbx debugger

UNIX System Services z/OS Version 1 Release 7 Implementation

» Support for socket applications

» rlogin (remote login) and inetd functions

» Direct telnet based on TCP/IP protocol

» Support for full-screen applications (curses support)

It also contains the code that was provided in the optional Shell and Utilities and the
Debugger features prior to z/OS.

1.2.3 Interaction with elements and features of z/0OS

z/OS UNIX interacts with the following elements and features of z/OS:
» BCP (WLM and SMF components)
» C/C++ Compiler, to compile programs

» Language Environment®, to execute the shell and utilities or any other XPG4-compliant
shell application

» Data Facility Storage Management Subsystem (DFSMS) (HFS is a component of DFSMS)
» Security Server for z/OS (RACF is a component of the Security Server)

» Resource Measurement Facility (RMF™)

» System Display and Search Facility (SDSF)

» Time Sharing Option Extensions (TSO/E)

» z/OS Communications Server (TCP/IP)

» ISPF, to use the dialogs for OEDIT, or ISPF/PDF for the ISPF shell

» BookManager® READ/MVS, to use the OHELP online help facility

» Network File System (NFS)

» z/OS Distributed File Service zSeries File System (zFS)

Figure 1-3 on page 9 shows how z/OS UNIX, the shell interface, and the API relate to the rest
of the z/OS operating system.

Workload Manager (WLM)

The Workload Manager is a component of the BCP element. The kernel uses WLM to create
child processes. When programs issue fork() or spawn(), as shown in Figure 1-4 on page 12,
the BPXAS PROC found in SYS1.PROCLIB is used to provide a new address space. For a
fork(), the system copies one process, called the parent process, into a new process, called
the child process. The forked address space is provided by WLM.

Processes can be created by a fork or spawn. Existing MVS address space types such as
TSO, STC, batch, and APPC can request z/OS UNIX services. When one of those address
spaces makes its first request to the z/OS kernel, the kernel dubs the task; that is, it identifies
the task as a z/OS UNIX process.

Chapter 1. UNIX overview 11

Parent Process SYS1.PROCLIB _
ASID=428 - - Child Process
ASID=547
+ prog1
WLM fork()....
|| L
UNIX
Kernel
ASID=1423
spawn(prog3)
spawn(prog) e

Figure 1-4 Examples of a parent process issuing fork() and spawn()

The types of processes are:
» User processes, which are associated with a user.

» Daemon processes, which perform continuous or periodic system-wide functions, such as
a Web server. Daemons are programs that are typically started when the operating
system is initialized and remain active to perform standard services. Some programs are
considered daemons that initialize processes for users even though these daemons are
not long-running processes. Examples of daemons are:

— cron, which starts applications at specific times.
— inetd, which provides service management for a network.

— rlogind, which starts a user shell session when one is requested, using a remote rlogin
command.

In similar systems, initialization usually starts a telnet daemon to perform terminal
services. In addition to using a cron daemon, z/OS installations can use Operations
Planning and Control/ESA (OPC/ESA) to set up a timed event.

Daemons are not restarted if they stop. You can restart them in any of several ways:

— The z/OS operator can restart daemons using a cataloged procedure.

— A system programmer can restart the daemon from a shell.

— You can use automation products such as NetView® to notice daemons terminating
and then restart them using cataloged procedures.

A process can have one or more threads; a thread is a single flow of control within a process.
Application programmers create multiple threads to structure an application in independent
sections that can run in parallel for more efficient use of system resources.

12 UNIX System Services z/OS Version 1 Release 7 Implementation

System Management Facilities (SMF)

System management facilities (SMF), which is a component of the BCP element, collects
data for accounting. SMF job and job-step accounting records identify processes by user,
process, group, and session identifiers. Fields in these records also provide information on
resources used by the process. SMF file system records describe file system events such as
file open, file close, and file system mount, unmount, quiesce, and unquiesce.

Use the JWT value in the SMF parmlib SMFPRMxx to specify when to time-out an idle
address space. SMF/WLM does the tracking.

C/C++

To compile C code using the c89 command, or to compile C/C++ code using cxx, you need
the C/C++ compiler that is available with z/OS.

Language Environment (LE)

To run a shell command or utility, or any user-provided application program written in C or
C++, you need the C/C++ run-time library provided with Language Environment.

Data Facility System Managed Storage (DFSMS)

Data Facility System Managed Storage (DFSMS) can be used to manage the data sets used
for processing the Hierarchical File System (HFS). These HFS data sets make up a file
hierarchy. A file hierarchy can consist of:

» Files, which contain data or programs. A file containing a load module or shell script or
REXX program is called an executable file. Files are kept in directories.

» Directories, which contain files, other directories, or both.
» Additional local or remote file systems, which are mounted within the file hierarchy.

To the MVS system, the file hierarchy is a collection of HFS data sets. Each HFS data set is a
mountable file system.

Security Server (RACF)

The RACF component of the Security Server authenticates users and verifies whether they
are allowed to access certain resources. An equivalent security product (such as CA-ACF2)
can be used to do those tasks.

A user is identified by a UID, which is kept in the RACF user profile, and a GID, which is kept
in the RACF group profile.

Resource Measurement Facility (RMF)

Resource Measurement Facility (RMF) collects data used to describe z/OS UNIX
performance. RMF reports support an address space type of OMVS for address spaces
created by fork or spawn callable services, and support two swap reason codes.

When an installation specifies an OMVS subsystem type in the Workload Manager service
policy, RMF shows the activity of forked address spaces separately in the RMF Workload
Activity report.

RMF monitors the use of resources in an OMVS Kernel Activity report.

System Display and Search Facility (SDSF)
Shell users can enter TSO/E sessions and use SDSF to:

» Monitor printing

Chapter 1. UNIX overview 13

» Monitor and control a batch job
» Monitor and control forked address spaces

» Find out which users are logged on to TSO/E sessions

Time Sharing Options Extensions (TSO/E)

One way to enter the shell environment is using TSO/E. A user logs on to a TSO/E session
and enters the TSO/E OMVS command.

The z/OS environment has other TSO/E commands, for example, to logically mount and
unmount file systems, create directories in a file system, and copy files to and from MVS data
sets. Users can switch from the shell to their TSO/E session, enter commands or do editing,
and switch back to the shell.

z/0OS Communications Services (TCP/IP Services)

Another way to enter the shell environment is using rlogin or telnet from a workstation in the
TCP/IP network.

User-written socket applications can use TCP/IP Services as a communication vehicle. Both
client and server socket applications can use the socket interface to communicate over the
Internet (AF_INET and AF_INET®6) and between other socket applications by using local
sockets (AF_UNIX). An assembler interface is also provided for those applications that do not
use the C/C++ run-time library.

ISPF

Users of ISPF can use the ISPF shell environment to create, edit, browse, and perform other
functions for files and directories in the HFS.

BookManager READ/MVS

You can invoke the online help facility with the TSO/E OHELP command and view online
publications in BookManager format.

Network File System (NFS)
Network File System (NFS) enables users to access files on other systems in a network.

zSeries File System (zFS)
zSeries File System (zFS) is a UNIX file system that can be used, along with HFS.

1.2.4 Hardware considerations

14

You can use the same hardware as the other components of the z/OS system. Use the same
network connections that TSO/E uses and the processor and network connections that JES
uses.

Additional hardware considerations are:

» If you want to use rlogin, the connections are different from those for TSO/E users.

» The optional Suppression on Protection feature, if not present, negates certain functions
such as mmap() and fork() copy-on-write.

» For improved TCP/IP performance, install the CHECKSUM hardware improvement.

» To take advantage of improved performance in semaphore processing, you must be
running on hardware that supports the PLO (Perform Locked Operation) instruction.

UNIX System Services z/OS Version 1 Release 7 Implementation

1.2.5 Configuration parameters

The z/OS implementation of UNIX is different from other implementations because it is part of
something else (the z/OS operating system) rather than an independent entity. A non-z/OS
implementation of UNIX is typically an operating system that is booted (or IPLed) within its
own physical machine (see z/0S UNIX System Services Planning, GA22-7800). But with
z/0S, UNIX is just an environment within the z/OS operating system, which also processes
other non-UNIX (or in this case MVS) workloads (such as CICS, IMS™ MQ, TSO, batch,
etc). In fact, on any MVS system today, the UNIX workload is typically the minor workload.

Defining the external configuration of z/0S UNIX

Since z/OS UNIX System Services is an environment within the z/OS operating system, there
must be some way to define the environment and the file systems, within the greater z/OS
operating system. The solution for this is the BPXPRMxx member of SYS1.PARMLIB. See
z/0OS MVS Initialization and Tuning Reference, SA22-7592 for detailed information about the
contents of BPXPRMxx.

Defining the internal configuration of z/OS UNIX

The internal configuration of z/OS UNIX System Services is defined the same way as any
other UNIX implementation, such as via the config files within the /etc directory. See z/0S
UNIX System Services Planning, GA22-7800 for detailed information about the contents of
the /etc directory.

1.2.6 z/OS UNIX file system

z/OS UNIX allows you to install virtual file system servers (VFS servers) and physical file
systems (PFSs).

» A VFS server makes requests for file system services on behalf of a client. A VFS server
is similar to a POSIX program that reads and writes files, except that it uses the lower-level
VFS callable services APl instead of the POSIX C-language API. An example of a VFS
server is the Network File System.

» A PFS controls access to data. PFSs receive and act upon requests to read and write files
that they control. The format of these requests is defined by the PFS interface. The
following are all PFSs:

— Hierarchical File System (HFS)

z/OS UNIX files are organized in a hierarchical file system (HFS), as in other UNIX
systems. Files are members of a directory, and each directory is in turn a member of
another directory at a higher level.

— Network File System (NFS)

Using NFS client on z/OS UNIX, you can mount a file system, directory, or file from any
system with an NFS server within your user directory. You can edit or browse the files.

— Distributed File System (DFS™)

A DCE component, DFS joins the local file systems of several file server machines
making the files equally available to all DFS client machines. DFS allows users to
access and share files stored on a file server anywhere in the network, without having
to consider the physical location of the file.

— Temporary File System (TFS)

The TFS is an in-memory physical file system that delivers high-speed 1/O. To take
advantage of that, the system programmer (superuser) can mount a TFS over the /tmp
directory so it can be used as a high-speed file system for temporary files (normally,

Chapter 1. UNIX overview 15

16

the TFS is the file system that is mounted instead of the HFS if z/OS UNIX is started in
minimum setup mode).

— ZzSeries File System (zFS)

zFS is a UNIX file system that can be used in addition to HFS. It contains files and
directories that can be accessed with APls.

— Pipe

A program creates a pipe with the pipe() function. A pipe typically sends data from one
process to another; the two ends of a pipe can be used in a single program task. A pipe
does not have a name in the file system, and it vanishes when the last process using it
closes it.

— Socket

A program creates a socket with the socket() function. A socket is a method of
communication between two processes that allows communication in two directions, in
contrast to pipes, which allow communication in only one direction. The processes
using a socket can be on the same system or on different systems in the same
network.

Another name for a PFS is an installable file system.

Figure 1-5 on page 17 shows how user-written programs use the POSIX API to issue file
requests. VFS servers use the VFS callable services API to issue file requests (see “17).
These requests are routed by the logical file system (LFS) to the appropriate PFS through the
PFS interface (see “2”).

UNIX System Services z/OS Version 1 Release 7 Implementation

Users

AR R R R AR RARE!

z/OS UNIX Programs

POSIX-API
C RTL

POSIX Services

Callable Services Interfaces

VFS/Vnode Services

Logical File System

VFS/Vnode Layer

)

z/OS UNIX-PFS Interface

'
Physical Char
File HFS PFS Pipes PFS Spec
System PES

R R RN RERY!

Data

File
System
Users

Logical
File
System

Physical
File
System

Figure 1-5 VFS server and PFS structure

Physical file systems are defined to z/OS UNIX with the FILESYSTYPE statements in the

BPXPRMxx member of SYS1.PARMLIB.

File system organization
z/0OS UNIX files are organized in a hierarchy, as in a UNIX system. All files are members of a
directory, and each directory is in turn a member of another directory at a higher level in the

hierarchy. The highest level of the hierarchy is the root directory.

MVS views an entire file hierarchy as a collection of hierarchical file system data sets (HFS or
zFS data sets). Each HFS or zFS data set is a mountable file system. DFSMS facilities can be
used to manage HFS data sets.

The root file system is the first file system mounted. Subsequent file systems can be mounted
on any directory within the root file system or on a directory within any mounted file system.

Chapter 1. UNIX overview

17

18

ceewewewwwwwwwwy P ettt |

[

DSN=OMVS.ROOT.HFS :
/ :

:

| I I | :

H

/bin /dev letc /tmp Nlib /u lusr Ivar E

[]

DSN=OMVS.U.HFS

MOUNT

/hugo /mary

MOUNT

DSN=OMVS.U.MARY.HFS

/abc /def /hij /KIm

b eeeeeerrreerrree000000000000000000000000000000009000000000000000000000

Figure 1-6 Mounted HFS data sets

Figure 1-6 shows an example where HFS data set OMVS.U.MARY.HFS is mounted at
directory /mary in HFS data set OMVS.U.HFS. This HFS in turn is mounted at directory /u in
the root HFS OMVS.ROOT.HFS. Users who access /u/mary/abc can do so seamlessly and

have

File

no knowledge that they have passed through two HFS data sets to access the third.

types

There are four other types of files that can exist in the HFS, in addition to directories:

» A
C

regular file is an identifiable (named) unit of text or binary data information. A file can be
source code, a list of names or places, a printer-formatted document, a string of

numbers organized in a certain way, an employee record containing smaller information
units in fields, a memo, and many other possible things. A user or an application program
must understand how to access and use the individual increments of information (such as
employee record fields) within a file.

> A

character special file defines one of these:
A terminal (/dev/ptypnnnn and /dev/ttypnnnn). Only a superuser can create this file.
The default controlling terminal for a process (/dev/tty).

A null file (/dev/null). Data written to this file is discarded; hence, it is known as “the bit
bucket”. Only a superuser can create this file.

A file descriptor file (/dev/fdn or /dev/fd/n). Only a superuser can create this file.

A system console file (/dev/console). Data written to this file is sent to the console
using a write-to-operator (WTO) that displays the data on the system console. Only a
superuser can create this file.

UNIX System Services z/OS Version 1 Release 7 Implementation

— A UNIX domain socket name file. This is a pathname that specifies the socket address
for a UNIX domain socket. The pathname is assigned by the application programmer;
there is no convention for the name. The operating system creates the file.

— A Communications Server remote tty file (for example, rtynnnn) that corresponds to the
requesting terminal on the originating Communications Server node. The name is
assigned by the Communications Server administrator.

— The Communications Server character special file (/dev/ocsadmin) that supports ioctl
functions for Communications Server administrative functions.

» A FIFO special file is afile typically used to send data from one process to another so that
the receiving process reads the data first-in-first-out (FIFO). A FIFO special file is also
known as a named pipe.

» Ais afile that contains the pathname for another file, in essence a reference to the original
file. Only the original pathname is the real name of the original file. You can create a
symbolic link to a file or a directory. In OS/390 V2R9 and later, /etc, /tmp, /dev, and /var are
symbolic links.

An external link is a type of symbolic link, a link to an object outside of the HFS. Typically,
it contains the name of an MVS data set.

Users and programs create regular files, FIFO special files, symbolic links, and external links.

File security packet

Each z/OS UNIX file and directory has a 64-byte file security packet (FSP) associated with it
to control access. The FSP is created when a file or directory is created, and is stored in the
file system for the life of the file/directory, until the file/directory is deleted, at which time the
FSP is also deleted. Figure 1-7 shows the structure of the FSP.

File Mode
P . ACL Flags
S Owner | Group Other | File
extattr |g Acces
ACL | model
t exists | ACL
U riwlx|r|w|x|r|w|x exists
1|1
DD
Permission Bits
Figure 1-7 File security packet
The FSP includes the following fields:
uiD File owner UID.
GID File owner GID.
extattr Extended program attributes. See “Executable modules in the file system”
on page 20.
SetUID This bit only relates to executable files. If on, it causes the UID of the user
executing the file to be set to the file's UID.
SetGID This bit only relates to executable files. If on, it causes the GID of the user

executing the file to be set to the file's GID.

Chapter 1. UNIX overview 19

20

Sticky Bit This bit only relates to executable files. If on, it causes the file to be retained
in memory for performance reasons. The implementation of this varies
between platforms. In z/OS UNIX, it means programs are loaded from LPA
(or LNKLST as per normal MVS program search) instead of a HFS file. For
a directory, the sticky bit causes UNIX to permit files in a directory or
subdirectories to be deleted or renamed only by the owner of the file, or by
the owner of the directory, or by a superuser. See “Symbolic and external
links with a sticky bit” on page 21.

Permission bits Owner, group and other permission bits, where owner is the UID that owns
the file, group is the GID of the owning user, and other is anybody else. See
“File and directory permissions” on page 5. Note that in z/OS UNIX, these
three permissions (r/w/x) are not hierarchical. For example, a user with
write permission who does not have read permission, can only write over
existing data or add data to a file, and cannot look at the contents of the file
or print the file. Similarly, write and read permission does not allow a user to
execute a file or search a directory.

ACL bits ACLs are used together with the permission bits in the FSP in order to
control the access to z/OS UNIX files and directories by individual users
(UIDs) and groups (GIDs).

Executable modules in the file system

You can have an executable module in HFS. To run a shell script or executable, a user must
have read and execute permissions to the file. Use chmod to set the permissions.

For frequently used programs in the HFS, you can use the chmod command to set the sticky
bit. This reduces I/O and improves performance. When the bit is set on, Z/OS UNIX searches
for the program in the user's STEPLIB, the LPALST, or the LNKLST concatenation.

The extattr command is used to set, reset and display extended attributes for files to allow
executable files to be marked so they run APF authorized, as a program controlled
executable, or not in a shared address space. The 1s shell command has an option that
displays these attributes:

-E Displays extended attributes for regular files:

a Program runs APF authorized if linked AC=1
p Program is considered program controlled
s Program runs in a shared address space

- Attribute not set

When the extattr attribute 1 is set (+1) on an executable program file, it will be loaded from
the shared library region.

Path and pathname

The set of names required to specify a particular file in a hierarchy of directories is called the
path to the file, which you specify as a pathname. Pathnames are used as arguments for
commands.

An absolute pathname is a sequence that begins with a slash for the root, followed by one or
more directory names separated with slashes, and ends with a directory name or a filename.
The search for the file begins at the root and continues through the elements in the pathname
until it gets to the final name. For example:

/u/smitha/projectb/plans/1dft

UNIX System Services z/OS Version 1 Release 7 Implementation

is the absolute pathname for 1dft, the first draft of the plans for a particular project that a user
named Alice Smith (smitha) is working on.

Instead of using the absolute pathname with shell commands, you can specify a pathname as
relative to the working directory; this is called the relative pathname. In most cases, a user
can specify a particular file without having to use its absolute pathname. A relative pathname
does not have a slash (/) at the beginning, and the search for the file begins in the working
directory. For example, if Alice Smith is working in the directory projectb, she can specify the
relative pathname for the file /u/smitha/projectb/plans/1dft as:

/plans/1dft

A pathname can be up to 1023 characters long, including all directory names, file names, and
separating slashes. For pathnames and filenames, use characters from the POSIX portable
character set. Using DBCS data in these names is not recommended; it may cause
unpredictable results.

The system performs pathname resolution to resolve a pathname to a particular file in a file
hierarchy. The system searches from element to element in a pathname in order to find the
file.

Symbolic and external links with a sticky bit

DLLs, and all flavors of spawn() and exec(), follow the same processing as described below.
Where it says exec(), it covers all forms of module loading.

External links

exec() does a stat() on the passed filename. stat() does the search, not exec(). If the filename
is an external link, then stat() fails with a unique reason code which causes exec() to read the
external link. If the external link name is a valid PDS member name (1-8 alphanumeric/special
characters), then exec() will attempt to locate the module in the MVS search order. If it cannot
be found, exec() fails.

The external link is normally used when you want to set the sticky bit on for a file name that is
longer than 8 characters or contains characters unacceptable for a PDS member name.

Symbolic links

If the file name you specify is a symbolic link, and exec() sees the sticky bit on, then it will
truncate any dot qualifiers. So, as long as the base file name is an acceptable PDS member
name, the need to set up links in order to get exec() to go to the MVS search order should not
be an issue.

For example, if you have a file named java.jll, when you put the sticky bit on, exec() will
attempt to load JAVA. If exec() cannot find JAVA, it reverts to using the java.jll file in the file
system.

The important thing to understand is that exec() never sees the name that the symbolic link
resolves to, even though it can see the stat() data for the final file.

If you define /u/user1i/name1 as a symbolic link to /u/user1i/name2, and then invoke name1:
1. The shell will spawn name1.

2. spawn() will access the file for name1 unaware that there is a symbolic link already
established. It will access the name2 file by its underlying vnode, not the name2 handle.

3. If the sticky bit is on for the name2 file, spawn() will do the MVS search for name1 (the only
name it has to work with).

Chapter 1. UNIX overview 21

1.2.7 Address spaces

z/OS UNIX employs a number of z/OS address spaces, depending on the configuration
features that are enabled.

OMVS

The OMVS address space runs a program that initializes the kernel. The STARTUP_PROC
statement in the BPXPRMxx member of SYS1.PARMLIB specifies the name of the OMVS
cataloged procedure. It is strongly recommended that this procedure name remain its default
value of OMVS—changing it is likely to cause some impact with related functions such as
TCP/IP.

BPXOINIT

The BPXOINIT address space runs the initialization process. BPXOINIT is also the jobname
of the initialization process.

The BPXOINIT address space has two categories of functions:

1. It behaves as PID(1) of a typical UNIX system. This is the parent of /etc/rc, and it inherits
orphaned children so that their processes get cleaned up using normal code in the kernel.
This task is also the parent of any MVS address space that is dubbed and not created by
fork() or spawn(). Therefore, TSO/E commands and batch jobs have a parent PID of 1.

2. Certain functions that the kernel performs need to be able to make normal kernel calls.
This address space is used for these activities (for example, mmap() and user ID alias
processing).

The STEPLIB DD statement is propagated from OMVS to BPXOINIT. Therefore, if there is a
STEPLIB DD statement in the BPXOINIT procedure, it will not be used if a STEPLIB DD
statement was specified in the OMVS procedure.

BPXAS

The BPXAS address spaces are those started by WLM when programs use the fork() or
spawn() C function or callable services.

Colony address spaces

Physical file systems are sometimes initialized in an address space called a colony address
space. You can think of these address spaces as extensions of the kernel address space. The
NFS Client and DFS Client physical file systems must be set up in a colony address space
because they need to use socket sessions to talk to their remote servers and this cannot be
done from the kernel. You can choose to set up the TFS in a colony address space also.
Some physical file systems cannot be initialized in colonies; for example, the INET or CINET
sockets file systems and HFS.

1.2.8 Accessing z/OS UNIX

To access z/OS UNIX, the user must first have a valid UID and GID. Under z/OS, this
information is stored in the OMVS segments of the user and group RACF (or functionally
equivalent Security product) profiles. Information about the user's home directory and shell
choice is also stored in these segments.

It is possible to access UNIX without personal OMVS segments defined, if the
BPX.DEFAULT.USER facility has been defined. In this case, a user without personal OMVS
segments inherits the OMVS segments of the default user.

22 UNIX System Services z/OS Version 1 Release 7 Implementation

Once a user has a valid UID and GID configuration, then choices to access z/OS UNIX
include:

»

rlogin or telnet

rlogon and telnet are interfaces that heritage UNIX users will find most comfortable.
Access should be via an ASCII terminal.

The TSO OMVS command

The TSO OMVS command provides a telnet-like interface, subject to the limitations of
3270 technology.

The ISPF shell

The ISPF shell is an interface that heritage MVS users will find most comfortable. It
exploits the full-screen capabilities of ISPF.

BPXBATCH
BPXBATCH allows UNIX work to be executed from batch JCL.

1.2.9 What people like about z/0S UNIX

Many people prefer to use z/OS UNIX because of the following:

>

It is a standard part of the z/OS operating system. Users who already have a z/OS
operating system only need to customize z/OS UNIX to suit their needs.

Accessing heritage MVS data is relatively easy using standard supplied interfaces. That
means it is cost effective to do things such as “add a new face” (Web enable) to an old
MVS application.

Security is strong utilizing z/OS access control software such as RACF. Many tasks that
may be impossible or difficult to control under other implementations of UNIX can be
controlled under z/OS UNIX.

Workload can be effectively managed, making resources available whenever they are
needed.

Almost infinite disk capacity is available using the virtual disk capabilities of DFSMS
storage management. With automount, data not used for a chosen period of time can be
migrated to cheaper media, but recalled seamlessly when needed.

z/OS address space structure means a failing process cannot impact other processes.

1.2.10 What people don’t like about z/0S UNIX

It is an EBCDIC implementation. Traditional UNIX solutions have been written for ASCII
platforms, so there may be some porting issues on the z/OS platform. But this issue
continues to diminish as new features are implemented, such as Enhanced ASCII
functionality in zZ/OS V1R2. See “Improved application flexibility: Enhanced ASCII” on
page 35.

1.3 z/OS

UNIX System Services release history

In 1991, the US Federal Information Processing Standards (FIPS) Document 151 stated that
MVS must incorporate support for popular UNIX interfaces. So began the challenge of
including UNIX functionality into the MVS operating system. The first implementation was
known as OpenEdition (or OE, or OMVS), then it became OS/390 UNIX System Services,
and then finally z/OS UNIX System Services, as we know it today.

Chapter 1. UNIX overview 23

XPG4 XPG4.2
POSIX >~

Full
UNIX

MVS/ESA 4.3 and 5.1 - — Branding

MVS/ESA 5.2.2 and 0S/390 R1
0S/390 R2

1994 1996

L

Figure 1-8 z/OS UNIX standards relationship

Figure 1-8 shows that z/OS UNIX has been UNIX branded since 1996.

1.3.1 MVS/ESA V4R3 - 1994

MVS/ESA™ V4R3 introduced:

» OpenkEdition Services Support Feature
— Clanguage API, HFS files, Extended User Interface
— Uses APPC/ASCH to supply address spaces
» OpenEdition Shell and Utilities
— Mortice Kern System's InterOpen (TM) POSIX Shell
» OpenEdition dbx Debugger
» Standards:
— ISO/IEC 9945-1:1990/IEEE (2) POSIX 1003.1-1990
— A subset of IEEE POSIX 1003.1a
— ISO/IEC DIS 9945-2:1992/IEEE POSIX 1003.2-1992
— A subset of IEEE POSIX 1003.4a

1.3.2 MVS/ESA V5R1 - 1994

Changes for MVS/ESA V5R1 include:

OpenEdition Services integrated in MVS
NFS (TM Sun™ Microsystems™) Server
AD/Cycle® C/370™ Language Support
REXX under OpenEdition

Integrated Sockets Support

DCE Base Services

DCE Application Support

DCE User Data Privacy Feature

TCP/IP V3.1

YyVYyVYVYVYVYVYYY

24 UNIX System Services z/OS Version 1 Release 7 Implementation

1.3.3 MVS/ESA V5R2M2 - 1995
Changes for MVS/ESA V5R2M2 include:

| 4
>
| 4

DCE/DFS

Extended Sockets - TCP/IP and SNA

Standards:

— POSIX, X/Open XPG4 Base Profile

— A subset of the X/Open Single UNIX Specification

1.3.4 0S/390 V1R1 - 1996
Changes for OS/390 V1R1 include:

»

Internet BonusPak - ICS

1.3.5 0S/390 V1R2 - 1996
Changes for OS/390 V1R2 include:

>

>
>
>
>

Officially branded UNIX

Internet BonusPak Il - ICSS

NFS Client

UNIX-to-UNIX Copy Program (UUCP)
Standards:

— X/Open XPG4.2 UNIX specification
— Improved performance

1.3.6 0S/390 V1R3 - 1997
Changes for OS/390 V1R3 include:

YVVYVYVYYVYVYVYVYYVYY

OE System Services merged into BCP
Permanent Kernel

OE services always available

OMVS started automatically during IPL
Temporary File System (TFS) introduced
Minimum & Full Function Modes
S/390® Firewall - proxy, socks, DNS
JAVA for S/390

TCP/IP V3.2

Improved performance

1.3.7 OS/390 V2R4 - 1997
Changes for OS/390 V2R4 include:

VVYVYVYVYVYVYVYYVYY

Uses WLM to supply address spaces.
APPC/ASCH no longer required.

New extended attributes for executable files.
Cached read-only files.

Parallel Environment.

Message Passing Interface (MPI).
Domino® Go Webserver.

BookManager BookServer.

Enhanced security.

Improved performance.

Chapter 1. UNIX overview

25

1.3.8 0S/390 V2R5 - 1998

Changes for OS/390 V2RS5 include:

C interface to WLM

Print server

Firewall technologies

LDAP server

Improved operations

F BPXOINIT,SHUTDOWN=FORKINIT
Improved performance

YyVVyVYyVYVYYVYY

1.3.9 0S/390 V2R6 - 1998

Changes for OS/390 V2R6 include:

» Name changed from OpenEdition to OS/390 UNIX System Services
» Single HFS
» Improved performance

1.3.10 0S/390 V2R7 - 1999

Changes for OS/390 V2R7 include the BPXTIINT statement in the BPXPRMxx parmlib
member, dynamic creation of character special files, inetd and rlogind daemons, man pages,
Parallel Environment (new release), security enhancements for system programming and
installation, and the UNIXMAP class.

BPXTIINT statement in BPXPRMxx parmlib member
References to BPXTIINT have been deleted because TCP/IP no longer runs at that level.

Dynamic creation of character special files

The character special files found under /dev are now created dynamically. Files such as
/dev/fdxx and /dev/ptyzzzz are created based on the MAXFILEPROC and MAXPTYS setting
in BPXPRMXxx, respectively.

MAXFILEPROC is the upper bound on the VALUE of n in the name of both forms (/dev/fdn
and /dev/fd/n). Both versions of n can be used in a single process.

For /dev/ptypnnnn files, MAXPTYS is the upper bound on the VALUE of nnnn.

inetd and rlogind daemons

The way the inetd and rlogind daemons are shipped has been changed. You will no longer
find a load module in SYS1.LINKLIB called INETD and RLOGIND, respectively. If system
programmers have created started procedures to start INETD via the START operator
command using BPXBATCH, they will need to change those procedures.

man pages
Previously, the man pages were automatically enabled. Now BookManager is used and an
optional task must be performed to enable them.

Parallel Environment (new release)

The second release of OS/390 UNIX System Services Parallel Environment is installed as
part of your OS/390 Release system.Compared to OS/390 V2R5, new features for Parallel
Environment in OS/390 V2R7 are:

26 UNIX System Services z/OS Version 1 Release 7 Implementation

Parallel debuggers

MPI-2 I/O (subset)

MPMD support

Multiple user thread support
Enhanced WLM selection

New utilities

Online documentation (man pages)

vyVVyVYyVYVYYVYYyY

Security enhancements for system programming and installation

System programmers who use SMP/E to install products and maintenance no longer require
a UID=0 user ID to perform these actions. Changes have been made to SMP/E to check the
BPX.SUPERUSER FACILITY class and to execute with superuser authority when the
respective user IDs are permitted to this facility class. Similar changes have also been made
to the TSO/E MOUNT and UNMOUNT utilities. Permission to the BPX.FACILITY class allows
sufficient authority to execute these utilities.

UNIXMAP class

The RACF UNIXMAP class makes it quicker for the system to look up a user ID from a UID, or
a group name from a GID.

Miscellaneous enhancements

» DFSMS 1.5 enhancement for HFS data sets.
» ServerPac install IPL eliminated.

» Mounts without security.

» New chroot command for testing fixes.
» Users can correct a bad home directory.

1.3.11 0S/390 V2R8 - 1999

Changes for OS/390 V2R8 include magic number support, 0S/390 UNIX user limits,
protected user ID, SETOMVS RESET operator command, and superuser granularity.

Magic number support

Most UNIX systems support a feature called the magic number (#!).The magic number is a
numeric or string constant in a file that indicates the file name of the executable program to be
run. When a script file starts with #!, the kernel invokes the specified file name as the script
file interpreter.

For example, the HFS file /u/userid/util1 contains the following line at the beginning of the file:
#! /u/userid/othershell

When /u/userid/util1 is executed via either spawn or exec, the kernel recognizes the magic
number and invokes /u/userid/othershell as the interpreter to process the /u/userid/util1 file.
Prior to OS/390 V2R8, the OS/390 UNIX kernel did not support the magic number, so it
treated it as a comment.

If the kernel cannot locate the program specified in the magic number, the shell attempts to
process the file as a shell script. Make sure that any magic number specifies a valid file name
or else eliminate the magic number.

0S/390 UNIX user limits

You can control the amount of resources that are consumed by individual OS/390 UNIX
users. Resource limits for most OS/390 UNIX users are determined by the BPXPRMxx

Chapter 1. UNIX overview 27

PARMLIB member. Use the RACF ADDUSER and ALTUSER commands to specify and
adjust the following limits, which are stored in the OMVS segment of the user profile:
MAXCPUTIME, MAXASSIZE, MAXFILEPROC, MAXPROCUSER, MAXTHREADS, and
MAXMMAPAREA. To shorten the names of the commands to be typed, RACF changed the
names of those limits by putting MAX at the end. For example, the ADDUSER and ALTUSER
commands support CPUTIMEMAX. This allows the abbreviation of CPU instead of MAXCPU.

Protected user ID

You can define RACF user IDs that cannot be used for activities such as logging on to TSO or
signing on to CICS. As such, the user IDs that are defined for OS/390 UNIX daemons and
other important subsystems or started tasks can be protected from being used for other
purposes. They can also be protected from being revoked after several unsuccessful attempts
to enter a password.

SETOMVS RESET operator command

You can dynamically add the FILESYSTYPE, NETWORK, and SUBFILESYSTYPE
statements to the BPXPRMxx parmlib member without having to re-IPL. However, if you
change the existing values, a re-IPL will be necessary.

Superuser granularity

You can reduce the number of people who have superuser authority at your installation by
defining profiles in the UNIXPRIV class that grant RACF authorization for certain OS/390
UNIX privileges. Normally, these privileges are automatically defined for all users who are
defined with OS/390 UNIX superuser authority. But you can use UNIXPRIV to grant certain
superuser privileges, with a high degree of granularity, to users who do not have superuser
authority.

1.3.12 0S/390 V2R9 - 2000

28

Changes for OS/390 V2R9 include support for shared HFS, an additional UNIX C shell,
shared library support, new shell commands, and improvements in application enablement,
systems management and debugging.

Support for shared HFS

Shared HFS allows read/write data to be shared transparently among participating systems
across a sysplex. Before Release 9, you could have read/write access only to data in file
systems mounted on your own system. The Shared HFS capability will become available
some time in the Release 9 time frame.

A new chapter in 0S5/390 UNIX System Services Planning, SC28-1890, “OS/390 in a
Sysplex” contains information about how to set up shared HFS in a sysplex, including how to
create the sysplex root HFS data set and the system-specific HFS data set, and how to
format an OS/390 UNIX Couple Data Set (CDS). It also describes how to update BPXPRMxx,
move file systems, control security, and tune performance in a sysplex.

Specific changes in support of the shared HFS capability include:
» Changes to the BPXPRMxx parmlib member:

— New BPXPRMxx parameters: SYSPLEX(YESINO) and VERSION('nnnn’).
SYSPLEX(YES) indicates whether a system running OS/390 UNIX System Services is
to be initialized in a sysplex environment or operate in local mode. The first system
entering the sysplex with SYSPLEX(YES) initializes a Couple Data Set (CDS), which
controls shared HFS mounts. The CDS eventually contains sysplex-wide data about

UNIX System Services z/OS Version 1 Release 7 Implementation

the systems that use Cross-System Coupling Facility (XCF) services. The value of this
parameter cannot be changed dynamically.

VERSION('nnnn’) indicates the release or version of root HFS.

— New BPXPRMxx optional keywords on the ROOT and MOUNT parameters:
SYSNAME(sysname) and AUTOMOVEINOAUTOMOVE.

On the ROOT parameter, SYSNAME(sysname) is the name of a system in a sysplex
that was IPLed with SYSPLEX(YES). The AUTOMOVEINOAUTOMOVE parameters
indicate whether, if the specified root file system owner goes down, the root file system
can be automatically moved to another system, which then becomes the owner for that
root.

On the MOUNT parameter, SYSNAME(sysname) specifies the particular system on
which a mount should be performed.

» New information fields on the df-v shell command are displayed for file systems whose
owner is part of a sysplex: the file system ID (owner/mounted file system server) and the
file system ID issuing a quiesce request.

» New keywords on the TSO MOUNT command:

— SYSNAME(system_name) specifies the specific system on which a mount should be
performed (this system must be IPLed with SYSPLEX(YES)).

— AUTOMOVEINOAUTOMOVE keywords indicate whether the ownership of a file system
is to be transferred if the file system's owner goes down.

A UNIX C shell

The new shell, tcsh, is an enhanced version of the Berkeley UNIX C-shell, which is commonly
available on other UNIX systems. The tcsh shell is specifically designed to have a syntax
similar to the C programming language, and has a number of commands designed especially
for C programmers. It also has many general tools that can help any programmer. The tcsh
shell commands are documented in OS/390 UNIX System Services Command Reference,
and their usage is documented in OS/390 UNIX System Services User's Guide.

Support for WLM multi-system enclaves

Support for WLM multi-system enclaves simplifies tasks related to the management of
multi-system transactions in a parallel sysplex. It provides the capability for managing and
reporting on work requests that are executed in parallel on multiple MVS images as single
entities.

The BPX1WLM (__wlIm) callable service is enhanced to support the following new function
codes:

» WLM_EXPORT_WORKUNIT

» WLM_UNDOEXPORT_WORKUNIT

» WLM_IMPORT_WORKUNIT

» WLM_UNDOIMPORT_WORKUNIT

» WLM_QUERY_ENCLAVECLASS

» WLM_CONNECT_EXPORTIMPORT

Shared library support

Support is added for shared object libraries. Shared object libraries contain subroutines that
can be shared by multiple processes. Programs using shared libraries contain references to
the library routines that are resolved by the loader at run time. Shared library modules reside

Chapter 1. UNIX overview 29

30

in the shared library region in memory. System-shared object libraries are indicated by a new
file attribute, and user-shared by a new file suffix, . so.

New shell commands

The UNIX fuser utility lists the process IDs of all processes running on the local system that
have one or more named files opened.

New shell commands mount, chmount, unmount:

» mount mounts a file system or lists all mounts over a file system.

» chmount changes the mount attributes of a specified file system in a sysplex.
» unmount removes file systems from the file hierarchy.

Application enablement

Megabyte mapping services greatly reduce the excessive amounts of ESQA required to
support servers that need to access more than 2 GB of storage. Two new callable services,
BPX1MMI (__map_init) and BPX1MMS(__map_service), enable applications to manage an
unlimited number of data blocks, each of which can hold some number of megabytes of data.
They provide a fast way to connect to persistent memory for applications that need more
shared memory than will fit in the address space.

You can now have access to system variables from the shell. The new sysvar command
allows you to obtain substitution text for system variables that are defined in the IEASYMxx
PARMLIB member or in the system IPL parameters. Shell scripts that run on multiple systems
can use variable names such as SYSNAME.

Systems management features
» The D OMVS command has two new operands:

— PFS displays information about the current configuration of the physical file system.

— CINET displays routing information in effect for active transport providers using the
Common INET Pre-Router.

» An alternative entry point, BPXBATSL, is provided for BPXBATCH. BPXBATSL, which is
an alias for BPXBATCH and behaves exactly like BPXBATCH, except that it does not
require the resetting of environment variables. This allows for more accurate
measurement and analysis of the system.

» The pax utility now supports hard link and symbolic link names that are over 100
characters in length.

» This release provides a controlled way for a PFS to terminate and restart so that its
kernel-resident load module can be deleted and reloaded for APAR service without a
re-IPL. A superuser can recycle a kernel-resident PFS by using two calls to pfsctl
(BPX1PCT), one to stop the PFS and one to start it.

Debugging improvements

» This release introduces a BPXPRMxx syntax checker. A new SETOMVS command
parameter, SYNTAXCHECK=(xx), allows you to check the syntax of a BPXPRMxx parmlib
member before you use it to IPL. Any syntax errors are sent to the hardcopy log.

» With JOBLOG to STDERR support, WTO messages normally targeted to the JES
JESYSMSG file can be redirected to a joblog in the HFS with a new environment variable,
_BPXK_JOBLOG. You can specify the joblog to receive messages. This helps in the
diagnosis of system issues for UNIX applications.

UNIX System Services z/OS Version 1 Release 7 Implementation

» dbx now supports the long long data type. Programmers can debug C/C++ programs that
use the long long and unsigned long long data types.

» dbx supports Language Environment debug events for read/write locks and shared
mutexes (LE CEEEVDBG). A new readwritelock subcommand displays read/write lock
information.

Changes for 0S/390 C/C++

New C functions are added:
» ConnectExportimport()
> _cpl()

» ExportWorkUnit()

» __ getuserid()

» ImportWorkUnit()

» _ ipDomainName()

» _ map_init()

» __map_service()

» __mount()

» QueryWorkUnitClassification()
» sigqueue()

» strtoll()

» strtoull()

» UnDoExportWorkUnit()
» UnDolmportWorkUnit()

The following compiler options and suboptions are new:

» The CHECKOUT option has a new suboption, CAST, which checks for the potential
violation of ANSI type-based aliasing rules in explicit pointer type castings.

» COMPRESS suppresses the generation of function names in the function control block,
thereby reducing the size of your application's load module.

» The DIGRAPH option is now supported for C as well as C++.

» IGNERRNO informs the compiler that your application is not using errno to return error
conditions. This allows the compiler to explore additional optimization opportunities for
certain library functions.

» INITAUTO directs the compiler to generate code to initialize automatic variables. Automatic
variables require storage only while the function in which they are declared are active.

» PHASEID specifies that each compiler module (phase) is to issue an informational
message as the phase begins execution. This helps you determine the maintenance level
of each compiler component (phase).

» RECONST informs the compiler that the const qualifier is respected by the program.
Variables defined with the const keyword will not be overridden by a casting operation.

» ROSTRING directs the compiler to place string literals into read-only memory, and not in
the Writeable Static Area (WSA). This reduces the memory requirements for DLLSs.

» STRICT_INDUCTION instructs the compiler to disable loop induction variable
optimizations. These optimizations have the potential to alter the semantics of your
program. Such optimizations can change the result of a program if truncation or sign

Chapter 1. UNIX overview 31

extension of a loop induction variable occurs as a result of variable overflow or
wraparound. This option provides information to the compiler that enables it to explore
additional opportunities for optimization.

The TARGET option has been extended so that you can specify the OS/390 release for
your program's object module that OS/390 C/C++ generates. This lets you generate code
that is backward compatible with earlier levels of the operating system. You can compile
and link an application on a higher level system, and run the application on a lower level
system. You can also use the RTLIB suboption to inform the compiler whether a complete
C run-time library is available. For example, use the NORTLIB suboption when building a
System Programmer C (SPC) application.

The following #pragma directives are new:

>

leaves specifies that a named function never returns to the instruction following the call to
that function. This pragma provides information to the compiler that enables it to explore
additional opportunities for optimization.

option_override directs the compiler to optimize functions at different optimization levels
from the one specified on the command line by the OPTIMIZE option. With this pragma
directive, you can leave specified functions unoptimized, while optimizing the rest of your
application. This eases the debugging effort of functions that are problematic under
optimization, by allowing you to isolate those functions.

reachable specifies that you can reach the instruction after a specified function from a
point in the program other than the return statement in the named function. This pragma
provides information to the compiler that enables it to explore additional opportunities for
optimization.

1.3.13 0S/390 V2R10 - 2000

Changes for OS/390 V2R 10 include support for C/C++ applications, RAS enhancements,
performance improvements, and other miscellaneous enhancements.

Support for C/C++ applications

>

Large file support

Support is added to some of the utilities that perform file operations for large (2GB or
larger) HFS files.

Kernel support for Language Environment XPLINK

0S/390 UNIX provides support for Language Environment XPLINK (eXtra Performance
Linkage), which improves the execution performance and compile times of OS/390
applications written in C/C++.

Shell and utilities support for new long long data types

Long long support eases the task of porting programs that use 64-bit integers (such as
JAVA Virtual Machine).

dbx support of long long compiler symbolic and arithmetic

dbx supports the debugging of C/C++ applications that include long long and unsigned
long long data types.

dbx support of XPLINK
dbx supports the debugging of new code associated with XPLINK.

32 UNIX System Services z/OS Version 1 Release 7 Implementation

Reliability, availability, and serviceability enhancements

Diagnostics and serviceability of the OS/390 UNIX environment are improved with tools that
identify problems in setup, enable you to gather better dumps, and improve the analysis of
dumps. These enhancements include:

>

Descriptions for shell and utilities messages.
Descriptions have been added for over 150 Shell and Utilities messages.
Shell script for removing old files

The skulker shell script removes files over a certain age from user-specified directories,
based on the date a file was last accessed.

Zombie cleanup for the init process

A mechanism is introduced to ensure that zombie processes are cleaned up on a regular
basis for the init process.

Enhanced program control support

Enhanced program control support is provided for authorized address spaces, such as
daemon and server address spaces, to enable better integrity for those address spaces
and better problem determination information for programs that require program control. A
new SAF service is used to better maintain program control and provide better problem
determination information. Aids in the protection and problem determination for these
address spaces.

Debugging support for byte-range lock waits

DISPLAY OMVS has a new operand, BRL, which displays thread-level information for any
thread that is in a byte-range lock wait.

Security enhancements to AF_UNIX PFS

These enhancements allow an AF_UNIX datagram server to receive the identity of the
sender of each message it receives, providing for better troubleshooting of data passed
from the syslog daemon to the joblog.

sysconf() performance enhancement

The performance of sysconf(), a valuable tool that allows application programs to retrieve
data from the system, is improved, and new flags are added to meet UNIX98 standards.

Performance improvements

>

Enhanced reporter support

This support allows more kernel-related data to be made available to report applications
like RMF, improving the ability of the OS/390 UNIX platform to manage UNIX workloads.

Kernel generic timeout service

This new time-out function enhances the performance of Lotus® and other UNIX-based
applications, greatly increasing the number of Notes clients that can be supported on a
single server.

Application notification of stack recycle

Common Inet is enhanced to notify servers when a new transport provider stack is
initialized, so that servers do not have to be manually recycled.

Relative addressing exploitation

The performance of heavily used kernel modules is improved through conversion to
compiler/assembler relative addressing support, which reduces the size of the kernel
modules in LPA.

Chapter 1. UNIX overview 33

» Spawn of OS/390 shell pipeline commands

The performance of pipeline commands is improved by the replacement of fork and exec
calls with spawn calls. In addition, spawn allows more sharing of processes within the
parent address space, making more efficient use of system resources.

Other enhancements
» Message routing capability for the _console() service

Routing and descriptor codes can be specified for messages issued with the _console()
service. A DOM (delete operator message) capability is added to delete held messages
from the console.

» New features for binary semaphores

The UNDO feature is provided for binary semaphores, allowing them to be freed when
they are not freed by the exiting process. The short semaphore feature allows
semaphores to be held for very short intervals of time. Short-duration requesters can
bypass the default first-in-first-out ordering of semaphore obtain requesters and cut to the
front of the wait chain.

1.3.14 0S/390 V2R10 - 2000 Software Refresh

34

Changes for OS/390 V2R 10 Software Refresh include support for C/C++ applications, RAS
enhancements, performance improvements, and other miscellaneous enhancements.

Support for C/C++ applications

Support is added for 64-bit real addressing, which improves the performance and response
time of applications that have very large memory and DASD storage demands, use Data in
Memory, or need to access very large databases. New functions are added to the ptrace
callable service (BPX1PTR) to support callers using the new general-purpose “high”
registers.

Reliability, availability, and serviceability enhancements
Introductory paragraph:

» UNIX System Services Parmlib Limits Checking

This support provides enhancements for monitoring and managing UNIX System Services
parmlib limits, including:

— Console messages that indicate the status of USS parmlib limits, allowing an
installation to react quickly when limits are reaching critical levels.

— A new BPXPRMxx parmlib statement, LIMMSG(NONEISYSTEMIALL), which controls
the displaying of these console message. A new SETOMVS operand, PID=, which
dynamically changes a parmlib limit for a process.

— A new keyword, LIMITS, on the DISPLAY OMVS command, which displays information
about USS parmlib limits and current system usage. With the PID= keyword, LIMITS
displays information for an individual process. With the RESET keyword, LIMITS resets
the high-water marks for system limits to 0.

» Sysplex CDS Repair Tool

Corruption of the Couple Data Set (CDS) can prevent the USS file system from performing
key sysplex operations. The Sysplex CDS Repair Tool, used under the direction of an IBM
service representative, makes it possible to correct or isolate the scope of a defect in the
CDS, reducing the need for a sysplex-wide IPL. The MODIFY operator command is
enhanced to support these shared HFS diagnostic and repair functions.

UNIX System Services z/OS Version 1 Release 7 Implementation

» Support for MVS Dump Debugging

Post-mortem analysis is now possible on MVS dumps. A new dbx command line option,
-C, puts dbx in full source-level debug mode.

Performance improvements

» Fast pthread_quiesce
A new pthread_quiesce interface, BPX1PQG, is introduced, which freezes or unfreezes a
set of threads and returns state information for them, without requiring that signals be sent

to the target threads. This improves the performance and reliability of applications, such
as JAVA, that use pthread_quiesce or signalling to stop threads.

1.3.15 2/0S V1R1 - 2001

There were no new or changed z/OS UNIX System Services functions in z/OS V1R1.
Changes in the documentation reflect only the change in product name, such as OS/390
UNIX System Services becoming z/OS UNIX System Services.

1.3.16 2z/0OS V1R2 - 2001

Changes for z/OS V1R2 include improved application flexibility, new tools for managing
e-business, and greater ease of use.

Improved application flexibility: Enhanced ASCII

Enhanced ASCII functionality makes it easier to port internationalized applications developed
on (or for) ASCII platforms to z/OS platforms, by providing conversion from ASCII to EBCDIC
and from EBCDIC to ASCII.

Enhanced ASCII introduces:

» A file tagging mechanism, which allows programmers to tag files with a file attribute that
describes the contents of the file. The file tag contains a Coded Character Set Identifier
(CCSID) that identifies the character set of the text data within the file, and indicates
whether the file is eligible for automatic conversion.

» Support for automatic data conversion between character sets when the CCSIDs of a
program and a file it is reading or writing to are different.

Enhanced ASCII support applies only to z/OS UNIX files; it does not apply to MVS files, even
if they can be accessed by z/OS UNIX. For more information about the limitations of
Enhanced ASCII, see z/OS C/C++ Programming Guide.

Specific changes in support of Enhanced ASCII include:

» A new statement in the BPXPRMxx parmlib member, AUTOCVT(ONIOFF), globally
enables and disables the automatic text conversion of I/O data between code sets.
AUTOCVT can be turned on or off with the SETOMVS and SET OMVS operator
commands. Automatic conversion can also be overridden by individual programs at a
thread level using flags in the thread control block.

» The MOUNT statement in BPXPRMxx has a new keyword, TAG, which specifies whether
files should be converted during reading and writing.

» The TSO/E MOUNT command has a new operand, TAG(NOTEXTITEXT,ccsid) to support
file tagging.

» Shell commands are added or changed to support file tagging and automatic file
conversion:

Chapter 1. UNIX overview 35

36

— A new shell command, chtag, assigns, changes, and removes the file tag on existing
files.

— The new -T option on the cksum shell command enables the automatic conversion of
tagged files.

— The new -B option on the cmp shell command disables the automatic conversion of
tagged files.

— The new tag option on the automount command specifies whether file tags for
untagged files in the mounted file systems are to be implicitly set.

— New options on the following shell commands support file tagging and/or automatic file
conversion:

cp

df

file
find
head
icnov
localedef
Is
mount
mv

od
pack
pax
strings
tail
tcsh
test

» Two new environment variables are added to support file tagging and automatic file

conversion: BPXK_AUTOCVT enables the conversion of data between EBCDIC and
ASCII code sets, and _BPXK_CCSIDS identifies an EBCDIC or ASCII pair of
corresponding CCSIDs (only one pair is supported with this release: EBCDIC 1047 and
ISO-8859-1).

New shell variables (_TAG_REDIR_IN, _TAG_REDIR_OUT, and _TAG_REDIR_ERROR)
control the conversion of untagged files. (See the descriptions of the sh and tcsh
commands in zZZOS UNIX System Services Command Reference, SA22-7802.)

The BPX1FCT callable service controls the automatic conversion of file data with two new
arguments. F_SETTAG sets the file tag, and F_CONTROL_CVT controls automatic file
conversion.

New tools for managing e-business
» HFS control

The new FACILITY class profile BPX.DAEMON.HFSCTL enforces program control for
HFS programs only. When users are given permission to this profile, z/OS UNIX bypasses
program control rules for programs loaded from MVS libraries, but enforces the rules for
HFS programs.

Soft shutdown for mounted file systems

This enhancement allows file systems to be unmounted without the loss of data. A new
keyword on the MODIFY operator command, SHUTDOWN=FILESY'S, specifies that all
active file systems on this system are to be unmounted and the data synched to disk. In a

UNIX System Services z/OS Version 1 Release 7 Implementation

sysplex environment, AUTOMOVE(YES) file systems that are owned by this system are
moved to another system.

» A new file system, zFS, which can be used in addition to HFS

zServer File System (zFS) is a new file system for z/OS UNIX System Services that can
improve performance for many applications, especially those that access very large
sequential files.

Greater ease of use

» Support for the TCP/IP Services resolver enhancement
The TCP/IP Services resolver enhancement provides common functionality across native
MVS and z/OS UNIX environments. The key functions for the various z/OS resolver

libraries, which are used by TCP/IP Services applications for name-to-address or
address-to-name resolution, are consolidated into a new, single resolver component.

— A new BPXPRMxx statement, RESOLVER_PROC, specifies the name of a cataloged
procedure in SYS1.PROCLIB that will be used to start the resolver address space
during z/OS UNIX initialization.

— DISPLAY OMVS,0 displays the RESOLVER_PROC specification.

— Two new callable services, gethostbyname(BPX1GHN) and gethostbyaddr
(BPX1GHA), provide access to the system resolver functions.

» Enhancement to uname utility for OS/390 to z/OS compatibility.

The uname utility has a new option that allows for continued support of the name OS/390
within the uname() field.

1.3.17 2/0S V1R3 - 2002

Changes for z/OS V1R3 include Managed System Infrastructure for Setup (msys), improved
system management features, a greater level of security for HFS files and directories with
access control lists (ACLs), and numerous enhancements to ISHELL.

Managed System Infrastructure for Setup support

z/OS Managed System Infrastructure for Setup (msys for Setup) significantly reduces the
complexity of setting up the z/OS UNIX environment. It uses a series of customization dialogs
to help you establish the basic definitions and values used by the TFS and HFS file systems
and set limits on z/OS UNIX system resources. Default settings are based on best practices
and current experience. Each panel supplies extensive help.

Improved system management features
» New functions for the automount facility

— System symbolics are supported.

— New keywords on automount generic entries support the use of automount to allocate
HFS data sets: allocany, allocuser, and lowercase.

— A new flag option on the automount shell command, -q, displays the current automount
policy.
» Sysplex mount table limit monitoring

A new eventual action console message warns when the mount table limit in the Coupled
Data Set (CDS) reaches critical limits of 85%, 90%, 95%, and 100%. Another new
message is issued when the resource shortage has been relieved.

Chapter 1. UNIX overview 37

These messages are issued only when the installation has set up system limit messaging
(with the LIMMSG= statement in BPXPRMxx).

» OMVS outage avoidance

With this support you can recycle the OMVS address space and its associated workload
without having to re-IPL mission-critical systems.

The F OMVS operator command has a new keyword, SHUTDOWN, that shuts down
the entire z/OS UNIX system and all processes.

The output of the D OMVS operator command indicates which processes are
registered as permanent or blocking.

A SIGTERM signal is sent to each eligible process to indicate that a system shutdown
is imminent. Applications that use SIGTERM for other purposes can specify that a new
signal, SIGDANGER, can be used as the initial indication of an imminent shutdown.
This is done with the new environment variable, _BPXK_SIGDANGER.

The SHUTDOWN_REG parameter on the BPX1ENV callable service registers the
caller for special treatment at OMVS shutdown time.

The BPX1SDD (set_dub_default) callable service has three new options:
DUBJOBPERM, DUBABENDCALLS, and DUBNOJSTUNDUB, which handle the
behavior of the calling task and its subtasks during a shutdown and restart of OMVS.

» Automatic removal of mounted file systems when a system leaves the sysplex

You can specify that a file system is to be automatically unmounted when the system
leaves the sysplex. This includes any file systems mounted on that file system.

The UNMOUNT keyword is added to the AUTOMOVE | NOAUTOMOVE keyword on
the MOUNT statement in BPXPRMxx. When specified, it indicates that the file system
should be unmounted whenever the system leaves the sysplex.

The SETOMVS operator command has a new UNMOUNT operand.
The MOUNT TSO/E command has a new UNMOUNT option.
The mount and chmount shell commands have new unmount options.

The output of the DISPLAY OMVS operator command reflects the new UNMOUNT
option.

File system information displayed by the df -v shell command provides unmount
information.

The _mount (BPX2MNT) callable service supports unmount with an unmount bit
defined in the mnte control block.

The getmntent syscall command has a new variable for unmount requests,
MNT_MODE_AUNMOUNT.

» Colony address spaces started outside of JES.

A new start parameter on the ASNAME keyword of the FILESYSTYPE statement of
BPXPRMxx, SUB=MSTR, specifies that an address space is not to be started under JES.
This allows you to recycle JES without affecting the DFS or NFS clients. APAR OW48709 is
required for this support.

Access control to files and directories by individual UIDs and GIDs
Access control lists (ACLs) extend the security provided by permission bits, by allowing you to
control access to files and directories by individual user (UID) and group (GID). Previously,
HFS files were protected only with POSIX permission bits, which are contained within the File
Security Packet (FSP) in the file system. You could only specify permissions for file owner

38 UNIX System Services z/OS Version 1 Release 7 Implementation

(user), group owner, and everyone else. ACLs behave much like RACF profile access lists,
but they are contained within the file system. The currently participating file systems are HFS
and zFS.

Shell commands are added or modified to support ACLs:

» Two new shell commands, setfacl and getfacl, define and display ACLs.

» cp options -p and -Z preserve the ACLs of files and directories, and specify that error
messages are not displayed when ACLs are being set on the target, respectively.

» df displays ACL information.

» find, test, and the test, [...], and [[...]] reserved-word commands have new ACL
primary operators.

» getconf displays ACL information.
» s indicates the presence of ACLs.

» The mv option -Z specifies that error messages are not displayed when ACLs are being set
on the target.

» pax has a new keyword, -o, which displays extended ACL data.
» tar has a new -L type option, which displays extended ACL entries.
» tcsh has new file inquiry operators to support ACLs.

Callable services are modified to support ACLs:

» The BPX1FPC (fpathconf) and BPX1PCF (pathconf) callable services support new
pathname variables: _ACL and _ACL_ENTRIES_MAX.

» The BPX110C (w_ioctl) and BPX1PIO (w_pioctl) callable services accept two new
commands: SetfACL and GetfACL.

REXX syscall commands are added or modified to support ACLs:
» New REXX syscall commands are added:

— aclupdateentry
— acldelete

— acldeleteentry
— aclfree

— aclget

— aclgetentry

— aclinit

— aclset

» New variables are added to stat, fstat, and 1stat REXX syscall commands:
ST_ACCESSACL, ST_DMODELACL, and ST_FMODELACL.

» New variables are added to the pathconf REXX syscall command: PC_ACL and
PC_ACL_MAX.

ISHELL enhancements
Numerous enhancements have been made to ISHELL in response to customer requests:

» Many changes have been made to the directory list:

— Most areas of the directory list are cursor sensitive. You can, for instance, click on a file
name and get a panel showing the full path name for that file.

— The directory list panel contains brief instructional information and an action bar
specific to the directory list. These can be turned on or off.

Chapter 1. UNIX overview 39

— The current directory path name was previously shown as selected, with dots, dot-dots,
and symlinks. It is now fully resolved. In addition, the directory name is preceded with
the effective UID of the process.

— Sort options are extended beyond the file name, and a secondary sort column can be
specified.

— File names in the directory list can be displayed in different colors, based on selected
criteria (such as file type, setuid or setgid bit on, sticky bit on, file marked as
executable, etc.) Colors are specified with the colors command.

» The main panel shows the effective UID of the process, and it remembers the last path

name that was entered.

» The su command entered on the command line allows a UID or user name to be specified.

The su command from the pull-down on the action bar cannot switch to a UID.

» The execute command no longer executes the selected file. A panel is displayed that

allows you to enter a command and select the method for command execution. The
command can be executed directly (local spawn), as a shell command through a login
shell (sh -Lc), or as a TSO command. The selected path is automatically inserted at the
end of the command line by default. You can also use {} anywhere within the command,
any number of times, and it will be replaced with the selected path name.

» Time stamps on all panels that contain time stamps display local time based on the TZ
setting for that user. The time stamp format is changed to be consistent with the ISO 8601
standard (yyy-mm-dd hh:mm). The directory list can also be configured to display the last
changed time for files.

» The two panels that allow you to create HFS file systems have two new optional fields,
Volume and Unit. When either is specified, it is added to the allocation command that gets
issued.

» ISHELL can now be run with the option -d, and ISHELL will not suppress ISPF severe
dialog errors, but terminate. This should only be used at the direction of IBM support.

» The oedit shell utility and OEDIT TSO command have an -r xx option to set the record
length to be edited for fixed length text files.

» The oedit and obrowse shell utilities now pass the effective user ID of the process to the
TSO session. If the effective user ID does not match that of the TSO process, the OEDIT
or OBROWSE TSO commands attempt to set the effective user ID of the TSO process to
that of the shell command before loading the file.

1.3.18 2/0OS V1R4 - 2002

40

Changes for z/OS V1R4 include support for Internet Protocol Version 6 (IPv6), improved
UNIX security management, greater application flexibility with zFS and REXX enhancements,
and new system management features.

z/OS UNIX IPv6 support

UNIX System Services offers CINET support for Internet Protocol Version 6 (IPv6). IPv6
increases the size of IP addresses from 32 bits to 128 bits. IPv6 can be added to, and is
interoperable with, IPv4 systems. Local INET (BPXTLINT) is no longer supported.

You activate IPv6 on a system by adding a second NETWORK statement to the definition of
the INET or CINET configuration, using AF_INET6 as the domain value. You can also add the
second NETWORK statement dynamically with SETOMVS RESET=(), although the TCP/IP
stacks have to be recycled in order for IPv6 to be activated.

Other changes to support IPv6:

UNIX System Services z/OS Version 1 Release 7 Implementation

» The CINET operand on the DISPLAY OMVS operator command displays 16-byte IP
addresses, where appropriate, if IPv6 is in use.

» The inetd and rlogind daemons are enhanced to support IPv6 connections.

» The socket callable service (BPX1SOC) supports the use of AF_INET6 as the domain
value to create IPv6 sockets.

» Three new callable services provide for protocol-independent name resolution services:
— BPX1GAI (Get the IP address and information of a service name or location.)
— BPX1FAI (Free Addr_Info structures)
— BPX1GNI (Get the host name and service name from a socket address.)

For more information about IPv6, see the home page for Playground.Sun.Com, a server
operated by the Internet Engineering group of Solaris™ Software, a division of Sun
Microsystems, Inc.

UNIX security management enhancements
» UID/GID enhancements

Enhancements to the way UIDs and GIDs can be assigned by RACF make managing
UNIX identities for users and groups easier and less error prone. Administrators can:

— Use the new RACF facility class profile, BPX.NEXT.USER FACILITY, to have UIDs and
GIDs automatically assigned to new users. The AUTOUID and AUTOGID keywords of
ADDUSER/ALTUSER allow RACF to automatically assign an unused UID or GID to a
user or group.

— Assign shared (non-unique) UIDs and GIDs to z/OS UNIX groups, or prevent them
from being shared, using the SHARED keyword of ADDUSER, ALTUSER,
ADDGROUP and ALTGROUP. The SHARED.IDS profile must be defined in the
UNIXPRIV class.

— Determine the user, or set of users, currently assigned a given UID, using the UID
keyword of the SEARCH command.

— Determine the group, or groups, currently assigned a given GID value, using the GID
keyword of the SEARCH command. This provides an alternative to using the
UNIXMAP class.

— Use the FILE.GROUPOWNER.SETGID class profile in the UNIXPRIV class to specify
that the group owner of a new HFS file is to come from the effective GID of the creating
process. Previously, only the group owner of the parent directory could be the group
owner of a new HFS file.

» Enhanced program security

RACF provides enhanced program control checking for privileged z/OS UNIX programs
that require a program-controlled environment. The BPX.MAINCHECK security profile
allows files to be defined to RACF as trusted, or “MAIN". HFS programs must be moved to
an MVS library before they can be defined to MAIN.

» Sanction lists

Sanction lists provide additional security for APF or program-controlled programs. You can
compile a single list to contain the lists of pathnames and program names that are
sanctioned by the installation for use by APF-authorized or program-controlled calling
programs.

— A new BPXPRMxx statement, AUTHPGMLIST, specifies that a sanction list is to be
used and points to the sanction list HFS file. The value in AUTHPGMLIST is the
pathname of the HFS file that contains the sanction list.

Chapter 1. UNIX overview 41

42

— SETOMVS has a new keyword, AUTHPGMLIST, which specifies that a sanction list is
to be used.

— The output of DISPLAY OMVS contains the AUTHPGMLIST value.
» Transport Layer Security (TLS) certificate support

The BPX1SEC callable service has a new function code, SECURITY_CERTAUTH#, that
allows users to supply a digital certificate for authentication of a specified user ID. Once
the authentication is provided, a setuid() can be used to change the MVS/UNIX identify to

that of the specified user ID.

Application flexibility

» zFS enhancements

With z/OS Distributed File Service zSeries File System (zFS), you can put multiple
mountable file systems into a single data set, called an aggregate. You can display the

names of aggregate file systems with:

The w_getmountent (BPX1GMN) file system interface

The DISPLAY OMVS,FILESYSTEM operator command

The MODIFY BPXOINIT,FILESYS=DISPLAY operator command
The df shell command

ISHELL file system attributes

You can use the ISHELL to create HFS-compatible zFS file systems.

» REXX enhancements

— Level-1 support for REXX functions that extend the REXX language in the z/OS UNIX
environment. Some of these were previously available on the UNIX System Services

Tools & Toys Web page.
— Functions for standard REXX I/O:

charin()
charout()
linein()
lineout()
stream()

— Functions for accessing common file services and environment variables:

bpxwunix()
chars()
chmod()
convd2e()
directory()
environment()
exists()
getpass()
lines()
outtrap()
procinfo()
rexxopt()
sleep()
submit()
syscalls()

— BPXWDYN, which makes dynamic allocation and dynamic output services easily
accessible to programs running outside of a TSO environment. (It also functions in a

UNIX System Services z/OS Version 1 Release 7 Implementation

TSO environment.) It supports data set allocation, unallocation, concatenation, and the
addition and deletion of output descriptors.

BPXWDYN is designed to be called from REXX, but it may be called from several other
programming languages, including Assembler, C, and PL/I.

— A TSO host command environment that permits a REXX program to run TSO/E
commands.

— Support for “immediate commands”, TSO/E REXX commands that change
characteristics that control the execution of an exec or program.

For additional information, see z/OS Using REXX and z/OS UNIX System Services,
SA22-7806.

» /dev enhancements

The /dev/fd/n file is supported, and can be created dynamically.

System management features
» Enhanced pthread_quiesce

Two new thread-scope signals, SIGTHSTOP and SIGTHCONT, allow individual threads to
be stopped and resumed. These signals can only be used with the pthread_kill
command.

» z/OS UNIX process start/end exits

Applications can use four installation exit points to monitor the creation and termination of
processes:

— Pre-process initiation exit (BPX_PREPROC_INIT), which receives control immediately
before the creation of a new z/OS UNIX process.

— Post-process initiation exit (BPX_POSPROC_INIT), which receives control
immediately after the creation of a new z/OS UNIX process.

— Process image initiation exit (BPX_IMAGE_INIT), which receives control immediately
before the initiation of a new z/OS UNIX process image.

— Pre-process termination exit (BPX_PREPROC_TERM), which receives control
immediately before the termination of a zZOS UNIX process.

» Automove system list

You can compile an automove system list to indicate where specified file systems should
and should not be moved when a system is taken out of a sysplex. Until now, file systems
defined with AUTOMOVE=YES have been moved randomly.

— The MOUNT statement of BPXPRMxx has a new keyword, AUTOMOVE, which
indicates where the specified file systems should be moved when systems leave the
sysplex.

— The SETOMVS operator command has a new keyword, AUTOMOVE, which indicates
where the specified file systems should be moved when systems leave the sysplex.

— The DISPLAY OMVS,F operator command displays the list of file systems that will be
moved.

— A new variable for mount requests, MNTE_SYSLIST, is added to the getmntent and
mount syscall commands.

» Distributed byte range lock manager (BRLM)

This release allows for distributed, rather than centralized, BRLM. With distributed BRLM,
each system in a sysplex is started with BRLM, and each BRLM maintains locks for files in

Chapter 1. UNIX overview 43

files systems that are locally owned. When a remote sysplex member dies, many
applications that lock locally mounted files are unaffected.

Conversion to distributed BRLM is enabled with a new parameter (DISTRBRLM) on the
CDS format utility IXCL1DSU. In a future release, distributed BRLM will be the default.

Signal during socket suspends

Signal termination processing is enhanced to terminate threads in a TCP/IP socket
suspend.

(Currently, fastpath processing for TCP/IP socket calls causes TCP/IP to wait for the task
during a kernel syscall. This places the task in a state in which signal delivery cannot be
executed, and defers indefinitely any signal sent to the suspended thread. The only way to
terminate the process when the thread is hung in this wait is with the operator's CANCEL
command.)

1.3.19 z/OS V1R5 - 2004
Changes for z/OS V1R5 include:

»

vvyyy

Support for Multilevel security (MLS)

Extended functionality of some z/OS UNIX commands
BPXPRMxx parmlib enhancements

Changed operator and TSO/E commands

Support for symlink symbolics

1.3.20 z/OS V1R6 - 2004

In z/OS V1R6 there are a number of enhancements that cover various services of the z/OS
UNIX environment, as follows:

\{

VVYVYYVYVYYVYYVYVYVYVYYVYY

Shared condition variables

RAS improvements

Spooled output constraint relief
Automove system list wildcard support
Increase the 64K per process file descriptor limit
Automount enhancements

Fork() accounting

Superkill function

Shell and utility enhancements
BPXWPERM environment variable
Mount utility enhancements

USS REXX BPXWDYN enhancements
Logical file system support of zFS
Distributed BRLM enhancement

1.3.21 z/OS V1R7 - 2005
Changes for z/OS V1R7 include:

>

vYyy

Support for Latch Contention Analysis

Support for mounting file systems with SET OMVS
Ease of use ISHELLenhancements

HFS to zFS migration tool BPXWH2Z

44 UNIX System Services z/OS Version 1 Release 7 Implementation

1.4 IBM exploitation of z/OS UNIX System Services

Table 1-2 lists products that use z/OS UNIX for customization and exploitation.

Table 1-2 Products using z/OS UNIX

Program Name Program | Path in the HFS
Number

CICS Transaction Server for z/OS 5697-E93 /usr/1pp/cicsts

DB2 OLAP Server™ for OS/390 5655-OLP /usr/1pp/db2oT1ap

IBM CICS Transaction Gateway 5724-D12 /usr/1pp/ctyg

IBM Cloud 9 for Software Configuration and Library Manager for | 5655-G93 /usr/1pp/Cloud9

z/0S

IBM CM OnDemand For z/OS and OS/390 5655-H39 /usr/1pp/ars

IBM DB2 Universal Database™ Server for OS/390 and z/OS 5675-DB2 /usr/1pp/db2/db2710

with National Language Versions /usr/1pp/db2ext_07_01 00

/usr/1pp/db2tx

IBM Database 2™ Universal Database Server for OS/390 and | 5675-DB2 /usr/1pp/netdata

z/OS Net.Data® with National Language Version

IBM DB2 Net Search Extender for 0S/390 and z/OS 5675-DB2 /usr/1pp/db2/db2nx

IBM DB2 Warehouse Manager for z/OS and OS/390 5655-H34 /usr/1pp/DWC

IBM DB2 Warehouse Manager Sourcing Agent for 0S/390 5655-F36 /usr/1pp/DWC

IBM Developer Kit for 0S/390, Java™(TM) 2 Technology 5655-D35 /usr/1pp/java

Edition

IBM Electronic Service Agent™ for IBM zSeries and IBM S/390 | 5655-F17 /usr/1pp/esa

IBM Enterprise COBOL for z/OS and 0S/390 5655-G53 /usr/1pp/cobol

IBM DB2 Intelligent Miner™ for Data for OS/390 5655-IM3 /usr/1pp/IMiner

IBM Enterprise PL/I for z/OS and OS/390 5655-H31 Jusr/1pp/pli

IBM IMS Connect for z/OS 5655-E51 /usr/lpp/imsico

IBM OS/390 Foreign File System 5639-144 lust/Ipp/ffsserver

IBM Tivoli® Data Protection for Lotus Domino, S/390 Edition 5697-ILD /usr/lpp/Tivoli/tsm/client/domino

IBM Tivoli Web Access for Information Management 5698-WAI /usr/Ipp/InfoMan/web

IBM WebSphere® Host On-Demand 5733-A59 /usr/lpp/HOD

IBM WebSphere Studio Asset Analyzer for Multiplatforms 5655-149 /usr/lpp/dmh

Information Management System Transaction and Database 5655-B01 /usr/lpp/ims/imsjava71

Servers

Tivoli Distributed Monitoring for OS/390 5697-F05 /usr/lpp/Tivoli

Tivoli Distributed Monitoring Agent for OS/390 5698-EMN /usr/lpp/Tivoli

Tivoli Information Management for z/OS 5697-SD9 /usr/lpp/InfoMan

Tivoli Management Framework for OS/390 Server and Gateway | 5697-D10 /usr/Ipp/Tivoli

Chapter 1. UNIX overview

45

Program Name Program | Path in the HFS
Number

Tivoli Management Framework for OS/390 Framework 5697-D10 /usr/lpp/Tivoli

Endpoint

Tivoli NetView for z/OS 5697-ENV /usr/lpp/netview

Tivoli NetView Performance Monitor 5655-043 /usr/Ipp/NetviewPM

Tivoli Storage Manager, S/390 Edition Application Program 5697-1ISM /usr/Ipp/Tivoli/tsm/client/api

Interface

Tivoli Storage Manager, S/390 Edition Backup-Archive Client 5697-1SM /usr/Ipp/Tivoli/tsm/client/ba

Tivoli Workload Scheduler for z/OS 5697-WSZ /usr/lpp/TWS

VisualAge® for Java, Enterprise Edition for OS/390 5655-JAV /ust/lpp/hpj

VisualAge Generator Server for MVS 5648-B02 /usr/lpp/vgwgs31

WebSphere Application Server for z/OS and OS/390 5655-F31 /usr/lpp/WebSphere

WebSphere Commerce Suite Pro Edition for OS/390 5697-G05 /usr/lpp/CommerceSuite
/usr/lpp/PaymentManager

WebSphere MQ for z/OS 5655-F10 /usr/Ipp/internet/server_root/csq
/usr/lpp/mgm

WebSphere MQ Integrator for z/OS 5655-G97 /usr/lpp/wmgqi

WebSphere MQ Integrator for z/OS New Era of Networks 5655-G97 /usr/lpp/wmgqi

Feature

XML Toolkit for z/OS and OS/390 5655-J51 /usr/lpp/ixm

1.5 Additional material for this Redbook

Some procedures and samples referenced or listed in this Redbook, together with further
documents and procedures, are available as additional material related to this book on the

Internet.

Attention: To access these softcopy files on the Internet, point your browser to:

ftp://www.redbooks.ibm.com/redbooks/SG247035/

Note: SG must be uppercase.

Alternatively, you can go to:

http://www.redbooks.ibm.com

and select Redbooks Online, and then Additional Materials.

46 UNIX System Services z/OS Version 1 Release 7 Implementation

Installation

This chapter describes sourcing and installing z/OS UNIX System Services. It discusses
various z/OS UNIX configurations ranging from small and simple to large and complex.

© Copyright IBM Corp. 2003, 2006. All rights reserved.

47

2.1 Introduction

z/OS UNIX System Services is a base element and exclusive feature of the z/OS operating
system. This chapter does not discuss installation of the z/OS operating system, but it may
highlight z/OS installation information where it specifically relates to z/ZOS UNIX.

Note: Starting with the September 2004 z/OS release (V1R5), IBM intends to deliver z/OS
and z/OS.e releases annually.

Since z/OS UNIX is part of the z/OS operating system, the first prerequisite for using z/OS
UNIX is to have a z/OS system available. Such a system should have the general z/OS
installation work completed, and be either already IPLed, or ready to be IPLed. It is assumed
that a root file system already exists and is populated with the elements that were created as
part of the z/OS installation process.

The topics that follow only focus on the activities necessary to activate (meaning enable, or
implement—terminology for separation from the SMP/E installation process that is outside
the scope of this book) the z/OS UNIX components within the z/OS operating system. The
sequence of topics is:

» Activating z/OS UNIX in minimum mode. Minimum mode is activated if there is no
requirement to exploit zZOS UNIX. This might be suitable for a system that only runs
traditional MVS workloads. Note that if you want to use any z/OS UNIX service, TCP/IP, or
other functions that require the kernel services, then full function mode is required. This is
also the case if service is to be applied to the HFS.

» Activating z/OS UNIX in full function mode. Full function mode is activated if there is a
requirement to exploit zZOS UNIX. This might be suitable for a system that runs UNIX
workloads possibly in addition to traditional MVS workloads.

The implementation of UNIX on the z/OS operating system offers a huge variety of
customization options. These may be to enhance security, make data available to multiple
systems in a SYSPLEX, improve performance, or any number of other choices. These issues
are dealt with in separate chapters from the minimum mode and full function mode topics, so
that the basic activation process can be understood in simple terms, without having to deal
with the burden of complex considerations at every step.

Notes:

» References to SYS1.PROCLIB are intended to indicate a system procedure data set
(library) from where started tasks (STCs) may be initiated (with SUB=MSTR). If another
data set is more appropriate for this purpose, then its name may be substituted for
SYS1.PROCLIB.

» References to SYS1.PARMLIB are intended to indicate a system parameter data set
(library) where system parameters may be found by z/OS. If another data set is more
appropriate for this purpose (and defined in the PARMLIB statement of LOADxx), then
its name may be substituted for SYS1.PARMLIB.

» The activation processes documented in 2.2, “Activating z/OS UNIX in minimum mode”
on page 49 and 2.3, “Activating z/OS UNIX in full function mode” on page 53 are for a
simple single-system configuration. This is an attempt to convey understanding of the
activation process, without concern for the complexities that could be encountered
depending on the z/OS UNIX options chosen. Later chapters attempt to address the full
range of possible z/OS UNIX configurations.

48 UNIX System Services z/OS Version 1 Release 7 Implementation

2.2 Activating z/0S UNIX in minimum mode

In minimum mode, the kernel cannot support some functions, such as the z/OS shell and
TCP/IP. When the system is IPLed, the kernel services start up in minimum mode and use
the default values for all BPXPRMxx PARMLIB statements. See z/0S MVS Initialization and
Tuning Reference, SA22-7592 for information about the default values.

In minimum mode, a temporary file system named SYSROOT is used as the root file system.
It is initialized and primed with a minimum set of files and directories. Any data written to this
file system is not written to DASD. The temporary file system does not have any executables;
that is, the shell will not be available.

The steps required to activate z/OS UNIX in minimum mode within a simple single-system
configuration are summarized in Table 2-1, then explained in more detail afterwards.

Table 2-1 Activating z/OS UNIX in minimum mode

Step Activity Reference
1 | Create the OMVS procedure Page 49
2 | Create the BPXOINIT procedure Page 49
3 | Establish security Page 50
4 | Customize IEASYSxx Page 51
51 IPL Page 52

2.2.1 Step 1 - Create the OMVS procedure

The OMVS cataloged procedure runs a program that initializes the kernel.

Create a JCL procedure for OMVS and place it in SYS1.PROCLIB (if it is not already there as
a result of the z/OS installation process). The content of this started task (STC) member is
shown in Figure 2-1.

VIEW SYS1.PROCLIB(OMVS) - 01.01 Columns 00001 00072
Command ===> Scroll ===> CSR
khhkkkkk hhhkhkhkhkhkhkhkhkhkhkhhhhhhkhkhkhkhkhkhkhhhrkx Top of Data khkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkkhkkhkhkkx
000001 //0MVS PROC

000002 //OMVS EXEC PGM=BPXINIT,REGION=0K, TIME=NOLIMIT

B I R T T Bottom of Data R s

Figure 2-1 SYS1.PROCLIB(OMVS)

Note that program BPXINIT resides in SYS1.LINKLIB, so it will be found by default; no
STEPLIB is required.

Failure to create the OMVS proc results in a JCL error during IPL, rendering z/OS UNIX
inoperative.

2.2.2 Step 2 - Create the BPXOINIT procedure

BPXOINIT is the started procedure that runs the initialization process.

Chapter 2. Installation 49

Create a JCL procedure for BPXOINIT and place it in SYS1.PROCLIB (if it is not already
there as a result of the z/OS installation process). The content of this started task (STC)
member is shown in Figure 2-2.

VIEW SYS1.PROCLIB(BPXOINIT) - 01.01 Columns 00001 00072
Command ===> Scroll ===> CSR
khhkkkhkk hhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhhkhkhkkhkkkhkikx Top of Data khkkhkkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkkhkkkhkhikx
000001 //BPXOINIT PROC

000002 //BPXOINIT EXEC PGM=BPXPINPR,REGION=0K,TIME=NOLIMIT

R I O T Bottom of Data B R S S s

Figure 2-2 SYS1.PROCLIB(BPXOINIT)

Note that program BPXPINPR resides in SYS1.LINKLIB, so it will be found by default; no
STEPLIB is required.

Failure to create the BPXOINIT proc results in a JCL error during IPL, rendering z/OS UNIX
inoperative. The following SYSLOG message is issued:

BPXPOO6E OMVS IS CREATING THE BPXOINIT ADDRESS SPACE

2.2.3 Step 3 - Establish security

50

To enable the OMVS and BPXOINIT procedures to execute, some basic security
requirements must be met. For RACF, both of these procedures require:

» An MVS group ID associated with a UNIX GID.

— The MVS group ID is shared by both the OMVS and BPXOINIT procedures, and can
be any valid group ID according to local naming conventions. For the purposes of this
book, a group ID of OMVSGRP is used.

— The UNIX GID is shared by both the OMVS and BPXOINIT procedures, and can be
any valid GID according to local naming conventions. RACF allows for GIDs within the
range of 0-2,147,483,647 (however, the pax and tar utilities cannot handle values
above 16,777,216). For the purposes of this book, a GID of 1 is used.

» An MVS user ID associated with a UNIX UID.

— The MVS user ID is shared by both the OMVS and BPXOINIT procedures, and can be
any valid user ID according to local naming conventions. For the purposes of this book,
a user ID of OMVSKERN is used.

— The UNIX UID is shared by both the OMVS and BPXOINIT procedures, and must be 0
(zero = superuser).

» STARTED class profiles or ICHRINO3 definitions.
— STARTED class profiles associate a user ID and group ID with a started task.
— ICHRINOS associates a user ID and group ID with a started task if there is no
STARTED class profile.

Systems that have an alternative security product (such as ACF2 or Top Secret) have
different security requirements. Check with the product vendor to determine their support for
z/OS UNIX System Services.

UNIX System Services z/OS Version 1 Release 7 Implementation

Defining group ID OMVSGRP

A TSO user with RACF SPECIAL authority should enter a command similar to the following
example:

ADDGROUP OMVSGRP OMVS(GID(1))

This creates an MVS group ID called OMVSGRP and associates a UNIX GID of 1 to it.

Defining user ID OMVSKERN

A TSO user with RACF SPECIAL authority should enter a command similar to the following
example:

ADDUSER OMVSKERN DFLTGRP(OMVSGRP)
OMVS(UID(0) HOME('/') PROGRAM('/bin/sh'))
NOPASSWORD

This creates an MVS user ID called OMVSKERN, and associates a UNIX UID of 0 to it (note
that UID=0 is the UNIX superuser UID, with special administrative powers that other UIDs do
not have). The default RACF group is OMVSGRP, the home path is the root directory (/), and
the default shell is /bin/sh.

Associating OMVSKERN/OMVSGRP with the procedures

A TSO user with RACF SPECIAL authority should enter commands similar to the following
example:

SETROPTS GENERIC(STARTED)

RDEFINE STARTED OMVS.* STDATA(USER(OMVSKERN) GROUP(OMVSGRP) TRUSTED(YES))
RDEFINE STARTED BPXOINIT.* STDATA(USER(OMVSKERN) GROUP(OMVSGRP) TRUSTED(NO))
SETROPTS CLASSACT (STARTED) RACLIST(STARTED)

SETROPTS RACLIST(STARTED) REFRESH

If STARTED class profiles cannot be used, then ICHRINOS should be changed similar to the
following example:

DC CL8'OMVS' PROCEDURE NAME

DC CL8'OMVSKERN' USERID (ANY RACF-DEFINED USER ID)

DC CL8'OMVSGRP' GROUP NAME OR BLANKS FOR USER'S DEFAULT GROUP
DC XL1'40' TRUSTED

DC XL7'00' RESERVED

DC CL8'BPXOINIT' PROCEDURE NAME

DC CL8'OMVSKERN' USERID (ANY RACF-DEFINED USER ID)

DC CL8'OMVSGRP' GROUP NAME OR BLANKS FOR USER'S DEFAULT GROUP
DC XL1'00' NOT TRUSTED

DC XL7'00' RESERVED

This associates user ID OMVSKERN and group ID OMVSGRP with started task (STC)
procedures OMVS and BPXOINIT.

2.2.4 Step 4 - Customize IEASYSxx

Define the following statement in the IEASY Sxx member of SYS1.PARMLIB:
OMVS=DEFAULT

Specifying OMVS=DEFAULT is actually the same as omitting the OMVS statement from
IEASY Sxx. Defining this statement in IEASYSxx is recommended so that the intent of the
system configuration is clear to other support people.

Chapter 2. Installation 51

2.2.5 Step5-1IPL

52

IPL the system so that the modified IEASYSxx member is implemented.

After IPL, you will observe that the OMVS and BPXOINIT address spaces start, and the
following SYSLOG message is issued:

BPXIO04I OMVS INITIALIZATION COMPLETE

If you check the status of zZOS UNIX using the D OMVS console command, in SYSLOG you
can expect to see a response similar to what is shown in Figure 2-3.

D OMVS
BPX0042I 02.36.02 DISPLAY OMVS 205
OMVS 000D ACTIVE DEFAULT

Figure 2-3 Successful minimum mode configuration - status

If you check the status of z/OS UNIX address spaces using the D OMVS,A=ALL console
command, in SYSLOG you can expect to see a response similar to Figure 2-4.

D OMVS,A=ALL
BPX0040I 02.52.00 DISPLAY OMVS 211

RMFTASK RMFGAT
LATCHWAITPID=

SERVER=Init Process

0023

2
0 CMD=ERB3GMFC

OMVS 000D ACTIVE DEFAULT

USER JOBNAME ASID PID PPID STATE START CT_SECS

OMVSKERN BPXOINIT 0020 1 0 MR---- 02.28.36 .04
LATCHWAITPID= 0 CMD=BPXPINPR

AF= 0 MF=00000 TYPE=FILE

1 1R---P 02.31.40

4.17

Figure 2-4 Successful minimum mode configuration - address spaces

If you check the status of z/ OS UNIX file systems using the D OMVS,F console command, in
SYSLOG you can expect to see a response similar to Figure 2-5.

D OMVS,F
BPX0045I 02.48.31 DISPLAY OMVS 207
OMVS 000D ACTIVE DEFAULT
TYPENAME ~ DEVICE ---------- STATUS----------- MODE
BPXTFS 3 ACTIVE RDWR
NAME=ROOT
PATH=/

Figure 2-5 Successful minimum mode configuration - file system

This means that z/OS has used a temporary file system for the ROOT (BPXTFS = temporary
file system). The content of this temporary file system is shown in Figure 2-6 on page 53.

UNIX System Services z/OS Version 1 Release 7 Implementation

Di

na
EU

rectory List

Select one or more files with / or action codes.
action from the action bar otherwise your default action will be used. Select
with S to use your default action. Cursor select can also be used for quick

vigation. See help for details.

ID=0 /
Type Perm ------ Size Filename
_ Dir 777 4000
_ Dir 777 4000 ..
_ Dir 755 4000 bin
_ Dir 755 4000 dev
_ Dbir 755 4000 etc
_ Dbir 777 4000 tmp

If / is used also select an

Row 1 of 6

Figure 2-6 Successful minimum mode configuration - file system content

All of these directories are empty.

2.3 Activating z/0S UNIX in full function mode

The steps required to activate z/OS UNIX in full function mode within a simple single-system
configuration are summarized in Table 2-2, then explained in more detail afterwards.

Table 2-2 Activating z/OS UNIX in full function mode

Step Activity Reference
1 | Create the OMVS procedure Page 54
2 | Create the BPXOINIT procedure Page 54
3 | Create the BPXAS procedure Page 55
4 | Establish security Page 55
5 | Create HFS data sets Page 57
6 | Customize BPXPRMxx Page 58
7 | Customize ALLOCxx Page 67
8 | Customize COFVLFxx Page 67
9 | Customize CTnBPXxx Page 68

10 | Customize IEADMRO0O Page 68
11 | Customize SMFPRMxx Page 68
12 | Customize IEASYSxx Page 69
13 | IPL Page 69
14 | Customize /etc/init.options Page 72
15 | Customize /etc/rc Page 76
16 | Customize /etc/profile Page 78

Chapter 2. Installation

53

2.3.1 Step 1 - Create the OMVS procedure

The OMVS cataloged procedure runs a program that initializes the kernel. The
STARTUP_PROC statement in the BPXPRMxx PARMLIB member specifies the OMVS
cataloged procedure. The default name is OMVS. Though not recommended, you can
replace the OMVS procedure with a procedure that has a different name. If you use a started
procedure other than OMVS, the replacement started procedure must also be a single
jobstep procedure that invokes the BPXINIT program (EXEC PGM=BPXINIT). If it invokes
any other program, OMVS initialization will fail.

Create a JCL procedure for OMVS and place it in SYS1.PROCLIB (if it is not already there as
a result of the z/OS installation process). The content of this started task (STC) member is
shown in Figure 2-7.

VIEW SYS1.PROCLIB(OMVS) - 01.01 Columns 00001 00072
Command ===> Scroll ===> CSR
khhkkkhkk khkhkhkhkhkhkhkhkhkkhkhkhkkkhkhkhkkhkkkkkkkkkx Top Of Data khkkhkhkkhkhkhkhkhhkhkhhkhhhhkhhhhkhkkkkdxkx
000001 //0MVS PROC

000002 //OMVS EXEC PGM=BPXINIT,REGION=0K, TIME=NOLIMIT

dhkhkhk KAk dhAdhhdhhkhhhhhhhhhhhhhd Bottom Of Data B e e

Figure 2-7 SYS1.PROCLIB(OMVS)

Note: Program BPXINIT resides in SYS1.LINKLIB, so it will be found by default and no
STEPLIB is required.

Failure to create the OMVS procedure results in a JCL error during IPL, rendering z/OS UNIX
inoperative.

2.3.2 Step 2 - Create the BPXOINIT procedure

54

BPXOINIT is the started procedure that runs the initialization process.

Create a JCL procedure for BPXOINIT and place it in SYS1.PROCLIB (if it is not already
there as a result of the z/OS installation process). The content of this started task (STC)
member is shown in Figure 2-8.

VIEW SYS1.PROCLIB(BPXOINIT) - 01.01 Columns 00001 00072
Command ===> Scroll ===> CSR
khhkkhkkhhkk hhhkhkhkhkhkhkhkhkhhhhbhkhkhkhkhhkhkhkhhkkkhkhkikx Top of Data khkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkkkhhkkx
000001 //BPXOINIT PROC

000002 //BPXOINIT EXEC PGM=BPXPINPR,REGION=0K,TIME=NOLIMIT

B I O T T Bottom of Data R S s

Figure 2-8 SYS1.PROCLIB(BPXOINIT)

Note: Program BPXPINPR resides in SYS1.LINKLIB, so it will be found by default; no
STEPLIB is required.

Failure to create the BPXOINIT procedure results in a JCL error during IPL, rendering z/OS
UNIX inoperative. The following SYSLOG message is issued:

BPXPOO6E OMVS IS CREATING THE BPXOINIT ADDRESS SPACE

UNIX System Services z/OS Version 1 Release 7 Implementation

2.3.3 Step 3 - Create the BPXAS procedure

When programs issue fork() or spawn(), the BPXAS procedure is used to provide a new
address space. For a fork(), the system copies one process, called the parent process, into a
new process, called the child process. The forked address space is provided by WLM.

Create a JCL procedure for BPXAS and place it in SYS1.PROCLIB (if it is not already there
as a result of the z/OS installation process). The content of this started task (STC) member is
shown in Figure 2-8.

VIEW SYS1.PROCLIB(BPXAS) - 01.03 Columns 00001 00072
Command ===> Scroll ===> CSR
khhkkkhkk Khkhkhkhkhkhkkhkhkkhkhkhkhkkhhkhkhkkkkkkkkkkkx Top Of Data dkhkkhkhkkhkhkhkkhkhkhkhhkhhhkhkhkhhhkkkhhhxkx

000001 //IEFPROC EXEC PGM=IEFIIC,DPRTY=12,PARM=',,&GETWORK,BPXPRJRW'

dhhkkhk KAk AdhAdhhkddhhhhhhhhhhhhhhhd Bottom Of Data R R s

Figure 2-9 SYS1.PROCLIB(BPXAS)

Note: Program IEFIIC resides in SYS1.LPALIB, so it will be found by default; no STEPLIB
is required.

2.3.4 Step 4 - Establish security

To enable the OMVS, BPXOINIT, and BPXAS procedures to execute, some basic security
requirements must be met. For RACF, these procedures require:

» An MVS group ID associated with a UNIX GID.

— The MVS group ID is shared by the OMVS, BPXOINIT and BPXAS procedures, and
can be any valid group ID according to local naming conventions. For the purposes of
this book, a group ID of OMVSGRP is used.

— The UNIX GID is shared by the OMVS, BPXOINIT and BPXAS procedures, and can
be any valid GID according to local naming conventions. RACF allows for GIDs within
the range of 0-2,147,483,647 (however, the pax and tar utilities cannot handle values
above 16,777,216). For the purposes of this book, a GID of 1 is used.

» An MVS user ID associated with a UNIX UID.

— The MVS user ID is shared by the OMVS, BPXOINIT and BPXAS procedures, and can
be any valid user ID according to local naming conventions. For the purposes of this
book, a user ID of OMVSKERN is used.

— The UNIX UID is shared by the OMVS, BPXOINIT and BPXAS procedures, and must
be 0 (zero = superuser).

» STARTED class profiles or ICHRINOS definitions.
— STARTED class profiles associate a user ID and group ID with a started task.
— ICHRINO3 associates a user ID and group ID with a started task if there is no
STARTED class profile.

Systems that have an alternative security product (such as ACF2 or Top Secret) will have
different security requirements. Check with the product vendor to ascertain their support for
z/OS UNIX System Services.

Chapter 2. Installation 55

56

Defining group ID TTY

Certain shell commands, such as mesg, talk, and write require pseudo terminals to have a
group name of TTY. When a user logs in, or issues the OMVS command from TSO/E, the
group name associated with these terminals is changed to TTY.

A TSO user with RACF SPECIAL authority should enter a command similar to the following
example:

ADDGROUP TTY OMVS(GID(0))

This creates an MVS group ID called TTY, and associates a UNIX GID of 0 to it. Unlike UID=0
(superuser), GID=0 has no special properties.

Defining group ID OMVSGRP

A TSO user with RACF SPECIAL authority should enter a command similar to the following
example:

ADDGROUP OMVSGRP OMVS(GID(1))

This creates an MVS group ID called OMVSGRP, and associates a UNIX GID of 1 to it.

Defining user ID OMVSKERN

A TSO user with RACF SPECIAL authority should enter a command similar to the following
example:

ADDUSER OMVSKERN DFLTGRP(OMVSGRP)
OMVS(UID(0) HOME('/') PROGRAM('/bin/sh'))
NOPASSWORD

This creates an MVS user ID called OMVSKERN, and associates a UNIX UID of 0 to it (note
that UID=0 is the UNIX superuser UID, with special administrative powers that other UIDs do
not have). The default RACF group is OMVSGRP, the home path is the root directory (/), and
the default shell is /bin/sh.

Associating OMVSKERN/OMVSGRP with the procedures

A TSO user with RACF SPECIAL authority should enter commands similar to the following
example:

SETROPTS GENERIC (STARTED)

RDEFINE STARTED OMVS.* STDATA (USER (OMVSKERN) GROUP (OMVSGRP) TRUSTED(YES))
RDEFINE STARTED BPXOINIT.* STDATA(USER(OMVSKERN) GROUP(OMVSGRP) TRUSTED(NO))
RDEFINE STARTED BPXAS.* STDATA(USER(OMVSKERN) GROUP(OMVSGRP) TRUSTED(NO))
SETROPTS CLASSACT(STARTED) RACLIST(STARTED)

SETROPTS RACLIST(STARTED) REFRESH

If STARTED class profiles cannot be used, then ICHRINO3 should be changed similar to the
following example:

DC CL8'OMVS' PROCEDURE NAME

DC CL8'OMVSKERN' USERID (ANY RACF-DEFINED USER ID)

DC CL8'OMVSGRP' GROUP NAME OR BLANKS FOR USER'S DEFAULT GROUP
DC XL1'40' TRUSTED

DC XL7'00' RESERVED

DC CL8'BPXOINIT' PROCEDURE NAME

DC CL8'OMVSKERN' USERID (ANY RACF-DEFINED USER ID)

DC CL8'OMVSGRP' GROUP NAME OR BLANKS FOR USER'S DEFAULT GROUP
DC XL1'00' NOT TRUSTED

DC XL7'00' RESERVED

UNIX System Services z/OS Version 1 Release 7 Implementation

DC CL8'BPXAS' PROCEDURE NAME

DC CL8'OMVSKERN' USERID (ANY RACF-DEFINED USER ID)

DC CL8'OMVSGRP' GROUP NAME OR BLANKS FOR USER'S DEFAULT GROUP
DC XL1'00' NOT TRUSTED

DC XL7'00' RESERVED

This associates user ID OMVSKERN and group ID OMVSGRP with started task (STC)
procedures OMVS, BPXOINIT, and BPXAS.

Note that information about the security requirements of BPXAS is inconclusive. As a result, it
is typical to define BPXAS with the same attributes as BPXOINIT.

Adding USER/GROUP OMVS segments for a TSO user

To complete the activation of z/OS UNIX in full function mode, a TSO user ID needs to be
available with the correct authorities to perform z/OS UNIX administration work. This could be
any existing user but for the purposes of this book we will use the commonly known
IBMUSER user ID. This may be substituted by any appropriate user ID.

A TSO user with RACF SPECIAL authority should enter commands similar to the following
example:

CONNECT (IBMUSER) GROUP(OMVSGRP)
ALTUSER IBMUSER DFLTGRP(OMVSGRP)
OMVS(UID(0) HOME('/') PROGRAM('/bin/sh'))

This alters existing TSO user ID IBMUSER to have UNIX UID(0) associated to it (note that
UID=0 is the UNIX superuser UID, with special administrative powers that other UIDs do not
have). The default RACF group is OMVSGRP, the home path is the root directory (/), and the
default shell is /bin/sh.

Normally a TSO user would not have a UID(0), or / as their HOME directory, but for the user
performing initial z/OS UNIX activation work, it is appropriate.

2.3.5 Step 5 - Create HFS data sets

IBM requires that you maintain a separate HFS data set for each of the following directories:

letc /etc contains customization data. Keeping the /etc file system in an HFS data set
separate from other file systems allows you to separate your customization data
from IBM's service updates. It also makes migrating to another release easier.

/dev /dev contains character-special files that are used when logging into the OMVS
shell environment and also during c89 processing. You have the option of mounting
a temporary file system (TFS) on /tmp.

tmp /tmp contains temporary data that are used by products and applications. /tmp, is
created empty, and temporary files are created dynamically by different elements
and products. You have the option of mounting a temporary file system (TFS) on
/tmp.

Ivar /var contains dynamic data that is used internally by products and by elements and
features of z/OS. Any files or directories that are needed are created during
execution of code. An example of this is caching data. In addition, you can be
assured that IBM products will only create directories or files when code is
executed.

Chapter 2. Installation 57

For our simple single-system configuration, we will use a temporary file system (TFS) for /dev
and /tmp. For a TFS, no physical HFS is required; the definition occurs using statements in
the SYS1.PARMLIB(BPXPRMxx) member.

For /etc and /var, build and submit JCL similar to that shown in Figure 2-10.

//ALLOCHFS JOB ,'ALLOC',USER=IBMUSER,PASSWORD=??7?7227??
/1*

//STEPO1 EXEC PGM=IEFBR14

/1*

//ETC DD DSN=OMVS.ETC,

// DISP=(NEW,CATLG,DELETE),
// UNIT=SYSALLDA,

// SPACE=(TRK, (15,15,1)),
// DCB=(DSORG=PO) ,

// DSNTYPE=HFS

/1*

//VAR DD DSN=0MVS.VAR,

// DISP=(NEW,CATLG,DELETE),
// UNIT=SYSALLDA,

// SPACE=(TRK, (15,15,1)),
// DCB=(DSORG=PO) ,

// DSNTYPE=HFS

Figure 2-10 JCL to create ETC and VAR HFS data sets

If these data sets are not allocated under SMS control, then VOL=SER information should be
included in the JCL.

2.3.6 Step 6 - Customize BPXPRMxx

The BPXPRMxx member in SYS1.PARMLIB contains the statements and parameters that
define the z/OS UNIX configuration to z/OS. To activate z/OS UNIX in full function mode, a
BPXPRMxx member must exist. The syntax of BPXPRMxx statements is documented in
z/0OS MVS Initialization and Tuning Reference, SA22-7592.

To simplify initial setup, a sample BPXPRMxx is supplied with z/OS in
SYS1.SAMPLIB(BPXPRMxx) (see Example B-4 on page 531). It is recommended that this
member be copied and used as the basis for your customized BPXPRMxx. For your first
BPXPRMxx member, it is recommended that a suffix of 00 be used (for example,
BPXPRMOQO); this is typically used for simple single-system configurations.

Tip: Check the SYS1.SAMPLIB(BPXPRMXX) for the latest enhancements, by searching
the member for FMID HBB7708.

As previously mentioned, BPXPRMxx controls the parameters that control the z/OS UNIX
environment. To specify which BPXPRMxx Parmlib member to start with, the systems
programmer can include OMVS=xx in the IEASYSxx parmlib member. You can also specify
multiple OMVS Parmlib members in IEASYSxx. For example:

OMVS=(AA,BB,CC)
Note: To modify BPXPRMxx parmlib settings without re-IPLing, you can use the SETOMVS

operator command. Or you can dynamically change the BPXPRMxx parmlib members that
are in effect by using the SET OMVS operator command.

58 UNIX System Services z/OS Version 1 Release 7 Implementation

Defining file systems
The following sections explain how to customize the FILESYSTYPE, ROOT, MOUNT,
NETWORK, and SUBFILESYSTYPE statements in BPXPRMxx, to specify your file systems.

FILESYSTYPE
FILESYSTYPE specifies the type of file system that is to be started. BPXPRMxx can contain

more than one FILESYSTYPE statement. The syntax of the FILESYSTYPE statement is

shown in Figure 2-11.

FILESYSTYPE

PARM('parm')

TYPE(type_name)
ENTRYPOINT(entry_name)

ASNAME (proc_name[, 'start_parms'])

Figure 2-11 FILESYSTYPE syntax

Typical FILESYSTYPEs are:

VVYyVYyYVYVYVYVYYVYY

HFS for a hierarchical file system (HFS)
TFS for a temporary file system (TFS)
UDS for z/0OS UNIX domain (AF_UNIX) sockets

INET for network (AF_INET and AF_INET6) sockets

CINET for common INET (AF_INET and AF_INET6) sockets
AUTOMNT for an automounted file system

DFSC for accessing global namespace

NFS for accessing remote files
zFS for a DFS zSeries file system

Figure 2-12 shows FILESYSTYPE statements as supplied in SYS1.SAMPLIB(BPXPRMxx).

FILESYSTYPE

/*FILESYSTYPE
/%

/*FILESYSTYPE
/*

/*FILESYSTYPE
/%
/*
/%

FILESYSTYPE

FILESYSTYPE

/*FILESYSTYPE

TYPE (HFS) /*
ENTRYPOINT(GFUAINIT) /*
PARM(') /3
TYPE (AUTOMNT) *//*

ENTRYPOINT (BPXTAMD) *//*

TYPE(TFS) *//*
ENTRYPOINT(BPXTFS) *//*

TYPE(NFS) *//*
ENTRYPOINT (GFSCINIT)*//*

Type of file system to start */
Entry Point of load module */
Null PARM for physical file

system */

Type of file system to start */
Entry Point of load module */

Type of file system to start */
Entry Point of load module */

Type of file system to start */
Entry Point of load module */

ASNAME (MVSNFSC, 'start_parms')*/ /* @pcc*/

PARM('biod(6)"') */]*

Parameter to pass in */

TYPE(UDS) ENTRYPOINT(BPXTUINT)

TYPE(INET) ENTRYPOINT(EZBPFINI)

TYPE(CINET) ENTRYPOINT(BPXTCINT) */

Figure 2-12 ‘SYS1.SAMPLIB(BPXPRMXX) - FILESYSTYPE

It is recommended that in addition to TYPE(HFS) and TYPE(UDS), the entries for
TYPE(AUTOMNT) and TYPE(TFS) be uncommented for the initial full function configuration.

Chapter 2. Installation

59

60

We do not need TYPE(INET) at this stage, so that should be commented out. This should
result in FILESYSTYPE definitions in SYS1.PARMLIB(BPXPRMO0O0) as shown in Figure 2-13.

FILESYSTYPE TYPE(HFS) /* Type of file system to start */
ENTRYPOINT (GFUAINIT) /* Entry Point of load module */

PARM(' ") /* Null PARM for physical file
system */
FILESYSTYPE TYPE (AUTOMNT) /* Type of file system to start */
ENTRYPOINT (BPXTAMD) /* Entry Point of load module */
FILESYSTYPE TYPE(TFS) /* Type of file system to start */
ENTRYPOINT (BPXTFS) /* Entry Point of load module */
/*FILESYSTYPE TYPE(NFS) *//* Type of file system to start */
/* ENTRYPOINT (GFSCINIT)*//* Entry Point of load module */
/ ASNAME (MVSNFSC, 'start_parms')*/ /* @epccx/
/* PARM('biod(6) ') *//* Parameter to pass in /)

FILESYSTYPE TYPE(UDS) ENTRYPOINT(BPXTUINT)
/*FILESYSTYPE TYPE(INET) ENTRYPOINT(EZBPFINI) */

/*FILESYSTYPE TYPE(CINET) ENTRYPOINT(BPXTCINT) */

Figure 2-13 SYS1.PARMLIB(BPXPRMO00) - FILESYSTYPE

ROOT

ROQT specifies a file system that z/OS UNIX is to logically mount as the root file system. The
syntax of the ROOT statement is shown in Figure 2-14.

ROOT FILESYSTEM('fsname') |DDNAME (ddname)
TYPE(type name)
MODE (access)
PARM('parameter')
SETUID|NOSETUID
AUTOMOVE | NOAUTOMOVE
SYSNAME (sysname)
TAG (NOTEXT| TEXT,ccsid)

Figure 2-14 ROOT syntax

Figure 2-15 shows the ROOT statement as supplied in SYS1.SAMPLIB(BPXPRMxXx).

ROOT FILESYSTEM('OMVS.ROOT') /* Either FILESYSTEM or DDNAME must
be specified, but not both.
FILESYSTEM must be entered in

quotes. */
TYPE (HFS) /* Type of File system */
MODE (RDWR) /* (Optional) Can be READ or RDWR.

Default = RDWR */

Figure 2-15 SYS1.SAMPLIB(BPXPRMxx) - ROOT

The name of the HFS ROOT was determined during the z/OS installation process. For the
purposes of this book we assume that the ROOT HFS name was as defined in the supplied

UNIX System Services z/OS Version 1 Release 7 Implementation

sample. This should result in a ROOT definition in SYS1.PARMLIB(BPXPRMO0O0) as shown in
Figure 2-16.

ROOT FILESYSTEM('OMVS.ROOT') /* Either FILESYSTEM or DDNAME must
be specified, but not both.
FILESYSTEM must be entered in

quotes. */
TYPE (HFS) /* Type of File system */
MODE (RDWR) /* (Optional) Can be READ or RDWR.

Default = RDWR */

Figure 2-16 SYS1.PARMLIB(BPXPRMO00) - ROOT

MOUNT

MOUNT specifies a file system that zZOS UNIX is to logically mount onto the root file system
or another file system. Mount statements are processed in the sequence in which they
appear. If they are cascading, the system will mount the first file system first. Make sure that a
mount point exists before the file system is mounted. If you mount a file system over an
existing directory containing files, you will cover up the existing files. The syntax of the
MOUNT statement is shown in Figure 2-17.

MOUNT FILESYSTEM('fsname') |DDNAME (ddname)
TYPE(type_name)
MOUNTPOINT('pathname')
MODE (access)
PARM('parameter')
TAG (NOTEXT | TEXT, ccsid)
SETUID|NOSETUID
SECURITY |NOSECURITY
AUTOMOVE [(INCLUDE | EXCLUDE,sysnamel,sysname2, .. .,sysnamen)] | NOAUTOMOVE | UNMOUNT
SYSNAME (sysname)

Figure 2-17 MOUNT syntax

Figure 2-18 shows the MOUNT statement as supplied in SYS1.SAMPLIB(BPXPRMxx).

/*MOUNT FILESYSTEM('OMVS.USER.JOE')*/ /* Either FILESYSTEM or DDNAME
must be specified, but not both.
FILESYSTEM must be entered in

quotes. */
/* TYPE (HFS) */ /* Type of FileSystem */
/* MODE (RDWR) */ /* Can be READ or RDWR */
/& MOUNTPOINT('/u/joe') */ /* Must be entered in quotes. */
[NOSETUID */ /* ignore setuid/gid mode bits */
/* GPAD */
/A SECURITY */ /* enforce security checks */
/% TAG(NOTEXT,0) */ /* @D9A*/

Figure 2-18 SYS1.SAMPLIB(BPXPRMXX) - MOUNT

MOUNT definitions need to be included for the /dev, /etc, /tmp, and /var directories. The ETC
and VAR HFS data sets were allocated in 2.3.5, “Step 5 - Create HFS data sets” on page 57,
so MOUNT statements are needed for them. The /dev and /tmp directories require MOUNT
statements to indicate they are TYPE(TFS). This should result in MOUNT definitions in
SYS1.PARMLIB(BPXPRMO0O) as shown in Figure 2-19.

Chapter 2. Installation 61

MOUNT FILESYSTEM('/DEV')
TYPE(TFS)
MOUNTPOINT (' /dev"')
MODE (RDWR)
PARM('-s 5') /* 5M virtual */

MOUNT FILESYSTEM('OMVS.ETC')
TYPE (HFS)
MODE (RDWR)
MOUNTPOINT (' /etc"')

MOUNT FILESYSTEM('/TMP')
TYPE(TFS)
MOUNTPOINT (' /tmp")
MODE (RDWR)
PARM('-s 20') /* 20M virtual */

MOUNT FILESYSTEM('OMVS.VAR')
TYPE (HFS)
MODE (RDWR)
MOUNTPOINT('/var')

Figure 2-19 SYS1.PARMLIB(BPXPRMO00) - MOUNT

For those of you running z/OS V1RG5 or higher, an additional MKDIR() parameter can be used
for the MOUNT or ROQT statement in the BPXPRMxx parmlib member. This allows you to
specify a directory, or mountpoint, which is to be created during parmlib processing at OMVS
initialization time.

You may have experienced failed parmlib mounts because the mountpoint did not preexist.
Now it is possible to create one or more directory entries in the file system associated with the
ROQOT or MOUNT parameter, or to create other directory entries in another file system that is
already mounted.

MOUNT FILESYSTEM(€OMVS.&SYSNAME..ITSO?)
MOUNTPOINT(¢/u/itso’)
TYPE(HFS) MODE (RDWR)
MKDIR(‘resident’)

MOUNT FILESYSTEM(€OMVS.&SYSNAME..RESIDENT?)
MOUNTPOINT(¢/u/itso/resident?)
TYPE (HFS) MODE (RDWR)
MKDIR(‘patrick’)

Figure 2-20 MKDIR() use in the BPXPRMxx parmlib member

There are some things that you have to be aware of when using MKDIR():

» With the MKDIR() support, permissions are set to 755 (-rwxr-xr-x).

» Do not use it with file systems that mount asynchronously, like NFS clients.

» The total length of the MKDIR() and its mountpoint cannot exceed 1023 characters.

» If sharing parmlib members between shared HFS members is being used, this MKDIR()
statement should be omitted unless all are running at V1R5 or above.

62 UNIX System Services z/OS Version 1 Release 7 Implementation

SWA above

In z/OS V1R5, an additional parameter was introduced for the BPXPRMxx parmlib member.
This parameter lets you control the Scheduler Work Area (SWA) control blocks allocation
below or above the 16 megabyte line.

SWA control blocks reside in a user’s address space and are used by initiated tasks to
contain information about the job and its job steps. The SWA control blocks for z/OS UNIX
are by default allocated below the 16 megabyte line. However, when a large number of file
systems are mounted, this can cause storage contraints.

To resolve these contraints, a new BPXPRMxx parmlib parameter was added. Now you can
specify where the SWA control blocks are allocated—above or below the 16 megabyte line.
To put the SWA below the 16 megabyte line, which is the default, specify:

SWA (BELOW)

To put the SWA above the 16 megabyte line, the command is:
SWA (ABOVE)

You can check the current settings by issuing the following operator command:
D OMVS,0

Keep in mind that changes to the SWA setting only become available after OMVS
initialization.

NETWORK

NETWORK defines address families for sockets. It is necessary if the facility needs the
socket domains. The syntax of the NETWORK statement is shown in Figure 2-21.

NETWORK DOMAINNAME (sockets_domain_name)
DOMAINNUMBER (sockets_domain_number)
MAXSOCKETS (number)

TYPE(type_name)
INADDRANYPORT (starting_port_number)
INADDRANYCOUNT (number_of_ports_to_reserve)

Figure 2-21 NETWORK syntax

Figure 2-22 shows the NETWORK statements as supplied in SYS1.SAMPLIB(BPXPRMxx).

Chapter 2. Installation 63

NETWORK DOMAINNAME (AF_UNIX)

DOMAINNUMBER (1)

MAXSOCKETS (200)

TYPE (UDS)

NETWORK DOMAINNAME (AF_INET)

DOMAINNUMBER (2)

MAXSOCKETS (64000)

TYPE (INET)
/* NETWORK DOMAINNAME (AF_INET6) DOMAINNUMBER(19) */ /* For IPv6 */
/* TYPE(INET) */
/* NETWORK DOMAINNAME (AF_INET) */
/* DOMAINNUMBER (2) */
/* MAXSOCKETS (64000) */
/* TYPE (CINET) */
/* INADDRANYPORT (2000) */
/* INADDRANYCOUNT (325) */

/* NETWORK DOMAINNAME(AF_INET6) DOMAINNUMBER(19) */ /* For IPv6 */
/* TYPE(CINET) */

Figure 2-22 SYS1.SAMPLIB(BPXPRMXX) - NETWORK

We do not need TYPE(INET) at this stage, so that NETWORK definition should be
commented out. This should result in NETWORK definitions in SYS1.PARMLIB(BPXPRMOQO0)
as shown in Figure 2-23.

NETWORK DOMAINNAME (AF_UNIX)
DOMAINNUMBER (1)
MAXSOCKETS (200)
TYPE (UDS)

/* NETWORK DOMAINNAME (AF_INET)
DOMAINNUMBER (2)
MAXSOCKETS (64000)
TYPE(INET) */

/* NETWORK DOMAINNAME (AF_INET6) DOMAINNUMBER(19) */ /* For IPv6 */

/* TYPE(INET) */

/* NETWORK DOMAINNAME (AF_INET) */
/* DOMAINNUMBER (2) */
/* MAXSOCKETS (64000) */
/* TYPE (CINET) */
/* INADDRANYPORT (2000) */
/* INADDRANYCOUNT (325) */

/* NETWORK DOMAINNAME (AF_INET6) DOMAINNUMBER(19) */ /* For IPv6 */
/* TYPE(CINET) */

Figure 2-23 SYS1.PARMLIB(BPXPRMO00) - NETWORK

SUBFILESYSTYPE

SUBFILESYSTYPE specifies an AF_INET or AF_INET®6 physical file system that is to run
underneath the CINET socket file system. The TYPE() value is usually CINET and matches

64 UNIX System Services z/OS Version 1 Release 7 Implementation

the TYPE operand on a previous FILESYSTYPE and NETWORK statement. In the case of
TCP/IP, the NAME() value is the procname. The syntax of the SUBFILESYSTYPE statement

is shown in Figure 2-24.

SUBFILESYSTYPE
NAME (transport_name)
TYPE(type_name)
ENTRYPOINT (entry_name)
PARM('parameter')
DEFAULT

Figure 2-24 SUBFILESYSTYPE syntax

Figure 2-25 shows the SUBFILESYSTYPE statements as supplied in

SYS1.SAMPLIB(BPXPRMxXx).

/*SUBFILESYSTYPE NAME(TCPIP) */

/* TYPE (CINET) */
/* ENTRYPOINT (EZBPFINI)*/
/* DEFAULT */
/*SUBFILESYSTYPE NAME(TCPIP2) */
/* TYPE (CINET) */
/* ENTRYPOINT (EZBPFINI)*/

/*
/*
/*
/*

/*
/*
/*

Name of file system

Type matching Cinet's TYPE
Entry point of load module
<- The Default Socket PFS

Name of file system
Type matching Cinet's TYPE
Entry point of load module

*/
*/
*/

*/
*/
*/

Figure 2-25 SYS1.SAMPLIB(BPXPRMXX) - SUBFILESYSTYPE

For the purposes of configuring a simple single-system configuration, we will use the
SUBFILESYSTYPE definitions as supplied in the sample. This should result in
SUBFILESYSTYPE definitions in SYS1.PARMLIB(BPXPRMO0), as shown in Figure 2-26.

/*SUBFILESYSTYPE NAME(TCPIP) */

/* TYPE (CINET) */
/* ENTRYPOINT (EZBPFINI)*/
/* DEFAULT */

/*SUBFILESYSTYPE NAME(TCPIP2) */
/* TYPE (CINET) */
/* ENTRYPOINT (EZBPFINI)*/

/*
/*
/*
/*

/*
/*
/*

Name of file system

Type matching Cinet's TYPE
Entry point of load module
<- The Default Socket PFS

Name of file system
Type matching Cinet's TYPE
Entry point of load module

*/
*/
*/
*/

*/
*/
*/

Figure 2-26 SYS1.PARMLIB(BPXPRMO00) - SUBFILESYSTYPE

Defining system limits

We have seen in this chapter that the BPXPRMxx Parmlib member contains the parameters

that control z/OS UNIX file systems, such as FILESYSTYPE and MOUNT. But BPXPRMxx

can contain more parameters to control z/OS UNIX processing.

Note: IBM recommends that you have two BPXPRMxx members, one that specifies file

system setup and one that specifies system limits. This makes it easier to migrate from one

release to another.

Figure 2-27 on page 66 shows an example of BPXPRMxx Parmlib member parameters that

you can set up to influence user logon, active processes, file handling, and storage

requirements.

Chapter 2. Installation

65

66

MAXPROCSYS (300)
MAXPROCUSER (10125)
MAXUIDS (50)
MAXFILEPROC (65535)
MAXTHREADTASKS (32768)
MAXTHREADS (100000)
MAXPTYS (256)
MAXCORESIZE (4194304)
MAXASSIZE (2147483647)
MAXCPUTIME (2147483647)
MAXMMAPAREA (4096)
MAXSHAREPAGES (32768000)

Figure 2-27 BPXPRMxx parameters that control active processes

It is important to handle these parameters with care because a number of these statements
are interrelated. For example, it makes no sense to allow more users to access z/OS UNIX
when you do not provide enough TTYs. Each user or process entering z/OS UNIX needs a
pseudo-terminal (pseudo-TTY). A common rule is to allow four pseudo-TTY pairs for each
user (MAXPTYS = MAXUIDS * 4). For more information about pseudo-TTY see “Customize
the number of pseudoterminal files” on page 209.

BPXPRMxx controls the complete environment of z/OS UNIX. A number of the
MAX-parameters shown in Figure 2-27 can also be set for the individual user. This can be
done in the RACF OMVS segment of the user, as shown in Figure 2-28. For this individual
user only the ASSIZEMAX parameter is set, which maximizes the address space size for this
user to 20MB.

USER=PATRICK

OMVS INFORMATION

UID= 0000068216
HOME= /u/patrick
PROGRAM= /bin/sh
CPUTIMEMAX= NONE
ASSIZEMAX= 0020480000
FILEPROCMAX= NONE
PROCUSERMAX= NONE
THREADSMAX= NONE
MMAPAREAMAX= NONE

Figure 2-28 Listing of the user's OMVS segment

Note: The parameters set in the OMVS Segment overrule the corresponding settings in
the BPXPRMxx Parmlib member.

Figure 2-27 also shows the MAXFILEPROC parameter, which sets the maximum number of
file descriptors that a single process can use concurrently. File descriptors are used for open
files, directories, sockets, and pipes. By limiting the number of open files that a process can

have, you limit the amount of system resources a single process can use at one time.

Before z/OS V1R6, the maximum you could specify was 64K, which in effect limited the
number of connected clients at any one time. To relieve this constraint the limit was increased
to 128K (131072) descriptors.

UNIX System Services z/OS Version 1 Release 7 Implementation

The IBM-supplied BPXPRMXX member in SYS1.SAMPLIB shows a MAXFILEPROC value of
2000, which is generally a good starting point for normal TN3270 client usage. Some
software products like SAP R/3 or Websphere Application Server require you to set a higher
value for MAXFILEPROC. This is generally well documented.

Checking the syntax of BPXPRMxx

You can use the SETOMVS SYNTAXCHECK operator command to check the syntax of a
BPXPRMxx PARMLIB member before doing an IPL (but you cannot use SETOMVS to verify
whether HFS data sets or mount points are valid). As an example, to check the syntax of
SYS1.PARMLIB(BPXPRMO0O) the following operator command can be used:

SETOMVS SYNTAXCHECK=(00)

If the syntax is correct, the following message will be issued:
BPX0039I SETOMVS SYNTAXCHECK COMMAND SUCCESSFUL

2.3.7 Step 7 - Customize ALLOCxx

Forked address spaces are perceived to be batch jobs by MVS allocation. If a forked address
space attempts to allocate a data set on a volume that is not mounted, the request either
waits (with or without an operator prompt) or it fails. The ALLOCxx parmlib member controls
the behavior of allocation requests of this type. If you do not want the request to wait, specify
the following ALLOCxx statements:

VOLUME_ENQ POLICY (CANCEL)
VOLUME_MNT POLICY (CANCEL)

Use this policy so that forked addresses do not go into allocation waits. Be aware that using
this policy can disrupt your system, because it will cause a failure rather than a wait.

2.3.8 Step 8 - Customize COFVLFxx

If you are using the virtual lookaside facility (VLF), update the VLF member
SYS1.PARMLIB(COFVLFxx). Add CLASS and EMAJ statements to activate a RACF
performance option for z/OS UNIX. The required statements are shown in Figure 2-29.

CLASS NAME (IRRGMAP) /* OpenMVS-RACF GMAP table */
EMAJ (GMAP) /* Major name = GMAP */
CLASS NAME (IRRUMAP) /* OpenMVS-RACF UMAP table */
EMAJ (UMAP) /* Major name = UMAP */
CLASS NAME (IRRGTS) /* RACF GTS table */
EMAJ (GTS) /* Major name = GTS */
CLASS NAME (IRRACEE) /* RACF saved ACEEs */
EMAJ (ACEE) /* Major name = ACEE */
CLASS NAME (IRRSMAP) /* Security packet */
EMAJ (SMAP) /* Major name = SMAP */

Figure 2-29 COFVLFxx statements

If your RACF database has been converted to stage 3 of application identity mapping (AIM),
then the UNIXMAP classes no longer exist, and this step with VLF is not required.

Chapter 2. Installation 67

2.3.9 Step 9 - Customize CTnBPXxx

The SYS1.PARMLIB(CTnBPXxx) member specifies the tracing options for a component trace
of z/OS UNIX events. This causes trace records to be retained in a buffer, which could be
read if a dump is written. Two members are recommended:

» One member should control initial tracing, which automatically starts when the OMVS
address space is started (this member should be considered the operating system's
default member). The CTRACE statement in SYS1.SAMPLIB(BPXPRMxx) specifies
CTIBPX00. When z/OS is installed SYS1.PARMLIB(CTIBPXO00) is supplied as shown in
Figure 2-30 on page 68.

TRACEOPTS
ON
BUFSIZE (128K)

Figure 2-30 SYS1.PARMLIB(CTIBPX00)

» One member should be set up to trace all z/OS UNIX events. When z/OS is installed
SYS1.PARMLIB(CTIBPXO01) is supplied as shown in Figure 2-30.

TRACEOPTS
ON
BUFSIZE (4M)
OPTIONS(
"ALL to*/ /* ALL OPTIONS TRACED */
) */

Figure 2-31 SYS1.PARMLIB(CTIBPX01)

IBM support would normally tell you which options to select when attempting to debug a
reported problem.

2.3.10 Step 10 - Customize IEADMRO00

You should change PARMLIB member IEADMRO00 (SYSMDUMP and core dump defaults) to
specify at least the following values:

SDATA= (RGN, SUM, TRT, LPA)

This gathers adequate data without an excessive dump size.

2.3.11 Step 11 - Customize SMFPRMxx

68

The JWT value in SYS1.PARMLIB(SMFPRMXxx) specifies how long an idle address space is
allowed to wait before it is terminated. When an address space is dubbed a process, or when
a forked or spawned process is created, the process may go into signal-enabled waits. In a
signal-enabled wait, the address space is made exempt from long-wait time-outs as specified
by the JWT value in SYS1.PARMLIB(SMFPRMXxXx).

This enables parent processes to wait forever while child processes are running. Otherwise, if
the parent process is terminated due to job wait timeout, a SIGHUP signal is sent to the
running process and work is lost.

However, shell users, whether logged on through TSO/E and the OMVS command, or via
rlogin or telnet, are exempt from job wait timeout because the shell is in a signal-enabled wait

UNIX System Services z/OS Version 1 Release 7 Implementation

while waiting for a command from the user. To have shell users be timed out and logged off,
you need to specify the TMOUT environment variable in /etc/profile. The TMOUT
environment variable contains the number of seconds before user input times out. If user
input is not received, the shell ends.

If a shell started by the TSO/E OMVS command times out, then the TSO address becomes
enabled for job wait timeout processing. This means that if you have JWT=30 (30 minutes)
and you have TMOUT=600 (10 minutes), then TSO users who leave their terminals in the
shell will time out and be logged off in about 40 minutes.

2.3.12 Step 12 - Customize IEASYSxx

After the BPXPRMxx member has been customized, you need to specify the OMVS
statement in the IEASYSxx member of SYS1.PARMLIB. This links the BPXPRMxx member
into the z/OS IPL process, so that z/OS UNIX is initiated as desired. If you do not specify the
OMVS statement (or you specify OMVS=DEFAULT), the kernel is started in minimum mode
with all BPXPRMxx statements set to their default values.

The OMVS statement in IEASYSxx can be specified as follows:

» OMVS=xx if only a single BPXPRMxx member has been defined. In this case, xx
represents the suffix of the BPXPRMxx member. For example, if BPXPRMOO is the
member name, then IEASY Sxx should define:

0MVS=00

» OMVS=(nn,mm,...) if multiple BPXPRMxx members have been defined. In this case, nn
represents the suffix of one BPXPRMxx member, mm represents the suffix of another,
and so forth. For example, if BPXPRMOO contains z/OS UNIX statements that are
common to all systems, while BPXPRMZD only contains statements suitable for system
EGZD (&SYSNAME=EGZD), then IEASYSxx for system EGZD might specify:

0MVS=(ZD,00)
or
OMVS=(&SYSCLONE. ,00)

Note that with concatenated members, the first value set for a parameter is the one that is
used; if a later member in the list specifies a different value, that value is ignored.

See z/OS MVS Initialization and Tuning Reference, SA22-7592 for detailed information
about the format of IEASYSxx statements.

2.3.13 Step 13 -IPL

IPL the system so that the modified IEASYSxx member is implemented.

After IPL, you will observe that the OMVS, BPXOINIT and BPXAS address spaces start, and
the SYSLOG message shown in Figure 2-32 are produced.

Chapter 2. Installation 69

70

BPXFO13I FILE SYSTEM OMVS.ROOT 468

WAS SUCCESSFULLY MOUNTED.

BPXF013I FILE SYSTEM /DEV 469

WAS SUCCESSFULLY MOUNTED.

BPXFO13I FILE SYSTEM OMVS.ETC 471

WAS SUCCESSFULLY MOUNTED.

BPXFO13I FILE SYSTEM /TMP 472

WAS SUCCESSFULLY MOUNTED.

BPXFO13I FILE SYSTEM OMVS.VAR 474

WAS SUCCESSFULLY MOUNTED.

BPXF2031 DOMAIN AF_UNIX WAS SUCCESSFULLY ACTIVATED.

BPXF2251 THE RESOLVER_PROC, DEFAULT, WAS NOT STARTED. THERE IS NO
AF_INET OR AF_INET6 DOMAIN TO SUPPORT THE RESOLVER FUNCTION.

BPXI0271 THE ETCINIT JOB ENDED IN ERROR, EXIT STATUS 00000500
BPXI004I OMVS INITIALIZATION COMPLETE

Figure 2-32 Successful full function mode configuration - messages

The BPXF2251 message occurs because INET is not yet configured. The BPXI027| message
occurs because /etc does not have any contents yet.

If you check the status of z/OS UNIX using the D OMVS console command, in SYSLOG you
can expect to see a response similar to Figure 2-33.

D OMVS
BPX0042I 09.29.27 DISPLAY OMVS 192
OMVS 000D ACTIVE OMVS=(00)

Figure 2-33 Successful full function mode configuration - status

If you check the status of z/OS UNIX address spaces using the D OMVS,A=ALL console
command, in SYSLOG you can expect to see a response similar to Figure 2-34.

D OMVS,A=ALL
BPX0040I 09.42.23 DISPLAY OMVS 194

OMVS 000D ACTIVE OMVS=(00)
USER JOBNAME ASID PID PPID STATE START CT_SECS
OMVSTASK BPXOINIT 001F 1 0 MRI--- 09.11.18 .07
LATCHWAITPID= 0 CMD=BPXPINPR
SERVER=Init Process AF= 0 MF=00000 TYPE=FILE
RMFTASK RMFGAT 0023 16777218 1 1R---P 09.15.01 5.43
LATCHWAITPID= 0 CMD=ERB3GMFC

Figure 2-34 Successful full function mode configuration - address spaces

If you check the status of z/OS UNIX file systems using the D OMVS,F console command, in
SYSLOG you can expect to see a response similar to Figure 2-35.

UNIX System Services z/OS Version 1 Release 7 Implementation

D OMVS,F
BPX0045I 09.44.04 DISPLAY OMVS 196

OMVS 000D ACTIVE OMVS=(00)

TYPENAME ~ DEVICE ---------- STATUS---=-===--=-- MODE

TFS 6 ACTIVE RDWR
NAME=/TMP

PATH=/SYSTEM/tmp
MOUNT PARM=-s 20

TFS 4 ACTIVE RDWR
NAME=/DEV
PATH=/SYSTEM/dev
MOUNT PARM=-s 5

HFS 7 ACTIVE RDWR
NAME=0MVS.VAR
PATH=/SYSTEM/var

HFS 5 ACTIVE RDWR
NAME=0MVS.ETC
PATH=/SYSTEM/etc

HFS 3 ACTIVE RDWR
NAME=0MVS.ROOT
PATH=/

Figure 2-35 Successful full function mode configuration - file system

If you logon to TSO and at the READY prompt enter OMVS, you will enter the z/OS shell as
shown in Figure 2-36.

IBM

Licensed Material - Property of IBM

5694-A01 (C) Copyright IBM Corp. 1993, 2001

(C) Copyright Mortice Kern Systems, Inc., 1985, 1996.

(C) Copyright Software Development Group, University of Waterloo, 1989.

A11 Rights Reserved.

U.S. Government users - RESTRICTED RIGHTS - Use, Duplication, or
Disclosure restricted by GSA-ADP schedule contract with IBM Corp.

IBM is a registered trademark of the IBM Corp.

#

Figure 2-36 Successful full function mode configuration - z/OS Shell

Note: The “#” prompt indicates “superuser”. A non-superuser would see a “$” prompt.

If you enter the 1s -al command, you can see the structure of the root file system as shown
in Figure 2-37.

Chapter 2. Installation 71

1s -al

total 264

drwxr-xr-x 13 U701503 STCGRP 8192 Jul 17 22:54 .

drwxr-xr-x 13 U701503 STCGRP 8192 Jul 17 22:54 ..

dr-xr-xr-x 2 U701503 STCGRP 8192 May 29 2002 ...

—PW=mmmm- 1 U701503 STCGRP 9 Jul 17 22:55 .sh_history
drwxr-xr-x 5 U701503 STCGRP 8192 Oct 9 2002 SERVICE

drwxr-xr-x 6 U701503 STCGRP 8192 May 29 2002 SYSTEM

drwxr-xr-x 4 U701503 STCGRP 32768 Nov 8 2002 bin

Trwxrwxrwx 1 U701503 STCGRP 12 Jul 22 2002 dev -> $SYSNAME/dev
Trwxrwxrwx 1 U701503 STCGRP 12 Jul 22 2002 etc -> $SYSNAME/etc
Trwxrwxrwx 1 U701503 STCGRP 16 Jul 22 2002 krb5 -> etc/dce/var/krb5
drwxr-xr-x 2 U701503 STCGRP 8192 Jul 31 2002 1ib

drwxr-xr-x 2 U701503 STCGRP 8192 Jun 10 2002 opt

drwxr-xr-x 4 U701503 STCGRP 8192 May 29 2002 samples

Trwxrwxrwx 1 U701503 STCGRP 12 Jul 22 2002 tmp -> $SYSNAME/tmp
drwxr-xr-x 3 U701503 STCGRP 8192 Jul 4 2002 u

drwxr-xr-x 12 U701503 STCGRP 8192 Jan 13 2003 usr

Trwxrwxrwx 1 U701503 STCGRP 12 Jul 22 2002 var -> $SYSNAME/var

Figure 2-37 Is -al output

If you enter the env command, you will see the environment variables that are defined to your
session; see Figure 2-38 on page 72.

env
_BPX_TERMPATH=0MVS
PATH=/bin
SHELL=/bin/sh
COLUMNS=80
_=/bin/env
LOGNAME=IBMUSER
TERM=dumb
HOME=/

LINES=28
TZ=UTCO

Figure 2-38 env output

2.3.14 Step 14 - Customize /etc/init.options

72

The /usr/sbin/init file is the initialization program that is run when the OMVS address space is
initialized. This program invokes a shell to execute an initialization shell script that customizes
the environment. When this shell script finishes, or when a time interval established by

/usr/sbin/init expires, kernel services become available for general batch and interactive use.

UNIX System Services z/OS Version 1 Release 7 Implementation

Copy:
SYS1.PROCLIB /samples/init.options
IPL R /samples/rc
| MVS to
Start system PXOINIT /etc/init.options
address spaces /etc/rc
l BPXOINIT l .
OMVS ° PID=1 "
o ROOT HFﬁ
o Startinit task EEREEER> | o\t chell fin/sh .
N and run init
@ Initialize kernel
init
e Initialize all
filesystems @ Set init.options:
@ Allocate, open e Runrc
HFS data sets

Figure 2-39 z/OS UNIX initialization processing shell scripts
Standard output (stdout) and standard error output (stderr) are redirected to /etc/log.

The files associated with the system initialization program /usr/sbin/init are as follows:

/bin/sh Default shell that /usr/sbin/init invokes to execute /etc/rc or another
shell script specified in the /etc/init.options file.

/etc/init.options Initialization options file, which is read by /usr/sbin/init.

/etc/rc Default initialization shell script.
/etc/Tog The file that output is written to.
Other utilities Services that are called by the initialization shell script

/usr/sbin/init and the customized /etc/init.options and /etc/rc are run at IPL, as shown in
Figure 2-39 on page 73. There is no other way to invoke them explicitly.

Before /usr/sbin/init invokes the shell to execute the system initialization shell script, it reads
the file /etc/init.options for values of various options. The IBM-supplied default is in
/samples/init.options. Copy this file to /etc/init.options using the following command in the
z/OS shell:

cp /samples/init.options /etc

and make the appropriate changes. /usr/sbin/init treats all lines in /etc/init.options that do not
start with a hyphen (-) as comment lines. Lines that start with a hyphen are used to specify
options. The format of lines specifying options is as follows:

-00 VVVVV comment

Where:

Chapter 2. Installation 73

74

0o is a field of one or more nonblank characters immediately following the hyphen that
identify the option. The end of the option field is delimited by one or more blanks.

vvvvv s a field of one or more nonblank characters that specify an option value. These
characters are numeric, alphabetic, or a combination of both, depending on the
option being specified. The end of the value field is delimited by one or more
blanks.

Option and option value characters must appear in columns 1 through 79 of an
option line in /etc/init.options. /usr/sbin/init ignores characters beyond
column 79. However, a backslash (\) immediately following nonblank value field
characters is recognized as a continuation character. If the continuation character is
found, nonblank characters at the beginning of the next line are treated as option
value characters. The first blank character delimits the end of the value field.

Option value characters on a continuation line are limited to columns 1 through 79.
The continuation character is recognized on continuation lines as well as the option
line.

Any characters after a blank delimiting the end of the option value field on the same line are
treated as comment characters.

Options and option value ranges are listed below:

-a hnnn Alarm option: nnnn are digits that specify the maximum time in seconds
/usr/sbin/init will wait for execution of the initialization shell script to complete.

Default: 9999 seconds
Maximum: 9999 seconds

If the shell does not signal completion of the script before this time elapses,
/usr/sbin/init writes the timeout error message, FSUM4013lI, in /etc/log and
exits with status indicating: Timeout waiting for shell script to complete. You
must specify enough time for the system initialization script to complete if this
is a requirement at your installation.

Note: If the value 0 is specified for the alarm option, no timeout interval is
set. The decision to specify the value 0 for the alarm option should be
made carefully and only after it is known that the initialization script is
error-free.

-tn Terminate option: n is a digit indicating whether to terminate execution of the
initialization shell script if the timeout specified by the alarm option (-a)
occurs.

n = 0: Allow the shell script to continue
n not = 0: End the shell script

Default: n=1 (terminate the shell script)
Maximum: 1 digit

If you specify terminate and the timeout waiting for the initialization shell script
occurs, /usr/sbin/init sends a stop signal to the shell process group.

It is your responsibility to decide if the initialization shell script can continue
concurrent with batch and interactive use of the shell.

-sh pathname Initialization shell pathname option: pathname specifies the shell that
/usr/sbin/init should invoke to run the initialization script. /usr/sbin/init cannot
set environment variables for the rest of the system.

UNIX System Services z/OS Version 1 Release 7 Implementation

-sc pathname

-e string

Default: /bin/sh
Maximum length: 255 characters

The line -sh pppp\ in /etc/init.options specifies the first four characters of a
shell pathname pppp. It also indicates that the pathname is continued on the
next line (starting in column 1). Comment characters can appear after -.

The line -sh <blanks in /etc/init.options tells /usr/sbin/init not to run the shell. If
you select this option, /usr/sbin/init does not invoke the shell to execute an
initialization script. Instead, /usr/sbin/init signals that multiuser mode be
entered and then exits.

Initialization script pathname option: pathname specifies the initialization shell
script.

Default: /etc/rc
Maximum length: 255 characters

The line -sc pppp\ in /etc/init.options specifies the first four characters of an
initialization script name pppp, and indicates that the pathname is continued
on the next line (starting in column 1).

Environment variable option: string in the form name=value specifying the
environment variable name and the value that /usr/sbin/init passes to the
shell it invokes.

Maximum length: 255 characters

The line -e ssss\ in /etc/init.options specifies the continuation of the
environment variable name or value on the next line.

/etc/init.options can contain up to 25 -e option lines specifying names and
values for different environment variables. /usr/sbin/init passes the resultant
environment variable array to the shell that it invokes. In turn, the shell uses
this array to set up an execution environment for the initialization shell script
that is appropriate for the installation. TZ is an example of an environment
variable that should be considered.

These environment variables should also be set up in /etc/profile or
$HOME/.profile for each interactive user. Examples of variables that you
could specify are TZ, LANG, and NLSPATH.

Figure 2-40 is a sample /etc/init.options file showing the time zone, the Japanese language,

and the locale.

-e TZ=JST-9
-e LANG=Ja_JP

-e NLSPATH=/usr/1ib/n1s/msg/%L/%N

Figure 2-40 Sample /etc/init.options

Figure 2-41 shows the /etc/init.options suppled in the /samples directory supplied by z/OS.

-a 9999

-t 1

-sc /etc/rc

-e TZ=EST5EDT

timeout = 9999 seconds
terminate shell = yes
shell script = /etc/rc
TZ environment variable

Figure 2-41 /etc/init.options from /samples

Chapter 2. Installation 75

/etc/init opens the message catalog fsumucat.cat in directory /ust/lib/nls/msg/C unless an
NLSPATH environment variable naming a different directory is specified in the
/etc/init.options file.

For more information on environment variables for the shell, refer to zZ0OS UNIX System
Services Command Reference, SA22-7802.

Using REXX execs as an alternative to /etc/init

You can use a REXX exec in an MVS data set as an alternative to running the /etc/init
initialization program. To activate the REXX exec for initialization, you must specify its name
on the STARTUP_EXEC statement in SYS1.PARMLIB(BPXPRMxx). Note that /etc/rc is initiated
from /etc/init.options (via “-sc”), so replacing /etc/init.options with STARTUP_EXEC also
means /etc/rc is replaced.

2.3.15 Step 15 - Customize /etc/rc

76

The /etc/rc file contains customization commands for z/OS UNIX. The file is invoked by
/etc/init.options during startup of z/OS UNIX. An IBM supplied default file is in /samples/rc.
Copy this file to /etc/rc using the following command in the z/OS shell:

cp /samples/rc /etc

Figure 2-42 on page 76 shows the active contents of the supplied file.

export _BPX_JOBNAME='ETCRC'
set -v -x

>/etc/utmpx

chmod 644 /etc/utmpx

chmod 666 /dev/tty*

chown 0 /dev/tty*

chmod 1777 /tmp

chmod 1777 /var

chmod 1755 /dev

mkdir -m 777 /etc/recover
/usr/1ib/exrecover

sleep 5

echo /etc/rc script executed, “date”

Figure 2-42 /etc/rc from /samples

Regarding the content of the sample /etc/rc file:

» The export _BPX JOBNAME='ETCRC' statement sets the z/OS jobname for this script to
ETCRC. BPX_JOBNAME is an environment variable for this purpose.

» The set -v -x statement specifies that a verbose shell command trace of /etc/rc is to be
written to /etc/log.

» The >/etc/utmpx statement is a short form of redirection 0>/etc/utmpx. This takes null
input from standard input (stdin), and writes it to file /etc/utmpx—an easy way to create file
/etc/utmpx if it does not already exist. Another way to achieve the same result might be to
use the touch command, but the provider of the /samples/rc file chose to use redirection.

» The chmod 644 /etc/utmpx statement sets the initial permission bits of file /etc/utmpx so
that the owner has read/write authority (6 = xX’110’ = read[Y], write[Y], execute[N]), while
group and other have read authority (4 = x’100’ = read[Y], write[N], execute[N]).

UNIX System Services z/OS Version 1 Release 7 Implementation

The chmod 666 /dev/tty* statement resets the initial permission bits of pseudoterminal
slave files so that the owner, group and other have read/write authority (6 = x’'110’ =
read[Y], write[Y], execute[N]).

The chown 0 /dev/tty* statement resets the owner of pseudoterminal slave files to 0.

The chmod 1777 /tmp statement sets the sticky bit on for the /tmp directory so that users
cannot delete each other’s files. It also sets the initial permission bits of the /tmp directory
so that the owner, group and other have read/write/execute authority (7 = x’111’ = read[Y],
write[Y], execute[Y]). For a directory, this means:

— READ: Permission to read, but not search the contents.
— WRITE: Permission to change, add, or delete directory entries.
— EXECUTE: Permission to search the directory.

The chmod 1777 /var statement sets the sticky bit on for the /var directory so that users
cannot delete each other’s files. It also sets the initial permission bits of the /var directory
so that the owner, group and other have read/write/execute authority (7 = x’'111’ = read[Y],
write[Y], execute[Y]). For a directory, this means:

— READ: Permission to read, but not search the contents.
— WRITE: Permission to change, add, or delete directory entries.
— EXECUTE: Permission to search the directory.

The chmod 1755 /dev statement sets the sticky bit on for the /dev directory so that users
cannot delete each other’s files. It also sets the initial permission bits of the /dev directory
so that the owner has read/write/execute authority (7 = x’'111’ = read[Y], write[Y],
execute[Y]), while group and other have read/execute authority (5 = x’101’ = read[Y],
write[N], execute[Y]). For a directory, this means:

— READ: Permission to read, but not search the contents.
— WRITE: Permission to change, add, or delete directory entries.
— EXECUTE: Permission to search the directory.

The mkdir -m 777 /etc/recover statement creates the /etc/recover file for use by the
exrecover directory and sets the initial permission bits so that the owner, group and other
have read/write/execute authority (7 = x’111’ = read[Y], write[Y], execute[Y]). For a
directory, this means:

— READ: Permission to read, but not search the contents.
— WRITE: Permission to change, add, or delete directory entries.
— EXECUTE: Permission to search the directory.

The exrecover daemon recovers text files from working files created by vi and ex. These
working files are in one or more temporary directories. It is normally invoked from a
system startup file before these working files are purged.

The /usr/1ib/exrecover statement starts the exrecover daemon.

The sleep 5 statement follows the start of the exrecover daemon. When starting daemons
in the background environment, it is very important to include a sleep command at the end
of the script. This command gives the background processes time to get started and set
up to ignore SIGHUP so that when the shell exits, the daemons keep running when the
shell script completes. The amount of time required can be determined empirically. A
value of 5 seconds is suggested for a start.

The echo /etc/rc script executed date statement writes information to standard output
(stdout).

The setup section for the mailx utility has been commented out in the /etc/rc file because
the mailx utility no longer requires this.

Chapter 2. Installation 77

» The setup section for creating the terminfo database has been commented out in the
/etc/rc file because IBM ships the individual files that make up the terminfo database.

» The setup section for the mesg, talk, write, and uucp utilities has been commented out in
the /etc/rc file because this customization is now done when running the FOMISCHO
sample job.

2.3.16 Step 16 - Customize /etc/profile

The /etc/profile file is the system-wide profile for the z/OS shell users. It contains environment
variables and commands used by most shell users. An IBM-supplied default file is in
/samples/profile. Copy this file to /etc/profile using the following command in the z/OS shell:

cp /samples/profile /etc

Figure 2-43 on page 78 shows the active contents of the supplied file.

if [-z "$STEPLIB"] && tty -s;

then
export STEPLIB=none
exec sh -L

fi

TZ=EST5EDT

export TZ

LANG=C

export LANG

readonly LOGNAME
PATH=/bin

export PATH
LIBPATH=/1ib:/usr/1ib:.
export LIBPATH
NLSPATH=/usr/1ib/n1s/msg/%L/%N
export NLSPATH
MANPATH=/usr/man/%L
export MANPATH
MAIL=/usr/mail/$LOGNAME
export MAIL

umask 022

Figure 2-43 /etc/profile from /samples/profile

Regarding the content of the sample /etc/profile file:

STEPLIB=none Indicates that STEPLIBs should be not propagated. Running the
shell with STEPLIB=none assumes that the Language
Environment run-time library resides in LINKLIST or in LPA.

exec sh -L Reruns the SHELL command in the current address space with
the environment variables just defined. Both STEPLIB=none and
exec sh -L are run only on the first invocation of an interactive
shell. The tty -s test prevents the shell from being run by
noninteractive invocations. e.g. those started with the
BPXBATCH and OSHELL utilities.

The fi statement is the end of the shell script if statement.

TZ=EST5EDT Sets the time zone as appropriate. In the sample profile, TZ is set
to EST5EDT, which is US Eastern Daylight Time.

LANG=C Specifies the name of the default locale. C specifies the POSIX
locale.

78 UNIX System Services z/OS Version 1 Release 7 Implementation

readonly LOGNAME

PATH=/bin

LIBPATH=/1ib:/usr/1ib

Prevents subsequent changes in the value of variable
LOGNAME.

Sets a default command search path to search only the /bin
directory.

Specifies the directory to search for a dynamic link library (DLL)
filename. If this is not set, only the working directory is searched.

NLSPATH=/usr/1ib/n1s/msg/%L/%N

MANPATH=/usr/man/%L
LANG=C

MAIL=/usr/mail/$LOGNAME

umask 022

Sets the path for message catalogs.
Sets the path for the man pages.

Specifies the name of the default locale. C specifies the POSIX
locale and Ja_JP specifies the Japanese locale.

Sets the name of the system mail file and enables mail
notification.

The export statements make the values available to the system.

Sets the default file creation mask (umask). In the sample, the
mask is set to 022. This causes a file created with mode 777 to
have permissions of 755. The creator cannot set the group write
or other write bits on in the file mode field, because the mask
sets them off.

Note: For how to use the umask, see “Using the umask” on page 124.

Chapter 2. Installation 79

80 UNIX System Services z/OS Version 1 Release 7 Implementation

Establish security for z/0S UNIX

This chapter provides a comprehensive description of all necessary controls and techniques
to establish security for UNIX System Services (z/OS UNIX) on the zSeries operating system
(z/OS). Assuming that the external security product is RACF, we discuss all RACF classes
and profiles needed to protect zZOS UNIX resources, as well as some traditional UNIX
commands related to security. Although we emphasize the new security features for z/OS
UNIX introduced from OS/390 V2R7 to z/OS V1R4, this chapter contains all RACF security
controls introduced since the launch of the MVS OpenEdition subsystem with MVS/ESA 5.2.2
in 1994.

We expect that the readers have, in their RACF databases, the equivalent of member
BPXISEC1 from SYS1.SAMPLIB at the level of 0S/390 V2R6.
After studying this chapter, you should be able to:

» Understand superuser mode in z/OS UNIX

» Understand z/OS UNIX security concepts

» Convert to Application Identity Mapping

» Define new z/OS UNIX users and groups.

» Change existing z/OS UNIX users and groups

» Manage superusers

» Define and use permission bits and ACLs.

» Set up security for z/OS UNIX daemons and servers

» Set up security for operations in z/OS UNIX

» Set up auditing for z/OS UNIX events

© Copyright IBM Corp. 2003, 2006. All rights reserved. 81

3.1 Superuser authority

The concept of superuser comes from UNIX. Sometimes it is also referred to as root
authority. A superuser can:

» Pass all z/OS UNIX security checks, so that the superuser can access any file in the
hierarchical file system. A superuser does not get any additional authorities to access
MVS/ESA resources. The authority is limited to the z/ OS UNIX component.

» Manage z/OS UNIX processes and files.
» Have an unlimited number of processes running concurrently.

» For a started procedure, this is true only if it has a UID of 0. It is not true for a trusted or
privileged process with a different UID.

» Change identity from one UID to another.
» Use setrlimit to increase any of the system limits for a process.

A superuser is usually a system administrator, or it can be a started procedure that is
authorized by the RACF started procedures table or the RACF STARTED class.

The UID of a parent process and the UID’s trusted or privileged attributes are propagated to a
forked child process. Thus, a UID of 0 is propagated to a forked child.

3.1.1 Defining superusers with appropriate privileges

82

As you are defining users, you might want to define some of them with appropriate superuser
privileges. There are three ways of assigning superuser privileges:

» Using the RACF UNIXPRIV class profiles—the preferred way.

Access to profiles from the UNIXPRIV class allows you to perform various privileged
functions, such as mounting a file system or changing ownership of files.

» Using the BPX.SUPERUSER profile in the FACILITY class.

BPX.SUPERUSER allows you to request full superuser authority, perform tasks requiring
such authority, and then switch back to ordinary user authority. You do not have
superuser status unless you make the request.

» Assigning a UID of 0 should be given to the most important administrators.

Superusers are special users in a z/OS UNIX environment and they are identified by a
UID value of 0. One way of defining superusers is to set the UID to 0 in a user's OMVS
segment. Using this method, the user always runs as a superuser. Multiple users can be
defined with a UID of 0.

While some functions require a UID of 0, in most cases you can choose among the three
ways. When choosing, try to minimize the number of “human” user IDs (as opposed to started
procedures) set up with UID(0) superuser authority.

Do not confuse superuser authority with the MVS supervisor state. Being a superuser is not
related to supervisor state, PSW key 0, and using APF-authorized instructions, macros, and
callable services.

UNIX System Services z/OS Version 1 Release 7 Implementation

3.1.2 Using the UNIXPRIV class profiles

You can define profiles in the UNIXPRIV class to grant RACF authorization for certain z/0S
UNIX privileges. These privileges are automatically granted to all users with z/OS UNIX
superuser authority. By defining profiles in the UNIXPRIV class, you may specifically grant
certain superuser privileges with a high degree of granularity to users who do not have
superuser authority. This allows you to minimize the number of assignments of superuser
authority at your installation and reduces your security risk.

Resource names in the UNIXPRIV class are associated with z/OS UNIX privileges. You must
define profiles in the UNIXPRIV class protecting these resources in order to use RACF
authorization to grant z/OS UNIX privileges. The UNIXPRIV class must be active and the
SETROPTS RACLIST command must be in effect for the UNIXPRIV class when you define
new profiles. Global access checking is not used for authorization checking to UNIXPRIV
resources. To activate the UNIXPPRIV class, issue:

SETROPTS CLASSACT (UNIXPRIV)

The UNIXPRIV profiles shown in Figure 3-1 were introduced in UNIX System Services in

0S/390 V2RS8.

UNIXPRIV RESOURCE NAMES - ACCESS
SUPERUSER.CHOWN.UNRESTRICTED - NONE
SUPERUSER.FILESYS - READ - UPDATE - CONTROL
SUPERUSER.FILESYS.CHOWN - READ
SUPERUSER. FILESYS.MOUNT - READ - UPDATE
SUPERUSER.FILESYS.PFSCTL - READ
SUPERUSER.QUIESCE - READ - UPDATE
SUPERUSER. IPC.RMID - READ
SUPERUSER. PROCESS . GETPSENT - READ
SUPERUSER.PROCESS .KILL - READ
SUPERUSER. PROCESS . PTRACE - READ
SUPERUSER. SETPRIORITY - READ
SUPERUSER.FILESYS.VREGISTER - READ

Figure 3-1 UNIXPRIV profile names introduced with OS/390 V2R8

UNIXPRIV class example

Normally, these privileges are automatically defined for all users who are defined with z/OS
UNIX superuser authority (UID=0). But you can use the UNIXPRIV class to grant certain
superuser privileges, with a high degree of granularity, to users who do not have superuser
authority. For example, if users have READ access to SUPERUSER.FILESYS.MOUNT, they
can issue a mount and unmount command without being a defined superuser with all
superuser capabilities, as follows:

RDEFINE UNIXPRIV SUPERUSER.FILESYS.MOUNT UACC(NONE)
PERMIT SUPERUSER.FILESYS.MOUNT CLASS(UNIXPRIV) ID(JANE) ACCESS(READ)
SETROPTS RACLIST(UNIXPRIV) REFRESH

Now user JANE (UID=35) can issue mount, which is a superuser function. This is the only
superuser function JANE can do.

Chapter 3. Establish security for zOS UNIX 83

3.1.3 Using the BPX.SUPERUSER profile

Using the BPX.SUPERUSER resource name in the FACILITY class is another way for users
to get full superuser authority for a limited time when performing tasks requiring such
authority. These users do not have a UID(0). You can assign users this authority as follows:

» As an individual user
» As a group of users all belonging to the same RACF group

Since the user who has this authority is a normal user, the user must switch his authority to
superuser mode using the su shell command.

Set up BPX.SUPERUSER profiles

Determine the users that may require this authority; they may be:

v

z/OS UNIX system programmers
MVS system programmers
RACF system programmers
RACF administrators

vYvyy

If many of the users are in the same group, you can define a RACF group with any users who
need to use superuser mode. This group should not be used for any other access, for
example:

AG UNIXSUP OWNER(SECADM)

Define the BPX.SUPERUSER profile in class FACILITY:
RDEFINE FACILITY BPX.SUPERUSER OWNER(SECADM) UACC(NONE)

Use the PERMIT command to permit all groups and individual users needing temporary
superuser authority to this profile. Ensure that all users have OMVS segments with nonzero
UIDs and a HOME keyword with the value of /u/userid.

PE BPX.SUPERUSER CLASS(FACILITY) ID(UNIXSUP) ACCESS(READ)
PE BPX.SUPERUSER CLASS(FACILITY) ID(JANE) ACCESS(READ)

When users need to perform superuser tasks, they can switch to superuser mode with the su
command.

Deleting superuser authority is done by deleting the profile. If the installation determines that
a group or a user no longer requires superuser authority, the RACF administrator can remove
the user from the access list with the PERMIT or REMOVE command:

PE BPX.SUPERUSER CLASS(FACILITY) ID(UNIXSUP) DELETE
RE JANE GROUP(PROG1)

3.1.4 Switch to superuser mode

84

For users that are given access through the BPX.SUPERUSER profile in the FACILITY class,
you can use any of the methods described in this section to gain superuser authority.

SU command

Enter the shell using the OMVS command and then issue the su command with no operands.
This creates a nested shell (a new process) that runs with superuser authority.

When running in this manner, editing a file with the OEDIT command (OEDIT with PF6)
returns you to the TSO/E address space where your original authority is still in place.

UNIX System Services z/OS Version 1 Release 7 Implementation

New to z/OS V1R5 is an su option that starts a new shell as a login shell.

su [-] [-s] [userid [arg ...]]

Using the su command as shown in Figure 3-2, a child shell will be started with the login
environment of the admin user ID.

su admin

Figure 3-2 su command

By using the su command this way, you will get:

» Admin’s default shell

» Admin’s HOME directory

» The ability to run /etc/profile and admin’s .profile to set the environment variables

In another example, shown in Figure 3-3, you can see it is also possible to issue commands
under a surrogate user ID. The command runs the remove rm shell command under the
admin user ID and returns to the invoker when the command ends.

su admin -c “rm -rf /tmp/>

Figure 3-3 su command

To switch to another userid without having to specify a password, you have to be granted
RACF SURROGAT authority. Figure 3-4 shows an example of the RACF statements used to
obtain this authority.

RDEFINE SURROGAT BPX.SRV.HERING UACC(NONE)
PERMIT BPX.SRV.HERING CLASS(SURROGAT) ID(PATRICK) ACCESS(READ)
SETROPTS RACLIST(SURROGAT) REFRESH

Figure 3-4 RACF commands for granting SURROGAT authority

Without the proper authorization, user PATRICK will receive the message shown in Figure 3-5
when trying to switch to user ID HERING.

PATRICK @ SC64:/u/patrick>su -s hering
FSUM5027 su: User is not a surrogate of "hering".

Figure 3-5 Switching a user ID

Note: It is also possible to enter the su command after you logged on to the shell using
rlogin or telnet.

Enable superuser mode(SU) panel option

Enter the ISPF shell using the ISHELL command or a dialog selection. From the ISPF shell,
click Setup and specify option 7, Enable superuser mode(SU) to switch to superuser state
(Figure 3-6 on page 86). You can then manage the file system using ISPF shell functions
while in the superuser state.

Chapter 3. Establish security for zOS UNIX 85

86

File Directory Special_file Tools File_systems Options Setup Help

UNIX System Services | 7 *User...
| *User list...
Enter a pathname and do one of these: | *AT1 users...
|

*A11 groups...

*Permit field access...
*Character Special...
Enable superuser mode(SU)

- Press Enter.
- Select an action bar choice.
- Specify an action code or command on

NO OB W N

Return to this panel to work with a differ

| Some choices (*) require

|
/ superuser or the "special" |
attribute for full function, or]
both |
|
EUID=68216

Figure 3-6 ISHELL panel

If you enter the ISPF shell, switch to superuser and then exit the ISPF shell, you may lose
superuser authority. If the ISPF shell is the only process in the address space, you will lose all
connection to kernel services when the ISPF shell terminates. If there is another dubbed
process in this address space (for example, another ISPF shell, or a local shell), it will share
the UID with the ISPF shell process. For example, you can open an ISPF shell on both sides
of a split screen. When you toggle to superuser in one ISPF shell, it affects the address
space; therefore, both ISPF shells are now superuser. Regardless of which ISPF shell
terminates first, the address space retains its UIDs until the ISPF shell is used to toggle back,
or the last process is undubbed.

Note: Notice the effective user ID (EUID) on the left bottom of the ISHELL panel in
Figure 3-6. This will change to a UID of zero when the user switches to superuser mode
using this ISPF panel.

After gaining superuser authority in the ISPF shell, you can split the screen in ISPF and enter
the OMVS command. The shell that is started inherits the superuser authority set up in the
ISPF shell.

Note: For privileged shells (when the effective UID does not match the real UID, or the
effective GID does not match the real GID) $HOME/.profile is not run. If the file
/etc/suid_profile exists, it will be run.

REXX

If you are permitted to the BPX.SUPERUSER resource you can get superuser access
through REXX.

Some REXX examples to gain superuser access can be found on the internet at the zSeries
“tools & toys” Web site:

http://www-1.ibm.com/servers/eserver/zseries/zos/unix/bpxaltoy.html

In particular, some of the tools written by Robert Hering can be very useful.

http://www-1.ibm.com/servers/eserver/zseries/zos/unix/toys/usstools.html

UNIX System Services z/OS Version 1 Release 7 Implementation

BPXBATCH

Use the su command from a BPXBATCH submitted job. An example of a job using
BPXBATCH is shown in Figure 3-7.

The command shown in the PARM= statement pipes (symbol |) the result of the echo command
(that is, the copy command) into the su command. Thus, you are able to change file
ownership by becoming superuser.

//STEPO1 EXEC PGM=BPXBATCH, PARM='SH echo chown antoff /u/antoff | su'
//STDIN DD PATH */yourpath/input.stuff>,PATHOPTS=(ORDONLY)

Figure 3-7 BPXBATCH job using the su command

With no parameters coded at all, create a file that has the su command in it and run it as a
script.

su
chown antoff /u/antoff

In the suinput.stuff file, shown in Figure 3-8, you would have the su command followed by the
chown command. These are commands as you would have entered them from the console if
you had been running in the z/OS UNIX shell.

//STEPO1 EXEC PGM=BPXBATCH
//STDIN DD PATH="/yourpath/suinput.stuff’,PATHOPTS=(ORDONLY)

Figure 3-8 BPXBATCH job using the su command

Important: When you set up your own $HOME/.profile as superuser, specify the /usr/sbin
directory in your PATH environment variable because certain superuser utilities are in that
directory instead of the /bin directory, such as automount. For more information about the
profile, see zZOS UNIX System Services Planning, GA22-7800.

3.1.5 Assigning a UID of 0

Although sometimes appropriate, it is often desirable to have as few superusers with a UID of
0 as possible in the UID parameter in the OMVS segment of the ADDUSER or ALTUSER
commands.

Also, consider assigning a UID of 0 to a user for superuser capability and assign a secondary
user ID with a nonzero UID for activities other than system management. For example, you
could assign:

» User ID CONWAY UID(0) - used for system maintenance
» User ID CONWAY1 UID(7) - used for regular programming

Assign a user to be a superuser

In the following example, the ALTUSER command gives the TSO/E user ID CONWAY
superuser authority, makes the root directory the home directory, and causes invocation of
the shell in response to a TSO/E OMVS command.

ALTUSER CONWAY OMVS(UID(0) HOME(’/®) PROGRAM(’/bin/sh’))

Chapter 3. Establish security for zOS UNIX 87

3.1.6 Managing UIDs

88

There have been enhancements to UID assignment in z/OS Version 1 Release 4. You may
want to evaluate all of your current UID assignments. The changes in z/OS V1R4 are as
follows:

» Prevention of shared UIDs and GIDs

This support allows an installation to prevent more than one user from having the same
UID. Using this support does not eliminate UIDs that are currently being shared, especially
those that are UID(0). For more detail on prevention of shared UIDs, see 3.10.2, “Shared
UID and GID prevention” on page 119.

» Automatic UID and GID assignment

For non UID(0) users, you can have RACF choose the next available UID or GID. For more
detail, see 3.10.1, “Automatic UID and GID assignment” on page 115.

Search for users with the same UID

z/OS V1R4 introduces a search for users with the same UID or GID. The RACF search
command has the following changes to display user and group profiles with z/OS V1R4:
» User profiles that contain an OMVS UID equal to the UID you specify.

» Group profiles that contain an OMVS GID equal to the GID you specify.

Search command examples
The following commands are examples followed by the response:

search class(group) gid(1)
OMVSGRP

search class(user) uid(0)
HAIMO

BOBH

BPXROOT

CONWAY

LDAPSRV

MSYSLDAP

If you use RACF panels for using the search function, there is a new option for displaying
duplicate UIDs, as shown in Figure 3-9 to display all UID(1).

UNIX System Services z/OS Version 1 Release 7 Implementation

RACF - SEARCH FOR USER PROFILES
COMMAND ===>

ENTER OPTIONAL SELECTION CRITERIA:

MASK1 Selects profiles with names that
specified character string.

MASK2 Selects profiles with names that
specified string somewhere after

FILTER Selects profiles with names that
specified string.
in the number of days specified.
(administrators only).
Valid values are 0 - 2147483647.

Enter YES to generate a TS0 clist

Enter YES to specify additional SEARCH criteria

begin with the

centain the
MASKL .

match the

AGE Selects users that have not accessed the system

USERID Selects the profiles this user is authorized to see

UID 1 Selects profiles which have this UID defined in
the OMV¥S segment (other options will be ignored).

{(Command Direction is inactivated for SEARCH with clist)

Figure 3-9 RACF panel to display user IDs having the same UID

The output from the display is displayed on the screen, as shown in Figure 3-10.

BROWSE - RACF COMMAND OUTPUT-—-—-—-—-—-——-—-—-———-——————————— LINE 00000000 COL 001 080
COMMAND ===> _ SCROLL ===> HALF
KK KK KK K R KK KK KKK R R K KKK R KR R KR KK Top of Data %k K ik Ok K K KK K K K K KK K K K K K K K KK K
LDAPSRV
MSYSLDAP

SK K KKK KSR K KKK KK KKK KK KKK KKK Bo bt Lom of Datba 3K %K KKK KK K K K K K K KK K 3K K 5K 5K 3K K K KK K KK %

Figure 3-10 Output from RACF panel display of duplicate UIDs

Reassign UIDs of existing users

If you wish to remove users with UID(0) or any other UID and use automatic UID assignment,

do the following:

Delete the UID from the user's OMVS segment and then issue the ALTUSER command with

the AUTOUID keyword:

ALU JOHN OMVS(NOUID)
ALU JOHN OMVS(AUTOUID)

3.2 Creating a RACF environment for products and

subsystems

Good naming standards for all resources in the z/OS environment are a necessary condition,

but not a sufficient condition to have a neat and tidy, easy to manage RACF database. The

sufficient condition is the permanent, everyday enforcement of these standards without any

compromise.

For the purpose of our further presentation, we assume that you have naming standards for
several types of groups and user IDs. Also we assume that you have a policy for ownership of

resources.

Chapter 3. Establish security for z/OS UNIX

89

3.2.1 RACF group structure

An important condition for a good RACF database is its group structure. It is outside the
scope of this book to deal with the best way to design such a structure. However, it is
sufficient to recommend a very simple structure, as shown in Figure 3-11.

SYst
DFLT JOBROLE DATA LOCADM
EMPL PKIADM OMVS -1 DEPTY
CONT SECADM DB2 —— BRANCH1
STG MVSVNT cics
MISC CICSMNT APPL1
DB2MNT APPL2
STORMNT
PAYROL
HR

Figure 3-11 Very simple RACF group structure example

In the example in Figure 3-11, the subgroups of group SYS1 are as follows:

DFLT The subgroups are all default groups.

JOBROLE The subgroups are all jobrole groups).

DATA The subgroups are all groups matching high-level qualifiers for data sets.

LOCADM The subgroups are all groups for decentralized RACF administration,
containing users with authority of GROUP-SPECIAL.

Note: You should not connect any user IDs to these four groups.

Default group for started task user IDs

As part of the job role group structure implementation, we created a RACF default group for
all started task user IDs on our systems. You may have such a group with names STC,
STCG, and STCGRP. Our preferred name for the example is STG and the command to
create it is:

AG STG SUPGROUP(DFLT) OWNER(DFLT)

90 UNIX System Services z/OS Version 1 Release 7 Implementation

Note: The group DFLT is a subgroup of group SYS1 and has as subgroups all default
groups, for example default group EMPL for all employees, default group CONT for all
contractors and vendors, default group STG for all started task user IDs, and default group
MISC for miscellaneous machine user IDs). Default groups should never be permitted to
any resource.

Jobrole groups

In this redbook, we introduce the concept of the jobrole RACF group as an example. The
user IDs connected to such a group need the same access to various resources in order to do
their everyday jobs. For example, the group of MVS systems programmers, let’s call it
MVSMNT, needs access ALTER to all operating system data sets and all data sets related to
software products. However, they do not even need READ access to data sets storing data
from financial, human resources, or other business applications. When an MVS systems
programmer joins or leaves the team, the RACF administrator needs only to connect or
remove him to or from the group MVSMNT. In order for such a concept to be implemented, a
lot of preliminary work is needed, such as interviews with representatives of all areas of the
enterprise, logical assessment by a RACF architect, and security policy reviews, followed by
the difficult task of actually reengineering the whole RACF group structure.

If you have applications running in your z/OS UNIX environment, such as PKI server or Web
servers, you have to extend the jobrole concept into the z/OS UNIX environment in order to
work out which jobrole groups will be the owning groups of HFS files, and their level of
access.

We assume that a jobrole group structure is implemented at least in the Information
technology department of your organization. We will refer to the z/OS UNIX system groups as
follows:

» The UNIX systems programmers group as USSMNT

» The security administrators group as SECADM

» The decentralized security administrators groups, all subgroups of LOCADM, as
LOCADM

Note: To repeat: you should not connect users to group LOCADM, but to its subgroups, for
example DEPT1 and BRANCH1, as shown in Figure 3-11 on page 90.

3.2.2 Creating user IDs

It is necessary to create user IDs for the various subsystems, programs, and procedures
used in a z/OS environment.

Started task user IDs

In this section we refer to the started task user IDs (STUs) necessary to run procedures
(programs for various subsystems and products). In the z/OS UNIX environment, the STUs
are called daemons. We assume that your site has a naming standard for started task user
IDs (STUs), as shown in Figure 3-12 on page 91.

productnameTASK
STCproductname
productnameSTC
productnameSTU

Figure 3-12 Possible naming standards for started task user IDs

Chapter 3. Establish security for zOS UNIX 91

We prefer the last naming standard. In the framework of the job role concept for group
structure, we recommend that STUs are never connected to job role groups, but permitted
individually to RACF profiles, instead.

In your z/OS UNIX environment you may need to make some STU owners of HFS files and
directories and permit them to these files and directories with a suitable level of access.

Miscellaneous user IDs

Here we refer to various miscellaneous user IDs such as batch submission ids, CICS default
users, console IDs, and surrogate user IDs. They should have their own default group, for
example MISC, and should be permitted individually to RACF profiles.

3.2.3 System data set profiles

Most installations have used well established naming standards for data sets for many years.
Usually all IBM system software resides in data sets prefixed with SYS1 while in-house
modifications to software, as well as system data, reside in data sets prefixed with SYS2, or
other user-defined names. Our preferred prefix is SYSU.

3.2.4 Ownership

Although OWNER may not have any significance in RACF except when a decentralized
administration is in place, we recommend that all resources have a meaningful OWNER
(always a RACF group), for example:

User IDs are owned by their default groups.

System data set profiles are owned by MVSMNT.

CICS software data sets are owned by CICS systems programmers.

Application data sets are owned by respective business groups.

Security profiles (BPX, IRR in the RACF FACILITY class) are owned by SECADM.

vyvyVvyyy

3.3 The RACF database and z/OS UNIX

92

Associating RACF user IDs and groups to UIDs and GIDs has important performance
considerations.

There are two considerations to improve performance for access to UIDs and GIDs, the most
important one being Application Identity Mapping (AIM) because some new functions in z/OS
UNIX require AIM, beginning with z/OS V1R4:

» Identity Mapping using the Virtual Lookaside Facility (VLF) and the UNIXMAP class

If your installation shares the RACF database with systems running releases prior to
0OS/390 Version 2 Release 10, it is important to use the VLF classes IRRUMAP and
IRRGMAP and the RACF UNIXMAP class to improve performance by avoiding sequential
searches of the RACF database for UID and GID associations. RACF uses the VLF
caching to search for UIDs or GIDs, which is known as identity mapping, as shown in
Figure 3-13. Identity mapping for RACF user IDs and groups started with the introduction
of the RACF UNIXMAP class in OS/390 V2R7 with the intention to improve system
performance. The UNIXMAP class is used to allow the system to quickly look up a user ID
from a UID, or a group name from a GID.

» Application Identity Mapping

If your installation shares the RACF database only with systems running z/OS, or OS/390
Version 2 Release 10 or above, you may be able to achieve improved performance

UNIX System Services z/OS Version 1 Release 7 Implementation

without using UNIXMAP and VLF. However, before you can avoid using UNIXMAP and
VLF, you must ask your systems programmer if your installation has reached stage 3 of
Application Identity Mapping by running the IRRIRAQO conversion utility. There are four
stages you must complete to convert the RACF database to AIM, stages 0, 1, 2, and 3.

Note: If your installation is new to RACF and you are not running any releases prior to
0S/390 Version 2 Release 10, you will automatically take advantage of application
identity mapping at the stage 3 level without running the IRRIRAQO conversion utility,
and you will not need to use VLF and UNIXMAP to achieve improved performance.

IRRUMAP IRRGMAP

ulD userid GID group

Virtual 15 | SMITH 10 [PROG1
Lookaside
RACF - Facility

(VLF) userid UiD group GID

i SMITH | 15 PROG1| 10

i | IRRGSMAP
| RACF [
; COFVLFxx
‘ Profiles | File Security
- Packet
RACF Data Base SYS1.PARMLIB

Figure 3-13 RACF and VLF caching to improve performance

The introduction of AIM in OS/390 V2R10 and the modification of the RACF database with
the new IRRIRAQO utility were the first attempt to map RACF user IDs using various
applications across the enterprise to one entity (alias index).

3.4 Identity mapping with VLF and UNIXMAP

If your installation shares the RACF database with systems running releases prior to OS/390
V2R10, it is important to use Virtual Lookaside Facility (VLF) and the UNIXMAP class to
improve performance. You may also need to use the VLF and UNIXMAP class if your system
programmer has not yet converted your systems for stage 3 of AIM.

Both VLF and the UNIXMAP class can be either active or inactive. Table 3-1 on page 93
shows how these states affect performance.

Table 3-1 The UNIXMAP class and VLF: effects on performance

State Performance
Active class UNIXMAP Running in this state at all times will give you the best performance.
Active VLF

Chapter 3. Establish security for z0OS UNIX 93

State Performance

Active class UNIXMAP If VLF is inactive, requests for UID-to-user-ID mapping and

Inactive VLF GID-to-group-name mapping must access a UNIXMAP class profile in

the database, which degrades performance. Running with VLF inactive
should be done only when you need to stop VLF to make changes to it.

Inactive class UNIXMAP If the UNIXMAP class is inactive, requests for UID-to-user-ID mapping
Active VLF and GID-to-group-name mapping must search the entire RACF
database when the UID or GID specified is not found in VLF. Running in
this state degrades performance severely. The inactive state for the
UNIXMAP class is provided as a migration aid. After migration is
complete, you should never need to run with the UNIXMAP class
inactive.

Inactive class UNIXMAP Running with both VLF inactive and the UNIXMAP class inactive causes
Inactive VLF requests for UID-to-user-ID mapping and GID-to-group-name mapping
to default to searching the RACF database on each request. Running in
this state significantly degrades performance of these functions. It could
also affect other systems in a complex sharing the RACF database
because of the increased I/O to the database. It is recommended that
you never run in this state.

3.4.1 VLF PARMLIB definitions

It is recommended that both the UNIXMAP class and VLF remain active, and that the VLF
classes IRRUMAP and IRRGMAP should be defined to VLF by updating the COFVLFxx
member of SYS1.PARMLIB to include the following:

CLASS NAME (IRRGMAP) /* GMAP table for z/0S UNIX System Services */
EMAJ (GMAP) /* Major name = GMAP */
CLASS NAME (IRRUMAP) /* UMAP table for z/0S UNIX System Services */
EMAJ (UMAP) /* Major name = UMAP */

You have the option to cache additional z/OS UNIX security information in VLF. This
capability allows RACF to avoid accessing the RACF database when called to create a
security environment for z/OS UNIX users. To use the cached User Security Packet (USP),
the IRRSMAP class, shown in Figure 3-13 on page 93, must be defined to VLF by updating
the COFVLFxx member of SYS1.PARMLIB to include the following:

CLASS NAME (IRRSMAP) /* SMAP table for z/0S UNIX System Services */
EMAJ (SMAP) /* Major name = SMAP */

Note: Do not confuse the VLF classes with RACF general resource classes. They are
totally unrelated.

3.4.2 Populating and activating the UNIXMAP class

94

The UNIXMAP class is used for UID and GID lookups. Run the RACF database unload utility
(IRRDBUO0O) against the RACF database having OMVS segments to unload all of the profiles
in the database which produces a file containing RDEFINE and PERMIT commands that will
be used to populate the UNIXMAP class.

Note: Make sure that you issue a setr 1ist command and look for: ADDCREATOR IS
NOT IN EFFECT. If ADDCREATOR IS IN EFFECT, then issue the command SETR
NOADDCREATOR.

UNIX System Services z/OS Version 1 Release 7 Implementation

When you run the RACF commands, you may see messages ICH408| and ICH10102lI,
indicating that some profiles are already defined to the UNIXMAP class. This occurs if a UID
maps to more than one user ID or if a GID maps to more than one group.

You must activate the UNIXMAP class to cause it to be used, as follows:
SETROPTS CLASSACT (UNIXMAP)

z/OS UNIX can be active while the initial population takes place. From this point, RACF
automatically keeps the UNIXMAP profiles synchronized with the user and group profiles.

UNIXMAP class profiles to map UIDs and GIDs

For each UID that is defined in the OMVS segment of a USER profile, a profile named Uuid in
the UNIXMAP class is automatically created. The access list of the Uuid profile contains all
user IDs that have been assigned this UID.

For each GID that is defined in the OMVS segment of a GROUP profile, a general resource
profile named Ggid in the UNIXMAP class is automatically created. The access list of the
Ggid profile contains all groups that have been assigned this GID.

These mapping profiles are used to provide a cross reference to USER and GROUP profiles.
They provide RACF with a performance-sensitive method of returning information for a given
UID or GID when requested by z/OS UNIX or application programs.

Changing UIDs and GIDs

RACF automatically maintains these mapping profiles when UIDs and GIDs are added,
changed, or deleted. The UNIXMAP class does not have to be active for this to happen.
RACF does this by modifying UNIXMAP class profiles appropriately when ADDUSER,
ALTUSER, DELUSER, ADDGROUP, ALTGROUP, or DELGROUP commands are issued.
When RACF creates UNIXMAP profiles as a result of an ADDUSER, ALTUSER,
ADDGROUP, or ALTGROUP command, the user ID of the command issuer becomes the
owner of the UNIXMAP profile.

For example, if the following command is issued:
ADDUSER ANTOFF OMVS(UID(340))

RACF creates a UNIXMAP profile named U340 with ANTOFF on the access list. If the
following command is subsequently issued:

ALTUSER ANTOFF OMVS(UID(341))

RACF deletes the U340 profile and creates a U341 profile with ANTOFF on the access list.

Problems with profiles

In general, you should not alter these profiles. However, it is possible that they might get
inadvertently deleted, or damaged by database corruption. If a profile is deleted, or if the user
is not on its access list, RACF will not be able to retrieve information for the UID or GID that
the profile represented. RACF will be unable to locate the mapping profile and will send z/OS
UNIX a return code indicating that the UID or GID is not known.

If this happens, a RACF administrator needs to repair the damage. First, see if the user name
associated with the UID or the group name associated with the GID can be determined from a
message displayed by RACF. For example, suppose you received an error message
associated with user ANTOFF. You should display the UID associated with the user profile for
ANTOFF by entering:

LU ANTOFF OMVS NORACF

Chapter 3. Establish security for zOS UNIX 95

If, for example, LU displays a UID of 340, you would then enter:

RDEF UNIXMAP U340 UACC(NONE)
PE U340 CL(UNIXMAP) ID(ANTOFF) ACCESS(NONE)

If you are unable to determine the user name or group name from a RACF message, look at
the output from the database unload utility (IRRDBUOO) to find the user ID or group
associated with a given UID or GID. The mapping profiles should then be added, changed, or
deleted as appropriate to be consistent.

3.5 Application identity mapping

This section discusses the application identity mapping (AIM) function, and how to migrate
RACF user IDs. Application identity mapping provides an improved method for associating
identities defined by the following:

» z/OS UNIX
» Novell Directory Services for OS/390
» Lotus Notes® for z/OS applications to RACF user IDs

The IRRIRAOQO utility migrates the UNIXMAP, NOTELINK, and NDSLINK mapping profiles to
alias entries in four stages (from 0 to 3). Updates to the ADDUSER and ALTUSER
commands prevent you from associating application user ID entities for Lotus Notes for
0S390 and Novell Directory Services for OS/390 with more than one RACF user ID.

AIM requires the following z/OS UNIX functions:

» Shared UID prevention requires at least AIM stage 2.

» Automatic UID and GID assignment requires at least stage 2.
» Removal of VLF and UNIXMAP requires AIM stage 3.

AIM in its final stage, stage 3, is an alternative to the use of mapping profiles to associate
RACF user and group names with z/OS UNIX, Lotus Notes, and Novell Directory Services
identifiers. For these associations, the IRRIRAQOQ utility converts the database mapping profile
information into an alias index, which uses less space. This conversion is accomplished
through a series of stage transitions from an initial stage 0 to the completed conversion in
stage 3. It is important to verify that your applications relying on the alias information continue
to execute properly through the interim stages. Changes made to RACF user and group
commands and callable services to support the alias indexes are intended to be transparent.
However, you need to modify any application code that references or manipulates the
mapping profiles directly to use the standard interfaces.

3.5.1 RACF IRRIRAQO utility

The conversion utility, IRRIRAOO (the Internal Reorganization of Aliases utility) can process
an existing RACF database in four stages controlled by the installation and lists the current
stage of its input RACF database. The utility updates all active RACF data sets, including
active backup data sets; all data sets making up a RACF database must be at the same
stage.

The IRRIRAOQO utility converts a RACF database created before 0S/390 V2R10 to a database
that supports the new alias identity mapping function. The utility runs only against an active
primary and backup database and it serializes against RACF resources to prevent disruptive
competing updates. You can run the utility while the database is shared between systems.
The sysplex Coupling Facility is updated as needed.

96 UNIX System Services z/OS Version 1 Release 7 Implementation

Important:

» Before advancing the stage of your database, make a copy of the database for
recovery purposes.

» If you are sharing a database with a lower level system, review “Using Application
Identity Mapping” in zZOS Security Server RACF System Programmer's Guide,
SA22-7681 before proceeding with the conversion.

The conversion of an existing RACF database can take place in the following four stages:

Stage 0 The database does not have an alias index and the RACF database manager
does not attempt to use or maintain the alias index. It continues to use the
mapping profiles. Any database created earlier than OS/390 Release 10 exists in
stage 0 automatically until you convert it with IRRIRAQO.

Stage 1 In stage 1, database contains the existing mapping profiles and the new alias
index. RACF uses VLF and the mapping profiles to locate a base USER or
GROUP profile name that has been given another product’s identity information.
The RACF database manager maintains an alias index but does not use it to
locate user or group names. RACF user commands (AU/ALU/DU) and GROUP
commands (AG/ALG/DG) maintain both the mapping profiles and the alias index
entries during addition, modification, or deletion of USER and GROUP profiles.

Note: Before entering this stage, run IRRMINOO PARM=UPDATE and IPL the
system if it was not done during previous migration steps.

Stage 2 In stage 2, RACF maintains both alias index entries and mapping profiles. The
RACF database manager can use the alias index to locate user and group
names. At this stage, the identity mapping callable services look up application
IDs in an alias index to retrieve corresponding RACF user or group names. If the
entry is not found in the index, RACF searches through VLF, mapping IRRIRA0O
utility profiles, or base profiles depending on the alias type and active classes.
You must resolve any problems before continuing to stage 3.

Stage 3 In stage 3, RACF uses only alias index entries, not mapping profiles, for UID,
GID, SNAME, and UNAME associations. Commands such as ADDUSER no
longer maintain the old mapping profiles. Entries are not placed in VLF, which is
no longer used to locate profiles. You can remove the IRRUMAP and IRRGMAP
VLF classes from the COFVLFxx member of SYS1.PARMLIB. You can also
deactivate the RACF classes UNIXMAP, NOTELINK, and NDSLINK.

Attention: Before advancing to stage 3

» You can advance to stage 3 after successfully operating in stage 2. Before entering
stage 3, check the LOGREC entries and correct any errors that might have occurred
when the callable services searched for alias index entries during stage 2.

» You should enter stage 3 only when all sharing systems have the OS/390 V2R10
Security Server or later installed. If you are sharing a RACF database with a system
that is at a lower level, you might receive unpredictable results.

Table 3-2 gives a summary of the processing done for each stage and the processing that can
be done at each level.

Chapter 3. Establish security for zOS UNIX 97

Table 3-2 IRRIRAQO stage summary

Stage | RACF Manager Commands Callable Services

0 Does not maintain alias index | Maintains VLF and mapping | Identity search order:
Purges VLF profiles 1. VLF
Does not allow alias index 2. Mapping profile or
entry locates database search

1 Maintains alias index Maintains VLF and mapping
Purges VLF profiles
Does not allow alias index
entry locates

2 Maintains alias index Maintains VLF and mapping | Identity search order:
Purges VLF profiles 1. Alias index entry locate
Allows alias index entry 2. VLF
locates 3. Mapping profile or

database search

3 Maintains alias index Does not maintain VLF and Identity search order:
Allows alias index entry mapping profiles 1. Alias index entry locate
locates

Notes:

1. Mapping profiles are used if the appropriate class is active (for example, UNIXMAP,
NOTELINK, NDSLINK). If UNIXMAP is not active, RACF searches through all the user
and group profiles in the database with an OMVS segment until a match is found for the
GID or UID.

2. VLF is applicable only for an OMVS UID or GID. The IRRUMAP or IRRGMAP class
must be defined on COFVLFxx member in SYS1.PARMLIB.

3.5.2 AIM conversion considerations

If you create a new RACF database in OS/390 V2R10 or later, this database is automatically
set to stage 3.

The IRRIRAOQO utility does not provide RACF database diagnostic information. If you suspect
a RACF database error, you should start your problem determination by running the
IRRUT200 utility and requesting the INDEX and MAP ALL functions. For details, see “RACF
Database Verification Utility Program (IRRUT200)” in z/OS Security Server RACF System
Programmer’s Guide, SA22-7681.

Note: To enter stage 3, all systems sharing the RACF database must be at RACF V2R10
or higher.

This utility produces AIM for RACF databases created before 0S/390 V2R10. You do not
need to run the utility against databases created with IRRMINOO PARM=NEW for OS/390
V2R10 or later because they are already initialized for the final stage of application identity

mapping.

IRRIRAQO processing

IRRIRAOQO opens the master primary RACF data set and, if active, the master backup RACF
data set. Access UPDATE to each data set is required to allow the data set to be opened.
IRRIRAQOQ obtains serialization to prevent activities such as RVARY and SETROPTS

98 UNIX System Services z/OS Version 1 Release 7 Implementation

commands from being processed while the utility is running. Processing of RACF commands
that add, alter, and delete user and group profiles might also be delayed.

Note: You should avoid RACF administration while the utility is running. We also
recommend that when you plan for the migration using our installation procedures, plan to
do the changes at a quiet time or during a scheduled outage.

All primary RACF data sets must be active to allow the utility to complete successfully.

» If the primary RACF data sets are active but the backup data sets are inactive, the utility
updates only the primary data sets. A message is issued to indicate that the backup
database was not changed.

» If some backup data sets are active and some are inactive, an error message is issued
and processing ends without updating the primary database.

IRRIRAOQO runs faster when there is minimal activity on the system. For a database with a
large number of mapping profiles, the utility converts from stage 0 to stage 1 in about half the
time if you set the backup database inactive and run IRRIRAOQO against the primary database
only. You can use IRRUT200 or IRRUT400 to copy the primary database to the backup
database after the utility completes successfully.

IRRIRAOQO does not propagate the new alias index entries or the deleted mapping profiles to
other databases with RRSF. You need to run the utility for each database when that system is
ready to enter a new stage. RACF databases do not need to be at the same stage to be part
of the same RRSF network unless specific code is used to manipulate mapping class profiles
using RACROUTE or ICHEINTY. Command propagation works correctly between systems
whose RACF databases are at different stages.

Important: If RACF is enabled for sysplex communication, whenever you need to run
IRRIRAQO against a database that is active on a system that is a member of the RACF
data sharing group, always run the utility from a system in the group. If you do not, you
might damage your RACF database, or receive unpredictable results from the utility.

Input for IRRIRA00

In Figure 3-14 on page 99, IRRIRA00 converts an existing RACF database from stage 1 to
stage 2 for the AIM function.

//AIMSTAGE JOB
//STEP EXEC PGM=IRRIRAQO,PARM=STAGE(2)
//SYSPRINT DD SYSOUT=A

Figure 3-14 Sample JCL for IRRIRAQO utility

IRRIRAOQO expects the following parameter on the JCL EXEC statement:
PARM=STAGE(n), with n=1,2,3 to specify the desired level of the system.

The utility does the following:
1. Checks the current level of the system to be sure it is at the n-1 level.

2. Performs the necessary actions to enable the specified state n. If no parameter is
specified, the current stage is listed.

Chapter 3. Establish security for z0S UNIX 99

Output from IRRIRA00

A return code greater than 4 indicates that the stage conversion did not complete
successfully. If appropriate, correct the errors indicated by the messages and run the utility
again. IRRIRAOQO issues no message when the return code is x’14’ (20 decimal) because
SYSPRINT cannot be opened to write the message. In this case, you should verify that the
SYSPRINT DD statement is correct and that the utility can access the specified file.

3.5.3 Recovering from errors with AIM

With application identity mapping enabled at stage 3, RACF uses an alias index rather than
mapping profiles to associate users and groups with z/OS UNIX, Lotus Notes, and Novell
Directory Service identities. It is possible that an unexpected error could cause an association
mismatch that you can identify by comparing IRRUT200 alias index output with profile
information returned from LISTUSER, LISTGRP, or DBUNLOAD. This section suggests
methods to correct such inconsistencies.

At stages below application identity mapping stage 3, RACF maintains mapping profiles and
functionality to ensure mapping compatibility with systems running RACF at the OS/390
V2R10 level or below that share a database with higher-level systems. You should use
program control to be sure that USER and GROUP commands can only be issued from
systems running RACF on OS/390 V2R 10 or higher. After all systems sharing the database
are migrated OS/390 V2R 10 or higher, run IRRIRA0O to advance the database to stage 3,
thereby reducing the likelihood of mapping errors.

Mapping profile exists

If your database is at application identity mapping stage 3, no generic profiles in class
UNIXMAP, NOTELINK, or NDSLINK should exist. If you find one, you can ignore it just as
RACF does, or you can delete it using RDELETE. For example:

RDELETE UNIXMAP Ul

If the mapping profile contains lowercase letters, you cannot specify them on the RDELETE
command. You must use BLKUPD or RACROUTE to delete the profile.

Missing alias index entry

If your database is at stage 0, you should not expect to see any alias index entries. If your
database is at a higher stage and you do not find an alias index entry corresponding to a
specific UID, GID, SNAME, or UNAME, you can regenerate the entry by altering the user or
group profile with the desired entry. For example:

ALTUSER YOURID OMVS(UID(1))

User or group associated with an alias index entry does not exist

If the profile associated with and alias index entry does not exist, you can remove the entry by
temporarily adding the referenced profile with the indicated alias, then deleting the profile. For
example:

ADDUSER YOURID OMVS (UID(1))
DELUSER YOURID

Profile and alias index mismatch

If an alias index entry references the incorrect user or group, you can correct the index by
altering the incorrect profile that references the given alias entry, altering it again to reference
another alias entry, and finally altering the desired profile to reference the given alias entry.

100 UNIX System Services z/OS Version 1 Release 7 Implementation

For example, if the alias index entry for UID 1 references MYID rather than the desired

YOURID:

ALTUSER MYID OMVS(UID(1))
ALTUSER MYID OMVS(UID(2))
ALTUSER YOURID OMVS(UID(1))

3.6 RACF utilities and IRRIRA0O

The following RACF utilities are useful before running the IRRIRAOO utility and for the
management of UIDs and GIDs in your z/OS UNIX environment. For the conversion to AIM,
run these utilities in the order shown before running the IRRIRAQO utility, for the following

reasons:

» IRRDBUOO to download the RACF database to a flat file.
» RACFICE to create a report on UIDs and GIDs to determine the number of shared UIDs or

GIDS.

» IRRUT400 to create a backup copy of the RACF database.

» ITTUT200 to obtain statistics on UIDs and GIDs and the number of UNIXMAP entries for
reference purposes for the migration to AIM.

A description of these utilities follows:
IRRDBUO0 The RACF database unload utility unloads the RACF database to a sequential

RACFICE

IRRUT400

IRRUT200

file. For information on how to use IRRDBUOQO, see z/OS Security Server RACF
Macros and Interfaces, SA22-7682 and z/OS Security Server RACF Security
Administrator's Guide, SA22-7683.

The RACFICE reporting tool allows an installation to create tailored RACF
reports without requiring a relational database management product, and
provides an alternative to the RACF report writer. It makes use of the
DFSORT™ ICETOOL reporting facility. RACF makes several ICETOOL-based
reports available in SYS1.SAMPLIB. The RACJCL member of SYS1.SAMPLIB
provides sample JCL to allocate a report data set and add the RACFICE
reports in IEBUPDTE format. The RACFICE member provides the
IEBUPDTE-format ICETOOL and DFSORT control statements that implement
the RACFICE reports. This utility reports GIDS and UIDs from member IRRICE
of SYS1.SAMPLIB to obtain information about the number of shared
GIDs/UIDs. For a complete description of the RACFICE reporting tool, see
0S/390 Security Server 1999 Updates: Installation Guide, SG24-5629.

IRRUT400 copies a RACF database to a larger or smaller database, provided
there is enough space for the copy. IRRUT400 also can redistribute data from
RACF databases. For example, IRRUT400 can split a single data set in the
RACF database into multiple data sets, merge multiple data sets in the RACF
database (previously split) into fewer data sets, or rearrange RACF profiles
across the same number of input and output RACF data sets. Though the utility
allows a maximum of 255 input data sets and 255 output data sets, MVS allows
RACF to have up to 90 data sets in the primary database and up to 90
corresponding data sets in the backup database.

IRRUT200 is a RACF utility program that you can use to identify
inconsistencies in the internal organization of each data set comprising a RACF
database and to make an exact copy of a RACF data set. You can also use it to
monitor the usable space in a data set.

Chapter 3. Establish security for z0S UNIX 101

IRRUT200 can be used to obtain statistics on UID/GIDs and the number of
UNIXMAP, NOTELINK and NDSLINK for reference purposes before and after
the migration to an AIM converted RACF database.

3.7 Defining and managing z/OS UNIX users and groups

With z/OS UNIX, a security product is required for the management of users and groups. The
following considerations for the security definitions when using RACF to manage z/OS UNIX
group identifiers (GIDs) and z/OS UNIX user identifiers (UIDs) include:

User validation

File access checking
Privileged user checking
User limit checking

v

vYyy

z/OS UNIX users can be defined using RACF commands. When a job starts or a user logs
on, the user ID and password are verified by RACF. When an address space requests a z/OS
UNIX function for the first time, RACF does the following:

» Verifies that the user is defined as a z/OS UNIX user.
» Verifies that the user's current connect group is defined as a z/OS UNIX group.
» Initializes the control blocks needed for subsequent security checks.

The user’s security environment for making access decisions is shown in Figure 3-15 on
page 102.

» The accessor environment element (ACEE) is a RACF control block that contains a
description of the current user's security environment, including user ID, current connect
group, user attributes, and group authorities. An ACEE is constructed during user
identification and verification.

» The effective UID and effective GID (user security packet (USP)) of the process is used in
determining access decisions. The only exception is that if file access is being tested,
rather than requested, the real UID and GID are used instead of the effective UID and
GID. The real and effective IDs are generally the same for a process, but if a setuid or
setgid program is executed, they can be different.

» The FSP packet, consisting of UID, GID and permission bits (base and extended entries).

User Security Packet (USP) FP
| n =
BCEE effective UID ownlns%UID

77

effective GID owning GID
999 100

SQupplementa Groups Permission bits
100 200 300

Figure 3-15 User’s security environment for access checking

z/OS UNIX users are TSO/E user IDs with a RACF segment called OMVS defined for z/OS
UNIX use. All users that want to use z/OS UNIX services must be defined as z/OS UNIX
users. Similar to users in a UNIX system, z/OS UNIX users are identified by a UID (user
identification). The UID has a numerical value.

102 UNIX System Services z/OS Version 1 Release 7 Implementation

There are two types of users:

» A user (regular user)
— ldentified by a non-zero UID

» A superuser (an authorized or privileged user) can be any of the following:
— A z/OS UNIX user with a UID=0

— A started procedure with a trusted or privileged attribute in the RACF started
procedures table

SECADM PROGH1 PROG2
GID=10 GID=25 GID=35

JANE GREEN
UID=35 UiD=40

BLACK HARRY SMITH
UID=0 uUlD=0 UlD=0

Superusers

Figure 3-16 Regular users and superusers

The concept of superuser comes from other UNIX platforms. It is also referred to as root
authority.

3.7.1 Superuser authority

An installation defines certain systems programmers, administrators and started task user
IDs as superusers. These users can:

Change the contents of any file
Install products

Manage processes

Perform administrative activities

vVvyyy

When not doing activities that require superuser authority, that person may switch from
superuser status to an ordinary user status, which permits access to their own files and
certain files to which they have access, according to permission bits.

A UID of 0 is used to define a z/OS UNIX as a superuser. It is good security practice to seek
to minimize the assignment of superuser authority to personal user IDs and even to started
task user IDs in your installation. You can accomplish this by setting z/OS UNIX user limits
above the installation defaults in OMVS segments, and by managing superuser privileges
through profiles in FACILITY and UNIXPRIV RACF classes.

Chapter 3. Establish security for z0S UNIX 103

We suggest that you have a policy for assigning superuser authority, privileges, and switching
from a superuser to an ordinary user status.

3.7.2 Authentication and authorization of users to z/0S UNIX

104

RACF provides security for z/OS UNIX by authenticating a user and verifying that a user or
program can access a process or file. It authenticates the users through user IDs and
passwords when they log on to a TSO/E session or when they start a job.

Types of users requiring a RACF user profile and an OMVS segment in the user profile are as
follows:

» TSO logon users who will use the z/OS UNIX shell using the OMVS command
» Remote users who will access the z/OS UNIX shell using rlogin or telnet

» Programs that use z/OS UNIX services

» Daemons

» Started procedures associated with z/OS UNIX having protected user IDs

The users must be defined in the RACF database with a user profile, an OMVS segment, and
be defined to a RACF with a group profile, as shown in Figure 3-17 on page 107.

RACF user profile

The RACF user profile definition was expanded with a segment called OMVS for z/OS UNIX
support. All users and programs that need access to z/OS UNIX must have a RACF user
profile defined with an OMVS segment which has, as a minimum, a UID specified. A user
without a UID cannot access z/OS UNIX.

You can assign a user identifier (UID) to a RACF user by specifying a UID value in the OMVS
segment of his RACF user ID profile. When assigning a UID to a user, make sure that the
user’s default group has an assigned GID. A user with a UID and a default group with a GID
can use z/OS UNIX functions and access z/OS UNIX files based on permissions for the
assigned UID and GID values.

Although you can assign the same UID to multiple users, it is not recommended. If you assign
the same UID to multiple users, control at an individual user level is lost because the UID is
used in z/OS UNIX security checks. Users with the same UID assignment are treated as a
single user during z/OS UNIX security checks.

An OMVS segment in the user profile has nine fields. The first three fields are as follows:

uiD A number from 0 to 2147483647 that identifies an z/OS UNIX user. An z/OS
UNIX user must have a UID defined.

HOME The name of a directory in the file system. This directory is called the home
directory and becomes the current directory when the user accesses z/OS
UNIX. This field is optional.The home directory is the current directory when a
user invokes z/OS UNIX. During z/OS UNIX processing, this can be changed
temporarily by using the cd (change directory) shell command. The command
will not change the value in the RACF profile. The directory specified as home
directory in the RACF profile must exist (be pre-allocated) before a user can
invoke z/OS UNIX. If a home directory is not specified in RACF, the root (/)
directory will be used as default.

UNIX System Services z/OS Version 1 Release 7 Implementation

Attention: The recommended home directory for a user is /u followed by the
user ID; for example, /u/antoff would be the home directory for the user ID
ANTOFF. If a REXX exec or CLIST extracts the user ID with a &userid
variable, the value returned is in uppercase: ANTOFF. If the REXX exec or
CLIST appends the returned value to /u, the result is /Ju/ANTOFF. /u/antoff
and /u/ANTOFF are two different directories. You should consider this
behavior in using REXX execs, CLISTs, C programs, or programs using the
callable services where the functions return user IDs.

PROGRAM The name of a program. This is the program that will be started for the user
when the user begins a z/OS UNIX session. Usually this is the program name
for the z/OS UNIX shell. This field is optional.

The other six fields on the OMVS segment are:

CPUTIMEMAX Maximum CPU time (RLIMIT_CPU)
ASSIZEMAX Maximum address space size (RLIMIT_AS)
FILEPROCMAX Maximum number of files per process
PROCUSERMAX Maximum number of processes for this UID
THREADSMAX Maximum number of threads per process
MMAPAREAMAX Maximum memory map size

These options are discussed in 3.8.5, “Setting z/OS UNIX resource limits for users” on
page 112.

RACF group profile

We call all RACF groups having an OMVS segment z/OS UNIX groups. The RACF group
profile also has an OMVS segment for z/OS UNIX groups. It contains only one field, as
follows:

GID A number from 0 to 2147483647 which identifies a z/OS UNIX group.

Authority checks for access to hierarchical file system files and directories use the GID of the
default group and up to 300 supplementary groups to make group access decisions. This
type of user does not require a home directory or a program specified in the OMVS segment.
The home directory and program are important for people's user IDs.

Although the same GID can be assigned to multiple RACF groups, it is not recommended. If
you assign the same GID to multiple groups, control at an individual group level is lost
because the GID is used in z/OS UNIX security checks. RACF groups that have the same
GID assignment are treated as a single group during z/OS UNIX security checks. You can
enforce identity uniqueness when assigning UNIX identifiers.

Important: If you use pax or tar commands to copy files with a UID or GID above
16777216, UIDs or GIDs may be incorrectly assigned to the restored files. Because they
are commonly used utilities, you should take this problem into consideration before
assigning UIDs or GIDs above 16777216.

3.7.3 Defining users and groups

RACF commands can be used to define the users and the groups using the RACF
ADDUSER (AU) and ADDGROUP (AG) commands. If a RACF defined user or group is

Chapter 3. Establish security for z0OS UNIX 105

already defined in the database, you can use the ALTUSER (ALU) and ALTGROUP (ALG)
commands to add an OMVS segment. Use the CONNECT (CO) command to connect a user
to a group, modify a user's connection to a group, or assign the group-related user attributes.

The example in Figure 3-17 on page 107 shows a user profile for TSO/E user ID SMITH
which is connected to two groups, PROG1 and PROG2. SMITH is defined as an z/OS UNIX
user because he has a UID specified. His home directory is /u/smith and he will get into the
shell when he issues the OMVS command because the name of the shell, /bin/sh is specified
as the program name.

Assighing OMVS segments
To add an OMVS segment to an existing user profile:
alu smith omvs(uid(0) home('/u/smith') program('/bin/sh'))

Important: To define or change information in the OMVS segment of a user profile,
including your own, you must have the RACF SPECIAL attribute or at least UPDATE
authority to the segment through field-level access checking. To allow authorization to the
entire OMVS segment of a user profile, the user would need authority to the
USER.OMVS.” profile in the FIELD class. Individual fields in the OMVS segment can be
defined such as USER.OMVS.UID. You can allow users to change their own HOME or
PROGRAM values by creating USER.OMVS.HOME and USER.OMVS.PROGRAM in the

FIELD class and permitting &RACUID to the profiles. See “Setting up field access level for
OMVS segment” on page 114 for more information.

Figure 3-17 on page 107 shows that group PROGH1 is also a z/OS UNIX group with a GID
value of 25. A user can be connected to more than one group, and the connect group PROG2
does not have to have an OMVS segment and therefore is not an z/OS UNIX group.
To add an OMVS segment for an existing group profile:

alg progl omvs(gid(25))

To add a group without an OMVS segment:
ag prog2

To connect a user to defined groups:

connect (smith) group(progl prog2)

To list a user or group and its OMVS segment:
Tu smith omvs
1g progl omvs

To remove the OMVS segment for a user or group:
alu smith noomvs

alg progl noomvs

Note: The commands Tu smith omvs and 1g progl omvs produce output that is unrelated
to the OMVS segment information (it may be massive) such as subgroups and connected
user IDs. If you wish to find the GID only for groups or the UID, HOME, and PROGRAM for
user IDs, use:

Tu smith omvs noracf Or 1g sysl omvs noracf

106 UNIX System Services z/OS Version 1 Release 7 Implementation

User profile

Userid [gﬁ:’: Connect Groups | TSO | DFP OMVS

uiD Home |Program

15 |/u/smith|/bin/sh

SMITH|SECADM|PROG1[PROG2

Group profile

=

Groupid éfj;'gr Connected Users omMmvs
GID

PROG1|PROGR|SMITHBROWN o5

Group profile (no OMVS segment)

Superior
Group

Groupid Connected Users

PROG2|PROGR| SMITH [WHITE

Figure 3-17 RACF-defined user with a user profile, OMVS segment, and group profile

Defining user ID considerations
To create a new RACF user ID having an OMVS segment:

AU ANTOFF DFLTGRP(CONT) OWNER(CONT) NAME(°THEQ ANTOFF®) PASS(*****) +
OMVS(UID(340) HOME(‘/u/antoff’) PROG(‘/bin/sh’))

Note: The command above is not complete. For example, the definition for a TSO
segment is missing. Your procedures for creating user IDs for various subsystems like
CICS and products like NetView surely will include the definitions of the other user profile
corresponding segments.

Same UID and GID assignment

If you assign users the same UID, you should warn them of the effects. For UID(0), the effects
are less significant, because superusers have access to all processes and files and because
most BPXPRMxx limits are not enforced against superusers.

Attention: If you want to enforce not to have multiple users have the same UID or GID,
see 3.10.2, “Shared UID and GID prevention” on page 119.

Creating a WORKATTR segment

When defining the users, you may wish to use the WORKATTR segment to specify the user’s
name and address. The name and address appear on the user's SYSOUT output. For
example, specifying the WORKATTR for user ID ANTOFF allows daemons to create
processes with the correct accounting and SYSOUT defaults. If user ANTOFF logs into the
system using a rlogin command from a workstation, a new process will be created for
ANTOFF using the attributes from his WORKATTR segment. You may add the WORKATTR
segment as follows:

Chapter 3. Establish security for z0OS UNIX 107

ALU ANTOFF WORKATTR(WAACCNT(12345678) WAADDRIL(ITSO)+ WAADDR2 (POUGHKEEPSIE)WAADDR3 (NEW
YORK) WAADDR4(12601) WABLDG(BLDG 8 SOUTH RD)+ WADEPT(ZOS) WANAME(*THEO ANTOFF’)
WAROOM(2C03))

3.7.4 Group access considerations

Although the same GID can be assigned to multiple RACF groups, it is not recommended. If
you assign the same GID to multiple groups, control at an individual group level is lost
because the GID is used in z/OS UNIX security checks. RACF groups that have the same
GID assignment are treated as a single group during z/OS UNIX security checks.

Default groups

The security administrator needs to prepare RACF to provide security and to define users to
RACF. For a user to be a z/OS UNIX user, the user's default group must be a z/OS UNIX

group.

You can change the default group of a user ID having an OMVS segment to a default group
without a GID by using the following command:

ALU SMITH DFLTGRP(PROG3)

Note: If PROG3 is a new group, make sure you have defined an OMVS segment.

User access with connect groups

To authorize a user to access z/OS UNIX and use z/OS UNIX resources (or define a z/OS
user) you have to make sure that two conditions are met:

» The default group of the user has an OMVS segment with Group Identifier GID(n).

» Atleast one of his connect groups is authorized to the UNIX file or directory the user wants
to access and has a GID.

When a GID is assigned to a group, all users connected to this group as their default group
who have a user identifier (UID) in their user profile can use z/OS UNIX functions and can
access z/OS UNIX files based on the GID and UID values assigned.

If only his default group has a GID and none of his connect groups have a GID, then the user
still can use z/OS UNIX with access based on the “other” permission bits. For the meaning of
“other” permission bits see chapter on page

RACEF list-of-groups checking

When RACF list-of-groups checking is active, a user can access z/OS UNIX resources if they
are permitted to any group his user ID is connected to and if the group has a GID. The
additional groups are called supplemental groups. To activate the RACF list-of-groups
checking, specify the GRPLIST keyword on the RACF SETROPTS command:

SETROPTS GRPLIST

3.7.5 Defining protected user IDs for STCs

A user ID becomes a protected user ID when it is given the NOPASSWORD and
NOOIDCARD attributes by an ADDUSER or ALTUSER command. The user IDs that are
defined for z/OS UNIX, z/OS UNIX daemons, and other important subsystems or started
tasks can be protected from being used for other purposes. These user IDs can also be
protected from being revoked after several unsuccessful attempts to enter a password. This

108 UNIX System Services z/OS Version 1 Release 7 Implementation

support protects these user IDs from being misused if the RACF administrator does not
change the password of the user ID from the default group to a more secure value.

Protected user IDs cannot be used to log on to the system, and are protected from being
revoked through incorrect password attempts. The following examples show a protected user
ID being defined for a CICS region, and an existing user ID used by JES being given the
PROTECTED attribute:

ADDUSER CICSO3 DFLTGRP(STCGROUP) OWNER(STCADMIN) NOPASSWORD
ALTUSER JES DFLTGRP (STCGROUP) OWNER(STCADMIN) NOPASSWORD

You can define protected user IDs for started procedures (STCs) associated with the
following z/OS UNIX programs:

» The z/OS UNIX kernel with a user ID OMVSKERN
» The initialization started procedure, BPXOINIT, with a user ID OMVSKERN

» Daemons that are critical to the availability of the z/OS UNIX system with user ID
OMVSKERN

This prevents these user IDs from being revoked through inadvertent or malicious incorrect
password attempts, or from being used for other purposes, such as logging on to the system.

3.8 User access to the z/OS UNIX shell

z/OS UNIX users can access the z/OS UNIX shell in several ways. To work interactively, the
shell user connects to the system in one of the following ways:

» Logs on to TSO/E and enters the OMVS TSO/E command, which invokes a shell. The
OMVS command provides a 3270 terminal interface to the shell.

» Issues the rlogin command, which invokes the shell. It provides an asynchronous
terminal interface to the shell, familiar to Unix users.

» Issues the telnet command, which invokes the shell. It provides an asynchronous
terminal interface to the shell, which is familiar to Unix users.

3.8.1 Define a user’s file system

Before a user is ready to log on to the z/OS UNIX shell using the TSO commands OMVS or
ISHELL, you need to accomplish a few very important steps:

» Allocate space for a user file system in the HFS or zFS file system by creating a data set
with a standard naming convention chosen by your installation. In these examples,
OMVS.USERID.HFS is being used, where OMVS is the HLQ of all the data set names.
This data set is the space for the file system that is defined with the keyword HOME in the
user's OMVS segment.

» The data sets that define the file systems should be RACF-protected by creating a profile
in the DATASET class and then permitting authorized users access to it, as follows:

AD OMVS.*** UACC (NONE)
PE OMVS.*** ID(SECADM) ACC(ALTER)

Access has been given to the SECADM group.

Note: For the following administration steps, the administrator must have superuser
authority to issue the commands. These commands are needed only for HFS file
systems.

Chapter 3. Establish security for z0S UNIX 109

» Issue the CHOWN command to make the user owner of his directory.
» Issue the CHGRP command to make his default group the owning group of his directory.
» Issue the CHMOD command to change the permission bits for the user’s directory to 700

Note: We should emphasize that the intended results from all three commands above
are entirely a matter of the security policy adopted by your organization. You are in no
way bound to use these commands in the suggested manner.

Define the user HFS and OMVS segment

See A.2, “JCL example to define a user OMVS segment” on page 512, to define a user HFS
and issue the commands to give the user ownership and access to the file system.

List the OMVS segment

Using the JCL example for user ID HARRY from the TSO command line and from the OMVS
command line in the shell is shown in Figure 3-18.

Tu harry omvs noracf
USER=HARRY

OMVS INFORMATION
UID= 0000001021

HOME= /u/harry

PROGRAM= /bin/sh
CPUTIMEMAX= NONE
ASSIZEMAX= NONE

FILEPROCMAX= NONE
PROCUSERMAX= NONE
THREADSMAX= NONE
MMAPAREAMAX= NONE

ANTOFF:/u/antoff: >1s -1a /u/harry
total 24
drwx------ 2 HARRY EMPL 8192 Jun 25 13:10 .

Figure 3-18 Issuing the lu command to list user HARRY and the Is command from the shell

3.8.2 Entering the shell from TSO/E

When a user invokes the shell from a TSO session, RACF is called to verify that the user is
defined as a z/OS UNIX user before the system initializes the shell, as shown in Figure 3-19.
This verification consists of checking that the user has an OMVS segment in his user ID
profile and that his default group has an OMVS profile.

110 UNIX System Services z/OS Version 1 Release 7 Implementation

TSO/E z/OS UNIX
shell
OMVS
cmd S A
| Tepap| A i
ACFNTAM E_ | Pseudo-TTY
5 Master Slave

Figure 3-19 TSO user logging on and accessing the z/OS UNIX shell

3.8.3 Entering the shell from riogin

When a user invokes the shell from rlogin, the rlogin user is authenticated to RACF by the
rlogin daemon (rlogind) before entering the shell. Figure 3-20 on page 112 shows an
overview of the two methods of logging in directly to the shell, as follows:

» With a remote login, if the inetd daemon is set up and active on the z/OS system, a
workstation user with rlogin client support can use the TCP/IP network to log in to the shell
without going through TSO/E.

— When a daemon creates a process for a user, RACF is called to verify that the
daemon’s user ID is properly defined before the system initializes the process.

— When a program requests a kernel service for the first time, RACF is called to verify
that z/OS UNIX users are running the program before the system provides the service.
The types of programs are:

* Application programs
e Started procedures

¢ Products that use kernel services, such as the Resource Measurement Facility
(RMF)

3.8.4 Entering the shell from telnet

The Telnet support comes with the z/OS CS. It also uses the inetd daemon, which must be
active and set up to recognize and receive the incoming Telnet requests.

Chapter 3. Establish security for z0S UNIX 111

A z/OS system provides asynchronous terminal support for the z/OS UNIX shell. This is
different from the 3270-terminal support provided by the TSO/E OMVS command.

rlogind
otelnetd

inetd —

shell

Y Y

ptypnnnn| ttypnnnn

\ 513 23 TCP/IP)

Figure 3-20 Users accessing the z/OS UNIX shell from rlogin and telnet

Remote connection differences

There are some differences between the asynchronous terminal support (direct shell login)
and the 3270-terminal support (OMVS command) from ISPF of TSO/E:

» You cannot switch to TSO/E. However, you can use the TSO shell command to run a
TSO/E command from your shell session.

» You cannot use the ISPF editor (this includes the oedit and TSO/E OEDIT commands,
which invoke ISPF edit).

3.8.5 Setting zZ/OS UNIX resource limits for users

You can control the amount of resources consumed by certain z/ OS UNIX users by setting
individual limits for these users. The resource limits for all z/OS UNIX users is specified in the
BPXPRMxx member of SYS1.PARMLIB. These limits apply to all users except those with
UID 0 (superuser authority). Rather than assigning superuser authority to application servers
and other users so they can exceed BPXPRMxx limits, you can individually set higher limits to
these users in their OMVS segment.

Setting user limits allows you to minimize the number of assignments of superuser authority
at your installation and reduces your security risk.

You can specify z/OS UNIX user limits by choosing options on the ADDUSER or ALTUSER
commands. The limits are stored in the OMVS segment of the user profile. The following
limits may be set in the OMVS user segment:

ASSIZEMAX Maximum address space size
CPUTIMEMAX Maximum CPU time

112 UNIX System Services z/OS Version 1 Release 7 Implementation

FILEPROCMAX Maximum number of files per process
MMAPAREAMAX Maximum memory map size
PROCUSERMAX Maximum number of processes per UID
THREADSMAX Maximum number of threads per process

The default values specified in the BPXPRMxx member and their ranges are shown in
Table 3-3.

Table 3-3 Parameters and their values in OMVS segments

Parameter Default value Range Unit
ASSIZEMAX 209,715,200 10M-2G byte
CPUTIMEMAX 1000 7-2,147,483,647 sec
FILEPROCMAX 2,000 3-65535 number
MMAPAREAMAX 40,960 1-16,777,216 page
PROCUSERMAX 25 3-32,767 number
THREADSMAX 200 0-100000 number

Once you have set individual user limits for users who require higher resource limits, you
should consider removing their superuser authority. You should also reevaluate your
installation’s BPXPRM xx limits and consider reducing these limits.

After you set individual user limits for users who require higher resource limits, you should
consider removing their superuser authority, if they have any. You should also reevaluate
your installation’s BPXPRMxx limits and consider reducing these limits. See 2.3.6, “Step 6 -
Customize BPXPRMxx” on page 58 for more information.

3.8.6 Support for lowercase user IDs

Supporting case-sensitive user IDs: XPG4 compliance requires the operating system to
support case-sensitive user IDs that can optionally contain periods, dashes, and
underscores. To provide this capability, the installation can define a user ID alias table.

This user ID alias support allows an XPG4-compliant program to work correctly with a user ID
that exploits user ID naming conventions not normally tolerated on z/OS.

However, this support stops at the boundary between XPG4-defined functions and the rest of
z/OS.

All security checks done by traditional z/OS services are based on the z/OS user ID. You can
only log on to TSO/E using a valid z/OS user ID.

Recommendation: There are many ways in which use of a non-standard user ID conflicts
with the running of normal business workloads. It is therefore strongly recommended that
installations not define a user ID alias table. If you still believe that it is in your installation’s
best interest to exploit case-sensitive user IDs, see “Set up a user ID alias table.” on

page 177.

Chapter 3. Establish security for z0OS UNIX 113

3.8.7 Setting up field access level for OMVS segment

To allow a user to see or change OMVS fields in a RACF user profile, you can set up
field-level access. You can authorize a user to specified fields in any profile or to specified
fields in the user’s own profile. To authorize users to the OMVS fields in their own profiles, use
the ISPF shell, or issue the commands shown in Figure 3-21.

Each profile defines one of the nine fields in the OMVS segment using the RACF RDEFINE
command. However, you would only do this if you have different access lists for each of the
profiles.

RDEFINE FIELD USER.OMVS.UID UACC(NONE)
RDEFINE FIELD USER.OMVS.HOME UACC(NONE)
RDEFINE FIELD USER.OMVS.PROGRAM UACC(NONE)
RDEFINE FIELD USER.OMVS.CPUTIME UACC(NONE)
RDEFINE FIELD USER.OMVS.ASSIZE UACC(NONE
RDEFINE FIELD USER.OMVS.FILEPROC UACC(NONE)
RDEFINE FIELD USER.OMVS.PROCUSER UACC(NONE)
RDEFINE FIELD USER.OMVS.THREADS UACC(NONE)
RDEFINE FIELD USER.OMVS.MMAPAREA UACC(NONE)

Figure 3-21 RACF commands to allow user access to change OMVS segment fields

For example, to control access to all fields in the OMVS segment of the user profiles, issue
the RDEFINE command and specify USER.OMVS.** as follows:

RDEFINE FIELD USER.OMVS.** UACC(NONE)
Next decide who should be permitted to the above profiles. Using a user ID specification of
&RACUID allows all users to look at their own fields.
READ READ access allows users to find their UID value.

UPDATE UPDATE access allows users to change their home directory in the HOME field or
the program invoked in the PROGRAM field.

PERMIT USER.OMVS.UID CLASS(FIELD) ID(&RACUID) ACCESS(READ)

PERMIT USER.OMVS.HOME CLASS(FIELD) ID(&RACUID) ACCESS(UPDATE)

PERMIT USER.OMVS.PROGRAM CLASS(FIELD) ID(&RACUID) ACCESS(UPDATE)
PERMIT USER.OMVS.UID CLASS(FIELD) ID(decentralized adm) ACCESS(UPDATE)
PERMIT USER.OMVS.** CLASS(FIELD) ID(decentralized adm) ACCESS(UPDATE)

If you have decentralized RACF administration groups, you may decide to allow such groups
to have UPDATE access to the UID field and possibly to the user limits fields.

Attention: A user with UPDATE access to profile USER.OMVS.UID can make any user ID
in his scope of GROUP-SPECIAL authority a superuser by changing his UID to O.

To activate the FIELD class with the RACF SETROPTS command:
SETROPTS CLASSACT(FIELD) RACLIST(FIELD)

3.9 UNIXPRIV class enhancements

With z/OS V1R3 and z/OS V1R4, new resource names were added in the UNIXPRIV class in
support of the changes made to z/OS UNIX in those releases. These changes are discussed
in some of the following sections. The new resource names are shown in Figure 3-22.

114 UNIX System Services z/OS Version 1 Release 7 Implementation

UNIXPRIV RESOURCE NAMES - ACCESS

SHARED. IDS - READ

RESTRICTED.FILESYS.ACCESS - NONE
SUPERUSER.FILESYS.ACLOVERRIDE - NONE
SUPERUSER.FILESYS.CHANGEPERMS - READ

Figure 3-22 New resource names in the UNIXPRIV class with zZOS V1R3 and V1R4

3.10 Shared UIDs and GIDs

Enhancements in z/OS V1R4 have been made so that UIDs and GIDs can be assigned by
RACF. Two new functions are supported:

» UIDs and GIDs can be automatically assigned to new users

— UIDs and GIDs can be assigned automatically by RACF to new users, making it easier
to manage the process of assigning UIDs and GIDs to users. (Previously, this was a
manual process and guaranteed the uniqueness of the UID and GID for every user.)

» UlIDs and GIDs can either be prevented from being shared, or allowed to be shared.

— Controlling the use of shared UIDs and GIDs is a prerequisite to using automatic UID
and GID assignment.

— By default, RACF does not prohibit the sharing of UIDs and GIDs among any number
of users or groups. However, you can control enforcement of unique UIDs and GIDs by
defining a new profile called SHARED.IDS in the UNIXPRIV class.

Attention: Application identity mapping (AIM) to at least stage 2 must be
implemented if you wish to define and use the profile SHARED.IDS.

3.10.1 Automatic UID and GID assignment

Automatic UID and GID assignment is implemented by using a new AUTOUID keyword with
the ADDUSER and ALTUSER commands. An unused UID will be assigned to the new or
modified user. Using the AUTOGID keyword on ADDGROUP and ALTGROUP commands, a
GID will be automatically assigned to the new or modified group.

The use of automatic UID and GID assignment requires the following:

» AIM stage 2 or 3; otherwise, the automatic assignment attempt fails and an IRR52182I
message is issued:

IRR52182I Automatic UID assignment requires application identity mapping to be
implemented

Chapter 3. Establish security for zOS UNIX 115

» A SHARED.IDS profile in the RACF UNIXPRIV class; if not:
IRR52183I Use of automatic [UID|GID] assignment requires SHARED.IDS to be implemented.
» A BPX.NEXT.USER profile in the RACF FACILITY class; if not:

IRR52179IThe BPX.NEXT.USER profile must be defined before you can use automatic
[UID|GID] assignment.

» Use of the AUTOUID or AUTOGID keyword

SHARED.IDS profile

The SHARED.IDS profile in the UNIXPRIV class, shown in Figure 3-22 on page 115, acts as
a system-wide switch to prevent assignment of an ID that is already in use.

If the SHARED.IDS profile in the RACF UNIXPRIV class is not defined, the attempt to use
AUTOUID or AUTOGID fails and an IRR52183| message is issued:

IRR52183I Use of automatic UID assignment requires SHARED.IDS to be implemented

The SHARED.IDS must be defined as follows:
RDEFINE UNIXPRIV SHARED.IDS UACC(NONE)

BPX.NEXT.USER facility class profile

A BPX.NEXT.USER RACF FACILITY class profile must be defined and RACLISTed for
automatic assignment to work. Otherwise, the attempt to do automatic assignment fails and
an IRR521791 message is issued:

IRR521791 The BPX.NEXT.USER profile must be defined before you can use automatic UID
assignment.

The definition of the BPX.NEXT.USER FACILITY in the FACILITY class, which must be
RACLISTed, has the following syntax:

RDEFINE FACILITY BPX.NEXT.USER APPLDATA(UID/GID)
SETROPTS RACLIST(FACILITY) REFRESH

The APPLDATA keyword consists of two qualifiers separated by a forward slash (/). The
qualifier on the left of the slash character specifies the starting UID value or range of UID
values.

The qualifier on the right of the slash character specifies the starting GID value or range of
GID values. Qualifiers can be null or specified as NOAUTO to prevent automatic assignment
of UIDs or GIDs, as shown in Figure 3-23 on page 117.

The starting value is the value RACF attempts to use in ID assignment, after determining that
the ID is not in use. If it is in use, the value is incremented until an appropriate value is found.

The maximum value valid in the APPLDATA specification is 2,147,483,647. If this value is
reached or a candidate UID or GID value has been exhausted for the specified range,
subsequent automatic ID assignment attempts fail and message IRR521811 is issued.

Note: Keep in mind that APPLDATA is verified at the time of use, not when it is defined. If
a syntax error is encountered when the auto assignment is used, the IRR521871 message
is issued and the attempt fails.

116 UNIX System Services z/OS Version 1 Release 7 Implementation

Automatic assignment example

In the following example, we have defined the APPLDATA for a range of values from 5 to
70000 for UIDs, and from 3 to 30000 for GIDs. USERA and USERB are added using the
automatic assignment of UID. The range of automatic UID assignment starts with 5, so
USERA is assigned to UID(5), which was free. UID(6) and UID(7) were already assigned
before we started our examples. The first following free UID is 8. USERB is assigned to
uiD(8).

RDEFINE FACILITY BPX.NEXT.USER APPLDATA('5-70000/3-30000")

ALTUSER USERA OMVS (AUTOUID)
IRR521771 User USERA was assigned an OMVS UID value of 5.

ALTUSER USERB OMVS (AUTOUID)
IRR521771 User USERB was assigned an OMVS UID value of 6.

RACF extracts the APPLDATA from the BPX.NEXT.USER and parses out the starting value.
It checks if it is already in use and if so, the value is incremented and checked again until an
unused value is found. Once a free value is found, it assigns the value to the user or group
and replaces the APPLDATA with the new starting value, which is the next potential value or
the end of the range.

In our example, RACF will start assigning from UID(7) in the next assignment. However, you
can change the APPLDATA and modify the starting value. The APPLDATA can be changed
using the following command:

RALTER FACILITY BPX.NEXT.USER APPLDATA('2000/500")

Note: Automatic assignment of UIDs and GIDs fails if you specify a list of users to be
defined with the same name, or if you specify the SHARED keyword. Also, AUTOUID or
AUTOGID is ignored if UID or GID is also specified.

APPLDATA examples
Figure 3-23 shows examples of correct and incorrect APPLDATA specifications.

Good data
1/0
1-50000/1-20000
NOAUTO/100000
/100000
10000-20000/NOAUTO
10000-20000/

Bad data
/
123B
2147483648 /* higher than max UID value */
555/1000-900

Figure 3-23 Examples of APPLDATA that can be specified

If you have an incorrect specification and attempt to use AUTOUID on an ADDUSER
command, the following message is issued:

IRR521871 Incorrect APPLDATA syntax for the BPX.NEXT.USER profile.

Chapter 3. Establish security for z0S UNIX 117

Automatic assignment with RACF panels
You may use the RACF panels to define the OMVS segment. Figure 3-24 indicates how to
use the automatic assignment by using the AUTOUID field.

RACF - CHANGE USER JANE
OMVS PARAMETERS

COMMAND ===>
Delete ALL OMYS information (NOOMVYS) Enter YES to DELETE

R OR —
Choose to CHANGE or DELETE, then press ENTER.

More: +

Specify new User Identifier (UID) 0 - 2147483647
Allow shared use of this UID (SHARED) Enter any character

—_ or --
Assign a unique UID (AUTOUID) _ Enter any character

-~ or --
Delete User Identifier (NOUID) Enter any character
Change Initial Path Name (HOME) Enter any character
Delete Initial Path Name (NOHOME) Enter any character
Change Program Path Name (PROGRAM) _ Enter any character
Delete Program Path Mame (NOPROGRAM) Enter any character
Specify CPU Time (CPUTIMEMAX) T - 2147483647
Delete CPU Time (NOCPUTIMEMAX) _ Enter any character
Specify Address Space Size (ASSIZEMAX) 10485760 -

2147483647
Enter any character

Delete Address Space Size (NOASSIZEMAX)

Figure 3-24 RACF panel to set OMVS parameters for automatic assignment

Automatic assignment in an RRSF configuration

In an RRSF configuration (see Figure 3-25 on page 119) you may wish to avoid UID and GID
duplications. This can be done by using non-overlapping APPLDATA ranges.

You may also wish to make RACF automatically suppress propagation of internal updates.
This can be done by specifying the ONLYAT keyword to manage the BPX.NEXT.USER
profile, as follows:

RDEFINE BPX.NEXT.USER APPLDATA('5000-10000/5000-10000"') ONLYAT(NODEA.MYID)
RDEFINE BPX.NEXT.USER APPLDATA('10001-20000/10001-20000") ONLYAT(NODEB.MYID)

RRSF automatic assignment considerations

RACF does two things to facilitate automatic ID assignment in an RRSF environment in order
to prevent different nodes from arriving at the same ID values independently for different
users and then propagating these updates on the network.

1. RACF suppresses propagation of its own internal updates to the BPX.NEXT.USER profile.
This prevents RACF from altering the BPX.NEXT.USER profile on other RRSF nodes
when you are using automatic direction of application updates for the FACILITY class.

2. RACEF alters the command image on the source node before propagating it out to other
RRSF nodes. RACF inserts the generated ID value into the command z/OS UNIX image
so (from the perspective of the target node) an explicit ID assignment is being requested.
This protects you when automatic command direction is in effect for USER and GROUP
profiles.

For example, if you issue the following command at NODEA, as shown in Figure 3-25:
ADDUSER ROGERS OMVS(AUTOUID)

118 UNIX System Services z/OS Version 1 Release 7 Implementation

RACF assigns a UID value of 5000 through BPX.NEXT.USER and the APPLDATA. The
command propagated out to NODEB is:

ADDUSER ROGERS OMVS(AUTOUID UID(5000))
The BPX.NEXT.USER profile on the target node is not used as a result of receiving an

update that involved automatic ID generation at the source node (when the ADDUSER
command runs on the target node, AUTOUID is ignored because UID is specified).

NODEB
RACF DB RACF DB
BPX.NEXT.USER| BPX.NEXT.USER|
5000-10000 10001-20000
/
5000{1 0000 10001-20000

Figure 3-25 Automatic assignment in an RRSF configuration

For more information about automatic assignment in an RRSF configuration, refer to zZ0S
V1R4.0 Security Server RACF Security Administrator’s Guide, SA22-7683.

3.10.2 Shared UID and GID prevention

In order to prevent several users from having the same UID number, you must use the RACF
SHARED.IDS profile introduced in the UNIXPRIV class with z/OS V1R4. This profile acts as a
system-wide switch to prevent assignment of a UID that is already in use.

To enable shared UID prevention, you must define the SHARED.IDS profile in the UNIXPRIV
class as follows:

RDEFINE UNIXPRIV SHARED.IDS UACC(NONE)
SETROPTS RACLIST(UNIXPRIV) REFRESH

Once the SHARED.IDS profile has been defined and the UNIXPRIV class refreshed, it will
not allow a UID to be assigned if the UID is already in use. The same is true for GIDs; it will
not allow a GID to be shared between different groups.

Shared UID examples
We created USER1 with UID(7). Then we tried to define USER2 with the same UID(7), but
received the following error message:

IRR521741 Incorrect UID 7. This value is already in use by USERL.

Chapter 3. Establish security for z0S UNIX 119

You will get the following error message if you try to specify more than one user in an
ADDUSER command request:

IRR521851 The same UID cannot be assigned to more than one user.

Existing shared UIDs and GIDs

The use of this new functionality does not affect preexisting shared UIDs; they will remain as
shared once you install the new support. If you want to eliminate sharing of the same UID,
you must clean them up separately. zZOS V1R4 provides a new IRRICE report to find the
shared GIDs. Shared UIDs were previously reported by the IRRICE report.

3.10.3 SHARED keyword to allow duplicate UID and GID

Even if the SHARED.IDS profile is defined, you may still require some UIDs to be shared and
others not to be shared. For example, you may require multiple superusers with a UID(0). It is
possible to do this using the new SHARED keyword in the OMVS segment of the ADDUSER,
ALTUSER, ADDGROUP, and ALTGROUP commands.

Assigning the same UID or GID

To allow an administrator to assign a non-unique UID or GID using the SHARED keyword,
you must grant that administrator at least READ access to SHARED.IDS profile, as follows:

PERMIT SHARED.IDS CLASS(UNIXPRIV) ID(ADMIN) ACCESS (READ)
SETROPTS RACLIST(UNIXPRIV) REFRESH

Once user ID ADMIN has at least READ access to the SHARED.IDS profile, ADMIN will be
able to assign the same UID or GID to multiple users, using the SHARED KEYWORD, as
follows:

ALTUSER (USERA USERB) OMVS(UID(7) SHARED)
AU KERNSTU OMVS(UID(0) SHARED)
AG (Gl G2 G3) OMVS(GID(9) SHARED)
If a user is not authorized for the SHARED keyword, and the following command is issued:

ALU ANTOFF OMVS(UID(0) SHARED)

the following message is returned:
IRR521751 You are not authorized to specify the SHARED keyword.

Note: To specify the SHARED operand, you must have the SPECIAL attribute or at least
READ authority to the SHARED.IDS profile in the UNIXPRIV class.

3.11 Protecting files in the file systems

The data administrator or the system programmer must manage the files in the hierarchically
organized data that the system and its users use. This overall structure of data is called the
hierarchical file system (HFS). It consists of the root file system and all the file systems that
are added to it whether it is an HFS files system or a zFS file system. For the security
administrator to control access to files and directories in the file systems, it is necessary to
understand the following controls that allow access:

» Permission bits that allow access to files and directories
» Change ownership of files and directories

» Change permission bit settings

120 UNIX System Services z/OS Version 1 Release 7 Implementation

» Obtain security information about the files and directories
» Controlling access to files with RACF

3.11.1 File and directory access

Access to files and directories in the file systems are controlled by permission bits that are
stored in the file security packet (FSP) associated with each file and directory. The files and
directories are protected by RACF security rules. You can use control access as follows:

» Permission bit settings
» Access control lists (ACLs) can also be used in conjunction with permission bits.

Note: ACLs support is introduced in z/OS UNIX beginning with z/OS V1R3.

File security packet (FSP)

The system provides security for files and directories by verifying that a z/ZOS UNIX user can
access a directory or file, and which would include every directory in the path to a file.

The FSP of every file and directory contains security information, which consists of:

UID and GID of the file

Permission bits

Setuid, setgid, and set-sticky bits

Audit options set by file owner

Audit options set by security auditor

ACLs, if they exist (see 3.14.3, “FSP and access control lists” on page 135)

vVvyYvyvyYYyy

The authorization checking for access to z/OS UNIX files and directories in a file system has
been done using the FSP. The FSP, shown in Figure 3-26 on page 122, is stored in the file
system as part of the attributes of a file or directory and is created when a file or directory is
created. If a security authorization is needed for a file or directory, the security packet is
passed to RACF for authorization checking.

Chapter 3. Establish security for z0S UNIX 121

File Mode

Group Other

Permission Bits
Access Permission for File Permission for Directory
Read Permission to read or print the | Permission to read, but not
(r) contents. search, the contents.
Write Permission to change, add to, | Permission to change, add, or
(W) or delete from the contents. delete directory entries.
Execute Permsrsr;]oigstigrztig Ef;eegl|]%rThIS Permission to search the
(X) P) directory.
executable files.

Figure 3-26 File security packet with permission bit explanation

File mode
The file mode consists of the following permission bits:

SetUID This bit only relates to executable files. If on, it causes the UID of the user
executing the file to be set to the file's UID.

SetGID This bit only relates to executable files. If on, it causes the GID of the user
executing the file to be set to the file's GID.

Sticky Bit This bit only relates to executable files. If on, it causes the file to be retained in
memory for performance reasons. The implementation of this varies between
platforms. In z/OS UNIX, it means programs are loaded from LPA (or LNKLST as
per normal MVS program search) instead of a HFS file. For a directory, the sticky
bit causes UNIX to permit files in a directory or subdirectories to be deleted or
renamed only by the owner of the file, or by the owner of the directory, or by a
superuser.

Note: For a description and how to use these bits as an administrator, see 3.12.5, “Setuid,
setgid, and sticky bits” on page 129.

Permission bits

Access checking compares the user's UID and GID to the ones stored in the FSP. You
control access to a file and directory that you own through its permission bits. The permission
bit settings for files and directories are set for the following types of users:

Owner The effective UID of the owner or creator of the file. The owner can be changed
by an authorized administrator or by the file owner.

Group Anyone who has the same GID as the owner or belongs to a supplemental group
GID of the owner.
Other This includes every user who has a UID or GID that is not an owner.

122 UNIX System Services z/OS Version 1 Release 7 Implementation

The access (read, write, or execute) that each z/OS UNIX has is shown in Figure 3-26 on
page 122.
The file mode permission bits have the following meaning:
r Read (r) access to both files and directories
w Write (w) access to both files and directories
X Execute (x) has a different meaning for files and directories, as follows:
—For an executable file, an access of x means that the user can execute the file.
—For a directory, an access of x means the user can search the directory.
Both read (r) and execute (x) are required in order to execute a shell script. In order to access
HFS files, a user needs the following:

» Search (x) permission to all the directories in the path name of files the user wants to
access.

» Write permission to directories where the user will be creating new files and directories.
» Read and/or write permission, as appropriate, to files for access.

» Execute permission for an executable file.

Note: In z/OS UNIX, these three permissions are not hierarchical. For example, a user
with write permission who does rot have read permission, can only write over existing data
or add data to a file, and cannot look at the contents of the file or print the file. Similarly,
write and read permission does not allow a user to execute a file or search a directory.

3.12 Creating and managing files and directories

When you create directories and files, you can control access to them. Whenever you want,
you can change the access permissions that are set when you first create a directory or file.

3.12.1 Setting the permission bits

When you first create a file or directory, the system sets the default read, write, and execute
(rwx) permissions. For the commands shown in Figure 3-27 on page 125, the permission
settings are changed by the umask. The default file creation mask (umask) is set by an
administrator in /etc/profile. If not modified by the administrator, the default is 022.

Setting the file creation mask (umask)

When a file is created, it is assigned initial access permissions. When a z/OS UNIX user or
program is creating a file, the final permission bits are set by the umask. Since a user or
program can set a umask for that process, the order in which the umask is used is as follows:

» If you want to control the permissions that a program can set when it creates a file or
directory, you can set the umask for that session or program with the umask command.

» The user can place a umask in a file named in the ENV environment variable in
$HOME/.profile, which points to a .setup file.

» The user can place a umask in the $HOME/.profile.
» If no umask is set by the user, the default umask from /etc/profile is used.

Chapter 3. Establish security for z0S UNIX 123

Using the umask

In this example, the default mask is used and is set to 022. When a file created and the
permission bits are set to 777, they are changed by the umask (022) to have permissions of
755. The effect of the umask is to turn off the group write and other write bits. So, a umask of
022 turns off the write bit if it is on in those two positions.

When you set the mask, you are setting limits on allowable permissions. You are implicitly
specifying which permissions are not to be set, even though the calling program may allow
those permissions. When a file or directory is created, the permissions set by the program are
adjusted by the umask value: The final permissions set are the program’s permissions minus
what the umask values restrict.

umask command

A user can change the default setting when a file is created with the umask shell command.
The values set by the umask command last for the length of the user's session, or the
command can be part of the user's login so that the user always has the same default
permissions. To use the umask command for a single session, enter:

umask mode

The mode is in either of the formats, symbolic (rwx) or octal values. The symbolic form
expresses what can be set, what is allowed, while octal values express what cannot be set,
what is disallowed. For example, both of the following commands set the same umask value.
The a= specifies owner, group, and other permissions.

umask a=rx
umask 222

Display the umask

If you just enter the umask command, you see the mode displayed in octal values, indicating
what cannot be set:

umask
0022 .

If you enter umask -S, you see the mode displayed in symbolic form, indicating what can be
set, as follows:

umask -S
U=rwX,J=rX,0=rx

The shell’s initial setting of the mask is 000, which means that read, write, and execute
permission can be set on for everyone. But the system-wide profiles provided with the
product set the mask to 022 in the umask directive of /etc/profile.

Default permissions set by the system

Figure 3-27 on page 125 shows the default permissions set by the system when the
commands are issued and the file is created. After the file is created, the default permissions
are set by the function or command that created the file. The permissions are then changed
by the umask processing and become the final permissions for the file.

124 UNIX System Services z/OS Version 1 Release 7 Implementation

<==> umask 022) Changes defaults for a user

Command Default Permissions Permissions after umask
mkdir TWX IWX YWX TWX r—-x r—-x
MKDIR rwx r—x r-x rwx r—-x r-—x

JCL, no PATHOPTS ——— ——— === —
OEDIT rwx ——— ——-— ITWX ——— ——-—
vi editor rTW— rw— I'w-— rw—- r—--— r—-
ed editor TW— rw— rw- rw— r—-— r—-—
Redirection (>) TW— IW— I'W-— rw— r-— r—-
cp output = input | output = input
OCOPY o S - __ ___ A
OPUT/OPUTX T e b A

Figure 3-27 Permission bit settings using the umask when creating files

3.12.2 Setting the UID and GID
By default, the system sets the UID and GID of the file when the file is created:
» The UID is set to the effective UID of the creating process.
» The GID is set to the GID of the owning directory.

Note: Beginning with z/OS V1R4,you can change the setting of the GID by using the
profile FILE.GROUPOWNER.SETGID in the UNIXPRIV class shown in Figure 3-22 on
page 115.

Using the FILE.GROUPOWNER.SETGID profile

When a new UNIX file is created on z/OS, by default, the owning GID is copied from the
parent directory, as shown in Figure 3-28 on page 126. The POSIX standard allows the
owning GID to be taken either from the parent directory in the FSP, or from the effective GID
of the creating process (the user security packet (USP). Also, see Figure 3-15 on page 102.

Chapter 3. Establish security for z0S UNIX 125

F3 UsP
owning UID effective UID
50 /77
MyDir owning GID efféctive GID
100, 999
Permission bits Qupplementd Groups
100 200 300
touch /u/jane/MyDir/MyFile FSP
owning UID
77
MyFile * owning GID
100
Permission bits

Figure 3-28 Creating or updating a file and setting the owning UID and GID

z/0S V1R4 support for setting the owning GID

Many versions of UNIX and Linux use the setgid bit of the parent directory to determine how
to set a new object’s group owner. If the parent’s setgid bit is on, then the group owner is set
to that of the parent directory. If it is off, the group owner is set from the effective GID of the
process. Further, the setgid bit for a new directory is inherited from the parent directory.

To specify that the group owner of a new HFS file is to come from the effective GID of the
creating process, you need to set up profile FILE.GROUPOWNER.SETGID in the RACF
UNIXPRIV class. Generic characters cannot be used in this profile name. Issue the
command:

RDEF UNIXPRIV FILE.GROUPOWNER.SETGID OWNER(SECADM) UACC(NONE)

This change for the setting of the GID is an optional one. You do not need to permit anybody
to this profile. The resulting change in the GID assignment is shown in Figure 3-29 on
page 127.

Once you have created this profile, in order for newly created files and directories in a
particular directory, /u/janeto, to have group owner set from the effective GID of the process,
you have to check that the setgid bit for this directory is turned off by displaying, as follows:

ROGERS @ SC64:/u/jane>1s -1
total 24
—PWXP=Sr=--

If the third permission bit for group owner is s or S (that means the setgid bit is on; the default
is off), you must turn it off with the command:
chmod g-s /u/jane
Attention: When a new file system is mounted, you must turn on the setgid bit of its root

directory if you want new objects within the file system to have their group owner set to that
of the parent directory.

126 UNIX System Services z/OS Version 1 Release 7 Implementation

FSP UsP

owning UID effective UID
50 / 77
MyDir owning GID |ve GID
100 999
Permission bits Qupple entd Groups
100 200 300

touch /u/jane/MyDir/MyFile

ownlng ulD //

MyFile owning GID
999

Permission bits

Figure 3-29 z/OS V1R4 change for setting the owning GID

3.12.3 Change of file ownership

Administrators who have superuser authority might need to change file ownership by
changing the owning UID or owning GID. To protect files from unauthorized users, on z/OS
UNIX systems, RACF enforces rules for the POSIX constant called
_POSIX_CHOWN_RESTRICTED. This means that, by default, only superusers or
administrators can change the ownership of any file to any user ID or group on the system,
and that general users can only change the ownership of files that they own, and only to one
of their own supplementary groups.

» To change the owner (UID) of a file, the superuser can enter a chown command or use the
chown() function, specifying a RACF user ID.

» To change the group (GID) of a file, the superuser or the file owner can enter a chgrp
command or use the chgrp() function, specifying a RACF group.

Allow all z/0S UNIX users to change their file ownership

By defining profile CHOWN.UNRESTRICTED in the UNIXPRIV class, you can indicate that
_POSIX_CHOWN_RESTRICTED is not in effect. This allows all z/OS UNIX users to transfer
ownership of files they own to any RACF user ID or group on the system.

CHOWN.UNRESTRICTED must be a discrete profile. Any matching generic profiles will be
ignored. RACF checks only for the existence of this profile and any access list will be ignored.
Issue the command:

RDEF UNIXPRIV CHOWN.UNRESTRICTED OWNER(SECADM) UACC(NONE)

Allow selected users to change ownership for all files

To allow selected z/OS UNIX users to transfer ownership of any file to any RACF user ID or
group, create profile SUPERUSER.FILESYS.CHOWN in the UNIXPRIV class with the
command:

RDEF UNIXPRIV SUPERUSER.FILESYS.CHOWN OWNER(SECADM) UACC(NONE)

Chapter 3. Establish security for z0S UNIX 127

Authorize selected groups as appropriate (best candidates might be groups for decentralized
administration):

PE SUPERUSER.FILESYS.CHOWN CL(UNIXPRIV) ID(LOCADM) ACCESS(READ)

3.12.4 Changing permission bits

To change the permission bits for a file, use one of the following:
» The ISPF shell.

» The chmod command can be used to change individual permission bits without affecting
the other bits. You can also use the setfacl command to change permission bits (see
C.1.2, “Set an entire ACL (base and extended)” on page 561.

» The chmod() function in a program. The function changes all permission bits to the values
in the mode argument.

chmod command

You can use the chmod command to set or change permissions for your files and directories.
To change permissions, you must be the owner or a superuser. If you are uncertain about
ownership, use the 1s -1 command and look for your TSO/E user ID.

For example, to turn on read, write, and execute permissions, and turn off the set-user-ID and
sticky bit attributes for a file, enter the command using either rwx or octal notation:

chmod a=rwx filename
chmod 777 filename

When specifying permissions for a file or directory, use at least a three-digit octal number,
omitting the digit in the first position. When you specify three digits instead of four, the first
digit describes owner permissions, the second digit describes group permissions, and the
third digit describes permissions for all others, as shown in Table 3-4.

Table 3-4 Permission bit setting using the chmod command

Octal Number Meaning

666 owner(rw-) group(rw-) other(rw-)
700 owner(r--) group(r--) other(r--)
755 owner(rwx) group(r-x) other(r-x)
777 owner(rwx) group(rwx) other(rwx)

Authorization to the chmod command

You may wish to allow selected groups to use the chmod command to change the permission
bits of any file or to use the setfacl command to manage ACLs for any file. As an
enhancement to superuser granularity, when using the chmod command, a RACF service
(IRRSCFO00) has been updated to check the caller's authorization to profile
SUPERUSER.FILESYS.CHANGEPERMS in the UNIXPRIV class if the caller's user ID is not
any of the following:

» The file owner

» A superuser with UID(0)

» A user who has switched to superuser being authorized to profile BPX.SUPERUSER in
the FACILITY class

If a user executing the chmod command has at least read authority to the resource, that user is
authorized to change the file mode in the same manner as a user having UID(0).

128 UNIX System Services z/OS Version 1 Release 7 Implementation

RDEF UNIXPRIV SUPERUSER.FILESYS.CHANGEPERMS OWNER(SECADM) UACC(NONE)
PE SUPERUSER.FILESYS.CHANGEPAERMS CL(UNIXPRIV) ID(LOCADM) ACCESS(READ)

These profiles allow users to use the chmod command to change the permission bits of any
file and to use the setfacl command to manage access control lists for any file. In this
example, an authorized selected group (LOCADM) has been chosen as the best candidate
for administration:

PE SUPERUSER.FILESYS.CHANGEPAERMS CL(UNIXPRIV) ID(LOCADM) ACCESS(READ)

Note: The SUPERUSER.FILESYS.CHANGEPERMS resource name was added in z/OS
V1R3.

3.12.5 Setuid, setgid, and sticky bits

In the FSP, shown in Figure 3-32 on page 135, there are three bits that control access to
executable files in the file systems. An executable file can have an additional attribute
displayed in the execute position (x) when you issue the 1s -1 command. This permission
setting is used to allow a program temporary access to files that are not normally accessible
to other users.

setgid and setuid bits

An s or S can appear in the execute permission position; this permission bit sets the effective
user ID or group ID of the user process executing a program to that of the file whenever the
file is run. The setuid and setgid bits are only honored for executable files containing load
modules. These bits are not honored for shell script and REXX execs that reside in the file
system:

s In the owner permissions section, this indicates that both the setuid bit and execute
(search) permission are set.

In the group permissions section, this indicates that both the setgid bit and execute
(search) permission are set.

S In the owner permissions section, this indicates the setuid bit is set, but the execute
(search) bit is not.

In the group permissions section, this indicates the setgid bit is set, but the execute
(search) bit is not.

A good example of this behavior is the mailx utility. A user sending mail to another user on the
same system is actually appending the mail to the recipient’s mail file, even though the
sender does not have the appropriate permissions to do this—the mail program does.

A superuser or the file owner can use a chmod command or chmod() function to change two
options for an executable file. The options are set in two file mode bits:

» Set-user-ID (S_ISUID) with the setuid option

» Set-group-ID (S_ISGID) with the setgid option

If one or both of these bits are on, the effective UID, effective GID, or both, plus the saved
UID, saved GID, or both—for the process running the program—are changed to the owning

UID, GID, or both, for the file. This change temporarily gives the process running the program
access to data the file owner or group can access.

When creating a new file, both bits are set off. Also, if the owning UID or GID of a file is
changed or if the file is written to, the bits are turned off. In shell scripts, these bits are
ignored.

Chapter 3. Establish security for z0S UNIX 129

Sticky bit on a directory to control file access

Using the mkdir, MKDIR, or chmod commands, you can set the sticky bit on a directory to
control permission to remove or rename files or subdirectories in the directory. When the bit is
set, a user can remove or rename a file or remove a subdirectory only if one of these is true:

» The user owns the file or subdirectory
» The user owns the directory
» The user has superuser authority

If you use the rmdir, rename, rm, or mv commands to work with a file, and you receive a
message that you are attempting an “operation not permitted”, check to see if the sticky bit is
set for the directory the file resides in.

3.13 File and directory access checking

When a security decision is needed, the file system calls RACF and supplies the FSP (and
ACL, if one exists). RACF makes the decision, does any auditing, and returns control to the
file system. RACF does not provide commands to maintain the FSP (and ACL), but it does
provide SAF services that do the FSP (and ACL) maintenance. z/OS UNIX provides
commands that invoke these SAF services.

Authorization checking is done for all directories and files (including special files) in the file
system. z/OS UNIX calls RACF to perform the authorization checking and passes RACF the
FSP (file security packet), and the CRED (security credentials).

Figure 3-30 on page 131 shows the sequence of authorization checks, as follows:
» A superuser (UID of zero) is allowed access to all resources.

» If the effective UID of the process (the accessor) equals the UID of the file, RACF uses the
owner permissions in the FSP to either allow or deny access.

» If the effective GID of the process equals the GID of the file, RACF uses the group
permissions in the FSP to either allow or deny access. If RACF list-of-groups checking is
active (SETROPTS GRPLIST), RACF will look at the user's connect groups that have a
GID for a group that matches the GID of the file. If it finds a matching GID, RACF will allow
or deny access based on the group permissions specified in the FSP. Note that if a user is
connected to more that 300 z/OS UNIX groups, only the first 300 will be used.

» If the effective UID or GID of the process does not match the file UID or GID, then the
other permission bits will determine access.

3.13.1 Controlling access to files for administrators

The profile SUPERUSER.FILESYS in the UNIXPRIV class provides the capability to
authorize selected users to a large chunk of the superuser privileges, namely access to all
local files. Authorization to the SUPERUSER.FILESYS resource provides privileges to
access only local files. No authorization to access Network File System (NFS) files is
provided by access to this resource.

It is one of 12 profiles in the UNIXPRIV class prefixed with SUPERUSER and was introduced
in OS/390 V2R8, as shown in Figure 3-1 on page 83. Each of these profiles provides granular
access to superuser privileges to various user groups. The SUPERUSER.FILESYS profile in
the UNIXPRIV class has three access levels that allow access to z/OS UNIX files, as follows:

READ Allows a user to read any local file, and to read or search any local
directory.

130 UNIX System Services z/OS Version 1 Release 7 Implementation

UPDATE Allows a user to write to any local file, and includes privileges of READ
access.

CONTROL/ALTER Allows a user to write to any local directory, and includes privileges of
UPDATE access.

Depending on your security policy, you have to identify your users and groups and the level of
access for usage of profile SUPERUSER.FILESYS. To authorize a user or group access to

files and directories, issue the following commands:
RDEFINE UNIXPRIV SUPERUSER.FILESYS OWNER(SECADM) UACC(NONE)

PERMIT SUPERUSER.FILESYS CL(UNIXPRIV) ID(JANE) ACC(CONTROL)
PERMIT SUPERUSER.FILESYS CL(UNIXPRIV) ID(LOCADM) ACC(CONTROL)

Access
Request

UID=0 or,
privileged or,
trusted?

other
permission?

F

owner SUPERUSER. >— }]\
permission? FILESYS?]
yes]

group > i

- p

permission? no a

|

L

yes L

SUCCESS

Figure 3-30 Security checking for access to files and directories without ACLs

When given access to the SUPERUSER.FILESY'S profile, you may not be the owner UID,
have access through the owner’s group, or have access with the other permission bits, but
you have access to the file or directory, as shown in Figure 3-30.

Note: Figure 3-30 is security checking without any ACLs and is for systems prior to z/OS
V1R8. To see the security access flow with ACLs, which was introduced with z/OS V1R3,

see Figure 3-34 on page 139.

3.13.2 Controlling access to files with RACF

Both the ACL and FSP are maintained by the physical file system (PFS). When a security
decision for a z/OS UNIX user or a UNIX program is needed, as shown in Figure 3-31 on

page 132, the file system calls the security product, supplying the ACL, if present, and the
FSP.

If the security product supports ACLs, it applies its own rules to the file access request.
Figure 3-31 on page 132 shows the access checking flow from a UNIX program to the
security product. The z/OS UNIX kernel calls the file system iteratively for each directory

Chapter 3. Establish security for z0OS UNIX 131

component of the path name (one is required in order to locate the next), and the file system
calls the security product. Next, the base file name is retrieved.

For each directory lookup, the file system calls the security product to make sure the user has
search authority. Then the security product is called to insure the user has the requested
access to the base file. Once RACF has checked the authorization, it returns control to the file
system.

This is the basic architecture of every UNIX file system. The file system never has the
complete path name; this is the major roadblock to implementing file protection with RACF
profiles, and is the reason why ACLs are now introduced.

UNIX program
fopen("/u/harry/programx/myfile","rw")

1) open "/* directory for search (execute) access

2) open "u" directory for search (execute) access

3) open "harry" directory for search (execute) access

4) open "programa” directory for search (execute access)
5) open "myfile" file for read and write access

C Runtime Library
z/OS UNIX Kernel

Logical File System
—V ZFS
FSP|ACL| | zFS File System PFS | ()

|

[

IRRSKA00 [SAF 517
!

IRRRKAO0 |RACF =)

Figure 3-31 Access checking flow for directory and file access to RACF

UNIXPRIV profiles controlling access

RACF uses the permission bits, the access ACL, and the following UNIXPRIV class profiles,
as shown in Figure 3-34 on page 139, to determine whether the user is authorized to access
the file with the requested access level:

» SUPERUSER.FILESYS - (as described in 3.13.1, “Controlling access to files for
administrators” on page 130)

» RESTRICTED.FILESYS.ACCESS - (new with z/OS V1R3)
» SUPERUSER.FILESYS.ACLOVERRIDE - (new with z/OS V1R3)

Controlling access to file system resources for restricted users

You can define a restricted user ID by assigning the RESTRICTED attribute through the
ADDUSER or ALTUSER command, as follows:

ALTUSER RSTDUSER RESTRICTED

132 UNIX System Services z/OS Version 1 Release 7 Implementation

User IDs with the RESTRICTED attribute cannot access protected resources they are not
specifically authorized to access. Access authorization for restricted user IDs bypasses global
access checking. In addition, the UACC of a resource and an ID(*) entry on the access list are
not used to enable a restricted user ID to gain access.

However, the RESTRICTED attribute has no effect when a user accesses a z/OS UNIX file
system resource; the file's “other” permission bits can allow access to users who are not
explicitly authorized.

To ensure that restricted users do not gain access to z/OS UNIX file system resources
through “other” bits, you must define profile RESTRICTED.FILESYS.ACCESS profile in the
UNIXPRIV class. If you have any user IDs with the RESTRICTED attribute in your RACF
database and you wish to restrict them using HFS or zFS files through the “other” permission
bits, issue the command:

RDEF UNIXPRIV RESTRICTED.FILESYS.ACCESS OWNER(SECADM) UACC(NONE)
SETROPTS RACLIST(UNIXPRIV) REFRESH

Note: An access list is not required to restrict the RESTRICTED user. The security check
for this profile is made at (B) in Figure 3-34 on page 139.

Allow a RESTRICTED user access

Specifying UACC(READ) on RESTRICTED.FILESYS.ACCESS does not work, since a
RESTRICTED user cannot be granted access via any UACC.

If you wish to override this restriction for a particular RESTRICTED user ID, you can permit
this RESTRICTED user (or one of its groups) to RESTRICTED.FILESYS.ACCESS. This
permit does not grant the user access to any files. It just allows the “other” bits to be used in
access decisions for this user. To permit the RESTRICTED user to use the “other” bits, issue:

PERMIT RESTRICTED.FILESYS.ACCESS CL(UNIXPRIV) ID(RSTDUSER) ACCESS(READ)
SETROPTS RACLIST(UNIXPRIV) REFRESH

Note: RESTRICTED.FILESYS.ACCESS is checked, as shown at (BB) in Figure 3-34 on
page 139, for RESTRICTED users regardless of whether an ACL exists, so this function
can be exploited regardless of whether you use ACLs or not.

If needed, explicitly allow certain restricted users to access certain files using the usual
authorization method of adding those users, or one of their groups, to the file’s ACL using the
setfacl command. (See 3.16, “Defining ACLs from the z/OS UNIX shell” on page 139.)

If a RESTRICTED user is authorized to SUPERUSER.FILESYS, his access to HFS will be
honored regardless of the existence of the RESTRICTED.FILESYS.ACCESS profile.

For any given z/OS UNIX process, the result of the first check to the
RESTRICTED.FILESYS.ACCESS resource will be cached for the life of the process.
Therefore, subsequent authorization changes to this resource will not take effect for that
process.

Chapter 3. Establish security for z0S UNIX 133

3.14 Access control lists (ACLS)

Access control lists have existed on various UNIX platforms for many years, but with
variations in the interfaces. ACLs are introduced in z/OS V1R3 to provide a greater granularity
for access to z/OS UNIX files and directories by RACF user IDs and groups. ACLs are
created, modified, and deleted by using either the setfacl shell command or the ISHELL
interface.

3.14.1 ACL entries

In the POSIX standard, two different ACLs are referenced as follows:

Base ACL entries These entries are the same as permission bits (owner, group,
other) that have always existed with z/OS UNIX files and
directories. You can change the permissions using the chmod or the
new setfacl command. They are not physically part of the ACL
although you can use the setfacl command to change them and
the getfacl command to display them.

Extended ACL entries These entries are for individual users or groups and, like the
permission bits, they are stored with the file, not in RACF profiles.
Each ACL type (access, file default, directory default) can contain
up to 1024 extended ACL entries. Each extended ACL entry
specifies a qualifier to indicate whether the entry pertains to a user
or a group; the actual UID or GID itself; and the permissions being
granted or denied by this entry. The allowable permissions are
read, write, and execute. As with other UNIX commands, the
setfacl command allows the use of either names or numbers
when referring to users and groups.

3.14.2 2/OS UNIX V1IR3 ACL overview

The ACLs are created and checked by RACF, not by the kernel or file system. If a different
security product is being used, you must check their documentation to see if ACLs are
supported and what rules are used when determining file access.

ACL types

To reduce administrative overhead, three types of ACLs (extended ACLs) are defined to have
the capability to inherit ACLs to newly created files and directories:

Access ACLs This type of ACL is used to provide protection for a file system
object (specific for a file or directory).
File default ACLs This type is a model ACL that is inherited by files created within the

parent directory. The file default ACL is copied to a newly created
file as its access ACL. It is also copied to a newly created
subdirectory as its file default ACL.

Directory default ACLs This type is a model ACL that is inherited by subdirectories created
within the parent directory. The directory default ACL is copied to a
newly created subdirectory as both its access ACL and directory
default ACL.

134 UNIX System Services z/OS Version 1 Release 7 Implementation

Note: The phrases “default ACL” and “model ACL’ are used interchangeably throughout
z/0OS UNIX documentation. Other systems that support ACLs have default ACLs that are
essentially the same as the directory default ACLs in z/OS UNIX.

According to the X/Open UNIX 95 specification, additional access control mechanisms
may only restrict the access permissions that are defined by the file permission bits. They
cannot grant additional access permissions. Because z/OS ACLs can grant and restrict
access, the use of ACLs is not UNIX 95-compliant.

3.14.3 FSP and access control lists

Before z/OS v1RS, the level of authorization for the file or directory through the FSP allowed
specification of file permission bits for file owner (user), group owner (group), and anybody
else (other) but could not permit or restrict the access to other specific users and groups.

The introduction of access control lists in the z/OS UNIX file system (with z/OS v1R3) allows
granting and denying access to specific users and groups, in a manner similar to access lists
of RACF profiles. The ACL is an SAF-owned construct that resides in the HFS system. ACLs
are used in combination with the traditional permission bits in the FSP, as shown in

Figure 3-32, to allow access to z/OS UNIX files and directories by any individual users (UIDs)
and groups (GIDs) in addition to the owning user and the owning group.

File Mode
= - ACL Flags
S|S Owner Group Other Fil
extattr Access ""'€
f IACL model
U riw|x|r|lw|x|r|w]|Xx RESES :zls-ts
|
D
Permission Bits

Figure 3-32 FSP updated to contain ACL flags with z/OS V1R3

In the framework of ACL, the traditional permission bits are called base ACLs, and the newly
introduced ACLs are called extended ACLs. For more information about how ACLs are
created and used, see 3.15, “Creating and accessing ACLs” on page 136.

3.14.4 ACL mapping

An ACL is mapped by the SAF IRRPFACL macro, as shown in Figure 3-33 on page 136,
where the set of user entries is followed by the set of group entries.

The entries are sorted in ascending order by UID and GID to optimize the access checking
algorithm. The algorithm consists of a list of entries (with a maximum of 1024) where every
entry has information about the type (user or group), identifier (UID or GID), and permissions
(read, write, and execute) that apply to a file or directory.

Chapter 3. Establish security for z0OS UNIX 135

Header
- type -number of entries

- length -number ofuser entries

Entries (1 - 1024)

Entry Type Identifier (UID or G1D) Permissions
User (X'01") 46 r-x

Figure 3-33 Access control list table

There is no such thing as an empty ACL. If there is only one entry and it is deleted, the ACL
table is automatically deleted.

3.14.5 ACL inheritance

ACL inheritance, as shown in Figure 3-38 on page 142, associates an ACL with the newly
created file, myfile, without requiring administrative action. However, it is not always (and in
fact, may seldom be) necessary to apply ACLs on every file or directory within a subtree. If
you have a requirement to grant access to an entire subtree (for example, a subtree specific
to a given application), then access can be established at the top directory.

If a given user or group does not have search access to the top directory, then no files within
the subtree will be accessible, regardless of the permission bit settings or ACL contents
associated with these files. The user or group will still need permission to the files within the
directory subtree where appropriate. If this is already granted by the “group” or “other” bits,
then no ACLs are necessary below the top directory.

3.15 Creating and accessing ACLs

Note: When defining ACLs, we recommend you place ACLs on directories, rather than on
each file in a directory.

This support for ACLs allows you to control access to files and directories by an individual
user (UID) and group (GID). z/OS UNIX file security on z/OS uses permission bits to control
access to files, in accordance with the POSIX standard. However, the permission bit model
does not allow for granting and denying access to specific users and groups, such as is
possible using RACF profiles. This function will be provided by the introduction of ACLs in the
z/OS UNIX file system.

An ACL is an SAF-owned construct that resides within the file system. The RESTRICTED
attribute of a user is now applicable to file and directory access, as described in “Controlling
access to file system resources for restricted users” on page 132.

136 UNIX System Services z/OS Version 1 Release 7 Implementation

3.15.1 Authority to create ACLs

To create an ACL for a file, you must have one of the following security access controls:
» Be the file owner

» Access to resource name BPX.SUPERUSER in the FACILITY class

» Have superuser authority (UID=0)

» Have READ access to profile SUPERUSER.FILESYS.CHANGEPERMS in the UNIXPRIV
class, as described in “Authorization to the chmod command” on page 128.

Activate RACF class FSSEC

To activate the use of ACLs in z/OS UNIX file authority checks, the following RACF command
needs to be issued to activate the RACF FSSEC class:

SETROPTS CLASSACT (FSSEC)

You can define ACLs prior to activating the FSSEC class and display ACL information—but if
the FSSEC class is not active, only the standard base permission bit checks are done, even if
an ACL exists.

Activating the RACF FSSEC class causes the ACLs to be used during access checking. In
order to set or modify ACLs, the same requirements are needed as for changing the
permission bits.

3.15.2 Controlling access to files having ACLs for administrators

Any user who is not a superuser with UID(0), or the file owner—and who is denied access to
a file through its ACL—can still access this file if the user has sufficient authority to the
SUPERUSER.FILESYS resource in the UNIXPRIV class, as described in 3.13.1, “Controlling
access to files for administrators” on page 130. To prevent this, you can force RACF to use
ACL authorizations to override a user's SUPERUSER.FILESYS authority by using a
UNIXPRIV class resource name, SUPERUSER.FILESYS.ACLOVERRIDE. To do this and
prevent all users and not permit any users or groups, define the following profiles:

RDEFINE UNIXPRIV SUPERUSER.FILESYS.ACLOVERRIDE OWNER(SECADM) UACC(NONE)
SETROPTS RACLIST(UNIXPRIV) REFRESH

Note: There is a relationship between the existing SUPERUSER.FILESYS profile and the
new SUPERUSER.FILESYS.ACLOVERRIDE profile, which is checked at (A) in

Figure 3-34 on page 139. Either profile could get checked for a file; it depends upon the
presence of an ACL for the file that is checked at (4), and the contents of the ACL for
granting access.

If needed, you can grant exceptions to certain groups or individual users to allow them to gain
access based on their SUPERUSER.FILESYS authority. Place those groups to the access
list of SUPERUSER.FYLESYS.ACLOVERRIDE with the same level of access they have for
the SUPERUSER.FILESYS resource:

PERMIT SUPERUSER.FILESYS.ACLOVERRIDE CLASS(UNIXPRIV) ID(LOCADM) ACCESS(READ)
PERMIT SUPERUSER.FILESYS.ACLOVERRIDE CLASS(UNIXPRIV) ID(JANE) ACCESS(READ)
SETROPTS RACLIST(UNIXPRIV) REFRESH

SUPERUSER.FILESYS authority is still checked when an ACL does not exist for the file. This
should be done for administrators for whom you want total file access authority. That is, you
do not want anyone to deny them access to a given file or directory by defining an ACL entry
for them without, or with, limited permission bit access.

Chapter 3. Establish security for z0S UNIX 137

3.15.3 RACF authorization checking flow with ACLs

The authorization checking beginning with z/OS V1R3, which replaces the flow shown in
Figure 3-30 on page 131, with the changes shown in bold, is as follows:

1.
2.
3.

Check owner permission bits.

Check user ACL entries.

Check the union of group permission bits and group ACL entries.

All entries are checked until a single entry grants the requested access.

Check “other” permission bits.

Note: ACL entries are used only if the RACF FSSEC class is active.

Authorization checking flow for z/OS UNIX files and directories is shown in Figure 3-34 on
page 139, and RACF makes the following checks:

>

If the UID matches the file owner UID, the file's user permission bits are checked. If the
user bits allow the requested access, then access is granted.

If no user bits access is allowed and the FSSEC class is active, and an ACL exists, and
there is an ACL entry for the user, then the permission bits of that ACL entry are checked.
If at least one matching ACL entry was found for the UID, the processing continues with
the ACLOVERRIDE checking.

If no user ACL matches, then if the UNIXPRIV class is active, the SUPERUSER.FILESYS
access is checked.

If the GID matches the file owner GID, the file's group permission bits are checked. If the
group bits allow the requested access, then access is granted.

If any of the user's supplemental GIDs match the file owner GID, the file's group
permission bits are checked. If the group bits allow the requested access, then access is
granted.

If no group bits access is allowed and the FSSEC class is active, and an ACL exists, and
there is an ACL entry for any of the user's supplemental GIDs, then the permission bits of
that ACL entry are checked. If at least one matching ACL entry was found for the GID, or
any of the supplemental GIDs, then processing continues with the ACLOVERRIDE
checking.

If no group ACL matches, then if the UNIXPRIV class is active, the
SUPERUSER.FILESYS access is checked.

SUPERUSER.FILESYS.ACLOVERRIDE is checked only when a user's access was
denied by a matching ACL entry based on the user's UID or one of the user's GIDs. If the
user's access was denied by the file's permission bits, SUPERUSER.FILESYS is
checked.

138 UNIX System Services z/OS Version 1 Release 7 Implementation

z/OS UNIX File Access Checking Flow

bit on ?

S
ACLOVERRIDE
access?

eGID/sGID=
FSP or ACL

yes

RESTRICT. FS.A
access?

no

RESTRICTED
user?

no yes

RESTRICT. FS.A

defined? (B B)

MR bits

(2) allow

access?

(4) ¥es
no - W/
(4)., SUFS
- ACLOVERRIDE

defined? (AA)

yes

Abbreviations in chart

0 RESTRICT.FS.A is an abbreviation for the new
profile named RESTRICTED.FILESYS.ACCESS

O SU.FS = SUPERUSER.FILESYS
For ACL checking, FSSEC class must be active

ﬁsw@no
access?
R
granted ‘
Access
Ll denied

Figure 3-34 z/OS UNIX file access checking algorithm

3.16 Defining ACLs from the z/OS UNIX shell

There are two ways to define ACLs:

» Using the z/OS UNIX shell, after the OMVS command is issued, with the setfacl
command

» Using the ISHELL and creating ACLs with the use of panels
The shell commands, setfacl and getfacl, are used to create, modify, delete, and display
ACL entries specified by the path, as follows:

The setfacl command creates, modifies, and deletes an ACL definition for a file or
directory. setfacl has the following syntax:

setfacl

setfacl [-ahqv] -s entries [path ...]

Sets an entire ACL (base and extended entries)
setfacl [-ahqv] -S file [path ...]

Sets (replaces) all ACLs with the entries specified in a file
setfacl [-ahqv] -D type [...][path ...]

Delete some extended ACL entries and delete an entire ACL.

Chapter 3. Establish security for z0S UNIX 139

setfacl [-ahqv] -m|M|x|X EntryOrFile [...][path ...]
Modify extended ACL entries

getfacl The getfacl command obtains and displays an ACL entry for a requested file or
directory. It has the following syntax:

getfacl [-acdfhmos][-e user] file

Important: See z/0OS UNIX System Services Command Reference, SA22-7802, for a
complete explanation of the commands and parameters. Also, there are examples of the
setfacl and getfacl commands in C.1, “Examples of the setfacl and getfacl commands”
on page 560.

3.16.1 Define all three ACL types

The access ACL is used to provide protection for a file system directory or file. You have to
use the setfacl command to define an access ACL from the z/OS UNIX shell. For these
definitions, we are using the file system structure shown in Figure 3-35.

setfacl command

With the setfacl command, to create an ACL, if you use the -s option, you must create the
entire ACL, which includes the base ACL and extended ACL, as described in 3.14.1, “ACL
entries” on page 134. The base ACL (permission bits) is indicated by omitting user or group
qualifiers. Since this example is also creating a file default ACL and a directory default ACL,
all the ACLs must be created with a single command. Therefore, you should use the -m
option for directory harry in Figure 3-35, as the following command creates an access ACL
that gives user ID jane rwx access to directory harry, and creates the two default ACLs:

ROGERS @ SC65:/u>setfacl -m "u:jane:rwx,d:u:jane:rwx,f:u:jane:r--" harry

Note: When you are setting the access ACL and using the -s option, the ACL entries must
consist of the three required base ACL entries that correspond to the file permission bits
(u::rwx). The ACL entries must also consist of zero or more extended ACL entries
(g::---,0::---,u:jane:rwx), which will allow a greater level of granularity when controlling
access. The permissions for base entries must be in absolute form. See 3.14.1, “ACL
entries” on page 134 for more information.

bin u etc dev tmp
Directory File
Access
i default default
jane tom harry ACL ACL ACL

Figure 3-35 Three ACLs created for directory harry

140 UNIX System Services z/OS Version 1 Release 7 Implementation

List the directory /u

Issuing the 1s -al command, shown in Figure 3-36, shows directory harry having a plus (+)

sign following the permission bits, which indicates that an ACL exists for directory harry.

ROGERS @ SC65:/u>1s -al
total 152

dr-xr-xr-x 11 HAIMO
drwxr-xr-x 48 HAIMO
drwx------ + 2 HARRY
drwx------ 2 JANE
drwxr-xr-x 2 HAIMO
drwx------ 2 HAIMO
drwxr-xr-x 2 HAIMO
drwx------ 3 HAIMO

NOGROUP

SYS1
SYS1
SYS1
SYS1
SYS1
SYS1
SYS1

0
24576
8192
8192
8192
8192
8192
8192

Aug
Jul
Aug
Aug
Jun
Aug
Nov
May

2 10:45 .
25 14:44 ..

2 10:44 harry

2 10:44 jane
28 12:23 Tdapsrv
1 11:02 rogers
15 2001 syslogd
26 11:03 userl

Figure 3-36 Command to show an ACL exists

Display the new ACLs

To display the ACLs just created (shown in Figure 3-37), issue the following command, where
-a is for the access ACL, d is for the directory default ACL, and f is for the file default ACL.

#file: harry/

#owner: HARRY

#group: SYS1

User::rwx

group::---

other::---
user:JANE: rwx
fdefault:user:JANE:r--
default:user:JANE: rwx

ROGERS @ SC65:/u>getfacl -adf harry

Figure 3-37 Display all the ACL types

3.16.2 Example of ACL inheritance

The directory structure is changed, as shown in Figure 3-38 on page 142, by issuing the

following command:

mkdir /u/harry/programx

The new directory, programx, inherits an access ACL from the directory default ACL of
directory harry, and inherits the directory default ACL and file default ACL from directory

harry, as shown in Figure 3-38 on page 142.

Chapter 3. Establish security for z/OS UNIX

141

142

bin u etc dev tmp L
directory file
access
; default default
jane tom harry ACL ACL ACL
1\!. ey B A | Y
directory file
rogramx | 6cess
mkdir /u/harry/programx prog ACL dzfgﬂlt dzfgflt

Figure 3-38 ACL inheritance from directory harry ACLs

Using the getfacl command (shown in Figure 3-39) you can see the inheritance from
directory harry to directory programx.

HARRY @ SC65:/u/harry>getfacl -adf programx
#file: programx/

#owner: HARRY

#group: SYS1

USer::rwx

group::r-x

other::r-x

user:JANE: rwx

fdefault:user:JANE:r--

default:user:JANE: rwx

Figure 3-39 Display of ACLs for directory programx

The directory structure is changed again, as shown in Figure 3-40 on page 143, by issuing
the following command, which creates a file named myfile:
oedit /u/harry/programx/myfile

The new file, myfile, inherits only the file default ACL from directory programx (Figure 3-40 on
page 143).

UNIX System Services z/OS Version 1 Release 7 Implementation

bin u etc dev tmp

Access | |DPirectory File
: default default
jane tom harry ACL ACL ACL

‘ !. s M YY ¥
- programx Access | |Directory File

: default default
mkdir /u/harry/programx ACL ACL ACL

: -
< Il -
- myfile

oedit /u/harry/programx/myfile AZ%%LSS

Figure 3-40 ACL inheritance of an access ACL to file myfile

User ID jane now has read access to the file, myfile, through ACL inheritance, and whose
owner is harry.

By using the getfacl command to display the ACLs for file myfile, Figure 3-41 shows the file
default ACL inherited from the directory programx (shown in Figure 3-39 on page 142).

HARRY @ SC65:/u/harry/programx>getfacl myfile
#file: myfile

#owner: HARRY

#group: SYS1

USEer::rwx

group::---

other::---

user:JANE:r--

Figure 3-41 Display of ACL for file myfile

3.17 Defining ACLs from the ISHELL

If you prefer to use the ISHELL rather than the OMVS command line, you can use the
ISHELL to display, add, delete, and modify ACLs.

For the example shown in Figure 3-35 on page 140, once you have entered the ISHELL, you
should enter /u on the command line, as shown in Figure 3-42 on page 144. The following
examples of defining ACLs from the ISHELL will repeat the examples using the setfacl
command from the z/OS UNIX shell.

Chapter 3. Establish security for z0S UNIX 143

3.17.1 ISHELL panels to display and define ACLs

The ISHELL panels that follow will define an access ACL giving user jane access to directory
harry, as shown in Figure 3-35 on page 140. First, issue the ISHELL command from Option 6
in ISPF, which displays the panel shown in Figure 3-42.

File Directory Special_file TIools File_systems Q0Options Setup Help

UNIX System Serwvices ISPF Shell
Enter a pathname and do one of these:

- Press Enter.
- Select an action bar choice.
- Specify an action code or command on the command line.

Return to this panel to work with a different pathname.
More: +
fu

EUID=0

Figure 3-42 ISHELL panel

Entering /u and pressing Enter displays Figure 3-43, which shows the current directory list.

File Directory Special file Commands Help
Directory List

Command ===>
Select one or more files with / or action codes. If / is used also select an
action from the action bar otherwise your default action will be used. Select
with § to use your default action. Cursor select can also be used for quick
navigation. See help for details.
EUID=0 fuf

Type Perm Changed-ESTSED Owner —-—--—- Size Filename Row 1 of 9
_ Dir 555 2003-12-04 10:00 HAIMO 0 .
_ Dir 755 2003-12-04 06:06 HAIMO 24576 ..
_ Dir 755 2003-11-24 11:26 HAIMO 8192 peggur
_ Dir 755 2003-11-21 20:10 HAIMO 8192 paolor?
_ Dir 700 2003-09-25 15:04 HAIMO 8192 rogers
_ Dir 700 2002-09-13 14:47 HAIMO 8192 tom
a Dir 700 2002-08-02 15:40 HARRY 8192 harry
_ Dir 700 2002-08-02 10:44 JANE 8192 jane
_ Dir 755 2001-11-15 14:35 HAIMO 8192 syslogd

Figure 3-43 ISHELL directory list panel

By placing an a action code for directory harry, shown in Figure 3-43, the File Attribute panel
is displayed, as shown in Figure 3-44 on page 145.

144 UNIX System Services z/OS Version 1 Release 7 Implementation

File Directory Special_file Commands Help
Edit Help
C
Display File Attributes

S 5 used also select an
a Pathname : fu/harry will be used. Select
W More: + 50 be used for quick
n File tupe : Directory
E Permissions : 700

Access control list . : 0 ilename Row 1 of 8
_ File size : 8192
_ File owner : HARRY(10103) ogers
_ Group owner : S¥S1(2) .
_ Last modified : 2002-08-02 15:40:01 om
a Last changed : 2002-08-02 15:40:01 arry
_ Last accessed : 2002-08-02 15:40:30 ane
_ Created : 2002-08-02 10:44:16 dapsrv
_ Link count : 3 yslogd

F1l=Help F3=Exit F4=Name

F7=Backward F8=Forward F12=Cancel

Figure 3-44 Display File Attributes panel

Note: The field “Access control list” shows if an access ACL exists. If you scroll forward,
you will see whether a Directory default ACL and File default ACL is defined, as shown in
Figure 3-45 on page 145. These two fields (Directory default and File default ACL) only
apply to directory files.

File Directory Special_file Commands Help

Edit Help
C
Display File Attributes

S s used also select an
a Pathname : /u/harry will be used. Select
W More: - so be used for quick
n Major device P ¢
E Minor device : O

File format . . . : NA ilename Row 1 of 8

Shared AS -
_ APF authorized . . . : - ogers
_ Program controlled . : -
_ Shared library . . . : - om
a Char Set ID/Text flag : 00000 OFF arry
_ Directory default ACL : 0 ane
_ File default ACL . . : 0O dapsrv
_ Seclabel o o U yslogd

Fl=Help F3=Exit Fd=Name

F7=Backward F8=Forward F12=Cancel

Figure 3-45 Display of directory default ACL and file default ACL for /u/harry

By placing the cursor under the Edit pull-down in Figure 3-44 and pressing Enter, you can
choose the option for displaying ACL information, as shown in Figure 3-46 on page 146.

Options 8, 9, and 10 can be selected to display the access ACL, the directory default ACL,
and the file default ACL.

Chapter 3. Establish security for z0S UNIX 145

File Directory Special_file Commands Help
Edit Help
c
8_ 1. Mode fields...

s 2. Owning user. .. s used also select an
a 3. Owning group. .. Wwill be used. Select
W 4. User auditing. .. More: + so0 be used for quick
n 5. Auditor auditing. ..
E 6. File format. ..

7. Extended attributes. .. ilename Row 1 of 10
_ 8. Access contol list. ..
_ 9. Directory default ACL. .. ogers
_ 10. File default ACL...
_ 14:27:11 artr2
a Last changed : 2003-01-16 14:27:11 cb3

Last accessed : 2002-11-13 18:58:58 om

_ Created : 2001-07-13 10:56:15 arry
_ Link count : 14 ane
_ Fl=Help F3=Exit F4=Name dapsrv
_ F7=Backward F8=Forward Fl12=Cancel yslogd

Figure 3-46 Panel showing Options 8, 9, and 10 to define ACLs

Define an access ACL for directory harry

When you press Enter after specifying option 8, 9, or 10, you now have access to modify,
add, display, or delete ACL entries, as shown in Figure 3-47. From this panel you can select
Option 2 to define an access ACL. If an ACL already exists, you can modify or delete the ACL
entry.

File Directory Special_file Commands Help

Edit Help
C
Display File Attributes
S s used also select an
a Pathname : /ufharry Wwill be used. Select

Access Control List: Access
Command ===> Scroll ===> PAGE

Type over read, write or execute permissions to make a change.

Clear the walue to reset it, anything else will set it.

To delete, place a D in the § column for an entry or use command D = for
all entries. Use commands SORT ID or SORT MAME to reorder the table.

Option: 2 1. Add group 2. Add user 3. Copy 4. Replace

S ID Name Read Write Execute Type

KKK K R KRR KRR OK KK RO R R KRR R K KR X BOoTtom OF data m:xmmk o kK K K K K K K K K K K K K KK K K K KK

Figure 3-47 Access Control List panel to change ACL definitions for Option 8
To add user jane by creating an access ACL for directory harry, select Option 2 (Add user)

and press Enter, and Figure 3-48 on page 147 displays the panel for the defining of the
access ACL for directory harry, giving user jane rwx access.

146 UNIX System Services z/OS Version 1 Release 7 Implementation

File Directory Special_file Commands Help
Edit Help
C
Display File Attributes
S s used also select an
a Pathname fusharry will be used. Select
Access Control List: Access
C Scroll ===> PAGE
Add an ACL Entry
T o make a change.
C Enter new User ACL 1 set it.
T try or use command D = for
a Permissions: to reorder the table.
/4 Read
0 / Write opy 4. Replace
/ Execute
S Type
* NHame or ID jane KK K K K K K K K K K K K K K K KK K K K K K K K OK KK K
Fl1=Help F3=Exit F12=Cancel

Figure 3-48 Define the access ACL for directory harry

When you press Enter after adding the access ACL, the panel shown in Figure 3-49 shows
user jane with UID(10102) and the access ACL access jane has to directory harry.

File Directory Special_file Commands Help
Edit Help
C
Display File Attributes
S s used also select an
a Pathname fu/harry Wwill be used. Select
Access Control List: Access Row 1 to 1 of 1
Command ===> Scroll ===> PAGE

Type over read,
Clear the value to reset it,
To delete, place a D in the § column for
all entries.

write or execute permissions to make a change.
anything else will set it.

Use commands SORT ID or SORT NAME to reorder the table.

Option: _ 1. Add group 2. Add user 3. Copy 4. Replace
S ID HName Read Write Execute Type
10102 JANE R W X User

KKK KKK KR R EOR KRR R R KK KRR R EX BOTTom OF data s s s s k% ok K % K K K K K 5K K K K K K K K K K K K X

an entry or use command D * for

Figure 3-49 Panel showing the result of defining the access ACL

Figure 3-50 on page 148 shows the directory list panel with directory harry now having a +

sign indicating that an ACL exists for the directory.

Chapter 3. Establish security for z/OS UNIX

147

148

Eile Directory Special_file Commands Help

Directory List

Command ===>
Select one or more files with / or action codes. If / is used also select an
action from the action bar otherwise your default action will be used. Select

with § to use your default action. Cursor select can also be used for quick
navigation. See help for details.
EUID=0 fu/

Type Perm Changed-ESTSEDT Owner --—---- Size Filename Row 1 of 9
_ Dir 555 2003-12-04 10:00 HAIMO 0] .
_ Dir 755 2003-12-04 06:06 HAIMO 24576 .
_ Dir 755 2003-11-24 11:26 HAIMO 8192 peggur
_ Dir 755 2003-11-21 20:10 HAIMO 8192 paolor7
_ Dir 700 2003-09-25 15:04 HAIMO 8192 rogers
_ Dir 700 2002-09-13 14:47 HAIMO 8192 tom
_ Dir +700 2002-08-02 15:40 HARRY 8192 harry
_ Dir Y00 2002-08-02 10:44 JANE 8192 jane
Dir ¥55 2001-11-15 14:35 HAIMO 8192 syslogd

Figure 3-50 Directory list panel showing a + sign for directory harry

You can create a directory default ACL by choosing Option 9 and a file default ACL by
choosing Option 10 on the panel shown in Figure 3-46 on page 146. If you complete the
example shown previously in Figure 3-40 on page 143 and then use the ISHELL, Figure 3-51
and Figure 3-52 on page 149 show the access ACL that was inherited by the file myfile from
directory programx.

EFile Directory Special_file Commands Help

Directory List

Select one or more files with / or action codes. If /7 is used alse select an
action from the action bar otherwise your default action will be used. Select
with 8 to use your default action. Cursor select can also be used for quick
navigation. See help for details.
EUID=10103 fufharryf/programx/

Type Perm Changed-ESTSEDT Ouner ———-—-— Size Filename Row 1 of 3
_ Dir +755 2002-08-02 16:30 HARRY 8192 .
_ Dir +700 2002-08-02 15:40 HARRY 8192 ..
a File +700 2002-08-02 16:31 HARRY 47 myfile

Figure 3-51 ISHELL display of file myfile showing an ACL exists
To display Figure 3-52 on page 149, do the following:
Place an a action character for file myfile as shown in Figure 3-51.

By placing the cursor under the Edit pull-down and pressing Enter, you can choose the option
for displaying ACL information, Option 8. When you press Enter, Figure 3-52 on page 149 is
displayed, showing the access jane has to the file myfile.

UNIX System Services z/OS Version 1 Release 7 Implementation

File Directory Special_file Commands Help

Edit Help

s Display File Attributes s used also select an

a will be used. Select

w Pathname : /u/harry/programx/myfile so be used for quick
Access Control List: Access Row 1 to 1 of 1

Type owver read, write or execute permissions to make a change.

Clear the value to reset it, anything else will set it.

To delete, place a D in the S column for an entry or use command D * for
all entries. Use commands SORT ID or S0RT NAME to reorder the table.

Option: — 1. Add group 2. Add user 3. Copy 4. Replace
s ID MName Read MWrite Execute Type
10102 JANE R User

KK K K KK K KRR KK KK KKK KKK KK KKK Bottom of data KK K KK KK K K K K K K K K K K K OK KK KK KK KKK K

Figure 3-52 Access control list window

User ID jane now has read access to the file myfile, whose owner is user ID harry.

3.17.2 The IRRHFSU utility and ACLs

The IRRHFSU utility unloads the UNIX System Services Hierarchical File System file security
information in a manner compatible with the IRRDBUOQO utility. RACF provides the IRRDBUOQO
utility to unload the contents of the RACF database into a flat file suitable for viewing or
loading into a relational database for querying. Similarly, the IRRHFSU utility downloads data
contained in the FSP (such as file permission bits, owning UID and GID, owner- and
auditor-specified logging options) into a UNIX file or an MVS data set.

The find command can locate files with ACLs containing “orphaned” ACL references; that is,
entries for UIDs ad GIDs that cannot be mapped to RACF user or group profiles. However,
the find output is not useful for removing these references, because the UID or GID is not
reported as part of the output. The IRRHFSU utility can be invoked with a parameter, which
results in deletion of orphaned ACL entries. For more additional information, see:

http://www-1.ibm.com/servers/eserver/zseries/zos/racf/goodies.html

3.17.3 Modified commands with ACL support

The following commands have been modified in order to support ACL entries:

The getconf command
This changed command returns configuration values associated with the file at the specified
path name, as follows:

_PC_ACL - Indicates whether an access control mechanism is supported by the file
system owning the file specified by “pathname”. A value of 1 indicates that it is supported,
as shown in Figure 3-53, and a value of 0 indicates it is not supported.

Chapter 3. Establish security for z0S UNIX 149

http://www-1.ibm.com/servers/eserver/zseries/zos/racf/goodies.html

_PC_ACL_ENTRIES_MAX - Maximum number of entries in an ACL for a file or directory,
as shown in Figure 3-53, which indicates a value of 1024.

@ SC63:/>getconf _PC_ACL /u/userl/test

1

@ SC63:/>getconf _PC_ACL_ENTRIES_MAX /u/userl/test
1024

Figure 3-53 Examples of the getconf command

The Is command
The 1s command indicates the existence of ACLs by adding a plus sign (+) character after
the permission bits, as follows:

SC63:/>1s -1 /u/userl
drwxr-xr-x+ 2 HAIMO SYS1 8192 May 26 09:42 test find

The find command
The find command has new options for supporting ACL entries.

» The find command finds all files or directories with an ACL of a given type. In the next
example, the command displays all the files and directories in the /u/useri directory that
have any type of ACL (access, default file, or default directory):

AYVIVAR @ SC63:/>find /u/userl -acl a -0 -acl d -o -acl f
/u/userl/test

» Find files with ACL entries for a specific user or group. In the next example, find displays
all the files and directories under the /u/user1 directory that have ACL entries for SYS1

group:
@ SC63:/>find /u/userl -acl_group SYS1
/u/userl/test

» Find files with more than the specified amount of ACL entries:

@ SC63:/>find /u/userl -acl_count +1
/u/userl/test

» In the following example, the find command is useful in command substitution, as it can
produce file lists that are used as input to the setfacl command:

setfacl -m g:OMVSGRP:rwx $(find /u/userl -acl_group SYS1)

The cp command

The cp -p command preserves ACLs from source to target, if possible. The ACLs are not
preserved if a file system does not support ACLs, or if you are copying files to MVS.

The mv command
The mv command preserves an ACL from source to target.

The pax command
When using the pax command, ACL data is automatically stored in USTAR formatted
archives using special headers. The following options are not required:

» Extracted files will restore ACLs when -p A or -p e is specified.
» Copy preserves ACL when -p A or -p e is specified.

» Verbose output adds a plus sign (+) character after the permission bits when an extended
ACL exists.

150 UNIX System Services z/OS Version 1 Release 7 Implementation

@ SC65:/u/userl>pax -vf test.pax
-PWX====== 1 STC SYS1 620000 May 3 15:28 /u/userl/test/filel
-PWX=-===-- + 1 STC SYS1 660000 May 3 15:29 /u/userl/test/file2

The tar command
The tar -U command (with USTAR format) will preserve ACLs in archives as follows:
» Extracted files will restore ACLs when -A is specified.

» For verbose output (tar -v), a + character is added to the end of the file permission bits
for all files with extended ACLs (as for the pax command).

The df command

The df -v command indicates whether the file system and security product supports ACLs,
as shown in Figure 3-54.

@ SC63:/>df -v /u/userl/test

Mounted on Filesystem Avail/Total Files Status
/u/userl (OMVS.USER1.HFS) 14208/14400 4294967293 Available
HFS, Read/Write, Device:241, ACLS=Y

File System Owner : SC63 Automove=Y Client=N

Filetag : T=off codeset=0

Figure 3-54 Example of df -v command

Notes:

» ACLS=Y does not mean that the FSSEC class profile is active. It means that the file
system will store ACLs and pass them to the security product.

» Using ACLs must be supported by the file system that the file or directory belongs to. It
is supported in z/OS V1.3 by zFS and HFS. ACLs are not currently supported for a
temporary file system (TFS) in z/OS V1R3.

3.17.4 Using ACLs in a sysplex

Using ACLs should be no different on a sysplex client than on a sysplex server system if all
the participating systems are running at V1R3 or higher.

In a sysplex environment, all participating nodes must be on a release level that has ACL
support. If any of the participating nodes are at a release level that does not contain ACL
support and you have enabled the FSSEC class on an up-level node, then files that are
protected by ACLs will not be accessible on down-level nodes (assuming that the
compatibility APAR has been applied) except perhaps by a superuser or file owner. The
APAR is OW50655 for SAF and OW49334 for RACF.

3.18 Daemons and security

MVS, traditional UNIX, and z/OS UNIX systems manage user identities differently. A daemon
is a long-lived process that runs unattended to perform continuous or periodic system-wide
functions, such as network control. Some daemons are triggered automatically to perform
their task; others operate periodically. Daemons have superuser authority and can issue
authorized functions such as setuid(), seteuid(), and spawn() to change the identity of a user's
process.

Chapter 3. Establish security for zOS UNIX 151

152

In many cases a daemon program is started from the kernel and inherits the kernel user ID,
OMVSKERN. The daemon can have a separate user ID as long as the user ID is defined as a
superuser. This superuser must be defined with a UID=0 in RACF, which means that this
user cannot become a superuser by using the su command.

Daemons typically encountered on z/OS UNIX systems include:

cron

ftpd
inetd

rlogind

syslogd

otelnetd

orexecd

uucpd

Orouted

Ipd

timed

httpd

The batch scheduler. The cron daemon is a clock daemon that runs commands
at specified dates and times. You can specify regularly scheduled commands
with the crontab command. Jobs that are to be run only once can be submitted
using the at or batch commands. cron runs commands with priorities and limits
set by a queuedefs file.

The file transfer daemon supplied with zZOS Communications Server (CS).

The Internet daemon. The inetd daemon provides service management for a
network. It starts the rlogind program or otelnetd program whenever there is
either a remote login request or a remote Telnet login from a workstation.

The remote login daemon. The rlogind program is the server for the remote
login command rlogin. It validates the remote login request and verifies the
password of the target user. It starts an z/OS UNIX shell for the user and
handles translation between ASCIl and EBCDIC code pages as data flows
between the workstation and the shell.

The syslog daemon supplied with z/OS Communications Server. syslogd is a
server process that has to be started as one of the first processes in your z/OS
UNIX environment. Other servers and stack components use syslogd for
logging purposes and can also send trace information to syslogd.

The remote logon daemon supplied with zZOS Communications Server.

The remote execution protocol daemon supplied with z/OS Communications
Server. The Remote Execution Protocol Daemon (REXECD) is the server for
the REXEC routine. REXECD provides remote execution facilities with
authentication based on user names and passwords.

The UNIX-to-UNIX copy program daemon introduced with z/OS V1R2. The
uucpd daemon is used to communicate with any UNIX system that is running a
version of the UNIX-to-UNIX copy program. UUCP functions are used to
automatically transfer files and requests for command execution from one
UUCP system to another usually in batch mode at particular times. Other
daemons associated with UUCP included with z/OS V1R2 are:

uucico Processes uucp file transfer requests.
uuxqt Runs commands from remote UUCP systems.

The Orouted daemon is supplied with zZOS Communications Server. The route
daemon is a server that implements the Routing Information Protocol (RIP)
(RFC 1058). It provides an alternative to the static TCP/IP gateway definitions.

The line printer daemon supplied with zZOS Communications Server. It enables
printers from any TCP/IP host that are attached to the MVS spooling system.

The time daemon supplied with the z/OS Communications Server. It provides
clients with UTC time. Network stations without a time chip obtain clocks from
this daemon.

The http daemon supplied with the IBM HTTP Server.

UNIX System Services z/OS Version 1 Release 7 Implementation

3.18.1 Security environment for daemons

You can run daemons with regular UNIX security, as shown in Figure 3-55, or with zZ/OS UNIX
security. A z/OS UNIX daemon could also be described as a classical server process.

For administrators, controlling daemons requires some extra considerations:

» How and when is a daemon process started (or restarted if it fails)?

» Daemons often need initialization options customized to installation requirements.

» Daemons have the ability to issue setuid(). Access to this type of power needs to be
controlled, by controlling which programs can be a daemon.

» The special user security profile BPXROOT must be created in order to support some
daemon operations.

3.18.2 UNIX-level security

Initially, the daemon process is started by an external command or event. Once started, the
daemon listens for work requests from clients. When a request is received, the daemon notes
the UID of the requester, and then forks a child process to carry out the request. The forked
child process inherits UID(0) from the daemon process. Before executing the request, the
daemon uses a special SYSCALL setuid to reset the security environment to match the UID
of the requester. UNIX-level security for daemons means that all daemon programs execute
as superusers, and all superusers are allowed to use the setuid() and seteuid() functions
to change the identity of a process to any other UID. Their MVS identity will be changed to the
one corresponding to the UID value; for example, the cron daemon in Figure 3-55 changes its
identity to UID=25, which is the MVS user ID BOB.

Child Address Space
OMVSCRON cron
> UID=0
setuid(25)
“fork" :
Batch daemon BOB exec Cp1 % -
UiD=25 1 Superuser?
OMVSCRON l
UID=0 Cp‘]
"Run program (j:opy flleS\) sgtu'id
cp1 for BOB" Rs / X fails!
BOB's"user « / \
environment
" HFS File
Data Se_t

Figure 3-55 Normal UNIX security with daemon processing

Chapter 3. Establish security for z0OS UNIX 153

Note: The important point about the setuid instruction is that, in an z/OS environment, it
resets the whole security profile of the forked address space. The UID is set to the
requester's UID and the current RACF user ID information (the ACEE) is changed to BOB
to complement the UID. The requester's task therefore runs with access to both the UNIX
and z/OS resources (data sets) owned by BOB.

3.19 z/OS UNIX level security for daemons

With z/OS UNIX, there are two levels of security you can provide that are a higher level than
UNIX-level security, as follows:

» BPX.DAEMON defined in the RACF FACILITY class; see 3.19.1, “BPX.DAEMON
FACILITY class profile” on page 154.

— RACF program control protection

» RACF running with enhanced program security, BPX.DAEMON defined and
BPX.MAINCHECK defined. BPX.MAINCHECK is introduced with z/OS V1R4. You can
use BPX.MAINCHECK for any privileged z/OS UNIX application that requires a program
controlled environment, because the application uses a privileged z/OS UNIX service that
requires one. An example is the __passwd() service, which is used by applications such
as telnet and rlogin. See 3.19.3, “Enhanced program security mode z/OS V1R4” on
page 158.

— RACF program control protection

3.19.1 BPX.DAEMON FACILITY class profile

If the BPX.DAEMON FACILITY class is defined, your system has z/OS UNIX security. Your
system can exercise more control over your superusers, as follows:

» Any superuser permitted to this profile has the daemon authority to change MVS identities
via z/OS UNIX services without knowing the target user ID’s password. This identity
change can only occur if the target user ID has an OMVS segment defined. If
BPX.DAEMON is not defined, then all superusers (UID=0) have daemon authority. If you
want to limit which superusers have daemon authority, define this profile and permit only
selected superusers to it.

» Any program loaded into an address space that requires daemon level authority must be
defined to program control. If the BPX.DAEMON profile is defined, then z/OS UNIX will
verify that the address space has not loaded any executables that are uncontrolled before
it allows any of the following services that are controlled by z/OS UNIX to succeed:

— seteuid

— setuid

— setreuid

— pthread_security_np()

— auth_check_resource_np()
— _login()

— _spawn() with user ID change
— _password()

This level of security is for customers with stricter security requirements who need to have
some superusers maintaining the file system but want to have greater control over the z/OS
resources that these users can access. Although BPX.DAEMON provides some additional
control over the capabilities of a superuser, a superuser should still be regarded as a
privileged user because of the full range of privileges the superuser is granted.

154 UNIX System Services z/OS Version 1 Release 7 Implementation

The additional control that BPX.DAEMON provides involves the use of kernel services such
as setuid() that change a caller's z/OS user identity. With BPX.DAEMON defined, a
superuser process can successfully run these services if the following are true:

» The caller's user identity has been permitted to the BPX.DAEMON FACILITY class profile.

» All programs running in the address space have been loaded from a library controlled by a
security product. A library identified to RACF Program Control is an example. Individual
files in the HFS can be identified as controlled programs.

Kernel services that change a caller's z/OS user identity require the target z/OS user identity
to have an OMVS segment defined. If you want to maintain this extra level of control at your
installation, you will have to choose which daemons to permit to the BPX.DAEMON FACILITY
class. You will also have to choose the users to whom you give the OMVS security profile
segments.

Give daemon authority to the kernel. Most daemons that inherit their identities from the kernel
address space are started from /etc/rc. To authorize the OMVSKERN user ID for the daemon
FACILITY class profile, issue the following commands:

RDEFINE BPX.DAEMON OWNER(SECADM) UACC(NONE)
PERMIT BPX.DAEMON CLASS(FACILITY) ID(OMVSKERN) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

Important: If the BPX.DAEMON FACILITY class is not defined, your system has
UNIX-level security as described in 3.18.2, “UNIX-level security” on page 153. In this case,
the system is less secure.

In order for daemon processes to be able to invoke setuid() for superusers, define a
superuser with a user ID of BPXROOT on all systems. To define the BPXROQOT user ID,
issue:

ADDUSER BPXROOT DFLTGRP(OMVSGRP) OMVS(UID(0) HOME('/')
PROGRAM('/bin/sh') NOPASSWORD

Exactly how requests are passed to a daemon depends on the type of daemon. For
TCP/IP-based daemons like the telnet or rlogin daemons, the user request is passed over a
socket connection from the IP network. For the cron daemon, the request is passed via a
parameter area and a cross memory post to the daemon.

Important: It can easily be seen that daemon authority is far-reaching and offers
possibilities for compromising the security and integrity of the system. Therefore, READ
access to profile BPX.DAEMON should be given to as few user IDs in the system as
possible. Some examples of daemons that need READ access to BPX.DAEMON are:
cron, uucpd, rlogind, and rshd.

3.19.2 RACF program control protection

The purpose of protecting load modules is to provide installations with the ability to control
who can execute what programs and to treat those programs as assets. Any program loaded
into an address space with daemon authority must be a controlled program.

You protect individual load modules (programs) by creating a profile for the program in the
PROGRAM general resource class. A program protected a profile in the PROGRAM class is
called a controlled program.

Chapter 3. Establish security for z0S UNIX 155

The name of the profile can be complete, in which case the profile protects only one program,
or the name of the profile can end with an asterisk (*), in which case the profile can protect
more than one program. For example, a profile named ABC* protects all programs that begin
with ABC, unless a more specific profile exists. In this way you can find which programs are
causing the environment (such as PADS checking) to not work.

RDEFINE PROGRAM * UACC(READ) ADDMEM +
('SYS1.LINKLIB'/'****%*'/NOPADCHK +
'CEE.SCEERUN'/RLTPAK/NOPADCHK +
'SYS1.SEZALOAD'//NOPADCHK)

SETROPTS WHEN(PROGRAM) REFRESH

The profile for a controlled program must also include the name of the program library that
contains the program and the volume serial number of the volume containing the program
library. The profile can also contain standard access list of users and groups and their
associated access authorities.

Program access to data sets (PADS)

PADS allows an authorized user or group of users to access specified data sets with the
user's authority to execute a certain program. That is, some users can access specified data
sets at a specified access level only while executing a certain program (and the program
access is restricted to controlled programs).

To set up program access to data sets, create a conditional access list for the data set profile
protecting the data sets. To do this, specify WHEN(PROGRAM(program-name)) with the 1D
and ACCESS operands on the PERMIT command. Specifying the WHEN(PROGRAM)
operand requires that the user or group specified must be running the specified program to
receive the specified access.

Choosing between the PADCHK and NOPADCHK operands: With the ADDMEM operand of
the RDEFINE and RALTER commands, you can also specify PADCHK or NOPADCHK as
follows:

NOPADCHK NOPADCHK means that RACF does not perform the program-accessed data
checks for the program. The program is loaded and has access to any
currently opened program-accessed data sets, even though the user
ID/program combination is not in the conditional access list. NOPADCHK
allows an installation to define entire libraries of modules (such as the PL/I
transient routines or ISPF) as controlled programs without having to give
each of these modules explicit access to many program-accessed data sets
Use NOPADCHK if you trust the programs to access only data they should.

PADCHK PADCHK (the default) means that RACF checks for program-accessed data
sets that are already open before executing the program. If there are any
open program-accessed data sets, RACF ensures, before it allows this
program to be loaded, that this user ID/program combination is in the
conditional access list of each data set.

Program control considerations for daemons

Program control can be used to protect both MVS data sets and files that are in HFS or zFS
file systems. In most cases, programs loaded into an address space that requires daemon
authority must be controlled programs, as follows:

» All HFS programs must be program-controlled.

You define profile BPX.FILEATTR.PROGCTL in the FACILITY class and authorize your
z/OS UNIX administrators to have READ access to allow them to set the program control
extended attribute for an HFS program.

156 UNIX System Services z/OS Version 1 Release 7 Implementation

Authority to profile BPX.SUPERUSER will not be enough to perform this task. The most
obvious candidates for authorization to BPX.FILEATTR.PROGCTL are members of
administrative groups or individuals. Issue the following RACF commands:

RDEF FACILITY BPX.FILEATTR.PROGCTL OWNER(SECADM) UACC(NONE)
PERMIT BPX.FILEATTR.PROGCTL CL(FACILITY) ID(HARRY) ACCESS(READ)

» Programs loaded from MVS libraries do not have to be program-controlled if the
BPX.DAEMON.HFSCTL in the FACILITY class profile has been defined. This FACILITY
class profile was introduced in z/OS V1R2.

When defining BPX.DAEMON.HFSCTL, this can override some of the program control rules
for daemons and servers that definition of BPX.DAEMON and BPX.SERVER normally
require. BPX.DAEMON and BPX.SERVER normally restrict the daemon or server
environment to the following situations:

» Executing only those MVS programs defined to RACF in the PROGRAM class
» Executing z/OS UNIX programs defined to with the extattr +p (setting program control)

By defining BPX.DAEMON.HFSCTL and permitting the daemon or server to access that
profile, you allow it to execute MVS programs that are not defined in the PROGRAM class.
This requires that any z/OS UNIX program that it executes must be defined with extattr +p.

Note: Because defining and allowing access to BPX.DAEMON.HFSCTL slightly
weakens security in a daemon or server environment, you should carefully consider
and restrict its use to those cases where you cannot run a certain function without it.

Security checks for daemon processing
When a daemon address space starts processing, the following security processing takes
place:

» If a service that changes a caller’s z/OS user identity, such as setuid(), is used, the
kernel checks to see if BPX.DAEMON has been defined.

» Ifit has, then the kernel checks whether all programs loaded into the address space have
been defined to program control.

» If an uncontrolled program has been loaded, the address space is marked dirty.

» If marked dirty, the controlled program cannot do any of the controlled functions, such as
setuid().

» An error return code and reason code are issued. All BPX.DAEMON privileges are
revoked, including the right to check passwords.

Program control programs
The following programs are considered to be or should be program-controlled:

» All modules loaded from LPA

» Daemons that are shipped by z/OS reside in the HFS and are controlled programs, so you
do not need to define them to program control.

» RTLS libraries must be defined to program control

If you are using RTLS, you must set up FACILITY profiles as documented in the
CSVRTLxx description in zZOS MVS Initialization and Tuning Reference, SA22-7592.

Chapter 3. Establish security for zOS UNIX 157

Programs can be defined to program control in the following ways:

» MVS load modules can be loaded from a load library, where all modules in the library can
be defined to program control, or specific modules in the library can be defined to program
control.

» The module can reside in the HFS with the sticky bit on. This causes the system to search
with MVS search order and the rules for program control apply as above.

» The module can reside in the HFS with the external attribute set for program control.

3.19.3 Enhanced program security mode z/OS V1R4

Program control authorizes users to programs via PROGRAM class profiles. With program
control, programs can be protected. Program access to data sets (PADS) authorizes users to
data sets while running a particular program via DATASET profiles. With PADS, data sets
can be protected by restricting access to specified users only when running particular
programs.

Prior to z/OS V1R4, when specifying a program name in the conditional access list, the name
of the program that actually did the loading needed to be known. Situations where the user
invokes one program, which actually opens another data set, required you to know both
program names rather than just the high level program name. With this enhancement in z/OS
V1R4, you only have to know the high level name.

New enhanced security mode for PADS

In the RACF profile IRR.PGMSECURITY, in the RACF FACILITY class, a new enhanced
program security mode can be specified that provides improved usability and increased
security when using PADS.

Using IRR.PGMSECURITY, the APPLDATA specifies whether RACF will operate in basic,
enhanced, or enhanced-warning PGMSECURITY mode, as specified by using the
APPLDATA keyword. The new modes for the APPLDATA() keyword are:

(BASIC) If the APPLDATA is exactly (BASIC), then RACF will run in basic
PGMSECURITY mode.

(ENHANCED) If the APPLDATA is exactly {ENHANCED), then RACF will run in enhanced
PGMSECURITY mode.

() If the APPLDATA is empty or contains any other value, such as
(ENHWARN), RACF will run in enhanced PGMSECURITY mode, which is a
warning mode, rather than failure mode.

Recommendation: Use the ENHANCED-WARNING program security mode as part of
your implementation of ENHANCED program security mode.

ENHANCED-WARNING mode

With ENHANCED-WARNING mode, RACF ensures that programs accessing data sets
through PADS, or running execute-controlled programs, meet the added restrictions of
ENHANCED mode. However, if they do not meet the added restrictions, RACF still allows the
access if it would have worked in BASIC mode. This allows you to test your setup to make
sure it is suitable for ENHANCED mode, while continuing to operate like BASIC mode while
you adjust your profiles.

158 UNIX System Services z/OS Version 1 Release 7 Implementation

When you migrate to the new mode, you will have some profiles defined in the PROGRAM
class but probably none of them specify APPLDATA(MAIN) or APPLDATA(BASIC), as those
specifications do not mean anything in BASIC program security mode. Therefore, specify the
IRR.PGMSECURITY profile defined in the FACILITY class and use the APPLDATA to specify
your desired mode.

For example, to use the new ENHANCED-WARNING mode, do the following:

1. Use the RDEFINE command to define the IRR.PGMSECURITY profile in the FACILITY
class, and specify an APPLDATA value other than ENHANCED or BASIC; for example:

RDEFINE FACILITY IRR.PGMSECURITY APPLDATA('ENHWARN')
2. Issue the SETROPTS REFRESH command to change modes:
SETROPTS WHEN(PROGRAM) REFRESH

Attention: You should remain in warning mode until you have done at least one IPL, to
ensure that you have tested with all your daemons.

To ease migration from BASIC to ENHANCED program security mode, the mode switch does
not affect systems running any release earlier than z/OS V1R4. It also does not affect jobs,
started tasks, or TSO sessions that are already running. For this reason, you should IPL the
system at least once while in ENHANCED-WARNING mode to ensure that you test any jobs,
started tasks, and TSO users that started before you migrate from BASIC to ENHANCED
program security mode.

While running in ENHANCED-WARNING mode, you may receive messages ICH4271 or
ICH430I to indicate the need for further necessary changes. After receiving the messages,
making the relevant changes, and allowing a sufficient test period of running in
ENHANCED-WARNING mode without getting further messages, you can switch to
ENHANCED program security mode.

For additional information on this new enhancement, see zZOS V1R4.0 Security Server RACF
Security Administrator’s Guide, SA22-7683.

The mode becomes effective at SETR WHEN(PROGRAM) or SETR WHEN(PROGRAM)
REFRESH. The default mode is BASIC.

Program control and PADS will function as before if the FACILITY IRR.PGMSECURITY
profile or the FACILITY class are not activated.

RDEFINE PROGRAM defines each program control. You can add APPLDATA to specific
PROGRAM class profiles. ADDMEM is still needed for library data. Following is the definition
of specific program control:

RDEFINE PROGRAM pgmname APPLDATA('value')

The APPLDATA values are as follows:

MAIN Trusted enhanced mode program

BASIC Program exempted from enhanced PGMSECURITY, and it overrides
ENHANCED mode.

anything else Not trusted in enhanced mode

Chapter 3. Establish security for z0S UNIX 159

SPECIFIC profiles are only valid. First program must be specified as MAIN or BASIC for
authorization. MAIN applies only to first program in // EXEC PGM=program or TSOEXEC
program. BASIC applies to first program of any TCB and to all daughter TCBs. BASIC allows
use of old security programs with ENHANCED mode. You should realize that BASIC
weakens security in ENHANCED mode.

For new PADS, you should specify the first program for any mother TCB rather than the
OPENing program, for example the first program described in / EXEC PGM=program or
TSOEXEC program.

Let us consider some example of this support. When you use // EXEC PGM=A and program
A links to program B, which does OPEN, prior to z/OS V1R4, you had to specify B in a
conditional access list, and maybe specify A unless defined as NOPADCHK. Now you can
specify either A or B. If running in ENHANCED mode, program A must be specified as MAIN
or BASIC. You still need to specify the other program unless it is defined as NOPADCHK.

When you use // EXEC PGM=A and module A ATTACHes module B, which does an OPEN,
prior to z/OS V1R4, you had to specify module B in a conditional access list, and maybe
specify module A unless it was defined as NOPADCHK. Now you can specify either module A
or module B. If running with ENHANCED mode, module A must be MAIN or BASIC, or B must
be BASIC. You still need to specify the other module unless it is defined as NOPADCHK.

BPX.DAEMON and BPX.MAINCHECK defined

If you enable enhanced program security, and you have any daemons or servers that run
execute-controlled programs (MVS programs defined to RACF in the PROGRAM class using
EXECUTE authority, or loaded from libraries using EXECUTE authority), then you must
define the initial program executed by your daemon or server as a trusted program to RACF
via the PROGRAM class by specifying APPLDATA(MAIN) for the profile. If this initial program
resides in the z/OS UNIX file system, rather than in an MVS library, you will need to move it to
an MVS library.

Additionally, you can choose whether to extend the enhanced program security protection to
your UNIX daemons and servers that do not make use of RACF execute-controlled
programs. You would enable this function by defining the profile BPX.MAINCHECK to RACF
in the FACILITY class. Again, you would need to ensure that the initial program executed by
your daemon or server resides in an MVS library and you would need to define it to class
PROGRAM with APPLDATA(MAIN).

Setting up enhanced security mode
When using RACF as your security product and z/OS V1R4 is installed, do the following:

» Enable RACF enhanced program security selecting a mode:
RDEFINE FACILITY IRR.PGMSECURITY APPLDATA('ENHWARN')

» Enable BPX.MAINCHECK:
RDEFINE FACILITY BPX.MAINCHECK UACC(NONE)

» Determine which privileged HFS programs you run that are affected by setting up RACF
enhanced program security. The RACF programs that would be affected are the main
jobstep programs of one of the following types of privileged applications:

— z/OS UNIX applications that require a program-controlled environment. This includes
applications that require permission to BPX.DAEMON, BPX.SERVER or
BPX.SRV.userid or those that use a privileged function like __passwd(). Examples of
applications that would be affected by this are rlogin, telnet, and su.

160 UNIX System Services z/OS Version 1 Release 7 Implementation

— Applications that gain access to MVS data sets by using RACF program access to data
sets via entries in a DATASET class profile's conditional access list.

3.19.4 2/0OS UNIX highest level of security example

Cron is a clock daemon that runs commands at specified dates and times. Figure 3-56 on
page 161 shows the cron daemon running a shell script for user ID BOB (UID=25). The script
will copy HFS files to an MVS data set. Before cron can run the script, it forks a new process
and sets the identity of this process to UID=25 and the MVS identity to BOB. This ensures
that the script can be run successfully with BOB's shell environment and BOB's access to his
MVS data sets. When the job is done, the cron child process ends, and cron will not have any
access to BOB's MVS data sets.

When setuid() SYSCALL is issued, the caller (daemon) program, and all other programs
currently loaded in the address space, must have been loaded from a z/OS data set with the
RACF Program Control activated—they must be controlled programs. Since it is the cloned
child daemon program that issues the request, it inherits the contents of its address space
from the parent daemon via fork.

This solution enables an installation to have some superusers that have authority to perform
system maintenance, for example, to manage the hierarchical file system, while other special
superusers (daemon user IDs) are allowed to change the identity of a process.

fork() i@ OMVSCRO_':] BPX.DAEMON
cron daemon Child Address '
Space OMVSCRON
P Superuser? OMVSKERN
OMVSCRON cron ‘
UlD=0
setuid(25) | — Defined to setuid
. BPX.DAEMON fails!
BOB exec cp1 -
UID=25
! Program
Control?
cpi
P | v
(copy files)
~ < ROGERS @ SC43:/etc>ls -E /usr/sbin/cron
L AN -rwxr--r-- -p- /usr/sbin/cron

/ \ ROGERS @ SC43:/etc>
/4

MVS Sy HFS File
Data Se_t

Figure 3-56 z/OS UNIX level of security

Note: The command to start the cron daemon is shown in Figure 3-56.

Chapter 3. Establish security for z0OS UNIX 161

3.19.5 Defining daemon security

After understanding the security requirements with BPX.DAEMON and program control, the
following steps describe how to define security for a daemon.

1.

Define a user ID for the daemon that is a superuser with UID=0, for example
OMVSCRON:

ADDUSER OMVSCRON DFLTGRP(OMVSGRP) OMVS(UID(0) HOME('/') PROGRAM('/bin/sh'))

Define the BPX.DAEMON FACILITY class in RACF. The name BPX.DAEMON must be
used. No substitutions for this name are allowed. UACC(NONE) is recommended. If this is
the first RACF FACILITY class defined in RACF, the SETROPTS command must be used
to activate the class.

RDEFINE FACILITY BPX.DAEMON UACC (NONE)
Activate the class if this is the first RACF FACILITY class:

SETROPTS CLASSACT(FACILITY) GENERIC(FACILITY) AUDIT(FACILITY)
SETROPTS RACLIST(FACILITY) REFRESH

Permit the daemon user ID to the BPX.DAEMON class with access READ:
PERMIT BPX.DAEMON CLASS(FACILITY) ID(OMVSCRON) ACCESS(READ)

Protect the program libraries that need to be protected from unauthorized updates. The
ADDSD command creates data set profiles for the data sets. You should protect against
unauthorized updates so that nobody can replace a daemon program with a fake daemon
program. If these profiles are already defined, this step can be skipped.

ADDSD 'SYS1.LINKLIB' UACC(READ)
ADDSD 'SYS1.SCEERUN' UACC(READ)
ADDSD 'SYS1.SEZALOAD' UACC(READ)
ADDSD 'SYS1.SEZATCP' UACC(READ)

Mark the data sets as controlled libraries. An installation has a choice of either protecting
all programs in a program library, or as individual programs. To protect all members in a
data set, specify PROGRAM *.

RDEFINE PROGRAM * ADDMEM('SYS1.LINKLIB'//NOPADCHK +
'SYS1.SCEERUN'//NOPADCHK +
'SYS1.SEZALOAD'//NOPADCHK +
'SYS1.SEZATCP'//NOPADCHK) UACC(READ)

Or, mark the cron daemon program as controlled instead of the whole library:

RDEFINE PROGRAM CRON ADDMEM('SYS1.LINKLIB'//NOPADCHK)
UACC (READ) AUDIT(ALL)

Activate RACF program control.
Place the PROGRAM profile in storage:
SETROPTS WHEN(PROGRAM) REFRESH

3.20 File security packet extattr bits

The extended attribute bits in the FSP, as shown in Figure 3-57 on page 163, give special
authorities to the files. Four extended attributes are defined:

APF-authorized programs The behavior of these programs is the same as other

programs that are loaded from APF-authorized libraries.

Program control All programs that are loaded into an address space that

requires daemon authority need to be marked as controlled.

162 UNIX System Services z/OS Version 1 Release 7 Implementation

Shared AS The program shares its address space with other programs.

Shared library Programs using shared libraries contain references to the
library routines that are resolved by the loader at run time.

< FleMode —*

() File Permission Bits
S Owner | Group | Other
extattr |g QF:m'eer
t
U rlw|x|r|wix|r|w|x
I
D
b&j’

extattr

Figure 3-57 FSP showing the extattr bits

3.20.1 External attribute bits (extattr bits)

The extattr command is used to set, reset, and display extended attributes for files to allow
executable files to be marked so they run APF-authorized, as a program-controlled
executable, or not in a shared address space. The extattr bits in the FSP are mapped as
follows:

a The program runs APF-authorized if linked AC=1. To turn on the APF-authorized bit:
extattr +a /user/shin/progd

p The program is considered program-controlled. To turn on the program-controlled bit:
extattr +p /user/sbin/progc

] The program runs in a shared address space. To turn on the shared AS bit:
extattr +s /user/shin/progb

I The program is loaded from the shared library region. To set the shared library attribute,
issue the extattr command with the +l option.

extattr +1 /user/sbhin/proga
To display or set the extended attribute bits, the following commands can be used:

1s -E
extattr

APF-authorized programs

The APF rules for programs that reside in the HFS are similar to those for programs that
reside in MVS-authorized libraries. Setting the APF-authorized extended attribute bit should
be thought of as putting that program into an authorized library. If you try to run a program
from an authorized library that is not linked AC=1, it will not run APF-authorized, but that
same program could be fetched by another that is running APF-authorized and executed in
the authorization state in which it is called, or even have its state changed.

Chapter 3. Establish security for z0S UNIX 163

Although APF-authorization is not required for programs stored in the HFS to achieve
program control, a program will run APF-authorized if the following requirements are met:

» The program must have been linked with the AC=1 attribute.
» The program must be loaded from an APF-authorized library.

» The program must be the initial program (that is, it must be the job step task program), or
it was invoked by a caller that is running APF-authorized.

If the specified program is going to be invoked as a job step program, you must linkedit it
with AC=1. For example:

c89 -W1, AC=1

In order to avoid possible integrity problems, do not set AC=1 if the program will be run in
an APF-authorized environment but not as the job step program (such as DLL).

To find out whether the APF-authorized extended attribute of the HFS file has been set, use
the 1s -E command.

Setting APF-authorization
Defining BPX.FILEATTR.APF in the FACILITY class profile controls who can set APF
authorization for HFS programs. Issue the commands:

RDEFINE FACILITY BPX.FILEATTR.APF OWNER(SECADM) UACC(NONE)
PERMIT BPX.FILEATTR.APF CL(FACILITY) ID(HARRY) ACCESS(READ)

Another profile, related to BPX.FILEATTR.APF, is BPX.DEBUG in the FACILITY class. Users
with READ access to this profile can use ptrace (via dbx) to debug programs that run with
APF authority or with BPX.SERVER authority.

RDEFINE FACILITY BPX.DEBUG OWNER(SECADM) UACC(NONE)
PERMIT BPX.DEBUG CLASS(FACILITY) ID(HARRY) ACCESS(READ)

Defining shared library programs

Although the shared library attribute is not required to achieve program control, a program is
loaded as a system shared library program if the HFS program has the shared library
extended attribute set.

To find out if the shared library extended attribute has been set, use the 1s -E command.

Profile BPX.FILEATTR.SHARELIB in the FACILITY class controls who can set the shared
library extended attribute. You need to have at least READ access before you can set the
shared library extended attribute. Issue the commands:

RDEFINE FACILITY BPX.FILEATTR.SHARELIB OWNER(SECADM) UACC(NONE)
PERMIT BPX.FILEATTR.SHARELIB CL(FACILITY) ID(HARRY) ACCESS(READ)

Program control for HFS programs only

All programs loaded into an address space that requires daemon authority need to be marked
as controlled. This means that user programs and any runtime library modules that are
loaded must be marked as controlled by setting up profile BPX.FILEATTR.PROGCTL in the
FACILITY class.

Profile BPX.DAEMON must be defined before issuing the commands:

RDEF FACILITY BPX.FILEATTR.PROGCTL OWNER(SECADM) UACC(NONE)
PERMIT BPX.FILEATTR.PROGCTL CLASS(FACILITY) ID(HARRY) ACCESS(READ)

164 UNIX System Services z/OS Version 1 Release 7 Implementation

After a file is marked program-controlled, any activity that can change its contents results in
the extended attribute being turned off. If this occurs, a system programmer with the
appropriate privilege will have to verify that the file is still correct and reissue the extattr
command to mark the file as program-controlled.

All modules loaded from LPA are considered to be controlled. RTLS libraries must be defined
to RACF for program-controlled support.

3.21 Using sanction lists

You can compile a list to contain the lists of path names and program names that are
sanctioned by the installation for use by APF-authorized or program-controlled calling
programs. This file contains properly constructed path names and program names as defined
in z/0S UNIX System Services User’s Guide, SA22-7801.

Sanction lists contain three separate lists delineated by three keywords:

:authprogram_path This keyword is the start of a list of directories that is only used in
the execution of an hfsload (or C dlload), exec, spawn, or
attach_exec from an authorized program.

:programcontrol_path This keyword is the start of a list of directories that is only used in
the execution of an hfsload (or C dlload), exec, spawn, or
attach_exec from an executable that is running program controlled.

afprogram_name This keyword is the start of a list of program names that are
allowed to get control of APF-authorized programs as a result of an
exec or spawn. These names are MVS program names.

3.21.1 Creating a sanction list

Decide what directories and what programs are to be set into the sanction list file. You can
partially construct this file and add path names and program names as you go along. A
partially complete file can be activated and when additional entries are known, this file can be
updated. A background task automatically checks this file every 15 minutes for updates and
then incorporates them.

You also need to be aware that only one sanction list check is done for each program
invocation. Although links in directories are supported, sanction list processing only performs
one check. This check uses the path name or program name that was specified by the user.

BPXPRMxx PARMLIB member

Use the AUTHPGMLIST statement in BPXPRMxx to define the path name for the sanction
list; to activate it use the SETOMVS command. Specify the path name as follows:

AUTHPGMLIST(*/etc/authfile”)

Activate the sanction list as follows:
SETOMVS AUTHPGMLIST="/etc/authfile’

Chapter 3. Establish security for z0S UNIX 165

/**/
[* */

/* Name: Sample authorized program list */

[* */

/* Description: Contains lists of approved directories and */

/* program names from which privileged programs */

/* may be invoked */

[* */
/***/
/***/

/* Authorized program directories */
/** """" * %k k k% /

rauthprogram_path
/bin/test
/bin/test/beta

/***/

/* Program control directories */
/**' K %k Kk ok ok k% /

:programcontrol_path
/in/test/specials

/***/

/* APF authorized programs */
/** kkkkhkkk ""/

:apfprogram_name
PAYOUT

Figure 3-58 Sample authorized program list

You can turn off sanction list checking with the SETOMVS command:
SETOMVS AUTHPGMLIST=NONE

3.22 Security for servers

166

This chapter describes security for your server applications. It uses the word “server” to mean
“server application,” which is an application that provides a service for clients. This server
could be part of a software product that will run on any company’s z/OS computing
environment, or it might be written by your application programmers for your own company’s
use.

Appropriate decisions need to be made regarding server security. In the past, applications
had to run as APF-authorized to be able to call RACF to build task-level security. z/OS UNIX
provides services for servers written in C to create task-level security without being
APF-authorized. This chapter describes how a server can create thread-level security
environment and how to control which servers have the ability to do so. It also describes the
procedures for preparing a z/OS system for a server that uses thread-level security for its
clients. (Note that a thread on UNIX systems corresponds to a task on MVS; so, thread-level
security is the same as task-level security.)

z/OS UNIX supports two fundamental types of application servers: multithreaded servers and
single-threaded servers.

» A multithreaded server has multiple sequential flows of control. In this family of
applications, the server can process more than one unit of work at a time.

» A single-threaded server has one sequential flow of control. In this family of applications,
the server processes one unit of work at a time

UNIX System Services z/OS Version 1 Release 7 Implementation

3.22.1 The pthread_security_np() callable service

z/OS UNIX provides the pthread_security_np() callable service and support through the C
run-time library. It enables unauthorized multithreaded servers to create and delete a RACF
security environment in a way that is mediated and controlled by the kernel and RACF.
Multithreaded servers can customize the security environment of a thread, thus allowing it to
be executed under a different RACF identity than that of the server. You must authorize the
server to use that service.

The term unauthorized refers to applications that are not APF-authorized and do not run in
supervisor state or in a system storage protection key.

A server that uses the pthread_security_np() service can customize the RACF identity of a
thread. Such server initiates a thread that processes the client’s request. If the server
customizes the thread initiated for the client with the client’'s RACF identity, any resource
access decisions to RACF-protected resources are made using the client's RACF identity
and authorizations.

Depending on the trust you place in a server, you have the option of enforcing whether to use
both the server's RACF identity and the RACF identity of the client in resource access control
decisions on z/0OS.

You can choose one of the following:

» Only the RACF user ID of the client is used in local resource access control decisions
made by RACF on z/OS.

» Both the RACF user ID of the server and the RACF user ID of the client are used in local
resource access control decisions on z/OS.

The use of the pthread_security_np service is in part protected by profile BPX.SERVER in
class FACILITY.

3.22.2 Establishing the correct level of security for servers

The choice of security level is a decision more likely made by management than by security
administrators. That decision depends on answers to the questions “How secure does our
company’s information need to be?” and “How much do we trust our employees?” Regardless
of who makes the decision, it is important that both application developers and security
administrators understand the two levels of security supported by z/OS, and the differences
between them. The two levels are: UNIX level and z/OS UNIX level.

Note: The discussion about the two levels of security (UNIX level and z/OS UNIX) for
servers follows exactly the same line as the one regarding daemons in chapter 2.8 of this
book. Daemons run software without client involvement and they are permitted to profile
BPX.DAEMON, servers involve clients and are permitted to profile BPX.SERVER.The
difference comes in the level of access to BPX.SERVER you may choose for your servers.

UNIX level: BPX.SERVER is not defined

If the BPX.SERVER FACILITY class is not defined, your system has UNIX-level security. In
this case, the system is less secure. Server programs that run with superuser authority can
issue pthread_security_np() function to change the MVS identity of a thread.

To establish UNIX-level security, assign a UID of 0 to your superusers and assign a UID of O
to the user ID used for running server programs; for example, SERVSTU.

Chapter 3. Establish security for z0S UNIX 167

z/0S UNIX level: BPX.SERVER is defined
There are two z/OS UNIX levels:

» Profile BPX.SERVER defined in the FACILITY class.

» Profiles BPX.SERVER and BPX.MAINCHECK are defined (profiles in class PROGRAM
providing enhanced program security). You can use enhanced program security for any
privileged z/OS UNIX application that requires a program-controlled environment. An
example is the __passwd() service, which is used by applications such as telnet and
rlogin.

Issue the following command to establish the first level of z/OS UNIX security for servers:
RDEF FACILITY BPX.SERVER OWNER(SECADM) UACC(NONE)

3.22.3 Two levels of z/0S UNIX security for servers

168

We now examine the two levels of z/OS UNIX security:
» BPX.SERVER defined
» BPX.SERVER and BPX.MAINCHECK defined

BPX.SERVER defined

If BPX.SERVER FACILITY class is defined, your system has z/OS UNIX-level security. In this
case, the system is more secure than a traditional UNIX system. If this profile is defined, then
the RACF user ID that is associated with the server needs at least READ authority to use the
pthread_security_np() service.

This profile is also used to restrict the use of the BPX1ACK service, which determines access
authority to z/OS resources.

Servers with authority to BPX.SERVER must run in a clean program-controlled environment.
z/OS UNIX verifies that the address space has not loaded any executables that are
uncontrolled before it allows any of the following services that are controlled by z/OS UNIX to
succeed:

seteuid

setuid

setreuid
pthread_security_np()
auth_check_resource_np()
_login()

_spawn() with userid change
_password()

vVVyVYyVvYyVvYVYYyvYYyYy

You can also use the BPX.SERVER profile to set the scope of z/OS resources that the server
can access when acting as a surrogate for its clients. There are two levels of authority that
can be granted to the server using thread-level security services:

UPDATE access Lets the server establish a thread-level (task-level) security environment
for clients connecting to the server. When the RACF identity of the server
has been granted UPDATE authority to BPX.SERVER in the RACF
FACILITY class, the server is capable of acting as a surrogate for the
client. This means that the identity of the thread associated with the
request from the server’s client runs with the z/OS user ID of the server’s
client. Access control decisions to z/OS resources (such as data sets)
and to z/OS UNIX resources (such as HFS files) that are accessed by the

UNIX System Services z/OS Version 1 Release 7 Implementation

client’s thread in the server, are made using the RACF identity of the
client.

READ access The user ID of the server and the user ID of the client must be authorized
to the resources which the server will be accessing. A thread-level
security context in which both the client’s and server’s identity is used in
the access control decision and a password was not supplied by the
client is called an unauthenticated client security context.

Depending on the design and implementation of the client/server
application, a client may have to supply an authenticator to the server.
For example, the client may be prompted to supply a password or a
password substitute, such as a RACF PassTicket to the server to prove
its identity. If a RACF password or PassTicket is specified as a parameter
on the pthread_security_np() service, and the password or PassTicket is
valid for the client user ID, even if the server’s user ID has been granted
READ access to the profile BPX.SERVER in the RACF FACILITY class,
the task level security environment is only used in access control
decisions. That is, only the RACF user ID of the client is used in making
access control decisions. This task level security environment created by
a server is called an authenticated client security context. Since the client
has trusted the server sufficiently to supply a RACF password (or
PassTicket) to the server, the server is granted the capability of acting as
a surrogate for that client (user).

This capability enables you to determine:
— On behalf of which user IDs the server can act
— What resources the server can access when acting on behalf of
one of its clients

Potentially, for additional security checking, two audit records can be produced to audit:
» The client accessing the resource
» The server accessing the resource on behalf of the client
If you choose to implement this additional security checking, you might need to authorize the

server’s user ID to the resource profiles that protect the resources accessed by the server on
behalf of its clients.

BPX.SERVER and BPX.MAINCHECK defined

The steps to establish the second level of z/OS UNIX security for servers are exactly the
same as for daemons. Refer to 3.19, “z/OS UNIX level security for daemons” on page 154 for
how to set up enhanced program security.

3.23 Checking authority to use protected resources

Application developers might want a server to check the authority of a user to access profiles
defined to RACF general resource classes. The resources include printers and tapes, but not
HFS files and directories and MVS data sets. Through z/OS UNIX, the
auth_check_resource_np (BPX1ACK) callable service enables application servers to invoke
RACF authorization services. This service is also supported by the C run-time library through
the __check_resource_auth_np() function call.

The server must have read access to the BPX.SERVER FACILITY class profile or have
UID(0); in addition, all server modules must be defined to RACF.

Chapter 3. Establish security for z0S UNIX 169

For more information on the auth_check_resource_np callable service, see z/OS UNIX
System Services Programming: Assembler Callable Services Reference, SA22-7803.

3.23.1 Limitations of RACF client ACEE support

If both the server’s RACF identity and the client’'s RACF identity are used to make access
decisions, you should be aware of limitations of the RACF client ACEE support.

» RACROUTE REQUEST=FASTAUTH processing does not check both the server and
client RACF identities automatically. Unauthorized servers cannot use the RACROUTE
REQUEST=LIST instruction to build in-storage profiles for RACF defined resources.
Profiles must reside in storage before RACROUTE REQUEST=FASTAUTH can verify a
user’s access to a resource.

» The client/server relationship is not propagated from the server.

If your server controls access to resources by checking and authenticating both the server’s
RACF identity and client’'s RACF identity, treat servers you do not trust as end points on z/OS.
These servers should not be allowed to submit batch jobs or use the services of other servers
that run exclusively under the identity of the client. You must ensure that servers that do not
meet this criteria are not authorized to the profile BPX.SERVER in the RACF FACILITY class.

3.23.2 Defining servers to use thread-level security
This section shows how to set up servers. The following steps are for a sample server called
SERVER1. As you add servers, you will need to follow similar procedures.

1. All programs that are loaded into an address space requiring server authority (including
the server program and any run-time library modules) need to be marked as controlled.

To make all programs controlled see “Program control programs” on page 157.
2. Assign a user ID to the server:

AU SERVSTU DFLTGRP(STG) OWNER(STG) OMVS(AUTOUID HOME(¢/*) PROG(°/bin/sh’)) +
NOPASSWORD

3. Create a cataloged procedure:

//SERVER1 PROC

//DATASRVR EXEC PGM=SERVER1,REGION=OM,TIME=NOLIMIT,
// PARM=POSIX(ON) ALL31(ON)/ serverparms
//SYSPRINT DD SYSOQUT=*

4. In order for this SERVER1 cataloged procedure to obtain control with the desired user
identity, add it to the RACF STARTED class:

RDEF STARTED SEVER1.** OWNER(SECADM) STDATA(USER(SERVSTU) GROUP(STG))

5. The next decision that must be made is the level of authority to be granted to the server
using thread-level security services. The BPX.SERVER FACILITY class profile controls
the server’s access to the pthread_security_np() service.

There are two choices when setting the server’s authority:

— UPDATE access allows the server to establish a thread-level (task-level) security
environment for clients connecting to the server. Decisions about access control for
z/OS resources (such as data sets) and to z/OS UNIX resources (such as HFS files)
that are accessed by the client’s thread in the server are made using only the RACF
identity of the client.

To give UPDATE access in the BPX.SERVER profile in class FACILITY to user ID
SERVSTU:

170 UNIX System Services z/OS Version 1 Release 7 Implementation

PERMIT BPX.SERVER CLASS(FACILITY) ID(SERVSTU) ACCESS(UPDATE)

— READ access allows the server to establish a thread-level security environment for the
clients that it services. However, unless the server has specified a valid RACF
password or PassTicket on the pthread_security_np() service invocation, the user ID of
the server and the user ID of the client are used in resource access control decisions.
Following is the PERMIT command to give SERVSTU server authority for
unauthenticated clients:

PERMIT BPX.SERVER CLASS(FACILITY) ID(DATASRVR) ACCESS(READ)

6. If you are installing a product that uses thread-level security services, check the
documentation that is supplied with the product to determine if the server requires READ
or UPDATE access to the BPX.SERVER profile.

If you grant READ access to the BPX.SERVER profile in the FACILITY class, and the
server does not request a password or PassTicket for its clients, both the server’s user ID
and the client’s user ID are used in decisions about resource access control. Additional
security administration will have to be performed to ensure that both the server’s user ID
and the client’s user ID were appropriately authorized to the resources that are accessed
by the server.

7. To start SERVERH1, issue the following command from the MVS console:
S SERVERI

3.23.3 Defining servers to process users without passwords

Depending on the design and implementation of a client/server application, a client may not
supply an authenticator to the server. For example, some servers process user requests that
come from generic user IDs representing anonymous users, or use a method of
authentication other than a user ID and password combination.

In this case, in which the RACF password or password substitute (such as the RACF
PassTicket) is not specified on the pthread_security np() service invocation, an additional
check is made to ensure that the server is authorized to act as the client. z/OS UNIX uses
profiles defined to the RACF SURROGAT class to authorize the server to act as a surrogate
of a client. Profiles defined to the SURROGAT class are of the form:

BPX.SRV.<userid>
where <userid> is the MVS user ID of the user that the server will act as a surrogate of.
Some servers have the requirement to process user requests that come from generic user

IDs representing anonymous users. In order for servers to process requests for thread-level
security without passwords, follow the steps shown below.

The following steps are for a sample server called SERVER1 (run by user ID SERVSTU) that
can support user ID PUBLIC without a password. As you add more servers, you will need to
follow similar procedures.
To create the SURROGAT class profile for user PUBLIC, issue:

RDEFINE SURROGAT BPX.SRV.PUBLIC UACC(NONE)

A similar SURROGAT profile is required for each user ID that a server must support without a
password.

To permit server SERVERT1 to create a thread-level security environment for user PUBLIC,
issue the PERMIT command:

PERMIT BPX.SRV.PUBLIC CL(SURROGAT) ID(SERVSTU) ACCESS(READ)

Chapter 3. Establish security for z0S UNIX 171

3.24 Security for operations in zZ/OS UNIX

The SUPERUSER.FILESYS.VREGISTER resource only lets a server like NFS initialize.
Users that are connected as clients through facilities such as NFS do not get special
privileges based on this resource or other resources in the UNIXPRIV class.

Authorization to the BPX.DEBUG resource is also required to trace processes that run with
APF authority or BPX.SERVER authority. For example, a user debugging a daemon would
want to use the SUPERUSER.PROCESS.GETPSENT, SUPERUSER.PROCESS.KILL, and
SUPERUSER.PROCESS.PTRACE privileges.

SUPERUSER.FILESYS.MOUNT

This profile allows a user to issue the TSO/E MOUNT command or the mount shell command
with the nosetuid option. Also allows users to unmount a file system with the TSO/E
UNMOUNT command or the unmount shell command mounted with the nosetuid option.

Users permitted to this profile can use the chmount shell command to change the mount
attributes of a specified file system.

READ Allows a user to issue the TSO/E MOUNT command or the mount shell
command with the setuid option. Also allows user to issue the TSO/E
UNMOUNT command or the unmount shell command with the setuid option.

Users permitted to this profile can issue the chmount shell command on a file
system that is mounted with the setuid option.

UPDATE Allows the user to issue the TSO/E MOUNT command or the mount shell
command with the setuid option. Also allows user to issue the TSO/E
UNMOUNT command or the unmount shell command with the setuid option.

Users permitted to this profile can issue the chmount shell command on a file
system that is mounted with the setuid option.

RDEFINE UNIXPRIV SUPERUSER.FILESYS.MOUNT UACC(NONE)
PERMIT SUPERUSER.FILESYS.MOUNT CLASS(UNIXPRIV) ID(ROGERS) ACCESS(UPDATE)
SETROPTS RACLIST(UNIXPRIV) REFRESH

SUPERUSER.FILESYS.QUIESCE
This profile allows a user to issue quiesce and unquiesce commands for a file system
mounted with the nosetuid option.

READ Allows a user to issue quiesce and unquiesce commands for a file system
mounted with the nosetuid option.

UPDATE Allows a user to issue quiesce and unquiesce commands for a file system
mounted with the setuid option.

SUPERUSER.FILESYS.PFSCTL

Allows a user to use the pfsctl() callable service. Only READ access is required.

zFS with z/OS V1R3 supports the SUPERUSER.FILESYS.PFSCTL profile of the UNIXPRIV
class. This makes it possible for a zFS administrator to have just READ authority to this
UNIXPRIV profile resource, SUPERUSER.FILESYS.PFSCTL, rather than requiring a UID of
0 for zfsadm commands that modify zFS file systems or aggregates. The same is true for the
other zFS commands and utilities. So zFS administrators do not need a UID of 0.

In order to allow the zFS administrator to mount and unmount file systems, permit update
access to another profile, SUPERUSER.FILESYS.MOUNT, in class UNIXPRIV.

172 UNIX System Services z/OS Version 1 Release 7 Implementation

Note: UPDATE access is needed if the user needs to mount, chmount, or unmount file sys-
tems with the setuid option; otherwise, READ access is sufficient.

UNIXPRIV authorization is invoked by creating the needed resources in the UNIXPRIV class
and then giving users READ authority to it, as follows:

SETROPTS CLASSACT (UNIXPRIV)

SETROPTS RACLIST(UNIXPRIV)

RDEFINE UNIXPRIV SUPERUSER.FILESYS.PFSCTL UACC(NONE)

PERMIT SUPERUSER.FILESYS.PFSCTL CLASS(UNIXPRIV) ID(ROGERS) ACCESS(READ)

SUPERUSER.FILESYS.VREGISTER

This profile allows a server to use the vreg() callable service to register as a VFS file server.
Only READ access is required.

SUPERUSER.IPC.RMID

This profile allows a user to issue the ipcrm command to release IPC resources. Only READ
access is required.

SUPERUSER.PROCESS.GETPSENT

This profile allows a user to use the w_getpsent() callable service to receive data for any
process. Only READ access is required.

SUPERUSER.PROCESS.KILL

This profile allows a user to use the kil1() callable service to send signals to any process.
Only READ access is required.

SUPERUSER.PROCESS.PTRACE

This profile allows a user to use the ptrace() function through the dbx debugger to trace any
process.

It also allows users of the ps command to output information on all processes. This is the
default behavior of ps on most UNIX platforms. Only READ access is required.

SUPERUSER.SETPRIORITY

This profile allows a user to increase his own priority. Only READ access is required.

3.24.1 BPX.SAFFASTPATH

Enables faster security checks for file system and IPC constructs.

When the BPX.SAFFASTPATH FACILITY class profile is defined, the security product is not
called if z/OS UNIX can quickly determine that file access will be successful. When the
security product is bypassed, better performance is achieved, but successful file accesses
cannot be audited. If the security product is called, it is still possible that access will be
successful, and that audit records will be created; for example, when the permission bits do
not grant access, but UNIXPRIV authority, or an access control list, does. Be aware that
auditing successful accesses can generate enormous amounts of audit records, particularly
for directory searches. Use this profile as follows:

» If the BPX.SAFFASTPATH FACILITY class profile is defined when the system is IPLed,
the SAF fastpath support is enabled.

Chapter 3. Establish security for z0S UNIX 173

» Ifitis defined after the system is IPLed, you must issue the SETOMVS or SET OMVS
operator command to activate the fastpath support.

You can also start the refresh by issuing the following command, where xx represents a
BPXPRMxx member that is empty:

SET OMVS=xx

Note: Users do not need to be permitted to the BPX.SAFFASTPATH profile.

To define the BPX.SAFFASTPATH profile, issue the following RACF command:
RDEFINE FACILITY BPX.SAFFASTPATH UACC(NONE)

Tip: If your installation uses the IRRSXTOO exit to control HFS access, do not define the
BPX.SAFFASTPATH profile.

3.24.2 BPX.JOBNAME

To control which users are allowed to set their own job names, use the _BPX_JOBNAME
environment variable or the inheritance structure on spawn.

Users with READ or higher permissions to this profile can define their own job names.

3.24.3 BPX.STOR.SWAP

This profile in the FACILITY class controls which users can make address spaces
nonswappable. Users permitted with at least READ access to BPX.STOR.SWAP can invoke
the __mlockall() function to make their address space either nonswappable or swappable.

When an application makes an address space nonswappable, it may cause additional real
storage in the system to be converted to preferred storage. Because preferred storage cannot
be configured offline, using this service can reduce the installation’s ability to reconfigure
storage in the future. Any application using this service should warn the customer about this
side effect in their installation documentation.

3.24.4 BPX.WLMSERVER

This profile in the FACILITY class controls access to the WLM server functions _server_init()
and _server_pwu(). It also controls access to these C language WLM interfaces:

QuerySchEnv()
CheckSchEnv()
DisconnectServer()
DeleteWorkUnit()
JoinWorkUnit()
LeaveWorkUnit()
ConnectWorkMgr()
CreateWorkUnit()
ContinueWorkUnit()

YyVVYyVYYVYVYYVYYY

A server application with READ permission to this FACILITY class profile can use the server
functions, as well as the WLM C language functions, to create and manage work requests.

174 UNIX System Services z/OS Version 1 Release 7 Implementation

3.24.5 Security for ServerPac and CBPDO install

Security requirements for ServerPac and CBPDO installation are necessary before you can
do the ServerPac or CBPDO installation or install maintenance, as follows:

» The user ID must be UID=0 or permitted to the BPX.SUPERUSER resource in the RACF
FACILITY class, and be connected to a group that has a GID.

» Define the following user ID and group IDs in your security data base. Even though they
are lowercase in the example, these names should be defined in uppercase for ease of
use and manageability.

— Group IDs are as follows:

* uucpg
.« TTY

— User IDs are as follows:

* uucp

Rules for the user ID and group IDs

The GID and UID values assigned to these IDs cannot be used by any other IDs. They must
be unique. If you assign the same GID to multiple groups, control at an individual group level
is lost, because the GID is used in z/OS UNIX security checks. Because RACF groups that
have the same GID assignment are treated as a single group during the z/OS UNIX security
checks, the sharing of resources between groups might happen unintentionally. Likewise, the
sharing of UIDs allows each user access to all of the resources associated with the other
users of that shared UID. The shared access includes not only z/OS UNIX resources such as
files, but also includes the possibility that one user could access z/OS UNIX resources of the
other user that are normally considered to be outside the scope of z/OS UNIX.

You must duplicate the required user ID and group names in each security database,
including the same UID and GID values in the OMVS segment. This makes it easier to
transport the HFS data sets from test systems to production systems. For example, the group
name TTY on System 1 must have the same GID value on System 2 and System 3. If it is not
possible to synchronize your databases you will need to continue running the FOMISCHO job
against each system after z/OS UNIX is installed.

RACF definitions

The following describes how to define these IDs to RACF. (If you are using an equivalent
security product, refer to that product’s documentation.) All the RACF commands are issued
by a TSO/E user ID with RACF SPECIAL authority. Three procedures are described:

» If you use uppercase group and user IDs
» If you use mixed-case group and user IDs
» If you have problems with names such as UUCP, UUCPG, and TTY

If you use uppercase group and user IDs

If you use only uppercase group and user IDs on your system, RACF users can use the
BPX1SEC1 sample in SAMPLIB or the following commands to define the group IDs and user
IDs:

» To define the TTY group:
ADDGROUP TTY (OMVS(GID(2))

Where 2 is an example of a unique group ID on your system. Do not connect users to this
group. This is the same group that is specified on the TTYGROUP statement in the
BPXPRMxx PARMLIB member on your target system.

Chapter 3. Establish security for z0OS UNIX 175

Certain shell commands, such as mesg, talk, and write require pseudoterminals to have a
group name of TTY. When a user logs in, or issues the OMVS command from TSO/E, the
group name associated with these terminals is changed to TTY. As part of installation, you
had to define the group TTY or use the group alias support.

Note: Give this group a unique GID and do not connect users to this group.

Recommendation: To make it easier to transport the data sets from test systems to
production systems, be sure that this entry is duplicated in all of your security data
bases, including the same UID and GID values in the OMVS segment

» To define the UUCPG group:
ADDGROUP UUCPG OMVS(GID(8765))
Where 8765 is an example of a unique group ID on your system.
» To define the UUCP user ID, issue:

ADDUSER UUCP DFLTGRP(UUCPG) PASSWORD (xxxxxxx)
OMVS(UID(396) HOME(’/usr/spool/uucppublic®) PROGRAM(’/bin/sh®))

Where 123456 is an example of a unique account number and 396 is an example of a
uniqgue OMVS UID. Do not use UID(0).

If you use mixed-case group and user IDs

If you already use mixed-case group and user IDs on your system and the user (uucp) and
group (uupcg) do not conflict with existing names, perform the steps for uppercase IDs as in
“If you use uppercase group and user IDs” on page 175.

It is not necessary to add the lowercase or mixed-case names to your alias table, mapping
them to uppercase. Using the alias table degrades performance and increases systems
management and complexity. When lowercase or mixed-case names are not found in the
alias table, or there is no table active, they are folded to uppercase.

If you have problems with names such as uucp, uucpg, and TTY

If names such as uucp, uucpg, and TTY are not allowed on your system (or if they conflict
with existing names), these are the RACF commands to define the group ID and user IDs:

» To define a group ID instead of the TTY group, issue:
ADDGROUP XXTTY OMVS(GID)2))

Where 2 is an example of a unique group ID on your system, and XXTTY is replaced by a 1-
to 8-character group ID of your choice. Do not connect users to this group. This would be
the same group name to be specified in the TTYGROUP statement in the BPXPRMxx
PARMLIB member on your target system.

» To define a group ID instead of the uucpg group, issue:
ADDGROUP xxuucpg OMVS(GID(8765))

Where 8765 is an example of a unique group ID on your system, and xxuucpg is replaced
by a 1- to 8-character group ID of your choice.

» To define a uucp user ID, issue:

ADDUSER xxuucp DFLTGRP(UUCPG) PASSWORD (XXXXXXX)
OMVS(UID(396) HOME(’/usr/spool/uucppublic®) PROGRAM(’/bin/sh’))

Where 396 is an example of a unique UID (do not use a UID of 0) and xxuucp is replaced
by a user ID of your choice. This is a normal user ID that owns all the UUCP files and

176 UNIX System Services z/OS Version 1 Release 7 Implementation

directories. Use this user ID when editing configuration files or performing other
administrative tasks.

» Setup auser ID alias table.

Using the alias table causes poorer performance and increases systems management
costs and complexity.

If you do not have a user ID alias table defined, you need to create one. This must be
done first on your driving system and then on any system image using this product. This
fits in with the IBM strategy to place all customized data in the /etc directory. This table is
specified by the USERIDALIASTABLE keyword in the BPXPRMxx PARMLIB member.
Because the user ID name alias table must be protected from update by nonprivileged
users, only users with superuser authority should be given update access to it. All users
should have read access to the file.

Your userid alias table will need to contain your MVS chosen names and the associated
required names. Your chosen MVS user ID and group names must be located in columns
1-8 and the associated aliases must be located on the same line in columns 10-17.

» Activate the userid alias table. If you are already using the userid alias table, new
database queries will yield the new alias if the user ID performing the query has
read/execute access to the userid/group name alias table. The table is checked every 15
minutes and refreshed if it has been changed. If a change needs to be activated sooner,
you can use the SETOMVS or SET OMVS operator commands. If you are not using the
userid alias table, you can use the SET OMVS operator command to activate it now. For
example:

SET OMVS USERIDALIASTABLE=/etc/tablename

Where /etc/tablename is the name of your userid alias table. You can also use the
SETOMVS operator command. See z/0OS MVS System Commands, SA22-7627 for a
complete description of the SET OMVS and SETOMVS commands.

» Update your BPXPRMxx PARMLIB member, specifying the USERIDALIASTABLE to
make this change permanent for your next IPL.

» Perform these tasks on all of your driving, test, and production system images.

3.25 Auditing for z/OS UNIX

The auditing for z/OS UNIX System Services comprises the following steps: creating an audit
policy (which files/directories to audit, level of access for violations and successes, format,
and frequency of reports), setting up audit controls, collecting SMF records, producing
reports, follow-up, and corrective actions; see Figure 3-59 on page 178.

RACF provides utilities for unloading SMF data (IRRADUOO) and data from the RACF
database (IRRDBUOQO) that can be used as input in audit reports.

Chapter 3. Establish security for z0S UNIX 177

o AR

z/OS UNIX
User

HFSH>

Files and directories:

\‘ (FSP)/ Audit options file owner can control

Audit options security auditor can control

RACF
i Audit reports

SMF —’
ecords ——

Figure 3-59 Auditing options for zZ0S UNIX

Every file and directory has security information in the FSP as indicated in Figure 3-60 on
page 179, which consists of:

v

File access permissions

UID and GID of the file

Audit options that the file owner can control
Audit options that the security auditor can control

vvyy

The security auditor uses reports formatted from RACF system management facilities (SMF)
records to check successful and failing accesses to z/OS UNIX resources. An SMF record
can be written at each point where the system makes security decisions.

Six classes are used to control auditing of z/OS UNIX security events. These classes have no
profiles. They do not have to be active to control auditing.

The security administrator or the file owners can also specify auditing at the file level in the file
system.

178 UNIX System Services z/OS Version 1 Release 7 Implementation

<— Fijle Mode ——*

() File Permission Bits
S Owner | Group Other .
extattr e File RACF
t Owner (Auditor
U riw|x|r|w|x|r|wl|x
I
D
\ |
chown extattr chmod chaudit

. Owner or Auditor

Superuser (Special) Owner or 2

Superuser uperuser

Figure 3-60 Auditing fields in the FSP

3.25.1 Setting up audit controls

Auditing for file access is specified in the file security packet (FSP) with the chaudit
command. Only a file owner or a security auditor can specify if auditing is turned on or off,
and when audit records should be written for a directory or file. There are two separate sets of
auditing flags:

» Auditing set by the file owner (and superuser)
» Auditing set by the RACF AUDITOR

Audit records are written based on the combined owner and auditor settings. Auditing is set
for read, write, and execute (search for directories) for the following kinds of accesses:

Successful accesses

Failures, that is, access violations

All, which is both successes and failures
None

vyvyyy

When a file or a directory is created, default audit options are assigned. Different defaults are
set for users and auditors. The same audit option is used no matter what kind of access is
attempted (read, write, or execute). If auditing is not specified for a file, the defaults are:

» For owner auditing—audit failed accesses
» For RACF AUDITOR auditing—no auditing

» The user-requested-audit flags are set to audit failed attempts to read, write, or execute.
Only the file owner or a superuser can specify user audit options.

» The auditor-requested-audit flags are set off (no auditing). To specify auditor audit
options, one must have security auditor authority.
When a file is created, these are the default audit options:

» User audit options: for all access types, audit_access_failed
» Auditor audit options: for all access types, don't_audit

Chapter 3. Establish security for zOS UNIX 179

3.25.2 Auditing access to files and directories

The security auditor uses reports formatted from RACF system management facilities (SMF)
records to check successful and failing accesses to kernel resources. An SMF record can be
written at each point where the system makes security decisions.

Seven classes are used to control auditing of security events. These classes have no profiles.
They do not have to be active to control auditing. Use the SETROPTS command to specify
the auditing options for the classes. For a list of the classes used for auditing and an
explanation of how to specify the audit options, see z/OS Security Server RACF Auditor’s
Guide.

You can also specify auditing at the file level in the file system. Activate this option by:
» Specifying DEFAULT in the class LOGOPTIONS on the SETROPTS command.
The auditing levels for LOGOPTIONS are:

ALWAYS All access attempts to resources protected by the class are
audited.

NEVER No access attempts to resources protected by the class are
audited (all auditing is suppressed).

SUCCESSES All successful access attempts to resources protected by the class
are audited.

FAILURES All failed access attempts to resources protected by the class are
audited.

DEFAULT Auditing is controlled by the auditing bits in the FSP for z/OS UNIX

files and directories.

» Using the chaudit command to specify audit options for individual files and directories. If
you activate auditing for additional levels of file system access, you may generate
excessive amounts of SMF Type 80 records.

You can also specify, in a RACF user profile, that all actions taken by the user be audited.
Actions taken by superusers can be audited or not, determined by RACF commands. If you
are using RACF profiles in the UNIXPRIV class to control certain superuser functions, you
can use those same profiles to audit those superuser functions.

Auditing can be controlled by using the commands SETROPTS LOGOPTIONS and
SETROPTS AUDIT, as follows:

» SETROPTS LOGOPTIONS(auditing_level(class_name)) audits access attempts to the
resources in the specified class according to auditing level specified and can be used for
all classes.

» SETROPTS AUDIT(class_name) specifies the names of the classes that RACF should
audit. The AUDIT option can be used for the classes FSOBJ, IPCOBJ, and PROCESS.

» SETROPTS LOGOPTIONS(DEFAULT) indicates you want no class auditing and only file
level auditing (use chaudit to specify).

Audit records are always written when:

A user who is not defined as a z/OS UNIX user tries to dub a process.
A user who is not a superuser tries to mount or unmount a file system.
A user tries to change a home directory.

A user tries to remove a file, hard link, or directory.

A user tries to rename a file, hard link, symbolic link, or directory.

A user creates a hard link.

vyvyvyvYyYyvyy

180 UNIX System Services z/OS Version 1 Release 7 Implementation

Note: There is no option to turn off these audit records.

3.25.3 Specifying file audit options

For violations occurring in the UNIX System Services environment, the user’s effective UID
and effective GID are displayed in the message. These IDs were used to determine the user’s
privilege for the intended operation. Note that they may not always match the IDs defined in
the relevant RACF USER and GROUP profiles, since UNIX System Services provides
methods by which another identity can be assumed.

Specify file audit options using the ISPF shell, or a chaudit command. The command can be
used to specify either user audit options or auditor audit options.

To specify user audit options, you must be a superuser or the owner of the file. To specify

auditor audit options, you must have RACF AUDITOR authority.

If you have AUDITOR authority, you do not need access in the permission bits to:

» Search and read any directory in the file system

» Use the chaudit command to change the auditor audit options for any file in the file
system

If both user and auditor audit options are set, RACF merges the options and audits all the set
options.

Classes that control auditing for z/OS UNIX System Services

RACF writes audit records for the z/OS UNIX System Services auditable events in SMF type
80 records. The following classes are defined to control auditing:

DIRSRCH Controls auditing of directory searches.

DIRACC Controls auditing of access checks for read/write access to directories.

FSOBJ Controls auditing of all access checks for file system objects except directory
searches via SETROPTS LOGOPTIONS and controls auditing of creation
and deletion of file system objects via SETROPTS AUDIT.

FSSEC Controls auditing of changes to the security data (FSP) for file system
objects.

PROCESS Controls auditing of changes to the UIDs and GIDs of processes and
changing of the thread limit via the SETROPTS LOGOPTIONS, and controls
auditing of dubbing, undubbing, and server registration of processes via

SETROPTS AUDIT.
PROCAT Controls auditing of functions that look at data from or affect other processes.
IPCOBJ Specifies auditing options for IPC accesses and access checks for objects

and changes to UIDs, GIDs, and modes. For access control and for z/OS
UNIX user identifier (UID), z/OS UNIX group identifier (GID), and mode
changes, use SETROPTS LOGOPTIONS. For object create and delete, use
SETROPTS AUDIT.

The classes are in the class descriptor table (ICHRRCDX). No profiles can be defined in

these classes. They are for audit purposes only. These classes do not need to be active to be
used to control z/OS UNIX System Services auditing.

Chapter 3. Establish security for zOS UNIX 181

Activating the classes has no effect on auditing or authorization checking, except for the
FSSEC class, which enables the use of ACLs in authorization checking. You can use profiles
in the UNIXPRIV class to audit certain superuser functions.

Each of the classes controls auditing for z/OS UNIX System Services in a particular way. The
descriptions that follow define the type of auditing each class controls and include:

» The audit event types that it controls

» The RACF callable services that write the audit record

» The z/OS UNIX services that can cause the event

Auditable events

RACF writes audit records for the z/OS UNIX System Services auditable events in SMF type
80 records. File owners and auditors can establish separate sets of auditing rules, and can
also specify auditing for each file and directory. For more information on these event codes,
see z/0OS Security Server RACF Macros and Interfaces, SA22-7682.

3.25.4 Commands to activate auditing

You can control auditing by using the existing SETROPTS LOGOPTIONS and SETROPTS
AUDIT to activate the classes shown in “Classes that control auditing for z/ZOS UNIX System
Services” on page 181.

Here is an example of controlling the RACF classes DIRSRCH and DIRACC:
SETROPTS LOGOPTIONS (FAILURES(DIRSRCH,DIRACC))
In addition, you can use the SETROPTS AUDIT option to control auditing for the FSOBJ,

IPCOBJ, and the PROCESS classes, as follows:
SETROPTS AUDIT(FSOBJ,PROCESS)

3.25.5 Using the chaudit command

The chaudit command changes the audit attributes of the specified files or directories. Audit
attributes determine whether or not accesses to a file are audited by the system authorization
facility (SAF) interface.

Note: chaudit can be used only by the file owner or a superuser for non-auditor-requested
audit attributes. It takes a user with auditor authority to change the auditor-requested audit
attributes.

Figure 3-61 on page 183 shows examples of chaudit command usage by the file owner (or
superuser). The default audit settings are shown in the upper right-hand corner of the figure,
as follows:

» The command chaudit w+s progl adds (+) auditing for successful accesses (s) for write
accesses (w).

» The next command, chaudit rwx=sf progl specifies that all (a) accesses, that is both
successes (s) and failures (f), are to be audited for reads, writes, and executes.

» The next command chaudit r-s,x-sf progl says to stop (-) auditing successes (s) for
read (r), and stop (-) auditing both successes (s) and failures (f) for execute (x) access.
The same effect can be achieved with the command chaudit r=f,x= progl.

182 UNIX System Services z/OS Version 1 Release 7 Implementation

Examples of chaudit command usage by the RACF Auditor. The default audit settings are
shown in the middle of this visual, as follows:

» The command chaudit -a r+f,w+s,x+f progl adds auditing of successes (s) and failures
(f) for write access, and specifies to write an audit record whenever an access failure (f)
occurs for read or execute accesses.

» The command chaudit -a r-f,x-f progl turns off (-) auditing for failures (f) for read and
execute accesses.

» The last command chaudit -a rwx=f progl turns on auditing for unsuccessful (f) read,
write, and execute accesses.

The auditor includes the option -a when issuing the chaudit command. The auditor can only
set the audit flags in the auditor's section of the FSP.

The audit condition part of a symbolic mode is any combination of the following:

s Audit on successful access if the audit attribute is on

f Audit on failed access if the audit attribute is on

The following command changes the file prog1 so that all successful and unsuccessful file
accesses are audited:

chaudit rwx=sf progl

Files owner auditing: default [fff | --- |
chaudit w+s prog1 ~[faf [--- |
chaudit rwx=sf prog1 ~[aaa |-~ |
chaudit r-s,x-sf prog1 ~[fa- [--- |

RACF auditor auditing: default [fff [---]
chaudit -a r+f,w+sf,x+f prog1 — 77 | faf |
chaudit -a r-f,x-f prog1 ~[Tff | -a- |
chaudit -a rwx=f prog1 »[FFf | TFf |

Figure 3-61 Using the chaudit command to change auditing for files and directories

3.25.6 Auditing for superuser authority in the UNIXPRIV class

If you use profiles in the UNIXPRIV class to control superuser authorities, you can use the
same profiles for auditing.

RACF logs successful attempts to use superuser authorities. If you want to check the use of
superuser authority for specific resources, you can audit successful uses of the UNIXPRIV
profiles. RACF logs failed attempts to use SHARED.IDS in the UNIXPRIV class. For other

Chapter 3. Establish security for z0S UNIX 183

184

UNIXPRIV resources, no audit record is written to show authorization failures in the
UNIXPRIV class.

For example, to audit the successful uses of the ki11() function, granted by the
SUPERUSER.PROCESS.KILL profile, set the audit options as follows:

RALTER UNIXPRIV SUPERUSER.PROCESS.KILL AUDIT(SUCCESS(READ))
LOG=NOFAIL is specified on all authorization checks in the UNIXPRIV class, except for
SHARED.IDS. Therefore, RACF does not log failures, even when you specify
AUDIT(FAILURES) or AUDIT(ALL) in the profile. RACF also ignores any SETROPTS

LOGOPTIONS settings in the UNIXPRIV class because the RACROUTE
REQUEST=FASTAUTH request performs all authorization checks in that class.

It is possible to see multiple audit records for the same operation, as described in the
following example:
1. You are auditing successful uses of the SUPERUSER.PROCESS.KILL profile.

2. You also issued the SETROPTS LOGOPTIONS(SUCCESSES(PROCACT)) command to
audit success in the PROCACT class.

Note: This is not recommended because of the large number of audit records it could
produce.

3. User Al has UID 40 and READ access to the SUPERUSER.PROCESS.KILL profile in the
UNIXPRIV class.

4. User Al issued the kil1() function for another user’s process.

The kil1() function succeeds and RACF writes two audit records as a result of:
» Auditing for the PROCACT class
» A RACROUTE REQUEST=FASTAUTH call in the UNIXPRIV class

UNIX System Services z/OS Version 1 Release 7 Implementation

Overview and customization of
TCP/IP for z/0S UNIX

The Internet grew from fewer than 6000 at the end of 1986 to more than 15 million networks
today. Networks have grown so quickly because they provide an important service. It is the
nature of computers to generate and process information, but this information is useless
unless it can be shared with the people who need it. The common thread that ties the
enormous Internet together is TCP/IP network software. TCP/IP is a set of communication
protocols that define how different types of computers talk to each other.

This unit explains the basic concepts of TCP/IP and offers information on how to customize
TCP/IP for z/OS UNIX.

The following topics are covered:

» Overview of TCP/IP

» Customizing and starting TCP/IP

» Customizing for inetd and rlogind daemons
» Syslogd daemon

» Otelnetd daemon

» REXECD and RSHD servers

» SMTP server

» FTPD daemon

» Customizing and starting NFS

© Copyright IBM Corp. 2003, 2006. All rights reserved. 185

4.1 Overview of TCP/IP

186

The TCP/IP protocol suite is named for two of its most important protocols: Transmission
Control Protocol (TCP) and Internet Protocol (IP). Another name for it is the Internet Protocol
Suite, and this is the phrase used in official Internet standards documents. The more common
term TCP/IP is used to refer to the entire protocol suite.

The first design goal of TCP/IP was to build an interconnection of networks that provided
universal communication services: an internetwork, or Internet. Each physical network has its
own technology-dependent communication interface, in the form of a programming interface
that provides basic communication functions (primitives). Communication services are
provided by software that runs between the physical network and the user applications and
that provides a common interface for these applications, independent of the underlying
physical network. The architecture of the physical networks is hidden from the user.

The second aim is to interconnect different physical networks to form what appears to the
user to be one large network. Such a set of interconnected networks is called an internetwork
or an Internet.

To be able to interconnect two networks, we need a computer that is attached to both
networks and that can forward packets from one network to the other; such a machine is
called a router. The term IP router is also used because the routing function is part of the IP
layer of the TCP/IP protocol suite.

Host A T

N\
_//

Internet
(Public network)

Private network

Host Z

AN\
H ostD
Private networ

-
==

Host E

Figure 4-1 Interconnection of networks

Host A wants to send an e-mail to Host B.
Host A wants to transfer data to Host D.

Host C wants to get a Web page from Host E.
Host Z also wants access to Host E.

vyvyyy

This is possible because a public network is a network established and operated by a
telecommunication administration or by a Recognized Private Operating Agency (RPOA) for
the specific purpose of providing circuit-switched, packet-switched, and leased-circuit
services to the public.

UNIX System Services z/OS Version 1 Release 7 Implementation

Terminology
The following terminology is commonly used to describe a TCP/IP environment:

Host In the Internet suite of protocols, this is an end system. The end system can
be any workstation; it does not have to be a mainframe.

Gateway A functional unit that interconnects two computer networks with different
network architectures. A gateway connects networks or systems of different
architectures. A bridge interconnects networks or systems with the same or
similar architectures. In TCP/IP, this is a synonym for router.

Port Each process that wants to communicate with another process identifies
itself to the TCP/IP protocol suite by one or more ports. A port is a 16-bit
number, used by the host-to-host protocol to identify to which higher level
protocol or application program (process) it must deliver incoming
messages. There are two types of port:

Well-known Well-known ports belong to standard servers, for example Telnet uses
port 23. Well-known port numbers range between 1 and 1023 (prior to
1992, the range between 256 and 1023 was used for UNIX-specific
servers). Well-known port numbers are typically odd, because early
systems using the port concept required an odd/even pair of ports for
duplex operations. Most servers require only a single port. The
well-known ports are controlled and assigned by the Internet central
authority (IANA) and on most systems can only be used by system
processes or by programs executed by privileged users. The reason for
well-known ports is to allow clients to be able to find servers without
configuration information.

Ephemeral Clients do not need well-known port numbers because they initiate
communication with servers and the port number they are using is
contained in the UDP datagrams sent to the server. Each client process
is allocated a port number as long as it needs it by the host it is running
on. Ephemeral port numbers have values greater than 1023, normally in
the range 1024 to 65535.

Socket An endpoint for communication between processes or application
programs. A synonym for port.

Socket address The address of an application program that uses the socket interface on the
network. In Internet format, it consists of the IP address of the socket's host
and the port number of the socket. The application program is usually not
aware of the structure of the address.

Socket interface A Berkeley Software Distribution (BSD) application programming interface
(API) that allows users to easily write their own programs.

Router A router interconnects networks at the internetwork layer level and routes
packets between them. The router must understand the addressing
structure associated with the networking protocols it supports and take
decisions on whether, or how, to forward packets. Routers are able to select
the best transmission paths and optimal packet sizes. The basic routing
function is implemented in the IP layer of the TCP/IP protocol stack, so any
host or workstation running TCP/IP over more than one interface could, in
theory and also with most of today's TCP/IP implementations, forward IP
datagrams. However, dedicated routers provide much more sophisticated
routing than the minimum functions implemented by IP.

Chapter 4. Overview and customization of TCP/IP for zZOS UNIX 187

IP addressing

To be able to identify a host on the Internet, each host is assigned an address, called the IP
address, or Internet address. When the host is attached to more than one network, it is called
multi-homed and it has one IP address for each network interface.

IP addresses are represented by a 32-bit unsigned binary value which is usually expressed in
a dotted decimal format, where each byte is represented by its decimal form, like 9.12.1.43.
The numeric form is used by the IP software. The mapping between the IP address and an
easier-to-read symbolic name, for example myhost.ibm.com, is done by a Domain Name
System. We first look at the numeric form, which is called the IP address. The Internet
Protocol uses IP addresses to specify source and target hosts on the Internet.

Each host must have a unique Internet address to communicate with other hosts on the
Internet. The network address part of the IP address is centrally administered by the Internet
Network Information Center (the InterNIC) and is unique throughout the Internet. Each IP
address is made up of two logical addresses:

IP address = <network address> <host address>

FORMAT:

32-bit format 0000 0000 . 0000 0000 . 0000 0000 . 0000 0000

dotted decimal XXX . XXX . XXX . XXX

Example:

32-bit format 0000 1001 . 0000 1100 . 0000 0001 . 0010 1011
dotted decimal 9 . 12 . 1 . 43

Subnet mask 255 . 255 . 0 . 0

@’ork part of address '
Host part of address

Figure 4-2 The format of an IP address

The first bits of the IP address specify how the rest of the address should be separated into its
network and host part.

The Internet Protocol moves data between hosts in the form of datagrams. Each datagram is
delivered to the address contained in the Destination Address of the datagram's header.
network address Represents a specific physical network within the Internet.

host address Specifies an individual host within the physical network identified by
the network address.

subnet mask Is used to differentiate the network address and host address.

In this example, 9.12.1.43 is an IP address, with 9.12 being the network address and 1.43
being the host address.

188 UNIX System Services z/OS Version 1 Release 7 Implementation

4.2 Customizing and starting TCP/IP

Since z/OS V2R5 was shipped, the z/OS Communications Server (CS) was included as a
base element. The TCP/IP z/OS component, called z/OS CS, is a reconstructed stack and is
able to support both UNIX and non-UNIX socket APIs. It is often called the converged IP
stack.

All the TCP/IP socket APls that supported HPNS are now transparently redirected by
run-time support to call the UNIX kernel LFS. The REXX socket API has also been directed to
call the kernel. HPNS support is no longer required. The Pascal API, however, still requires
the VMCF/IUCV address space to be started, which links the API to the new stack. VMCF or
TNF do not respond to commands. This is probably because one or both of the on-restartable
versions of VMCF or TNF are still active. To get them to respond to commands, stop all
VMCF/TNF users, FORCE ARM VMCF and TNF, then use the EZAZSSI procedure to restart.

The SNA and IP networking stacks have been integrated to a considerable extent. Both
stacks use common Data Link Control (DLC) routines to access network hardware, and both
types of protocols can flow over the same hardware link. Also, common service routines such
as Communications Storage Manager (CSM) exploit use of buffers in common storage for
both IP and SNA performance.

I User z/OS TCP/IP m I User z/OS UNIX
Appls Servers Appls Servers
(Pascal) TCP/IP SOCKETS 2/0S UNIX SOCKETS
VMCF
Kernel
e TSO PFS | PFS
oivsém)| VTAM | TCP/IP
o CICS Hi-Speed
Access
[Csm Services
z/OS CS Data Link Controls

Figure 4-3 z/OS Communication Server

Communication Server for z/OS provides networking support for z/OS UNIX. It exceeds the
scope of this book to detail TCP/IP base installation. The customization of TCP/IP for z/OS is
documented in product documentation and in zZ0OS Communications Server IP Configuration
Guide, SC31-8775. The description of TCP/IP concepts and protocols can be found in
TCPV/IP Tutorial and Technical Overview, GG24-3376.

Chapter 4. Overview and customization of TCP/IP for zZOS UNIX 189

4.2.1 Using the z/OS TCP/IP configuration wizard on the Web

We recommend using “z/OS UNIX Configuration Wizard”, a Web-based tool, to help you set
up z/OS UNIX in full function mode. This wizard begins with a series of interviews in which
you will answer questions about your application environment and intentions regarding use of
z/OS and TCP/IP. After you finish answering all of the interview questions, you ask the wizard
to build the output. Then the wizard produces a checklist of steps for you to follow, as well as
customized jobs and other data sets for you to use. Specifically, it builds two BPXPRMxx
members and two HFS files and some RACF ALTUSER commands. The checklist of
follow-on actions includes links to sections of zZ0S UNIX System Services Planning,
GA22-7800 and the zZOS Communications Server IP Configuration Guide, SC31-8775, thus
eliminating the need to reference multiple documents.

Use this wizard to configure z/OS UNIX for the first time or to check and verify some of your
configuration settings. To use the wizard, go to:

http://www-1.ibm.com/servers/eserver/zseries/zos/wizards/

4.2.2 TCP/IP data sets and configuration files

The following files, data sets, and parmlib members to be customized are:
» Configuration files used by TCP/IP

— PROFILE.TCPIP is used only for the configuration of the TCPIP stack. During
initialization of the TCPIP stack, also referred to as the TCPIP address space, system
operation and configuration parameters for the TCPIP stack are read from the
configuration file PROFILE.TCP.

— TCPIP.DATA is used during configuration of both the TCPIP stack and applications.
This data set, TCPIP.DATA, is used to specify configuration information required by
TCP/IP client programs.

Customize the TCP/IP PROFILE data set
TCP/IP reads the parameters from the TCP/IP PROFILE data set.

The IP address of the HOME statement for this host as well as the GATEWAY values such as
subnet mask, subnet, and DEFAULTNET (or default gateway) can be obtained from your
network administrator.

» The parameters that need to be changed are:

AUTOLOG Uncomment FTPD or any other daemons that need to be activated.

DEVICE Provide the z/OS address network interface. It could be the OSA
address, CTC, IBM 2216 router or any other supported network device.

LINK Provide the description of network interface.

HOME Specify the IP address of the z/OS system.

Begin route Specify the IP address the net and subnet to which this host belongs.

Route default Specify the default gateway IP address. Usually, this is the IP address
of the network router to which this host is attached.

Note: A sample of the PROFILE data sets is provided in hlq.SEZAINST(SAMPPROF),
which you can copy to SYS1.TCPPARMS(PROFILE).

190 UNIX System Services z/OS Version 1 Release 7 Implementation

http://www-1.ibm.com/servers/eserver/zseries/zos/wizards/

Customize the TCPIP.DATA data set

The TCPIP.DATA configuration data set is the anchor configuration data set for the TCP/IP
stack and all TCP/IP servers and clients running on that stack. In zZOS Communication
Server, you may define the TCPIP.DATA parameters in an HFS file or in an MVS data set. The
TCPIP.DATA configuration data set is read during initialization of all TCP/IP server and client
functions.

The SYSTCPD DD explicitly identifies which data set is to be used to obtain the parameters
defined by TCPIP.DATA.

The SYSTCPD DD statement should be placed in the TSO/E logon procedure or in the JCL
of any client or server executed as a background task. The data set can be any sequential
data set or a member of a partitioned data set (PDS).

//SYSTCPD DD DSN=SYS1.TCPPARMS(TCPDATA) ,DISP=SHR

Parameters that need to be changed for the TCPDATA file are:

» TCPIPJOBNAME specifies the TCPIP started task job name.

» HOSTNAME specifies the host name (SYSNAME on IEASYSxx) or IEASY Mxx.
» DATASETPREFIX specifies the hlg you have selected before.

Other optional parameters are:

» DOMAINORIGIN specifies your domain (yourdomain.com).

» NSINTERADDR specifies your name server IP address.

The values for the DOMAINORIGIN and NSINTERADDR statements can be obtained from
your network administrator.

Note: The syntax for the parameters in the TCPIP DATA file can be found in zOS
Communication Server IP Configuration Reference, zZOS Communications Server IP
Configuration Reference, SC31-8776

A sample TCPIP.DATA config file is provided in hig.SEZAINST(TCPDATA).

z/OS IP search order profile

During the initialization of the TCP/IP stack, system configuration and configuration
parameters for the TCP/IP stack are read from the configuration profile PROFILE.TCPIP.

The search order used by TCP/IP to find PROFILE.TCPIP data sets involves both explicit and
dynamic data set allocation; see Figure 4-4 on page 192.
When TCP/IP starts, it looks for the PROFILE data set in the following order:

1. //PROFILE DD explicitly specified in the PROFILE DD statement of the TCP/IP started
task procedure

. jobname.nodename.TCPIP data set

. jobname.PROFILE.TCPIP data set

2

3. hlg.nodename.TCPIP data set
4

5. hlq.PROFILE.TCPIP data set

Important: The search stops if one of these data sets is found.

Chapter 4. Overview and customization of TCP/IP for z/OS UNIX 191

PROFILE.TCPIP Provides TQP/IP initialization .and specification
for network interface and routing

vy

TCPIP A/S / \\\\-f//PROFILE DD DSN=xxxx

TCZI/DC/)HSD Stick jobname.nodename.TCPIP
= hlg.nodename.TCPIP

= jobname.PROFILE.TCPIP

= hlq.PROFILE.TCPIP

Figure 4-4 zOS IP search order profile

z/OS IP search order

The z/OS CS environment consists of the z/OS CS stack, z/OS CS applications (z/OS UNIX
Services applications such as rtelnetd, FTPD, etc.) and the z/OS TCP/IP native z/OS
applications; see Figure 4-5.

] AIITCP/IP server and client functions

child
process

Data sets search sequence

process program
Explicit Data Set Allocation

//IPROFILE DD

=
//ISYSTCPD DD
TCPIP A/S
Dynamic Data Set Allocation
CS forz/OS hig.function.xxxx
TCP/IP

SYS1.TCPPARMS

Figure 4-5 z/OS IP search order

The TCP/IP stack and set of applications have some common configuration files, but they
also use configuration files that are different.

Different configuration files may be used for a TCP/IP stack where there is a need to
understand the search order for each z/OS UNIX application.

The search order is applied to any configuration file, and the search ends with the first file
found, as follows:

» Explicit Data Set Allocation consists of those data sets that you specify through the use of
DD statements in JCL procedures.

» Dynamic Data Set Allocation consists of multiple versions of a data set, each having a
different high-level qualifier or middle-level qualifier, and some data sets that can only be
dynamically allocated by TCP/IP (they cannot be allocated using DD statements in JCL).

192 UNIX System Services z/OS Version 1 Release 7 Implementation

There is a naming convention for dynamically allocated data sets.

TCPDATA search order

TCPIP.DATA is used during configuration of both the TCP/IP stack and applications. The
search order to find the TCPIP.DATA data set is the same for both the TCP/IP stack and
applications. The search order used by TCP/IP and applications is as follows:

1. MVS data set or HFS file specified by the environment variable RESOLVER_CONFIG
2. /etc/resolv.conf

3. //SYSTCPD DD

4. jobname.TCPIP.DATA data set

5. SYS1.TCPPARMS(TCPDATA)

6. hlq.TCPIP.DATA data set

Important: The search stops if one of these data sets is found.

A name resolver converts a TCP/IP host name to an IP address, or vice versa. There are
several name resolvers in TCP/IP, one in Language Environment, and one in CICS, and
multiple resolver libraries exist. There are MVS native and Language Environment resolver
APls. The search order for TCPIP.DATA varies across resolver libraries. This can lead to an
inconsistent name resolution process. It makes it difficult to provide resolver enhancements in
a consistent and timely manner.

TCP/IP resolver address space

A new TCP/IP resolver address space introduced in z/OS V1R2 supports the consolidation of
the many ways to resolve host names or IP addresses. It provides for both global and local
user settings to be configured.

LFS is responsible for starting the new TCP/IP resolver address space. The new address
space is started during IPL. In order for LFS to start this new resolver address space, the
system must be configured with an AF_INET socket file system domain name in BPXPRMxx.

Setting up a resolver address space
There are two ways in which to start the resolver address space:

» 2z/OS UNiIX initialization will attempt to start the resolver unless explicitly instructed not to.
Using z/OS UNIX is the recommended method since it will ensure that the resolver is
available before any applications can make a resolution request.

A BPXPRMxx statement, RESOLVER_PROC, is used to specify the procedure name, if
any, to be used to start the resolver address space. If the RESOLVER_PROC statement is
not in the BPXPRMxx parmlib member or is specified with a procedure name of DEFAULT,
z/OS UNIX will start a resolver address space with the assigned name of RESOLVER.
The resolver uses the applicable search order for finding TCPIP.DATA statements but
without a GLOBALTCPIPDATA specification. If the address space cannot be started, z/OS
UNIX initialization continues.

When z/OS UNIX starts the resolver, it is done so that the resolver does not require JES
(that is, SUB=MSTR is used). For SUB=MSTR considerations, refer to zZ0S MVS JCL
Reference, SA22-7597.

If the RESOLVER_PROC statement has been used to specify a start procedure name,
then:

Chapter 4. Overview and customization of TCP/IP for zZOS UNIX 193

— To find the procedure, it must reside in a data set that is specified by the MSTJCLxx
parmlib member’s IEFPDSI DD card specification. For MSTJCL considerations, refer
to z/0S MV Initialization and Tuning Reference, SA22-7592.

— The procedure must not contain any DD cards that specify SYSOUT=*.

Since z/OS UNIX does not receive any error indication when it tries to start the address
space, it issues an informational message containing the name of the procedure it has
started. The message is:

BPXF2241 THE RESOLVER_PROC, procname, IS BEING STARTED.

Note: If the RESOLVER_PROC statement is not present or is specified with a
procedure name of DEFAULT, procname will be RESOLVER even though no start
procedure was used. If you want to use the procedure name RESOLVER, a
RESOLVER_PROC(RESOLVER) statement must be added to your BPXPRMxx
parmlib member.

If the start procedure is not found or has a JCL error in it, the usual z/OS error messages
will be issued.

For more detailed information refer to z/0S UNIX System Services Planning, GA22-7800.

» An installation can use its automation tools to start the resolver with the MVS START
operator command. If this approach to starting the resolver is used, care should be taken
to ensure that no applications that need resolver services (for example, INETD) are
started before the resolver address space is initialized. This may mean removing the
starting of INETD from the z/OS UNIX /etc/rc file and starting INETD with automation after
the resolver has initialized.

Note: For more detailed information about resolver configuration, refer to zZ0S
Communications Server IP Configuration Guide, SC31-8775.

Customize the TCP/IP procedure
Create the following PROCLIB members, as follows:

» TCPIP started task procedure; a sample is provided in hlq.SEZAINST(TCPIPROC).
» EZAZSSI procedure to start the TCP subsystem interface

» Add procedure EZAZSSI to your system PROCLIB. A sample of this procedure is located
in the data set hlg.SEZAINST (where hlq is the high-level qualifier for the TCP/IP product
data sets in your installation).

//EZAZSSI PROC pP="'

//STARTVT EXEC ~ PGM=EZAZSSI,PARM=&P
//STEPLIB DD DSN=h1q.SEZALINK,DISP=SHR
// DD DSN=hTq.SEZATCP,DISP=SHR

You may remove the STEPLIB DD if these data sets are defined on LNKLSTxx.

Modify your TSO/E logon procedure:

» To include hlq.SEZAHELP in /SYSHELP DD.

» To include hlq.SEZAMENU in //ISPMLIB DD.

» To include hlq.SEZAPENU in //ISPTLIB DD and //ISPPLIB DD.

194 UNIX System Services z/OS Version 1 Release 7 Implementation

» Optionally add a //SYSTCPD DD to point to the TCPDATA data set in order to use TCP/IP
client functions and some administrative functions such as OBEYFILE under TSO/E.

SYSTCPD explicitly identifies the data set used to obtain parameters defined by
TCPIP.DATA.

» The SYSTCPD statement should be placed in the TSO/E logon procedure or in the JCL of
any client or server executed as a background task. The data set can be any sequential
data set or a member of a partitioned data set (PDS). TSO client functions can be directed
against any of a number of TCP/IP stacks. Obviously, the client function must be able to
find the TCPIP.DATA appropriate to the stack of interest at any one time. Two methods are
available for finding the relevant TCPIP.DATA:

— Add a SYSTCPD DD statement to your TSO logon procedure. The issue with this
approach is that a separate TSO logon procedure per stack is required, and users have
to log off TSO and log on again using another TSO logon procedure in order to switch
from one stack to another.

— Use one common TSO logon procedure without a SYSTCPD DD statement. Before a
TSO user starts any TCP/IP client programs, the user has to issue a TSO ALLOC
command wherein the user allocates a TCPIP.DATA data set to DDname SYSTCPD.
To switch from one stack to another, the user simply has to de-allocate the current
SYSTCPD allocation and allocate another TCPIP.DATA data set.

Combine the first and second methods. Use one logon procedure to specify a SYSTCPD DD
for a default stack. To switch stacks, issue TSO ALLOC to allocate a new SYSTCPD. To
switch back, issue TSO ALLOC again with the name that was on the SYSTCPD DD in the
logon procedure. The disadvantage of this approach is that the name that was on the
SYSTCPD DD is “hidden” in the logon procedure and needs to be retrieved or remembered.

Customizing TCP/IP in parmlib

Choose a High-Level Qualifier (hlg). TCP/IP is distributed with default high-level qualifier
(HLQ) of TCPIP. This HLQ is a hard-coded character string within z/ZOS UNIX. TCP/IP uses
dynamic allocation for several parameter data sets, and TCP/IP uses the default HLQ for
allocating the data set. You can accept the default HLQ or override it. To override the default
HLQ used by dynamic data set allocation, specify the DATASETPREFIX statement in the
PROFILE.TCPIP or TCPIP.DATA configuration files. But remember, the DATASETPREFIX
value is used as the last step in the search order for most configuration files.

Note: Another way is to put the parameter in the /etc directory, which resides in the HFS.
For more information on HLQ and dynamic data set allocation, see zZ0S Communications
Server IP Configuration Guide, SC31-8775.

We recommend that you use the DATASETPREFIX items in the TCP/IP profile data set and
the TCP/IP client parameter (data) file to specify an HLQ for your installation. We used this
method and specified TCPIP as the HLQ.

Update the following parmlib members:
» Update IEAAPFxx or PROGxx parmlib member to authorize the following TCP/IP libraries:

— hlq.SEZATCP
— hlq.SEZADSIL
— hlgq.SEZALOAD
— hlg.SEZALNK2
— hlq.SEZALPA
— hlq.SEZAMIG

Chapter 4. Overview and customization of TCP/IP for zZOS UNIX 195

196

Update the LNKLSTxx parmlib member to contain hlg.SEZALOAD.
Update the LPALSTxx parmlib member to contain hlq.SEZALPA and hlq.SEZATCP.

Update the IECIOSxx parmlib member to disable the MIH processing for communication
devices used by TCP/IP:

Set MIH TIME=00:00,DEV=(cuu-cuu)
Where cuu is the range of devices used by TCP/IP.

Update the IEFSSNxx parmlib member to use restartable VMCF and TNF by adding the
following two statements:

SUBSYS SUBNAME (TNF)
SUBSYS SUBNAME (VMCF)

Update the COMMNDxx parmlib member to start SSI during IPL by adding the following:
COM="'S EZAZSSI,P=sys_name'

Where sys_name is the SYSNAME in IEASYSxx or specified in IEASYMxx using the
SYSDEF statement.

The label of the HOSTNAME statements in the hlq. TCPIP.DATA refers to sys_name. This
node name can be set to the MVS NJE node of this system or the SYSID.

Update the IFAPRDxx parmlib member to ensure the state of the TCP/IP BASE feature is
enabled with the following:

NAME (z/0S) ID(5647-A01)

Customize the z/OS UNIX BPXPRMxx parmlib member. Copy the statements in
Figure 4-6 on page 196 into your BPXPRMxx member to activate TCP/IP support for a
single transport provider.

FILESYTYPE TYPE(INET) ENTRYPOINT(EZBPFINI)

NETWORK DOMAINNAME (AF_INET)
DOMAINNUMBER (2)
MAXSOCKETSR (10000)
TYPE (INET)

Figure 4-6 BPXPRMxx entries for a single TCP/IP transport provider

Customize TCP/IP in RACF

You need to define a RACF user ID with an OMVS segment for TCPIP, PORTMAP, NFS, and
FTPD, as shown:

PROCNAME RACF user ID UID RACF Group GID Trusted
TCPIP TCPIP 0 OMVSGRP 1 No
PORTMAP TCPIP 0 OMVSGRP 1 No
NFS TCPIP 0 OMVSGRP 1 No
FTPD TCPIP 0 OMVSGRP 1 No
INETD OMVSKERN 0 OMVSGRP 1 No

You also need to define the following data sets to program control:

v

vvyy

SYS1.LINKIB

hlq.SEZALOAD

hlq.SEZATCP

CEE.SCEERUN (or Language Environment Run-time Modules)

In a z/0OS UNIX environment, there are additional security concerns related to the
Hierarchical File System (HFS) and the loading of programs that are considered trusted.

UNIX System Services z/OS Version 1 Release 7 Implementation

Program control facilities in RACF and z/OS provide a mechanism for ensuring that the z/OS
program loading process has the same security features that APF authorization provides in
the native MVS environment.

It is recommended that you enable program control in your installation. If you define the
BPX.DAEMON Facility Class, then you must enable program control for certain z/OS
Communication Server for z/OS load libraries. Review the section on Program Control in
z/0S UNIX System Services Planning, GA22-7800 to decide whether program control is
appropriate for your installation.

When you use program control, make sure that all load modules that are loaded into an
address space come from controlled libraries. If the MVS contents supervisor loads a module
from a non controlled library, the address space becomes dirty and loses its authorization. To
prevent this from happening, define all the libraries from which load modules can be loaded
as program controlled. At a minimum, this should include the C runtime library, the TCP/IP for
MVS SEZALOAD and SEZATCP libraries, and SYS1.LINKLIB.

Customize TCP/IP
Customize SERVICES and RPC data sets, as follows:

Copy hlg.SEZAINST(SERVICES) to hlg.ETC.SERVICES. This file specifies the
combination of port and services (UPD or TCP) used by TCP/IP.

To establish a relationship between the servers defined in the /etc/inetd.conf file and specific
port numbers in the z/OS UNIX environment, insure that statements have been added to
ETC.SERVICES for each of these servers. See the sample ETC.SERVICES installed in the
/usr/Ipp/tcpip/samples/services directory for how to specify ETC.SERVICE statements for
these servers.

An HFS file, /etc/services, could also be created instead of this file:

Copy hlq.SEZAINST(ETCRPC) to hig.ETC.RPC. This file specifies the port mapper, which
used to be called portmap daemon.

Note: See z/OS UNIX System Services Planning, GA22-7800 for more information on
TCP/IP for z/OS data set name rules with UNIX System Services.

Starting and testing TCP/IP
If you start TCP/IP when OMVS is up, you should get messages like the following:

EZ742021 EZZ42021 OPENEDITION-TCP/IP CONNECTION ESTABLISHED FOR TCPIP

Figure 4-7 z/OS console output after TCP/IP and z/OS UNIX connect

You may use the TSO PING, TRACERTE, NETSTAT, and NSLOOKUP commands from the
z/OS UNIX environment.

The z/OS UNIX ping command sends an echo request to a foreign node (remote node) to
determine whether the computer is accessible.

When a response to a ping command is received, the elapsed time is displayed. The time
does not include the time spent communicating between the user and the TCP/IP address
space.

Use the ping command to determine the accessibility of the foreign node.

Chapter 4. Overview and customization of TCP/IP for zZOS UNIX 197

Note: Ping is a synonym for the oping command in the z/OS UNIX shell. The ping
command syntax is the same as that for the oping command.

The z/OS UNIX nslookup command enables you to query any name server to perform the
following tasks from the z/OS UNIX environment:

» Identify the location of name servers.
» Examine the contents of a name server database.
» Establish the accessibility of name servers.

MVS TCP/IP NETSTAT CS VI1R4 TCPIP NAME: TCPIP 17:18:26
User Id Conn Local Socket Foreign Socket State
BPXOINIT 00013 0.0.0.0..10007 0.0.0.0..0 Listen
TCPIP 00011 127.0.0.1..1025 127.0.0.1..1026 Establs
TCPIP 00012 0.0.0.0..23 0.0.0.0..0 Listen
TCPIP 0000B 0.0.0.0..1025 0.0.0.0..0 Listen
TCPIP 00010 127.0.0.1..1026 127.0.0.1..1025 Establs
TCPIP 00015 0.0.0.0..1028 *L* uppP

Figure 4-8 Example using NETSTAT TCP TCPIP

With the preceding customization steps, you should be able to use the TSO client and to start
up the TCP/IP and OMVS started tasks.

4.2.3 Implementing the sample system

To implement the multiple transport driver (stack), perform the following steps:
» Naming conventions
Plan your naming conventions according to your site conventions.
» Started tasks
Define the stack started task. We used TCPIP.
» BPXPRMxx
Customize the z/OS UNIX BPXPRMxx parmlib member.
The started task name of the transport provider for zZOS UNIX has to be reflected in the
NAME option:

SUBFILESYSTYPE NAME(TCPIP)
TYPE(CINET)

ENTRYPOINT (EZBPFINI)
DEFAULT

Copy the following (see Figure 4-9 on page 199) to your BPXPRMxx member to activate
TCP/IP support for multiple transport providers.

198 UNIX System Services z/OS Version 1 Release 7 Implementation

/* Parameter for Common Internet Socket support */

FILESYSTEM TYPE(CINET) ENTRYPOINT(BPXTCINIT)
SUBFILESYSTYPE NAME(TCPIP)
TYPE(CINET)
ENTRYPOINT(EZBPFINI)
DEFAULT

NETWORK DOMAINNAME (AF_INET)
DOMAINUMBER (2)
MAXSOCKETS (10000)
TYPE(CINET)
INADDRANYPORT (4901)
INADDRANYCOUNT (100)

Figure 4-9 BPXPRMxx entries for a multiple TCP/IP transport provider

RACF
Define the required RACF profiles for the started tasks.

Table 4-1 RSCF profiles for the started tasks
Prochame RACF user ID uiD RACF Group GID Trusted

TCPIP TCPIP 0 OMVSGRP 1 Yes

Name resolution environment
Customize your name resolution environment:

» If you use a name server for name resolution, reflect your transport providers in the name
server database.

» If you use host site tables for name resolution, reflect the names and IP addresses of
foreign IP hosts in your hlg.HOSTS.LOCAL data set. Use the TCP/IP MAKESITE
command to compile the hlg.HOSTS.LOCAL data set into the hig.HOSTS.SITEINFO and
hlqg.HOSTS.ADDRINFO data sets. Make sure that the names and IP addresses of your
transport providers are also entered in the name tables of other hosts.

TSO logon procedure
Add a TCPDATA DD statement in your TSO logon procedure. In our environment, this
statement was as follows:

//SYSTCPD DD DSN=TCPIPMVS.TCPIP.DATA,DISP=SHR

Note: The //SYSTCPD DD statement points to the TCP/IP MVS client parameter file. The
default DSN is TCPIP.TCPIP.DATA or SYS1.TCPPARMS(TCPDATA). If you do not use one
of these defaults, you have to add a SYSTCPD DD statement in the TSO logon procedure in
order to use TCP/IP client functions and some administrative functions such as
(OBEYFILE) under TSO. TCPIPMVS.TCPIP.DATA was the parameter data set that we
used. Therefore, we had to add the //SYSTCPD DD statement to our logon procedure.

If you start your TCP/IP transport providers when OMVS is up, you should get a message like
the one shown in Figure 4-10 for each transport provider.

Chapter 4. Overview and customization of TCP/IP for zZOS UNIX 199

EZZ42021 OPENEDITION-TCP/IP CONNECTION ESTABLISHED FOR TCPIP
BPXF2061 ROUTING INFORMATION FOR TRANSPORT DRIVER TCPIP HAS BEEN
INITIALIZED OR UPDATED

Figure 4-10 z/OS console output after TCP/IP transport provider startup

Start and test your transport providers
Start your transport providers and do some connectivity tests using TSO client commands.

The following commands are samples you could use to test that the steps you did up to now
were successful:

» PING <hostname>

» HOMETEST

» NETSTAT DEVLINKS TCP <tcpipjobname>

» TESTSITE if you use host tables

» NSLOOKUP <hostname> if you use a nameserver

If you issue the TSO NETSTAT command now, you will still not see a socket connected to the
transport provider. This is because the z/OS UNIX inetd daemon is not started. See: 4.3,

“Customizing for inetd and rlogind daemons” on page 201 for information on how to
customize the inetd daemon.

Now we have two TCP/IP stacks running. To be able to start another server to relate to a
specific stack, you can use the _BPXK_SETIBMOPT_TRANSPORT z/OS UNIX shell
environment variable.

For example, if your TCP/IP stack is configured under C_INET and you want to start an FTPD
server instance that was associated with it, you could use the FTPD procedure as shown in

Figure 4-11.
//FTPD PROC PARMS='TRACE'
/1*
//* z/0S UNIX shell z0S FTP Server main process
//* Resulting address space name will be FTPD1, when
//* we use this method to start FTPD
e
//FTPD EXEC PGM=FTPD,
// REGION=40M, TIME=NOLIMIT
// PARM=('POSIX(ON),ALL31(ON)",
// 'ENVAR("_BPXK_SETIBMOPT_TRANSPORT=TCPIP")',
// ' /&PARMS ")
//CEEDUMP DD SYSOUT=*
//
//
//

Figure 4-11 FTPD procedure

200 UNIX System Services z/OS Version 1 Release 7 Implementation

4.3 Customizing for inetd and rlogind daemons

Follow the following steps to customize your inetd and rlogin environment daemons.

Using inetd, master of daemons
The inetd daemon is a master of other daemons that execute in z/OS UNIX. The function of

inetd is to listen on certain well-known network ports for a request to run one of a number of
daemons. When a request is received, inetd creates a new socket for remote connection, and
then fork()s a new address space and uses exec() to start the requested daemon program.

The daemon started by inetd relates to the port where the request arrived. The correlation
between port number and daemon is stored in configuration file /etc/inetd.conf.

The daemons started by inetd include:

>
>
>

The rlogin daemon starts a shell session for a user rlogin request.
The telnet daemon starts a shell session for a user telnet request.
The rexec daemon executes a single command on z/OS UNIX requested by a remote user

entering a rexec command.

The rsh daemon starts a shell session and runs a script generated by a remote user

entering a rsh command.

Customization is needed to enable inetd to run on your system. You must decide how to start

it, and what RACF ID it will execute under. If you have implemented enhanced daemon

security with BPX.DAEMON, you must define inetd to BPX.DAEMON and implement program
control. Finally, you have to configure the relationship between the ports that inetd listens on
and the daemons to be started.

IP inet
Daemon

rlogin

o3 @ bind
telnet - socket

rexec -~ 512

rsh (-~ 514

(IR

rexec
daemon

i

/etc/inetd.conf
/etc/services

rsh
daemon

Implementation Tasks
1. Customize inetd
startup

2. Choose userid
for inetd

3. Authorize inetd to
BPX.DAEMON

4. Implement RACF
program control
5. Configure inetd:
- /etc/services
- /etc/inetd.conf

6. Start inetd

Figure 4-12 Inetd, master of daemons

Chapter 4. Overview and customization of TCP/IP for z/OS UNIX

201

4.3.1 Customize inetd

202

Start inetd

The inetd daemon program can be found in two places. In the HFS, the program file is
/usr/sbin/inetd, but IBM has set the sticky bit on. A copy of this program is found in
SYS1.LINKLIB(INETD), so this is the program that is used. Start from a line in the
initialization script /etc/rc. In this case, use a command similar to the line shown:

Start the INET daemon for remote login activity
_BPX_JOBNAME="INETD' /usr/sbin/inetd /etc/inetd.conf &

Establish the inetd userid

The next step is to decide which user ID to associate with inetd. It needs to be a superuser
(UID=0), and have minimum access to MVS data sets. How you do this depends on start
mode:

» When started from /etc/rc, inetd inherits user ID OMVSKERN, which is a superuser.
Starting up via /etc/rc you are effectively locked into using the user ID under which the
/etc/rc script is running, as inetd is forked from that script. The user ID for /etc/rc is the
kernel ID OMVSKERN.

RDEFINE STARTED INET.* STDATA(USER(OMVSKERN) GROUP(OMVSGRP) TRUSTED(NO))

» If you have activated the RACF BPX.DAEMON facility, then the inetd user ID must be
authorized to this facility.

PERMIT BPX.DAEMON CLASS(FACILITY) ID(OMVSKERN) ACCEDD(READ)

Switch on program control

If you have set up the BPX.DAEMON, then you need to make sure that all programs are
loaded into the inetd address space. At a minimum, you should protect the following
programs:

» SYS1.LINKLIB(INETD)
» CEE.SCEERUN - LE/MVS run-time, whole library

Inetd configuration files
Figure 4-13 shows three configuration files that have to be updated for inetd support.

UNIX System Services z/OS Version 1 Release 7 Implementation

INETD |PARM=/etc/inetd.conf
/etc/inetd.conf .,

otelnet stream tcp nowait OMVSKERN /usr/sbin/otelnetd otelnetd -1 -m
shell stream tcp nowait OMVSKERN /ust/sbin/orshd orshd -LV -r
exec stream tcp nowait OMVSKERN /usr/sbin/orexecd orexecd -l -v
login stream tcp nowait OMVSKERN /usr/sbin/rlogind rlogind -m

23 TCP OMVS ; OTelnet Server
exec 512/tcp 512 TCP OMVS ; OREXECD
login ~ 513/tcp 513 TCP OMVS ; OMVS RLOGIN
shell 514/tcp - 514 TCP OMVS ; ORSHD

623 TCP INTCLIEN ; TELNET

otelnet 23/tcp

/etc/services, or //PROFILE DD in TCP procedure, or
hlq.ETC.SERVICES SYS1.TCPPARMS

Figure 4-13 Inetd configuration files

The primary file is /etc/inetd.conf, which is the inetd configuration file. There is one entry (line)
in this file for each daemon controlled by inetd. The fields are interpreted as follows:

>

>

>

Field (1) - Service name - match daemon entry in /etc/services file
Field (2) - Daemon socket type - stream or dgram
Field (3) - Daemon socket protocol - TCP or UDP

Field (4) - Wait_flag - can be wait (single thread server - one request at a time) or nowait
(multiple requests queued)

Field (5) - Login_name - RACF user ID under which daemon will run
Field (6) - Server_program - name of daemon program in HFS

Field (7) - Server-arguments - first string is job name for daemon address space, and the
rest is the parm string to pass to daemon

There is a corresponding entry in /etc/services for each daemon in inetd.conf. The entry lists
the port where inetd listens for daemon requests.

The TCPIP PROFILE configuration must list the same ports in the PORT section. This entry
identifies the job name authorized to open the socket to this port and the type of socket
allowed.

The two TCP/IP files usually exist already—you must make sure that inetd.conf corresponds
with the values listed. You may want to change the port number for a daemon.

Chapter 4. Overview and customization of TCP/IP for z/OS UNIX 203

4.3.2 Customizing the rlogind daemon

204

Rlogin to zZ/OS UNIX services

This is a similar flow through an rlogin request made through TCP/IP to z/OS UNIX. Assume
that the user has already done a login to the local host as rob. The user issues rlogin from
the shell session. The format depends on the local host. z/OS UNIX accepts an rlogin under
the current ID (rob) or the new ID (jane).

The AIX/UNIX rlogin client sends the request to port 513 on the host, monitored by the inetd
daemon. inetd forks a new address space and initializes the rlogind server.

The rlogind server uses a z/OS UNIX socket, created by inetd and passed via fork, to
communicate with the rlogin client. The server then proceeds to validate the rlogin request, as
follows:

» It reads the RACF user profile for the rlogin user ID passed (the current or new user ID). It
also reads the contents of the RACF OMVS segment.

» It prompts the remote client for the correct (RACF) password. Note that zZOS UNIX does
not support the use of either /etc/equiv.hosts or SHOME/.hosts files defined in HFS to
bypass authentication.

If authentication is good, rlogind allocates a standard z/OS UNIX pseudo tty terminal pair, and
then initiates the client shell in one of two ways:

» It creates a child shell process using local_spawn() and the validated user ID.
» It forks a copy of itself in a new address space, uses setuid()and seteuid() commands
to set RACF security to a valid user ID, and then runs an exec() shell program.

Figure 4-14 illustrates how this works.

n n "bigblue"
mypc
inetd e /etc/inetd.conf
R ®/etc/services
rlogin client " w— Pg'? o listen
‘ o fork + exec
$r|ogirc1)rbigblue rlogind | 4d
TS
rlogin -l jane bigblue i y
$rlogin -l Igblu aufthenhcate - RACF
via RACF
Database
N
S T +
login as "rob" / ------------ of spawn()T | fork() -
IP SOCKET R.O B * R.OB la— "terminfo“
connection | |4 Shell TP Shell Database

Figure 4-14 Inetd daemon

UNIX System Services z/OS Version 1 Release 7 Implementation

Activating the z/0S UNIX rlogin daemon

Figure 4-15 on page 206 describes the steps to customize z/OS UNIX for the rlogin daemon,
as follows:

1.

Go through the steps to customize the z/OS UNIX inetd daemon, and test that the daemon
is able to start.

Identify the user ID under which rlogind (the login daemon) will run. The rlogind program
as a daemon needs to be a superuser (UID=0), and authorized to access the
BPX.DAEMON RACEF facility, if used. The kernel user ID is typically used.

. Configure parms for starting rlogind as follows:

— Ensure that the TCPIP.ETC.SERVICES file has active entry as shown in Figure 4-15.
This assigns port 513 to the rlogin daemon.

— Update the inetd configuration file, /etc/inetd.conf, to include the entry for the rlogin
daemon.

* login - The ID of the entry for rlogin; must match TCPIPETC.SERVICES.
* stream tcp - Identifies the daemon socket protocol (this is required).

* nowait - INETD accepts multiple current connections on behalf of rlogind.
¢ OMVSKERN - The user ID under which the rlogin daemon runs.

* /usr/sbin/rlogind - Pathname of the rlogin daemon program. Sticky bit on means that
the system actually fetches SYS1.LINKLIB(RLOGIND).

¢ Remaining string = parameters for rlogin daemon (see below).
— Parameters in the rlogind parameter string can include:
* rlogind - Job name of server process.
* -m - If specified, the shell process shares address space with the rlogin daemon.
* -d - Switches on debug - extra messages are written to the system log.
To start rlogind support, you need to start the inetd daemon.
Let us walk through the process of doing an rlogin:

— First the inetd daemon starts up, either when the z/OS UNIX kernel is started from the
/etc/re script, or via a start command and procedure.

— The inetd daemon reads the configuration file and discovers that it must listen on
TCP/IP port 513 for incoming requests for the rlogind daemon (entry login).

— When an incoming request is received on port 513, inetd BINDS a new socket for the
request and then forks an inetd copy in a new address space.

— The inetd copy sets the job name for the new address space to RLOGIND (from
inet.conf parm 7), does setuid to the user ID for rlogon (OMVSKERN), and then does
exec () to call the rlogind program. It passes the rest of the argument string from
inetd.conf as a parameter.

— The rlogind daemon uses the supplied socket to contact the client and validate the
incoming login request. If the client gives a valid ID, rlogind reads the contents of the
OMVS segment for the user ID and allocates a PTY/TTY virtual terminal pair for the
session.

— Then rlogind tests for the -m parameter. If this is supplied, it runs the shell as a child
process in the rlogind address space. Otherwise, rlogind forks a new address space
and execs the shell in that address space. In either case, the shell runs under the client
user ID.

Chapter 4. Overview and customization of TCP/IP for zZOS UNIX 205

1. Customize inetd for startup
2. Establish rlogind user id and BPX.DAEMON access

3. Configure parms for rlogin

/etc/services or inetd —krlogind
TCPIP.ETC.SERVICES
U=OMVSKERN
login 513/tcp
| 0 -m? B
. isten
e 7 513 Y ‘
rlogin bob fork()— Shell Shell
U=BOB U=BOB
/etc/inetd.conf 22

login stream tcp nowait OMVSKERN /usr/sbin/rlogind rlogind -m I

4. Start inetd

Figure 4-15 Steps to customize rlogind

4.4 Define TCP/IP daemons

The TCP/IP z/OS UNIX Application feature provides several other TCP/IP functions that you
might want to configure, as shown in Figure 4-16.

[OTELNETD REXEC FTPD RSHD REXECD SYSLOGDJ

/etc/services or
TCPIP.ETC.SERVICES

hlq.TCPIP.PROFILE

ftp 21/tcp
otelnet 23/tcp
exec 512/tcp
login 513/tcp
shell 514/tcp
syslog 514/udp

/etc/inetd.conf

21 TCP OMVS
22 TCP OMVS
23 TCP OMVS
512 TCP OMVS
513 TCP OMVS
514 UDP OMVS
514 TCP OMVS

; FTP Server

; FTP Server

; OTelnet Server

; OMVS REXECD

; OMVS RLOGIN

; OMVS SYSLOGD
; OMVS RSHD

623 TCP INTCLIEN ; TELNET Server

otelnet stream tcp nowait OMVSKERN /usr/sbin/otelnetd otelnetd - -m
shell stream tcp nowait OMVSKERN /usr/sbin/orshd orshd -d

exec stream tcp nowait OMVSKERN /usr/sbin/orexecd orexecd -d
login stream tcp nowait OMVSKERN /usr/sbin/rlogind rlogind -m

Figure 4-16 TCP/IP daemons

UNIX System Services z/OS Version 1 Release 7 Implementation

TELNET Allows remote users to log in to z/OS using a telnet client. The z/OS UNIX
telnet server is started for each user by the INETD listener program.

REXEC Remote execution client and server support the sending and receiving of a
command.

FTP File transfer program supports transfer into and out of the Hierarchical File
System.

RSH Provides remote execution facilities with authentication based on privileged

port numbers, user IDs and passwords.

SYSLOGD Supplies the logging functions for programs that execute in the z/OS UNIX
environment.

Ports need to be assigned to the functions that you choose to configure. The

hlg. TCPIP.PROFILE data set has an entry for each function and its port and protocol. If you
will be configuring both the z/OS UNIX version and the standard TCP/IP version, you will
need to decide which one will use the well-known port assignment.

The TCP/IP resolver function also needs to have the port assignments. These can reside in
either the TCPIP.ETC.SERVICES data set or the /etc/services file.

Each daemon then has its own configuration information. The inetd program comes with z/OS
UNIX and is the listener program for several of the TCP/IP daemons. The commands inetd
will use to initiate each program are put in the /etc/inetd.conf file.

The SYSLOG and FTP daemons have their own configuration files, /etc/syslog.conf and
/etc/ftpd.data respectively, and each requires a startup procedure.

4.4.1 Syslogd daemon

The syslog daemon (syslogd) is a server process that must be started as one the first
processes in your z/OS UNIX environment. z/OS Comminations Server applications and
components use syslogd for logging purposes and can also send trace information to
syslogd. Servers on the local system use AF_UNIX sockets to communicate with syslogd,
while remote servers use the AF_INET socket.

The syslogd daemon reads and logs system messages to the MVS console, log files, other
machines, or users, as specified by the configuration file /etc/syslog.conf. A sample is
provided in /usr/Ipp/tcpip/samples/syslog.conf.

If the syslog daemon is not started, the application log may appear on the MVS console.

The syslog daemon must have a user ID; for example, SYSLOGD defined in RACF with
UID=0. The syslogd daemon uses the following files:

/dev/console Operator console

letc/syslog.pid Location of the process ID

letc/syslog.conf Default configuration file

/dev/log Default log path for z/OS UNIX datagram socket
lusr/sbin/syslog Syslog server

If you want syslogd to receive log data from or send log data to remote syslogd servers,
reserve UDP port 514 for the syslogd job in your PROFILE.TCP/IP data set and enter the
syslog service for UDP port 514 in the services file or data set (for example, /etc/services).

Chapter 4. Overview and customization of TCP/IP for zZOS UNIX 207

=

lnp/syslogdlremote.log

Remote
syslogd
ysiog FEeE MVS Console
syslogd -
A p—
= &=
AF_INET socket | AF_INET socket y U T\
/dev/console
Server

Process1 UDP Port 514
AF_UNIX socket

syslogd daemon

:

Itmp/syslogd/processi.log

Server
Process 2 —
‘ /Itmp/syslogd/process2.log

=
Eclsyslog.conf

AF_UNIX socke

!

Figure 4-17 Syslogd daemon

Note: Syslogd can only be started by a superuser and can be terminated using the
SIGTERM signal.

4.4.2 Otelnetd daemon

The telnet server is used to enable remote telnet clients to log on to the z/OS UNIX shell
environment in either raw mode (also called character mode) or line mode.

Setting up otelnetd
Figure 4-18 on page 209 illustrates the steps required to set up otelnetd.

208 UNIX System Services z/OS Version 1 Release 7 Implementation

If -m option, shell will run in the same
address space as the telnetd process

Fork() and Spawn
a shell
Inetd exec() to otelnetd
otelnetd
AF_INET
! socketfd

lmasten‘d (/dev/ptypxxxx) lslavefd (/dev/ttypxxxx)

Master pty Slave pty

Commands

The Shell

H
H
H
H
H

AF_INET PFS

Telnet
client

Figure 4-18 FTPD overview

Customize the number of pseudoterminal files

The pseudoterminal files are created in the HFS in the /dev directory. The file names are
ptypnnnn and ttypnnnn, where nnnn is a number from 0000 to 9999. These files are used in
pairs by the telnetd server and the rlogind server.

You can allocate the pseudoterminal files during z/OS UNIX Application Service installation
by running BPXISMKD from the SYS1.SAMPLIB. The parameter MAXPTYS determines the
maximum number of pseudoterminal files to be allocated. You may modify the EXEC to
allocate extra pseudoterminals afterward (see Figure 4-19). The EXEC should be executed
by a superuser.

/* REXX */
MAXPTYS = 255 /* new maximun number */
PTYSTART = 51 /* first new ptyp and ttyp */

call syscalls('On")

Do count = PTYSTART to MAXPTYS

ptyscnt = $root"dev/ptyp"Right(count,4,0)"""
ttyscnt = $root"dev/ttyp"Right(count,4,0)"""
call syscallm mknod ptyscnt "666 1" count
call syscallm mknod ttyscnt "666 2" count
End

Figure 4-19 Sample REXX exec to increase the number of pseudoterminals

Chapter 4. Overview and customization of TCP/IP for zZOS UNIX 209

After you have increased the number of pseudoterminal files, you should update the MAXPTYS
statement in the BPXPRMxx parmlib member:

MAXPTYS (256)

The value of MAXPTYS should be one more than the highest pseudoterminal number you
created, because the terminal number starts from 0000.

Starting the z/0S UNIX telnet server
The telnetd server is started via inetd.

The default port number for the telnetd server is 23. This is a well-known port number, and
you can reserve the port to z/OS Communication Server in the PROFILE data set:

23 TCP OMVS ; UNIX System Services Telnet Server
If the default port number 23 is used, a client has to know only the name or IP address of the
server to establish a connection and can use a command such as:

telnet 9.24.104.43
It is also possible to reserve a different port for the z/OS UNIX telnet server in the PROFILE
data set of zZ0S Communication Server, for example:

2023 TCP OMVS ; UNIX System Services Telnet Server
In this case, a client has to specify both the host name (or IP address) and the port number of
the server with the telnet login command, as follows:

telnet 9.24.104.43 2023
If you assign an alternate port number to your z/OS UNIX telnet server, you also need to

update your /etc/services configuration file with the chosen port number in order for inetd to
listen for telnet client requests on the chosen port:

telnet 2023/tcp

Since inetd is the listener for telnetd, you have to customize the /etc/inetd.conf file so that it
can fork() the telnetd upon request. You should uncomment the following statement:

P N, N
service | socket | protocol | wait/ | user | server | server program
name | type | | nowait| | program | arguments

B oo o-cccccoozzzzzsszss=zss=s============================
#

otelnet stream tcp nowait OMVSKERN /usr/sbin/otelnetd otelnetd -1 -m

If your configuration has more than one z/OS Communication Server for a z/OS IP stack
running on one z/OS image, all of these stacks must have identical port reservations for the
z/OS UNIX telnet server. The chosen port number is a system-wide value in the z/OS UNIX
environment. For more information on running multiple stacks, see Communications Server
for z/0S V1R2 TCP/IP Implementation Guide Volume 1: Base and TN3270 Configuration,
SG24-5227.

A telnetd server process is forked from inetd whenever a telnet client connects to z/OS UNIX

System Services. See Figure 4-18 on page 209 for an overview of how telnetd operates in the
z/OS UNIX environment.

210 UNIX System Services z/OS Version 1 Release 7 Implementation

4.4.3 REXECD and RSHD servers

Both the REXECD server and the RSHD server are used to execute z/OS UNIX shell
commands from remote users. Figure 4-20 shows an overview of how both servers are
implemented in the z/OS UNIX environment.

INETD

fork()

connect()

0

REXECD
or RSHD

AF_INET
socketfd

AF_INET PFS

REXEC or

RSH client

Figure 4-20 z/OS REXECD and RSHD implementation overview

For each remote request, inetd forks a new process with either REXECD or RSHD. The
REXECD or RSHD server in turn forks a shell process with which it communicates via pipes.

The default port numbers for the two servers are 512 and 514, and both must be reserved in
the PROFILE data sets of the TCP/IP stacks that act as z/OS UNIX AF_INET transport

providers:

PORT
512 TCP OMVS ;REMOTE EXECUTION SERVER
514 TCP OMVS ;REMOTE SHELL SERVER

Customize the /etc/inetd.conf file. Figure 4-21 shows a part of the file in our test system:

#
#==
service | socket | protocol | wait/ | user | server | server program
name | type | | nowait| | program | arguments
#::
shell stream tcp nowait OMVSKERN /usr/sbin/orshd orshd -LV

exec stream tcp nowait OMVSKERN /usr/sbin/orexecd orexecd -1 -v

#

Figure 4-21 Sample /etc/inetd.conf file for REXECD and RSHD servers
There are a few situations where the RSHD server may encounter an error so early in the

processing of a command that it has not established a proper EBCDIC-to-ASCII translation
yet. In such a situation, the client end user may see “garbage” data returned to his or her

Chapter 4. Overview and customization of TCP/IP for zZOS UNIX 211

terminal. A packet trace will reveal that the response is in fact returned in EBCDIC, which is
the reason for the garbage look on an ASCII workstation. We have seen this happen if the
z/OS UNIX name resolution was not configured correctly, so the RSHD server, for example,
was not able to resolve IP addresses and host names correctly. If your RSH clients encounter
such a problem, then go back and check your name resolution setup. If you are using a local
hosts table, make sure that the syntax of the entries in your hosts file is correct.

We also saw an authentication error during our tests. The REXEC server, for example, needs
to be associated with a user who has READ authority to the BPX.DAEMON facility class.
Otherwise your REXEC client's request will fail. For more information on the BPX.DAEMON
facility, refer to Communications Server for z/OS V1R2 TCP/IP Implementation Guide
Volume 1: Base and TN3270 Configuration, SG24-5227.

4.4.4 FTPD daemon

File Transfer Protocol (FTP) is used to transfer files between TCP/IP hosts. The FTP client is
the TCP/IP host that initiates the FTP session, while the FTP server is the TCP/IP host to
which the client connects; see Figure 4-22.

The FTP server uses two different ports and manages two TCP connections as follows:

» Port 21 is used to control the connection (user ID and password).

» Port 20 is used for actual data transfer based on the FTP client's requests.

The FTP server in z/OS IP consists of the daemon (the listener) or fipd and server address

space (or processes). The daemon performs initialization, listens for new connections and
starts a separate server address space for each connection.

When a new client FTP-connects to the FTPD daemon process, ftpd forks an FTP server
process; thus, a new job name is generated by z/OS UNIX.

stop or modify >
7 command I HFS File 1
Mvs
&__ftp.data I ~ Data Set
] fork()
‘ Listener Process and Y /
fork() execv() FTPDn
FTPD FTPD1
<
FTPDn (n=1..)

initial connect()

" data connection

client client

Figure 4-22 Process flow of the z/OS UNIX FTP server

212 UNIX System Services z/OS Version 1 Release 7 Implementation

z/0OS IP search order - FTP
FTP.DATA is used to override the default FTP client and server parameters for the FTP server.

You may not need to specify the FTP.DATA data set if the default parameters are used.

A sample is provided in hlq.SEZAINST(FTPDATA) for the client and
hlg.SEZAINST(FTPSDATA) for the server.

When an FTPD daemon or started task is started, it searches the FTP.DATA file in the
following order (see Figure 4-23):

1. //SYSFTPD DD in FTPD started task procedure

userid/jobname.FTP.DATA

/etc/ftp.data

SYS1.TCPPARMS(FTPDATA)

hlg.FTP.DATA

o & DN

Note: The search stops if one of these data sets is found.

optional

FTPD looking for these data sets at initialization

Server/Client

Ve

[\ ‘*\777777
_ w /[SYSFTPD DD

= userid/jobname.FTP.DATA
= /etc/ftp.data
= SYS1.TCPPARMS(FTPDATA)

Figure 4-23 z/OS IP search order - FTP

z/0OS CS
TCP/IP stack

z/0OS IP search order - services

The ETC.SERVICES data set is used to establish port numbers for UNIX application servers
using TCP and UDP. This file or data set is required for any daemon or application that needs
the use of a specific port.

Standard applications, like telnet or FTP, are assigned port numbers inside the well-known
port number range. You can assign port numbers to your own server applications by adding
entries to the /etc/services file.

For example, rlogind listens on 513/TCP and telnetd listens on port 23/TCP, while syslogd
listens on port 514/UDP. This specification is provided in the ETC.SERVICES data set.

When TCP/IP and the daemons start, they look for the ETC.SERVICE file or data set in the
following order (see Figure 4-24 on page 214):

» /etc/services (HFS file)
» userid/jobname.ETC.SERVICES

Chapter 4. Overview and customization of TCP/IP for zZOS UNIX 213

» hlq.ETC.SERVICES

The search stops if one of these data sets is found.

Server using TCP and UDP port
(rlogind, telnetd, syslogd, rexecd)

¥y)

2/0S CS s /etc/services
TCP/IP stack = userid/jobname.ETC.SERVICES
= hlq.ETC.SERVICES

4 e

Establishes port numbers for servers
using TCP and UDP

_—

Figure 4-24 z/OS search order - services

4.4.5 Start daemons

214

After the configuration files have been completed, the daemons need to be started before any

remote requests can be processed.

The /etc/rc script is a good place to put the start command, as Figure 4-25 on page 21
shows. In this case, the daemons will be started during the initialization processing for
UNIX. The _BPX_JOBNAME environment variable will give the daemon an MVS job n

5

z/OS
ame.

Since inetd is responsible for starting the other daemons (telnet, rlogin, remote shell, and

remote execution), start commands for them are in inetd's configuration file.

In case any of these daemons fail, you should have other procedures created to restar

t them

since /etc/rc is only used at z/OS UNIX initialization. You could use shell scripts or MVS

procedures for this.

UNIX System Services z/OS Version 1 Release 7 Implementation

] Start daemons at initialization /etc/rc

BPX_JOBNAME = 'SYSLOGD' /usr/sbin/syslogd -f /etc/syslog.conf &
BPX_JOBNAME='FTPD' /usr/sbin/ftpd /etc/ftp.data &

BPX_ JOBNAME ="'INETD' /usr/sbin/inetd /etc/inetd.conf &
/

1 Daemons started by INETD
/etc/inetd.conf

otelnet stream tcp nowait OMVSKERN /usr/sbin/otelnetd otelnetd -I -m
shell stream tcp nowait OMVSKERN /usr/sbin/orshd orshd -d

exec stream tcp nowait OMVSKERN /usr/sbin/orexecd orexecd -d
login stream tcp nowait OMVSKERN /ust/sbin/rlogind rlogind -m

1 Daemons started by a BPXBATCH job

Figure 4-25 Start the syslogd, fipd, and inetd daemons

4.5 SMTP server

The Simple Mail Transfer Protocol (SMTP) is a TCP/IP application that is used to transport
electronic mail. Electronic mail enables you to send notes, messages, letters, or
correspondence to others on the network. It is similar to sending a letter through the post
office. You compose the message just as you would an ordinary letter, address the letter to
one or more people and possibly carbon copy others. You enclose copies of the letter in
envelopes, address them to the recipients, and give them to the delivery system. You expect
the mail to be delivered to the correct address available for pickup when the recipient is ready.
And you want any undeliverable mail returned to you. You can even keep a log of the mail you
send and receive. The following commands are available to let you send and receive mail:

The simple mail architecture defines Mail User Agent (MUA), Mail Transfer Agent (MTA), and
Mail Delivery Agent (MIDA).

» The MUA is any of various offered programs like the original UNIX mail program (/bin/mail)
or the Berkeley MAIL program or the Netscape Communicator, etc. which a user runs to
compose, dispose, read and reply to e-mail notes.

» The MTA is software that sends the prepared note by the MUA to a remote MTA
responsible for the recipient using an SMTP connection.

The sendmail program is an MTA on the sending and on the receiving side.

» Finally, the SMTP server uses a local mailer program (for example /bin/mail) to deliver the
note to a mail spool file by appending the note to this file. SMTP server now has finished
its work.

» The user (MUA) may now retrieve his mail from the spool file.

Chapter 4. Overview and customization of TCP/IP for zZOS UNIX 215

» Another approach, more common today, is that a separate server, a popper server running
the POPS3 protocol, is used to retrieve notes from the mail spool file. This can be done for
example through a Netscape Communicator working as a POPS3 client invoking the popper
server. A prerequisite, however, is that the MUA supports the POP3 protocol.

The popper is an MDA using the POP3 protocol for the transport between MDA and MUA.
Figure 4-26 shows how it works.

MVS39A MVS28A

I_ ————————————————— 1
| '
| Sender's SMTP
|
| swmTP Dﬁa"”
| Client
|
e oo oo oes

or

PC
(R = S
: Sender's
: MUA Local
| . Mailer
i Client
1

|
: Popper
1 | Daemon
|
|
|

MDA [

I
I
I Read
: File System
I I !
I . | !
| | Receiver's | | Receiver'
Ll MUA [s
| | Browser : ,
I | !
e - - —_—— I_ __________

User PC/Workstation

Figure 4-26 Relationship between MUA, MTA, and MDA

For implementation and customization of an SMTP server, see zZ0OS Communications Server
IP Configuration Guide, SC31-8775.

4.6 Sending e-mail using SMTP commands

SMTP mail can be sent and received interactively over a TCP/IP network. Mail from TCP/IP
network sites destined for local MVS users (or users on an NJE network attached to the local
MVS system) arrives over this interface. All commands and data received and transmitted
through this interface use ASCII characters.

Interface from the JES spool, including any connected NJE nodes. SMTP commands can be
written into a SYSOUT data set, with an external writer name of the SMTP address space.

216 UNIX System Services z/OS Version 1 Release 7 Implementation

SMTP processes each of the commands in the data set in sequence, exactly as if it had been
transmitted over a TCP/IP connection. This is how mail is sent from local MVS users to
recipients on the TCP network. Batch SMTP data sets must contain commands and data in
EBCDIC characters.

For a description of batch SMTP in TSO utilities, see zZ0S Communications Server IP
Configuration Guide, SC31-8775.

To send mail to a TCP network recipient, see the batch SMTP commands as inline input for
SYSUT1 and SYSUT2, create the following JCL using the IEBGENER utility on the TSO/ISPF
application shown in the Figure 4-27.

//BATSMTP JOB (userid,nn),MSGCLASS=B,PRTY=12,MSGLEVEL=(2,1)
//IEBGENER EXEC PGM=IEBGENER
//SYSIN DD DUMMY

//SYSUT1 DD *

HELO YOURMVS

MAIL FROM:<LIVIO@YOURMVS>

RCPT TO:<msgs@rsch.our.edu>

RCPT TO:<alice@ai.our.edu>

DATA

Date: Thur, 26 Jul 03 21:48:57 EST
From: Livio <LIVIO@YOURMVS>

To: <msgs@rsch.your.edu>

Cc: <alice@ai.your.edu>

Subject: update

Mike: Cindy stubbed her toe. Bobby went to
baseball camp. Rebecca made the cheerleading team.
Jan got glasses. Peter has an identity crisis.
Greg made dates with 3 girls and couldn't

remember their names.

QUIT

/‘k

//SYSUT2 DD SYSOUT=(B,smtp)

/1* | v

//* v SMTP address space name for external writer
/1* SYSOUT class

//SYSOUT DD SYSOUT=A
//SYSPRINT DD SYSOUT=A

Figure 4-27 Sample of sending mail from an NJE network host

4.7 Customizing and starting NFS

Client systems in a TCP/IP network that support the NFS client protocol can use traditional
MVS data sets and z/OS UNIX HFS files as part of their file system. The z/OS NFS server
uses OE-Sockets and supports both HFS and traditional MVS data sets.

4.7.1 Configuring the zZ/OS NFS client

This section describes how to configure the z/OS NFS client.

During z/OS UNIX file system initialization, the z/OS NFS client is started and run in the
logical file system (LFS) colony address space. The filesystype parmlib statement for the

Chapter 4. Overview and customization of TCP/IP for zZOS UNIX 217

z/OS NFS client must be present in the SYS1.PARMLIB(BPXPRMxx) parmlib member in
order to start the z/OS NFS client. For more information on z/OS UNIX file system reference,
see z/OS UNIX System Services File System Interface Reference, SA22-7808.

Updating MVS system data sets for the client
Start TCP/IP and portmap. Wait until this message appears:

MVPOEDOOO1I OPENEDITION-TCP/IP connection established

To accommodate the z/OS NFS client you must update MVS system data sets parmlib and
proclib, and the DD statement.

Parmlib updates

Add the data set defined in the GFSCPROC STEPLIB containing the z/OS NFS client library
to the system‘s APF authorization list IEAAPFxx). A sample cataloged procedure named
GFSCPROC is provided as a member of the sample library NFSSAMP; see Figure 4-28.

//MVSNFSC PROC SYSNFS=SYS1,SYSLE=SYS1,NFSPRFX=MVSCLNT,TCPIP=TCPIP
//MVSCLNT EXEC PGM=BPXVCLNY,

// REGION=0M,

// TIME=1440

//SYSTCPD DD DISP=SHR,DSN=&TCPIP..TCPIP.DATA
//STEPLIB DD DISP=SHR,DSN=&SYSNFS..NFSLIB

// DD DISP=SHR,DSN=&SYSLE..SCEERUN

/1*

//SYSPRINT DD SYSOUT=*

//SYSMDUMP DD DISP=SHR,DSN=&NFSPRFX..SYSMDUMP
//OUTPUT DD SYSOUT=*

//SYSERR DD SYSOUT=*

//NFSCMSG1 DD DISP=SHR,DSN=&NFSPRFX..LOG1
//NFSCMSG2 DD DISP=SHR,DSN=&NFSPRFX..L0G2

Figure 4-28 Sample z/OS NFS client startup procedute

Add the filesystype parmlib statement shown in Figure 4-29 to be the z/OS parmlib member
(BPXPRMxx:)

FILESYSTYPE
TYPE(NFS)
ENTRYPOINT (GFSCINIT)
PARM(“installation parms’)
ASNAME (proc_name)

Figure 4-29 Sample filesystype parmlib statement

Note: The proc_name is also used for the name of the address space.

For data integrity and data isolation among different PFSs, the z/OS NFS client is required to
start in a separate and standalone colony address space. To do that, a unique proc_name
must be used.

For information about BSAM, QSAM and VSAM ESDS access to remote files, application
access to HFS or remote files and their restrictions, see Network File System Customization
and Operation, SC26-7417 and z/OS DFSMS Using Data Sets, SC26-7410.

218 UNIX System Services z/OS Version 1 Release 7 Implementation

Mounting remote file systems

z/OS UNIX does not support zZOS NFS mounts in the SYS1.PARMLIB member statement.
You can use the z/OS UNIX automount facility (/etc/rc shell script support) or the TSO
MOUNT command to make a connection between a mount point on your local MVS HFS file
system and one or more files on a remote MVS, AIX®, UNIX, OS/390, z/OS, Linux, or other
file system. The remote file system can be mounted using the TSO MOUNT command, which
can only be used by an MVS superuser. For additional information about the TSO MOUNT
command, when used with a z/OS NFS client, see DFSMS/MVS Network File System Users
Guide, SC26-7419.

The remote file system must be mounted on the z/OS UNIX file system prior to any reference
to the remote data. Once mounted, the remote file system can be treated as an extension of
the local z/OS UNIX file system.

4.7.2 Configuring the z/OS NFS server

This section describes how to configure the z/OS NFS server.

Enable portmap

NFS uses the TCP/IP RCP protocol for client-server communication. This is why the
portmapper function has to be enabled. If not already done, copy the sample PORTMAP
procedure from hlq.SEZAINST(PORTPROC) to your procedure library. PORTMAP needs
read access to the hlg.ETC.RPC file. Copy it from the hlq.SEZAINST(ETCRPC) file.

Add the entries in the hilg.ETC.RPC file for the service provided by the NFS server; see

Figure 4-30.
Service Number Description
nfs 100003 NFS daemon
mountd 100005 Mount daemon
mvsmount 100044 daemon for mvslogin and mvslogout
showattrd 100059 showattr daemon
pcnfsd 150001 pcnfs deamon
nim 100021 network lock manager
nsm 100024 network status monitor

Figure 4-30 Modifying the hiq.ETC.RPC file

Aliocating the attributes, checklist, and exports data sets

Copy the members from SYS1.NFSSAMP and rename them. Update the EXPORT member
with the available data sets and directories in NFS. After that, add these members into your
start procedure for the NFS server; see Figure 4-31 on page 220.

Chapter 4. Overview and customization of TCP/IP for zZOS UNIX 219

//COPY1 EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=*
//INDS DD DSN=SYS1.NFSSAMP,DISP=SHR
//0UTDS DD DSN=SAMPLE.NFS.CONTROL,DISP=(,CATLG),
// SPACE=(TRK, (2,2,10)),UNIT=3390,
// DCB=(RECFM=FB, LRECL=80,BLKSIZE=27920,DSORG=P0)
//SYSIN DD *
COPY OUTDD=0UTDS, INDD=INDS
SELECT MEMBER=((GFSAPATT,NFSATTR))
SELECT MEMBER=((GFSAPCHK,CHKLIST))
SELECT MEMBER=((GFSAPEXP,EXPORTS))
/*

Figure 4-31 Sample JCL to allocate NFSSAMP data sets

Updating the exports data set

The exports data set contains entries for directories that can be exported to clients. It is used
by the server to determine which data sets’ high-level qualifiers or HFS directories can be
mounted by a client in a read or write mode.

Modify the sample exports data set to suit your installation as shows Figure 4-32. For security
considerations and for the assignment of UIDs and GIDs in your NFS network, see 4.7.3,
“Security settings for the z/OS NFS environment” on page 223. We used EXPORTS security
for z/OS UNIX HFS files.

mvsnfs -ro give read-only access
to all clients
robert.mixds -rw=fsrs001:fs1ab004:fsT1ab007
give read/write access
to the clients named
fsrs001, fslab004 and
fs1ab007, and give
read-only access to

all other clients

S oS e W W $R O 3 e

Figure 4-32 Sample of exports data set

Note: You cannot specify exporting a “parent directory” or a subdirectory of an exported
directory. For example, if you specify DIR1 in the exports data set, DIR1 and all its
subdirectories are exported. You cannot specify any subdirectories under DIR1 in the
exports data set.

Allocating the mount handle data sets

The mount handle data sets are used to record active mounts during server operation and
allow clients to stay mounted when the server is shut down and restarted. The Network File
System alternates between two data sets to record this information; only one data set is used
at a time, and it is switched at either shutdown or at resource cleanup timeout.

Allocate the mount handle data sets. You can find sample JCL in
hlg.NFSSAMP(GFSAMHDJ). We provide a sample for you in Figure 4-33 on page 221.

220 UNIX System Services z/OS Version 1 Release 7 Implementation

//DEF1 EXEC PGM=IDCAMS,REGION=0M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DEFINE CL (NAME (SAMPLE.FHDBASE) -

CyL(1,1) -

VOL (SBOX77) -

INDEXED -

REUSE -

KEYS(16 0) -

SHAREOPTIONS(3 3) -

RECSZ (400 1600))

LISTC ENT(SAMPLE.FHDBASE) ALL
/*
//DEF2 EXEC PGM=IDCAMS,REGION=0M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DEFINE CL (NAME (SAMPLE.FHDBASE2) -

CyL(1,1) -

VOL(SBOX77) -

INDEXED -

REUSE -

KEYS(16 0) -

SHAREOPTIONS(3 3) -

RECSZ (400 1600))

LISTC ENT(SAMPLE.FHDBASE2) ALL
/*

Figure 4-33 Sample JCL to create a mount handle data set

Note: Delete and allocate the mount handle data sets before running any new versions of
the NFS. If an old mount handle data set is used, the server issues a message and shuts
down.

Customizing the translation table for NFS

For text processing mode, data is converted between EBCDIC and ASCII. No double-byte
character set (DBCS) or multiple-byte character set (MBCS) forms of data are converted.

You can customize the translation table for the Network File System using the processing
attribute xlat(member_name). The parameter (member_name) is the member name of a PDS
or PDSE containing the customized translation table. This attribute can be specified either in
the mount operation or in the attribute file. It can be specified on a file operation but is
ignored. Only the mount or xlat values take effect. We have provided a sample in Figure 4-34
on page 222.

Chapter 4. Overview and customization of TCP/IP for z/OS UNIX 221

//STEP1 EXEC PGM=IKJEFTO1

//SYSPRINT DD SYSOUT=*

//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD *

CONVXLAT 'TCPIP.SEZATCPX(STANDARD)' 'SAMPLE.NFS.TEST'
/%

//STEP2 ~ EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=*

//SYSUT1 DD DISP=(OLD,DELETE),DSN=SAMPLE.NFS.TEST
//SYSUT2 DD DISP=(NEW,CATLG),DSN=SAMPLE.NFS.XLAT.NEW,
// DCB=(RECFM=F,LRECL=256,BLKSIZE=256),

// SPACE=(TRK, (1,2,5)),UNIT=3390

//SYSIN DD *

GENERATE MAXNAME=1

MEMBER NAME=STANDARD

/*

Figure 4-34 Sample JCL to customize a translation table

Note: See “Using Translation Tables” in zZOS Communications Server IP Configuration
Reference, z/ OS Communications Server IP Configuration Reference, SC31-8776, for
more information about creating and customizing your own translation tables.

Customize the MVSNFS procedure

Copy the sample MVSNFS procedure from hlg.NFSSAMP(GFSAPROC) to your procedure
library and customize it. Assign a user ID to the NFS procedure (we used the same user ID as
TCPIP) with an OMVS segment.

Update the following MVS system data sets to accommodate the z/OS NFS server.

Add the DD statements:

» EXPORTS as the DD for the exports data set

» NFSATTR as the DD for the attributes data set

» FHDBASE and FHDBASE2 as the DD for the mount handle data set
» NFSXLAT as the DD to enable the xlat processing attribute

» NFSLOGH1 as the DD for the primary log data set

» NFSLOG2 as the DD for the secondary log data set

» SYSxDUMP as the DD for the SYSxDUMP data set ('x' = U or M)

We have provided sample z/OS NFS server startup procedures in Figure 4-35 on page 223.

222 UNIX System Services z/OS Version 1 Release 7 Implementation

//NFSMVS ~ PROC MODULE=GFSAMAIN,

// SYSNFS=SYS1,

// NFSPRFX=0S390NFS,

// TCPIP=TCP,

// TCPDATA=TCPDATA

//GFSAMAIN EXEC PGM=&MODULE,

// REGION=0M,

// TIME=1440,

// PARM=(,

// "ENVAR("_BPXK_SETIBMOPT TRANSPORT=TCPIP")/')

//SYSTCPD DD DISP=SHR,DSN=&TCPIP..&SYSNAME..TCPPARMS (&TCPDATA.)
//STEPLIB DD DISP=SHR,DSN=&SYSNFS..NFSLIB

//SYSPRINT DD SYSOUT=*

//OUTPUT DD SYSOUT=*

//SYSERR DD SYSOUT=*

//NFSATTR DD DISP=SHR,DSN=&NFSPRFX..&SYSNAME.MVS.PARMS (ATTRIB)
//NFSLOG1 DD DISP=SHR,DSN=&NFSPRFX..&SYSNAME.MVS.SERVER.LOG1
//NFSLOG2 DD DISP=SHR,DSN=&NFSPRFX..&SYSNAME.MVS.SERVER.LOG2
//FHDBASE DD DISP=SHR,DSN=&NFSPRFX..&SYSNAME.MVS.FHDBASE1
//FHDBASE2 DD DISP=SHR,DSN=&NFSPRFX..&SYSNAME.MVS.FHDBASE2
//NFSXLAT DD DISP=SHR,DSN=&NFSPRFX..&SYSNAME.MVS.XLAT

Figure 4-35 Sample NFS server startup procedure

MVSLOGIN and MVSLOGOUT

If you specified security(SAF) or security(SAFEXP) in your NFS attributes file, you must
download the mvslogin and mvslogout client commands to the NFS client system. See
Network File System Customization and Operation, SC26-7417 for further information.

Access a 2/0S UNIX HFS

You should now be able to access a z/OS UNIX HFS from an NFS client. Figure 4-36 shows
the command sequence to be used to mount a z/OS UNIX HFS directory from a Linux
system. We used EXPORTS security, so we did not use the mvslogin command.

showmount -e 9.12.6.9

Export 1ist for 9.12.6.9:

/ (everyone)

clinuxa:~ # mount 9.12.6.9:/ /mnt/Tivio
clinuxa:™ # df -h

Filesystem Size Used Avail Use% Mounted on
/dev/dasdal 2.26 2.1G 23M 99% /

/dev/dasdb1 2.3 2.1G 31IM 99% /mnt/dasdb
9.12.6.9:/ 117 59M 59M 50% /mnt/Tivio

Figure 4-36 Command sequence to mount an HFS directory from a Linux system

As previously mentioned, we used EXPORTS security, so we did not use the mvslogin
command. For more information on NFS, see DFSMS/MVS Network File System Users
Guide, SC26-7419.

4.7.3 Security settings for the Z/OS NFS environment

Mapping of UNIX security and MVS security is always cumbersome, especially if NFS is
involved. This section provides customization hints to do this more easily and efficiently.

Chapter 4. Overview and customization of TCP/IP for zZOS UNIX 223

224

MVS NFS security levels
Four different security levels can be selected in the MVS NFS attributes data set:

NONE No security checking is performed.

EXPORTS The EXPORTS file is used to check security.

SAF The System Authorization Facility checking is performed. RACF provides
the security information.

SAFEXP Both SAF and EXPORTS file checks are performed.

For most MVS installations, selecting security(NONE) is unacceptable, so security checking
has to be done by RACF using the MVS SAF support, or by MVS NFS using the EXPORTS
file, or via both mechanisms.

EXPORTS security implements the way security checking is usually done by UNIX systems
with NFS implementations. A parameter file (on MVS, known by the DD name EXPORTS,
and on UNIX systems, in most cases known as the /etc/exports file), contains the names of
directories that are available for NFS requests. This parameter file also contains the host
names of those NFS client systems that have permission to mount these directories for read
and/or write purposes. The parameter file does not contain any user ID associated with the
NFS mount, but it does contain the IP host name of the NFS client.

SAF security implements a more MVS-like approach. It requires the NFS client to provide a
valid RACF user ID and password to z/OS NFS. The access to MVS data sets and HFS files
is checked by RACF.

SAFEXP security requires that both security checks (SAF and EXPORTS) grant access to the
files.

Security information exchange between NFS client and server
This section describes how an IP host name and a RACF user ID are provided to MVS NFS.

» How is the client IP host name resolved by the NFS server?

If an NFS client connects to the NFS server, only the IP address is transmitted over the
network. On the NFS server side, the client IP address is resolved into a client host name
by using either local hosts tables or a query to a local or remote name server. It should be
noted that in most implementations it is fairly easy to use a fake IP address on the client
side.

» How is a RACF user ID provided to NFS?
— For single user PC systems, this is usually not a simple task.

Most PC systems support an extension to the NFS protocol called PC-NFS client.
MVS/ESA has, like many NFS implementations, a PC-NFS server. PC-NFS support is
enabled by specifying the pcnfsd verb in the NFS attributes data set. If PC-NFS
support is enabled on the MVS/ESA NFS server, after a mount command is received
from the NFS client, the server prompts the client asking for a user ID and password.
Both are checked by RACF.

— The problem arises with UNIX systems, which usually do not provide a PC-NFS client,
because they are by design multi-user systems.

In most cases on a UNIX system, users must have superuser authority (usually called
root authority) to issue a mount command. Because standard mount processing does
not provide user ID and password checking, NFS running on MVS/ESA has
implemented a protocol extension to mount called mvsmount.

UNIX System Services z/OS Version 1 Release 7 Implementation

The mvsmount protocol extension is implemented by the commands mvslogin and
mvslogout, which allow the entry of a RACF user ID and password on several UNIX
platforms.

Access to the HFS

HFS security is based on permission bits associated with an HFS file, UID and GID values
associated with the file, and the requesting RACF user ID.

A UID associated with a user is a number specified in the OMVS segment of a RACF user ID.
A GID associated with a user is a number specified in the OMVS segment of the default
RACF group to which the user belongs.

Permission bits specify whether read, write, or execute permission is granted to the file owner,
the group to which the file owner belongs, or to everyone. When a file is created, it is
automatically associated with the UID of the user that creates the file (the file owner) and the
GID of the directory it is in (the parent directory).

If a UNIX System Services user tries to access a HFS file, the UID and GID are compared
with the UID and GID associated with the file. Depending on whether the values are equal,
UNIX System Services grants the access rights of the file owner, the owner's group, or the
rights that are granted to everyone.

If NFS is used to access HFS files, we must take into account which UIDs and GIDs are in
effect on the NFS client system, and which security scheme is used with MVS NFS.

Because the UID and GID number is associated with an HFS file (and not related to a user
name or group name), the 1s -1 command on an NFS client system will return different file
owning user names and file owning group names than what is on the NFS server system, if
the assignment of UIDs to user names and GIDs to group names is not consistent within the
NFS network.

Also we have to consider which UIDs and GIDs are assigned to the NFS client users when
they access an HFS file. This is dependent on the NFS security scheme that is in use:

» If EXPORTS security is used, there is no identification to RACF. For this reason, the UID
and GID values associated with the user ID acting on the NFS client system are used for
UNIX System Services security checking. An exception to this rule is UID=0 (superuser); it
is mapped to -2.

» If SAF security is used, the NFS client user has to identify itself to RACF by either a
PC-NFS mount or the mvsTogin command. RACF associates UID and GID values with the
NFS client user. These values are used in further processing on the MVS NFS side. The
problem is that additional security checking is done on the NFS client side. This makes
things complicated when the UID/GID values are not consistent in your network.

For example, we have an NFS connection between a UNIX NFS client and an MVS NFS
server. There are four user IDs involved:

1. A user ID defined under UNIX System Services to be used with mvslogin. Let us call it
MVSUSER with UID=200, GID=200.

2. The NFS client system user ID issuing the mount. Let us call it ROOT (ROOT has a
UiD=0).

3. Two other NFS client user IDs accessing the HFS file. Let us call them LUCKY with
UID=200, GID=200, and UNLUCKY with UID=100, GID=100.

Independent of the security scheme used, root issues the mount command and the mount is
successful. (On UNIX machines, you need root authority to issue NFS mounts.)

Chapter 4. Overview and customization of TCP/IP for zZOS UNIX 225

If EXPORTS security is used, no mvslogin command is needed. LUCKY will get access to
MVSUSER's files as if it were MVSUSER because they have the same UID and GID values
(200); UNLUCKY, which has a UID=100 and GID=100, gets world access.

If SAF security is used, the mount command will return OK, but as long as no mvslogin
command is issued, all NFS client users will get security violation messages if they try to
access an HFS file. Both LUCKY and UNLUCKY issue the mvslogin command with the user
ID MVSUSER and the corresponding password. Now MVS NFS will grant to both users the
rights of MVSUSER to HFS files. LUCKY will be happy after that, but UNLUCKY will not.
Why?

MVS NFS sends the UID and GID associated with the mounted files to the NFS client system.
The NFS client system will show LUCKY as owner of the files that MVSUSER owns in HFS
(UID and GID both equal 200). Because the NFS client system also does security checking,
UNLUCKY will be stopped by the local security system and again only get world access
rights. In addition, if by chance there is a user JOE with UID=100 and GID=100 on UNIX
System Services, the NFS client system will show UNLUCKY to be the owner of JOE's files,
but if UNLUCKY tries to access the files, he will be stopped by SAF security because SAF
security already granted MVSUSER's rights to LUCKY when LUCKY used the mvslogin
command earlier.

Recommendations for using NFS
Following are recommendations for using NFS with z/OS UNIX:

1. Regardless of the security scheme you use, assign consistent UID and GID values in your
NFS network. Each user should have the same UID and GID on every system he/she
works.

2. Enable the PC-NFS support in MVS/ESA NFS and use PC-NFS where possible.
3. Use EXPORTS security when you can trust your UNIX system administration.
4. Use SAF security when your environment has additional security requirements.
Follow this sequence of commands when:
— Mounting to z/OS NFS:
i. Log in to user ID root on the NFS client (if using a UNIX workstation).

ii. lssue the mvslogin command. This is not required to mount, but it is useful to check
whether everything is okay.

iii. Issue the mount command.

iv. Check the access to the HFS directory by using the df command on UNIX.
— Using HFS:

i. Log in to the user ID you want to work with in your UNIX environment.

ii. Issue the mvslogin command.

ii. You should now be able to access the mounted file system as permitted.

iv. If you logged out from UNIX, issue the mvslogin command after the next UNIX
login.

— Unmounting from MVS NFS:
i. Loginto user ID root on the NFS client (if using a UNIX workstation).
ii. Be sure that no other user needs the mounted directory any more.
iii. Issue the umount command.

iv. Issue the mvslogout command.

226 UNIX System Services z/OS Version 1 Release 7 Implementation

>

Tell the UNIX users which directories are mounted from z/OS NFS, and that they may
have different access rights for HFS files than for local files if UID and GID values do not
match.

Because the EXPORTS file is not used, the NFS clients showmount command will reply:
no exported file systems
The information would be useless anyway.

Be aware of the fact that the user ID used for mvslogin could also be used for other
services such as rlogin, ftp, and telnet.

SAFEXP security combines EXPORTS and SAF security, making it the most secure NFS
security level. However, because of its complexity (checking UID and GID values, along with
user ID and passwords), this level of security may also cause additional confusion.

»

>

Use SAFEXP security only if you want to hide parts of the HFS from the outside world.

Be aware that faking the IP-host address is not a difficult task, especially on PC systems in
an office environment.

Keep the EXPORTS file as simple as possible. You have more flexibility if you assign
access rights to HFS files by using RACF user IDs with different UID and GID values for
security checking.

With SAFEXP security, the showmount command will give a response, but this just reflects
the EXPORTS file.

All other security exposures mentioned for SAF security apply also for SAFEXP security.

Chapter 4. Overview and customization of TCP/IP for zZOS UNIX 227

228 UNIX System Services z/OS Version 1 Release 7 Implementation

z/OS Distributed File Service
zSeries File System (zFS)

The z/OS Distributed File Service zSeries File System (zFS) is a z/OS UNIX System Services
(z/OS UNIX) file system that can be used in addition or to the hierarchical file system (HFS).
ZFS file systems contain files and directories that can be accessed with zZOS UNIX
application programming interfaces (APIs). These file systems can support access control
lists (ACLs). zFS file systems can be mounted into the z/OS UNIX hierarchy along with other
local (or remote) file system types (for example, HFS, TFS, AUTOMNT and NFS).

This chapter introduces zFS file systems, including the following topics:

» Application programming interfaces

» zFS physical file system

» zFS colony address space

» zFS file system aggregates

» Metadata cache

» ZzFS file system clones

» zFS logs

» zFS recovery

© Copyright IBM Corp. 2003, 2006. All rights reserved. 229

5.1 zFS introduction

The z/OS Distributed File Service (DFS) zSeries File System (zFS) is a z/OS UNIX file
system that can be used in addition to the Hierarchical File System (HFS). zFS provides

significant performance gains in accessing files approaching 8K in size that are frequently
accessed and updated. The access performance of smaller files is equivalent to that of HFS.

zFS provides reduced exposure to loss of updates by writing data blocks asynchronously and

not waiting for a sync interval.

zFS is a journaling file system. It logs metadata updates, then if a system failure occurs, zFS

replays the log when it comes back up to ensure that the file system is consistent.

zFS is a Physical File System (PFS) that is started by UNIX System Services (USS) during
IPL. A physical file system is the part of the operating system that handles the actual storage

and manipulation of data on a storage medium.

5.2 Application programming interfaces (APIs)

zFS file systems contain files and directories that can be accessed with the z/OS hierarchical

file system application programming interfaces on the z/OS operating system as follows:

» An application interface composed of C interfaces, some of which are managed within the
C Run-Time Library (RTL), while others access kernel interfaces to perform authorized
system functions on behalf of the unauthorized caller

» An interactive z/OS shell interface used by shell users

The PFS interface is a set of protocols and calling interfaces between the logical file system

(LFS) and the PFSs that are installed on z/OS UNIX, as shown in Figure 5-1. In a USS
environment, UNIX programs and UNIX users access their files through these interfaces.
PFSs mount and unmount file systems and perform other file operations.

POSIX-API

z/OS UNIX
p‘rograms

—+=» CRTL
REXX ASM/C/C++

Interactive Interface
Shell
cmds

=\

z/OS UNIX Callable Services Interfaces

Logical File System

Kernel

z/OS UNIX-PFS Interface

Y

Physical File
Systems

HFS PFS

Figure 5-1 UNIX System Services (USS)

230 UNIX System Services z/OS Version 1 Release 7 Implementation

5.3 zFS physical file system

z/OS UNIX System Services (z/OS UNIX) allows you to install virtual file system servers (VFS
servers) and PFSs.

A VFS server makes requests for file system services on behalf of a client. It is similar to a
POSIX program that reads and writes files, except that it uses the lower-level VFS callable
services API instead of the POSIX C-language API.

A PFS controls access to data. PFSs receive and act upon requests to read and write files
that they control. The format of these requests is defined by the PFS interface.

In a UNIX System Services environment, the physical file systems are defined in the
BPXPRMxx PARMLIB member. zFS, as a physical file system, is also to be defined in the
PARMLIB member. Figure 5-2 shows all the physical file systems that can be defined in a
USS environment.

The logical file system (LFS) is called by POSIX programs, non-POSIX z/OS UNIX programs,
and VFS servers.

The PFS interface is a set of protocols and calling interfaces between the LFS and the PFSs
that are installed on z/OS UNIX. PFSs mount and unmount file systems and perform other file
operations.

There are two types of PFSs, those that manage files and those that manage sockets:

» File management PFSs, such as HFS and zFS, deal with objects that have path names
and that generally follow the semantics of POSIX files.

» Socket PFSs deal with objects that are created by the socket() and accept() functions and
that follow socket semantics.

read write open close

1 ! : | 1 ! ! |
I R B O B R R R R

z/OS Callable Services interface

z/OS UNIX-PFS interface

auto- P Local NFS

HFS TFS mount sockets sockets client ZFS

Physical file systems

Figure 5-2 UNIX System Services physical file systems

zFS does not replace HFS; it can be considered to be complimentary to HFS.

Chapter 5. z/OS Distributed File Service zSeries File System (zFS) 231

5.4 zFS colony address space

zFS runs in a UNIX System Services (USS) colony address space. A colony address space is
an address space that is separate from the USS address space. HFS runs inside the USS
address space and zFS runs in its own address space, as shown in Figure 5-3.

I1/0
syscall Colony address space
Logical file
system
+ + v SYS1.PROCLIB
Physical ZES
file HFS ZFs
systems I
BPXPRM xx
FILESYSTYPE TYPE(ZES)
ENTRYPOINT(IOEFSCM) Procedure name
ASNAME(ZES)= in SYS1.PROCLIB

Figure 5-3 zFS executes in a colony address space

5.5 zFS supports z/OS UNIX ACLs

In order to provide better granularity of access control for z/OS UNIX files and directories,
access control lists were introduced with z/OS V1R83. You can use access control lists (ACLs)
to control access to files and directories by individual UIDs and GIDs. This provides the
means to allow specific users and groups to have access to a file or directory.

To manage an ACL for a file, you must have one of the following security accesses:

» Be the file owner

» Have superuser authority (UID=0)

» Have READ access to SUPERUSER.FILESYS.CHANGEPERMS in the UNIXPRIV class
Beginning with z/OS V1R3, ACLs are supported by the HFS and zFS file systems. You must

also know whether your security product supports ACLs and what rules are used when
determining file access.

ACL support works similar to the way access to MVS data sets is permitted, although the

implementation is different. The ACL is a part of the File Security Packet (FSP), which is
maintained by the PFS.

232 UNIX System Services z/OS Version 1 Release 7 Implementation

5.6 zFS file system aggregates

A zFS aggregate is a data set that contains zFS file systems. The aggregate is a VSAM
Linear Data Set (VSAM LDS) and is a container that can contain one or more zFS file
systems. An aggregate can only have one VSAM LDS, but it can contain an unlimited number
of file systems. The name of the aggregate is the same as the VSAM LDS name.

Sufficient space must be available on the volume or volumes, as multiple volumes may be
specified on the DEFINE of the VSAM LDS. DFSMS decides when to allocate on these
volumes during any extension of a primary allocation. VSAM LDSs greater than 4 GB may be
specified by using the extended format and extended addressability capability in the data
class of the data set.

After the aggregate is created, formatting of the aggregate is necessary before any file
systems can exist in it. A zFS file system is a named entity that resides in a zFS aggregate. It
contains a root directory and can be mounted into the USS hierarchy. While the term file
system is not a new term, a zFS file system resides in a zFS aggregate, which is different
from an HFS file system.

zFS aggregates come in two types:
» Compatibility mode aggregates
» Multi-file system aggregates

5.6.1 Compatibility mode aggregates

A compatibility mode aggregate can contain only one zFS file system, making this type of
aggregate more like an HFS file system. This is flagged in the aggregate when it is created.
The name of the file system is the same as the name of the aggregate, which is the same as
the VSAM LDS cluster name. The file system size (called a quota) in a compatibility mode
aggregate is set to the size of the aggregate. Compatibility mode aggregates are more like an
HFS data set, except that they are VSAM linear data sets instead of HFS data sets. We
recommend that you start using compatibility mode aggregates first, since they are more like
the familiar HFS data sets. Figure 5-4 shows a compatibility mode aggregate.

zFS compatibility mode
aggregate

/
File1 File2
OMVS.PAY.ZFS

zF S file system

VSAM LDS name=aggregate name=file system name

Figure 5-4 Compatibility mode aggregate

Chapter 5. z/OS Distributed File Service zSeries File System (zFS) 233

5.6.2 Multi-file system aggregates

234

A multi-file system aggregate allows the administrator to define multiple zFS file systems in a
single aggregate. This allows space sharing.

Space sharing

Space sharing means that if you have multiple file systems in a single data set, and files are
removed from one of the file systems—which frees DASD space—another file system can
use that space when new files are created. This new type of file system is called a multi-file
system aggregate.

The multiple file system aggregate OMVS.MUL02.ZFS, shown in Figure 5-5, can contain
multiple zFS file systems. This makes it possible to do space sharing between the zFS file
systems within the aggregate.

The multiple file system aggregate has its own name. This name is assigned when the
aggregate is created. It is always the same as the VSAM LDS cluster name. Each zFS file
system in the aggregate has its own file system name. This name is assigned when the
particular file system in the aggregate is created. Each zFS file system also has a predefined
maximum size, called the quota.

ZFSVL1

OMVS MULO02.ZFS

: I\ 2FSFS02),
A P J

hhhhhh _FILE3 FILE4

S

/
FILE5 FILEG

™ ZFSFsos""\

File system names

zFS file systems ZFSFS01
ZFSFS02

VSAM LDS name=aggregate name ZFSFS03

Figure 5-5 Multi-file system aggregate

Attention: In a future release, IBM plans to withdraw support for zFS multi-file system
aggregates. When this support is withdrawn, only zFS compatibility mode aggregates will
be supported.

UNIX System Services z/OS Version 1 Release 7 Implementation

5.7 Metadata cache

The zFS file system has a cache for file system metadata, which includes directory contents
and the data of files that are smaller than the aggregate block size. The setting of this cache
size is important to performance because zFS references the file system metadata frequently.
Synchronous reads of metadata increase 1/O rates to disk and server response times.
Metadata consists of things like owner, permission bit settings, and data block pointers.

The metadata cache is stored in the zFS primary address space; its default size is 32 MB.
Since the metadata cache only contains metadata and small files, it normally does not need
to be nearly as large as the user file cache.

Note: With z/OS V1R4, a new backing cache for metadata provides an extension to the
meta cache and resides in a data space. Specify the following in the IOEFSPRM file:

metaback cache size=64M, fixed

The values allowed are 1 MB to 2048 MB. It is used as a paging area for metadata and
allows a larger meta cache for workloads that need large amounts of metadata. This cache
is only needed if the meta cache is constrained

5.8 zFS file system clones

zFS allows an administrator to make a read-only clone of a file system in the same aggregate.
This clone file system can be made available to users to provide a read-only point-in-time
copy of a file system. The clone operation happens relatively quickly and does not take up too
much additional space because only the metadata is copied.

When a file system is cloned, a copy of it is created in the same aggregate, as shown in
Figure 5-6. There must be physical space available in the aggregate for the clone to be
successful. For the clone to be used, it must be mounted.

metadata == metadata

A omvs PAY.ZFS.bak

Fi|é’"1 F“ilez

Figure 5-6 zFS file system clone

Chapter 5. z/OS Distributed File Service zSeries File System (zFS) 235

5.8.1 Backup file system

The zFS file system that is the result of the clone operation is called the backup file system.
The backup file system is a read-only file system and can only be mounted as read-only.

5.9 zFS log files

Every zFS aggregate contains a log file that is created when the aggregate is formatted. This
log is used to record transactions describing changes to the file system structure. The default
for the log file is 1% of the aggregate size, but it can be changed during the format of the
aggregate. Usually, 1% is sufficient for most aggregates. However, very large aggregates
might need less than 1% while very small aggregates might need more than 1% if a high
degree of parallel update activity occurs for the aggregate.

5.10 zFS recovery

zFS provides a recovery mechanism that uses a zFS file system log to verify or correct the
structure of an aggregate. This recovery mechanism is invoked by an operator command,
ioeagslv.

When you do a system restart, a recovery program called the sa/vager uses the zFS file
system log to return consistency to a file system by running recovery on the aggregate on
which the file system resides. Recovery consists of reading the log that contains all the
changes made to metadata as a result of the operations done to the aggregate, such as file
creation and deletion. If problems are detected in the basic structure of the aggregate, if the
log mechanism is damaged, or if the storage medium of the aggregate is damaged, the
ioeags1v command must be used to verify or repair the structure of the aggregate.

5.11 Additional information

236

For more information and details on zFS and migration from HFS to zFS see the zFS
Redbook z/OS Distributed File Service zSeries File System Implementation, SG24-6580.

UNIX System Services z/OS Version 1 Release 7 Implementation

USS sysplex sharing

This chapter provides information on how z/OS UNIX System Services has been designed
and how it works. The topics described are:

»

>

>

USS sysplex sharing design

USS file system structures

USS file system sharing

AUTOMOVE system list

USS file sharing structures for a system
USS file system sharing implementation
Effects of USS sysplex sharing

Mount table limit monitoring

Mount table limiting

BRLM in a shared environment
Considerations for the version root
Replacing the root without IPL

Licensed products and the root file system
System specific data and the version root

© Copyright IBM Corp. 2003, 2006. All rights reserved.

237

6.1 USS sysplex sharing design

238

At the time USS sysplex sharing was introduced, there were requirements from customers
and also IBM’s ideas, of course, on what functions should be provided and how they should
be implemented. The latter had to focus on a reasonable way to send out the basic file
structures and to provide the new functions without too much complexity—and as soon as
possible.

Following we list some important design objectives, with brief explanations:

»

One root file system structure for both sysplex and non-sysplex environments
This makes it possible to ship the base USS file structure as one single object.
Allow for “rolling IPLs” to introduce new systems

It is necessary, of course, to IPL new systems while others are already running.
Allow for backout of systems from sysplex

Multiple releases of the root file system in the sysplex

Not all the systems run at the same release or version of z/OS, and there are often several
service levels used for systems running at the same release.

Preserve structures and philosophies IBM recommended in the past—and customers
used!

Accessing all file systems from any system in a sysplex
This is one of the main requests to:

— Make it easier to do maintenance.
— Allow users to access their data independent of the system they log on to.

Sharing USS file systems across a sysplex in R/W mode

This is another very important request. There would still be no system independence
without this.

Same structure and view on all systems

It is essential for users to have the same clear view of the USS file structure with all the
data that is important (for a specific system) as before. Figure 6-1 on page 239 shows this
structure.

Same behavior in both sysplex and none-sysplex environments

Both environments must be implemented as similarly as possible to allow easy switching
to and from sysplex sharing.

UNIX System Services z/OS Version 1 Release 7 Implementation

etc || var |[tmp || lib |[|usr || bin ||dev u ||samples

Figure 6-1 Logical view (transparent USS file structure)

6.2 USS file system structures

Using USS file system sysplex support, the administrator can do the following:
» Write to file systems from all systems in the sysplex

» Have greater availability of data in the event of a system outage

» Have a common file system hierarchy on all systems

» Better manage file system placement

The advantages of the shared environment are:
» Greater user mobility

» Flexibility with file system balancing

» Consolidation of data

» One common BPXPRMxx for all systems

6.2.1 Symbolic links

Using symbolic links is one of the key techniques used to implement USS sysplex sharing,
make it work as needed, and necessitate only very few changes when working with the UNIX
file structure. Understanding how the links are used is essential for understanding the data
structures introduced with USS sysplex sharing.

Note: Using symbolic links is just a technique to work with the USS sharing file system
structures and does not provide the means to share UNIX file systems. This is shown later
in 6.3, “USS file system sharing” on page 251.

Before availability of USS sysplex sharing, symbolic links had been used almost exclusively to
provide an alias name to a UNIX file. In the /bin directory there are a huge number of
symbolic links pointing to executables down the /ust/Ipp structure where USS file systems for
program products are located. This makes it possible to run these programs just by entering
the name of the symbolic link instead of having to provide the full path name.

Chapter 6. USS sysplex sharing 239

What is new in USS sharing is the fact that now symbolic links are used intensively to point to
directories. Figure 6-2 shows a sample for a symbolic link named /etc that points to a
subdirectory etc under another directory named /SY1.

/etc /SY1/etc

PLdd
e”

=" /SY1letc |~

Figure 6-2 Symbolic link pointing to a directory

This means that you can simply use “/etc” to address “/SY1/etc”. However, you need to be
careful when using UNIX commands or working in the ISHELL to really address the target
directory and not the symbolic link itself.

In Figure 6-3 two find commands are run to list the file /etc/rc. If etc is a directory and not a
symbolic link, you would get the same output for both situations. It is not in the first command
(the symbolic link is addressed), but in the second it is the target directory and we get the
desired output.

$> find /etc -name rc
$> find /etc/ -name rc
/etc/rc

Figure 6-3 Sample commands addressing the symbolic link and the target directory

For this reason there is the following simple rule to avoid problems when addressing
directories.

Attention: If you want to address a directory and do not know whether the name is a
symbolic link or really the directory, always append a slash (/). This always assures that the
(target) directory is addressed and you never get into trouble.

And this small restriction, compared to the old way to work with the UNIX file structure, is the
biggest change that you must pay attention to when starting to work in an OS/390 or z/OS
system beyond OS/390 V2R8.

6.2.2 Single system image 0S/390 V2R9 or later

There is a second fact that makes the symbolic links a little bit more complex. It is not enough
to just have fixed symbolic links. All the new important symlinks are composed of a variable
part and a fixed part. This is needed to have the flexibility to point to target directories
depending on the following:

» Whether running in sysplex sharing mode or not
» The system they are used in (if USS sharing is active)
» A definition setting in the BPXPRMxx parmlib member (if USS sharing is active)

240 UNIX System Services z/OS Version 1 Release 7 Implementation

Figure 6-4 shows the structure of the new root file system as it is shipped by IBM. As before,
there are still directories bin, usr, lib, opt, samples and u in the top level directory /, but etc,
dev, tmp and var are now symbolic links whose contents start with a variable named
$SYSNAME. In case of a single system image it is resolved to /SYSTEM.

symlink —t etc —p» $SYSNAME/etc
symiink — dev ___ g §SYSNAME/dev
] OMVS.ETC.HFS
symlink — tmp — p» $SYSNAME/tmp
symlink —- var g $SYSNAME/var
directory —— SYSTEM/ ——————
i -+ etc
drectory 1 pin directory
directory —T— usr drectory - dev
directory —— i directory —— tmp
directory ——opt directory ~ —+— var
directory 4— samples :
syml —+ bin P /bir
directory —— miink sr > /usr
directory —— u sy k —| li — /lib
symlin -— opt e /Opt
/mlink samples /samples
OMVS.ROOT.HFS

Figure 6-4 Single system image

And SYSTEM is a new subdirectory that contains the real directories etc, dev, tmp, and var
that are used as mount points for the corresponding file systems containing these structures.

For convenience in this second level directory, symbolic links are provided pointing back to
the real first-level structures /bin, /usr, /lib, /opt, and /samples.

Note: The user still sees the same transparent view of the UNIX file structure as before.
This is true for the first level (/) and the second level (/SYSTEM).

6.2.3 USS enhancements in case of sysplex sharing

When exploiting the USS sysplex sharing function we need to deal with the following new
objects or changes:

» USS file system structures that exist in a sysplex
» New BPXPRMxx parmlib statements and options
» New OMVS couple data

We first describe the file system structures and the new BPXPRMxx settings. We have a look
at the couple data set later.

Chapter 6. USS sysplex sharing 241

6.2.4 USS file system structures in a sysplex

To reflect the situation in a sysplex we need the following new file system structures and
hierarchy.

Sysplex root file system

The sysplex root is an HFS data set that is used as the sysplex-wide root. This HFS data set
must be mounted read-write and designated AUTOMOVE. Only one sysplex root is allowed
for all systems participating in shared HFS. The sysplex root is created by invoking the
BPXISYSR sample job in SYS1.SAMPLIB.

Note: No files or code reside in the sysplex root data set. It consists of directories and
symbolic links only, and it is a small data set.

The sysplex root provides access to all directories. Each system in a sysplex can access
directories through the symbolic links that are provided. Essentially, the sysplex root provides
redirection to the appropriate directories, and it should be kept very stable; updates and
changes to the sysplex root should be made as infrequently as possible.

Version file system

The version HFS is the IBM-supplied root HFS data set. To avoid confusion with the sysplex
root HFS data set, “root HFS” has been renamed to “version HFS”. You can use one version
HFS for each set of systems participating in shared HFS and that are at the same release
level.

System-specific file system

Directories in the system-specific HFS data set are used as mount points, specifically for /etc,
/var, timp, and /dev. To create the system-specific HFS, run the BPXISYSS sample job in
SYS1.SAMPLIB